

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 5, no. 3 & 4, year 2012, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 5, no. 3 & 4, year 2012,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2012 IARIA

International Journal on Advances in Software

Volume 5, Number 3 & 4, 2012

Editor-in-Chief

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan

Marc Aiguier, École Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio

Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernández, Instituto Tecnológico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Università di Pisa, Italy

Renato Amorim, University of London, UK

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Barbara Rita Barricelli, Università degli Studi di Milano, Italy

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Imen Ben Lahmar, Institut Telecom SudParis, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany

Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India

Ling Bian, University at Buffalo, USA

Kenneth Duncan Boness, University of Reading, England

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada

Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universität Potsdam, Germany

Mikey Browne, IBM, USA

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad del Este, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania

Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

PR

Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto, Spain

Noël Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Cláudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México

Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy

Hepu Deng, RMIT University, Australia

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Università di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Indiana University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada

Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Lars Ebrecht, German Aerospace Center (DLR), Germany

Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elçi, Süleyman Demirel University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraíba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

João M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy

Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany

Félix J. García Clemente, University of Murcia, Spain

José García-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Università degli Studi di Verona, Italy

Robert L. Glass, Griffith University, Australia

Afzal Godil, National Institute of Standards and Technology, USA

Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Pascual Gonzalez, University of Castilla-La Mancha, Spain

Björn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, University of Ulm, Germany

Carlos Granell, European Commission / Joint Research Centre, Italy

Christoph Grimm. TU Wien, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany

Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Phuong H. Ha, University of Tromso, Norway

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia

Herman Hartmann, University of Groningen, The Netherlands

Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania

Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia

Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Nittaya Kerdprasop, Suranaree University of Technology, Thailand

Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia

Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan

Youngjae Kim, Oak Ridge National Laboratory, USA

Roger "Buzz" King, University of Colorado at Boulder, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic

Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia

Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Università dell'Insubria, Italy

Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Shuai Ma, Beihang University, China

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy

Leonardo Mariani, University of Milano Bicocca, Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina

Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

Stephan Mäs, Technical University of Dresden, Germany

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Muhanna A Muhanna, University of Nevada - Reno, USA

Antonio Navarro Martín, Universidad Complutense de Madrid, Spain

Filippo Neri, University of Naples, Italy

Toàn Nguyên, INRIA Grenobel Rhone-Alpes/ Montbonnot, France

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Marcellin Julius Nkenlifack, Université de Dschang, Cameroun

Michael North, Argonne National Laboratory, USA

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universität Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania

Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Eric Pardede, La Trobe University, Australia

Rodrigo Paredes, Universidad de Talca, Chile

Päivi Parviainen, VTT Technical Research Centre, Finland

João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal

Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal

Willy Picard, Poznań University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Sören Pirk, Universität Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Dilip K. Prasad, Nanyang Technological University, Singapore

Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany

Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raúl Romero, University of Córdoba, Spain

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Bernd Resch, Massachusetts Institute of Technology, USA

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Università degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

Aitor Rodríguez-Alsina, University Autonoma of Barcelona, Spain

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Arun Saha, Fujitsu, USA

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada

Patrizia Scandurra, University of Bergamo, Italy

Giuseppe Scanniello, Università degli Studi della Basilicata, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Austrian Institute of Technology, Austria

Cristina Seceleanu, Mälardalen University, Sweden

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Alin Stefanescu, University of Pitesti, Romania

Lena Strömbäck, SMHI, Sweden

Kenji Suzuki, The University of Chicago, USA

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan

Antonio J. Tallón-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

Ioan Toma, STI, Austria

Božo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Università degli Studi dell'Insubria, Italy

Peter Trapp, Ingolstadt, Germany

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Åbo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLinq Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Jianwu Wang, San Diego Supercomputer Center / University of California, San Diego, USA

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Sebastian Wieczorek, SAP Research Center Darmstadt, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universität München, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China

Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China

Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e

Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsø, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software

Volume 5, Numbers 3 & 4, 2012

CONTENTS

pages: 146 - 165
A Bioinspired Coordination Strategy for Controlling of Multiple Robots in Surveillance Tasks
Rodrigo Calvo, University of Sao Paulo, Brazil
Janderson Rodrigo de Oliveira, University of Sao Paulo, Brazil
Mauricio Figueiredo, Federal University of Sao Carlos, Brazil
Roseli Aparecida Francelin Romero, University of Sao Paulo, Brazil

pages: 166 - 178
Quality Attributes for Web Services: A Model-based Approach for Policy Creation
Alexander Wahl, Department of Computer Science Furtwangen University of Applied Science Furtwangen,
Germany
Bernhard Hollunder, Department of Computer Science Furtwangen University of Applied Science Furtwangen,
Germany
Varun Sud, Department of Computer Science Furtwangen University of Applied Science Furtwangen, Germany
Ahmed Al-Moayed, BI/ HANA Deparment, Adweko GmbH Walldorf, Germany

pages: 179 - 190
Testing Object-Oriented Code Through a Specifications-Based Mutation Engine
Pantelis Stylianos Yiasemis, Cyprus University of Technology, Cyprus
Andreas Andreou, Cyprus University of Technology, Cyprus

pages: 191 - 199
Benchmarking Data as a basis for Choosing a Business Software Systems Development and Enhancement Project
Variant – Case Study
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland

pages: 200 - 211
Mining Test Cases: Optimization Possibilities
Edith Werner, Neumüller Ingenieurbüro GmbH, Germany
Jens Grabowski, Institute for Computer Science, University of Göttingen, Germany

pages: 212 - 223
Synthesizing Control Software from Boolean Relations
Federico Mari, Sapienza University of Rome, Italy
Igor Melatti, Sapienza University of Rome, Italy
Ivano Salvo, Sapienza University of Rome, Italy
Enrico Tronci, Sapienza University of Rome, Italy

pages: 224 - 236
Dynamic Reverse Engineering of Graphical User Interfaces
Inês Coimbra Morgado, FEUP, Portugal
Ana C. R. Paiva, FEUP, Portugal
João Pascoal Faria, FEUP, INESC TEC, Portugal

pages: 237 - 251
Event-Sequence Testing using Answer-Set Programming
Martin Brain, University of Oxford, UK
Esra Erdem, Sabanci University, Turkey
Katsumi Inoue, National Institute of Informatics, Japan
Johannes Oetsch, Vienna University of Technology, Austria
Jörg Pührer, Vienna University of Technology, Austria
Hans Tompits, Vienna University of Technology, Austria
Cemal Yilmaz, Sabanci University, Turkey

pages: 252 - 262
Soft Constraints in Feature Models: An Experimental Assessment
Jorge Barreiros, Instituto Superior de Engenharia de Coimbra, Portugal
Ana Moreira, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

pages: 263 - 277
Using Functional Complexity Measures in Software Development Effort Estimation
Luigi Lavazza, Università degli Studi dell'Insubria, Italy
Gabriela Robiolo, Universidad Austral, Argentina

pages: 278 - 292
Metrics and Measurements in Global Software Development
Maarit Tihinen, VTT Technical Research Centre of Finland, Finland
Päivi Parviainen, VTT Technical Research Centre of Finland, Finland
Rob Kommeren, Philips, The Netherlands
Jim Rotherham, Symbio, Finland

pages: 293 - 307
Quality-Oriented Design of Software Services in Geographical Information Systems
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Suad Sejdovic, Campana & Schott, Germany

pages: 308 - 322
An Agile Driven Architecture Modernization to a Model-Driven Development Solution - An industrial experience
report
Mina Boström Nakićenović, SunGard Front Arena, Sweden

pages: 323 - 334
Factors Leading to the Success and Sustainability of Software Process Improvement Efforts
Natalja Nikitina, KTH Royal Institute of Technology, Sweden
Mira Kajko-Mattsson, KTH Royal Institute of Technology, Sweden

pages: 335 - 344
Evaluating Performance of Android Systems as a Platform for Augmented Reality Applications
Andrés L. Sarmiento, University of A Coruña, Spain
Margarita Amor, University of A Coruña, Spain
Emilio J. Padrón, University of A Coruña, Spain
Carlos V. Regueiro, University of A Coruña, Spain
Raquel Concheiro, University of A Coruña, Spain
Pablo Quintía, University of A Coruña, Spain

pages: 345 - 357
Debugging Ubiquitous Computing Applications With the Interaction Analyzer
Nam Nguyen, UCLA, USA
Leonard Kleinrock, UCLA, USA
Peter Reiher, UCLA, USA

pages: 358 - 367
Restoration of Blurred Images Using Revised Bayesian-Based Iterative Method
Sigeru Omatu, Osaka Institute of Technology, Japan
Hideo Araki, Osaka Institute of Technology, Japan
Yuka Nagashima, Osaka Prefecture University, Japan

pages: 368 - 377
Energy-aware MPSoC for Real-time Applications with Space-Sharing, Adaptive and Selective Clocking and
Software-first Design
Stefan Aust, Clausthal University of Technology, Germany
Harald Richter, Clausthal University of Technology, Germany

pages: 378 - 388
Footprint-Based Generalization of 3D Building Groups at Medium Level of Detail for Multi-Scale Urban
Visualization
Shuang He, L'UNAM Université, Ecole Centrale Nantes, CERMA, France
Guillaume Moreau, L'UNAM Université, Ecole Centrale Nantes, CERMA, France
Jean-Yves Martin, L'UNAM Université, Ecole Centrale Nantes, CERMA, France

pages: 389 - 400
Subjective Assessment of Data Quality considering their Interdependencies and Relevance according to the Type
of Information Systems
Maria del Pilar Angeles, Universidad Nacional Autónoma de México, Facultad de Ingeniería., México
Francisco Javier García-Ugalde, Universidad Nacional Autónoma de México, Facultad de Ingeniería., México

pages: 401 - 413
Analyzing 3D Complex Urban Environments Using a Unified Visibility Algorithm
Oren Gal, Technion - Israel Institute of Technology, Israel
Yerach Doytsher, Technion - Israel Institute of Technology, Israel

146

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Bioinspired Coordination Strategy for Controlling of Multiple Robots in
Surveillance Tasks

Rodrigo Calvo, Janderson R. de Oliveira, and Roseli A. F. Romero
Department of Computer Sciences

University of Sao Paulo
Sao Carlos - SP, Brazil

Email: {rcalvo,jrodrigo,rafrance}@icmc.usp.br

Mauricio Figueiredo
Department of Computer Sciences
Federal University of Sao Carlos

Sao Carlos - SP, Brazil
Email: mauricio@dc.ufscar.br

Abstract—There are tasks that the multiple agent system
approach is very appropriate for improving performance.
Among them are: environment exploration, mineral mining,
mine sweeping, surveillance, and rescue operations. The ex-
pected advantage is not a mere consequence of putting together
many agents. An efficient coordination strategy is decisive
to reach performance improvements. In the present paper, a
new strategy is proposed for coordination of multiple robot
systems applied to exploration and surveillance tasks. The
coordination strategy is distributed and on-line. It is inspired
in biological mechanisms that define the social organization of
swarm systems; specifically, it is based on a modified version
of usual artificial ant systems. Two versions of the proposal
are evaluated. The experiments consider two performance
criteria: the average of the numbers of surveillance epochs
and average of the surveillance time intervals. Simulation
results confirm that exploration and surveillance emerge from
a synergy of individual robot behaviors. Data analyses show
the coordination strategy is effective and suitable to execute
exploration and surveillance tasks.

Keywords-multiple robot system; surveillance task; coordina-
tion strategy; ant colony system; swarm systems.

I. INTRODUCTION

A multiple agent system is well characterized if its
dynamics reflect some synergy, that is, global behaviors
emerge from the individual ones improving capabilities and
performance to reach a specific goal. If only one agent
of a group achieves equally the same goal with the same
performance the entire group does, then at first,the group
of agents are not a multiple agent system. Regarding as
multiple robots system, this present paper is an extension
of approach proposed in [1], where a robots team is able
to monitor an environment independently of adopted con-
figuration. In the other words, the way by which walls (or
obstacles) are placed in an environment does not limit the
accomplishment of exploration and surveillance tasks.

There are many applications to which multiple agent
systems are the suitable approach to be adopted, such as:
rescue operations in catastrophic events; fire extinction; and
exploration in hostile environment [2][3][4]. Some of the
main reasons that justify this choice, among others, are: great
dimension of the task and reduced resources (e.g., velocity,

strength, energy) provided for a single agent; necessity
to adaptation to spatial or temporal variation of service
demands and robustness. For some tasks this approach is
mandatory; for others it is a matter of convenience to
increase the quality, to improve the performance or to save
monetary funds.

Nowadays, the technology reaches more sophisticated lev-
els providing environment support and embedded supplies.
These improvements bring closer the possibility of multiple
agent systems to become usual. The strong expectation
associated to this possibility captivates the attention of
the scientific community. Different aspects are investigated
in multiple agent systems, such as: agent communication
and information merging [5][6][7][8]. Another important
aspect is the agent coordination that allows the system
accomplishes efficiently general tasks such as: exploration,
coverage, surveillance, among others.

On the one hand, coordination strategies are designed to
provide multiple agent systems with a set of characteristics,
e.g., decentralized coordination, small redundancy of agent
efforts and strong cooperative behavior. On the other hand,
designers devote effort to propose coordination strategies
that are dependent on the least number of parameters as pos-
sible. A tricky parameter is the number of agents. Another
requirement that may depreciate the strategy is the need to
have total knowledge of the environment.

According to a technique described in [9] robots construct
a common map cooperatively. It is introduced the notion of
a frontier, which is a boundary between the explored and
unexplored areas. As robots move, new boundaries are de-
tected and frontiers are grouped in regions. Then, the robots
navigate toward the centroid of the closest region, while
sharing maps. The strategy is a centralized type since A∗

algorithm considers all information that the robots provide
and the algorithm output defines the next steering direction
of each robot. The strategy does not avoid unnecessary
redundancy of robot efforts.

The problem of surveillance using multiple agents is
investigated as a problem of a cooperative patrolling in [10].
A mathematical formulation is proposed as a minimization

147

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

problem. The objective to minimize the refresh time, that
is, the time necessary for the agents patrol completely the
environment. The solution they find is an approximation
algorithm of polynomial computational cost based on a
topological graph representation and a path-covering pro-
cedure. The strategy depends totally on the knowledge of
the environment.

Methods based on stimergy fields for cooperation have
been recently employed in the context of robotic explo-
ration [11][12][13]. They rely on a mechanism of indirect
communication among the agents which allows their actions
to be influenced by a trace left previously in the environment
by the robot. In this way, a task can be accomplished
in an efficient manner. A different coordination scheme
in [14] is proposed based on potential fields in which
repulsive forces repel robots from each other and obstacles.
Starting navigation from the same region, the robots keep
moving until repulsive forces cancel each other. At this
moment the sensor network is settled and robots stop. This
approach ensures the coverage task if the number of robots
is sufficiently great. Unfortunately, the authors do not show
how to find the minimum number of robots. Therefore there
always exists a possibility that the strategy fails.

Coverage tasks are the focus of the investigation in [15].
The distributed coordination strategy, based on the Voronoi
diagram and Delaunay triangulation, is proposed to maxi-
mize the connected coverage area. The strategy is robust to
robot failures. Voronoi diagram is also adopted to solve the
connected coverage problem in [16]. Despite these strategies
solve a connected coverage problem, both do not sense
completely the environment, that is, not all parts of the
environment are visited by any robot.

The problem of coordination of multiple agents is consid-
ered complex [17][6]. Coordination strategies based solely
on mathematical formulation and on agent and environment
models are very parameter dependent and suffer critical
degradation due to agent failure [18][15][16]. Furthermore,
the problem of coordination of multiple robots that execute a
surveillance task is proved to be NP-hard [10]. Bio-inspired
theories provide fundamentals to design alternative strategies
that overcome the main difficulties that become traditional
strategies vain [19][20].

Particularly, the artificial analog versions of biological
mechanisms that define the social organization dynamics,
observed in some swarm systems, are very appropriate in ap-
plications involving multiple agents, for example, decentral-
ized control, communication and coordination [21][22][23].

In our previous works, some initial ideas about con-
struction of a new bioinspired based model for a control
strategy of multiple robots were proposed in [24]. It is
named Inverse Ant System-Based Surveillance System (IAS-
SS). In a preliminary model of IAS-SS, it was considered
distinct steering direction mechanisms and the feature of
robustness in regarding the number of robots adopted. As an

extension, in [1] was shown that the system does not depend
on knowledge of the environment, where the agents act in
environments with different configurations (arrangement of
obstacles). In order to prove the efficiency of communication
way among the agents rather than that adopted by biological
agents, a parametric analysis was performed in [25], using
various stigmergy mechanisms.

In the present work, an enhancement of IAS-SS strategy is
proposed through a more complete description. It is designed
according to a modified version of the ant system algorithm
presented in [26]. In this strategy, the agents were able to
indirect communication as the biological agents are, but their
reaction to the pheromone is distinct, steering directions
are defined to guide preferably the robot to where there is
low quantity of pheromone. IAS-SS strategy is primarily for
the coordination of multiple robots applied to surveillance
and exploration tasks. Some characteristics of IAS-SS are:
decentralized, on-line, and parameter independent from both
the number of robots and the environment structure. Two
versions of the strategy IAS-SS are compared with a total
random strategy. Different experiments are considered, each
of which varying a specific parameter: number of robots, the
environment scale, and initial position. Results show that ex-
ploration and surveillance tasks are effectively executed and
the respective general behaviors emerge from the individual
robot behavior (move to where there is less pheromone).

Since the task of modeling all possible events, accurately,
in real world through mathematical models is not trivial,
the main contribution of this paper is a simple coordination
strategy based on a modified version of the traditional ant
system, that is, the robots are attracted to the region of the
environment with low amount of pheromone. The behavior
of explorationt and surveillance are generated only by the
information supplied by the deposited pheromone with few
parameters to be adjusted. It is necessary neither robot’s
position nor their local map environment. It is worth to be
emphasized the way in which the robots deposit pheromone.
This substance is left in the frontal area of robots, instead of
the positions occupied that generate a pheromone trail. These
characteristics are not found in other approaches existing in
the literature.

This paper is organized such as it follows. In Section II
is presented the basic concepts of the artificial ant system
theory. In Section III, the mathematical formulation of
the surveillance problem is presented. The multiple robot
system and the coordination strategy IAS-SS are focused
in Section IV. The pheromone evaporation dynamics, the
mechanisms of pheromone releasing, and the procedure
to determine the robot steering direction are also defined.
In Section V simulation results are reported. The main
contributions and relevant aspects of this paper as well as
expectations for future works are highlighted in Section VI.

148

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. ANT SYSTEM

Surprisingly, the complex tasks that ant colonies perform,
such as object transportation and build edges, demand rela-
tively more capabilities that a single ant is endowed [27][28].

Biological ants have two known mechanisms to estab-
lish communication, namely, direct and indirect. Biological
ants not only exchange stimuli when they meet; but also
exchange stimuli indirectly (a communication mechanism
called stimergy). Ants deposit a specific type of substance
(pheromone) on the ground while they move. There are
different types of pheromone, each of which associated with
a particular meaning. If a pheromone trail is found and this
pheromone type indicates food, then more and more ants
follow this trail, depositing more pheromone and reinforcing
the stimuli. An opposite behavior happens if the pheromone
is of the aversive type, indicating risk and danger. Stimergy
mechanism is considered as one of the factors that decisively
contribute to amplify the capabilities of a single ant. Ant
colonies use the stimergy mechanism to coordinate their
activities in a distributed way [29].

Artificial ant systems are the artificial counterparts of the
biological ant colonies, designed to solve complex problems,
among others: optimization combinatorial problems [26].
Analogously artificial ants (e.g., robots) are able to use the
stimergic communication. Pheromone trail provides a type of
distributed information that artificial agents may use to take
decisions or modify to express previous experiences [30].
A distributed coordination behavior emerges from this ca-
pability, providing solutions to problems associated with
exploration in hyper-spaces.

III. DEFINITIONS AND PRELIMINARY CONCEPTS

There are different mathematical formulation in the lit-
erature. For example, in [10] the concept of viewpoint is
defined. Viewpoints are specific points in the environment
such that from those points it is possible to sense the whole
environment. Then the robots have to go to them repeatedly
in order to keep the environment sensed completely. The
optimal surveillance task is defined as the minimization of
the largest interval between two consecutive instants that
any robot reaches a particular viewpoint, considering all
viewpoints and during all time the task lasts.

Informally, the surveillance task means the task of keeping
endlessly a target under closed observation. In this paper, the
target is an environment. It is not necessary to keep all points
of the environment under observation at the same time, but
every point has to be observed repeatedly while the task
lasts. If a set of agents are considered to carry out the task,
the agents have to follow trajectories that allow them to sense
all parts of the environment again and again. Clearly, it is
not necessary that each agent goes to every point, but every
point has to be observed by at least one agent (anyone)
repeatedly. Then, the execution of the surveillance task is
considered effective if the environment is completely and

continually sensed. Moreover, the smaller is the maximum
interval between two consecutive sensing, considering any
particular point of the environment, the more efficient is the
execution of the surveillance task.

Two terms used in this work help the readers to under-
stand how the surveillance task is evaluated in this work:
Surveillance Epoch (SE) and Surveillance Interval (SI). A
surveillance interval is any interval of time in which all
points of the environment are sensed at least once; and
at least one point is sensed exactly once. This interval
corresponds to a portion of the surveillance task and this
portion is called surveillance epoch. If the surveillance
intervals are considered from the start of the task, the SI’s
are uniquely determined. Starting from T ∗0 , the agents start
to move through the environment, sensing the environment.
After a time, precisely at time T ∗1 , all points are sensed at
least once; and at least one point is sensed exactly once. The
interval between T ∗0 and T ∗1 is the first SI. The second SI
begins at T ∗1 . It is important to notice that at T ∗1 no point is
considered sensed anymore, that is, a new reckoning starts
at T ∗1 to indicate the sensed points. The agents keep moving
continuously. At T ∗2 all points are sensed at least once; and
at least one point is sensed exactly once (considering a new
reckoning starts for the second SI). The interval between
T ∗1 and T ∗2 is the second SI. All other SI’s are defined
analogously. The surveillance task is evaluated measuring
the maximum length of the intervals SI.

In order to put the meaning of the surveillance task more
rigorous the respective mathematical model is built next.

Consider that robots rk, k = 1, . . . , N move in a planar
space Q ⊂ R2 and that an arbitrary point in Q is denoted by
q. Assume that the time t is discrete. Let Lkt , Lkt ⊂ Q, be
the area that the rk-th robot senses at instant t. Hence, the
rk-th robot senses a point q at instant t, if q ∈ Lkt . Define
a function Ik(., .) to associate a point q with the respective
state considering the rk-th robot, that is, q ∈ Lkt if and only
if Ik(q, t) = 1. Define also a function Ωi(., .) to associate a
point q with the number of times it is sensed from T ∗i−1 up
to t, considering all robots rk, that is:

Ωi(q, t) =

0, if t = T ∗i−1

t∑
µ=T∗

i−1

N∑
k=1

Ik(q, µ), otherwise (1)

Then, this paper focuses on the minimization problem
such as it follows:

min max
1≤i≤C

(
T ∗i − T ∗i−1

)
(2)

subject to:

Ωi(q, T
∗
i) ≥ 1, ∀q ∈ Q

∃q ∈ Q|Ωi(q, T ∗i) = 1,

149

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C∑
i=1

(T ∗i − T ∗i−1) ≤ TF

where: T ∗i and T ∗i−1 are the limits of the i− th surveillance
interval; C ≥ 0 is number of completed SE and TF denotes
the time when the surveillance task ends.

It is important for the reader to notice that the problem
defined earlier in equation 2 is not solved here exactly, but
only in an approximated way. This is almost a rule since this
problem is known to be very complex, when the number of
robot is big. This is the case in this paper. Multiple identical
mobile robots are considered to carry out the surveillance
task. Every robot is equipped with a set of sensor devices
that allow the robots observe the environment. According
to [10] the surveillance task problem such as described there
is a NP-hard problem.

One among the aspects of the surveillance task problem
considered in this paper is that the environment is unknown.
By focusing on this aspect, it is important to notice that the
exploration task may be regard as part of the surveillance
task, since the environment is completely explored at the
end of the first surveillance epoch. At this time all points
of the environment are sensed, that is, there is no point
remains to be found. Then, in what follows the focus is
on the surveillance task and the exploration task is a mere
consequence.

IV. INVERSE ANT SYSTEM-BASED SURVEILLANCE
SYSTEM (IAS-SS)

The multiple agent system approach is adopted to solve
the surveillance task problem such as described in the former
section. The agents are multiple identical mobile robots each
of which equipped with a sensor for detecting a particular
characteristic of the environment.

At first glance, this approach seems attractive, that is,
a plausible conclusion is: multiple robots execute more
efficiently the surveillance task than a single one. However
this conclusion is true if, at least, there is a capable strategy
to coordinate suitably the robots. It means that the strategy
has to generate trajectories for every robot, leading them
repeatedly to all parts of the environment, satisfying some
performance criteria, e.g., minimization of the interval be-
tween two consecutive instants a point in the environment
is sensed, considering all points.

Putting together: performance requirements, solution re-
strictions, and strategy characteristics; makes the design
work a hard task (such as asserted in [10], see comments in
the previous section).

The system proposed, called Inverse Ant System-Based
Surveillance System (IAS-SS), is designed according to the
main ideas of the artificial ant system. In short, the IAS-SS
system is a multiple robot system. The robot’s cybernetic
system consists of two components: the navigation controller
and the pheromone disperser. The pheromone disperser is

one of the components of the robot’s cybernetic system,
since it is related to the robot’s indirect communication
system. The Figure 1 represents the components of the
cybernetic system and the respective connections with other
elements of the system, including the environment.

Figure 1. Cybernetic system architectural diagram for a single robot.

The strategy, called IAS-SS strategy , is for coordination
of the IAS-SS system’s robots applied to surveillance tasks.
The coordination strategy is a distributed one, that is, every
robot moves independently and takes decisions based on
the stimuli it receives from the environment. The IAS-SS
coordination strategy is a reactive (real-time) strategy, does
not generate decision dead-locks, and is computational low-
cost.

The IAS-SS coordination strategy is based on the indirect
communication mechanism (stigmergy) the biological ant
colonies exhibit. The IAS-SS coordination strategy generates
the following general system dynamics. While the robots
navigate they deposit a specific substance into the envi-
ronment. This substance is called pheromone, since it is
the analogue of the pheromone in biological ant colonies.
At each time the robot sensor detects the stimuli from
the environment corresponding to the total amount of the
pheromone deposited on the area defined by the sensor
range. The amount of pheromone detected is the accu-
mulated pheromone deposited on that area considering all
robots. After that the robot adjusts its navigation direction,
deposits the pheromone and moves.

The IAS-SS strategy is completely described in the next
subsections. Among other elements described, are: the navi-
gation system and the steering direction mechanisms; and
pheromone disperser. All other elements of the IAS-SS
system will be considered as well. In the end, all of them
will be described in detail.

A. Navigation System
According to the IAS-SS coordination strategy, the robot

navigation system consists of two subsystems: surveillance

150

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system and obstacle avoidance system. Only one is active
at each time. Most part of the time the surveillance system
is active and the steering direction is determined according
to it. The trajectories the surveillance navigation system
generates cause the robots execute the surveillance task.
The trajectories do not lead robots to collision situations as
well, with rare exceptions. In order to avoid completely any
possible collision situation, the obstacle avoidance system is
active only if the robot is very close to a wall or an other
robot.

Although the obstacle avoidance system is not the main
concern in this paper, it is briefly described. As long as
robots are close to an obstacle, the amount of pheromone in
its boundary region is increased. Then, the robots generate
the obstacle avoidance behavior due to the high amount of
pheromone. Therefore, obstacle avoidance is an emergent
behavior of the IAS-SS strategy. The trajectories generated
by the strategy does not guide the robots to a collision
situation. Besides the exploration and surveillance tasks, the
robots are able to avoid obstacles, keeping a reasonable
distance from them.

However, there are some exceptions when a robot col-
lides against another robot or against an obstacle according
to its physical characteristics. In this sense, it is used a
mechanism for obstacle avoidance based on fuzzy logic [31]
that adjusts the steering direction of the robot using the
information about its distance to an obstacle. The details of
the mechanism based on fuzzy logic can be found in [32].
It is enough to say that this mechanism is active only when
the distance between the robot and an obstacle is smaller
than a predefined constant η.

The general description of steering direction mechanism
the surveillance navigation system implements is such as
follows. At each time a set of stimuli is detected, correspond-
ing to the amount of the pheromone deposited at different
angles and same specific distance (at the range border) in
front of the robot. The lesser is the detected amount of the
pheromone detected the greater is the probability that the
robot takes the navigation direction equal to the angle where
this amount of pheromone is.

According to this strategy robots tend to move to the
directions where there is low amount of pheromone. The
general robot behavior observed is that the robot moves to
unexplored areas or areas robots seldom visit.

Considering the IAS-SS coordination, the logic associated
with the decision that chooses the steering direction angle is
opposite of that adopted in the traditional ant system theory.
The logic adopted there generates a positive feedback, that
is, the greater is the amount of the pheromone the greater is
the probability of the agent to follow the respective direction.

Two versions of the steering angle mechanism are de-
scribed. The first one, called Stochastic Sampling, considers
all possible pheromone stimuli that the sensor detects at
the border of its range. The second, called Best Ranked

Stochastic Sampling, determines the adjusting of steering
angle based on a select set of stimuli detected at the border
of the sensor range.

The mathematical models for these two versions of the
steering angle mechanism are described as it follows. Before
that, consider two assumptions. First, there are N identical
mobile robots rk, k = 1, . . . , N . Second, the model of the
sensor adopted is such that it detects pheromone stimuli
at the border of its range (Figure 2). The border is a
circumference of a circle of radius R, ahead of the robot,
from 90 degrees to the left to 90 degrees to the right of
the steering direction. The total range of 180 degrees is
divided in identical angle intervals each of which measuring
α degrees. The middles of the intervals are settled on angles
As, such that: (2S + 1)α = 180 and As = sα, where
s ∈ [−S, S] and s ∈ N.

Figure 2. Robot and sensor models

1) Stochastic Sampling Mechanism: A pheromone stim-
ulus corresponds to the amount of pheromone deposited
in an angle interval. A probability value assigned to each
discrete angle As is inversely proportional to the amount
of pheromone deposited in the angle interval that is settled
on the angle As. The lower is the amount of pheromone
detected in the angle interval, the higher is the probability
associated with the respective angle As. Specifically, the
probability P (s) assigned to the angle As is:

P (s) =
1− τs

S∑
i=−S

(1− τi)
(3)

where τs is the amount of pheromone corresponding to the
angle interval As.

The adjustment of the steering direction is determined
according to a discrete random variable a defined through
the probability P (s), assuming values in the set {As | s =
−S, . . . ,−1, 0, 1, . . . , S}.

At each time t, the adjustment of steering direction is
given by:

Θk(t) = Θk(t− 1) + γA∗s (4)

151

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where: Θk(t) is the steering angle of the robot k at instant
t, γ ∈ [0, 1] is the constant coefficient for smoothing the
steering direction adjustment; and A(s∗) is value of the
random variable a at instant t for some s = s∗.

However, Stochastic Sampling mechanism is not efficient
for large areas where the amount of the pheromone deposited
is similar on every point. In this case, the amount of
pheromone differs a bit and the A∗s chosen may define
bad steering directions due to the stochastic nature of the
mechanism. For reducing the possibility of this shortcoming,
a second different mechanism is described and investigated
below.

2) Best Ranked Stochastic Sampling Mechanism: Dif-
ferently from the Stochastic Sampling Mechanism, not all
angle As are considered to define the steering direction,
but only two subsets, U and V , such that the respective
cardinalities are ϕ and ω; and ϕ+ω ≤ (2S+1). The subset
U consists of angles As associated with the least detected
amount of pheromone. The subset V consists of elements
chosen randomly, according to an uniform distribution, from
the angles As that are not in the subset U .

The rules for building the subsets U and V are such as
follows:
• Subset U

if As ∈ U and Az /∈ U , then τs ≤ τz

• Subset V

if As ∈ V , then As /∈ U ; and As are chosen
randomly

where: τs is defined according to equation 3 and s, z =
−S, . . . ,−1, 0, 1, . . . , S.

A probability value is assigned to each discrete angle in
both of the subsets U and V . The probability assigned to
the angle As is inversely proportional to the amount of the
pheromone deposited in the respective angle interval and it
is defined such as:

P (s) =
1− τs∑

i∈{s|As∈(U∪V)}
(1− τi)

(5)

Consider As = A∗, As chosen according to a discrete
random variable a defined through the probability P (s),
assuming values in the set {As | As ∈ (U ∨ V)}. At
each time t, the adjustment of steering direction is given
by equation 4:

The basic steps of Best Ranked Stochastic Sampling are
described in the Algorithm 1 for a single robot.

B. Pheromone Releasing and Evaporation

In traditional artificial ant systems, agents release
pheromone on the ground only on their respective positions
signaling exactly the robot way [26]. Differently, in this

Algorithm 1 The Best Ranked Stochastic Sampling Algo-
rithm

1: Initialize the parameters ϕ and ω
2: Detect the amount of the pheromone in the border of

the sensor range
3: Build the subsets U and V
4: for every angle interval As ∈ (U ∪ V) do
5: Assign to As the probability P (s) according to equa-

tion 5
6: end for
7: Define the next steering direction of the robot according

to equation 4
8: Back to step 2

article, the artificial agents in IAS-SS spread out pheromone
on a wide area in front of their respective positions, corre-
sponding to the sensor range area.

After the agent determines the steering direction (see
equation 4), but before it moves to, it spreads pheromone.
The amount of the pheromone deposited on the ground
decreases as the distance from the robot increases. Consider
that Lkt is the sensor range area of the kth robot at the iter-
ation t and Q is the entire environment space, respectively,
such that Lkt ⊂ Q ⊂ R2. Then, the amount of the pheromone
∆k
q (t) the kth robot deposits at the position q at iteration t

is given by:

∆k
q (t) = (τmax − τq(t− 1))Γkq (t), and (6)

Γkq (t) =

{
δ e

−(q−qk)2

σ2 , if q ∈ Lkt
0, otherwise

(7)

where: qk is the position of the kth robot; τmax is the
maximum amount of pheromone; σ is the dispersion; and
δ ∈ (0, 1).

Multiple robots deposit pheromone in the environment at
same time, then the total amount of pheromone deposited
on the position q at iteration t depends on the contribution
of every robot.

Furthermore, pheromone is not a stable substance, that is,
it evaporates according to a specific rate. The total amount
of the pheromone that evaporates Φq(t) at position q and
time t is modeled according to:

Φq(t) = ρτq(t) (8)

where: ρ is the evaporation rate; and τq(t) is the total amount
of the pheromone on the position q at iteration t.

Therefore, the total amount of the pheromone τq(t) at q
and at time t is given by:

τq(t) = (τq(t− 1)− Φq(t− 1)) +

N∑
k=1

∆k
q (t) (9)

152

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. EXPERIMENTAL RESULTS

Experiment simulations are developed to evaluate prelimi-
narily the bioinspired coordination strategy IAS-SS based on
ant colony algorithm, whereas pheromone causes repulsive
behavior of ants instead of attractive for surveillance task.
The expectation for surveillance task consists of keeping
robots moving among regions of the environment in order
to patrol wholly it constantly. The strategy is considered to
generate the dynamics of the multiple robot system applied
to exploration and surveillance tasks.

The Player/Stage platform (http://robotics.usc.edu/player)
is used to perform the experiments. The Player/Stage is a
robot server designed by the University of Southern Califor-
nia for distributed control (www.usc.edu). Player operates in
a client/server environment and the communication between
them occurs through TCP/IP protocol. Stage is a simulator
for robots and sensors for two-dimensional environments.
Player/Stage models various robots and sensors simulating
simultaneously their exact dynamics, including odometric
error models. For the purpose of the experiments, the robot
Pioneer 2DX is chosen to be modeled in the Player/Stage
platform. This robot is equipped with a laser range-finder
able to scan the environment (general obstacles, e.g., walls
and objects).

The experiments are arranged in four groups. The first
consists of experiments focusing on the steering direction
mechanisms described in Section IV-A. The mechanisms
are compared with a completely uniform one. The second
group of experiments is designed to investigate the influence
of the configuration of robot initial positions in the task
performances. The experiments in the third group concerns
specifically the robustness of the coordination strategy re-
garding to the environment structure. Finally, an analysis the
impact of the number of robots on the system performance
is presented in of fourth group.

Since the surveillance task requires the robots are in
constant moving, the IAS-SS system have to experiment
distinct challenges in face of different situations to develop
navigation strategies. In order to maximize the watched
area at the same instant, the goal of IAS-SS system is
to keep robots in different regions avoiding the waste of
sensor resource and reducing the time which an area is non-
monitored. System efficiency is measured by how short is
the time in which a region is non-monitored without sharing
regions among robots.

The experimental data are selected and compiled assum-
ing the following meaning. First, the exploration task is
executed if the environment is completely covered, that is,
the system is capable to provide information to map the
environment completely. Moreover, the faster the system
completes the task, the better is its performance. Second,
the system carries out the surveillance task if there is no
instant T* such that after this instant exists a region that is

not sensed anymore. Despite this definition for surveillance
task is accurate, it is not suitable since may be impossible to
find T*. Therefore, for practical purposes, it is important that
the system concludes the task continually, that is, the system
has to be able to sense the entire environment considering
that a new sensing task is started when the system concludes
the previous one. Furthermore, the lesser is the maximum
time between two consecutive sensing tasks, the better is its
performance.

The approach proposed to multi-robot coordination as-
sumes that the environment is represented by occupancy-
grid [33]. It uses a reticulated and probabilistic representa-
tion of information for modeling the unknown environment
according to its laser range-finder readings. It is defined as a
multidimensional random field that contains stochastic esti-
mate of the cell states (occupied, not occupied or unknown)
in the reticulated space. Each robot builds its own map as
it moves and local maps are centralized resulting in a map
of explored environment during surveillance task. Mapping
module is independent of IAS-SS system. However, it is
integrated to verify the explored area while the monitoring
occurs. For releasing pheromone, IAS-SS strategy uses the
same map generated and allocates in each cell reached
by distance sensor a value that corresponds to amount of
pheromone in this local.

The environments where IAS-SS system carries out tasks
are divided in connected small regions called here rooms.
In the context of this following experiments, a room is said
to be visited if its central point is reached by any robot.
In this case, the group of all central points corresponds to
the set Q ∈ R2. Hence, the scenario considered here is
an instance of the problem formulated in Section III. The
system parameters adopted in the experiments are:
• Pheromone releasing and evaporation dynamics:

– σ = 0.43R (radius of the semicircle where the
pheromone is deposited, see Figure 2);

– ρ = 0.01 (evaporation rate); and
– τq(0) = 0.5 (the amount of pheromone at iteration
t = 0).

• Robots and sensors:
– R = 8.00 meters (radius of the semicircle where

the pheromone is deposited, see Figure 2);
– γ = 0.5 (constant coefficient for smoothing of

steering direction adjusting); and
– Robot speed: 0.5 meter per second.

• Steering direction mechanisms:
– S = 360 (number of angle intervals).

• Simulation parameter:
– η = 0.3 meter (maximum distance between the

robot and an obstacle to trigger the obstacle avoid-
ance system);

– Time is discretized by simulation iterations: ts ∈
N;

153

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

– Maximum number of iterations = 1000.
These parameter values correspond to those that the mul-

tiple robot system reaches the best performance, considering
all previous experiments executed. Due to aleatory character-
istic of mechanisms for adjustment of steering direction, all
experiments are executed 10 times (trials). Thus, average of
performances are computed to evaluate them. The discrete
time is adopted in simulation and it is equivalent to the
number of iterations.

In the case of implementation of coordination strategy, all
robots are in the same coordinates system. There is a global
map of environment, modeled as occupancy grid, where each
cell hosts a value that represents its state and the amount
of pheromone in this respective local, indicating the time
this cell was not monitored. Initially, all cells are setup as
unknown with amount of pheromone as 0.5 (τq(0)). Since
cells provides similar amount of pheromone, the decision
make of robots tends to random characteristic. There, it takes
some time to robots spread out. As long a robot moves, it
builds its own local map in order to transfer it to the global
map. Thus, a robot is able to detect pheromone left by other
one, because all information about pheromone is avaliable
in global map. The position of robot is not relevant in this
coordination strategy. The substance deposited by robots is
enough to keep them far from each other.

During navigation, robots detect pheromone only in the
cells that coincide to border of pheromone sensor. One of
cells is elected through probability of equation 3 or 5 for SS
and BRSS mechanisms, respectively. Then, the adjustment
of steering direction towards the elected cell occurs by 4.
Before moving, robots release pheromone (i.e., assign values
to cells of occupancy grid) on all cells covered by range of
distance sensor, according to equation 9.

A. Uniform versus Stochastic versus Best Ranked Stochastic
Sampling

Both steering direction strategies, Stochastic Sampling
(SS) and Best Ranked Stochastic Sampling (BRSS), have
profound random characteristics, since the steering direction
adjustment is determined according to a discrete random
variable. In order to show that the respective performances
are not a mere consequence of a random behavior, the
strategies are compared with a uniform strategy (US). This
strategy is able to execute neither the exploration nor the
surveillance tasks. Different compiled data sets are consid-
ered to assess the strategies, namely: time to conclude the
exploration task; and time interval between two consecutive
sensing of any specific region. According to US strategy, a
discrete random variable, defined by a uniform distribution
in the space of the angles As, determines the steering
direction adjustments. Observe that there is no connection
between the pheromone and the uniform strategy; different
from the SS and BRSS strategies.

The environment designed for evaluation is such as in
Figure 3. It is possible to identify six rooms. Three robots
k, k ∈ {1, 2, 3}, start the navigation at the room 1.

Figure 3. Environment structure

The performance of IAS-SS system according to mecha-
nisms for adjustment of steering direction. Two aspects are
considered for analysis: the time necessary to conclude the
exploration task (SE); and maximum time interval between
two consecutive sensing of any specific region (SI). The
data are in Table I with the respective standard deviation
for the average of number or SE and the average of SI
considering 10 trials for each experiment. The performance
of IAS-SS system is improved gradually as shown in graphic
of Figure 4. It shows the boxplots of average of surveillance
intervals of three mechanisms. The numbers 1, 2 and 3 refer
to US, SS and BRSS mechanisms, respectively.

Table I
PERFORMANCE OF MECHANISMS FOR ADJUSTMENT OF STEERING

DIRECTION

Mechanism Average of Number of SE Average of SI (iterations)
US 0.28± 0.5 796± 395.68
SS 4.28± 1.11 233.26± 82.43

BRSS 7.25± 1.71 122.13± 24.57

Additional information about the behavior of the system
can be gathered observing the Figure 5. It exhibits three sets
of graphics that summarize the simulation conducted, each
of which corresponding to a different strategy. Data used to
plot the graphics are from the trial with the median number
of SI. For each strategy, three graphics are presented, each
of which registering the behavior of one of the robots. The
y-axis represents the rooms and the x-axis represents the
iterations. Each vertical line indicates the SE, that is, the
iteration when IAS-SS senses the whole environment (the
robots visit cooperatively all the 6 rooms), considering that
a new sense task is started after the system concludes the
earlier one.

Considering the exploration task, the graphics show that
the IAS-SS system with the Uniform Strategy is able to
conclude the exploration task, but after a long time, precisely
at the iteration 624. Observe that with strategies SS and
BRSS the IAS-SS system executes more efficiently the task,
that is, the system concludes the task very earlier, at the it-
erations 126 and 120, respectively. The IAS-SS system with
US strategy concludes the surveillance task only once (there

154

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Iterations

R
oo

m
s

1

2

3

4

5

6

0 200 400 600 800 1000

1

2

3

4

5

6

1

2

3

4

5

6

Robot 1 Robot 2 Robot 3

(a)

Iterations

R
oo

m
s

1

2

3

4

5

6

0 200 400 600 800 1000

1

2

3

4

5

6

1

2

3

4

5

6

Robot 1 Robot 2 Robot 3

(b)

Iterations

R
oo

m
s

1

2

3

4

5

6

0 200 400 600 800 1000

1

2

3

4

5

6

1

2

3

4

5

6

Robot 1 Robot 2 Robot 3

(c)

Figure 5. IAS-SS performance according to different strategies: (a) US; (b) SS; (c) BRSS mechanism.

Mechanisms for adjustment of steering direction

A
ve

ra
ge

 o
f s

ur
ve

ill
an

ce
 in

te
rv

al

1 2 3

100

200

300

400

500

600

700

800

900

Figure 4. Boxplots of distibution of the average of surveillance intervals
for differents mechanisms for adjustment of steering direction

is only one SE), considering all the simulation. There is a
strong contrast if this performance is compared with those
obtained with the strategies SS and BRSS. Vertical lines
indicate that the system with these strategies continually
concludes the surveillance tasks (all the robots cooperatively
visit the 6 rooms).

Pheromone distribution in an environment is an evidence
of efficiency of strategy. The IAS-SS strategy is more
efficient if the distribution of amount of pheromone is more
egalitarian in entire environment. In this case, the average of
amount of pheromone in all environment composes the map
of pheromone distribution. It indicates the frequency when
a specific region was visited (or monitored) in relative to

others. To comprehension of map, regions with low amount
of pheromone are represented by blue color, whereas red
color denotes regions with high amount of pheromone (or
visitation frequency higher). Hence, to comprove the best
performance of strategy when BRSS mechanism is adopted,
Figure 6 shows the average of amount of pheromone for
mechanisms of adjustment of steering direction. According
to the same data used to plot the graphics of Figure 5, the
pheromone distribution is more uniform for BRSS strategy
(Fig 6(c). In constrast, it can be noted that more amount of
pheromone in rooms 1 and 5 for execution of US strategy
(Figure 6(a)).

These data are summarized in the Tables II and III. The
system with SS strategy concludes the surveillance task
4 times and BRSS 7 times, and the maximum intervals
between two consecutive conclusions are 304 and 189 itera-
tions, respectively. The IAS-SS system with BRSS is clearly
superior. The strategies SS and BRSS induce a stronger
collaborative robot behavior than in the case of US strategy.
Observe that robots in the pheromone dependent strategies
vary more the rooms that they visit than robots do in the
case of US strategy.

B. Initial position of robots

This group of experiments evaluates the efficiency of
IAS-SS for distinct configuration of robots regards as their
positions. Two cases of configuration of robots are designed
in order to analyze the performance system: 1) together
configuration robots start navigation at same region (or
room) and 2) separated configuration at distinct rooms. For
exploration and surveillance tasks, it is obvious the greater
efficiency is guaranteed when the robots are not closer.
However, experiments intend to demonstrate that, after a
while, scenarios of joint configuration can achieve the same
efficiency of separated configuration. Experiments to verify

155

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c)

Figure 6. Maps of average of amount of pheromone according to strategies: (a) US; (b) SS; (c) BRSS.

Table II
SURVEILLANCE EPOCH FOR STEERING DIRECTION MECHANISMS

Mechanism Max. SI Surveillance Epoch (iterations)
(iterations) 1st 2nd 3rd 4th 5th 6th 7th

US 624 624 — — — — — —
SS 304 126 304 104 277 — — —

BRSS 189 120 97 189 99 36 105 189

Table III
MONITORED ROOMS AT EACH SURVEILLANCE EPOCH

Mechanism Robot Monitored Rooms
1st 2nd 3rd 4th 5th 6th 7th

1 1,2,4,6 — — — — — —
US # 2 1,2,3,4,5 — — — — — —

3 1,2,4,5 — — — — — —
1 1,2,4,6 6,4,3 6,4,3,2 2,3 — — —

SS # 2 1,2,3,4 3,4,6,5,1 1,4 4,3,2,6 — — —
3 1,4,5 5,4,3,2 5,4 5,4,3,1 — — —
1 1,4,6 6,4,3 3,2,4,6 6,4 6 6,4,3,2 4,3,2,6

BRSS # 2 1,4,5 5,4,1 1,4,3,2 4,1 1,4,5 5,4,1 1,4,5
3 1,4,3,2 2,3 2,3,4,6,1,5 5,4,3,2 2,3 3,4,6 4,3,2,1

the performance according to initial position of robots is
accomplished in environment of Figure 7. For both of cases
of configuration, three robots are launched. In particular for
separated and together configurations, they start navigation
at rooms 2, 6 and 7; and room 1, respectively.

Figure 7. Environment structure

For the next experiments, six environment configurations
are generated from combination of cases of configurations
(separated and together) and steering direction mechanisms
of experiments of Section V-A. Analogously to the previous
experiments, two aspects are considered for analysis of the
performance of IAS-SS system. As can be seen in the

Table IV, the separated configuration with SS mechanism
yields the best performance, regarding both number of SE
(nb. of SE) and average of SI (av. of SI). In the case of
together configuration, the best results are obtained with the
BRSS mechanism, which is, in fact, the best overall strategy.
The Figure 8 shows the boxplots of the surveillance intervals
of the six environment configurations. The numbers 1,. . ., 6
refer to environment separated configuration with US, SS
and BRSS mechanism; and environment together configura-
tion with US, SS and BRSS mechanisms, respectively.

The key of surveillance task is minimizing the time
(iterations) which a region is non-monitored. Hence, here,
a manner to measure the system performance is to analyze
the maximum period (maximum number of iterations) which
each room is non-visited. Maximum periods that rooms are
non-visited are presented in Figure 9 for the six environment
configurations. Data used to plot the graphics are from the
trial with the median of average of number of SE and
average of SI. Although separated configuration presents
slightly advantage over together configuration, since at it-
eration t = 0, three robots monitor three different rooms,
the performances of both configurations are similar. One
of main characteristics of IAS-SS system is the skill of

156

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table IV
PERFORMANCE OF ENVIRONMENT CONFIGURATIONS WITH
MECHANISMS FOR ADJUSTMENT OF STEERING DIRECTION

Configuration Uniform Sampling
nb. of S.E. av. of SI.

Separated 1± 0.94 358.55± 272.67
Together 0.43± 0.53 247± 313.77

Configuration Stochastic Sampling
nb. of S.E. av. of SI.

Separated 6.66± 1.73 160.04± 85.65
Together 6± 2.16 185.03± 122.4

Configuration Best Ranked Stochastic Sampling
nb. of S.E. av. of SI.

Separated 6± 2 199.71± 101.62
Together 7.85± 2.61 120.51± 44.3

●

●

●

●

Environment configurations

A
ve

ra
ge

 o
f s

ur
ve

ill
an

ce
 in

te
rv

al

1 2 3 4 5 6

100

200

300

400

500

600

Figure 8. Boxplots of distribution of the average of surveillance intervals
for the different adjustment of steering direction mechanisms

robots to keep distance from each other according to aversive
pheromone. Then, even with together configuration, as long
the robots move, they are spread in environment. Thus, the
performance of together configuration becomes similar to
separated configuration. That is, the advantage of separated
configuration is diluted during navigation. To illustrate this
scenery, graphics of Figure 10 show the behavior of robots
and surveillance intervals for separated and together configu-
rations using BRSS mechanism. They show that the IAS-SS
system with the separated configuration concludes the SE
task 6 times while the together configuration takes 7 times.

The next set of experiments investigates how the envi-
ronment scale parameter influences the performance of the
IAS-SS strategy. Two environments are considered, Both
present the same layout of the environment of Figure 7,
but with different sizes. The first is 2 times larger than that

Rooms

M
ax

im
um

 n
um

be
r

of
 u

nv
is

ite
d

ite
ra

tio
ns

200

400

600

800

1000

1 2 3 4 5 6 7

Together and US

1 2 3 4 5 6 7

Together and SS

1 2 3 4 5 6 7

Together and BRSS

Separated and US Separated and SS

200

400

600

800

1000

Separated and BRSS

Figure 9. Maximum number of non-visited rooms iterations

environment, while the second is 3 times. The environment
used in previous experiments and the two newly defined
are called here environments x1, x2 and x3, respectively.
The motivation to enlarge the scale of the environment is to
asses the suitability of the strategy in sensing all parts of the
rooms.Differently from experiments of environment x1, the
number of iterations for experiments with environments x2
and x3 are 2000 and 3000, respectively.

The self-adapt trait of the system is visualized through
the trajectories of robots of Figure 11. Only the obtained
trajectories from simulation of experiments that consider
BRSS mechanism and together configuration the are showed
in order to contrast the slight difference of performed paths.
It can observed that the trajectories are concentrated in a trail
when the rooms are small (Figure 11(a)). An explanation
for this outcome is the small size of rooms. In this case, the
sensor range covers the whole room as the robot enters in the
room. While for large regions resultant from environments
with duplicated and triplicated scale, the robots move away
from the trail to cover the entire environment efficiently
(Figures 11(b) and 11(c)). The data presented are from the
trial with the median number of SI for each environment
configuration.

Analogously to the experiments regarding environment
x1, the performances of separated and together configura-
tions for environments x2 and x3 are similar. This is justified
by repulsive characteristic of pheromone, which keeps the
robots far from each other after while independently of the
adopted configuration (separated or together). The Tables V
and VI corroborate that there is no strong contrast among

157

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Iterations

R
oo

m
s

1

2

3

4

5

6

7

0 200 400 600 800 1000

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Robot 1 Robot 2 Robot 3

(a)

Iterations

R
oo

m
s

1

2

3

4

5

6

7

0 200 400 600 800 1000

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Robot 1 Robot 2 Robot 3

(b)

Figure 10. IAS-SS performance according to different configurations for BRSS: (a) separated; (b) together configurations.

(a) (b) (c)

Figure 11. Trajectories of robots during exploration and surveillance tasks for experiments with BRSS mechanism and together configuration: (a)
environment x1; (b) environment x2; (c) environment x3.

of performances of separated and together configurations.
Regarding the adjustment of steering mechanisms, those
configurations with BRSS mechanism yield the best per-
formance when the average of number of SE and average
of SI are compared to other mechanisms. The performance
of IAS-SS system for the six environment configuration is
shown in graphics of Figure 12. The numbers 1,. . ., 6 refer to
environment separated configuration with US, SS and BRSS
mechanisms; and environment together configuration with
US, SS and BRSS mechanisms, respectively.

Maximum periods that rooms are non-visited in exper-
iments of environments x2 and x3 are presented in Fig-
ures 13(a) and 13(b), respectively, for the six environment
configurations. Data used to plot the graphics are from the
trial with the median of average of number of SE and
average of SI. It can be noted that regardless which con-
figuration is employed, the system performance improves as
long as the mechanism for adjustment of steering direction
changes from US to BRSS. The behavior of robots and
surveillance intervals for separated and together configu-
rations using BRSS mechanism is clarified in graphics of
Figures 14 (environment x2) and 15 (environment x3). For
the environment x2, the IAS-SS system with the separated

Table V
PERFORMANCE OF ENVIRONMENT CONFIGURATIONS WITH

MECHANISMS FOR ADJUSTMENT OF STEERING DIRECTION FOR
ENVIRONMENT X2

Configuration Uniform Sampling
nb. of S.E. av. of SI.

Separated 2.16± 0.75 892± 517
Together 1.75± 0.95 985.75± 576.36

Configuration Stochastic Sampling
nb. of S.E. av. of SI.

Separated 5.2± 1.62 352.72± 131.96
Together 4.6± 2.01 325.11± 94.15

Configuration Best Ranked Stochastic Sampling
nb. of S.E. av. of SI.

Separated 8.1± 2.47 246.8± 68.33
Together 8.3± 1.88 226.1± 59.48

configuration concludes the SE task 9 times and whit the
together configuration takes 8 times. While for the environ-
ment x3, the SE task is conclude 5 times with the separated
configuration and 6 times using the together configuration.

158

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●

Environment configurations

A
ve

ra
ge

 o
f s

ur
ve

ill
an

ce
 in

te
rv

al

1 2 3 4 5 6

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

(a)

●

Environment configurations

A
ve

ra
ge

 o
f s

ur
ve

ill
an

ce
 in

te
rv

al

1 2 3 4 5 6

300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700

(b)

Figure 12. Boxplots of distribution of the average of surveillance intervals for the different adjustment of steering direction mechanisms for: (a) environment
x2; (b) environment x3.

Rooms

M
ax

im
um

 n
um

be
r

of
 u

nv
is

ite
d

ite
ra

tio
ns

500

1000

1500

2000

1 2 3 4 5 6 7

Together and US

1 2 3 4 5 6 7

Together and SS

1 2 3 4 5 6 7

Together and BRSS

Separated and US Separated and SS

500

1000

1500

2000

Separated and BRSS

(a)

Rooms

M
ax

im
um

 n
um

be
r

of
 u

nv
is

ite
d

ite
ra

tio
ns

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Together and US

1 2 3 4 5 6 7

Together and SS

1 2 3 4 5 6 7

Together and BRSS

Separated and US Separated and SS

500

1000

1500

2000

2500

3000
Separated and BRSS

(b)

Figure 13. Maximum number of non-visited rooms iterations for: (a) environment x2; (b) environment x3.

159

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Iterations

R
oo

m
s

1

2

3

4

5

6

7

0 500 1000 1500 2000

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Robot 1 Robot 2 Robot 3

(a)

Iterations

R
oo

m
s

1

2

3

4

5

6

7

0 500 1000 1500 2000

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Robot 1 Robot 2 Robot 3

(b)

Figure 14. IAS-SS performance according to different configurations for BRSS in environment x2: (a) separated; (b) together configurations.

Iterations

R
oo

m
s

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Robot 1 Robot 2 Robot 3

(a)

Iterations

R
oo

m
s

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Robot 1 Robot 2 Robot 3

(b)

Figure 15. IAS-SS performance according to different configurations for BRSS in environment x3: (a) separated; (b) together configurations.

Table VI
PERFORMANCE OF ENVIRONMENT CONFIGURATIONS WITH

MECHANISMS FOR ADJUSTMENT OF STEERING DIRECTION FOR
ENVIRONMENT X3

Configuration Uniform Sampling
nb. of S.E. av. of SI.

Separated 1.37± 0.52 1621.87± 610.53
Together 1.5± 0.57 1274.5± 808

Configuration Stochastic Sampling
nb. of S.E. av. of SI.

Separated 4.33± 1.11 675.8± 211.17
Together 3.5± 1.27 685.28± 239.51

Configuration Best Ranked Stochastic Sampling
nb. of S.E. av. of SI.

Separated 5.44± 1.51 519.2± 269
Together 6.7± 4.47 460.5± 100.11

C. Environment Structure
One of characteristic if IAS-SS strategy is the self-adapt.

It is emphasized in this section. Following experiments aim

at analyzing the performance of exploration and surveillance
tasks independently of environment structure. To investi-
gate this characteristic, distinct environment structures are
designed from a rectangular space divided virtually in 10
rooms as illustrated in Figure 16(a). The connectivity among
adjacent rooms is represented by a graph (Figure 16(b)).
Accesses that connect rooms are partially or totally blocked
by obstacles, generating different environments. According
to this process, ten models of environment are considered,
such that, each environment is associated to a complexity
level.

Complexity level is measured according to number of
options to travel the environment (among rooms), that is,
through graph structure resultant from connection among
rooms. The more path options to reach a specific region are
available, the complexity level of environment is higher. For
environments of Figures 16(c) and 16(d), the graph structure
is the same of the graph of Figure 16(b), hence, the com-

160

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 16. Environment models: (a) environment divided in rooms; (b) connection graph amoung rooms; (c)-(l) environment from #1 to #10.

plexity is low. As obstacles are inserted into environments
blocking the passage amoung rooms, the respective edges of
graph are removed and, thus, the complexity is higher.

Since there are ten rooms, four robots are considered for
experiments to assign at least two rooms to each robot.
This forces the robots travels long distances increasing the
likelihood find challenging situations as obstacles. All robots
start at room 1.

Although it is clear that the exploration time decreases as
complexity level increases, the surveillance task is accom-
plished even with a restricted number of path options. This
emphasizes that environment structure is not a factor that
impedes the tasks to execute. Even robots in environments
with higher complexity level can carry out the tasks. The
environment sensing (SE) is completed independently of the
environment structure. As general behavior of the system,
the length of SI period is increased while the complexity
level of environment increases. Also, as consequence of the
higher complexity, the number of completed SE is smaller.
This can be observed in Table VII. The average of number
of SE increases and the average of SI presents a strong
decreasing tendency, which is not monotonic due to the
random nature of experiments. Therefore, it is observed
that the system self-adapt according to changes in the
environment model. A more detailed view of results of table,
regarding the average of SI, is presented in the Figure 17. It
shows the boxplots of the distribution of the performance.

The self-adapt trait of the system is visualized through
the trajectories of robots and maps of average of amount
of pheromone of Figure 18 for some environment models
in order to contrast the high difference of complexity level
among them. It can observed that the trajectories are concen-

Table VII
PERFORMANCE OF CONFIGURATION WITH BRSS MECHANISM AND

INCREASING THE COMPLEXITY LEVEL

Environment Number of SE Average of SI
#1 17± 3 57.46± 10.41
#2 15.66± 2.08 61.9± 7.83
#3 13.66± 0.57 70.76± 6.27
#4 15± 2 63.77± 8.91
#5 12.66± 1.52 77.29± 11.58
#6 11± 1.73 87.65± 19.59
#7 9± 0.01 97.75± 7.7
#8 7.66± 57.73 114.17± 23.82
#9 7.66± 57.73 119.49± 3.88
#10 7.33± 1.52 115.23± 24.9

trated in a trail when the rooms are small. An explanation
for this outcome is the small size of rooms. In this case,
the sensor range covers whole the room. While for large
regions resultant from junction rooms in environments #1
and #3, the robots move away from the trail to cover the
entire environment efficiently. The data presented are from
the trial with the median number of SI for each environment.

D. Number of robots

This section discusses about the relation between the size
of environment and number of robots. Indeed, higher number
of robots is, more regions are explored and monitored
simultaneously, so that, few or no regions are empty for
long period. Since robots behavior is based on inverse of
ant algorithm, the probability of one robot explorer and
monitor large environments is higher. However, it may
take a long time. In order to evaluate the performance of
motion coordination and the efficiency of surveillance task,
experiments are carried out with an increasing number of

161

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 18. Trajectories of robots and maps of average of amount of pheromone according to distinct environment strutures: (a)-(b) #1; (c)-(d) #3; (e)-(f)
#5; (g)-(h) #8; (i)-(j) #10.

162

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●

●

●

Environment models

A
ve

ra
ge

 o
f S

ur
ve

ill
an

ce
 in

te
rv

al

1 2 3 4 5 6 7 8 9 10

100

200

Figure 17. Boxplots of distribution of the average of surveillance intervals
for different degree of complexity of environment.

robots in environment of Figure 19. Since BRSS mechanism
presented better performance than US and RS mechanisms in
previous experiments, this mechanism is adopted to analyze
the efficiency of the exploration and surveillance tasks while
the number the robots increases. All added robots are placed
at room 1.

Figure 19. Environment structure

Although it is clear that the time to explore decreases as
number of robots increases, the surveillance task is accom-
plished even with a restricted number. This emphasizes that
number of robots is not a factor to limit the size of the
explored environment. Even few robots are able to monitor
large areas. The environment sensing (SE) is completed
independently of the number of robots. However, as general
behavior of system, the length of SI period is reduced while
the number of robots increases. Also, as consequence of
the addition of robots, there are more completed SE. This
can be observed in Table VIII. As the number of robots
increases, the average of number of SE increases together.

Conversely, the average of SI presents a strong decreasing
tendency, which is not monotonic due to the aleatory nature
of experiments. Therefore, it is observed that the system self-
adapt according to the number of robots. A more detailed
view of results of table, regarding the average of SI, is
presented in the Figure 20. It shows the boxplots of the
distribution of the performance for the 10 trials.

Table VIII
PERFORMANCE OF TOGETHER CONFIGURATION WITH BRSS

MECHANISM FOR INCREASING NUMBER OF ROBOTS

Number of robots Number of SE Average of SI
2 0.5± 0.7 598.25± 196.62
3 1.1± 0.57 621.44± 179.88
4 1.5± 0.97 412.56± 190.89
5 1.5± 0.97 504.77± 239.93
6 2.4± 0.51 220.60± 65.26
7 3.2± 0.78 174.01± 58.25
8 3.4± 0.98 155.97± 59.30
9 3.9± 1.28 137.94± 61.57

10 5.3± 1.5 118.75± 20.92
11 5.7± 2 115.98± 44.14
12 6.4± 1.89 107± 38
13 6.9± 2.42 108.4± 46.47
14 8.2± 1.68 88.04± 21.93
15 8.3± 2.78 92.02± 40.23

●

●

●

●

●

Number of robots

A
ve

ra
ge

 o
f s

ur
ve

ill
an

ce
 in

te
rv

al

2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

200

300

400

500

600

700

800

900

Figure 20. Boxplots of distribution of the average of surveillance intervals
for the different mechanisms for adjustment of steering directions

The experiments performed are to show that the au-
tonomous proposal gets to execute the surveillance task
satisfying the constraints set up in the equation 2. However,
the minimization of the objective function is not considered
here. In this step, the work is only to verify the surveillance
capability.

163

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. For Real Robots

For the validation of IAS-SS strategy in a real robots
plataform, two approaches are suggested. The first one is
to equip physical robots with devices for releasing some
chemical and odour sensors. As long as the robots navigate,
they left this substance in the frontal regions to mark them as
explored regions. Through odour sensors, the robots are able
to detect the regions more attractive, i.e., the regions with
low amount of the substance. The second one only considers
distance sensors, disgarding the presence of the odour sen-
sors. Then, applying the mapping method, occupancy-grid,
as mentioned in Section V, the generated cells could be used
for hosting a value that indicates the amount of deposited
pheromone. Hence, the amount of pheromone would exist in
a virtual way. The virtual pheromone releasing and detecting
areas correspond to the range area of the distance sensors.
However, in the last approach, a localization method [34]
would be need in order to each robot to built its own
local map and, accordingly, to join it with the local maps
of another robots. Thus, using less sensors, the strategy is
able to explore the entire environment and to perform the
surveillance task. The implementation in real robots makes
part of future works.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, it was proposed a new bio-inspired dis-
tributed coordination strategy, named IAS-SS, for multiple
robot systems applied for exploration and surveillance tasks.
The strategy is based on swarm theory, specifically the ant
system theory. The repulsive character as a function of the
deposited pheromone quantity determines the dynamic of
behavior of the agents (robots) and stimulates them to be
spread out by the environment. As a consequence, the agents
get to monitor the entire environment continuously, visiting
regions not recently visited. Furthermore, other contributions
can be highlighted, such as, the development of a decentral-
ized strategy, where the robots are independent agents that
define their steering direction without an extern influence;
a reactive strategy, in which the only information necessary
for the robots is extracted from amount of pheromone and,
finally, a pheromone trail is not generated, since the deposit
of pheromone occurs only in areas covered by distance
sensors (i.e., frontal areas to the robot).

Although the strategy is very simple compared to other
environment exploration strategies, both exploration and
surveillance tasks were efficiently performed. A set of
experiments were done for analising the performance of
the proposed system. Experiments considered two perfor-
mance criteria: the average of the numbers of surveillance
epochs and average of the surveillance time intervals. Four
parameters, namely: start position, number of robots, envi-
ronment scale and environment structure; stress the strategy
capabilities. Two versions of the IAS-SS strategy were
considered and compared with a totally random strategy.

The IAS-SS strategies presented significantly a superior
performance. Some characteristics of these strategies were
noted, such as, they are not dependent on the knowledge
of the environment structure and they are robust in regard
to the number of robots. These strategies kept robots well
separated guiding them toward regions not recently visited.
The advantage of the bioinspired strategy proposed resides
in, among other aspects: simple conceptual ideas, reduced
computation complexity, real time operation and efficiency.

It is important to say that calculate the complexity of
proposed algorithm is a tedious task. Since the performance
criterium is the number of SE and average of SI, the
obtained results present distinct perfomance due to changes
of structure of environments, number of robots and initial
position configuration. Therefore, there are many combina-
tions to establish the coordination strategy. In addition, the
approaches about monitoring found in literature emphasize
graphs to define the routes of robots. Therefore, there is
no approach similar to the present proposal in order to
summarize a suitable comparison of complexity.

As future works experiments will be designed to investi-
gate two aspects: how different pheromone releasing mecha-
nisms influence the performance of the IAS-SS system; and
to investigate the adaptation capability when some robots
fail. Moreover, a method to join maps will be conceived
and integrated to IAS-SS system in order to apply it in
real robots. Thus, it is need to develop a communication
device to support change information about mapping. This
device, coupled to robots, will able to identify other robots
and transfer data through wireless network. In addition, more
complex surveillance tasks, e.g., those that a strange agent
invades the environment, will be investigated. In this case,
a vision system with tracking ability is essential.

ACKNOWLEDGMENT

The authors would like to thank Sao Paulo Research
Foundation (FAPESP) and National Council for Scientific
and Technological Development (CNPq) for their support.

REFERENCES

[1] R. Calvo, J. R. de Oliveira, M. Figueiredo, and R. A. F.
Romero. ”Inverse ACO Applied for Unknown Environment
Exploration”. In: The Third International Conference on Ad-
vanced Cognitive Technologies and Applications, 2011, Rome,
Italy. Proceedings of COGNITIVE’2011, p. 142-147, 2011.

[2] J. G. Bellingham, and M. Godin, ”Robotics in Remote and
Hostile Environments”. Science, vol. 318, pp. 1098-1102,
2007.

[3] H. H. Schmitt, ”From the Moon to Mars”. Nature, vol. 301,
pp. 36-43, 2009.

[4] F. Mazzini, D. Kettler, J. Guerrero, and S. Dubowsky. ”Tactile
Robotic Mapping of Unknown Surfaces, With Application
to Oil Wells”. IEEE Transactions on Instrumentation and
Measurement, vol. 60, pp. 420-429, 2011.

164

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] X. L. Long, J. P. Jiang, and K. Xiang. ”Towards Multirobot
Communication”. IEEE International Conference on Robotics
and Biomimetics, 2004. ROBIO 2004, pp. 307-312, 2004.

[6] A. Speranzon. ”Coordination, Consensus and Comunnication
in Multi-Robot Control Systems”. PhD Thesis, Royal Institute
of Technology, Stockholm/Sweden, 2006.

[7] C. Liu, Y. Ma, and C. Liu. ”Cooperative Multi-robot Map-
Building Under Unknown Environment”. Proceedings of the
2009 International Conference on Artificial Intelligence and
Computational Intelligence, vol. 3, pp. 392-396, 2009.

[8] L. Andersson, and J. Nygårds. ”On Multi-robot Map Fusion by
Inter-robot Observations”. In proceedings of 12th International
Conference on Information Fusion, 2009.

[9] B. Yamauchi. ”A frontier-based approach for autonomous
exploration”. Proceedings of the 1997 IEEE International
Symposium on Computational Intelligence in Robotics and
Automation, pp. 146-151, 1997.

[10] F. Pasqualetti, A. Franchi, and F. Bullo. ”On optimal coopera-
tive patrolling”. IEEE Conf. on Decision and Control, Atlanta,
GA, USA, pages 7153-7158, December 2010.

[11] D. Scheidt, and J. Stipes. ”Cooperating unmanned vehicles”.
Proceedings of the 2005 IEEE Networking, Sensing and Con-
trol, pp. 326-331, 2005.

[12] J. Stipes, R. Hawthorne, D. Scheidt, and D. Pacifico. ”Coop-
erative Localization and Mapping”. Proceeding of the IEEE,
Networking, Sensing and Control, pp. 596-601, 2006.

[13] A. Marjovi, J. G. Nunes, L. Marques, and A. de Almeida.
”Multi-robot exploration and fire searching”. Proceedings of
the 2009 IEEE/RSJ international conference on Intelligent
robots and systems, pp. 1929-1934, 2009.

[14] A. Howard, M. J. Mataric, and G. S. Sukhatme. ”Mobile
Sensor Network Deployment using Potential Fields: A Dis-
tributed, Scalable Solution to the Area Coverage Problem”.
Proceeding of the 6th International Symposium on Distributed
Autonomous Robotics Systems, pp. 299-308, 2002.

[15] J. Tan, N. Xi, W. Sheng, and J. Xiaov. ”Modeling multiple
robot systems for area coverage and cooperation”. Proceedings
of the 2004 IEEE International Conference on Robotics and
Automation, pp. 2568-2573, 2004.

[16] Q. Jiang. ”An improved algorithm for coordination control
of multi-agent system based on r-limited voronoi partitions”.
Automation Science and Engineering, 2006. CASE ’06. IEEE
International Conference on, pp. 667-671, 2006.

[17] F. WeiXing, W. KeJun, Y. XiuFen, and G. ShuXiang, ”Novel
Algorithms for Coordination of Underwater Swarm Robotics”,
Proc. of IEEE Int. Conf. on Mechatronics and Automation, pp.
654-659, 2006.

[18] R. A. Freeman, P. Yang, and K. M. Lynch, ”Distributed es-
timation and control of swarm formation statistics”, American
Control Conf., 7 pp. 749-755, 2006.

[19] F. Kobayashi, N. Tomita, and F. Kojima, ”Re-formation
of mobile robots using genetic algorithm and reinforcement
learning”, SICE 2003 Annual Conf., vol. 3, pp. 2902-2907,
2003.

[20] L. Barnes, W. Alvis, M. A. Fields, K. Valavanis, and W.
Moreno, ”Swarm Formation Control with Potential Fields
Formed by Bivariate Normal Functions”, 14th Mediterranean
Conf. on Control and Automation, pp. 1-7, 2006.

[21] J. M. Hereford, ”A Distributed Particle Swarm Optimization
Algorithm for Swarm Robotic Applications”, Proc. of IEEE
Congress on Evolutionary Computation, pp. 1678-1685, 2006.

[22] M. Hess, M. Saska, and K. Schilling, ”Formation driving
using particle swarm optimization and reactive obstacle avoid-
ance”, Proc. of 1st IFAC Workshop on Multivehicle Systems
(MVS), pp. 32-37, Lisboa, Portugal, 2006.

[23] M. Dorigo, M. Birattari, and T. Stützle. ”Ant Colony Op-
timization Artificial Ants as a Computational Intelligence
Technique”. IEEE Comput. Intell. Mag, pp. 28-39, 2006.

[24] R. Calvo, J. R. de Oliveira, M. Figueiredo, and R. A. F.
Romero. ”A Distributed, Bio-Inspired Coordination Strategy
for Multiple Agent Systems Applied to Surveillance Tasks in
Unknown Environments”. In: International Joint Conference on
Neural Networks, 2011, San Jose, CA, USA. Proceedings of
IJCNN’2011. Los Alamos : IEEE Press, p. 3248-3255, 2011.

[25] R. Calvo, J. R. de Oliveira, M. Figueiredo, and R. A. F.
Romero. ”Bio-inspired coordination of multiple robots systems
and stigmergy mechanisms to cooperative exploration and
surveillance tasks”. In: IEEE 5th International Conference on
Cybernetics and Intelligent Systems and on Robotics, Automa-
tion and Mechatronics, 2011, Qingdao, China. Proceedings of
CIS-RAM’2011, p. 223-228, 2011.

[26] M. Dorigo. ”Optimization, learning and natural algorithms”.
PhD thesis, Dipartimento di Elettronica, Politecnico di Milano,
1992.

[27] E. Bonabeau, M. Dorigo, and G. Theraulaz. ”Inspiration of
optmization from social insect behavior”. Nature, pp. 39-42,
2000.

[28] M. Dorigo, G. Di Caro, and L. Gambardella. ”Ant Algorithms
for Discrete Optimization”. Technical Report IRIDIA/98-10,
Universite Libre de Bruxelles, Belgium, 1999.

[29] D. Yingying, H. Yan, and Jiang Jingping. ”Multi-robot coop-
eration method based on the ant algorithm”. Proceedings of the
2003 IEEE Swarm Intelligence Symposium, pp. 14-18, 2003.

[30] B. Christian. Review of ”Ant colony optimization” by M.
Dorigo, and T.Stützle, MIT Press, Cambridge, MA, 2004. Artif.
Intell., pp. 261-264, 2005.

[31] L. A. Zadeh, ”Fuzzy Sets”, Information and Control, Vol. 8,
338–353, 1965.

[32] R. Calvo, M. Figueiredo, and R. A. F. Romero. Autonomous
cognition and reinforcement learning. In: IEEE International
Joint Conference on Neural Network, Barcelona, Spain. Pro-
ceedings of IJCNN’2010, p. 1-8, 2010.

165

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[33] A. Elfes. ”Using Occupancy Grids for Mobile Robot Percep-
tion and Navigation”. Computer, issn 0018-9162, vol 22, pp.
46-57, Los Alamitos, CA, USA, 1989.

[34] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. ”Robust Monte
Carlo localization for mobile robots”. Artificial Intelligence.
vol. 128, n. 1-2, pp. 99 - 141 2000.

166

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality Attributes for Web Services: A Model-based Approach for Policy Creation

Alexander Wahl, Bernhard Hollunder, and Varun Sud
Department of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

alexander.wahl@hs-furtwangen.de, bernhard.hollunder@hs-furtwangen.de, varun.sud@hs-furtwangen.de

Ahmed Al-Moayed
BI/ HANA Deparment

Adweko GmbH
Walldorf, Germany

ahmed.al-moayed@adweko.com

Abstract—Service-oriented architectures (SOA) define a con-
ceptual framework for the creation and integration of en-
terprise applications. Within an SOA, the core functional-
ity is realized by distributed services, which are typically
composed to support the required business processes. Today,
Web services are the predominant technology to implement
and deploy services in heterogeneous environments. In many
business domains, Web services must exhibit quality of service
(QoS) attributes such as security, performance, scalability, and
accounting. Currently, there is only limited support for the
assignment of QoS attributes to Web services, though. In
this paper, we present a model-based approach for deriving
policies from a QoS model. Our solution covers the modeling
of QoS attributes based on a meta-model for quality attributes,
the generation of a graphical user interface to configure the
modeled QoS attributes, and the transformation into policy
descriptions. Finally, these policies will be assigned to the target
Web services. To highly automate our approach, we apply
techniques from model-driven development such as model-to-
model and model-to-code transformations. As a consequence,
our solution reduces the cost and effort when creating QoS-
aware Web services.

Keywords-Service-oriented architecture; Web services; QoS
meta-model; model-to-model transformation; model-to-code
transformation; WS-Policy.

I. INTRODUCTION

Service-oriented architectures (SOA) refer to a system
architecture that provides applications and software com-
ponents as reusable and interoperable services with well-
defined business functionalities. In most deployment set-
tings, the services must also address non-functional re-
quirements such as security, performance, and accounting
in order to guarantee predefined quality of service (QoS)
attributes the overall business applications must fulfill. As
an enterprise typically refers to a variety of internal and

This is a revisited and substantially augmented version of “An Approach
to Model, Configure and Apply QoS Attributes to Web Services”, which
appeared in the Proceedings of the Sixth International Conference on
Software Engineering Advances (ICSEA 2011) [1].

external service providers, it is crucial to explicitly assign
QoS attributes to the underlying Web services.

In the literature, several policy languages have been
proposed to formally specify QoS attributes for particular
technical or business domains. With the WS-Policy spec-
ification [2], there exists a well-known and widely used
framework for defining QoS attributes for Web services.
Basic building blocks in WS-Policy are so-called assertions,
where a single assertion may represent a domain-specific
capability, constraint or requirement. In order to create valid
WS-Policy descriptions for non-trivial scenarios, technical
knowledge regarding the design of WS-Policy assertions and
the underlying policy grammar is required (see, e.g., [3],
[4]).

However, a developer may not necessarily acquire this
knowledge, but should be enabled to easily assign QoS
attributes to the Web service under development.

In this paper, we present a model-based approach to
specify, configure, and assign QoS attributes to Web ser-
vices. Given a QoS meta-model, the “QoS profile developer”
creates instances of the meta-model, which formalize QoS
attributes for dedicated domains such as security or perfor-
mance. Such models, also called QoS profiles, are reusable
assets and can be applied to different Web services by the
“Web service developer”. By means of model transforma-
tions, a graphical user interface (GUI) is generated, which is
used by the developer to adjust the predefined QoS attributes
for the specific deployment context of the Web service.
Eventually, the refined QoS profiles are automatically trans-
lated into corresponding descriptions of well-known policy
languages such as WS-Policy.

It should be noted that Integrated Development Environ-
ments (IDE) such as Eclipse, NetBeans, and Visual Studio
provide specific project types for the construction of Web
services. These environments automate many activities such
as code compiling, WSDL interface generation, creation
of proxy objects and code deployment. However, currently

167

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

there is only limited support for developing QoS-aware
Web services, i.e., Web services with well-defined QoS
attributes. In particular, these environments are either hard
to extend or are restricted to certain policy domains such
as WS-SecurityPolicy [5] and WS-ReliableMessaging [6].
To our best knowledge, there is no framework covering the
following features:

• A simple, but powerful QoS meta-model for formaliz-
ing arbitrary QoS attributes.

• An easy way to create QoS profiles (i.e., collections of
QoS attributes) for Web services.

• The automatic creation of a graphical user interface,
which allows the developer to configure the modeled
QoS attributes for each designated Web service.

• Automatic transformation of the configured QoS profile
into equivalent policy descriptions.

• Assignment of the created policy description to the Web
service under development.

In this work, we elaborate the conceptual and technical
foundations of such a framework. We also describe our
proof of concept implementation, which demonstrates the
feasibility of the approach. Our solution is a further step to
reduce the developing effort and the costs of creating QoS-
aware Web services.

This paper is structured as follows. The next section
describes the problem addressed in this paper in more detail
and sketches our solution strategy. After introducing the
solution architecture in Section III, the successive sections
focus on particular elements: Section IV introduces the QoS
meta-model followed by the QoS profile (Section V) and
the graphical user interface for configuring QoS attributes
(Section VI and VII). In Section VIII, the generation of
policy descriptions is elaborated. A description of the proof
of concept implementation is given in Section IX. Then,
a discussion on related work (Section X) and future work
(Section XI) is given, followed by a conclusion.

II. PROBLEM DESCRIPTION AND SOLUTION STRATEGY

Developing QoS-aware Web services is a strenuous task
for Web service developers. Typically, QoS attributes are
hardcoded into the Web service business logic increasing
code complexity. Implementing QoS attributes in the source
code also decrease the degree of reusability of Web service
for different deployment settings and flexibility to react
on changing QoS requirements. Web service developers
explicitly require knowledge of policy languages, e.g., WS-
Policy, to create and apply policies to Web services. They
also require knowledge of associated policy grammars such
as policy-domain specific tags, elements, nesting rules, rules
of operations and operators and policy expression creation
rules. Such knowledge is not always available to the Web
service developers. Currently available solutions and support
to create and apply QoS attributes to the Web services are

either limited to certain domains or specific to development
environments.

In this paper, we present an approach to answer the
following questions and challenges that emerge with such
QoS-aware Web services:
• Is it possible to model, configure and apply not only

standardized QoS attributes but also project specific
QoS attributes to Web services in an easy, extendable
and flexible manner?

• Is there a solution to enable quick development of QoS-
aware Web services irrespective of the Web service
implementation language, business logic and policy
domains?

• Moreover, is there a solution to handle and enable
frequent changes in business requirements with respect
to non-functional requirements?

• Can the time, complexity and effort in designing,
modeling, creating and applying QoS attributes to the
Web services be reduced?

This paper offers a solution, a tool chain, which automates
and simplifies modeling, configuring and applying of QoS
attributes to Web services. Figure 1 describes the working
of our proposed solution with the actors, components and
processes involved.

Figure 1. Use case diagram describing our solution strategy.

As shown in the figure, there are two distinctive roles: the
QoS profile developer and Web service developer performing
their concerned tasks. QoS profile developer uses the QoS
meta-model to create a so-called QoS profile, which forms a
reference between the Web services and the QoS attributes.
Examples of such QoS profiles are security profile and
performance profile for a Web service.

By undergoing certain set of transformations, a GUI is
generated from a QoS profile. Web service developer now
interacts with the generated GUI to create a refined QoS
profile based on certain business requirements. The Web

168

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. An approach to model, configure and apply QoS attributes to Web services.

service developer later assigns the refined QoS profile to
the concerned Web service.

Refined QoS profile follows a set of transformations to
create a policy model. Policy model is the starting point to
produce policy descriptions to be integrated into the Web
services to finally generate QoS-aware Web services. By
introducing this solution strategy, we can answer the ques-
tions described in the problem description in the following
manner:

• QoS meta-model component allows modeling, config-
uring and applying QoS attributes of not only standard-
ized but also project specific QoS attributes in an easy
extendable and flexible manner.

• QoS meta-model, QoS profile, refined QoS profile and
policy model are components of the solution strategy.
QoS profile, refined QoS profile and policy model
undergo transformations to generate business specific
solutions.

• The mentioned transformations also allow re-
processing of new technical and business specifications
at different components of the solution strategy.

• Separating the tasks of QoS profile developer and Web
service developer reduces the effort, time and complex-
ity of designing, modeling, creating and applying QoS
attributes to Web services.

III. APPROACH

Figure 2 shows the solution architecture in more details
describing our approach. The first component is the QoS
meta-model (see (1) in Figure 2). It describes exactly how
the QoS profiles are created. It is simple, extensible, easy to
understand and expressive enough to model arbitrary QoS
attributes.

The second component is the QoS profile (see (2) in
Figure 2), which is an instance of QoS meta-model. It offers
the QoS profile developer a way to model QoS attributes
within QoS categories that are already defined in the QoS
meta-model. As we will see in Section VII, with this meta-
model, we will be able to model different QoS attributes
including QoS attributes such as reliable messaging and
performance.

Once a QoS profile has been instantiated, the third compo-
nent of the solution, a GUI is generated (see (3) in Figure 2)
based on certain transformation rules. The transformations
process essential information from the QoS profile and
depending on the elements in the QoS profile generate the
GUI. The main purpose of the GUI is to provide Web service
developer an interface to refine and configure available QoS
profiles. For example, a Web service developer can choose
and specify specific encryption algorithm for a QoS security
profile.

169

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After a successful user interaction with the GUI, the forth
component of the solution, i.e., a refined QoS profile (see
(4) in Figure 2) is obtained. The refined QoS profile is
the actualized version of the QoS profile, which is again
transformed into the policy representation, i.e., the fifth
component of the solution (see (5) in Figure 2). The policy
model is the final step towards applying QoS attributes as
policies to Web services.

In general, there are six transformations taking place from
QoS profile to policy model generation:
(a) An automated transformation from QoS profile to plat-

form independent GUI model (GUI PIM). This enables
easy extension of the solution to different GUI technolo-
gies such as Swing, SWT and WPF.

(b) An automated transformation from GUI PIM to platform
specific GUI model (GUI PSM). GUI PSM is specific
to modelled QoS attributes.

(c) An automated transformation from GUI PSM to plat-
form specific GUI code.

(d) An automated transformation from refined QoS profile
to platform independent policy model (Policy PIM). This
enables easy extension of the solution to different policy
formalisms such as WS-Policy [2] and XACML [7].

(e) An automated transformation from Policy PIM to plat-
form specific policy model (Policy PSM). Policy PSM is
specific to a policy domain selection of which is based
on project or business requirements.

(f) An automated transformation from platform specific
Policy model to platform specific policy description. The
transformation reduces complexity, time and effort to
generate policy descriptions.

In the next sections, we will describe the components shown
in Figure 2 in more details.

IV. QOS META-MODEL

There are several QoS meta-model proposals which can
be used to define and apply QoS profiles for Web services.
Malfatti [8] introduced a suitable meta-model for our ap-
proach. Figure 3 shows the QoS meta-model used in our
solution which is a slightly modified version of Malfatti. It
is extensible and expressive enough to model standardized
and arbitrary QoS attributes. The meta-model is created in
Eclipse Modeling Framework (EMF-core), a powerful tool
for designing models and their runtime support [9]. QoS
profile developer uses this QoS meta-model to instantiate
QoS profiles with QoS attributes. The basic elements of the
QoS meta-model are:
• Service: Name of the Web service to apply poli-

cies. The Web service can have zero or more
QoSCategory elements.

• QoSCategory: Defines categories with which quality
criterions are grouped. Examples of a QoSCategory
could be security, reliability and performance. Each
QoSCategory has one or more QoSParameters.

• QoSParameter: It describes the quality criterions,
e.g., Inactivitytimeout is a QoSParameter
for reliability category. Each QoSParameter has
exactly one QoSAgreedValue and a QoSMetric
associated with it.

• QoSAgreedValue: The value of the criterion is
defined in this element, e.g., the value 20 for
Inactivitytimeout. This element can also be
extended with QoSProperty elements.

• QoSMetric: This element specifies a unit with
which the value of QoSAgreedValue element is
measured e.g., “seconds” for the QoSAgreedValue
20 which is associated with the QoSParameter
Inactivitytimeout.

Figure 3. QoS meta-model.

The meta-model enables the QoS profile developer to
model QoS attributes for Web services for different business
domains. The following changes were made in the meta-
model to the meta-model proposed in [8]:
• The Category attribute in the QoSParameter was

modified to include only predefined values specified in
the enumeration class QoSCategoryName.

• The QoSLevel was not considered in this work since
the modeled QoS is always fulfilled.

Our meta-model is built using EMF (Core) [9], a modeling
framework and code generation facility, which is used to
build tools and applications based on a structured data
model.

V. QOS PROFILE

QoS profile developer uses QoS meta-model to define and
create QoS profiles. A QoS profile is an instance of the meta-
model for a specific non-functional business requirement
coupled with corresponding QoS criterions in default state
or value. All the values of QoS attributes defined by QoS
profile developer in QoS profiles are default values that

170

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

could be used by Web service developer while applying
QoS attributes to the Web service. Web service developer
can also change or configure the QoS attributes’ values to
fit business or project requirements while applying them
to the Web service. Hence, QoS profiles are used by Web
service developers during development to provide concrete
QoS attribute values and apply them to their Web services
as policies. Following, we will model three QoS profiles
to demonstrate the flexibility of the meta-model. We will
present a standardized QoS attribute from the WS-* family
and introduce two non-standardized QoS profiles.

The first QoS attribute is from WS-ReliableMessaging.
Figure 4 models QoS attributes described as a RM policy
assertion example in [6], Section 2.4. In this example,
RQoSAgreedValue “60000” for the RQoSParameter
InactivityTimeout indicates that if the idle
time exceeds 60000 milliseconds, the sequence will
be considered as terminated by the service endpoint.
RQoSAgreedValue “3000” for RQosParameter
BaseRetransmissionInterval expresses that
an unacknowledged message will be transmitted after
3000 milliseconds. RQoSAgreedValue “200” for
RQoSParameter AcknowledgementInterval
indicates that an acknowledgement could be buffered up to
two-tenths of a second by the RM destination.

Figure 4. QoS profile for reliable messaging.

The second example models a QoS profile, which is
not standardized. A calculator Web service performs arith-
metic operations by accepting the operands and the op-
erators. Figure 5 describes calculator Web service con-
straints for arithmetic operations such as addition and
multiplication whose QoS implementation may differ with
respect to number overflow. The calculator constraints set
minInt and maxInt RQoSParameters for the Web
service class or Web service methods. The minInt and
maxInt RQoSParameters indicate that all the input
and output numbers fall within the range of “0” and
“65535”. qosDataType in RQoSAgreedValue is set to
Integer indicating the data type criterion of the value of
RQoSAgreedValue for the calculator constraint.

Figure 6 shows the third example. It is a performance QoS

Figure 5. QoS profile for calculator example.

profile where ResponseTime and Throughput are QoS
attributes, which are two of the most common used attributes
in order to measure performance. Response time refers to
the duration, which starts from the moment a request is
sent to the time a response is received. Throughput is the
maximum amount of requests that the service provider can
process in a given period of time without having effect on
the performance of the Web service endpoint [10].

Figure 6. QoS profile for performance.

RQoSAgreedValue “10” for RQoSParameter
ResponseTime indicates that the Web service shall
guarantee a response within 10 milliseconds where
Millisecond is defined as RQoSMetric. Similarly,
RQoSParameter Throughput with RQoSAgreedValue
“120” indicates that the Web service will be able to handle
up to 120 request/second without having any change on the
Web service performance. RQoSMetric defines the unit of
measure for RQoSAgreedValue.

VI. GRAPHICAL USER INTERFACE

The graphical user interface enables Web service devel-
opers to configure or refine QoS profiles with new QoS
attributes’ values according to the business requirements. It
is a graphical tool to associate the QoS values of the modeled
QoS attributes.

There are two factors, which decide how the GUI should
look like; the first factor is the QoS profile. The QoS profile

171

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specifies the number of categories and the associated QoS
attributes with their default values. In our approach, every
QoS category is represented by a GUI tab and each tab
shows the QoS attributes of the respective QoS category.
Such a design ensures a user friendly management and
division of QoS attributes based on their categories. For
example, if the QoS profile includes three QoS categories
performance, reliable messaging and calculator constraints,
the QoS profile will be transformed into a GUI, which has
three tabs. Each tab will represent a category. If the QoS
category, e.g., calculator constraint has two QoS attributes,
the QoS category tab on the GUI will represent these two
QoS attributes, i.e., minInt and maxInt with their default
values as shown in Figure 7.

Figure 7. Generated GUI from the QoS profile.

The element QoSMetric helps the GUI engine to deter-
mine, how the QoSAgreedValue shall be presented. For
example, if the QoSMetric indicates that the QoS attribute
is a Number, the GUI engine will use a text field for the
presentation of this attribute.

The second factor is the Web service endpoint. A list of
the Web service methods will be extracted either directly
from the Web service endpoint interface (SEI) or from the
WSDL. Each extracted method has its own list of QoS
attributes. A QoS profile can be associated either to a simple
Web service or a set of Web services, i.e., all Web services
contained in a WSDL description. If, for example, two Web
service methods have two different two different values for
“ResponseTime” values, a policy for each method will be
created. This will result in creating a separate policy for each
selected method. The created policy could also be applied
Web service wide. These possibilities give the Web service
more flexibility and dynamics.

The QoS profile is transformed into the GUI code us-
ing a set of three separate transformation processes. A
model-to-model transformation from QoS profile to GUI
platform independent model (GUI PIM), which introduces
an additional layer of abstraction supporting multiple GUI
platforms, a model-to-model transformation from platform

independent GUI model to platform specific GUI model
(GUI PSM), for a specific GUI technology such as Swing
and SWT and finally a model-to-code transformation from
GUI platform specific model to GUI platform specific
code, which on execution generates the GUI output. Every
transformation is performed based on transformation rules
that are defined using transformation languages. The two
model-to-model transformations described above are based
on the language “Operational Query View Transformation”
(QVTO) [11] while the model-to-code transformation is
based on “Xpand2” [12].

The transformation from QoS profile to GUI PIM is based
on the mappings between QoS profile elements and the GUI
elements. The GUI elements are defined in a GUI PIM meta-
model, which is used to generate GUI PIM ensuring the
extendibility of the solution to other GUI platforms. The
GUI PIM meta-model is an abstract GUI model consisting
of basic GUI elements. Figure 8 outlines the GUI PIM
meta-model. At the root of the GUI PIM meta-model, is a
GUI element associated with exactly one Frame element in
which all the GUI elements are contained. The next level of
abstraction of the GUI elements is the Container element
which can contain GUIElement. The GUIElement is
another abstract form of basic GUI elements divided un-
der four categories, i.e., ActionElement (e.g., buttons),
OutputElement (e.g., labels), InputElement (e.g.,
text fields) and ChoiceElement (e.g., list box) [13].
The architecture of the GUI meta-model is similar to the
schematics of the QoS meta-model.

Figure 8. GUI PIM meta-model.

The transformation rules ensure a consistent mapping
from different elements of the QoS profile to GUI PIM. Each
of the QoS categories from the QoS profile is defined as
different tabs in GUI. The quality criterion itself is described
with a name, value and a metric representation. Depending
on the complexity of the value element, respective mapping
is performed, for example, on text field or text area.

172

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The transformation from GUI PIM to GUI PSM is also
performed through transformation rules. Essentially, the GUI
PSM is platform specific extension of properties of the GUI
PIM that contains technology specific entities. The GUI
PSM, thus, inherits the elements of GUI PIM and refines
them.

The working example shown in Figure 7 is specific to
Java Swing framework. The mappings of the elements are
performed by simply associating the corresponding elements
from the two models. For example, Java Swing element
JLabel inherits from the label element of the GUI PIM called
Label. Finally from the GUI PSM, the code is generated
through a model-to-code transformation. The mappings of
each element of the QoS model to GUI PIM and further to
Swing specific types are shown in the Figure 9.

Figure 9. Mappings from QoS profile to GUI PIM model and correspond-
ing Swing specific types.

The mapping of GUI PSM (Java Swing) into the Java
Swing code is straight forward since the elements of GUI
PSM bear the same Swing names.

VII. REFINED QOS PROFILE

Web service developer interacts with the generated GUI
to refine the QoS attributes’ values further according to the
business requirements. Hence, the refined QoS profile (see
(4) in Figure 2) is an extended version of the QoS profile
(see (2) in Figure 2) with well-defined values of the QoS
attributes. This component in the solution concept is the first
step in building the policy descriptions for the Web services.
After entering the values to the QoS attributes in the GUI
(see (3) in Figure 2), the refined QoS profile is produced with
the set values to QoS attributes. During this process, GUI
reads the entered values of QoS attributes. QoS elements in
the GUI are searched and matched with the corresponding
attributes modeled in the QoS profile. Finally, a refined QoS
profile is generated with the entered QoS values assigned to
the respective QoS attributes.

Figure 10 shows the refined QoS profile of the calcu-
lator service example mentioned earlier in Figure 5 with
new values to RQoSParameters minInt and maxInt as

“-32768” and “32767” respectively. The new values to
RQoSParameters represent the non-functional requirements
set by the Web service developer over the calculator service.

Figure 10. Refined QoS profile for Calculator.

Refined QoS profile is generated by iterating through
the elements of GUI PSM, extracting the corresponding
elements of QoS profile model with the refined values of
QoS attributes (set via the GUI), reframing the quality
criterions and finally storing the quality criterions in the
refined QoS profile model.

It is of great interest to realize the importance of generat-
ing a refined QoS profile component than directly generating
the policy model. The refined QoS profile provides the
extensibility and flexibility to the generation of policies and
applying them to the Web services. It provides an additional
layer of abstraction to generate the policy descriptions
through policy PIM thereby allowing the solution to extend
to multiple policy languages through policy PSM (see Figure
2). Each QoS profile can then extend the Web service with
profile specific non-functional quality criterions. This also
reduces complexity of integrating multiple profiles into the
Web services.

After successful generation of refined QoS profile from
the GUI, further transformations to policy model take place.
The QoS policy model and the transformations are discussed
in the next section.

VIII. QOS POLICY

As a Web service developer refines the QoS at-
tributes on the GUI, all QoS values are assigned to the
QoSAgreedValue element in the refined QoS profile.
Once the QoS values have been assigned and refined QoS
profile is created, a QoS policy model is generated. If,
for example, every Web service method has different QoS
attributes, a separate policy will be created for every Web
service method. A WS-Policy description may include the
specifications of more than one QoS attribute depending on
the user input in the GUI.

The transformation of the refined QoS profile instance
to policy model can also be divided into three different
transformation processes. A model-to-model transformation

173

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from refined QoS profile to platform independent policy
model (Policy PIM), which introduces an additional layer
of abstraction supporting multiple policy languages. Another
model-to-model transformation from policy PIM to platform
specific policy model (Policy PSM) supporting specific pol-
icy languages such as WS-Policy and XACML. And finally a
model-to-code transformation from policy PSM to platform
specific policy description code. These transformations are
performed based on certain transformation rules that are
also defined using the transformation languages QVTO and
XPand2.

The policy description elements are defined in a policy
PIM meta-model which is similar to the GUI PIM meta-
model described in Section VI. It is used to generate policy
PIM ensuring the extensibility of the solution to other policy
formalisms. The policy PIM meta-model is an abstract policy
model consisting of four basic policy elements outlined as
ServicePolicy, AssertionGroup, Assertion and
Property [14]. Figure 11 describes the policy PIM meta-
model. ServicePolicy is the root element which can
encapsulate any number of AssertionGroup elements as
child elements. AssertionGroups can have any number
of Assertions as child elements. A Property can be
assigned to any of the mentioned elements. A Property
extends an element with additional information.

Figure 11. Policy PIM meta-model.

Once the Web service developer refines the QoS profile
instance with new QoS values using the GUI, the refined
QoS profile to policy PIM transformation process gets
executed. This model-to-model transformation is based on
transformation rules defining the logical mappings between
the elements of refined QoS profile and rolicy PIM. Figure
12 outlines the mappings.

The transformation from policy PIM to policy PSM is
also a model-to-model transformation process. This transfor-
mation process can yield multiple policy language specific
policy PSMs. Once the policy PSM is created, the policy
code is generated via model-to-code transformation XPand2
process.

The following transformation rules are applied to generate
policy PIM from refined QoS profile:

Figure 12. Refined QoS profile to policy PIM mapping.

• The Category attribute in the refined QoS profile
declares the name of the policy. For example, the
category ReliableMessaging is transformed into
a wsrm:RMAssertion element declaring a Reli-
ableMessaging policy.

• The element RQoSParameter in the refined QoS pro-
file declares a QoS attribute. The RQoSParameter el-
ement indicates the reliable messaging quality attribute
InactivityTimeout and is therefore transformed
into wsrm:InactivityTimeout element.

• The element RQoSMetric in the refined QoS
profile declares a property or how the QoS
should be measured. The Milliseconds is
transformed into Milliseconds attribute within the
wsrm:InactivityTimeout element.

• The element RQoSAgreedValue in the refined QoS
profile declares a QoS value. The value “60000” will
be mapped as a value for the QoS attribute.

Listing 1 shows the modeled QoS in Figure 4 after
the transformation into a reliable messaging WS-Policy
assertion.

1<w s p : P o l i c y w su : Id =” R e l i a b l e M e s s a g i n g P o l i c y ”>
2<wsp:Exac t lyOne>
3<w s p : A l l>
4 <w s r m : I n a c t i v i t y T i m e o u t M i l l i s e c o n d s =” 60000 ” />
5 <w s r m : B a s e R e t r a n s m i s s i o n I n t e r v a l
6 M i l l i s e c o n d s =” 3000 ” />
7 <ws rm :Ac kno wl edg em en t In t e r va l
8 M i l l i s e c o n d s =” 200 ” />
9</ w s p : A l l>

10</ wsp :Exac t lyOne>
11</ w s p : P o l i c y>

Listing 1. Reliable messaging WS-Policy description.

Similarly, the WS-Policy descriptions of calculator con-
straint and performance are generated after their profile
transformation into policy assertions. Listing 2 shows the
modeled and refined QoS in Figure 10 after the transforma-
tion into a calculator constraint WS-Policy assertion.

Listing 3 shows the modeled QoS in Figure 6 after
transformation into WS-Policy performance assertion.

Once the policies have been created, policy model (see
(4) in Figure 2) will assign the created policies to the
Web service endpoint interface. There are several ways to
associate a WS-Policy description to a Web service. In our

174

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <w s p : P o l i c y w su : Id =” C a l c u l a t o r C o n s t r a i n t P o l i c y ”>
2 <wsp:Exac t lyOne>
3 <w s p : A l l>
4 <w s c a l : m i n I n t Number=”−32768”> </ w s c a l : m i n I n t>
5 <w s c a l : m a x I n t Number=” 32767 ”> </ w s c a l : m a x I n t>
6 </ w s p : A l l>
7 </ wsp :Exac t lyOne>
8 </ w s p : P o l i c y>

Listing 2. Calculator service WS-Policy description.

1<w s p : P o l i c y w su : Id =” P e r f o r m a n c e P o l i c y ”>
2<wsp:Exac t lyOne>
3<w s p : A l l>
4 <wsrm:ResponseTime M i l l i s e c o n d s =” 10 ” />
5 <wsrm:Throughput R e q u e s t s / s=” 120 ” />
6</ w s p : A l l>
7</ wsp :Exac t lyOne>
8</ w s p : P o l i c y>

Listing 3. Performance WS-Policy description.

proof of concept, we use the CXF policy [15] engine to
attach the corresponding policy to either the selected Web
service methods or the Web service endpoint interface. CXF
uses the @POLICY annotation to signal the compiler that
there are policies, which should be considered and assigned
to the corresponding Web service while creating its WSDL.

IX. PROOF OF CONCEPT

The solution architecture (Figure 2) discussed in the
previous sections can be instantiated in several ways. For our
proof of concept we have used a Java based infrastructure.
To be precise, the following technologies are used:
• Eclipse IDE - Eclipse Modeling Tools [9].
• QVTO [11] and XPand2 [12] transformation frame-

works.
• Java Swing GUI implementation.
• Apache Tomcat application server [16].
• Apache CXF services framework with WS-Policy sup-

port [15].
Eclipse Modeling Tools facility is used to build tools and

applications based on a structured data model. It provides
a pluggable framework to store the model information and
by default uses XML Metadata Interchange (XMI) format to
preserve the model definition. QoS meta-model in our proof
of concept is based on Eclipse Modeling Tools.

WS-Policy [2] provides a policy language to formally
describe properties of a behavior of Web services. WS-
Policy itself does not come with concrete assertions. Related
specifications introduce domain specific assertions, e.g., WS-
Security for the security domain. The respective specifica-
tions do not only define the syntax, but also the meaning of
the assertions and their impact on the Web services runtime
behavior.

Operational Query View Transformation (QVTO) is used
to create transformation rules for model-to-model transfor-
mations. It is the sublanguage of Query View Transformation
(QVT) [17].

XPand2 is used to perform model-to-code transforma-
tions. XPand2 is administered in Eclipse Modeling Project
(EMP) but has its roots from OpenArchitectureWare Frame-
work. In our proof of concept, XPand2 is used to generate
a Swing based GUI.

Apache CXF is an open source services framework.
Apache CXF helps in building and developing services using
frontend programming APIs, like JAX-WS and JAX-RS.
Apache CXF includes a broad feature set, but it is primarily
focused on supporting Web service standards including WS-
Policy and frontends.

The main purpose of Apache CXF in our example is
WS-Policy support it offers and its possibility to associate
WSDLs with existing WS-Policies through annotations.

This section uses the calculator example mentioned in
this paper to attach quality attributes and to demonstrate the
overall working of the solution.

We begin with Eclipse Modeling Tools and define the QoS
meta-model. QoS profile developer uses and instantiates QoS
meta-model to provide QoS profile. QoS profile for a simple
calculator is generated with two quality attributes, i.e.,
minInt and maxInt. The QoS profile, then, undergoes
two automatic QVTO transformations, i.e., QoS profile to
GUI PIM, and GUI PIM to GUI PSM. Listing 4 shows a
sample transformation rule of QoS profile to GUI PIM.

1 mode l type QOS ’ s t r i c t ’ u s e s
2 QoSSOAMetaModel (’ h t t p : / / qosmetamodel / 1 . 0 ’) ;
3 mode l type GUI PIM ’ s t r i c t ’ u s e s
4 guip immetamodel (’ h t t p : / / guip immetamodel / 1 . 0 ’) ;
5 t r a n s f o r m a t i o n QoS2GUIPIMTransformation
6 (i n qos : QOS, o u t guiPim : GUI PIM) ;
7
8 p r o p e r t y v a l i d a t i o n R e g E x D o u b l e = ’ /\\d + [\\ . | ,]\\ d +/ ’ ;
9 p r o p e r t y v a l i d a t i o n R e g E x I n t e g e r = ’ /\\d +/ ’ ;

10
11 main () {
12 qos . o b j e c t s () [S e r v i c e]−>xmap serv iceToGUI () ;
13 }
14
15 mapping S e r v i c e : : s e r v i c e T o G U I () : GUI
16 when {
17 s e l f . RQoSCategory−>s i z e () > 0 ;
18 }
19 {
20 theFrame : = o b j e c t Frame {
21 name : = s e l f . name + ’ GUI ’ ;
22 } ;
23 . . .
24 . . .
25 . . .

Listing 4. Sample .qvto code for QoS profile to GUI PIM transformation.

The participating models are defined by using the keyword
modeltype. Keyword transformation describes the
source and the target model. The mapping functions are
defined and called from within the main() function, which
is called on the execution of the transformation file. Lines
20-21, for example, add Frame to the GUI. GUI PSM in
our proof of concept is a GUI implementation, which is
generated via transformation rules specific to the Java Swing
environment from the abstract GUI PIM. The transformation

175

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

follows the similar syntax as described for QoS profile
to GUI PIM transformation. Listing 5 shows the sample
transformation.

Once the GUI PSM is generated, the code is created auto-
matically via model-to-code Xpand2 transformation process.
XPand2 template file reads the elements of the GUI PSM
and translates them into Java Swing elements’ code. On
execution, it presents the Web service developer with the
GUI. Figure 7 shows the generated GUI for our proof of
concept calculator example with default values. Web service
developer can interact with the GUI and insert new values
to the quality criterion of calculator example.

1 mode l type GUI PIM ’ s t r i c t ’ u s e s
2 guip immetamodel (’ h t t p : / / guip immetamodel / 1 . 0 ’) ;
3 mode l type GUI PSM ’ s t r i c t ’ u s e s
4 guipsmswingmetamodel (’ h t t p : / / guipsmswingmetamodel / 1 . 0 ’) ;
5 t r a n s f o r m a t i o n GUIPIM2GUIPSMTransformation
6 (i n pim : GUI PIM , o u t psm : GUI PSM) ;
7
8 main () {
9 pim . o b j e c t s () [GUI]−>map guiToGUI () ;

10 }
11
12 mapping GUI::guiToGUI () : GUI {
13 theFrame : = o b j e c t JFrame {
14 name : = s e l f . theFrame . name ;
15 } ;
16 theFrame . g u i E l e m e n t s +=
17 s e l f . theFrame . gu iE lemen t s−>s e l e c t
18 (elem | elem . o c l I s T y p e O f (TabbedPane l))
19 . oclAsType (TabbedPane l)
20 −>map tabbedPane lToJTabbedPane () ;
21
22 theFrame . g u i E l e m e n t s +=
23 s e l f . theFrame . gu iE lemen t s−>
24 s e l e c t (o c l I s T y p e O f (G e n e r i c)) . oclAsType (G e n e r i c)−>
25 map g e n e r i c T o J P a n e l () ;
26 . . .
27 . . .
28 . . .

Listing 5. Sample .qvto code for GUI PIM to Java Swing transformation.

Each generic element from the GUI PIM is mapped with
respective Java Swing GUI element. Lines 16-20 show the
mappings of GUI PIM element TabbedPanel to the corre-
sponding GUI PSM (Java Swing) element JTabbedPane.
Figure 9 shows the mappings of the elements.

The process of generating refined QoS profile is similar
to the process of instantiation of QoS meta-model described
before to generate QoS profile.

The refined QoS profile undergoes two model-to-model
QVTO transformations, i.e., refined QoS profile to policy
PIM and policy PIM to policy PSM as well as a model-to-
code XPand2 transformation from policy PSM to get WS-
Policy code.

Refined QoS profile to policy PIM transformation is simi-
lar to the transformation described above, i.e., QoS profile to
GUI PIM. Listing 6 shows the sample transformation. Lines
19-21 maps the QoSParamaters of a QoSCategory to
respective assertions.

Policy PSM in our proof of concept is WS-Policy spec-
ification. It is generated from the abstract Policy PIM via

1 mode l type QOS ’ s t r i c t ’ u s e s
2 QoSSOAMetaModel (’ h t t p : / / qosmetamodel / 1 . 0 ’) ;
3 mode l type PIM ” s t r i c t ” u s e s
4 ” h t t p : / / webuser . hs−f u r t w a n g e n . de / ˜ p a s s f a l l / PIM” ;
5
6 t r a n s f o r m a t i o n Q o S 2 P o l i c y M o d e l l T r a n s f o r m a t i o n
7 (i n qos : QOS, o u t p o l i c y : PIM) ;
8
9 main () {

10 qos . o b j e c t s () [S e r v i c e]−>
11 xmap S e r v i c e 2 S e r v i c e P o l i c y () ;
12 }
13
14 mapping S e r v i c e : : S e r v i c e 2 S e r v i c e P o l i c y () : S e r v i c e P o l i c y
15 {
16 e v a l u a t i o n A l g o r i t h m : = s e l f . name + ’ P o l i c y ’ ;
17 v a r a s s e r t i o n G r o u p E l e m e n t : =
18 o b j e c t A s s e r t i o n G r o u p {} ;
19 a s s e r t i o n G r o u p E l e m e n t . a s s e r t i o n s +=
20 s e l f . RQoSCategory . RQoSParameter −>
21 xmap P a r a m e t e r 2 A s s e r t i o n () ;
22 a s s e r t i o n G r o u p s += a s s e r t i o n G r o u p E l e m e n t ;
23 . . .
24 . . .
25 . . .

Listing 6. Sample .qvto code for refined QoS profile to policy PIM
transformation.

1 mode l type PIM ” s t r i c t ” u s e s
2 ” h t t p : / / webuser . hs−f u r t w a n g e n . de / ˜ p a s s f a l l / PIM” ;
3 mode l type WSP ” s t r i c t ” u s e s
4 ” h t t p : / / webuser . hs−f u r t w a n g e n . de / ˜ p a s s f a l l / PSMWSPolicy” ;
5 t r a n s f o r m a t i o n PIM2WSP(i n S o u r c e : PIM , o u t T a r g e t : WSP) ;
6
7 h e l p e r f indNamespaces
8 (param : S e t (P I M : : A s s e r t i o n)) : L i s t (WSP::Namespace) {
9

10 v a r n s s : L i s t (WSP::Namespace) ;
11 param−>s w i t c h (s) {
12 c a s e (s . t y p e = ” S i g n e d E l e m e n t s I n d i c a t o r ”) {
13 v a r ns : = o b j e c t Namespace {
14 p r e f i x : = ” sp ” ;
15 u r l : =
16 ” h t t p : / / docs . o a s i s−open . o rg / ws−sx /
17 ws−s e c u r i t y p o l i c y /200702 ” ;
18 } ;
19 . . .
20 . . .
21 . . .
22 }
23
24 main () {
25 Source . o b j e c t s ()
26 [S e r v i c e P o l i c y]−>xmap S e r v i c e P o l i c y T o P o l i c y () ;
27 }
28
29 mapping S e r v i c e P o l i c y : : S e r v i c e P o l i c y T o P o l i c y () : P o l i c y {
30 v a r a s s e r t i o n s : = Source . o b j e c t s O f T y p e (P I M : : A s s e r t i o n) ;
31 namespaces : = f indNamespaces (a s s e r t i o n s) ;
32 a l t e r n a t i v e s += s e l f . a s s e r t i o n G r o u p s−>
33 xmap A s s e r t i o n G r o u p T o A l t e r n a t i v e () ;
34 . . .
35 . . .
36 . . .

Listing 7. Sample .qvto code for policy PIM to WS-Policy transformation.

transformation rules specific to the WS-Policy specifications.
Listing 7 shows the sample transformation. Each generic
element from the Policy PIM is mapped with a respective
WS-Policy specific element. Line 26 is the function call to
ServicePolicytoPolicy function. Line 32 performs the map-
ping of AssertionGroup to WS-Policy Alternative.

176

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13 shows the mappings of the elements.

Figure 13. Policy PIM to WS-Policy mappings.

Once the policy model for WS-Policy is generated, the
application of the policies is attached to the Web service.
Now, Apache CXF policy engine attaches the correspond-
ing policy to either the selected Web service method or
the Web service endpoint interface. Apache CXF uses the
@POLICY annotation to signal the compiler that there are
policies, which should be considered and assigned to the
corresponding Web service while creating the Web service
WSDL.

X. RELATED WORK

In our research for related work, an approach, which
nearly investigates our approach or even a part of it was
not found. Most of the recent works on QoS-aware Web
services focus on QoS-aware Web services compositions.
They investigate methods, algorithm or frameworks in order
to better compose Web services according to their QoS
attribute. Such works could be found in [18]–[20]. In this
section, we will describe papers, which propose either QoS
meta-models or policy editors.

Tondello et al. [21] proposes a QoS-Modeling ontology,
which allows QoS requirements to be specified in order
to fully describe a Web service in terms of quality. How-
ever, this proposal focuses on using QoS specification for
semantic Web service descriptions and Web service search.
This approach, however, contains many variables and many
characteristics in ontology for semantic Web services, which
does not flow in the same direction as this work intends to.

Suleiman et al. [22] addresses the problem with Web
service management policies during design. The authors
presented a solution, which uses a novel mechanism. It
generates WS-Policy4MASC policies from corresponding
UML profiles semi-automatically and feedback information
monitored by the MASC middleware into a set of UML
diagram annotations.

D’Ambrogio [23] introduced a WSDL extension for de-
scribing the QoS of a Web service. It uses a meta-model
transformation according to the MDA standard. The WSDL
meta-model is extended and transformed into a new WSDL
model called Q-WSDL, which supports QoS descriptions.
As D’Ambrogio favour an approach, which does not support

introducing a new additional language on top of WSDL, our
approach uses standards for the description of QoS attributes
in Web services.

WSO2 WS-Policy editor [24] offers an integrated WS-
Policy editor with the WSO2 application server. The editor
offer two policy views: a source view and a design view.
The source view shows the policy in its XML format and
the design view shows the policy as a tree view. The user
will be able to add and remove element to and from the
policy. However, this policy editor only offers support for
WS-Security and WS-ReliableMessaging. A support for new
QoS attributes is not mentioned.

NetBeans [25] offers a graphical tool, which allows users
to graphically configure security and reliable messaging to a
Web service. Extending this tool, however, is complex due to
the lack of documentation and its dependability to NetBeans
API and Glassfish [26].

All these works discuss QoS attributes after the Web
services are developed. Our approach offers a solution to
develop a QoS-aware Web service.

XI. FUTURE WORK

In [27], we presented the design of a comprehensive tool
chain that facilitates development, deployment and testing
of QoS-aware Web services. This paper is a part of the
work presented in the tool chain, which elaborates a concept
for managing quality of service attributes for Web services.
Future works will include different tasks, which will be
individually explained in this section.

In Section VI, we introduced a GUI, which is dynamically
generated depending on the QoS attributes modeled in the
QoS profile described in Section V. However, the generation
of the GUI is platform-specific. This GUI is only a proof
of concept in order to demonstrate the feasibility of this
approach. Our goal is to create a GUI using MDA as a
base for our approach, which will allow the dynamic GUI
generation to different platform.

Section VII indicates that the QoS profile will be trans-
formed to a QoS policy. In this paper, we have only
considered WS-Policy as a policy language in order to prove
that the concept really works. It is the intention of this
approach to offer QoS model transformation support to more
than one policy language. This will increase the flexibility
of our approach.

In [28], we offered a solution architecture, which collects
real time data about applied QoS attributes from the SOA
environment: the purpose of this architecture is to evaluate
the compliance of the entire SOA with the QoS attributes
described in the SOA QoS policy. It is our intention to use
the meta-model mentioned in Section IV for the evaluation
and monitoring of the SOA environment.

This paper presents an approach of how QoS attributes
could be easily modeled and transformed into an adequate
policy language. However, a policy without a handler, which

177

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enforces the policy on the Web service, is only half the
solution. Future works include a repository component,
which is designed to store QoS handlers. This repository
will include handler implementation, handler configurations,
and test cases.

XII. CONCLUSION

The design and implementation of an SOA that contains
QoS attributes is difficult. There are tools and IDEs, which
help developers to ease the process of creating programs,
minimizes their error rates, designing and implementing
such complex systems. But, to create a QoS policy and
conjugate it with a Web service still requires a good
knowledge of its grammar and its mechanism. It is highly
desirable to have tools, which help developers to model QoS
attributes, simplify the configuration and automate applying
QoS attributes to Web services. First steps towards such tools
have been made, but the overall support for developers needs
to be highly improved.

In this paper we presented a tool chain, which increases
the support for two developer roles: QoS profile developer
and Web service developer. The former, by the use of a
generic QoS meta-model, defines QoS profiles for targeted
QoS attributes. The approach thereby support the modeling
of new QoS attributes. From a QoS profile a corresponding
GUI is generated, which supports the Web service developer
to refine the QoS profile, to generate a policy model,
and to apply the corresponding policies to Web services.
Implementation details, like the usage of WS-Policy and
adding necessary annotation in source code, are hidden from
the Web service developer.

Throughout the paper we described the necessary modi-
fications, user interactions and transformations step by step.
At the end, the feasibility of the approach was shown by a
proof of concept.

In summary, the approach is a major step towards an
increased support for constructing QoS-aware Web services.
It eases and unifies the development process and helps to
reduce the error rate, development effort and the overall
costs.

XIII. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
giving us helpful comments.

This work has been supported by the German Ministry
of Education and Research (BMBF) under research contract
017N0709.

REFERENCES

[1] A. Al-Moayed and B. Hollunder, “An approach to model,
configure and apply QoS attributes to web services,” in Pro-
ceedings of the Sixth International Conference on Software
Engineering Advances (ICSEA 2011). Xpert Publishing
Services, 2011, pp. 405–410.

[2] W3C, “Web Services Policy Framework - Version 1.5,”
September 2007, last access: 20.12.2012. [Online]. Available:
http://www.w3.org/TR/ws-policy/.

[3] T. Erl, A. Karmarka, P. Walmsley, H. Haas, U. Yalcinalp,
C. K. Liu, D. Orchard, A. Tost, and J. Pasley, Web Service
contract Design & Versioning for SOA. Prentice Hall, 2009.

[4] B. Hollunder, M. Hüller, and A. Schäfer, “A methodology
for constructing ws-policy assertions,” in Proceedings of the
2nd International Conference on Engineering and Meta-
Engineering (ICEME 2011), 2011, pp. 112–117.

[5] OASIS, “Web Services Security Policy - Version 1.3,”
April 2009, last access: 20.12.2012. [Online]. Available:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/.

[6] OASIS, “Web Services Reliable Messaging Policy - Version
1.2,” February 2009, last access: 20.12.2012. [Online].
Available: http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.
pdf.

[7] OASIS, “eXtensible Access Control Markup Language
(XACML) Version 2.0,” OASIS, February 2005, last access:
20.12.2012. [Online]. Available: http://docs.oasis-open.org/
xacml/2.0/access control-xacml-2.0-core-spec-os.pdf.

[8] D. Malfatti, “A Meta-Model for QoS-Aware Service Compo-
sitions,” Master’s thesis, University of Trento, Italy, 2007.

[9] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework, E. Gamma, L. Nackman,
and J. Wiegand, Eds. Addison-Wesley Professional, 2008.

[10] E. Kim, Y. Lee, Y. Kim, H. Park, J. Kim, B. Moon, J. Yun, and
G. Kang, “Web service quality factors version 1.0,” OASIS,
Tech. Rep., 2011, last access: 20.12.2012. [Online]. Avail-
able: http://docs.oasis-open.org/wsqm/WS-Quality-Factors/
v1.0/WS-Quality-Factors-v1.0.pdf.

[11] R. Dvorak, “Model Transformation with Opera-
tional QVT,” Borland Software Corporation, 2008,
http://www.eclipse.org/m2m/qvto/doc/M2M-QVTO.pdf, last
access: 20.12.2012. [Online]. Available: http://www.eclipse.
org/m2m/qvto/doc/M2M-QVTO.pdf.

[12] E. Galileo, “Xpand/ Xtend/ Check Reference,” The
Eclipse Foundation, last access: 20.12.2012. [Online].
Available: http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.xpand.doc/help/ch01s06.html.

[13] M. Hermann and A. Hülzenbecher, “M2M-Transformation
zur Generierung einer grafischen Benutzeroberfläche in einem
QoS-SOA Kontext,” Hochschule Furtwangen University,
2011, informatik Journal, Faculty of Informatics.

[14] A. Passfall, T. Rübsamen, and R. Teckelmann, “Modell-
basierte Erzeugung von Policy-Dokumenten,” Hochschule
Furtwangen University, 2011, informatik Journal, Faculty of
Informatics.

[15] “Apache CXF: An Open-Source Services Framework,”
The Apache Software Foundation, last access: 20.12.2012.
[Online]. Available: http://cxf.apache.org/.

178

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] “Apache Tomcat,” The Apache Software Foundation, last
access: 20.12.2012. [Online]. Available: http://tomcat.apache.
org/.

[17] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification,” last access: 20.12.2012. [Online].
Available: http://www.omg.org/spec/QVT/1.0/.

[18] M. H. Agdam and S. Yousefi, “A Flexible and Scalable
Framework For QoS-aware Web Services Composition,” in
Proc. 5th Int Telecommunications (IST) Symp, 2010, pp. 521–
526.

[19] P. Bartalos and M. Bielikova, “QoS Aware Semantic Web Ser-
vice Composition Approach Considering Pre/Postconditions,”
in Proc. IEEE Int Web Services (ICWS) Conf, 2010, pp. 345–
352.

[20] H. Kil and W. Nam, “Anytime Algorithm for QoS
Web Service Composition,” in Proceedings of the 20th
international conference companion on World wide web,
ser. WWW ’11. New York, NY, USA: ACM, 2011,
pp. 71–72, last access: 20.12.2012. [Online]. Available:
http://doi.acm.org/10.1145/1963192.1963229.

[21] G. Tondello and F. Siqueira, “The QoS-MO Ontology
For Semantic QoS Modeling,” in Proceedings of the
2008 ACM symposium on Applied computing, ser. SAC
’08. New York, NY, USA: ACM, 2008, pp. 2336–
2340, last access: 20.12.2012. [Online]. Available: http:
//doi.acm.org/10.1145/1363686.1364239.

[22] B. Suleiman and V. Tosic, “Integration of UML Modeling
and Policy-Driven Management of Web Service Systems,”
in Proc. ICSE Workshop Principles of Engineering Service
Oriented Systems PESOS 2009, 2009, pp. 75–82.

[23] A. D’Ambrogio, “A Model-driven WSDL Extension for De-
scribing the QoS of Web Services,” in Web Services, 2006.
ICWS ’06. International Conference on, sept. 2006, pp. 789–
796.

[24] WSO2, “WSO2 WSAS: The WS-Policy Editor 3.2.0 - User
Guide,” WSO2, April 2010, last access: 20.12.2012.

[25] “NetBeans IDE,” Oracle Corporation, last access: 20.12.2012.
[Online]. Available: http://netbeans.org.

[26] “Glassfish Application Server,” last access: 20.12.2012.
[Online]. Available: http://glassfish.java.net.

[27] B. Hollunder, A. Al-Moayed, and A. Wahl, Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions. IGI Global, 2011, ch. A Tool Chain
for Constructing QoS-aware Web Services, pp. 172–188.

[28] A. Wahl, A. Al-Moayed, and B. Hollunder, “An Architec-
ture to Measure QoS Compliance in SOA Infrastructures,”
in Proceedings of the Second International Conferences on
Advanced Service. Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 27–33.

179

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Testing Object-Oriented Code Through a Specifications-Based Mutation Engine

Pantelis Stylianos Yiasemis

Department of Computer Engineering and Informatics,

Cyprus University of Technology

Limassol, Cyprus

email: pantelis.yiasemis@cut.ac.cy

Andreas S. Andreou
Department of Computer Engineering and Informatics,

Cyprus University of Technology

Limassol, Cyprus

email: andreas.andreou@cut.ac.cy

Abstract—This paper presents a simple, yet efficient and

effective mutation engine that can produce mutations of object-

oriented source code written in the C# and Visual Basic

languages as an extension of previous work on the topic [1]. The

engine produces mutants based on user selected mutation

operators the number of which is bounded by the specifications

declared in the source code with the aid of Code Contracts. The

specifications are described using a set of pre- and post-

conditions and invariants. The engine consists of four distinct

and integrated components; a syntactic verification component,

a static analysis component, a mutation generation component,

and a test case quality assessment component. A series of

experiments are conducted which show that the proposed engine

is able to locate a fault and efficiently propose the proper

correction. In addition, the scalability of the proposed approach

is assessed in terms of time and performance with respect to

different program sizes.

Keywords-mutation testing; mutation engine; specifications;

I. INTRODUCTION

The rapid evolution of technology has lead to the creation
of a large variety of tools that automate a number of activities
within the process of software development. Computing
power increases in almost exponential rates, a fact that
supports the development of better and faster software
systems, which, in turn, exercises pressure on their reliability
as typically these systems become increasingly more complex.
The competition that exists between software development
companies pushes them to increase their productivity by
developing the software in tighter time frames having a direct
effect on the quality of the software developed.

Software Testing efficiency, or better the lack of it, is one
of the most important reasons for inadequate quality control in
today’s software development. Software testing is a way of
making sure that a software system meets its specifications
while being correct and appropriate ([2], [3]). Software testing
is a quite complex process that needs to be correctly
performed; it thus consumes a large percentage of the time
and budget of the whole development process. In some
occasions it even surpasses the time and budget needed for the
creation of the software product [4]. Its main purpose is the
improvement of the functional behavior of a system under
development, by revealing and locating faults in source code.

The software testing process comprises two main
activities, the correct identification of faults and their
correction (debugging). Faults can be incorrect steps or data
definitions in a program that when executed together lead to

failure. Such faults are also called errors, anomalies,
inconsistencies or bugs [5]. Identifying faults is more time
consuming than correcting faults in software testing. This
leads to the conclusion that there is a constant need for
developing tools that will aid the acceleration, correctness and
automation of the testing process, by guiding developers to
locate and correct faults more efficiently and effectively.

The aim of this paper is to introduce a mutation engine for
source code written in two popular object-oriented
programming languages, namely C# and VB. Mutations are
replacements of code statements performed through certain
operators that correspond to specific types of errors. These
replacements produce the so-called mutant programs which
are then used in order to assess the quality of a test case set as
regards to its ability to identify faults in code. The proposed
engine constitutes the backbone of a novel mutation testing
technique that takes into consideration the specifications of
the program for creating only valid mutants. The engine is
implemented in Visual Studio 2010 and consists of four
components: The first offers the ability to validate the
grammatical correctness of the source code; the second
provides a form of static analysis for exporting useful
information that can be used to process/modify the source
code; the third involves the production of mutations of the
original source code, while the fourth facilitates the
identification of faults, as well as the assessment of the quality
of test data.

This work constitutes an extension of previous work on
the topic [1], which introduced a Mutation Engine for C#
making use of Code Contracts to limit the number of
produced mutants thus decreasing the time needed for fault
localization. The new ground investigated in this paper may
be summarised to the following: (a) The Mutation Engine has
been extended to work with code written not only in C# but in
VB as well. (b)The assessment of the resulted mutants and the
correct identification and correction of faults for a series of
examples are performed for both programming languages
with comparisons between their results. (c) The engine was
tested against larger versions of code and the time
performance for locating the faults and producing all the
mutants was assessed for multiple program sizes, with the
lines of source code being increased by two, four, six and
eight times respectively.

The rest of the paper is structured as follows: Section II
describes briefly the basic concepts that form the necessary
technical background of this work. Section III presents the
mutation engine, its architecture and key elements ruling the

180

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generation of mutations, along with a brief demonstration of
the supporting software tool. Section IV describes a set of
experiments and the corresponding results that indicate the
correctness and efficiency of the proposed approach. Finally,
Section V concludes the paper and suggests some steps for
future work.

II. TECHNICAL BACKGROUND

According to Khan [6], there are three kinds of software
testing techniques. These are White Box Testing (WBT),
Black Box Testing (BBT) and the mixing of the two called
Gray Box Testing (GBT). Each techniques offers its own
advantages and disadvantages, differing in the way test cases
are created and executed. In BBT the test cases are created
based on the functions and specifications of the system under
testing without the need for actual knowledge of the source
code. WBT requires that the tester has full access to the
source code and knows exactly the way it works. An
advantage of this method is the ability to locate coincidental
correctness, that is, the case where the final result is correct
but the way it is calculated is not. Furthermore, all possible
paths of code execution may potentially be tested offering the
means to identify errors or/and locate parts of dead code, that
is, parts that are actually never executed. GBT combines the
testing methodology of WBT and BBT, meaning that it tests a
system against the specifications defined but also it uses
information from the source code to create the test cases. It
needs more knowledge of the internals of a system than BBT
but less than WBT.

Different techniques have been proposed for WBT [6]
making use of the structure of the source code or the sequence
of execution, giving birth to static code analysis for the former
and dynamic testing for the latter. This paper concentrates on
dynamic testing where the actual flow of execution drives test
data production. One such technique that has gained serious
interest among the research community is Mutation Testing
(MT).

Various research studies propose Mutation Testing as the
basic element of their approach to software testing (e.g.,
[7],[8]). MT is a relatively new technique introduced by
DeMillo et al. [9] and Hamlet [10], which is based on the
replacement of code statements through certain operators that
correspond to specific types of errors, producing the so-called
mutant programs. These programs are then used to assist in
producing or/and assessing the quality of test data as regards
revealing the errors in the mutants [11].

The general idea behind MT is that the faults being
injected correspond to common errors made by programmers.
The mutants are slightly altered versions of programs which
are very close to their correct form. Each fault is actually a
single change of the initial version of the program. The
quality of a produced set of test cases is assessed by executing
all the mutants and checking whether the injected faults have
been detected by the set or not. This assessment is based on a
Mutation Score (MS), which is the ratio of “killed” mutants
against the non-equivalent mutants. The purpose of mutation
analysis is to aid in creating a test case set of high quality, that
is, a set able to produce a MS closer to 1. Such a test can be
used to detect all the faults that may exist in the code.

It is possible to produce a large number of variations of a
program and the faults that may contain, thus traditional MT
targets only groups of faults that are closer to the original
version of the code. This practice is based on the Competent
Programmer Hypothesis (CPH) and the Coupling Effect (CE).
The CPH states that the code written by programmers is
almost correct. CE states that when identifying simple faults
with a set of test data, the same test data can also identify
larger and more complex faults [12]. While recent work in the
field of MT deals with high order mutations [11] [13], this
paper targets only on first order mutants (simple mutants) as
these may be considered good enough, based on CPH and CE,
for performing adequate testing of program code. Complex
faults are represented by complex mutations consisting of
more than one change in the code, whilst simple faults are
represented by a single mutation (syntactic change) to a
program.

There are a number of ways to represent program code.
Each provides a particular way to understand a program and
manage its source code. Most of them use graphs or/and
binary trees that are able to depict graphically how the
program actually works. The Control Flow Graph (CFG) is
one such way of graphically representing the possible
execution paths. Each of the nodes in a CFG corresponds to a
single line of program source code. The arcs connecting nodes
represent the flow of execution. A CFG may be used as the
cornerstone of static analysis, where its construction and
traversing offers the ability to identify and store information
about the type of statements present in the source code and the
details concerning the alternative courses of execution. A fine
example is the BPAS framework introduced by Sofokleous
and Andreou [14] for automatically testing Java programs. A
CFG may also drive the generation of test data by providing
the means to construct an objective function for optimization
algorithms to satisfy (algorithms by evolution such as the one
proposed in Michael et al. [15]).

The Visual Studio (VS) platform [16] has been constantly
evolving becoming one of the most widely used platforms
today in the software industry. This is partly due to the fact
that it provides the ability to create a number of different types
of applications, like window-apps, web-apps, services, classes
etc. The wide acceptance of VS has driven the development of
a number of third party tools and plug-ins that enhance the
platform with even more functionality, making development
of special-purpose applications simpler and easier. The
aforementioned advantages of VS2010 suggest that its use
might be quite beneficiary for software testing, and more
specifically for developing a new mutation testing tool.

Code Contracts (CC) were introduced by VS2010 as a
means to encode specifications [17], but can be installed on
other versions of Visual Studio as well. CC may consist of
pre-conditions, post-conditions and invariants. The aim is to
improve the testing process through both runtime and static
checking. Runtime checking takes place while the program
executes and produces an exception when the specifications in
the code are not met. Static contract verification is performed
while the project is under development. It produces a warning
when a condition is not satisfied and also proposes a solution
to fix the relevant code. CC also assist in documentation

181

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generation by producing an XML file with information from
the CC. CC can be used on any .Net platform that contains the
Contracts class, or, if building a project on a platform that
does not support CC (e.g., older versions of Silverlight,
Windows Phone 7, etc), a reference to the assembly
Microsoft.Contracts.dll should be added to the project.

Code Contracts were developed from knowledge obtained
from the Spec# programming system, an attempt made by
Microsoft to provide a way for more cost effective and higher
quality software. SPEC# is in essence a formal language for
API contracts that permits specification and reasoning of
object invariants, even in parallel processing environments or
when callbacks exist in the code. Using a CC enables a
programmer to create a detailed set of specifications that will
be used to verify a program with the use of the static program
verifier. The latter checks if a program satisfies the
specifications with no runtime errors. SPEC# is being
developed as a research project by Microsoft Research’s
Programming Languages and methods group [18].

The mutation engine introduced in this paper is partly
based on the aforementioned concepts. More specifically, it
utilizes CFG and static analysis as in [14] to extract the
information needed for analyzing and describing adequately
the source code under investigation. Moreover, it employs CC
to embed the specifications required in order to assess
whether a program functions properly. The mutation engine
utilizes runtime checking to limit the production of
meaningful mutant programs, that is, programs that do not
violate their original specifications. Lastly, it incorporates an
automatic test case assessment module that either evaluates
the quality of a given test case set, or identifies faults in the
original code, and proposes the proper correction that also
satisfies the specifications. The engine offers a means for
both the automation of software testing and a reduction in the
time required for software testing.

III. MUTATION ENGINE

The mutation engine is implemented in the VS2010
platform. VS2010 was selected partly because it is a relatively
newly introduced platform, meaning that the components
developed may be used as the backbone for future tools and
studies based on this platform, without facing any
incompatibility issues compared to the use of older platforms.
Also, to the best of our knowledge, at present no other such
system exists. The engine was originally designed to work
with the C# programming language. A number of additions
and enhancements were introduced to the engine for
supporting Visual Basic as an extension to our previous work
[5].

A. Research Strategy

The first step to design and implement the mutation
engine was the selection of particular technologies to be
incorporated in the proposed tool. Therefore, CFG were
employed to aid in the static analysis and CC were chosen to
limit the number of produced mutants.

CFG were chosen to represent the code as they give
information about the flow of execution, but most
importantly they identify and store information about the

type of statements present in the code and additional details
regarding alternative courses of execution. This information
can then be used for static analysis of the code, which is a
preprocessing stage that enables the gathering of critical
information as regards specific parameters of the program
under testing. This assists in the application of the mutation
operators on the source code as it identifies everything
present in the code (variables, classes, statements) and the
proper mutations can then be applied to each of the elements
identified. CC were selected as a means to describe the
conditions that exist in the specifications of the program in
order to help eliminate those mutations that do not satisfy the
specifications.

B. Architecture

The architecture of the proposed mutation engine is
depicted graphically in Figure 1 where four major
components enable the execution of the engine’s stages.

1) Syntactic verification component
The first is a source code validation component, which

compiles the source code and presents any erroneous lines.
This component takes as input a source code file (.cs or .vb),
or an executable file (.exe), or a dynamic link library file
(.dll), as well as the project file (.csproj or .vbproj). The
project file provides the validation component with
information for references in libraries and files that the source
code uses and are part of the program. Validation includes
compiling the source code and making sure that no syntactic
or other compilation errors exist so as to proceed with the
second stage of the engine which is the production of
mutations. Otherwise the engine terminates.

Source codeSource code Project FileProject File

Test CasesTest Cases

Validate

Source code

Abstract Syntax
Tree

PassPass

FailFail

Mutation
Operators

Analyzer

Test Case EvaluatorEXIT

Information
Lists

Static Analysis
Component

Parser

Visitor

Mutants

Figure 1. The mutation engine architecture

2) Static analysis component
The second component performs static analysis of the

source code without the need of an executable form of the
program under testing. Static analysis is the extraction of
useful information from the source code concerning the
structure of the program. This component takes as input the
source code file and uses the class AbstractSourceTree (AST)
of SharpDevelop [19] to model the abstract syntax tree of the
code. While compiling a source code file, a binary tree (the

182

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AST) is created, each node of which represents a line of code.
Traversing this binary tree, offers access to any part of the
source code.

The static analysis component described above consists of
two sub-components, the Parser and the Visitor. The Parser
analyses the source code and creates the AST as mentioned
earlier. The Visitor passes through the AST collecting useful
information, while giving the opportunity for the user to make
changes and additions to the information stored. The
implementation of the Visitor utilised the AbstractAstVisitor
class of SharpDevelop, with some minor additions to help
accessing all the nodes of the AST, both at the high (classes
and their parameters, inheritance, etc.) and the low level
(assignments, conditional statements, unary statements, etc.)
characteristics of the programming language. The Visitor
recursively visits each node and stores in stack-form lists all
the information identified according to the node’s type. In the
experiments described in the next section thirteen such lists
were created; nevertheless, the way the Visitor is structured
enables the addition of any new lists or the modification of
existing ones in a quite easy and straightforward manner.

3) Mutation generation component
The third component is the heart of the mutation engine.

This component analyses the information stored in the lists
created by the Visitor so as to identify the structure and
content of the source code, and creates mutated programs by
applying a number of predefined operators to the initial
program. These mutators are responsible for creating a
number of different variations of the initial source code. Each
mutation is based on one or more grammatical rules that do
not breach the grammatical correctness of the resulting
program.

4) Test case quality assesement component
The final component of the mutation engine is the

automatic test case quality assessment and fault detection
component. It takes as input a text file containing the test
cases. The test case file includes a header containing the name
of the function to be called and the number of arguments that
are needed as input, while the rest of the file contains the test
cases values and the expected results for each set of inputs.
Figure 2 presents an example of a test case file. The function

that is going to be tested is called test and takes 3
parameters, as seen in the header of the file. The rest of the
file contains, for each test case, the input values and expected
results separated by semi-columns. The test case evaluator
then loads all the test cases found in the test case input file and
applies them to the original program.

If the program returns the expected values for each of the
test cases, the tool continues applying each mutation to the
original code and evaluating the results of each test case.

When all the test cases have been applied to all the
mutants, the engine calculates the Mutation Score, along with
information about which mutants were detected, which were
not, the mutants that could not be compiled and some other
run-time information. In the case where the initial source code
fails to give the expected output for a specific test case, the
tool tries to locate a possible solution by finding a mutant that
gives the expected results for all the test cases defined in the
file. This mutation is then logged as a possible valid

correction for the fault, while the engine continues to look for
more possible solutions until all the mutation operators have
been applied. The results are logged in .txt files containing
useful information about which test cases managed to detect
errors, which mutations were identified, the possible
corrections for the initial code, etc.

Figure 2. Format of the Test Cases File

C. Supported Mutation Operators

Mutations are performed at the method level using
operators that are either arithmetic, relational or logical. At
the class level, mutation is performed with operators applied
to a class or a number of classes, and usually involves
changing calls to methods or changing the access modifiers
of the class characteristics (public, private, friendly etc.). The
operators supported by the proposed mutation engine are the:

Arithmetic

 AORBA – arithmetic operations replacement (binary,

assignment)

 AORS – arithmetic operations replacement (shortcut)

 AOIS – arithmetic operations insertion (shortcut)

 AOIU – arithmetic operations insertion (unary)

 AOIA – arithmetic operations insertion (assignment)

 AODS – arithmetic operations deletion (shortcut)

 AODU – arithmetic operations deletion (unary)

 AODA – arithmetic operations deletion (assignment)

Relational

 ROR – relational operations replacement

Conditional

 COR – conditional operations replacement

 COI – conditional operations insertion

 COD – conditional operations deletion

Logical

 LOR – logical operations replacement

 LOI – logical operations insertion

 LOIA – logical operations insertion (assignment)

183

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 LOD – logical operations deletion

 LODA – logical operations deletion (assignment)

Shift

 SOR – shift operations replacement

 SOIA – shift operations insertion (assignment)

 SODA – shift operations deletion (assignment)

Replacement

 PR – parameter replacement

 LVR – local variable replacement

For example if the AORBA operator is applied on the

following line of code

jkreturn this.num / this.den;

then the result will be the creation of four different mutations

by replacing the division (/) operator with either addition (+),

multiplication (*), subtraction (-) and modulo (%). The four

cases for the produced mutated line of code are shown below:

(a) return this.num * this.den;

(b) return this.num + this.den;

(c) return this.num - this.den;

(d) return this.num % this.den;

D. Specification-Based Mutations

The number of possible mutated programs for a certain
case-study may be quite large depending on the type and
number of statements in the source code. Mutations
processing time is proportional to the number of mutants
processed. This is a significant problem that may hinder the
use of mutation testing in certain cases. There is a need to
minimize mutation testing execution time. This is feasible if
useless mutations are removed or avoided. Such mutations
correspond to invalid forms of executions for that particular
program which may be determined by the program’s
specifications. Therefore, the specifications must be taken into
consideration when producing a mutant. These Specifications
are implemented as CC in VS2010. This feature enhances the
fault detection part of our tool, as it removes any possible
mutations that do not satisfy the specifications defined in the
source code.

Figure 3. Class Test Example with CC specifications

Figure 3 demonstrates how mutations are driven by the
specifications inserted via CC. Class Test includes methods
Foo and Goo and uses CC to express two pre-conditions
(denoted by Contract.Requires) and one post-condition
(denoted by Contract.Esures).

In Goo the assignment of x affects the values with which

Foo is called. The first pre-condition requires that x>y. The

engine normally would perform operation replacement

substituting ‘+’ with ‘-’, ‘/’, ‘%’ and ‘*’. Due to the

aforementioned pre-condition the engine will drop the first

three replacements and use only the last one as it is the only

replacement that will still satisfy the pre-condition. The same

applies for b>0, where any arithmetic replacement should not

set b equal or less than zero. In this way the engine produces

only valid mutations and ensures that a certain mutation is

implemented in the engine which enables the production only

of valid mutants thus ensuring that the minimum possible time

and effort will be spent on the subsequent analysis and testing

activities. This approach also limits the search for a possible

solution by the user, when a number of solutions are identified

by the engine.

E. The software tool

A dedicated software tool has been developed to support
the process of MT. An example scenario is given below to
demonstrate its operation: A source code file, the project file
of the program tested and a test case file (optional) are given
as input to the system. If no test case file is provided the
program continues with only the creation of the mutations and
nothing more. The project file and all the references to other
files or libraries are automatically located and linked, and the
source code file is compiled through the validation
component. In the case of compilation errors a pop up
window is presented to the user with the corresponding
information (Figure 4) and the process is terminated.

Figure 4. Execution : Errors in compilation

If there are just warnings, the user is again informed, but
the system now continues to the next step. Static analysis of

public class Test {

 private int Foo(int a, int b) {

 Contract.Requires(a > b);

 Contract.Requires(b > 0);

Contract.Ensures(Contract.Result<int>()>0;

 …

 return (a / b);

 } …

 private void Goo() {

 int x, y;

….

 x = y + 10;

 int result = Foo (x , y) }

184

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

int triang(int i, int j, int k) {

 if ((i <= 0) || (j <= 0) || (k <= 0))

 return 4;

 int tri = 0;

 if (i==j)

tri+=1;

 if (i==k)

tri+=2;

 if (j==k)

tri+=3;

 if (tri==0) {

 if ((i+j==k) || (j+k<=i) || (i+k<=j))

tri=4;

 else tri=1;}

 else {

 if (tri>3) tri=3;

 else {

 if ((tri==1) && (i+j>k))

 tri=2;

 else{

 if ((tri==2) && (i+k>j))

tri=2;

 else {

 if ((tri==3) && (j+k>i))

tri = 2;

 else tri = 4; } } } }

 return tri; } }

the source code is performed, resulting in the creation of an
AST. The visitor component then passes through the AST and
creates the lists that store the information found in the source
code (variables, classes, statements, etc.). The third
component takes as input the lists created by the visitor and a
set of mutators selected by the user, applies these operators
and returns the resulting mutated programs in the path defined
(Figure 5). The last component, the automatic test case quality
assessment component, reads the test case file provided by the
user and executes the initial program with those inputs. If the
execution fails on any test case, the user is notified that the
original program does not validate all the test cases correctly
compared to their expected results and then searches for a
mutated version that does. If the initial program validates
correctly all test cases, then it continues with assessing the
quality of the test data set in order to report the ability of the
test data set to identify faults in the mutants.

Figure 5. Execution : Mutations successfully produced

IV. EXPERIMENTAL RESULTS

In order to test the mutation engine and the corresponding
tool a series of experiments were performed that would help
us assess both the correctness and the efficiency of our testing
approach using programs written in both the C# and VB
programming languages. Four categories of experiment were
conducted as follows:

Category A addressed the quality (adequacy) of a given
test case set against a benchmark program. A file containing
test cases and the expected results was fed into the tool along
with the source code that verified all of the test cases. Then all
the mutations produced by the engine were tested against the
test cases, logging which mutants were discovered or which
ones produced the same result as the original program.

Category B assessed the ability of the tool to discover a
fault in the original code and provide a solution to correct it.
In the case a test cases set fed into the tool does not validate
the original program the tool continues to create mutations
and propose possible solutions in order to validate all the test
cases found in the test file, whilst satisfying all the
specifications found in the code contracts.

Category C demonstrated that the proposed engine works
as supposed on both C# and VB code, by producing correctly
a number of mutations based on atomic changes to the source
code according to the user’s selected types of mutation
operators. The same functions are developed in both
programming languages and the mutations produced were
compared. Also, both the results of C# and VB mutations
were tested against a set of test cases to see if the mutation
engine could identify the same mutants for both languages.

Category D evaluates the scalability of the proposed
approach on large, real-world programs. Benchmark programs
were used, and the type and number of mutations was
recorded. It is worth mentioning that the experiments were
performed on an Intel i7-2600 CPU at 3.4 GHz with 4 GB of
RAM, while the programs used are available in various sites
on the Internet (e.g., http://www.c-program-example.com).

Lastly, category E demonstrated that the mutation engine
could eliminate the mutants that violate the pre-conditions,
post-conditions or invariants set for a program. Comparisons
of the number of mutations produced when using code that
contains specifications against code that does not contain
specifications.

The experiments are analysed below:

A. Test-Data Quality Assessment

This experiment used a specific benchmark program, the
triangle classification program, which is shown in Figure 6.
This program was tested against the 19 different test cases
shown in Table I, the meaning of the values used in its last
column is as follows: 1 equals to a scalene triangle, 2 equals
to an isosceles triangle, 3 to an equilateral and 4 does not
correspond to a triangle.

Figure 6. Trinagle Classification Program Source Code

185

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using the values in the first three columns of Table I for
the corresponding variables it appears at first that the TCP has
been adequately tested. The source code, the project file and
the test cases file were fed into the tool and all of the available
mutation operators were selected. After the engine finished
both creating the mutants and testing them with the test case
set, a general results file was created (Figures 7 and 8) which
contained all the mutations and the verdict whether there is at
least one test case in the test set that could identify the
alteration performed or not. The file also includes the number
of total mutations, the mutations that failed to compile, the
number of mutations that were successfully discovered or not,
the mutation score and the time needed for the engine to
produce and test the mutations.

TABLE I. TEST DATA THAT COVER ALL POSSIBLE OUTPUTS OF THE

TRIANGLE CLASSIFICATION PROGRAM (TCP)

i j k Result

2 4 5 1

5 6 3 1

2 1 2 2

3 1 2 4

4 8 9 1

3 1 7 1

4 4 4 3

5 5 5 3

5 5 3 2

6 7 2 1

10 2 1 4

10 3 8 1

10 5 -5 4

5 3 5 2

2 2 2 3

0 1 2 4

3 3 1 2

3 4 2 1

Along with the general results file created at the end of the

process, a results file for each mutation is created. This file
contains the results of applying each of the test cases, to the
program and which test case identified the error, if such a case
exists.

The results show that 517 mutants were created, from
which 58 could not be compiled so they were discarded. From
the remaining of 459 mutants, 175 could not be identified by
the test case set as they successfully yielded an identical result
as the original program. Finally, 284 mutations were
identified by at least one test case, leading to a mutation score
of 61%.

This experiment demonstrates that the proposed engine is
able to assess the quality of a set of data to adequately test a
given program.

Such a change that yields the same result is the following
change on the second statement of the code in Fig. 6:

if ((i <= 0) || (j <= 0) || (k <= 0))

to

if ((i <= 0) || (j < 0) || (k <= 0))

Figure 7. Beginning of general results file using Triangle Classification program written in the C# language

Figure 8. End of general results file using Triangle Classification program written in the C# language

186

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Fault Detection

This set of experiments was concerned with the ability of
the mutation engine to reveal errors that were injected in the
initial source code of the triangle classification program. A
number of faults were manually injected into the code and is
described below.

Figure 9 shows two faults inserted in the code, one
relational and one unary.

int triang(int i, int j, int k) {

 if ((i <= 0) || (j != 0) || (k <= 0)){

//*1.should have been ((i<=0)||(j<=0)||(k<= 0))*//

 return 4;}

 int tri = 0;

 if (i==j)

tri+=1;

 if (i==k)

tri+=2;

 if (j==k)

tri+=3;

 if (tri==0) {

 if ((i+j==k) || (j+k<=i) || (i+k<=j))

tri=4;

 else tri=1;}

 else {

 if (tri>3)

tri+=3;

//** 2. should have been tri=3;**//

 else {

 if ((tri==1) && (i+j>k))

 tri=2;

 else{

 if ((tri==2) && (i+k>j))

tri=2;

 else {

 if ((tri==3) && (j+k>i))

tri = 2;

 else tri = 4; } } } }

 return tri; }

}

Figure 9. Faults injected into Triangle Classification Program

The first change was the replacement of the <= relational
operand with != in the second line of the original code. The
tool suggested 6 possible solutions (Table II). It’s clear that
correction #5 is the one that reverted the faulty program to the
original version, but the other 5 proposed fixes yield the same
results with number 5. This can be due to the quality of the
test cases set and its inability to detect all the mutants in the
first place. This means that it is possible to check only 6 out of
the 615 working mutants to find a correct version.
Consequently only 1% of the work is needed compared to
checking all mutations for a possible correction.

The second alteration involved changing the assignment

tri=3 to adding 3 to the variable (tri+=3). The engine
applied all mutation operators in the original version and
suggested 2 possible corrections for this case. The first was
the arithmetic operations deletion (AODA_4) mutation, which
concerned the deletion of the plus operand from the line
changed. The second suggestion was the arithmetic operations

replacement (AORBA_33) that suggested the change of the +
operand to – . This suggestion again resulted in a version that
satisfied all test cases; as we can see from the code the

assignment is executed when the value of tri is equal to 6,

so subtracting 3 will result in tri taking the value of 3 and
validating correctly the test cases.

TABLE II. PROPOSED FIXES FOR THE FIRST INJECTED FAULT

No. Name Proposed Fix

1 COI_2 if ((i <= 0) || (!(j != 0)) || (k <= 0))

2 COI_4 if ((i <= 0) || !((j != 0) || (k <= 0)))

3 COR_1 if ((i <= 0) || (j != 0) && (k <= 0))

4 COR_2 if ((i <= 0) && (j != 0) || (k <= 0))

5 ROR_9 if ((i <= 0) || (j <= 0) || (k <= 0))

6 ROR_10 if ((i <= 0) || (j == 0) || (k <= 0))

The example of Figure 10 employs CC with three pre-

conditions, one post-condition and one invariant, and involves

two errors inserted in class CompareParadigm that cannot
be traced by the static analyzer in VS2010.

class CompareParadigm {

 int num,den;

public CompareParadigm(int numerator, int

denominator){

 Contract.Requires(0 < denominator);

 Contract.Requires(0 <= numerator);

 Contract.Requires(numerator>denominator);

 this.num += numerator;

 //** should have been this.num = numerator **//

 this.den = denominator;

 }

 [ContractInvariantMethod]

 private void ObjectInvariant() {

 Contract.Invariant(this.den > 0);

 Contract.Invariant(this.num >= 0);

}

 public int ToInt() {

Contract.Ensures(Contract.Result<int>()>=0);

 return this.num * this.den; }

}

//** should have been this.num / this.den **//

Figure 10. CompareParadigm Class with embedded Code Contracts

The engine is once again capable of bringing these errors
to light using the arithmetic operation replacement (AORBA)
and arithmetic operations deletion (AODA) mutators.

C. C# and VB comparative evaluation and compatibility

issues

The tool has been extended to support both C# and VB. In
order to assess the behavior of both C# and VB versions of the
triangle classification program were used and the results
compared.

The choice of analyzing only the arithmetic mutation
operators was made, as they produce a large number of
mutants allowing the extraction of some safe conclusions.

187

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. MUTATED PROGRAMS CREATED BY THE ENGINE FOR VB

AND C#

Mutation type
Number of Mutations

Visual Basic C#

AODA 3 3

AOIA 65 65

AOIS 66 66

AOIU 41 41

AORBA 36 36

Total 211 211

Failed to Compile 22 0

Identified Mutations 70 125

Table III shows that the mutation engine produces the same

number of mutations for each operator in both cases of coding

languages. In C# all of the mutations were compiled

successfully, but when dealing with the VB source file, 22

mutations out of 211 could not be compiled. Further

investigation of the mutated VB code files that could not be

compiled highlighted that the mutations produced a form of

syntax that is not always allowed in VB. An example of such

a case is the production of the line below:

tri %= 2

 VB does not support the use of the % operator, as it uses the

mod operator to divide two numbers and return their

remainder. After carefully checking all 22 mutations that

failed to compile the observation that all of them failed

because of the use of the % operator was made.
Continuing this evaluation, a comparison between the

results files of the C# and VB versions of the code revealed
that all of the identified mutants of the VB version were
included in the C# mutants as well. Focusing on cases that
were identified in C# but not in VB all of them were cases
where the ++ and -- operators were introduced before a
variable, as for example:

if (++tri = 1),

or cases with the += and -= operators being introduced as
in:

tri -= 2

The use of these four operators is something that VB’s
compiler does not report either as a warning or an error;
therefore the corresponding statements are compiled correctly,
but they have no meaning and functionality. Because these
statements are ignored, the mutated program yields the same
behavior as the original version.

All 55 mutations that were not identified by the engine
were mutations that used the four operators. This is one of the
main compatibility issues raised in the extension of the
proposed engine and will be addressed in future work possibly
by removing these operators when dealing with VB source
code.

Further investigation of the implications of the VB support
took place by assessing test cases for a sample program based
on the Find Max function; the program takes as input four
numbers and returns the largest one (Figure 11). This would

further validate the mutation engine’s support for locating and
correcting faults in VB programs.

Return max

Figure 11. FindMax Program implemented in VB Programming Language

The evaluation used a test case file that described 20 cases
with their expected results. An excerpt of the file can be seen
in Table IV.

TABLE IV. PART OF THE FINDMAX PROGRAM TEST CASES SET

Num1 Num2 Num3 Num4 Result

5 6 7 8 8

5 6 3 1 6

4 8 9 1 9

-9 -4 -2 -1 -1

3 4 2 1 4

The tool was executed and the selection of all of the

available mutation operators to be applied on the source code
was made. This resulted in the production of a total of 336
mutations, from which 84 failed to compile due to the reasons
described previously. From the remaining 252 produced
mutants, 130 were identified by at least one test case, while
122 were not, something that computes a mutation score of
51% (Table V), indicating that the engine was able to detect
51% of the produced mutations with the test cases set fed.

TABLE V. MUTATED PROGRAMS CREATED BY THE ENGINE FOR VB

IMPLEMENTATION OF FINDMAX FUNCTION

Mutation type
Number of Mutations

Visual Basic

AOIA 65

AOIS 28

AOIU 14

COI 4

LOI 14

LVR 96

PR 69

ROR 20

SOIA 26

Total 336

Failed to Compile 84

Identified Mutations 130

Dim max As Integer = 0

 If num1 > num2 Then

 max = num1

 Else

 max = num2

 End If

 If max < num3 Then

 max = num3

 If max < num4 Then

 max = num3

 End If

 Else

 If max < num4 Then

 max = num4

 End If

 End If

188

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to complete the conclusions of the review of the
VB support the fault locating part of the tool was further
investigated. For doing so the next line of code was changed
as shown below:

from If max < num3 Then

to If max > num3 Then

Again the same test cases set was fed into the engine, as
before, and the results of the Mutation Engine proposed two
Relational Operator Replacements that could possibly fix the
fault. These were:

(i) If max < num3 Then

(ii) If max <= num3 Then

The first replacement brings the program to its original
state (i.e., before injecting the fault), while the second one
again yields the same results as the first, as it does not affect
the rest of the code in a way that alters the results for any of
the test cases. As seen in bold letters in Figure 11, in either of

the two cases the result would be that variable max gets the

contents of the num3 variable.
In general, the extension of the engine with the VB

support module, although presenting some compatibility
issues to resolve in the future, provided some encouraging
results showing that the proposed engine is quite useful for
testing source code written in VB exhibiting comparable
performance to that when using C# code.

D. Time Behavioral Analysis

The fourth category of experiments, involved time

analysis and measurements on differently sized C# programs.

To this end, replication of the code of the Triangle

Classification program was decided, by 2, 4, 6 and 8 times

producing double the size of the program in each case. The

test case quality assessment module of the tool was used with

the same test cases shown in Table I. The Stopwatch class

of the System.Diagnostics library was used to measure

the time needed to produce the mutations.

TABLE VI. BENCHMARKS ON C# CODE

Lines Of Code Mutations Time (seconds)

67 468 46

134 905 77

268 1677 157

402 2480 216

536 3290 299

Table VI indicates that the time and number of mutations

increases almost linearly and proportionally to the number of

lines of code. An apparent analogy exists between the three

values: doubling the lines of code nearly doubles both the

number of mutations and hence the time needed for the engine

to create them, as well as to test them. Notably, approximately

50% of the mutants corresponded to the number of failed to

detect mutations, which were executed (tried) at least 20 times

each, while the rest of the “normal” mutations were run a

variable number of times, ranging from 1 to 20. This

emphasizes the importance of controlling the number of

“useless” mutants addressed by the proposed mutation engine

via the specification-driven mutation production and

evaluation, as explained in the next section. For example, in

the first case shown on Table VI where 67 lines of code exist

in the source file for which 468 mutations were produced, it

took the mutation engine 46 seconds to generate and test the

mutants. This is roughly 0.1 seconds spent on producing and

testing each mutant. If a programmer would have to create

manually the mutants and evaluate them against the test cases,

he would have needed at least 2 minutes to make each change,

compile the code and run it against all the test cases. Also, he

would have to document the results and keep track of all the

mutators applied, something which would have taken extra

time as well. The benefits of the automatic tool against the

manual creation and evaluation of the mutants are clear and

significant in terms of the time and effort needed.

In summary, the proposed solution was successfully tested

on a large number of automatically created errors injected in

the code against a number of test cases, reporting the mutants

that identified (or not) each error in a reasonable time span.

The time was less than the time needed for manually creating

modified versions of the initial code and testing them one by

one using the test cases.

E. Normal vs Specifications-Based Mutations Production

The fifth category of experiments involved the use of the
CC. Using CC the tool can eliminate the mutants that violate
the pre-conditions, post-conditions or invariants set for a
program.

First, class CompareParadigm listed earlier, which
includes a number of code contracts, was selected for
experimentation. The number of mutations produced with the
use of the specifications was compared to that of the same
class with no specifications defined in code (in this case the
engine with the CC disabled). Table VII lists the number of
mutations that were produced according to the mutation
operator used. A 58% reduction in the number of mutants is
achieved when using the code contracts version of the code,
which resulted in the engine generating 16 mutants compared
to 38 that were produced without taking into consideration the
specifications.

TABLE VII. MUTATED PROGRAMS CREATED BY THE ENGINE WITH

(SPECS-BASED) AND WITHOUT THE USE OF SPECIFICATIONS (NORMAL)

Operator
Number of Mutations

Specs-based Normal

AORBA 5 8

AOIS 7 10

AOIU 0 6

LOI 2 6

PR 2 3

LVR 0 5

Total 16 38

189

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This reduction is quite significant, as the code consisted of
less than 20 statements. Therefore, one can safely argue that
in cases of large programs the computational burden will be
considerably eased, preserving the effectiveness and
efficiency of the testing process. Moreover, when used in
conjunction with the fault locating part of the engine, it will
obtain a smaller number of solutions. Written specifications
can be used to constrain the creation of mutant solutions and
the tool can propose only one solution to fix the fault.

V. CONCLUSIONS AND FUTURE WORK

Software development is prone to producing lower than
expected quality software while the chance of project failure
is high. Software Testing is an important, though complex,
area of software development that mainly affects the quality
and reliability of delivered software systems. A high
percentage of software development time is devoted to
testing.

Automatic software testing approaches are increasingly
popular among researchers. They develop effective methods
for fault locating and debugging so as to reduce testing
complexity and lead to faster and cheaper software
development steps with high quality standards.

Mutation testing is a technique that produces different
versions of a program under study, each of which differ
slightly from the original one, often mimicking common
mistakes that programmers tend to make. These mutated
versions are used to either identify faults or to assess the
adequacy of a given set of test cases. In this context, a this
paper proposes a simple, yet efficient mutation engine, in
which a user-selectable number of mutation operators can be
applied at the method level and incorporating CC to generate
only valid mutants based on the program’s specifications. The
engine is developed in the Visual Studio 2010 platform and
utilizes Code Contracts to represent the specifications that
must be satisfied with pre-conditions, post-conditions and
invariants for both C# and VB programming languages.

The engine is supported by a dedicated software tool
consisting of four main parts. The first part verifies the
syntactical correctness of the source code and proper linking
with the appropriate libraries. The second part statically
analyses the source code using grammatical analysis and
produces the Abstract Syntax Tree representation of the
source code. The third part uses the information gathered from
the AST and generates mutations using specific operators
selected by the user and obeying the rules imposed by the
encoded specifications. The last part is the test case
assessment component which either calculates the quality of a
given test cases set or proposes possible corrections of faults
that exist in code.

Five series of experiments were conducted that showed
that the mutation engine is a tool that may be used for
identifying faults in the code and for assisting the creation of
the proper set of test data, both in C# and VB. Furthermore,
the experiments demonstrated that the engine scales up
smoothly as programs become larger in a time effective
manner for creating and testing the mutants. Lastly, the
incorporation of specification-based concepts allows for the
significantly improved performance of the mutation engine by

reducing the number of mutants processed and solutions
proposed according to the desired functionality expressed in
the specifications, thus saving time and effort.

Future work will involve extending the proposed mutation
engine to include more class-level mutators. Further additions
and enhancements will be performed for both the C# and VB
modules of the tool, while for the VB support the problem of
applying mutators that produce invalid statements will be
addressed. Moreover, integration of the engine with tools
offered by the VS2010 is under investigation such as PEX,
which is responsible for unit testing in order to automatically
create test cases sets that have high code coverage [20] and
UModel, which assists in creating UML diagrams. The UML
diagrams from UModel can then generate source code that
incorporates specifications that were set in the diagrams. This
integration will enable the formation of a complete testing
environment with dynamic user interaction, both at the flow
of control level and at the diagrammatical level.

Our work can be compared only to a limited number of
similar studies in literature: Saleh and Kulczycki [21]
investigated how formal specifications can detect
implementation errors in C# with the use of Creator of
Mutants (CREAM) tool [22] and Boogie verifier [23] of
SPEC# specifications. Their work tries and succeeds in
showing how formal methods can affect the creation of bug-
free programs by assessing their ability to detect design–time
errors based on the SPEC# specifications. They concentrate
on identifying faults created by mutations, which do not
satisfy the specifications, at design level, without the need for
executing the code. Our approach has a different purpose as it
aims at assessing the quality of a test case set to identify faults
in code and propose corrections for them. CCs are used,
instead of SPEC#, for defining specifications which are
verified dynamically upon code execution against a test case
set and reports on any input values that do not satisfy the
specifications. This makes possible the elimination of mutants
that, although their code verifies statically the specifications,
their execution against specific input values fails those
specifications. Also our choice of CCs over SPEC# provides
support for specifications in any language offered by VS,
while SPEC# is designed to work only with C# code.

For MT in Java the work of Nica et al. [24] tries to answer
the question if MT is really suitable for use in real-world
environments. They evaluate the use of three different
mutation tools for Java, MuJava, Jumble and Javalanche on
some of the Eclipse IDE’s source code, while they use the
included JUnit tests provided with the source code on the
Eclipse’s repository to evaluate them. They neither try to
locate and fix faults in code, nor do they assess the quality of
the test cases set. Also, they use Java source code, while our
work proposes a mutation engine to be used with both C# and
VB programming languages.

Further validation of the proposed mutation engine will
take place with the use of projects developed by graduate
students. This will enable a more systematic evaluation of the
engine using programs of different size and complexity that
will include real faults made by programmers, while assessing
various parameters, such as the time for creating and
processing mutations, the type of mutators used and the nature

190

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the errors introduced. This systematic investigation will
also bring to light any scalability issues not detected in this
version of the engine. Moreover, efforts for increasing the
performance of the Mutation Engine will be made with the
use of parallel programming and multithreading, coupled with
benchmarking tasks on a variety of different processing power
systems. Lastly, the problem of regression faults will be
addressed by exploring the feasibility of providing a
correction to more than one fault without affecting any
previous corrections.

REFERENCES

[1] A.S. Andreou and P. Yiasemis, “A Specifications-Based
Mutation Engine for Testing Programs in C#”,
Proceedings of the Sixth International Conference on
Software Engineering Advances (ICSEA), Barcelona,
Spain, 2011, pp. 70-75.

[2] C. Kaner, J.H. Falk andH.Q. Nguyen, “Testing Computer
Software”, John Wiley & Sons Inc., New York, NY,
USA, 1999.

[3] A. Bertolino, “Software testing research: achievements,
challenges, dreams”, Proceedings of 29th International
Conference on Software Engineering (ICSE 2007): Future
of Software Engineering (FOSE’07), Minneapolis, USA,
2007, pp. 85–103.

[4] B. Gauf and E. Dustin, “The case for Automated Software
Testing”, Future Directions in Software Engineering
Journal, Vol. 10 (3), 2007, pp. 29-34.

[5] R. Patton, “Software Testing”, Sams Publishing, 2nd
edition, 2006.

[6] M.E. Khan, “Different Forms of Software Testing
Techniques for Finding Errors,” International Journal of
Computer Science Issues (IJCSI), 2010.

[7] “Mutation Testing Repository”,
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/, [accessed
10 May 2011].

[8] M. Nica, S. Nica and F. Wotawa, “On the use of
mutations and testing for debugging,” Software-Practice
and Experience, Article published online, 2012.

[9] R.A. DeMillo, R.J. Lipton and F.G. Sayward, “Hints on
Test Data Selection: Help for the Practicing Programmer”,
IEEE Computer Vol. 11(4), 1978, pp. 34–41.

[10] R.G. Hamlet, “Testing Programs with the Aid of a
Compiler”, IEEE Transactions on Software Engineering,
Vol. 3(4), 1997, pp. 279-290.

[11] M. Harman, Y. Jia and W.B. Langdon, “Strong Higher
Order Mutation-Base Test Data Generation”,
ESEC/FSE’11, Szeged, Hungary, September 5-9, 2011.

[12] A.J. Offutt, “The Coupling Effect: Fact or Fiction”, ACM
SIGSOFT '89 - Third symposium on Software testing,
analysis, and verification ACM, New York, USA, 1989.

[13] G. Fraser and A. Zeller, “Generating Parameterized Unit
Tests”, International Symposium on Software Testing and
Analysis (ISSTA’11), Toronto, Canada, July 17-21, 2011.

[14] A.A. Sofokleous and A.S. Andreou, “Automatic,
Evolutionary Test Data Generation for Dynamic Software
Testing”, Journal of Systems and Software, Vol. 81(11),
2008, pp. 1883–1898.

[15] C.C. Michael, G. McGraw andM.A. Schatz, “Generating
software test data by evolution”, IEEE Transactions on
Software Engineering (12), 2001, pp. 1085–1110.

[16] “Visual Studio 2010”, (2009)
http://www.microsoft.com/visualstudio/en-
us/products/2010-editions, [accessed 18 May 2011].

[17] “Code Contracts User Manual”, (2010), Microsoft
Corporation, http://research.microsoft.com/en-
us/projects/contracts/userdoc.pdf [accessed 20 May 2011].

[18] “SPEC#”, (2004), http://research.microsoft.com/en-
us/projects/specsharp/, [accessed 04 August 2012].

[19] “SharpCode - The Open Source Development
Environment for .NET”, (2009),
http://www.icsharpcode.net/opensource/sd/, [accessed 17
May 2011].

[20] “Pex and Moles - Isolation and White box Unit Testing
for .NET”, (2004), http://research.microsoft.com/en-
us/projects/pex/, [accessed 04 August 2012].

[21] I. Saleh and G. Kulczycki, “Design-Time Detection of
Implementation Errors Using Formal Code Specification”,
RESOLVE 2010 Workshop: Advances in Automated
Verification, , Denison University, Granville, Ohio, June
8, 2010.

[22] A. Derezinska and A. Szustek, “CREAM - a System for
Object-oriented Mutation of C# Programs”, Information
Technologies, Vol.13 (5), Gdansk, 2007, pp. 389-406.

[23] “Boogie: An Intermediate Verification Language”,
http://research.microsoft.com/en-us/projects/boogie/,
[accessed 08 December 2012].

[24] S. Nica, R. Ramler and F. Wotawa, “Is Mutation Testing
Scalable for Real-World Software Projects?”, Third
International Conference On Advances in System Testing
and Validation Lifecycle (VALID), Barcelona, Spain,
2011.

191

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Benchmarking Data as a basis for Choosing a Business Software Systems

Development and Enhancement Project Variant – Case Study

Beata Czarnacka-Chrobot

Department of Business Informatics
Warsaw School of Economics

 Warsaw, Poland
e-mail: bczarn@sgh.waw.pl

Abstract—Execution of Business Software Systems (BSS)

Development and Enhancement Projects (D&EP) is

characterised by the exceptionally low effectiveness, leading to

the considerable financial losses. Thus, it is necessary to

rationalize investment decisions made with regard to the

projects of this type. Each rational investment decision should

meet two measurable criteria: effectiveness and economic

efficiency. In order to make ex ante evaluation of these criteria,

being key to the decision-making process, one may successfully

use ever richer resources of benchmarking data, having been

collected in special repositories that were created with

improvement of software processes and products in mind. The

goal of this paper is to present possibilities of employing

benchmarking data in the rationalization of investment

decision concerning the choice of BSS D&EP execution variant

on the basis of a case study. Thanks to the rational investment

decisions made on the basis of reliable and objective

benchmarking data it is possible to reduce losses caused by the

low effectiveness of BSS D&EP. These issues classify into

economics problems of software engineering.

 Keywords-software engineering economics; business

software systems development and enhancement projects

variants; rational investment decision; effectiveness; efficiency;

benchmarking data; case study

I. INTRODUCTION

In practice, execution of Business Software Systems
(BSS) Development and Enhancement Projects (D&EP) is
characterised by the exceptionally low effectiveness, leading
to the considerable financial losses (the paper is an extended
version of [1]). This may be proved by numerous analyses.
As indicated by the results of the Standish Group studies
success rate for application software D&EP has never gone
beyond 37% [2], while products delivered as a result of
nearly 45% of them lack on average 32% of the required
functions and features, the estimated project budget is
exceeded by approx. 55% on average and the planned
project time − by nearly 80% on average [3] (for more
details see [4]). Analyses by T.C. Jones plainly indicate that
those software D&EP, which are aimed at delivery of
business software systems, have the lowest chance to
succeed [5]. The Panorama Consulting Group, when
investigating in their 2008 study the effectiveness of ERP
(Enterprise Resource Planning) systems projects being
accomplished worldwide revealed that 93% of them were

completed after the scheduled time while as many as 68%
among them were considerably delayed comparing to the
expected completion time [6]. Merely 7% of the surveyed
ERP projects were accomplished as planned. Comparison of
actual versus planned expenses has revealed that as many as
65% of such projects overran the planned budget. Only 13%
of the respondents expressed high satisfaction with the
functionality implemented in final product while in merely
every fifth company at least 50% of the expected benefits
from its implementation were said to be achieved. Three
years later, the respondents of Panorama Consulting Group
study indicated that there were significantly more
companies with ERP project overruns in 2010 than in 2009
[7].

Similar data, proving unsatisfactory effectiveness of
BSS D&EP, are brought by the studies carried out in 2011
among providers of such projects in Poland [8]. According
to the results, 80% of the surveyed organizations admit that
the projects exceed the planned budget, 79% - that they
exceed the planned execution time while 64% - that the
quality assumptions for software products are not being met.
In this case it results from the fact that slight percentage of
providers manages the software systems development
processes properly. What is interesting, all those numbers
increase if the so-called expert methods are used to estimate
project attributes – instead of estimates being based on
standards and benchmarking data (most preferably own
ones).

Meanwhile BSS are not only one of the fundamental IT
application areas; also their development/enhancement often
constitutes serious investment undertaking: spending on
BSS may considerably exceed the expense of building even
50-storey skyscraper, roofed football stadium, or cruising
ship with a displacement of 70.000 tons [9]. Yet quite often
client spends these sums without supporting his decision on
getting engaged in such investment by proper analysis of the
costs, based on the rational, sufficiently objective and
reliable basis. What is more, in practice COTS
(Commercial-Off-The-Shelf) BSS rarely happen to be fully
tailored to the particular client business requirements
therefore their customization appears vital (see also [4]).

Exceptionally low effectiveness of BSS D&EP as
compared to other types of IT projects (i.e., maintenance,
support, package acquisition, implementation projects,
projects delivering other types of software), especially with

192

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

their costs being considered, leads to the substantial
financial losses, on a worldwide scale estimated to be
hundreds of billions of dollars yearly, sometimes making
even more than half the funds being invested in such
projects. The Standish Group estimates that these losses –
excluding losses caused by business opportunities lost by
clients, providers losing credibility or legal repercussions –
range, depending on the year considered, from approx. 20%
to even 55% of the costs assigned for the execution of the
analysed projects types (see e.g., [10], [11]). If direct losses
caused by abandoning the BSS D&EP result from erroneous
allocation of financial means, usually being not retrievable,
in the case of overrunning the estimated cost and/or time,
however, they may result from delay in gaining the planned
return on investment as well as from decreasing it (necessity
to invest additional funds and/or cutting on profits due to the
overrunning of execution time and/or delivery of product
incompatible with requirements) (for more details see [12]).
On the other hand, analyses of The Economist Intelligence
Unit, which studied the consequences of BSS D&EP delay
indicate that there is strong correlation between delays in
delivery of software products and services and decrease in
profitability of a company therefore failures of BSS D&EP,
resulting in delays in making new product and services
available and in decreasing the expected income, represent
threat also to the company’s business activity [13].

What is more, the Standish Group studies also indicate
that ”the costs of these (...) overruns are just the tip of the
proverbial iceberg. The lost opportunity costs are not
measurable, but could easily be in the trillions of dollars.
[For instance - B.C.C.] the failure to produce reliable
software to handle baggage at the new Denver airport is
costing the city $1.1 million per day” [14]. These losses
result from the insufficient level of the delivered product
compatibility with the client’s requirements as to the
functions and features: over 1994-2010 an average
conformity of this type never went beyond 70%, which
means that the delivered applications lacked at least 30% of
the specified functions and features [3]. Incompatibility of
the delivered product with the required one proves to be the
highest for large projects, in case of which the delivered
product lacks on average even 60% of the required functions
and features. While for medium- and small-sized projects
such incompatibility amounts to approx. 35% and approx.
25% of functions and features, respectively.

The above studies unequivocally indicate there is a
significant need to rationalize investment decisions made
with regard to BSS D&EP. To do so, one may successfully
use ever richer resources of benchmarking data, having been
collected with the intention to support improvement of
various IT projects, including BSS D&EP, in special
repositories (for more details see [15]). The goal of this
paper is to present possibilities of BSS D&EP investment
decision rationalization with the use of benchmarking data,
illustrated with an example taken from development
practice. This decision concerns choosing variant of BSS
D&EP execution – since each project of this type may be
executed using one of the three variants, namely: (1)
developing new BSS from scratch, (2) customization of

COTS BSS, and (3) modernization of BSS being currently
used.

The paper is structured as follows: in Section 2 the
author presents the criteria of rational investment decision in
the context of BSS D&EP along with the selected results of
studies concerning ex ante evaluation of these criteria.
Section 3 is devoted to the presentation of the considered
case study problem. In Section 4 the main conclusions
coming from the benchmarking data analysis are pointed
out, while in Section 5 the effectiveness and efficiency
factors for the recommended BSS D&EP variant are
analyzed. Finally, in Section 6 the author draws conclusions
and some open lines about future work on the usefulness of
benchmarking data, not only in the context of rationalization
of BSS D&EP investment decision.

II. RATIONAL INVESTMENT DECISION CRITERIA FOR

BUSINESS SOFTWARE SYSTEMS DEVELOPMENT AND

ENHANCEMENT PROJECTS

Each rational investment decision should meet three
criteria, which in the context of BSS D&EP should be
interpreted as follows:

• Criterion of consistency, which means that the
project undertaken should comply with the
environment (economic, organizational, legal and
cultural) – unlike the other two criteria, this criterion
is not subject to quantitative assessment therefore it
is skipped in this paper.

• Criterion of economic efficiency, meaning that the
decision should benefit to the maximisation of the
relationship between the effects to be gained as a
result of project execution and the costs being
estimated for the project.

• Criterion of effectiveness, meaning that such
decision should contribute to achieving the assumed
result, in the case of BSS D&EP usually being
considered as delivering product meeting client’s
requirements with regard to functions and features
without budget and time overruns.

Generally speaking, in the case of economic efficiency
evaluation, effects are compared against costs necessary to
achieve these effects while in the case of effectiveness
evaluation these are only the results that are of significance.
Thus, economic efficiency is measured by relating total
effects to total costs. Meanwhile, effectiveness is measured
by the ratio of the achieved result to the assumed result,
which is being conveniently expressed as a percentage.

Both economic efficiency criterion as well as
effectiveness criterion are based on the obvious assumption
that the effects, costs and results are measurable. However,
in the case of BSS D&EP this assumption is often treated as
controversial. Numerous studies indicate that evaluation of
BSS D&EP economic efficiency is made relatively rarely
while fundamental reason for this status quo are difficulties
related to identification, and most of all quantitative
expression, of benefits resulting from the execution of such
projects (see e.g., [16], [17], [18], [19], [20]). These studies
reveal that difficulties related to identification and

193

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quantitative expression of BSS D&EP costs too are of
significance, which also is of importance to the evaluation
of their effectiveness.

Key conclusions coming from the above mentioned
studies have also been confirmed by the results of studies
carried out by the author of this paper in two research cycles
among Polish dedicated BSS providers (for more details see
[21]). They revealed that at the turn of the years 2005/2006
the results obtained with the use of the effort estimation
methods, employed only by approx. 45% of the respondents,
were designed for estimating BSS D&EP costs and time
frame while relatively rarely they were used to estimate
economic efficiency − such use of these methods was
indicated by only 25% of those using effort estimation
methods. Heads of IT departments in Polish companies, for
which BSS D&EP are executed, still explain the
sporadically required calculation of this type of investments
efficiency mostly by the necessity to undertake them – most
often due to the fact that without such solutions they lack
possibility to match competition from foreign companies, as
well as to match foreign business partners requirements.
While Polish public administration institutions in practice
still do not see the need for the BSS D&EP economic
efficiency evaluation, in most cases as an argument giving
the non-economic purposes of systems being implemented
in this type of organizations. On the other hand, at the turn
of the years 2008/2009 the results obtained with the use of
the BSS D&EP effort estimation methods (approx. 53% of
BSS providers surveyed in this cycle declared they
commonly employed such methods) were more often used
to estimate efficiency: there was an increase to approx. 36%
of those using effort estimation methods. This applies to
internal IT departments of Polish companies yet still it does
not comprise public administration institutions. This
increase may be explained first of all by stronger care about
financial means in the times of recession, however it still
leaves a lot to be desired. Meanwhile, to rationalize various
BSS D&EP investment decisions, one may successfully use
benchmarking data, having been collected in special
repositories with intention to support effective and efficient
execution of such projects.

III. CASE STUDY: DESCRIPTION OF THE PROBLEM

A company that was facing the need to choose an
appropriate variant of BSS D&EP execution collects and
processes, as a part of its basic activity, orders for certain
goods from all over the world in a 24-hour mode, 7 days a
week through: website, client service centres, fax and
electronic mail (description of the case study taken from
[22]). All those channels cooperate with the application,
having been functioning in the company for a dozen or so
years already, designed for orders processing and which is
no longer able to satisfy present requirements since:

• Large part of processes is not automated, which
requires additional work for registering orders and
that generates losses.

• Current status of orders is not known therefore they
are being lost; as a result of this other losses are also

borne, which together with earlier mentioned losses
are estimated to be approx. USD 5000 a day.

• System is expensive and difficult to maintain, with
frequent malfunctions as it employs obsolete
technology.

• System extends the time of delivering new products
to the market, increases the risk of losing clients and
lack of compliance with their requirements, slows
down the growth of competitive advantage.

Thus, the company has faced a decision on choosing
variant of BSS D&EP execution that would:

• Eliminate the above mentioned drawbacks of the
existing solution.

• Contribute to short- and long-term profits – that’s
why the costs and duration of project are of great
significance.

• Reduce the costs of functioning of both company
and technology.

• Contribute to the reduction of risk, both in terms of
business and technology.

Offers for each BSS D&EP variant were submitted,
having approximate average values as shown in Table I.

Since each variant was backed by certain part of the
board and key users, an analysis aimed at supporting
decision-making process was carried out.

IV. CONCLUSIONS FROM THE BENCHMARKING DATA

ANALYSIS

The analysis used benchmarking data for BSS D&EP
having been collected in the following repositories:

• Standish Group, featuring data about over 70
thousands of the accomplished application software
D&EP, which were analysed using the tool called
VirtualADVISOR [22].

• Software Productivity Research (SPR), containing
data from approx. 15 thousands of the accomplished
application software D&EP, which were used to
verify conclusions coming from Standish Group
repository analysis with the use of SPR Knowledge
Plan tool [23].

TABLE I. PARAMETERS OF OFFERS CONCERNING

EXECUTION OF PARTICULAR VARIANTS OF BSS D&EP

CONSIDERED
Variant BSS D&EP variant Execution

cost

offered

Execution

time

offered

1 Development of new
BSS from scratch
using modern
technologies

USD 10
million

3 years

2 Customization of BSS
purchased

USD 5
million

2 years

3 Modernization of BSS
used currently

USD 3,5
million

1,5 years

Source: Author’s analysis based on [22, p. 2].

194

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• International Software Benchmarking Standards
Group (ISBSG), having collected data from approx.
5 thousands of the accomplished application
software D&EP [24], also used to verify findings
coming from Standish Group repository analysis and
also with the use of SPR Knowledge Plan tool,
which at its present version offers possibility to
import data from the ISBSG repository.

Priority was given to the Standish Group data and this
being not only due to the size of this repository, objectivity
of data (they come solely from clients) or the fact of IT
branch appreciating its practical value [10] but also because
they take into account an appropriate kind of client (in terms
of branch and size of a company), appropriate kinds and size
of BSS D&EP as well as appropriate type and size of
application. Thus, using the Standish Group repository made
it possible to match all three kinds of BSS D&EP against the
profile, with 90% match of the 120 attributes of more than
100 projects [22].

What is also important, in their analyses the Standish
Group employ clearly defined criteria of project
classification, dividing projects into the following three
groups (see e.g., [3], [11], [25]):

• Successful projects – that is projects completed with
delivery of product having functions and features
being in accordance with client requirements
specification and within the estimated time and
budget.

• Challenged projects – that is projects completed with
delivery of product that is operating yet has fewer
vital functions/features comparing to the client
requirements specification and/or with overrun of the
planned budget and/or duration.

• Failed projects – that is projects that were abandoned
(cancelled) at some point of their life cycle or were
completed with delivery of product that had never
been used.

The Standish Group conducts its researches mostly from
the point of view of the so-called success coefficient, which
describes the share of successful projects in the total number
of analysed projects completed during given year. What
represents counterbalance to the projects comprised by the
success coefficient are projects that ended with total or
partial failure, i.e., failed and challenged projects. In case of
challenged projects, this is also degree of fitness of the
delivered product to the functions and features required by a
client. Since the mid-1990s these numbers have shaped as
shown in Table II.

In the analysis of the Standish Group data, the following
criteria were employed as equivalent for particular variants
of the BSS D&EP considered:

1) Criterion of expected BSS D&EP effectiveness,
including:

a) chance to succeed
b) level of planned costs overrun

 c) level of planned duration overrun.

2) Criterion of expected BSS D&EP efficiency,
including:

 a) return on investment (ROI)
 b) payback period.

TABLE II. AVARAGE EFFECTIVENESS OF APPLICATION

SOFTWARE D&EP EXECUTION OVER 1994-2010

Data

for

Success

coefficient

(in %)

Partial

failure

(in %)

Total

failure

(in %)

Partial and

total failure

(in %)

1994 16 53 31 84

1996 27 33 40 73

1998 26 46 28 74

2000 28 49 23 72

2002 34 51 15 66

2004 29 53 18 71

2006 35 46 19 65

2008 32 44 24 68

2010 37 42 21 63

Source: [2] and [3].

Data presented in Table III clearly indicate that in the
case being considered the highest chance to succeed is held
by modernization variant, for which success coefficient is
several times higher than that characteristic of variant
consisting in development of new application, being only
4% (sic!), and significantly higher than that of COTS
customization variant. Also in case of variant 3 the lowest
percentage of projects ends with being abandoned – it is
several times lower than in case of variant 1 and two times
lower than in case of variant 2. What seems interesting, the
highest percentage of projects that ended in partial failure
(challenged projects) occurs in case of the customization of
COTS application. What is more, the average expected
overrun of both costs (see Table IV) and project duration
(see Table V) is also the highest in case of this project
variant.

Moreover, data in Table IV clearly indicate that the
average expected overrun of the planned costs for projects
that ended in partial failure too is the lowest in case of
variant 3. Also the lowest percentage of such projects
overruns the costs by more than 50%. If offered costs and
average expected overrun of these costs are taken into
consideration when calculating the expected cost then it
appears evident that the lowest expected cost of project
execution applies to modernization variant.

TABLE III. EXPECTED CHANCE TO SUCCEED FOR

PARTICULAR VARIANTS OF BSS D&EP CONSIDERED

Resolution Variant 1 Variant 2 Variant 3

Successful 4% 30% 53%

Challenged 47% 54% 39%

Failed 49% 16% 8%

Source: [22, p. 4].

195

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Analogous conclusions may be drawn on the basis of the

analysis of data presented in Table V. Again, the average
expected overrun of the planned duration for projects that
ended in partial failure proves being the lowest for variant 3.
Also the lowest percentage of such projects overruns the
duration by more than 50%. If we take into account the
offered duration and average expected overrun of this
duration then we can see that the lowest expected duration
of project execution applies to modernization variant too.

TABLE V. EXPECTED LEVEL OF PLANNED DURATION

OVERRUN FOR PARTICULAR VARIANTS OF BSS D&EP

CONSIDERED (CHALLENGED PROJECTS)

Duration

overrun

Variant 1 Variant 2 Variant 3

0% to 50% 57% 59% 80%

51% to 50% 43% 41% 20%

Average 44% 45% 29%

Offered
duration

36 months 24 months 18 months

Estimated
duration

52 months 35 months 23,5 months

Source: Author’s analysis based on [22, p. 4].

Data shown in Table VI clearly indicate that the highest

percentage of projects characterised by the highest ROI can
be found in case of variant 3 again. On the other hand, what
is interesting is that projects with average ROI most often
are projects consisting in developing new application from
scratch while the lowest percentage of projects characterised
by the lowest ROI can be found in case of customization
variant.

TABLE VI. EXPECTED ROI FOR PARTICULAR VARIANTS OF

BSS D&EP CONSIDERED
ROI Variant 1 Variant 2 Variant 3

High 11% 34% 52%

Average 66% 57% 37%

Low 23% 9% 11%

Source: [22, p. 5].

In Table VII both ROI and payback period for particular

variants of the considered project were estimated in

optimistic and pessimistic version. In the optimistic version
it was assumed that the costs were identical with the offered
costs while in the pessimistic version - that the costs were
exceeded by the average values being expected for each
variant analysed (see Table IV). Based on these
assumptions, both in optimistic and in pessimistic version,
the highest 5-year gain applies to the modernization variant;
also in case of that variant the payback period proves the
shortest. It is worth noting that project in variant consisting
in developing the new application would pay off after nearly
5 and half years in the optimistic version and after nearly 7
and half years in the pessimistic version.

TABLE VII. EXPECTED ROI AND PAYBACK PERIOD FOR

PARTICULAR VARIANTS OF BSS D&EP CONSIDERED

 Optimistic version Pessimistic version
Variant Costs

(in $
millions)

5-year
gain
(in $

millions)

Payback
period

(in
years)

Costs
(in $

millions)

5-year
gain
(in $

millions)

Payback
period

(in
years)

1 10 0 5,4 14,4 0 7,3

2 5 7,25 3,2 7,35 2,8 4,4

3 3,5 10,6 2,4 4,69 7,9 3,1

Source: Author’s analysis based on [22, p. 5].

The above analysis clearly indicates that what in the
considered case would be the best of the three BSS D&EP
variants both from the perspective of the expected
effectiveness and from the perspective of the expected
efficiency is variant consisting in modernization of the
application being used (variant 3).

V. THE EFFECTIVENESS AND EFFICIENCY FACTORS FOR

THE RECOMMENDED VARIANT

In the analysed case, BSS D&EP consisting in
modernization of application being used proves the most
effective as well as the most efficient, what results, among
others, from (see also [22]):

• Undertaking of such projects as a rule is a result of
clearly defined needs of users therefore their goals
are comprehensible, what undoubtedly promotes
users’ engagement in the project and the board’s
support for the project, which, according to the list of
success factors having been developed by the
Standish Group since 1995, are still the two most
important success factors [25].

• The fact that modernization projects do not require
extensive analysis of requirements, numerous
agreements, long-time training, changes of processes
that would be destabilizing the work.

• Commonness of such projects thus, the skills of
executing them are high; what is more, projects of
this type do not require additional skills in terms of
project management, they rather require technical,
the so called „hard”, skills.

• Present structure of project costs in terms of
development activities, which due to the increased
complexity of projects and ever more developed
tools has changed and is now in inverse proportion

TABLE IV. EXPECTED LEVEL OF PLANNED COST OVERRUN

FOR PARTICULAR VARIANTS OF BSS D&EP CONSIDERED

(CHALLENGED PROJECTS)

Cost overrun Variant 1 Variant 2 Variant

3

0% to 50% 64% 58% 75%

51% to 50% 36% 42% 25%

Average 44% 47% 34%

Offered cost USD 10
million

USD 5
million

USD 3,5
million

Estimated cost USD 14,4
million

USD 7,35
million

USD 4,7
million

Source: Author’s analysis based on [22, p. 4].

196

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to the structure as it was 25 years ago: now
programming costs make up approx. 20% while
other development works make up approx. 80% of
the total cost.

• The fact that modernization projects are
characterised by the lowest hidden cost (mainly
user’s time), estimated to be 15% of project costs
versus 55% for variant 2 and versus 35% for variant
1.

• The discussed projects do not have redundant
requirements – as this is the case of the COTS
customization where, according to the Standish
Group data, less than 5% (sic!) of the features and
functions get used [22], and of the development of
new products (see Figure 1).

Figure 1. Average use of functions and features in the

implemented software systems - custom development applications

Source: Author’s analysis based on [22, p. 15].

• Products smaller than those in case of developing
application from scratch are developed as a result of
the modernization projects and this is what increases
their chance to succeed. Smaller products are usually
delivered as a result of smaller projects.

• The discussed projects may be successfully carried
out using agile approach, which also ranks high in
the current list of Standish Group success factors
[25]. The main objective of agile models is to
quickly develop software that would be working
correctly and this being thanks to focusing on strictly
construction activities and keeping other activities
down to a minimum, and not methodologically
correct execution of that process instead [26]. Agile
models were mostly developed for small and
medium projects and they are used in rather small
teams wherein there is no communication problem.
They also require diverse and extensive knowledge
and experience of the team members, and stable
teams, located and working in one place throughout
the project. Permanent accessibility of client’s
representatives is also necessary. The Software
Productivity Research study found that in the area of
construction models usage there are some trends
associated with industries and forms of software,
e.g., business software systems and web applications

are more likely to use agile models than are systems
software projects and military projects [27, pp. 6-7].

As far as the two last mentioned factors are concerned, it
should be stressed that according to the analyses of Standish
Group [11, p. 4], Software Productivity Research [28], and
ISBSG [29, p. 2] this is minimisation of project size, first of
all caused by the agile models having been used more and
more often over time, that is responsible for the improvement
of the application software D&EP effectiveness over 1994-
2010: during that time the success coefficient has increased
from 16% to 37% as both partial and total failure have
decreased (see Table II). Failure to deliver functions and
features required by a client also decreased (from 40% to
32%), as did the planned time overrun (from 164% to 79% -
more than doubly) as well as planned budget overrun (from
180% to 55% - over three times) ([2], [14]). Thus, the losses
resulting from the low scale of application D&EP
effectiveness have shrunk considerably: from approx. USD
140 million to approx. USD 55 million, which accounts for
the decrease of loss level from approx. 55% of the means
invested in considered projects to approx. 20-25% of such
means. Conclusion on the positive influence of the project
sizes minimisation on their effectiveness gets confirmed by
the data shown in Tables VIII and IX.

TABLE VIII. THE EFFECTIVENESS OF APPLICATION SOFTWARE

D&EP EXECUTION BY PROJECT SIZE

Project size –

measured by the

work cost

(in USD millions)

Success

coefficient

(in %)

Partial

failure

(in %)

Total

 failure

(in %)

Over 10 0 11 19

6 – 10 6 20 28

3 – 6 13 36 39

0,75 – 3 19 18 8

Under 0,75 62 15 5

Total 100 100 100

Source: [25, p. 21].

As it may be seen in Table VIII, over 80% of the
successful projects demonstrate having work cost up to USD
3 million whereas the work cost in nearly 20% of such
projects ranges from USD 3 to 10 million. On the other hand,
data in Table IX indicate that for application D&EP costing
below USD 750 000, the chance to succeed is as high as 71%
while for projects having work cost over USD 10 million it is
barely 2%.

Meanwhile, comparison of the effectiveness of projects
execution using agile models versus that using waterfall
model (see Table X) leads to the conclusion that in case of
agile projects the success coefficient is significantly higher
yet still far from being regarded as satisfactory – even if we
take into account that in this case it is above the average
success coefficient. Partial failure too is lower in case of
agile approach, however it almost equals its average value.
Also, what definitely is worth pointing out is the fact that
total failure both in case of agile and waterfall model is
significantly lower than the average: for agile models –
twice. In case of waterfall model smaller scale of total failure

Always
7% Often

13%

Rarely
19%

Never
45%

Sometimes
16%

197

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

does not have influence on increasing success coefficient but
it does on increasing partial failure instead (such kind of
failure, however, generates smaller losses than total failure
does).

TABLE IX. THE APPLICATION SOFTWARE D&EP SIZE BY THE

PROJECT EXECUTION EFFECTIVENESS

Project

size –

measured

by the

work cost

(in USD

millions)

Success

coefficient

(in %)

Partial

failure

(in %)

Total

 failure

(in %)

Total

Over 10 2 50 48 100

6 – 10 11 51 38 100

3 – 6 14 54 32 100

0,75 – 3 38 49 13 100

Under
0,75

71 24 5 100

Source: [25, p. 30].

TABLE X. THE EFFECTIVENESS OF APPLICATION SOFTWARE

D&EP EXECUTION – WATERFALL VS. AGILE MODEL

Effectiveness Waterfall

model

Agile

model

Average

in 2010

Success coefficient
(in %)

26 43 37

Partial failure (in %) 59 45 42

Total failure (in %) 15 12 21

Source: [2], [25, p. 21].

However, modernization variant recommended in the
discussed case is not devoid of drawbacks though. Most of
all, it evidently is not suitable for organizations where BSS
had not functioned so far (in Poland approx. 95% of small
companies do not use BSS – comparing to 50% in
developed countries), for new organizations, new
departments, and in case of fusion the modernization often
ends in failure too. Moreover in modernization variant there
are limited possibilities to implement fundamental business
changes. What is more, the use of obsolete technologies is
being continued, what makes cooperation with modern
applications difficult, reduces usability, portability and
maintainability of the modified application; performance is
usually lower too. It is worth stressing that these attributes
are the software product quality attributes of the ISO/IEC
9126 norm [30]. Thus, what appears to be open to doubt is
reduction of costs and difficulties in maintaining the system
as well as technological risk - this being one of the major
goals of the solution variant to be chosen (see Section 2). It
is also worth mentioning that the ISBSG data indicate lower
productivity of such projects: in case of BSS D&EP
consisting in developing new BSS from scratch it ranges on
average from 9 (for 4GL) to 24.5 (for 3GL) work hours for
developing 1 function point whereas in case of
modernization projects it takes approx. 27 work hours on
average to develop 1 function point [31].

VI. CONCLUSION AND FUTURE WORK

Based on the analysis of benchmarking data coming
from the Standish Group repository, having been carried out
with the use of VirtualADVISOR tool, it was concluded that
what proves the best among the three BSS D&EP variants in
the discussed case is variant consisting in modernization of
application being used. Data analysis indicates that choosing
the above mentioned variant is rational due to the criterion
of both expected effectiveness and expected efficiency of
project. This conclusion has been confirmed by the
verification based on the repository of the SPR and ISBSG
data, having been carried out with the use of SPR
Knowledge Plan tool.

From the point of view of effectiveness and efficiency,
modernization variant has many advantages yet it is not
devoid of drawbacks though. What is more, this does not
have to be the best solution in other cases, e.g., for real time
systems, for small software product development/
enhancement projects, or for organizations that specialise in
developing specific kind of new software systems where
there is possibility to use the already written code. It should
be also mentioned that projects of higher risk, i.e., those
having lower chance to succeed, often happen to be more
efficient.

As indicated by the study results discussed in this paper,
in view of exceptionally low effectiveness of BSS D&EP it
is necessary to rationalize investment decisions being made
with regard to such projects. To do so one may successfully
use ever richer resources of benchmarking data having been
collected in repositories with intention to support effective
and efficient BSS D&EP execution. In the opinion of T.C.
Jones: "For many years the lack of readily available
benchmark data blinded software developers and managers
to the real economics of software. Now (…) it is becoming
possible to make solid business decisions about software
development practices and their results (…). [Benchmarking
– B.C.C.] data is a valuable asset for the software industry
and for all companies that produce software" [32].

Appropriate benchmarking data most of all mean data
pertaining to the type of software projects considered, being
representative of this type. Undoubtedly the best solution is
a situation when organizations use their own benchmarking
data yet in practice it still happens that they rarely collect
such data in a reliable and systematic manner, necessary to
derive dependencies being specific to them. What reveals in
this case is usefulness of repositories collecting general
benchmarking data, created with improvement of software
processes and products in mind. Repositories collecting
general benchmarking data about software systems D&EP
completed in the past include, apart from the information on
mean values, also more precise data, dependent, among
others, on the specificity of project and its product. Such
repositories, which should be standardised according to the
ISO/IEC 15939 norm [33], recent and representative of
current technologies, may also support, among others (for
more details see [15] and [34, pp. 3-4]):

• Proper software systems D&EP planning through:

198

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

– verification of the product requirements
completeness,

– early and reliable estimation of the product size
as well as project effort, cost and time,

– determining product size in a way so that it
would ensure possibility of completing project
on time and within the planned budget,

– determining optimum size of project team,

– finding balance among project attributes yet
with priorities being taken into account (e.g.,
quality versus productivity),

– considering the outsourcing option,

– defining components of project environment,

– determining the influence of the chosen
development tools and methods on the project,

– pricing of the product based on the cost per
functional unit (i.e., function point - for more
details see [12]).

• Proper management of the project risk through the
verification of estimates for the project attributes
reliability.

• Early and reliable control of project attributes
throughout its accomplishment.

• Evolution of software D&EP organizations through
possibility of:

– comparing characteristics typical of given
organization with characteristics in
organizations having similar business profile
(e.g., insurance, manufacturing, banking),

– building organizational own database on project
productivity,

– increasing productivity of project activities,

– reducing “time to market”, that is reducing time
of developing and launching new products to
the market.

On the other hand, this paper presented the possibility of
using benchmarking data by a client in the rationalization of
investment decision concerning the choice of the BSS
D&EP execution variant, illustrated on the basis of a case
study. Thanks to the rational investment decisions made on
the basis of reliable and objective benchmarking data it is
possible to reduce losses caused not only by abandoned
projects but also by the large scale of overrunning the time
and costs of BSS D&EP execution.

Collecting and analysis of the benchmarking data
concerning software projects most of all is aimed to
discover and understand regularities applying to various
projects of this type. It will be possible only on the
condition that repositories containing benchmarking data
about software projects will continue to be extended – with
particular emphasis put on these projects, which are
characterised by the exceptionally low effectiveness, i.e.,
business software systems development and enhancement
projects.

REFERENCES

[1] B. Czarnacka-Chrobot, “Choosing a business software
systems development and enhancement project variant on
the basis of benchmarking data - case study”, Proc. of the
6th International Conference on Software Engineering
Advances (ICSEA 2011), 23-28 October 2011, Barcelona,
Spain, Luigi Lavazza, Luis Fernandez-Sanz, Oleksandr
Panchenko, Teemu Kanstrén, Eds., International Academy,
Research, and Industry Association, Wilmington, Delaware,
USA, 2011, pp. 453-458.

[2] Standish Group, “CHAOS manifesto 2011”, West
Yarmouth, Massachusetts, 2011, pp. 1-48.

[3] Standish Group, “CHAOS summary 2009”, West Yarmouth,
Massachusetts, 2009, pp. 1-4.

[4] B. Czarnacka-Chrobot, “The economic importance of
business software systems size measurement”, Proc. of the
5th International Multi-Conference on Computing in the
Global Information Technology (ICCGI 2010), 20-25
September 2010, Valencia, Spain, M. Garcia, J-D. Mathias,
Eds., IEEE Computer Society Conference Publishing
Services, Los Alamitos, California-Washington-Tokyo,
2010, pp. 293-299.

[5] T. C. Jones, Patterns of software systems failure and
success, International Thompson Computer Press, Boston,
MA, 1995.

[6] PCG, “2008 ERP report, topline results”, Panorama
Consulting Group, Denver, 2008, pp. 1-2.

[7] PCG, “2011 ERP report”, Panorama Consulting Group,
Denver, 2011, pp. 1-15: http://panorama-
consulting.com/Documents/2011-ERP-Report.pdf
(10.12.2012).

[8] L. Tartanus and E. Kinczyk, “Projekty poza budżetem i
harmonogramem” [“Projects going beyond budget and
schedule”], Copmuterworld Poland, 22.11.2011;
http://www.computerworld.pl/artykuly/
377447/Projekty.poza.budzetem.i.harmonogramem.html?ut
m_source=mail&utm_campaign=newsletter%20-
%20Computerworld&utm_medium=Wiadomosci
%20Computerworld%20(html) (26.11.2011).

[9] T. C. Jones, “Software project management in the twenty-
first century”, Software Productivity Research, Burlington,
1999.

[10] J. Johnson, “CHAOS rising”, Proc. of 2nd Polish
Conference on Information Systems Quality, Standish
Group-Computerworld, 2005, pp. 1-52.

[11] Standish Group, “CHAOS summary 2008”, West Yarmouth,
Massachusetts, 2008, pp. 1-4.

[12] B. Czarnacka-Chrobot, “The economic importance of
business software systems development and enhancement
projects functional assessment”, International Journal on
Advances in Systems and Measurements, vol. 4, no 1&2,
International Academy, Research, and Industry Association,
Wilmington, Delaware, USA, 2011, pp. 135-146.

[13] Economist Intelligence Unit, “Global survey reveals late IT
projects linked to lower profits, poor business outcomes”,
Palo Alto, California, 2007:
http://www.hp.com/hpinfo/newsroom/press/2007/070605xa.
html (10.12.2012).

199

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] Standish Group, “The CHAOS report (1994)”, West
Yarmouth, Massachusetts, 1995; http://www.ics-
support.com/download/StandishGroup_CHAOSReport.pdf
(10.12.2012).

[15] B. Czarnacka-Chrobot, “The role of benchmarking data in
the software development and enhancement projects effort
planning”, in New Trends in Software Methodologies, Tools
and Techniques, Proc. of the 8th International Conference
SOMET’2009, H. Fujita, V. Marik, Eds., Frontiers in
Artificial Intelligence and Applications, vol. 199, IOS Press,
Amsterdam-Berlin-Tokyo-Washington, 2009, pp. 106-127.

[16] A. Brown, “IS evaluation in practice”, The Electronic
Journal Information Systems Evaluation, vol. 8, no. 3, 2005,
pp. 169–178.

[17] E. Frisk and A. Plantén, “IT investment evaluation – a
survey of perceptions among managers in Sweden”, Proc. of
the 11th European Conference on Information Technology
Evaluation, Academic Conferences, 2004, pp. 145–154.

[18] Z. Irani and P. Love, “Information systems evaluation: past,
present and future”, European Journal of Information
Systems, vol. 10, no. 4, 2001, pp. 183–188.

[19] S. Jones and J. Hughes, “Understanding IS evaluation as a
complex social process: a case study of a UK local
authority”, European Journal of Information Systems, vol.
10, no. 4, 2001, pp. 189–203.

[20] A. J. Silvius, “Does ROI matter? Insights into the true
business value of IT”, The Electronic Journal Information
Systems Evaluation, vol. 9, issue 2, 2006, pp. 93–104.

[21] B. Czarnacka-Chrobot, “Analysis of the functional size
measurement methods usage by Polish business software
systems providers”, in Software Process and Product
Measurement, A. Abran, R. Braungarten, R. Dumke, J.
Cuadrado-Gallego, J. Brunekreef, Eds., Proc. of the 3rd
International Conference IWSM/Mensura 2009, Lecture
Notes in Computer Science, vol. 5891, Springer-Verlag,
Berlin-Heidelberg, 2009, pp. 17–34.

[22] Standish Group, “Modernization – clearing a pathway to
success”, West Yarmouth, Massachusetts, 2010, pp. 1-16.

[23] Software Productivity Research: http://www.spr.com/ spr-
knowledgeplanr.html (10.12.2012).

[24] ISBSG, “Data demographics release 11”, International
Software Benchmarking Standards Group, Hawthorn,
Australia, June 2009, pp. 1-24.

[25] Standish Group, “The CHAOS manifesto”, West Yarmouth,
Massachusetts, 2009, pp. 1-54.

[26] M. Cohn, Agile estimating and planning, Prentice Hall
Professional Technical Reference, Upper Saddle River, NJ,
2006.

[27] ISBSG, “Techniques & tools – their impact on projects”,
International Software Benchmarking Standards Group,
Hawthorn, Australia, 2010, pp. 1-7.

[28] T.C. Jones, Applied software measurement: global analysis
of productivity and quality, 3rd edition, McGraw-Hill
Osborne Media, 2008.

[29] ISBSG, “Software project characteristics or events that
might impact development productivity”, International
Software Benchmarking Standards Group, Hawthorn,
Australia, 2007, pp. 1-2.

[30] ISO/IEC 9126 Software Engineering – Product Quality –
Part 1-4, ISO, Geneva, 2001-2004.

[31] Ch. Symons, “The performance of real-time, business
application and component software projects”, Common
Software Measurement International Consortium
(COSMIC) and ISBSG, September 2009, pp. 1-45.

[32] ISBSG: http://www.isbsg.org (10.12.2012).

[33] ISO/IEC 15939 Systems and software engineering --
Measurement process, ISO, Geneva, 2007.

[34] Practical Project Estimation (2nd edition): A toolkit for
estimating software development effort and duration, P.R.
Hill, Ed., International Software Benchmarking Standards
Group, Hawthorn, Australia, 2005.

200

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Mining Test Cases: Optimization Possibilities

Edith Werner∗ and Jens Grabowski†
∗Neumüller Ingenieurbüro GmbH, Nürnberg, Germany

edithbmwerner@googlemail.com
†Software Engineering for Distributed Systems Group,

Institute for Computer Science, University of Göttingen, Göttingen, Germany
grabowski@cs.uni-goettingen.de

Abstract—System monitors need oracles to determine
whether observed traces are acceptable. One method is to
compare the observed traces to a formal model of the sys-
tem. Unfortunately, such models are not always available —
software may be developed without generating a formal model,
or the implementation deviates from the original specification.
In previous work, we have proposed a learning algorithm to
construct a formal model of the software from its test cases,
thereby providing a means to transform test cases for offline
testing into an oracle for monitoring. In this paper, we refine
our learning algorithm with a set of state-merging rules that
help to exploit the test cases for additional information. We
discuss our approach in detail and identify optimization areas.
Using the additional information mined from the test cases,
models can be learned from smaller test suites.

Keywords-Machine Learning; Reverse Engineering; Testing

I. INTRODUCTION

Today, software systems are generally designed to be
modular and reusable. A common scenario of a modular,
reusable system is a web service, where simple services
are accessed as needed by various clients and orchestrated
into larger systems that can change at any moment. While
the vision of ultimate flexibility is clearly attractive, there
are also drawbacks, as the further usage of a module is
difficult to anticipate. In this scenario, it may be advisable
to monitor a system for some time after its deployment, to
detect erroneous usage or hidden errors.

Monitors are used to observe the system and to assess the
correctness of the observed behavior. To this end, monitors
need oracles that accept or reject the observed behavior, e.g.,
a system model that accepts or rejects the observed traces of
the monitored system. Unfortunately, the increasing usage
of dynamic software development processes leads to less
generation of formal models, as the specification of a formal
model needs both time and expertise. Generating a formal
model in retrospect for an already running system is even
harder, as the real implementation often deviates from the
original specification.

We propose a method for learning a system model from
the system’s test cases without probing the System Under
Test (SUT) itself [1]. When test cases are available, they
often are more consistent to the system than any other model.
Ideally, they take into account all of the system’s possible

reactions to a stimulus, thereby classifying the anticipated
correct reactions as accepted behavior and the incorrect or
unexpected reactions as rejected behavior. As the test cases
are developed in parallel to the software, they provide a
means to judge the correct behavior of the system. Also,
test cases are generated at different levels of abstraction,
e.g., for unit testing, integration testing, and system testing.
By selecting the set of test cases to be used, the abstraction
level of the generated model can be influenced.

The basis of our approach is a learning algorithm, first
introduced by Angluin [2], which learns a Deterministic
Finite Automaton (DFA). To learn from test cases, we
adapted the query mechanisms of the algorithm [3]. Exper-
iments with our approach show that while a model can be
learned this way, the algorithm only accepts simple traces
as input, thereby losing additional information from the test
cases, e.g., regarding branching, default behavior, or syn-
chronization. We believe that exploitation of this additional
information would enhance the learning algorithm.

In this paper, we propose a state-merging approach,
termed semantic state-merging, which exploits the semantic
properties of test cases in order to identify implicitly defined
behavior. We first define a data structure, the trace graph,
to store the available test cases. Then, we define merging
rules for cyclic test cases and for test cases with default
branches for the construction of the trace graph. Based on the
experiences gathered through a prototypical implementation,
we identify optimization areas and possible solutions.

The remainder of this paper is structured as follows.
Section II gives an overview on related work. In Section III,
we introduce the foundations of our work in testing and ma-
chine learning. Section IV describes the trace graph and its
construction. Based on this, Section V defines our approach
to semantic state-merging on test cases. Subsequently, in
Section VI, we give an overview on our experimental
results. Section VII discusses the learning approach and
describes solution ideas to open questions. In Section VIII,
we conclude with a summary and an outlook.

II. RELATED WORK

As our approach combines learning techniques and state
merging, we need to take into account related work from

201

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

both areas. In the following, we give an overview on rele-
vant articles regarding the adaptation of Angluin’s learning
algorithm and state-merging and establish the differences to
our own work.

A. Related Work in Learning

During the last years, a number of approaches have
adapted Angluin’s learning algorithm in combination with
testing. Mainly, the approaches focus on the learning side
of the problem and refine the properties of the generated
model. Among the most recent adaptations are approaches to
learning Mealy machines [4] and parameterized models [5],
[6], [7], [8]. Some approaches can handle large or even
infinite message alphabets [5] or potentially infinite state
spaces [6]. In all those approaches, the learning algorithm
generates test cases that are subsequently executed against
the SUT, so that the System Under Test itself is the oracle
for the acceptability of a given behavior.

Some approaches use outside guidance to improve the
learning approach. The algorithm presented in [9] learns
workflow petri nets from event logs and handles incomplete
data by asking an external teacher. In [10], learning is used
in a modeling approach. In this approach, a domain expert
provides Message Sequence Charts representing desired and
unwanted behavior.

Our approach differs from the above in two aspects. First,
we aim at generating a model for online monitoring. To
this end, we need a model that is independent from the
implementation itself. Therefore, we can neither use the
implementation as an oracle nor learn from event traces
generated by the implementation. Instead, we choose to learn
from a test suite that was developed due to external criteria.
Using a test suite also leads to the second difference of our
approach. Where other approaches rely on unstructured data,
a test suite provides relations between the distinct traces.
We exploit those relations in order to enhance our learning
procedure. Where other approaches address the learning side
of the problem, our focus is actually on the structure of the
teacher.

B. Related Work in Stage-Merging

The basic idea of the state-merging approach is to analyze
examples of the target automaton, identify possible states,
and merge similar states until the remaining states are
considered to be sufficiently distinct. The notion was first
introduced by Biermann [11], who used it to generate com-
puter programs from short code samples. Meanwhile, the
merging techniques have been extended to logical evaluation
of the samples [12], [13] and different heuristics have been
introduced [14].

Also, different input domains have been explored. One
the one hand, there are approaches that synthesize models
from partial models like scenario diagrams [15], [16], [17],
[18]. On the other hand, there are approaches that reconstruct

a behavioral model of an existing software by merging
observed traces [19], [20], [21].

In all cases, the main problem in state-merging is over-
generalization, i.e., a false merging of states, thereby overly
simplifying the model. In our approach, we derive the
merging rules from the semantic context of our domain, i.e.,
the properties of the test specification language. This leads to
a more conservative merging and avoids erroneous mergings,
while nevertheless enlarging the sample space sufficiently.

III. FOUNDATIONS

In the following, the foundations of testing and on the
learning of DFA are presented.

A. Testing

A test case is itself a software program. It sends stimuli to
the SUT and receives responses from the SUT. Depending
on the responses, the test case may branch out, and a test
case can contain cycles to test iterative behavior. To each
path through the test case’s control flow graph, a verdict is
assigned. A common nomenclature is to use the verdict pass
to mark an accepting test case and the verdict fail to mark a
rejecting test case. An accepting test case is a test case where
the reaction of the SUT conforms to the expectations of the
tester. This can also be the case, when an erroneous input is
correctly handled by the SUT. Accordingly, a rejecting test
case is a test case where the reaction of the SUT violates
its specification. Depending on the test specification, there
may be additional verdicts, e.g., the Testing and Test Control
Notation version 3 (TTCN-3) [22] extends the verdicts pass
and fail with the additional verdicts none, inconc, and
error: none denotes that no verdict is set; inconc indicates
that a definite assessment of the observed reactions is not
possible, e.g., due to race conditions on parallel components;
and error marks the occurrence of an error in the test
environment. During the execution of a test case, the verdict
may be changed at different points. The overall assessment
of a test case depends on the verdicts set along the execution
trace, and is computed according to the rules of the test
language. E.g., in TTCN-3, the overall verdict may only be
downgraded, i.e., once an event was rated as fail the overall
verdict may not go back to pass. For most SUTs, there is a
collection of test cases, where each test case covers a certain
behavioral aspect of the SUT. Such a collection of test cases
for one SUT is called a test suite.

The main objective when constructing test cases for a
software system is to assure that the specified properties are
present in the SUT. To test against a formal specification,
e.g., in the form of a DFA, test cases are derived from the
model by traversing the model so that a certain coverage
criterion is met, e.g., state coverage or transition coverage.
State coverage means that every state of the model is visited
by at least one test case. Transition coverage means that
every transition of the model is visited by at least one test

202

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

case. The largest possible coverage of a system model is
path coverage, where every possible path in the software is
traversed.

B. Learning a Finite Automaton Model from Test Cases

Our learning approach is based on a method proposed by
Angluin [2]. The algorithm consists of the teacher, which
is an oracle that knows the concept to be learned, and the
learner, who discovers the concept. The learner successively
discovers the states of an unknown target automaton by
asking the teacher whether a given sequence of signals is
acceptable to the target automaton. To this end, the teacher
supports two types of queries. A membership query evaluates
whether a single sequence of signals is a part of the model
to be learned. An equivalence query establishes whether the
current hypothesis model is equivalent to the model to be
learned.

For learning from test cases, we need to redefine the two
query types in relation to test cases. The most important
mechanism of the learning algorithm is the membership
query, which determines the acceptability of a given behav-
ior. In our case, the behavior of the software and thus of the
target automaton is defined by the test cases. Since the test
cases are our only source of knowledge, we assume that
the test cases cover the complete behavior of the system.
In consequence, we state that every behavior that is not
explicitly allowed must be erroneous and therefore has to be
rejected, i.e., rejected ≡ ¬accepted. Accordingly, we accept
a sequence of signals if we can find a pass test case matching
this sequence, and reject everything else.

The equivalence query establishes conformance between
the hypothesis model and the target model. This is exactly
what a test suite is designed for, therefore, we redefine the
equivalence query as an execution of the test suite against the
hypothesis model, where every test case in the test suite must
reproduce its verdict. A detailed description of the learning
algorithm can be found in [3], [23].

IV. REPRESENTING TEST CASES

For the learning procedure, it is important that queries can
be answered efficiently and correctly. Therefore, we need a
representation of the test suite that is easy to search and
provides a means to compactly store a large number of test
cases. In the following, we define the trace graph as a data
structure and describe its construction.

A. The Trace Graph

As described in Section III-A, a test case is itself a piece
of software and can therefore be represented as an automaton
containing a number of event sequences. Usually, a test case
distinguishes events received from the SUT, events sent to
the SUT, and internal actions like value computation or
setting verdicts. Each possible path through the test case
must contain the setting of a verdict.

For the learning procedure, we only regard input and
output events as the transitions in our target model and
ignore internal actions except for the setting of verdicts. The
verdicts are used to identify accepting test cases.

In general, every test case combines a number of traces,
depending on the different execution possibilities. At the
same time, a test suite contains a number of test cases, where
different test cases may contain identical traces as they partly
overlap. To present the test cases to the learning algorithm,
we combine all traces from all test cases in the test suite into
a single data structure, the trace graph, thereby eliminating
duplicates and exploiting overlaps.

To enable an efficient search on the test cases, the trace
graph is based on a labeled search tree, where all traces share
the same starting state. Traces with common prefixes share
a path in the trace graph as long as their prefixes match.
For the state-merging approach, the nodes in the trace graph
are annotated with the verdicts. Cycles in the test cases are
represented in the trace graph by routing the closing edges
back to the starting node of the cycle. For better control,
nodes where a cycle starts are also marked.

The trace graph forms the basic data structure for our se-
mantic state-merging. The semantic state-merging methods
depend on the information contained in the test cases, which
in turn depends on the test language. To represent this, the
trace graph can be extended to represent diverse structural
information on the test cases by defining additional node
labels. That way, information on the test cases will only
affect the construction of the trace graph, but not the learning
procedure that depends on its structure.

B. Constructing the Trace Graph

To construct the trace graph, we dissect the test cases into
single traces and add them to the trace graph. Starting in the
root of the trace graph, the signals in the trace to be added
are matched to the node transitions in the trace graph as far
as possible. We call this part of the trace the common prefix.
The remainder of the new trace, the postfix, is then added to
the last matched node. Algorithm 1 describes the procedure
in pseudo code.

Cycles of the test case automaton need special treatment,
as a cycle means that an edge loops back to an existing node.
To this end, we separate the cyclic traces into three parts, a
prefix leading into the cycle, the cycle itself and a postfix
following the cycle. We then add the prefix and the cycle,
whereby the last transition in the cycle is linked back to the
beginning of the cycle. Finally, the postfix then is added to
the trace graph.

C. Querying on the Trace Graph

The most important mechanism of the learning algorithm
is the membership query, which determines the acceptability
of a given behavior. In our case, the behavior of the software
and thus of the target automaton is defined by the test cases.

203

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data: A sequence of signals w
Start at the root node n0 of the trace graph;1

for all signal in w do2

Get the first signal b in w;3

if the current node has an outgoing edge marked b4

then
Move to the b-successor of n, which is δ(n, b);5

Remove the first signal from w;6

else7

// The signal is unknown at the current node
Add w as a new subgraph at the current node;8

return;9

end10

end11
Algorithm 1: Add a Trace to the Trace Graph

Posing a membership query against the trace graph amounts
to searching the queried trace in the graph and computing the
verdict of the trace. The computation of the verdict has to be
adapted to the semantics of the test specification language.
In TTCN-3, the policy is that a verdict can only get worse.
Accordingly, the overall verdict of a trace is the worst verdict
that is stored in the nodes belonging to that trace. In other
words, for a trace to be accepted, there must be at least one
pass verdict and no fail verdicts stored in the trace graph
for that trace. We rate any trace that is not found on the
trace graph as not acceptable and therefore apply the verdict
fail. The same policy applies to incomplete traces, i.e., the
queried trace does not end in a final state or no verdict has
been applied during the trace.

The purpose of the equivalence query is to prove that
the hypothesis automaton conforms to all test cases in
the test suite. This can be regarded as a structural test
of the hypothesis automaton against the test suite. Based
on the trace graph, the equivalence query is realized as
a tree walking algorithm on the trace graph, where the
number of cycle expansions is registered and the generated
traces are recorded to keep track of interleaved cycles. As
short counter-examples provide better results in the learning
algorithm, a simple depth-first tree walking algorithm is not
sufficient. To extract the shortest possible counter-example
in each iteration, we need to use an iterative deepening
search. The complexity of such an iterative deepening search
depends on the branching factor of the tree to be searched.
For the trace graph, the branching depends on the structure
of the test suite.

V. MINING THE TEST CASES

So far, the state-merging in the trace graph only means
the combination of the test case automata, where traces
are only merged as far as their prefixes match. The trace
graph therefore exactly represents the test cases, but nothing
more. In the following, we show two techniques to derive

start

 a
b

 c

setverdict
(pass)

(a) A Test Case with a Cycle

start
 a

 c

setverdict
(fail)

(b) A Test Case without a Cycle

PASS

NONEa

NONE

b

FAILc

c

(c) Trace Graph Combining
Both Test Cases

Figure 1. Precedence of Cyclic Behavior

additional traces based on our knowledge of test cases.

A. Cycles and Non-Cycles

When testing a software system with repetitive behavior
or a cyclic structure, the cycle has of course to be tested.
However, usually it is sufficient to test the correct working
of the cycle in one test case. In all other test cases the
shortest possible path through the software is considered,
which may mean that test cases execute only a part of a cycle
or completely ignore a cycle. Depending on the test purpose,
the existence of the cycle might not even be indicated in the
test case. As long as the cycle itself is tested by another
test case, the test coverage is not influenced. This approach
results in shorter test cases, which means shorter execution
time and thus faster testing. Furthermore, the readability
of the test cases is increased. While the preselection of
possible paths for cycles is appropriate for software testing,
for machine learning it is desirable to have access to all
possible paths of the software.

Consider the two test cases shown in Figures 1a and 1b.
Although this is only a small example for demonstration
purposes, the setting is quite typical. The test case shown in
Figure 1a tests the positive case, that is, a repeated iteration
of the three signals a, b, and c. The test case shown in
Figure 1b tests for a negative case, namely what happens
if the system receives the signal c too early. In the latter
test case, the repetitive behavior is ignored, as it has been
tested before and the test focus is on the error handling of
the system. However, usually this behavior could also be
observed at any other repetition of the cycle.

For the learning procedure, we would like to have all
those possible failing traces, not only the one specified. We
therefore define a precedence for cycles, which means that
whenever a cycle has the same sequence of signals as a non-
cyclic trace, the non-cyclic trace is integrated into the cycle.
Figure 1c shows the trace graph combining the two test cases
in Figures 1a and 1b. Besides the trace a, c, setverdict(fail)
explicitly specified in Figure 1b, the trace graph also con-
tains traces where the cycle is executed multiple times, (a,
b, c)*, a, c, setverdict(fail). With precedence of cycles, the
test suite used as input to the learning algorithm can be more
intuitive, as cycles only need to be specified once.

204

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

start
a

 b

else

setverdict
(pass)

setverdict
(fail)

(a) Test Case

NONE NONEa
PASSb

FAIL

C{b}

(b) Trace Graph

Figure 2. Representing Default Branches

B. Default Behavior

Another common feature of test cases is the concentration
on one test purpose. Usually, the main flow of the test
purpose forms the test case, while unexpected reactions of
the SUT are handled in a general, default way. Still, there
may exist a test case that tests (a part of) this default behavior
more explicitly.

Default branches usually occur when the focus of the test
case is on a specific behavior, and all other possible inputs
are ignored or classified as fail. Also, sometimes a test case
only focuses on a part of the system, where not all possible
signals are known. In such cases, the test case often contains
a default branch, which classifies what is to be done on
reading anything but what was specified.

For our application, this poses two challenges. The first
challenge is in the learning procedure. For the different
queries, we need to have as many explicitly classified traces
as possible, but at the same time we do not want to blow
up the size of the test suite. The second challenge is in the
construction of the trace graph. When adding all different
traces into one combined structure, the implicit context
of what is “default” in the local test case is lost. Also,
sometimes another test case uses the same default, adds more
specific behavior in the range of the default, or defines a new
default that slightly differs. We therefore need a method of
preserving the local concept of “default” in the test cases
and a method of combining different defaults in the trace
graph.

Consider a typical default situation, like a default state-
ment in a switch-case environment. The default collects
all cases that are not explicitly handled beforehand. As
branching on alternatives splits the control flow in a pro-
gram, each of the branches belongs to a different trace.
Therefore, when taking the traces one by one, the context
of the default is not clear. To preserve this context, instead
of default we record the absolute complementary of the set
of other alternatives, which is {{a, b}. A complementary set
is a set that contains everything but the specified elements.
Figure 2 shows a test case with defaults (Figure 2a) and
its representation as a trace graph using the complementary
set notation (Figure 2b). The branch marked with {{a}
represents every branch not marked with a.

Figure 3 shows a trace graph with a default branch in
a general way. There are some arbitrary transitions leading
to the default (marked with prefix), the default branching
itself with an edge marked a and an edge marked {{a}

start
 prefix

subgraph Aa

subgraph BC{a}

Figure 3. Generic Trace Graph with Default Branch

start
prefix

 C{a}

postfix

(a) Test Trace to be Added

start
 prefix

subgraph A a

subgraph B
 +

postfix

 C{a}

(b) New Trace Graph

Figure 4. Add a Trace with a Matching Default

(”everything but a”), and the arbitrary subgraphs of a and
{{a}.

When adding a trace with a matching prefix to this trace
graph, the signal s following the prefix can be matched to
the trace graph according to one of the following three cases.

• Exact Match: s matches one of the branches of the trace
graph, i.e., if s is a complementary set, it is identical
to the complementary set in the trace graph.

• Subset: s matches one signal (or a subset of signals) of
the complementary set in the trace graph.

• Overlap: s is a complementary set, and overlaps the
complementary set in the trace graph.

The first and simplest case is the exact match, where
a trace with a matching complementary set is added. As
the complementary sets are identical, it suffices to add
the postfix of the trace to the subgraph of the default
already in the trace graph. Figure 4 illustrates this. Figure 4a
shows the test trace to be added. The prefix of the trace
matches the prefix of the trace graph (see Figure 3) and
the complementary set {{a} matches the complementary
set in the trace graph. Therefore, the postfix of the trace
has to be added to the subgraph of the complementary set.
Assuming that there are no other defaults in the postfix,
this is done according to the construction rules described
in Section IV-B. Figure 4b depicts the resulting trace graph
after the new trace was added.

In the second case, the new trace matches a subset of

start
prefix

 b

postfix

(a) Test Trace to be Added

start
 prefix

subgraph Aa

subgraph B
C{a,b}

subgraph B

b copy

(b) Modify the Trace Graph:
Split the Default Branch

start
 prefix

subgraph Aa

subgraph BC{a,b}

subgraph B
 +

postfix

b

(c) New Trace Graph

Figure 5. Add a Trace with a Subset of the Default

205

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

start
prefix

C{b}

postfix

(a) Test Trace to be Added

start
prefix

subgraph Aa

subgraph B
C{a,b}

subgraph B

b copy

(b) Modify the Trace Graph:
Split the Default Branch

start
prefix

 C{a,b}

a

 copy

postfix

postfix

 copy

(c) Modify the Test Trace:
Split the Default Branch

start
 prefix

subgraph A
 +

postfix
a

subgraph Bb

subgraph B
 +

postfix

C{a,b}

(d) New Trace Graph

Figure 6. Add a Trace with a Differing Default

the complementary set in the trace graph. The situation is
depicted in Figure 5, the signal following the prefix in the
trace (Figure 5a), b, is a subset of the complementary set
{{a}. However, the postfix cannot simply be added to the
subgraph of the complementary set, as this would allow
unspecified traces. Instead, before adding the postfix, the
trace graph is modified as shown in Figure 5b. The signal b
is removed from the complementary set and represented by
a distinct edge. Now, the new trace matches exactly and the
adding proceeds as described for the first case. Figure 5c
shows the result.

In the third and last case, the complementary sets of the
new trace and the trace graph overlap (see Figure 6). The
trace contains an edge marked with the complementary set
{{b} (Figure 6a), whereas the trace graph contains an edge
marked with the complementary set {{b} (see Figure 3). The
complementary set of the test trace to be added does not fit
the complementary set of the trace graph, but there is an
overlap, i.e., every signal which is neither a nor b matches
both sets.

The solution is similar to the second case. The transitions
in the trace need to match the transitions in the trace graph,
so the sets are split accordingly. For the trace graph, the
edge marked b is branched out from the complementary set
(Figure 6b). The remaining complementary set in the trace
graph is {{a, b}. However, the complementary set of the
test trace still does not match, so the test trace is also split
(Figure 6c). The complementary sets of the trace graph and
the test trace are now identical, {{a, b}, but the test trace
has been split into two test traces. Now, the two resulting
test traces can be added to the trace graph, resulting in the

trace graph shown in Figure 6d.
The described techniques also generalize to sets with more

than one element. In this case, the sets associated with
the split branches are determined as the intersections and
differences of the given sets.

VI. IMPLEMENTATION AND CASE STUDY

To assess the power of our learning approach, we have
developed a prototypical implementation [23]. The imple-
mentation realizes an Angluin-style learner, which is adapted
to learning from test cases, and the organization of the test
data into a trace graph as discussed in Sections IV and V.
Using the prototype, we performed a case study based on the
conference protocol [24]. The conference protocol describes
a chat-box program that can exchange messages with several
other chat-boxes over a network.

In the following, we will give a short overview of the
prototypical implementation. Subsequently, we describe the
experiments that were performed with two versions of the
conference protocol. In the last section of this chapter, we
will compare the two experiments and draw some conclu-
sions.

A. Prototypical Implementation

Our prototype is implemented in the programming lan-
guage Java, the abstract structure is shown in Figure 7 as a
Unified Modeling Language (UML) class diagramm.

Figure 7. Abstract Structure of the Implementation

The main classes of our prototype implementation are
explained further in the following. The class Learner
implements Angluin’s learning algorithm. In every iteration
of the learning algorithm, a new counter example is obtained
via an equivalence query and used to detect a new state. The
discovered states are organized in a classification tree, which
is also used to generate the new hypothesis automaton. The
two queries, equivalence query and membership query, are
implemented according to our adaptation to learning from
test cases, and mapped onto a trace graph structure.

In the class TraceGraph, the basic methods of semantic
state-merging are implemented. A trace graph structure is
constructed by adding traces from test cases. The precedence
of loops (Section V-A) is currently implemented implicitly,

206

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as loops are simply added first to the trace tree. Default
branches (Section V-B) are not yet implemented. In con-
sequence, the currently implemented TraceGraph and
Learner classes are generic and can be used for any test
specification language.

For the input of the test cases and the output of the
hypothesis automaton, generic interfaces were defined. In
our prototype, both interfaces are implemented using the
LTSML format that can be used to represent any type of
automaton [25]. For the test cases, we focus on the test
specification language TTCN-3, i.e., the TraceReader
recognizes TTCN-3 keywords and generates traces accord-
ing to the semantics of TTCN-3.

B. The Conference Protocol

Our case study is based on a chat-box program described
in [24], the conference protocol. We have adapted the
protocol to the constraints of our learning procedure.

The conference protocol describes a chat-box program
that allows users to participate at a conference chat over
a network.

• A user enters an existing conference by sending the
service primitive join.

• Then, the user can send messages to the conference chat
(datareq) and receive messages from the conference
chat (dataind). Each datareq causes dataind messages
to be issued to all other participating users and vice
versa.

• At any time after a join, the user can leave the confer-
ence by sending the service primitive leave.

The chat-box program converts each service primitive into
a protocol data unit, which is then sent to each of the other
participating chat-boxes over a network. Figure 8 illustrates
this scenario in a UML interaction diagram.

Figure 8. Two CPEs Connected over a Network Service

C. Mining for Cycles

In the first experiment, we want to assess our approach to
mining the test cases for cycles. To limit the complexity of
the model, we assume that the chat-boxes send messages to
each other in a fixed sequence. Based on this assumption,
we generate two test suites.

In the first test suite, we build the cases to satisfy a
boundary-interior coverage, where the cycles in the data
transmission phase of the protocol are executed once or
twice, or skipped. The trace graph generated for this test
suite contains no cycles. In the second test suite, we explic-
itly declare cycles, instead of unrolling them.

Table I shows our results for this experiment. The protocol
was scaled according to the number of participating chat-
boxes. As the table shows, the semantic state-merging of
cycles reduces the size of the trace graph by more than
half in this example, while the learned automaton was
identical. Also, the test suite can be smaller. In addition, the
compact version of the trace graph also allows an optimized
equivalence query.

D. Limits in Learning Complex Communication

In order to assess the limits of our approach, we extend
our version of the conference protocol. We now assume that
the network service may mix up the signals, so that the
data units are observed in an arbitrary sequence. In our test
scenario, we want to accept all traces, where a chat-box
correctly joined and left the conference. This means that
all participating chat-boxes have reveiced the join messages
before the first data packages occur, and that no data
packages occur after the leave message has been sent.

Every service primitive is distributed to n− 1 other chat-
boxes, which means (n − 1)! correct paths for joining and
leaving the conference and also for sending data. In addition,
there are n − 1 correct paths to receive data. We explicitly
specify the data transfer as cyclic behavior. Therefore, we
can compute the number of correct traces as ((n − 1)!)3 ∗
(n − 1), or (|join|) · (|send|) · (|leave|) · (|receive|), where
|service primitive| denotes the number of correct sequences
for the services primitive.

The goal of this experiment is to find out how many test
cases are needed to correctly learn the protocol. We tried
different approaches to generate test cases for this version
of the conference protocol.

A common coverage criterion in testing is the branch
coverage, where every branch of the SUT is executed. In
application to the conference protocol, this means that we
have to cover every serialization of data units. However, it
turned out that the learned automata do not correctly repre-
sent the intended protocol. A closer look at the model reveals
that the learned automaton contains the traces exactly as they
were specified in the test cases. Instead of generalizing from
the input data, the learning algorithm learned every input
trace by heart. This effect could be reproduced with different
versions of the test suite. Only by using a test suite satisfying
path coverage of the expected automaton, we could learn the
correct automaton.

We deduce that the structure of the SUT has an influence
on the complexity of the learning process and that for correct
machine learning, the test suite has to be as complete as

207

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Number of Size of Size of the Trace Graph Size of the Test Suite
Chat-Boxes Target Automaton Without Cycles With Cycles Without Cycles With Cycles

1 72 edges, 8 nodes 33 nodes 13 nodes 6 pass traces 2 pass traces
2 168 edges, 12 nodes 60 nodes 22 nodes 9 pass traces 3 pass traces
3 304 edges, 16 nodes 90 nodes 30 nodes 12 pass traces 4 pass traces
4 480 edges, 20 nodes 120 nodes 40 nodes 15 pass traces 5 pass traces
5 696 edges, 24 nodes 164 nodes 48 nodes 18 pass traces 6 pass traces

Table I
EFFECT OF SEMANTIC STATE-MERGING

possible. In fact, this precondition on the learning sample
has been described before as the need for a “structurally
complete” sample. As a rule of thumb, we might say that
“the larger the test suite, the smaller the automaton”, as a
large test suite usually allows more possible paths.

Experimentation has also shown that the growing size of
the test suite affects our learning procedure in two related
points. The first is the generation of the trace graph. For
larger test cases the preprocessing steps, such as cycle de-
tection, are harder to handle. The second is the equivalence
query, where the whole test suite has to be executed again
and again. Interestingly, it is not necessary to compute
all interleaving cycle executions for the equivalence query.
Instead, the crucial points for the equivalence query turn
out to be the intersections between different paths through
the SUT. Therefore, for a better scalability of our learning
procedure, we should aim at detecting intersections of the
test cases in the trace graph, thereby minimizing the trace
graph and reducing the necessary size of the test suite while
keeping its expressiveness.

VII. DISCUSSION AND OPEN QUESTIONS

While our experiments proved the suitability of the
learning approach, they also raised a number of questions
regarding specific properties of the used data structures
and the algorithm. Some of the observations confirmed
design decisions, while at other points, decisions turned
out to be less than optimal. The following sections provide
an assessment of the parts of our learning approach. We
reassess the generated automaton, the use of a test suite
as input sample, and the learning algorithm itself with
respect to their suitability for our purposes. As some of the
encountered questions have also attracted the attention of
other researchers, there are a number of possible solutions
available that could be adapted to our learning approach. In
other situations, a number of possible solutions are suggested
that have not been investigated yet.

A. Suitability of the Learned Automaton

Angluin’s learning algorithm generates a plain DFA,
which consists of a set of states partitioned into accept-
ing and rejecting states, an input alphabet triggering state
transitions and a corresponding state transition relation. As
we have argued in [3], this type of automaton is suitable

for representing system models. The drawback of DFAs is
that to express the same information as a more advanced
model, more states are needed, making the automaton large.
Contrary to expectations, it was not the size of the target
automaton that proved to be a problem, but its structure
and the repercussions on the size of the test suite needed to
correctly identify the automaton.

1) Influence of Parameters: A DFA representing a param-
eterized process such as the conference protocol described in
Section VI-B contains a number of paths to cover different
serializations of the parameters. The experiments show that
to correctly learn all the different serializations, not only all
of them need to be represented in the learning sample, but
also in every possible combination. This also correlates to
the results by Berg et al. regarding prefix-closed models [26],
which state that prefix-closed automata are harder to learn
than random automata, as the learning algorithm would need
to perform a membership query for every prefix.

Berg et al. address this problem by proposing an approach
to learn parameterized automata [27]. Based on the orig-
inal version of Angluin’s learning algorithm, which uses
an observation table to store the discovered information,
they introduce a guard-labeling on the entries of the table,
describing an input partitioning. Then, the result of an
equivalence query can also be the splitting of a partition
beside the discovery of a new state or the acceptance of the
learned automaton. A similar approach is described by Li
et al. [28], which has the advantage of taking into account
both input and output signals, where Berg et al. only consider
input signals.

Both proposed solutions for learning parameterized mod-
els rely on the original version of Angluin’s learning algo-
rithm, which uses an observation table to store the informa-
tion learned, and the table format is essential in computing
the parameterization. In contrast, our approach to learning
from test cases uses a variation introduced by Kearns and
Vazirani [29], which stores the gathered information in a
classification tree. Therefore, an adoption of those solutions
requires some adaptations.

2) Handling Non-Applicable Signals: Another structural
problem of the learned DFA is that the learning algorithm
always generates a fully specified automaton, i.e., an au-
tomaton where in every state, a target state for every possible
signal is specified. As the essence of state based systems

208

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is that the applicable actions depend on the state of the
system, most states of an automaton can only process a
subset of the global signal alphabet. The handling of the
non-applicable signals then depends on the semantics of the
system. One commonly adopted approach is that the system
should robustly ignore all unspecified signals, which implies
that unspecified transitions at a given state are treated as
self-loops.

However, this approach cannot be adopted by Angluin’s
learning algorithm, as the algorithm only discerns accepted
and rejected traces and therefore cannot tell whether a signal
is not specified and should be ignored via a self-loop or
whether a signal is explicitly rejected and should lead to
a fail state. In consequence, the learning algorithm routes
all unspecified or rejected signals into a global fail state,
thereby generating a fully specified automaton that rejects
non-applicable signals.

Due to the properties of the learning algorithm, we can
identify the global fail state in the learned automaton, as
it is the first rejecting state discovered. Therefore, it would
be possible to remove the global fail state and to replace
transitions leading into it by self-loops to their source states.
This is, however, not a safe transformation, as thereby all
explicitly failing transitions would also be transformed into
self-loops. In consequence, to learn a DFA that ignores some
inopportune signals, those self-loop transitions need to be
explicitly specified in the test suite. This obviously leads
to a larger test suite, which is also less intuitive and less
readable. Alternative approaches would be to distinguish
explicitly and implicitly rejected transitions during learning,
generating self-loops for implicitly rejected transitions, or
to implement a smart transformation algorithm that checks
transitions to the global fail state before removing them.

B. Suitability of a Test Suite as Sample Data

The main idea of our learning approach was to use a
test suite as input data, as the verdicts pass and fail readily
provided an assessment of acceptable and rejectable system
traces. While this assumption holds true, mapping test cases
to input traces of Angluin’s learning algorithm nevertheless
reduces the expressiveness of the test cases considerably.
The test cases need to be linearized, a common starting state
has to be established, and all circumstantial information as
parameters and ports have to be integrated into the input of
the target automaton. Especially the flattening of parameters
and ports leads to an exponential blowup of the number of
test case traces.

While Angluin’s algorithm depends on traces, the seman-
tic state-merging approach is designed to exploit the test
language specific properties of test cases. The test language
specific back-end then represents the sample data in a
generic way to the learning algorithm. This way, the learning
algorithm provides a common front-end to be combined with
different test language specific back-ends. In consequence,

further optimization regarding the representation of the test
suite mainly concerns the state-merging part of our hybrid
algorithm.

1) Mining Additional Properties: The state-merging tech-
niques introduced in Section V define how to merge traces
by generating a prefix tree, the representation and handling
of cycles in the trace graph and the handling of default
branches. However, cycles and defaults are only the most
common properties of test languages.

Stable testing states define known and checkable states
of the SUT. By marking the according states in the trace
graph, a test case containing a marked testing state could be
directly connected at the given state. Thereby, the need for
a common starting state could be avoided.

Parallel behavior can be explicitly defined, especially in
test languages that are targeted at distributed testing. By
defining an according operator on the trace tree, membership
queries containing different sequentializations of parallel
behavior could be answered correctly without explicitly
representing every such path in the test suite.

Besides the verdicts pass and fail, some test languages
define additional verdicts assigned on inconclusive behavior
or on an error in the test environment. In the current learning
approach, everything not accepted, i.e., assigned a pass
verdict, is rejected. However, in an open world approach, the
answer “I don’t know” could be given by the membership
oracle. In this case, the mapping of the test verdicts has
to be reconsidered. The verdict inconc, which is used by
TTCN-3 to indicate that the result of the test case cannot
be decided, maps naturally on an “I don’t know” for the
learner—the teacher does not know whether the behavior is
acceptable or not. Then again, the verdict error is considered
by TTCN-3 to be more severe than a verdict fail, but for
learning purposes it could still amount to an “I don’t know”.

Lastly, information about ports in the test cases could
also be used. Considering a highly connectable SUT, such a
system would feature a number of different ports connecting
to different other systems. To learn a protocol automaton
for just a subset of those communication ports, the test case
traces could be restricted to the ports in question, excluding
all others.

2) Influence of Coverage: While the semantic state-
merging approach is able to make up for many missing
traces, the case study suggests that the test suite used
in learning must at least satisfy a path coverage of the
SUT, as the one experiment where only a branch coverage
was used failed. However, there are other coverage criteria
besides branch and path coverage, e.g., based on condition
determination or on the functions of the SUT, or automatic
test case generation techniques. Further research is needed
to clarify the dependencies of system structure, test suite
coverage, and learnability.

209

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Suitability of the Learning Algorithm
When confronted with the problem of reconstructing a

system model from test cases, learning algorithms seemed
to be a simple solution. The starting assumption was that
while the test cases could be used as they were, some
adaptations would have to be made to the algorithm. Instead,
research shows that the learning algorithm itself can be used
without changes, while the effort of adaptation concerns the
representation of the learning sample, i.e., the test cases. In
fact, the approach to learning from test cases proved to be
a problem of teaching more than of learning.

1) Online and Offline Learning: Online learning algo-
rithms, like Angluin’s algorithm, build a system model by
querying a teacher. Their main advantage is in generating
the necessary queries themselves, thereby avoiding the need
for a complete sample. However, this approach implies the
existence of an omniscient oracle, which is able to answer
arbitrary queries. In contrast, offline learning algorithms
assume the existence of a structurally complete sample,
which is then merged into the target automaton.

The query mechanisms used by Angluin’s algorithm
naturally match the test cases’ verdicts. Also, Angluin’s
algorithm is scalable, growing only linearly with the size
of the target automaton, and always generates a minimal
DFA. As a test suite always assumes completeness with
regard to certain coverage criteria, it can be assumed that
the completeness of the test suite is sufficient to answer the
membership queries. However, our experiments show that
this assumption holds only for high coverage criteria and
even then depends on the structure of the system.

These results seem to suggest that an offline learning
approach would work better for the learning from test cases.
Lambeau et al. [30] propose an offline algorithm based on
state-merging, which takes into account merge constraints as
well as incompatibility constraints, requiring some states to
be merged obligatorily while others need to stay separated.
This approach might work well for the learning from test
cases. However, state-merging algorithms always need to
be closely tailored to the sample data to merge. Therefore,
a state-merging approach would only work for the special
semantics it is designed for.

Our approach combines the advantages of both online and
offline algorithms. The online algorithm is used to drive the
overall learning process, thereby establishing a learning pro-
cedure that is independent from any given test specification
language. Underlying the learning process, state-merging is
used to mine the test language specific information for better
coverage of the automaton’s traces and to generate a data
structure to be used as an oracle.

Following this layered approach, existing methods could
be integrated for optimization. Regarding the online learning
part, these optimizations concern the type of automaton
generated, incorporating i.e., parameterization [27], [28].
Optimizations on the offline learning part should extend

the semantic state-merging approach. Possibly exploitable
properties of test cases comprise differentiation of input and
output signals and consideration of stable testing states. For
example, the stable testing states could be matched to the
merge constraints in the approach by Lambeau et al. [30].

2) Other Versions of Angluin’s Algorithm: Another
source for optimization of the learning procedure is the
version of Angluin’s algorithm that is used. The prototypical
implementation uses a variation introduced by Kearns and
Vazirani [29], which stores the gathered information in a
classification tree. This version has the advantage of asking
less membership queries, but at the cost of more equivalence
queries [31]. Also, the classification tree provides a structure
that is easy to maintain and therefore quickly to implement.

The original version of Angluin’s algorithm uses an
observation table to store the gathered information. This
variation asks more membership queries before constructing
the first hypothesis automaton, thereby reducing the number
of needed equivalence queries [31]. On the other hand,
maintaining the consistency of the observation table needs
more effort.

Experimentation shows that using the trace graph as an
oracle, membership queries are cheap, as their complexity
only depends on the length of the queried trace. Equiva-
lence queries take time, as in the worst case, the whole
test suite has to be run against the hypothesis automaton.
Also, the adaptations to learning from test cases are com-
pletely independent of the underlying implementation of
Angluin’s algorithm. Therefore, re-implementing the core of
the learning algorithm according to the original version of
Angluin’s algorithm might even provide a small performance
advantage.

3) Breaking the Closed World Assumption: In most learn-
ing scenarios, it is comparatively easy to get a correct answer
to membership queries, while the equivalence query is hard
to decide. When learning from a complete test suite, it is the
other way around. The equivalence query can be matched
easily to a run of the test suite against the hypothesis
automaton, the only limiting factor being the time needed
to run a large test suite. This also relates to the results of
Berg et al. [32], who investigate the similarities between
conformance testing and automata inference, finding that
conformance testing solves a checking problem. Therefore,
we can safely assume that a test suite that is sufficient to
declare a system as conforming to its specification also
suffices to decide whether it is equivalent to a learned
hypothesis automaton.

In contrast, when asking membership queries against a
limited set of traces, as every test suite is bound to be,
there will always be queried traces that are not contained
in the test suite. As the experiments show, rejecting every
unknown trace can lead to bad generalization in the hypoth-
esis automaton, while trying to provide for every possible
query leads to inhibitively large test suites. There are several

210

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

possible approaches to solve this dilemma.
One way is to mine the test suite for implicit traces by

state-merging. First efforts in this direction have been inte-
grated into our learning approach and have shown positive
results. Besides further exploitation of the properties of the
test languages, also input from existing research in state-
merging techniques can be used. The state-merging approach
has two main advantages. The approach is self-contained,
as no external input is needed, and it is safe, as the state-
merging is based on information internal to the test suite.
The drawback is that the mining depends on the information
available in the test suite. If a test language with restricted
description possibilities is used, the possibilities of state-
merging are also restricted. Besides, while state-merging
is able to boost the number of covered traces, it cannot
make up for missing test cases if the test suites coverage
is insufficient.

Another possible approach is to include explicit “don’t
know” into the possible answers of a membership query. The
problem of undecidable membership queries has occurred
to researchers in other settings before, therefore a number
of possibly adaptable methods exist. Sloan and Turán [33]
define a meta-algorithm for incomplete membership oracles.
For each undecidable membership query, the learning pro-
cess is forked, one instance assuming acceptance, the other
rejection of the queried string. If a copy is detected to be
inconsistent, it is pruned. While this approach clearly leads
to an exponential growth in the computation, the difficulty
also is how to determine inconsistencies in the forked hy-
potheses. Bshouty and Owshanko [34] propose an extension
of Angluin’s learning algorithm including “don’t know” as
a possible answer to a membership query. Based on the
Kearns-Vazirani version of the algorithm, they partition the
possible traces of the target automaton into cover sets, reset-
ting the algorithm when a counter-example causes a cover
set to be split. Grinchtein and Leucker [35] also suggest an
extension of Angluin’s algorithm. Using Angluin’s original
version, they generate an incomplete observation table that
they subsequently feed into a satisfiability solver, filling in
the gaps with the most consistent solution. However, all
those approaches share the disadvantage of replacing the
uncertainties of the membership oracle with assumptions,
thereby deviating from exact learning.

The third approach is a combination of passive and active
techniques. In this approach, the algorithm learns as much
as possible using the available information, fully exploiting
every counter-example. When an unanswerable query is
encountered, the query is either addressed at an external
oracle, e.g., a domain expert, or translated into a test case
that is executed against the SUT. Asking a domain expert
leads to a guided learning approach. In this case, the learning
is only semi-automatic. Executing a test case against an SUT
could be conducted automatically. However, as the outcome
of the query then would depend on the SUT, this approach

compromises the independence of the learned automaton.
As both approaches draw information from sources beside
the test suite, inconsistencies could be introduced into the
learning data.

VIII. CONCLUSION

We have presented a learning approach that combines
state-merging and learning techniques to generate a DFA
from a test suite. The state-merging is used to represent
the test suite and to find additional test cases exploiting
the semantic properties of the test language. The combined
approach has been implemented in a prototypical tool.
Experiments show that while the state-merging approach
reduces the size of the test suite needed for correct iden-
tification of the model, complex models still need a large
number of test cases for correct identification.

We have discussed the design decisions that form the basis
of our approach to learning from test. The main issue is
the size and coverage of the test suite used in the learning
process. While the mapping of test cases to learning traces
is intuitive and simple, the size of a test suite sufficient for
learning can get inhibitively large. Optimizations to deal
with this problem comprise the extension of the semantic
state-merging approach to better exploit the information
contained in the test cases and an extension of the learning
algorithm to work with unanswerable membership queries.
In addition, the relation between test suite coverage, system
structure, and learnability offers interesting research topics.

Based on the experiments with our learning approach,
the next step is to incorporate the identified optimizations
into our prototypical implementation. In the long run, our
findings on the learnability of different models could also
be used to assess the adequacy of a test suite.

REFERENCES

[1] E. Werner and J. Grabowski, “Model Reconstruction: Mining
Test Cases,” in Third International Conference on Advances
in System Testing and Validation Lifecycle (VALID 2011).,
Oct. 2011.

[2] D. Angluin, “Learning Regular Sets from Queries and Coun-
terexamples,” Information and Computation, vol. 75, no. 2,
pp. 87–106, 1987.

[3] E. Werner, S. Polonski, and J. Grabowski, “Using Learning
Techniques to Generate System Models for Online Testing,”
in Proc. INFORMATIK 2008, ser. LNI, vol. 133. Köllen
Verlag, 2008, pp. 183–186.

[4] M. Shahbaz and R. Groz, “Inferring Mealy Machines,” in
Proc. FM 2009, ser. LNCS, vol. 5850. Springer, 2009, pp.
207–222.

[5] F. Aarts, B. Jonsson, and J. Uijen, “Generating Models of
Infinite-State Communication Protocols Using Regular Infer-
ence with Abstraction,” in Proc. ICTSS’10, ser. LNCS, vol.
6435. Springer, 2010, pp. 188–204.

211

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] T. Berg, B. Jonsson, and H. Raffelt, “Regular Inference for
State Machines Using Domains with Equality Tests,” in Proc.
FASE 2008, ser. LNCS, vol. 4961. Springer, 2008, pp. 317–
331.

[7] T. Bohlin, B. Jonsson, and S. Soleimanifard, “Inferring Com-
pact Models of Communication Protocol Entities,” in proc.
ISoLA 2010, ser. LNCS, vol. 6415. Springer, 2010, pp. 658–
672.

[8] M. Shahbaz, K. Li, and R. Groz, “Learning and Integration
of Parameterized Components Through Testing,” in Proc.
TestCom 2007, ser. LNCS, vol. 4581. Springer, 2007, pp.
319–334.

[9] J. Esparza, M. Leucker, and M. Schlund, “Learning Workflow
Petri Nets,” in Proc. PETRI NETS 2010, ser. LNCS, vol. 6128.
Springer, 2010, pp. 206–225.

[10] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker, “SMA —
The Smyle Modeling Approach,” Computing and Informatics,
vol. 29, no. 1, pp. 45–72, 2010.

[11] A. W. Biermann and R. Krishnaswamy, “Constructing Pro-
grams from Example Computations,” IEEE Transactions on
Software Engineering, vol. 2, no. 3, pp. 141–153, 1976.

[12] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of
the Abbadingo One DFA Learning Competition and a New
Evidence-Driven State Merging Algorithm,” in Proc. ICGI-
98, ser. LNCS, vol. 1433. Springer, 1998, pp. 1–12.

[13] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Work-
flow Mining: Discovering Process Models from Event Logs,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 16, no. 9, pp. 1128–1142, 2004.

[14] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” TOSEM, vol. 7, no. 3, pp.
215–249, 1998.

[15] K. Koskimies and E. Mäkinen, “Automatic synthesis of
state machines from trace diagrams,” Software—Practice &
Experience, vol. 24, no. 7, pp. 643–658, 1994.

[16] I. H. Krüger and R. Mathew, “Component Synthesis from
Service Specifications,” in Revised Selected Papers of the In-
ternational Workshop on Scenarios: Models, Transformations
and Tools, ser. LNCS, vol. 3466. Springer, 2003, pp. 255–
277.

[17] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli,
“Automatic Synthesis of Behavior Protocols for Composable
Web-Services,” in Proc. ESEC/SIGSOFT FSE. ACM, 2009,
pp. 141–150.

[18] C. Lee, F. Chen, and G. Rosu, “Mining parametric specifica-
tions,” in Proc. ICSE 2011. ACM, 2011, pp. 591–600.

[19] G. Ammons, R. Bodik, and J. R. Larus, “Mining Specifica-
tions,” in Proc. POPL’02. ACM, 2002, pp. 4–16.

[20] L. M. Duarte, J. Kramer, and S. Uchitel, “Model Extraction
Using Context Information,” in Proc. MoDELS 2006, ser.
LNCS, vol. 4199. Springer, 2006, pp. 380–394.

[21] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic Gener-
ation of Software Behavioral Models,” in Proc. ICSE 2008.
ACM, 2008, pp. 501–510.

[22] ETSI Standard (ES) 201 873: The Testing and Test Control
Notation version 3; Parts 1–10, ETSI Std., Rev. 4.2.1, 2010.

[23] E. Werner, “Learning Finite State Machine Specifications
from Test Cases,” Ph.D. dissertation, Georg-August-
Universität Göttingen, Göttingen, Jun. 2010. [Online].
Available: http://webdoc.sub.gwdg.de/diss/2010/werner/

[24] L. D. Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. F. E.
Belinfante, and R. G. Vries, “Formal Test Automation: The
Conference protocol with TGV/Torx,” in Proc. TestCom 2000,
ser. IFIP Conference Proceedings. Kluwer Academic Pub-
lishers, 2000, pp. 221–228.

[25] D. Neumann, “Test Case Generation using Model Transfor-
mations,” Master’s Thesis, University of Göttingen, Institute
for Computer Science, Göttingen, Germany, 2009.

[26] T. Berg, B. Jonsson, M. Leucker, and M. Saksena, “Insights
to Angluin’s Learning,” ENTCS, vol. 118, pp. 3–18, 2005.

[27] T. Berg, B. Jonsson, and H. Raffelt, “Regular Inference for
State Machines with Parameters,” in Proc. FASE 2006, ser.
LNCS, vol. 3922. Springer, 2006, pp. 107–121.

[28] K. Li, R. Groz, and M. Shahbaz, “Integration Testing of
Distributed Components Based on Learning Parameterized
I/O Models,” in Proc. FORTE 2006, ser. LNCS, vol. 4229.
Springer, 2006, pp. 436–450.

[29] M. J. Kearns and U. V. Vazirani, An Introduction to Compu-
tational Learning Theory. MIT Press, 1994.

[30] B. Lambeau, C. Damas, and P. Dupont, “State-Merging DFA
Induction Algorithms with Mandatory Merge Constraints,” in
Proc. ICGI 2008, ser. LNCS, vol. 5278. Springer, 2008, pp.
139–153.

[31] J. L. Balcázar, J. Dı́az, R. Gavaldà, and O. Watanabe,
“Algorithms for Learning Finite Automata from Queries: A
Unified View,” in Advances in Algorithms, Languages, and
Complexity, D.-Z. Du and K.-I. Ko, Eds. Kluwer Academic
Publishers, 1997, pp. 53–72.

[32] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt,
and B. Steffen, “On the Correspondence Between Confor-
mance Testing and Regular Inference,” in Proc. FASE 2005,
ser. LNCS, vol. 3442. Springer, 2005, pp. 175–189.

[33] R. H. Sloan and G. Turán, “Learning with queries but
incomplete information (extended abstract),” in Proc. COLT
’94. ACM, 1994, pp. 237–245.

[34] N. H. Bshouty and A. Owshanko, “Learning Regular Sets
with an Incomplete Membership Oracle,” in Proc. COLT 2001
and EuroCOLT 2001, ser. LNCS, vol. 2111. Springer, 2001,
pp. 574–588.

[35] O. Grinchtein and M. Leucker, “Learning Finite-State Ma-
chines from Inexperienced Teachers,” in Proc. ICGI 2006,
ser. LNCS, vol. 4201. Springer, 2006, pp. 344–345.

212

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Synthesizing Control Software from Boolean Relations

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science

Sapienza University of Rome
Via Salaria 113, 00198 Rome, Italy

Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Many software as well digital hardware automatic
synthesis methods define the set of implementations meeting
the given system specifications with a boolean relationK. In
such a context a fundamental step in the software (hardware)
synthesis process is finding effective solutions to the functional
equation defined byK. This entails finding a (set of) boolean
function(s) F (typically represented using OBDDs, Ordered
Binary Decision Diagrams) such that: 1) for all x for which K
is satisfiable,K(x, F (x)) = 1 holds; 2) the implementation of
F is efficient with respect to given implementation parameters
such as code size or execution time. While this problem has
been widely studied in digital hardware synthesis, little has
been done in a software synthesis context. Unfortunately, the
approaches developed for hardware synthesis cannot be directly
used in a software context. This motivates investigation of
effective methods to solve the above problem whenF has to
be implemented with software. In this paper, we present an
algorithm that, from an OBDD representation for K, generates
a C code implementation forF that has the same size as the
OBDD for F and a worst case execution time linear innr,
being n = |x| the number of input arguments for functions in
F and r the number of functions in F . Moreover, a formal
proof of the proposed algorithm correctness is also shown.
Finally, we present experimental results showing effectiveness
of the proposed algorithm.

Keywords-Control Software Synthesis; Embedded Systems;
Model Checking

I. I NTRODUCTION

Many software as well digital hardware automatic syn-
thesis methods define the set of implementations meeting
the given system specifications with a boolean relationK.
Given an n-bits (resp.,r-bits) binary encodingof states
(resp.,actions) of the system as it is usually done in Model
Checking [7] (see Sect. III-B), such relation typically takes
as input then-bits encoding of a statex and ther-bits
encoding of a proposed action to be performedu, and returns
true (i.e., 1) if and only if the system specifications are met
when performing actionu in statex. In such a context, a
fundamental step in the software (hardware) synthesis pro-
cess is finding effective solutions to the functional equation
defined byK, i.e.,K(x, u) = 1. This entails finding a tuple
of boolean functionsF = 〈f1, . . . , fr〉 (typically represented
using OBDDs, Ordered Binary Decision Diagrams[2])
such that 1) for allx for which K is satisfiable (i.e., it
enables at least one action),K(x, F (x)) = 1 holds, and 2)
the implementation ofF is efficient with respect to given

implementation parameters such as code size or execution
time.

While this problem has been widely studied in digital
hardware synthesis [3][4], little has been done in a software
synthesis context. This is not surprising since software
synthesis from formal specifications is still in its infancy.
Unfortunately the approaches developed for hardware syn-
thesis cannot be directly used in a software context. In
fact, synthesis methods targeting a hardware implementation
typically aim at minimizing the number of digital gates and
of hierarchy levels. Since in the same hierarchy level gates
output computation isparallel, the hardware implementation
WCET (Worst Case Execution Time) is given by the number
of levels. On the other hand, a software implementation will
have tosequentiallycompute the gates outputs. This implies
that the software implementation WCET is the number of
gates used, while a synthesis method targeting a software
implementation may obtain a better WCET. This motivates
investigation of effective methods to solve the above problem
whenF has to be implemented with software.

A. Our Contribution

In this paper, we present an algorithm that, from an
OBDD representation forK, effectively generates a C code
implementation forK that has the same size as the OBDD
for F and a WCET linear in linear innr, beingn = |x| the
number of bits encoding statex andr = |u| the number of
bits encoding actionu. This is done in two steps:

1) from an OBDD representation forK we effectively
compute an OBDD representation forF , following the
lines of [5];

2) we generate a C code implementation forF with the
above described properties of code size and WCET.

We formally prove both steps 1 and 2 to be correct.
This allows us to synthesize correct-by-constructioncon-

trol software, provided thatK is provably correct with
respect to initial formal specifications. This is the case
of [6], where an algorithm is presented to synthesizeK
starting from a) the formal specification of a Discrete-Time
Linear Hybrid System (DTLHS in the following) modeling
the system (plant) to be controlled, b) its system level
formal specifications (specifying the goal to be reached
and the safe states to be traversed in order to reach it)

213

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Control Software Synthesis Flow

and c) the quantization schema (i.e., the number of bits
available for analog-to-digital conversion). The framework
in [6] is depicted in Figure 1. With respect to Figure 1, the
approach proposed in this paper may be used to perform step
3. Thus, this methodology allows a correct-by-construction
control software to be synthesized, starting from formal
specifications for DTLHSs.

Note that the problem of solving the functional equation
K(x, F (x)) = 1 with respect toF is trivially decidable,
since there are finitely manyF . However, trying to explicitly
enumerate allF requires timeΩ(2r2

n

). By using OBDD-
based computations, we are able to computeF in time
O(r2n) in the worst case. However, in many interesting
cases OBDD sizes and computations are much lower than
the theoretical worst case (e.g., in Model Checking applica-
tions, see [7]).

Furthermore, once the OBDD representation forF has
been computed, a trivial implementation ofF could use
a look-up table in RAM. While this solution would yield
a better WCET, it would imply aΩ(r2n) RAM usage.
Unfortunately, implementations forF in real-world cases are
typically implemented on microcontrollers (this is the case,
e.g., forembedded systems). Since microcontrollers usually
have a small RAM, the look-up table based solution is not
feasible in many interesting cases. The approach we present
here will rely on OBDDs compression to overcome such
obstruction.

Moreover, F : B
n → B

r is composed byr boolean
functions, thus it is represented byr OBDDs. Such OBDDs
typically share nodes among them. If a trivial implementa-
tion of F in C code is used, i.e., each OBDD is translated as
a stand-alone C function, such inter-OBDDs nodes sharing

will not be exploited. In our approach, we exploit inter-
OBDDs nodes sharing, thus the control software we generate
fully takes advantage of OBDDs compression.

Finally, we present experimental results showing effec-
tiveness of the proposed algorithm. As an example, in less
than 1 second and within 350 MB of RAM we are able
to synthesize the control software for a functionK of 25
boolean variables, divided inn = 20 state variables and
r = 5 action variables, represented by an OBDD with
about6.6× 104 nodes. SuchK represents the set of correct
implementations for a real-world system, namely a multi-
input buck DC/DC converter [8], obtained as described
in [6]. The control software we synthesize in such a case
has about1.7× 104 lines of code, whilst a control software
not taking into account OBDDs nodes sharing would have
had about2.1 × 104 lines of code. Thus, we obtain a20%
gain towards a trivial implementation.

This paper is organized as follows. In Section III we
give the basic notions to understand our approach. In Sec-
tion IV we formally define the problem we want to solve.
In Section V we give definition and main properties of
COBDDs (i.e., Complemented edges OBDDs), on which
our approach is based. Section VI describes the algorithms
our approach consists of, whilst Section VII proves it to be
correct. Section VIII presents experimental results showing
effectiveness of the proposed approach. Finally, Section IX
presents the concluding remarks and gives some ideas for
future work.

II. RELATED WORK

This paper is an extended version of [1]. With respect
to [1], this paper provides more details in the introduction

214

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and in the related work description, extends basic defini-
tions and algorithms descriptions, shows omitted proofs for
theorems and provides a revised version of the experiments.

Synthesis of boolean functionsF satisfying a given
boolean relationK in a way such thatK(x, F (x)) = 1 is
also addressed in [3]. However, [3] targets a hardware set-
ting, whereas we are interested in a software implementation
for F . Due to structural differences between hardware and
software based implementations (see the discussion in Sec-
tion I), the method in [3] is not directly applicable here. An
OBDD-based method for synthesis of boolean (reversible)
functions is presented in [4] (see also citations thereof).
Again, the method in [4] targets a hardware implementation,
thus it is not applicable here.

An algorithm for the synthesis of C control software is
also presented in [9]. However, in [9] the starting point
is a (multioutput) boolean function, rather than a boolean
relation. That is to say, the starting point isF rather thanK
(with respect to the discussion in Section I-A, it is supposed
that step 1 has already been performed). Moreover, the
algorithm in [9], though OBDD-based, does not generate
a software with the same size of the OBDDs forF , nor
an estimation of its WCET (in the sense explained in
Section I) is provided. Finally, an implementation of the
algorithm in [9] is not provided, thus we cannot make a
direct experimental comparison with our method.

Synthesis of control software is also addressed in [10],
where the focus is on the generation of control protocols.
Such method cannot be applied in our context, where we
need a C software implementation.

In [6], an algorithm is presented which, starting from
a formal specification of a DTLHS, synthesizes a correct-
by-construction boolean relationK, and then a correct-by-
construction control software implementation forK (see
Figure 1). However, in [6] the implementation ofK is
not described in detail. Furthermore, the implementation
synthesis described in [6] has not the same size of the OBDD
for F , i.e., it does not exploit OBDD nodes sharing.

Many other works in the literature has the goal of syn-
thesizing controllers as boolean relationsK, under very
different assumptions for the target dynamic system to be
controlled. Such works do not deal with the effective imple-
mentation ofK, thus they may use the approach described
here in order to have an effective software implementation
of K. As an example, the following works may be cited
as closer to ours. In [11] controllers are generated starting
from finite-state nondeterministic dynamic systems (arising
from planning problems). In [12] a method to synthesize
non-optimal (but smaller in size) controllers is presented.

In [5], an algorithm is presented which computes boolean
functionsF satisfying a given boolean relationK in a way
such thatK(x, F (x)) = 1. This approach is very similar
to ours. However [5] does not generate the C code control
software and it does not exploit OBDD nodes sharing.

Finally, we note that our work lies in the wider area of
software synthesis, which has been widely studied since a
long time in many contexts. For a survey on such (non-
control) software synthesis works, see [13][14].

III. B ASIC DEFINITIONS

In the following, we denote withB = {0, 1} the boolean
domain, where0 stands forfalse and 1 for true. We will
denote boolean functionsf : B

n → B with boolean
expressions on boolean variables involving+ (logical OR),
· (logical AND, usually omitted thusxy = x · y), ¯ (log-
ical complementation) and⊕ (logical XOR). We will also
denote vectors of boolean variables in boldface, e.g.,x =
〈x1, . . . , xn〉. Moreover, we also denote withf |xi=g(x) the
boolean functionf(x1, . . . , xi−1, g(x), xi+1, . . . , xn) and
with ∃xi f(x) the boolean functionf |xi=0(x)+f |xi=1(x).

Finally, we denote with[n] the set{1, . . . , n}.

A. Most General Optimal Controllers

A Labeled Transition System(LTS) is a tuple S =
(S,A, T) whereS is a finite set ofstates, A is a finite set of
actions, andT is the (possibly non-deterministic)transition
relation of S. A controller for an LTS S is a function
K : S×A→ B enabling actions in a given state. We denote
with Dom(K) the set of states for which a control action
is enabled. An LTScontrol problemis a tripleP = (S, I,
G), whereS is an LTS andI,G ⊆ S. A controllerK for
S is a strong solutionto P if and only if it drives each
initial states ∈ I in a goal statet ∈ G, notwithstanding
nondeterminism ofS. A strong solutionK∗ to P is optimal
if and only if it minimizes path lengths. An optimal strong
solutionK∗ to P is themost general optimal controller(we
call such solution anmgo) if and only if in each state it
enables all actions enabled by other optimal controllers. For
more formal definitions of such concepts, see [15].

Efficient algorithms, typically reminiscent of early work
on minimum paths by Dijkstra [16], to compute controllers
starting from suitable (nondeterministic) LTS control prob-
lems have been proposed in the literature: e.g., [11] presents
an algorithm to generate mgos, while [12] show an algorithm
for non-optimal (but smaller in size) controllers. Once a
controllerK has been computed, solving and implementing
the functional equationK(x,u) = 1 allows a correct-by-
construction control software to be synthesized.

B. Binary Encoding for States and Actions

Vectors of boolean valuesx ∈ B
n (resp.,u ∈ B

r) may
be used to represent statess ∈ S (resp., actionsa ∈ A)
of an LTS S = (S,A, T) (and thus of a controller for
S) as follows. Letn = ⌊log2(|S|)⌋ + 1. Then,n boolean
values (bits) may be used to represent anys ∈ S. As an
example, in Model Checking applications [7] an order on
S = {s1, . . . , sm} is fixed (let s1 < . . . < sm be such
order), and then the binary encodingη : S → B

n is defined

215

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

asη(si) = b such that
∑n

j=1 2
j−1bj = i− 1. An analogous

construction may be applied to actions.

C. OBDD Representation for Boolean Functions

A Binary Decision Diagram(BDD) R is a rooted directed
acyclic graph (DAG) with the following properties. Each
R nodev is labeled either with a boolean variablevar(v)
(internal node) or with a boolean constantval(v) ∈ B

(terminal node). EachR internal nodev has exactly two
children, labeled withhigh(v) and low(v). Let x1, . . . , xn

be the boolean variables labelingR internal nodes. Each
terminal nodev representsfv(x) = val(v). Each internal
node v representsfv(x) = xifhigh(v)(x) + x̄iflow(v)(x),
being xi = var(v). An Ordered BDD(OBDD) is a BDD
where, on each path from the root to a terminal node, the
variables labeling each internal node must follow the same
ordering.

IV. SOLVING A BOOLEAN FUNCTIONAL EQUATION

Let K(x1, . . . , xn, u1, . . . , ur) be the mgo for a given
control problem P = (S, I, G). We want to solve
the boolean functional equationK(x,u) = 1 with re-
spect to variablesu, that is we want to obtain boolean
functions f1, . . . , fr such thatK(x, f1(x), . . . , fr(x)) =
K|u1=f1(x),...,ur=fr(x)(x,u) = 1. This problem may be
solved in different ways, depending on thetarget imple-
mentation(hardware or software) for functionsfi. In both
cases, it is crucial to be able to bound the WCET (Worst
Case Execution Time) of the obtained controller. In fact,
controllers must work in an endless closed loop with the
systemS (plant) they control. This implies that, everyT
seconds (sampling time), the controller has to determine the
actions to be sent toS. Thus, in order for the entire system
(plant + control software) to properly work, the controller
WCET upper bound must be at mostT .

In [3], f1, . . . , fr are generated in order to optimize
a hardware implementation. In this paper, we focus on
software implementations forfi (control software). As it
is discussed in Section I, simply translating an hardware
implementation into a software implementation would re-
sult in a too high WCET. Thus, a method directly tar-
geting software is needed. An easy solution would be
to set up, for a given statex, a SAT problem instance
C = CK1, . . . , CKt, c1, . . . , cn, where CK1 ∧ . . . ∧ CKt

is equisatisfiable toK and each clauseci is either xi (if
xi is 1) or x̄i (otherwise). ThenC may be solved using a
SAT solver, and the values assigned tou in the computed
satisfying assignment may be returned as the action to be
taken. However, it would be hard to estimate a WCET for
such an implementation. The method we propose in this
paper overcomes such obstructions by achieving a WCET
proportional torn.

 u0

 u1

 x0

 x1

 x2

K

0x17

0x120x16

0x10

0x11

0x15

1

0xf

0xe

0x13 0x14

Figure 2. An mgo example

V. OBDDS WITH COMPLEMENTED EDGES

In this section, we introduce OBDDs with complemented
edges (COBDDs, Definition 1), which were first presented
in [17][18]. Intuitively, they are OBDDs where else edges
(i.e., edges of type(v, low(v))) may be complemented. Then
edges (i.e., edges of type(v, high(v))) complementation
is not allowed to retain canonicity. Edge complementation
usually reduce resources usage, both in terms of CPU and
memory.

Definition 1. An OBDD with complemented edges(COBDD
in the following) is a tupleρ = (V, V , 1, var, low, high,
flip) with the following properties:

1) V = {x1, . . . , xn} is a finite ordered set of boolean
variables;

2) V is a finite set ofnodes;
3) 1 ∈ V is the terminal node of ρ, corresponding to

the boolean constant1 (non-terminal nodes are called
internal);

4) var, low, high, flip are functions defined on internal
nodes, namely:

• var : V \ {1} → V assigns to each internal node
a boolean variable inV

• high[low] : V \ {1} → V assigns to each internal
nodev a high child [low child] (or then child[else
child]), representing the case in whichvar(v) = 1
[var(v) = 0]

• flip : V \ {1} → B assigns to each internal node
v a boolean value; namely, ifflip(v) = 1 then the
else child has to be complemented, otherwise it is
regular (i.e., non-complemented);

5) for each internal nodev, var(v) < var(high(v)) and
var(v) < var(low(v)).

216

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. COBDDs Associated Multigraphs

We associate to a COBDDρ = (V, V , 1, var, low, high,
flip) a labeled directed multigraphG(ρ) = (V,E) such that
V is the same set of nodes ofρ and there is an edge(v, w) ∈
E if and only if w is a child ofv. Moreover, each edgee =
(v, w) ∈ E has a typetype(e), indicating if e is a then edge
(i.e., if w is a then child ofv), a regular else edge(i.e., if w
is an else child ofv with flip(v) = 0), or a complemented
else edge(i.e., if w is an else child ofv with flip(v) = 1).
Figure 2 shows an example of a COBDD depicted via its
associated multigraph, where edges are directed downwards.
Moreover, in Figure 2 then edges are solid lines, regular
else edges are dashed lines and complemented else edges
are dotted lines.

The graph associated to a given COBDDρ = (V, V , 1,
var, low, high, flip) may be seen as a forest with multiple
rooted multigraphs. In order to select one root vertex and
thus one rooted multigraph, we define theCOBDD restricted
to v ∈ V as the COBDDρv = (V, Vv, 1, var, low, high,
flip) such thatVv = {w ∈ V | there exists a path fromv to
w in G(ρ)} (note thatv ∈ Vv).

B. COBDDs Properties

For a given COBDDρ = (V, V , 1, var, low, high, flip)
the following properties follow from definitions given above:

1) G(ρ) is a rooted directed acyclic (multi)graph (DAG);
2) each path inG(ρ) starting from an internal node ends

in 1;
3) let v1, . . . , vk be a path inG(ρ), thenvar(v1) < . . . <

var(vk).
We define theheight of a nodev in a COBDDρ (notation

heightρ(v), or simply height(v) if ρ is understood) as the
height of the DAGG(ρv), i.e., the length of the longest path
from v to 1 in G(ρ).

C. Semantics of a COBDD

In Definition 2, we define the semanticsJ·K of each node
v of a given COBDDρ as the boolean function represented
by v, given the parityb of complemented edges seen on the
path from a root tov.

Definition 2. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD. Thesemantics of the terminal node1 with
respect to a flipping bitb is a boolean function defined as
J1, bKρ := b̄. The semantics of an internal nodev ∈ V with
respect to a flipping bitb is a boolean function defined as
Jv, bKρ := xiJhigh(v), bKρ + x̄iJlow(v), b ⊕ flip(v)Kρ, being
xi = var(v). Whenρ is understood, we will writeJ·K instead
of J·Kρ.

Note that the semantics of a node of a COBDDρ is
a function of variables inV and of an additional boolean
variable b. Thus, on each nodetwo boolean functions on
V are defined (one for each value ofb). It can be shown
(see [15]) that such boolean functions are complementary.

Example 1. Letρ be the COBDD depicted in Figure 2. If we
pick node0xe we haveJ0xe, bK = x2J1, bK+ x̄2J1, b⊕ 1K =
x2b̄+ x̄2b = x2 ⊕ b.

D. Reduced COBDDs and COBDDs Canonicity

Two COBDDs areisomorphicif and only if there exists a
mapping from nodes to nodes preserving attributesvar, flip,
high and low. A COBDD is calledreducedif and only if it
contains no vertexv with low(v) = high(v) ∧ flip(v) = 0,
nor does it contains distinct verticesv andv′ such thatρv and
ρv′ are isomorphic. Note that, differently from OBDDs, it is
possible thathigh(v) = low(v) for somev ∈ V , provided
that flip(v) = 1 (e.g., see nodes0xf and0xe in Figure 2).

Theorem 1 states that reduced COBDDs are acanonical
representation for boolean functions (see [17][18]). As a
consequence, software packages implementing COBDDs op-
erations only deal with reduced COBDDs, since this allows
very fast equality tests between COBDDs (it is sufficient
to check if the (root node, flipping bit) pair is the same).
Accordingly, in the following we will deal with reduced
COBDDs only.

Theorem 1. Let f : Bn → B be a boolean function. Then
there exists a reduced COBDDρ = (V, V , 1, var, low,
high, flip), a nodev ∈ V and a flipping bitb ∈ B such that
Jv, bK = f(x). Moreover, letρ = (V, V , 1, var, low, high,
flip) be a reduced COBDD, letv1, v2 ∈ V be nodes and
b1, b2 ∈ B be flipping bits. ThenJv1, b1K = Jv2, b2K if and
only if v1 = v2 ∧ b1 = b2.

VI. SYNTHESIS OFC CODE FROM A COBDD

Let K(x1, . . . , xn, u1, . . . , ur) be a controller for a given
control problem. Letρ = (V, V , 1, var, low, high, flip)
be a COBDD such that there existv ∈ V , b ∈ B such
that Jv, bK = K(x1, . . . , xn, u1, . . . , ur). Thus,V = X ·∪
U = {x1, . . . , xn} ·∪{u1, . . . , ur} (we denote with ·∪ the
disjoint union operator, thusX ∩ U = ∅). We will call
variablesxi ∈ X asstate variablesand variablesuj ∈ U as
action variables.

We want to solve the boolean functional equation problem
introduced in Sect. IV targeting asoftwareimplementation.
We do this by using a COBDD representing all our boolean
functions. This allows us to exploit COBDD nodes sharing.
This results in an improvement for the method in [5], which
targets a software implementation but which does not exploit
sharing. Finally, we also synthesize the software (i.e., C
code) implementation forf1, . . . , fr, which is not considered
in [5]. This allows us to finally have acontrol softwarefor
the starting LTS. IfK is an mgo, this results in anoptimal
control softwarefor the starting LTS.

A. Synthesis Algorithm: Overview

Our methodSynthesizetakes as inputρ, v and b such
that Jv, bK = K(x,u). Then, it returns as output a C
functionvoid K(int *x, int *u) with the following

217

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

property: if, before a call toK, ∀i x[i−1]= xi holds (array
indexes in C language begin from0) with x ∈ Dom(K), and
after the call toK, ∀i u[i−1]= ui holds, thenK(x,u) = 1.
Moreover, the WCET of functionK is O(nr).

Note that our methodSynthesizeprovides an effective
implementationof the controllerK, i.e., a C function which
takes as input the current state of the LTS and outputs the
action to be taken. Thus,K is indeed a control software.

Function Synthesizeis organized in two phases. First,
starting fromρ, v and b (thus fromK(x,u)), we generate
COBDD nodesv1, . . . , vr and flipping bitsb1, . . . , br for
boolean functionsf1, . . . , fr such that eachfi = Jvi, biK
takes as input the state bit vectorx and computes thei-th
bit ui of an output action bit vectoru, whereK(x,u) = 1,
provided thatx ∈ Dom(K). This computation is carried
out in functionSolveFunctionalEq. Second,f1, . . . , fr are
translated inside functionvoid K(int *x, int *u).
This step is performed by maintaining the structure of the
COBDD nodes representingf1, . . . , fr. This allows us to
exploit COBDD nodes sharing in the generated software.
This phase is performed by functionGenerateCCode.

Thus, functionSynthesizeis organized as in Algorithm 1.
Correctness for functionSynthesizeis stated in Theorem 6.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD ρ, nodev, booleanb
Ensure: Synthesize(ρ, v, b):

1: 〈v1, b1, . . . , vr, br〉 ← SolveFunctionalEq(ρ, v, b)
2: GenerateCCode(ρ, v1, b1, . . . , vr, br)

B. Synthesis Algorithm: Solving a Functional Equation

In this phase, starting fromρ, v andb (thus fromJv, bK =
K(x,u)), we compute functionsf1, . . . , fr such that for all
x ∈ Dom(K), K(x, f1(x), . . . , fr(x)) = 1.

To this aim, we follow an approach similar to the
one presented in [5], which is reminiscent of early work
on minimum paths by Dijkstra. Namely, we compute
fi using f1, . . . , fi−1, in the following way: fi(x) =
∃ui+1, . . . , un K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , un).
Thus, functionSolveFunctionalEq(ρ, v, b) computes and re-
turns 〈v1, b1, . . . , vr, br〉 such that for alli ∈ [r], Jvi, biK =
fi(x). This is effectively performed by Algorithm 2, where
we use the following COBDDs manipulation functions:

• COBDD APP (instantiation) such that 〈vAPP ,
bAPP 〉 = COBDD APP(xi1 , . . . , xik ,
v1, b1, . . . , vk, bk, v, b) if and only if
JvAPP , bAPP K = Jv, bK|xi1

=Jv1,b1K,...,xik
=Jvk,bkK;

• COBDD EX (existential quantifier elimination) such
that 〈vEX , bEX〉 = COBDD EX(xi1 , . . . , xik , v, b)
if and only if JvEX , bEXK = ∃xi1 , . . . , xik Jv, bK.

We note that efficient (i.e., at mostO(|V | log |V |)) al-
gorithms [17][18] exist to compute the above defined func-
tions. Moreover, the above defined functions may create new

COBDD nodes. We assume that such functions also properly
updateV , var, low, high, flip inside COBDDρ (1 andV
are not affected).

Algorithm 2 Solving a boolean functional equation
Require: COBDD ρ, nodev, booleanb
Ensure: SolveFunctionalEq(ρ, v, b):

1: for all i ∈ [r] do
2: Jvi, biK ← COBDD EX(ui+1, . . . , un,

COBDD APP(u1, . . . , ui, v1, b1, . . . , vi−1, bi−1,
1, 0, v, b))

3: return 〈v1, b1, . . . , vr, br〉

Correctness for functionSolveFunctionalEqis proved in
Lemma 3.

C. Synthesis Algorithm: Generating C Code

In this phase, starting from COBDD nodesv1, . . . , vr and
flipping bits b1, . . . , br for functions f1, . . . , fr generated
in the first phase, we generate two C functions: i)void
K(int *x, int *u), which is the required output func-
tion for our methodSynthesize; ii) int K_bits(int *x,
int action), which is an auxiliary function called by
K. A call to K_bits(x, i) returnsfi(x), beingx[j −
1]= xj for all j ∈ [n]. This phase is detailed in Algs. 3
(function GenerateCCode) and 4 (functionTranslate). In
such algorithms we suppose to be able to print a nodev,
e.g., by printing the exadecimal value of a pointer tov.

Algorithm 3 Generating C functions
Require: COBDD ρ, v1, . . . , vr, boolean valuesb1, . . . , br
Ensure: GenerateCCode(ρ, v1, b1, . . . , vr, br):

1: print “int K_bits(int *x, int action) {
int ret_b; switch(action) {”

2: for all i ∈ [r] do
3: print “case ”, i− 1, “:”
4: print “ret_b = ”, b̄i, “; goto L_”, vi,“;”
5: print “}” /* end of the switch block */
6: W ← ∅

7: for all i ∈ [r] do
8: W ←Translate(ρ, vi,W)
9: print “} K(int* x, int* u) {int i;”

10: print “ for(i=0; i<”,r,“; i++)”
11: print “ u[i] = K_bits(x, i);}”

Details of FunctionGenerateCCode(Algorithm 3):
Given inputsρ, v1, b1, . . . , vr, br (output by SolveFunc-
tionalEq), Algorithm 3 works as follows. First, function
int K_bits(int *x, int action) is generated. If
x[j − 1]= xj for all j ∈ [n], the call K_bits(x, i)
has to returnfi(x). In order to do this, the graphG(ρvi

)

is traversed by taking, in each nodev, the then edge if
x[j−1] = 1 (with j such thatvar(v) = xj) and the else edge

218

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

otherwise. When node1 is reached, then1 is returned if and
only if the integer sumc+ bi is even, beingc the number of
complemented else edges traversed. Note that parity ofc+bi
may be maintained by initializing a C variableret_b to b̄i,
then complementingret_b (i.e., by performing aret_b
= !ret_b statement) when a complemented else edge is
traversed, and finally returningret_b.

This mechanism is implemented inside functionK_bits
by properly translating each COBDD nodeṽ ∈

⋃r
i=1 Vvi

in
a C code block. Each block is labeled with a unique label
depending oñv, and maintains in variableret_b the current
parity of c+ bi as described above. This is done by function
Translate, called on line 8 and detailed in Algorithm 4.

Thus, the initial part of functionK_bits consists of a
switch block (generated in lines 1–5 of Algorithm 3),
which initializesret_b to b̄i and then jumps to the label
corresponding to nodevi. Then, the C code blocks cor-
responding to COBDD nodes are generated in lines 6–8
of Algorithm 3, by callingr times functionTranslate(see
Algorithm 4) with parametersv1, . . . , vr. Note thatW main-
tains the already translated COBDD nodes. Since function
Translateonly translates nodes not inW , this allows us to
exploit sharing not only inside eachG(ρvi

), but also inside
G(ρv1

), . . . , G(ρvr).
Finally, functionK is generated in lines 9–11. Function

K simply consists in afor loop filling each entryu[i]
of the output arrayu with the boolean values returned by
K_bits(x, i). Correctness of functionGenerateCCode
is proved in Lemma 5.

Algorithm 4 COBDD nodes translation
Require: COBDD ρ, nodev, nodes setW
Ensure: Translate(ρ, v,W):

1: if v ∈W then return W
2: W ←W ∪ {v}
3: print “L_”, v, “:”
4: if v = 1 then
5: print “return ret_b;”
6: else
7: let i be such thatvar(v) = xi

8: print “if(x[”,i− 1,“]==1)goto L_”, high(v)
9: if flip(v) then

10: print “else {ret_b = !ret_b;’’
11: print “goto L_”, low(v),“;}”
12: else
13: print “else goto L_”, low(v)
14: W ←Translate(ρ, high(v),W)
15: W ←Translate(ρ, low(v),W)
16: return W

Details of FunctionTranslate(Algorithm 4): Given in-
putsρ, v,W , Algorithm 4 performs a recursive graph traver-
sal ofG(ρv) as follows.

The C code block for internal nodev is generated in
lines 3 and 7–13. The block consists of a labelL_v: and
an if-then-else C construct. Note that labelL_v uni-
vocally identifies the C code block related to nodev. This
may be implemented by printing the exadecimal value of a
pointer tov.

The if-then-else C construct is generated so as to
traverse nodev in graph G(ρv) in the following way. In
line 8 the checkx[i−1]= 1 is generated, beingi such that
var(v) = xi. The code to take the then edge ofv is also gen-
erated. Namely, it is sufficient to generate agoto statement
to the C code block related to nodehigh(v). In lines 10–11
and 13 the code to take the else edge is generated, in the case
x[i− 1]= 1 is false. In this case, if the else edge is com-
plemented, i.e.,flip(v) holds (lines 10–11), it is necessary
to complementret_b and then perform agoto statement
to the C code block related to nodelow(v) (lines 10–11).
Otherwise, it is sufficient to generate agoto statement to
the C code block related to nodelow(v) (line 13).

Thus, the block generated for an internal nodev, for
properi, l andh, has one of the following forms, depending
on flip(v):

• L_v: if (x[i − 1]) goto L_h; else goto
L_l;

• L_v: if (x[i−1]) goto L_h; else {ret_b
= !ret_b; goto L_l;}.

There are two base cases for the recursion of function
Translate:

• v ∈W (line 1), i.e.,v has already been translated into
a C code block as above. In this case, the set of visited
COBDD nodesW is directly returned (line 1) without
generating any C code. This allows us to retain COBDD
node sharing;

• v = 1 (line 4), i.e., the terminal node1 has been
reached. In this case, the C code block to be generated
is simply L_1: return ret_b;. Note that such a
block will be generated only once.

In all other cases, functionTranslateends with the recur-
sive calls on the then and else edges (lines 14–15). Note
that the visited nodes setW passed to the second recursive
call is the result of the first recursive call. Correctness of
function Translateis proved in Lemma 5.

D. An Example of Translation

Consider the COBDDρ shown in Figure 2. Withinρ,
consider mgoK(x0, x1, x2, u0, u1) = J0x17, 1K. By
applying SolveFunctionalEq, we obtainf1(x0, x1, x2) =
J0x15, 1K and f2(x0, x1, x2) = J0x10, 1K. Note that0xe
is shared betweenG(ρ0x15) andG(ρ0x10). Finally, by calling
GenerateCCode(see Algorithm 3) onf1, f2, we have the C
code in Figure 3.

219

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

i n t K_bits(i n t *x, i n t action) {
i n t ret_b;
sw i tch(action) {

case 0: ret_b = 0; goto L_0x15;
case 1: ret_b = 0; goto L_0x10;

}
L_0x15:

i f (x[0] == 1) goto L_0x13;
e l s e { ret_b = !ret_b; goto L_0x14;}

L_0x13:
i f (x[1] == 1) goto L_0xe;
e l s e { ret_b = !ret_b; goto L_1; }

L_0xe:
i f (x[2] == 1) goto L_1;
e l s e { ret_b = !ret_b; goto L_1; }

L_0x14:
i f (x[1] == 1) goto L_0xe;
e l s e goto L_1;

L_0x10:
i f (x[0] == 1) goto L_0xe;
e l s e { ret_b = !ret_b; goto L_0xf; }

L_0xf:
i f (x[1] == 1) goto L_0xe;
e l s e { ret_b = !ret_b; goto L_0xe; }

L_1:
re turn ret_b;

}

vo id K(i n t *x, i n t *u) {
i n t i;
f o r (i = 0; i < 2; i++)
u[i] = K_bits(x, i);

}

Figure 3. C code for the mgo in Figure 2 as generated bySynthesize

VII. T RANSLATION PROOF OFCORRECTNESS

In this section, we prove the correctness of our approach
(Theorem 6). That is, we show that the functionK we gener-
ate indeed implements the given controllerK, thus resulting
in a correct-by-construction control software.

We begin by stating four useful lemmata for our proof.
Lemma 2 is useful to prove Lemma 3, i.e., to prove correct-
ness of functionSolveFunctionalEq.

Lemma 2. Let K : B
n × B

r → B and let
f1, . . . , fr be such that fi(x) = ∃ui+1, . . . , ur

K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , ur) for all i ∈ [r].
Then,x ∈ Dom(K) ⇒ K(x, f1(x), . . . , fr(x)) = 1.

Proof: Let x ∈ B
n be such thatx ∈ Dom(K), i.e.,

∃u K(x,u) = 1. We prove the lemma by induction onr.
For r = 1, we havef1(x) = K(x, 1). If f1(x) = 1, we
haveK(x, f1(x)) = K(x, 1) = f1(x) = 1. If f1(x) = 0,
we haveK(x, f1(x)) = K(x, 0), andK(x, 0) = 1 since
x ∈ Dom(K) andK(x, 1) = 0.

Suppose by induction that for all K̃ :
B
n × B

r−1 → B K̃(x, f̃1(x), . . . , f̃r−1(x)) =
1, where for all i ∈ [r − 1] f̃i(x) =

∃ui+1, . . . , ur−1 K̃(x, f̃1(x), . . . , f̃i−1(x), 1, ui+1, . . . , ur−1).
We have that x ∈ Dom(K) implies that either
x ∈ Dom(K|u1=0) or x ∈ Dom(K|u1=1).
Suppose x ∈ Dom(K|u1=1) holds. We
have that K|u1=1(x, f̃2(x), . . . , f̃r(x)) = 1,
where for all i = 2, . . . , r f̃i(x) =
∃ui+1, . . . , ur K|u1=1(x, f̃2(x), . . . , f̃i−1(x), 1, ui+1, . . . , ur).
By construction, we have that f1(x) = 1
and fi(x) = f̃i(x) for i ≥ 2, thus 1 =
K|u1=1(x, f̃2(x), . . . , f̃r(x)) = K(x, f1(x), . . . , fr(x)).
Analogously, ifx /∈ Dom(K|u1=1)∧x ∈ Dom(K|u1=0) we
have thatf1(x) = 0 andfi(x) = f̃i(x) for i ≥ 2, thus1 =
K|u1=0(x, f̃2(x), . . . , f̃r(x)) = K(x, f1(x), . . . , fr(x)).

Lemma 3 states correctness of functionSolveFunctionalEq
of Algorithm 2.

Lemma 3. Let ρ = (V, V , 1, var, low, high, flip) be
a COBDD with V = X ·∪U , v ∈ V be a node,b ∈ B

be a flipping bit. LetJv, bK = K(x,u) and r = |U|.
Then functionSolveFunctionalEq(ρ, v, b) (see Algorithm 2)
outputs nodesv1, . . . , vr and boolean valuesb1, . . . , br such
that for all i ∈ [r] Jvi, biK = fi(x) and x ∈ Dom(K)
impliesK(x, f1(x), . . . , fr(x)) = 1.

Proof: Correctness of functions COBDD APP
and COBDD EX (and lemma hypotheses)
implies that for all i ∈ [r] fi(x) =
∃ui+1, . . . , ur K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , ur).
By Lemma 2 we have the thesis.

Let Translatedup be a function that works as function
Translateof Algorithm 4, but that does not take nodes shar-
ing into account. FunctionTranslatedup may be obtained
from function Translateby deleting line 1 (highlighted in
Algorithm 4) and by replacing calls toTranslatein lines 14
and 15 with recursive calls toTranslatedup (with no changes
on parameters). Lemma 4 states correctness of functionTrans-
late dup.

Lemma 4. Let ρ = (V, V , 1, var, low, high, flip) be a
COBDD,v ∈ V be a node,b ∈ B be a flipping bit, andW ⊆
V be a set of nodes. Then functionTranslatedup(ρ, v,W)
generates a sequence of labeled C statementsB1 . . . Bk such
that k ≥ |Vv| and for all w ∈ Vv: 1) label L_w is in Bi for
somei and 2) starting an execution from labelL_w with
∀i ∈ [n] x[i − 1]= xi and ret_b= b̄, if Jw, bK = fw,b

then areturn ret_b; statement is invoked in at most
O(p) steps withret b = fw,b(x) and p = height(w).

Proof: We prove this lemma by induction onv. Let
v = 1, which impliesJv, bK = b̄ andVv = {1}. We have that
function Translatedup(ρ, v,W) generates a single block
B1 (thus k = 1 = |V1|) such thatB1 =L_1: return
ret_b; (lines 3–5 of Algorithm 4). Since by hypothesis
we haveret_b= b̄, and since starting fromB1 the return

220

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

statement is invoked inO(1) steps, the base case of the
induction is proved.

Let v be an internal node withvar(v) = xi and let
f(x) = Jv, bK. Since w ∈ Vv if and only if w =
v ∨ w ∈ Vhigh(v) ∨ w ∈ Vlow(v), by induction hypothesis
we only have to prove the thesis forw = v. We have
that f(x) = xiJhigh(v), bK + x̄iJlow(v), b ⊕ flip(v)K, i.e.,
f(x) = xiJhigh(v), bK + x̄iJlow(v), bK if flip(v) = 0 and
f(x) = xiJhigh(v), bK + x̄iJlow(v), b̄K if flip(v) = 1. Since
f(x) = xif |xi=1(x) + x̄if |xi=0(x), by Theorem 1 we
have thatJhigh(v), bK = f |xi=1(x), and thatJlow(v), bK =
f |xi=0(x) if flip(v) = 0 and Jlow(v), b̄K = f |xi=0(x) if
flip(v) = 1.

By lines 3 and 8–13 of Algorithm 4, we have
that function Translatedup(ρ, v,W) generates blocks
BB11 . . . B1hB21 . . . B2l such thatB =L_v: if (x[i −
1] == 1) goto L_high(v); else BE where BE is
either goto L_low(v); if flip(v) = 0 or {ret_b
= !ret_b; goto L_low(v);} if flip(v) = 1, and
B11 . . . B1h (B21 . . . B2l) are generated by the recur-
sive call Translatedup(ρ, high(v),W) in line 14 (Trans-
late dup(ρ, low(v),W) in line 15). By induction hypothesis
and the above reasoning, if the execution starts at label
L_high(v) andret_b= b̄, then areturn ret_b; state-
ment is invoked in at mostO(p − 1) steps withret b =
f |xi=1(x). As for the else case, we have that starting from
L_low(v) with ret_b= b̄ (ret_b= ¯̄b) if flip(v) = 0
(flip(v) = 1), then areturn ret_b; statement is in-
voked in at mostO(p−1) steps withret b = f |xi=0(x). By
construction of blockB, starting from labelL_v, areturn
ret_b; statement is invoked in at mostO(p−1+1) = O(p)
steps withret b = xif |xi=1(x) + x̄if |xi=0(x) = f(x).
Finally, note that by induction hypothesish ≥ |Vhigh(v)|
and l ≥ |Vlow(v)|, thus we have thatk = 1 + h + l ≥
1 + |Vhigh(v)|+ |Vlow(v)| ≥ |Vv|.

Lemma 5 extends Lemma 4 by also considering nodes
sharing, thus stating correctness of functionGenerateCCode
of Algorithm 3 and functionTranslateof Algorithm 4.

Lemma 5. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD andv1, . . . , vr ∈ V be r nodes and
b1, . . . , br ∈ B be r flipping bits. Then lines 6–8 of function
GenerateCCode(ρ, v1, b1, . . . , vr, br) generate a sequence of
labeled C statementsB1 . . . Bk such thatk = | ∪ri=1 Vvi

|
and for all v ∈ ∪ri=1Vvi

: 1) the label L_v is in Bj for
somej and 2) starting an execution from labelL_v with
∀j ∈ [n] x[j − 1]= xj and ret_b= b̄, if Jv, bK = fv,b
then areturn ret_b; statement is invoked in at most
O(p) steps withret b = fv,b(x) and p = height(w).

Proof: We begin by proving thatk = | ∪ri=1 Vvi
|.

To this aim, we prove that for each nodev ∈ ∪ri=1Vvi
,

a unique blockBv is generated. This follows by how the
nodes setW is managed by functionTranslatein lines 1–3

of Algorithm 4 and by functionGenerateCCodein lines 6–
8 of Algorithm 3. In fact, functionTranslate, when called
on parametersρ, v,W , returns a setW ′ ⊇W , and function
GenerateCCodecalls Translateby always passing theW
resulting by the previous call. Since a block is generated for
nodev only if v is not in W , and v is added toW only
when a block is generated for nodev, this proves this part
of the lemma.

As for correctness, we prove this lemma by induction on
m, being m the number of times that thereturn W;
statement in line 1 of Algorithm 4 is executed. As base of the
induction, letm = 1 and letρ, v,W be the parameters of the
recursive call executing the firstreturn W; statement.
Then, by construction of functionTranslate, v has been
added toW in some previous recursive call with parameters
ρ, v, W̃ . In this previous recursive call, a blockBv with
label L_v has been generated. Moreover, for this previous
recursive call, thus for parametersρ, v, W̃ , we are in the
hypothesis of Lemma 4, which implies that the induction
base is proved.

Suppose now that the thesis holds for the firstm exe-
cutions of thereturn W; statement in line 1 of Algo-
rithm 4. Then, by construction of functionTranslate, v has
been added toW in some previous recursive call with pa-
rametersρ, v, W̃ . In this previous recursive call, a blockBv

with labelL_v has been generated. Letw1,W1, . . . , wm,Wm,
be such that them recursive calls executing thereturn
W; statement have parametersρ, vi,Wi (note that they are
not necessarily distinct). By induction hypothesis, for all i ∈
[m] starting from labelL_wi with ∀j ∈ [n] x[j − 1]= xj

andret_b= b̄, a return ret_b; statement is invoked
in at mostO(p) steps withret b = fwi,b(x). By Lemma 4
and its proof, the same holds for allv ∈ Vv \{w1, . . . , wm},
thus it holds for allv ∈ Vv.

Finally, Theorem 6 states and proves correctness for func-
tion Synthesizeof Algorithm 1.

Theorem 6. Let ρ = (V, V , 1, var, low, high, flip) be a
COBDD with V = X ·∪U , v ∈ V be a node,b ∈ B be a
boolean. LetJv, bK = K(x,u), r = |U| and n = |X |. Then
function Synthesize(ρ, v, b) generates a C functionvoid
K(int *x, int *u) with the following property: for all
x ∈ Dom(K), if before a call toK ∀i ∈ [n] x[i − 1]=
xi, and after the call toK ∀i ∈ [r] u[i − 1]= ui, then
K(x,u) = 1.

Furthermore, functionK has WCET
∑r

i=1 O(height(vi)),
being v1, . . . , vr the nodes output by functionSolveFunc-
tionalEq.

Proof: Let x ∈ Dom(K) (i.e., ∃u K(x,u) = 1) and
suppose that for allj ∈ [n] x[j − 1]= xj . By lines 9–
11 of Algorithm 3, for all i ∈ [r], u[i − 1] will take
the value returned byK_bits(x, i). In turn, by lines 3
and 4 of Algorithm 3, eachK_bits(x, i) setsret_b

221

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

R

+vO
L

iD

Vi

Vi−1

Vj

V1

Iui

Iui−1

Iuj

+vui ui

D0

D1

Dj

Di−1

iL rL

+vC C

rCiC

+vuj

ui−1

uj

+vD

...

...

Iu
1

+vD
1

+vDj

+vui−1 +vDi−1

+vu
1 u1

Figure 4. Multi-input Buck DC-DC converter.

to b̄i and makes a jump to labelL_vi. By Lemma 3 and by
construction ofSynthesize, such b1, . . . , br and v1, . . . , vr
are such that thatJv1, b1K = f1(x), . . . , Jvr, brK = fr(x)
and K(x, f1(x), . . . , fr(x)) = 1. By Lemma 5, the se-
quence of callsK_bits(x, 1), . . . , K_bits(x, r)
will indeed return, in at most

∑r
j=1 O(height(vi)) steps,

f1(x), . . . , fr(x).

Corollary 7. Let ρ = (V, V , 1, var, low, high, flip) be a
COBDD with V = X ·∪U , v ∈ V be a node,b ∈ B be a
boolean. LetJv, bK = K(x,u), r = |U| and n = |X |. Then
the C functionK output by functionSynthesize(ρ, v, b) has
WCETO(rn).

Proof: The corollary immediately follows from Theo-
rem 6 and from the fact that, for allv ∈ V , height(v) ≤ n.

VIII. E XPERIMENTAL RESULTS

We implemented our synthesis algorithm in C program-
ming language, using the CUDD (Colorado University De-
cision Diagram [19]) package for OBDD based computa-
tions and BLIF (Berkeley Logic Interchange Format [20])
files to represent input OBDDs. We name the resulting tool
KSS (Kontrol Software Synthesizer). KSS is part of a more
general tool named QKS (Quantized feedback Kontrol Syn-
thesizer[6]).

A. Experimental Settings

We present experimental results obtained by using KSS
on given COBDDsρ1, . . . , ρ5 such that for alli ∈ [5] ρi
represents the mgoKi(x,u) for a buck DC/DC converter
with i inputs.

Themulti-inputbuck DC-DC converter [21] in Figure 4 is
a mixed-mode analog circuit converting the DC input voltage
(Vi in Figure 4) to a desired DC output voltage (vO in
Figure 4). As an example, buck DC-DC converters are used
off-chip to scale down the typical laptop battery voltage (12-
24) to the just few volts needed by the laptop processor (e.g.,
see [22]) as well as on-chip to supportDynamic Voltage
and Frequency Scaling(DVFS) in multicore processors (e.g.,
see [23]). Because of its widespread use, control schemas

Table I
KSS PERFORMACES

r CPU MEM |K| |Funsh| |Sw| %

1 3.0e-02 1.0e+08 12137 2646 2646 0.0e+00
2 1.1e-01 1.3e+08 25848 5827 5076 1.3e+01
3 1.7e-01 1.8e+08 36430 10346 8606 1.7e+01
4 2.5e-01 2.4e+08 46551 15004 12285 1.8e+01
5 3.6e-01 3.3e+08 65835 21031 16768 2.0e+01

for buck DC-DC converters have been widely studied. The
typical software based approach (e.g., see [22]) is to control
the switchesu1, . . . , ui in Figure 4 (typically implemented
with a MOSFET, i.e., a metal-oxide-semiconductor field-
effect transistor [24]) with a microcontroller.

In the following experiments, we fixn = |x| = 20 and
we have thatri = |u| = i. Finally, Ki is an intermediate
output of the QKS tool described in [6].

For eachρi, we run KSS so as to computeSynthesize(ρi,
vi, bi) (see Algorithm 1), beingJvi, biK = Ki(x,u). In the
following, we will call 〈v1i, b1i, . . . , vii, bii〉, with vji ∈
Vi, bji ∈ B, the output of functionSolveFunctionalEq(ρi, vi,
bi). Moreover, we callf1i, . . . , fii : Bn → B the i boolean
functions such thatJvji, bjiK = fji(x). All our experiments
have been carried out on a 3.0 GHz Intel hyperthreaded
Quad Core Linux PC with 8 GB of RAM.

B. KSS Performance

In this section, we will show the performance (in terms
of computation time, memory, and output size) of the al-
gorithms discussed in Section VI. Table I show our experi-
mental results. Thei-th row in Table I corresponds to exper-
iments running KSS so as to computeSynthesize(ρi, vi, bi).
Columns in Table I have the following meaning. Columnr
shows the number of action variables|u| (note that|x| = 20
on all our experiments). ColumnCPU shows the computa-
tion time of KSS (in secs). ColumnMEM shows the memory
usage for KSS (in bytes). Column|K| shows the number
of nodes of the COBDD representation forKi(x,u), i.e.,
|Vvi
|. Column |Funsh| shows the number of nodes of the

COBDD representations off1i, . . . , fii, without consider-
ing nodes sharing among such COBDDs. Note that we do
consider nodes sharing inside eachfji separately. That is,
|Funsh| =

∑i
j=1 |Vvji

| is the size of a trivial implemen-
tation of f1i, . . . , fii in which eachfji is implemented by
a stand-alone C function. Column|Sw| shows the size of
the control software generated by KSS, i.e., the number of
nodes of the COBDD representationsf1i, . . . , fii, consid-
ering also nodes sharing among such COBDDs. That is,
|Sw| = |∪ij=1Vvji

| is the number of C code blocks generated
by lines 6–8 of functionGenerateCCodein Algorithm 3.
Finally, Column% shows the gain percentage we obtain by
considering nodes sharing among COBDD representations

222

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for f1i, . . . , fii, i.e., (1− |Sw|
|Funsh|

)100.
From Table I we can see that, in less than 1 second

and within 350 MB of RAM we are able to synthesize the
control software for the multi-input buck withr = 5 action
variables, starting from a COBDD representation ofK with
about6.6× 104 nodes. The control software we synthesize
in such a case has about1.7 × 104 lines of code, whilst
a control software not taking into account COBDD nodes
sharing would have had about2.1×104 lines of code. Thus,
we obtain a20% gain towards a trivial implementation.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm which, starting
from a boolean relationK representing the set of implemen-
tations meeting the given system specifications, generatesa
correct-by-construction C code implementingK. This en-
tails finding boolean functionsF such thatK(x, F (x)) = 1
holds, and then implement suchF . WCET for the generated
control software is linear linear innr, beingr the number
of functions inF and n = |x|. Furthermore, we formally
proved that our algorithm is correct.

We implemented our algorithm in a tool named KSS.
Given our algorithm properties explained above, by using
KSS it is possible to synthesize correct-by-construction
control software, provided thatK is provably correct with
respect to initial formal specifications. This is the case in[6],
thus this methodology, e.g., allows to synthesize correct-
by-construction control software starting from formal spec-
ifications for DTLHSs. We have shown feasibility of our
proposed approach by presenting experimental results on
using it to synthesize C controllers for a multi-input buck
DC-DC converter.

The WCET of the resulting control software may be too
high for some systems in whichnr is high, or for which
the control software has to provide actions with an high
frequency. In order to speed-up the WCET, a natural possible
future research direction is to investigate how to parallelize
the generated control software.

ACKNOWLEDGMENTS

This work has received funding both from MIUR project
TRAMP and the FP7/2007-2013 project ULISSE (grant agree-
ment no218815).

REFERENCES

[1] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “From boolean
relations to control software,” inICSEA 2011, pp. 528–533.

[2] R. Bryant, “Graph-based algorithms for boolean function
manipulation,”IEEE Trans. on Computers, vol. C-35, no. 8,
1986, pp. 677–691.

[3] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive
paradigm to solve boolean relations,”IEEE Trans. on Com-
puters, vol. 58, no. 4, 2009, pp. 512–527.

[4] R. Wille and R. Drechsler, “Bdd-based synthesis of reversible
logic for large functions,” inDAC 2009, pp. 270–275.

[5] E. Tronci, “Automatic synthesis of controllers from formal
specifications,” inICFEM 1998, pp. 134–143.

[6] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV 2010, ser. LNCS 6174, pp. 180–195.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Check-
ing. The MIT Press, 1999.

[8] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Quantized
feedback control software synthesis from system level for-
mal specifications for buck dc/dc converters,”CoRR, vol.
abs/1105.5640, 2011.

[9] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanni-Vincentelli, E. Sentovich, and K. Suzuki,
“Synthesis of software programs for embedded control ap-
plications,” IEEE Trans. CAD, vol. 18, 1995, pp. 834–849.

[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal
synthesis of embedded control software: Application to ve-
hicle management systems,” inAIAA Infotech@Aerospace,
2011.

[11] A. Cimatti, M. Roveri, and P. Traverso, “Strong planning
in non-deterministic domains via model checking,” inAIPS
1998, pp. 36–43.

[12] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“On model based synthesis of embedded control software,”
in EMSOFT 2012, pp. 227–236.

[13] A. Pnueli and R. Rosner, “On the synthesis of an asyn-
chronous reactive module,” inICALP 1989, pp. 652–671.

[14] A. Girault andÉ. Rutten, “Automating the addition of fault
tolerance with discrete controller synthesis,”Formal Methods
in System Design, vol. 35, no. 2, 2009, pp. 190–225.

[15] ——, “From boolean functional equations to control soft-
ware,” CoRR, vol. abs/1106.0468, 2011.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[17] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” inDAC 1990, pp. 40–45.

[18] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision
diagram with attributed edges for efficient boolean function
manipulation,” inDAC 1990, pp. 52–57.

[19] “CUDD Web Page,” http://vlsi.colorado.edu/ fabio/CUDD,
last accessed 20th dec 2012

[20] “Berkeley logic interchange format (BLIF),“
bear.ces.cwru.edu/eecscad/sisblif.pdf, last accessed 20th
dec 2012.

223

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se-
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power
amplifiers,” IEEE Trans. on Power Electronics, vol. 25, no. 2,
2010, pp. 369–381.

[22] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy
logic controller for dc/dc converters: design, computer simu-
lation, and experimental evaluation,”IEEE Trans. on Power

Electronics, vol. 11, no. 1, 1996, pp. 24–32.

[23] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
abling on-chip switching regulators for multi-core processors
using current staggering,” inASGI 2007.

[24] Y. Cheng and C. Hu,MOSFET Modeling and Bsim3 User’s
Guide. Kluwer Academic Publishers, 1999.

224

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Dynamic Reverse Engineering of Graphical User
Interfaces

Inês Coimbra Morgado and Ana C. R. Paiva
Department of Informatics Engineering,

Faculty of Engineering, University of Porto,
rua Dr. Roberto Frias, 4200-465 Porto, Portugal

{pro11016, apaiva}@fe.up.pt

João Pascoal Faria
Department of Informatics Engineering,

Faculty of Engineering, University of Porto
rua Dr. Roberto Frias, 4200-465 Porto, Portugal

INESC TEC, Porto, Portugal
jpf@fe.up.pt

Abstract—This paper presents a dynamic reverse engineering
approach and a tool, ReGUI, developed to reduce the effort of
obtaining models of the structure and behaviour of a software
applications Graphical User Interface (GUI). It describes, in more
detail, the architecture of the REGUI tool, the process followed to
extract information and the different types of models produced
to represent such information. Each model describes different
characteristics of the GUI. Besides graphical representations,
which allow checking visually properties of the GUI, the tool
also generates a textual model in Spec# to be used in the
context of model based GUI testing and a Symbolic Model
Verification model, which enables the verification of several
properties expressed in computation tree logic. The models
produced must be completed and validated in order to ensure that
they faithfully describe the intended behaviour. This validation
process may be performed by manually analysing the graphical
models produced or automatically by proving properties, such
as reachability, through model checking. A feasibility study is
described to illustrate the overall approach, the tool and the
results obtained.

Keywords-ReGUI; Dynamic Reverse Engineering; GUI Testing;
Properties Verification; CTL; Model Checking; SMV

I. INTRODUCTION

This paper extends the research work presented in [1], which
describes a reverse engineering tool to extract a model from the
execution of a Graphical User Interface (GUI). In particular,
the state of the art is improved and the overall approach
is described in more detail. Moreover, a new module was
implemented in order to automatically generate a Symbolic
Model Verification (SMV) model for model checking. The
case study was extended in order to illustrate the additional
features.

GUI models are key inputs for several advanced techniques,
such as Model Based GUI Testing (MBGT) [2], [3], [4],
which enables the automatic test case generation, increasing
the systematisation and automation of the GUI testing process,
and model checking, which enables an automatic verification
and validation of some properties of the system. However,
the manual construction of such models is a time consuming
and error prone activity. One way of diminishing this effort
is to automatically construct part of the model by a reverse
engineering process.

The challenge tackled in this research work is the automatic
construction of part of the software’s GUI model (structure
and behaviour) using a dynamic reverse engineering technique.
The extracted information is presented in several formats that
allow performing different types of analysis, such as, visual
inspection, model checking and MBGT.

The term reverse engineering was firstly defined in 1985 by
Rekoff [5] as “the process of developing a set of specifications
for a complex hardware system by an orderly examination of
specimens of that system”. Five years later, Chikofsky and
Cross [6] adapted this definition to software systems: “Reverse
Engineering is the process of analysing a subject system to (1)
identify the system’s components and interrelationships and (2)
to create representations of the system in another form or at
a higher level of abstraction”.

The origin of software reverse engineering lies on the
necessity of improving and automating software maintenance.
It is estimated that program comprehension [7], i.e., under-
standing the structure and the behaviour of the software,
corresponds to over 50% of software maintenance [8]. As
such, developing tools which may aid software engineers on
this task is of the utmost importance. Reverse engineering
has already proved to be useful on this subject. For example,
reverse engineering helped coping with the Y2K problem, with
the European currency conversion and with the migration of
information systems to the web and towards the electronic
commerce [9]. For such reasons, the IEEE-1219 standard1,
which was replaced by the IEEE-14764 one2, recommends
reverse engineering as a key supporting technology to software
maintenance [9].

In the last two decades, reverse engineering tools have
evolved considerably and, nowadays, reverse engineering is
useful for other fields of study rather than software main-
tenance, such as, software testing and auditing security and
vulnerability.

According to Canfora et al. [10], nowadays, the main goals
of reverse engineering are:

• recovering architectures and design patterns;

1IEEE Standard for Software Maintenance
2Standard for Software Engineering - Software Life Cycle Processes -

Maintenance

225

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• re-documenting programs and databases;
• identifying reusable assets;
• building traceability between software artefacts;
• computing change impacts;
• re-modularising existing systems;
• renewing user interfaces;
• migrating towards new architectures and platforms;
• testing and maintenance.
As every technology, reverse engineering techniques can

also be used with malicious intent [11], like removing software
protection and limitations or allowing unauthorised access
to systems/data. However, the developers may use the same
techniques in order to assure software’s safety.

Yet in 1990, Chikofsky and Cross [6] divided the reverse
engineering process in two parts: an analyser, which collects
and stores the information, and an abstractor, which represents
that information at a higher level of abstraction, i.e., a model,
either graphical or textual. Figure 1 depicts the representation
of a common reverse engineering process.

Fig. 1. Model of reverse engineering tools’ architecture [6]

In Figure 1 the analyser is referred to as a Parser, Semantic
analyser because, in the early years of reverse engineering,
these were the most common techniques. Nowadays, be-
sides static techniques [12], which extract information from
the source code, there are other three different approaches
[13], [14] for reverse engineering: dynamic, which extracts
information from a running software system; hybrid, which
mixes both static and dynamic approaches; and historical,
which extracts information about the evolution of the system
from version control systems, like SVN3 or GIT4. Dynamic
approaches have the advantages of being independent of the
GUI implementation language and of not requiring access to
source code. However, the existing dynamic approaches have
limitations in terms of the behavioural information they are
able to extract.

This paper describes a dynamic reverse engineering tool,
ReGUI, developed to automatically extract structural and be-
havioural information from a GUI, including some behavioural
information not obtained by other tools, like dependencies
between GUI controls. ReGUI also distinguishes from other
tools by producing multiple views and formats of the gathered
information for different kinds of analysis: visual models

3svn.apache.org
4git-scm.com

enable a visual inspection of some properties, such as the
number of windows of the GUI; textual models can be used
for MBGT (Spec# [15] model) and to prove properties (SMV
[16] model).

ReGUI v2.0 is fully automatic and uses a different approach
from its previous version [17] so the results achieved, such
as the extracted dependencies and the produced graphs, are
different.

The rest of this paper is organised as follows. Section
II presents the state of the art on user interface reverse
engineering. Section III presents the proposed approach and
the developed tool, ReGUI. Section IV presents the exploration
process and the challenges faced during the development of
ReGUI. Section V describes the outputs that can be obtained.
Section VI presents a feasibility study on Microsoft Notepad
v6.1, presenting the results obtained. Section VII presents
some conclusions about this research work, along with the
limitations of the approach and future work.

II. STATE OF THE ART

This Section presents the state of the art on reverse en-
gineering, mainly on GUI reverse engineering, regarding the
time interval from 2000 to 2011.

A. Static Analysis

As stated in Section I, static reverse engineering extracts
information from textual sources, usually the source code,
of the Application Under Analysis (AUA) [12]. The main
techniques used in static analysis are code parsers, which are
used to analyse the source code itself, query engines, which
are used to verify certain facts of the code, and presentation
engines, which are used to depict the query results [18].

Staiger’s Approach: Staiger [19] presented, in 2007, an
approach for the Bauhaus tool suite5 [20] to statically reverse
engineer the source code of a GUI, in order to support program
understanding, maintenance and standards’ analysis. Staiger
claimed researchers had not focused their work on the static
analysis of GUIs, even though most applications provided
one. Staiger’s approach is divided in three different phases:
detecting the GUI elements, detecting widget hierarchies and
detecting event connections. For the first phase, Staiger detects
which data types on the source code had any connection to
the GUI. Having detected these data types, he identifies the
variables and respective parameters, as well as the functions
or methods that are part of the GUI. After the source code
elements are identified, the next phase finds the actual GUI
elements, by identifying when each of the elements was
created and the relationships among them. This provides the
hierarchy of the elements. The third phase of the approach
detects the different event handlers, the event they are handling
and the element which triggers them. Along the execution,
a window graph is generated containing all the extracted
information on the several windows of the GUI. This approach

5http://www.bauhaus-stuttgart.de/

226

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

was intended for C/C++ applications with a GUI implemented
with GUI libraries, such as GTK6 or Qt7.

Lutteroth’s Approach: Lutteroth [21] presented, in 2008,
an approach whose goal was to automatically improve the
layout of hard-coded GUIs. The approach extracts the GUI’s
structure and transforms it into a formal layout, Auckland
Layout Model (ALM), which was defined by Lutteroth and
Weber [22] in 2006. This approach extracts the structure of the
GUI, by identifying its root element and navigating through
its descendants. During this process, the position of each of
the elements is mapped to a tabstop, which is a ALM property
that represents a position in the coordinate system of a GUI.

Afterwards, the properties of each element, such as size
and position, are updated, according to what best fits the GUI.
For example, if an element has static content, a button for
instance, then its size remains unaltered; otherwise, the best
size is calculated according to its possible contents. In the
end, the obtained layout may even be automatically improved.
This may be done, for example, with the aid of some layout
standards.

GUISurfer: In 2010, Silva et al. [23] developed the
GUISurfer framework to test GUI-based Java applications, by
following a static reverse engineering approach. The frame-
work is composed by three tools: File Parser, ASTAnalyser and
Graph. The first tool is responsible for the reverse engineering
process, by parsing the GUI’s source code and extracting
behavioural information into an Abstract Syntax Tree (AST)
[24]. Then, the second tool slices the information contained in
the AST, focusing on the interface layer. In order to do so, the
ASTAnalyser requires, besides the AST, the entry point of the
application (the main method) and the set of GUI elements,
which are part of the slicing process. In the end of this second
phase, two files are generated: one containing the initial state
of the GUI and one containing the events that may occur
from the initial state. The third tool processes these two files
and generates two Haskell specification files, which map the
different events and conditions to actions on the GUI.

B. Dynamic Analysis

This Section describes existing dynamic reverse engineering
approaches without and with code instrumentation.

1) Approaches Without Instrumentation:
GUIRipper: In 2003, Memon et al. [25] presented GUIRip-

per, a dynamic reverse engineering tool, which extracts be-
havioural information from the GUI of Java systems for testing
purposes [26].

GUIRipper automatically interacts with the system’s GUI,
attempting to open as many windows as it can and, during
this process, it extracts the GUI’s structure and behaviour,
producing three different artefacts. The GUI Forest is a graph
representing the structure of the GUI. Each node represents a
window of the GUI, containing the structure of its elements;
an edge from a node a to a node b indicates that the window

6www.gtk.org
7qt.digia.com/

represented by the node b is accessible from the window
represented by the node a. The second artefact is an event
flow graph (EFG), which represents the behaviour of the GUI.
Each node represents an event, such as click on the button
OK; an edge from a node a to a node b indicates event b can
follow event a. The third artefact is an integration tree, which
relates the different components of the GUI. This last artefact
is necessary to rip off the GUI into several components,
generating EFGs for each one.

Amalfitano et al.’s Approach: Amalfitano et al.’s [27]
presented, in 2008, an approach to reverse engineer Ajax
[28] based Rich Internet Applications (RIAs) [29] as they
claimed the problematic of modelling and validating this
type of applications had not yet been explored thoroughly.
They intended to fill this gap by dynamically extracting the
behaviour of an application and representing it as a finite state
machine (FSM) [30].

The analyser runs the RIA under analysis within a controlled
environment and an event analysis takes place, i.e., information
on the sequence of events is extracted. The state chart diagram
depicted in Figure 2 models this first phase, which includes
two main states: waiting for an event to occur (Event Waiting)
and waiting for an event handler to be complete (Event
Handling Completion Waiting). Whenever an event is raised,
information such as the type of the event, at what time it
occurred and on which element it occurred is recorded. This
process begins when the application starts.

Fig. 2. The trace activity for the extraction step [27]

The second phase, abstraction, is composed by three steps.
Initially, the information is transformed into a graph (a tran-
sition graph), which models the flow of client interfaces. The
second step consists on using a clustering technique to analyse
the transition graph in order to group equivalent nodes and
edges. The clustering is based on the evaluation of several
interface equivalence criteria, such as, the DOM structures
including the same set of active element nodes and offering
the same interaction behaviour to the users. This way, the
issue of state explosion is dealt with. Finally, the FSM is
generated with each state corresponding to each node of the
clustered transition graph. This approach was validated by the
development of a Java tool, RE-RIA, which implements both
phases of the process.

2) Approaches With Instrumentation: There are some dy-
namic techniques that require source code (or byte code)
instrumentation. Code instrumentation consists in inserting
logging code into the existing one. As this is achieved during

227

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

run time and without access to the code, they are considered
dynamic approaches instead of hybrid ones.

Briand et al.’s Approach: Briand et al. proposed, in 2006
[31], an approach to dynamically extract behavioural informa-
tion from Java distributed communications, namely Remote
Method Invocation applications. The extracted information is
represented as UML sequence diagrams. Even though there
may be several applications to these diagrams, they intended
to test the consistency of the code with the design.

Briand et al. divided their approach in two phases. The first
phase consists in the instrumentation of the source code. In
order to make their approach as little intrusive as possible,
Briand at al. used Aspect Oriented Programming [32]. The
second phase analyses the execution traces, creates the corre-
sponding models and transforms them into scenario diagrams.

As in every dynamic analysis strategy, the extracted infor-
mation is limited to the extent of the system’s exploration and
to the context in which each action was executed. This way,
Briand et al. defined two meta-models: one to describe the
information extracted from the execution traces and another to
describe what they called scenario diagrams, which are UML
sequence diagrams but limited to the context (scenario) of the
execution. In order to transform the first meta-model into the
second, they defined rules in the Object Constraint Language.

Finally, Briand et al. claimed that one of the biggest
advantages of their approach was the usage of meta-models
and transformation rules as these are formalised and can be
easily improved and compared to others.

Safyallah and Sartipi: In 2006, Safyallah and Sartipi [33]
presented an approach to identify the features of a system by
identifying sequential patterns in the execution traces of the
system. In order to do so, Safyallah and Sartipi divided their
approach into two phases. In the first phase, the execution
traces are extracted. This is achieved by setting scenarios,
which are based in the domain of the application, the doc-
umentation and the familiarity of the user with the system,
to examine each feature, and by source code instrumentation
(inserting the name of the function at the beginning and at
the end of each of them). Executing the scenarios provided
the execution traces. In the second phase, a sequential pattern
mining algorithm was applied to the extracted traces in order to
obtain the most frequent sequential patterns. Figure 3 depicts
the type of patterns identified: with this type of analysis, it
is possible to identify, for example, that a lock is eventually
followed by an unlock.

Fig. 3. Sequential pattern: the sequence ABC is repeated [34]

This enabled the identification of generic functionalities
(common to the different features of the system) and the ones
that were feature-specific. With this approach, Safyallah and

Sartipi were able to ease program comprehension and feature
to source code assignment.

Alafi’s Approach: In 2009, Alalfi [35] also presented an
approach and a tool (PHP2XMI), which intended to extract
behavioural information by instrumentation of the source code
of the AUA and analysing the generated event traces. The
ultimate goal of this approach is to ease the security analysis
and testing of PHP-based8 web applications.

The PHP2XMI tool functions in three steps. The first step
corresponds to the code instrumentation. This step enables
the extraction of information on page URLs, http variables,
sessions and cookies. The second step executes the application,
generating the execution traces, which are then filtered to
ignore redundant information, and storing the relevant infor-
mation in a SQL database. The third and final step transforms
the stored data into UML 2.1 sequence diagrams [36]. These
diagrams can be depicted by any UML 2.1 tool set.

C. Hybrid Analysis

Hybrid analysis provides an improvement of the complete-
ness, scope and precision of the extraction as it mixes both
static and dynamic approaches, trying to maximise the amount
of extracted information [13]. This Section presents some of
the works that follow this line of research.

Systä’s Approach: In 2000, in her dissertation, Systä [37]
presented an approach combining the advantages of both static
and dynamic analyses, with special focus on the dynamic part,
for reverse engineering a Java software system.

The static part consists in parsing the system’s byte code
with a byte code extractor in order to extract the system’s
structure. This information is represented as a graph, which
can be visualised with the Rigi reverse engineering environ-
ment, developed by Müller et al. [38]. Afterwards, the system
is run under a customised jdk debugger, JDebugger, producing
dynamic event trace information, control flow data, which was
represented as scenario diagrams. These diagrams could be
visualised with the SCED dynamic modelling tool [39], which
transforms them into a single state diagram.

Systä developed a prototype, Shimba, which applies the
described approach, integrating the Rigi system with the
SCED tool. Without disregarding the other applications of the
extracted information, debugging is presented as being a very
useful one.

Frank et. al’s Approach: In 2001, Frank et al. [40] presented
an approach to dynamically reverse engineer a mobile applica-
tion for Android, iOS or Java ME. They extract a model of the
life cycle, which can be used to detect errors, like verifying
if an application’s information is saved when it has to be
interrupted, e.g., save the text of an e-mail when an incoming
call occurs. Even though the reverse engineering process itself
is processed during run-time, it is necessary to previously alter
the source code, which makes this an hybrid approach.

Frank et al.’s approach was divided in four phases. The first
and second ones are of the responsibility of the developer as

8http://www.php.net/

228

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

they consist in programming the life cycle’s code, overwriting
every call-back method called in life cycle changes, and
inserting logging code to all the overwritten methods. In the
third phase, black-box tests [41] are applied to the mobile
application in order to identify the different triggers. For this, it
is of the utmost importance that the first two phases have been
processed thoroughly. In the fourth phase, the information ex-
tracted in the previous phase is used to derive an application’s
life cycle model and to identify properties of the application
at certain states of the life cycle. The model is a state diagram
of the application. The states can be, for example, running,
paused, background. The transitions are labelled according to
the corresponding actions, e.g., onCreate() and onStop(). This
model may be useful in several contexts, such as verifying
the consistency of the application’s life cycle or identifying
properties of the application at a given state.

D. Discussion

Apart from the work of Lutteroth et al. [21], which only
extracts structural information from GUIs to improve layout,
the analysed reverse engineering approaches are similar to ours
because they extract both structural and behavioural informa-
tion. However the purpose of each approach may be differ-
ent: program comprehension (for testing and/or maintenance)
[19], [23], [25], [27], [31], [42]; debugging [37]; properties
verification [40]; feature to source code mapping [33]; and
security analysis [35]. The purpose of the presented approach
is program comprehension and properties verification.

Regarding the information extracted, there are similarities
regarding structural information (GUI elements, their proper-
ties and hierarchy relations) the set of approaches extract but
varieties regarding behavioural information. Some approaches
extract events (their handlers and the relations between them)
[19], [23], [25], [27]; sequence of actions [27], [31], [33],
[35], [37]; sequential patterns [33]; and lifecycle of the system
[40]. The presented approach extracts structural information,
alike the remaining approaches, and behavioural information
on navigation and on dependencies between the different GUI
controls.

Another characteristic that distinguishes the several studied
approaches is the representation (abstractor) of the extracted
information. Most of the approaches represent their informa-
tion in only one structure: sequence diagrams [31], [35], [37];
state diagrams [27], [40]; specification file [21]; graphs [19] or
sequence patterns [33]. There are only two approaches which
opt to represent the information in more than one way: Silva
et al. [23] extracted both a specification file and an AST and
Memon et al. [25] extracted a window graph and an event
flow graph. As far as the authors know, there is only one
approach that enables verification of properties [40], but it
focuses strictly on the life cycle of mobile applications.

In addition, most of the approaches can only be applied
to one platform (web [27], [35] or mobile [40]), or to one
language (Java [23], [25], [31], [37] or C/C++ [19]). The ap-
proach described in this paper uses UI Automation that allows

extracting information from desktop and web applications,
which increases the range of supported platforms.

III. REGUI OVERVIEW

The goal of this research work is to diminish the effort of
producing visual and formal models of the GUI of a software
application. The approach followed is the extraction of the
information from the GUI under analysis by a dynamic reverse
engineering approach. This way, this approach is independent
of the programming language in which the GUI was written,
broadening its applicability. This Section presents an overview
of the proposed approach.

A. Architecture and Outputs

Figure 4 depicts an overview of the approach proposed in
this paper.

Fig. 4. Architecture and outputs obtained with the ReGUI tool

The analyser is responsible for the exploration of the GUI
and extraction of the structural and behavioural informa-
tion. The exploration process is discussed in more detail in
Section IV-A. The abstractor is responsible for representing
the extracted information in different ways: visual models,
which enable a quick visual inspection; a Spec# model, which
can be used for MBGT; and a SMV model, which enables
the automatic verification of properties. These models are
explained in detail in Section V.

B. Extracted Information

Figure 5 represents the information extracted by ReGUI.
GUI Elements can be Windows or Controls that may be
initially enabled or disabled. Windows may be modal (in which
case it is not possible to interact with other windows of
the same application while this one is opened) or modeless
(it is possible to interact with other windows). Windows are
composed of Controls, which may be menu items or others.
The elements in the diagram (classes and relationships) are
annotated with graphical symbols used in the visual models
generated by ReGUI.

229

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 class Logical View

Modal Window

Window

Modeless Window

GUI Element

name: String

...

Control

initiallyDisabled: Boolean

...

MenuItem OtherControl

Application

Filled symbol means initallyDisabled

Derived from "BelongsTo"

and "GivesAccessTo".

targetWindow *

/CanBeOpenedFrom

sourceWindow *

updateSource

*

UpdatesAPropertyOfupdateTarget

*

accessSource

*

GivesAccessToaccessTarget

*

*

BelongsTo

main

Window

1

Fig. 5. Annotated metamodel of the models generated by the ReGUI tool
(see Figure 4)

The associations between the objects represent the extracted
behaviour. When interacting with a control, there are five
possible identifiable outcomes:

• open - a window is opened;
• close - a window is closed;
• expansion - new controls become accessible. For instance,

the expansion of a menu;
• update - one or more properties of one or more elements

are updated. For instance, the name of a window is
modified or an enabled control becomes disabled (or vice-
versa);

• skip - nothing happens.

The first three outcomes are represented by the GivesAc-
cessTo relation, while the third one is represented by the
UpdatesAPropertyOf relation. If a control of a window (Be-
longsTo relation) opens another window (GivesAccessTo rela-
tion), then there is a CanBeOpenedFrom relation between the
second and the first windows. This makes the last relation a
derivation from the two previous ones.

C. Front-End

The ReGUI front-end is shown in Figure 6.

Fig. 6. ReGUI front-end

In order to start the extraction process, it is necessary to
identify the GUI to be analysed. In order to do so, it is
necessary to drag the Spy Tool symbol and drop it on top
of the GUI. Following, the user must press the button Play,
which will start the exploration process. The name of this
button changes to Playing during the execution. At the end of
the execution, all models except the Spec# and the SMV ones
have already been generated. As such, the user may press the
Generate SMV Model button in order to generate the SMV
model, as well as, the Generate Spec# Model button in order
to generate the Spec# model.

IV. REGUI ANALYSER

In this Section, the analyser process is described, namely
the exploration process and the challenges tackled during the
implementation.

A. Exploration Process

In general, a dynamic exploration can be classified accord-
ing to its automation, manual or automatic, and to whether
or not it is guided. If the exploration is automatic not being
guided means it is random whilst a guided exploration would
require some heuristic to determine which control should be
explored at each instance. If, otherwise, it is manual, being
guided means the user actions are driven by a particular
goal, whilst not being guided would just indicate the user has
complete freedom in choosing the next control.

Given the goal of this approach, the exploration must be
performed automatically, remaining the choice of being guided
or not. If the random exploration took long enough, eventually
the entire interface would be explored. However, the amount
of time a company has is limited and, thus, this approach is
not ideal. On the other hand, the guided exploration depends
completely on the algorithm used for the exploration.

As in most situations, the best solution would be to get the
advantages of each approach: follow a guided approach mixed
with a random one and, if and when the exploration hits a
breakpoint, the tool should ask the user to interact with the
GUI in order to move forward with the automatic exploration.
ReGUI follows a guided exploration based on the order of the
elements.

The exploration process is divided in two phases. First,
ReGUI navigates through every menu option in order to
extract the initial state of the GUI, i.e., which GUI elements
are enabled/disabled at the beginning of the execution, in
the main window. For the second phase, ReGUI navigates
through all the menus and interacts with the ones enabled
at that instance. After each interaction, ReGUI verifies if
any window has opened. If so, ReGUI extracts its structure,
closing it afterwards. Following, ReGUI goes through all the
menus again in order to verify if any state changed, i.e., if a
previously enabled element became disabled or vice-versa. All
the information extracted is organised in internal structures,
which are described in Section V.

In order to interact with the GUI, ReGUI uses UI Automa-
tion [43], which is the accessibility framework for Microsoft

230

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Windows, available on all operating systems that support
Windows Presentation Foundation. This framework represents
all the applications opened in a computer as a tree (a Tree
Walker), whose root is the Desktop and whose nodes are the
applications opened at a certain moment. The GUI elements
are represented as nodes, children of the application to which
they belong. In the UI Automation framework each of these
elements is an Automation Element.

B. Challenges

During the development of ReGUI, it was necessary to face
some challenges:

1) Identification of GUI elements: GUI elements may have
dynamic properties, i.e., properties which may vary along the
execution, such as the RunTimeIdProcess and the Name, and
do not have a property which uniquely identifies them. During
the exploration process, the identification of an element is
performed by comparing its properties with the ones of other
elements. There are some that, when used for comparing two
elements, undoubtedly distinguish them when their values are
different. For example, if two controls are a button and a
menu item, then they are necessarily different. However, this
sort of properties may not be sufficient. As such, an heuristic
based on some properties was implemented to compare two
elements: an element a is considered to be the same as an
element b when it is the one which most resembles element
b, considering a minimum threshold. The properties to be used
in the comparison can be configured in the beginning of the
execution.

2) Exploration order: In general, the extracted information
depends on the order in which the GUI is explored. Currently,
ReGUI follows a depth-first algorithm, i.e., all the options
of a menu are explored before exploring the next one. The
exploration of the children of a node follows the order in which
they appear on the GUI. However, if the exploration followed a
different order, the dependencies extracted would be different.
An example of such may be found in the Microsoft Notepad
v6.1 application and is depicted in Figure 7. The menu item
Select All requires the presence of text in the main window
in order to produce any results. Since there is no text in the
main window, in the beginning, interacting with this menu item
does not have any effect. However, after interacting with the
Time/Date menu item, which writes the time and date in the
main window, the Select All menu item would produce visible
results: it would select the text, enabling the menu items Cut,
Copy and Delete and disabling the Select All menu item itself.

3) Synchronisation: To automatically interact with a GUI,
it is necessary to wait for the interface to respond after each
action. In order to surpass this problem, ReGUI checks (with
event handlers) when any changes occurred in the UI Automa-
tion tree (which reflects the state of the screen in each moment)
and continues after that. For example, after expanding a menu,
its submenus are added to the UI Automation tree as its
children, launching an event. The event handler catches it
and ReGUI acts accordingly. When verifying whether or not
a window opened, there is an event handler similar to the one

used to catch a menu expansion. However, when invoking
an element for the first time, there is no way of previously
knowing if any event will occur. This way, after invoking an
element, ReGUI waits either for the event handler to catch the
event or for a defined amount of time.

4) Closing a Window: During the execution it is necessary
to close windows that are eventually opened, in order to
continue the exploration process. However, there is no standard
way of closing them. Windows usually have a top right button
for closing purposes but, when this is not available, ReGUI
looks for one of these buttons to close it: cancel, no, close,
ok, continue or x.

V. REGUI ABSTRACTOR

ReGUI generates different views on the extracted informa-
tion. Each of these views represents different aspects of the
structure and behaviour of the GUI under analysis, enabling
a rapid visual inspection of such aspects. The current views
ReGUI is able to extract are a tree representing the structure
of the GUI and the hierarchy between the different elements,
and four graphs representing its behaviour. Every node of these
four graphs corresponds to a node in the tree. The information
stored in these structures is used to generate the formal models
both in Spec# and in SMV. The next sub-sections describe
these different outputs, explaining the type of information
represented in each of them. The Figures referred along this
Section are examples of outputs and can be depicted along
Section VI.

A. Structural Information: ReGUI Tree

The ReGUI tree merges all the UI Automation trees pro-
duced during the exploration process. Initially, the ReGUI
tree has only the elements visible at the beginning of the
exploration and, at the end, it has every element which has
become visible at some point of the exploration, such as the
content of the windows opened along the process and sub-
menu options. An examples is depicted in Figure 12.

B. Behavioural Information

Extracting behavioural information is useful for different
purposes, such as modelling the GUI behaviour, generating test
cases, proving properties or usability analysis. This Section
describes the different views generated by ReGUI on the
behavioural information extracted.

1) Navigation Graph: The navigation graph represents the
nodes relevant to the navigation, i.e., this graph stores infor-
mation about which user actions must be performed in order
to open the different windows of the application. A visual
representation of this graph is depicted in Figure 13. A solid
edge between a window w1 and a GUI element e1 means e1 is
inside of w1 whilst a dashed edge between two GUI elements
e1 and e2 means e2 becomes accessible after interacting with
e1.

Figure 8 is a subset of Figure 5 of Section III and depicts
the information extracted by ReGUI that is represented in this
graph, as well as the graphical symbols used.

231

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. Menu item Edit on Microsoft Notepad v6.1: a) after invoking the menu item Select All and before invoking the menu item Time/Date; b) after
invoking the menu item Time/Date; c) after invoking again the menu item Select All

Fig. 8. Representation of the different elements and their relationships in
the navigation graph

2) Window Graph: The window graph shows a subset
of the information represented by the navigation graph. It
describes the windows that may be opened in the application.
Figure 14 is a visual representation of this graph. A window
may be modal or modeless. An edge between two nodes w1
and w2 means that it is possible to open window w2 by
interacting with elements of window w1.

Figure 9 is a subset of Figure 5 of Section III and depicts
the information extracted by ReGUI that is represented in this
graph.

3) Disabled Graph: The disabled graph’s purpose is to
show which nodes are accessible but disabled int he begin-
ning of the execution (obtained during the first phase of the
exploration process described in Section IV-A). The enabled
property of an element may vary during the second phase but
that modification is not represented in this graph. An example
of this graph is depicted in Figure 15. The nodes correspond
to some GUI elements, being filled when disabled and empty
when enabled. A solid edge between two nodes n1 and n2
means that n2 belongs to n1. On the other hand, a dashed edge

Fig. 9. Representation of the different elements and their relationships in
the window graph

between those nodes means n2 is accessible after interacting
with n1.

Figure 8 is also applicable to this graph as the relations
between the controls have the same meaning, even though the
information represented in both graphs is different.

4) Dependency Graph: A dependency between two ele-
ments A and B means that interacting with A modifies the
value of a property of B. An example of a dependency would
be if interacting with A enabled a previously disabled B. Figure
16 is the visual representation of a dependency graph obtained
during an exploration process. A solid edge between a window
w1 and a node n1 means n1 is accessed from w1 and a
dashed edge between two nodes n1 and n2 means there is
a dependency between n1 and n2.

Figure 10 is a subset of Figure 5 of Section III and depicts
the information extracted by ReGUI that is represented in this
graph.

C. Spec# Model

Spec# is a formal specification language that can be used
as input to the model-based testing tool Spec Explorer [44],
for automatic test generation.

232

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 10. Representation of the different elements and their relationships in
the dependency graph

The Spec# model is obtained by applying the rules in
Figure 11 on the navigation graph. Each window generates
a namespace and each edge generates a method annotated
with [Action]. Action methods in Spec# are methods that will
be used as steps within the following generated test cases.
Methods without annotations are only used internally. All
the elements relevant to the navigation are represented as
variables (var) having three possible values: 1, if the element
is accessible and enabled; 2, if the element is accessible
but disabled; and 3, if the element is not accessible. At
the beginning of the execution, the only possibly accessible
elements are the ones belonging to the main window, as
every other window is not accessible itself. Every variable
and method corresponding to elements belonging to a certain
window must be placed under the namespace representing that
window. An example of a model generated by the application
of these rules is in Figure 17.

D. SMV Model

After obtaining a model one problem that may rise is how
to verify properties on it. This may be tackled by model
checking techniques, which verify if given properties are valid
on the model under analysis. The verification of properties
can be very useful, for example, in usability analysis and
improvement [45], [46]. The one used in this approach is
symbolic model checking [47]. Properties are expressed in
Computation Tree Logic, which is a propositional temporal
logic, and the system is modelled as a FSM.

Some of the properties that can usually be verified are
reachability, i.e., if it is possible to reach every node, liveness,
i.e., under certain circumstances, something will eventually
happen, safety, i.e., under some circumstances, something
will never happen, fairness, i.e., under certain conditions,
something will always happen, and deadlock-freeness, i.e., the
system does not get into a cycle from which it cannot come
out.

With this approach, the state machine representing the
system is generated automatically based on the navigation
graph. Alike this graph, each state represents a GUI element,
which is represented by a unique id. The first state corresponds

Fig. 11. Rules for the Spec# generation

to the main window, having id 1. The relations belongsTo of
the navigation graph were eliminated for this representation
because they do not describe user actions.

This model is imported to the SMV tool9 and is composed
of three modules:

• getInfo(id), where further information about the states
may be represented. In this case, the type of GUI elements
can be 1 for window, 2 for menu item and 3 for other
controls;

• getNextState(id), which represents information about the
next state (e.g., how many and which states follow a given
state);

• main, in which the state machine is described along with
the specification of the properties to be verified.

Figure 18 depicts an example of the SMV description of a
state machine.

VI. FEASIBILITY STUDY

In order to check and test the feasibility of the approach
presented in Section IV, ReGUI was run on Microsoft Notepad
v6.1. In this Section the different outputs resultant from this
experiment are presented and analysed. The window, naviga-
tion, disabled and dependencies graphs were visualised with
a template for Microsoft Excel, NodeXL10.

9http://www.cs.cmu.edu/∼modelcheck/smv.html
10http://nodexl.codeplex.com/

233

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Structural Information

Figure 12 is a simplified representation of the menu struc-
ture of Notepad upon the exploration of its menu item File.
At this point, the ReGUI tree has more information than the
presented in this Figure as the UI Automation tree contains
plenty of elements. However, these do not add any relevant
information to the structure and were, therefore, removed from
the example provided in this document.

Untitled – Notepad
 File
 New
 Open…
 Save
 Save As…
 Page Setup…
 Print…
 Exit
 Edit
 Format
 View
 Help

Fig. 12. Part of the ReGUI tree when exploring the menu item File

B. Behavioural Information

Apart from the structure, behavioural information is also
extracted and stored in four internal structures. In this Section,
an example of each of the graphs corresponding to those
structures, which have already been described in Section V, is
presented.

Figure 13 shows the visual representation of the navigation
graph. In this example, it is possible to depict that it is
necessary to interact with the menu item File and then interact
with the menu item Save or with the menu item Save As in
order to open the Save As window. Clicking on this window’s
button Close closes it and the main window gets the focus
again.

The visual representation of the window graph is repre-
sented in Figure 14. In this case, it is possible to see that
the window Open, which is modal, and the window Windows
Help and Support, which is modeless, may both be opened
from the main window of the AUA, which is modeless.

Figure 15 is the visual representation of the disabled graph,
obtained during the first step of the exploration process. In
this Figure, the set of menu items Paste, Undo, Cut, Delete,
Find Next, Find... and Copy are initially disabled. The menu
item Edit is represented only because it is the parent of these
menu items.

Figure 16 is the visual representation of the dependency
graph. With this graph it is possible to detect dependencies
among GUI controls and analyse whether or not it behaves as
expected. For instance, interacting with the menu item Word
Wrap provokes a modification on the isEnabled property of the
menu items Undo and Go To... (there is a dashed edge from

Fig. 13. Visual representation of the navigation graph

Fig. 14. Visual representation of the window graph

Fig. 15. Visual representation of the disabled graph

Word Wrap to Undo and to Go To...) and interacting with the
menu item Time/Date may alter the isEnabled property of the
menu item Undo (there is also a dashed edge between these
nodes). As such, a visual inspection over the graph may be

234

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enough for the tester to detect some abnormalities in the GUI’s
behaviour.

Fig. 16. Visual representation of the dependency graph

C. Spec# Model

Using the extracted information it is possible to obtain
another kind of model: a Spec# model, which is a formal
representation of the behaviour of the GUI. At this moment,
the Spec # model only represents the information gathered on
the navigation graph.

Figure 17 depicts a small sample of the generated Spec#
model for this case study. The rules applied to generate
this Spec# model, presented in Figure 11, are enumerated in
comments (//). The first namespace corresponds to the main
window of the Notepad software application. The two methods
within this namespace describe the behaviour when interacting
with the menu item File and with the menu item Save. The
second namespace corresponds to the window Save As and its
method describes the interaction with the button Close inside
that window.

After validating and completing the model, it can be used,
for example, as input for the MBGT approach described in
[48].

D. SMV Model

In order to verify properties on the extracted information, it
goes through a transformation process to SMV. Until now, only
the information represented by the navigation graph is used
to verify properties. The navigation graph is automatically
transformed into a SMV state machine (see Figure 18).

Figure 18 depicts the representation of the state machine
in the SMV model for this case study. The state machine has
an initial state (init(state)) and transitions (next(state)). The
meaning of each transition is described in comments (−−).
Three variables have been declared: state, which corresponds

namespace WindowUntitled___Notepad;

var windowUntitled___Notepad = 1;

var menu_itemFile = 1;

var menu_itemSave = 3;

[Action] void Menu_itemFile ()

 requires menu_itemFile == 1;{

 menu_itemSave = 1;

 };

[Action] void Menu_itemSave()

 requires menu_itemSave == 1;{

 menu_itemSave = 3;

 WindowSave_As.windowSave_As = 1;

 };

namespace WindowSave_As;

var windowSave_As4 = 3;

var buttonClose = 3;

[Action] ButtonClose ()

 requires buttonClose == 1;{

 buttonClose = 3;

 WindowUntitled___Notepad.

windowUntitled___Notepad = 1;

 };

Fig. 17. Sample of the Spec# formal model generated

to the id of the control represented by that state; follow,
which has two attributes: state, which corresponds to the set
of possible next states, and num, which indicates the number
of possible next states; and moreInfo, which has the attribute
type that represents the type of the control corresponding to
that state.

With this state machine, it is possible to verify several
properties to evaluate, for instance, usability properties, such
as:

• regardless of the current state, it is always possible to
reach the main window (state =1):
AF state = 1;

• check the presence of deadlocks:
!(EF (AG (follow.num = 1 & state in follow.state))).
It checks if when there is only one out transition, the next
state is different from the current state;

• regardless of the current state, it is possible to go back
to the main window in x steps (three, e.g.):
EBF 1..3 state = 1;

• when on the main window, there is always a window x
steps away (three, e.g.):
state = 1 − > ABF 1..3 moreInfo.tipo = 1.

Running the SMV model for the Microsoft Notepad appli-
cation, it is possible to state that:

• it is always possible to reach the main window, regardless
of the state;

• no deadlocks were detected;
• it is always possible to get to the main window in three

steps;
• there is always a window three steps away.

VII. CONCLUSIONS AND FUTURE WORK

ReGUI is capable of extracting important information about
the behaviour of the AUA, such as navigational information

235

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MODULE main
 VAR
 state: 1..20;
 follow: getNextState(state);
 moreInfo: getInfo(state);

 ASSIGN
 init(state) := 1;
 next(state):=
 case
 state = 1: {2, 4, 6, 7, 9, 11, 13, 15, 17, 19};
 --from state 1, it is possible to go to states 2 (Open...),
 --4 (Save), 6 (Save As...), 7 (Page Setup), 9 (Print…),
 --11 (Replace...), 13 (Go To...), 15 (Font...),
 --17 (View Help), 19 (About Notepad)
 state = 2: 3; --goes to window Open
 state = 3: 1; --goes to the main window
 state = 4: 5; --goes to window Save As
 state = 5: 1; --goes to the main window
 state = 6: 5; --goes to window Save As
 state = 7: 8; --goes to window Page Setup
 state = 8: 1; --goes to the main window
 state = 9: 10; --goes to window Print
 state = 10: 1; --goes to the main window
 state = 11: 12; --goes to window Replace
 state = 12: 1; --goes to the main window
 state = 13: 14; --goes to window Go To Line
 state = 14: 1; --goes to the main window
 state = 15: 16; --goes to window Font
 state = 16: 1; --goes to the main window
 state = 17: 18; --goes to window Windows Help and Support
 state = 18: 1; --goes to the main window
 state = 19: 20; --goes to window About Notepad
 state = 20: 1; --goes to the main window
 esac;

Fig. 18. State machine in SMV

and which GUI elements become enabled or disabled after
interacting with another element. The exploration process is
fully automatic, with the user just having to point out the AUA.

The outputs generated by the ReGUI tool are extremely
useful for program comprehension and for program verifi-
cation as the graphs can be used to verify some important
properties, such as reachability and deadlock-freeness, and the
Spec# model can be used for test case generation and platform
migration, for example. Even though the ReGUI tool does not
generate the totality of the Spec# model, it already provides
an important part of it.

The static and hybrid approaches have, by definition, a
different purpose than the one presented in this paper as
they require the source code, contrary to dynamic approaches.
Comparing with other dynamic approaches, it is possible to
conclude this approach extracts more information. Memon’s
approach [25] extracts information on the structure and the
relation between the different events, which is represented by
the ReGUI Tree and the navigation and window graphs, whilst
this approach also extracts information on the dependency be-
tween the different controls. Similarly, Amalfitano’s approach
[27] is focused on the events (when they are raised and
completed) and not on the dependency part. Briand et al. [31],
Safyallah and Sartipi [33] and Alafi’s [35] approaches require
instrumentation, even though they are considered dynamic

approaches, which makes these approaches more intrusives
than the approach presented in this paper. Moreover, the
behavioural information extracted enables proving different
properties through model checking. None of the analysed
approaches provides such analysis.

The main difficulties faced during the development were the
lack of GUI standards and the necessity of synchronisation.
ReGUI has still some limitations. For instance, currently, it
only supports interaction through the invoke pattern but it may
evolve to interact through other patterns. In addition, it just
tries to open windows from the main window and there are
still other dependencies that may be explored.

The future work will be focused on solving these limitations,
on improving the exploration of the GUI, i.e., interact with the
different controls more than once and in different orders and
on improving the Spec# generation. It is also intended to apply
this approach to other platforms, such as web and mobile.

VIII. ACKNOWLEDGEMENTS

This work is financed by the ERDF - European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
the project FCOMP-01-0124-FEDER-020554 and the PhD
scholarship SFRH/BD/81075/2011.

REFERENCES

[1] I. Coimbra Morgado, A. Paiva, and J. Pascoal Faria. Reverse Engineering
of Graphical User Interfaces. In The Sixth International Conference on
Software Engineering Advances (ICSEA ’11), number c, pages 293–298,
Barcelona, 2011.

[2] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, November 2007.

[3] Ana C. R. Paiva, João C. P. Faria, and Raul F. A. M. Vidal. Specification-
based testing of user interfaces. In Joaquim A. Jorge, Nuno Jardim
Nunes, and João Falcão e Cunha, editors, 10th International Workshop
on Interactive Systems. Design, Specification, and Verification (DSV-IS
’03), pages 139—-153, Funchal, Portugal, 2003.

[4] Ana C. R. Paiva, João C. P. Faria, and Pedro M. C. Mendes. Reverse
engineered formal models for GUI testing. In The 12th international
conference on Formal methods for industrial critical systems, pages 218–
233, Berlin, Germany, July 2007. Springer-Verlag.

[5] MG Rekoff. On Reverse Engineering. IEEE Trans. Systems, Man, and
Cybernetics, (March-April):244 – 252, 1985.

[6] E.J. Chikofsky and J.H. Cross. Reverse Engineering and Design
Recovery: a Taxonomy. IEEE Software, 7(1):13–17, 1990.

[7] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The
concept assignment problem in program understanding. In The 15th
international conference on Software Engineering (ICSE ’93), pages
482–498, May 1993.

[8] Thomas A. Standish. An Essay on Software Reuse. IEEE Transactions
on Software Engineering, SE-10(5):494–497, September 1984.

[9] Hausi A. Muller, Jens H. Jahnke, Dennis B. Smith, and Margaret-
Anne Storey. Reverse engineering: a roadmap. In Proceedings of the
conference on The future of Software engineering - ICSE ’00, pages
47–60, New York, New York, USA, May 2000. ACM Press.

[10] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achieve-
ments and challenges in software reverse engineering. Communications
of the ACM, 54(4):142, April 2011.

[11] Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley, 2005.
[12] David Binkley. Source Code Analysis: A Road Map. In Future of

Software Engineering (FOSE ’07), pages 104–119. IEEE, May 2007.

236

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] Thoms Bell. The concept of dynamic analysis. ACM SIGSOFT Software
Engineering Notes, 24(6):216–234, November 1999.

[14] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey
and taxonomy of approaches for mining software repositories in the
context of software evolution. Journal of Software Maintenance and
Evolution: Research and Practice, 19(2):77–131, March 2007.

[15] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec\#
Programming System: An Overview. In International Conference in
Construction and Analysis of Safe, Secure and Interoperable Smart
Devices (CASSIS ’04), pages 49–69, Marseille, France, 2004. Springer.

[16] Kenneth L. McMillan. Getting Started with SMV. Cadence Berkley
Labs, 2001 Addison St., Berkley, CA, USA, 1999.

[17] A.M.P. Grilo, A.C.R. Paiva, and J.P. Faria. Reverse engineering of
GUI models for testing. In The 5th Iberian Conference on Information
Systems and Technologies (CISTI ’10), number July, pages 1–6. IEEE,
2010.

[18] Alexandru Telea, Lucian Voinea, and Heorhiy Byelas. Architecting an
Open System for Querying Large C and C++ Code Bases. S. African
Computer Journal, 41(December):43–56, 2008.

[19] Stefan Staiger. Static Analysis of Programs with Graphical User
Interface. In 11th European Conference on Software Maintenance and
Reengineering (CSMR’07), pages 252–264. IEEE, 2007.

[20] Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus A Tool
Suite for Program Analysis and Reverse Engineering. In Reliable
Software Technologies, Ada Europe 2006, page 71, 2006.

[21] Christof Lutteroth. Automated reverse engineering of hard-coded GUI
layouts. In The 9th conference on Australasian user interface (AUIC
’08), pages 65–73. ACM, January 2008.

[22] Christof Lutteroth and Gerald Weber. User interface layout with
ordinal and linear constraints. In The 7th Australasian User Interface
Conference (AUIC ’06), pages 53–60, January 2006.

[23] João Carlos Silva, Rui Gonçalo, João Saraiva, and José Creissac Cam-
pos. The GUISurfer Tool: Towards a Language Independent Approach
to Reverse Engineering GUI Code. In 2nd ACM SIGCHI symposium
on Engineering interactive computing systems, pages 181–186, Berlin,
2010. ACM.

[24] Nicola Howarth. Abstract Syntax Tree Design. Technical Report August
1995, Architecture Projects Management Limited, 1995.

[25] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing. In The
10th Working Conference on Reverse Engineering (WCRE ’03), 2003.

[26] Daniel R. Hackner and Atif M. Memon. Test case generator for
GUITAR. In Companion of the 13th international conference on
Software engineering (ICSE Companion ’08), ICSE Companion ’08,
page 959, New York, New York, USA, 2008. ACM Press.

[27] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana.
Reverse Engineering Finite State Machines from Rich Internet Applica-
tions. In The 15th Working Conference on Reverse Engineering (WCRE
’08), pages 69–73. IEEE, October 2008.

[28] Jesse James Garrett. Ajax: A New Approach to Web Applications.
Adaptive Path, 2005.

[29] Cameron O’Rourke. A Look at Rich Internet Applications. Oracle
Magazine, 2004.

[30] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[31] L.C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering
of UML Sequence Diagrams for Distributed Java Software. IEEE
Transactions on Software Engineering, 32(9):642–663, September 2006.

[32] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors, The 11th
European Conference on Object-Oriented Programming (ECOOP’97),
volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer Berlin / Heidelberg, 1997.

[33] H. Safyallah and K. Sartipi. Dynamic Analysis of Software Systems
using Execution Pattern Mining. In The 14th IEEE International
Conference on Program Comprehension (ICPC ’06), pages 84–88.
IEEE, 2006.

[34] Tao Xie, Suresh Thummalapenta, and D Lo. Data mining for software
engineering. IEEE Computer, 42(8):55–62, 2009.

[35] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. A verification
framework for access control in dynamic web applications. In The
Proceedings of the 2nd Canadian Conference on Computer Science and

Software Engineering (C3S2E ’09), page 109, New York, New York,
USA, May 2009. ACM Press.

[36] Object Management Group. UML 2.1.2, 2012.
[37] Tarja Systä. Static and Dynamic Reverse Engineering Techniques for

Java Software Systems. Phd, University of Tampere, 2000.
[38] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding

software systems using reverse engineering technology perspectives
from the Rigi project. In Proceedings of the 1993 conference of
the Centre for Advanced Studies on Collaborative research: software
engineering (CASCON ’93), CASCON ’93, pages Volume1: 217–226.
IBM Press, 1993.

[39] K. Koskimies, T. Systa, J. Tuomi, and T. Mannisto. Automated support
for modeling OO software. IEEE Software, 15(1):87–94, 1998.

[40] Dominik Franke, Corinna Elsemann, Stefan Kowalewski, and Carsten
Weise. Reverse Engineering of Mobile Application Lifecycles. In 18th
Working Conference on Reverse Engineering (WCRE ’11), pages 283–
292. IEEE, October 2011.

[41] Glenford J. Myers. Art of Software Testing. March 1979.
[42] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automated

Reverse Engineering of UML Sequence Diagrams for Dynamic Web
Applications. In International Conference on Software Testing, Verifi-
cation, and Validation Workshops (ICSTW ’09), pages 287–294. IEEE,
April 2009.

[43] Rob Haverty. New accessibility model for Microsoft Windows and cross
platform development. SIGACCESS Access. Comput., (82):11–17, 2005.

[44] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, Lev Nachmanson, Robert Hierons, Jonathan
Bowen, and Mark Harman. Model-based testing of object-oriented
reactive systems with spec explorer. In Robert M. Hierons, Jonathan P.
Bowen, and Mark Harman, editors, Formal Models and Testing, volume
4949 of Lecture Notes in Computer Science, pages 39–76. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[45] Fabio Paternò and Carmen Santoro. Integrating Model Checking and
HCI Tools to Help Designers Verify User Interface Properties. In 7th
International Workshop on Interactive Systems Design, Specification and
Verification, Limmerick, Ireland, 2001.

[46] Nadjet Kamel, Sid Ahmed Selouani, and Habib Hamam. A Model-
Checking Approach for the Verification of CARE Usability Properties
for Multimodal User Interfaces. International Review on Computers &
Software, 4(1):152—-160, 2009.

[47] E Clarke, K McMillan, S Campos, and V Hartonas-Garmhausen. Sym-
bolic model checking. In Rajeev Alur and Thomas Henzinger, editors,
Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 419–422. Springer Berlin / Heidelberg, 1996.

[48] Ana C. R. Paiva, João C. P. Faria, Nikolai Tillmann, and Raul A. M.
Vidal. A Model-to-implementation Mapping Tool for Automated Model-
based GUI Testing. In 7th International Conference on Formal Engi-
neering Methods (ICFEM ’05), pages 450–464, 2005.

237

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Event-Sequence Testing using Answer-Set Programming

Martin Brain1, Esra Erdem2, Katsumi Inoue3, Johannes Oetsch4, Jörg Pührer4, Hans Tompits4, and Cemal Yilmaz2

1 University of Oxford, Department of Computer Science,
Oxford, OX1 3QD, UK

Email: martin.brain@cs.ox.ac.uk
2Sabanci University, Faculty of Engineering and Natural Sciences,

Orhanli, Tuzla, Istanbul 34956, Turkey
Email: {esraerdem,cyilmaz}@sabanciuniv.edu

3National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Email: inoue@nii.ac.jp
4Technische Universität Wien, Institut für Informationssysteme 184/3,

Favoritenstraße 9-11, A-1040 Vienna, Austria
Email: {oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract—In many applications, faults are triggered by
events that occur in a particular order. In fact, many bugs
are caused by the interaction of only a low number of such
events. Based on this assumption, sequence covering arrays
(SCAs) have recently been proposed as suitable designs for
event sequence testing. In practice, directly applying SCAs for
testing is often impaired by additional constraints, and SCAs
have to be adapted to fit application-specific needs. Modifying
precomputed SCAs to account for problem variations can
be problematic, if not impossible, and developing dedicated
algorithms is costly. In this article, we propose answer-set
programming (ASP), a well-known knowledge-representation
formalism from the area of artificial intelligence based on
logic programming, as a declarative paradigm for computing
SCAs. Our approach allows to concisely state complex coverage
criteria in an elaboration tolerant way, i.e., small variations of
a problem specification require only small modifications of the
ASP representation. Employing ASP for computing SCAs is
further justified by new complexity results related to event-
sequence testing that are established in this work.

Keywords-event-sequence testing; complexity analysis; combi-
natorial interaction testing; answer-set programming.

I. INTRODUCTION

This article is an extension of a previous conference
version [1]. Besides an extended discussion of related work,
the first important extensions is a complexity analysis of the
main computational problem which gives further justification
of our solution approach. The second important extension
is that we use a different problem encoding which is, on
the one hand, simpler than the one used in the previous
conference paper, and, on the the other hand, significantly
improves many results.

In many applications, faults only show up if events occur in
a certain order. An example are atomicity violations in multi-
threaded applications where a pair of shared memory accesses

of one thread is interleaved with an unfortunate access
of another thread. Testing such applications thus requires
exercising event sequences. Since the number of event
sequences is factorial in the number of events, exhaustive
testing is infeasible in general. If we assume that bugs are
triggered by the interaction of only a low number of events,
testing costs can be reduced drastically without sacrificing
much fault-detection potential by using suitable combinatorial
designs [2], [3]. To this end, Kuhn et al. [4] introduced
sequence covering arrays (SCAs) for combinatorial event
sequence testing. An SCA of strength t is an array of
permutations of events such that every ordering of any t
events appears as a subsequence of at least one row. For
illustration, the following matrix is an SCA for four events
{1,2,3,4} with t = 3:

3 1 2 4
1 3 4 2
2 3 4 1
4 1 2 3
2 1 4 3
4 3 2 1

 .

Any ordering of three events can be found as subsequence
of one row. If three particular events occur as subsequence
of a row, we say that a row covers the three events. For
example (1, 2, 3) is a subsequence of the fourth row, (1, 3, 2)
is a subsequence of the second row, (2, 3, 4) is covered by
the third row, and so on and so forth.

SCAs are relevant for testing applications where the order
of events is decisive. Examples of respective event sequences
in such applications are user actions for user-interface testing,
visited web pages in dynamic web applications, method calls
for unit-testing in object-oriented programming, and shared

238

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variable accesses in multi-threaded programs as we already
mentioned. If an SCA of strength t is used as basis for a
test plan for such applications, i.e., each row of the SCA
is turned into the specification of a test run that imposes a
particular order on relevant event, not all permutations of
events will be tested in general, but at least we have the
guarantee that the potential interaction of any t events will
be tested at least once.

In practice, a direct application of SCAs for testing is often
impaired by additional constraints on the order of events.
It can be necessary to exclude, for example, that a “paste”
event happens before a “copy” event when testing a user
interface. Also, the conditions that identify the sequences that
should be covered can vary and often involve quite complex
definitions. For example, to test thread interleavings, one
could require to test all sequences such that one variable
is written by one thread and subsequently read by another
thread such that there is no write operation between them [5],
[6]. Hence, quite expressive constraints and variations from
standard SCAs have to be taken into account. Furthermore,
sometimes certain orderings are regarded as redundant and
should be avoided to reduce testing costs. For example, the
order in which devices are connected to a computer is not
relevant if the computer is not booted.

One approach to address such considerations is to accord-
ingly modify precomputed SCAs as exemplified by Kuhn
et al. [4]. This means that any test sequence which, e.g.,
violates some ordering constraints has to be removed from
the SCA. To maintain coverage, removed sequences have
to be replaced by permutations thereof that comply to the
problem specific requirements. This is not always possible in
a straightforward way and can result in a considerable and
in principle avoidable overhead regarding the size of arrays.
On the other hand, developing and maintaining dedicated
algorithms to compute variations of SCAs usually comes
with high costs and is not preferable if requirements change
over time—which is a daily aspect in real-world system
development—or one wants to experiment with different
designs.

We propose to use answer-set programming (ASP) [7]–
[9] for computing SCAs and variations thereof. ASP is a
genuine declarative programming paradigm where a problem
is encoded by means of a logic program such that the
solutions of a problem correspond to the models, called
answer sets, of the program. On the one hand, as an
expressive high-level specification language, it allows to
state complex coverage criteria, involving constraints and
complex, possibly recursive, definitions, in a concise and
elaboration-tolerant way, i.e., small variations in a problem
specification require only small modifications of the program
representation. On the other hand, SCAs can be efficiently
computed through highly optimised ASP solvers [10], [11].
Since it requires only little effort to state quite complex
coverage conditions in ASP, a tester is able to rapidly specify

and to experiment with different versions of SCAs.
This paper is organised as follows. In Section II, we review

SCAs and ASP. In Section III, we analyse the intrinsic
problem complexity of SCA computation which indeed
shows that ASP is a suitable computational means. Then,
in Section IV, we show how SCAs can be generated using
ASP. We present improved, sometimes optimal, upper bounds
regarding the size of many SCAs. We furthermore present
a greedy algorithm, based on ASP, for computing larger
SCAs. In Section V, we turn towards a real-world example
described by Kuhn et al. [4]. We discuss how the basic ASP
encoding from Section IV can be refined, step-by-step, to
take different constraints and problem variations into account.
The resulting array is significantly smaller than the one of
Kuhn et al. that was created by modifying a precomputed
SCA. In fact, we show that our solution is optimal with
respect to the specified coverage criteria. Finally, we discuss
related work in Section VI and conclude in Section VII.

II. PRELIMINARIES

In this section, we review the formal definition of SCAs
and give a brief background on ASP.

A. Sequence Covering Arrays (SCAs)

SCAs, introduced by Kuhn et al. [4], are combinatorial
designs related to covering arrays. While covering arrays
require that each t-way combination of parameters occurs
at least once in a test case for some fixed t, SCAs take the
order of events into account and require that each t-sequence
of events is tested in at least one test sequence in that order,
where a t-sequence over a set S of symbols is a sequence of
t pairwise distinct elements of S. Following Kuhn et al. [4],
we formally define SCAs as follows.

Definition 1: A sequence covering array (SCA) with
parameters n, S, and t, or an (n, S, t)-SCA for short, is
an n × |S| matrix M of symbols from a finite set S of
symbols such that

(i) each row of M is a permutation of S, and
(ii) for each t-sequence σ = (s1, s2, . . . , st) over S, there

is at least one row % = (ai1, . . . , ai|S|) in M such that
σ is a subsequence of %.

We say that an (n, S, t)-SCA is of strength t and of size n.
Definition 2: The sequence covering array number for S

and t, SCAN(S, t), is the smallest n such that an (n, S, t)-
SCA exists.
An (n, S, t)-SCA is optimal if SCAN(S, t) = n. As usual, l
is a lower bound for SCAN(S, t) if l ≤ SCAN(S, t), and u
is an upper bound for SCAN(S, t) if SCAN(S, t) ≤ u. We
will also denote an (n, {1, . . . , s}, t)-SCA as an (n, s, t)-SCA
with SCAN(s, t) for brevity.

239

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For illustration, the following matrix M constitutes an
optimal (7, 5, 3)-SCA:

M =

5 2 3 1 4
3 2 5 4 1
1 5 4 3 2
3 4 5 1 2
4 2 5 1 3
2 4 3 1 5
1 2 3 4 5

.

Each of the seven rows is a permutation of the set S =
{1, . . . , 5} and each 3-sequence over S is covered by at least
one row. For instance, the 3-sequence (5, 3, 4) is covered by
the first row of M , and (3, 4, 5) is covered by the fourth row
of M (as well, (3, 4, 5) is covered by the last row of M).
Note that there are 5 · 4 · 3 = 40 such 3-sequences.

A collection of precomputed SCAs of strength 3 and 4
is available online [12]. These SCAs were computed using
a simple greedy algorithm introduced by Kuhn et al. [4].
To compute a t-strength SCA for a set S of events, this
algorithm iteratively computes single rows of the SCA: In
each iteration, it computes a fixed number of permutations
of S. Then, it selects the permutation π that obtains maximal
coverage of previously uncovered t-sequences as the next
row of the SCA. After that, π in reverse order, π′, is added.
Adding π′ is justified because π′ always covers the same
number of previously uncovered t-sequences as π [4]. This
procedure is iterated until all t-sequences are covered.

Recently, this algorithm has been extended to deal with
forbidden orderings of events. In particular, if event x must
not occur before event y in any test case, it is possible to
specify the pair (x, y) as additional input of the algorithm.
Subsequently, only rows that do not contain (x, y) as
subsequence are added. Also, if a constraint is specified,
the heuristic to add rows in reverse order is disabled.

Though the greedy algorithm can take simple constraints
into account, one downside is that more complex constraints
or other variations from plain SCAs arising from the
requirements of different test scenarios are hard to incorporate.
To overcome this shortcoming, we use ASP in what follows
as a declarative tool to compute SCAs and demonstrate that
quite complex constraints can be incorporated into a solution
in a concise and elaboration-tolerant way, and with ease.

B. Answer-Set Programming (ASP)

ASP [7]–[9] is a relatively new declarative programming
paradigm. The underlying idea of ASP is to declaratively
represent a computational problem as a logic program whose
models, called “answer sets” [13], correspond to the solutions,
and to find the answer sets for that program using an ASP
solver. Due to the expressiveness of ASP, allowing, e.g., to
represent aggregates and recursive definitions, and due to the
continuous improvements of the efficiency of ASP solvers,
such as clasp [14], we argue that ASP can efficiently and

effectively be used to compute SCAs. Indeed, ASP has been
used in a wide range of applications from different fields,
such as semantic-web reasoning [15], systems biology [16],
planning [17], diagnosis [18], [19], configuration [20], multi-
agent systems [21], cladistics [22], [23], game content gener-
ation [24], and superoptimisation [25]. For a comprehensive
introduction to ASP, we refer to the textbook by Baral [9].

In what follows, we recapitulate the basic elements of ASP.
An answer-set program is a finite set of rules of the form

a0 :− a1, . . . , am,not am+1, . . . ,not an, (1)

where n ≥ m ≥ 0, a0 (called the head of the rule) is a
propositional atom or ⊥, a1, . . . , an are propositional atoms,
and the symbol “not” denotes default negation. The sequence
a1, . . . , am,not am+1, . . . ,not an comprises the body of the
rule. If a0 = ⊥, then rule (1) is a constraint (in which case
a0 is usually omitted). The intuitive reading of a rule of
form (1) is that whenever a1, . . . , am are known to be true
and there is no evidence for any of the default negated atoms
am+1, . . . , an to be true, then a0 has to be true as well. Note
that ⊥ can never become true.

An answer set for a program is defined following Gelfond
and Lifschitz [26]. An interpretation I is a finite set of
propositional atoms. An atom a is true under I if a ∈ I ,
and false otherwise. A rule r of form (1) is true under I
if {a1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅ implies
a0 ∈ I . We say that I is a model of a program P if each
rule r ∈ P is true under I . Finally, I is an answer set of P
if I is a subset-minimal model of P I , where P I is defined
as the program that results from P by deleting all rules
that contain a default negated atom from I , and deleting all
default negated atoms from the remaining rules.

Programs can yield no answer set, one answer set, or many
answer sets. For instance, the program

p :− not q ,
q :− not p (2)

has two answer sets: {p} and {q}.
When we represent a problem in ASP, some rules “gener-

ate” answer sets corresponding to “possible solutions”, and
some “eliminate” the answer sets that do not correspond to
solutions. The rules in program (2) are of the former kind;
constraints are of the latter kind. For instance, adding the
constraint

⊥ :− p

to a program P eliminates all answer sets of P containing
p. In particular, adding ⊥ :− p to program (2) eliminates
the answer set {p}.

When we represent a problem in ASP, we often use special
constructs of the form l{a1, . . . , ak}u (called cardinality
expressions) where each ai is an atom and l and u are
nonnegative integers denoting the lower bound and the upper
bound of the cardinality expression [27]. Programs using

240

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

these constructs can be viewed as abbreviations for particular
normal programs [28]. Such an expression describes the
subsets of the set {a1, . . . , ak} whose cardinalities are at least
l and at most u. In heads of rules, cardinality expressions
generate answer sets containing subsets of {a1, . . . , ak}
whose cardinality is at least l and at most u. When used
in constraints, they eliminate answer sets that contain such
respective subsets.

A group of rules that follow a particular pattern can often
be described in a compact way using schematic variables.
For instance, we can write the program pi : − not pi+1,
(1 ≤ i ≤ 7) as follows:

index (1), index (2), . . . , index (7),
p(i) :− not p(i+ 1), index (i).

ASP solvers compute an answer set for a given program that
contains variables after “grounding” the program, e.g., by the
grounder gringo [29]. A grounder systematically replaces
each rule r with variables by its ground instances that result
from r by uniformly replacing each variable by constants
from the program. Variables can also be used “locally” to
describe a list of literals. For instance, the rule 1{p1, . . . , p7}1
can be represented as 1{p(i) : index (i)}1.

In addition to the constructs above, current state-of-the-
art ASP solvers support many further language extensions
like functions, built-in arithmetics, comparison predicates,
aggregate atoms, maximisation and minimisation statements,
as well as weak constraints.

In the remainder of this paper, we use the syntax that is
supported by the solver clasp along with the grounding
tool gringo when presenting programs [30]. Note that, at
term positions, upper-case letters denote variables, while
lower-case letters denote constant symbols.

For illustrating problem solving in ASP, consider the
following encoding of the 3-colorability problem (3COL):

colour(red;green;blue).
1 {asgn(N,C) : colour(C)} 1 :- node(N).
:- edge(X,Y), asgn(X,C), asgn(Y,C).

The first rule abbreviates three facts that state that red, green,
and blue are colours, respectively. The second rule is a choice
rule. Its intuitive reading is that if N is a node, then both an
upper bound and a lower bound on the number of colours
assigned to this node, expressed by asgn(N,C), is 1. This
means that each node gets assigned precisely one colour from
the set of available colours defined by colour/1. The last
rule is a constraint that forbids that there is an edge between
any two nodes with the same colour. If the above program is
joined with facts over edge/2 and node/1 that represent a
graph G, the answer sets correspond one-to-one to the valid
3-colourings of G.

Sometimes, one is not only interested in arbitrary solutions
to a problem but in solutions that are optimal according to
some preference relation. clasp supports maximise and

minimise statements that allow the express such preferences.
For illustration, assume that, for some reason, we want to
minimise the number of blue nodes in the above 3COL
example. This can be expressed by simply adding the
following minimise statement:

#minimize[asgn(N,blue) : node(N)].

The meaning of such a statement is that clasp computes
answer sets where the sum of literals asgn(N,blue),
where N is a node, is minimal among all answer sets.

III. PRELUDE: COMPLEXITY OF SCA GENERATION

Deciding whether a logic program has an answer-set is NP-
complete, thus computing answer-sets can be quite expensive.
Indeed, the runtime of ASP solvers is exponential with
respect to the number of atoms in the worst case. In this
section, we analyse the computational worst-case complexity
of generating SCAs. We assume that the reader is familiar
with the basic concepts of complexity theory. For more
information about complexity theory, we refer to the reference
textbook by Papadimitriou [31].

For our complexity analysis, we actually study a slight
generalisation of the problem of generating SCAs. On the
one hand, usually not all permutations of events are allowed
for testing, some could be excluded for various reasons. On
the other hand, usually not all t-sequences need to be covered,
some may be forbidden or regarded as redundant. We next
formalise this natural generalisation as a decision problem
and study its complexity.

Definition 3: An instance of the generalised event se-
quence testing (GEST) problem is a tuple (S, P, T, k), where
P be is a set of permutations of a set S of symbols, T is
a set of t-sequences over S with t ≥ 2, and k is a positive
integer. A tuple (S, P, T, k) is a yes-instance of GEST iff
there exists a matrix M with at most k rows such that

(i) each row of M is an element from P , and
(ii) for each t-sequence σ = (s1, s2, . . . , st) from T , there

is at least one row % = (ai1, . . . , ai|S|) in M such that
σ is a subsequence of %.

Theorem 1: GEST is NP-complete.
Proof:

Membership. We first show that GEST is in NP. Any
instance (S, P, T, k) of GEST can be decided by non-
deterministically “guessing” a k × |S| matrix M of symbols
from S and checking conditions (i) and (ii) from Definition 3
in polynomial time.

Hardness. To show NP-hardness, we reduce the NP-hard
problem of checking set coverage to GEST. Formally, an
instance of set cover (SC) is a tuple (V, F, k), where V is a
set of elements, F is a collection of subsets of V , and k is
a positive integer. A tuple (V, F, k) is a yes-instance of SC
iff there is a subcollection F ′ ⊆ F of size at most k whose
union contains each element of V . It is well known that SC
is NP-complete [32].

241

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let (V, F, k) be an instance of SC. Assume that “�” is a
separation symbol not contained in V . Define

S = V ∪ {�} .

For each f ∈ F , construct a permutation πf of S by
arbitrarily arranging the symbols from f before � and the
symbols in V \ f after �. Define

P = {πf | f ∈ F}

and
T = {(v,�) | v ∈ V } .

Note that |P | = |F |. We show that (V, F, k) is a yes-instance
of SC iff (S, P, T, k) is a yes-instance of GEST.

Assume that (V, F, k) is a yes-instance of SC. Hence, there
exists a set F ′ ⊆ F of size at most k whose union contains
each element of V . Construct a matrix M such that πf ∈ P
is a row of M iff f ∈ F ′. Clearly, M is a matrix from
symbols from S that satisfies condition (i) of Definition 3.
We show that M satisfies condition (ii) as well. Towards a
contradiction, assume that there is a 2-sequence (v,�) in
T and there is no row in M such that v occurs before �.
Since (V, F, k) is a yes-instance of SC, F ′ contains at least
one set f with v ∈ f . Since πf is a row of M , and v occurs
before � in πf by construction, we arrive at a contradiction.
Hence, (S, P, T, k) is a yes-instance of GEST.

For the converse, assume that (S, P, T, k) is a yes-instance
of GEST. Hence, there exists a matrix M that satisfies
conditions (i) and (ii) from Definition 3. We show that then
(V, F, k) is a yes-instance of SC. Define set F ′ as a subset
of F that contains an element f ∈ F iff (∗) there is a row
π of M such that all elements of f occur before � in π.
Clearly, F ′ is of size at most k since M consists of at most
k rows, and, for any row of M , precisely one f ∈ F satisfies
(∗). It remains to show that for each v ∈ V , v is contained
in some set in F ′. Towards a contradiction, assume that for
some v ∈ V there is no set in F ′ that contains v. Since
(S, P, T, k) is a yes-instance of GEST, and (v,�) ∈ T , it
follows that in one row πf of M , v occurs before �. By
construction of F ′, F ′ contains a set f ∈ F consisting of
all symbols of πf that occur before �. Hence, v ∈ f which
contradicts the assumption that no such set in F exists. So,
(V, F, k) must be a yes-instance of SC.

Hence, any approach that is capable of deciding problems
in GEST cannot avoid worst-case exponential runtime
behaviour unless P = NP. Note that the SCA generation
problems studied in this paper are instances of GEST.
Moreover, for any problem in NP, there exists a uniform
ASP encoding [33], [34]. Hence, NP-completeness of GEST
further justifies ASP as a tool to formalise and compute such
problems.

Although GEST is NP-complete, one could further ask
whether GEST is fixed-parameter tractable for a suit-
able problem parameter. Roughly speaking, fixed-parameter

tractability means that a problem can be solved efficiently, i.e.,
in polynomial time, for fixed values of the parameter; details
on parameterised complexity can be found elsewhere [35],
[36]. A natural choice for such a parameter for a problem
instance (S, P, T, k) would be the size k of the SCA because
it can be assumed to be small in practice. We denote the
parameterised version of GEST with k as parameter as the
standard parameterisation of GEST.

In more formal terms, a parameterisation of a decision
problem is obtained by assigning a natural number to each
problem instance. A parameterised decision problem is fixed-
parameter tractable if a problem instance x with parameter
k can be decided in running time f(k) · |x|O(1), where f is
a computable function which is independent of |x|.

In standard complexity theory, problems are classified and
ordered into hierarchies using polynomial-time reductions.
Under parameterised complexity, parameterised reductions,
so-called fpt-reductions, are used for this purpose. An fpt-
reduction from a parameterised problem P to a parameterised
problem Q is a function φ such that for any instance x of P

(i) φ(x) can be computed in time f(k) · |x|O(1), where k
is the parameter of x,

(ii) φ(x) is a yes-instance of Q iff x is a yes-instance of
P , and

(iii) if k is the parameter of x and k′ is the parameter of
φ(x), then k′ ≤ g(k), for some computable function g.

The class FPT contains all fixed-parameter tractable
problems. Note that FPT is closed under fpt-reductions.
Similar to the polynomial hierarchy in standard complexity
theory, a hierarchy of classes W[i] has been introduced with
FPT at its lowest level. In particular, FPT = W[0] and
W[i] ⊆W[j], for all i ≤ j. All classes W[i] are closed under
fpt-reductions. Moreover, analogous to P ⊆ NP, it is not
known whether the inclusions W[i] ⊆W[j] are proper, but
most experts believe this to be the case. The following result
implies that GEST is not in FPT unless the W-hierarchy
collapses up to the second level.

Theorem 2: The standard parameterisation of GEST is
W[2]-complete.

Proof:
Consider an instance (V, F, k) of SC. If we take k, i.e.,

the size of the subcollection F ′ ⊆ F whose union contains
each element of V , as parameter, SC is W[2]-complete [35].

Membership. To show membership in W[2], we use an fpt-
reduction from GEST to SC. Let (S, P, T, k) be an instance
of GEST. For any π ∈ P , construct a set fπ ⊆ T that
contains any t-sequence τ ∈ T iff the elements of τ occur
in π in the same order as in τ . Define

F = {fπ | π ∈ P} .

We show that (S, P, T, k) is a yes-instance of GEST iff
(T, F, k) is a yes-instance of SC.

Assume that (S, P, T, k) is a yes-instance of GEST.
Hence, there exists a matrix M satisfying conditions (i)

242

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and (ii) from Definition 3. Define F ′ as the subset of F
that contains fπ iff π is a row of M . Clearly, the size of
F ′ is at most k. It remains to show that the union of the
elements of F ′ contain each τ ∈ T . Towards a contradiction,
assume that there is an element τ ∈ T such that no set in
F ′ contains τ . Since (S, P, T, k) is a yes-instance of GEST,
M contains a row π ∈ P such that the symbols in τ occur
in π in the same order as in τ . Thus τ ∈ fπ . Since fπ ∈ F ′,
we arrive at a contradiction. Therefore, (T, F, k) must be a
yes-instance of SC.

Assume now that (T, F, k) is a yes-instance of SC. Hence,
there is a subset F ′ ⊆ F of size at most k whose union
contains each element of T . Construct a matrix M according
to Definition 3 such that M contains, for each f ∈ F ′, one
row π ∈ P that satisfies fπ = f . Clearly, M consists of at
most k rows from P . It remains to show that M satisfies
condition (ii) of Definition 3. Towards a contradiction, assume
that there is a t-sequence τ ∈ T such that no row contains
the symbols in τ in the same order as in τ . Since (T, F, k)
is a yes-instance of SC, there is a set f ∈ F ′ that contains τ .
Since M contains a row π with fπ = f , it follows from the
construction of fπ that π contains the symbols in τ in the
same order as in τ . We thus arrive at a contradiction, and
so (S, P, T, k) is yes-instance of GEST.

Hardness. To show that GEST is W[2]-hard, we define
an fpt-reduction from SC to GEST. In fact, the reduction
used in the hardness proof of Theorem 1 is such an fpt-
reduction since the problem parameter k is preserved. Hence,
W[2]-hardness of GEST follows.
Hence, even if we are interested only in relatively small
test plans, it is presumably not possible to avoid worst-case
exponential runtime.

IV. SCA COMPUTATION

We now discuss how ASP can be used to generate SCAs.
Our goal is not only to present approaches to compute generic
SCAs, i.e., SCAs created without additional constraints
or requirements, rather we want to demonstrate that ASP
can be used as an efficient and effective declarative tool
to compute SCAs tailored to specific test scenarios. We
in particular demonstrate that (i) the declarative nature of
ASP encodings can help to state complex coverage criteria,
involving constraints and possibly recursive definitions with
ease in a concise and elaboration-tolerant way, and (ii) when
the declarative nature of ASP encodings is coupled with ever-
improving efficiency of ASP solvers, even simple encodings
that closely reflect the problem statement in natural language
can provide better SCAs (e.g., smaller SCAs) compared to
those obtained from a dedicated algorithm.

Ahead of our discussion in Section V addressing how
different problem elaborations can be incorporated into a
single answer-set program, we introduce in what follows
an answer-set program for computing generic SCAs. This
program will serve as basis for further problem elaboration

% ASP encoding for (n,s,3)-SCAs
sym(1..s). row(1..n).

% guess happens-before relation
1{hb(N,X,Y),hb(N,Y,X)}1 :- row(N),

sym(X;Y), X != Y.

% happens-before is transitive
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

% happens-before is irreflexive
:- hb(N,X,X).

% check if each 3-sequence is covered
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- not covered(X,Y,Z),

sym(X;Y;Z), X!=Y, Y!=Z, X!=Z.

Figure 1. ASP encoding Π3(n, s).

discussed in the sequel. We also introduce a new greedy
approach that combines a simple variation of the basic ASP
encoding with an iterative greedy procedure.

A. Basic Encoding

To begin with, we present an ASP program for computing
(n, s, t)-SCAs with t = 3. We assume throughout that s ≥ 3.
Note that this program can be changed in a straightforward
way to obtain encodings for any fixed t > 3. An encoding for
SCAs where t is not fixed can be obtained using disjunctive
ASP [13]—this is, however, beyond the scope of this article.
For the sake of understandability, we introduce our encoding
step-by-step.

1) Encoding: We start by expressing that the symbols of
the array are integers between 1 and s, and row indices of
the SCA correspond to integers 1 to n. Note that s and n
function as parameters of the program:

sym(1..s). row(1..n).

For the representation of the SCA, we use the predicate
hb(N,X,Y) expressing that in row N event symbol X
happens before symbol Y. The basic idea is that we will
define this happens-before relation in a way that it is, for
each row, a strict total order on the event symbols.

The first rule states that for any two distinct symbols X
and Y in each row, either X happens before Y or Y happens
before X:

1 {hb(N,X,Y),hb(N,Y,X)} 1 :- row(N),
sym(X;Y), X != Y.

We need further rules to guarantee that the happens-
before relation is indeed a strict total order. In particular, we
need rules that guarantee that the happens-before relation is
transitive and irreflexive. Now, transitivity can be expressed
in a straightforward way:

hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

243

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Directly expressing inductive definitions as above is a
particular strength of ASP and distinguishes it from related
declarative approaches that are more based on the semantics
of classical first-order logic.

To state that the happens-before relation is irreflexive, a
simple additional constraint is required.

:- hb(N,X,X).

Hence, it is forbidden that a symbol occurs before itself.
This finally implies that the happens-before relation is

a strict total order on the event symbols {1, . . . , s} which
further implies that each row is a permutation of the event
symbols when we order them according to the happens-before
relation.

It only remains to require that each 3-sequence of symbols
is covered by some row. Observe that a 3-sequence is a
triple of pairwise distinct symbols. A 3-sequence (X,Y,Z)
is covered if X happens before Y and Y happens before Z
in some row N. We finally define covered 3-sequences and
forbid that a 3-sequence is not covered:

covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- not covered(X,Y,Z),

sym(X;Y;Z), X!=Y, Y!=Z, X!=Z.

The entire ASP program Π3(n, s) with parameters n and s
for generating (n, s, 3)-SCAs is given in Figure 1.

Intuitively, each answer set of program Π3(n, s) represents
an (n, s, 3)-SCA. In fact, the answer sets of Π3(n, s) and
the (n, s, 3)-SCAs are in a one-to-one correspondence. This
relation can be formalised as follows:

Definition 4: An answer set X of Π3(n, s), for s ≥ 3,
represents an n×s matrix M iff, for any i, j, 1 ≤ i < j ≤ s,
and any r, 1 ≤ r ≤ n, Mr,i = s1 and Mr,j = s2 precisely
in case X contains the atom hb(r, s1, s2).

Proposition 1: Each answer set of Π3(n, s) represents a
single (n, s, 3)-SCA, and each (n, s, 3)-SCA is represented
by a single answer set of Π3(n, s).

For illustration, to compute a (7, 5, 3)-SCA, gringo and
clasp can be invoked as follows:

gringo sca-3.gr -c n=7,s=5 | clasp .

File sca-3.gr contains program Π3(n, s). The gringo
option -c n=7,s=5 instantiates the program parameters
n and s to 7 and 5, respectively. Any resulting answer set
corresponds to a (7, 5, 3)-SCA. For instance, in some answer
set, the first row of the SCA M given in Section II-A is
encoded by the atoms

hb(1,1,4), hb(1,3,1), hb(1,2,3),
hb(1,5,2), hb(1,5,3), hb(1,2,1),
hb(1,3,4), hb(1,2,4), hb(1,5,4),
hb(1,5,1).

To compute more than one (7, 5, 3)-SCA, an upper bound on
the number of answer sets that clasp should compute can

Table I
UPPER BOUNDS n FOR SCAN(s, 3) OBTAINED BY KUHN ET AL. [4] AND

OUR ASP ENCODING. A STAR INDICATES AN OPTIMAL BOUND.

s n (Kuhn et al. [4]) n (ASP)
5 8 7∗

6 10 8∗

7 12 8∗

8 12 8∗

9 14 9∗

10 14 9∗

11 14 10
12 16 10
13 16 10
14 16 10
15 18 10
16 18 10
17 20 11
18 20 12
19 22 12
20 22 12
21 22 12
22 22 12
23 24 13
24 24 13
25 24 14
26 24 14
27 26 14
28 26 14
29 26 14
30 26 15
40 32 17
50 34 18
60 38 20
70 40 22
80 42 23

be specified as an integer option (0 means that all answer
sets are computed).

2) Discussion: Program Π3(n, s) nicely illustrates how
challenging search problems can be concisely encoded using
ASP: The program consists of only seven rules that closely
reflect the problem statement in natural language. We note
that only little training time is needed to enable a tester to
use ASP for test authoring. This is mainly because of the
genuine declarative nature of ASP, which does not require
specialised knowledge on data structures or algorithms. A
more experienced ASP user needs about 15 minutes to
develop a program such as the one given in Figure 1.

Also, by using our ASP encoding Π3(n, s) and the ASP
solver clasp, we could improve known upper bounds
for many SCAs significantly. A comparison of the SCAs
generated using ASP and the greedy algorithm of Kuhn
et al. [4] is given in Table I. Computation times for the
reported upper bounds range from fractions of a second to
180 minutes. We have considered strength 3 SCAs for five
to 80 events. The known upper bounds reported by Kuhn
et al. [4] could be improved throughout. The more events
are considered, the more drastic are the improvements; for
some arrays, we need up to 46.88% less test sequences. Such
savings are especially significant in settings where running
single test sequences are costly.

244

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For small SCAs—viz. for 5 to 10 events—the new upper
bounds are actually optimal bounds. Optimality of upper
bounds was established using ASP itself. To show that an
(n, s, t)-SCA is optimal, we try to compute an (n− 1, s, t)-
SCA. If this fails, i.e., the ASP solver terminates without
returning an answer set, the (n, s, t)-SCA is indeed optimal.
Since SCAN(10, 3) = 9, 9 is a trivial lower bound for any
SCAN(s, 3) with s > 10. Note that greedy algorithms, or
any approaches based on incomplete search, are unable to
prove optimal bounds or to establish lower bounds at all.

A limitation of using the ASP encoding Π3(n, s) concerns
scalability. Although memory usage is always limited by a
polynomial with respect to the input parameters n and s, the
runtime of clasp is worst-case exponential for encoding
Π3(n, s). On the other hand, the greedy approach of Kuhn et
al. [4] seems to scale quite well; the authors report on SCAs
for up to 80 events not only for strength 3 arrays, but they
also consider arrays of strength 4 where our ASP approach
quickly reaches its limits.

B. Greedy Algorithm

In the remainder of this section, we introduce and discuss
an ASP-based greedy algorithm, inspired by that of Kuhn et
al. [4], for computing larger SCAs. The motivation to study
such an algorithm is to combine the modelling capabilities
of ASP, especially in the light of constraints and problem
elaborations (as detailed in the next section), with the
scalability of a greedy approach.

In this context, we also mention that the greedy algorithm
of Kuhn et al. has a certain weakness, which is related
to the heuristic that for any newly computed sequence the
reverse sequence is added as well (cf. Section II). As we
will show next, this makes the algorithm inherently unable to
compute optimal SCAs in general. Actually, the inability to
find optimal SCAs follows immediately from the observation
that some optimal SCAs, e.g., (7, 5, 3)-SCAs, are of odd
size. However, ASP can be used to show that even optimal
SCAs of even size cannot be found by that greedy approach
in general. The idea is to augment program Π3(n, s) by a
rule that states that every second row is the inversion of the
previous one. This is simply expressed by the following rule:

hb(N,X,Y) :- row(N),hb(N-1,Y,X),
N #mod 2 == 0.

Here, predicate #mod is the usual modulo operation. Hence,
the intuitive reading of this rule is that for any row with
even index N, the happens-before relation is the inverse
of the happens-before relation of the preceding row N-1.
We know already from Table I that any (8, 6, 3)-SCA is
optimal. However, Π3(8, 6) augmented by the above rule
yields no answer set, which shows that (8, 6, 3)-SCAs cannot
be computed by the greedy algorithm of Kuhn et al. [4]. Next,
we present an ASP-based greedy algorithm inspired by that
of Kuhn et al. that does not rely on adding inverted rows.

Require: s is the number of symbols.
Ensure: N represents an (n, s, 3)-SCA.

1: N ⇐ ∅
2: n ⇐ 0
3: repeat
4: n ⇐ n + 1
5: X ⇐ answer set of Π3

grdy(s, n) ∪N
6: N ⇐ N ∪X|hb/3

7: until N represents an (n, s, 3)-SCA

Figure 2. Greedy algorithm for computing an (n, s, 3)-SCA.

1) Encoding: Figure 2 represents our ASP-based greedy
algorithm for computing SCAs. The main idea is to compute
one row of a SCA at a time instead of computing the entire
array. In each iteration, one further row is computed using
ASP where the number of covered 3-sequences is maximised.
For this purpose, we use program Π3

grdy(s, i), which is
depicted in Figure 3. Program Π3

grdy(s, i) takes the number
s of events and a row index i as parameters. Both the ASP
encoding and the greedy algorithm are introduced only for
SCAs of strength 3. However, versions for computing SCAs
of strength greater than 3 are obtained in a straightforward
way. To obtain a program for strength 4 SCAs, for example,
only the last two rules of Π3

grdy(s, i) have to be replaced by
the following two rules:

covered(W,X,Y,Z) :- hb(n,W,X), hb(n,X,Y),
hb(n,Y,Z).

#maximize[covered(_,_,_,_)].

Program Π3
grdy(s, i) is quite similar to Π3(n, s). However,

each answer set of Π3
grdy(s, i) corresponds only to a single

row with index i of an SCA. The idea is to represent
preceding rows with index 1 to i−1 by means of facts hb/3.
These facts are joined with Π3

grdy(s, i). Then, the answer
sets of Π3

grdy(s, i) correspond to those rows that obtain
maximal coverage of previously uncovered 3-sequences. The
encoding follows the guess, check, and optimise pattern, i.e.,
we use guessing rules to span the search space, constraints
to filter unwanted solution candidates, and rules that express
a preference relation on answer sets. In particular, rule

#maximize[covered(_,_,_)].

states that we seek for answer sets with a maximal number
of covered 3-sequences.

The algorithm itself is rather simple (cf. Figure 2): It takes
parameter s as input and computes an (n, s, 3)-SCA. Initially,
the set N that represents a (partial) SCA by means of facts
hb/3 equals the empty set. In each iteration, Π3

grdy(s, i)∪N
is used to compute the next row of the SCA that obtains
maximal increase of previously uncovered 3-sequences. The
respective hb/3 facts for that row are then added to N . This
procedure iterates until no uncovered 3-sequences are left (the
ASP solver itself will indicate that no further optimisation is
possible). Since the computation of optimal answer sets can
become very time consuming, we additionally impose an

245

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

% guess single row with index i of an
% (n,s,3)-SCA
sym(1..s).

% guess happens-before relation
1{hb(i,X,Y),hb(i,Y,X)}1 :- sym(X;Y), X != Y.

% happens-before is transitive
hb(i,X,Z) :- hb(i,X,Y), hb(i,Y,Z).

% happens-before is irreflexive
:- hb(i,X,X).

% maximise coverage
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
#maximize[covered(_,_,_)].

Figure 3. ASP encoding Π3
grdy(s, i).

upper bound on the time that is spent for optimising answer
sets, thus improvements in each step will not be maximal in
general. However, this seems to be a reasonable compromise
regarding runtime and the size of computed SCAs. We used
time limits of up to 10 minutes for computing single rows,
depending on the problem size.

2) Discussion: To sum up our results so far, our analysis
of the heuristic proposed by Kuhn et al. [4] using ASP has
pinpointed some shortcomings of the former and has helped
us to learn more about the problem at hand. Furthermore,
we have proposed a new greedy algorithm making use of
a slight variation of Π3(n, s). The ASP solver takes care
entirely of the greedy optimisation of the single rows of the
SCA. The algorithm thus only keeps track of the partial SCA
and incrementally calls the ASP solver to compute new rows.

Table II summarises a comparison of our greedy ASP
algorithm with the greedy algorithm of Kuhn et al. [4] for
strength 3 and 4 SCAs involving 10 to 80 events. For strength
3 SCAs, our algorithm is competitive with that of Kuhn et
al. and upper bounds could be improved throughout by some
rows. For strength 4 SCAs, the greedy ASP approach is
feasible for up to 40 symbols where upper bounds could be
improved even more drastically than for strength 3 SCAs.
However, we were not able to compute SCAs for 40 to
80 symbols, which shows a limitation of our ASP-based
approach that is probably acceptable unless the need for larger
instances with a high level of interaction is indeed motivated
by some application scenario. This limitation basically comes
from the huge number of 4-sequences that need to be covered
and that are represented by the program. Here, it is to mention
that scalability is certainly a characteristic strength of the
simple greedy algorithm of Kuhn et al., since dedicated
data structures, e.g., efficient bit-vectors, can be used for
representing covered sequences. However, by using ASP
we get bounds for strength 3 SCAs for up to 80 symbols
and can also improve bounds for strength 4 SCAs for up
to 40 symbols. Again, we emphasise that our goal is not

Table II
COMPARISON OF OUR GREEDY ASP APPROACH AND THAT OF KUHN ET

AL. [4]: UPPER BOUNDS n FOR SCAN(s, 3) AND SCAN(s, 4).

s t = 3 t = 4
Kuhn et al. [4] ASP Kuhn et al. [4] ASP

10 14 11 66 55
20 22 17 120 104
30 26 22 156 149
40 32 26 182 181
50 34 29 204 -
60 38 32 222 -
70 40 35 238 -
80 42 36 250 -

to compute generic SCAs but to allow a tester to express
different requirements with little effort, by adding or changing
some rules of the ASP program, which can readily be done
using the greedy ASP approach. We pursue this issue in the
next section.

V. PROBLEM ELABORATIONS

Next, we turn to the actual strengths of using ASP as
an elaboration tolerant representation formalism for event
sequence testing. We describe how ASP can be used for
generating SCAs in a scenario that involves additional con-
straints and other problem variations that make it impossible
to directly use precomputed SCAs. In particular, we use a
real-world testing problem described by Kuhn et al. [4] for
making our point. The specification of this testing problem
is as follows: There are five different devices that have to
be connected to a laptop. These devices can be connected
before or after a boot-up phase. Further actions that have
to be performed on the laptop are opening an application
and initiating a scanning process. The peripherals can be
connected to the laptop in any order; however, the order of
events influences the functionality of the system. Thus, SCAs
lend themselves as a basis for a suitable testing plan.

There are eight events relevant for testing: connecting
devices (p1, . . . ,p5), booting the system (boot), starting
an application (appl), and running a scan (scan). Testing in
this scenario is rather time consuming since it requires setting
up the system manually. Therefore, obtaining an optimal test
plan is a clear desideratum. Following Kuhn et al., only
SCAs of strength 3 are considered to keep the size of the
test plan reasonable.

A. Forbidden Sequences

For eight events, optimal SCAs of strength 3 comprise
eight rows. However, we cannot use precomputed (8, 8, 3)-
SCAs since certain constraints regarding the order of events
have to be taken into account. While most events can happen
in any order, starting the application cannot happen before
the system is booted, and running a scan requires that the
application is already running.

246

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Encoding: Instead of covering all 3-sequences, we want
to generate SCAs such that (i) in each row, boot happens
before appl and appl happens before scan, and (ii) all 3-
sequences such that boot happens before appl and appl
happens before scan are covered by at least one row. We
only have to slightly modify program Π3(n, s) to account
for (i) and (ii). First, instead of integers to denote events, we
would like to use more descriptive constant symbols. Thus,
we replace sym(1..s) in Π3(n, s) by

sym(boot;p1;p2;p3;p4;p5;appl;scan).

Concerning (i), we define which orderings are excluded and
add a respective constraint that forbids that event a happens
before b if “a before b” is excluded.

excluded(scan,appl).
excluded(appl,boot).
excluded(X,Z) :- excluded(X,Y),

excluded(Y,Z).
:- hb(_,X,Y), excluded(X,Y).

Regarding (ii), we simply define those 3-sequences that are
not consistent with the excluded orderings as already covered:

covered(X,Y,Z) :- excluded(X,Y),
sym(X;Y;Z).

covered(X,Y,Z) :- excluded(X,Z),
sym(X;Y;Z).

covered(X,Y,Z) :- excluded(Y,Z),
sym(X;Y;Z).

We denote the resulting program as Π3
1(n).

2) Discussion: Recall that (8, 8, 3)-SCAs are optimal for
eight symbols. Since, Π3

1(8) does not yield any answer set, it
follows that the stipulation on admissible orderings requires
additional rows. In this case, this is because the number of
3-sequences that can be covered by a single row is reduced if
certain events are required to happen in a strict order. Indeed,
a solution for Π3

1(9) can be computed, hence 9 is an optimal
bound for an SCA satisfying that each row is consistent with
the specified ordering constraints. The solver clasp needs
fractions of a second to find an SCA of size 9 and about
1 minute for checking optimality.

B. Redundant Sequences

Besides forbidden orderings, we also have to deal with
redundant sequences: If devices are connected to the laptop
before the boot-up phase, the order is not relevant. In fact,
we only require strength 3 coverage for events p1, . . . ,p5,
appl, and scan. Concerning the interaction of events
p1, . . . ,p5, and boot, we regard strength 2 coverage
as sufficient, i.e., we are only interested in whether the
connection of the peripherals happens before or after the
boot-up phase. Hence, we need a variable strength SCA, in
which we seek to have strength 2 coverage for one set of
events and strength 3 coverage for another one.

1) Encoding: First, we add two sets of facts to declare
the sets of events for which we want to obtain strength 2
and strength 3 coverage, respectively:

threeWay(p1;p2;p3;p4;p5;appl;scan).
twoWay(boot;p1;p2;p3;p4;p5).

Next, we have to modify some rules where appropriate. In
particular, we only want to cover 3-sequences over symbols
from threeWay/1. Hence, we rewrite rule

threeSeq(X,Y,Z) :- sym(X;Y;Z),X!=Y,Y!=Z,
X!=Z.

into

threeSeq(X,Y,Z) :- threeWay(X;Y;Z),
X!=Y, Y!=Z, X!=Z.

To address two-way coverage of the symbols from predicate
twoWay/1, we add two further rules:

covered(X,Y) :- hb(_,X,Y).
:- twoWay(X;Y), X != Y, not covered(X,Y).

The resulting program is denoted by Π3
2(n).

2) Discussion: Program Π3
2(n) incorporates both forbid-

den configurations and redundant sequences. Respective
SCAs can be obtained for n = 8 already. SCAs of size 8 are
indeed optimal arrays, which follows from the observation
that Π3

2(7) yields no answer set at all. It takes on average
0.1 seconds to compute the first answer set of a size 8 SCA
when using clasp as ASP solver. Showing optimality, i.e.,
that no size 7 SCA exists, needs several minutes.

The solution approach of Kuhn et al. uses a precomputed
(12, 7, 3)-SCA to account for the seven events p1, . . . ,p5,
scan, and appl. In a post-processing step, rows that are
not consistent with the ordering constraints (cf. Section V-A)
are replaced. However, this requires that further rows are
added to preserve coverage. Note that this testing application
was considered before the greedy algorithm was extended to
directly express simple constraints [4]. In a further manual
post-processing step, to account for the two-way coverage
with respect to events p1, . . . ,p5, and boot, Kuhn et al.
add boot as the first event of each row. Finally, an additional
row is added, in which all events p1, . . . ,p5 are arranged
prior to boot, thereby obtaining strength 2 coverage between
boot and events p1, . . . ,p5. The resulting array consists
of 19 rows.

The first thing to note is that using ASP enabled us to
easily embed the additional requirements directly in the ASP
program rather than employing an ad hoc and mostly manual
approach. Furthermore, using ASP significantly reduced
the size of the resulting SCA by eleven rows (57.94%),
cf. Table III.

C. Adding Attributes to Events
The next problem elaboration that we consider is related to

the way the peripherals are connected to the laptop. Devices

247

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III
TEST PLAN OF SIZE 8 FOR THE LAPTOP APPLICATION OBTAINED FROM AN ANSWER SET OF Π3

4(8).

row event 1 event 2 event 3 event 4 event 5 event 6 event 7 event 8
1 p3(l) p2(r) p1(b) p4 boot appl scan p5
2 boot p4 p1(r) appl p5 p3(l) scan p2(b)
3 boot appl scan p1(r) p2(b) p4 p3(l) p5
4 p1(r) p2(b) p5 p3(l) boot appl scan p4
5 boot p3(b) p5 p1(r) appl p4 p2(l) scan
6 p4 boot p2(b) p5 appl p1(l) scan p3(r)
7 boot appl scan p5 p3(l) p4 p2(b) p1(r)
8 p5 boot p2(l) p4 p3(r) appl scan p1(b)

p1, p2, and p3 have to be connected to USB ports. Three
ports are available: left, right, and back. In each test
sequence, one port has to be assigned to a USB device.

1) Encoding: Predicate port(N,X,Y) states that USB
device X is connected to port Y in row N of the array. This
assignment should satisfy the following coverage criteria:

(i) each USB device has to be connected to each port at
least once, and

(ii) connections to the ports after the boot event should be
made in any possible order.

The above requirements can be formalised using few further
rules.

In the following rules, we first specify the USB ports
and devices. Then, it is expressed that each USB device is
assigned to precisely one port in each test sequence. Finally,
USB devices must not be connected to the same port in any
sequence.

usbPort(right; left; back).
usbDevice(p1; p2; p3).
1{port(N,X,Y):usbPort(Y)}1 :- row(N),

usbDevice(X).
:- port(N,X,Y), port(N,Z,Y), X != Z.

Next, we state coverage criterion (i):

portCov(X,Y) :- port(N,X,Y).
:- usbDevice(X), usbPort(Y),

not portCov(X,Y).

Lastly, we add rules for coverage criterion (ii):

portSeq(X,Y,Z) :- usbPort(X;Y;Z),
X!=Y, X!=Z, Y!=Z.

seqCov(N,X,Y,Z):- hb(N,boot,X),
hb(N,X,Y),
hb(N,Y,Z).

pSeqCov(R,S,T) :- seqCov(N,X,Y,Z),
port(N,X,R),
port(N,Y,S),
port(N,Z,T).

:- portSeq(X,Y,Z), not pSeqCov(X,Y,Z).

Let us denote the resulting program by Π3
3(n).

2) Discussion: Note that the additional conditions regard-
ing the USB ports do not result in larger SCAs, still SCAs

of size 8 can be obtained by computing the answer sets of
Π3

3(8). Clearly, 8 is also an optimal bound. The runtime of
the ASP solver is not affected by the additional requirements.

Kuhn et al. deal with the issue of USB ports by adding
respective port assignments in a post-processing step once
an SCA is computed. However, they do not provide details
on which basis this is done, i.e., it is not clear if or in what
sense they strive for systematic coverage.

D. Expressing Preferences
Any answer set of Π3

3(n) represents one admissible test
plan for the application under test. Although each such SCA
satisfies all of the requirements discussed so far, different
SCAs could differ in their fault detection potential.

We next augment program Π3
3(n) by rules that state a

preference relation among solutions, similar to program
Π3
grdy(·, ·) from the previous section. In particular, although

any SCA guarantees full three-way interaction coverage for
some specified events, the degree of four-way coverage of
events may differ from one SCA to another. We will use the
number of covered 4-sequences as discrimination criterion
regarding the quality of solutions and consequently prefer
SCAs that cover more 4-sequences over SCAs that cover
fewer.

1) Encoding: We define program Π3
4(n) as Π3

3(n) aug-
mented by the following rules:

covered(W,X,Y,Z) :- hb(N,W,X),hb(N,X,Y),
hb(N,Y,Z).

#maximize[covered(_,_,_,_)].

The first rule defines which 4-sequences are covered, the
second rule states that the number of covered 4-sequences
should be maximised. The complete ASP encoding Π3

4(8) is
given in Figure 4.

2) Discussion: An SCA of size 8 corresponding to an
answer set of Π3

4(8) is given in Table III. In the computation
of the SCA, clasp has been configured to optimise a
solution until no improvements can be found for 15 minutes.

On the other hand, Kuhn et al. [4] have not handled
preferences over solutions at all. The algorithm of Kuhn et al.
is tailored for computing a single SCA. Thus, it may be hard
to use such an algorithm to directly deal with optimisation
issues, since this requires that solutions should be efficiently
enumerated.

248

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This case study demonstrates that often generic SCAs
cannot be used in a real world scenario without significant
modifications. In general, such modifications lead to a
considerable overhead or are not feasible at all. By using
ASP, however, a test author has a tool to state different
requirements relevant for individual scenarios. Often, this
will need only little effort such as adding few rules.

VI. RELATED WORK

The ASP-based approach introduced in this paper is the
first account of an approach for directly generating SCAs
in the presence of expressible constraints and problem
elaborations. We note, however, that after the previous
conference version of this paper [1], our idea was picked
up soon by Banbara et al. [37]. They proposed a constraint-
programming encoding called the incidence-matrix model
for generating SCAs. Although we could either reproduce or
improve all bounds for SCAN(s, 3) reported by Banbara at
al. [37] in this paper, the encoding based on the incidence-
matrix model scales better than ours for SCAN(s, 4) SCAs.

Closely related to our work are techniques for computing
covering arrays (CAs), which we will review next. An
overview of different approaches and tools for generating CAs
is given by Grindal, Offutt, and Andler [2]. There, greedy
algorithms that construct one row at a time are quite common.
The most prominent representative is the AETG system [38].
Our greedy approach to compute SCAs is close in spirit to
AETG-like algorithms since it also proceeds row by row.
Also, meta-heuristics, like simulated annealing, tabu search,
or genetic algorithms, have been applied for constructing
CAs [39], [40] (cf. respective overview articles for more
details [2], [3]). Greedy algorithms usually scale well while
meta-heuristics tend to produce arrays of smaller sizes [39].
However, neither greedy techniques nor meta-heuristics can
guarantee optimal bounds.

As a complete method being able to establish optimality
of arrays, different SAT encodings have been considered [41],
[42]. Similar to our ASP encoding, SAT encodings allow
to compute combinatorial designs as a whole. From a
computational point of view, SAT and ASP are closely related
and ASP solvers like clasp use many techniques also
used by SAT solvers like conflict-driven clause learning.
In fact, clasp can be used as a SAT solver itself—it
even outperformed state-of-the-art SAT solvers at the SAT
2011 competition. A distinctive feature of ASP compared
to SAT is the high-level modelling capabilities of ASP that
allow to model problems concisely at the first-order level
as demonstrated by our SCA encodings. SAT is certainly
a promising approach for tackling problems described in
Section IV, i.e., for computing SCAs and checking optimality
of upper bounds. However, the problem variations discussed
in Section V require a formalism that allows for elaboration-
tolerant representations, which is not a characteristic feature
of SAT. Regarding modelling, it is to mention that Hnich et

% ASP encoding for the laptop example
sym(boot; p1; p2; p3; p4; p5; appl; scan).
row(1..n).

threeWay(p1; p2; p3; p4; p5; appl; scan).
twoWay(boot; p1; p2; p3; p4; p5).

% guess happens-before relation
1{hb(N,X,Y),hb(N,Y,X)}1 :- row(N),

sym(X;Y), X != Y.
% happens-before is transitive
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).
% happens-before is irreflexive
:- hb(N,X,X).

% check three-way and two-way coverage
covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
:- not covered(X,Y,Z),

threeWay(X;Y;Z), X!=Y, Y!=Z, X!=Z.
covered(X,Y) :- hb(_,X,Y).
:- twoWay(X;Y), X != Y, not covered(X,Y).

% excluded orderings
excluded(scan,appl).
excluded(appl,boot).
excluded(X,Z):-excluded(X,Y),excluded(Y,Z).
:- hb(_,X,Y), excluded(X,Y).
covered(X,Y,Z) :- excluded(X,Y), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(X,Z), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(Y,Z), sym(X;Y;Z).

% coverage of USB ports
usbPort(right; left; back).
usbDevice(p1; p2; p3).
1{port(N,X,Y):usbPort(Y)}1 :- row(N),

usbDevice(X).
:- port(N,X,Y), port(N,Z,Y), X != Z.

portCov(X,Y) :- port(N,X,Y).
:- usbDevice(X),usbPort(Y),not portCov(X,Y).

portSeq(X,Y,Z) :- usbPort(X;Y;Z),
X!=Y,X!=Z,Y!=Z.

seqCov(N,X,Y,Z):-hb(N,boot,X),hb(N,X,Y),
hb(N,Y,Z).

pSeqCov(R,S,T) :- seqCov(N,X,Y,Z),
port(N,X,R), port(N,Y,S), port(N,Z,T).

:- portSeq(X,Y,Z), not pSeqCov(X,Y,Z).

% maximise covered 4-sequences
covered(W,X,Y,Z) :- hb(N,W,X),hb(N,X,Y),

hb(N,Y,Z).
#maximize[covered(_,_,_,_)].

Figure 4. ASP encoding Π3
4(8).

al. [41] and Banbara et al. [42] initially considered constraint
programming (CP) models, which are subsequently translated
to SAT. Although this has not been considered, further
constraints, at least forbidden tuples, could be incorporated
rather easily into the CP model. A comparison of ASP and
constraint (logic) programming (CLP) is given in a related

249

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

article [43]. There, the authors conclude that ASP allows for
more declarative and concise problem representations and is
easier to learn for beginners than CLP.

The need for stating constraints and other user require-
ments in combinatorial interaction testing for real-world
applications has been discussed by different authors [38],
[44]–[50]. The prevalent approach is to first generate a CA
and then to delete and permute rows that are not consistent
with certain requirements. The number of rows that need
to be replaced can be vast and this approach can lead to a
considerable increase of the array size [49]. This applies not
only for CAs but for SCAs as well as we have illustrated
in the previous section. Another common method requires
remodelling of the specification [38], [45].

The tool PICT [47], also based on an AETG-like greedy
algorithm, allows to directly express constraints; however,
the details how this is realised are not accessible.

Cohen, Dwyer, and Shi [48], [49] introduced approaches
that integrate techniques for generating covering arrays
with SAT to deal with constraints. Forbidden tuples are
represented as Boolean formulas and a SAT solver is used to
compute models. They integrated SAT with greedy AETG-
style algorithms and also with simulated annealing. Hence,
their approach is closely related to our integration of ASP
into a greedy procedure. Calvagna and Gargantini [50] follow
a similar approach but they use an SMT solver instead of a
SAT solver, which offers a richer language than plain SAT
solvers. In their approach, constraints are stated as formal
predicate expressions. Besides SMT, Calvagna and Gargantini
also considered a model checker for verifying test predicates
which would also be suitable for specifications involving
temporal constraints and state transitions.

Bryce and Colbourn [46] distinguish forbidden tuples and
tuples that should be avoided. They refer to the latter as
soft constraints and they present an algorithm for generating
CAs that avoids the violation of soft constraints. However,
their algorithm cannot guarantee that certain tuples are
avoided, hence it cannot deal with forbidden tuples or other
hard constraints. Using ASP, soft constraints can be easily
expressed by means of minimise or maximise statements.
Some ASP solvers, like DLV [51], allow to express soft
constraints even more directly (in the case of DLV, in the
form of weak constraints). We illustrated in the previous
section how one can combine hard integrity constraints with
soft constraints to express that uncovered 4-sequences should
be avoided. For even more fine-grained modelling, ASP
allows to assign different priorities to soft constraints and
maximise, resp., minimise, statements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we dealt with the generation of SCAs,
which have recently been advocated as suitable combinatorial
design concepts for event sequence testing [4]. In particular,
we applied ASP as a declarative approach for generating

SCAs. While the only previously introduced algorithm is
an AETG-like greedy algorithm [4], ASP can be used
as an exact method that combines high-level modelling
capabilities involving recursive definitions, default negation,
hard constraints, soft constraints, and aggregates with highly
performative search engines [10], [11].

Our contributions can be summarised as follows:

• We established new complexity results related to com-
puting SCAs. In particular, we showed that GEST is
NP-complete and its standard parameterisation is W[2]-
complete.

• We introduced a novel technique to use ASP for
computing SCAs as a whole. The SCAs obtained using
ASP are significantly smaller than those generated using
the greedy algorithm of Kuhn et al. [4]. For some SCAs,
optimality of upper bounds could be established.

• We integrated our ASP approach into a greedy algorithm
that allows to compute SCAs in a one-row-at-a-time
fashion. Hence, we obtain a more scalable algorithm
without sacrificing the modelling capacities of ASP for
specifying complex testing problems.

• We dealt with problem elaborations that are indispens-
able for testing real-world applications. In particular,
we addressed how constraints and other application-
specific requirements can be handled directly at the
level of the ASP representation without a further need
for post-processing steps.

To summarise, our contribution is two-fold: On the one
hand, we introduced and showed feasibility of a new approach
for generating SCAs that can be readily used as it is.
On the other hand, we regard this work as a contribution
towards methodology. While ASP is well established in other
communities as a method to address problems from the area
of artificial intelligence and knowledge representation, there
is too little awareness of ASP in the software-engineering
community. Hence, we want to promote ASP as an approach
to tackle challenging problems in the realm of combinatorial
testing. Besides improving the state-of-the-art of event
sequence testing, our aim is to show that ASP provides
a tool that enables a tester to rapidly specify problems and to
experiment with different formulations at a purely declarative
level. ASP solvers are then used for computing solutions
without the need of post-processing steps or developing
dedicated algorithms.

For future work, we plan to deal with versions of SCAs
for different testing applications like testing of concurrent
programs where the order of shared variable accesses was
identified as crucial for triggering certain bugs that are
otherwise hard to evoke [6], [52]. We want to address not only
the problem of statically generating suitable designs, but we
also want to do this in an online fashion where an ASP solver
is coupled with a scheduler to improve coverage with respect
to different interleaving metrics. Such an online approach

250

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would also allow to deal with, e.g., exceptional events in a
more interactive testing environment. In the long term, we
plan to develop support for a tester regarding modelling of
a system’s test space without requiring expert knowledge
on ASP—a front-end language for ASP tailored to specific
testing domains could be the right way of doing this.

ACKNOWLEDGMENT

This work was supported by the Austrian Science Fund
(FWF) under project P21698. We also would like to thank
D. Richard Kuhn for providing us with related work [4].

REFERENCES

[1] E. Erdem, K. Inoue, J. Oetsch, J. Pührer, H. Tompits, and
C. Yilmaz, “Answer-set programming as a new approach
to event-sequence testing,” in Proceedings of the 3rd In-
ternational Conference on Advances in System Testing and
Validation Lifecycle (VALID 2011). XPS, 2011, pp. 25–34.

[2] M. Grindal, J. Offutt, and S. F. Andler, “Combination
testing strategies: A survey,” Software Testing, Verification
& Reliability, vol. 15, no. 3, pp. 167–199, 2005.

[3] C. Nie and H. Leung, “A survey of combinatorial testing,”
ACM Computing Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[4] D. R. Kuhn, J. M. Higdon, J. Lawrence, R. Kacker, and
Y. Lei, “Combinatorial methods for event sequence testing,” in
Proceedings of the 5th International Conference on Software
Testing, Verification and Validation (ICST 2012). IEEE, 2012,
pp. 601–609.

[5] M. J. Harrold and B. A. Malloy, “Data flow testing of
parallelized code,” in Proceedings of the 8th International
Conference on Software Maintenance (ICSM 1992). IEEE
Computer Society Press, 1992, pp. 272–281.

[6] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving
coverage criteria,” in Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2007, pp. 533–536.

[7] V. Marek and M. Truszczyński, “Stable models and an alterna-
tive logic programming paradigm,” in The Logic Programming
Paradigm: A 25-Year Perspective. Springer, 1999, pp. 375–
398.

[8] I. Niemelä, “Logic programs with stable model semantics as
a constraint programming paradigm,” Annals of Mathematics
and Artificial Intelligence, vol. 25, no. 3-4, pp. 241–273, 1999.

[9] C. Baral, Knowledge Representation, Reasoning, and Declar-
ative Problem Solving. Cambridge University Press, 2003.

[10] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and
M. Truszczyński, “The second answer set programming compe-
tition,” in Proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR
2009), ser. Lecture Notes in Computer Science, vol. 5753.
Springer, 2009, pp. 637–654.

[11] F. Calimeri, G. Ianni, and F. Ricca, “The third open answer
set programming competition,” CoRR, vol. abs/1206.3111,
2012. [Online]. Available: http://arxiv.org/abs/1206.3111

[12] “Combinatorial testing for event sequences,” http://csrc.nist.
gov/groups/SNS/acts/sequence cov arrays.html, last visited:
July 11, 2012.

[13] M. Gelfond and V. Lifschitz, “Classical negation in logic pro-
grams and disjunctive databases,” New Generation Computing,
vol. 9, pp. 365–385, 1991.

[14] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub,
“Conflict-driven answer set solving,” in Proceedings of the
20th International Joint Conference on Artificial Intelligence
(IJCAI 2007). AAAI Press/MIT Press, 2007, pp. 386–392.

[15] A. Polleres, “Semantic Web Languages and Semantic Web
Services as Application Areas for Answer Set Programming,”
in Nonmonotonic Reasoning, Answer Set Programming and
Constraints, 2005.

[16] S. Grell, T. Schaub, and J. Selbig, “Modelling biological
networks by action languages via answer set programming,”
in Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006), ser. Lecture Notes in Computer
Science, vol. 4079. Springer, 2006, pp. 285–299.

[17] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres,
“Planning under incomplete knowledge,” in Proceedings of
the First International Conference on Computational Logic
(CL 2000), ser. Lecture Notes in Computer Science, vol. 1861.
Springer, 2000, pp. 807–821.

[18] T. Eiter, W. Faber, N. Leone, and G. Pfeifer, “The diagnosis
frontend of the DLV system,” AI Communications, vol. 12,
no. 1-2, pp. 99–111, 1999.

[19] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and
M. Barry, “An A-prolog decision support system for the Space
Shuttle,” in Proceedings of the 3rd International Symposium
on Practical Aspects of Declarative Languages (PADL 2001),
ser. Lecture Notes in Computer Science, vol. 1990. Springer,
2001, pp. 169–183.

[20] T. Soininen and I. Niemelä, “Developing a declarative rule
language for applications in product configuration,” in Pro-
ceedings of the First International Workshop on Practical
Aspects of Declarative Languages (PADL 1999), ser. Lecture
Notes in Computer Science. Springer, 1999.

[21] C. Baral and M. Gelfond, “Reasoning agents in dynamic
domains,” in Logic-based Artificial Intelligence. Kluwer
Academic Publishers, 2000, pp. 257–279.

[22] E. Erdem, V. Lifschitz, and D. Ringe, “Temporal phylogenetic
networks and logic programming,” Theory and Practice of
Logic Programming, vol. 6, no. 5, pp. 539–558, 2006.

[23] D. R. Brooks, E. Erdem, S. T. Erdogan, J. W. Minett, and
D. Ringe, “Inferring phylogenetic trees using answer set
programming,” Journal of Automated Reasoning, vol. 39, no. 4,
pp. 471–511, 2007.

251

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[24] A. M. Smith and M. Mateas, “Answer set programming for
procedural content generation: A design space approach,” IEEE
Transactions on Computational Intelligence and AI in Games,
vol. 3, no. 3, pp. 187–200, 2011.

[25] M. Brain, T. Crick, M. De Vos, and J. Fitch, “TOAST:
Applying answer set programming to superoptimisation,” in
Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006), ser. Lecture Notes in Computer
Science. Springer, 2006.

[26] M. Gelfond and V. Lifschitz, “The stable model semantics
for logic programming,” in Proceedings of the 5th Logic
Programming Symposium, MIT Press, 1988, pp. 1070–1080.

[27] P. Simons, I. Niemelä, and T. Soininen, “Extending and im-
plementing the stable model semantics,” Artificial Intelligence,
vol. 138, no. 1–2, pp. 181–234, 2002.

[28] P. Ferraris and V. Lifschitz, “Mathematical foundations of
answer set programming,” in We Will Show Them! Essays in
Honour of Dov Gabbay, Volume One. College Publications,
2005, pp. 615–664.

[29] M. Gebser, T. Schaub, and S. Thiele, “Gringo: A new
grounder for answer set programming,” in Proceedings of
the 9th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2007), ser. Lecture Notes
in Computer Science, vol. 4483. Springer, 2007, pp. 266–271.

[30] “Potassco—the Potsdam answer set solving collection,” http:
//potassco.sourceforge.net, last visited: July 11, 2012.

[31] C. H. Papadimitriou, Computational Complexity. Addison-
Wesley, New York, 1994.

[32] R. Karp, “Reducibility among Combinatorial Problems,” in
Complexity of Computer Computations. Plenum Press, 1972,
pp. 85–103.

[33] J. S. Schlipf, “The expressive powers of the logic programming
semantics,” Journal of Computer and System Sciences, vol. 51,
no. 1, pp. 64–86, 1995.

[34] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity
and expressive power of logic programming,” ACM Computing
Surveys, vol. 33, no. 3, pp. 374–425, 2001.

[35] R. Downey and M. R. Fellows, Parameterized complexity.
New York: Springer, 1999.

[36] J. Flum and M. Grohe, Parameterized Complexity Theory, ser.
Text in Theoretical Computer Science. Springer, 2006.

[37] M. Banbara, N. Tamura, and K. Inoue, “Generating event-
sequence test cases by answer set programming with the
incidence matrix,” in Technical Communications of the 28th
International Conference on Logic Programming (ICLP 2012),
LIPIcs, Schloss Dagstuhl, vol. 12, 2012, pp. 86–97.

[38] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, “The AETG system: An approach to testing based
on combinatorial design,” IEEE Transactions on Software
Engineering, vol. 23, no. 7, pp. 437–444, 1997.

[39] M. B. Cohen, P. B. Gibbons, and W. B. Mugridge, “Construct-
ing test suites for interaction testing,” in Proceedings of the
25th International Conference on Software Engineering (ICSE
2003), 2003, pp. 38–48.

[40] K. J. Nurmela, “Upper bounds for covering arrays by tabu
search,” Discrete Applied Mathematics, vol. 138, no. 1-2, pp.
143–152, 2004.

[41] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith,
“Constraint models for the covering test problem,” Constraints,
vol. 11, no. 2-3, pp. 199–219, 2006.

[42] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, “Gen-
erating combinatorial test cases by efficient SAT encodings
suitable for CDCL SAT solvers,” in Proceedings of the 17th
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2010), ser. Lecture Notes
in Computer Science, vol. 6397. Springer, 2010, pp. 112–126.

[43] A. Dovier, A. Formisano, and E. Pontelli, “An empirical study
of constraint logic programming and answer set programming
solutions of combinatorial problems,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 21, no. 2, pp. 79–121,
2009.

[44] A. Hartman and L. Raskin, “Problems and algorithms for
covering arrays,” Discrete Mathematics, vol. 284, no. 1-3, pp.
149–156, 2004.

[45] C. M. Lott, A. Jain, and S. R. Dalal, “Modeling requirements
for combinatorial software testing,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4, pp. 1–7, 2005.

[46] R. C. Bryce and C. J. Colbourn, “Prioritized interaction
testing for pair-wise coverage with seeding and constraints,”
Information & Software Technology, vol. 48, no. 10, pp. 960–
970, 2006.

[47] J. Czerwonka, “Pairwise testing in real world,” in Proceedings
of the 24th Pacific Northwest Software Quality Conference
(PNSQC 2006), 2006, pp. 419–430.

[48] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing
of highly-configurable systems in the presence of constraints,”
in Proceedings of the 16th ACM/SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2007,
pp. 129–139.

[49] ——, “Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy
approach,” IEEE Transactions on Software Engineering,
vol. 34, no. 5, pp. 633–650, 2008.

[50] A. Calvagna and A. Gargantini, “A formal logic approach
to constrained combinatorial testing,” Journal of Automated
Reasoning, vol. 45, no. 4, pp. 331–358, 2010.

[51] “DLV system,” http://www.dlvsystem.com, last visited: July
11, 2012.

[52] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes:
a comprehensive study on real world concurrency bug charac-
teristics,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems. ACM, 2008, pp. 329–339.

252

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Soft Constraints in Feature Models: An Experimental Assessment

Jorge Barreiros
1,2

1
Instituto Superior de Engenharia de Coimbra

Instituto Politécnico de Coimbra,

Coimbra, Portugal

jmsousa@isec.pt

Ana Moreira
2

2
Dept. de Engenharia Informática

Universidade Nova de Lisboa

Caparica, Portugal

amm@fct.unl.pt

Abstract—Feature Models specify admissible configurations

of products in Software Product Lines. Constraints are used

to represent domain specific knowledge, such as requiring or

excluding a feature in the presence of another.

Configurations failing to conform to these constraints are

deemed invalid. However, in many cases useful domain

information cannot be expressed comfortably with such

forceful, hard constraints. To overcome this problem, softer

constraints, of less forcing nature, can be used. We describe

a framework for including soft constraints in feature models

based on propositional logic. Analysis procedures for

detecting inconsistencies and conflicts in this framework are

also described. Test sets are built by injecting soft

constraints into publicly available feature models, recreating

typical patterns of use. These features are then subjected to

automated analysis to assess the prevalence of soft constraint

related conflicts and interactions.

Keywords - Feature Models; Software Product Lines; Soft

Constraints; Feature Consistency; Feature Interaction;

Semantic Validation

I. INTRODUCTION

Soft constraints, described in [1], can be used to
represent uncertain configuration information into feature
models [2]. Feature models are frequently used in
Software Product Line (SPL) development [3] for
specifying valid product configurations, that is,
configurations corresponding to a variant that can be
created by an application engineer using the SPL. Product
variants belonging to the same family are created by
specifying a feature configuration, which is then realized
by the composition of corresponding artifacts from a
common pool of assets (such as requirements documents,
design models, code, etc.).

Feature models identify valid configurations by using a
feature tree annotated with additional domain constraints.
These can be represented graphically (e.g., linking
dependent features with a dependency arrow) or textually,
by means of arbitrary cross-tree expressions (Boolean
expressions depending on the configuration variables).
Over-constraining may result in an inconsistent feature
model, that is, one where no configuration exists, where all
the constraints can be satisfied simultaneously.

 Feature models can be represented using logic
expressions according to well-known transformations

described in [4], [5]. A feature model expression is
obtained by conjoining the feature tree expression with the
domain constraints.

An example of a feature model can be found in Fig. 1,
where Sound, Keyboard, and Screen are mandatory
subfeatures of the root feature node Phone, while
MP3Player and Camera are optional subfeatures.
Polyphonic and Monophonic are mandatory and
alternative subfeatures of the Sound feature, and
Monochromatic and Color are alternative subfeatures of
the Screen feature. One domain constraint is represented:
the requires arrow describes that selection of the Camera
feature implies the selection of the Color feature.

Links such as the one connecting Camera and Color in
Fig. 1 describe hard constraints. Any configuration that
does not respect this constraint is invalid. It can be the
case, however, that domain information is not comfortably
representable using such strict constructs. For example, a
situation can be considered where the overwhelming
majority of configurations do indeed respect a certain
restriction, but a few exceptions may exist. In this case,
restrictions on admissible configurations cannot be as
strict. A simple example will be the case of a default
selection for a group of alternative selections: if the parent
feature of such group is selected, then the preferred
alternative configurations may be suggested.

In [1], the use of soft constraints is proposed, similar to
hard constraints but of less forcing nature, in these
situations. The concept of soft constraint has been
described earlier in the context of probabilistic feature
models

[6]. Probabilistic feature models extend standard

feature models by the addition of “soft” constraints that are
associated with a degree of probability. These are often
obtained as the result of a feature mining processes. We
consider the use of a similar concept in standard,
deterministic feature models, avoiding the need to resort to
mechanisms such as data mining or Baysesian networks to
fully specify the required feature joint-probability
distributions. The use of soft constraints allows richer
semantics to be represented in feature models, with
advantages such as enhanced analysis and improved
configuration support. An example of such a constraint in
Fig. 1 would be “Sound suggests Polyphonic”, expressing
domain knowledge that indicates the more common sound
configuration option. Naturally, soft constraints do not
need to be restricted to parent-child features as described:

253

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

other relations such as “Monophonic suggests
Monochromatic” can be represented. This type of
constraints can be useful for efficiently capturing useful
domain information that might be lost otherwise, as it is
usually absent in standard feature models. It can be used to
good effect for multiple purposes, depending on the
specific semantics that are adopted as described later, such
as allowing interactive configuration tools to suggest
configuration choices to the user.

Using soft constraints also allows some semantic
consistency analysis that would otherwise be impossible,
e.g., if a suggested dependency can never be realized in a
feature model, then probably something is not right.
Suggestions may also be unsatisfiable for a certain valid
partial configuration (e.g., suggestions cannot be satisfied
simultaneously if one feature is selected), highlighting that
a trade-off analysis may be in order.

We extend the work presented in [1] by:

• Describing structural patterns of application of soft
constraints.

• Describing a process for injecting soft constraints
into a feature model for the purpose of automated
testing.

• Presenting an enhanced discussion of the impact
of soft constraints in feature configuration and
corresponding analysis technique.

• Using a prototype tool to collect and analyze
experimental results using data from publicly
available feature model repositories.

In Section II, we present motivating examples for our

work. In Section III, we provide a detailed discussion of
soft constraints, discussing benefits of their use, proposing
a categorization of the different types of soft constraints,
and discussing automated analysis procedures. Section IV
presents some typical patterns of use of soft constraints,
while in Section V the soft constraint injection algorithm is
presented. The tool and experimental results are presented
in Section VI, followed by a presentation of related work
in Section VII and conclusions in Section VIII.

Keyboard Screen

Phone

Camera

Monochromatic Color

Sound

Polyphonic Monophonic

MP3 Player

requires
Figure 1. Mobile phone feature model.

II. MOTIVATION

Consider the example in Fig. 2, adapted from [6],
where a feature model is used to describe configuration
variability for an automobile vehicle. In this case, hard
domain restrictions are used to enforce the selection of
manual transmission in sports vehicles and to make sure
that emission control techniques are always used in
products destined for markets with stricter environmental
legislations. While observance of such constraints is
always found in valid products, soft constraints are used to
represent relevant relations between features that, while
not as critical or universally applicable as the hard
constraints, are also important. In this case, it is well
known that the USA market tends to favor vehicles with
automatic transmission over those with manual
transmission, while the converse is true for the European
market. Using soft constraints, such information can be
readily represented in the feature diagram, bringing in
additional semantics that can be used to good effect.

Another example of the use of soft constraints can be
found in Fig. 3. In this case, the feature model is used to
represent dynamic variability of the runtime behavior of a
real-time system. The system should adapt its behavior to
conform to variations in its environment. The state of the
operation environment is assessed by appropriate sensors
and the corresponding features are (de)selected
accordingly, with corresponding impact on the runtime
behavior as dictated by the constraints. A base control task
is to be active at all times, while fan control is only
suggested if the temperature is medium, but mandatory if it
reaches a high level. A filtering task is suggested if electric
noise is detected.

The need to use soft constraints to describe the
variability in this scenario is supported by the fact that the
suggested (non mandatory) features may not always be
selected because of limited resources (e.g., available CPU
load). This means that a feature such as Fan Control may
in fact remain unselected in the presence of its suggestor
(i.e., the Noisy feature), which cannot be comfortably
expressed using only hard constraints.

These examples suggest that soft constraints can be
used to good effect in feature models, by allowing the
inclusion of important domain information of non-forcing
nature.

III. SOFT CONSTRAINTS

In this section, we discuss the benefits gained by using
soft constraints in feature models and present a
categorization of alternative semantics. We then discuss
automated analysis procedures for identifying
inconsistencies and other relevant information, such as
features that cannot be selected if satisfaction of a soft
constraint is sought.

254

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Car

Transmission

Manual

Automatic

USA Europe

MarketEmission Control

Africa

requiresrequires

suggests

suggests

Profile

Utility

Sport

requires

Figure 2. Feature model for car configuration

Engine Control

Moderate

Environment

Noisy

suggests

High

Temperature

Runtime

Base Control

Fan Control Filtering

requires

suggests

Figure 3. Engine control system

A. Benefits of soft constraints

Benefits of using soft constraints in feature models
include:

• Improved configuration support: Interactive
configuration and completion techniques can assist
the configuration of feature models by assessing the
liveliness of features after each configuration step.
Starting from an empty configuration where all
features are considered to be unspecified (neither
selected or deselected), after a feature is selected or
deselected by the user, the liveliness of all features is
re-evaluated with respect to the partial configuration
already defined. Features that are found to be dead
(always unselected) in that partial configuration can
be safely deselected automatically. Conversely,
features that are common to all configurations that
include the partial configuration so far specified can
be automatically selected. For example, if the
developer specifies feature C in Fig. 4 to be selected,
then features D and E can be automatically
deselected by the configuration tool, as no valid
configuration including feature C will contain either
(i.e., both are dead in all configurations where C is
selected). Similarly, A and root are common to all
such configurations, so they can be selected
automatically, leaving only feature B unspecified.
Interactive configuration and completion tools can

use soft constraint information to make
configuration suggestions to the user. For example,
if “A suggests B”, the configuration tool can propose
the selection of B by default whenever A is selected
and B is unspecified. Also, if a valid configuration
fails to conform to a large percentage of soft
constraints, it can be flagged to the developer as
suspicious. Feature configuration support for feature
models with soft constraints is described in [7].

• Improved semantic-oriented consistency checks:
Standard consistency analysis of feature models is
concerned with ensuring that valid configurations do
exist. If soft constraints are present, it is possible to
make sure that configurations are available that
verify the suggested dependencies. If that is not the
case, this may be a sign that an analysis or modeling
error has occurred. For example, if it were actually
impossible to configure a car for the European
market with manual transmission despite such
association being suggested (e.g., because of the
unintended collateral side effect of some hard
constraints), this would be highly suspicious and
should be reported to the developer for additional
consideration. This could be the case if hard domain
restrictions would make it impossible to select a
configuration where both such features are selected.

• Controlled generalization of feature models: A
generalization of a feature model is a transformation
that increases the number of admissible
configurations, making sure that previously valid
configurations remain valid. In some cases, soft
constraints can be used as a mechanism for
controlled generalization of feature models. For
example, if it was found, after creating the feature
model in Fig. 2, that it should actually be possible,
under certain circumstances, to produce vehicles
without emission control for the USA market, the
hard restriction that forbids such products from
being created could be transformed into an
equivalent soft constraint. This would have the
benefit of preserving important domain information
while accommodating the need to allow for spurious
“rogue” configurations.

255

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Semantics and Categorization

Soft constraints can be interpreted according to different
semantics, from configuration suggestions (e.g., describing a
predominant configuration options such as described in [6])
to stricter impositions that must be enforced if possible (i.e.,
a feature must be selected if possible). According to the
adopted interpretation, different types of analysis and
interpretations may be possible. Therefore, we must consider
the possible semantics. These can be broadly categorized in
two different categories:

• Annotational: A soft constraint with an annotational
semantics does not impose any additional restriction
when added to a feature model. Its main purpose is
to embed domain information in the feature model to
assist the configuration automation and semantic
consistency checking. The validity of any specific
product configuration is never influenced by the
presence of an annotational soft constraint.

• Normative: A normative soft constraint must be
considered when assessing the validity of a product
configuration. These constraints represent
configuration information that may potentially
condition the validity of some configurations. A
normative soft constraint must be satisfied if
possible, but can be ignored otherwise. The concept
of “possible satisfaction” is, generally, always
dependent on the characteristics of the feature model
and is also potentially dependent on domain-specific
information (external to what is represented on the
feature model: see below). A normative soft
constraint may change the validity of a configuration
(with respect to the unconstrained feature model),
but it may never cause a feature model to become
inconsistent. Normative constraints can be
interpreted informally as meaning “requires-if-
possible”, “may-require”, “require-if-does-not-
make-configuration-invalid” or some other similar
designation. Applying normative constraints entails
the need to assess the “possibility” of selecting a
specific feature. The topology of the feature model
and cross-tree-constraints is always a decisive factor
in making that assessment (i.e., it cannot be
reasonably considered “possible” to select a feature
when doing so would generate an invalid
configuration). However, it may be the case that the
feature model information is not sufficient to assess
the possibility of selecting a feature: in this case,
external factors, not represented in the feature model
would come into play. This suggests the following
additional characterization of normative constraints:

root

A
B

C D

excludes

E

requires

Figure 4. Iterative configuration example

• Internal: The feature model holds all the
information required to assess selection possibility.

• External: The information in the feature model
alone is not sufficient for assessing possibility of
selection. External factors come into play.

In the example of Fig. 2, if the soft constraints are

interpreted under annotational semantics, then any
configuration that upholds the hard constraints is considered
valid, regardless of complying or not with the soft
constraints. On the other hand, if an (internal) normative
semantic is considered, the following interpretation holds: “If
the USA feature is selected, then the Automatic feature must
be selected, unless doing so would generate an invalid
configuration”. That is, a normative soft constraint should be
interpreted as a hard constraint, unless doing so would turn
an otherwise valid configuration into invalid. In Fig. 3, a
potential example of external normative soft constraints is
represented: in this case, the Fan Control feature should
always be selected if the Moderate heat feature is selected,
unless that is not possible, according to domain information
that is not necessarily integrated in the feature model. For
example, knowing that the implementations of the Base
Control, Fan Control, and Filtering features compete for a
limited resource (CPU load), assessing of the possibility of
including the Fan Control feature must be conducted with
respect to external information. It is out of the scope of this
work to discuss how such external information would be
obtained or retrieved – as examples, an oracle could be used
to provide the required information or a domain specific
ontology could be queried. External normative constraints
require considering information beyond the one available on
the feature model and will not be discussed further in this
work. Therefore, in the remainder, when referring to
normative soft constraints, internal semantics are assumed.

 Table I presents a description of soft constraints and
their intended meaning. Table II presents a summary
overview of hard and soft constraint categorization and their
effects on feature model consistency and configuration
validity.

256

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. SOFT CONSTRAINT DESCRIPTION

Soft Constraint Interpretation

A suggests B A⇒ B

A discourages B A ⇒ ¬B

A absence-suggests B ¬A ⇒ B

A absence-discourages B ¬A ⇒ ¬B

TABLE II. CONSTRAINT CATEGORIZATION SUMMARY

Nature Subtype Affects FM

consistency?

Affects config

Validity?

Hard Yes Yes

Soft Normative No Yes

 Annotational No No

C. Normative Soft Constraint Analysis

Normative soft constraints may change the assessment of
the validity of configurations with respect to the
unconstrained feature model. This results in a change of the
model expression when a new soft constraint is introduced in
an existing feature model. The effect of inserting an internal
normative soft constraint (A suggests B) into a feature model
with feature expression F(A,B,…) can be obtained by
considering that:

• Any configuration valid in the constrained model
will also be valid in the unconstrained model. That
is, F(A,B,…) should hold.

• The soft constraint should be upheld (A ⇒ B), but
not at the cost of invalidating the configuration.
Knowing that the soft constraint fails to hold when A
is selected and B is not, this will only be acceptable
if switching the value of B, in this scenario, would
not be allowed according to the unconstrained

model
1
, that is, ,...),(BAF ¬¬ .

These considerations lead to the following formulation:

,...)),()((,...),(,...),(BAFBABAFBAFS ¬¬∨⇒∧= (1)

where FS is the resulting feature model expression.

Standard feature model techniques can be applied to
analyze the resulting feature expression, e.g., satisfiability-
based techniques are commonly applied to the analysis of
feature model expressions [8], for tasks such as finding dead
features. This can be also done in a feature model annotated
with soft constraints by considering the relevant FS.

1
 Strictly speaking, it would also be possible to satisfy the constraint by

deselecting A rather than selecting B, but we find that solution to be
counter-intuitive, with respect to the compositional approach inherent in

the feature selection process. In other words, a constraint may force the

selection of a feature the user has not selected, but will not force the
deselection of a previously selected feature.

Equation (1) can be applied iteratively with respect to all
soft constraints, in some priority order, to obtain the feature
expression corresponding to a feature model with multiple
soft constraints. Nevertheless, one difficulty must be pointed
out. If F is in clause normal form (CNF), the standard input
format for most SAT solvers, then the number of clauses will
increase exponentially as additional normative soft
constraints are composed. This makes it much more
challenging to analyze normative soft constraints rather than
their annotational counterparts. Fortunately, annotational soft
constraints include valuable information that can be more
efficiently subjected to automated analysis.

D. Soft Constraint Analysis

The inclusion of soft constraints in a feature model brings
additional semantics that allow improved consistency and
sanity checks to be performed. Annotational soft constraints
do not alter in any way the space of admissible
configurations. Nevertheless, the question of whether or not
the soft constraints themselves can be upheld is relevant. In
the remaining text, we assume an annotational interpretation
of soft constraints.

When introducing a soft constraint into a feature model,
all configurations previously valid will remain so. However,
if the soft constraint impacts the feature model meaningfully,
at least some of those configurations will fail to hold all the
soft constraints (or else the soft constraint will be
reproducing information already present in the feature
model: an example would be a suggestion of inclusion of a
parent feature). If no configuration exists where all the soft
constraints are upheld, the soft constraints are inconsistent, in
the sense that their simultaneous satisfaction is impossible
(this is not the same as feature model inconsistency, as
defined in the introduction).

An analysis procedure may be used to identify such
situations. We begin by defining a constraint as active if its

implicant (e.g: A in A⇒B) is true according to the
expressions defined in Table II. It may be impossible to
simultaneously activate all constraints according to the
feature model. In this case, the constraint set is orthogonal.
In this case, the constraints may not be satisfied
simultaneously, because its implicants cannot be verified
simultaneously. A more interesting situation occurs when all
constraints can be active simultaneously, but satisfaction of
the soft constraints is not possible. In this case, the soft
constraints are said properly inconsistent.

Inconsistencies and orthogonally can be analyzed by
verifying the satisfiability of Boolean propositions composed
from the feature expression and soft constraint expressions.
Although verifying the satisfiability of a proposition is an
NP-Complete problem, SAT solvers have proven to be
efficient tools for the majority of expression of practical
interest for feature modeling [8]. Let F be the feature
expression, E the conjunction of the soft constraint
expressions and P the conjunction of the soft constraint
implicants according to the expressions found in Table I:

257

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1. Check for satisfiability of the conjunction F P. If it is

unsatisfiable, then the soft constraints are
inconsistent due to orthogonality.

2. A proper inconsistency in a non-orthogonal set of

constraints can be identified by assessing the
satisfiability of F P E. If that expression is found to
be unsatisfiable, then an inconsistency is detected.

Inconsistencies are not the only interesting interaction

between soft constraints and feature models. In fact, any
constraint of the format presented in Table II may be
satisfied by falsifying the implicant. It may be the case where
a soft constraint may only be satisfied by this recourse. In
this case, we say the implicant is hidden by the soft
constraint, in the sense that it may never be made true if the
soft constraint is to be upheld. This is relevant, as it makes it
possible to identify specific configuration profiles that must
be upheld for satisfaction of the soft constraint to be
possible. In the sequel, we will refer to hidden implicants as
hidden features, although strictly speaking the implicant may
not correspond to the selection of a single feature.

Hidden features can be identified in the following way.
Let F be the feature expression, E the conjunction of the soft
constraint expressions, and Ic the implicant of soft constraint
c. Then:

1. If F E is satisfiable, then at least one
configuration exists that satisfies the feature
model and soft constraints, and proceed to step
2.

2. For all Ic: If F E Ic is not satisfiable, then no
configuration exists that satisfies the feature
model and soft constraints with Ic being true. Ic
is therefore hidden by c.

IV. PATTERNS OF SOFT CONSTRAINT USE

In this section, we propose some typical patterns for the
use of soft constraint annotations in feature models, with
respect to the topological structure of the annotated feature
model. We strived for identifying such patterns for multiple
reasons:

• Identifying typical patterns of use improves
understanding of the subject matter and provides
insight into potential applications of soft constraints.

• If typical patterns of application are identified, with
respect to the topological structure of the feature
model, it becomes possible to automatically annotate
feature models with such constraints for the purposes
of generating test cases for experimenting and
validating the automated analysis techniques we
describe.

In this way, we have identified three patterns that describe
specific cases of application of soft constraints. Naturally,
this list cannot be considered exhaustive in any way, but it is
sufficient for the purposes of providing a basic understanding
of soft constraint use and allowing the automated creation of
test cases. The description of these three patterns follows:

A. Soft Constraint Pattern: Reversed Constraint

Suggestion

The pattern Reversed Constraint Suggestion (RCS)
describes a situation where a feature model includes a hard
constraint C, specifying a requires or excludes relation
between two features (or their absence). The RCS of
constraint C is a soft constraint that specifies that the

reversed relation should also hold, that is, RCS(A⇒B) = B
suggests A.

Examples of RCS can be found in Fig. 5 and Fig. 6. The
feature model in Fig. 6 is an adaptation of a simple
automobile product line described in [9]. A hard constraint
determines that the presence of the “Lateral Parking” feature
requires selection of the “Lateral Range Finder” feature. The
RCS of this hard constraint can be found in the feature
model: using the lateral range finder feature suggests the use
of lateral parking. In Fig. 5, the “Basic absence-suggests
GPS” soft constraint is the RCS of the “GPS excludes
Basic”.

The conceptual interpretation of the RCS pattern is based
on the intuitive notion that, in some cases, if all the
requirements for a certain feature (as specified by hard
constraints) are met, then it may be sensible to
opportunistically select it. For example, in Fig. 6 example,
the suggestion of selecting “Lateral Parking” in the presence

Figure 5. Feature model annotated with soft constraints (source: adapted from www.splot-research.org)

Mobile Phone

GPS Call Screen Media

Basic Color Hi-Resolution Camera Hi-Resolution

discourages

absence-suggests

excludes excludes

258

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the “Lateral Range Finder” sensor can be interpreted as a
suggestion to take maximum advantage of all the potential
capabilities provided by the installed hardware in the vehicle.
A similar perspective is that the “Lateral Range Finder”
sensor can be considered of reduced utility if the “Lateral
Parking” feature is not selected.

B. Soft Constraint Pattern: Group Selection Suggestion

The pattern Group Selection Suggestion (GSS) is related
to the preferential configuration options of grouped features.
Given a feature group G with subfeatures G1, G2,…, a GSS is
a soft constraint that describes preferred group

configurations (e.g.: GSS(G) ={G⇒Gx}). An example can
be found in Fig. 7. The GSS represents the notion of
preferred configuration options for feature groups.

C. Soft Constraint Pattern: Optional Selection Suggestion

The pattern Optional Selection Suggestion (OSS)
encompasses a broad range of situations where domain-
specific interdependencies affect the configuration of
optional features. An OSS represents one such situation, by
interlinking the configuration of two optional features via a
soft constraint.

One such situation is represented in Fig. 5, where
selection of the optional “Media” feature discourages
selection of the optional “GPS” feature. This soft constraint
could be understood to represent domain-specific constraints
being embedded in the feature model: in this specific case,
this soft constraint could be in place because of hardware
performance limitations that could entail a non-negligible
degradation of performance if both features are selected.

The OSS pattern represents domain-specific
dependencies between optional features and as such has very
generic scope. Specializations of this pattern may be devised
if such domain-specific knowledge is considered. However,
for the purposes of understanding typical structural patterns,
it is sufficient.

V. AUTOMATED TEST CASE GENERATION

Although a large number of feature models can be
obtained from online repositories [10], successfully applying
these to the validation of the techniques proposed in this
work entails the need to individually annotate the models
with soft constraints. These models, however, are concerned
with a large diversity of domains of application, making it
extremely difficult to seek the help of independent domain
experts for all are relevant areas of expertise. Consequently,
manual annotation may be feasible for only a relatively small
number of models in specific areas of expertise. However, it
is still a significantly time consuming task, where arbitrary
decisions, that may put into question the credibility of the
results, are unavoidable. Also, only a fraction of all available
models may be considered, wasting a significant portion of
potentially available resources and putting into question the
representativity of any results that are obtained.

To address these difficulties, we have chosen to annotate
all the feature models by automatically injecting soft
constraints according to the usage patterns (RCS, GSS, and

OSS) described in Section VI. This approach has significant
benefits:

• It allows any models in repository to be used for
validation and test purposes.

• It speeds up test case generation significantly, and
multiple configurations of soft constraint annotations
for each model can be generated, allowing for a large
test set to be created with the corresponding
emergence of observable statistical properties and
trends.

A. Test Case Generation

The following strategy was used to annotate a given base
feature model with soft constraints according to the RCS,
GSS, and OSS patterns.

Given the number of constraints Nc, number of groups
NG, the number of optional features NO of the base feature
model, and the configurable density parameters DRCS, DGSS,
and DOSS,

1. Randomly select a constraint in the base feature
model, generate the corresponding soft constraint
according to RCS and insert it into the model. Do this
Nc *DRCS times.

2. Randomly select one group in the base feature model
and one subfeature belonging to that group. Generate
the corresponding soft constraint according to GSS
and insert it into the model. Do this NG *DGSS times.

3. Randomly select two optional features in the base
feature model, generate the corresponding soft
constraint according to OSS and insert it into the
model. Do this NO *DOSS times.

Car

Sensors
Automated Driving

Controller

Forward Range

Finder

Collision

Avoidance

Breaking

Enhanced

Avoidance

Standard

Avoidance

requires

[1..1]

Lateral Parking
Lateral Range

Finder

requires

suggests

Figure 6. Example of a Reverse Constraint Suggestion, based on a feature

model of a simple automobile product line.

Protocol

ftphttps

suggests

nntp

[1..*]

suggests

Figure 7. Example of Group Selection Suggestions

259

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The density parameters control the number of soft
constraints introduced. Nevertheless, fluctuations may occur
because degenerate or nonsensical soft constraints (such as a
feature suggesting one of its (grand-) parents) are ignored so
they do not pollute or bias the results. Duplicate soft
constraints may also be generated, so the actual number of
soft constraints injected into the feature model may be less
than Nc *DRCS + NG *DGSS + NO *DOSS. This approach is
effective and simpler than trying to always generate valid,
distinct soft constraints in sufficient number (which may
very well be impossible, depending on the chosen density
parameters and structural properties of the base feature
model).

VI. EXPERIMENTAL RESULTS

A. Tool description

We developed a Java based tool that processes and
analyses feature models annotated with soft constraints. The
SAT4J package was used for resolving satisfiability
problems. The SXFM (Simple XML Feature Model) file
format [10], used for storing feature model descriptions, was
extended to include soft constraint information. The partial
contents of a SXFM file containing soft constraint
information can be observed in Fig. 8. Our tool is also
capable of injecting soft constraints into feature models and
conducting the analysis described in Section IV.

B. Test and Validation

For test and validation purposes, we have selected to use
all the feature models with more than 40 features currently
available in the SPLOT feature model repository [10]. These
were provided by the site users and include models from
both academic and industrial origin. This provided us with a
large set of feature models with diverse characteristics and
relevant dimension to validate our work.

Table III presents the relevant characteristics of the
feature models. The descriptions were taken verbatim from
their entries in the online feature repository.

Figure 8. Extract of SXFM file extended with soft constraint information.

The purpose of the experiments is to observe to what
extent the extent inclusion of soft constraints in feature
models may lead to hidden features and inconsistencies as
described in Section V, as well as assessing the effectiveness
of the analysis algorithm. To this effect, soft constraints were
injected in these models and the analysis algorithm was run
to identify inconsistencies and hidden features. Although
weak real world representativity is always a risk when using
automated test case generation, this concern is mitigated by
employing typical patterns of usage to guide soft constraint
injection.

Different test sets were created by injecting soft
constraints with increasing density parameters DRCS, DGSS,
and DOSS. All density parameters were set to the same value
in each test set, and four different test sets were created, with
density values of 0.125, 0.25, 0.5, and 0.75.

The results in Fig. 9 represent the aggregate results of
running soft constraint injection and analysis for the models
in Table III, while Table IV presents the results for each
individual model. Because feature injection is a stochastic
process, experiments were run 5 times for each feature
model for each different setting of the density parameters, for
a total of 20 runs per feature model.

The injection algorithm fails to inject any soft constraint
into three feature models (Thread, Datbase Tool, and DS
Sample) at the lowest density setting, because of their
specific topological properties. For preserving homogeneity,
results for these three models are not represented in Table
IV, since only higher density results are available;
comparison with other results would not be meaningful.

Results in Fig. 9 illustrate that, as can be expected,
inconsistencies noticeably increase with higher densities of
soft constraints. The number of inconsistencies seems to
increase linearly with the number of soft constraints, while
the number of orthogonal constraint sets increases more
rapidly and appears to converge to a value in the vicinity of
80%. The number of unaffected feature models decreases
correspondingly, until it drops bellow the number of
inconsistencies at densities of approximately 65%. An
important observation is that a significant number
(approximately 20%) of inconsistent soft constraints is found
even for low densities of soft constraints. This highlights the
usefulness of automated analysis procedures for validating
feature models annotated with soft constraints.

Results in Table IV show that adding soft constraints to
two specific feature models (PFTeste1 and DELL
Laptop/Notebook Computers) systematically resulted in the
appearance of an inconsistent set of soft constraints set.
Analyzing the characteristics of these two models, it is easily
observed that one common distinguishing feature is the very
high number of hard constrains in each (even after
normalizing according to the number of features). It can be
concluded that constraint density, and not feature model
dimension or other factors, is the main contributing factor for
the appearance of inconsistent soft constraint suggestions.

Hidden features were also identified. Table V presents
the percentage of soft constraints hiding a feature as a
percentage of the total number of soft constraints. For most
feature models, the percentage of hidden features increases

260

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with the density of soft constraints. The average results
displayed in the last row of Table IV confirm this tendency.
No hidden features were identified in PFTeste1 or DELL
Laptop/Notebook Computers, for the simple reason that
those feature models systematically generated
inconsistencies precluding satisfaction of constraints. The
presence of hidden implicants is found to be prevalent
enough in most models so that automatic detection and
report can be considered useful.

The analysis algorithm was found to be very efficient.
Experiments were conducted in a netbook with 1 Gb of
RAM memory, taking approximately 5-10s for loading,
injecting soft constraints and analyzing once every one of the
feature models considered in this test (between 0.15 and 0.3 s
per feature model).

VII. RELATED WORK

In [6], probabilistic feature models are described that use
soft constraints as descriptions of features that have high
probabilities of being concurrently selected in the same
configuration. Probabilistic feature models and
corresponding samples spaces are suited to represent feature
models obtained through feature mining processes, because
complete feature joint probability distributions must be
obtained. Incomplete specifications must be handled by
complementary mechanisms such as Bayesian networks. In
our work, the use of standard Boolean propositional logic
capitalizes on established tool support and improves
accessibility to the developer. This allows soft constraints to
be more readily used to represent important domain
knowledge in feature models.

“Encourages” and “discourages” constraints have been
proposed for feature models in [11]. However, no precise
semantics have been provided, precluding automated
analysis and reasoning as described in our work.

In [12], fuzzy logic is applied to relate feature
configurations to costumer profiles. Although it is a
significant departure from standard feature modeling
approaches familiar to developers, Fuzzy logic is a powerful
alternative tool for handling uncertainty.

While we focus this work on detection of inconsistencies
and semantical analysis (e.g: detection of hidden features) of
feature models annotated with Boolean soft constraints, in
[7] improved configuration support is described.

Soft constraint frameworks have been studied in the
context of constraint programming. These approaches focus
on the search of a optimal variable assignment with respect
to a set of quantified soft constraint expressions, as opposed
to semantical and consistency analysis [13].

VIII. CONCLUSIONS

We have experimentally demonstrated the usefulness and
viability of automated analysis of soft constraints in feature
models. Typical patterns of soft constraint use were
described. These were injected in publicly available feature
models. In this process, inconsistencies and hidden features
were introduced. These situations can correspond to potential
semantic errors and should be reported back to the user for
further inspection. Our tool was applied and was effective in

identifying these potential problems. This demonstrates that
a framework for handling soft constraints in feature models
using propositional logic can be a valuable tool for feature
modeling. Future work will be conducting in identifying
additional patterns of soft constraint use. The role of soft
constraint usage in typical development tasks such as
refactoring or domain modeling will also be investigated.

TABLE III. FEATURE MODELS

Description

N
u

m
b

e
r
 o

f

F
e
a

tu
re

s

O
p

ti
o

n
a

l

F
e
a

tu
re

s

N
u

m
b

e
r
 o

f

 G
ro

u
p

s

H
a

r
d

C
o

n
st

r
a
in

ts

AndroidSPL 45 8 9 5

Arcade Game PL 61 4 9 34

bCMS system 66 6 8 2

Billing 88 45 2 59

Car Selection 72 10 19 21

Consolas de Videojuegos 41 11 2 5

Database Tool 40 7 7 0

DATABASE_TOOLS 70 20 7 2

DELL Laptop/Notebook

Computers

46 1 8 110

Documentation_Generation 44 3 9 8

DS Sample 41 0 6 0

Electronic Drum 52 1 11 0

E-science application 61 7 16 2

HIS 67 10 6 4

Hotel Product Line 55 31 7 0

J2EE web architecture 77 26 11 0

Letovanje 43 3 13 2

Linea de Experimentos 52 11 4 4

Meshing Tool Generator 40 8 11 17

Model_Transformation 88 11 25 0

OW2-FraSCAti-1.4 63 39 2 46

PFTest1 56 5 8 90

Plone Meeting 57 13 9 0

Printers 172 1 28 0

Reuso – UFRJ – Eclipse1 72 40 7 1

Smart Home 56 36 4 0

Smart Home v2.2 60 30 6 2

SmartHome_vConejero 59 33 0 3

SPL SimulES, PnP 59 8 14 0

Thread 44 0 7 0

Video Player 53 17 9 2

Video Player 71 12 5 0

Web_Portal 43 17 6 6

Xtext 137 95 0 1

261

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. INCONSISTENCY RESULTS PER FEATURE MODEL

Description

U
n

a
ff

e
c
te

d

O
r
th

o
g

o
n

a
l

In
c
o

n
si

st
e
n

t

N
o

n
-

o
r
th

o
g
o

n
a
l

In
c
o

n
si

st
e
n

t

Model_Transformation 50% 50% 0%

OW2-FraSCAti-1.4 25% 75% 0%

Documentation_Generation 65% 35% 0%

SPL SimulES, PnP 45% 55% 0%

PFTest1 0% 0% 100%

DELL Laptop/Notebook Computers 0% 0% 100%

Linea de Experimentos 50% 50% 0%

Letovanje 50% 45% 5%

Xtext 0% 100% 0%

Smart Home v2.2 30% 60% 10%

SmartHome_vConejero 20% 80% 0%

bCMS system 60% 40% 0%

E-science application 50% 50% 0%

DATABASE_TOOLS 40% 60% 0%

Reuso - UFRJ - Eclipse1 55% 45% 0%

Hotel Product Line 20% 75% 5%

Electronic Drum 30% 70% 0%

Video Player 55% 45% 0%

Billing 40% 60% 0%

Smart Home 40% 60% 0%

Plone Meeting 25% 75% 0%

Meshing Tool Generator 15% 85% 0%

AndroidSPL 40% 60% 0%

Arcade Game PL Feature Model 40% 40% 20%

Web_Portal 35% 60% 5%

Consolas de Videojuegos 95% 5% 0%

Car Selection 40% 60% 0%

Printers 50% 35% 15%

HIS 30% 10% 60%

J2EE web architecture 30% 70% 0%

Figure 9. Aggregate results: unaffected, orthogonal and inconsistent

feature models.

TABLE V. HIDDEN FEATURE RESULTS PER FEATURE MODEL

Percentage of constraints hiding

features
Description

density

0,125

density

0,25

density

0,5

density

0,75

Model_Transformation 0% 0% 0% 79%

OW2-FraSCAti-1.4 4% 56% 98% 91%

Documentation_Generation 0% 0% 11% 10%

SPL SimulES, PnP 0% 33% 67% 69%

PFTest1 0% 0% 0% 0%

DELL Laptop/Notebook

Computers 0% 0% 0% 0%

Linea de Experimentos 0% 0% 0% 20%

Letovanje 0% 11% 29% 36%

Xtext 3% 6% 10% 21%

Smart Home v2.2 0% 0% 32% 33%

SmartHome_vConejero 0% 0% 30% 32%

bCMS system 0% 33% 13% 0%

E-science application 0% 0% 21% 63%

DATABASE_TOOLS 0% 0% 8% 49%

Thread - 0% 22% 47%

Reuso - UFRJ - Eclipse1 0% 6% 30% 28%

Hotel Product Line 0% 0% 17% 11%

Database Tool - 0% 6% 43%

Electronic Drum 0% 0% 67% 100%

Video Player 0% 0% 0% 6%

Billing 45% 41% 100% 100%

Smart Home 0% 0% 8% 9%

Plone Meeting 0% 7% 10% 33%

Meshing Tool Generator 0% 21% 0% 14%

AndroidSPL 0% 13% 58% 88%

Arcade Game PL Feature
Model 0% 0% 0% 2%

Web_Portal 0% 11% 27% 32%

Consolas de Videojuegos 0% 22% 21% 25%

Car Selection 0% 0% 15% 0%

Printers 0% 0% 43% 41%

DS Sample - 0% 0% 67%

HIS 0% 8% 27% 12%

J2EE web architecture 0% 8% 6% 20%

AVERAGE 2% 8% 23% 36%

REFERENCES

[1] J. Barreiros and A. Moreira, "Soft Constraints in

Feature Models," in International Conference in

Software Engineering Advances, ICSEA'11

Barcelona, 2011.

[2] K. Czarnecki and U. Eisenecker, Generative

Programming: Methods, Tools, and Applications:

Addison-Wesley Professional, 2000.

262

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] P. Clements and L. Northorp, Software Product

Lines:Practices and Patterns: Addison-Wesley,

2001.

[4] D. Batory, "Feature-Oriented Programming and the

AHEAD Tool Suite," in 26th International

Conference on Software Engineering: IEEE

Computer Society, 2004.

[5] K. Czarnecki and A. Wasowski, "Feature Diagrams

and Logics: There and Back Again," in 11th

International Software Product Line Conference

(SPLC) Kyoto, 2007, pp. 23-34.

[6] K. Czarnecki, S. She, and A. Wasowski, "Sample

Spaces and Feature Models: There and Back

Again," in Software Product Lines, 12th

International Conference, SPLC Limerick, Ireland,

2008, pp. 22-31.

[7] J. Barreiros and A. Moreira, "Configuration Support

for Feature Models with Soft Constraints " in ACM

Symposium on Applied Computing (in press)

Coimbra, 2013.

[8] M. Mendonça, A. Wasowski, and K. Czarnecki,

"SAT-based analysis of feature models is easy," in

Software Product Lines, 13th International

Conference, SPLC 2009, San Francisco, California,

USA, 2009, pp. 231-240.

[9] J. White, B. Dougherty, and D. C. Schmidt,

"Automated reasoning for multi-step feature model

configuration problems," in Software Product Line

Conference 2009 San Francisco, USA, 2009.

[10] M. Mendonça, M. Branco, and D. Cowan,

"S.P.L.O.T - Software Product Lines Online Tools,"

in 24th ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems,

Languages and Applications, OOPSLA 2009

Orlando, USA, 2009.

[11] H. Wada, J. Suzuki, and K. Oba, "A feature

modeling support for non-functional constraints in

service oriented architecture.," IEEE Computer

Society, pp. 187-195, 2007.

[12] S. Robak and A. Pieczynski, "Employment of fuzzy

logic in feature diagrams to model variability in

software families.," in 10th IEEE International

Conference on Engineering of Computer-Based

Systems (ECBS 2003) Huntsville, AL, USA, 2003,

pp. 305-311.

[13] F. Rossi, P. V. Beek, and T. Walsh, "Handbook of

Constraint Programming," in Foundations of

Artificial Intelligence, J. Hendler, H. Kitano, and B.

Nebel, Eds.: Elsevier, 2006.

263

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using Functional Complexity Measures in Software Development Effort Estimation

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

luigi.lavazza@uninsubria.it

Gabriela Robiolo

Departamento de Informática

Universidad Austral

Buenos Aires, Argentina

grobiolo@austral.edu.ar

Abstract — Several definitions of measures that aim at

representing the size of software requirements are currently

available. These measures have gained a quite relevant role,

since they are one of the few types of objective measures upon

which effort estimation can be based. However, traditional

Functional Size Measures do not take into account the amount

and complexity of elaboration required, concentrating instead

on the amount of data accessed or moved. This is a problem

since the amount and complexity of the required data

elaboration affect the implementation effort, but are not

adequately represented by the current size measures, including

the standardized ones. Recently, a few approaches to

measuring aspects of user requirements that are supposed to

be related with functional complexity and/or data elaboration

have been proposed by researchers. In this paper, we take into

consideration some of these proposed measures and compare

them with respect to their ability to predict the development

effort, especially when used in combination with measures of

functional size. A few methods for estimating software

development effort –both based on model building and on

analogy– are experimented with, using different types of

functional size and elaboration complexity measures. All the

most significant models obtained were based on a notion of

computation density that is based on the number of

computation flows in functional processes. When using

estimation by analogy, considering functional complexity in the

selection of analogue projects improved accuracy in all the

evaluated cases. In conclusion, it appears that functional

complexity is a factor that affects development effort;

accordingly, whatever method is used for effort estimation, it is

advisable to take functional complexity into due consideration.

Keywords – Functional size measurement; Function Points;

COSMIC function points; effort estimation; functional

complexity measurement.

I. INTRODUCTION

Several definitions of measures intended to represent the
functional size of software are being used. The popularity of
these measures is due to the fact that functional size
measures are typically used to drive the estimation of the
development effort. To this end, effort models require
several inputs in addition to the functional size, including the
complexity of the software to be developed [11][47]. In fact,
problem complexity is recognized as one of the elements that
contribute to the comprehensive notion of software size [17].

The need to account for software complexity when
estimating the development effort does not depend on the
functional size measurement (FSM) method used.

Before proceeding, it is useful to spend some words on
the fact that throughout the paper we treat the terms
“complexity” and “amount of data elaboration” as
synonyms. This is due to the facts that complexity is an
inherently elusive concept, and at the functional
requirements level it is not clear what should be the
difference between the amount and the complexity of data
elaboration: for instance, in many cases, complexity is
considered proportional to the number of alternatives in a
process execution, but this number is also clearly related also
to the size of the process.

When dealing with effort estimation, the most popular
methods require an evaluation of the complexity of the
application. Currently such evaluation is of a purely
qualitative nature. For instance, COCOMO II [11] provides a
table that allows the user to evaluate complexity on an
ordinal scale (from “very low” to “extra high”) according to
five aspects (control operations, computational operations,
device-dependent operations, data management operations,
user interface management operations) that have to be
evaluated in a qualitative and subjective way: e.g., the
characterization of computational operations corresponding
to the “Nominal” complexity is “Use of standard math and
statistical routines. Basic matrix/vector operations” [15].

It is quite clear that it would be greatly beneficial to
replace such subjective and approximate assessment of
complexity with a real measure, based on objective and
quantitative evaluations, since this would enable the
construction of more reliable and accurate models of effort.

Previous work showed that effort models that take into
consideration complexity measures are more precise than
those based on the functional size only. In particular, the
authors of this paper showed that development effort
correlates well with COSMIC function points (CFP) [16] and
Path [43], and that the inclusion of a Path-based complexity
measure improves the models based on size, whatever size
measure is used (IFPUG Function Points [24], CFP [23], or
even Use Case Points [28]) [34].

In [1], the work reported in [34] was extended, by taking
into consideration some measures that represent potential
complexity dimensions, by building effort estimation models
that exploit these measures, and by discussing the precision
of fit of these models.

264

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this paper, we further enhance the work reported in [1]
by using an extended dataset, and by refining it (the largest
project was removed, being an evident outlier). More
important, here we test the importance of functional
complexity measures in effort estimation, by experimenting
with a wider range of estimation methods. In particular, we
use not only model-based estimation, but also Estimation by
Analogy (EbA), as this is a very popular technique: model-
based estimation and EbA are definitely the most relevant
techniques for cost estimation [25].

The results of the measurements and analyses reported in
the paper contribute to enhancing the knowledge of how to
measure functional complexity at the requirements level, and
what is the contribution of such measure to effort estimation.

The paper is organized as follows: Section II accounts for
related work; Section III is dedicated to illustrating the
measures of functional size and functional complexity used
in this study; Section IV describes the dataset and the types
of analysis performed; Section V and VI illustrate the results
of the analyses via regression and analogy, respectively; in
Section VII the outcomes of the research are discussed; in
Section VIII the threats to the validity of the study are
discussed. Finally, Section IX draws some conclusions and
outlines future work.

II. RELATED WORK

A few attempts to account for data elaboration in FSM
have been done. Feature points by Capers Jones [26] aim at
capturing the algorithmic complexity of the elaboration.
However, according to Capers Jones, “the feature point
metric was created to deal with the psychological problem
that members of the real-time and systems software world
viewed function point metrics as being suitable only for
management information systems” [27]. Therefore, feature
points simply moved part of the ‘size’ from data to
algorithms, leaving the measure substantially unaltered with
respect to FPA. In fact, currently Capers Jones recommends
“the use of the standard IFPUG methodology combined
with a rating of ‘Project Complexity’ to properly scale
effort”.

3D Function Points [50] consider three dimensions of
the application to be measured: Data, Function, and Control.
The Function measurement considers the complexity of
algorithms; and the Control portion measures the number of
major state transitions within the application.

Gencel and Demirors [19] point out that we still need a
new Base Functional Component (BFC) Types for the
Boolean operations of Functional User Requirements, which
are often not considered to be algorithmic operations, but
which are related to complexity. This point of view
highlights the necessity of considering the complexity of
elaboration required in FSM, and they suggested
introducing as a new BFC type that differs from authors’
proposal.

Bernárdez et al. [10] measured the cyclomatic
complexity of a use case in order to validate the use case
definition, while Levesque et al. [35] measured the
conditions of inputs in a sequential diagram in order to add
the concept of complexity to the COSMIC method.

 Yavari et al. [51] evaluated the weak points of Use Case
complexity measures, in particular, those of transaction
identification, and introduced other measures to determine
Use Case complexity. They focused on Use Case
specification and flow of events. Also, the authors
considered main and alternative scenarios. However, this is
only an early definition of the new measures, as they did not
use them in a case study.

Aggarwal et al. [4] defined an estimation model that can
be used to estimate the effort required for designing and
developing hypermedia content management systems
(CMS). The model is designed to help project manager to
estimate effort at the very early stage of requirement
analysis. Questionnaires are used to estimate the complexity
of the project. The final effort is estimated using the project
size and various adjustment factors. The size of the project
is evaluated by using a modified object point analysis
approach. The proposed model shows a great improvement
as compared to the earlier models used in effort estimation
of CMS projects.

Visaggio [48] proposes a metric for expressing the
entropy of a software system and for assessing the quality of
its organization from the perspective of impact analysis. The
metric is called “structural information” and is based on a
model dependency descriptor. The metric is characterized
by its independence from the techniques used to build the
system and the architectural styles used to represent the
system at the various levels of abstraction. The metric is
sensitive to and reflects both internal and external
complexity, but is independent of and ignores intrinsic
complexity, which is our interest focus.

Briand and Wust [14] used structural design properties
of an object-oriented development project, such as coupling,
cohesion, and complexity (of late design) as additional cost
factors. They empirically conclude that the measures of such
properties did not play a significant role in improving
system effort predictions.

Mendes et al. [38] compared length, functionality and
complexity metrics as effort predictors by generating
corresponding prediction models and comparing their
accuracy using boxplots of the residuals for web
applications. Their results suggest that in general the various
considered measures provide similar prediction accuracy.

Baresi and Morasca [8] analyzed the impact of attributes
like the size and complexity of W2000 (a special-purpose
design notation for the design of Web applications [7])
design artifacts on the total effort needed to design web
applications. They identified for Information, Navigation,
and Presentation models a set of size and complexity
metrics. The complexity metrics are based on associations
and links identified in the models. The three studies
performed correlated different size measures with the actual
effort: no general hypotheses could be supported by the
analyses that were conducted, probably because the
designer’s background impacted the perception of
complexity.

Lind and Heldal [36] conducted four experiments in the
automotive industry, which showed a strong correlation
between COSMIC functional size measures and

265

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implemented code size in Bytes of real-time applications.
They reported that it was possible to obtain accurate Code
Size estimates even for software components containing
complex calculations –which are not captured by COSMIC–
as the factors affecting the relationship are functionality
type, quality constraints, development methods and tools,
and information regarding hardware interfaces missing in
the requirement specification.

Bashir and Thomson [9] used traditional regression
analysis to derive two types of parametric models: a single
variable model based on product complexity and a
multivariable model based on product complexity and
requirements severity. Generally, the models performed
well according to a number of accuracy tests. In particular,
product complexity explained more than 80% of variation in
estimating effort. They concluded that product complexity
as an indicator for project size is the dominant parameter in
estimating design effort. Our results agree with those by
Bashir and Thomson, as the results they obtained using
functional complexity measures (0.64<R

2
<0.81) are quite

similar to ours.
Quite interestingly, in the parametric models that are

most used in practice –like COCOMO II [11] or
SEER/SEM [18]– the functional complexity is taken into
account as part of the product characteristics in formulas of
the type Effort=f(Size, <product characteristics>, <process
characteristics>).

Hastings and Sajeev [21] proposed a Vector Size
Measure (VSM) that incorporates both functionality and
problem complexity in a balanced and orthogonal manner.
VSM is used as the input to a Vector Prediction Model
(VPM), which can be used to estimate development effort
early in the software life cycle. The results indicate that the
proposed technique allows for estimating the development
effort early in the software life cycle with errors not greater
than 20% across a range of application types.

AlSharif et al. [5] introduced a measure for assessing the
overall complexity of software architecture. To accomplish
this, they chose to use the Full Function Points (FFP)
methodology –a former version of COSMIC Function
Points– as a building block to measure complexity. The new
measure was inspired by the fact that, in general, the
components of an architecture comprise collections of
services (functionality) that each component provides for
other components. The allocation of these functionalities
affects the required interface (external dependency) and the
internal work performed by each component. Therefore,
measuring the functionality of the components can serve as
an indicator of the internal and external complexity of the
components and, consequently, the complexity of the
architecture. Also, Sengupta et al. [44] proposed the
Component Architecture Complexity Measurement Metrics
(CACMM), based on Component Architecture Graph
(CAG), a graphical model used for representing a UML
component diagram. An analysis of the graph was
performed to measure complexity at different levels – the
individual component level, the component-to-component
level and the overall architecture. However, neither in [5]

nor in [44] the relationship between architecture complexity
and effort was analyzed.

Misra [40] proposed a modified cognitive complexity
measure (MCCM), which is a modification of the Cognitive
Information Complexity Measure (CICM). In the cognitive
functional size measure, the functional size depends upon
the internal architecture of the software and its inputs and
outputs. For the new measure, the occurrence of operators
and operands is taken into account, instead of the number of
inputs and outputs. The author compared the values
obtained by calculating the complexity of eight C programs;
however, a relation with Effort was not reported.

Wijayasiriwardhane and Lai [49] described a Function
Point-like measure named Component Point (CP), which
was used to measure the system-level size of a Component-
Based Software System (CBSS), specified in the Unified
Modeling Language. In the CP counting process, the
complexity of the component was assessed, which depended
not only on the number, but also on the complexity of its
interfaces and interactions. The complexity level of each
interface was specified using the Number of Operations
(NO) and the Number of Parameters (NP), which were
derived from the operation signatures for each interface.
They provided an empirical analysis of seven projects in
order to verify the validity and usefulness of the CP measure
with regard to its correlation to the effort of component-
based development. They reported that the R

2
obtained was

greater than 0.9.
Our results are in accordance with the consideration

expressed by Morasca on the definition of measures [42], as
it appears that the notion of complexity may be represented
by taking into account several basic indicators (size, control
flow, data, etc.) that can be used individually (i.e., without
the need to build a derived measure defined as a weighted
sum) in estimation models.

Mittas and Angelis [41] introduced the use of a semi-
parametric model that managed to incorporate some
parametric information into a non-parametric model,
combining in this way regression and analogy. They
demonstrated the procedure used to build such a model from
two well-known datasets. The MMRE reported for EbA
were 35.57% and 33.45% and the improvement using the
combination model was about 50%. The results using EbA
fell within the range of our results, but the improvement
obtained was higher. However, the method proposed by
Mittas and Angelis has some limits in practical
applicability, because the models are more difficult to build,
as more variables and several estimation techniques have to
be used.

Shepperd and Schofield [45] described an approach to
estimation based upon the use of analogies. The underlying
principle was to characterize projects in terms of features
(for example, the number of interfaces, the development
method or the size of the functional requirements
document). Similarity was defined as the Euclidean distance
in an n-dimensional space, where n is the number of project
features. Each dimension is standardized, so all dimensions
have equal weight. The known effort values of the closest
neighbors to the new project are then used as the basis for

266

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prediction. The method was validated on nine different
industrial datasets (a total of 275 projects) and in all cases
analogy outperformed algorithmic models based upon
stepwise regression. Although we had a different research
objective, it was useful to see that the results they obtained
were in a range of values similar to ours: the MMRE of
analogy based method of homogeneous data set were in the
26%-60% range.

Finally, Gupta et al. [20] studied analogy based
estimation methods and compared estimation results
reported by nine authors using Fuzzy logic, Grey System
Theory, Machine Learning techniques such as Genetic
Algorithms, Support vector Machines. The reported results
are characterized by quite large variations: MMRE varies
from a minimum 12% to a maximum 111%, while Pred(25)

is in the 15%−83.75% range. Our results fall in these ranges
of values.

III. MEASURES INVOLVED IN THE STUDY

In this study, we used the size measures and functional
complexity measures described in the following sections.

A. Function Points

The Function Point method was originally introduced by
Albrecht to measure the size of a data-processing system
from the end-user’s point of view, with the goal of
estimating the development effort [2][3]. IFPUG FPA is now
an ISO standard [24] in its “unadjusted” version. So,
throughout the paper, unless otherwise explicitly stated, we
refer exclusively to Unadjusted Function Points, which are
generally referred to as “UFP.”

The basic idea of FPA is that the “amount of
functionality” released to the user can be evaluated by taking
into account the data used by the application to provide the
required functions, and the transactions (i.e., operations that
involve data crossing the boundaries of the application)
through which the functionality is delivered to the user. Both
data and transactions are evaluated at the conceptual level,
i.e., they represent data and operations that are relevant to the
user. Therefore, Function Points (FP) are counted on the
basis of the user requirements specification. The boundary
indicates the border between the application being measured
and the external applications and user domain.

The core of the counting procedure consists in
identifying and weighting so-called data function types and
transactional function types. Data functions represent data
that are relevant to the user and are required to perform some
function. Data functions (DF) are classified into internal
logical files (ILF), and external interface files (EIF). An ILF
is a user identifiable group of logically related information
maintained (i.e., managed –in FPA terminology,
“maintaining” data means creating, modifying, deleting
data–) within the boundary of the application. An EIF is
similar to an ILF, but is maintained within the boundary of
another application, i.e., it is outside the application being
measured, for which an EIF is a read-only file.

Transactional functions represent operations that are
relevant to the user and cause input and/or output data to
cross the application boundary. Transactional functions

represent elementary processes. An elementary process is the
smallest unit of activity that is meaningful to the user(s). An
elementary process must be self-contained and leave the
application being counted in a consistent state. Transactional
functions are classified into external inputs (EI), external
outputs (EO), and external inquiries (EQ) according to the
main intent of the process: updating ILF for EI, computing
and outputting results for EO, retrieving and outputting data
for EQ.

Every function, either data or transaction, contributes a
number of FP that depends on its weight. The weight of ILF
and EIF is evaluated based on Data Element Types (DET)
and Record Element Types (RET). A DET is a unique, non-
repeated field recognizable by the user. A RET is a subgroup
of the information units contained in a file. To give a rough
idea of what RET and DET are, if the specifications are
written in an object-oriented language (like UML), the
concept of RET maps (with some exceptions) onto the
concept of class, while DET are the class attributes.

For transactions, the weight is based on the number of
DET and File Type Referenced (FTR). An FTR can be an
ILF referenced or maintained by the transaction or an EIF
read by the transaction. The DET considered are those that
cross the application boundary when the transaction is
performed.

Each function is weighted according to given tables
(weight tables can be found here: http://www.eng-it.it/qg-
ifpug-fpa-v42en.pdf).

Finally, the number of so-called Unadjusted Function
Points (UFP) is obtained by summing the contribution of the
function types UFP = EI + EO + EQ + ILF + EIF.

According to the definition of UFP, it is clear that the
amount and complexity of the elaboration required in the
transaction functions is not taken into consideration. For
instance two External Output transactions that involve 2 FTR
and 10 DET both have the same weight, even if one just
performs sums and the other performs very complex
operations according to a very sophisticated algorithm.

B. COSMIC Function Points

COSMIC (Common Software Measurement International
Consortium) [16][23] function points are growingly used for
measuring the functional size of applications, i.e., to measure
the size of functional user requirements.

COSMIC measurement is applied to the “Functional
User Requirements” of a software application (actually, there
is no difference between the user requirements used to count
FP and CFP). The result is a number representing the
functional size of the application in COSMIC Function
Points.

In the COSMIC model of software (illustrated in Fig. 1),
the Functional User Requirements can be mapped into
unique functional processes, initiated by functional users.
Each functional process consists of sub-processes that
involve data movements. A data movement concerns a single
data group, i.e., a unique set of data attributes that describe a
single object of interest. In practice, the COSMIC data
groups correspond to FPA logical data files (or to RET), but
do not contribute directly to the size in CFP: they are

267

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

relevant only because they are the objects of data
movements. There are four types of data movements:

− An Entry moves a data group into the software from a
functional user.

− An Exit moves a data group out of the software to a
functional user.

− A Read moves a data group from persistent storage to
the software.

− A Write moves a data group from the software to
persistent storage.

In the COSMIC approach, the term “persistent storage”
denotes data (including variables stored in central memory)
whose value is preserved between two activations of a
functional process.

The size in CFP is given by equation CFP = Entries +
Exits + Reads + Writes, where each term in the formula
denotes the number of corresponding data movements. So,
there is no concept of “weighting” of a data movement in
COSMIC, or, equivalently, all data movement have the same
unit weight.

COSMIC function points do not represent the amount
and complexity of data elaboration required. COSMIC
function points concentrate on the measure of data
movements, neglecting data elaboration. More precisely, the
model of software used by the COSMIC method –illustrated
in Fig. 1– includes data elaboration, but no indication on how
to measure it is provided. The COSMIC measurement
manual [16] simply assumes that every data movement
accounts for some amount of data elaboration, and that such
amount is proportional to the number of data movements, so
that by measuring data movements, one measures also data
manipulation.

As size units, we adopted both CFP and the number of
functional processes. In fact, the number of functional
processes is suggested as a reasonable approximation of the
size in CFP in [16]. Moreover, being a sort of “by product”
of CFP measurement, computing the number of Functional
Processes does not actually require additional effort.

Functional User
Requirements

Sub-process types

Functional

Process Type

Data Movement
Type

Data Manipulation
Type

Figure 1. The COSMIC generic software model.

C. Use Case-based Measures

In 1993, Karner introduced Use Case Points (UCP), a
redefinition of the Function Point method in the context of
the use case requirements specification [28][29].

Use cases yield an observable result that is meaningful
for the actors [12]. Karner based the conception of use case
functional size on two elements: the use cases themselves
and the actors, which are the external entities that interact
with the system.

Every element, i.e., every use case and actor, contributes
to the software product size with a number of UCP that
depends on the “complexity” of each use case and actor.
The complexity of use cases is defined in terms of the
number of transactions and analysis objects (which are
conceptually similar to ILF). The complexity of actors is
associated to the characteristics of the interface and protocol
used in the interaction with the system. Each element is
weighted on the basis of its complexity according to the
values specified in [28][29].

Since the concept of transaction is not clearly defined in
Karners’s method –as already pointed out by [51]– we
decided to interpret it as the stimulus triggered by an actor:
each stimulus that an actor triggers defines a transaction, as
described in [32]. Also, the analysis objects were not taken
into account to measure the complexity of the use cases;
only the number of transactions was used. This was done in
order to make our results comparable to those obtained by
[6].

We consider UCP in their “unadjusted” version. So,
throughout the paper, unless otherwise explicitly stated, we
will exclusively refer to Unadjusted Use Case Points, which
are generally referred to as “UUCP.”

Finally, it is important to note that the number of UUCP,
i.e., the “amount of functionality” of a use case, is obtained
by adding up the contribution of the elements: UUCP = Use
Case + Actor.

D. Functional Complexity Measures

Several different possible measures of functional
complexity were proposed. For instance, in [46] the number
of inputs and outputs, the number of decision nodes, the sum
of predicates of all decision nodes, the depth of decision tree
and the length of paths are considered as possible indicators
of complexity.

In [47], Tran Cao et al. propose the usage of the number
of data groups (NOD), the number of conditions (NOC) and
entropy of system (EOS). They also study how these
measures (also in combination with COSMIC FP) are
correlated with the development effort.

Another measure of complexity, the Paths, was defined
on the basis of the information typically available from use
case descriptions [43]. The measure of the complexity of use
cases is based on the application of the principles of
McCabe’s complexity measure [37] to the descriptions of
use cases in terms of scenarios. In fact, use cases are usually
described giving a main scenario, which accounts for the
‘usual’ behaviour of the user and system, and a set of
alternative scenarios, which account for all the possible
deviations from the normal behaviour that have to be

268

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supported by the system. Robiolo and Orosco [43] apply to
the use case textual descriptions the same measure applied
by McCabe to code. Every different path in a given use case
scenario contributes to the measure of the use case’s
complexity. The definition of Paths conforms to several
concepts enounced by Briand et al. [13]: Paths represent “an
intrinsic attribute of an object and not its perceived
psychological complexity as perceived by an external
observer”, and they represent complexity as “a system
property that depends on the relationship between elements
and is not an isolated element's property”. A detailed
description of the Paths measure and its applicability to use
cases described in UML can be found in [33].

In the research work reported here, we used measures
that are conceptually very close to those proposed in
previous studies [46][47]. However, we did not stick exactly
to the previous proposals, essentially for practical reasons.
We used Paths instead of NOC because both measures
capture essentially the same meaning, and the measures of
Paths were already available. Similarly, we used the number
of COSMIC data groups and the FPA number of logic data
files instead of NOD because –having measured the size of
the applications in FP and CFP, the documentation on data
groups and logic files was already available, thus the
measurement could be performed very easily.

TABLE I. THE DATASET

Project

ID
Type

Actual

Effort
Path

Use

Cases
UUCP UFP

FPA

transactions
CFP

Functional

Processes

Data

Groups

Pers.

DG

P1 Academic 410 71 39 201 185 39 143 39 21 7

P2 Academic 474 73 28 149 269 58 118 28 15 9

P3 Academic 382 60 7 84 171 19 109 24 15 12

P4 Academic 285 49 6 72 113 15 74 25 14 8

P5 Academic 328 34 12 72 110 14 48 12 17 7

P6 Academic 198 35 8 62 86 9 67 10 15 7

P7 Academic 442 50 6 71 75 10 81 16 12 6

P8 Industrial 723 97 27 175 214 33 115 27 19 10

P9 Industrial 392 83 15 111 340 47 105 24 35 24

P10 Industrial 272 42 19 119 179 27 73 21 9 9

P11 Industrial 131 18 13 68 115 17 51 13 5 5

P12 Industrial 348 32 12 71 107 16 46 12 13 7

P13 Academic 243 68 12 99 111 12 96 26 18 9

P14 Academic 300 33 4 57 40 4 54 12 12 4

P15 Academic 147 20 10 53 59 10 53 14 15 4

P16 Academic 169 17 5 28 61 5 30 5 10 6

P17 Academic 121 21 13 52 72 13 47 13 15 5

P18 Academic 342 24 9 48 11 27 40 9 12 2

P19 Academic 268 16 9 49 12 27 30 9 10 3

IV. THE EXPERIMENTAL EVALUATION

A. The Dataset

In order to evaluate the measures mentioned above with
respect to their usability as effort predictors, we collected all
such measures for a set of projects. We could not use data
from the best known repositories –such as the PROMISE or
ISBSG datasets– because they do not report the size of each
project according to different FSM methods; moreover, the
Paths measure is quite recent, and no historical data exist for
it.

We measured 19 small business projects, which were
developed in three different contexts: an advanced
undergraduate academic environment at Austral University,

the System and Technology (S&T) Department at Austral
University and a CMM level 4 Company. The involved
human resources shared a similar profile: advanced
undergraduate students, who had been similarly trained,
worked both at the S&T Department and at the CMM level 4
Company. All the selected projects met the following
requisites:
a) Use cases describing requirements were available.
b) All projects were new developments.
c) The use cases had been completely implemented, and the

actual development effort in PersonHours was known.
The dataset is reported in Table I. Note that we

distinguished the number of persistent data groups (column
Pers. DG) from the total number of data groups, which
includes also transient data groups. Our hypothesis is that

269

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

persistent data groups are more representative of the amount
of data being handled by the application.

B. The Estimation Methods Used

We first checked if statistically significant models could
be built using ordinary least squares (OLS) linear regression.

We used also linear regression after log-log
transformation, as is usually done in studies concerning
effort [11][47].

In model building, a 0.05 statistical significance
threshold was used throughout the paper, as is customary in
Empirical Software Engineering studies. All the results
reported in the paper are characterized by p-value < 0.05. All
the validity requirements for the proposed models (e.g., the
normal distribution of residuals of OLS regressions) were
duly checked.

Moreover, in order to avoid overfitting, we retained only
models based on datasets containing –after the elimination of
outliers– at least seven data points for each independent
variables. In this way we get datasets containing enough data
points to support statistically significant analyses.

Then, we applied Estimation by Analogy (EbA). That is,
we estimated the development effort required by each project
on the basis of the actual development effort required by
similar projects (i.e., projects having similar size and/or
complexity characteristics).

C. The Measures

The measures actually employed in the analysis are
described in Table II. They are a superset of those used in
[1].

Among the measures listed in Table II, we have not only
size and complexity measures, but also several density
measures. These density measures introduce the concept of
functional complexity per size unit: for instance, we consider
the Path/UFP ratio, which indicates how many Paths per
UFP are required in the software being measured. The reason
for using functional complexity per size unit is that
functional complexity measures are often correlated to size
itself, thus the density appears more relevant to indicate how
complex and difficult the development is.

The complexity of a system is a property that depends on
the relationships among system’s elements [13]. So, the
measures discussed above represent the density of
relationships among elements per unit size.

V. USING FUNCTIONAL COMPLEXITY MEASURES IN

EFFORT ESTIMATION MODELS

In this section, we report about the construction of
development effort models. We systematically tried to build
models that have the development effort as dependent
variable and one or two independent variables belonging to
the set described in Table II. In particular, when building
models having two independent variables, all the possible
pairs of measures from Table II were tried out. Models with
more than two independent variables were not sought,
because the available dataset does not contain enough data
points to support such analysis while avoiding data
overfitting.

TABLE II. MEASURES USED

Name Description

Path Path

CFP COSMIC Function Points

FPr Functional Processes

DG Data Groups

PDG Persistent Data Groups

UC Number of Use Cases

UUCP Unadjusted Use Case Points

UFP Unadjusted Function Points

FPAtrans Number of unweighted FPA transactions

NumFiles Number of unweighted FPA logic data files

Path/FPr Path per Functional Process

Path/CFP Path per CFP

DG/FPr Data Groups per Functional Process

DG/CFP Data Groups per CFP

PDG/FPr Persistent Data Groups per Functional Process

PDG/CFP Persistent Data Groups per CFP

Path/UFP Paths per unadjusted Function Point

Path/FPAtrans Paths per unweighted FPA transactions

NumFiles/UFP
Unweighted FPA logic data files per unadjusted

Function Point

NumFiles/FPAtrans
Unweighted FPA logic data files per unweighted

FPA transactions

Path/UC Paths per use case

Path/UUCP Paths per use case point

A. Analysis of the dataset using linear regression

Linear regression did not provide any statistically
significant model when FPA or UC measures were used. On
the contrary, when using COSMIC-based measures, a single
statistically significant model was found, having equation

 Effort = -29.9 + 139.1× Path/FPr

The model –obtained after eliminating 4 outliers (P1, P6,
P8, P17)– has adjusted R

2
=0.64. The regression line is

illustrated in Fig. 2. This model is quite interesting, as a
functional size density measure is the independent variable:
the model seems to suggest that the actual complexity of
software, rather than its size, determines development effort.

The accuracy of the model is characterized by MMRE =
34%, while Pred(25) –i.e., the percentage of project whose
absolute relative estimation error is in the ±25% range– is

63%, and Error range = -46%−162%. The distribution of
relative residuals is illustrated in Fig. 3.

Throughout the paper, MMRE and Pred(25) are used as
indicators of the accuracy of models, because they are often
quoted as the de facto current accuracy indicators used in

270

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Empirical Software Engineering, even though criticisms
have been cast on the usefulness and meaning of MMRE and
Pred(25) [31]. Boxplots representing the distributions of
relative residuals are always given, to provide meaningful
and unbiased information on estimation accuracy.

Figure 2. Effort vs. Path/FPr: OLS regression line.

Figure 3. Effort vs. Path/FPr OLS model: relative residuals.

B. Analysis of the dataset using log-log transformations

We used linear regression after log-log transformation, as
is usually done in studies concerning effort [11][47].

The models found by checking the correlation between
effort and FPA measures are summarized in Table III, while
their accuracy is illustrated in Table IV. Both the models
found involve a size measure (the number of FPA
transactions) and a complexity density measure (Paths/UFP
or Path/FPA transactions).

TABLE III. OLS EFFORT MODELS INVOLVING FPA-BASED MEASURES

Model Adj. R2 Outl.

Effort = 120.6 × FPAtrans0.654
×

(Path/UFP)0.958
0.642 3 (P21, P22, P17)

Effort = 12.2 × FPAtrans0.816 ×

(Path/FPAtrans)0.976
0.812 3 (P22, P21, P14)

TABLE IV. ACCURACY OF OLS FPA-BASED EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = 120.6 × FPAtrans0.654

× (Path/UFP)0.958
71% 53% -40%−543%

Effort = 12.2 × FPAtrans0.816

× (Path/FPAtrans)0.976
25% 63% -60%−108%

The models found by checking the correlation between

effort and COSMIC measures are summarized in Table V. It
is interesting to note that both the models found involve the
usage of a size measure (the Function Points or the number
of functional processes) and a complexity density measure
(Paths/CFP). The accuracy of the models found is illustrated
in Table VI.

TABLE V. OLS EFFORT MODELS INVOLVING COSMIC-BASED

MEASURES

Model Adj. R2 Outliers

Effort = 112.2 × CFP0.391 × (Path/CFP)1.298 0.658 0

Effort = 231.8 × FPr0.377 × (Path/CFP)
1.468

 0.744 1 (P14)

TABLE VI. ACCURACY OF OLS COSMIC-BASED EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = 112.2 × CFP0.391 ×

(Path/CFP)1.298
22% 68% -30%−77%

Effort = 231.8 × FPr0.377 ×

(Path/CFP)
1.468

23% 68% -27%−97%

Finally, we checked the correlation between effort and

Use Case. The models found are summarized in Table VII. It
is noticeable that both the models found involve the usage of
a size measure (either the number of use cases or the use case
points) and a complexity density measure.

TABLE VII. OLS EFFORT MODELS INVOLVING USE CASE-BASED

MEASURES

Model Adj. R2 Outliers

Effort = 21.9 × UC0.68 × (Path/UC)0.728 0.609 1 (P22)

Effort = 24.9 × UUCP0.679 × (Path/UUCP)0.775 0.608 1 (P22)

The accuracy of the models found is illustrated in Table

VIII. Again, we got significant models only based on
variables involving Paths.

It is quite interesting to observe that all the models found
have two independent variables, and that one is a measure of
size, while the other is a measure of complexity density.

TABLE VIII. ACCURACY OF OLS USE CASE-BASED EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = 21.9 × UC0.68 ×

(Path/UC)0.728
24% 63% -45%−73%

Effort = 24.9 × UUCP0.679 ×

(Path/UUCP)0.775
24% 63% -45%−74%

271

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E

ff
o

rt
 v

s.

F
P

A
tr

an
s,

 P
at

h
/U

F
P

E
ff

o
rt

 v
s.

F

P
A

tr
an

s,
 P

at
h
/F

P
A

tr
an

s

E
ff

o
rt

 v
s.

C

F
P

,
P

at
h
/C

F
P

E
ff

o
rt

 v
s.

F

P
r,

 P
at

h
/C

F
P

E
ff

o
rt

 v
s.

U

C
,
P

at
h
/U

C

E
ff

o
rt

 v
s.

U

U
C

P
,
P

at
h
/U

U
C

P

Figure 4. Model comparison: relative residuals.

It is also interesting to see that these models appear
reasonably good both in terms of their ability to explain the
variation of effort depending on the variation of the size and
complexity measures (as indicated by the values of the
adjusted R

2
) and in terms of precision of the fit (as indicated

by MMRE, Pred(25) and the relative error range).
The data illustrated in the tables above do not indicate if

a model is definitely better than the others with respect to
accuracy. A possible way for identifying the best model is by
comparing the relative residuals (since we are considering
the ability to predict effort, we have to look at relative
residuals, since an error of, say, two PersonMonths can be
irrelevant or very important, depending on the total effort).

The boxplots representing relative residuals of the
models obtained via OLS regression after log-log
transformation are reported in Fig. 4 (where two extreme
outliers of the first model were omitted to preserve the
readability of the figure). The boxplots indicate quite clearly
that the values and distributions of residuals are very similar
for all the models.

VI. USING FUNCTIONAL COMPLEXITY MEASURES IN

ESTIMATION BY ANALOGY

In this section, we test the effects of considering
complexity density when selecting “analogous” projects
upon which effort estimation is based. To this end, we
compute effort estimates in two ways: identifying analogous
projects only on the basis of size, and considering both size
and complexity density. The hypothesis that we want to test

is that considering both size and complexity density leads to
better estimates.

There are several criteria that can be used to identify
analogous projects. Some of these involve identifying the k
closest projects, where closeness is generally evaluated as
the distance between projects. Accordingly, we chose to use
a criterion that ensures –as far as possible– that the
analogous projects are all within a given distance from the
project to be estimated.

For each project, we select among the remaining projects
those having both size and complexity density in a ±20%
range. The mean of these projects’ efforts is assumed as the
estimate. If no project is found in the ±20% range, the range
is progressively increased until at least one project in the
range is found. The estimation for a given project of size S is
thus performed according to the following procedure:

R=0.2

P = {}

while |P|<1 do

for all Pi in the set of projects

if (1-R)×S ≤ Pi.size ≤ (1+R)×S

 then P = P ∪ {Pi.effort}

R=R+0.1

done

EstimatedEffort = mean(P)

So, for instance, given P3 (whose size is 171 UFP), P1

and P10 (which have size 185 UFP and 179 UFP,
respectively) are selected as analogue projects. In fact, these
are the only projects that have size in the range 171 ±20%,

i.e., in range 137−205. Since the developments of the
selected projects required 410 and 272 PersonHours, we
assume that P3 requires (410+272)/2 = 341 PersonHours.

When analogue projects are selected also on the basis of
complexity density, the condition for inclusion into the set of
analogous projects is modified in order to select projects
whose size Si and complexity density Ci satisfy the condition

((1-R)×S ≤ Si ≤ (1+R)×S) ∧ ((1-R)×C ≤ Ci ≤ (1+R)×C),
where C is the complexity density of the project being
estimated.

A. Estimation by Analogy using FPA Measures

In this subsection, we present the results of estimation by
analogy based on FPA measures: we used UFP as a size
measure and Path/UFP as complexity density measure.

UFP were chosen because they are the most obvious size
measures, when FPA is used. Similarly, we used CFP and
UUCP in the following sections.

Effort estimates and the differences with respect to actual
efforts are illustrated in Table IX, where columns labeled
“CA est. (2 var)” report results concerning the estimation
based on both size and complexity density.

It is easy to see that the estimation error is generally
larger for the estimates based only on size similarity, than for
the estimates based on the similarity of both size and
complexity density.

272

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. ANALOGY-BASED ESTIMATES OBTAINED USING FPA

MEASURES

PID
Actual
Effort

CA
est.

CA est.
 (2 var)

Error CA Error CA (2 var)

1 410 459 553 49 (12%) 143 (35%)

2 474 557 392 84 (18%) -82 (-17%)

3 382 341 410 -41 (-11%) 28 (7%)

4 285 262 263 -23 (-8%) -22 (-8%)

5 328 252 348 -76 (-23%) 20 (6%)

6 198 282 266 84 (42%) 68 (34%)

7 442 163 198 -279 (-63%) -244 (-55%)

8 723 341 410 -382 (-53%) -313 (-43%)

9 392 474 474 82 (21%) 82 (21%)

10 272 505 230 233 (86%) -43 (-16%)

11 131 301 272 170 (130%) 141 (108%)

12 348 237 328 -111 (-32%) -20 (-6%)

13 243 273 285 31 (13%) 43 (18%)

14 300 147 147 -153 (-51%) -153 (-51%)

15 147 169 169 22 (15%) 22 (15%)

16 169 134 121 -35 (-21%) -48 (-28%)

17 121 239 158 118 (98%) 37 (31%)

18 342 268 268 -74 (-22%) -74 (-22%)

19 268 342 342 74 (28%) 74 (28%)

The relative estimation errors reported in parentheses are

computed as the estimation errors divided by the actual
efforts, expressed as percentages. For instance, for project 1
ErrorCa = 49, ActualEffort = 410, thus the relative error is
49/410 = 12%.

For eleven projects, considering also the complexity
density in the selection of analogous projects leads to smaller
absolute relative errors. In five cases, considering also the
complexity density does not cause any change in the absolute
relative error. Only for three projects (P1, P13 and P16) the
relative absolute error is smaller when the estimate is based
only on size.

The mean and median absolute relative errors (i.e.,
MMRE and MdMRE) are reported in Table X, together with
Pred(25). Table X shows that considering complexity density
allows for better accuracy than considering size alone to
identify analogous projects. This fact is confirmed by the
distributions of relative errors (illustrated by the boxplot in
Fig. 5) and absolute relative errors (illustrated by the boxplot
in Fig. 6). Fig. 5 shows that when complexity density is
considered, the median, the mean (represented as a diamond)
and the errors in general are closer to zero. Fig. 6 shows that
the median, the mean and the errors in general are smaller
when complexity density is taken into consideration in the
EbA.

TABLE X. ANALOGY-BASED ESTIMATES OBTAINED USING FPA

MEASURES: MMRE, MDMRE AND PRED(25)

 CA CA (2 var)

Mean 39.2% 28.8%

Median 23.3% 21.6%

Pred(25) 52.6% 52.6%

Figure 5. Estimation by analogy based on FPA measures: relative errors.

Figure 6. Estimation by analogy based on FPA measures: absolute

relative errors.

273

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. ANALOGY-BASED ESTIMATES USING COSMIC MEASURES

PID
Actual
Effort

CA
est.

CA est.
 (2 var)

Error CA Error CA (2 var)

1 410 598 428 188 (46%) 18 (4%)

2 474 435 312 -39 (-8%) -161 (-34%)

3 382 458 474 75 (20%) 91 (24%)

4 285 304 357 19 (7%) 72 (25%)

5 328 231 330 -97 (-29%) 2 (1%)

6 198 286 286 88 (44%) 88 (44%)

7 442 249 249 -193 (-44%) -193 (-44%)

8 723 373 317 -350 (-48%) -405 (-56%)

9 392 455 483 63 (16%) 91 (23%)

10 272 308 308 36 (13%) 36 (13%)

11 131 249 147 118 (90%) 16 (12%)

12 348 228 323 -120 (-34%) -25 (-7%)

13 243 485 519 242 (100%) 276 (114%)

14 300 215 338 -85 (-28%) 38 (13%)

15 147 246 126 99 (67%) -21 (-14%)

16 169 268 268 99 (59%) 99 (59%)

17 121 266 147 145 (120%) 26 (21%)

18 342 266 338 -76 (-22%) -4 (-1%)

19 268 169 169 -99 (-37%) -99 (-37%)

B. Estimation by using COSMIC Measures

In this subsection, we present the results of estimation by
analogy based on COSMIC measures: we used CFP as a size
measure and Path/CFP as complexity density measure.

Effort estimates and the differences with respect to actual
efforts are illustrated in Table XI.

For eight projects, considering also the complexity
density in the selection of analogous projects leads to smaller
absolute relative errors. For six projects the relative absolute
error is smaller when the estimate is based only on size
analogy. In five cases, considering also the complexity
density does not cause any change in the absolute relative
error.

MMRE, MdMRE and Pred(25) are given in Table XII.
Table XII shows that considering complexity density allows
for better accuracy than considering size alone to identify
analogous projects. This fact is confirmed by the
distributions of relative errors and absolute relative errors
(illustrated by the boxplots in Fig. 7 and Fig. 8, respectively).

TABLE XII. ANALOGY-BASED ESTIMATES OBTAINED USING COSMIC

MEASURES: MMRE, MDMRE AND PRED(25)

 CA CA (2 var)

MMRE 43.8% 28.8%

MdMRE 36.9% 23.1%

Pred(25) 31.6% 57.9%

Figure 7. Estimation by analogy based on COSMIC measures: relative

errors.

Figure 8. Estimation by analogy based on COSMIC measures: absolute

relative errors.

Fig. 7 shows that when complexity density is considered,
the median, the mean (represented as a diamond) and the
errors in general are (slightly) closer to zero. Fig. 8 shows
that the median, the mean and the errors in general are
smaller when complexity density is taken into consideration
in the EbA.

We can also observe that the results obtained when using
COSMIC measures are very similar to those obtained using
FPA measures.

C. Estimation by Analogy using Use Case Measures

In this subsection, we present the results of estimation by
analogy based on Use Case measures: we used UUCP as a
size measure and Path/UUCP as complexity density
measure.

Effort estimates and the differences with respect to actual
efforts are illustrated in Table XIII.

274

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIII. ANALOGY-BASED ESTIMATES OBTAINED USING USE CASE

MEASURES

PID
Actual
Effort

CA
est.

CA est.
 (2 var)

Error CA
Error CA (2

var)

1 410 723 474 313 (76%) 64 (15%)

2 474 723 723 249 (53%) 249 (53%)

3 382 296 323 -86 (-23%) -59 (-15%)

4 285 305 341 20 (7%) 56 (20%)

5 328 298 273 -30 (-9%) -55 (-17%)

6 198 263 314 65 (33%) 116 (59%)

7 442 282 291 -160 (-36%) -151 (-34%)

8 723 442 474 -281 (-39%) -249 (-34%)

9 392 257 243 -135 (-34%) -150 (-38%)

10 272 317 401 45 (17%) 129 (47%)

11 131 317 268 186 (142%) 137 (105%)

12 348 295 328 -53 (-15%) -20 (-6%)

13 243 387 387 145 (60%) 145 (60%)

14 300 201 270 -99 (-33%) -30 (-10%)

15 147 246 195 99 (67%) 48 (32%)

16 169 305 305 136 (80%) 136 (80%)

17 121 251 208 130 (107%) 87 (71%)

18 342 209 210 -133 (-39%) -132 (-38%)

19 268 227 147 -41 (-15%) -121 (-45%)

For ten projects, considering also the complexity density

in the selection of analogous projects leads to smaller
absolute relative errors. For six projects the relative absolute
error is smaller when the estimate is based only on size
analogy.

The MMRE, MdMRE and Pred(25) are reported in Table
XIV. Table XIV shows that considering complexity density
allows for better accuracy than considering size alone to
identify analogous projects only as far as is concerned.

The distributions of relative errors (illustrated by the
boxplot inFig. 9) and absolute relative errors (illustrated by
the boxplot in Fig. 10) show that taking into account
complexity density when selecting analogue projects causes
marginal improvements in estimation accuracy.

TABLE XIV. ANALOGY-BASED ESTIMATES OBTAINED USING USE CASE

MEASURES: MMRE, MDMRE AND PRED(25)

 CA CA (2 var)

MMRE 46.6% 41.1%

MdMRE 36.3% 38.1%

Pred(25) 31.6% 31.6%

Figure 9. Estimation by analogy based on Use Case measures: relative

errors.

Figure 10. Estimation by analogy based on Use Case measures

As a final observation, we note that using both size and
complexity density in the selection of analogue projects
generally results in more accurate estimates. Only when the
size measures are based on use cases, considering
complexity density does not lead to a clear improvement in
estimation accuracy.

We can conclude that complexity density appears to be a
relevant factor to be considered when EbA is adopted.

VII. DISCUSSION

Table XV summarizes the accuracy of the effort models
described in Section V. These models are all those
statistically significant and featuring R

2
 > 0.6.

275

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV. ACCURACY OF EFFORT MODELS

Model MMRE Pred(25) Error range

Effort = -29.9 + 139.1×

Path/FPr
34% 63% -46%−162%

Effort = 120.6 × FPAtrans0.654
×

(Path/UFP)0.958
71% 53% -40%−543%

Effort = 12.2 × FPAtrans0.816 ×

(Path/FPAtrans)0.976
25% 63% -60%−108%

Effort = 112.2 × CFP0.391 ×

(Path/CFP)1.298
22% 68% -30%−77%

Effort = 231.8 × FPr0.377 ×

(Path/CFP)
1.468

23% 68% -27%−97%

Effort = 21.9 × UC0.68 ×

(Path/UC)0.728
24% 63% -45%−73%

Effort = 24.9 × UUCP0.679 ×

(Path/UUCP)0.775
24% 63% -45%−74%

It is easy to see that all models in Table XV have at least

one parameter that accounts for functional complexity per
size unit.

It should be noted that we found also a model based
exclusively on complexity density. This model was rather
unexpected, as it says that the size of the programs is not
important at all. This result is probably due to the fact that
the variation of size is relatively little in the set of projects
that we analysed. Additional research is needed to explore
this point.

Having shown that functional complexity per size unit is
essential for regression models, we looked at the role that
functional complexity per size unit can play in EbA. To this
end, EbA was applied using two criteria for determining
analogues projects:

− According to size only;

− According to both size and functional complexity
per size unit.

Table XVI illustrates the results of EbA concerning the
accuracy of estimates via MMRE, MdMRE and Pred(25).

TABLE XVI. ACCURACY OF ANALOGY-BASED ESTIMATES

Variables used to
identify analogue

projects
MMRE MdMRE Pred(25)

UFP 39.2% 23.3% 52.6%

UFP, Path/UFP 28.8% 21.6% 52.6%

CFP 43.8% 36.9% 31.6%

CFP, Path/CFP 28.8% 23.1% 57.9%

UUCP 46.6% 36.3% 31.6%

UUCP, Path/UUCP 41.1% 38.1% 31.6%

Table XVI confirms the relevance of functional

complexity per size unit, as it helps increasing accuracy.
Actually it can be noted that EbA’s accuracy is generally
worse than regression models’. However, using functional
complexity per size unit for determining analogues projects
tends to make estimation accuracy closer to regression
models’.

VIII. THREATS TO VALIDITY

As in any software engineering empirical study, several
issues threaten the validity of the results. Here we discuss
such factors and the actions that have been undertaken to
mitigate them.

The limited size of the available dataset can be regarded
as a first threat to internal validity. The used dataset is
sufficiently large to support statistically significant analysis;
however, the fact that our dataset is representative of most
software systems is doubtful. To this end, we note that the
projects from which the data used in the paper were derived
are all real development projects, as those in best known
datasets, like the PROMISE [39] and ISBSG [22] datasets.
Some of our projects are rather small, but the majority of our

projects (namely 11 out of 19) have size in the 100−340
UFP, thus they can be considered medium-sized projects

(40% of the projects in the ISBSG dataset are in the 100−340
UFP range, while more than half have size smaller than 340
UFP).

Another possible threat to the validity of the study
derives from part of the projects being academic projects.
However, the projects that were carried out at the Austral
University were developed using techniques, tools and
methodologies similar to those used in the industrial projects.
Accordingly, we do not expect that these projects required
substantially different effort than other projects.

IX. CONCLUSION

The work reported here moves from the consideration
that development effort depends (also) on the complexity or
the amount of computation required, but no suitable measure
has emerged as a reliable way for capturing such complexity.
In fact, very popular methods like COCOMO II [11][15] still
use just an ordinal scale measure for complexity, based on
the subjective evaluation performed by the user.

We approached the problem of measuring the required
functional complexity by considering the most relevant
approaches presented in the literature, and testing them on a
set of projects that were measured according to FPA,
COSMIC and Use Case-based functional size measurement
methods.

The results of our analysis do not allow us to draw
definite conclusions, since our observations are based on a
specific set of data (see Table I). However, we observed that
all the models obtained were based on a notion of
computation density, which is based on the measure of Paths
[43], i.e., the number of distinct computation flows in
functional processes. Similarly, Estimation by Analogy
appears to benefit from the possibility of using the notion of
computation (or complexity) density in identifying analogue
projects.

Since Paths are quite easy to measure [33] and appear as
good effort predictors, we suggest that future research on
effort estimation takes into consideration the possibility of
involving a Path based measure of functional complexity.

An important results for practitioners is that functional
complexity appears as a factor that affects development
effort; accordingly, whatever method is used for effort

276

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

estimation, it is advisable to take functional complexity into
due consideration.

We plan to continue experimenting with measures of
functional complexity. Since in this type of experimentations
a critical point is the difficulty to get measures, we kindly
invite all interested readers that are involved in effort
estimations to perform functional complexity measurement
and share the data with us and the research community.

ACKNOWLEDGMENT

The research presented in this paper has been partially
funded by the project “Metodi, tecniche e strumenti per
l’analisi, l’implementazione e la valutazione di sistemi
software” funded by the Università degli Studi dell’Insubria,
and by the Research Fund of the School of Engineering of
Austral University.

REFERENCES

[1] L. Lavazza and G. Robiolo, “Functional Complexity
Measurement: Proposals and Evaluations, ” Proc. 6th Int.
Conf. on Software Engineering Advances (ICSEA 2011).

[2] A. Albrecht, “Measuring Application Development
Productivity,” Proc. IBM Application Development Symp.
I.B.M. Press, 1979.

[3] A.J. Albrecht and J.E. Gaffney, “Software Function, Lines of
Code and Development Effort Prediction: a Software Science
Validation,” IEEE Transactions on Software Engineering, vol.
9, November 1983.

[4] N.Aggarwal, N. Prakash, S. Sofat, “Web Hypermedia Content
Management System Effort Estimation Model,” SIGSOFT
Software Engineering Notes, vol. 34, March 2009.

[5] M. AlSharif, W.P. Bond, and T. Al-Otaiby, “Assessing the
complexity of software architecture,” Proc 42nd annual
Southeast regional conference (ACM-SE 42). ACM, New
York, NY, USA, 2004, pp. 98-103.

[6] B.Anda, E. Angelvik, and K. Ribu, “Improving Estimation
Practices by Applying Use Case Models,” Lecture Notes In
Computer Science, vol. 2559, Springer, 2002, pp. 383-397.

[7] L. Baresi, S. Colazzo, L. Mainetti, and S. Morasca, “W2000:
A modeling notation for complex Web applications,” In Web
Engineering, E. Mendes and N. Mosley. Eds., Springer-
Verlag, 2006.

[8] L. Baresi, and S. Morasca, “Three Empirical Studies on
Estimating the Design Effort of Web Applications,” ACM
Transactions on Software Engineering and Methodology, vol.
16, September 2007.

[9] H. Bashir, and V. Thomson, “Models for Estimating Design
Effort and Time,” Design Studies, vol. 22, March, Elsevier,
2001.

[10] B. Bernárdez, A. Durán, and M. Genero, “Empirical
Evaluation and Review of a Metrics–Based Approach for Use
Case Verification,” Journal of Research and Practice in
Information Technology, vol. 36, November 2004.

[11] B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B.K.
Clark, B. Steece, A. Winsor Brown, S. Chulani and C. Abts,
Software Cost Estimation with Cocomo II. Prentice Hall,
2000.

[12] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison Weley, 1998.

[13] L. Briand, S. Morasca, and V.R. Basili, “Property-Based
Software Engineering Measurement,” IEEE Transactions on
Software Engineering, vol. 22, Month, 1996.

[14] L. Briand and J. Wust, “Modeling Development Effort in
Object-Oriented Systems Using Design Properties,” IEEE

Transactions on Software Engineering, vol. 27, November
2001.

[15] COCOMO II Model Definition Manual. http://
csse.usc.edu/csse/research/COCOMOII/cocomo_downloads.h
tm, last access Dec. 20, 2012.

[16] COSMIC – Common Software Measurement International
Consortium, 2009. The COSMIC Functional Size
Measurement Method - version 3.0.1 Measurement Manual
(The COSMIC Implementation Guide for ISO/IEC 19761:
2003), May 2009.

[17] N.E. Fenton, Software Metrics: A Rigorous Approach.
Chapman and Hall, London, 1991.

[18] D.D. Galorath and M.W. Evans, Software Sizing, Estimation,
and Risk Management, Auerbach Publications, 2006.

[19] C. Gencel and O. Demirors, “Functional Size Measurement
Revisited,” ACM Transactions on Software Engineering and
Methodology, vol. 17, June 2008.

[20] S. Gupta, G. Sikka, and H. Verma, “Recent methods for
software effort estimation by analogy,” SIGSOFT Softw. Eng.
Notes , vol. 36, August 2011, pp 1-5.

[21] T. Hastings and A. Sajeev, “A Vector-Based Approach to
Software Size Measurement and Effort Estimation,” IEEE
Transactions on Software Engineering, vol. 27 April 2001.

[22] International Software Benchmarking Standards Group:
Worldwide Software Development: The Benchmark, release
11, 2009.

[23] ISO/IEC19761:2003, Software Engineering – COSMIC-FFP
– A Functional Size Measurement Method, International
Organization for Standardization, Geneve, 2003.

[24] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, International Organization for
Standardization, Geneve, 2003.

[25] M. Jørgensen, M. Boehm, S. Rifkin, “Software Development
Effort Estimation: Formal Models or Expert Judgment?,”
IEEE Software, vol. 26, March-April 2009.

[26] C. Jones, A Short History of Function Points and Feature
Points. Software Productivity Research, Inc., Burlington,
Mass., 1986.

[27] C. Jones, Strengths and Weaknesses of Software Metrics.
Version 5, Software Productivity Research, 2006.

[28] G. Karner, Resource Estimation for Objectory Projects.
Objectory Systems, 1993.

[29] G. Karner, “Metrics for Objectory,” Diploma thesis,
University of Linköping, 1993.

[30] B. Kitchenham, S.L. Pfleeger, B. McColl, and S. Eagan, “An
Empirical Study of Maintenance and Development
Accuracy,” Journal of Systems and Software, vol. 64, October
2002.

[31] B. Kitchenham, L.M. Pickard, S.G. MacDonell, M.J.
Shepperd, “What accuracy statistics really measure [software
estimation],” IEE Proceedings - Software vol. 148 , June
2001, pp. 81 – 85.

[32] S. Kusumoto, F. Matukawa, K. Inoue, S .Hanabusa, and Y.
Maegawa, “Estimating effort by Use Case Points: Method,
Tool and Case Study,” Proc. 10th International Symposium
on Software Metrics, 2004.

[33] L. Lavazza and G. Robiolo, “Introducing the Evaluation of
Complexity in Functional Size Measurement: a UML-based
Approach,” Proc. 4th Int. Symposium on Empirical Software
Engineering and Measurement (ESEM 2010).

[34] L. Lavazza and G. Robiolo, “The Role of the Measure of
Functional Complexity in Effort Estimation,” Proc. 6th Int.
Conf. on Predictive Models in Software Engineering
(PROMISE 2010).

277

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] G. Levesque V. Bevo, and Tran Cao, D., “Estimating
Software size with UML Models,” Proc. 2008 C3S2E
conference, ACM International Conference Proceeding
Series, vol. 290, 2008.

[36] K. Lind and R. Heldal, “Categorization of Real-time Software
Components for Code Size Estimation,” Proc. ACM-IEEE
Int. Symp. on Empirical Software Engineering and
Measurement (ESEM 2010). ACM, New York, NY, USA,
2010.

[37] T.J. McCabe, “A Complexity Measure,” IEEE Transactions
on Software Engineering, vol.2, December 1976.

[38] E. Mendes, N. Mosley, and S. Counsell, “A Comparison of
Length, Complexity and Functionality as Size Measures for
Predicting Web Design and Authoring Effort,” Proc.
Evaluation and Assessment in Software Engineering
Conference (EASE 2001).

[39] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters,
and B. Turhan, “The PROMISE Repository of Empirical Soft-
ware Engineering Data http://promisedata.googlecode.com,”
West Virginia University, Department of Computer Science,
2012, last access Dec. 20, 2012.

[40] S. Misra, “Modified Cognitive Complexity Measure,” Proc.
21st international conference on Computer and Information
Sciences (ISCIS'06), A. Levi, E. Savaş, H. Yenigün, S.
Balcisoy and Y. Saygin Eds., Springer-Verlag, Berlin,
Heidelberg, 2006, pp. 1050-1059.

[41] N. Mittas and L. Angelis, “Combining Regression and
Estimation by Analogy in a Semi-parametric Model for
Software Cost Estimation,” Proc. 2nd ACM-IEEE Int. Symp.
on Empirical Software Engineering and Measurement (ESEM
2008). ACM, New York, NY, USA, 2008, pp. 70-79.

[42] S. Morasca, “On the Use of Weighted Sums in the Definition
of Measures,” ICSE Workshop on Emerging Trends in
Software Metrics (WETSoM 2010).

[43] G. Robiolo, G. and R. Orosco, “Employing Use Cases to
Early Estimate Effort with Simpler Metrics,” Innovations
Syst. Softw. Eng, vol.4, April 2008.

[44] S. Sengupta, A. Kanjilal, and S. Bhattacharya, “Measuring
Complexity of Component Based Architecture: a Graph
Based Approach,” SIGSOFT Softw. Eng. Notes vol. 36,
January 2011, pp. 1-10.

[45] M. Shepperd and C. Schofield, “Estimating Software Project
Effort Using Analogies”, IEEE Transactions on Software
Engineering, vol. 23, month11, 1997, pp. 736-774.

[46] D. Tran Cao, G. Lévesque, and A. Abran, “From
Measurement of Software Functional Size to Measurement of
Complexity”, Int. Conf. on Software Maintenance (ICSM
2002).

[47] D. Tran Cao, G. Lévesque, and J-G. Meunier, “A Field Study
of Software Functional Complexity Measurement”, Proc. 14th
Int. Workshop on Software Measurement (IWSM/
METRIKON 2004).

[48] G. Visaggio, “Structural Information as a Quality Metric in
Software Systems Organization,” Proc. Int. Conf. on Software
Maintenance, 1997, pp. 92-99.

[49] T. Wijayasiriwardhane and R. Lai, “Component Point: A
System-level Size Measure for Component-Based Software
Systems,” Journal of Systems and Software vol. 83, month
2010, pp. 2456-2470.

[50] A. Whitmire, “An Introduction to 3D Function Points,”
Software Development, vol. 3, April 1995.

[51] Y. Yavari, M. Afsharchi, and M. Karami, “Software
Complexity Level Determination Using Software Effort
Estimation Use Case Points Metrics,” 5th Malaysian
Conference in Software Engineering (MySEC 2011), pp. 257-
262.

278

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Metrics and Measurements in Global Software Development

Maarit Tihinen and Päivi
Parviainen

Digital Service Research
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract—Today products are increasingly developed globally
in collaboration between subcontractors, third-party suppliers
and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional single-site
development. From the viewpoint of project management, the
measurements and metrics are important elements for
successful product development. This paper is focused on
describing a set of essential metrics that are successfully used
in Global Software Development (GSD). In addition, visualised
examples are given demonstrating various industrial
experiences of use. Even if most of the essential metrics are
similar as in single-site development, their collection and
interpretation need to take into account the GSD aspects. One
of the most important reasons for choosing proposed metrics
was their provision of early warning signs - to proactively react
to potential issues in the project. This is especially important in
distributed projects, where tracking the project status is
needed and more complex. In this paper, the first ideas of GSD
specific metrics are presented based on the common challenges
in GSD practice.

Keywords-metrics; measurements; global software development;
distributed product development

I. INTRODUCTION
Global Software Development (GSD) is increasingly

common practice in industry due to the expected benefits,
such as lower costs and utilising resources globally. GSD
brings several additional challenges to the development,
which also affects the measurement practices, results and
metrics interpretation. A current literature study showed that
there is little research on GSD metrics or experiences of their
use. This paper is enhanced and extended version of the
ICSEA 2011 conference paper “Metrics in distributed
product development” [1] where the metrics set had been
successfully used in GSD were introduced. In this paper, the
published metric set (with an example set of visualised
metrics) was given with industrial experiences of their use.
In addition, challenges faced during GSD are discussed from
the viewpoint of metrics and measurements as well as
potential GSD specific metrics.

Software metric is a valuable factor for the management
and control of many software related activities, for example;
cost, effort and schedule estimation, productivity, reliability
and quality measures. Traditionally software measurement
has been understood as an information gathering process. For
example, software measurement is defined by [2] as follows:
“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. The measurement data item consists of numeric
data (e.g., efforts, schedules) or a pre-classified set of
categories (e.g., severity of defects: minor, medium, major).
Software metrics can consist of several measurement data
items singly or in combination. Metric visualisation is a
visual representation of the collected and processed
information about software systems. Typically software
metrics are visualised for presenting this information in a
meaningful way that can be understood quickly. For
example, visualising metrics through charts or graphs is
usually easier to understand than long textual or numerical
descriptions.

The main purpose of measurements and metrics in
software production is to create the means for monitoring
and controlling which provide support for decision-making
and project management [3]. Traditionally, the software
metrics are divided into process, product and resource
metrics [4]. In the comprehensive measurement program, all
these dimensions should be taken into consideration while
interpreting measurement results; otherwise the
interpretation may lead to wrong decisions or incorrect
actions. A successful measurement program can prove to be
an effective tool for keeping on top of the development
effort, especially for large distributed projects [5]. However,
many problems and challenges have been identified that
reduce and may even eliminate all interests to the
measurements. For example, not enough time is allocated for
the measurement activities during a project, or not enough
visible benefits are gained by the project doing the
measurement work (e.g., data is useful only at the end of

279

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

project, not during the project). In addition, the “metric
enthusiasts” may define too many metrics making it too time
consuming to collect and analyse the data. Thus, it’s
beneficial [5] to define core metrics to collect across all
projects to provide benchmarking data for projects, and to
focus on measurements that come naturally out of existing
practices and tools.

GDS development enables product development to take
place independently of the geographical location, individuals
or organizations. In fact, today the products are increasingly
developed globally in collaboration between subcontractors,
third party suppliers and in-house developers [6]. In practice
distributed projects struggle with the same problems as
single-site projects including problems related to managing
quality, schedule and cost. Distribution only makes it even
harder to handle and control these problems
[7][8][9][10][11]. These challenges are caused by various
issues, for example, less communication – especially
informal communication – caused by distance between
partners, and differences in background knowledge of the
partners. That’s why, in distributed projects the systematic
monitoring and reporting of the project work is especially
important, and measurement and metrics are an important
means to do that effectively.

Management of a distributed product development
project is more challenging than traditional development
[12]. Based on an industrial survey [13], one of the most
important topics in the project management in distributed
software development is detailed project planning and
control during the project. In GSD, this includes; dividing
work by sites into sub-projects, clearly defined
responsibilities, dependencies and timetables, along with
regular meetings and status monitoring.

In this paper, a set of essential metrics used in GSD is
discussed with experiences of their use. The main purpose is
to introduce the selected metric set from the viewpoint of
their proactive role in decision-making during globally
distributed software development. The chosen metrics
indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but requires special
effort, distributed over sites and companies.

 The amount of the metrics is intentionally kept as
limited as possible. Also, the metrics should be such, that
they provide online information during the projects, in order
to enable fast reaction to potential problems during the
project. The metrics and experience presented in the paper
are based on metrics programs of two companies, Philips and
Symbio. Royal Philips Electronics is a global company
providing healthcare, consumer lifestyle and lighting
products and services. Digital Systems & Technology is a
unit within Philips Research that develops first-of-a-kind
products in the area of healthcare, well-being and lifestyle.
The projects follow a defined process and are usually
distributed over sites and/or use subcontractors as part of
product development. Symbio Services Oy provides tailored

services to organizations seeking to build tomorrow's
technologies. Well-versed in a variety of software
development methodologies and testing best practices,
Symbio's specialized approaches and proprietary processes
begin with product design and continue through
globalization, maintenance and support. Symbio has built a
team of worldwide specialists that focus on critical areas of
the product development lifecycle. Currently, Symbio
employs around 1400 people and their project execution is
distributed between sites in the US, Sweden, Finland and
China.

The metrics and discussion in the paper is based on GSD
improvement work carried out during several years, in
several research projects, including experiences from 54
industrial cases (see Parviainen [14], SameRoomSpirit Wiki
[15]). This paper focuses especially on the experiences of
two companies, Philips and Symbio.

The paper is structured as follows. Firstly, an overview of
related work – available literature and its limitations related
to measurements and metrics in distributed product
development. This is introduced in Section II. In Section III,
basic GSD circumstances with challenges are presented in
order to explain the special requirements for measurements
in GSD where the proposed metrics set is to be collected and
utilised. In Section IV, measurement and metrics background
and used terminology are introduced. In Section V, proposed
metrics are presented using Rational Unified Process (RUP)
[16] approach as a framework. The proposed metric set is
presented with visualised examples and industrial
experiences of their use. Furthermore, some GSD specific
metrics are introduced in Section VI. Finally, discussion
about metrics and their experiences is presented in Section
VII and the conclusions are discussed in Section VIII.

II. RELATED WORK
There are several papers that discuss globally distributed

software engineering and its challenges, for example, [5],
[17] and [18]. Also, metrics in general and for specific
aspects have been discussed in numerous papers and books
for decades. However, little GSD literature has focused on
metrics and measurements or even discusses the topic. Da
Silva et al. [12] report similar conclusion based on analysis
of distributed software development (DSD) literature
published during 1999 – 2009: they state as one of their key
findings that the “vast majority of the reported studies show
only qualitative data about the effect of best practices,
models, and tools on solving the challenges of DSD project
management. In other words, our findings indicate that
strong (quantitative) evidence about the effect of using best
practices, models, and tools in DSD projects is still scarce in
the literature.” Bourgault et al. [19] reported similar findings,
“Clearly, research into distributed projects’ performance
metrics and measurement needs more attention from
researchers and practitioners so that it can contribute to the
development and diffusion of well-designed management
information systems.”

The papers that have discussed some metrics for GSD
usually focus on some specific aspect, for example,
Korhonen and Salo [18], discuss quality metrics to support

280

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defect management process in a multi-site organization.
Misra [20] presents a cognitive weight complexity metric
(CWCM) for unit testing in a global software development
environment. Lotlikar et al. [21] propose a framework for
global project management and governance including some
metrics with the main goal to support work allocation to
various sites. Lane and Agerfalk [22] use another framework
as an analytic device to investigate various projects
performed by distributed teams in order to explore further
the mechanisms used in industry both to overcome obstacles
posed by distance and process challenges and also to exploit
potential benefits enabled by GDS. Similarly, Piri and
Niinimäki [23] applied Word Design Questionnaire (WDQ)
that consists of total of 21 sum variables in four categories
(task characteristics, knowledge characteristics, social
characteristics, and work context) to compare differences
between the co-located and the distributed projects by
metrics - “work design”, “team dynamics”, “teamwork
quality”, “project performance” and “individual
satisfaction”. These kinds of frameworks could be used to
evaluate effectiveness of distributed team configuration
during GSD projects as well. Peixoto et al. [17] discuss effort
estimation in GSD, and one of their conclusions is that “GSD
projects are using all kinds of estimation techniques and
none of them is being consider as proper to be used in all
cases that it has been used”, meaning, that there is no
established technique for GSD projects. In addition, some
effort has also been invested in defining how to measure
success of GSD projects [24], and these metrics mainly focus
on cost related metrics and are done after project completion.
These papers usually use common metrics that are not
specific for GSD projects. For example, Ramasubbu and
Balan [25] use 11 metrics (productivity, quality, dispersion,
prevention QMA (Quality Management Approach), appraisal
QMA, failure QMA, code size, team size, design rework,
upfront investment and reuse), development productivity and
conformance quality to evaluate how work dispersion effects
to identified metrics. However, these metrics have not been
used to gather information, indicators or experiences from
ongoing distributed development.

Furthermore, only few papers discuss measurement
tooling for GSD projects. Simmons [26] describes a PAMPA
tool, where an intelligent agent tracks cost driver dominators
to determine if a project may fail and tells managers how to
modify project plans to reduce probability of project failure.
Additionally, Simmons and Ma [27] discuss a software
engineering expert system (SEES) tool where the software
professional can gather metrics from CASE tool databases to
reconstruct all activities in a software project from project
initiation to project termination. Da Silva et al [28] discuss
software cockpits from GSD viewpoint. They propose to
examine various visualizations in the context of software
cockpits, at-a-glance computer controlled displays of
development-related data collected from multiple sources.
They present three visualizations: (1) shows high-level
information about teams and dependencies among them in an
interactive world map, (2) displays the system design
through a self-updating view of the current state of the
software implementation, and (3) is a 3D visualization that

presents an overview of current and past activities in
individual workspaces.

The focus of this paper is to introduce a metrics set that
creates real possibilities to act proactively based on signals
gathered from various engineering viewpoints. Furthermore,
the paper gives several visualised examples of metrics that
can be utilised while monitoring on-going GSD projects. The
introduced metrics set can be seen as ‘balanced score card’,
on which management can balance insights (~status) from
time, effort, cost, functionality (requirements) and quality
(tests) perspective.

III. BASIC GSD CIRCUMSTANCES WITH CHALLENGES
Parviainen [14] describes problems and challenges that

are directly caused by the basic GSD circumstances. These
challenges influence measurements and metrics and their
interpretation during distributed software development.
These challenges are mainly an intrinsic and natural part of
GSD and they can either complicate globally distributed
product development or even cause further challenges. The
basic circumstances are:

 Multiple parties, meaning two or more different
teams and sites (locations) of a company or
different companies.

 Time difference and distance that are caused by the
geographical distribution of the parties.

Problems caused by these circumstances include; issues
such as unclear roles and responsibilities for the different
stakeholders in different parties or locations, knowing the
contact persons (e.g., responsibilities, authorities and
knowledge) from different locations and establishing and
ensuring a common understanding across distance. The basic
GSD circumstances can also lead to poor transparency and
control of remote activities as well as difficulties in
managing dependencies over distance, problems in
coordination and control of the distributed work and
integration problems, for example. Problems may also be
caused by basic circumstances in terms of accessing remote
databases and tools or accordingly they may generate data
transfer problems caused by the various data formats
between the tools or different versions of the tools used by
the different teams. The basic circumstances may also cause
problems with data security and access to databases or
another organisation's resources.

A commonly referenced classification for challenges
caused by GSD is [29][30]:

 Communication breakdown (loss of communication
richness)

 Coordination breakdown
 Control breakdown (geographical dispersion)
 Cohesion barriers (loss of “teamness”)
 Culture clash (cultural differences).

Communication breakdown (loss of communication
richness). Human beings communicate best when they are
communicating face-to-face. In GSD, face-to-face
communication decreases due to distance, causing
misunderstandings and lack of information over sites. For
example, communication over distance can lead to

281

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

misinterpretation because people cannot communicate well
due to language barriers.

Coordination breakdown. Software development is a
complex process that requires on-going adjustments and
coordination of shared tasks. In geographically distributed
projects, the small adjustments usually made in face-to-face
contact do not take place or it is not easy to make
adjustments. This can cause problem solving to be delayed
or the project to go down the wrong track until it becomes
very expensive to x. GSD also sets additional requirements
for planning, for example, the need for coordination between
teams and the procedures and contacts for how to work with
partners needs to be defined [31][32][33]. Coordination
breakdown can also cause a number of specific problems; for
example, Battin et al. [34] reported a number of software
integration problems, which were due to a large number of
independent teams. Wahyudin et al. [35] state that GSD
demands more from project management. In addition to the
project managers, the project members such as testers,
technical leaders, and developers also need to be kept
informed and notified of certain information and events that
are relevant to their roles’ objectives in timely manner which
provides the conditions for in-time decision making.

Control breakdown (geographical dispersion). GSD
means that management by walking around the development
team is not feasible and, instead, telephones, email and other
communication means (e.g., chat servers) must be used.
These types of communication tools could be consider as
less effective - not always providing a clear and correct
status of the development site. Also, dividing the tasks and
work across development sites, and managing the
dependencies between sites is difficult due to the restraints of
the available resources, the level of expertise and the
infrastructure [34][36][37]. According to Holmstrom et al.
[38], creating the overlap in time between different sites is
challenging despite the flexible working hours and
communication technologies that enable asynchronous
communication. Lack of overlap leads to a delay in
responses with a feeling of “being behind”, “missing out”
and even losing track of the overall work process.

Cohesion barriers (loss of “teamness”). In working
groups that are composed of dispersed individuals, the team
is unlikely to form tight social bonds, which are a key to a
project’s success. Lack of informal communication, different
processes and practices have a negative impact on teamness
[31][32][34]. Furthermore, fear (e.g., of losing one’s job to
the other site) has direct negative impact on trust, team
building co-operation and knowledge transfer, even where
good relationships existed beforehand. According to Casey
and Richardson [39] fear and lack of trust negatively impact
the building of effective distributed teams, resulting in clear
examples of not wanting to cooperate and share knowledge
with remote colleagues. Al-Ani and Redmiles [40] discuss
the role that the existing tools can play in developing trust
and providing insights on how future tools can be designed
to promote trust. They found that tools can promote trust by
sharing information derived from each developer’s activities
and their interdependencies, leading to a greater likelihood

that team members will rely on each other which leads to a
more effective collaboration.

Culture clash (cultural differences). Each culture has
different communication norms. In any cross-cultural
communication the receiver is more likely to misinterpret
messages or cues. Hence, miscommunication across cultures
is usually present. Borchers [41] discusses observations of
how cultural differences impacted the software engineering
techniques used in the case projects. The cultural indexes,
power distance (degree of inequality of managers vs.
subordinates), uncertainty avoidance (tolerance for
uncertainty about the future) and individualism (strength of
the relationship between an individual and their societal
group), discussed by Hofstede [42], were found to be
relevant from the software engineering viewpoint.
Holmstrom et al. [38] discuss the challenge of creating a
mutual understanding between people from different
backgrounds. They concluded that often general
understanding in terms of English was good, but more subtle
issues, such as political or religious values, caused
misunderstandings and conflicts during projects.

IV. MEASUREMENT BACKGROUND
In this section measurement background, the used

terminology and traditional measurement methods, with
GSD related challenges are introduced.

A. Traditional Metrics and Project Characteristics
Software measurements and metrics have been discussed

since 1960’s. The metrics have been classified many
different ways. For example, they can be divided into basic
and additional metrics [43] where basic metrics are size,
effort, schedule and defects, and the additional metrics are
typically metrics that are calculated or annexed from basic
metrics (productivity = software size per used effort). The
metrics can also be divided into objective or subjective
metrics [43]. The objective metrics are easily quantified and
measured, examples including size and effort, while the
subjective metrics include less quantifiable data such as
quality attitudes (excellent, good, fair, poor). An example of
the subjective metrics is customer satisfaction. Furthermore,
software metrics can be classified according to the
measurement target, product, processes and resources [4].
Example metrics of product entities are size, complexity,
reusability and maintainability. Example metrics of process
entities are effort, time, number of requirements changes,
number of specification/coding faults found and cost.
Furthermore, examples of resource entities are age, price,
size, maturity, standardization certification, memory size or
reliability. These classifications, various viewpoints and the
amount of examples merely prove how difficult the selection
of metrics really can be during the project.

In addition to different ways of metrics classification,
development projects can also be classified. Typically, the
project classification is used as a baseline for further
interpretation of the metrics and measurements. For example,
all kind of predictions or comparison should be done within
the same kind of development projects, or the differences
should be taken into account. Traditional project

282

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics are, for example; size and duration of a
project, type of a project (development, maintenance,
operational lifetime, etc.), project position (contractor,
subcontractor, internal development etc.), type of software
(hardware-related software development, application
software, etc.) or used software development approaches
(agile, open source, scrum, spiral-model, test driven
development, model-driven development, V-model, waterfall
model etc.). Furthermore, different phases of development
projects have to be taken consideration while analysing
gathered measurement data.

B. Traditional Software Measurement and GSD
One of the most commonly used measurement methods

at the end of 1990 and the beginning of 2000 was the Goal
/Question /Metric (GQM) method. The GQM paradigm [3]
represented a systematic approach for tailoring and
integrating the objectives of an organisation into
measurement goals and their step-wise refinement into
measurable values. The GQM method was commonly known
and was often used for searching and identifying
organisations’ strengths and weaknesses relating to the
identified improvement goals. Furthermore, several
assessment methods, for example CMMI [44] and SPICE
(Software Process Improvement and Capability
Determination, further known as a standard ISO/IEC 15504
Information technology — Process assessment), were
generally used for identifying possible improvements areas
and gaining knowledge of the software process of an
organisation. In fact, the most of traditional measurements
methods were based on expressions of the famous Shewhart
cycle, called also the Deming cycle: PDCA (Plan–Do–
Check–Act) [45]. The PDCA circle is an iterative four-step
management method that is used in business for the control
and continuous improvement of processes and products. The
traditional methods used in software measurements were
generally based on clearly defined and largely stabile
processes that could be adjusted and improved. In those
cases, the improvement actions were mainly done
afterwards, for example, in the next project.

In GSD environment, where project stakeholders, work
practices and development tools can vary by projects and
partners, traditional measurement methods and actions are
not adequate if they are used for process improvement
purposes. There is little sense, if measurements only prove
after the project what has happened during the project,
because then it is too late to correct the situation.
Furthermore, the lessons learned may not be suitable in the
next projects. Overly large measurement programs with time
consuming assessments are not worth paying the effort in
dynamic GSD context. The traditional methods should be
utilised for specific and well-aimed purposes. For example,
the GQM method can be utilised while identifying new GSD
specific metrics.

In GSD, development processes are dynamic and thus
results of measurements and their interpretation vary. In this
paper, GSD metrics used in the companies were focused on
‘early warning’ signals for the project and management. In a
changing environment it’s also an important aspect that the

measurement data is easy to collect and that the metrics can
be quickly calculated at regular intervals. Ease of use and
speed are also central factors from metrics interpretation
viewpoint. This also emphasises the importance of metrics
visualisation. Interestingly, GSD literature has rarely focused
on metrics and measurements or given experimental
examples of successfully used metrics during GDS
development.

C. Balancing Measurements
A Balanced Scorecard (BSC) is widely used for

monitoring performance of an organisation towards strategic
goals. The original BSC approach covers a small number of
performance metrics from four perspectives, called as
Kaplan & Norton perspectives: Financial, Customer, Internal
Processes, Learning & Growth [46]. The BSC framework
added strategic non-financial performance measures to
traditional financial metrics to give managers and executives
a more 'balanced' view of organizational performance.
However, many early BSCs failed, because clear information
and knowledge about the selection of measures and targets
were not available. For example, organisations had attempted
to use Kaplan & Norton perspectives without thinking about
whether they were suitable in their situation. After that many
improvements and enhancements have been completed on
BSC approach. Since 2000, it has been described as a “Third
Generation” of Balanced Scorecard designs. The BSC has
evolved to be a strategic management tool that involves a
wide range of managers in the strategic management process,
provides boundaries of control, but is not prescriptive or
constrictive and more importantly, removes the separation
between formulation and implementation of strategy [47].
The BSC suggests that organisation should be viewed from
four perspectives (Learning & Growth perspective, Business
process perspective, Customer perspective, and Financial
perspective) and metrics should be developed, data collected
and analysed in relation to these perspectives.

Even if BSC are generally intended to deal with strategic
issues, in this paper, the balancing of various perspectives of
BSC has been emphasised. In fact, it has been proved that
Practical Software Measurement and the Balanced Scorecard
are both compatible and complementary [48]. In GSD
context, decisions or actions taken based on the analysis of
metrics and measurements collected from different
development parties or stakeholders need to take specific the
GSD factors into account as well.

D. Measurement Challenges in GSD
Even in the daily software development work, the

measurements are still seen as unfamiliar or an extra burden
for projects. For example, project managers feel it is time
consuming to collect metrics for the organization (business-
goal-related metrics), yet they need to have metrics that are
relevant to the project. Furthermore, in many cases, not
enough time is budgeted for measurements, and this is why it
is very difficult to obtain approval from stakeholders for this
kind of work [5].

Globally distributed development generates new
challenges and difficulties for the measurements. For

283

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, the gathering of the measurements data can be
problematic because of different development tools which
have different versions, work practices with related concepts
can vary by project stakeholders or reliability of the gathered
data can vary due to cultural differences, especially, in
subjective evaluations. In addition, distributed projects are
often so unique (e.g., product domain and hardware-software
balance vary, or different subcontractors are used in different
phases of the project) that their comparison is impossible.
Thus, the interpretation of measurements data is more
complicated in GSD than one-site projects. This is why it is
recommended to select a moderate amount of metrics. In this
paper, we will present a set of metrics as well as examples of
their visualisation possibilities to support decision making in
GSD. Also industrial experiences about the metrics will be
discussed.

The common metrics (effort, size, schedule, etc.) are also
applicable for GSD projects. However, special attention may
be needed in training the metrics collection, to ensure a
common understanding of them (e.g., used classifications).
In addition, as measurements also tend to guide people’s
behaviour, it is important to ensure that all are aware of the
purpose of the metrics (i.e., not to measure individual
performance), specifically in projects distributed over
different cultures. In GSD content the automation of
measurements is highly recommended to avoid
misunderstanding - even if it is not easy to implement. The
focus is to generate real-time information shown in a format
that is easy and quickly interpreted. This means that great
attention should be paid to metrics visualisation.

V. GENERIC MEASUREMENTS AND METRICS IN GSD
In this section, the metric set used in the companies is

introduced. In addition, several visualised examples of
proposed metrics are given and discussed. The metric set and
their visualisation examples have been produced during the
ITEA PRISMA (2008-2011) project [49]. The main goal of
the PRISMA project was to boost productivity of
collaborative systems development. One of the project’s
results was the Prisma Workbench (PSW), a tool integration
framework [50]. PSW provides several real-time views into
data that has been collected from various data sources even
from separate stakeholders’ databases. The PSW enabled the
visualisation of metrics in GSD and collection of the
experiences of their use. The work was done in close co-
operation with industrial partners and experimental views
were generated based on their needs or challenges. The
original metrics were the same that the industrial partners
had successfully used in their globally distributed projects,
published in [1]. During the PRISMA project, the
development of the PSW tool enabled further development
of the proposed metrics set and their visualisation in co-
operation with the industrial partners. The industrial partners
had identified metrics, and defined their collection and
visualisation. They had also tried the metrics in few projects
to collect experiences. These experiences were then shared
among the industrial partners of the project. The researchers
analysed the measurements and experiences to find
commonalities from these measurement practices. Results of

this analysis was discussed in workshops with the
companies, and updated based on the comments. This paper
presents the results of this work. In following sub-sections,
the developed example views are shown and discussed.
Industrial experiences, opinions and ideas for improvement
are also presented. The industrial experiences were gathered
during the industrial cases by interviewing companies’
personnel who had developed the metrics and measurement
programs.

A. Rational Unified Process (RUP) Approach
Each phase in the lifecycle of a development project

affects the interpretation of the metrics. Thus, in this paper,
proposed metrics and visualisation examples are introduced
by using commonly known approach of software
development called Rational Unified Process (RUP). Also
the processes used in the companies were similar to the RUP
phasing, so it was chosen as a presentation framework for
this paper. RUP is a process that provides a disciplined
approach to assigning tasks and responsibilities within a
development organisation. Its goal is to ensure the
production of high quality software that meets the needs of
its end-users within a predictable schedule and budget
[16][51].

The software lifecycle is divided into cycles, each cycle
working on a new generation of the product. RUP divides
one development cycle in four consecutive phases [51]: (1)
inception phase, (2) elaboration phase, (3) construction phase
and (4) transition phase. There can be one or more iterations
within each phase during the software generation. The
phases and iterations of RUP approach are illustrated in
following Figure 1.

Figure 1. Phases and Iterations of RUP Approach [51]

From a technical perspective, the software development
is seen as a succession of iterations, through which the
software under development evolves incrementally [16].
From measurement perspective this means that some metrics
can be focused on during one or two phases of the
development cycle, and some can be continuous metrics that
can be measured in all phases, and can be analysed in each
iteration.

In this paper, the metrics are introduced according to the
RUP phases. Each metric is presented in the phase where the

284

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

metric can be utilised in the first time or where the metric is
seen to be the most relevant to measure, even if some metrics
are relevant in several phases. In fact, many of the introduced
metrics can be used also in the following product
development phases. For each metric - a name, a notation
and a detailed definition is introduced. The main goal is to
offer a useful, yet reasonable amount of metrics, for
supporting the on-time monitoring of the GSD projects. The
indicators are supposed to be leading indicators rather than
lagging indicators. For example, planned/actual schedule
measurements should be implemented as milestone trend
analysis which measures the slip in the first milestone and
predicts the consequences for the other milestones and
project end.

B. Metrics and their Visualisation for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the project's core requirements, main
constraints, an initial use case model (10% -20% complete),
and a project plan, showing phases and iterations [52].
Proposed metrics to be taken into consideration in this phase
are introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Planned
Effort

EPLANNED The planned Effort for project tasks
(/requirements) at any given time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel

/Effort are mostly needed for comparison with actual
schedule, personnel and effort, in order to identify lack of
available resources as well as delays in schedule quickly.
The amount of Proposed Requirements tells about the
progress of the product definition.

Figure 2 shows how some of the proposed metrics can be
utilised during product development for visualising the
progress of project. The metric of progress status combines
effort and schedule metrics in a visualised way. The first
and top line (blue) in the Figure 2 is a cumulative planned
effort over time calculated from project tasks. The next line,
the red line describes the cumulative updated planned effort
and accordingly, the green line describes the cumulative
actual used effort over time summarised from project tasks.
The bottom and last line in lilac shows the earned value that
indicates the cumulative effort of completed tasks
(/workproducts).

Figure 2. Visualised Metric: Progress Status

The graph visualises the project progress and easily
gives several kinds of information as well as proactive
insights, such as, is the project resourcing in place, and is
the project completing work as planned. In the shown graph,
it is a good signal that cumulative planned effort (blue line)
is continuously above the cumulative updated planned effort
(red line); it means the project is running on schedule.
Another good signal is if actual used effort (green line) and
earned value (lilac line) is relatively close to each others; it
means that the results (~completed tasks) have been
achieved with the used effort. The status in the Month 11
indicates that there are still several open tasks that are not
completed even if actual used effort (green line) seems to
draw closer to the cumulative updated planned effort (red
line); this indicates a potential threat. Depending on
project’s phase (for example, in the middle phase or at the
ending phase) corrective actions would be needed. The
actions are not needed if the project is at the ending phase
because the cumulative planned effort (blue line) is still
clearly the upmost line.

Industrial comments
In the Philips company example, the Progress status

metric has proven to give a timely insight in the actual
consumption of effort compared to planned effort in large
first-of-a-kind Consumer Electronics projects. The
representation over time enables the ability to analyse trends,
and take actions pro-actively. Moreover, the use of earned
value gives insight in the effectiveness of the effort spent
answering the question: “Does the effort spent contribute to
realizing the agreed results?”

In the Symbio company example, indicators of earned
value and tracking of unplanned work were seen as
especially important from a management perspective.
Unplanned work may yield a strong indication of a variety of
causes early in the project, such as technical infeasibility or a
lack of shared vision between project stakeholders.
Accordingly, they identified that from a budget perspective,
justifying workshops early in the project to shape a shared
vision and collaborate on scoping project goals is often
difficult to qualify for many stakeholders. It is a typical case
that only when problems manifest, or a sharp trend in
unplanned work is experienced will stakeholders react.
Usually, remedying the problem requires unplanned trips to

285

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

put people together into the same room to hammer out
solutions that essentially consume budget.

C. Metrics and their Visualisation for Elaboration Phase
During the elaboration phase a majority of the system

requirements are expected to be captured. The purpose of the
phase is to analyse the problem domain, establish a sound
architectural foundation, develop the project plan, and
eliminate the highest risk elements of the project. The final
elaboration phase deliverable is also a plan (including cost
and schedule estimates) for the construction phase. Example
outcomes of the elaboration phase are; a use case model (at
least 80% complete), a software architecture description,
supplementary requirements capturing the non-functional
requirements and any requirements that are not associated
with a specific use case, a revised risk list and a revised
business case, and a development plan for the overall project.
Proposed metrics to be taken into consideration in this phase
are introduced in Table II.

TABLE II. METRICS FOR THE ELABORATION PHASE

Metric Notation Definition
Schedule:
Planned
/Actual Schedule

DPLANNED

DACTUAL

The planned/actual Date of
delivery (usually the
completion of an iteration, a
release or a phase)

Staff:
Planned
/Actual Personnel
Planned
/Actual Effort

#FTPLANNED
#FTACTUAL

EPLANNED
EACTUAL

The planned/actual number
of Full Time persons in the
project at any given time.
The planned/actual Effort for
project tasks (/requirements)
at any given time.

Requirements
-Drafted
-Proposed
-Approved
-Not implemented

#Reqs DRAFTED

#Reqs PROPOSED
#Reqs APPROVED.
#Reqs NOT_IMPL

The number (#) of
- drafted requirements
- proposed requirements
- reqs approved by customer
- not implemented reqs

Tests
-Planned

#Tests PLANNED

The number (#) of
- planned tests

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED
#Docs ACCEPTED

The number (#) of
planned /proposed /accepted
documents to be reviewed
during the project.

The metrics related to requirements, tests and documents

indicate the technical progress of the project from different
viewpoints. The Staffing metric may explain deviations in
the expected progress vs. the actual progress, both from a
technical as well as from a schedule viewpoint. Note that
those metrics that are more relevant to measure by iterations
(effort and size) are introduced later (in Section E).

Figure 3 shows how some of the proposed metrics can be
visualised in order to describe the project’s status. The metric
of requirements status combines the amount of planned
effort with status of requirements’ implementation over a
time in the same graph. The bars summarise the amount of
planned effort for the month. Each bar is composed from
four different data relating to identified requirements as
follows. The first block (green) describes a sum of planned
efforts for all implemented requirements. The second block
(grey) describes a sum of planned efforts for approved but
not implemented requirements. The third block (blue)

decribes a sum of planned efforts for proposed requirements
and the last block (orange) shows a sum of planned efforts
for drafted requirements.

Figure 3. Visualised Metrics: Requirements Status

It is important to note, that the planned effort is used
constantly, even for implemented requirements. This is due
to keeping the baseline in order to enable comparing project
situation over time, i.e., to be able to see the project trend
with respect to planned work. The planned effort may be
updated for the requirements during the project, if a new
baseline is created. This information is then used together
with the actuals, to see how well the planning has succeeded
to help learning to estimate better.

The visualised metric “Requirements status” indicates
several status information but also trend lines relating to
requirements implementation, and is focused on showing
the uncertainly of the project, for example how much more
work maybe dedicated to be implemented in the project. In
the example graph, a good signal is that the sum of planned
efforts for implemented requirements seems to increase over
time while the sum of planned efforts for approved, but not
implemented requirements, seems to reduce. However, the
sums of planned efforts for proposed and drafted
requirements are still quite large in the Month 8, especially,
while comparing them to the sums of planned efforts for
approved requirements. This indicates that the project is in
the beginning phase rather than in the ending phase.
However, the interpretation needs other metrics information,
such as “Progress status” or “Testing status” to make any
decisions.

Industrial comments
In the Philips company example, the current projects

lack insight into the satisfaction of requirements. This lack
of insight concerns both the actual status of implementation
of the requirements, as well as the expectation: “Up to what
level the project will be able to satisfy its requirements, and
if not, what are measures to accomplish that?” The (leading)
indicator as proposed in this document seems to be a good
answer to this problem. The metric has been introduced in a
few (one-roof) projects yet and initial results seem
promising. However, no data with experiences on a metric
like this have been collected yet.

According to Symbio’s practice, when looking to exit an
elaboration phase, product owners should pay special

286

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attention to the coverage of requirements affecting
architecture to ensure the construction phases run more to
plan as the team sizes may scale and involve more sites.
Whilst iterative development can be seen as promoting
elaboration of requirements later in the lifecycle, core
functions that separate the project output from competition
should be conceptualized and approved for implementation.
Project managers may consider implementation of these
differentiating use cases to be made geographically or
temporally close to the project owner. Non-approved
requirements should be managed accordingly and not
planned for implementation off-site until they are suitably
elaborated and accepted into the development roadmap.
Misunderstanding of the requirements needs to be
minimalized if the team size and development sites scale
during construction phases otherwise projected cost savings
from multi-site development can be quickly eliminated.

D. Metrics and their Visualisation for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken into consideration in this phase are introduced in Table
III.

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED
DACTUAL

#FTPLANNED
#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Approved
-Not implemented
-Started
-Completed

#Reqs PROPOSED
#Reqs APPROVED.
#Reqs NOT_IMPL

#Reqs STARTED
#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs approved by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED
#Tests FAILED
#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED

#Docs ACCEPTED

Defined in the elaboration
phase.

Note that those metrics that are continuously measured
are introduced later (in Section E).The metrics related to
requirements, tests and documents indicate the technical
progress of the project from different viewpoints. Metrics
related to changes indicate both the stability of the project
technical content, and can explain schedule delays, and
unexpected technical progress. Defect metrics describe both
the progress of testing as well as the maturity of the product.

In the construction phase, all components and features
are developed and integrated into the product. In addition,
they are also thoroughly tested, so there are many
simultaneous actions that can be implemented by multiple
partners or/and in different locations in GSD. This is why the
metrics interpretation needs to be done very carefully by
utilising indicators from different data sources and from
different partners. In this subsection two metrics: “Budget
status” and “Testing status” are introduced with discussion
about indicators and proactive signals that they provide.

The visualisation of Budget status combines cost,
requirements and defects metrics in the same graph shown in
Figure 4.

Figure 4. Visualised Metrics: Budget Status

The Budget status graph shows actual costs of the project
in portion with the agreed budget over a time period. The
metric also gives several indicators of estimated prospective
costs in each month. The bars summarise amount of costs for
the month, and each bar is composed from five different
cost-related data. The first block (green) describes actual
cumulative costs of the project. The agreed budget for the
project is shown clearly as a green line in the middle of the
graph. The second block (blue) describes remaining planned
cost based on effort estimated for requirements that have
been accepted for implementation but not yet implemented.
The third block (light blue), in the middle of the bar,
indicates proposed cost that can be seen very likely costs for
the project. These costs are based on effort estimated for the
proposed requirements that are estimated likely to be
implemented, for example, a customer will want them. The
fourth block (orange) describes proposed but vague costs for

287

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the project. These costs are based on effort estimated for the
proposed requirements which the likeliness for
implementation is not known. Instead, the fifth block (red)
indicates very potential costs for the project, so-called
“Known defects” costs. The costs are based on effort
estimated to be needed to fix the known critical, major or
average defects. In the example graph, the Budget status
metric in Figure 4, the project’s costs will overrun the agreed
budget.

Industrial comments
At Philips, the current applied budget metrics generally

give a clear understanding in the actual budget consumption,
but are poor in predicting budget consumption for the
remainder of the project. The metric suggested allows for
trend analysis and by that extrapolation to the future,
resulting in better prediction of the budget consumption for
the remainder of the project. This will improve the projects’
and the management’s insight into the project and enable
them to take required measures in a timely fashion, as
appropriate. The metric has not yet been applied in our
projects.

In Symbio, managers will often track cost against budget
throughout construction for project sponsors, but earned
value becomes increasingly more important in the latter
stages of the lifecycle. Earned value can be tracked with
relative ease if defined requirements are quantified for
business importance. Product backlogs imply the importance
by a requirement’s position in the backlog; however some
backlogs may include other items than requirements such as
operational tasks for deployment and so on. To compensate
all project requirements (both functional and non-functional)
can be attributed with a business value, its value based in
comparison to the cumulative value of all project
requirements. When a requirement is delivered its value is
added to cumulative total to provide an earned value
delivered by the project. This approach is ideal if the backlog
of the product development stabilizes throughout
construction. However significant changes in the business
value of requirements will weaken the importance of
tracking this metric over time. Also this metric requires the
project team and stakeholders to agree upon a “definition of
done” which can be very difficult, and even more so if the
accepting and implementing parties are different entities or
located in different sites.

The metric of Testing status combines effort,
requirements and test metrics in a same graph. The Testing
status metric visualises the progress of testing phase by
collecting data from various phases. The bars in the graph
summarise efforts relating to tests in each month. Each bar is
composed from four different sums of efforts. The first block
(green) describes a sum of efforts for tested requirements.
The second block (blue) describes a sum of efforts for
requirements for which test case is available, and
accordingly, the third block (purple) describes a sum of
efforts for requirements for which test cases are not
available. The last, the fourth block (red) is a very proactive
indicator describing a sum of effort estimated for uncertain
requirements. Figure 5 shows the visualisation of Testing
status metric.

Figure 5. Visualised Metrics: Testing Status

Even if “Testing status” shows easily how ‘mature’ the
testing phase is the metric requires other metrics – such as
the before introduced metrics: Budget status, Progress status
and Requirements status – make conclusions based on the
data.

Industrial comments
According to Philips, one of the most important

indicators of a development project is insight in what will be
the status of the product at the delivery time - what will the
product actually contain and what is the quality of those
contents? This metric is an effective means to get early
insight in the status of the product by the end of the project.
Moreover, the test status trend analysis helps to initiate
timely measures to work towards an agreed project result.
The metric has been applied in a single project at Philips and
results were promising - it really improved the insight of
project, management and customer in the status of the
product-under-construction and better understanding of what
could be expected by the end of the project.

According to Symbio, earned value is especially
invaluable in the close down phases of a project. Projects
may deteriorate into loss making, unplanned iteration as
stakeholders become overly conscious on metrics of
requirements coverage. This situation is can be further
exacerbated if the value of requirements is not continually
reviewed and communicated to all stakeholders throughout
the project.

E. Metrics for Transition Phase
The final project phase of the RUP approach is transition.

The purpose of the phase is to transfer a software product to
a user community. Feedback received from initial release(s)
may result in further refinements to be incorporated over the
course of several transition phase iterations. The phase also
includes system conversions, installation, technical support,
user training and maintenance. From measurements
viewpoint the metrics identified in the phases relating to
schedule, effort, tests, defects, change requests and costs are
still relevant in the transition phase. In addition, customer

288

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

satisfaction is generally gathered in the transition phase, and
post-mortem analysis carried out.

F. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines
(requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics for each iteration to be taken into
consideration, are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED
SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET
COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN
#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity:

EACTUAL / #PTS
ACT

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indications of the project

progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain a
comprehensive picture of the status.

VI. SPECIFIC MEASUREMENTS AND METRICS IN GSD
Section V discussed metrics, which are not specific for

GSD, but they provide valuable information to follow a GSD
project progress. So, in GSD, metrics can be similar or same
as in single-site development. However, in order to prevent
potential problems during distributed projects some specific
GSD metrics could be added to be used together with the
metrics presented in Section V. These metrics should be
focused on the specific challenges in GSD that were
presented in general level in Section III and they would help
to quickly detect the GSD related source of problems that are
identified in the metrics presented in Section V.

Measuring the generic GSD challenges (Section III) is
difficult, and in fact, measuring the challenges does not
provide clear value from project monitoring viewpoint. It is
more beneficial to follow and detect the symptoms that
indicate problems in the GSD practice. Example problems
[14] caused by lack of communication, coordination

breakdown, and different backgrounds include, for example,
ineffective use of resources as competences are not known
from other sites, obstacles in resolving seemingly small
problems and faulty work products due to a lack of
competence or background information. These causes can
also lead to a lack of transparency in the other parties’ work,
misunderstood assignments and, thus, faulty deliveries from
parties, delays caused by waiting for the other parties’ input
and duplicate work or uncovered areas. Further problems
that can be caused by these issues include differences in tool
use or practices in storing information, misplaced restrictions
on the access to data and unsuitable infrastructure for the
distributed setting.

Example problems [14] caused by lack of teamness and
lack of trust include hiding problems and unwillingness to
ask for clarification from others, expending a lot of effort in
trying to find that the cause of problems (defects) has
occurred in the other parties’ workplace, an unwillingness to
help others and an unwillingness to share information and
work products until specifically requested to do so. These
causes may also appear as difficulties in agreeing about the
practices to be used and then not following the process and
practices as agreed, for example. Further problems caused by
these issues include the use of other tools than those agreed
to for the project and plentiful technical issues that hinder
communication and use of the tools, as agreed.

The following problems are among the most common
ones in companies GSD practice (based on 54 industrial
cases during several research projects):

1. unclear responsibilities and escalation channels,
2. unavailability of information timely for all who need

it,
3. unclear information and misunderstandings (for

example of requirements and task assignments),
4. problem hiding,
5. non-communicated and unexpected changes,
6. lack of visibility and transparency of all sites work

and progress,
7. faulty and/or delayed (internal) deliveries, and
8. sub optimal use of resources.
Next we discuss potential measurements to indicate as

early as possible if these problems are present. These
proposals have not been applied in practice, yet. Instead,
their implementations and possible selections were discussed
with industrial partners.

Relating to problems 1-3, a measurement could be a short
questionnaire asking the project members if they know their
responsibilities and when and to whom to escalate problems,
and is the required information available and clear. In
addition, from GSD viewpoint, a potential measurement
could be related to time spent idling (a team member is
waiting because of wrong, incorrect or missing information
or input from other members) or percentage of unplanned
work (a team member is working with unplanned or
duplicated tasks).

For problems 4 – 6, a measure is amount and type of
communication over sites. For example, communications
activeness could be monitored via metrics like amount of
status reports, meeting memos, chats, calls between

289

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

locations, etc. Communication activeness is especially
important between distributed teams where their
development tasks are highly coupled or dependent on
deliveries and results of each other. For example, silence or
communication only via documents (official reports) can be
an indicator of problem, whereas active informal
communication over sites indicates active discussion of work
at hand. In the worst case in GSD, lack of face-to-face
communication can lead to “reportmania” where
communication is handled only through large amount of
documents. Long textual descriptions can be easily omitted
or alternatively misunderstood because of high amount of
effort and time required for adopting the content.

For problem 7, metrics related to defects and schedule
are relevant and for problem 8, a potential measurement is
time spent idling and the time blocked because of the
impediments elsewhere in the team as these affect
productivity and highlight when a team is not performing.
Also, communication related metrics are valuable for these
problems.

The metrics relating to team trust, project commitment
and team identifications describes team dynamics that can
provide lot of explaining information for the problems in
GSD project. Some indicators, such as how many people
have left from the project, refer the individual satisfaction as
well as project commitment. Because software development
is fundamentally team oriented action [53], metrics relating
to team dynamics and teamwork quality is highly
recommended to monitor in GSD. Potential metrics are
related to communication, tasks coordination, balance of
member contributions, mutual support, effort and cohesion
as introduced by Hoegl and Gemuenden [54]. Examples of
questions are as follows:
 Communication: Is there sufficient frequent, informal,

direct, and open communication?
 Coordination: Are individual efforts well-structured and

synchronised within the team?
 Balance of member contributions: Are all team members

able to bring in their expertise to its full potential?
 Mutual support: Do team members help and support

each other in carrying out their tasks?
 Effort: Do team members exert all efforts to team tasks?
 Cohesion: Are team members motivated to maintain the

team? Is there team spirit?
These questions can be used to measure team dynamics

and team work quality during a GSD project.

VII. DISCUSSION

A. GSD Metrics
As discussed, little focus has been paid on GSD metrics

in the literature. In fact, the research has been focused on
clarifying differences between collocated and distributed
projects and also, identifying variables that differ the most.
Although this kind of approach is important for gaining
knowledge about the issues that need to be monitored in
GSD, a specific focus on the metrics and their collection and
analysis is also needed. For example, project performance is

even more complicated and multi-level concept to measure
in GSD than in single-site. It concerns team members’
individual performance, teamwork performance and tasks
performance as well as management performance.
Bourgault et al. [19] pointed out that distributed projects’
performance metrics and measurement needs more attention
so that well designed management information systems
could be developed in order to create effective monitoring
systems for distributed projects. This kind of development
was seen as necessary to provide decision makers with
dynamic, user-friendly information system that would
support management activities, not only for project
managers, but also for top managers. However, the issue of
performance metrics in the context of distributed projects
needs to be investigated in more detail. Furthermore, a
dispersion of work has significant effects on productivity
and, indirectly, on the quality of the software. However, it is
currently difficult to specify metrics, measurement processes
and activities that best suit different companies and specific
GSD circumstances. We have presented a first step towards
taking into account the specific aspects of GSD in
measurement programs, but more work is needed. For
example, specific GSD metrics are currently collected and
processed manually, thus requiring extra and error prone
effort. In the world of the hectic and dynamic GSD practice,
the metrics collection and visualisation should also be
automated to be valuable in large-scale use. The automation
is an important issue for further research.

B. Industrial Viewpoint
The metrics presented in Section V were common for

both of the companies. Although the metrics were chosen
independently by both companies, the reasoning behind
choosing these metrics was similar. An important reason was
to come from a re-active into a pro-active mode, for example
to introduce ‘early warning’ signals for the project and
management. Specifically these metrics have been chosen as
they indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but needs special effort,
distributed over sites and companies. Accordingly, the
metrics set can be seen as a ‘balanced score card’, on which
management can take the right measures, balancing insights
from time, effort (e.g., staffing), cost, functionality
(requirements) and quality (tests) perspective.

An important aspect was also that the metrics are easy to
capture and that they can be captured from the used tools
“for free”, or can be quickly calculated at regular intervals.
Costs and budgets are good examples of metrics that can be
easily captured from the tools. This is also important from
GSD viewpoint, as automated capturing reduces the chance
of variations caused by differences in recording the metrics
data in different sites. Neither of the companies use metrics
based on lines-of-code as they did not find it to be a reliable
indicator of progress, size or quality of design.

290

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It can be seen that the metrics are quite similar as in
single-site development. However, the metrics may be
analysed separately for each site, and comparisons between
sites can thus be made in order to identify potential problems
early. On the other hand, it is important to recognise that
some metrics correlate with each other, for example, metrics
relating to tests correlate with metrics about requirements,
and that needs to take consideration while analysing. In
general, the interpretation of project’s comprehensive status
needs various metrics information – like Requirements
status, Progress status, Testing status and Budget status – for
making conclusions based on the data. In addition, while
interpreting or making decisions based on the measurement
results the distributed development implications need to be
taken into account. Distributed development requires ‘super-
balancing’ - how to come to the right corrective action if for
instance, on the one side, the % of not accepted requirements
is high, and on the other side, the # of passed tests is lagging
behind. Distributed development may also affect the actual
results of the measurements. For example, relating to
subjective metrics, such as effort estimation, differences
between backgrounds of the people (cultural or work
experience) in different sites may affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single-site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. This was experienced by
the representative of Symbio: “These points presented should
be by now well known. From an economic perspective these
points must be considered when evaluating and comparing
costs of different project models of delivery.”, and
“Benchmarking and tracking of historical data across the
entire project portfolio is still only an initial step to shape
more informed cost estimations when composing project
teams with distributed elements. Continuous effort is
required not only in definition and capture of metrics but
also in the effects on working practices in general.”

Furthermore, the challenges in communication and
dynamics of distributed teams mean that working practices
need to be addressed continuously as impressed by Symbio
representative: “Often a practical solution to working
procedures can result in compensation for potential lost
productivity. For example a testing team in China lags their
working week by one day (Tuesday to Saturday) in order to
test the results from an implementation team in Finland
(working Monday to Friday). In this example the Finland
team agrees to ensure continuous integration in order to not
block the testing team. If these two practices have a positive
effect on productivity when compared against similar project
models, future cost estimations should then be benchmarked
on the new working practices.” However, in addition to
metrics results, paying close attention and acting on feedback
is as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that the metrics
introduced in this paper are the right ones. This was pointed
out by Philips by the following: “Applying the metrics

suggested in this document to the parties involved in the
GSD project already gives better insight in the relative
performances of the groups, and enables to take measures
over time (e.g., systematically improve a party’s
performance, or replace it). We have applied detailed effort
consumption metrics to our single-roof and multi-side
development projects. Those metrics learned that staff of
multi-side projects spend significantly more time on things
they call ‘communication’ or ‘overhead’ (up to 50%!). Our
understanding of the matter is that no new metric needs to be
‘invented’ for that: standard effort distribution metrics
would do. The main challenge is to have it introduced in a
systematic way, with the same understanding and
interpretation of the metrics by the parties involved.
Especially the first element is often a challenge: third parties
are often reluctant to provide this level of transparency of
their performance.”

Both companies are careful in introducing new metrics,
as it is well known that too many metrics lead to overkill and
rejection by the organization, and do not provide the right
insights and indication for control measures. Easy
implementation and by that, easy acceptance is the most
crucial thing to get these metrics as established practice
within the company. However, the few specific GSD metrics
presented in Section VI are intended to be used together as
the proposed metrics set. These additional metrics should be
focused on measuring the project performance, especially
task and team performance in GSD.

VIII. CONCLUSION
The management of the more and more common

distributed product development project has proven to be
more challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide the means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and
there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools and their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, interpretation and decision-making
based on the measurement results require that the distributed
development implications are taken carefully into
consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in GSD and given
examples of their visualisation with industrial experiences of
their use. These metrics, are aimed especially to provide the
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status. The basic GSD circumstances
with challenges are discussed from viewpoints of metrics

291

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and measurements in order to create awareness and
knowledge of potential GSD specific metrics.

The metrics presented in the paper were common for
both of the companies. Based on experiences, the reasoning
for selecting these metrics was similar: they are easy to
capture and can be quickly calculated and analysed at regular
intervals. Also, one of the most important reasons was that
these metrics were aimed especially to provide the means to
proactively react to potential issues in the project. The
balancing insights from time, effort, cost, functionality and
quality was also seen as very important aspect.

ACKNOWLEDGMENT
This paper was written within the PRISMA project that is

an ITEA 2 project, number 07024 [49]. The authors would
like to thank the support of ITEA [55] and Tekes (the
Finnish Funding Agency for Technology and Innovation)
[56].

REFERENCES
[1] M. Tihinen, P. Parviainen, R. Kommeren and J. Rotherham, "Metrics

in distributed product development," In Proceedings of the Sixth
International Conference on Software Engineering Advances
(ICSEA'11), Barcelona, Spain, 2011, pp. 275-280.

[2] R. Van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of Software
Development. McGraw-Hill, 1999.

[3] V. R. Basili, Software modeling and measurement: The Goal
/Question/Metric paradigm. Computer Science Technical Report CS-
TR-2956, UNIMACS-TR-92-96, University of Maryland at College
Park, Sep. 1992, pp. 1-24.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co. Boston, MA, USA, 1998.

[5] M. Umarji and F. Shull, "Measuring developers: Aligning
perspectives and other best practices," IEEE Software, vol. 26, (6),
2009, pp. 92-94.

[6] J. Hyysalo, P. Parviainen and M. Tihinen, "Collaborative embedded
systems development: Survey of state of the practice," In Proceedings
of 13th Annual IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS 2006), IEEE, 2006,
pp. 1-9.

[7] J. D. Herbsleb, "Global software engineering: The future of socio-
technical coordination," In Proceedings of Future of Software
Engineering FOSE '07, IEEE Computer Society, 2007, pp. 188-198.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt and R. E. Grinter,
"Distance, dependencies, and delay in a global collaboration," In
Proceedings of the ACM Conference on Computer Supported
Cooperative Work, ACM, 2000, pp. 319-328.

[9] M. Jiménez, M. Piattini and A. Vizcaíno, "Challenges and
improvements in distributed software development: A systematic
review," Advances in Software Engineering, vol. Jan-2009, (No. 3),
2009, pp. 1-16.

[10] S. Komi-Sirviö and M. Tihinen, "Lessons learned by participants of
distributed software development," Knowledge and Process
Management, vol. 12, (2), 2005, pp. 108-122.

[11] M. Tihinen, P. Parviainen, T. Suomalainen, K. Karhu and M.
Mannevaara, "ABB experiences of boosting controlling and
monitoring activities in collaborative production," In Proceedings of
the 6th IEEE International Conference on Global Software
Engineering (ICGSE'11) Helsinki, Finland, 2011, pp. 1-5.

[12] F. Q. B. da Silva, C. Costa, A. C. C. França and R. Prikladinicki,
"Challenges and solutions in distributed software development project
management: A systematic literature review," In Proceedings of

International Conference on Global Software Engineering
(ICGSE2010), IEEE, 2010, pp. 87-96.

[13] S. Komi-Sirviö and M. Tihinen, "Great challenges and opportunities
of distributed software development - an industrial survey," In
Proceedings of the15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San
Francisco, USA, 2003, pp. 489-496.

[14] P. Parviainen, "Global software engineering. challenges and solutions
framework," Doctoral Dissertation, VTT Science 6, Finland, 2012,
pp. 106 p. + app. 150 p.

[15] Prisma-wiki, SameRoomSpirit wiki homepage. URL:
http://www.sameroomspirit.org/index.php/Main_Page (Accessed
19.12.2012).

[16] P. Kruchten, The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2004.

[17] C. E. L. Peixoto, J. L. N. Audy and R. Prikladnicki, "Effort estimation
in global software development projects: Preliminary results from a
survey," In Proceedings of International Conference on Global
Software Engineering, IEEE Computer Society, 2010, pp. 123-127.

[18] K. Korhonen and O. Salo, "Exploring quality metrics to support
defect management process in a multi-site organization - A case
study," In Proceedings of 19th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2008, pp. 213-218.

[19] M. Bourgault, E. Lefebvre, L. A. Lefebvre, R. Pellerin and E. Elia,
"Discussion of metrics for distributed project management:
Preliminary findings," In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences HICSS'02, IEEE, 2002,
10 p.

[20] S. Misra, "A metric for global software development environment,"
In Proceedings of the Indian National Science Academy 2009, pp.
145-158.

[21] R. M. Lotlikar, R. Polavarapu, S. Sharma and B. Srivastava,
"Towards effective project management across multiple projects with
distributed performing centers," In Proceedings of IEEE International
Conference on Services Computing (CSC'08), IEEE, 2008, pp. 33-40.

[22] M. T. Lane and P. J. Ågerfalk, "Experiences in global software
development - A framework-based analysis of distributed product
development projects," In Proceedings of the Fourth IEEE
International Conference on Global Software Engineering (ICGSE
2009). 2009, pp. 244-248.

[23] A. Piri and T. Niinimaki, "Does distribution make any difference?
quantitative comparison of collocated and globally distributed
projects," In Proceedings of the Sixth IEEE International Conference
on Global Software Engineering Workshop (ICGSEW'11), 2011, pp.
24-30.

[24] B. Sengupta, S. Chandra and V. Sinha, "A research agenda for
distributed software development," In Proceedings of the 28th
International Conference on Software Engineering, ACM, 2006, pp.
731-740.

[25] N. Ramasubbu and R. K. Balan, "Globally distributed software
development project performance: An empirical analysis," In
Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference aNd the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC-FSE '07), ACM, 2007,
pp. 125-134.

[26] D. B. Simmons, "Measuring and tracking distributed software
development projects," In Proceedings the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS 2003).
IEEE, 2003, pp. 63-69.

[27] D. B. Simmons and N. K. Ma, "Software engineering expert system
for global development," In Proceedings of 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06), IEEE,
2006, pp. 33-38.

[28] I. A. da Silva, M. Alvim, R. Ripley, A. Sarma, C. M. L. Werner and
A. van der Hoek, "Designing software cockpits for coordinating
distributed software development," In the First Workshop on

292

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Measurement-Based Cockpits for Distributed Software and Systems
Engineering Projects, 2007, pp. 14-19.

[29] E. Carmel, Global Software Teams: Collaborating Across Borders
and Time Zones. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[30] E. Carmel and P. Tija, Offshoring Information Technology: Sourcing
and Outsourcing to a Global Workforce. Cambridge University Press,
the United Kingdom, 2005.

[31] D. E. Damian and D. Zowghi, "An insight into the interplay between
culture, conflict and distance in globally distributed requirements
negotiations," In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03), 2003, 10 p.

[32] J. Herbsleb and A. Mockus, "An empirical study of speed and
communication in globally distributed software development," IEEE
Transactions on Software Engineering, vol. 29, (6), 2003, pp. 481-
494.

[33] M. Paasivaara and C. Lassenius, "Collaboration practices in global
inter-organizational software development projects," Software
Process: Improvement and Practice, vol. 8, (4), 2003, pp. 183-199.

[34] R. Battin, R. Crocker, J. Kreidler and K. Subramanian, "Leveraging
resources in global software development," IEEE Software, vol. 18,
(2), 2001, pp. 70-77.

[35] D. M. Wahyudin, S. Heindl, A. Biffl and B. R. Schatten, "In-time
project status notification for all team members in global software
development as part of their work environments," In Proceeding of
SOFPIT Workshop 2007, SOFPIT/ICGSE, Munich, 2007, pp. 20-25.

[36] J. D. Herbsleb and D. Moitra, "Global software development," IEEE
Software, vol. 18, (2), 2001, pp. 16-20.

[37] R. Welborn and V. Kasten, The Jericho Principle, how Companies
use Strategic Collaboration to Find New Sources of Value. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[38] H. Holmstrom, E. O. Conchuir, P. J. Ågerfalk and B. Fitzgerald,
"Global software development challenges: A case study on temporal,
geographical and socio-cultural distance," In Proceedings of IEEE
International Conference on Global Software Engineering
(ICGSE’06), IEEE, 2006, pp. 3-11.

[39] V. Casey and I. Richardson, "Virtual teams: Understanding the
impact of fear," Software Process Improvement and Practice, vol. 13,
(6), 2008, pp. 511-526.

[40] B. Al-Ani and D. Redmiles, "Trust in distributed teams: Support
through continuous coordination," IEEE Software, vol. 26, (6), 2009,
pp. 35-40.

[41] G. Borchers, "The software engineering impacts of cultural factors on
multicultural software development teams," In Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), IEEE,
2003, pp. 540-545.

[42] G. Hofstede, Culture’s Consequences. Comparing Values, Behaviors,
Institutions, and Organizations, Across Nations. Sage Publications.
London, 2nd edition, 2001.

[43] K. H. Möller and D. J. Paulish, Software Metrics: A Practitioner's
Guide to Improved Product Development. Institute of Electrical &
Electronics Enginee, London, 1993.

[44] CMMI, "CMMI for development," Tech. Rep. version 1.2., Technical
Report CMU/SEI-2006-TR-008, 2006.

[45] W. A. Shewhart, Statistical Method from the Viewpoint of Quality
Control. Graduate School of Agriculture, Washington, 1939.
Referenced in W.E. Deming: Out of Crisis. Cambridge, Mass.: MIT
Center for Advanced Engineering Study, 1986.

[46] R. S. Kaplan and D. P. Norton, "The balanced scorecard-measures
that drive performance," Harward Business Review, (No. 92105),
1992, pp. 71-79.

[47] G. Lawrie and I. Cobbold, "Third-generation balanced scorecard:
Evolution of an effective strategic control tool," International Journal
of Productivity and Performance Management, vol. 53, (7), 2004, pp.
611-623.

[48] D. Card, "Integrating practical software measurement and the
balanced scoreboard," In Proceedings of the 27th Annual International
Computer Software and Applications Conference COMPSAC 2003,
3-6 Nov. 2003, pp. 362- 363.

[49] PRISMA, Productivity in Collaborative Systems Development, ITEA
project (2008-2011) number 07024, Project info page, URL:
http://www.itea2.org/project/index/view/?project=237 (Accessed
19.12.2012).

[50] J. Eskeli, J. Maurolagoitia and C. Polcaro, "PSW: A framework-based
tool integration solution for global collaborative software
development," In Proceedings of the Sixth International Conference
on Software Engineering Advances (ICSEA'11), Barcelona, Spain,
2011, pp. 124-129.

[51] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley Pub Co, Addison-Wesley
Object Technology Series, 1999.

[52] P. Kruchten, "A rational development process," CrossTalk, vol. 9, (7),
1996, pp. 11-16.

[53] E. Demirors, G. Sarmasik and O. Demirors, "The role of teamwork in
software development: Microsoft case study," In Proceedings of the
23rd EUROMICRO Conference, New Frontiers of Information
Technology, 1997, pp. 129-133.

[54] M. Hoegl and H. G. Gemuenden, "Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,"
Organization Science, vol. 12, (4), 2001, pp. 435-449.

[55] ITEA 2, Information Technology for European Advancement, ITEA
2 homepage, URL: http://www.itea2.org/ (Accessed 19.12.2012).

[56] Tekes, the Finnish Funding Agency for Technology and Innovation,
Tekes homepage. URL: http://www.tekes.fi/eng/ (Accessed
19.12.2012).

293

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality-Oriented Design of Software Services

in Geographical Information Systems

Michael Gebhart

Gebhart Quality Analysis (QA) 82

Karlsruhe, Germany

michael.gebhart@qa82.de

Suad Sejdovic

Campana & Schott

Stuttgart, Germany

suad.sejdovic@campana-schott.com

Abstract—Distributed information, such as sensor information,

increasingly constitutes the basis for geographical information

systems. For that reason, these systems are designed according

to services-oriented design principles, which means that they

require software services returning necessary information and

provide higher-value ones. These services are expected to

follow quality attributes, such as loose coupling and autonomy,

which have been identified as important in the context of

service-oriented architectures. For measuring these quality

attributes, metrics have been derived that enable

quantifications. They can be directly evaluated on basis of

formalized service designs and indicate the extent of quality

attributes. This article shows the application of these service

design metrics for a quality-oriented design of services in

geographical information systems. The considered system is

part of the Personalized Environmental Service Configuration

and Delivery Orchestration project of the European

Commission.

Keywords-service; design; quality; geographical information

system; case study

I. INTRODUCTION

A geographic information system (GIS) is a computer
system, which is used for capturing, storing, analyzing and
also displaying geospatial data, whereas geospatial data is
data that is describing characteristics of spatial features on
the Earth’s surface which are referenced to by a location [1].

In order to access this data in a standardized manner, it is
provided by means of software services that base on
standardized protocols and interface description languages,
such as Simple Object Access Protocol (SOAP) over
HyperText Transfer Protocol (HTTP) and Web Services
Description Language (WSDL) [2]. Besides the usage of
services, the information systems themselves are often
required to be integrated in a more complex architecture.
This is why the systems are additionally supposed to not
only invoke but also to provide services that enable
accessing higher-value functionality. As result, geographical
information systems apply services as architecture paradigm
and follow service-oriented design principles.

In the context of service-oriented architectures (SOA)
several quality attributes have been identified as important
depending on higher-level quality goals that are associated
with the system. In order to easily switch between several
data sources, for geographical systems a very important

aspect is to build a flexible and maintainable architecture.
These higher-level quality goals can be broken down into
more fine-grained quality attributes, such as loose coupling
and autonomy, affecting the building blocks of the
architecture, in this case the services. Accordingly, the used
services in the context of the geographical information
system have to be designed in a way that these quality
attributes can be fulfilled. The design of services can be
confined to a service interface and a service component.
Whilst the service interface describes the externally visible
access point to the service, the service component focuses on
the internal behavior of the service itself. In order to
formalize the design of a service, the Service oriented
architecture Modeling Language (SoaML) as profile for the
Unified Modeling Language (UML) can be applied [3]. It
represents an emerging standard to describe service designs
in a standardized manner and gains increasing tool support,
which leads to an increasing acceptance in development
processes.

For measuring the quality of software, metrics can be
used as quantified values of quality indicators [4], [5], [6],
[7], [8]. In the context of service-oriented architectures and
in particular for the design of services, Gebhart et al.
identified metrics especially evaluating service designs based
on the Service oriented architecture Modeling Languages
(SoaML) [4]. These ones refer to model elements available
within this Unified Modeling Language (UML) profile,
which simplifies the evaluation of formalized service
designs. Compared to other non-formalized quality
indicators, such as textual descriptions, or metrics not
designed for SoaML, the usage of these SoaML-oriented
metrics avoids interpretation effort with possibly faulty
interpretation and accordingly faulty measurement. Finally,
the metrics can be automatically calculated as implemented
by the QA82 Architecture Analyzer [9].

In order to demonstrate the quality-oriented design of
services based on these metrics, this article considers the
design of a geographical information system in a service-
oriented manner [1]. This means that metrics especially
designed for service designs based on SoaML are applied for
designing services of a geographical information system with
certain quality attributes fulfilled. In this article, the project
Personalized Environmental Service Configuration and
Delivery Orchestration (PESCaDO) is considered [10].

294

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The article is organized as follows: Section II introduces
the service design process, the formalization of service
designs using SoaML, and wide-spread quality attributes.
The scenario is introduced in Section III and in Section IV
the services are designed. Section V concludes this article
and introduces future research work.

II. BACKGROUND

This section describes fundamentals for the article. This
includes especially the understanding of service designs in
the context of software service engineering and its
formalization using SoaML.

A. Service Design Process

The service design phase is a primary ingredient of the
software service engineering that can be understood as the
“discipline for development and maintenance of SOA-
enabled applications” [11]. The central purpose of the
service design phase is to create a formalized draft of
services, so-called service designs, before implementing
them. This enables the adaptation and optimization of the
entire services architecture without cost-intensive source
code changes. That is why analyses of the designs regarding
quality attributes, such as loose coupling, are required to be
performed within the service design phase. In [12], Gebhart
introduces a service design process reusing existing work of
Erl, IBM et al. [13], [14], [15], [16], [17], [18] and describes
necessary steps within the service design phase for fulfilling
this requirement. Figure 1 illustrates this process.

Figure 1. Quality-oriented service design process.

The service design process is a combination of
systematic derivations and subsequent analyses and
revisions. The systematic derivation especially considers the
fulfillment of functional requirements that have been
identified within the requirements analysis phase: In a first
step, the functional requirements are transferred into so-
called service candidates. These represent preliminary
services that are not fully specified yet [13]. Especially,
when existing services have to be taken into account, there is
no necessity to specify new service designs. Instead, the
existing specifications can be reused. Otherwise, the service
candidates are transferred into elements of service designs.
For example, for each service candidate a service interface
and implementing service component is created.

The iterative analysis and revision focuses on the
fulfillment of non-functional requirements, such as quality
attributes. Within each iteration first the current state is
analyzed regarding non-functional requirements. For
example, the quality attributes are determined using
appropriate metrics as demonstrated by Gebhart et al. in [19].
Afterwards, the artifacts are revised for improving the
quality attributes or other non-functional requirements. As a
result, service designs are created that both fulfill functional
requirements that have been determined within the
requirements analysis phase and non-functional ones, such as
loose coupling, that support higher-level quality goals.

The created service designs can be used to derive web
service implementation artifacts in a model-driven way as
introduced by Hoyer et al. in [20] and Gebhart et al. in [21].

B. Service Design Formalization

For formalizing a service design, in this article SoaML is
applied [3]. In comparison to other proprietary languages,
such as the UML Profile for Software Services developed by
IBM [22], SoaML is a profile for UML [23] and a
metamodel standardized by the Object Management Group
(OMG). It provides elements necessary to describe service-
oriented architectures and its building blocks, the services. In
the meanwhile, SoaML is an emergent standard adopted by
several tool vendors. Even IBM has replaced its proprietary
UML profile with SoaML [24]. In this article SoaML is
applied as UML profile.

In order to model service designs with SoaML, necessary
elements of the profile have to be identified. This article uses
the elements as introduced by Gebhart et al. in [25]. The
service design formalization consists of both the
formalization of service candidates and service designs.
Thus, for both sub-phases of the service design phase the
adequate formalization has to be determined.

According to Erl [26], a service candidate represents a
preliminary service on a high level of abstraction. During
this phase, only possible operations, called operation
candidates, service candidates as grouping of these
capabilities, and dependencies between service candidates
are determined. In SoaML the Capability element exists,
which corresponds to this understanding. The following table
shows the mapping of service candidate elements on a
conceptual level onto elements within SoaML.

Requirements Analysis

Domain

Model

Quality

Attributes

Legacy

Systems
…

Business Processes
Business Use

Cases

Functional Requirements

Non-Functional Requirements

S
e

rv
ic

e
 I
d

e
n

ti
fi

c
a

ti
o

n

S
e

rv
ic

e
 S

p
e

c
if

ic
a

ti
o

n

Analysis and

Revision

Service

Candidate

Service

Candidate

Service

Candidate

Service

Candidate
Existing Service

Service Designs

Analysis and

Revision

Service

Component

P
ro

v
id

e
d

S
e

rv
ic

e

In
te

rf
a

c
e

s

R
e
q
u

ir
e

d
 S

e
rv

ic
e

In
te

rf
a

c
e

s

Composition

Logic

295

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. MAPPING BETWEEN SERVICE CANDIDATE ELEMENTS
AND SOAML

Service Candidate Element SoaML Element

Service Candidate
Capability (UML class that is
stereotyped with “Capability”)

Operation Candidate Operation within a Capability element

Dependency
Usage Dependency between Capability

elements

This table demonstrates that there is a one-to-one
mapping between service candidate elements and elements
within SoaML possible. Figure 2 illustrates the modeling of
service candidates in SoaML.

Figure 2. Service candidates in SoaML.

The example includes three service candidates with each
of them containing two operation candidates. In this case
ServiceCandidate1 requires operations of ServiceCandidate2
and ServiceCandidate3 for fulfilling its functionality.

TABLE II. MAPPING BETWEEN SERVICE DESIGN ELEMENTS
AND SOAML

Service Design Element SoaML Element

Service Interface
ServiceInterface (UML class that is

stereotyped with “ServiceInterface”)

Provided Operation
Operation within an interface that is
realized by the ServiceInterface

element

Realized Operation
Operation within an interface that is

associated with the ServiceInterface by
using a Usage Dependency in UML

Role

Property within the ServiceInterface
that is typed by the interface that

contains the provided operations or by
the interface that contains the required

operations

Interaction Protocol A behavior, such as an UML Activity

Service Component
Participant (UML component that is
stereotyped with “Participant”)

Provided Service
Service (UML Port that is stereotyped
with “Service”)

Required Service
Request (UML Port that is stereotyped
with “Request”)

Internal Behavior
UML Activity that is added as

OwnedBehavior to the Participant

A service design represents a full specification of a
service [27]. It includes both the service interface as
externally visible access point and the service component as
realization of the business logic. The service interface has to
specify the operations provided by the service and the ones
required in order to receive callbacks. Additionally, the
participating roles and the interaction protocol have to be
determined. Latter describes in which order the operations
have to be called for obtaining a valid result.

The service component consists of the services provided
by the component and the ones required by the component
for fulfilling its functionality. Additionally, the internal
behavior is specified by means of a flow of activities that is
the composition in case of a composed service. In SoaML
there exist elements that directly correspond to the described
understanding.

Table II shows the mapping according to [27]. Whilst the
original work bases on SoaML in version 1.0 Beta 1, the
table was adapted that it corresponds to the standard in the
current version 1.0 final.

To illustrate the modeling of service designs, the
following figures illustrate the modeling of a service
interface and a service component in SoaML. The service
interface in Figure 3 assumes two participants interacting,
the provider and the consumer. The provider offers two
operations the consumer can call. Furthermore, also the
consumer has to provide one operation for receiving
callbacks. The interaction protocol describes the operation
call order for a valid result.

Figure 3. Service interface in SoaML.

«Capability»

ServiceCandidate1

+ OperationCandidate1()

+ OperationCandidate2()

«use»«use»

«Capability»

ServiceCandidate2

+ OperationCandidate3()

+ OperationCandidate4()

«Capability»

ServiceCandidate3

+ OperationCandidate5()

+ OperationCandidate6()

«ServiceInterface»

Service1

«interface»

Service1

+ Operation1(: Operation1Request) : Operation1Response

+ Operation2(: Operation2Request) : Operation2Response

consumer:

«interface» Service1 Requester

provider:

«interface» Service1

+

Interaction Protocol

: provider : consumer

Operation1

«use»

«interface»

Service1 Requester

+ CallbackOperation1(: CallbackOperation1Request) :

CallbackOperation1Response

CallbackOperation1

Operation2

296

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The service component illustrated in Figure 4 provides
one service and requires one service for fulfilling its
functionality. It consists of two internal components, one
realizing the composition logic and one implementing further
internal logic. The internal behavior can be described by
means of an owned behavior in UML. For the sake of
simplicity, the internal behavior is not illustrated.

Figure 4. Service component in SoaML.

C. Quality Attributes and Metrics

With the establishment of service-oriented architectures,
several strategic goals are associated. Examples are the
higher flexibility of the architecture and its easier
maintenance [28]. In order to fulfill these strategic goals,
quality attributes, such as loose coupling and autonomy, for
the building-blocks of the architecture, the services, have
been identified. The fulfillment of these quality attributes
provides the basis for achieving the strategic goals. As these
quality attributes yet are described on an abstract level, they
can be further broken down into measurable quality
indicators that refer to concrete elements of the services [25].
If these elements are described during design time, the
quality indicator can be determined on basis of a service
design model. A metric describes the formula for a certain
quality indicator and enables its concrete quantification.

In [27], Gebhart et al. identified quality attributes for
services that are considered as important in this context.
Quality indicators and metrics that enable their determination
on basis of formalized service designs are derived in [4].
Based on this work, this article uses the following quality
attributes and quality indicators.

1) Unique Categorization: The first quality attribute is
the unique categorization, which is comparable to cohesion.
According to its description, a service should provide
functionality that belongs together. In literature the
categorization is mostly described by means of service
categories, such as entity, task, and utility services [29]. The
quality attribute can be described in detail by means of
quality indicators:

First, technical and business-related functionality should
be separated up into two services. As technical functionality
is used by a different target group than business-related one

this helps to maintain the services. This corresponds to the
distinction between entity / task services and utility services
as introduced by Erl [13], [30].

In order to further increase the maintainability of services
also functionality that can be reused in several contexts, i.e.,
general one or also known as agnostic, should be separated
from specific one [26]. This encourages the reuse of general
functionality and avoids the influence of changes concerning
specific functionality on the general and highly used one.
This results in a distinction between entity services that
provide general and entity-based operations and task services
with mostly specific operations [29]. However, whether
functionality is agnostic or not depends on personal
estimation.

According to the data superiority, when a service
manages a business entity, it should be the only one. This is
important to avoid redundant functionality within various
services. For the categorization this means that there are no
entity services for the same business entity.

Finally, all operations within one service should work on
the same business entities. This means that within all
operations the same business entity is used. As result, this
quality indicator measures whether an entity service is
managing only one business entity as expected for an entity
service.

2) Discoverability: The best service cannot be leveraged
when it cannot be found. That is why discoverability is an
important aspect concerning the reusability of services [30].
The discoverability as quality attribute can be refined by the
following quality indicators:

First, services and operations should have functional
names. Only in this case a service and the contained
operations can be found.

In order to increase this aspect, the naming should follow
known naming conventions. This can be both the language
of the artifacts and the case sensitivity. Also other rules, such
as naming operations by using a verb and a noun, are often
applied [31].

Finally, the more information is provided the faster a
service can be found. This means that especially when
modeling services, as most information as possible should be
given.

3) Loose Coupling: One of the most often referred
quality attribute is loose coupling. It focuses on the
dependencies between services, which influences the
flexibility and maintainability of services. The following
quality indicators that are measurable on service designs can
be identified:

In order to support long-running operations, these
operations should be provided asynchronously. This means
that if an operation provides a long-running functionality an
appropriate callback operation should be provided by the
consumer and invoked when the operation is finished. This
enables the exchange of service provider and consumer
during the operation execution.

The dependency between services is also influenced by
commonly used data types. Especially when services
commonly use complex data types they are dependent as
changing one data type requires changes within all using

«Participant»

Service1

Component

«Service»

service1 :

Service1

«Request»

service2 :

Service2

scc :

«Participant» Service1

Composition

Component

sic :

«Participant» Service1

Internal

Component

297

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services. The loose coupling can be measured by the degree
to which complex data types are commonly used. Best,
services share only simple types. Of course, services can
work on the same business entity, such as a Person entity,
however the data types should be only copies. A canonical
data schema as part of an enterprise service bus should map
similar or identical data.

To further increase the independence between services
the operations and parameters should be abstract. This means
that no technical background information should be
necessary to use a service [31]. Also parameters should not
include technical data types. This supports the exchange of
services as the implementation details are hidden.

If an operation provides functionality resulting in state
changes there should be always a compensating undo
operation. This again reduces the dependency between
services.

4) Autonomy: Finally, the autonomy is one of the
considered quality attributes. It also considers the
dependency between services but focuses on the ability of a
service to be used without other services.

The first quality indicator considers the direct
dependency between services, i.e., how many other services
are required for fulfilling the own functionality. Basic
services are mostly highly autonomous. Composite services
instead are composing existing functionality and are thus not
autonomously usable.

The second quality indicator focuses on the functional
overlap between services. If the functionality of a service
overlaps with the one of other services, in most cases the
service can also be only used together with the other ones,
because in most scenarios functionality of all these services
is required. Thus, even though there is no direct dependency
between the services, because of the overlapping
functionality the service cannot be used solely.

III. SCENARIO

This section introduces the underlying scenario for the
exemplary quality-oriented design of software services in
this article, the project Personalized Environmental Service
Configuration and Delivery Orchestration (PESCaDO) of the
European Commission (EC) [10], [32]. The overall goal of
the system is to assist human beings in decision-finding
under consideration of the personal profile. For example, a
user with a pollen allergy and heart problems at very high
temperatures wants to know, whether it is advisable for him
to book a bicycle tour within the next few months. As
described in [1], one special requirement is the semantic
support for accessing environmental data. Thus, the system
should be capable to identify any related data sources for a
requested phenomenon like pollen. That is, the system has to
be able to extend a single requested phenomenon by other
more specific related ones, like “Birch Pollen”.

Figure 6. Considered business use case.

Regarding PESCaDO the business use case in Figure 6
can be identified. The business use case describes the
requirement to get an observation, which results in a value
describing some phenomenon. It is modeled using the
adapted notation for use case diagrams by the UML profile
for business modeling as introduces by IBM [33], [34]. It is
very important to achieve a deep understanding about the
business use case, as it is the basic artifact for the
identification of service candidates in the service design

Get

Observation

User

User

O
b

s
e
rv

a
ti
o
n

P
ro

v
id

e
r

Query Inferior

Concept

D
a

ta

P
ro

v
id

e
r

Get

Sensor

Description

Provide

Sensor

Information

Provide

Observation

Data

Get

Observation

Data

Needed area

covered?

no
yes

K
n

o
w

le
d
g

e

P
ro

v
id

e
r

Describe

Sensor
Get Data

Get Observation

Provide

Capability

Information

Get

Capabilities

Determine

Inferior

Capabilities

Get

Capabilities

Query Superior

Concept

Create

Capability

Response

Process

Query
Query

Ontology

Query Inferior

Concept

Figure 5. Considered business process.

298

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

phase. Thus, knowledge about the internal behavior of the
business use case is important within the service design
process. This internal behavior can be modeled using the
Business Process Model and Notation (BPMN) [35],
whereby the modeling concentrates on activities that could
be processed automatically.

Figure 6 shows the business process that covers the data
access under consideration of the semantic information that
is given within the request. The BPMN model consists of
four pools. The first pool, labeled with “User” represents the
user and is collapsed, as the contained activities are not
relevant for automation. The three remaining pools are
expanded, as they contain relevant activities for further steps
in the development process. Interactions between the
different providers are shown by message flows between the
pools, whereas the message flows are representing requests
and the resulting answers. As the business process is a
fundamental artifact, it has to be clear and unambiguous
before entering the service design phase.

The observation provider offers two functionalities to the
user. The first functionality “Get Capabilities” refers to the
capabilities of the observation provider. It represents the self-
description capability of the service. By requesting the
capabilities the user initiates a procedure, which dynamically
generates the information about the capabilities with regard
to the underlying data sources. For this, the capabilities of
the underlying data provider have to be requested. The data
provider also offers the self-describing functionality “Get
Capabilities”, which returns information about its
functionality and the type of data that is available. The
information about the available data is returned as a concept
referring to the content in an ontology [36], [37]. The
returned data can now be used within the observation
provider to generate a semantic hierarchy by gaining details
about the inferior and superior concepts of the retrieved
concept. All the required data is provided by the knowledge
provider, which knows all relevant concepts and
relationships between them. An important functionality to
enable such hierarchies is the functionality “Query
Ontology”. Through this functionality it is possible to query
the ontology and determine the required information. For
instance, a data source may contain information about birch
pollen and refers as a consequence to a concept called
“BirchPollen” within the ontology. The knowledge provider
may now generate a hierarchy, which is presenting the
position of this concept within a hierarchy, if one exists. For
example, the knowledge provider may return a relationship
between the concepts “Pollen” and “BirchPollen”. Thus, a
request for data containing information about the concept
“Pollen” should also take into consideration any data about
the inferior concept “BirchPollen”. This feature supports the
requester to find information for more complex concepts,
which are referring to composite phenomena, such as air
quality.

After retrieving all necessary information, the
observation provider processes all retrieved data and
generates the requested reply. Thus, the user gets a
structured, hierarchical view on the available data. This

dynamic approach ensures that users can always get a current
view on all available information.

The second functionality of the observation provider,
“Get Observation” realizes the data access, whereas the
request is addressed to the knowledge provider to determine
the inferior concepts of the user input. Thus, all relevant data
is found and returned. The next step is to verify that any
relevant data is also available for the given area and/or date
before requesting the quality parameters from the data
provider. The quality parameters give some indication of the
quality and accuracy of the available data. Within the last
step, all available information is retrieved and delivered to
the user.

IV. QUALITY-ORIENTED SERVICE DESIGN

In this section, the services for the described scenario are
designed considering the quality attributes introduced in the
Background section. For this purpose, first service
candidates are systematically derived from the business
requirements. Afterwards, these candidates are analyzed and
revised according the quality attributes. The revised service
candidates are used to derive service designs as full
specifications of the required services. Finally, the service
designs are again analyzed and revised. As result, service
designs are created that fulfill both the functional
requirements and certain quality attributes.

A. Derivation of Service Canditates

In a first step, service candidates have to be derived from
the modeled business requirements. This step can be
performed systematically, as there exist clear descriptions
about which elements are transformed into which ones. For
this step especially the business process has to be considered
as it describes provided functionality and the dependencies
between participating roles. Figure 7 shows the methodology
for service candidate derivation.

Figure 7. Derivation of service candidates.

Each pool is transformed into a service candidate and
each message start event that represents an available
operation is transformed into an operation candidate.

«Capability»

Observation Provider

+ Get Capabilities()

+ Get Observation()

User

O
b

s
e

rv
a

ti
o

n

P
ro

v
id

e
r

Determine

Inferior

Capabilities

Get

Capabilities

Find Superior

Concept

Create

Capability

Document

Find Inferior

Concept

299

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The dependencies between the service candidates are
derived from the operation calls between the pools. As result
three service candidates can be derived as shown in Figure 8.

Figure 8. Derived service candidates.

B. Service Candidate Analysis and Revision

In order to assure a high quality of the services already
during this phase, a quality analysis is performed. For that
purpose, the service candidates are analyzed by measuring
the quality indicators introduced in the Background section.
During this phase not all quality indicators are applicable as
some information might be missing. Based on the available
information, the following quality indicators are determined.
The used metrics are taken from Gebhart et al. [4].

1) Unique Categorization: In order to measure the
separation of technical and business-related functionality,
the following metric is applied.

| () |

| |

TABLE III. VARIABLES AND FUNCTIONS USED FOR DBTF

Element Description

DBTF Division of Business-related and Technical Functionality

sc service candidate: the considered service candidate

s service: the considered service that is provided or

required, represented by an ServicePoint or RequestPoint
in SoaML

BF(oc)

Business-related Functionality: operation candidates
providing business-related functionality out of the set of

operation candidates oc

BF(o) Business-related Functionality: operations providing

business-related functionality out of the set of
operations o

OC(sc) Operation Candidates: operation candidates of the
service candidate sc

SI(s) Service Interface: service interface of the service s. In

SoaML it is the type of the ServicePoint or RequestPoint
s

RI(si) Realized Interfaces: realized interfaces of the service

interface si

O(i) Operations: operations within the interface i

| oc | Number of operation candidates oc

| o | Number of operations o

As all service candidates were derived from the business
process they provide business-related functionality only. The
value of DBTF for all service candidates is 1. The following
table shows the interpretation of this value.

TABLE IV. INTERPRETATION OF VALUES FOR DBTF

Value Interpretation

0 Only technical functionality is provided

Between 0
and 1

Both business-related and technical functionality is
provided

1 Only business-related functionality is provided

This table acknowledges that only business-related
functionality is provided. As 0 and 1 are desired values, all
service candidates fulfill this aspect optimally. The next
quality indicator measures the separation of agnostic and
non-agnostic functionality, i.e., the separation of general and
highly specific operations. The following metric is applied.

| () |

| |

TABLE V. VARIABLES AND FUNCTIONS USED FOR DANF

Element Description

DANF Division of Agnostic and Non-agnostic Functionality

AF(oc)

Agnostic Functionality: operation candidates providing

agnostic functionality out of the set of operation
candidates oc

AF(o) Agnostic Functionality: operations providing agnostic
functionality out of the set of operations o

The determination whether an operation provides

agnostic functionality or not requires personal estimation. As
all operations are generally named and provide functionality
that is not specific to a certain scenario, they are assumed as
agnostic. As result the metric returns 1 for all service
candidates. According to the following table, this represents
the case that only agnostic functionality is provided.

TABLE VI. INTERPRETATION OF VALUES FOR DANF

Value Interpretation

0 Only non-agnostic functionality is provided

Between 0
and 1

Both agnostic and non-agnostic functionality is provided

1 Only agnostic functionality is provided

Also in this case the values 0 and 1 are desired for a
unique categorization. Accordingly, a revision regarding this
quality indicator is not necessary. For measuring the data
superiority the following metric is applied.

| () ()|

| () |

«Capability»

Data Provider

+ Get Capabilities()

+ Describe Sensor()

+ Get Data()

«Capability»

Observation Provider

+ Get Capabilities()

+ Get Observation()

«use»

«Capability»

Knowledge Provider

+ Get Capabilities()

+ Query Ontology()

«use»

300

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. VARIABLES AND FUNCTIONS USED FOR DS

Element Description

DS Data Superiority

M1 \ M2 Elements of set M1 without elements of set M2 or the
element M2

ALLSC All existing service candidates

ALLS All existing services

MBE(oc) Managed Business Entities: business entities that are

managed by operation candidates oc

MBE(o) Managed Business Entities: business entities that are
managed by operations o

In order to determine the results, the service candidates

have to be inspected in detail. All service candidates do not
manage business entities as it is known in a typical business
environment. In this case, a more data-centric view is
required that can be mapped onto the quality indicator.

Figure 9. Accessed data storages.

Figure 9 illustrates the services and their access to data
storages. This shows that the Data Provider accesses
observation data and the Knowledge Provider manages
ontology data. The Observation Provider is not responsible
for any data directly. As result, for each service candidate but
Observation Provider the metric returns 1, which represents
the desired value. For Observation Provider this metric is not
defined. To exemplify the calculation, the following formula
demonstrates it for the Knowledge Provider.

|{ } { }|

|{ }|

TABLE VIII. TEXT INTERPRETATION OF VALUES FOR DS

Value Interpretation

Less than 1 No data superiority regarding the managed business
entities

1 Data superiority regarding the managed business entities

As result, also in this case there is no revision necessary

as all service candidates fulfill the unique categorization
concerning this quality indicator optimally. The usage of
common business entities can be measured using the
following metric.

| ((
 ()

 ()
)) |

 | |

TABLE IX. VARIABLES AND FUNCTIONS USED FOR CBEU

Element Description

CBEU Common Business Entity Usage

CMP(oc, be1,
be2)

Composition: biggest set of business entities
managed by operation candidates oc out of be2 that

depend on business entitites be1

CMP(o, be1,
be2)

Composition: biggest set of business entities
managed by operations o out of be2 that depend on

business entitites be1

UBE(oc) Used Business Entities: business entities that are
used within operation candidates oc as input

UBE(o) Used Business Entities: business entities that are
used within operations o as input

MOUBE(oc) Mostly Often Used Business Entities: business

entities that are mostly often used within one
operation candidate out of operation candidates oc

MOUBE(o) Mostly Often Used Business Entities: business
entities that are mostly often used within one

operation out of operations o

OCUBE(oc, be) Operation Candidates Using Business Entities:

operation candidates out of operation candidates oc
that only use business entities out of be

OUBE(o, be) Operations Using Business Entities: operations out
of operations o that only use business entities out of

be

The calculation of this metric is exemplified for
Observation Provider that does not use business entities in
any of its operation candidates. In order to comprehend the
calculation every function within the formula is calculated
separately.

 { }

 () {}

 {}

 { }

|{ }|

|{ }|

Summarized, every service candidate uses in all of its
operation candidates the same business entity and thus is
only responsible for one certain business entity or parts of it.
Also in this case there is no revision necessary. Thus, the
service candidates fulfill the unique categorization optimally.

Observation

Provider

Data

Provider

Knowledge

Provider

Observation

Data

Ontology

Data

301

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Discoverability: As service candidates describe
services and their dependencies in an abstract manner, the
discoverability is only important for service designs. Thus,
the discoverability will not be measured during this phase
but later during the analysis and revision of service designs.

3) Loose coupling: In order to measure the asynchrony
for long-running operations details of the service designs are
necessary. During the specification of service designs it is
determined whether an operation is provided synchronously
or asynchronously. Similarly, the complexity of common
data types can only be determined when the data types are
specified. Thus, also this aspect cannot be measured on
service candidates but only on service designs. As provided
operations are not final yet and parameters are not defined
also the abstraction cannot be measured.

The only quality indicator measurable on basis of service
candidates is the compensation. For that purpose, the
following metric can be applied.

| ((()))|

| (()) |

TABLE X. VARIABLES AND FUNCTIONS USED FOR CF

Element Description

CF Compensating Functionality

NC(oc)
Non-Compensating: non-compensating operation
candidates out of the set of operation candidates oc

NC(o)
Non-Compensating: non-compensating operations out of
the set of operations o

SC(oc)
State Changing: operation candidates out of the set of

operation candidates oc that provide state-changing
functionality

SC(o)
State Changing: operations out of the set of operations o
that provide a state-changing functionality

CFP(oc)
Compensating Functionality Provided: operation
candidates out of the set of operation candidates oc a

compensating operation candidate exists for

CFP(o)
Compensating Functionality Provided: operations out of
the set of operations o a compensating operation exists

for

TABLE XI. INTERPRETATION OF VALUES FOR CF

Value Interpretation

Less than 0 There exist state-changing operation candidates
respectively operations without compensating operations

candidates respectively operations

1 For all operation candidates respectively operations that

provide state-changing functionality a compensating
operation candidate respectively operation exists

As the Observation Provider only returns information and
does not change the state of any artifact, the metric is not
defined and there is no revision necessary. Otherwise, the
table above lists the values and their interpretation.

4) Autonomy: The dependencies between services can
be measured on basis of service candidates using the
following metric.

 | |

TABLE XII. VARIABLES AND FUNCTIONS USED FOR SD

Element Description

SD Service Dependency

RS(sc) Required Services: service candidates the service
candidate sc depends on

SCT(s) Service Component: service component of the service s

RS(sct) Required Services: services the service component sct
depends on

For the Observation Provider the metric returns the value

2 as the candidate depends on two other services.

TABLE XIII. INTERPRETATION OF VALUES FOR SD

Value Interpretation

0 the service candidate or the functionality fulfilling

service component depends on no other service candidate
respectively service

n (n > 0) the service candidate or service component requires n
other services to fulfill its functionality

Although the value is not optimal, there is no revision

possible. The quality indicator shows that there are
dependencies, however as the Observation Provider
represents a composed service, there is no possibility to
improve the quality indicator. Additionally, solving these
dependencies would impact other quality indicators, such as
those determining the unique categorization.

The functional overlap can be measured using the
following metric.

| () |

| |

TABLE XIV. VARIABLES AND FUNCTIONS USED FOR FO

Element Description

FO Functionality Overlap

OF(oc1,
oc2)

Overlapping Functionality: operation candidates out of
the set of operation candidates oc1 with overlapping

functionality to the operation candidates oc2

OF(o1, o2) Overlapping Functionality: operations out of the set of

operations o1 with overlapping functionality to the
operations o2

As in case of the Observation Provider there is no

functional overlap, the metric returns 0.
As 0 represents the desired value, there is no revision

required. Summarized, the service candidates fulfill nearly
all quality indicators optimally. Only the autonomy is not
optimal, however this quality indicator cannot be improved

302

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

without worsen other quality indicators. Additionally, the
composition including the dependencies is intended.
Nevertheless, the quality indicators points to the fact that we
have dependencies that influence the maintainability and
flexibility of the architecture. This has to be kept in mind.

TABLE XV. INTERPRETATION OF VALUES FOR FO

Value Interpretation

0 The operation candidates respectively operations of the
considered service candidate or service do not provide

functionality that overlaps with functionality of other

service candidates or services

Between 0
and 1

The operation candidates respectively operations of the
considered service candidate or service provide

functionality that overlaps with functionality of other

service candidates or services

1 The operation candidates respectively operations of the
considered service candidate or service provide only

functionality that overlaps with functionality of other

service candidates or services

C. Derivation of Service Designs

Subsequent to the service identification, the service
specification can be performed.

Figure 10. Derivation of service interfaces.

Also in this case, first the service candidates are
systematically transformed into service designs. Afterwards,
the service designs are iteratively analyzed and revised.

As described in the Background section, a service design
consists of a service interface and a service component.
Figure 10 illustrates the derivation of a service interface from
a service candidate. The service component can be similarly
derived as shown in Figure 11.

Figure 11. Derivation of service components.

The initial service interfaces and service components are
derived from the corresponding capability elements. To
create a reference between the service design and the
business, the related capability element is attached to the
service interface by means of an «Expose» association. The
dependencies of the capability elements are reflected with
«use» relationships. This relationship information provides
the input for the derivation of the ports of the service
component. Further details about the systematic derivation
are described by Gebhart et al. in [27].

D. Service Design Analysis and Revision

Similarly to the service identification phase, also within
the service specification phase an analysis and revision is
performed after the systematic derivation of service designs.
As the service designs were derived from service candidates
with optimized quality indicators, also on basis of service
designs most quality indicators will be optimal from the
beginning. However, there are some indicators that were not
measurable on basis of service candidates. For the sake of
completeness, in this section metrics for all quality indicators
with focus on service designs are listed. The metrics use the
variables and functions introduced above. Also the
interpretation of values is identical.

1) Unique Categorization: The quality indicators for the
unique categorization can be measured by the following
metrics. These metrics focus on the specifics of service
designs. The first metric measures the division of business-
related and technical functionality.

| ((())) |

| (()) |

«interface»

Observation Provider

«Expose»

«ServiceInterface»

Observation Provider

observationProviderRequester :

«interface» Observation ProviderRequester

observationProvider :

«interface» Observation Provider

+ Get Capabilities()

+ Get Observation()

+

Interaction Protocol

: observationProvider : observationProviderRequester

Get Capabilities

Get Observation

«Capability»

Observation Provider

+ Get Capabilities()

+ Get Observation()

«interface»

Observation ProviderRequester

«use»

«Participant»

Observation ProviderComponent

«Service»

observationProvider :

Observation Provider

«Capability»

Observation Provider

«use»

«Capability»

Knowledge Provider

«use»

«Capability»

Data Provider

«Request»

knowledgeProvider :

Knowledge Provider

«Request»

dataProvider :

Data Provider

303

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As service within the formula the service described as
UML port within the service component, i.e., the Participant
in SoaML, has to be chosen.

The division of agnostic and non-agnostic functionality is
measured by the following metric.

| ((())) |

| (()) |

Also the data superiority differs only in the methodology

how to determine the relevant operations. Compared to the
service candidates, the operations within the realized
interface of the service interface have to be chosen.

||

 ((()))

 (((())))
||

| ((()))|

The common business entity usage can be measured

using the following metric.

|

|

(

 (())

 (
 (()) ((()))

 ((()))
)

)

|

|

 | (()) |

As the service designs were derived from high-quality
service candidates, all metrics have the same results as on
basis of service candidates. So, there is no revision
necessary.

2) Discoverability: The discoverability could not be
measured on service candidates as they only represent
abstract services with non-final names. Thus, new metrics
have to be introduced.

The functional naming of service interfaces, roles,
operations, parameters, and data types are measured by the
following metrics.

| () |

| |

| (()) |

| () |

| ((()))|

| (()) |

| (((())))|

| ((())) |

| ((((()))))|

| (((()))) |

TABLE XVI. VARIABLES AND FUNCTIONS USED FOR FNSI, FNR, FNO,
FNP, AND FNDT

Element Description

FNSI Functional Naming of Service Interface

FNR Functional Naming of Roles

FNO Functional Naming of Operations

FNP Functional Naming of Parameters

FNDT Functional Naming of Data Types

FN(me) Functional Naming: set of functionally named elements
out of the set of modelling elements me

P(o) Parameters: parameters of the operations o and in case of
messages the contained parameters

DT(p) Data Types: used data types (recursively continued) of

parameters p

R(si) Roles: roles of service interface si

As the original service candidates were derived from

business requirements the metric always returns 1 with the
following interpretation.

TABLE XVII. INTERPRETATION OF VALUES FOR FNSI, FNR, FNO, FNP,
AND FNDT

Value Interpretation

Less than 1 There are elements that are not functionally named

1 All elements are functionally named

The naming convention compliance of service interfaces,

roles, operations, parameters, and data types, can be
measured as follows:

| () |

| |

| (()) |

| () |

| ((()))|

| (()) |

| (((())))|

| ((())) |

| ((((()))))|

| (((()))) |

304

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XVIII. VARIABLES AND FUNCTIONS USED FOR NCCSI, NCCR,
NCCO, NCCP, AND NCCDT

Element Description

NCCSI Naming Convention Compliance of Service Interface

NCCR Naming Convention Compliance of Roles

NCCO Naming Convention Compliance of Operations

NCCP Naming Convention Compliance of Parameters

NCCDT Naming Convention Compliance of Data Types

NCC(me) Naming Convention Compliance: set of elements out of

the set of modelling elements me that follow specified
naming conventions

The used names do not correspond to naming

conventions specified in the project. For example, spaces are
not allowed within names, which is why the NCCSI for the
Observation Provider service interface returns 0.

Figure 12. Revised service interface.

TABLE XIX. INTERPRETATION OF VALUES FOR NCCSI, NCCR, NCCO,
NCCP, AND NCCDT

Value Interpretation

Less than 1 There are elements that do not follow naming
conventions

1 All elements follow naming conventions

As result, the names of the artifacts have to be revised in

order to fulfill the naming conventions and support the
discoverability. Figure 12 shows the revised service interface
for the Observation Provider.

Whether all possible five information is provided can be
measured by the following metric.

 () (()) (())

 (()) (())

TABLE XX. VARIABLES AND FUNCTIONS USED FOR IC

Element Description

IC Information Content

EX(e) Exists: returns 1 if the element e exists, else 0

IP(si) Interaction Protocol: interaction protocol of the service
interface si

UI(si) Used Interfaces: used interface provided by the service

consumer

As in this article all information is provided, the metric

returns 1 for all services.

TABLE XXI. INTERPRETATION OF VALUES FOR IC

Value Interpretation

Less than 1 Within the service design not all possible information is
available

1 All possible information is available

3) Loose Coupling: Most quality indicators for loose

coupling were not measurable on basis of service
candidates. Thus, entirely new metrics have to be
introduced.

The asynchrony for long-running operations can be
determined as follows.

| (()) ((())) |

| ((())) |

TABLE XXII. VARIABLES AND FUNCTIONS USED FOR ASYNC

Element Description

ASYNC Asynchrony

ASO(ip) Asynchronous Operations: asynchronous operations

within the interaction protocol ip

LRO(o) Long Running Operations: long-running operations out
of the set of operations o

Whether an operation is provided synchronously or

asynchronously can be determined by means of the
“synchronous” flag of a UML CallOperationAction within
the interaction protocol. As there is no long-running

«interface»

ObservationRetrievalService

«ServiceInterface»

ObservationRetrievalService

observationRetrievalServiceRequester :

«interface» ObservationRetrievalServiceRequester

observationRetrievalService :

«interface» ObservationRetrievalService

+ getCapabilities() : getCapabilitiesResponse

+ getObservation(: getObservation) : getObservationResponse

+

Interaction Protocol

: observationRetrieval

Service

: observationRetrieval

ServiceRequester

getCapabilities

getObservation

«interface»

ObservationRetrievalServiceRequester

«use»

305

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operation in this scenario, the metric is not defined and
cannot be determined. Otherwise the results can be
interpreted as follows.

TABLE XXIII. INTERPRETATION OF VALUES FOR ASYNC

Value Interpretation

Less than 1 There are long-running operations that are not provided
asynchronously

1 All long-running operations are provided asynchronously

The common data type complexity is measured by the

following metric.

|
|

(

 (((())))

 (((())))
)

|
|

| (((())))|

TABLE XXIV. VARIABLES AND FUNCTIONS USED FOR CDTC

Element Description

CDTC Common Data Types Complexity

SDT(p) Simple Data Types: simple data types within the

parameters pt

The service designs in the considered scenario use own

packages for own data types, i.e., they do not have common
complex data types. Within the numerator the intersection is
empty, which is why the metric returns 0 for all services. As
the values 0 or 1 represent desired ones, there is no revision
necessary.

TABLE XXV. INTERPRETATION OF VALUES FOR CDTC

Value Interpretation

0 There are no common data types used

Between 0
and 1

There are common and complex data types used

1 The commonly used data types are simple

The following metrics measure the abstraction of

operations and parameters.

| ((())) |

| (())|

| (((())))|

| ((()))|

TABLE XXVI. VARIABLES AND FUNCTIONS USED FOR AO AND AP

Element Description

AO Abstraction of Operations

AP Abstraction of Parameters

A(o) Abstract: set out of operations o that are abstract

A(p) Abstract: set out of parameters p that are abstract

As the operations and parameters are derived from

business requirements, they are abstract by nature and do not
contain any technical details. The metrics return 1 for all
services. This again represents the desired value, which is
why there is no further revision required.

TABLE XXVII. INTERPRETATION OF VALUES FOR AO AND AP

Value Interpretation

Less than 0 There exist operations respectively parameters that are

not abstract

1 All operations respectively parameters are abstract

Determining the compensation is similar to the one on

basis of service candidates.

| ((((()))))|

| (((()))) |

As there have been no changes on service designs, the

results are the same as on basis of service candidates.
4) Autonomy: Instead of using the dependencies

between service candidates the required services of a service
component can be considered to determine the dependencies
to other services.

 | () |

The values for the metric are the same as on basis of

service candidates, i.e., the metric returns 2 for the
Observation Provider and 0 for the other services.

The functional overlap is determined by the following
metric, which returns 0 for the Observation Provider.

| ((()) (())) |

| (()) |

In a next step, the analysis and revision phase is

iteratively repeated until there is no further revision
necessary. This is why the service design phase ends at this
step for the considered scenario. As result, the analysis and
revision phase enabled to create service designs with
verifiable fulfilled quality indicators. This will support
common and wide-spread quality attributes and strategic
goals, such as a high maintainability, flexibility and cost-
efficiency.

306

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSION AND OUTLOOK

In this article, the creation of a service-oriented system
with quality attributes kept in mind was demonstrated by a
geographical information system. As these kinds of systems
access distributed information and are expected to be
accessible from other systems, an architecture with service-
oriented design principles is necessary. Since strategic goals
are associated with this decision, the services within the
system have to follow certain quality attributes, such as loose
coupling and autonomy. As concrete scenario a system of the
PESCaDO project of the European Commission was chosen.

After an introduction and the definition of relevant terms
in the Background section, the scenario and the artifacts of
the business analysis phase were presented. The considered
business use case described the requirement to get an
observation by using different other services to ensure that
all relevant information for the user are found and retrieved.
The resulting business process served as the input for the
second phase in the service development process, the service
design phase, which was performed afterwards.

The service design phase consists of the combination of a
systematic derivation of artifacts and the subsequent analysis
and revision. The first enables the fulfillment of functional
requirements and the latter ensures the compliance with non-
functional ones, such as the quality attributes. As result,
formalized service designs based on SoaML were created for
the PESCaDO scenario that consider quality attributes and
thus support the achievement of strategic goals.

With this systematic approach, the IT architect is assisted
with performing the complex service design task. The
application of this approach on a real world scenario
exemplifies its usage and shows its benefits. On the one
hand, the methodology enables the creation of service
designs in an engineering manner. On the other hand, the
quality indicators provide a catalog of criteria an IT architect
has to consider during this task. This ensures that important
quality aspects are not overseen. Additionally, the metrics
help with analyzing models and improving them cost-
efficiently.

The usage of SoaML as emerging standard for modeling
service-oriented architectures and service designs enables the
embedding of this approach into existing tools and entire tool
chains. As SoaML provides a UML profile, any tool
supporting UML can be used. However, there exist also
several tools supporting SoaML natively. The possibility to
apply this approach with common and wide-spread tools
increases its practical applicability.

In the future, we plan to enhance the analysis
methodology. There are some terms that are not concretely
defined within existing work. For example, when is a service
agnostic and when specific? In order to avoid ambiguity
these terms have to be specified in detail. Additionally, the
quality analysis is supposed to consider further quality
attributes especially with regards to the internal component-
oriented architecture that implements the service
components. Also specifics of paradigms for realizing
services, such as the resource-centric approach used in
RESTful Web services, will be considered.

Finally, to further increase the cost-efficiency and
productivity of the service design task we have implemented
the metrics within our QA82 Architecture Analyzer tool [9]
for an automatic analysis of service designs. Thus, in the
future, IT architects, developers, executive board, or
customers will be able to automatically evaluate the quality
of developed or acquired products and provided services.
This simplifies the analysis whether services increase the
flexibility, maintainability, and cost-efficiency of the IT.

REFERENCES

[1] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth Internation Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[2] W3C, “Web Services Description Language (WSDL)”, Version 1.1,
2001.

[3] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0, 2012.

[4] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[5] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[6] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[7] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[8] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[9] Gebhart Quality Analysis (QA) 82, QA82 Architecture Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

[10] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[11] W. van den Heuvel, O. Zimmermann, F. Leymann, P. Lago, I.
Schieferdecker, U. Zdun, and P. Avgeriou, „Software Service
Engineering: Tenets and Challenges”, 2009.

[12] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.
Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[13] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[14] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: July 11, 2012]

[15] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[16] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: July 11, 2012]

[17] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.

[18] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

307

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[20] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[21] M. Gebhart and J. Bouras, “Mapping between service designs based
on SoaML and web service implementation artifacts”, Seventh
International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, November 2012, pp. 260-266.

[22] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[23] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[25] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[26] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[27] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[28] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[29] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[30] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[31] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[32] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[33] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: July 11, 2012]

[34] J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: July 11, 2012]

[35] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[36] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[37] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: July 11, 2012]

308

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Agile Driven Architecture Modernization to a Model-Driven Development

Solution
An industrial experience report

Mina Boström Nakićenović

SunGard Front Arena
Stockholm, Sweden

email: mina.bostrom@sungard.com

Abstract–This paper concerns model-driven development

(MDD) used in time critical development. We present an agile

MDD process developed in consideration of lean and agile

development principles and we show its application to the

evolutionary development of a real world application supplied

to the banking sector. Our approach involves a novel use of

concurrent reverse and forward engineering and through our

industrial report we are able to provide strong support in favor

of the claim that MDD and agile practices can be used
together, preserving the benefits of each.

Keywords-agile; lean; MDD; TDD; reengineering; finance

I. INTRODUCTION

In the world of rapid software development, commercial
software companies have to respond quickly to the
challenges of volatile business environments in order to
achieve a fast time-to-market delivery, necessary for
surviving on a tough business market [2]. The incoming
requirement changes can concern business functionality or
technology or both aspects, demanding adjustments and
improvements in the existing systems. Adaptations to the
frequent business requirements changes can be fulfilled
either through the evolution of existing software systems or
through the development of new software systems. The
direction and quality of the system evolution is steered by
three main drivers: system architecture, organizational
structure and development process. System evolution often
requires adjustments in all mentioned areas. Therefore, the
software systems architecture together with the company’s
organizational structure and the established development
process should constantly be adjusted.

Agile software development techniques have been
established in order to help organizations both to evolve and
to develop software systems, accelerating delivery time
while still maintaining, or even improving, product quality
[3]. Many companies have started using the agile techniques
to a less or larger extent. Important questions that are
constantly rising are: how to combine agile techniques with
some other, already existing techniques and methodologies?
Agile principles present general ideas and recommendations,
but they have not been elaborated enough to be specific on

how to work in a particular environment. With the
acceptance of agile techniques, the agile principles are also
adapting to the different organizations, working
environments and methodologies [4]. There are a lot of
empirical studies on the agile principles applied on different
methodologies, but there is still a need for more empirical
results within certain areas. One such area is the application
of agile techniques in a Model-Driven Development (MDD)
environment. The agile methods and the MDD have
appeared separately and evolved on distinct paths, although
they address, to a certain extent, the same goals: making
systems less sensitive to frequent changes and an
accelerated development. Generally speaking, the agile
techniques mostly address methodological aspects while the
MDD approach is more concerned with architectural issues
[5]. Therefore, it became interesting to combine these two
approaches in order to get a rapid acceleration of the system
development.

This paper, being an extended version of [1], is an
industrial experience report that describes an architectural
modernization process of an existing system. Despite the fact
that the system’s architecture is going to be radically
improved in the future, there was a need to find an
intermediate solution, within a short time-frame, which
would both eliminate the existing architectural errors, such
as data duplication and system inconsistency, and reshape
the system to be less vulnerable to the modifications.
Therefore, the existing system was supposed to be transited
to MDD, but within a short implementation timeframe as a
main requirement. Hence, the main aim of the paper is to
answer the following questions:

• How agile and lean principles can help the decision
making process when producing a MDD solution
within a short time frame?

• How the reengineering process to the MDD solution
can be accelerated, fitting the given time frame?

The paper is organized as follows: after the introduction,
an overview of the agile and lean techniques is presented in
Section II. Section III introduces the Model-Driven
Development concept discussing its pros and cons. Section
IV describes the problem in details. Section V explains the

309

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

architectures of both the present and the long-term solution
as well as it introduces reasons for having an intermediate
solution, which is separately presented in Section VI. The
produced intermediate solution, an Agile MDD approach, is
presented in Section VII, while the development process is
explained in Section VIII. In Section IX are discussed all
benefits of applying agile and lean principles on the MDD.
Section X presents the related work. Finally we conclude the
paper in Section XI.

II. AGILE AND LEAN TECHNIQUES

Methods of agile software development constitute a set of
practices for software development that have been created by
experienced practitioners [6]. The main aim of the agile
methodologies is to develop qualitative and no cost- effective
solutions and deliver them quickly. The core of the agile
philosophy is expressed in the agile manifesto, consisting of
basic agile principles [3]. The manifesto states that the
software development should focus on the following:

• Responding on change over following plan
• Working software over comprehensive

documentation
• Individuals and interactions over processes and tools
• Customer collaboration over contract negotiation
If the software development is presupposed on the listed

postulates, it can result in fast and inexpensive software that
satisfies the customer’s needs. Agile practices and
recommendations give us answers how to apply the
mentioned core values on the development process. The
suggested development cycles should be iterative and based
on building small parts of the systems, which are tested and
integrated constantly. Continuous integration, verification
and validation are some of the agile practices that help the
organization to check that they are building product in a right
way and that the right product is built. The organization
should also be arranged to support an efficient, agile
development. Agile organizational patterns help in creating a
highly effective organization [7]. They concern both the
organization of different teams (company management,
product management, architects, developers, and test) and
the way how people should work within these teams. Some
of the most frequently applied organizational agile practices
are:

• “Self-selecting teams”: The best architectures,
requirements and designs emerge from self-selecting
teams.

• “Conway’s Law“: An organization should be
compatible with the product architecture and the
development should follow the organizational
structure.

After one decade of the agile methodologies adoption,
empirical studies showed that the best effect is achieved
when the agile methodologies are applied on the smaller
organizations and projects [6], [8], [9]. Extreme
programming (XP), as one of the agile methodologies, is
most suitable for single projects, developed and maintained

by a single team [10]. For the larger projects and bigger
organizations some other methodologies are more suitable.

A lean software development is an adaptation of
principles from lean production and, in particular, the Toyota
production system to software development. It is based on
the seven principles: eliminate waste, amplify learning,
decide as late as possible, deliver as fast as possible,
empower the team, build integrity and see the whole. The
management decisions should be based on a long-term
philosophy, even at the expense of short-term financial goals
[11]. The decisions should be made slowly, but implemented
rapidly. Work load should be limited and systems should be
pulled to avoid overproduction. The lean philosophy is more
suitable for bigger organizations and larger projects.

Nowadays practice shows that the best effect is achieved
when lean and agile practices are combined together.
Although it can seem that some of the agile and lean
practices are in contradiction, they are not. At the first sight
the agile philosophy could be interpreted as a short-term
approach, since it says “do not build for tomorrow”, while
lean is more a long-term approach. But these two approaches
are not contradictory; on the contrary, they are
complementing each other. One of the main lean postulates
is “decide as late as possible”, which is another way of
prevention for “building for tomorrow”. To conclude, both
agile and lean principles could be applied together, but to
which extent is decided by the type of organization and the
type of the project.

III. MODEL-DRIVEN DEVELOPMENT

Model-Driven Development provides an open, vendor-
neutral approach to the challenge of business and technology
change [12]. This approach makes, on the system
architecture level, a flexible system that can respond quickly
on frequent changes both in technology and in business
requirements. The main goals of the MDD concept are:

• Simplification and formalization of the various
activities and tasks that comprise the software
system life cycle, through the raised level of
abstraction at which the software is developed and
evolved.

• Accelerated development, which is achieved by the
centralized architecture and automatic generations.

• Separations of concerns both on technical and
business aspects, making the system architecture
flexible for the changes.

The MDD’s intent is to improve software quality, reduce
complexity and improve reuse through the work at the higher
levels of abstractions cleared from the unnecessary details.
Prominent among the MDD initiatives is OMG’s Model-
Driven Architecture (MDA) in which software development
consists of series of model transformation steps, which starts
with a high level specification using often a domain-specific
language (DSL), specific for the certain domain, and which
ends with a platform-specific models describing how the
system should be implemented on certain platforms [13].
MDA standard defines different model categories:

310

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Computation Independent Model (CIM),
representing the problem domain.

• Platform Independent Model (PIM), representing the
solution domain without platform specific details.

• Platform Specific Model (PSM), representing the
solution domain with platform specific details.

The division could be done even more granular so that
the PIM splits in Architecture Independent Model (AIM) and
Architecture Specific Model (ASM). Then the PSM is
derived from the ASM [14]. All mentioned divisions provide
a good separation of concerns. Working with different types
of models, representing different views and aspects of the
system, enables an easier understanding of complex systems.
MDD is intended for the realm of large, distributed industrial
software development and is one approach for solving the
software life-cycle development problem. On the other side,
the detailed separation of concerns can introduce some other
problems in the system. It can cause an additional
complexity, requiring the existence of several models
describing the same thing, just on the different abstraction
levels or from the different point of views. Therefore, it is
questionably if the MDD reduces the complexity or it just
moves the complexity elsewhere in the development process
[15].

Development processes based on the MDA are not
widely used today because they are considered as heavy-
weight processes, which cannot deliver small pieces of
software incrementally [16]. That is why there is a need to
rework a MDA to a lighter process, easier to the acceptance.
For example, this could be achieved by the introduction of
agility in the MDD philosophy.

A. Agilility in Model-Driven Development.

A common goal for the MDD and the agile
methodologies is to build systems, which can respond
quickly on the frequent changes. These two methodologies
have different approaches for resolving the mentioned
requirement: agile development concentrates on individual
software products, while MDD is concerned with product
lines, i.e., mass-produced software. Agility mostly addresses
methodological aspects while the MDD approach is more
concerned with architectural issues [5].

The MDD concept has some drawbacks, which do not
suit agile philosophy. Looking from the agile perspective,
systems should be built in an incremental way where the
small pieces of software are delivered constantly. In
contradiction to the MDA modeling’s starting curve, which
can take a long time before the deliverables are produced.
True domain-specific languages are not very agile because
they encode commonalities and variations in a narrow,
concrete expression of the business form [17]. DSL makes
the system being too specific decreasing a possibility to
respond to the business changes quickly. If the domain
evolves, then the language must evolve with it, otherwise the
previously written code becomes obsolete. MDA systems
usually become complex while agile claims that “simplicity
is essential”. People are not an explicit feature in MDD while

agile postulates that people and interactions should be over
process and tools.

[18] distinguished generative MDD and agile MDD.
Generative MDD, epitomized OMG’s MDA, is based on the
idea that people use very sophisticated modeling tools to
create a very sophisticated models that they can
automatically transform with those tools to reflect the
realities of various deployment platform. [19] proposes the
agile MDD, where the agile modeling is used. Agile
modeling is practices-based and consists of collection of
values, principles and practices. Agile models are models
that are barely good enough, where the fundamental
challenge with “just barely good enough” is that it is
situational and therefore, the most efficient.

 Figure 1 Agile modeling. Adapted from [19]

The main idea with the agile modeling is not to follow

strictly the MDA recommendations regarding tools and
development environment but to choose ones which fit best
the current project and the organizational structure.

IV. PROBLEM DESCRIPTION

A. Background

SunGard is a large, global financial services software
company. The company provides software and processing
solutions for financial services. It serves more than 25000
customers in more than 70 countries. SunGard Financial
Systems provides mission-critical software and IT services to
institutions in virtually every segment of the financial
services industry. We offer solutions for banks, capital
markets, corporations, trading, investment banking, etc. [20].
In several areas SunGard is one of the leading providers for
the financial solutions and products. Since the finance
industry is very though, staying on top of the competitive
financial market requires fast delivery, reduction of costs and
quick responding to the changes in dynamic market
conditions. In order to achieve this, our company has started

311

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

adopting agile methods and techniques. The management’s
decision was to introduce agile software development within
each team and on every project. Although many teams have
changed its way of working towards the agile development
practices, the company is still learning and finding out how
to apply the agile techniques on the existing projects and on
the existing methodologies.

A software product family, which is developed in the
company, is called a Front Arena system and it includes
functionality for order management and deal capture for
instruments traded on electronic exchanges i.e., markets.
Market access is based on a client-server architecture. The
clients for market access include the Front Arena
applications, while the market servers, called an Arena
Market Servers (AMS) provide services such as supplying
market trading information, entering or deleting orders and
reporting trades for a market.

Clients and AMS components communicate using an
internal financial message protocol for transaction handling,
called Transaction Network Protocol (TNP) and built on top
of TCP/IP. The TNP protocol uses its own messages, which
contain TNP message records with fields [21]. TNP
messages represent financial transactions like “enter order”,
“modify trade”, etc. The TNP messages have a hierarchical
structure. One example of the TNP message, used for
modifying order transaction, is presented on the Figure 2.

Figure 2 The TNP structure

Each field within one TNPMessage describes some

market or business property, such as: order price, trader,
order type, etc.

B. Market Server Capabilities

Many of the TNP client components query the Market
Server Capability (MSC), information about the trading
functionality that one electronic exchange (market) offers.
Client applications need such information in order to

permit/disable the access to the different markets. For
example, one market can allow entering orders and
modifying orders but does not support entering trades. The
other market supports entering trades with the restriction
that the shaping trade transaction is not allowed.

The MSC information is embedded and hard-coded into
each client application. New client application releases
needed to be done before the customers can start using the
new AMS. Depending on the current release plans of the
client applications this can take a long time. Having to wait
for the client application releases may delay the production
start of the AMS. Two main problems with the described
MSC information are:

• Hard-coded MSC definition. Consequently the client
applications have to be recompiled, released to
customers and upgraded on the customer’s site in
order to enable the support for the newly introduced
MSC. Such concept conflicts with the agile
principles “deliver working software frequently” and
“respond to changes quickly” [3].

• Duplication of the MSC definition. It introduced the
risk for data inconsistency.

These problems will be resolved in the future by
introduction of a Dynamic Market Capabilities (DMC), a
new functionality that will be used to retrieve the MSC
definition dynamically, in run-time, instead of having them
hard-coded. Unfortunately, it will take a long time, probably
years, until the DMC solution will be completely
implemented and in use (for all AMS and all client
components). Until then all components have to support the
hard-coded fashion. All new components, which will be
developed during this time, have to support the hard-coded
MSC way also. That is why there was a need to find an
intermediate solution which would remove the duplication
and which would be used under the transition phase. Since
such architecture would not be long lived company
management put some time and resource constraints on the
implementation. This paper shows how we created such
intermediate solution, taking all conditions and constraints
into account.

V. THE MARKET SERVER CAPABILITIES

ARCHITECTURE

A. Process flow

When a new market (AMS) is introduced, the
information about functionality that the new market offers
(which transactions are supported) should be added to each
client, as presented on Figure 3.

312

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Process flow

The MSCs describe market trading transactions (orders,

deals, etc.), the commands that are supported for them
(entering, modifying, etc.) and the attributes and the fields,
which could be accessed on the markets (quantity, broker,
etc.). Hence, specifying the MSC for a new AMS requires a
detailed description. All components, which use the MSC
functionality, must use the same MSC definition.
Unfortunately the same MSCs are defined in several
different files. Different components are developed in
different programming languages so they do not share the
same definition file. Because of historical reasons and the
fact that some client components were developed within
separate teams, even the components developed in the same
programming language do not share the same definition file.
Each client component has its own MSC definition file.
There is a lot of the duplication of information in these files.
Even worse they do not present exactly same data since the
different clients work within different business domains, so
their knowledge about the MSCs is on the different levels.
The described situation arouse from bad communication
between the teams. Without interacting with each other and
without having enough knowledge about the design and the
architecture applied on the different projects, it was easy to
end up with the described MSC architecture.

B. The present architecture analysis

The client components use the MSC definition from the
different sources, developed in different programming
languages (C++, C# and Java), where the majority of data is
duplicated. This situation, with the usage of the overlapping
MSC definitions, is presented on Figure 4.

Figure 4. The present architecture with distributed definitions

The present architecture of the MSC definition is not
centralized (no single definition of the model) and without
control for the consistency. The lack of centralization
enormously increases the risk for data inconsistency since
the consistency depended on the accuracy of the developers
who edits the MSC definition in a source code file. The
development of the MSC definition is a continuous process,
and new MSCs are defined each time when a new AMS is
developed (2-3 times per year) or when a new trading
transaction is introduced (once per month). The current
process flow is:

• A new AMS is developed or a new transaction is
introduced.

• A MSC is added to the MSC definition in each client
component. The same information must be added to
several different files.

• All client components should be recompiled in order
to get the definition of the new MSC.

After the presented files analysis we could state the
following facts about them:

• Similar structure: files are structured in the similar
way, containing a lot of switch/case statements.

• Data duplication: some data are duplicated
• Different business domains: different levels of the

describing aspects are used in the different files.
• Mainly syntax differences: the mainly difference

among the files lies in the syntax not in the data
structure.

C. Dynamic Market Capabilities architecture

We have already done design plans for the new DMC
architecture. In the DMC architecture each AMS will be
responsible to provide, to the client components, information
about the MSC that the AMS supports. The description of
the MSC that the AMS supports will be saved in one XML
file.

313

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the AMS start up, AMS reads the MSC definition
from its XML file and sends them, in run time, to all client
components, which connect to the AMS. In such a way the
client components do not have to be recompiled if something
changes in the MSC definition. When a new AMS is
developed, a new XML file containing MSC definitions for
the AMS is created. On the AMS start up, all client
components connect to the AMS and dynamically retrieve
the MSC definition for that AMS. In the future, even in this
case there will be no need for the recompilation of the client
components.

D. Transition phase

The decision is that all AMS components and all client
components should be upgraded to the DMC architecture.
But this transition is a complicated job. There are over 30
AMS components and more than 5 client components that
are using MSC functionality today. There is different
prioritizing, from the management side, within the
components’ backlogs. We know, right now, that some of
these components will be upgraded to the DMC in one or
two years. This transition project is not marked as a critical
since there is already a working architecture, although not
the best one. As long as there is at least one component,
which has not been upgraded to the new DMC architecture,
the hard-coded MSC solution must still be supported. The
transition will occur gradually and the transition phase will
probably take several years. Under the transition phase some
new components are going to be developed; some new
components are already under the development. To develop
new client components according to the present architecture
will introduce even more duplication. Therefore, an
intermediate architecture, which will eliminate the
duplication, would be introduced. Such a solution should
have a short implementation phase, since it must be ready
before the new components are completely developed. The
solution should be designed so that it eventually leads
towards the new DMC architecture. It would be good if the
new DMC architecture could benefit from it.

VI. INTERMEDIATE SOLUTION

We work according the lean and agile software
development philosophy. One of the key principles of the
lean philosophy is to detect and eliminate wastes [22]. The
intermediate solution should eliminate, from the present
architecture, the three major points of waste.

• Duplication of the MSC information
• Amount of work done during the MSC definition

updates
• Amount of time used for communication among

groups, informing each other about the MSC
definition changes

A. Technical Aspects

The waste elimination adds an important business value,
according to the lean philosophy. Even if the transition of the
existing MSC architecture to the intermediate architecture

does not directly add a business value from the customer’s
perspective, the existing system’s wastes would be
eliminated by the reengineering process. In that way the
delivery of the new solutions, which are dependent on the
MSC architecture, would be accelerated. Hence, we get an
implicit business value, which would be produced by the
intermediate solution.

In order to eliminate the duplication of data we needed a
centralized MSC definition. In order to be able to provide
support for the MSC definition in different programming
languages we needed to generate code in different
programming languages, from the centralized MSC
definition. We need a programming language independent
architecture. Because of the lack of time, we decided to have
an agile approach on brainstorming meetings when we were
searching for the architecture of the intermediate solution.
We did not want to waste a time on investigating all possible
solutions, since the time was more precious for us than
perfection. We suggested and analyzed three different
approaches and chose one among them, which was the most
suitable. Although we did not analyze all possible solutions,
we got a methodology that was good enough. To use a good
enough solution for the current situation, within a short time
frame, suits the agile philosophy.

First we considered a solution, where all client
components would be refactored to reference the same
central definition file. This would require a lot of work. We
did not want to refactor client’s components too often, since
some of them will be refactored soon regarding the DMC
solution.

A generative programming concept [23], using a
parameterized C++ templates, was discussed as the second
solution. Such solution would consist of the generated
classes, representing the TNP objects (TNPMessages and
TNPRecords). The main intention of the generative
programming is to build reusable components. A cost of
building the reusable components should be paid off by
reusing them in many systems. When a goal is to build just
one system and when schedule, to deliver a system, is tight,
the introduction of the generative programming idea cannot
be the best solution. Additionally, the existence of C# MSC
definition file made the usage of the C++ templates
impossible.

Finally we analyzed the Model-Driven Architecture
(MDA) approach. With the MDA approach we mean the
general MDA concept: “A MDA defines an approach to
modeling that separates the specification of system
functionality from the implementation on a specific
technology platform”. The common denominator for all
MDA approaches is that there is always a model (or models),
as the central architectural input point, from which different
artifacts are generated and developed. Transformations,
mapping rules and code generators are called in common
“MDA tools” [24].

We believed that the Model-Driven Architecture (MDA)
approach would be the most suitable solution for the
intermediate architecture. The main idea was to have just one
source, a union of all present MSC definition that is

314

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

programming language independent. From such a source,
which would be a central MSC definition registry, the
present MSC definition source files are generated. All
present MSC definition files have a similar structure. The
main difference is the programming languages syntax.
Because of that the code generation should not be too
complicated. The way how the client components work
would not be changed, the MSC definition would still be
hard coded. Such a solution did not require the refactoring of
the client components. But the way how the developers work
would be improved. They will work just with the central
MSC definition registry and add/edit the MSC definition
only there. Then the MSC definition files, for each client
component, will be automatically generated from the central
registry. The client components will be automatically
recompiled. In that way all three mentioned wastes will be
eliminated.

Another key lean principle is to focus on long-term
results, which is the DMC architecture in our case. That is
why we must point out that one important part of the DMC
architecture is a MSC XML description file. If the MDA
approach is introduced for the MSC definition, the central
MSC definition registry would be easily divided into several
files (one per AMS), later on. It is clear that the DMC
architecture would benefit from having such a central MSC
registry. The creation of one central MSC definition registry,
with all MSC definitions for all markets, would be a good
step towards the future DMC architecture introduction.

B. Organizational Maturity and Limitations

Our company management is usually very careful with
introducing concepts not already used in the company, since
it often requires long implementation and learning time.
Additionally, an investment in an intermediate solution is not
always a very productive investment. On the other side, the
management was aware that the intermediate architecture
would increase productivity directly and make some new
solutions possible right away. That is why the management
listened carefully to our needs and made some general
decisions. The intermediate architecture can be introduced,
but the time-frame could be only several weeks. No new
tools or licenses should be bought. Only tools that are
already used within the company or some new, open-source
tools, can be used. No investment in change management.
Time for teaching/learning cannot be invested for the
intermediate solution. The concepts, which our developers
are already familiar with, should be used.

Considering these management decisions, we decided to
explore if the organization was mature enough to introduce
the MDA. Although the MDA approach has been around for
a long time, for many companies it is still a new approach.
That is why we performed a small survey, with questions
presented in Figure 5.

Figure 5. Survey Questions

We asked 60 developers, working in the 6 different
teams. 4 teams consisted of C++ developers, 1 team
consisted of Java developers and 1 team contained C#
developers. The survey showed that the MDA approach
hasn't been used within the company and that a majority
(80%) of the developers has never used this approach.
Consequently the UML modeling is not used in general.
Some teams were using MagicDraw, but just as a
documentation tool for the state-machines drawing. The
architects, who designed the state machines, answered that it
was faster to develop own generators, using the state
diagrams created in the MagicDraw than to investigate how
to use the UML tools and profiles and code generators.

Additionally, there was a previous attempt of introducing
the MDD in the enterprise architecture, which unfortunately
failed. The former MDD project consisted of a new modeling
framework, based on the Eclipse framework, particularly
designed for the drawing Front Arena state-machines. The
project has never been finished because it took a long time
without showing the results. Unfortunately it happened at a
bad point of time, when the financial market was extremely
poor and when the product delivery to the customer was a
matter of the utmost importance. Consequently the company
lost time and money by investing in this MDD framework.
The main problem was not the MDD concept by itself, but it
was difficult to see an explicit business value in it. A time-
consuming and cost-effective MDD introduction was in
contradiction with a fast and frequent delivery. Because of
all mentioned reasons the majority of the developers, as well
as the management, did not believe in a new attempt of
working with a MDD idea. The introduction of the full scale
MDA usually implies: a long starting curve, which we could
not afford having a short time-frame and the usage of the
MDA tools, which could not be used since developers did
not have enough knowledge about them and there was no
possibility to invest in learning. In the following section it
will be described how we managed to overcome these
problems and limitations.

VII. AGILE MDD APPROACH

Our goal was to find an intermediate solution with a
MDA philosophy, which satisfied the previously mentioned
requirements and fulfills the constraints. In order to achieve
this goal, we started from the basics of the MDA concept
(models, transformations and code generators), and
combined them with the following lean and agile principles
[3]:

315

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• "Think big, act small": Think about the DMC as a
final architecture but act stepwise, introduce the
intermediate solution first.

• “Refactoring”: A change made to the structure of
software to make it easier to understand and cheaper
to modify without changing its existing behavior
[25]”

• "Simplicity is essential": We have to find an
applicable solution that is simple, keeping in mind
that simple does not have to mean simplistic [17].

• “Individuals and interactions over processes and
tools”: It is important is to find a solution, which fits
the developers, as well as to establish such
development process, which will be effective in our
company.

We used the agile and lean ideas both in the decision
making and in the development process. In that way we got
our own Agile MDD approach, an applicable intermediate
solution.

It is important to emphasize that we had an existing
architecture, which should be transformed to the MDD
solution. The process of system transformation is called a
system reengineering. A system reengineering phenomena
has been present in the software development as long as the
software systems exist. With the high dynamic of business
requirement and technology changes, the systems have to be
modernized constantly. System modernization is a way of
system adaptation to the changes. Architecture-Driven
Modernization (ADM) is an OMG standard for the system
modernization [26] and can be briefly described by using the
ADM horseshoe model, presented on the Figure 6.

Figure 6. ADM horseshoe model. Adapted from [26].

According to the ADM standard, three areas could be

distinguished during the reengineering process; technical,
architectural and business area. Depending on the extent of
areas that are affected during the reengineering process, the
ADM journey can be longer or shorter. Consequently the
impact of system changes can be greater or lesser. The
duration of the reengineering process directly affects time-to-

market. This fact was important to bear in mind when
making the architectural decision within the chosen MDD
solution, as it is described in the following sections.

B. Agile modeling

We needed to model the MSC definition registry. This
modeling can be done on the different modeling levels and in
the different modeling languages. The UML is one the most
frequently used modeling language and it became a modeling
notations standard, according to the OMG’s
recommendations. The UML has been developed and
evolved to cover many different needs, becoming, at the
same time, huge and unwieldy. Although the UML profiles
have been introduced in order to help the developers to
exclude unneeded UML parts, there are still many cases
where the adoption of the MDD has been slowed because of
the UML’s complexity [15]. Additionally the UML lacks
sufficient precision to enable complete code generation [27].
The time frame for our project was short and the developers
were without enough UML experience, since the UML is not
used in general. According to the limitations, there was no
time for learning. Hence, the UML modeling could not be
accepted as a modeling solution in our project. Since the
XML format is a standard format and the developers are
familiar with it, we decided to use a XML description as a
"natural language" for the developers. XML was good
enough. We had to balance between the familiarity of the
XML and abstraction benefits of UML but also a complexity
of the related frameworks, keeping the project within the
time-frame. Also the XML usage would imply the shorter
journey for the reengineering process, compared to the long
journey required for the reengineering to the UML model.

The MDA defines different model categories, like a
Platform Independent Model (PIM) and a Platform Specific
Model (PSM) [24]. As discussed before, although the multi-
model concept provides a good separation of concerns, at the
same time it could introduce an unnecessary waste in the
system, which is in contradiction with a lean architecture.
Hence, the multi model concept should be used only if there
is a really need for that and when a separation of concerns is
required in order to be able to understand and work with a
system. The PIM and PSM concept becomes an important
issue if there are plenty of different platforms with
specifications that differ very much. In our case the different
PSMs did not differ too much from each other and, at the
same time, did not differ too much from the PIM either. In
order to keep it simple we made a pragmatic solution: to
have just one model, which contained all info for all
programming languages. The code generators had the
responsibility for creating the right MSC information to the
corresponding programming language.

316

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. XML Model

We have created two models. One was a logical model

that describes the entities in the MSC definition registry.
Another was the MSC definition registry by itself, expressed
in a XML dialect, which is presented on Figure 7.
Consequently the logical model was expressed as a XSD
schema and was used to validate the entries in the registry.

C. Code generators

We needed code generators for generating the different
types of files: C++, C#, Java. We decided to use XSL
transformations as the code generators. They satisfied our
needs and could be widely used, since the XSL is a common
standard for all developers, who program in the different
programming languages. In that way a "collective code
ownership" [3] is achieved for the code generators. The
maintainability is also better if all developers can
maintain/develop the transformations.

VIII. THE DEVELOPMENT PROCESS

Our company has introduced the agile software
development several years ago. Scrum is used as a process
tool. Each team runs its own sprints, typically lasting for 4-5
weeks. The sprints are synchronized, meaning that the start
and the end sprint date is the same for all sprints within the
company. Such synchronization makes the releases and the

delivery process of the dependent components easier.
Although we use Scrum, all teams do not strictly follow all
Scrum recommendations, it is more up to the team how the
Scrum is performed, dependent on the currently running
project.

The intermediate solution, as an internal project, was
supposed to be done in parallel with other running projects.
In order to fit in the company’s culture, we decided to run
our project according to Scrum, based on the sprints. In
general, working in Scrum sprints suited our project well.
When we worked on the common data, which were present
in several MSC definition files, it was easy to plan the
coming sprints, since we knew the next required steps. For
example, we knew that we should extract all capabilities per
market. Scrum suited well for the major parts of the project
as we were planning one sprint at time.

 On the end of project, when only odd data, specific for a
certain market or a certain component, was left it was
difficult to plan the sprints. When we had many small tasks,
which were not very related to each other and which were
not easy to separate and divide into the sprint tasks, Kanban
[11] was more suitable. Therefore, when we were
approaching the end of the project, we switched our
development process to a Kanban. In contrast to Scrum,
tasks in Kanban are performed one after the other, without
collecting them into sprints. One of the main Kanban
principles is to limit “work in progress” by defining the
maximum of tasks, which can be performed in parallel. If
this number is exceeded, no new tasks are taken from the
backlog until there is an available capacity for a new task.
Changes to the product backlog take effect as soon as
capacity becomes available. A typical Kanban board is
presented on the Figure 8 where both short and long running
tasks can be executed in parallel.

 Figure 8. Our Knaban process. Adapted from [11].

Since we could not appreciate time for the tasks that were
left, we just put them on the board and took them as soon as
the previous task was finished.

A. Team Selection

A good team communication is one of the necessary
prerequisite for a successful development [2]. The absence,
irregularity and incompleteness in communication among the
company’s teams caused the duplication and inconsistency in
the present MSC architecture. According to the agile

317

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

manifesto people and interactions should be over tool and
processes [3]. As the reengineering to the MDD solution was
a new challenge for the developers in our company, it was
important to have a “self-selected” team [3], with the
developers that were interested and willing to work on it.
Since the main part of our project consisted of working with
the legacy code, we wanted to have experts in the team, with
deep domain knowledge about all existent MSC files.
Applying organizational patterns “architects also
implements” [7], three architects from different teams where
chosen, one for each MSC product owner team. In that way
we got a good expertise for different business domains, for
all types of the MSC files. On the other side, the chosen
experts worked together in a pair-development sessions,
supporting the concept of “generalizing specialists”.
Generalizing specialists are often referred to as craftspeople,
multi-disciplinary developers, cross-functional developers
and deep generalist [28]. It was important that the experts
working on the project could see the whole impact of the
changes, not only within their expertise domain.

Another important task, related to the team
communication, was informing all teams, which were the
product owners of the MSC files, about this project. We
wanted to avoid making the same mistake as it was done
before. Therefore, it became very important with sprint
demos, combined with the result presentation, for all affected
teams. The two important purposes of demos were:

• Spread the knowledge about the done and to-be done
project tasks

• Show that the MDD project can be rapidly
developed.

Additionally, the knowledge spread was even more
effective with the chosen experts, belonging to the different
teams, since each expert talked to its colleagues about the
ongoing project.

B. Reverse engineering of the Legacy code

We needed to do a one-time reverse engineering in order
to convert a large amount of the existing MSC data, legacy
code, to the new MSC XML format. We developed our own
tool for this purposes since no open-source tool was
completely suitable. The main question was: when to start
with the reverse engineering? At the end or at the beginning
of the project? Very soon we realized that we could not
design our model in detail without the data from the existing
MSC definitions. It was data stored in the MSC definition,
which lead the reengineering process. This data became a
kind of business requirement in our project. Consequently
the requirements were not developed; they were discovered
during the reversing process.

We decided to adopt a spike principle. The spike is a full
cross-section of the modeling and architecture aspects of the
project for a specific scenario. The aim of the spike approach
is to develop the whole chain for only one, chosen user
scenario. The first chosen scenario is a simple one, and
during the incremental development process every next
scenario is a more complex one [29]. We started with the

round-tripping (the whole chain: model – code generation –
reversing back to the model) for simple scenarios, which we
expanded, in each sprint, to the more complex scenarios. In
that way we could develop the reverse engineering tool, the
code generators and to design the model in parallel. The
results of the reverse engineering helped us with the
specification of the model objects for both the logical model
and for the central MCS registry. Working in that way, we
allowed “the business requirements coming late in the
project”. In our case, the business requirements were mainly
the results (predictable and unpredictable) from the reversing
process, which steered the reengineering project. Since we
could do the round-tripping very early in the project, it was a
way in which we could start testing our MDD approach
early, under the development.

C. Round tripping with the TDD approach

According to the lean principles, we wanted to specify
our model just according to the existing data, without
unnecessary objects or unnecessary properties, which risk
never to be used. In order to be able to do that, we wanted to
do the reversing first and specify the logical model and fill
the data in the MSC registry upon these results. We used a
TDD approach and started with writing unit tests first. For
this purpose we used test framework developed and already
used in the company. This framework simulates the
execution of the TNP messages sent among server and client
components. Because of that the test scenarios that we wrote
can be reused later on, for testing AMS components, when
the DMC is introduced.

According to the TDD principles we wrote the tests first,
run them on “empty” code and developed the code, until the
tests passed. Since we had to test several parts of our MDD
approach (the logical model, the central MSC registry, the
code generators and the reverse engineering tool), we
established our own TDD process for the MDD testing. The
main idea was to use the same tests, which reflects the parts
of one spike, both to develop the reverse engineering tool
and the code generators. Our TDD process is presented on
the Figure 9 and will be described now through one real
spike. The chosen spike is called “Get all markets” and the
goal is to get all existing markets, described in the present
MSC files. We started with writing a test, which consisted of
sending a TNP message “TNPGetAllMarkets”. The next step
was to develop the reverse engineering tool for this scenario.
The legacy code was used as input data. We developed the
corresponding methods in the reversing tool, which extracted
markets from the existing data, producing the results in the
XML format, and inserted them in our MSC registry. It was
a list of all markets. Then we redesigned the model and
registry entities and refactored the reversing tool according
to the model changes. This process flow is presented with
semi-dashed arrows on the Figure 9.

318

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 9. Our TDD process

The TDD logic for the code generators was the
following. What we had, so far, was the reversing tool
working for the chosen scenario, and some data in the central
MSC registry. We used the same test against the code
generators, trying to get all markets from the MSC registry.
We developed the code generators using the mentioned test.
This process is marked with dashed arrows on the Figure 9.
The final goal was to get the same code lines in the generated
code files, as we had in the corresponding legacy code files,
concerning the data affected by the chosen spike. In order to
verify this, we run the whole round-trip but this time we used
the generated code files as the input for the reverse
engineering tool. Eventually we compared the newly
generated files with the previous ones and the legacy code
files and if there were some differences we adjusted the
reversing tool and the code generators accordingly. This
process is marked with full arrows on the Figure 9. After this
sprint we had a list of all markets in the MSC registry, the
code generators methods, which generate files containing
such a list, and the reversing tool methods for extracting such
a list from the generated files. In the following sprints we
used more advanced scenarios, such as, for example, “Get all
markets where is Order supported with commands: Enter,
Modify”.

At the end of each sprint we run the whole round
tripping, starting from the legacy code. In that way we could
confirm that both the newly implemented code worked, as
well as that the previously implemented code was not
broken. As the final verification process we confirmed that
all client components could be compiled without errors. We
did the usual integration tests also, in order to confirm that
the communication among the client components and the
AMS components has not been changed. When we
completely finished with the reversing, we disabled this
functionality. We needed the reversing only for extracting
the existing data. It has not been possible do the reversing
nor the round tripping since the project was released.

D. Test-first Tests

Two reasons were crucial for choosing the TDD
approach in the reengineering project. As first, we believed
that the TDD approach could accelerate the development.
The second reason was the fact that we did not have enough
knowledge about the MSC files content so we did not have a
clear idea how to start the implementation. Therefore,
writing the tests first was a good start. We usually started
with file investigation and wrote the test-first tests as soon
as we understood the existing code. It was an excellent start
to begin the implementation of one spike. We applied often
the “learn it” TDD pattern [30] in order to examine the files
and write the test-first tests accordingly.

The introduction of the TDD approach was important
because of the following reasons:

• By developing and testing in parallel we shortened
the implementation phase.

• We did not produce any wastes in the logical model
(unnecessary info). We designed the model just
according to the data that we got from the reverse
engineering. We achieved to avoid the usual
modeling mistake when a large amount of metadata
is put in the model.

• The reengineering process was accelerated since the
reverse and forward engineering were performed
simultaneously.

• We showed how the TDD can be an efficient way to
work with, since this development method has not
been yet widely spread within the company. When it
has been introduced once, it would be easier to
introduce the TDD thinking in other projects too.

• We learned a lot about the different TDD patterns.
• We can reuse some of these tests later on, for the

DMC architecture testing.
It is important to say that we had to reverse the legacy

code from the code, which was written in the different
programming languages. We had to develop separate
methods for the reversing from C++, Java and C#.
Fortunately, the respective legacy code files had a similar
structure; the syntax was the main difference. So we could
develop the corresponding reversing methods based on the
common objects.

E. Continuous Integration with Automation

The continuous integration is a software development
practice where the software is integrated frequently, having
the integrations verified by automatic builds to detect
integration errors [31]. TDD and Continuous Integration (CI)
are agile practices, which complete each other. TDD
produces code that is well designed and relatively easy to
integrate with other code. The incremental addition of small
parts to the system, together with the automatic builds,
provides the continual system development without
extensive integration work [32]. The general continuous
integration concept was already introduced in the company.
All client and server components, which use the MSC

319

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

definition, have the automatic builds enabled. When the code
changes in the code repository, which is Clear Case in our
case, the automatic builds are started by a trigger scripts. The
trigger scripts, integrated in the Clear Case and specially
developed for this purposes, are responsible to start the
automatic builds on the build servers. If the builds fail, the
responsible product owners are immediately notified by
email.

On the end of the project, we have automated some of the
processes reducing the amount of work and time spent on
working with the MSC definition architecture. We use
ClearCase (CC) as a configuration management tool and we
have a build server for automatic build processes. Since all
client MSC definition files were in CC, we decided to keep
even the generated files in the CC repository, at least under
some period. This decision was made by the management.

When the MSC definition registry file is updated and
checked into CC, the following steps are executed
automatically:

• The MSC definition files with hard-coded data,
belonging to the client components, are checked out
from CC.

• The code generators are invoked by a CC trigger
script. All MSC definition files are generated.

• All generated files are checked into CC, if the
generation did not fail. Otherwise the “undo
checkout” operation is done.

• All client components, affected by the mentioned
code generation, are recompiled. If some
compilation fails, the error report is immediately sent
to the component owners.

Continuous integration verified that all parts of the MDD
solution are synchronized. To clarify, previously existing
tests are run against the generated files, as they were run
against the hard-coded files before. In that way we had an
automated check that the legacy code was not broken. New
test suit, containing tests used for the code generators
development, were also added to the automated test
execution. The corresponding tests were not run against the
reverse engineering tool, since this functionality was
disabled on the end of the project.

F. Light-weight Documentation

Although the documentation generation was not among
the project requirements, the MDD solution enabled a
possibility to generate documentation about the MSC for the
different markets in a light way. The MSC registry,
expressed in the XML format, supported a possibility for
writing comment lines. In that way we could easily develop a
generator that generates a HTML files presenting different
MSC aspects. For example, beside basic tables describing the
supported capabilities on the separate markets, it was
interesting to create lists for each capability, presenting all
markets where the capability is supported. The latter
information was very useful for the product management
team, to get quick information about the market capabilities.
The user-friendly presentation was highly appreciated, since

it shortened time when searching for information. In the
described way we achieved to get light-weight
documentation, which is easy to update and does not cost
much to maintain. Thanks to the XML format of the MSC
registry, the documentation generators development was a
trivial job, lasting for just one developer day. Such way of
documenting MSC definitions fitted well the agile
philosophy.

G. Results

The project was completed within the 4 sprints, lasting
for 4 weeks each, and one month of Kanban process. At the
early stage of the project, without enough experience, we
could not plan the first sprint in the most efficient way. It
was during the first sprint, which took more than the one
month, when we made the decision to do the reverse and the
forward engineering in parallel. After that, the development
was accelerated as well as the sprint’s velocities. Velocity of
the first sprint was only 10 story points. Every next sprint
was executed with a velocity of 15 to 20 story points. We
planned the coming sprints according to the results and
experience from the previous sprints. During the Kanban
process, the development speed decreased again since we
were stacked with a lot of small problems which were
supposed to be solved separately. On the other side, the fact
that we were approaching the end of the project encouraged
us with completing the tasks. Although we could have
completed the project several weeks earlier, if we planned
the first sprint better, the management was satisfied with the
performed results. The extenuating circumstance was the fact
that the intermediate solution was an internal project, without
fixed released date to the customer.

IX. AGILE AND LEAN PRACTICES IN MDD

The agile and lean methods are light in contrast to the
MDD that can become complex. Through the application of
the agile and lean principles, the MDD becomes more
pragmatic and more useful. Some of the agile and lean
principles, used in our Agile MDD approach, are explained
below.

A. Architectural aspects

“Eliminating waste” Eliminating the duplication of
information was also according to the XP’s principle “Never
duplicate your code” [33]. This principle is the heart of the
MDD – to have one central input point, model (models) from
which everything else is generated.

“Think big, act small” We were thinking on the DMC as
a final architecture but acted in a stepwise way, via an
intermediate solution.

“Simplicity is essential.” We have simplified the full
scale MDA. Instead of the UML modeling language we used
the XML. The PIM and PSMs were merged, avoiding the
maintenance of several models and transformations among
them. On the other side, by merging PIM and PSMs in one
model we lost a good separation of concerns but it was a
price worth paying.

320

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Organizational aspects

“Self-organizing teams” contributed to the successful
MDD introduction, since the evolved people were indeed
interested to complete the project.

“Empower the team” Roles are turned – the managers are
taught how to listen to the developers [22]. Despite the fact
that the management puts non-technical constraints on our
project, they allowed the developers to make decisions,
regarding the intermediate solution, on their own. It
contributed to faster development, since the developers did
not have to wait for feedback from the management, for each
decision.

“We became a constantly learning organization, through
relentless reflection and continuous improvement.” Since the
organization was without enough previous knowledge within
the MDD area, we learned a lot about applying this concept
in practice.

C. Development process aspects

“Deliver as fast as possible”. The implementation phase
of our Agile MDD approach was short.

“Spike principle” applied on the round-tripping, which
includes both the reverse and the forward engineering, made
the introduction of the TDD philosophy spontaneous and
natural.

“Forward and reverse engineering attain the same
importance.” Since the model was designed upon the results
of the legacy code reversing, this process, although being
only a one time process, was equally important as the
forward engineering.

“Constant feedback” practice was particularly important
in the reengineering process since we did not have a clear
idea, from the beginning, how the data reversing should be
performed.

“Welcome changing requirements, even late in
development.” The industrial experience report presented an
iterative development, which allowed late model changes.
We worked in sprints, according to the Spike principle,
which implied the frequent model changes, in each sprint.

 “Combine Scrum and Kanban process tools” as it is
suitable. When the projects tasks can be strictly divided and
planed, than the Scrum is more appropriate. But for some
long running task, such was a reengineering process in our
case, the Kanban was more appropriate since it was difficult
to plan sprints in advance.

D. Benefits of the Agile MDD approach

We got a lot of benefits by introducing the Agile MDD
approach.
1. Agile principles can make the starting curve for the

MDD shorter. Through the application of the agile
principles the long learning curve and introduction gap
of MDD methods and tools could be avoided. Instead of
spending a long time building a big thing we had a small
team spending a little time building a small thing but we
integrated regularly to see the whole system [11].

2. We introduced the TDD approach, showing the
effectiveness of such an approach. TDD approach
contributed to the accelerated reengineering to the MDD
solution since the reverse and forward engineering were
performed in parallel.

3. “Base your management decisions on a long-term
philosophy, even at the expense of short-term financial
goals.” We have prepared, in advance, for the
introduction of the DMC architecture: the model
specification and the reverse engineering job are already
done. As well as the test cases, some of them are going
to be reused.

4. The Agile MDD approach could be used instead of the
full scale MDA. When all MDA recommendations
could not be applied, we adjusted them to our system
and organization, with a help of Agile and Lean
principles.

5. Agile modeling helped against building gargantuan
models [15] and specifying potentially unused data.

X. RELATED WORK

The idea of combining the agile ideas with the MDD
concept has been present in both research and industry world
for some time. But as a relatively new idea it is still without
enough empirical results, which should lead to the right
direction where and how this idea should be evolved even
more. Many authors agree with the conclusion that the agile
principles can be combined with the MDD, making, usually
long and time-consuming process of modeling, being
iterative and incremental. [34] explored this idea even more,
by applying a set of agile principles on UML modeling, such
as pair-modeling, test-driven development and regression
testing. In [35] a comprehensive framework, showing the
various ways to take advantage of the complementarity
between the agile methods and MDD, is proposed.

Although it could be assumed that the agile methods
should be used for the development of new software systems,
they could be used for the legacy code evolution as well as
discussed in [36]. By applying the agile methodology on the
reverse engineering process, some authors have already
made proposals for an incremental agile reverse engineering
process. [37] and [38] describe a framework support for an
agile reverse engineering process. [39] proposes an iterative
reengineering approach that uses reverse engineering
patterns for the reverse engineering and test-driven
development for the forward engineering, where the reverse
engineering and forward engineering activities are done
independently, one after the other.

To our best knowledge there is no author who explores a
simultaneous application of TDD both on the reverse
engineering and forward engineering process when the
legacy system is reengineered to the MDD. Additionally,
there is no author who discusses the whole agile
development process for the system’s evolution to the MDD
solution.

321

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

XI. CONCLUSION AND FUTURE WORK

This industrial report presented an evolution process of
an existing system - the architecture of the MSC definition,
to a Model-Driven Development solution. The main point of
this paper was to show how agile and lean principles helped
us in a decision making process during the intermediate
solution production, within a short time frame. In that way
we coped successfully both with the management constraints
as well as with the complexity and time-consuming
introduction of the MDD concept.

This industrial report showed that the agile philosophy
and the MDD concept can be successfully combined,
resulting in an accelerated development process. Agile
principles relax the OMG’s recommendations reducing the
complexity from the MDD concept, making the MDD easier
to adopt in organizations. As this paper showed, an agile
MDD could be a key success factor for organizations, which
are not ready for the introduction of the full-scale MDA.
Consequently we could expand Ambler’s “agile modeling”
philosophy on the whole MDD, including the reengineering
process, meaning that it should be situational, adjusted to the
running project, organizational structure and development
process. Additionally, a development process based on the
TDD logic can contribute to improved development
efficiency and decrease the total time spent on the
development and testing.

By being aware of the “Think big act small”-principle,
we got a simple and applicable solution, which could easily
grow to a more complex one. With a help of agile and lean
ideas we modernized the MSC architecture. Such evolution
made this architecture more flexible and more responsive to
the future changes, regarding both the technical and the
business aspects. “It is not the strongest of the species that
survive, nor the most intelligent, but the ones most
responsive to change [40].”

REFERENCES

[1] Mina Boström Nakicenovic: An Agile Model-Driven
Development Approach – A case study in a finance
organization. Proceedings of ICSEA 2011.

[2] M. Pikkarainen, J. Haikara, o. Salo, P. Abrahamsson, J. Still:
The Impact of Agile Practices on Communication in Software
Development. Journal Empirical Software Engineering, Vol.
13, Issue 3, pp 303-337, June 2008.

[3] AgileManifesto, www.agilemanifesto.org. Accessed in May
2012.

[4] Dave West, Tom Grant: Agile Development – Mainstream
Adoption Has Changed Agility, Forrester Research, 2010.

[5] Hans Wegener: Agility in Model Driven Software
Development? Implication for Organization, Process and
Architecture, 2002.

[6] T. Dybå, T. Dingsoyr, Empirical Studies of Agile Software
Development: A systematic review, Inform. Softw. Technol.
(2008), doi:10.1016/j.infsof.2008.01.006

[7] James O. Coplien, Neil B. Harrison: Organizational Patterns
of Agile Software Development, Prentice Hall, 2005.

[8] Paloma Caceras, Francisco Diaz, Esperanza Marcos:
Integrating an Agile Process in a Model Driven Architecture.

http://www.sciweavers.org/publications/integrating-agile-
process-model-driven-architecture Accessed in May 2012.

[9] Marko Boger, Toby Baier, Frank Wienberg, Winfried
Lamersdorf: Extreme Modeling, 2000. http://vsis-
www.informatik.uni-
hamburg.de/getDoc.php/publications/70/XM.pdf Accessed in
May 2012.

[10] Pritha Guha, Kinjal Shah, Shiv Shankar Prasad Shukla,
Shweta Singh: Incorporating Agile With MDA Case Study:
Online Polling System. International Journal of Software
Engineering & Applications (IJSEA), Vol.2, No.4, October
2011.

[11] Henrik Kniberg: Kanban Vs Scrum.
http://www.infoq.com/minibooks/kanban-scrum-minibook
Accessed in May 2012.

[12] Oliver Sims: Enterprise MDA or How Enterprise Systems
Will Be Built. MDA Journal, September 2004.

[13] Arie van Derusen, Eelo Visser and Jos Warmer: Model
Driven Software Evolution: A Research Agenda. CMSR 2007
Workshop on Model-Driven Software Evolution (MoDSE)
Amsterdam 2007.

[14] Nourchene Elleuch, Adel Khalfallah and Samir Ben Ahmed:
Software Architecture in Model Driven Architecture, IEEE,
pp 219-223, 2007.

[15] Hailpern B, Tarr P: Model-driven Development: The good,
the bad and the ugly. IBM Systems Journal, Vol.45, No.3,
2006.

[16] I. Lazar, B. Parv, S. Motogna, I-G Czibula, C-L Lazar: An
Agile MDA Approach For Executable UML Structured
Activities

[17] James O. Coplien, Gertrud Bjornvig: Lean Architecture for
Agile Software Development, Wiley 2010.

[18] Scott W. Ambler: Agile Model Driven Development Is Good
Enough. IEEE Software 2003.

[19] Scott W. Ambler: Agile Model Driven Development,

http://www.xootic.nl/magazine/feb-2007/ambler.pdf Accessed in
May 2012.

[20] SunGard, www.sungard.com. Accessed in May 2012.

[21] TNP SDK documentation: SunGard Front Arena

[22] Mary Poppendieck, Tom Poppendieck: Lean Software
Development, An Agile toolkit. Addison Wesley, 2005.

[23] Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative
Programming, Addison Wesley 2000.

[24] MDA, www.omg.org/mda. Accessed in May 2012.

[25] Martin Fowler: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[26] Vitaly Khusidman, William Ulrich: Architecture-Driven
Modernization: Transforming the Enterprise. www.omg.org
Accessed in May 2012.

[27] Thomas O. Meservy, Kurt D. Fenstermacher: Transforming
Software Development: An MDA Road Map. IEEE Software,
September 2005.

[28] S. W. Ambler, Generalizing Specialist: Improving Your IT
Carrer Skills (2012),
http://www.agilemodeling.com/essays/generalizingSpecialists
.htm. Accessed in May 2012.

[29] Ray Carroll, Claire Fahy, Elyes Lehtihet, Sven van der Meer,
Nektarios Georgalas, David Cleary: Applying the P2P
paradigm to management of large-scale distributed networks
using Model Driven Approach, Network Operations and
Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP Volume, Issue , 3-7 April 2006 Page(s):1 – 14.

[30] Kent Beck: Test-Driven Development By Example, Addison
Wesley, 2003.

322

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] Martin Fowler: Continuous integration,
http://martinfowler.com/articles/continuousIntegration.html
Accessed April 2012.

[32] Michael Karlesky, Greg Williams, William Bereza, Matt
Fletcher: Mocking the Embedded World: Test-Driven
Development, Continuous Integration and Design Patterns.
Embeded System Conference Silicon Valley, April 2007.

[33] Ron Jeffries, Ann Anderson, Chet Hendrickson:
ExtremeProgramming. Addison Wesley, 2001.

[34] Yuefeng Zhang, Shailesh Patel: Agile Model Driven
Development In Practice. IEEE Software 2010.

[35] Vincent Mahe, Benoit Combemale, Juan Cadavid: Crossing
Model Driven Engineering and Agility – Preliminary
Thoughts on Benefits and Challenges, 2010. ECMFA 2010.

[36] Dave Thomas: Agile Evolution – Towards The Continuous
Improvement of Legacy Software. Journal of Object
Technology, vol. 5, no.7, September-October 2006, pp.19-26

[37] Maria Istela Cagnin, Jose Carlos Maldonado, Fernao Stella
Germano, Paulo Cesar Masiero, Alessandra Chan, Rosangela
DelossoPenteado: An Agile Reverse Engineering Process
based on a Framework

[38] Maria Istela Cagnin, Jose Carlos Maldonado, Fernao Stella
Germano, Rosangela DelossoPenteado: PARFAIT: Towards a
Framework-based Agile Reengineering Process

[39] Vinicius Durelli, Rosangela Penteado, Simone de Sousa
Borges, Matheus Viana: An iterative reengineering process
applying Test-Driven Development and Reverse Engineering
Patterns, INFOCOMP – Special Edition, p. 01–08, fev. 2010

[40] Charles Darwin: The Origin of the Species, 1859.

323

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Factors Leading to the Success and Sustainability of Software Process

Improvement Efforts

Natalja Nikitina, Mira Kajko-Mattsson

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

nikitina@kth.se, mekm2@kth.se

Abstract—Although software process improvement (SPI)

may bring immediate positive results, this does not imply

that the results will sustain in the long run. In order to

succeed with continuous process improvement and sustain its

results, organizations need to be aware of what makes their

SPI efforts successful or unsuccessful. This paper presents

thirty three factors that primarily contribute to the success

and sustainability of SPI efforts. The factors are organized

into three categories: (1) organizational factors related to the

organizational structure, politics and culture, (2)

implementation factors related to the planning, preparation,

execution and management of the SPI projects and (3) social

factors dealing with human behavior and reactions in the

SPI context.

Keywords- SPI; success factors; sustainability factors;

attributes; SPI status; lasting results

I. INTRODUCTION

Many software companies today invest time and
resources in Software Process Improvements (SPI) in hope
of increasing the effectiveness of their software processes.
Despite this, not much evidence has been provided on the
sustainability of the SPI results and gains [1]. Most of the
reports published so far mainly give an account of the
short-term gains instead. Furthermore, few authors have
stated that the money and effort invested in SPI do not
always lead to successful and long-lasting SPI results [2].

Even if SPI efforts show immediate gains, it is not a
guarantee that the gains will be long lasting and
sustainable [3]. Processes undergoing improvement may
demonstrate temporary gains as a result of initial
organizational enthusiasm, eagerness and/or desire to do
SPI. These gains, however, may not survive in the long
run. The organizations may quickly reverse to the previous
software process (pre-SPI), and thereby, make the SPI
efforts a waste of time and resources. The reasons for
failing with SPI might be many, such as, for instance, lack
of long-term management support, weakening provision of
SPI resources, ill-alignment of SPI with the business goal.

To succeed with long-term SPI, organizations should
continuously plan, monitor and control their SPI efforts
and progress. They should continuously identify the
reasons contributing to the decay or success of SPI and
take appropriate measures. In this way, they will become
more conscious of their SPI efforts and their opportunities
and limitations which, in turn, will make them more aware
of the factors contributing to the long-term success or
failure of SPI.

Even though research on SPI is not new and a large
number of studies have been dedicated to process
improvement, there is no combined expertise on what

factors contribute to the long-term SPI success. A large
number of empirical and theoretical studies list factors
contributing to SPI success [2], [4-17]. None of them,
however, focus on the long-term sustainability of the SPI
efforts. In addition, some factors contributing to success
and sustainability of SPI effort can be extracted from the
case studies on SPI implementation [3], [18-30]. The
studies either suggest different ways of improving
processes, or they report on their experiences and lessons
learnt or they discuss the incorporation of the process
improvement activities into software development
processes. To the authors' best knowledge, there is no
study providing an exhaustive list of factors aiding
software organizations in sustaining their SPI results.

In this paper, we elicit thirty three factors that primarily
contribute to the success and sustainability of SPI efforts.
Our goal is to create a basis for identifying factors that
contribute to successful and sustainable SPI which, in turn,
will aid software companies in defining, planning,
monitoring and improving their SPI efforts, and in
sustaining their results. This paper is an enhanced version
of the previous study of the SPI sustainability success
factors that have been published in [1].

The remainder of this paper is organized as follows.
Section II presents background of the field. Section III
describes the method used during this study. Section IV
lists and provides descriptions of thirty three SPI
sustainability success factors. Finally, Section V discusses
the results of this study, presents final remarks and
suggests future work.

II. BACKGROUND

In this section, we provide background about current
software process improvement models. Section II.A
describes general and common stages of software process
improvement process. Section II.B presents process
capability and maturity assessment models to be used in
SPI. Section II.C presents software process improvement
approaches existing today. Finally, Section II.D lists
software development methods that incorporate the
practices of process improvement.

A. Software Process Improvement

Software process improvement is a set of SPI activities
leading to an improved software process quality, and
thereby, to an improved software product quality [31].
Each SPI effort is unique in its design. It strongly differs
with respect to the individual and cultural characteristics
and needs of an organization and the status of the
processes undergoing improvement [32], [33]. For this
reason, it may be difficult to suggest a process model that
is suitable for all kinds of SPI contexts.

324

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Many researchers have proposed high level SPI
models, such as [31], [34-36]. These models differ in their
designs. Nevertheless, they have defined common cyclic
stages that are believed to bring maximum benefit to the
improving process and business. The most accepted
representation of the continuous SPI is illustrated in
Figure 1. Its cyclic phases are:

 Plan (SPI planning): aiming at defining process
improvement goals and vision, as well as identifying
process improvement activities and creating a process
change plan.

 Do (Process change): aiming at changing the process
according to the planned improvement.

 Check (Process review): aiming at assessing/
reassessing/measuring the process according to the
goals of the process improvement, analyzing the
process and its measurements and comparing them to
the expected results.

 Act/Adjust (Process adjustment): aiming at requesting
the corrective actions in order to reach planned results
and determining the weaknesses and potential
improvements of the SPI process.

B. Process Capability and Maturity Assessment Models

There is a large amount of process maturity models that
have been designed to help software organizations to
assess the status of their software processes and identify
the areas of future improvement. The best known ones are
CMM (Capability Maturity Model) [37], CMMI
(Capability Maturity Model Integration) [38] and SPICE
(Software Process Improvement and Capability
dEtermination) [39].

Both CMM and its improved version CMM Integration
(CMMI) is a standardized framework for process
assessment and improvement [37] [38]. Both models
provide software organizations with a roadmap for process
standardization and improvement. Their frameworks are
based on the implementation of the key practices within
certain key process areas according to the set
improvements goals and the desired maturity level. CMM
and CMMI define five maturity levels for process
assessment. The maturity levels of CMMI are: Initial,
Managed, Defined, Qualitatively Managed and Optimizing
[38]. CMM has a staged representation implying that the
improvements are targeted to increase the company’s
overall capability/maturity level. CMMI, on the other
hand, in addition to the staged representation also includes

Figure 1. Continuous Software Process Improvement Cycle

the continuous representation implying that improvements
are focused on companies’ specific target process areas.
With this structure, CMMI aims to help software
organizations to assess their organizational maturity or
process area capability, establish priorities for
improvement, and implement these improvements [38].

SPICE, also known as ISO 15504, is an international
reference model for process assessment and improvement.
The model can be used for process assessment and its
capability determination. In the similar way as CMMI,
SPICE is organized into six capability levels that
characterize the process as: Incomplete, Performed,
Managed, Established, Predictable and Optimizing. The
capability levels, in turn, consist of process attributes,
which further consist of generic practices. SPICE model
provides tools for standardized process assessment and
suggestions for defining process maturity. [39]

C. Software Process Improvement Approaches

Other process improvement approaches or methods can
be used as an addition to or as an alternative for capability
maturity models. The most commonly used SPI
approaches are SixSigma [40] and IDEAL [41].

SixSigma is business management approach for
improving engineering and development processes. It is a
disciplined data driven approach aiming at improving a
development process by identifying and removing the
causes of product defects. Using a measurement-based
strategy, SixSigma defines how the process is performing
and how it should be improved. The improvement of the
existing process is done by following five iterative steps:
1) define the defects and project goals, 2) measure the
process attributes with respect to its quality and efficiency,
3) analyze the process and determine the root causes of
defects, 4) improve the process by eliminating the defined
defects, and 5) implement control mechanisms for
sustaining the achieved improvements. [40] [42]

IDEAL is a process improvement implementation
model that has been primarily designed for supporting the
implementation of CMM and CMMI maturity models [43].
It encompasses five stages of a process improvement
cycle. Those are the following: 1) Initialize: start the
improvement program, 2) Diagnose: assess the current
state of the process, 3) Establish: set the implementation
strategy and improvement program, 4) Act: implement
process improvements, 5) Leverage: analyze the
improvement effort and revise the approach. [34] [41]

D. Software Development Methods that Contain SPI

Practices

Many of the software development methods
incorporate process improvement activities into their
development activities. The best known ones are Lean and
Scrum.

Lean software development guides organizations on
how to deliver increments of real business value in short
time boxes, by means of optimizing/improving their
software processes [44]. In the core of Lean software
development, there are seven principles aiming at
continuous improvement of the process based on the
identification and elimination of the inefficiencies (waste)
in the process [45]. The core principles are the following:
1) eliminate waste, 2) amplify learning, 3) decide as late as

325

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

possible, 4) deliver as fast as possible, 5) empower team,
6) build in product quality, and 7) see the whole [45].

Scrum is a well-known iterative, incremental, light-
weight and agile method for software project management.
It is most often used in small or medium-sized
development organizations. The method is focused on
managing software development projects by means of
strictly defined: 1) roles, such as scrum master, product
owner and the team, 2) meetings, such as daily standups,
release and sprint planning meetings, retrospectives and
demos, and 3) process artifacts, such as product and sprint
backlog [46]. Scrum incorporates in itself continuous
process reviews that are done at the end of each
development iteration, called sprint. This contributes to the
light weighted continuous process improvement [32].

III. METHOD

In this section, we present our research method. We
first present the research steps in Section III.A. We then
describe the questionnaire used in one of the research steps
in Section III.B. Finally, in Section III.C, we describe the
validity of our results.

A. Research Steps

The overall research consisted of the three following
steps: (1) Literature Study, (2) Empirical Study, and (3)
Data Analysis.

During the first two steps, we elicited SPI sustainability
success factors, first by reviewing literature and then by
interviewing software practitioners. These two steps were
conducted independently. This implies that the results of
the first step did not constitute input to the second step, and
vice versa. In the third step, we combined and analyzed the
results as achieved in the first two independently done
steps. Below, we briefly describe the three steps.

1) Literature Study
During the literature study, we reviewed more than 45

publications dealing with SPI projects. These were mainly
experience reports and case studies that had been retrieved
from IEEE, ACM, Springer, John Wiley and Sons, and
other publishers. Out of them, we chose 27 empirical
reports describing conditions contributing to or subtracting
from the success of SPI projects [2-27], [30]. Our goal was
to draw out factors that contributed to the sustainability of
SPI efforts.

The majority of the publications studied mainly
reported on the empirical process improvement projects.
They did not focus on outlining the conditions contributing
to the success of SPI efforts. However, some of the
conditions could be indirectly recognized out of their
contexts and results. Only three publications provided
direct and explicit feedback on critical SPI success factors.
These were [4-6].

Based on the literature studied, we drew out factors that
were critical for a successful initiation and implementation
of SPI, and successful preservation of its results. This step
resulted in a preliminary list of SPI sustainability success
factors. Having this list as a basis, we reviewed the
publications anew, now with the purpose of studying their
explicit and implicit descriptions of the success factors,
their contexts, and impact on the sustainability of the SPI
efforts. This step resulted in twenty seven SPI success
factors.

TABLE I. INTERVIEW QUESTIONNAIRE

1. Are you aware that the information you provide will be
kept confidential?

2. Have you been involved in process improvement or
process transition before? To what extent?

a. If yes, have the results of the process improvement
been lasting?

i. If yes, why do you think the results
have been lasting?

ii. If no, why do you think the results
have not been lasting?

3. What factors contribute to the process improvement
sustainability? Please list them and motivate your
answers.

4. What factors prevent the process improvement
sustainability? Please list them and motivate your
answers.

5. What are your suggestions for keeping the process
improvement results lasting/sustainable? Please list
them and motivate your answers.

2) Empirical Study

During the empirical study, we interviewed 45
software engineers who had been involved in or who had
been affected by SPI projects. Among the interviewees,
there were twenty seven software developers, ten testers,
seven development managers and one SPI manager. They
came from twelve different medium-sized software
organizations, located in Sweden (23 participants),
Vietnam (18 participants), Bangladesh (2 participants),
China (1 participant) and Island (1 participant).

Each interviewee was interviewed only once, in a tête à
tête manner. Twenty seven interviews were recorded and
then transcribed. The other eighteen interviews were not
recorded due to the fact that the interviewees felt ill at ease
to be recorded. However, the interviews with them were
thoroughly documented during and after each interview.
On average, the individual interviews lasted for forty
minutes.

All the interviews were analyzed using the
hermeneutics approach [47]. The SPI success factors listed
by the interviewees were analyzed and grouped together
when concerning the same or similar issues. The factors
that were mentioned by more than one interviewee were
joined together and given a common name. The factors
that were mentioned by only one interviewee were not
included in this paper at all.

3) Data Analysis
During the Data Analysis step, we analyzed the results

of the literature study and the empirical data using the
hermeneutics approach [47]. Here, we identified and
analyzed the sustainability factors as drawn out in the
former study steps (the literature and empirical study
steps). In total, we identified thirty three SPI sustainability
success factors, out of which twenty four factors were
commonly identified in both literature and empirical
studies. Out of twenty seven success factors identified in
the literature, three were not confirmed during the
empirical study. In addition, six out of the thirty factors
identified during the empirical study had not been
identified in the literature studied.

Finally, we combined all the elicited factors, organized
them into categories and put them into a list of SPI
sustainability success factors. It is this list that constitutes

326

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the body of this paper and a foundation for the creation of
the SPI health attributes in [48].

B. Questionnaire

When educing knowledge about the SPI success
factors, we used open-ended and semi-structured
interviews [47]. This helped us encourage our interviewees
to provide additional information that might be found
useful for understanding the factors.

The interview structure was based on the questionnaire
presented in Table I. Its questions were aimed at
identifying both success and failure factors. Therefore, the
questionnaire was structured into the following five groups
of questions: (1) reasons for why SPI efforts have been
lasting, (2) reasons for why SPI efforts have not been
lasting, (3) factors contributing to the SPI sustainability,
(4) factors preventing the SPI sustainability, and finally,
(5) suggestions for how to keep the SPI efforts sustainable.

C. Validity

All the qualitative research methods encounter validity
threats [47]. Those threats concern construct validity,
internal validity and external validity.

Construct validity refers to the degree to which
inference can be made from the operational definition of a
variable to the theoretical constructs [49]. The main threat
to construct validity is to guarantee that the right measures
have been chosen for the study. Here, the risk was that we
might use wrong measures, and as a result, we might
misinterpret the SPI sustainability success factors. To
minimize this threat, we conducted both theoretical and
empirical studies. Moreover, we employed the multiple
sources of data during the empirical study by interviewing
different roles in twelve different organizations.

Internal validity refers to the degree of inferences of
the cause-effect or causal relationships in the study [49].
The main threat to internal validity for the literature study
was the fact that we might misinterpret the conclusions
presented in the literature or use too few literature sources.
Therefore, in this study, we first made a comprehensive
search in various scientific sources out of which we
extracted 27 experience reports. The main internal validity
threat for the empirical study was that the interviewees
might have misunderstood the impacts on the SPI
sustainability. To minimize this threat, we used various
roles involved in SPI in different software organizations.

External validity refers to the degree of whether the
sample findings can be generalized [49]. The main
external validity threat to our empirical study was the fact
that the SPI sustainability factors that had been identified
during the interviews were based on the experiences of
only 45 individuals who belonged to medium-sized
software companies. Therefore, we believe that the
empirical findings of this study should be found more
useful for medium-sized software companies.
Nevertheless, by incorporating them with the results of the
literature study, we are confident that our findings and
conclusions are useful for all sizes of software companies
whether large, medium-sized or small.

IV. SPI SUSTAINABILITY SUCCESS FACTORS

In this section, we present the identified factors that
lead to the success and sustainability of the SPI efforts.

Some of them have direct influence over the SPI success
and sustainability whereas some other factors have an
indirect influence. Therefore, when describing them, we
state their influence wherever it is relevant.

Based on both literature and empirical studies, we have
identified thirty three SPI sustainability success factors.
During the literature study, we have identified twenty
seven SPI success factors, out of which twenty four factors
overlapped with the factors that have been identified
during the empirical study. The interviews have
additionally resulted in six new SPI factors.

Just because these two studies were done
independently, they had led to two groups of SPI success
factors: (1) the ones that are common to the two studies,
and (2) the ones that have been elicited within one type of
a study but not within the other. When describing them in
this section, we clearly identify their sources. Additionally,
we list them and their sources in Tables II, III and IV.

To facilitate our presentation, we group the elicited SPI
sustainability success factors into three categories as
defined in [18]. These are organizational factors,
implementation factors and social factors. The factors are
described in Sections IV.B, IV.C and IV.D that follow
Section IV.A, which briefly presents the core SPI roles that
may vary in different academic and industrial contexts.

A. Roles

Many different roles are involved in process
improvement. Their naming and responsibilities vary in
different academic and industrial contexts. For this reason,
we identify and define the following roles involved in SPI:

 Stakeholder: a person or a group that is involved in or
affected by SPI. Stakeholders include all the internal
and external roles that are influenced by SPI.

 Technical staff: a group consisting of developers,
testers, development managers, support personnel and
other roles involved in executing the process
undergoing the improvement. They are the “doers”
within the process undergoing improvement, and
therefore, they get affected by the process change the
most.

 External SPI leader: a person or a group that is in
charge of the overall SPI process. He/she initiates the
improvement projects, requests resources, encourages
local improvement efforts and establishes
communication channels between different groups.
External SPI leader is not the doer in the process to be
improved. For this reason, he/she is seen as an external
and independent role.

 Internal SPI leader: a person or a group within the
technical staff who is responsible for supporting and
following the SPI strategy on a local process level.

B. Organizational Factors

Organizational factors are critical success factors that
are related to the organizational structure, politics and
culture [18]. They have a substantial impact on the SPI
effort and its sustainability.

Table II shows nine organizational factors. We have
grouped them into three clusters: 1) Support of SPI
focusing on the management support and sponsorship of
the SPI project, 2) Resources targeting people resources
required for conducting the SPI project, and 3) Alignment

327

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

aiming at aligning SPI with the organization-related
factors. The organizational SPI success factors are
following:

1) Management continuously supports and committs

to the SPI process
To provide long-term sustainable results, software

improvement requires continuous investment in time,
resources and effort. This, in turn, requires that
management is strongly committed to and continuously
supports the SPI efforts [6], [7], [18], [20], [28]. Strong
management commitment helps retain high priority of the
SPI projects and the continuous management support helps
assure continuous supply of the required resources. It is
especially important in the initial SPI phases during which
the cost of the SPI activities is higher than the initially
expected and planned cost [4].

Even our interviewees have stated that SPI projects
need investment in time and resources in order to achieve
sustainable results. According to them, this cannot be
achieved without commitment and support of top
management. Without management support, the SPI effort
and results are doomed to decay. Our interviewees have
also pointed out that management should prioritize the SPI
activities and assign resources to them. This will prevent
the SPI activities from getting neglected.

2) Resources are dedicated to SPI
Resources that are fully or partly dedicated to the SPI

activities are the most important organizational SPI
success factor. As many as 72% of SPI improvement
projects have suffered from lack of resources and constant
time pressure [4], [8], [19], [26].

According to the literature studied, SPI projects need to
have dedicated time and resources. SPI projects cannot run
on their own. Investment in resources has been recognized
not only for starting and implementing the SPI projects but
also for sustaining the achieved results [4], [5], [8], [9],
[11], [18], [21], [26].

Our interviewees were of the same opinion. According
to them, without dedicated resources, SPI can only rely on
the engagement of individuals. The engagement however
tends to decrease with time. Therefore, to guarantee the
sustainability of the SPI efforts, it is important to dedicate
resources to both the SPI and to the process undergoing the
SPI.

3) SPI responsibilities are clearly specified and

compensated
Clarity in the definition of the SPI roles and their

responsibility assignments are very important. According
to the literature studied, people involved in SPI should
have clear responsibilities and compensation for their
effort [4], [5]. If they are assigned to the SPI related tasks,
they should be relieved from other tasks. Time dedicated to
the SPI activities should be compensated in the same
manner as other work. Otherwise, the SPI activities may be
done in a rush, they may be neglected, they may be
delayed or they may even be forgotten.

Our interviewees were of the same opinion. According
to them, process related problems often start when no one
is responsible for the process.

4) Competent external SPI leaders are designated
According to the literature studied, the level of

competency, experience, commitment and engagement of
the external SPI leaders can greatly determine the success
of the SPI projects [4-6], [18]. However, as [4], [5] claim,
this may not always be enough. Authority and respect paid
to the external SPI leaders is just as important. Even if the
SPI leaders are in a privileged position, it still does not
imply that they have high enough authority, trust and
respect among the technical staff members. If so, then their
ideas may not be supported and successfully transmitted to
the process change [4-6], [18]. Trust and respect may only
be gained via personal qualities such as honesty,
credibility, reliability, experience, reputation and good
leadership.

TABLE II. ORGANIZATIONAL FACTORS

Cluster SPI sustainability success factor Recognized in literature Recognized by No.

of interviewers

Support of SPI 1. Management continuously supports and

commits to the SPI process

[4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [16], [17], [18], [20],

[21], [22], [23], [24], [25], [26],

[27]

18

2. Resources are dedicated to SPI [3], [4], [5], [8], [9], [11], [16],

[18], [19], [20], [21], [22], [23],

[25], [26], [27]

18

Resources 3. SPI responsibilities are clearly specified

and compensated

[4], [5], [10], [11], [16], [17], [19],

[27]

14

4. Competent external SPI leaders are

designated

[4], [5], [6], [9], [10], [11], [12],

[13], [16], [18], [20], [23], [27],

[30]

22

5. Internal SPI leaders are designated [3], [6], [7], [10], [12], [13], [18],

[20], [21], [23], [24], [27]

6

6. The level of technical staff turnover is

low

- 4

Alignment 7. SPI is aligned with business goals [12], [13], [16], [18], [21], [22] -

8. SPI is aligned with organizational

policies and strategies

[4], [16], [17], [19], [21], [26] -

9. SPI methods are tailored to specific

organizational contexts and needs

[3], [6], [17], [18], [22] 11

328

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The importance of the external SPI leaders was also
raised during the interviews. According to our
interviewees, to make the SPI results last, there should be
an external SPI leader, a person or a group of people who
have knowledge of SPI and who take on the responsibility
of driving it. The external SPI leader should lead the
people and guide the process towards a continuous and
sustainable improvement.

5) Internal SPI leaders are designated
Since external SPI leaders and managers are not

directly involved in the development process, it is
important to have internal leaders as well. According to the
literature studied, the internal SPI leaders are recognized as
important SPI actors since they take on the immediate
responsibility for leading and supporting continuous
process improvement [6], [7], [20], [21]. By possessing
knowledge of the process, they are able to adapt the
improvement suggestions to the different needs of the
development teams, projects and cultures. They help SPI
activities get started and their engagement aids in winning
support of their team members towards SPI [20].

The importance of designating internal SPI leaders was
also recognized during the interviews. According to our
interviewees, the involvement of the internal SPI leaders
helps spread commitment to the process and create strong
process ownership. Internal leadership creates continuous
control that the development process is followed in a
correct way and that the technical staff is engaged in SPI.

6) The level of technical staff turnover is low
According to our interviewees, high people turnover

can become a significant barrier to the sustainability of the
SPI efforts. When the key employees leave the company,
so does the knowledge of the process and SPI. With a high
technical staff turnover, more effort needs to be spent on
the education and training of the new hires.

7) SPI is aligned with business goals
The goals of SPI projects should not only go in line

with the standardization of the process and quality
standards, but also with the business goals of the company.
According to the literature studied, alignment of SPI goals
with the organizational business goals contributes to the
better management of, commitment to and support of the
SPI projects [12], [13], [18], [21], [22].

8) SPI is aligned with organizational policies and

strategies
Improvement projects often conflict with the existing

organizational policies by requiring changes to the routines
and processes that are common to the whole organization.
Therefore, as stated in the literature studied, organizational
policies have to be aligned with the SPI goals and vice
versa.

In cases when organizations do not have any policies,
they have to establish ones and make the process
standardization and improvement coherent with them.
Lack of organizational policies to support process changes
can potentially become a big barrier for a successful
process improvement [4], [19], [21], [26].

9) SPI methods are tailored to specific organizational

contexts and needs
Each organization is different with respect to its

structure, culture and policies. For this reason, as stated in
the literature studied, SPI initiatives should consider the
contextual specifics of the organizational culture, product

characteristics, customer availability and people influenced
by the process. The adaptation of process improvement
methods to the specific organizational contexts and needs
helps address individual problems and contributes to
sustainable SPI efforts [6], [18].

The interviews have led to the same conclusion.
According to our interviewees, if the SPI is not aligned
with the organizational needs, or if it does not fit the
established organizational and national culture, then it is
more difficult to win people’s support and commitment.
Moreover, the people will resist process changes and the
results achieved by SPI will be easily lost.

C. Implementation Factors

We have elicited fourteen implementation factors.
They are all related to the planning, preparation, execution
and management of the SPI projects. As shown in Table
III, they are grouped into four clusters: 1) Education and
knowledge focusing on training and expertise of
stakeholders, 2) SPI strategy targeting preparation and
vision of the SPI project, 3) SPI management and
execution dedicated to issues related to management and
execution of the SPI project, and 4) Continuity of SPI
effort focusing on the mechanisms for enabling the
continuity of the SPI effort. The factors are the following:

1) Stakeholders are trained in software process
Process improvement often implies changes to the

process in form of introduction, removal or modification of
new techniques and practices. Hence, as pointed out in the
literature studied, the technical staff needs to be trained in
the process and its techniques and practices in order to
fully understand their role in the process change. They
need to be prepared for the process improvement and
understand the reasons behind each suggested change.
Moreover, other stakeholders that are affected by SPI
should also receive necessary training. Otherwise, they
will less likely follow the new process [19]. For this
reason, it is needed to train the stakeholders in the new
process, new techniques and practices not only for
supporting the implementation of process changes but also
for sustaining improvement results. In organizations or
cultures where knowledge of the process is low, the
training in the process is even more important [26]. The
levels of training may differ from stakeholder to
stakeholder with respect to the stakeholders’ training needs
and their level of involvement in SPI.

The need for adequate process training was also raised
during the interviews. According to our interviewees, all
the company employees need to have necessary training in
the new method in order to understand it and to be able to
follow it properly and dedicatedly. The process training
increases employee motivation in the SPI and decreases
resistance to process change.

2) Stakeholders are continuously mentored and

coached
Training in the new process contributes to its

understanding and allows stakeholders to follow it
dedicatedly. Still however, according to the literature
studied, training in the software process may not be
enough. Some stakeholders may misunderstand the process
or continue following old techniques and practices.
Therefore, the stakeholders should be mentored and
coached in SPI and the process changes. [7], [23].

329

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. IMPLEMENTATION FACTORS

Cluster SPI sustainability success factor Recognized in literature Recognized by No.

of interviewers

Education and

knowledge

1. Stakeholders are trained in software

process

[3], [4], [7], [8], [9], [11], [18],

[19], [20], [21], [22], [23], [24],

[25], [30]

31

2. Stakeholders are continuously mentored

and coached

[3], [7], [8], [9], [23], [25] 19

3. SPI leaders possess experience and

expertise in SPI

[7], [8], [9], [16], [18], [19], [21],

[22], [25], [26], [27], [30]

17

SPI strategy 4. SPI goals and objectives are clear and

realistic

[4], [5], [6], [12], [13], [16], [17],

[18], [19], [21], [22]

15

5. SPI method is well defined [7], [8], [9], [16], [17], [18], [20],

[24], [25], [26]

-

SPI management

and execution

6. SPI project is effectively managed [6], [8], [9], [16], [19], [25], [26],

[30],

16

7. Process improvements are focused on

specific areas

[20], [21], [22], [27] 2

8. Process improvement effort is flexible - 11

9. Information about SPI activities and its

results is disseminated

[6], [9], [10], [12], [13], [17], [19],

[22], [26]

26

10. Process standards are defined and

enforced

- 17

11. SPI effort brings positive results - 18

Continuity of SPI

effort

12. Software process is monitored and

measured

[3], [6], [7], [12], [13], [17], [20],

[21], [23], [27]

21

13. Software process and its efficiency are

continuously reviewed

[2], [3], [7], [8], [10], [12], [13],

[22], [23], [24], [25], [27]

13

14. SPI effort is continuous [2], [8], [11], [14], [27] 23

According to our interviewees, the internal SPI leaders

and other stakeholders responsible for the improvement
activities have to be coached by the experienced external
SPI leaders on how to implement improvements and how
to follow the new process. Continuous mentoring and
coaching increases the credibility of the strategic SPI
decisions and contributes to building trust both in those
decisions and in the new process.

3) SPI leaders possess experience and expertise in

SPI
Process improvement implies changes to the deeply

ingrained organizational culture, habits, working patterns
and manners that have been developed throughout a long
time. To change them is very difficult. According to the
literature studied, however, it is easier to change them if
the SPI team possesses enough knowledge and experience
in implementing software process improvement changes. If
there is lack of such knowledge and experience, then there
is a risk of using unsuitable SPI strategy and of having
poor SPI execution, which could potentially fail the SPI
projects [7-9], [19], [25], [29].

Our interviews have also led to the same conclusion.
The interviewees have mentioned the importance of the
experience and expertise to be possessed by the SPI
leaders.

4) SPI goals and objectives are clear and realistic
SPI projects should have clearly specified goals and

objectives. Our literature study shows that clear, realistic
and well communicated SPI goals contribute to good
understanding of the SPI process and assurance that they
are well understood across all the organizational levels [5].

Realistic SPI goals lead to realistic expectations and
aid in maintaining high motivation for and support of the
SPI activities. Unrealistic, too ambitious or unreachable
objectives, on the other hand, may jeopardize the SPI
projects, by decreasing employees’ engagement and
motivation even in projects with positive results [4], [21].
Our interviews have led to a similar conclusion.

5) SPI method is well defined
Software process improvement is a complex and time

consuming process. Following a well defined and
structured SPI implementation method strongly contributes
to its success [7], [9], [25]. According to the literature
studied, the SPI method should be suitable to the
organization, its size and goals.

6) SPI project is effectively managed
Management of the SPI project involves a wide range

of activities such as planning for change, identifying actors
involved, ensuring the level of understanding the process
changes, monitoring the status of SPI, evaluating the
progress, and the like. It needs to be performed in an
effective and professional manner [26]. According to the
literature studied, without project management, the SPI
project is doomed to fail or it may lead to chaos [6].

Our interviews have pointed out that effective
management and execution of SPI are key elements of the
successful SPI effort and its sustainable results.

7) Process improvements are focused on specific

areas
At the beginning of the SPI projects, companies can be

overwhelmed with the amount of suggestions for the
improvements. Such being a case, as stated in the literature

330

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

studied, it is important not to do too many changes at once.
Instead, companies should focus on a few specific process
areas and a few process improvement goals. They should
also prioritize the SPI suggestions and implement only one
or few improvements at a time [20], [21]. This leads to
easier and more efficient implementation, control,
measurement, and thereby, to more sustainable results of
SPI efforts.

Our interviews have led to the same conclusion. The
interviewees added that process changes should be
introduced in a slow manner and supported by training
sessions. This can contribute to the understanding of the
process undergoing change and of the impact of the
process changes.

8) Process improvement effort is flexible
Software process should continuously change and

adapt to the organizational needs and situation. SPI
activities can be risky and may not always lead to the
expected results. Therefore, according to our interviewees,
process improvements should be flexible and allow for
experimenting with the process. In cases when the process
change is proven to be unsuccessful or unsuitable, the
organization should be able to quickly rollback the process
to the pre-change status.

9) Information about SPI activities and its results is

disseminated
SPI projects bring many changes to the process and

daily routines. These changes have to be communicated to
all the stakeholders that can be directly or indirectly
impacted by the changes. According to the literature
studied, insufficient communication of the SPI changes
may lead to lack of transparency of the SPI projects,
confused personnel and poor quality process. Team
collaboration and communication, on the other hand, may
help the staff members to exchange knowledge and
experience during the improvement projects and contribute
to a more coherent organizational culture [6].

The need for communicating on the SPI activities and
their results has also been raised by our interviewees.
According to them, sufficient communication positively
impacts motivation in SPI and acceptance of the new
process changes.

10) Process standards are defined and enforced
In some companies, the newly introduced process can

just run by itself. Its main fuel is primarily high
commitment and engagement of the technical staff.
However, in companies that have low commitment
towards or poor understanding of the development process,
people are tempted to disregard the process standards,
unless there is a strong control mechanism in place [34].
Even when properly trained, the staff may not follow the
newly introduced process. Therefore, as stated in the
literature studied, in order to guarantee that the process is
dedicatedly followed by all the stakeholders, it should be
enforced and controlled by the SPI managers [34].

Our interviews have led to a similar conclusion. The
interviewees have also suggested that the employees that
are not following the software process procedures correctly
should be informed and consequently corrected. The
interviewees also highlighted the importance of accessible
and updated software process documentation.

11) SPI effort brings positive results
As mentioned before, the results of the SPI activities

should be disseminated to all the stakeholders. However,
as discovered during the interviews, just the dissemination
of the SPI results is not enough. The results achieved by
the early SPI effort should be positive and should speak for
themselves.

Early gains of SPI effort can encourage and motivate
stakeholders to continue with the SPI activities and can
change the opinions of those who did not support SPI from
the very beginning.

12) Software process is monitored and measured
Continuous process monitoring and measurement

indicates whether the SPI activities are effective or not,
and allows to provide early feedback on the sustainability
of the SPI efforts. Hence, as stated in the literature studied,
it is important to evaluate and measure the process on a
continuous basis in order to reinsure its purpose and to
increase the engagement of the SPI supporters. Measured
and acknowledged process improvement will positively
affect team morale and motivation [7], [12], [13], [20].

Our interviewees have also stated that measurement
and evaluation of the SPI results can positively impact the
engagement in and motivation for future SPI.

13) Software process and its efficiency are

continuously reviewed
To achieve continuous process improvement, the SPI

process and its efficiency should be reflected on and
evaluated on a continuous basis. As stated in the literature
studied, process reviews, such as retrospectives, allow
learning from previous experience and from experimenting
with the process, which, in turn, contributes to a self-
driven continuous process improvement, and thereby, to
long lasting SPI results [12], [13].

Our interviews have led to the same conclusion.
According to our interviewees, process reviews help to
identify problems in the current process and to
acknowledge benefits achieved by SPI. This, in turn,
significantly contributes to the sustainability of the
achieved results. Without frequent reviews and changes to
the process, gains of SPI will soon outdate.

14) SPI effort is continuous
Software organizations have dynamic and continuously

changing structures. Organizational culture, availability of
the customer and background of the employees are always
changing. Hence, a static process that is not improving or
adapting to the changing organizational needs is failed to
decay [34]. Moreover, the results of the SPI efforts will be
lost if the organization will stop improving its process.

To sustain the gains of the process improvement
efforts, the company should view the SPI as a continuous
activity. According to the literature studied, continuous
SPI effort cannot be achieved without mechanisms for
continuous process review and tuning [34], and
comprehensive support of those responsible for the process
[6]. In addition, all the roles responsible for the SPI project
should continuously reaffirm commitment to change,
communicate progress of improvement, and provide
continuous feedback and motivation [6].

Our interviews have also confirmed that time and
money should be continuously invested into the SPI effort
in order to maintain its results.

331

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Social Factors

We have identified ten different social SPI
sustainability success factors. Social factors deal with
human behavior and reactions in the SPI context. As
shown in Table IV, they are grouped into three clusters: 1)
Understanding and awareness of SPI focusing on common
understanding and awareness of the SPI, 2) Attitude to SPI
targeting stakeholders’ attitude towards SPI, and 3)
Facilitation of SPI listing factors that may increase
stakeholders’ motivation in SPI. The social SPI success
factors are the following:

1) Stakeholders have a common understanding of the

process undergoing change
The process cannot be efficiently improved unless it is

properly understood. According to the literature studied,
the technical staff and management have to reach
consensus on the status of the current process, its problems
and possible solutions, as well as the organization’s vision
and improvement goals [6]. Common understanding of the
current and new process, suggested changes and its
potential benefits are important to increase support for
process improvement among all the stakeholders involved.

Our empirical study has led to the same conclusion.
According to our interviewees, all the stakeholders should
understand the reasons behind process changes. An
important stakeholder here is the technical staff who has to
change the previous habits and adapt to a new way of
working. Our interviewees have also pointed out that
common understanding of the new process, of the SPI
activities and their potential benefits strongly contribute to
the increase of commitment and motivation towards SPI.

2) Stakeholders are aware of complexity, challenges

and benefits of SPI
Since SPI requires continuous effort and often brings

mainly long-term results, it is important that everybody
involved in it is aware of its complexity, challenges and

future benefits. Hence, according to the literature studied,
organizations must make sure that all the stakeholders
involved are aware of complexity and potential benefits of
SPI. This can be realized via education, training and
effective communication. Raising awareness of SPI and
effective communication of its complexity, challenges and
benefits strongly affects the success of the SPI projects [8-
10], [23-26].

Our interviews have also shown that the stakeholders
need to understand the reasons behind SPI and its potential
benefits in order to accept and commit to the process
change.

3) Stakeholders have realistic expectations
Our interviews have indicated that in order to be

satisfied with SPI and its results, the employees affected by
SPI should have realistic expectations. Otherwise, the
stakeholders will get disappointed with SPI and will not
continue with it, even though SPI brings positive results.

4) Technical staff accepts SPI activities
Changes to the process may affect daily work of many

employees. Therefore, according to the literature studied, it
is important that all the members of the technical staff
agree and accept future process changes [18], [27]. This
can substantially decrease inertia to change. Acceptance of
process changes can be encouraged by high involvement
of the technical staff in the SPI activities.

Our interviews have also led to the same success
factor. According to our interviewees, if all the personnel
accept the newly changed process, then there is a greater
opportunity that the changed process will be sustained.
Mutual acceptance of the changed process and SPI
activities is a key to sustain the results achieved by the SPI.

5) Technical staff is committed to the SPI process
Acceptance of SPI activities is a critical success factor

when starting SPI projects. According to the literature
studied, however, it needs to be complemented with the

TABLE IV. SOCIAL FACTORS

Cluster SPI sustainability success factor Recognized in literature Recognized by No.

of interviewers

Understanding

and awareness of

SPI

1. Stakeholders have a common

understanding of the process undergoing

change

[6], [11] 17

2. Stakeholders are aware of complexity,

challenges and benefits of SPI

[8], [9], [10], [17], [20], [23], [24],

[25], [26]

4

3. Stakeholders have realistic expectations - 4

Attitude to SPI 4. Technical staff accepts SPI activities [3], [16], [18], [27] 24

5. Technical staff is committed to the SPI

process

[3], [16], [21], [22], [23], [24] 10

Facilitation of SPI 6. Stakeholders are being encouraged to

support SPI

- 16

7. Technical staff is rewarded for

contribution to SPI success

[7], [9] 4

8. SPI leaders encourage initiative and

openness of stakeholders

[11], [12], [13], [19] 2

9. Technical staff participates in SPI [3], [4], [5], [6], [8], [9], [10], [12],

[13], [18], [21], [23], [24], [25],

[27], [30]

22

10. Technical staff owns the software

process

[3], [5], [7], [18], [27] 20

332

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

commitment of the technical staff. Commitment to the SPI
projects is inevitably another significant success factor to
sustain the results of the SPI projects.

Management commitment to SPI projects has already
been listed as a significant SPI success factor. However,
commitment of technical staff is just as important [21-24],
[28]. Together with the increased motivation and
engagement, the commitment of the technical staff can
become a driving wheel of process improvement [3].
Committed staff takes on the responsibility and ownership
of the process and keeps process in a healthy state [3].

Commitment of the technical staff has also been
educed during our interviews. Our interviewees have stated
that if the company personnel does not commit to the
process changes, it will most likely go back to the pre-SPI
process state.

6) Stakeholders are being encouraged to support SPI
Commitment to and support of SPI by all the

stakeholders is a great asset to help successful SPI
implementation and to decrease inertia towards change.
However, it is not easy to reach everybody’s support of
SPI. Therefore, our interviewees suggested that during the
early stages of the SPI project, the management should
start encouraging the stakeholders towards supporting SPI.
Encouraging the technical staff in SPI from the very
beginning would increase support, motivation and
engagement in future SPI activities.

7) Technical staff is rewarded for contribution to SPI

success
Moral appreciation and financial rewarding

acknowledge individual contributions to SPI. Recognized
contribution engages and motivates people to continue
with the SPI effort [7], [34]. The technical staff should also
be rewarded for showing interest in and for contributing to
the process improvement activities.

According to our interviews, the organization should
celebrate each SPI success and reward personnel for their
contributions. This will increase overall motivation and
commitment to SPI.

8) SPI leaders encourage initiative and openness of

stakeholders
To be able to suggest future process improvements, the

weaknesses and problems of the current process need to be
continuously identified. Some of those weaknesses and
problems can relate to specific individuals and fulfillment
of their responsibilities. Therefore, it is important to focus
on identifying the process weaknesses and not on playing
blame games [19], which can only lead to frustration and
inertia towards process change [11], [19].

According to the literature studied, SPI leaders should
focus on process weaknesses and problems and should
encourage initiative, innovation, creativity and openness in
stakeholders involved. Without it, employees cannot share
valuable ideas, and thereby, contribute to process
improvement [11]. Few of our interviewees were of the
same opinion.

9) Technical staff participates in SPI
Technical staff constitutes an important process

knowledge and experience asset [6]. By knowing all the
nooks and crannies of the process, the staff may provide
useful feedback on the suggested SPI changes [27]. For
this reason, it is important that they are involved in

identifying process pains and in suggesting solutions for
them [6], [8], [9], [12], [13], [18], [25].

The literature findings show that the involvement and
participation of the technical staff reduce resistance to
change, and thereby, strongly impact the SPI success [6],
[18], [21]. By being involved in the SPI activities, the
technical staff members feel more motivated to adhere to
the process changes, and therefore, they are more likely to
accept them [6], [18]. If, on the other hand, they are not
convinced, then the process improvement projects will
have small chances to succeed. Technical staff
involvement was found especially important in immature
organizations [25].

Many of our interviewers have also mentioned that the
involvement of the technical staff contributes to the
alignment of SPI methods to the organizational needs. It
also decreases inertia towards change and increases
motivation, and thereby, it significantly affects the
sustainability of the SPI efforts.

10) Technical staff owns the software process
Disregarding the reasons behind the SPI projects, the

new process has to be accepted and followed by the team.
According to the literature studied, it is important that not
only external and internal SPI leaders but also all the
technical staff members take on the ownership of the
process to be improved. The members should take the
responsibility for tailoring the process and for continuously
improving it. It is only in this way they will feel more
affiliated with the process and more responsible for future
process improvement. This, in turn, will lead to a built-in,
self-driven continuous process improvement process,
which, in turn, will strongly contribute to the sustainability
of the SPI results [7].

Our interviewees have also stated that the success of
the SPI projects is strongly related to software process
ownership. According to them, not only management and
SPI leaders should own the process, but also all the
technical staff members. They should be responsible for
the software process and its changes.

V. FINAL REMARKS

In this paper, we have presented thirty three success
factors influencing the sustainability of SPI efforts. The
factors are grouped into three categories: organizational
factors, implementation factors and social factors. They
were elicited in two independently conducted studies, the
literature study and empirical study. The early results of
this study were previously published in [1].

More than 70% of the identified SPI sustainability
factors (24 out of 33) were commonly identified both via
literature and empirical studies, even though they were
conducted independently. Out of twenty seven success
factors identified in the literature, only four were not
mentioned by our interviewees. This represents a general
approval of the SPI success factors identified in the
literature, since the interviewees were not influenced by
the results of the literature study. The factors that were not
confirmed by the interviewees concerned two
organizational factors dealing with the alignment of SPI
with business goals and organizational policies and
strategies (see Section IV.B.7 SPI is aligned with business
goals, and Section IV.B.8 SPI is aligned with
organizational policies and strategies) and one

333

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implementation factor dealing with the definition of the
SPI method (see Section IV.C.5 SPI method is well
defined). The reason to why those factors were not
mentioned by our interviewees could be that they
concerned management and business level of the SPI
project that was more common to larger organizations and
less applicable for medium-sized organizations to which
all our interviewees belonged to.

During the interviews, we have identified thirty SPI
success factors, from which only six were not previously
reported in the literature. Those factors concerned one
organizational factor dealing with technical staff turnover
(see Section IV.B.6 The level of technical staff turnover is
low), three implementation factors dealing with process
improvement and process standards (see Sections IV.C.8
Process improvement effort is flexible, Section IV.C.10
Process standards are defined and enforced, and Section
IV.C.11 SPI effort brings positive results, and finally, two
social factors dealing with the stakeholders’ expectations
from and encouragement towards SPI (see Section IV.D.3
Stakeholders have realistic expectations, and Section
IV.D.6 Stakeholders are being encouraged to support SPI.
Those factors represent lessons learned from SPI
adaptation in the interviewed companies. Therefore, they
may be context dependent and not necessarily applicable to
other software organizations. Nevertheless, they clearly
contribute to the SPI success and sustainability as stated in
Section IV.

Despite the high overlap of the identified factors, the
focus on the factors differed greatly among the sources
used in this study. The literature sources mainly focused on
conditions enabling the SPI efforts. The SPI factors that
were recognized by the majority of the literature sources
dealt with continuous management commitment and
support, provision of resources and involvement of the
technical staff in SPI (see Section IV.B.1 Management
continuously supports and commits to SPI process, Section
IV.B.2 Resources are dedicated to SPI, and Section
IV.D.9 Technical staff participates in SPI). Those factors
have the most devastating impact on the SPI project.
Without them, the SPI project should not even be initiated.
Their importance and influence were also confirmed
during the interviews.

The factors that were mentioned by most of the
interviewees focused on the social factors and the effects
of SPI on the daily routines. Their concern mainly dealt
with down to earth issues such as training in software
process undergoing improvement, availability of the
information on the SPI activities and results, and
acceptance of the SPI activities by the technical staff (see
Section IV.C.1 Stakeholders are trained in software
process, Section IV.C.9 Information about the SPI
activities and its results is disseminated, and Section
IV.D.4 Technical staff accepts SPI activities). This may be
explained with the fact that the majority of our
interviewees have taken part in the SPI projects but they
did not lead them. Therefore, our interviewees represented
the developers’ view from the perspective of how SPI
affects their way of working and their daily routines.

The SPI sustainability success factors presented in this
paper constitute the body of knowledge of the software
engineering community as educed in the current software
engineering literature and in the industry. Even if they

have only been listed and described, they may already
constitute a basis for providing insight into SPI efforts, for
diagnosing the reasons of SPI decay or for confirming the
prerequisites that are necessary for carrying out SPI.

We strongly believe that it is not enough to just define
SPI process frameworks and/or models. The process
frameworks/models should be supported by tools for
evaluating the status of the SPI projects and identifying its
faults. For this reason, we plan to continue working with
the SPI sustainability success factors presented in this
paper. Our goal is to create a basis for supplementing
currently defined SPI frameworks and/or models with a
checklist for SPI effort evaluation.

REFERENCES

[1] N. Nikitina and M. Kajko-Mattsson, “Success Factors
Leading to the Sustainability of Software Process
Improvement Efforts,” Proc. 6th International Conference
on Software Engineering Advances, (ICSEA 2011). IEEE
Press, 2011, pp. 581-588.

[2] S. S. Chakravorty, “Where Process Improvement Projects
Go wrong,” Wall Street J., 2010.

[3] N. Nikitina and M. Kajko-Mattsson, “Developer-Driven
Big Bang Process Transition from Scrum to Kanban,” Proc.
International Conference on Software and Systems Process
(ICSSP 2011). ACM, 2011, pp. 159-168.

[4] D. Goldenson and D. Herbsleb, “After the Appraisal: A
systematic Survey of Process Improvements, its Benefits,
and Success Factors that influence Success,” Technical
report, SEI, 1995.

[5] K. El Emam, P. Fusaro and B. Smith, “Success factors and
barriers for software process improvement,” 1999. In: C.
Tully, R. Messnarz, (Eds), “Better Software Practice For
Business Benefit: Principles and Experience,” IEEE
Computer Society Press, Silver Spring, MD.

[6] D. Stelzer and W. Mellis, “Success Factors of
Organizational Change in Software Process
Improvements,” J. Softw. Process Improve. Pract., 1998,
pp. 227-250.

[7] A. Rainer and T. Hall, “Key success factors for
implementing software process improvement: a maturity-
based analysis,” J. Syst. Softw., vol. 62, 2002, pp. 71–84.

[8] M. Niazi, D. Wilson and D. Zowdhi, “A framework for
assisting the design of effective software process
improvement implementation strategies,” J. of Syst. and
Softw., vol. 78, 2005, pp. 204–222.

[9] M. Niazi, D. Wilson and D. Zowghi, “Critical Success
Factors for Software Process Improvement Implementation:
An Empirical Study,” J. Softw. Process Improve. Pract.,
vol. 11, 2006, pp. 193–211.

[10] T. Varkoi, “Management of Continuos Software Process
Improvement,” Proc. 2002 IEMC, 2002, pp. 334-337.

[11] B. Curtis and M. Paulk, “Createing a software process
improvement program,” Butterworth-Heinemann Ltd, vol.
35: 6/7, 1993.

[12] T. Dyba, “An instrument for measuring the key factors of
success in Software Process Improvement,” J. Emp. Softw.
Eng., vol. 5, 2000, pp. 357–390.

[13] T. Dyba, “An empirical investigation of the key factor for
success in software process improvements,” J. Trans. on
Soft. Eng.,vol 31: 5, 2005.

[14] I. Aaen, J. Arent, L. Mathissen and O. Ngwenyama, “A
conceptual MAP of Software Process Improvement,”
Scandinavian J. of Infor. Syst., vol. 13, 2001.

[15] T. Galinac, “Empirical Evaluation of selected best practices
in implementation of software process improvements,” J.
Infor. Soft. Techn., vol. 51, 2009, pp. 1351–1364.

[16] A. Hudson, “Why Six Sigma Projects Fail & How to
Prevent It”, Grouputer Solutions Pty, [online resourse]:

334

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

http://www.grouputer.com/papers/why_six_sigma_projects_fail.pd
f

[17] M. Sulayman, C. Urquhart, E. Mendes and S. Seidel,
“Software Process Improvement Success Factors for Small
and Medium Web Companies: A Qualitative Study,” J. Inf.
Softw. Technol. 54, 2012, pp.479—500.

[18] T. Hall, A. Rainer and N. Badoo, “Implementing Software
Process Improvement: An Empirical Study,” J. Softw.
Process Improve. Pract., vol. 7, 2002, pp. 3–15.

[19] S. Beecham, T. Hall and A. Rainer, “Software Process
Improvement Problems in Twelve Software Companies: An
Empirical Analysis,” Proc. Emp. Softw. Eng., vol. 8, 2003,
pp.7–42.

[20] D. Paulish and A. D. Carleton, “Case Studies of Software
Process Improvement Measurement,” IEEE Computer, vol.
27: 9, 1994, pp. 50 - 57.

[21] M. Nazir, R.. Ahmad and N. H. Hassan, “Resistance factors
in the Implementation of Software Process Improvement
Project in Malaysia,” J. of Comp. Science, vol. 4: 3, 2008,
pp. 211-219.

[22] K. C. Dangle, P. Larsen, M. Shaw and M. V. Zelcovitz,
“Software Process Improvesmnt in Small ogranizations: A
case study,” IEEE Software, vol.22:6, 2005, pp. 68-75.

[23] G. Santos, M. Montoni, J. Vasconcellos, S. Figuerido, R.
Cabral, et. al., “Implementing Software Process
Improvements Initiatives in Small and Medium-Size
Enterprises in Brazil,” Proc. QUATIC, 2007, pp.187-196.

[24] S. B. Basri and R. V. O’Connor, “Organizational
Commitment Towards Software Process Improvement: An
Irish Software VSEs Case Study,” Proc. ITSIM'10, IEEE,
2010, pp.1456-1461.

[25] M. Niazi, D. Wilson and D. Zowdhi, “Implementing
software process improvement initiatives: An Empirical
study,” Proc. PROFES 2006, 2006 , pp. 222 – 233.

[26] M. Niazi, M. Ali Babar and J. M. Verner, “Software
Process Improvement Barriers: A cross-cultural
comparison,” J. Infor. and Softw. Techn., vol. 52: 11, 2010.

[27] A. Sweeney and D. W. Bustard, “Software Process
Improvement: making it happen in practice,” Soft. Qual. J.,
vol. 6, 1997.

[28] P. Abrahamsson and N. Iivari, “Commitment in Software
Process Improvement--In Search of the Process,” Proc.
HICSS 2002, 2002.

[29] N. Nikitina and M. Kajko-Mattsson, “Historical Perspective
of Two Process Transitions,” Proc. 2009 International
Conference on Software Engineering Advances (ICSEA
2009), IEEE, 2009, pp. 289-298.

[30] F. Ekdahl and S. Larsson, “Experience Report: Using
Internal CMMI Appraisals to Institutionalize Software
Development Performance Improvement,” Proc. EuroMicro
2006, 2006.

[31] I. Sommerville, Software Engineering, 8th ed. Harlow,
England: Person Education Limited, 2007.

[32] F. J. Pino, O. Pedreira, F. García, M. R. Luaces and M.
Piattini, “Using Scrum to guide the execution of software

process improvement in small organizations,” J. Systems
and Software, vol. 83, 10, 2010, pp. 1662-1677.

[33] N. Habra, S. Alexandre, J.-M. Desharnais, C. Y. Laporte
and A. Renault, “Initiating software process improvement
in very small enterprises: Experience with a light
assessment tool,” J. Information and Software Technology,
vol. 50, 7–8, 2008, pp. 763-771

[34] S. Zahran, “Software Process Improvement: Practical
Guidelines for business success,” Addison Wesley, 1998.

[35] C. L. Yeakley and J. D. Fiebrich, “Collaborative Process
Improvement: With Examples from the Software World,”
Wiley-IEEE Computer Society Press, 2007.

[36] T. Dybå and T.Dingsoyr, N. B. Moe, “Process
Improvement in Practice: A Handbook for IT Companies,”
Boston: Kluwer Academic Publishers, 2004.

[37] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber,
“Capability Maturity Model for Software,” v.1.1, Technical
report, CMU/SEI-93-TR-024. Software Engineering
Institute, Carnegie Mellon University, 1993.

[38] CMMI Product Team, “Capability Maturity Model
Integration (CMMI),” v1.1. Pittsburgh, USA: Software
Engineering Institute, Carnegie Mellon University, 2002.

[39] A. Dorling, “SPICE: Software Process Improvement and
Capability Determination,” J. Software Quality, vol.2-4,
1993, Springer, Netherlands, pp.209-224.

[40] M. Harry and R. Schroeder, “Six Sigma: The Breakthrough
Management Strategy Revolutionizing the World’s Top
Corporations,” New York: Currency, 2000.

[41] J. Gremba and C. Myers, “The IDEALSM Model: A
Practical Guide for Improvement. Bridge,” 3 (1997): 19–
23. [online resourse].
http://www.sei.cmu.edu/ideal/ideal.bridge.html

[42] ISixSgima, “Six Sigma DMAIC Roadmap,” [online
resourse]: http://www.isixsigma.com/dmaic/six-sigma-dmaic-
roadmap

[43] S. Masters and C. Bothwell, “CMM Appraisal Framework,”
Version 1.0, (CMU/SEI-95-TR-001, ESC-TR-95-001).
Pittsburgh, USA: Software Engineering Institute, Carnegie
Mellon University, 1995.

[44] M. Poppendieck, “Principles of Lean Thinking,”
Poppendieck.LLC, 2002.

[45] M. Poppendieck and T. Poppendieck, “Lean Software
Development: An Agile Toolkit,” Addison-Wesley
Professional, 2003.

[46] K. Schwaber and M. Beedle, “Agile Software Development
with SCRUM,” Prentice Hall, 2001.

[47] M. D. Myers, Qualitative Research in Business and
Management, Sage publications, London, 2009.

[48] N. Nikitina and M. Kajko-Mattsson, “Software Process
Improvement Health Checklist,” Proc. EuroSPI 2012,
Springer, 2012, p. 85-96.

[49] W. Trochim, Research Methods: The Concise Knowledge
Base, Cornell University, 2005.

335

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evaluating Performance of Android Systems as a Platform for Augmented Reality
Applications

Andrés L. Sarmiento, Margarita Amor, Emilio J. Padrón, Carlos V. Regueiro, Raquel Concheiro, and Pablo Quintı́a
Dept. Electronics and Systems

University of A Coruña
A Coruña, Spain

andreslopezsarmiento@gmail.com, margarita.amor@udc.es, emilioj@udc.es, cvazquez@udc.es
rconcheiro@udc.es, pquintia@udc.es

Abstract—Android is a free operating system for mobile
devices that has become very popular these days. In this work
we analyse the capabilities of an Android smartphone with the
OpenGL ES API for the rendering of synthetic realistic images.
The aim is to find out the facilities and the main limitations of
the platform for the development of augmented reality games,
studying the integration of synthetic information with the real
environment using data from the camera and the positioning
engine. Thus, our research covers mainly three fields: an
analysis of the information provided by the camera, a study
of the tracking and positioning capabilities of current Android
devices and an outline of the rendering facilities usually found
in these devices. The performance, in terms of frames per
second and latency, has been tested in different smartphones, in
addition to evaluate the reliability and efficiency of the sensors
and the quality of rendering. In order to show all the results
obtained from this study we have developed an augmented
reality game trying to combine quality, performance and real-
time interaction.

Keywords-Augmented reality; Android; Positioning sensors;
Image processing; Realistic image synthesis

I. INTRODUCTION

This work extends a previous survey [1] about the current
state and capabilities of augmented reality applications in
Android smartphones, adding new tests and devices to
the analysis. Smartphones have gathered functionalities and
features of an increasingly number of different devices, from
those used in a more professional environment (i.e., mobile
devices, electronic agendas, GPS) to others with recreational
aspects (such as cameras or video game consoles). Although
this means an obvious saving of money and space, the major
advantage of these new devices is the integration of all
those capabilities in increasingly complex and innovative
applications.

Most of the operating systems available for these devices
have been developed ad hoc for each model, such as Apple’s
iPhone OS [2] or Samsung’s Bada [3]. Android [4], however,
has a very different origin since it is a multi-platform
linux-based OS (rigorously, Android is really a software
stack that includes an OS, middleware and a handful of
applications) promoted by a group of companies. This open
source and cross-platform nature, together with the growth

it has experienced over the past few years, giving access to a
wide range of devices ranging from the low price terminals
to the more expensive ones, made us adopt Android as the
platform for this work.

Augmented reality (AR) [5] is one of the newest and
most popular applications that have recently shown up within
the sphere of smartphones. Most of the existing proposals
may be classified at one of the following three groups:
AR browsers; applications that allow us to move through a
completely synthetic environment; and, lastly, applications
that use the camera information to show virtual objects in
the phone.

AR browsers are outdoor augmented reality applications
that do geopositioning of virtual objects in the real world by
using the orientation sensors and the GPS or a triangulation
positioning system to determine the position where they
must be placed [6], [7]. The information about the objects to
be positioned is pre-computed and these applications do not
demand a great accuracy in the positioning and orientation
of the mobile device. AR browsers generally presents a good
operation, showing real time information with an acceptable
precision though with the typical limitations of any GPS or
triangulation positioning systems. Generally speaking, the
positioning accuracy is upper than 5 meters in optimal con-
ditions (open space and good firmament visibility). However,
the precision drops drastically in cities and, above all, inside
buildings.

The second type of AR applications uses only the move-
ment and orientation of the device to readjust the vision of a
synthetically generated scene [8], [9]. In these applications
all elements are generated in a virtual scene that is shown in
the mobile screen. The device movements and its orientation
in relation to the Earth’s magnetic field and to the centre
of the Earth (gravity) are used to establish or update the
point of view in the scene shown in the screen. The image
captured by the camera can also be shown, but it has not
any influence in the applications as it is not really processed
by the device.

Finally, some applications apply artificial vision tech-
niques [10], [11]. This type of applications processes the

336

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

perceived image and uses that information to put the virtual
models in the right place, usually through known tags to
be able to interpret in a better way the perceived informa-
tion. Obviously, this approach means higher computational
requirements and a greater application complexity. As a con-
sequence, there are really few AR applications in Android
based on exploiting data obtained by the camera and most
of them are basically technical demonstrations. On the other
hand, this kind of applications can be found in other systems
apart from mobile devices, such as desktop computers,
mainly due to the usual high computing requirements of
image processing algorithms.

To sum up, from a user point of view there are multiple
applications using geopositioning of objects with different
objectives, and several proposals already in the market to
cover this topics. However, few Android applications use
artificial vision to perceive and process the real world, and
those have usually a poor performance. In our research,
we focus on this last line of work since the best approach
to integrate synthetic information with the immediate real-
time data from the environment in a realistic scenario such
as a dynamic and complex environment seems to be the
exploitation of both the camera and the positioning sensors
of these devices. Since Android is a brand new platform,
analysing the viability of this kind of AR application is a
necessary preliminary step. This analysis is complemented
in this work with the development of a simple AR game for
indoor environments as a demonstration of the possibilities
of this approach.

The structure of the paper is as follows, Section II goes
into the study of Android smartphones as an AR platform.
We have divided our analysis in three big sections: firstly,
a study of the possibilities for processing the information
captured by the camera; next, a survey of the positioning
and tracking capabilities of these smartphones in an indoor
environment and, lastly, the possibilities for the real-time
rendering of complex virtual models. A brief outline of
all the aspects studied in the analysis is in the end of
this section. Section III describes the AR game we have
developed taking into account the results from our analysis,
and Section IV shows the performance achieved with our
proposal. Finally, the conclusions we have reached with this
work are shown.

II. ANALYSIS OF THE CAPABILITIES OF AN ANDROID
SMARTPHONE WITH OPENGL ES

In this section, an analysis of the capabilities of the
Android platform in the context of AR is presented. Table I
shows the main features of the devices used in our study.
These devices are representative of the current smartphone
market in the last couple of years.

A. Image capture and processing

The camera of a smartphone is of great importance for AR
applications, since the synthetic images are usually rendered
over real images obtained by the camera. If the image from
the camera is just being displayed, Android efficiently add
it to the rest of layers shown by the application. Otherwise,
if the image is going to be processed, it is captured by the
system and provided to the application as a vector of bytes in
a default format previously set in the camera. Many cameras
(such as the ones used in our analysis) only work with the
YUV image format.

Once an image from the camera is obtained, any image
processing technique may be applied on it. Since image
processing is usually a high-cost computationally task, any
operation has to be spawned in a different thread to the one
running the application’s GUI. Otherwise, non-responding
lags are probably to be experienced in the application.
Besides, it is also a good practice to code image processing
tasks in native code (C, C++) and use the NDK to integrate
it in the application [12]. This way, we can achieve an
important improvement, up to 400%, in the velocity of
execution.

In order to analyse the possibilities of image capture
and processing at iterative rates we started studying the
maximum frequency at which data can be obtained. This
allow us to get the top level of performance that can be
achieved in these devices. Thus, our first test just captures
an input image and calls a naive processing image code
that just computes the frame rate (fps, frames per second)
with no additional computation (the input image is not
processed at all). The result obtained with this simple test for
a Motorola Milestone with Android v2.1 and a configuration
of 10 fps as the maximum capture frequency was 8.8 fps,
whereas a maximum of 9.3 fps was obtained when the
maximum frequency was set to 30 fps. Obviously, these
results are far from being satisfactory, since even without
any image processing we are rounding the minimum frame
rate acceptable for a fluid interaction.

To study the effect of a simple image processing on
the performance, we have extended our test by adding
the display on the screen of the images obtained by the
camera. Since images are obtained from the camera in YUV
format for portability issues and they must be in RGB to
be displayed by Android, some computation is needed to
get the conversion. Therefore, this test program just takes
each image captured by the camera, recodes it from YUV
to RGB and gets it displayed on the screen. Additionally, our
test program can be configured to encode only a region of
the image. The results of running our tests in the Motorola
Milestone are depicted in Table II. The table shows the frame
rate as a function of the size of the region to process and the
highest frequency set in the camera. As can be observed, a
top value of 5.15 fps has been obtained, that does not make

337

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: Technical data for the smartphones used in our tests.

Motorola Milestone GeeksPhone One Samsung Galaxy S HTC Sensation Samsung Galaxy S2
Android 2.1 Eclair 2.2 Froyo 2.2 Froyo 4.0 ICS 2.3 Gingerbread / 4.0 ICS

CPU ARM Cortex A8 ARM11 Samsung Qualcomm Scorpion ARM Cortex A9
550 MHz 528 MHz Hummingbird 1 GHz dual-core 1.2 GHz dual-core 1.2 GHz

GPU PowerVR SGX 530 built-in PowerVR SGX 540 Qualcomm Adreno 220 ARM Mali-400 MP
RAM 256 MB 256 MB 512 MB 768 MB 1 GB
Display 3.7” 854x480 3.2” 400x240 4” 800x480 4.3” 960x540 4.3” 800x480
GPS 3 3 3 3 3
Acceler. 3 3 3 3 3
Compass 3 7 3 3 3
Camera 3 3 3 3 3

possible to keep a fluid stream of images on the screen.
Furthermore, we have observed a delay of about one second
in what is being displayed. A further analysis of this delay
is presented at the end of this section.

These results show that the configuration with 10 fps as
the maximum frequency obtains the best results; probably
because with this frequency the application is not saturated
with images it is not able to process. Even though there is
a substantial improvement in the capture by reducing the
image size (25% fps with 1/4 of the size), this results in
less than 5 fps with the max set to 30 fps.

In a next step we have studied the performance of image
processing, so a simple colour segmentation of pixels is car-
ried out. Since all the pixels in the image were already being
processed by the image recoding process in the previous test,
adding colour segmentation only needs a few additional lines
of code, so execution times remains almost the same, as
we have tested experimentally. Other tests adding different
image processing algorithms were carried out and similar
execution times were obtained.

The obvious conclusion coming from the results of our
tests is that the image processing velocity is really low
in Android v2.1 and previous versions, obtaining a slow
response even after implementing optimisations such as
using NDK and running the processing in a different thread.
The main reason for this performance seems to be in the
process the system follows for each image captured by the
camera, allocating memory, saving a copy of the image,
calling the function to process it and, finally, removing the
reference to the allocated memory [13]. This whole process
entails a completely inefficient memory management, that
is made still more acute by the high cost of garbage
collection in Android, between 100 and 300 milliseconds.
Not reusing the memory assigned to each image results in a
frequent invocation of the garbage collector, burdening the
performance.

This important issue with memory management was
solved in Android v2.2, that included other significant
improvements as well, such as a Just in Time compiler.
Regarding image processing, the API was also enhanced
with new methods that work with a buffer passed as a

Table II: Image capture, decoding and visualisation on
Motorola Milestone with Android v2.1.

Max. FPS
Image size Milestone-30 Milestone-10

560×320 3.25 3.90
280×320 3.90 4.45
280×160 4.50 4.95
140×160 4.60 5.10
15×15 4.65 5.15

Table III: Image capture, decoding and visualisation in
devices with Android v2.2.

GeeksPhone Galaxy S
Size FPS Size FPS

400×240 3.90 800×480 5.70
200×240 4.50 400×480 7.10
200×120 5.00 400×240 8.00
100×120 5.50 200×240 8.75
15×15 5.80 15×15 9.20

parameter, removing the memory allocation and removal for
each image to process.

We have analysed the improvements in Android v2.2 by
running the same tests in two of our devices with this
version of the OS. Table III shows the results obtained
with Android v2.2 for the simple capture and recoding test
previously outlined in Table II, in this case considering only
the configuration of 10 fps as the maximum frequency, since
it provides the best results and the 30 fps configuration does
not add relevant information to the analysis. As can be
observed, there is a performance increase of 50%, from
3.90 up to 5.70, and taking into account a 50% increase
in the image size as well. The improvement is even more
appreciable looking at the visualisation delay, that has been
reduced from around 1 second to 0.5 seconds.

Table IV depicts the results achieved by the new Android
v4.0 running on two current smartphones: HTC Sensation
and Samsung Galaxy S2. As can be observed, the perfor-
mance has significantly improved, above all for the 30 fps
configuration, that now even achieves the best results in
some of the cases. The frame rates shown in this table

338

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table IV: Image capture, decoding and visualisation on HTC
Sensation and Galaxy S2 with Android v4.0.

Max. FPS
Image size Sensation-30 Sensation-10 Galaxy S2-30 Galaxy S2-10

640×480 9.38 9.62 11.89 11.59
320×480 10.36 10.50 11.93 11.87
320×240 12.20 12.20 12.08 12.04
160×240 12.64 12.71 13.26 12.06
160×120 13.28 13.05 14.87 12.63

Table V: Image capture, decoding and visualisation in a
high load scenario on HTC Sensation and Galaxy S2 with
Android v4.0.

Max. FPS
Image size Sensation-30 Sensation-10 Galaxy S2-30 Galaxy S2-10

640×480 7.60 7.70 8.60 8.73
320×480 8.00 8.10 9.41 9.23
320×240 8.40 8.50 12.03 9.60
160×240 8.90 8.70 13.03 9.76
160×120 9.10 8.90 14.42 10.01

were obtained while keeping a small amount of background
workload in the smartphone, as in the previous tests. In
order to check how the background processes running in the
smartphone influence the performance of the image capture
and process task, we have repeated the test in the Android
v4.0 devices while a great bunch of usual applications were
being executed in background (IM, e-mail, alerts. . .). The
results in such a scenario are shown in Table V, and an
important drop in performance can be observed compared
to Table IV, above all in the HTC Sensation, even though
both two devices are dual core.

Lastly, all our tests analysing the image capture and
processing in Android have revealed an important delay in
the capture of the input data. This delay was extremely
high in the devices with Android v2.1, about 1 second, and
has been reduced in the last versions. Table VI shows the
results of a simple experiment to measure this delay in three
different devices, Samsung Galaxy S, with Android v2.2, and
HTC Sensation and Samsung Galaxy S2, with Android v4.0.
Our experiment involved the measurement of the response
time of a simple quantifiable event, the off/on switching of a
LED, that allow us to know the delay in the image capture
for each device (see Figure 1). As can be observed, the
delay in the Samsung Galaxy S2 is about half the time it
is in the other two devices, even though one of them, HTC
Sensation, is using the same version of Android. A video
with this experiment is provided as additional material with
this paper.

Summing up, although the improvements introduced with
Android v2.2 and next versions make us optimistic about
future revisions, above all in combination with more pow-
erful hardware such as the recent multi core processors,

Table VI: Delay between image capture and processing on
Galaxy S with Android v2.2 and HTC Sensation and Galaxy
S2 with Android v4.0.

Delay (s) Galaxy S Sensation Galaxy S2

Average 0.454 0.414 0.246
Std. deviation 0.024 0.041 0.060

(a)

(b)

Figure 1: Delay time measurements in (a) Samsung Galaxy
S and (b) HTC Sensation.

the current situation does not allow real time applications
entirely based on the processing of images from the camera.
Thus, an efficiency analysis of the real world around us
makes necessary the use of data from other sources, e.g.,
positioning sensors.

B. Device positioning and orientation

In this subsection we outline the main positioning and
tracking sensors included in most Android smartphones:
accelerometer, compass and GPS. In order to check their
performance, some test were executed on our Milestone
phone, similar results were obtained in the rest of devices.

An accelerometer measures the proper acceleration of
itself, i.e., a change in velocity, that involves a change in
position. Mathematically velocity is the integral of acceler-
ation, and position is the integral of velocity. Smartphones
have usually three accelerometers, one for each spatial axis.

339

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-2

0

2

4

6

8

10

12

5 5.5 6 6.5 7 7.5 8 8.5 9

m/s2

seconds

Z-axis accel
Y-axis accel

X-axis accel

10 10.5

Figure 2: Values obtained by the accelerometers of a Mo-
torola Milestone during a user’s walk.

Theoretically, the position of a smartphone could be guessed
from data provided by these sensors. Data are presented as
a vector with the values measured for each of the three
axis in SI units (m/s2). In practice, however, the measures
are not very accurate due to the presence of gravitational
and centripetal forces [14]. Thus, a mobile phone left to
stand on a table presents a downward acceleration of about
9.82m/s2, the gravitational acceleration. It will be necessary
a gravitational free fall toward the centre of the Earth to
measure a value of zero in the three axes. Furthermore, the
double integral that has to be solved for obtaining location
from the acceleration value also increases the measurement
error. Anyway, these sensors are handy for knowing the de-
vice’s position relative to the floor with simple trigonometric
calculations.

To test these devices a small application that simply takes
the received measurements and save them in a file has been
developed. Figure 2 depicts the values received while a user
is walking along the Z axis with the mobile vertical to the
floor (axis Y is perpendicular to the floor and axis X is on
the side). As can be seen, there is a regular pattern of about
a footstep per second crests in axis Y (continuous changes
of about 4m/s2): acceleration progressively increases each
time the user raises his foot to start a new step, and it falls
when the foot reaches the floor, before starting a new step
and so on. The lateral movement enclosed to each footstep
can also be observed, but more complex movements would
be hard to recognise, hence the difficulty of computing
displacements using acceleration values. Broadly speaking,
the accelerometers we have tested measure a lot of noise
and therefore don’t seem reliable enough for a real time
application.

A digital compass or magnetometer is a device that

-40

-20

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

degrees

seconds

Y-axis
X-axis
Z-axis

6 6.5

Figure 3: Values obtained by the compasses of a Motorola
Milestone with a 90◦ turn.

measures the strength and direction of the magnetic fields
in its environment. Due to the magnetic field of the Earth,
a compass is usually employed as an orientation device
since it points out the Earth’s magnetic north. A smartphone
usually incorporates a chip that integrates three compasses
arranged to detect magnetic fields in the three spatial axes
[15]. Thus, location can be obtained independently of the
position of the device. Data are presented again as a three-
component vector, with the rotation value for each axis. The
first component of the vector is the rotation measurement
usually employed, i.e., rotation with regard to z axis. This
value is 0 ◦ when the device is oriented towards north
direction and the value increases clockwise up to 360 ◦,
north again. The other two components, rotation regarding
the other axes, are 0 ◦ when the device is lying face up.
Figure 3 shows the results obtained by a test consisting of
making an abrupt 90◦ turn, almost instantaneous, just before
returning to the initial position by means of a slighter turn,
during about 3 seconds. As can be observed in the figure,
the compass is too slow in measuring the new position after
the first sudden movement, what introduces wrong values
during a short period. However, it behaves really well in the
presence of slight movements, with accurate values and very
little noise.

Therefore, to track the direction in which a smartphone
moves with Android is recommended to take together data
from the accelerometers and the compasses. By previously
setting a default position for the device when the application
starts we get enough accuracy, since measures of smooth
changes in the local environment are quite precise.

GPS is a space-based global navigation satellite system
that provides reliable location through an infrastructure
comprising a network of satellites. This system can be used

340

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Memory

Vertex
Shader

Rasterizer

Primitive
Assembly

Fragment
Shader

Per-fragment
Operation

v1

v2

v0

v1

v2

v3

Figure 4: OpenGL ES 2.0 pipeline.

all around the world whenever there is an enough number of
visible satellites. Otherwise, less accurate measurements are
obtained or the device can even get out of network coverage,
usual problem in the indoor locations. The values obtained
by a GPS device points out its current position in the globe
with a few meters of precision, about 10 meters outdoor.
Besides, it does not provide reliable information about the
direction or inclination of the device and data is obtained
with a delay of about 1 and 2 seconds. All this makes
difficult to realistically locate and move synthetic objects
that are close to the device.

Nowadays, an alternative method to GPS is network-based
tracking by using the service provider’s network infrastruc-
ture to identify the location of the device. Although this
technique has less accuracy than GPS, it has the advantages
of a shorter initialisation time and an important reduction
in power consumption, since only the telephone signal is
used. Additionally, it can provide better results in indoor
environments than GPS. Anyway, both the two methods are
compatible as they are not mutually exclusive.

C. Android and synthetic graphics

OpenGL ES [16] is the API for producing computer
graphics in Android. It is a subset of the standard OpenGL
designed for embedded devices, so it removes some redun-
dant API calls and simplifies other elements to make it run
efficiently on the low-power GPUs of handheld devices. Fig-
ure 4 depicts the rendering pipeline in OpenGL ES 2.0, with
programmable hardware. Our codes are based on OpenGL
ES 1.1, with the same pipeline but with configurable fixed

Figure 5: Test model for OpenGL ES.

Table VII: Performance (fps) of OpenGL ES in Android v2.1
and v2.2.

Points GeeksPhone Milestone Galaxy S
C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

3 K 35 35 35 33 30 30 30 30 55 55 55 55
9 K 18 19 19 15 30 29 29 28 55 55 55 55

15 K 12 10 10 10 29 26 26 25 55 55 55 55
30 K 8 - - - 25 22 22 19 55 55 55 55
75 K - - - - 18 15 15 12 55 53 53 50

100 K - - - - - - - - 55 44 44 41

function hardware instead of programmable shaders. A set
of tests were carried out on the devices presented in Table I
to analyse the performance of graphic synthesis in Android.

The first test focused on measuring performance as the
number of primitives to render increases. The experimental
results obtained for a scene with the model of Figure 5
replicated multiple times are shown in the column C1 of
Table VII, in this case using the smartphones with Android
v2.x: GeeksPhone, Milestone and Galaxy S. In view of these
results, it is clear that the performance gets worse as the
number of polygons increases except for Galaxy S, device
in which we perceive a serious performance loss starting
from 300K points. Non relevant values were not included in
the table.

Column C2 of Table VII shows the results after adding a
texture to the model of Figure 5. This definitely improves
the visual aspect of the virtual objects with a minimum
loss of efficiency, up to a 17% for a model of 75000
points in our Milestone. Column C3 depicts the results when
including transparency effects. This hardly has influence on
performance comparing to the synthesis with textures. In
column C4 the results are obtained after applying illumina-
tion to the models. The performance decreases now a 24% in
Milestone for a scene with 30K points. Obviously, this loss
of performance is due to the additional computation required
to get the colour of each pixel in the scene. Furthermore,
it is necessary to define the light sources in the scene,
setting its position, type, colour and intensity, in addition
to provide each vertex of the models with a normal vector.
As can be observed, the fall of performance in Galaxy S is
only noticeable for models with a certain complexity (100K
points).

341

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VIII: Performance (fps) of OpenGL ES in Android
v4.0 (also Android v2.3 in Galaxy S2).

Points Sensation Galaxy S2
C1 C2 C3 C4 C1 C2 C3 C4

2.3 4.0 2.3 4.0 2.3 4.0 2.3 4.0

30 K 60 60 60 60 60 60 60 60 60 60 60 60
75 K 56 55 55 54 60 60 60 60 60 60 46 52

100 K 54 53 53 50 59 59 60 60 60 57 33 37
150 K 49 48 49 24 56 58 60 60 60 60 23 26
180 K 43 40 37 18 50 55 49 50 52 56 20 22
210 K 37 32 33 14 45 48 43 44 41 46 17 19
240 K 31 26 26 12 40 43 38 39 37 39 14 17
270 K 25 21 23 10 36 38 32 35 35 37 13 15
300 K 21 17 16 9 31 35 30 32 31 33 11 13

Figure 6: Morphing animation: starting state on the left and
final state on the right.

Table VIII has the results for the smartphones with
Android v4.0 used in our work: Sensation and Galaxy S2.
Sensation keeps a good performance up to 180-210 K points,
though the frame rate with illumination (column D) dramat-
ically drops for more than 150 K points. Galaxy S2 obtains
very similar results to Galaxy S, keeping a good performance
even with 300 K points. Again, working with illuminated
models makes the performance drop, surprisingly resulting
in poorer frame rates than Sensation for 75-100K points. The
table also has the results for Android v2.3 in the Galaxy S2
model, what shows the noticeable improvement introduced
with Android V4.0, above all when the number of primitives
to be rendered increases.

As regards animation, among all the different methods
we have analysed the inclusion of morphing [17]. This
technique gets a smooth transition between two models,
using interpolation to compute the intermediate versions of
the models. Since a new position for each point in the model
has to be calculated for each frame, this kind of methods
have a high computational cost. The model in Figure 6
(around 800 points and 300 polygons) has been used to
test the performance of this kind of animation together
with the application of textures and illumination in our
target devices. The frame rates obtained for different scenes
with this model on the smartphones with Android v2.x are
shown in Table IX (only the most interesting results were
measured). It can be observed that performance falls off
dramatically except for low-complexity scenes (8K in the

Table IX: Frame rate comparison of static (S) and animated
(A) models in the scene with Android v2.1 and v2.2.

Points GeeksPhone Milestone Galaxy S
S A S A S A

800 40 21 30 30 55 55
1.6 K 32 14 30 25 55 55
2.4 K 27 10 30 18 55 55

4 K 21 6 30 10 55 51
8 K - - 27 5 55 29

12 K - - - - 55 20
16 K - - - - 55 15

Table X: Frame rate comparison of static (S) and animated
(A) models in the scene with Android v4.0 (also Android
v2.3 in Galaxy S2).

Points Sensation Galaxy S2
S A S A

2.3 4.0 2.3 4.0

30 K 60 60 60 60 60 60
75 K 60 53 60 60 51 60

100 K 59 39 60 60 36 60
150 K 57 28 60 60 24 46
180 K 55 25 55 60 19 39
210 K 54 21 47 60 17 33
240 K 54 19 42 60 14 30
270 K 47 17 41 53 12 27
300 K 44 14 37 48 11 23

case of Galaxy S). These results are greatly improved in
the new devices with Android v4.0, as shown in Table X.
Specifically, the rendering of animated models has the most
remarkable improvement, above all in the Galaxy S2, that
exhibits a great performance up to 150 K points and keeps
good frame rates with 240 K points in the scene. Again,
the table allow us to compare the results accomplished by
Android v2.3 and v4.0 when running on the same hardware
(Galaxy S2). The improvements introduced in Android v4.0
lead to an increase in performance when the number of
primitives to be rendered is greater than 150K.

D. Discussion

An important deficiency in the image processing capabil-
ities of the platform has arisen, mainly in terms of image
capture latency (a minimum of 0.246 seconds in high-end
smartphones). The main augmented reality applications of
other platforms use the information obtained after a complex
analysis of the images captured by the camera as the main
source of information for positioning the synthetic objects in
the scene. In view of the results of our analysis, this kind of
applications are currently not possible at all in the Android
devices we have tested.

On the other hand, multiple conclusions can be extracted
from the analysis carried out using the Android positioning
sensors. First of all, regarding the use of the built-in locating
and tracking sensors, the accelerometers and the compass
provide results relatively reliable with no important errors.

342

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) BatGhost (b) HulkGhost

(c) EmGhost (d) SuperGhost

Figure 7: Three-dimensional models.

However, GPS gives an excessive error in the measure to
be used in the kind of AR indoor application we propose in
this work.

Lastly, we have detected restrictions in size and com-
plexity of the models to be rendered. From the results we
can deduce that the graphic hardware is powerful enough
to render non-excessively complex models with textures
and illumination. Therefore, in the game we propose in
the next section as an example of AR application, all the
render capabilities we have analysed have been applied, but
limiting the complexity of the model in order to get real
time rendering.

III. AN AR GAME IN AN ANDROID PLATFORM

To exploit the different aspects we have studied in our
analysis we have developed a simple AR game. In this game
each real-time image obtained by the camera is analysed and
it determines the apparition of ’enemies’ that the user/player
must hunt down. Thus, we have implemented a simple
system of events based on object colours and the differ-
ent enemies are drawn when a certain event is triggered.
Therefore, in accordance with this game idea, the main
requirement is to render virtual elements (the ’enemies’)
on the live image stream from the camera. These synthetic
characters have to look as if they really were in the real
world so they must behave properly with camera movements.

There are 4 different enemies in the game, each one
of them with specific reactions and movements: BatGhost
(Figure 7a), has been designed as an example of animation
by parts, with its wings moving independently to provide a
sense of flapping, HulkGhost (Figure 7b) with its blinking
eye is an example of animation using morphing techniques,
EmGhost (Figure 7c) was designed to have an enemy with

Table XI: Frame rates of the AR game.

Milestone GeeksPhone Galaxy S
Test ImPr Syn ImPr Syn ImPr Syn

Static 3.25 15 2.75 8 4.10 35
ImPr deact. 30 21 44

Anim. 2.75 8 2.50 3 3.60 23
ImPr deact. 28 17 41

bouncing capabilities, that could jump over the player, and
SuperGhost (Figure 7d), that moves around the player while
approaching to him. Whenever an enemy is hunted, the
player earns points and extra shoots as a reward. Otherwise,
if the player is hit by the enemy a life is lost. When the
player loses its last life the game ends. Figure 8 shows
some screenshots of the game: an enemy appears when the
associated colour is detected through the camera (Figure 8a),
the settings menu of the application (Figure 8b) and the
colour calibration process (Figure 8c). This calibration is
indispensable to get a right colour-based event triggering
with different devices.

When it comes to rendering the different elements through
OpenGL ES calls, the operating system itself executes these
calls in a different thread, allowing a decoupled execu-
tion [18]. Furthermore, the reuse of memory is a constant
issue in our implementation, preventing the number of
memory allocations as far as possible.

IV. EXPERIMENTAL RESULTS

This section presents the performance achieved by our AR
application. The resulting frame rates are shown in Table XI.
The different columns show the frames per second for image
processing (ImPr) and image synthesis (Syn) in each device.
The results in rows 2 and 4 (ImPr deact.) are obtained
by deactivating the image processing task once an event is
triggered, as described below.

In Motorola Milestone the image processing rate ranges
from 3.25 fps with no visible enemy to 2.75 fps when an
animated (morphing) enemy appears. Besides, the image
synthesis rate falls down from 15 fps to 8 fps with only an
animated model in the scene.

The performance is slightly worse in GeeksPhone One,
with a peak of 2.75 fps for image processing. As can be
seen, the main performance loss is mostly noticeable in the
graphic synthesis. While the stream of images obtained from
the camera is being processed, the performance values of
the graphic synthesis are lower than the ones for Motorola
Milestone in about 50%.

In the case of Galaxy S we have obtained better results,
with a rate of image processing ranging from 3.6 fps to
4.1 fps along with a rate of synthesis of 35 fps for static
models and 23 fps for animated, aspect in which the im-
provement is more appreciable.

343

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b) (c)

Figure 8: Game screenshots: (a) Event detection and triggering (b) Settings menu (c) Color calibration.

On the other hand, the performance loss in the processing
of the image has increased the delay in obtaining new
images from the camera, reaching now about 1 second in
our application.

As commented, once an enemy is discovered it does not
keep still, it moves around the environment. To increase
the frame rate and achieve a good response and fluid
feeling we have stopped the image processing task while
the enemy remains active in the screen. This restricts the
appearance of multiple simultaneous enemies, but allow us
to get an outstanding improvement in the rendering, reaching
about 30 fps in Milestone, 21 fps in GeeksPhone and 44 fps
in Galaxy S, a performance high enough to achieve an
acceptable fluidity in an AR game.

V. CONCLUSIONS

In this work we present a study of the capabilities of
current smartphones in the context of AR applications. Thus,
to test the feasibility of this kind of applications we start
checking the main constraints in the obtaining of data from
the device’s camera. The maximum frame rate we can
obtained is less than 15 fps in the best cases. Including
additional processing, such as colour segmentation, does
not have an appreciable impact in performance. The main
limitation is the latency in the image capture, near to 0.25

seconds in the best case. However, looking at the evolution
of this delay, from about 1 second in the oldest analysed
devices, rounding 0.5 seconds in the mid-range phones and
about 0.25 in the Galaxy S2 with Android v4.0, it seems that
this drawback will be solved in a near future. Besides, using
native code and the NDK seems essential to achieve a good
performance, as the existing software layers are probably
introducing the main performance issues (drawback of being
a multiplatform OS).

Another point in our study has been to analyse the locating
and tracking features of these devices. From our tests we
have concluded that to obtain the device orientation is
relatively simple and reliable. Nevertheless, to guess the
device displacement is really complicated. Calculating it
using the values obtained by the accelerometers is not very
reliable, due to the numerical errors in the computation of the
double integration. Additionally, geolocation systems have
a margin of error too high for our requirements, about 10
meters.

With regard to the rendering of synthetic images with
the OpenGL ES library, we have tested the inclusion of
textures, illumination and transparencies. The performance
achieved in scenes with up to 15K points has been acceptable
for a mid-range smartphone as Motorola Milestone. Adding
models with morphing animation means a loss higher than

344

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

20% each time the number of points is doubled.
As a proof of concept, to show the possibilities within

the AR field of the different smartphones we have analysed,
an interactive AR video game has been implemented. The
performance we have achieved in this application is 3.25
images obtained through the camera per second and 28 fps
in the synthesis of graphics in a mid-high end smartphone
as Motorola Milestone. The results are better in a more
powerful device as Samsung Galaxy S, 4.1 processed images
per second and 35 fps, and appreciably worse in a low-
end device as GeeksPhone One, 2.75 processed images per
second and only 8 fps.

Additionally, it should be pointed out the great influence
that the presence of other running tasks (background and
foreground, e.g., a chat) have in the performance of an
AR application. In this sense, a further analysis of the task
scheduling on Android would be interesting.

As future work, we plan to propose a set of benchmarks
in order to identify graphics processor bottlenecks. This pro-
posal aims to guide programmers to identify the benefits of
potential optimisations. These benchmarks could be a useful
tool to make design decisions in architecture improvements.

Specifically, this proposal is aimed at designing, imple-
menting and testing a set of benchmarks to analyse the
rendering capabilities of Bézier surfaces on an Android
smartphone with the OpenGL ES API. We expect to de-
scribe several hand-tuned Bézier Surfaces rendering in real-
time implementation on Android systems, identifying key
graphics processor performance limitations, enhancements
and tuning opportunities.

ACKNOWLEDGEMENTS

This work has been economically supported by Ministry
of Education and Science of Spain under the contracts
MEC TIN 2010-16735 and TIN 2009-07737 and also by
the Galician Government under the contracts ’Consolida-
tion of Competitive Research Groups, Xunta de Galicia
ref. 2010/6’, 08TIC001206PR, INCITE08PXIB105161PR,
INCITE08PXIB262202PR, and CN2012/211, partially sup-
ported by FEDER funds.

REFERENCES

[1] A. L. Sarmiento, M. Amor, C. V. Regueiro, and E. J.
Padrn, “An analysis of android smartphones as a platform for
augmented reality games,” in Proceedings of the Fifth Interna-
tional Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2011), November
2011, pp. 71–76.

[2] A. Inc., “iOS Dev Center,” http://developer.apple.com/devcen
ter/ios/index.action, last access: 20/12/2012.

[3] S. E. Co., “Bada developers,” http://developer.bada.com/, last
access: 20/12/2012.

[4] M. Gargenta, Learning Android. O’Reilly, 2011.

[5] D. Wagner and D. Schmalstieg, “Making augmented reality
practical on mobile phones,” IEEE Computer Graphics and
Applications, vol. 29, no. 3, pp. 12–15, 2009.

[6] Layar, “Layar reality browser,” http://www.layar.com, last
access: 20/12/2012.

[7] T. Langlotz, C. Degendorfer, A. Mulloni, G. Schall, G. Reit-
mayr, and D. Schmalstieg, “Robust detection and tracking of
annotations for outdoor augmented reality browsing,” Com-
puter & Graphics, vol. 35, no. 4, pp. 831–840, 2011.

[8] MADfirm, “Sky siege,” http://madfirm.com, last access:
20/12/2012.

[9] Quest-Com, “Droidshooting,” http://www.quest-com.co.jp,
last access: 20/12/2012.

[10] H. Kato, “Artoolkit,” http://www.hitl.washington.edu/artoolkit,
Android port by A. Igarashi (2010), last access: 20/12/2012.

[11] N. SL., “Invizimals,” http://www.invizimals.com, last access:
20/12/2012.

[12] S. Lee and J. W. Jeon, “Evaluating performance of android
platform using native c for embedded systems,” in Proceed-
ings of the International Conference on Control, Automation
and Systems, 2010, pp. 1160–1163.

[13] “Android Google Code. Issue 2794: Camera preview callback
memory issue,”
http://code.google.com/p/android/issues/detail?id=2794, last
access: 20/12/2012.

[14] R. Meike, “Location, location, location (accelerometer),”
https://blogs.oracle.com/roger/entry/location location locatio
n accelerometer, last access: 20/12/2012.

[15] “Asahi Kasei Microdevices. 3-axis electronic compass,”
http://www.asahi-kasei.co.jp/akm/en/index.html, last access:
20/12/2012.

[16] D. Astle and D. Durnil, OpenGL ES Game Development.
Thomson Course Technology, 2004.

[17] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time
Rendering. A. K. Peters, 2008.

[18] C. Pruett, “Writing real time games for android,”
http://www.google.com/events/io/2009/sessions/WritingReal
TimeGamesAndroid.html, May 2009, last access: 20/12/2012.

345

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Debugging Ubiquitous Computing Applications With the Interaction Analyzer

Nam Nguyen, Leonard Kleinrock, and Peter Reiher
Computer Science Department, UCLA

 Los Angeles, CA, USA
songuku@cs.ucla.edu, lk@cs.ucla.edu, reiher@cs.ucla.edu

Abstract—Ubiquitous computing applications are frequently
long-running and highly distributed, leading to bugs that
only become apparent far from and long after their original
points of origin. Such bugs are difficult to find. This paper
describes the Interaction Analyzer, a debugging tool for
ubiquitous computing applications that addresses this
problem. The Interaction Analyzer uses protocol definitions
and histories of executions that displayed bad behavior to
assist developers in quickly finding the original root cause of
a bug. We discuss characteristics of ubiquitous computing
applications that can complicate debugging. We describe the
architecture of the Interaction Analyzer and the methods it
uses to rapidly narrow in on bugs. We also report overheads
associated with the tool, simulation studies of its ability to
find bugs rapidly, and case studies of its use in finding bugs
in real ubiquitous computing applications.

Keywords-ubiquitous computing; distributed debugging;
ubiquitous applications

I. INTRODUCTION
Ubiquitous and pervasive computing systems are often

complex systems consisting of many different objects,
components and agents, interacting in complicated and
unpredictable ways. The real world frequently intrudes
into pervasive systems, adding to their unpredictability. As
a result, such systems can frequently display unexpected,
and often erroneous, behaviors. The size and complexity
of the systems and their interactions make it difficult for
developers to determine why these unexpected behaviors
occurred, which in turn makes it difficult to fix the
problems [1][2][3][4].

We built a system called the Interaction Analyzer to
help developers of complex ubiquitous computing systems
understand their systems’ behaviors and find and fix bugs
[1]. The Interaction Analyzer gathers data from test runs of
an application. When unexpected behavior occurs, it uses
the data from that run and information provided during
system development to guide developers to the root cause
of errors. The Interaction Analyzer carefully selects events
in the execution of an application and recommends that the
human developers more carefully examine them. In real
cases, the Interaction Analyzer has guided ubiquitous
application developers to the root cause of system bugs
while only requiring them to investigate a handful of
events. In one case, the Interaction Analyzer helped
developers find a race condition that they were previously
unable to track down; the entire debugging process took
less than five minutes, while previously developers had

spent several days unsuccessfully tracking the bug using
more traditional debugging techniques.

In this paper, we describe how the Interaction Analyzer
works and give both simulation results of its efficiency in
tracking bugs and cases where it found real bugs in a real
ubiquitous application. Section II describes the Panoply
system, for which the Interaction Analyzer was built, and
introduces the example ubiquitous application. Section III
describes the Interaction Analyzer’s basic design and
architecture. Section IV provides simulation results and
real case studies; this section also includes basic overhead
costs for the Interaction Analyzer. Section V discusses
related work and Section VI presents our conclusions.

II. PANOPLY AND THE SMART PARTY
The Interaction Analyzer was designed to be a general-

purpose system usable in many ubiquitous computing
contexts. However, since we wished to demonstrate its use
in a real environment, we needed to connect it to some
particular system. We chose to integrate the Interaction
Analyzer with Panoply. Panoply is a middleware
framework to support ubiquitous computing applications.
While the work described here treats the Interaction
Analyzer in the Panoply context, we should emphasize
that, with relatively little effort, the Analyzer could be
integrated with other types of ubiquitous computing
system. The suitability and ease of the port will depend on
the degree to which the target system relies on a message-
based paradigm for interactions, since that is what the
Analyzer itself expects.

While the key elements of the Interaction Analyzer do
not depend on Panoply constructs, understanding how we
used it in the Panoply context requires a little knowledge of
how Panoply works. The core representational unit of
Panoply is the Sphere of Influence, which can represent an
individual device or a group of devices united by a
common interest or attribute such as physical location,
application, or social relationship. Spheres unify disparate
notions of “groups,” such as device clusters and social
networks, by providing a common interface and a standard
set of discovery and management primitives.

Panoply provides group management primitives that
allow the creation and maintenance of spheres of influence,
including discovery, joining, and cluster management. A
publish/subscribe event model is used for intra- and inter-
sphere communication. Events are propagated between
devices and applications, subject to scoping constraints
embedded in events of interest. Every sphere scopes policy

346

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and contains a policy manager [5] that monitors the
environment, mediates interactions and negotiates
agreements.

Panoply supports the design of applications that express
their needs and communicate through events. Panoply
applications (e.g., the Smart Party) can create custom
events, and designate the scope and destination of such
events. More details on Panoply can be found in [6].

For the purpose of understanding the Interaction
Analyzer, one can regard Panoply as a support system for
applications made up of discrete, but interacting,
components at various physical locations. These
components communicate by message, and generally run
code in response to the arrival of a message. Code can also
be running continuously or periodically, or can be triggered
by other events, such as a sensor observing a real-world
event.

Several applications have been built for Panoply [5],
[6], [7], and the Interaction Analyzer has been used to
investigate many of them. We will concentrate our
discussion of the Interaction Analyzer’s use on one
Panoply application, the Smart Party [7], touching more
lightly on its use for other applications.

In the Smart Party, a group of people attends a
gathering hosted at someone’s home. Each person carries a
small mobile device that stores its owner’s music
preferences and song collection. The party environment
consists of a series of rooms, each equipped with speakers.
The home is covered by one or more wireless access
points. Figure 1 shows the configured version of a Panoply
Smart Party, in which three rooms in a house are capable of
playing music and party attendees with various different
musical preferences are located in each room.

Figure 1. A Panoply Smart Party

As each guest arrives, his mobile device automatically

associates with the correct network to connect it to the
Smart Party infrastructure. As party attendees move within
the party environment, each room programs an audio
playlist based on the communal music preferences of the
current room occupants and the content they have brought
to the party. For example, for the party in Figure 1, rock
music would play in the family room, since the guests there
all have that preference, while folk or jazz would play in
the living room.

A Smart Party room determines which guests are
present because they have enrolled automatically in a
Panoply sphere belonging to that room, triggered by
wireless network enrollment. The Panoply sphere
controlling the Smart Party in that room periodically
queries the devices of the users in that room for their music
preferences. These preferences are currently expressed as
particular songs the user would like to hear played. The
Panoply sphere then uses the combined responses and a
voting procedure [8] to select a song from among those
suggested by the users’ devices. That song is downloaded
to the room (from the user’s device or somewhere he
specifies) and played, after which the process repeats.

As guests move from room to room, the underlying
Panoply framework notices their movements and removes
them from their old room, adding them to the new one.
Thus, each room’s playlist adjusts to the current occupants
and their preferences.

The Smart Party is a real, working application,
extensively tested in our labs.

The Smart Party application could fail in many ways.
It could overlook users, or it could localize them into the
wrong rooms. It could fail to obtain preferences from some
users. Its algorithms for song selection could be flawed,
resulting in endless repetitions of the same song. It could
unfairly disadvantage some users in the selection. These
are just a few of the many possible causes of failures.
Because it must take into account user mobility, and even
the possibility of users leaving the Smart Party in the
middle of any operation, flawed code to handle dynamics
can lead to multiple problems. These characteristics,
which caused a good deal of difficulty in getting the Smart
Party to operate properly, are likely to be common to a
wide range of ubiquitous computing applications.
Therefore, the Smart Party is a good representative
example of the complexities of debugging such
applications.

The problems we actually encountered during the
development of the Smart Party application included music
playing in rooms with no occupants, failure of some Smart
Party components to join the application, and race
conditions that sometimes caused no music to play when it
should. These and other bugs in the Smart Party were
attacked with the Interaction Analyzer. The results will be
presented in Section IV.

III. THE INTERACTION ANALYZER

A. Basic Design Assumption
The Interaction Analyzer was designed to help

developers debug their applications. Therefore, it was built
with certain assumptions:

• The source code for the application is available
and can be altered to provide useful information
that the Interaction Analyzer requires.

• The system was intended for use during
application development, not ordinary application
use. This assumption allowed us to rely on the
presence of more capable devices (with greater

347

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

storage capacity and processing power, for
example) than might be available in real
deployment.

• Knowledgeable developers would be available to
use the recommendations of the Interaction
Analyzer to find bugs. The Interaction Analyzer
does not pinpoint the exact semantic cause of a
bug, but guides developers in quickly finding the
element of the system, hardware or software, that
is the root cause of the observed problem. Also,
this assumption meant that we did not need to
provide descriptions of problems that would be
meaningful to naïve users unfamiliar with
Panoply or the design of the application.

The Interaction Analyzer works on applications that
have been specially instrumented to gather information that
will prove useful in the debugging process. This
instrumented application is run in a testing environment,
gathering data as the application runs. The data is stored
and organized automatically for use during debugging, if
necessary. When developers observe a bug that they need
to diagnose, they stop the application and invoke the
Interaction Analyzer on the information that has been
saved during the run.

The Interaction Analyzer is not intended to find bugs on
its own. Rather, it assists developers in finding and
understanding the causes of observable bad or unexpected
application behaviors. The Interaction Analyzer is not
intended as a replacement for tools that perform automated
analysis of source code, but as a tool for diagnosing
problems with application behavior.

The instrumented code is wrapped by a conditional
statement that checks the value of a predefined boolean
constant. By altering this value, the instrumented code can
be easily removed in the final release of the binary.

The Interaction Analyzer was designed for use in a
Linux environment, and is implemented in C. It was
designed for debugging programs written in C or C++. It
could be ported to other environments with reasonable
ease.

B. Protocol Definitions and Execution Histories
The Interaction Analyzer uses a protocol definition

(which specifies how the application is expected to work)
and an execution history (which describes what actually
happened in the run of the application) to debug
applications. Each of these is a directed graph of events,
where an event corresponds to some interesting activity in
the execution of the system. Developers instrument their
code to indicate when events occur and to store important
information about those events. An event can be primitive
or high-level. High-level events are typically composed of
one or more primitive events, as specified by the developer.

The Interaction Analyzer uses both temporal order (one
event occurring before another) and causal order (such as
the event that sends a message must precede the event that
receives the message) of events to build the execution
history of an application’s run. Some of these relationships
are found automatically by the Interaction Analyzer’s

examination of the source code, while others must be
provided explicitly by the developers using instrumentation
tools. By recording all events that occur during the
execution of a system and their causal relationships, one
can reconstruct the image and the detailed behavior of the
running system at any time [9].

The protocol definition describes how the system
should react and behave in different situations. We store
the protocol definition in an event causality graph format.
The protocol definition is produced at design time, and the
execution history is produced at run time.

C. Creating the Protocol Definition
The protocol definition is a model of the application’s

expected behavior. Such modeling is always an essential
part of a large software project, and is helpful in smaller
projects, as well. Models help software developers ensure
that the program design supports many desirable
characteristics, including scalability and robustness [10].
The Interaction Analyzer requires developers to perform
such modeling using UML, a popular language for
program modeling. We added some additional elements to
the standard UML to support the Interaction Analyzer’s
needs, such as definitions of protocol events and relation
definitions. We modified a popular graphical UML tool,
ArgoUML [11], to create a tool called Argo-Analyzer that
helps developers build their protocol definition.

The Argo-Analyzer is itself a complex system. Briefly,
developers use this tool to specify an application’s objects,
the relationships between them, the context, and the kinds
of events that can occur in a run of the application.

The application is organized into objects. Object types
are defined using the Argo-Analyzer. For source code
written in OOP languages (such as Java), the classes
correspond to the object types. These object definitions are
used to organize the protocol definition and describe
interactions between different application elements.

Relationship definitions describe relationships between
objects. The Argo-Analyzer supports commonly used
relationships such as parent-child, as well as other user-
defined relationships.

Event templates define the properties of an instance of
an important event in the application. There must be an
event template for each type of event in the application.
The Interaction Analyzer will use these templates to match
an execution event with an event in the protocol definition.
For an event to match a template, not only must their event
type and parameter fields match, but their causality
requirements must also match. If the execution event does
not have the same kinds of preceding events as the
template, it will not match.

The developer uses these and a few other UML-based
elements to specify the protocol definition, which describes
how he expects his application to work. This definition is,
in essence, a directed graph describing causal chains of
events that are expected to occur in the application.

Serious effort is required to create the protocol
definition, but it is a part of the overall modeling effort that
well-designed programs should go through. As with any

348

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modeling effort, the model might not match the actual
instantiation of the application. In such cases, an execution
history will not match the protocol definition, requiring the
developer to correct one or the other. In practice, we found
that it was not difficult to build protocol definitions for
applications like the Smart Party, and did not run into
serious problems with incorrect protocol definitions.
Mismatches between definitions and executions were
generally signs of implementation bugs, which generally
should be fixed even if they do not instantly cause incorrect
behavior.

D. Creating the Execution History
There is one protocol definition for any application, but

each execution of that application creates its own execution
history. The Interaction Analyzer helps direct users to
bugs in particular runs of the application by comparing the
execution history for that run to the expected execution
described in the protocol definition.

Each event in the application should generate a record
in the execution history. There are three ways to collect the
system information required to create such records that
describe an execution history of a program: software,
hardware and hybrid. For the Interaction Analyzer,
software monitoring was used since it provides more
flexibility and does not need extra hardware support.

The monitoring could have been based on external
observation of the application’s behavior, which would
have had the advantage of not requiring any
instrumentation of the application. We would have needed
some way to observe the scheduling of events, which
would have involved observing messages being sent
between objects in the system. Inter-machine messages
could have been sniffed off the wire (though use of
cryptography would have complicated this approach).
Messages that did not cross real network boundaries would
have been more challenging to capture. In either case,
obtaining information about the state of the sending and
receiving objects would have been difficult.

We chose instead to gather information about the
execution history by instrumenting the application. This
approach provides greater detail and produces more
powerful execution traces than external monitoring could
provide. It does so at the cost of changing the application
source code. However, since the target use of the
Interaction Analyzer is by application developers during
their development and debugging process, the costs were of
less concern, and the benefits more compelling.

We provide a library to help with this instrumentation
process. This general-purpose Java library provides an
interface to generate different kinds of event records and
their important attributes and parameters. An application
generates an entry in its execution history by calling a
method in this library. Doing so logs the entry into a trace
file on the local machine. Applications can also define
their own kinds of events, which the library can also log.
Panoply itself logs its own special kind of events, such as
“sphere joins,” using this mechanism.

A typical analyzer record contains several fields,
including a unique ID for the event being recorded, a
developer-defined ID, information on the producer and
consumer of the event (such as the sender and receiver of a
message for a message-send event), timestamps, pointers to
all events that directly caused this record’s event, and
various parameters specific to the particular kind of event
being recorded. Most of the parameters are defined by the
application developers, who can also add more parameters
if the standard set does not meet their needs.

Adding the code required to record an analyzer event
costs about the same amount of effort as adding a printf
statement to a C program. For example, the command to
generate an event in the Smart Party application under
Panoply looks similar to this:

PanoplyLogger.logPanoplyObjectCreated(codeID
,panoply-specificEvent,creator,createdObject,
directCauses,additionalParameters);

Compare this to an actual print statement that the Smart
Party developers used before the Interaction Analyzer was
available:

Debug.println(ModuleName,Debug.DETAIL,
panoply-specificEvent.EventType +“ “+panoply-
specificEvent.EventSubType+“ “
+additionalMessage);

The two statements are of similar length and
complexity, and require that the developers provide
roughly the same information. However, the old version
merely allowed a message to be printed, while the
Interaction Analyzer version allowed much more, as will
be discussed later.

Typically, all statements that record information on the
execution history for the Interaction Analyzer are bracketed
by compiler commands to include or exclude them,
depending on a compile-time option. Thus, a final
recompilation when debugging is finished produces a
version of the code without any overheads related to the
recording of event history.

Panoply applications run on virtual machines, one or
more on each participating physical machine. Each virtual
machine can run multiple threads, and each thread can
generate and log execution events to a local repository
using the Event Analyzer’s Execution History Generator
component. When a run is halted, the Log Provider
component on each participating physical machine gathers
its portion of the execution history from its local virtual
machines and sends this history to a single Log Collector
process running on a centralized machine. When all logs
from all machines have been collected, the Log Collector
collates them into a single merged execution history.

E. Using the Interaction Analyzer
After developers have created the protocol definition,

instrumented their code to build the execution history, and
run the instrumented application, they are likely to observe
bugs or unexpected behaviors during testing. This is when
the Interaction Analyzer becomes useful. Upon observing
behavior of this kind, the developer can halt the

349

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application, gather the execution logs (with the help of the
Log Collector), and feed them into the Interaction
Analyzer. The Interaction Analyzer makes use of both the
protocol definition and the execution history.

The Interaction Analyzer is a graphical tool that was
built using an internal frame model where the main
window contains multiple sub-frame-like windows of two
types:

1. System-type windows: These windows are
created by default and support the major
functions of the Interaction Analyzer.

2. User-type windows: These windows are
created (and destroyed) by the developer who
is using the Interaction Analyzer for
debugging. Typically, each user-type window
contains information about particular events or
objects in the protocol definition or the
execution history.

Figure 2. Screenshot of the Interaction Analyzer

Figure 2 is a snapshot of what use of the Interaction
Analyzer looks like when the developer starts it. At this
point, no execution history has yet been loaded, so all the
windows are generic to the application in the abstract,
rather than being specific to the erroneous run being
debugged. Using a menu option, the user would choose the
execution history describing the buggy run he wishes to
analyze, at which point the windows would become
populated with information specific to that run, and the
developer could start to work.

Figure 3. A Sample User-Type Window for an Event

As debugging proceeds, the developer opens and
closes windows and navigates between them to assist in
tracking down the problem he has observed. Figure 3 is an
example of one user-type window that describes an event
from the execution history. In this case, it is a Panoply
event that has created a sphere. The window shows various
event parameter values, such as when the event occurred
and what type it was. The Interaction Analyzer will
suggest events that are particularly likely to be helpful in
debugging various problems, and the user performing the
debugging might open this window to help him determine
whether there was an obvious error in this particular event.

When a developer opens such an event window, he can
take various actions. For example, if the Interaction
Analyzer has suggested that this event might be the cause
of the error, the developer can investigate the event and, if
he determines it is correct, he can validate the event. That
action tells the Interaction Analyzer that it should offer a
different event as the possible cause. Alternately, the user
can ask to see upstream events, perhaps because he
suspects that the error that was observed here originated
further back in the execution trace, or because he needs
more context to understand what should be going on in this
event. He can view events at different hierarchical levels,
diving down for more detail or popping up to see a higher-
level picture of the sequence of events. Similarly, he can
ask for downstream events to see what this event led to.

Another option is to find the matching event description
in the protocol definition. This option would allow the
developer to compare what the protocol said should happen
to what actually occurred for this event. Protocol events
are described by a similar window, and allow similar kinds
of actions: navigation forward and backward, changing of
hierarchical levels, obtaining more detail, and so on.

The Interaction Analyzer allows the developers to
obtain answers to a number of useful debugging questions,
including:

1. Why did an event E not occur?
2. Why did an incorrect event E occur?
3. What are the differences in behavior between

objects of the same type?
4. Why did an interaction take a long time?

The developer asks these questions from one of the
system-type windows created when the Interaction
Analyzer starts execution. For example, to ask a question
of Type 1, the developer would specify the event ID of the
protocol event he expected to see, but did not, in a field in
the Tools system-type window, which is the window in the
upper right of Figure 2.

Each of the types of questions that a developer can ask
requires somewhat different support from the Interaction
Analyzer. We will concentrate on how it addresses
questions of Type 1 and 2. The Interaction Analyzer also
supports searching for particular execution events and
protocol events.

1) Type 1 Questions
Type 1 questions are about why something did not

happen when it should have. For example, in the Smart
Party, if a user is standing in one of the rooms of the party

350

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and no music is playing there at all, developers want to
know “why is no music playing in that room?” There are
several possible reasons for this bug. Perhaps the user is
not recognized as being in that room. Perhaps the user’s
device failed to receive a request to provide his music
preferences. Perhaps the room was unable to download a
copy of the chosen song from wherever it was stored.

The Interaction Analyzer handles Type 1 questions by
comparing the protocol definition and the execution history
to generate possible explanations for the missing event.
The protocol definition describes event sequences that
could cause an instance of that event. The execution
history shows the set of events that actually happened, and
usually contains partial sequences of events matching the
sequences derived from the protocol history. The
Interaction Analyzer determines which missing event or
events could have led to the execution of the event that
should have happened. These sequences are presented to
the developer, ordered by a heuristic. The heuristic
currently used for presenting possible descriptions of
missing events is, following Occam’s Razor, to suggest the
shortest sequence of missing events first. The developer
examines the proposed sequence to determine if it explains
the missing event. If not, the Interaction Analyzer suggests
the next shortest sequence.

As a simplified example, say that music is not playing
in a room in the Smart Party when guests are present there.
The missing event is thus “play music in this room.” The
developer performing the debugging will ask a Type 1
question focused on why the “play music” event did not
occur in this instance. Complicating factors include the
fact that, in the same run, music might have been properly
played in other rooms, or even previously or subsequently
in the room in question. Thus, the Interaction Analyzer
offers methods of specifying the particular context in
which debugging should proceed. In this case, the context
is the room where the music didn’t play, at the moment
when silence was noticed.

The Interaction Analyzer will compare the sequence of
events in the actual execution where music did not play to
the protocol definition. It might come up with several
hypotheses for why music did not play. For example,
perhaps the guest who selected a song failed to send it to
the player. Or the module that gathers suggestions might
have failed to ask any present guests for recommendations.
Or the guests might not have been properly recognized as
being in that room at all.

There are many possible approaches to determining the
relevance of different possible explanations, which then
guides where the Interaction Analyzer directs the
developer. As mentioned, the Interaction Analyzer
currently chooses the explanation with the shortest path,
where the path length is defined as the number of events to
be added or removed to resolve the problem. In this
example, the first of these three explanations (that the guest
failed to send the song to the player) requires the fewest
“missing events” to serve as an explanation, so it would be
investigated first.

The actual methods used by the Interaction Analyzer
are more complex [12], since links in the protocol
definition and execution history can have AND and OR
relationships. Further, real protocols tend to be
multilayered and complex. In the case under discussion,
for example, sub-protocols are used for user localization,
voting, and file transfer. The error could have arisen in any
one of these lower-level protocols, in which case
eventually the developer would need to move down from
the high-level protocol that deals with Smart Party
concepts, like asking users for music preferences, to the
low-level protocol that might control the transfer of a large
file from one or several places to a destination. The
Interaction Analyzer understands the concept of multi-layer
protocols and offers tools for navigating up and down
through these layers.

 Further, the Interaction Analyzer makes use of
contextual information defined in the protocol definition
and recorded in the execution history. For example, if a
Smart Party supports music played in several different
rooms, a question about why music did not play in the
living room will not be matched by events that occurred in
the kitchen. The developer performing the debugging will
need to specify the context he cares about, since the
Interaction Analyzer itself does not know that an event that
should have occurred in the living room did not, and thus
cannot specify that the location context is the living room.
As the developer navigates through the execution graph
using the Interaction Analyzer’s advice, he is able to refine
his search with further contextual information.

2) Type 2 Questions
Type 2 questions are about why an incorrect event

occurred. In the Smart Party context, such questions might
be “why was Bill localized in the dining room instead of
the family room?” or “why did music play in the entry hall
when no one was there?” Type 2 questions are thus about
events that appear in the execution history, but that the
developer feels do not belong in the history, or have some
incorrect elements about their execution.

The Interaction Analyzer works on the assumption that
errors do not arise from nowhere. At some point, an event
in the application went awry, due to hardware or software
failures. The Interaction Analyzer further assumes that
incorrectness spreads along causal chains, so the events
caused by an incorrect event are likely to be incorrect
themselves. If a developer determines that some event is
incorrect, either that event itself created the error or one of
the events causing it was also erroneous. Working back, a
primal incorrect event caused a chain of incorrect events
that ultimately caused the observed incorrect event. The
developer must find that primal cause and fix the bug there.

Given these assumptions, the job of the Interaction
Analyzer in assisting with Type 2 questions is to guide the
developer to the primal source of error as quickly as
possible. A standard way in which people debug problems
in code is to work backwards from the place where the
error is observed, event by event, routine by routine,
eventually line by line, until the primal error is found.
However, this approach often requires the developer to

351

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

check the correctness of many events. In situations where
the execution of the program is distributed and complex (as
it frequently is for ubiquitous applications), this technique
may require the developer to analyze a very large number
of events before he finds the actual cause of the error.

Is there a better alternative? If one has the resources
that the Interaction Analyzer has, there is. The Interaction
Analyzer has a complete trace of all events that occurred in
the application, augmented by various parameter and
contextual information. Thus, the Interaction Analyzer can
quickly prune the execution history graph of all events that
did not cause the observed erroneous event, directly or
indirectly, leaving it with a graph of every event in the
execution history that could possibly have contained the
primal error. The question for the Interaction Analyzer is
now: in what order should these events be analyzed so that
the developer can most efficiently find that primal error?
Eventually, the developer will need to perform some
amount of detailed analysis of code and execution data, but
can the Interaction Analyzer help to minimize how much of
that analysis is required?

In the absence of information about which events are
more likely than others to have run erroneously (which is
generally the case), any event in this pruned graph is
equally likely to be the source of the error. Assume this
graph contains N events. The final event where the error
was observed is not necessarily any more likely to be the
true source of the error than any other. After all, one of its
predecessor events could easily have run erroneously, with
the error propagating and only being discovered at this
point. If the developer examines the observed incorrect
event first, and it was not the source of the error, only one
of N possibly erroneous events has been eliminated from
the graph.

What if, instead, the Interaction Analyzer directs the
developer to analyze some other event E chosen from the
middle of the graph? If that event proves correct, then all
events that caused it can be eliminated as the source of the
primal error. Event E was correct, so the observed error
could not have “flowed through” event E; thus the source
of our error is not upstream of E. It must be either
downstream or in some entirely different branch of the
graph. If event E is erroneous, and E is one of the initial
events of the application (one with no predecessor events in
the graph), then E is identified as the root cause. If E is not
one of the initial nodes, then it is on the path that led to the
error, but is not necessarily the original cause of the error.
We can then repeat the algorithm, but with event E as the
root of the graph, not the event that the developer originally
observed, and we continue this process until we find the
root cause.

With a little thought, one realizes that the ideal choice
of the first event to suggest to the developer would be an
event which, if it proves correct, eliminates half of the
remaining graph from consideration. If such an event
proves incorrect, it eliminates the other half of the graph,
since either this event or something upstream must be the
root cause, not anything downstream. (There is an
assumption here that errors do not simply “go away.”

Thus, if we are examining event E because an erroneous
event downstream of E was observed, and the event E is
also erroneous, the Interaction Analyzer assumes that the
path of error flowed through event E.) If no event whose
examination can eliminate half the graph can be found, due
to the shape of the graph, then selecting the event whose
analysis will eliminate as close to half of the graph as
possible is the right choice.

The Interaction Analyzer uses this heuristic to select
events for developer investigation. After pruning irrelevant
events from the execution history graph, it directs the
developer to investigate the event node in that graph whose
elimination would most nearly divide the remaining graph
in half. The algorithm proceeds as suggested above,
eliminating roughly half of the remaining nodes at each
step, and eventually the highest erroneous event in the
graph is identified as the root cause.

The algorithm stops when it finds this event. It assumes
that the incorrectness of the event causes the observed
problem that led to debugging, and thus it is the root cause.
That is not necessarily true. Consider event X caused by
events Y and Z. We observe some incorrect behavior in X,
examine Y, and determine it is incorrect. The algorithm
would report Y as the root cause, if nothing upstream of Y
is incorrect. However, it’s possible that the real problem is
in event Z, which the algorithm never suggested
examining.

 However, if the incorrectness of the event reported did
not actually cause the observed problem, then it is the root
cause of a different problem. In other words, this algorithm
will find the root cause of either the original problem
detected by the developer or another problem that he does
not know of a priori. If the developer can determine that
this event, despite being incorrect, could not have caused
the observed behavior, he can run the Analyzer again, this
time indicating that this incorrect event actually is correct.
This will cause the Analyzer to look elsewhere, and thus to
find a different root cause of the original problem. In the
example above, having determined that, despite its
incorrectness, event Y could not have caused the observed
misbehavior in event X, a second run of the Interaction
Analyzer with Y marked as correct would lead us to event
Z, the true cause of the problem.

At each step, the developer manually investigates one
event and tells the Interaction Analyzer whether that event
is correct. But by using this technique, the developer need
not work his way entirely up the whole execution history
graph until he finds the problem. In general, the
Interaction Analyzer allows the developer to perform the
debugging with few human analysis steps. (In four real
cases, using the Analyzer required examination of 4-12
events, out of 200-21,000 total events, depending on the
case. Some detailed examples will be discussed in Section
IV B.) As long as the Interaction Analyzer’s automated
activities (building the graph, analyzing it to find the next
event to recommend, etc.) are significantly cheaper than a
human analysis step, this process is much faster and less
expensive than a more conventional debugging approach.

352

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. EVALUATING THE INTERACTION
ANALYZER

There are several aspects to the performance of the
Interaction Analyzer that should be addressed in
determining its value. We outline them here.

The Interaction Analyzer will be of most value in
diagnosing problems in large complex ubiquitous
environments where many events and possible causes of
problems muddy the waters. In such situations, though,
there are obvious questions about whether the Interaction
Analyzer can perform sufficiently well at that scale. It will
need to gather and analyze a great deal of information, and
perhaps the costs of doing so will be too high for practical
use. Therefore, we performed various simulation
experiments to investigate the Interaction Analyzer’s
performance on large execution graphs.

Ultimately, the Interaction Analyzer is valuable if it can
actually help ubiquitous computing application developers
find tricky problems in their systems. To demonstrate the
Interaction Analyzer’s promise in meeting this fundamental
goal, we present case studies involving the actual use of the
Interaction Analyzer in finding bugs in the Smart Party
application and a second smaller application.

A secondary, but important, practicality aspect of the
Interaction Analyzer is its basic performance overheads, so
we present data on those overheads, as well.

A. Simulation Results
To determine how the Interaction Analyzer would

perform when handling large execution graphs, we
generated artificial execution graphs of varying sizes and
properties (such as the branching factors in the graph).
Erroneous events and their root causes were generated
randomly. The results are too extensive to report
completely here (see [12] for full results), but some
example graphs will show the actual benefits of using this
tool and the value of the algorithms it uses to find events
for developers to examine.

For each point in the simulation figures shown here, 20
different rooted execution graphs were generated
randomly. For each generated graph, 10 different scenarios
were generated randomly for different root cause nodes.
For a given execution graph and root cause, most of the
tested algorithms are deterministic, except for the Terminal
Walk algorithm (described below). Even for that
algorithm, only one simulation was performed for a given
graph and root cause. Thus, each point in the figures
represents 200 different runs. The value at each point in
the figures is the mean value of the number of validation
requests for all scenarios. The size of the graph in all
simulations represents the rooted graph size. In other
words, we assume all irrelevant events that could not
directly or indirectly cause the detected incorrect event are
already pruned from the graph. The confidence level is
95%. In some cases, the variation is small enough that the
error bars are essentially invisible.

A major question for the Interaction Analyzer is how it
chooses which event to suggest for further investigation.

When looking for a Type 2 error (“why did this incorrect
event occur?”), one could examine the graph of all events
that directly or indirectly caused the erroneous event and
randomly choose one to recommend for examination.
Unless some nodes are more likely to be erroneous than
others, randomly selecting one of the nodes to examine is
just as likely to pinpoint the root case as walking back step-
by-step from the observed error, which is a traditional
debugging approach. For reasons not important to this
discussion, we have termed the algorithm that randomly
selects a node from the graph “Terminal-Walk.” Results
for the Terminal-Walk algorithm thus also describe the
traditional approach, under the assumption that any event
in the pruned graph is equally likely to be the original
source of error.

The algorithm that the Interaction Analyzer actually
uses (see Section III.E.2) analyzes the portion of the
execution graph associated with the erroneous event and
directs the developer to an event whose correctness status
will essentially eliminate half the nodes in this graph, as
described earlier. We term this approach the “Half-Walk”
algorithm.

Figure 4 shows the performance of these algorithms for
event graphs of different sizes. The x-axis parameter refers
to the number of nodes in the pruned causal graph rooted at
the observed erroneous event, any one of which could be
the root cause of the observed error. The x-axis is a log
scale. The “Validation Cost” is in number of events, on
average, that the developer will need to examine by hand to
find the error. The first graphs we discuss have uniform
branching factors (i.e., the branching factor of each node in
the graph is randomly chosen from a uniform distribution,
with each branch indicating an event caused by the event
described by this node). The probability that each node in
the graph (including the node where the error was
observed) is the root cause of the error is generated from a
uniform distribution. The actual root cause is then
randomly selected following that probability distribution.
The Terminal-Walk algorithm is unaware of this
probability distribution, and merely randomly selects one
of the possible events from the graph for examination.

Figure 4. Terminal-Walk vs. Half-Walk Algorithm

353

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Terminal-Walk algorithm becomes expensive as
the number of potential causes of the observed error
grows. Each validation represents a human developer
examining code and state information for an event in the
system, which is likely to take at least a few minutes. The
Half-Walk algorithm, on the other hand, is well behaved,
displaying log2 behavior.

In some situations, the probability of failure in each
event is known. For example, the system may consist of
sensors with a known rate of reporting false information.
Even if event failure probabilities are not perfectly known,
an experienced developer may have a sense of which
events are likeliest to be the root cause of errors.

If the developer has perfect knowledge of the
probability that each event was performed correctly, he
might use an algorithm that first examines the event with
the highest probability of being correct. If that event is
indeed correct, he could eliminate from further
consideration all events that caused that event. He could
then move down the list of probabilities as candidates are
eliminated. We term this algorithm the Highest-Walk
algorithm.

Figure 5 shows the relative performance for the
Highest-Walk algorithm vs. the Half-Walk algorithm
(which the Interaction Analyzer actually uses) for graphs
and root causes of the same kind shown in Figure 4. If we
have this knowledge of probability of event failure, the
Half-Walk algorithm is altered so that, instead of selecting
an event that eliminates half the nodes in the graph, it
selects an event that eliminates half the probability of error
in the graph. Highest-Walk is, unlike Terminal-Walk,
competitive with Half-Walk, but Half-Walk is clearly
better. For 200,000 events in an execution graph, Half-
Walk will require the developer to examine less than half
as many events as Highest-Walk would. The probability of
being incorrect is propagated down the event path, and
thus the event with highest probability of being incorrect
is normally very far from the root cause. Thus, the
Highest-Walk algorithm does not perform as well as Half-
Walk.

Figure 5. Highest-Walk Algorithm vs. Half-Walk Algorithm

Many factors can cause variation in the performances
of these algorithms. For example, the distribution of
branching factors can be varied, where branching factor
describes how many events are caused by a given event.
The figures already discussed assumed a branching factor
for each node chosen from a random distribution.
Perhaps, instead, there is a distribution of branching
factors randomly generated in a linear scale, where nodes
with a lower branching degree appear more often in the
event graph. Thus, branching factors of 1 are more
probable than branching factors of 2, which are more
probable than branching factors of 3, and so on.

Figure 6 illustrates the relative performance of the
Highest-Walk and Half-Walk algorithms in this case.
Since the distribution used here favors small branching
factors, generally a node will have a lower branching
factor in these graphs than in those discussed earlier.
Here, the Highest-Walk performs much worse than the
Half-Walk because the Highest-Walk chooses the node
with highest probability of being correct for validation.
Consequently, after each validation, the new size of the
event graph (in the Highest-Walk) tends to be large. In
other words, it prunes the tree less effectively. With
uniform branching (as in Figure 5), the graph is more
balanced; whereas in linear branching, the graph is less
balanced. With uniform branching, we are less likely to
find nodes with a really high probability of being
incorrect. Thus, in uniform branching, the Highest-Walk
has better performance, though it is still inferior to the
Half-Walk algorithm.

Figure 6. Constant Root Cause Factor – Linear Branch

B. Case Studies Using the Interaction Analyzer
Simulation studies are helpful in understanding the

Interaction Analyzer’s behavior in many different
circumstances, but ultimately the point of a debugging tool
is that it prove helpful in solving real problems. In this
section we describe how the Interaction Analyzer helped us
find real bugs in real applications. The primary application
discussed is the Smart Party application introduced in
Section II. This application was not written to help us
investigate the behavior of the Interaction Analyzer. On

354

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the contrary, the Interaction Analyzer was built to help us
debug problems with the Smart Party and other Panoply
applications.

We also present a case study for a second real
application, one that is much smaller. Our graduate
students grew tired of having to get up to open the locked
door to our lab when someone without a key knocked on it,
so they designed a bit of hardware and a small Panoply
application that would automatically unlock the door under
certain conditions. For example, if a knock was heard
during regular working hours and someone was actually in
the lab, the door should open. Also, users in the room with
sufficient privilege could simply order the door to open.
This application was vastly simpler than the Smart Party,
but it was also real working Panoply software, and
exhibited real bugs.

1) Smart Party Bug 1: Music Playing in the Wrong
Room

This bug occurred in the Smart Party when the
application was run with three rooms and one user. Music
played in a room where no user was present. Before
availability of the Interaction Analyzer, the developers of
the Smart Party had used traditional methods to find the
root cause of this problem, which proved to be that the
user location determination module had put him in the
wrong room. We did not keep records of how long the
debugging process took before the Interaction Analyzer
was available, but it was far from instant.

This was a Type 2 error, an event occurring
incorrectly. As mentioned in Section III, the Interaction
Analyzer uses contextual information when available to
guide the process of finding root causes. We investigated
this bug both with and without contextual information.
Without contextual information, the Analyzer had to
suggest six events (out of a possible 8000 in the execution
history) to pinpoint the problem. With contextual
information (the developer indicating which room he was
concerned about), the Interaction Analyzer found the
problem in one step.

2) Smart Party Bug 2: No Music Playing
This bug occurred in some, but not all, runs of the

Smart Party. A user would join the Smart Party, but no
music would play anywhere. Since this bug was non-
deterministic, it was extremely difficult to find using
standard methods. In fact, the Smart Party developers
were unable to find the bug that way.

Once the Interaction Analyzer was available, it found
the bug the first time it occurred. This was a Type 1 error,
an event that did not occur when it should have. The
Interaction Analyzer found the root cause by comparing
the protocol definition to the execution history and noting
a discrepancy. The Interaction Analyzer made use here of
its ability to deal with events at multiple hierarchical
levels. At the high level, it noted that music did not play
and that the high-level protocol definition said it should.

The Analyzer determined that the failure was due to not
responding to a request by the user for a localization map.
To further determine why that request wasn’t honored, the
Analyzer suggested to the developer that he dive down to
a lower protocol level, and eventually, to an even lower
level. The bug ultimately proved to be in the code related
to how Panoply routed messages.

The Interaction Analyzer found this bug in three
queries, a process that took less than five minutes,
including the time required by the developers to examine
the code the Analyzer recommended. Without the
Analyzer, the developers had been unable to find this bug
over the course of several weeks.

3) Door Opener Bug
The door opener application described previously had a

bug that caused the door not to open when it was ordered
to do so. Since the bug appeared to be failure of an
expected event, a query of Type 1 was used, and the
Analyzer was able to find two different root causes. The
first cause was a serial port configuration problem, and
thus the application failed to open the port and could not
send commands to the hardware controlling the door lock.
The second cause was a mistake in the policy describing
which spheres should talk to each other, and thus the
command could not reach the controller. The first cause
was found immediately since it happened in the highest
protocol layer. The second root cause was found after
going down five protocol layers. There were about 340
execution events in the log files. The Interaction Analyzer
recommended that a total of 6 events be examined to find
both problems. This case demonstrates both the value of
the Interaction Analyzer even for relatively simple
applications, and how the Interaction Analyzer can find
multiple bugs that cause a single observed problem.

TABLE 1. INTERACTION ANALYZER COSTS

Operation Example Cost Average Cost
Import Exec Hist. 3.5 seconds .35 msec/event
Preprocessing .3 seconds .03 msec/event
Load Prot. Def. 7 seconds .82 msec/element
Matching 12.2 seconds 1.18 msec/event
Total Time 23.0 seconds 2.48 msec/event

C. Interaction Analyzer Overheads
Table 1 shows some of the overheads associated with

using the Interaction Analyzer. The Example Cost column
shows the actual total elapsed times for handling all events
in a sample 11,000 event execution history. The Average
Cost column shows the normalized costs averaged over 20
real execution histories. These costs are paid every time a
developer runs the Interaction Analyzer, and essentially
represent a startup cost. For an 11,000 event run, then, the
developer needs to wait a bit less than half a minute before
his investigations can start.

355

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The other major overhead is the cost for the Interaction
Analyzer to respond to a user query. For queries of Types
1, 3, and 4, this cost is less than a second. For queries of
Type 2, it depends on the size of the portion of the
execution history that is rooted at the event the developer
needs to investigate, not the size of the entire history. Any
event that exerted a causal influence on the event under
investigation must be considered. Figure 7 shows the time
required to choose an event for the developer to evaluate
for causal graphs of different sizes. If there are 100,000
events in the causal graph of the investigated event, it
takes around 17 seconds to recommend one to the
developer. This graph is log scale on the x-axis, so the
time is roughly linear as the number of events grows. The
Interaction Analyzer chooses an event for validation such
that its examination will eliminate around half of the
graph; so if the event in question is not the root cause, the
second recommendation will be made on a graph of half
the size of the original, and thus half the cost.

Figure 7. Time to Pick Validation Node

D. Usability and Utility Issues
The goal of the Interaction Analyzer is to ease the

burden for developers, so whether it does so is a major
concern. We have anecdotal evidence to support its value.
In terms of cost, there is a learning curve associated with
first using the system and with instrumenting applications.
This curve is not steep, in our experience. The actual cost
of instrumenting applications is relatively low. The
statements that must be inserted into the code are no more
complex than more traditional print debugging statements
that most programmers already use (see Section III.E).

In terms of run time costs, the Interaction Analyzer is
not intended to be run in production mode, so the
performance costs are paid only when performing
debugging. They are not sufficiently high to slow
debugging, since they are no greater than printing log
outputs. There is a cost to gather and analyze the data
from a run, but this is a matter of a few seconds to a few
minutes for a typical run (see Section IV.C).

While these costs are low, they are still not worthwhile
unless there is commensurate benefit. Our experiences
show that there is, as outlined by the case studies above.
The Interaction Analyzer succeeded in finding real bugs
that standard debugging techniques could not, even in
situations where analysts had spent days or weeks tracking
the bugs down. The Interaction Analyzer did so in a
matter of a few minutes. It was helpful in finding complex
bugs that were non-deterministic and depended on race
conditions, situations that are notoriously hard to deal with
using standard debugging techniques.

A fuller statement of utility and usability would require
detailed human studies and experiments that have not been
performed. However, the initial results are promising and
suggest that the system is worth far more than its costs.

V. RELATED WORK
Several systems have supported debugging problems in

complex distributed systems. The most closely related are
those that build execution graphs based on data gathered
during a run. RAPIDE [13] was an early system that used
this approach. In RAPIDE, an event can be used to denote
any action or behavior of a system. By capturing enough
events, the image of the application runtime can be
reproduced later. The author also proposed hierarchical
viewing for event management. RAPIDE aggregates sets of
low-level system events into a higher-level event to give
information about the component objects at the application
level. Different abstraction hierarchies can be used to
display the system in different views. RAPIDE also
supports event filtering based on a predefined pattern.

RAPIDE was extended to build an execution
architecture that captured causal relationships between
runtime components [14]. This system creates an image of
the running system that helps the developer visualize all
interactions and relationships between components during
execution. Based on the visual graph, developers can
understand the execution architectures of dynamically
changing software systems. If the execution architecture is
different from the specification, an exception is raised to
report the abnormality. This work supports building models
of bad behavior to detect known problems.

The Event Recognizer [15] treats debugging as a
process of creating models of expected program behaviors
and comparing these to the actual behaviors exhibited by
the program. The Event Recognizer matches actual system
behavior from event stream instances to user-defined
behavior models. Incompletely recognized behaviors
indicate that the modeler should more closely examine the
class of behaviors that are missing, or explain what is
wrong with a particular program execution. The tool helps
to detect abnormal behavior (that is not defined in the
behavior models) and shows how well the actual behavior
fits the user-defined pattern. If a bad behavior happens to
fit one of the defined behavior models, the system will not
be able to detect the problem.

Poutakidis et al. [16] uses interaction protocol
specifications to detect interactions that do not follow the

356

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

protocol. Interaction protocols are specified using AUML
and translated to Petri nets. The debugger uses Petri nets to
monitor conversations and detect any unexpected or
missing message when interaction does not follow the
protocols. More specifically, it can detect failures such as
un-initialized agents, sending messages to the wrong
recipient, sending the wrong message and sending the same
message multiple times. However, it does not explain why
the problem occurs and the root cause.

Other approaches use non-graph-based methods to find
root causes. Yemini and Kliger [17] treat a set of bad
events as a code defining the problem, and use decoding
methods to match it to known problems. This approach
assumes that the developers know which sets of bad events
occur when a problem happens.

Piao [18] uses Bayesian network techniques to
determine root causes of errors in ubiquitous systems. The
Bayesian network describes a complex system as a
compact model that presents probabilistic dependency
relationships between various factors in a domain. System
real-time performance data is collected, including the
system health states. Certain parameters are selected and
ranked in a node list that will be applied in structure
learning. Bayesian machine learning is applied for
topology structure learning to find a network structure that
is the most probable match to the training data. This
network structure is used to infer the root cause for real-
time data from an erroneous run. This approach requires a
large training set to build a complete dependency graph and
does not work well for a system with a large number of
parameters due to the over-fitting phenomenon in machine
learning. Therefore, it is more applicable for systems with
small sets of parameters, such as a network system
described solely by CPU, throughput, RAM use, and
bandwidth.

 Ramanathan [19] designed a system to find the root
causes of errors in sensor networks. This system collects
network-related data such as routing table, neighbor list, up
time, bad packets received, etc. Based on the specific
relationship between these collected data, the system
detects failures and triggers localization. For example, the
neighbor list and the up time can be used to detect a failed
sensor node. Since the collected metrics are sensor-network
specific, this approach can only be directly applied for
sensor network environments.

Urteaga’s REDFLAG system [20] is a fault detection
service for data-driven wireless sensor applications. It
consists of a Sensor Reading Validity (SRV) sub-service,
which detects erroneous sensor readings, and a Network
Status Report (NSR) subservice, whose task is to abate data
loss by identifying unresponsive nodes. These two
subservices help to identify failed sensors in the network.

Gardner [21] proposed a framework to monitor
efficiently all system events and information in an
operating system, with the goal of providing a detailed look
at operating system kernel events with very low overhead.
This collected information can be used to analyze problems
in the underlying system and provide necessary
information so that adaptive applications can adjust. This

framework instruments the kernel and network library code
to generate events; and the developers are expected to
examine these recorded events by themselves to identify
the problem. Also, this system is not distributed, and thus
not easily adaptable for a ubiquitous environment.

Hseush’s debugging approach [22] concentrates on
data, rather than events, arguing that data is a more
meaningful way for program users to approach debugging
than control flow. In this approach, the user must be aware
of data flow as well as control flow and/or message flow. A
debugging language is provided to express breakpoints,
single stepping and traces in terms of the data as well as the
control. For example, concurrent accesses on a shared
memory location can be described using the language; and
when the user detects a matched behavior to the described
concurrent accesses, the application can be stopped or
suspended accordingly.

Other researchers have approached debugging of
ubiquitous environments and other distributed systems
from entirely different angles, potentially offering
complementary ways to help diagnose problems in such
environments. [23] describes a suite of tools that help
visualize multi-agent applications. Each tool provides a
different perspective of the application being visualized.
For example, a society tool shows the structural
organizational relationships and message interchanges
between agents in a society, while a report tool graphs the
society-wide decomposition of tasks and the execution
states of the various sub-tasks. The complete set of tools
provides various perspectives on the condition of the
distributed application.

 [24] and [25] propose different system views that
allow a graphical representation of the selected aspects of
the system state and its dynamic behavior. An agent view
shows the structural or behavioral agent model. An
interaction view shows patterns of interactions such as
message-passing activity. A cooperation view shows the
potential or current task requests between agents. These
views represent the developer’s conceptual models, such as
the agent, distribution and interaction models proposed by
the authors.

Such alternate approaches can conceptually be
combined with the debugging services offered by the
Interaction Analyzer, giving different perspectives from
which to view any particular debugging problem. Which
set of views and tools is most helpful for actual debugging
of complex ubiquitous computing problems is a question
for further research.

VI. CONCLUSIONS
Ubiquitous systems are complex, consisting of many

different components. Their dynamic nature makes it hard
to develop and debug them. Bugs often become evident
long after and far away from their actual cause. The
Interaction Analyzer provides quick, precise determination
of root causes of bugs in such systems. While developed
for Panoply, it can be adapted for many ubiquitous
computing environments. The Interaction Analyzer has

357

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

been demonstrated to have good performance by
simulation, and has been used to find actual bugs in real
ubiquitous computing environments, including cases
where more traditional debugging methods failed.

The Interaction Analyzer is fundamentally a tool to help
developers perfect their ubiquitous computing applications.
With significantly more work, it could perhaps be adapted
to work in deployment scenarios, helping average users fix
the problems they observe. Generally, however, the advice
the Interaction Analyzer can provide would not be very
helpful to a typical user. Much more effort would be
required to assist in mapping from low-level problems to
solutions that make sense to a typical user. Further, if the
problem is rooted in flawed code, rather than a failed
hardware component or a mistake in configuration, it is not
likely that the user will be able to solve the problem, even
if he can pinpoint it. Nonetheless, debugging for
ubiquitous computing users is likely to be a problem of
increasing importance for the future, and deserves more
study.

ACKNOWLEDGMENT
This work was supported in part by the U.S. National

Science Foundation under Grant CNS 0427748.

REFERENCES
[1] N. Nguyen, L. Kleinrock, and P. Reiher, “The Interaction

Analyzer: A Tool for Debugging Ubiquitous Computing
Applications,” Ubicomm 2011, November 2011.

[2] W. Edwards and R. Grinter, “At Home With Ubiquitous
Computing: Seven Challenges,” LNCS, Vol. 2201/2001,
2001, pp. 256-272.

[3] J. Bruneau, W. Jouve, and C. Counsel,”DiaSim: A
Parameterized Simulator for Pervasive Computing
Applications,” Mobiquitous 2009, pp. 1-3.

[4] T. Hansen, J. Bardram, and M. Soegaard, “Moving Out of
the Lab: Deploying Pervasive Technologies in a Hospital,”
Pervasive Computing, Vol. 45, Issue 3, July-Sept. 2006, pp.
24-31.

[5] V. Ramakrishna, K. Eustice, and P. Reiher, "Negotiating
Agreements Using Policies in Ubiquitous Computing
Scenarios," Proceedings of the IEEE International
Conference on Service-Oriented Computing and
Applications (SOCA'07).

[6] K. Eustice, Panoply: Active Middleware for Managing
Ubiquitous Computing Interactions, Ph.D. dissertation,
UCLA Computer Science Department, 2008.

[7] K. Eustice, V. Ramakrishna, N. Nguyen, and P. Reiher,
“The Smart Party: A Personalized Location-Aware
Multimedia Experience,” Consumer Communications and
Networking Conference, January 2008, pp. 873-877.

[8] K. Eustice, A. Jourabchi, J. Stoops, and P. Reiher,
“Improving User Satisfaction in a Ubiquitous Computing
Application,” SAUCE 2008, October 2008.

[9] P. Bates, “Debugging Heterogeneous Distributed Systems
Using Event-Based Models of Behavior,” ACM TOCS,
Vol. 13, No. 1, February 1995, pp. 1-31.

[10] The Object Management Group, http://www.omg.org, July
12, 2012.

[11] ArgoUML, the UML Modeling Tool.
http://argouml.tigris.org, July 12, 2012.

[12] N. Nguyen, Interaction Analyzer: A Framework to Analyze
Ubiquitous Systems, Ph.D. dissertation, UCLA Computer
Science Department, 2009.

[13] D. Luckman and J. Vera, “An Event-Based Architecture
Definition Language,” IEEE Transactions on Software
Engineering, Vol. 21, No. 4, April 2005, pp. 717-734.

[14] J. Vera, L. Perrochon, and D. Luckham, “Event Based
Execution Architectures for Dynamic Software Systems,”
IFIP Conference on Software Architecture, 1999, pp. 303-
308

[15] P. Bates, “Debugging Heterogeneous Distibuted Systems
Using Event-Based Models of Behaviors,” ACM
Transactions on Computer Systems, Vol. 13, No. 1,
February 1995, pp. 1-31.

[16] D. Poutakidis, L. Padgham, and M. Winikoff, “Debugging
Multi-Agent Systems Using Design Artifacts: The Case of
Interaction Protocols,” 1st International Joint Conference on
Autonomous Agents and Multiagent Systems, 2002, pp.
960-967.

[17] A. Yemini and S. Kliger, “High Speed and Robust Event
Correlation,” IEEE Communications Magazine, Vol. 34,
No. 5, May 1996, pp. 82-90.

[18] S. Piao, J. Park, and E. Lee, “Root Cause Analysis and
Proactive Problem Prediction for Self-Healing,” Int’l
Conference on Convergence Information Technology, 2007,
pp. 2085-2090.

[19] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin, “Sympathy for the Sensor Network
Debugger,” Int’l Conference on Embedded Networked
Sensor Systems, 2005, pp. 255-267.

[20] I. Urteaga, K. Barnhart, and Q. Han, “REDFLAG: A
Runtime, Distributed, Flexible, Lightweight, and Generic
Fault Detection Service for Data Driven Wireless Sensor
Applications,” Percom 2009, pp. 432-446.

[21] M. Gardner, W. Feng, M. Broxton, A. Engelhart, and G.
Hurwitz. “MAGNET: a Tool for Debugging, Analyzing and
Adapting Computing Systems,” Proceedings of the 3rd
International Symposium on Cluster Computing and the
Grid, 2003.

[22] W. Hseush and G. Kaiser, “Data Path Debugging: Data-
Oriented Debugging for a Concurrent Programming
Language,” Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging,
Madison, Wisconsin, United States, May 1988.

[23] D. Ndumu, H. Nwana, L. Lee, and J. Collis. “Visualizing
and Debugging Distributed Multi-agent Systems,”
Autonomous Agents, Seattle WA, USA, 1999.

[24] M. Liedekerke and N. Avouris, “Debugging Multi-agent
Systems,” Information and Software Technology, 1995.

[25] M. Morris, “Visualization for Causal Debugging and
System Awareness in a Ubiquitous Computing
Environment,” Adjunct Proceedings of UbiComp, 2004.

358

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Restoration of Blurred Images Using Revised
Bayesian-Based Iterative Method

Sigeru Omatu, Hideo Araki, and Yuka Nagashima
Osaka Institute of Technology, Kyocera Ltd

Asahi-ku, Osaka, 535-8585, Osaka, Japan, Hirakata, Osaka, Japan, Fushimi-ku, Kyoto, 612-8501, Japan
omatu@rsh.oit.ac.jp, araki@is.oit.ac.jp, naga@sig.cs.osakafu-u.ac.jp

Abstract—A restoration method of degraded images based on
the Bayesian-based iterative method is proposed. An iterative
method is developed by regarding the observed degraded im-
ages as probabilities and point spread functions as the condi-
tional probabilities. The restored images are estimated by using
Bayesian rule. We have proposed two kinds of the iterative
method. One is to use the observed images as the initial values of
the estimated images when we estimate the point spread function.
The other method is to estimate the initial values of the point
spread function by using the logarithmic amplitude spectrum of
the blurred image. The simulation results show that the proposed
methods are effective to restore the blurred images.

Keywords-point spread function; Bayesian rule

I. I NTRODUCTION

To make a clear image from degraded image, many
enhancement techniques have been developed until now
[1],[2],[3],[4],[5]. There are so many papers published until
now about restoration algorithms. Those papers can be clas-
sified into two categories. One is a model-based approach
[2],[3],[4] and the other is a learning-based approach.

The main technique for the former approach is to de-
velop sharpness filters [2],[3]. More masks to approximate a
derivative operation have been developed. By using the filters
they could enhance the image. But they also enlarge pixel
noise. The learning-based approach is to develop an iterative
algorithm such that a criterion function could be minimized.

We adopt the second approach to enhance images by using
the Bayesian rule. This method was first proposed by [5].
The Bayesian rule reflects optimal estimation in a sense to
minimize the cost function under noisy observation and an
iterative algorithm was proposed to find the optimal solution
[6] and [7]. The algorithm include two parts, the first one is to
estimate a point spread function from the estimated image and
the second one is to estimate the original image by using the
estimated point spread function. Thus, this algorithm might
be optimal when the observed image is similar to the original
image, that is, in case of a high S/N ratio. Therefore, the
results will depend on the initial guesses of point spread
function although the previous reports are assumed to be
fixed [5],[6],[7].

In this paper, we propose two methods. One is to use the
observation image instead of the estimated image when we
estimate the point spread function (Algorithm I). The other
method is to use an estimated point spread function as the

initial guess of the point spread function in the Bayesian-based
iterative procedure.

First, we will show the principle of the Bayesian-based
iterative method proposed by Richardson [5]. Then, we will
propose two methods. After that the simulation results are
illustrated to show the effectiveness of the proposed methods.

II. PRINCIPLE OF IMAGE RESTORATION

In image enhancement, the ultimate goal of restoration tech-
niques is to improve a given image in some sense. Restoration
is a process that attempts to recover an image that has been
degraded by using a priori knowledge of the degradation
phenomenon. As shown in Fig. 1, the degradation process may
be modeled as an operatorH in case of noiseless situation.
It operates on an input imagef(x, y) to produce a degraded
imageg(x, y). For the sake of simplicity, we denotef(x, y)
by f(x) , g(x, y) by g(x), h(x, y) by h(x), etc. In equation
form, we have

g(x) = Hf(x) = h ∗ f(x) =
∞∑

y=−∞
h(x − y)f(y) (1)

whereh(x) is an impulse response and * denotes the operation
of convolution.

Based on the convolution theorem, the frequency domain
representation of Eq. (1) becomes

G(jω) = H(jω)F (jω) (2)

whereG(jω), H(jω), and F (jω) are Fourier transforms of
g(x), h(x − y), and f(y), respectively. As shown in Fig. 1,
givenG(jω) and some knowledge aboutH(jω), the objective
of restoration techniques is to recoverF (jω) which means
to recover the original imagef(x) via the inverse Fourier
transform.

III. R ICHARDSON’ S ITERATIVE METHOD

We will review an iterative method by Richardson [5] in
this section. Given the degraded imageg, the point spread
function h and the original imagef are estimated based on
Bayes’ theorem. It will be effective to estimate the original
imagef from the observed imageg. It was assumed thatg,
h, andf are discrete and are not necessarily normalized. The
numerical values ofg, h, andf are considered as measures of
the frequency of the occurrence of them at those points.h is
usually in normalized form. Energy off originating at a point

359

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Original image

Degraded image

*
 f(x) h(x) = g(x)

 =h(x)

F Transform

*

X H(jω) =

X H(jω) = G(jω) F(jω)

 f(x) = F {G(jω) / H(jω)}
-1

Fig. 1. The restoration principle.

is distributed asg at points according to the energy indicated
by h. Thus,g represents the resulting sums of the energy of
f originating at all points.

In the notation of this problem the usual form of the Bayes’
theorem is stated as the conditional probability off , giveng.
It was assumed that the degraded imageg was of the form
g = h ∗ f , where * denotes the operation of convolution such
that

g(x) = h ∗ f(x) =
∞∑

y=−∞
h(x − y)f(y). (3)

Note thatf and g are intensity functions of the original
image and observed image, respectively andh is the weight-
ing function depending on image measurement devices. We
assume that the input image and the weighting function are
unknown. The values off , g, and h are not limited within
[0,1]. We normalize and denote them byf ′, g′, andh′. Thus,
we have

f ′(x) =
f(x)

∞∑
x=−∞

f(x)

=
f(x)
F

(4)

g′(x) =
g(x)

∞∑
x=−∞

g(x)

=
g(x)
G

(5)

h′(x) =
h(x)

∞∑
x=−∞

h(x)

=
h(x)
H

(6)

where F ,G, and H could be equal since the restoration
process is conservative. Note thatf , g, andh are nonnegative
and the total sums are equal to one. Thus, we could regard
them as probability measures andf ′(x1) as the probability
measure of the original imagef(x1) at x1. This means that
the possibility of the existing intensity of the original image
f(x1) at x1. Similarly, g′(x2) andh′(x1) mean the possibility

of the existing intensity of the observed imageg′(x2) atx2 and
the possibility of the transition weight from the input image
f(x1) at x1 to the output imageg(x2) at x2. Therefore, we
have

P (g(x2)|f(x1)) = P (h(x2 − x1)) = h′(x2 − x1). (7)

The above relation can be derived by using the following
relation.

P (g(x2), f(x1)) = P (g(x2)|f(x1))P (f(x1))
= P (h ∗ f(x2), f(x1))
= P (h(x2 − x1), f(x1))
= P (h(x2 − x1))P (f(x1))

where we have used independence assumption between orig-
inal image and restoration mechanism.

Using the Bayes’ theorem we have

P (f(x)|g(x2)) =
P (g(x2)|f(x))P (f(x))

∞∑
x1=−∞

P (g(x2)|f(x1))P (f(x1))

=
f ′(x)h′(x2 − x)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

. (8)

If we multiply the both sides of Eq. (8) byP (g(x2)) = g′(x2)
and take the summation with respect tox2, we get

P (f(x)) = f ′(x)

= f ′(x)
∞∑

x2=−∞

h′(x2 − x)g′(x2)
∞∑

x1=−∞
f ′(x1)h′(x2 − x1)

.(9)

ConsideringF = G = H and multiplying them both sides of
the above equation, we have

f(x) = f(x)
∞∑

x2=−∞

h(x2 − x)g(x2)
∞∑

x1=−∞
f(x1)h(x2 − x1)

. (10)

Using the above equation, Richardson[5] proposed the follow-
ing recurrence procedure to find the original imagef(x).

fn+1(x) = fn(x)
∞∑

x2=−∞

hn(x2 − x)g(x2)
∞∑

x1=−∞
hn(x2 − x1)fn(x1)

,(11)

n = 0, 1, 2,

In order to derive the recursive equation of the point spread
function h(x), we will set x3 = x2 − x. Then from Eq. (8)
we have

P (f(x2 − x3)|g(x2)) =
f ′(x2 − x3)h′(x3)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

. (12)

360

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Multiplying both sides of the above equation byP (g(x2)) =
g′(x2), we have

P (f(x2 − x3)|g(x2))P (g(x2)) (13)

= g′(x2)
f ′(x2 − x3)h′(x3)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

.

Using the Bayes’ rule, we have

P (f(x2 − x3)|g(x2))P (g(x2))
= P (f(x2 − x3), g(x2))
= P (g(x2)|f(x2 − x3))P (f(x2 − x3))
= h′(x3)f ′(x2 − x3). (14)

From Eqs. (14)and (14), we have

h′(x3)f ′(x2 − x3)

= g′(x2)
f ′(x2 − x3)h′(x3)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

. (15)

Taking the summation of both sides of Eq. (15) with respect
to x2, using the relation of Eqs. (4), (5), and (6), and noting
that

∞∑
x2=−∞

f ′(x2 − x3) = 1, (16)

we have the following relation.

h(x) = h(x)
∞∑

x2=−∞

f(x2 − x)g(x2)
∞∑

x1=−∞
f(x1)h(x2 − x1)

. (17)

Thus, using the same recursive relation as Eq. (11), we have

hm+1(x) = hm(x)
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

.

(18)
In order to check the convergences of the recursive relations

given by Eqs. (11) and (18), the following relations are used.

∞∑
x2=−∞

h(x2 − x)g(x2)
∞∑

x1=−∞
h(x2 − x1)fn(x1)

= 1, (19)

∞∑
x2=−∞

f(x2 − x)g(x2)
∞∑

x1=−∞
f(x1)h(x2 − x1)

= 1. (20)

(21)

Thus, we use the following criteria to stop the iterations.

1 − ϵ <
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

< 1 − ϵ, (22)

1 − ϵ <
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

< 1 − ϵ. (23)

Using the above relations, Richardson has proposed the fol-
lowing iterative algorithm(Richardson’s Iterative Method).

Step 1. Setn = 0,m = 0, the initial guesses ofh0(x), and
f0(x), and small positive numberϵ.

Step 2. Solve the following equations:

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

(24)

hm+1(x) = hm(x)
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

.

(25)
Step 3. If the following inequalities hold

∣∣∣∣∣
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

∣∣∣∣∣ < 1 − ϵ (26)

and ∣∣∣∣∣
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

∣∣∣∣∣ < 1 − ϵ, (27)

then stop, otherwisen ← n + 1,m ← m + 1 go to Step 2.
The above iteration has no proof of convergence that means

the results obtained by the above iteration may result in the
good results or may not.

IV. PROPOSEDALGORITHM I

In order to get better results compared with Richardson’s
algorithm, we consider a new method based on the property
of degraded images such that the blurred images are similar
to the original images. In the Richardson’s algorithm, if the
bad estimation ofhm(x) at the beginning stage, corresponding
recovered images would become different images. After ob-
taining the bad estimation of recovered images, estimation of
the point spread function turns worse. As a result, the iteration
will produce worse and worse estimation of the point spread
function and recovered images. Assuming the degraded images
are not so far from the original images, we use the blurred
image to estimate the point spread functionhm(x) instead of
the recovered image that is the estimated image. Therefore,
we have proposed the following steps:

361

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm I
Step 1. Setn = 0,m = 0, small positive numberϵ, and

f0(x) = g(x). Set the initial guesses ofh0(x).
Step 2. Solve the following equations:

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

(28)

hm+1(x) = hm(x)
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
g(x1)hm(x2 − x1)

. (29)

Step 3. If the following inequalities hold∣∣∣∣∣
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

∣∣∣∣∣ < 1 − ϵ (30)

and ∣∣∣∣∣
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

∣∣∣∣∣ < 1 − ϵ, (31)

then stop, otherwisen ← n + 1 and go to Step 2.

V. VARIATION USING THE REVERSEFUNCTION

We consider a more simple form of the proposed algorithm.
We set the denominator of Eq. (38) by

Lnm(x2) =
∞∑

x1=−∞
hm(x2 − x1)fn(x1). (32)

It is the convolution sum between the original imagefn(x1)
and the point spread functionhm(x2 − x1). Therefore, if
Lnm(x2) = g(x2), then the estimated imagefn(x1) becomes
the true original image. Furthermore, we have

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
Lnm(x2)

. (33)

We definernm(x2) by

rnm(x2) =
g(x2)

Lnm(x2)
(34)

which means the ratio between the observed degraded image
and the degraded image obtained by using the estimated point
spread function. Then Eq. (33) becomes

fn+1(x) = fn(x)
∞∑

x2=−∞
hm(x2 − x)rnm(x2). (35)

We define the reverse function ofk(x) by k(x) = h(−x).
Then Eq. (33) becomes

fn+1(x) = fn(x)
∞∑

x2=−∞

km(x2 − x)g(x2)
Lnm(x2)

. (36)

If we represent the convolution sum by Fourier transform, we
have

fn+1(x) = fn(x)FT−1(FT (km(x − x2))FT (rnm(x2)))
= fn(x)FT−1(Km(jω)Rnm(jω)) (37)

whereFT andFT−1 denote the Fourier transform and inverse
Fourier transform. SinceKm(jω) = Hm(−jω), we could save
the computational time by half.

VI. SIMULATION RESULTS OF THEPROPOSED

ALGORITHM I

In order to show the effectiveness of the proposed method,
we will consider gray image (Example 1)and two of color
images(Example 2, Example 3). The computer specification
used here is shown in TABLE I. In Example 1 the gray image
of 64 × 64 was made using Photoshop. The color images
of512 × 512 of Example 2 and Example 3 were cropped
from the standard sample data of high-resolution color images
[8]. The degraded images are made by using Gaussian filters
with the standard deviationσ = 3.3. We used the stopping
parameters ofm and n when maximum iteration numberk
is given. In these simulations, we changed those parameters
(m,n, k) as (10,100,10), (5,100,10), and (5,5,100). TABLE
II shows simulation results for three cases with PSNR (Peak
Signal-to-Noise Ratio) in case of Example 2. Fig. 2 shows
the simulation results of the gray image with (10,100,10).
From this Fig. 2 the proposed method restored a clearer image
compared with the results of Richardson’s method [5]. In
Figs.3-10 we show the simulation results of Example 2 and
Example 3 with images obtained from [8]. The original images
are shown in Fig. 3 and Fig. 7. The degraded images are
shown in Fig. 4 and Fig. 8. The restored images by [5] and
the proposed method are shown in Fig. 5 and Fig. 9.

 (a) (b)

 (c) (d)

Fig. 2. The comparison for Example 1.

362

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. Original image for Example 2: Cafeteria.
Fig. 4. Degraded image for Example 2.

Fig. 5. Richardson’s method for Example 2.

Fig. 6. Proposed Algorithm I for Example 2.

TABLE I
COMPUTING ENVIRONMENT

OS Windows XP
CPU AMD Athlon(tm)64 X2 Dual Core
Memory 2GB

VII. PROPOSEDALGORITHM II

The above algorithm has some problems. One is a conver-
gence problem for iteration. We must select a suitable initial
function of the point spread function to obtain good results.

TABLE II
PSNRBETWEEN ORIGINAL IMAGE AND RESTORED IMAGE

Threshold value(m,n,k) Degraded image Richardson Authors
(10,100,10) 14.5 15.7 16.6
(5,100,10) 14.5 16.5 16.0
(5,5,100 14.5 9.2 16.2

The other problem is the speed of convergence. To solve these
problems, we assume that the logarithmic amplitude spectrum
of the point spread function is Gaussian distribution. This is

363

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. Original image for Example 3: Fruits basket. Fig. 8. Degraded image for Example 3.

Fig. 9. Richardson’s image for Example 3. Fig. 10. Proposed Algorithm I for Example 3.

based on the fact that the power spectrum of the point spread
function is equi-uniform for each frequency. To speed up the
computation to estimate the point spread function, we select
a small area of the image where the low frequency seems to
be dominant.

A. Estimation of the Point Spread Function

It is well-known that the spectrum of the point spread
function includes the low frequencies compared with those
of the original images. From Eq. (2) we can see that the
spectra of the observed image are almost similar to the spectra
of the point spread function. Thus, we can estimate the
spectrum region of the point spread function from the blurred
image (observed image). Since the major part of the low
frequency region is affected by the zero frequency component,
we adopt the logarithmic amplitude spectrum of the blurred
image to remove the zero frequency. Thus, the computation

process to estimate the point spread function is given by the
following steps.

Step 1. Applying the Hamming window to the blurred
image, find the logarithmic amplitude spectrum of the obtained
image.

Step 2. Normalize the logarithmic amplitude spectrum
within [0, 255] and threshold it with 128. The image is called
a binary image.

Step 3. To remove the impulsive noise, apply5× 5 median
filter to the binary image.

Step 4. Find the center of the binary image and determine
the radiusr by using the least mean squres method.

Step 5. Setr = 3σ and find the Gaussian distribution
function.

Step 6. Using inverse Fourier transform, find the point
spread functionh(x).

To show the process stated above, we will use a sub-area

364

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11. The original image: Wine and tableware and sub-image to estimate
the point spread function. Here, the sub-image is denoted by the square area
and it is assumed to be known the point spread function with the spectrum
as shown in the image.

of the original image with the known point spread function
as shown in Fig. 11. Using this sub-image, we apply the
procedure to an image given by Fig. 12.

B. Algorithm II

The estimate of the point spread function by using Step 1 to
Step 6 is used as a rough estimate of the point spread function
in order to converge the iteration algorithm in Algorithm I.
Thus, Algorithm II is given by the following steps:

Step 1. Setn = 0, m = 0, small positive numberϵ.
Furthermore,f0(x) = g(x) and h0(x) = hp(x) wherehp(x)
denotes the estimated h(x) in the above Section.

Step 2. Solve the following equations:

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

(38)

hm+1(x) = hm(x)
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
g(x1)hm(x2 − x1)

. (39)

Step 3. If the following inequalities hold∣∣∣∣∣
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

∣∣∣∣∣ < 1 − ϵ (40)

and ∣∣∣∣∣
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

∣∣∣∣∣ < 1 − ϵ, (41)

then stop, otherwisen ← n + 1 and go to Step 2.

TABLE III
COMPUTING TIME

Algorithm I Algorithm II
Time [s] 38179.56 846.95

C. Speed-Up of Algorithm II

In order to speed up the algorithm, we should use the small
size training image as shown in Fig. 11 instead of the full size
image. the selection of the sub-image is the most important to
obtain a better estimation of the point spread function. Since
we can assume that he point spread function is the same even
if the image sizes are different, we use a small size image
instead of a large size image. We use images with2560×2048
and select256×256 to estimate the point spread function. The
problem is where we should select the sub-images for training
the point spread function. Estimation of Bayesian principle
requires the broad band input data as in the system parameter
identification to get the high performance. Thus, we select the
high frequency images which include many edges. To find
the edges, we use the Laplacian filter and take the area with
large variance. Therefore, we select the sub-image area by the
following steps:

Step 1. Apply the Laplacian filter to the observed image.
Step 2. Select the sub-image with256 × 256.
Step 3. Find an area with the largest variance from the above

sub-images.
By the above steps we will select the training area to

estimate the point spread function stated in Section VII-A.

VIII. S IMULATION RESULTS

We consider Cafeteria, Fruits and basket, and Wine and
tableware whose true images are known in advance. After
applying Algorithm I and Algorithm II to those images, we
check the case where the true image is not obtained and the
blurred images are taken by using a high resolution camera
without adjusting so precisely which results in a little bit
blurred images. We show the simulation results for the former
case in Figs. 13-15 which are corresponding to Figs. 2, 7,
and 11, respectively.

Compared with the restored images by Algorithm I, the
restored images seem to be similar to the original ones.
Furthermore, the computational time by Algorithm II is faster
than that of AlgorithmI as shown in Table III.

Finally, we have applied Algorithm I and Algorithm II to
the blurred images which are taken by using a high resolution
camera. Here, we took artificially blurred images without auto-
focus operation. Restored images are shown in Figs. 16 and
17. The case of high density camera makes clear images when
the image scales are small. But if we enlarge them, then the
difference become clear as shown in Fig. 17. From this result,
the Algorithm II could be used to restore the blurred images.

IX. CONCLUSIONS

In this paper, methods of restoration of the degraded images
by using the Bayesian-based iterative method are proposed.

365

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The simulation results showed that the proposed method could
restore the degraded images more clearly compared with the
Richardson’s method while the threshold values of(n,m, k)
must be determined by trial and error.

Furthermore, the computation load has been decreased by
half by introducing the ratio between the observed degraded
image and the degraded image by using Algorithm I. Algo-
rithm II could restore the blurred images more precisely and
faster compared to Algorithm I since the latter method has
only selected the initial image as the observed image without
considering the initial guess of the point spread function.

Algorithm II takes more time to estimate the point spread
function. But taking into consideration that the point spread
function does not vary from place to place in the same image,
we can select small region to estimate the function. In this
paper, we select the sub-image where the variation of the
image is rather high, that is, the image includes many edges.
Since we took the sub-image with256 × 256 size, it did not
require so much time.

An open problem is that the Bayesian approach might not
have a solution since the convergence of the iterative method
has not been proved. But the initial guess may not be so far
from the solution of the Bayesian equation since the blurred
image structure will keep the similar behavior to the original
images.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant-in-Aid
for Scientific Research (B) (23360175). The authors would
like to thank JSPS to support this research work.

REFERENCES

[1] S. Omatu and H. Araki, Image Restoration by Revised Bayesian-Based
Iterative Method, ADVCMP 2011, Lisbon, Portugal, (2011)

[2] T. Young and K. Fu, Handbook of Pattern Recognition and Image
Processing Independent Component, Academic Press, New York, (1986)

[3] R. Duda, P. Hart, and D. Stork, Pattern Classification, John Wiley &
Sions, New York, (2001)

[4] Y. Yizhaky, I. More, A. Lantzman, and N. S. Kopeika, Direct Method
for Restoration of Motion-Blurred Images, Journal of Optical Society of
Amarica, Vol. 15, pp. 1512-1519, (1998)

[5] W. Richardson, Bayesian-Based Iterative Method of Image Restoration,
Journal of Optical Society of America, Vol. 62, pp.55-59, (1972)

[6] B. Lucy, An Iterative Method for the Rectification of Observed Distribu-
tions, JAston. Journal, Vol. 79, pp. 745-754, (1974)

[7] R. G. Lane, Methods for Maximum-Likelihood Deconvolution, Journal
of Optical Society of America,A, Vol. 13, pp. 1992-1998, (1972)

[8] Standard Color Digital Images of High-Resolution(CMYK/SCID), JIS X
9201:2001, (2001)

Fig. 12. The estimation process of the point spread function. Here, (a)
is the blurred image denoted in Fig. 11, (b) is the logarithmic amplitude
spectrum of (a), (c) is the blurred image filtered by the hamming window, (d)
is the logarithmic amplitude spectrum of (c), (e) is the estimated logarithmic
amplitude spectrum of (d) after processing of Step 2 and Step 3, (f) is
estimated Gaussian distribution of (e) after processing Step 4 and Step 5,
(g) is the estimated point spread function, and (h) is the true point spread
function.

366

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 13. The simulation results for the image: Cafeteria. Here, (a) is the
original image, (b) is the blurred image, and (c) is the image by Argorithm
I, and (d) is the image by Argorithm II.

Fig. 14. The simulation results for the image: Fruits basket. Here, (a) is the
original image, (b) is the blurred image, and (c) is the image by Argorithm I,
and (d) is the image by Argorithm II.

Fig. 15. The simulation results for the image: Wine and tableware. Here,
(a) is the original image, (b) is the blurred image, and (c) is the image
by Argorithm I, and (d) is the image by Argorithm II. known point spread
function with the spectrum as shown in the image.

367

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

(c)

Fig. 16. The simulation results for the blurred image: Osaka Prefecture
University. (a) is the blurred image, (b) is the image by Argorithm I, and (c)
is the image by Argorithm II. known point spread function with the spectrum
as shown in the image.

Fig. 17. The comparison of the small area. (a) is the blurred image, (b) is
the image by Argorithm I, and (c) is the image by Argorithm II.

368

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Energy-aware MPSoC for Real-time Applications with Space-Sharing, Adaptive and
Selective Clocking and Software-first Design

Stefan Aust and Harald Richter
Dept. of Computer Science

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

stefan.aust|harald.richter@tu-clausthal.de

Abstract—Energy-awareness is an important criterion for
many mobile appliances such as (smart)phones and handhelds.
It is also indispensable for electronic controller units in cars
for example. Unfortunately, low energy consumption and high-
computing power exclude each other. With the proposed
methods of space-sharing, adaptive and selective clocking and
software-first design, both goals can be reached simultaneously.
Space-sharing is an alternative to time-sharing for multi-task
controllers in real-time systems that significantly simplifies
task scheduling. With space-sharing, there is no need for
worst-case execution-time analysis. Furthermore, adaptive and
selective clocking, together with a software-first design reduce
the controller’s energy consumption to the absolute minimum.
The results described herein were achieved by a set of mea-
surements made at a single-chip multiprocessor system called
MPSoC1 that implements space-sharing on one FPGA and by
a second system in software-first design called MPSoC2 that
implements adaptive and selective clocking.

Keywords-real-time system; low power; multiprocessor system
on chip (MPSoC); worst-case execution time (WCET); space-
sharing; adaptive and selective clocking; software-first design.

I. INTRODUCTION

A MPSoC is a parallel computer on a single silicon
chip that may contain between two and several hundreds of
processing units. In the case of up to ten units, we may speak
of a multi-core processor, otherwise of a many-core CPU.
Typically, a multi-core processor employs an on-chip first-
level cache that is shared between all cores for interprocess
communication. If more cores than about 10 are present on
the same chip, shared-memory can not be used any more
because of the memories bandwidth saturation and other
communication means have to be used. Many-core CPU
have therefore an on-chip static or dynamic interconnection
network for interprocess communication that is normally not
real-time capable.

Furthermore, multi- and many-core CPUs are usually im-
plemented by a full-custom-design chip. But during the last
years, the capabilities of Field Programmable Gate Arrays
(FPGAs) have been increased so much that they are in many
cases an alternative to full-custom chips. Every state-of-
the-art FPGA can accommodate already now hundreds of
processing units, i.e., cores, together with a static or dynamic
interconnection network. However, the disadvantage of such

FPGA solutions is that each core is less powerful as in
the full-custom design due to low clockrates and that less
memory is available on chip. This can be overcome by a
higher number of cores and by software that is coded in the
parallel programming style, together with a proper intertask
synchronization.

In daily life, there are many mobile appliances that de-
mand high computing power, but have low energy resources
only. This creates a contradiction because high computing
power normally means high energy consumption as well.
Additionally, precious energy must be invested to cool-
down these devices. As a consequence, either the usability
or the operational time is short. An other fact is that
thermal dissipation limits the life expectancy of electronic
devices because of aging processes in the semiconductor
material. The pn-junctions in the transistors deteriorate with
increasing heat exposure. Finally, heat dissipation always
means low energy efficiency, which is the opposite of Green
IT. Because of these issues, energy-awareness is important
for mobile systems and for ECUs in cars as well.

The concept of space-sharing was introduced first by the
authors in [1]. Based on space-sharing we suggested in
[2] the usage of MPSoCs on a single FPGA to provide
high computing power for energy-limited real-time appli-
cations. Space-sharing instead of time-sharing eliminates
the problem of finding and guaranteeing a proper time
schedule for multiple tasks that are needed to meet the
prescribed functionality under a given set of time constraints.
Furthermore, it allows also a better energy efficiency in
embedded systems if combined with adaptive and selective
clocking and a so-called software-first design because this
will reduce dynamic power dissipation. As a result, space-
sharing is able to reduce energy consumption and to produce
high computing power.

The paper is organized as follows: In section II, an
overview of the state-of-the-art of time-sharing and space-
sharing is given. In section III, the architecture of the
MPSoC1 that implements space-sharing in one FPGA is
presented. In section IV, measurement results of the energy
consumption of MPSoC1 are given. In section V, MPSoC2
is presented, together with methods for lower energy con-

369

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sumption. In section VI, MPSoC1 is compared to MPSoC2
with the same user application that illustrates the benefits of
the proposed methods. Section VII draws a conclusion of
the achieved results and gives an outlook to future work.

II. STATE-OF-THE-ART OF TIME-SHARING AND
SPACE-SHARING

Real-time applications demand the time-sliced execution
of a sequence of tasks on a single processing unit under the
boundary condition of given time limits or at given points
in time. A common method to evaluate the soft or hard real-
time character of an application is the so-called worst-case
execution-time (WCET) analysis. This analysis is made for
the processing unit that executes that tasks by calculating
how long each task will need to complete in the worst case
[3].

In embedded systems with time-sharing operation, delays
in task execution can occur that have several reasons, such
as 1.) matching the deadlines of all tasks by one processor,
which forces concurrency, i.e., competition between tasks,
2.) exchanging intermediate results between tasks because
of interprocess communication, and 3.) interruption of one
task by an other task of higher priority. In order to avoid
intolerable delays in task execution, a suitable scheduling
must be found that guarantees desired operation under all
circumstances. Several task scheduling strategies have been
created to solve this problem. These are mainly priority
scheduling, earliest deadline first or round robin [4]. Further-
more, WCET analysis grows exponentially with the number
of tasks because the amount of if- then-else branches span
up a tree of execution paths, which must be all traversed
to find the longest path. Because of the fact that WCET
is a NP-complete problem, many commercial and open-
source analysis-tools have been developed to ease WCET
analysis [5], [6]. With space-sharing, there is no need for
task scheduling and thus also not for WCET analysis.

In space-sharing, every task gets its own processing
element, which is a core or a whole CPU that is part
of an on-chip parallel computer [1]. Additionally, every
interrupt service routine and every device driver gets its own
processing element as well. Thus it does not happen that one
task is interrupted by an other. This means that the number
of processing elements must match the cumulative number
of all tasks (Fig. 1).

Figure 1. Time-sharing vs. space-sharing.

Furthermore, by this means every task gets its own local
memory where it resides with program and data. As a con-
sequence, tasks are never competing for the same resources.
However, in case of interprocess communication the execu-
tion of a task can still be delayed if the task must wait until
a corresponding task has calculated a required intermediate
result. This problem is known as task synchronization. It
can not be solved by WCET analysis but by proper parallel
programming.

The combination of storage and computing element is
called processor-memory-module (PMM). Several or many
PMMs are coupled by a static or dynamic interconnection
network that is on the same chip and real-time capable.
Finally, PMMs can be connected to peripheral devices such
as sensors, actuators, hard disk, network interface or external
memory by the chip’s IO pins.

Space-sharing requires that the FPGA has enough re-
sources to accommodate all needed components, and it
requires that practical methods exist for allocating tasks to
processors, as well as for automatic chip synthesis due to the
number and structure of PMMs. It requires also that simple
means exist to compile code and to debug it for every PMM,
and that intertask communication occurs in real-time.

III. ARCHITECTURE OF MPSOC1

Fig. 2 shows the architecture of MPSoC1 that we have im-
plemented on various FPGAs from Xilinx. MPSoC1 consists
of a configurable number of PMMs and memory sizes and a
multistage interconnection network that has switches of size
2×2. Each PMM can be directly coupled to an I/O pin or can
access peripheral resources via the interconnection network.
Because of the spatial isolation of PMMs, local program
code and data are protected from unintended overwriting by
other tasks. This means that interprocess communication is
either possible by passing messages through the network or
by shared variables that reside in a global (external) memory.
Furthermore, we managed to develop a VHDL program
that synthesizes a real-time capable interconnection network
of configurable size, together with an arbitrary number of
PMMs. Furthermore, there exist simple procedure calls for
intertask communication and for clock-rate setting.

The processing elements in our implementation are soft-
core processors. For these processors, compilers and debug-
gers exist, but for each PMM code must be compiled and
debugged separately. Open issues are therefore by which
software tools programming and debugging of the parallel
computer can be accomplished as a whole, how tasks are
allocated automatically by a middleware to PMMs, what
operating system can be run on the FPGA, and whether
the number of logic cells on the FPGA is sufficient to
accommodate all tasks. These problems are especially immi-
nent as soon as very complex real-time applications should
be solved by space-sharing or as soon as complex device
drivers are needed to access peripherals. For example, the

370

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. MPSoC architecture on a FPGA.

Figure 3. Evolution of Xilinx FPGAs within the last few years.

ECU software in modern cars comprises hundreds of tasks
and thousands of intertask communications between ECUs.
The questions arising from that issues will be discussed in
the next subchapters. It will be shown that space-sharing
is a usable alternative to time-sharing for many real-time
applications.

A. FPGA Evolution

As shown in Fig. 3, FPGAs have advanced significantly
with respect to the number of logic cells and internal
memory within the last few years, and this trend will
continue. For example, a Virtex-4 XC4VFX100 FPGA has
less than 5 percent of the capacity of the latest Virtex-7
XC7V2000T FPGA. The same holds for on-chip memory,
which has reached up to 70 Mbits per chip. In consequence,
a Virtex-7 FPGA from Xilinx for instance is able to host
hundreds of PMMs, albeit with a much lower processor
clock rate compared to full-custom designed processors and
with smaller local memories. However, a clock of 200 MHz
and a program and data store of several dozens of KByte is
feasible for a Virtex-7 FPGA for about 2-300 PMMs, which
is sufficient for many feed forward and feed back control
algorithms. Also single-chip controllers have no higher clock
frequencies. The reason for that is the necessity for GHz and
GBytes in embedded systems is low.

B. Soft-Core Processors

A soft-core processor exists as a set of FPGA logic cells
that are synthesized via a hardware description language

such as VHDL or Verilog. In our tests, we have used a
publicly available processor description from Xilinx called
MicroBlaze [7]. On a Virtex-5 PFGA, for example, each
single MicroBlaze consumes 2-3 % of the chip’s logic cells
and memory. A MicroBlaze implements an in-order, non-
superscalar, 32-bit RISC CPU with a clock rate of up to
200 MHz. Because of its simple RISC architecture, it is
possible to predict the CPU cycles needed for a given real-
time task more easily than in the case of a fully-featured
CPU. MicroBlazes can even be synthesized without caches
and branch prediction, which allows to calculate exactly the
execution time for every task. Application software can be
developed in C or C++ because compilers are existing in the
Xilinx EDK toolset, from other vendors and open sources
as well.

C. Interconnection Network

For interprocessor communication we used a multistage
interconnection on-chip network (MINoC), which is based
on the Beneš-network and which establishes real time com-
munication paths between PMMs. Messages are transferred
in a point-to-point manner or as multicast or broadcast. All
three communication types are realized by (2N · log2N −1)
2 × 2 switches that can transfer data either as a through
("=") or as a crossed ("x") connection or as broadcast from
one switch input to both outputs. Each input port to the
interconnection network is equipped with a message FIFO to
decouple message creation in a PMM from message transfer
and delivery in the network. The FIFOs store the messages
that are destined for a specific output port as long as that port
is occupied. The FIFO depth is small in order not to impair
real-time capability that would be caused by messages that
are waiting too long in a FIFO. Since the interconnection
network works in circuit switching mode, a direct path
through the network from sender to receiver is established
for every communication type as long as the communication
persists. The network can connect every input with every
output at any time, as long as no two inputs want to be
transferred simultaneously to the same output port. Such a
situation is considered as bad task synchronization.

The most important feature of the interconnection network
is its non-blocking character, which is a consequence of its
topology. This feature comes from the fact that alternative
paths can be switched through the network during run-time.
The network routing algorithm was developed by one of the
authors [8], [9] and [10]. Later the routing was improved by
the other author [11]. The improved routing algorithm is able
route N paths from inputs to outputs within one clock cycle
[12] by means of combinatorial logic that is implemented
in AND, OR and NOT gates. The non-blocking character
of the network is mandatory for real-time communication.
Otherwise connection requests would be delayed because of
network-internal conflicts, and no upper time limit could be
guaranteed for message latency.

371

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Design Methodology and Operating System

In controllers with time-sharing, tasks are sequenced by
a task scheduler that is part of a real-time operating system
(RTOS). The RTOS provides additionally for device drivers,
memory protection, interrupt handling and interprocess com-
munication. However, most of these RTOS functions are
obsolete in space-sharing. The only task per PMM can
be executed in stand-alone mode if some prerequisites are
fulfilled. These are: 1.) a communication library is pro-
vided that implements point-to-point, multicast and broad-
cast for message passing via the interconnection network, 2.)
semaphores for shared memory access via a global memory
are existing. 3.) Reading and writing sensors and actuators
by the PMM is performed via specific device driver tasks
in dedicated PMMs. The latter is possible as long as no
complex devices such as graphic, hard disk or network
controllers must be read and written. In that case, either
a RTOS kernel must be employed additionally that has
stripped-off all unnecessary features because of memory
limitations in the PMM, or external memory that is on the
FPGA board must be engaged.

The design methodology for application code in space-
sharing is similar to that of parallel programming: first the
application must be partitioned into several tasks. Then the
needed interprocess communication must be defined, and
code and communication libraries must be bounded together.
Finally, the parallel program must be tested. In contrast to
parallel programming, the number of PMMs, the structure
of every PMM and the interconnection network must by
synthesized for the target FPGA in space-sharing before
program test. Furthermore, space-sharing allows to resize
the local memory to the requirements of each task. Since
soft processors are used, the processor architecture can be
adapted to software requirements as well, for example by
an additional coprocessor as hardware accelerator. Xilinx
EDK allows to configure in detail every MicroBlaze as
needed. Because of that, computing hardware depends on
the application software, which we call software-first design.

E. Energy-awareness in Space-Sharing

According to [13], the total power consumption P of a
semiconductor chip consists of static power dissipation Pstat

and dynamic power dissipation Pdyn and it must hold:

P =
∑

Pstat +
∑

Pdyn (1)

In the following, it will be discussed how the dynamic
fraction of the FPGA power consumption can be reduced.
The static power cannot be altered by chip users because it is
caused by leakage currents inside of the semiconductor [14].
Dynamic power dissipation, however, arises from switching
activities of transistors. Equation 2 determines the dynamic
power dissipation as a function of supply voltage V , clock
frequency f and chip capacitance C [15].

Pdyn =
∑

C · V 2 · f (2)

According to Eq. 2, there are three options for reducing
dynamic power dissipation:

• lower switching capacitance C
• lower supply voltage V
• lower switching frequency f

The switching capacitance depends on the production
process of the chip and cannot be controlled by FPGA
users. The supply voltage can be controlled by an adaptive
power supply for the whole chip. However, the switching
frequency can be controlled by an adaptive clock for every
PMM. Such clocks can be implemented by a central clock
generator for the chip and by individual clock dividers at
every PMM. If the divided output clock can be disabled
then the PMM can also be stopped and restarted arbitrarily
because no DRAM cells are inside of a FPGA that must
be refreshed. Furthermore, only that area on the FPGA-chip
must be clocked at all that is needed for space-sharing. The
rest of the chip will dissipate only static power, which is
much less. Finally, because of the fact that every PMM
has its own clock the PMM’s dynamic power dissipation
can statically be reduced until the clock has reached the
lowest possible periodicity that the user application allows.
Additionally, dynamic power dissipation can be reduced
adaptively if the clock divider is controlled by the PMM’s
task. Phases with high computing requirements are clocked
faster by the task itself than phases with low requirements or
with slow reaction times. The task knows when these phases
occur because it is programmed be the user.

Finally, as long as the PMM waits for input from a periph-
eral device the clock can be switched off totally and restarted
again by that peripheral when data are delivered. Such power
saving potential is not available for embedded systems with
time-sharing because their clock rates do not depend on the
tasks. It would be too risky for high-speed tasks if the clock
rate would be decreased by time-shared low speed tasks.
Furthermore, if the clock is switched-off in time-sharing
systems all tasks must rest for ever because an individual
switch-off and easy hardware restart by a peripheral is not
possible. Thus power dissipation remains in general the
same in time-sharing systems unless the supply voltage is
reduced. The regulating of the supply voltage is practiced in
every laptop, for example. However, space-sharing can adopt
voltage regulation as well. In Fig. 4, individual clocking is
shown together with voltage regulation.

IV. MEASUREMENT RESULTS OF THE ENERGY
CONSUMPTION OF MPSOC1

A. Test Setup

During our tests, we used three commercial FPGA eval-
uation boards with Xilinx Spartan-3, Virtex-4 and Virtex-5
FPGAs, which are listed in Table I. All boards are equipped

372

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Motivational Example [16].

Table I
LIST OF TESTED FPGAS

FPGA
FPGA

Chip Board

Spartan-3 Xilinx XC3S1000 Digilent Starter-Kit

Virtex-4 Xilinx XC4VFX100 PLDA XpressFX

Virtex-5 Xilinx XC5VLX50T Xilinx ML505

with DIP switches that allow to control a clock divider
for the FPGA. This enabled us to measure at different
clock speeds without re-synthesizing the FPGA, which is
important because a new synthesis would influence the result
of the measurements as soon as components were placed
and routed differently (cf. IV-F). In addition to that, the
system clock had to be switched-off to measure static power
dissipation, which was also possible by these DIP switches.

All boards have an external power supply where we could
connect our test circuit as shown in Fig. 5. We used for all
measurements the same adjustable power supply to avoid
inaccuracies, together with two multimeters for voltage and
current measurements. Each time we measured with and
without clocking to separate dynamic from static power
dissipation (cf. Eq. 1) .

B. Static vs. Dynamic Power Dissipation

On a Virtex-4 XC4VFX100 FPGA we could accommo-
date between 1 and 34 PMMs, consisting of a standard soft
processors of type MicroBlaze and 16 KB memory each.
The chip is manufactured in 90 nm gate size. At first all

A

V
+

+

- -

FPGA-boardV0
IB VB

Figure 5. Test circuit for power measurements

Figure 6. Static vs. dynamic power consumption for various numbers of
soft processors, measured on Xilinx Virtex-4 FPGA.

processors were clocked with 100 MHz, while the total
power consumption of the FPGA was measured. After this,
the system clock was disconnected to measure the static
power consumption only. Dynamic power dissipation was
obtained as the difference of both measurements. The results
of up to 23 soft processors are shown in Fig. 6, where blue
columns indicate static power dissipation and red columns
indicate dynamic power dissipation.

C. Influence of the Number of PMMs

Fig. 6 shows that static power dissipation remains constant
while dynamic power dissipation increases linearly with the
number of PMMs. Deviations from a straight line are caused
by the place-and-route function of the synthesis tool, which
was Xilinx XST [17]. Fig. 6 indicates also that for more
than 12 PMMs dynamic power dissipation dominates. Other
FPGAs show the same principal behavior as it can be seen
from 7.

The absolute numbers we have measured in Fig. 7 are:
a Spartan-3 PMM consumes 268 mW of dynamic power,
a Virtex-4 PMM consumes 120 mW, and a Virtex-5 PMM
consumes 53 mW.

D. Influence of the Processor Clock Rate

Another measurement series was conducted to get the
dynamic power dissipation versus the processor clock rate.
Various processor clock rates were investigated by using a

373

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Dynamic power consumption for various numbers of soft
processors, measured on Xilinx Spartan-3, Virtex-4, and Virtex-5 FPGAs.

Figure 8. Dynamic power consumption vs. processor clock rate measured
on Spartan-3 FPGA. The number of processors is parameterized.

clock divider while the number of PMMs was kept constant.
In Fig. 8, the results of MPSoCs with 1 to 6 processors in a
Spartan-3 FPGA are shown. In Fig. 9, the results of MPSoCs
with 1 to 8 processors in a Virtex-5 FPGA are shown. All
results comply with Eq. 2. Both FPGAs show a linear curve
from which one can derive also the average dynamic power
dissipation in absolute numbers according to (Eq. 3 and Eq.
4).
as:
Spartan-3 FPGA:

Pdyn = 3.64
mW

MHz
(3)

Virtex-5 FPGA:

Pdyn = 0.48
mW

MHz
(4)

E. Influence of the Manufacturing Technology

In all measurements of Fig. 7, the same soft processor
architecture plus the same size of local memory were used.
Nevertheless, the dynamic power dissipation varies with

Figure 9. Dynamic power consumption vs. processor clock rate measured
on Virtex-5 FPGA. The number of processors is parameterized.

different FPGAs. As one can see, the decrease of dynamic
power consumption from one FPGA generation to the next
is caused by smaller transistor sizes (65 nm instead of 90
nm) and other technological improvements.

F. Influence of the Place-and-Route Tool

The place-and-route tool is responsible to find space on
the chip for all components and to connect them. The
length of FPGA-internal connections and their switching
capacitance vary from layout to layout. Thus place-and-route
tools influence the dynamic power dissipation of FPGA-
based systems. An analysis of this influence was made for
example by Coxon in [18]. He showed that the dynamic
power dissipation can be reduced up to 14% in Spartan-3,
up to 11% in Virtex-4 and up to 12% in Virtex-5 FPGAs by
optimizing the place-and-route process via user intervention
that was made by synthesis directives. In Fig. 9, it can be
seen that the distance between neighbor curves is not a
constant for all curves. For example, the MPSoC with 5
processors consumes a little bit more power than expected.
We explain this by the influence of the place-and-route tool.

G. Influence of the Processor Structure

We investigated the influence of the processor structure
on the dynamic power dissipation by means of a Spartan-3
FPGA that was operated a clock rate of 50 MHz. The inter-
nal structure of a MicroBlaze can be configured in the Xilinx
EDK toolset. The result is shown in Table II. A MicroBlaze
that has a simple structure with few internal components
only dissipates 182 mW dynamic power. Additionally 107
mW are used for a 5-stage pipeline and 119 mW for a
floating point unit, for example.

Fig. 10 shows the dynamic power dissipation of a fully-
equipped MicroBlaze. The percentage every component con-
tributes in that processor to the total power is listed in
Table II. From this table it can be seen that it pays out a
lot to remove unused processor components, what in space-
sharing depends of the application software. This result is

374

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
DYNAMIC POWER CONSUMPTION OF SOFT PROCESSOR COMPONENTS

MEASURED ON SPARTAN-3 FPGA

Processor Setup Dynamic Power Dissipation
basic 182 mW

+ 5-stage pipeline + 107 mW

+ barrel shifter + 13 mW

+ 32-bit multiplier + 11 mW

+ integer divider + 15 mW

+ floating point unit + 119 mW

Figure 10. Percentage of dynamic power consumption of processor
components in a fully equipped MicroBlaze soft processor as measured
on Spartan-3 FPGA.

fully compliant with the software-first design methodology
that was mentioned before.

H. Influence of the Local Memory

In order to investigate the influence of the local memory
on dynamic power dissipation we measured several MPSoCs
with different local memory sizes on a Virtex-4 FPGA at
a clock rate of 100 MHz. The number of processors was
parameterized. Each PMM executed the same test software
that accessed local memory so that it was used by switching
bits. Fig. 11 shows the result.

Figure 11. Dynamic power consumption vs. size of local memory
measured on Virtex-4 FPGA. The number of processors is parameterized.

Figure 12. Dynamic power consumption of the MPSoC interconnection
network vs. its clock rate measured on Virtex-4 FPGA.

One can also see in Fig. 11 by extrapolating the mea-
surement curve to zero is that a PMM that has no memory
consumes about 100 mW. Furthermore, the slope of the
curve is about 1 mW per KB of memory. By combining
the results from section IV-D with Fig. 11 we can establish
to following empiric equation for the Virtex-4 FPGA:

Pdyn = 1
mW

MHz
+ 0.01

mW

MHz ·KB
(5)

I. Influence of the Interconnection Network

In Fig. 12, the influence of the MPSoC network clock rate
on the dynamic power dissipation is presented for a Virtex-
4 FPGA. The diagram shows that the network’s dissipation
increases linearly with a slope of about 0.85 mW per MHz.
Furthermore, we found that most of the dynamic dissipation
mainly arises from the FIFO buffers that decouple processors
at the network interfaces for asynchronous interprocessor
communication. The network itself is very power efficient
because its principle of circuit switching, i.e., signal transfer
without buffering. In consequence, the less the FIFO buffer
depth is the less dynamic power is consumed. However,
the FIFO depth can not be chosen arbitrarily small because
it depends on the number of messages that have to be
temporarily stored, their size and how big the difference
between processor clock rate and network clock rate is. A
big speed difference requires a deep FIFO to balance-out
message sending and transferring, at least for a while.

J. Power Consumption Constants

Overall, from the accomplished measurements we got the
following numeric constants for dynamic power dissipation
of a MPSoC that was implemented on a Virtex-4:

Pprocessor ≈ 1
mW

MHz
(6)

Pmemory ≈ 0.01
mW

KB ·MHz
(7)

375

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Dynamic power consumption of a MPSoC2 on Virtex-4 FPGA.

Figure 14. Set-up of the clock rate controller.

Pnetwork ≈ 0.85
mW

MHz
(8)

V. MPSOC2 WITH SELECTIVE AND ADAPTIVE
CLOCKING AND SOFTWARE-FIRST DESIGN

Space-sharing allows selective and adaptive clocking of
every PMM by means of a clock rate controller for every
PMM. Furthermore, the software-first design method pre-
scribes to configure each PMM such that it matches exactly
the requirements of the task it has to execute. To test the
influence of both methods, we defined MPSoC2, which has
eight PMMs that execute eight different example tasks in
their memories. Memory sizes and clock frequencies were
chosen as needed by the tasks. In Fig. 13, the resulting
MPSoC2 is depicted.

A. Clock Rate Controller

Fig. 14 shows the block diagram of the clock rate con-
trollers of MPSoC2. Every controller derives its input from
a system clock generator, which is global for the FPGA and
and generates its output by a clock divider. The divider can
be set either to a constant rate or, as depicted in Fig. 14, can
be controlled by the application software during program
execution. In second case the clock divider is coupled to the
soft processor via Xilinx FSL-bus. Thereby the clock rate
can be set just by sending the new value, which is done
within two clock cycles at least.

B. Task Segmentation

To benefit from individual clocking, the application pro-
grammer must set the clock frequency for every task ex-
plicitly. If the task has several phases with different time
constraints then he can set clock rates that are adapted to
each phase. To accomplish this, it is required to segment
the task into time intervals in which the same rate holds
as it is shown in Fig. 15. After that task segmentation, the
programmer can define the clock rates by two ways: either
he uses a procedure call, which is executed during runtime,
or he uses a compiler directive, which is evaluated during
compile time. Both methods augment the original code.
Other examples of code augmentation by time constraints
that can be found in literature are given in [13].

Figure 15. Clock rate adaptation by task segmenting.

Fig. 16 shows an example code where a library proce-
dure set_clock_rate is responsible for clock rate setting.
The application itself check_new_data periodically checks a
sensor for the arrival of new data. This may be accomplished
at a slow sampling rate of 2 MHz, for example. If new
data are present, the application calc_value is executed at
a higher rate of 40 MHz, for example, in order to process
the incoming data quickly. By this method, the processor
clock varies dynamically during program execution. Thus
the dynamic power dissipation rises and falls with the
computing requirements.

The disadvantage of this method is that the programmer
must identify clock change points in his code and must
specify their value manually. Moreover, the clock rates
depend on the used PMM because a superscalar processor,
which is more powerful would execute more instructions in
the same time. This means that clock rate settings have to
take into account the concrete PMM on which the task is
executed, what makes applications difficult to port between
PMMs.

C. Compiler directive for Clock Rate Adaptation

A better method for adaptive clocking is adding a time
ruler to the code according to Fig. 15. Each tick in the
time ruler Ti defines a point in time until a program phase

376

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set_clock_rate(2);
while(new_data = 0){
 new_data = check_new_data(&data);
};
set_clock_rate(40);
value = calc_value(&data)
set_clock_rate(2);

=> clock rate = 40 MHz

=> clock rate = 2 MHz

=> clock rate = 2 MHz

Figure 16. System call for setting processor clock rate.

must be completed. The adding of time values as ticks is
accomplished manually by a compiler directive. The direc-
tives are formatted as a comment with a following $ symbol,
for example, to avoid confusion with language extensions
or with system calls but they are not treated as comments
or extensions. Instead, only a compiler pre-processor reads
all meaningful comments and evaluates them. Furthermore,
the compiler knows best the PMM type it has to generate
code for. This allows for an automatic calculation of the
desired clock rate for every program phase. The calculation
is performed by the pre-processor in accordance to the
respective execution speed of the PMM. The pre-processor
counts the number of clock cycles needed to execute every
phase due to the time ruler. With that information, the pre-
processor can then set the clock rate for every phase, and
the programmer does not have to care about the concrete
PMMs computation speed, as long as it is fast enough.

/*$ initiate */
while(new_data = 0){
 new_data = check_new_data(&data);
};
/*$ event ≤ initiate + 20 */
value = calc_value(&data)
/*$ terminate ≤ event + 30 */

=> 40 clock cycles / 20µs = 2 MHz

=> 1200 instructions / 30µs = 40 MHz

Figure 17. Compiler directive for setting processor clock rate.

Fig. 17 shows the example of Fig. 16 with the additional
time ruler.

VI. COMPARISON OF MPSOC1 WITH MPSOC2 UNDER
THE SAME USER APPLICATION

In the following, we compare the dynamic power con-
sumption of MPSoC1 with that of MPSoC2 in order to
explore the effect of adaptive and selective clocking, together
with the effect of the software-first design methodology. For
a fair comparison, MPSoC1 and MPSoC2 got the same eight
tasks to execute, and we measured the total dynamic power
dissipation during their execution. MPSoC1 is based on a
Virtex-4 FPGA with a fixed clock rate of 100 MHz for all
system components and a static memory size of 128 KB for
all eight PMMs. MPSoC2 is based on the same FPGA but
dependent of its task requirements with clock rates of 25,
100, 5, 5 and 10 MHz and with memory sizes of 16, 32, 8,
16, 16 KB. Our measurements at MPSoC1 showed that the
total dynamic power consumption is:

Pdyn ≈ 1909mW (9)

comprising of

Pprocessor ≈ 800mW (10)

Pmemory ≈ 1024mW (11)

Pnetwork ≈ 85mW (12)

This means that on average every PMM has a dynamic
power dissipation of 228 mW. In contrast to that is the
example of MPSoC2 (cf. Fig. 13) that produced the same
results within the same time limits as MPSoC1. However, it
consumed only a total of 184 mW, resulting in an average of
23 mW per PMM. Many other examples can be found that
show the same trend. According to that it can be stated that
adaptive and selective clocking together with software-first
design are efficient methods to reduce the system’s energy
consumption in space-sharing.

VII. CONCLUSION AND OUTLOOK TO FUTURE WORK

In this paper, the methods of space-sharing, adaptive and
selective clocking and software-first design were proposed
and demonstrated in two example multiprocessor systems
that resided on a single FPGA. The combination of these
methods into a methodology allows to get at the same time
high computing power and low electric power dissipation.
This new result is valid for the class of embedded real-
time systems because smaller tasks have to be executed
there. Nevertheless, complex feed forward and feed back
control systems can be established that way, comprising
hundreds of tasks with interprocess communication. All
tasks are executed in parallel on by processor-memory
modules (PMMs) that are connected via a special multistage
interconnection network that is real-time capable. Interpro-
cess communication is either possible by passing messages
through the network or by shared variables that reside in a
global (external) memory.

Space-sharing means that exactly so many PMMs are
synthesized on one FPGA as there are user tasks, including
all interrupt service routines and device drivers that are
needed by the user application. Adaptive and selective
clocking means that every PMM is clocked individually and
with a rate that matches the needs of the task it executes,
even if these needs vary from task phase to task phase.
Software-first design means that the PMM is configured in
its architecture and in its memory size such that it meets
exactly the task requirements, thus avoiding waste of chip
and energy resources.

As a result, space-sharing eliminates the need to find a
proper schedule for a set of tasks that must be executed
until a given time interval or at a given time point. It

377

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also eliminates the analysis of worst-case execution time
(WCET) in embedded controllers, which can be very com-
plex. Additionally, space-sharing allows for a better electri-
cal power management and for memory protection because
of the spatial isolation of tasks. Finally, dynamic power
dissipation can be reduced in space-sharing by means of
adaptive and selective clocking and by a software-first design
to the absolute minimum. This is applicable, e.g., in car
electronics, where an increasing amount of real-time tasks
has to be proceed at a minimum of energy use.

Future work will create a tool set that automatically
synthesizes a FPGA-based MPSoC from a XML description
of tasks and from a second description of the tasks’ memory
and time constraints. The resulting embedded controller will
be easily synthesize-able because it consists only of small
and individual processor-memory-modules. It will though
exhibit high computing power and low energy dissipation
at the same time.

REFERENCES

[1] S. Aust and H. Richter, Space Division of Processing Power
For Feed Forward and Feed Back Control in Complex Pro-
duction and Packaging Machinery, Proc. World Automation
Congress (WAC 2010), Kobe, Japan, Sept. 2010, pp. 1-6.

[2] S. Aust and H. Richter, Energy-Aware MPSoC with Space-
Sharing for Real-Time Applications, The 5th International Con-
ference on Advanced Engineering Computing and Applications
in Sciences (ADVCOMP 2011), Lisbon, Portugal, Nov. 2011,
pp. 54-59.

[3] P. Marwedel, Embedded System Design, 2nd edition, Dor-
drecht; Heidelberg: Springer, 2011.

[4] G. C. Buttazzo, Hard Real-Time Computing Systems. Pre-
dictable Scheduling, Algorithms and Applications, Boston;
Dordrecht; London: Kluwer Academic Publishers, 1997.

[5] Rapita Systems Ltd., www.rapitasystems.com (last checked:
11-06-20).

[6] Symtavision GmbH, www.symtavision.com (last checked: 11-
06-20).

[7] Xilinx Inc., MicroBlaze Processor Reference Guide, October
2009.

[8] H. Richter, MULTITOP - Ein Multiprozessor mit dynamisch
variabler Topologie, Dissertation, Fakultaet fuer Elektrotechnik
und Informationstechnik der TU Muenchen, 1988, (in Ger-
man).

[9] H. Richter, MULTITOP - A multiprocessor with dynamic
variable topology (English Summary), IPP Technical Report
R/35, Max-Planck-Institut fuer Plasmaphysik, 1988.

[10] H. Richter, Interconnecting Network, US-Patent Nr.
5,175,539, 1992.

[11] S. Aust and H. Richter, Real-time Processor Interconnec-
tion Network for FPGA-based Multiprocessor System-on-Chip
(MPSoC), The 4th International Conference on Advanced
Engineering Computing and Applications in Sciences (ADV-
COMP 2010), Florence, Italy, Oct. 2010, pp. 47-52.

[12] S. Aust and H. Richter, Skalierbare Rechensysteme fuer
Echtzeitanwendungen, in: W. A. Halang (editor): Heraus-
forderungen durch Echtzeitbetrieb, Springer, 2011, pp. 111-
120, (in German).

[13] A. Leung, K. V. Palem, and A. Pnueli, TimeC: A Time Con-
straint Language for ILP Processor Compilation, Constraints,
vol. 7, no. 2, 2002, pp. 75-115, doi: 10.1023/a:1015131814255.

[14] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner,
K. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan,
Leakage Current: Moore’s Law Meets Static Power, IEEE
Computer, vol. 36, issue 12, Dec 2003, pp. 68-75.

[15] L. Shang, A. S. Kaviani, and K. Bathala, Dynamic Power
Consumption in VirtexTM-II FPGA Family, Proc. of the 2002
ACM/SIGDA tenth international symposium on Field- pro-
grammable gate arrays (FPGA ’02), Monterey, CA, Feb. 2002,
pp. 157-164.

[16] H. Yasuura, T. Ishihara, and M. Muroyama, Energy Man-
agement Techniques for SoC Design, Essential Issues in SoC
Design, Springer, 2006, pp. 177-223.

[17] Xilinx Inc., XST User Guide for Virtex-4, Virtex-5, Spartan-
3, and Newer CPLD Devices, Xilinx document no.UG627,
December 2010.

[18] A. Coxon, FPGAs auf Low Power trimmen, elektronik indus-
trie, Huethig, issue 1/2, 2009, (in German).

378

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Footprint-Based Generalization of 3D Building Groups at Medium Level of Detail
for Multi-Scale Urban Visualization

Shuang He, Guillaume Moreau, Jean-Yves Martin
L’UNAM Université, Ecole Centrale Nantes, CERMA

Nantes, France
Email: Shuang.He; Guillaume.Moreau; Jean-Yves. Martin@ec-nantes.fr

Abstract—In order to enable multi-scale urban visualization,
multiple model representations at different levels of detail
(LoDs) need to be produced (like by generalization) in advance
or on the fly. At local scale, building groups are involved and
at least medium LoD is needed in terms of visual perception.
Motivated by such demands, this article proposes a novel
method for generalizing 3D building groups at medium LoD
(the idea was firstly presented in the work of He et al. [1]). The
goal is to reduce both geometric complexity and information
density. The emphasis is placed on converting 3D generalization
tasks into 2D issues via buildings’ footprints. The challenge
is how to do the mapping from 3D to 2D without losing the
information for going back to 3D, especially for a non-prismatic
model at medium LoD.

Instead of treating such model as a whole, two preprocessing
steps (model partition and unit division) are introduced to
decompose a model into suitable structures for footprint-
based generalization. As a result, basic generalizations units
are obtained, and each of them is divided into Top + Body.
The Body part must be a prism for footprint projection.
The Top part can include roofs and upper walls, and it can
be transplanted onto the extruded model by displacement
or be generalized with adjacent Top parts. Two common
types of building groups are studied and different algorithms
are developed for their generalization. Experimental results
validate the effectiveness of our approach.

Keywords-3D generalization; building group; footprint; level
of detail; multi-scale urban visualization

I. INTRODUCTION

3D city visualization requires different representations
of building models at different levels of detail (LoDs) to
satisfy different scales and application needs. These LoDs
should be generated automatically by specific generalization
procedures. Generalization has a long history in cartography
[2], with the goal of emphasizing the most important map
elements while still representing the world in the most
faithful and recognizable way. 3D building generalization in
city visualization shares the same goal, but should consider
both geographical and 3-dimensional information.

As discussed and listed in [3], unlike 2D maps that
have standard official scale series, there are no generally
agreed LoDs for 3D buildings. Including the four LoDs
defined by CityGML (City Geography Markup Language)
[4], the existing definitions of LoDs for 3D buildings only
differentiate by 3D details. That is to say, they hardly

respond to geographical generalization, like the generaliza-
tion regarding a group of 3D building, where topological
relations should also be considered. This seems to lead more
attention to single building generalization.

A number of algorithms have been developed for 3D
building generalization. Most of those algorithms deal with
single buildings. Generalization of building groups is seldom
addressed. In 3D city visualization, the goal of generalization
is not only to simplify individual objects, but also so to
achieve better cognition by emphasizing important features.
Thus, there rises a generalization need for building groups.
Both 3-dimensional detail and geographical relations should
be taken into account. More generalization operations like
selection, aggregation, typification and their combinations
are expected.

Footprint has been serving as the connection between 2D
and 3D. Plenty of block models of buildings were extruded
from cadastral maps using their footprints and heights. But
more detailed models could not be acquired in this way.
Therefore, a question rises here: how can we translate 3D
building generalization issues into 2D scope for generalizing
more detailed 3D building models?

This article is organized as below: related work is re-
viewed in Section II. Concerned issues are discussed in Sec-
tion III. Section IV gives an overview of our approach. Sec-
tion V and Section VI focus on decomposing a 3D building
model into suitable units for footprint-based generalization
through model partition and unit division. Generalization
algorithms for two types of building groups are developed in
Section VII. Section VIII implements the proposed approach
and presents the results. Section IX concludes the article.
Section X discusses the future work.

II. RELATED WORK

Compared with the history and achievements in 2D
generalization, 3D generalization is still very young and
immature. A number of algorithms have been developed
for generalizing single buildings. Thiemann proposed to
segment a building into basic 3D primitives and to decom-
pose the whole generalization process into segmentation,
interpretation and generalization phases [5]. Mayer [6] and

379

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Forberg [7] developed scale-space techniques for simpli-
fying buildings, partly based on the opening and closing
morphological operators. Kada proposed to define parts of
simplified buildings as intersections of half-planes [8] and to
divide buildings into cells and to detect features by primitive
instancing [9]. Without semantic information, these methods
mainly detect building features based on pure geometry.

By taking semantic information into account, Fan et al.
[10] proposed a method for generalization of 3D buildings
modeled by CityGML from LoD3 to lower LoDs. Their
research showed that good visualization properties could be
obtained by only using the exterior shell of the building
model that drastically decreases the required number of
polygons. Fan and Meng [11] extended their work to the
generalization of CityGML LoD4 building models, and
concentrated on deriving LoD2 CityGML buildings from
LoD3 [12]. However, the above mentioned methods are all
limited to generalization regarding single buildings.

Anders [13] proposed an approach for the aggregation
of linearly arranged building groups. Their 2D silhouettes,
which are the results of three orthogonal projections, are
used to form the generalized 3D model. Guercke et al. [14]
studied the aggregation of LoD1 building models in the form
of Mixed Integer Programming (MIP) problems.

Techniques start emerging for generalizing 3D building
groups in the context of city visualization. Glander and
Döllner [15] proposed cell-base generalization by maintain-
ing a hierarchy of landmarks. In each cell, only landmark
buildings can be seen, the other buildings are replaced by
a cell block. In the work of Mao et al. [16], buildings
are divided into clusters by road network, and grouped
with close neighbors in each cluster. However, only LoD1
buildings were handled.

Moreover, many other algorithms have been developed
emphasizing different aspects. Putting the emphasis on pro-
gressively removing details, Sester and Klein [17] introduced
a rule base which can guide facade generalization including
aggregation of neighboring windows, elimination, enlarge-
ment or displacement of small facade features depending on
their relative importance. Kada [18] introduced an algorithm
of constrained invasive edge reduction. Rau et al. [19]
focus on automatic generation of pseudo-continuous LoD
polyhedral 3D building models, using only one parame-
ter, i.e. feature resolution. For the purpose of simplifying
and emphasizing 3D buildings, Thiemann and Sester [20]
presented adaptive 3D templates. They categorize building
models into a limited number of classes with characteristic
shapes, and then use these templates for typical 3D buildings
and replace the original 3D shape with the most similarity
of those templates. Zhang et al. [21] studied geometry
and texture coupled generalization towards realistic urban
visualization. He et al. [22] proposed a new way to produce
LoDs for 3D city models at (pseudo) all range of scales, by
combining generalization and procedural modeling.

III. CONCERNED ISSUES

A. Levels of detail for buildings

The existing methods for measuring levels of detail of
building models mainly use descriptive expressions, such as
listed in the survey of Meng and Forberg [3] and defined in
CityGML standard [4]. CityGML differentiates five building
LoDs. A LoD0 building can be represented by footprint or
roof edge polygon. LoD1 is the well-known blocks model
comprising prismatic buildings with flat roofs. In contrast, a
building at LoD2 has differentiated roof structures and the-
matically differentiated surfaces. LoD3 denotes architectural
models with detailed wall and roof structures, balconies,
bays and projections. LoD4 completes a LoD3 model by
adding interior structures for 3D objects. In general, we can
consider LoD0 and LoD1 as low LoDs, LoD2 as medium
LoD, LoD3 and LoD4 as high LoDs.

The five CityGML’s LoDs are generally accepted, how-
ever, each LoD obviously covers a rather wide range.
Thus, many in-between LoDs can hardly be distinguished.
Moreover, these LoDs are made for individual buildings.
They will face more challenges when a number of building
models are involved. We also adopts CityGML’s definitions,
but trying to extend them for denoting LoDs for building
groups and indicating more in-between levels.

B. Generalization scale and complexity

At different scales, 3D building models have different
features and the corresponding generalization faces different
types of complexity, such as geographic complexity and
geometric complexity. Here we use the term - geographic
complexity - to refer to the complexity related to geographic
distribution, including topological relation, information den-
sity, etc. Geometric complexity refers to the complexity of
geometric representation of models, such as the number of
primitive elements.

At city scale, low LoD building models are mostly in-
volved, so the generalization task mainly deals with geo-
graphic complexity. At object scale (e.g. single buildings),
high LoD models are often required, so the generalization
focus is on geometric complexity. At local scale (e.g. build-
ing groups), medium LoD models are usually concerned,
thus both geographic complexity and geometric complexity
should be considered. Compared with single building gener-
alization, building group generalization is seldom addressed
but also quite needed, for example, when we want to reduce
computational complexity without losing the recognizability
of a building cluster. Therefore, the proposed generalization
approach aims at reducing both geometric and geographic
complexity of a group of buildings, meanwhile maintaining
the general aspect of the group.

For the reduction of geometric complexity, a number of
generalization algorithms have been specifically designed
for single buildings. Can we make generic approaches that

380

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

suit to both (complex) single buildings and building groups?
For the reduction of geographic complexity, can we adapt
2D generalization techniques to 3D scope? Both of these
two challenges are concerned in the development of our
approach.

C. Object nature and model quality

A proper generalization approach is firstly oriented by
the object nature. In 3D computer graphics, a great number
of algorithms have been developed for simplifying polyg-
onal representations of solids and surfaces for general 3D
objects. However, these algorithms can hardly be applied
to buildings, because most 3D building models are al-
ready low-polygon models. Besides, parallel and orthogonal
properties of buildings need to be respected during sim-
plification. Interdependency between building components,
adjacent buildings, and other city objects should also be
considered. Therefore, determined by the nature of building,
generalization algorithms for 3D building models are usually
specifically designed.

Semantics plays an important role in building generaliza-
tion. If we know the semantic meaning (wall, roof, window,
door, balcony etc.) of each geometry, it can be properly
treated according to its kind. The existing algorithms for
building generalization can be grouped into two categories
decided by whether semantic information is provided along
with the geometric model. For generalizing pure geometry
building models, the primary effort is mainly devoted to
feature detection and segmentation. Such effort can be ex-
empted if semantics is provided. Moreover, the coherence of
geometry and semantics is also influential. Stadler and Kolbe
[23] pointed out that the more information is provided by the
semantic layer, the less ambiguity remains for geometrical
integration. We believe it is also true for generalization task.
Figure 1 shows two extreme cases of the level of coherence.

IV. APPROACH OVERVIEW

The generalization target of this approach is a group of
building models at medium LoD. The emphasis is placed on
translating 3D generalization tasks into 2D problems. The
strategy is to generate footprints of 3D buildings, perform
2D generalization on their footprints, and then extend the
result to 3D.

Figure 2 depicts the main flow of the proposed footprint-
based approach for generalizing building groups. Because
the available 3D building models usually come with unfa-
vorable data structures for direct footprint projection, pre-
processing is needed to obtain suitable units for projection
and generalization (step 1). Because we are coping with
building models at medium LoD, roof structures should
be properly handled. Another preprocessing method (step
2) is introduced to divide each generalization unit into
Top+Body, so that footprints can be projected from each
Body (step 3), and Top parts can be preserved for separated

generalization. Any 2D generalization operators and algo-
rithms can then be applied to their footprints (step 4), hence
allowing arbitrary levels of generalization. Prismatic bodies
can be extruded from generalized footprints (step 5). The
Top + Body division supports flexible roof generalization
(e.g. displacement and flattening) on Top parts (step 6).
Assembling the results of extrusion and Top generalization
(step 7), the final result of the generalized 3D building group
can be obtained.

V. PREPROCESSING I: MODEL PARTITION

The goal of partitioning is to decompose the original
model into basic units favorable for generalization. Here
rises the question: what makes a favorable unit for general-
ization? We believe there are two important criteria for such
unit: 1) it has coherent structure in geometry and semantics;
2) it (or a part of it) can be fully represented by its footprint.
The first criterion is one of the emphases addressed by
CityGML [24]. The second criterion is seldom mentioned,
but very important for facilitating generalization tasks and
for adapting 2D generalization techniques into 3D scope.
Using CityGML LoD2 building model as example, partition
rules are developed, so that basic units can be obtained with
beneficial attributes for generalization.

A. CityGML LoD2 building model

In order to develop proper strategy for partitioning, we
should be aware of the data structure and all possible
elements of the target model. The original UML diagram of
CityGML building model [4] includes all four LoDs. To be
more concentrated, we redraw a UML diagram exclusively
for LoD2. See Figure 3.

In Figure 3, «Geometry» implies purely geometric rep-
resentation, whereas «Feature» implies geometric/semantic
representation. According to CityGML standard [4], the
concerned features are explained as below:

A Building can consist of many BuildingParts,
and each BuildingPart can also consists of many
BuildingParts. That is to say, a hierarchical build-
ing tree of arbitrary depth may be realized. More-
over, each Building/BuildingPart could consist of
three types of elements: text attributes, pure geome-
try, and geometric/semantic features (for LoD2, they
are BuildingInstallations, _BoundarySurfaces, and
BuildingParts). All these elements will be treated dif-
ferently in our generalization approach. Figure 4 depicts
all possible elements and their treatments in the following
generalization.

B. Partition rules

Above all, we would like to clarify that the following
rules are designed to partition common buildings. It is
reasonable to believe that a common building has all the
main walls starting from and orthogonal to the (local) ground

381

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Unstructured geometry without semantic object information [23]

(b) Complex object with fully coherent spatio-semantic structure [23]

Figure 1: Comparison of two extreme cases in terms of spatio-semantic coherence.

Figure 2: Main flow of the approach for generalizing build-
ing groups.

plane. Otherwise, we’d better consider this building as an
uncommon building, and prescribe different treatment for
generalization. In many cases, uncommon buildings are
landmark buildings which may not need to be generalized.

The goal of partition is to get a well structured building in
both semantic and geometric sense, so as to extract suitable
unit for generalization. As mentioned above, we believe
a favorable generalization unit should be able to be fully
represented by its footprint. Even though a CityGML build-
ing model already has semantically structured geometry, the
geometry of each feature may still not be applicable due
to the different habits in modeling process. For instance,
a complex building may not be decomposed into different
building parts; the protruded surfaces of a balcony may be
modeled as a part of the wall surfaces. In order to regulate

such kind of geometry, the partition rules are introduced as
below:

• If a Building is composed of unconnected segments,
partition them into different Buildings.

• If a Building is composed of structural segments
differing in e.g. height or roof type, partition them into
different BuildingParts.

• If a Building/BuildingPart has smaller components
which are not significant as BuildingParts (e.g.
chimneys, dormers, and balconies), partition them into
BuildingInstallations.

• If a Building/BuildingPart has geometries without
semantic information, partition them into pure geome-
tries.

• If a Building/BuildingPart has BuildingParts and
_BoundarySurfaces at the same level, make the
_BoundarySurfaces into a new BuildingPart.

• If a Building/BuildingPart includes only one
BuildingPart, move the included BuildingPart into
its parent Building/BuildingPart.

• If a Building has _BoundarySurfaces, there must
be a WallSurface starting from and orthogonal to the
ground plane; otherwise, partition this Building as a
BuildingInstallation into another Building.

• If a BuildingPart has _BoundarySurfaces, there
must be a WallSurface starting from and orthog-
onal to the ground plane; otherwise, partition this
BuildingPart into a BuildingInstallation.

• If a Building/BuildingPart has unconnected or
self-intersected WallSurface, partition it into more
BuildingParts.

382

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: UML diagram of CityGML LoD2 building model drawn based on CityGML standard [4]

Figure 4: All possible elements of a CityGML LoD2 build-
ing model and their treatments in generalization.

C. Partition result

After employing the proposed partition rules, a build-
ing tree can be obtained consisting of basic gen-
eralization units with beneficial attributes. Although
each Building/BuildingPart could include text at-
tributes, pure geometry, BuildingInstallations, and
_BoundarySurfaces, only _BoundarySurfaces are se-
lected to form the basic generalization unit. The term unit
will be used in the following discussion, referring to a node
of a building tree only consisting of _BoundarySurfaces.
A simple building only has one generalization unit, which
is the root node of its building tree. A complex building has
at least two generalization units, including all leaf nodes of

its building tree, as illustrated in Figure 5.

Figure 5: Two examples of building trees consisting of basic
generalization units.

The beneficial attributes of a basic generalization unit are
listed as below:

• Each basic unit only consists of _BoundarySurfaces.
• Each basic unit has unique height.
• If there are _BoundarySurfaces, there must be a

WallSurface; other types of surfaces are optional.
• A WallSurface must start from and be orthogonal to

the ground plane.
• The orthogonal projection of WallSurfaces of each

leaf node form a simple polygon or polyline.
So far, we have obtained basic units with favorable

WallSurfaces, but each unit still cannot be fully rep-

383

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resented by footprint fp, which is obtain by projecting
all its walls without considering the roof. There also rises
the issue of roof generalization. We propose to use fp to
fully represent only a part of the unit and to handle roof
generalization separately in preprocessing II.

VI. PREPROCESSING II: UNIT DIVISION

A common way of roof generalization is by primitive
matching of different roof types. But type detection is a
costly (most often manual) and uncertain process depending
on the given types and lots of parameters. In CityGML
building models, roof surfaces are separated from walls, but
roof type is not always available in attributes. Even if given
the roof type, the rebuilding of roof after extrusion would
be another difficulty without knowing parameters.

Our approach places the emphasis on converting 3D
generalization tasks into 2D scope via footprints. But direct
footprint projection of basic generalization units will still
lose the roof information, which is important when extend-
ing 2D generalization results to 3D. We propose to divide
each generalization unit into Top+Body before conducting
footprint projection. The Body part is a prismatic model,
which can be fully represented by its footprint and associated
height. The Top part consists of the rest structures (e.g. roofs
and upper walls) of the unit, which can be easily transplanted
to a prismatic model and can also be generalized with
adjacent Top parts. Thus, only the Body part of each unit is
used for footprint projection, and the Top part is preserved
for roof generalization.

For a building, if all of its walls end at the top in the
same horizontal plane, the Top only consists of its roof;
otherwise, the Top consists of its roof and the end walls.
An example is given in Figure 6.

Figure 6: An example of dividing a building into Top +
Body.

VII. GENERALIZATION ALGORITHMS

After having partitioned each original model into basic
generalization units, and having performed Top + Body
division on all the units, footprint-based generalization can
then be enabled. Generalization tasks always need human

analysis and human decision on what to generalize and how
to generalize. Therefore, different strategies and algorithms
should be developed for generalizing different types of
building groups.

Here we study two types of building groups which widely
exist especially in European cities (as illustrated in Figure
7): 1) traditional building groups and 2) modern building
groups. It is obvious that type 1) groups have low and
crowded buildings with similar heights, but type 2) groups
have buildings with prominent difference in height. There-
fore, we develop two generalization algorithms for these two
types of building groups.

Figure 7: A group of traditional buildings (left) and a group
of modern buildings (right), Nantes, France c©IGN BATI 3D

A. Generalization of building groups with a minor difference
in height

If a group of buildings have no big difference in height,
we believe its outer feature can represent the whole group
to a certain extent, like in local scale and or city scale visu-
alization. Therefore, the first generalization task is to detect
its outer feature. After have obtained basics generalization
units through model partition (Section V), the outer units
can be considered as the outer feature of a building group.
The outer units can also be aggregated. If all units are outer
units, no units will be eliminated, and aggregation can be
directly performed on all units. If the outer units have non-
flat roofs, two levels of aggregation can be achieved: with or
without roof structures. The original roof structures can be
preserved based on the Top + Body division (Section VI).
They can be transplanted onto the extruded building blocks,
and be generalized to flat roofs as well.

Our generalization operations start from a group of LoD2
buildings, but the goal is not to generalize each building
to LoD1. Not only each individual building is concerned,
but also the overall feature of the group is addressed. We
believe that it is better to specify the target when using the
concept of LoD, and thereby introduce a more dedicated
term - Group LoD - to denote the level of detail of a building
group. Group LoD1 and Group LoD2 are defined similar to
LoD1 and LoD2 of a building model in CityGML standard.

384

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another three Group LoDs are introduced to describe more
inter-level status. The definitions are given as below:

• Group LoD2: every building model in the group is at
LoD2.

• Group LoD1C: the building group is represented by its
outer units.

• Group LoD1B: aggregated Group LoD1C model with
the same height, but differentiated roof structures.

• Group LoD1A: Group LoD1B model with flattened
roof.

• Group LoD1: the building group is a block model,
which looks like a LoD1 building model.

The main flow of the algorithm is depicted in Figure 8.

Figure 8: The main flow of the generalization algorithm for
building groups with a minor difference in height.

B. Generalization of building groups with a major difference
in height

If a building group has a major difference in height,
the generalization will be performed on its subgroups. A

Figure 9: The main flow of the generalization algorithm for
building groups with a major difference in height.

subgroup is composed of a center unit and its adjacent
neighbors. Each time the highest unit will be chosen from
the unprocessed units. If this unit is much higher than its
neighbor, they should not be aggregated. We use the term
coequal in this paper to indicate that the height difference
in two units can be ignored, that is to say, they can be
aggregated. Coequal units are defined as below:

Given two units U1 with height h1 and U2 with height
h2, if they satisfy the constraint as in Equation (1), U1 and
U2 are coequal, where Th1 is a predefined variable as the
threshold.

1

Th1
<

h1

h2
< Th1 (1)

When merging two adjacent and coequal units, either
height of the original units can be assigned to the new unit.
If the lower unit covers a rather large area, the new unit

385

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

takes the lower height; otherwise, it takes the higher one.
We propose a criterion as below:

Given a1, a2, and h1, h2 (h1<h2) as the areas and heights
of two coequal units, the height of new merged unit h3 is
determined as in Equation (2), where Th2 is a predefined
variable as the threshold.

h3 =

{
h1 if a1 ≥ Th2 ∗ a2
h2 otherwise

(2)

The main flow of the algorithm is depicted in Figure 9.

VIII. EXPERIMENTAL RESULTS

The proposed footprint-based generalization approach is
tested on two sets of building groups and on a land parcel
consisting of 290 buildings.

A. Test 1: Generalization of Building Groups with a Minor
Difference in Height

The algorithm for generalizing building groups with minor
difference in height (Section VII-A) is tested on a building
group consisting of 381 generalization units. The statistics
are given in Table I, and the results are shown in Figure 10.

B. Test 2: Generalization of Building Groups with a Major
Difference in Height

The algorithm for generalizing building groups with major
difference in height (Section VII-B) is tested on a building
group consisting of 193 units. The results are shown in
Figure 11, and the statistics are given in Table II. In this
test we define Th1=2, and Th2=4. Please see Equation (1)
and (2) for the meaning of Th1 and Th2.

C. Test 3: Generalization of Building Groups in A 3D City

A parcel of land consisting of CityGML LoD2 buildings
is integrated into a 3D city model, and generalization can
be performed on these LoD2 buildings (Figure 12b). With
the purpose of conveying the overall feature of building
groups, three inter-level models between Group LoD2 and
Group LoD1 are generalized using the algorithm proposed
in Section VII-A. The results are shown in Figure 12. Table
III presents some statistics for each Group LoD, including
the number of polygons, buildings, and generalization units.
All adjacent buildings are merged into new buildings at
Group LoD1C. The following generalization operations are
performed on each of these nonadjacent buildings, so the
number of building does not change then. But the number of
generalization unit drops at each Group LoD, which implies
the reduction of information density. The drop of polygon
number indicates the reduction of computational complexity.

IX. CONCLUSION

This article presented a novel approach for generalizing
3D building groups. The goal is to reduce both geometric
complexity and information density, meanwhile maintain-
ing recognizability, which requires at least medium LoD
models. The emphasis has been placed on translating 3D
generalization issues into 2D scope via footprints. First
of all, a meaningful partition was suggested so that each
footprint can carry feature information. A set of partition
rules was developed for partitioning the buildings modeled
by CityGML at LoD2.

Footprint-based generalization is then confronted with
the difficulty of roof generalization. Unlike the existing
approaches such as primitive matching, we proposed to
divide a building into Top+Body. Thus, a Top part can be
easily transplanted onto the extruded model by displacement.
Of course, a Top part can also be generalized to a flat roof,
or be aggregated with adjacent Top parts.

Two types of building groups were distinguished and
further studied in this work: one has major difference in
height and the other has minor difference in height. For the
former one, we believe its outer feature can represent the
whole group to a certain extent. For the latter one, it should
not be handled as a whole. An iterative aggregation process
is performed by comparing the height and area of every two
adjacent units starting from the highest one.

The approach was tested on two building groups and a part
of 3D city model. Group generalization shows its advantage
in reducing information density, e.g. by eliminating insignif-
icant buildings. Different from the methods only handle
LoD1 block models, our approach can handle LoD2 models
as well. Instead of aggregating detailed models directly into
LoD1 blocks, our approach supports generalization of Group
LoDs with geographical features, thereby achieving data
reduction and maintaining recognizability at the same time.

As mentioned in Section III-B, we aimed at finding
solutions to these two challenges: 1) Can we make generic
approaches that suit to both (complex) single buildings
and building groups? 2) Can we adapt 2D generalization
techniques to 3D scope? Towards the first challenge, we
proposed model partition to decompose a building model
into generalization units. Thus, a complex building can be
seen as a connected building group. Towards the second
challenge, we divided each unit into Top+Body, so that the
Body part can be fully represented by its footprint, through
which 3D generalization tasks can be converted to 2D issues.

X. FUTURE WORK

During unit division, very small upper walls could be
generated mostly due to the irregularity of the input model.
Those segments are expected to be discarded, but additional
roof adjustments are required to keep the topological relation
between walls and roof. This will be our next work.

386

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The proposed methods of model partition and unit division
are developed for common buildings, with walls starting
from and orthogonal to the (local) ground plane. Buildings
with special architectural designs with be studied in the
future, as well as the necessity of their generalization in
the context of urban visualization, since they are usually
landmark buildings.

For building group generalization, the ratio of area be-
tween space and inner units will be considered during
generalizing building groups with a minor difference in
height; only two types of building groups have been studied,
so more types should be studied in the future; only connected
buildings are treated, and building groups with disjoint
buildings will be concerned.

Towards LoD measurement of 3D building models, this
work introduced a more dedicated term Group LoD and
several new Group LoDs to describe in-between levels.
There remains open questions: e.g. how to measure LoD
with more precision? How many LoDs are there? How to
decide LoD according to scale?

REFERENCES

[1] S. He, G. Moreau, and J.-Y. Martin, “Footprint-based 3d gen-
eralization of building groups for virtual city visualization,”
in GEOProcessing 2012, 2012, pp. 177–182.

[2] R. B. McMaster and K. S. Shea, Generalization in Digital
Cartography. Washington, D.C.: Assoc. of American Geog-
raphers, 1992.

[3] L. Meng and A. Forberg, 3D Building Generalisation. El-
sevier, 2007, ch. 11, pp. 211–232.

[4] OSG City Geography Markup Language (CityGML) Encod-
ing Standard (Version 2.0.0), Open Geospatial Consortium
Inc. Std. OGC 12-019, 2012.

[5] F. Thiemann and M. Sester, “Segmentation of buildings for
3d-generalisation,” in Proceedings of 7th ICA Workshop on
Generalisation and Multiple Representation, 2004.

[6] H. Mayer, “Scale-spaces for generalization of 3d buildings,”
International Journal of Geographical Information Science,
vol. 19, no. 8-9, pp. 975–997, 2005.

[7] A. Forberg, “Generalization of 3d building data based on
a scale-space approach,” in International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2004.

[8] M. Kada and F. Luo, “Generalization of building ground
plans using half-spaces,” in Proceedings of the International
Symposium on Geospatial Databases for Sustainable Devel-
opment, 2006.

[9] M. Kada, “Scale-dependent simplification of 3d building
models based on cell decomposition and primitive instanc-
ing,” in Proceedings of the International Conference on
Spatial Information Theory, 2007.

[10] H. Fan, L. Meng, and M. Jahnke, Generalization of 3D
Buildings Modelled by CityGML. Springer, 2009, pp. 387–
405.

[11] H. Fan and L. Meng, “Automatic derivation of different levels
of detail for 3d buildings modeled by citygml,” in Proceedings
of 24th International Cartographic Conference, 2009.

[12] H. Fan and L. Meng, “A three-step approach of simplifying
3d buildings modeled by citygml,” International Journal of
Geographical Information Science, vol. 26, no. 6, pp. 1091–
1107, 2012.

[13] K.-H. Anders, “Level of detail generation of 3d building
groups by aggregation and typification,” in International
Cartographic Conference, 2005.

[14] R. Guercke, T. Götzelmann, C. Brenner, and M. Sester,
“Aggregation of lod 1 building models as an optimization
problem,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 66, no. 2, pp. 209–222, 2011.

[15] T. Glander and J. Döllner, “Abstract representations for in-
teractive visualization of virtual 3d city models,” Computers,
Environment and Urban Systems, vol. 33, pp. 375–387, 2009.

[16] B. Mao, Y. Ban, and L. Harrie, “A multiple representation
data structure for dynamic visualisation of generalised 3d
city models,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 66, no. 2, pp. 198–208, 2011.

[17] M. Sester and A. Klein, “Rule based generalization of build-
ings for 3d-visualization,” in Proceedings of the International
Cartographic Conference, 1999.

[18] M. Kada, “Automatic generalization of 3d building models,”
in The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2002.

[19] J.-Y. Rau, L.-C. Chen, F. Tsai, K.-H. Hsiao, and W.-C.
Hsu, “Lod generation for 3d polyhedral building model,”
in Advances in Image and Video Technology, ser. Lecture
Notes in Computer Science, L.-W. Chang and W.-N. Lie, Eds.
Springer Berlin / Heidelberg, 2006, vol. 4319, pp. 44–53.

[20] F. Thiemann and M. Sester, “3d-symbolization using adaptive
templates,” in Proceedings of ISPRS Technical Commission II
Symposium, 2006, pp. 49–54.

[21] M. Zhang, L. Zhang, P. T. Mathiopoulos, W. Xie, Y. Ding,
and H. Wang, “A geometry and texture coupled flexible
generalization of urban building models,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 70, pp. 1–14,
2012.

[22] S. He, G. Besuievsky, V. Tourre, G. Patow, and G. Moreau,
“All range and heterogeneous multi-scale 3d city models,”
in Proceedings of Usage, Usability, and Utility of 3D City
Models., 2012.

[23] A. Stadler and T. H. Kolbe, “Spatio-semantic coherence in
the integration of 3d city models,” in Proceedings of the 5th
International Symposium on Spatial Data Quality, 2007.

[24] G. Gröger and L. Plümer, “Citygml – interoperable semantic
3d city models,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 71, pp. 12–33, 2012.

387

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: Statistics for Test 1.

Footprint 3D model
Group LoD Fig. Vertex Polygon Vertex Polygon
Group LoD2 10a 361 44 1565 (100%) 381 (100%)
Group LoD1C 10d 186 18 843 (53.9%) 203 (53.3%)
Group LoD1B 10f 121 3 679 (43.3%) 153 (40.2%)
Group LoD1A 10g 121 3 590 (37.7%) 121 (31.8%)
Group LoD1 10h 70 1 345 (22.0%) 70 (18.4%)

(a) Original models (c©IGN BATI 3D) (b) Projected footprints (c) Footprints of outer units (d) Group LoD1C model

(e) Footprints of merged outer units (f) Group LoD1B model (g) Group LoD1A model (h) Group LoD1 model

Figure 10: Generalization results of Test 1.

Table II: Statistics for Test 2.

Footprint 3D model
Group LoD Fig. Vertex Polygon Vertex Polygon
Group LoD2 11a 193 19 879 (100%) 211 (100%)
Generalized 11d 118 5 565 (64.3%) 116 (55%)

(a) Original models (c©IGN BATI 3D) (b) Projected footprints (c) Generalized footprints (d) Generalized model

Figure 11: Generalization results of Test 2.

388

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III: Statistics for Test 3.

Group LoD2 Group LoD1C Group LoD1B Group LoD1A Group LoD1
Figure 12b 12c 12d 12e 12f
Polygons 52247 (100%) 37348 (71%) 35592 (68%) 28023 (54%) 20338 (39%)
Buildings 290 213 213 213 213
Units 1421 949 321 312 213

(a) Original model (c©IGN BATI 3D) (b) Group LoD2

(c) Group LoD1C (d) Group LoD1B

(e) Group LoD1A (f) Group LoD1

Figure 12: Generalization results of Test 3. Three landmark buildings are marked and excluded from each generalization.

389

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Subjective Assessment of Data Quality considering their Interdependencies

and Relevance according to the Type of Information Systems

María del Pilar Angeles, Francisco Javier García-Ugalde

Facultad de Ingeniería

Universidad Nacional Autónoma de México

México, D.F.

pilarang@unam.mx, fgarciau@unam.mx

Abstract — The assessment of Data Quality varies according to

the information systems, quality properties, quality priorities,

and user experience among other factors. This paper presents a

number of user stereotypes, a study of the relevance of the

quality properties from experienced users mainly at the

industry and an assessment method for subjective quality

criteria considering their interdependencies. A Data Quality

Manager prototype has been extended to suggest quality

properties, their corresponding priorities and the possibility of

subjective assessment of secondary quality criteria. The

relevance and assessment of quality criteria according to the

type of Information Systems is presented and validated.

Keywords-data quality; subjective assessment; user

stereotypes; quality framework; data cleansing.

I. INTRODUCTION

The prime motivation for the research is that when users

query a database system, they get returned a set of data

which is inherently presented as perfect, original, and

atomic. Users have no information by which to judge its

quality and whether data comes from a number of data

sources or by a transformation function. We have

developed a Data Quality Manager (DQM) [1], [2], [3], [4]

in order to objectively assess data quality within

heterogeneous databases. The DQM is composed of a

generic Data Quality Reference Model, a Measurement

Model, and an Assessment Model. The data quality criteria

classification as primary and secondary dimensions has

been also previously identified in [5]. The assessment of

data quality has been classified as objective and subjective

assessment in [11].

The DQM was originally designed to assess primary

data quality properties such as currency, response time,

volatility. The assessment has been done at different levels

of granularity by considering data provenance and

aggregation functions. Therefore, the DQM was unable to

assess subjective data quality properties.

Further work has shown that the overall assessment of

data quality depends on the quality properties chosen as

quality indicators, and the priority of each quality property

might change the final quality score [2], [5].

Subjective assessment of data quality is not an easy task

for naive users without enough experience. Data consumers

of a Decision Support System (DSS) might prefer some

data against other because of the reputation that data

producers have as well as the credibility and relevance of

data for the task at a hand, or the level of satisfaction they

have on making strategic decisions effectively from using

reliable data. Furthermore, data consumers of operational

systems might be more interested in timeliness, response

time, and accessibility of data for an effective On-Line

Transaction Processing (OLTP) than completeness or

relevance of data.

Within the DQM the specification of which quality

properties and the priority of those quality properties were

meant to be established by expert users. However, in the

case of non-expert users, the DQM has no suggestions to

make.

In order to establish a data quality assessment tool that

can help naive users according to the type information

system and to implement the assessment of subjective

quality properties to provide more information to expert

users, we have established the main objectives of the

present paper.

a) Data Quality Reference Model improvement: To

identify a set of relevant quality properties

according to the type of Information Systems (IS)

and the role of user, named as user stereotypes,

part of this work has been published in [6].

b) Data Quality Assessment Model improvement: To

distinguish a set of data quality priorities from

user prototypes, to establish their corresponding

weights during the assessment process, part of this

work has been published in [1], and to determine a

subjective assessment method in order to

incorporate secondary quality properties.

c) Data Quality Manager Prototype enhancement:

To be able to suggest a set of ranked data quality

properties to inexperienced users to assist them

with the analysis of a number of data sources to

query the best ad-hoc ranked data sources to

support informed decision making.

d) The implementation of a generic and flexible

questionnaire for the subjective assessment of

secondary data quality criteria by the aggregation

of its components.

e) The implementation of the data quality

interdependencies identified in [6] as part of the

subjective assessment method within the DQM.

The following Section is focused on previous research

390

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concerning quality criteria classifications, and types of

assessment of quality criteria. The third Section is related to

the assessment of quality by considering quality properties

interdependencies. The fourth Section presents a

questionnaire for the subjective assessment of quality

properties considering their interdependencies. The fifth

Section presents the ranking of quality priorities according

to the IS and role of user. The sixth Section presents a

survey that was conducted to provide a ranking of quality

properties according to the type of Information System

from experienced users. The seventh Section is aimed to

the implementation of the relevant quality properties, their

corresponding ranking and the subjective assessment within

the Data Quality Manager, in order to provide automatic,

semi-automatic and manual assessment of data quality. The

last Section concludes with main achievements and future

work.

II. PREVIOUS WORK

We will present a number of relevant data quality

classifications and types of assessments of quality criteria.

A. Data Quality classifications

 There are a number of quality criteria classifications, the

difference between concepts and classifications rely mainly

on user focus according to the role and experience [1], [2].

However, our proposal is focused on the implementation of

assessment methods; this Section only presents the

assessment oriented model explained in [22] and the data

quality classification according to their measure

interdependencies.

The Assessment Oriented Model: Quality criteria have

been classified in an assessment-oriented model by F.

Naumann in [22], where for each criterion an assessment

method is identified.

The scores of objective criteria are determined by a

careful analysis of data. In this classification the user, the

data, and the query process are considered as sources of

information quality by themselves.

Individual users determine the scores of subjective

criteria based on their experience, knowledge, and focus.

Therefore, subject assessment is recommended in case of

experienced users.

Object-criteria and process-criteria have been utilized

for an unbiased assessment of data within the DQM for any

level of user experience. However, subjective criteria had

not been considered within the original DQM.

The measurement dependencies classification: The

measurement of a quality criterion might be part of the

measurement of an aggregate one. The quality dimensions,

which measurements derive from primary criteria, are

identified as secondary quality properties [2], [5]. We have

identified some relationships between these quality

properties based on their definitions from previous research

[7] [8], [9], [10], [11], [12], [13] [14], where the quality

properties are only defined. However, there is no

identification of interdependencies. The metrics or

assessment methods identified in previous research were

established with no consideration of interdependencies

among subjective quality criteria. The secondary quality

criteria definitions and their relationship with primary

criteria are as follows:

Primary Quality Criteria: From the Data Quality

Reference Model, we have identified a number of criteria,

which measurement does not depend on other quality

criteria, namely Primary Quality [2], some of them are

presented in Table 1.

Table 1 PRIMARY QUALITY CRITERIA

Accuracy Format Precision

Currency Format Flexibility

Efficient use of storage Volatility

Response time Representational Consistency

Availability Concise Representation

Amount of data Appropriateness of Format

Unbiased data Uniqueness

Secondary Quality Criteria: This Section presents a set

of secondary quality criteria, their conception and

measurement are established on a primary or secondary

quality property. These properties are mainly assessed by

subjective methods and some of them are presented in

Table 2.

Table 2 SECONDARY QUALITY CRITERIA

Interpretability Completeness

Reliability Timeliness

Reputation Ease to use

Credibility Accessibility

Usefulness Cost

Added Value

B. Types of data quality assessment

 Objective assessment may use metrics with no

consideration of the context application, or may use task

dependent metrics, which include the organization’s

business rules, regulations, and constraints provided by the

database administrator, to be applied to any data set [12].

Cleansing techniques: In order to correct, standardize

and consequently, to improve data quality, data cleansing

has emerged to define and determine error types, search

and identify error instances, and correct the errors. “Data

cleansing is applied especially when several databases are

merged. Records referring to the same entity are

represented in different formats in different data sets or are

represented erroneously. Thus, duplicated records will

appear in the merged database. This problem is known as

391

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

merge/purge problem.” [21].

According to [20] the most common methods utilized

for error detection are:

a) Statistical methods through standard deviation,

quartile ranges, regression analysis, etc. [18], [19].

b) Clustering that is a data mining method to classify

data in groups to identify discrepancies [25].

c) Pattern recognition based methods to identify records

that do not fit into a certain specific pattern [25].

d) Association rules to find dependencies between

values in a record [21].

Performing Data cleansing in offline time is

unacceptable for operational systems. Therefore, cleansing

is often regarded as a pre-processing step for Knowledge

Discovery in Databases and Data Mining systems during

the Extraction Transformation and Load (ETL) process.

However, it is still a very time consuming task, “The

process of data cleansing is computationally expensive on

very large data sets and thus it was almost impossible to do

with old technology” [21].

The Parsing technique: By considering the actual data or

a metadata, it is possible to determine if a given string (in

this case an entire tuple or an attribute) is an element of the

language defined by the grammar. Accuracy is commonly

assessed by this method.

The assessment of value consistency is calculated

objectively by parsing or cleansing techniques.

Sampling: Samples of data are considered appropriate

for finding the score of the entire data source. This method

is often used for completeness, and accuracy criteria.

Continuous assessment: In case of dynamic criteria,

quality assessment is executed at regular intervals.

Continuous assessment is required for timeliness, response

time, and availability criteria.

Subjective assessment depends upon the user

experience, the task at hand, and the use of questionnaires

[7], [19].

User experience: Data quality is assessed depending on

previous user experience and knowledge of the specific

domain and data sources. For instance, reputation and

believability are criteria suitable to be judged by user

experience assessment.

User sampling: A user will assess data by analyzing

several sample results. The user should be skilled enough to

find appropriate and representative samples. In the case of

interpretability of data, users find which attributes are more

suitable for sampling than others are.

Continuous user assessment: In the case where finding

representative samples of data is not possible, the user

needs to analyze every data, not only samples. That is the

case of relevancy or amount of data.

Contract: The assessment is performed depending on the

terms of the contract of agreement between the provider

and the data consumer, which is the case of price or cost of

data [23].

One example of subjective assessment is the use of

control matrices proposed by E. Pierce in [Pierce04], to

audit the information products. The evaluation is in terms

of how well they meet the consumer’s needs, how well they

produce information products, and how well they manage

the life cycle of the data after it is produced. The

information product manager shall perform the evaluation.

The columns of the control matrix utilized by E. Pierce

are the list of data quality problems and the rows

correspond to the quality checks or corrective process

exercised during the information manufacturing process to

prevent them. Each cell shall contain a rating that can have

three different forms:

a) The values Yes or No, whether the quality check

exists or not.

b) The category of effectiveness at error prevention,

detection, or correction ranked as “low”, “moderate”, or

“high”.

c) A number to describe the overall level of assessment

of the quality check its effectiveness.

From the objective assessment perspective, the original

DQM prototype had implemented the parsing technique,

sampling and continuous assessment. In the case of

subjective assessment this proposal is aimed for use in

questionnaires.

III. ASSESSMENT CONSIDERING DATA QUALITY

INTERDEPENDENCIES

The present Section is aimed to describe the data quality

interdependencies and how they are utilized as part of a

new subjective assessment as part of a novelty of the

proposal.

A. DQ interdependencies

 The assessment of secondary quality criteria relies on

data quality interdependencies by the scores aggregation of

its components, which in turn might be a primary and/or a

secondary quality criterion.

 From the Data Quality Reference Model presented in

[2], [5], we have identified a number of criteria whose

measurement does not depend on other quality criteria as

Primary Quality Criteria. Here we present very briefly the

following data quality property definitions.

 Accuracy: “A measure of the degree of agreement

between a data value or collection of data values and a

source that has been agreed as being correct.” [9].

 Timeliness Is the extent to which the age of data is

appropriate for the task at hand [6], and is computed in

terms of currency and volatility.

 Currency Time interval between the latest update of a

data value and the time it is used [14].

 The measurement of a quality criterion might be part of

the measurement of an aggregate one. The quality

dimensions, whose measurements derive from primary

criteria, are identified as secondary quality properties.

392

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Completeness is the extent to which data is not missing

[12], [23], it is divided by two quality dimensions coverage,

and density in [11].
 The interpretability dimension is the extent to which

data are in appropriate language and units, and the data

definitions are clear [15]. Thus, it depends on several

factors: If there is any change on user needs, its

representation should not be affected, this can be possible

with a flexible format; The data value shall be presented

consistently through the application and that the format is

sufficient to represent what is needed and in the proper

manner.

 Reputation is the extent to which data are trusted or

highly regarded in terms of their source or content [12].

Three factors shall be considered at measuring time:

reputation of data should be determined by its overall

quality. If authors of data provide inaccurate data then they

are unreliable and their reputation shall therefore be

decreased. Commonly reputation might be increased if data

producers have enough experience gained across the time.

For instance, when data owners produce accurate data

consistently, modify data as soon as possible when

mistakes are found, and they in turn recommend data

producers of excellent quality data.

 Accessibility is the extent to which data is accessible in

terms of security [14], availability and cost.

 Data might be available but inaccessible for security

purposes, or data might be available but expensive.

 Data is credible as true [12] if it is correct, complete,

and consistent.

 Usability is the extent to which data are used for the

task at a hand with acceptable effort. In other words, users

prefer data that are useful and ease to use.

 Usefulness is the degree where using data provides

benefit on the job performance. In other words, the extent

to which users believe data are correct, relevant, complete,

timely, and provide added value.
 Easy to use is the degree of effort users need to apply

to use data [13]. This effort is in terms of understand ability

and interpretability as the resources needed to achieve the

expected goals. However, it is common that users use

determined data sources, due to the reputation of data

producers. The measurement of usability allows users to

decide on the acceptance of data, and select a specific

datum, data or data source among other alternatives.

 Data is reliable if it is considered as unbiased, good

reputation [15] and credible [7].

 The value-added is stated in terms of how easy it is to

get the task completed, also named as effectiveness; how

long could the task take known as efficiency; and the

personal satisfaction obtained from using data [23].

B. Assessment & Measurement Model

 There are some interdependencies very straight forward

to compute. For instance, we have already mentioned that

timeliness is the extent to which the age of data is

appropriate for the task at hand [6]. Therefore it shall be

computed in terms of currency and volatility and fused with

an aggregation function as presented in Table 3.

Table 3 MEASUREMENT OF TIMELINESS

Currency Volatility Timeliness

Cu(t)=Time
Request – last

update time

Vo(t)= Update
frequency

T(t)= max(0,1-
Cu(t)/Vo(t))

 Furthermore, interpretability is assessed in terms of

representation consistency, data appropriateness, data

precision, and format flexibility. However, we have not

established or tested any kind of correlation among them.

Consequently, the questionnaire will consider these 4

criteria, it will ask user to choose from 5 possible answers

to identify how consistent, appropriate, etc., is the

information he or she utilizes.

 The formula to assess interpretability considering the

subjective criteria already mentioned is shown in Table 4.

Table 4 MEASUREMENT OF INTERPRETABILITY

Possible answer per each criterion

a) Representation Consistency,
b) Appropriateness,

c) Precision,

d) Format Flexibility

Formula to compute
Interpretability

based on 4 answers a, b, c and

d.

Possible answer

Very Rarely 0

Rarely 25
Occasionally 50

Frequently 75

Very Frequently 100

Interpretability=

(a+b+c+d)(0.25)%

Answers: a, b, c, d

 In the case of reliability, this quality criterion depends

on credibility, reputation and unbiased data. However,

credibility is measured in terms of objective criteria such as

accuracy, completeness and consistency. These last two

criteria can be measured directly from data by sql queries

or by asking user, the decision is up to the user. Once

computed credibility in terms of accuracy, completeness

and consistency (computed value a), the second step is to

compute reputation which in turn is also in terms of further

quality criteria (computed value b). The third step is to

compute unbiased data (value c). For instance, the question

to obtain “unbiased data” would be: “Is the information

unbiased enough to believe the decisions made from it

would be reliable?” which possible answer would be yes or

no. Yes is interpreted as 0 points and Yes as 100 points.

 We are considering a conservative estimation of the

secundary quality criteria, the final measure will be the

average of its components. Please refer to Table 5 for the

corresponding formula to assess reliability.

393

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 5 MEASUREMENT OF RELIABILITY

Credibility Reputation Unbiased Reliability

(%TotalAccuracy+

%TotalCompleteness+

%TotalConsistency+)

*0.33
OR %TotalCredibility

%TotalReputation

Question/

Answer
Yes 100

No 0

(a+b+c)(0.33)

Answer: a Answer: b Answer: c Total: %

 Fig. 1 presents the data quality interdependencies.

These dependencies can help the measurement of such

quality properties.

In order to improve the Data Quality Assessment Model,

there are four scenarios:

a) The objective assessment of primary quality criteria

had been considered within the implementation of

the original Data Quality Manager for accuracy,

response time, currency, uniqueness and volatility.

b) The objective assessment of secondary quality

criteria had been implemented within the original

DQM in the case of completeness, and timeliness.

c) The subjective assessment of primary quality

criteria will be considered within the enhanced

DQM in the case of the 15 properties.

d) The subjective assessment of secondary quality

criteria will be considered in the case of the 11

properties and their interdependencies.

The last two scenarios have been implemented and will

be presented in Section IV.

IV. QUESTIONNAIRE FOR THE SUBJECTIVE ASSESSMENT OF

DATA QUALITY

This Section presents a questionnaire for the subjective

assessment of some quality properties considering their

interdependencies.

In the case of subjective quality criteria such as

interpretability, credibility, reputation, representation

consistency, reliability, added value, usability, usefulness,

ease to use and understandability there is not a practical

possibility to assess them directly through SQL-queries but

by asking expert users only.

 We have designed an on-line questionnaire that can

adapt questions according to the most relevant quality

criteria and their corresponding interdependencies.

 This Section presents the questionnaires developed

according to the quality interdependencies for those

subjective quality criteria. In the case of expert users, the

questionnaire requires what quality criteria user wants to

assess according to his or her experience, otherwise the

user stereotypes are presented. If the criterion depends on

other criteria, then a number of questions are presented to

the user in order to measure them and to assess the desired

quality criteria. Fig. 2 shows the case of interpretability.

Figure 2. Asking to assess Interpretability

 As we have indicated in the previous Section,

interpretability relies on representation consistency,

appropriateness of data, precision of data and format

flexibility. Therefore, five questions are presented to user in

order to measure all of them. The possible answers are:

very rarely, rarely, occasionally, frequently, very frequently,

whereas each of these answers are mapped to a numeric

value. Fig. 3 shows the questionnaire for interpretability.

Figure 1. Data Quality Interdependencies

394

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Interpretability Questionnaire

 After the questionnaire is completed, the data quality

criteria measures are computed and considered within de
DQM for the assessment of data quality, or showed as bar

graphs at user request. Fig. 4 shows the corresponding bar
graph.

Figure 4. Interpretability assessment as percentage

 The assessment of reliability is computed based on

unbiased data, credibility and reputation. However

credibility and reputation are secondary criteria, credibility

measurement depends on completeness, accuracy, and

consistency.

 Reputation depends on what user trust the most: data

source, data provider or both. Therefore, the questionnaire

asks the user the corresponding quality properties. Fig. 5

shows the reliability questionnaire.

Figure 5. Reliability Questionnaire

The reliability questionnaire is composed of five

questions: the first one is relative to unbiased data, the

following two questions are regarding credibility of data

and the remaining questions are focused on completeness.

See Fig. 6 for the corresponding assessment.

Figure 6. Reliability assessment as percentage

 According to his or her answers, data consumer can

observe from Fig. 6 an 83% of reliability derived from

completely reliable data, 80% of credible data because

sometimes data is not complete or accurate and the

correction of mistakes are not always on time. Due to space

restrictions, the present paper is not showing completeness,

accuracy and consistency measures for credibility neither

measures for reputation.

395

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. USER PROTOTYPES

The identification and ranking of relevance for data

quality properties according to the type of users and

Information Systems is not straightforward. For instance, if

we consider volatility as the update frequency the relevance

of such quality property varies very remarkable according

to the application domain, volatility is essential within

operational systems, but not quite important within DSS

where historical information is materialized.

An Executive Support System (ESS) is designed to help

a senior management tackle and address issues and long-

term trends to make strategic decisions for the business. It

gathers analyses and summarizes aggregate, internal and

external data to generate projections and responses to

queries. Therefore, the main data quality problem on ESS

relies on external data, so decisions depend on accuracy,

timeliness, completeness and currency of the external data

collected. Furthermore, users are interested in those quality

properties that are very much related to their work role.

According to Lee and Strong [10], the responses from

data collector, data custodian, and data consumer within the

data production process determine data quality because of

their knowledge. Data consumers require friendly and

usable tools in order to deal with making decisions only

rather than the IS per se. Possible inconsistencies might be

derived from different data sources so making decisions

regarding which external data source to trust is an issue.

Response time however, is not of great relevance when the

analysis is on long-term trends.

A. Data Collector in DSS

Within a Decision Support System, there are people,

groups or even systems that generate, gather or save data to

the information systems. Consequently, data collectors

impact on accuracy, completeness, currency and timeliness

of data. The quality properties identified as the most

relevant within Decision Support Systems for data

collectors are presented in Fig. 7.

Accuracy, completeness and timeliness shall be

presented to the collector user in order to help during the

assessment of data quality. Furthermore, completeness is

estimated by an aggregation function of coverage, density

and ability to represent nulls. Same applies for the rest of

the user stereotypes.

B. Data Custodian in DSS

 Data custodians are people who manage computing

resources for storing and processing data.

 In the case of DSS, the process of extraction,

transformation and load (ETL) of data within a data

warehouse is mainly related to data custodians.

 The ETL process is a key data quality factor; it may

degrade or increase the level of quality. Therefore,

custodians determine the representation of data, value

consistency, format precision, appropriateness of data for

the task at a hand, the efficient use of storage media.

 In other words, appropriateness, concise representation,

efficient use of storage media, format precision,

representation consistency and value consistency shall be

evaluated and presented to them in order to help them

decide which data source should be utilized.

Fig. 8 is presented for the relevant quality properties

among data custodians within Decision Support Systems.

C. Data Consumer in DSS

 Data consumers are involved in retrieval of data,

additional data aggregation and integration. Therefore, they

have an impact on accuracy, amount of data relevant for the

task at a hand, usability, accessibility, reliability and cost of

information in order to make decisions. An analysis on data

quality properties in Data warehouses is presented in [8];

such quality properties are included in this work. Accuracy,

amount of data, usability, accessibility, reliability and cost

shall be considered during data quality assessment. Such

quality properties are shown in Fig. 9.

D. Data Consumer OLTP

As data consumers are involved in retrieval of data the

quality properties usability, accessibility, believability,

reputation of data sources are key factors for their job.

Response time and timeliness [14] are essential within

Collector DSS

Accuracy

Completeness

Timeliness

Ability to
Represent nulls

Coverage

Density

Currency

Volatility

Custodian DSS

Appropriateness

Concise Representation
Efficient use of storage media

Format Precision

Representation Consistency

Value Consistency

Figure 7. Quality properties for collectors within DSS

Figure 8. Quality properties for custodians within DSS

Figure 9. Quality Properties for data consumer within DSS

Accuracy

Amount of Data
Usability

Accessibility

Reliability

Cost

Consumer DSS

396

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OLTP systems. From the data consumer perspective

accessibility [15] and cost are also very important. The

corresponding quality properties relevant to this role are

shown in Fig. 10.

Figure 10. Quality properties for consumers within OLTP systems

E. Data Custodian in OLTP

 In transactional systems, data custodians are much related

to accuracy, consistency at data value level, completeness [9],

timeliness [13], and uniqueness. Therefore the set of quality

properties they are interested on for analysis of data quality

from their perspective are shown in Fig. 11.

F. Data Collector in OLTP

 As data collectors within OLTP systems are people who

generate information, this role impacts on accuracy,

completeness, currency, uniqueness, value consistency and

volatility of data. Fig. 12 presents such relevant quality

properties for collectors within OLTP systems.

A number of quality properties have been identified

according to the type of users and shown in the past 6

figures. However, there are no priorities assigned to such

quality properties in order to assign a weight for assessment

purposes.

The following Section shows an example of the online

survey developed to provide such ranking.

VI. A SURVEY FOR RANKING DATA QUALITY PROPERTIES

WITHIN THE USER PROTOTYPES

 This Section presents a survey that was conducted to

provide a ranking of quality properties according to the

type of Information System from experienced users.

A. Design of Questionnaire

 As user experience is substantial within the data quality

assessment, a survey was applied to OLTP and OLAP

specialists on the web. Therefore, we have conducted an

on-line survey requesting an order of importance among the

quality properties according to their corresponding

experience within a specific Information System. The

questionnaire requires the type of information system and

what role do users play. According to these two

characteristics, the questionnaire presents a set of quality

properties and a percentage of relevance these properties

should be assigned during quality assessment.
In order to obtain unbiased results, we have invited a

number of specialists in operational and DSS information

systems around the world. The following groups were

invited to participate within the survey:

a) The University Network of Contribution in

Software Engineering and Databases: To take into

account a specialized academic perspective.

b) The Professionals of Business Intelligence Group:

To retrieve all the experience from a very pragmatic

perspective involved in Business Intelligence.

c) The Very Large Database Group: In order to

obtain the perspective and experience from the

databases group.

d) The Data Quality Pro Group: The retrieval of the

relevance of data quality properties from data quality

experts is part of our proposal.

e) The Information Technology and Communications

Group: For obtaining a broad overview within the

Information Technology perspective of the relevant of

quality priorities from this group.
Experienced people from these groups have answered our

survey, and have established which quality properties are

more relevant and under which hierarchy, considering their

role and the type of information system in which they are

involved.

 The questionnaire was designed to be briefly answered,

and it was available for six months in order to allow these

experts the specification of those quality priorities within

the analysis of data quality. For instance, we present in Fig.

13 an example of the one developed to find out the

relevance of quality properties for custodian users within

OLTP systems.

Collector OLTP

Accuracy

Completeness

Currency

Uniqueness

Value consistency

Volatility

Figure 12. Quality properties for collector within OLTP systems

Custodian OLTP

Accuracy

Value consistency

Completeness

Timeliness
Uniqueness

Figure 11. Quality properties for custodian within OLTP systems

Consumer OLTP

Response time
Accessibility

Usability

Timeliness

Reputation
Cost

Effectiveness

Believability

397

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Results of Experiments

 Quality is a very subjective concept; it depends on user

experience, information system, business sector, among

other factors. As a consequence, we have decided to collect

expert opinions in order to identify the most common

ranking of such quality properties they utilized during data

quality assessment. The results of the on-line survey were

analyzed and are presented in this Section.

 There were 136 responses collected. Regarding

Decision Support Systems 82 DSS specialists participated

and expressed their opinion. 22 of them were user

collectors, 33 data custodians, and 27 DSS consumers.

 According to data collectors, accuracy, completeness,

currency and timeliness are the most relevant quality

properties to take into account during quality assessment on

Decision Support Systems. Accuracy and completeness are

equally important with 30 percent each followed by

currency and timeliness with 20 percent.

 Data custodians considered as first option currency and

volatility of data with 30 percent, followed by accuracy,

completeness, uniqueness and value consistency with 10

percent each.

 Data consumers on the other hand, rely a total of 60

percent on accuracy, amount of data and usability to make

their decisions regarding data quality, followed by

reliability, easy to use, interpretability and relevance. Refer

to Fig. 14 for the data quality prioritization within DSS.

 In the case of Online Transaction Processing Systems

54 specialists have participated and answered our online

survey, 19 of them were user collectors, 13 data custodians,

and 22 data consumers.

 On the one hand, data collectors prefer complete data

with 30 percent, accurate, and non-duplicated data with 20

percent each, followed by current and consistent

information with 10 percent each. Data custodians also

trust accurate, unique data with 30 percent each followed

by complete data rather than timely data.

 On the other hand, data consumers require fast

response time, accessible, timely and usable data.

 Refer to Fig. 15 for the corresponding data quality

prioritization.

The final percentages are obtained through the ranking

of the quality properties according to the responses

collected.

Figure 13. On-line survey for custodian users within OLTP systems

Figure 14. Data Quality prioritization within DSS

398

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The present research is looking forward to having more

responses in the future by incorporating more specialist

groups that allow being more precise with the outcomes

and also to test the effectiveness of the stereotypes

presented.

In the case of data quality interdependencies, we have

taken a conservative approach by computing the average of

the components in order to obtain the overall quality

measure of an specific secondary data quality property, we

have no identified any correlation among them, this

correlation is part of our future work.

The following Section presents the Data Quality

Manager we have improved by taking into consideration

the subjective assessment from experts by the specification

of such quality priorities within a weighted matrix during

the assessment process carried out by the execution of

ranking and scaling methods.

VII. DATA QUALITY MANAGER IMPROVEMENT

We have developed a Data Quality Manager as a

prototype for the assessment of data quality within

heterogeneous databases in [1], [2], [3], [4], in the case of

quantitative or primary data quality criteria, the assessment

is performed by SQL queries or by the validation of

implementation of integrity constraints.

An improvement of such prototype consisted in the

implementation of the data quality stereotypes to be

suggested to inexperienced users to assist them with the

analysis of a number of data sources to identify and query

the best ranked data sources and make informed decisions.

 The stereotypes implemented are the result of the

experiments conducted through the analysis of the results

obtained from the online survey and briefly explained in

the previous Section.

A. Suggestion of priorities for quality priorities according

to the information systems

 This Section presents very briefly the improvement

of the DQM prototype for the assessment of data quality by

suggesting a set of quality properties and their priorities to

naive users. In the case of experienced users they still

allowed to indicate explicitly their preferences.

 For instance, Fig. 16 shows the DQM main menu and

the selection of data quality assessment within Online

Transaction Processing System conducted by non-expert

custodian user.

 Fig. 17 shows how the DQM prototype suggest a non-

expert custodian user the most relevant quality properties

within an OLTP system, such as accuracy, value

consistency, completeness, timeliness, uniqueness and their

corresponding priorities according to our expert users. For

instance, accuracy and uniqueness are the most relevant

quality properties with 30%, then completeness with 20%,

finally, timeliness, and value consistency with 10%.

 The following Section is aimed to briefly summarize

the assessment of data quality. For further information,

please refer to [2], [3].

Figure 16. DQM main menu for selecting IS and type of user

Figure15. Data Quality prioritization within OLTP systems

399

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Assessment of Data Quality

 Having all the quality properties prioritized, the

weights are normalized. The next step within The DQM

prototype is the selection of the data sources, scaling, and

ranking methods.

 In order to select data sources from a scroll pane, the

prototype retrieves from the metadata all the data sources

involved in the federation of interest.

 The scaling method is selected by pressing its

corresponding radio button and the ranking of data sources

is executed by pressing the buttons TOPSIS or SAW.

 Fig. 18 shows the assessment of data quality properties

with Norma and SAW methods respectively.

 Please refer to [2], [3] for further information. The

overall quality is presented in descendent order in a Text

area.

 There are three ranked data sources shown in Fig. 18,

which were obtained from the TPCC benchmark [24]

named TPCCA, TPCCB and TPCCD, where TPCCD

contains the best overall data quality.
We have validated the DQM prototype against the

specification of the model, and we have verified that the

Data Quality Manager (DQM) can provide appropriate

information about the qualitative nature of the data been

returned from the data sources.

 Section VIII presents conclusion and future work.

VIII. CONCLUSION AND FUTURE WORK

Nowadays data quality has been considered one of the

most important factors for making business, especially in

terms of profitability and competitive advantage. There are

several factors that can affect data quality. Previous

research has been conducted in order to propose a data

quality assessment framework on the bases of a Reference

Model, Measurement Model, and an Assessment Model.

These models have been implemented within a Data

Quality Manager Prototype, such original implementation

was focused only on two out of four scenarios, considering

objective assessment of primary criteria, very few

secondary criteria where addressed, mainly focused on

expert users. The purpose of the present research has been

to establish an extended assessment framework and a data

quality assessment tool that can help non-expert users

according to the type information system and to implement

the assessment of subjective quality properties to provide

more information to expert users.

The Reference Model has been extended by identifying

a set of relevant quality properties according to the type of

Information Systems (IS) and the role of user, named as

user stereotypes [6].

The Measurement Model has been extended in order to

provide specific metrics for subjective quality criteria

Figure 17. DSS most relevant quality properties

Figure 18. Ranking of data sources according to their quality

400

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

considering the interdependencies among them.

The Assessment Model has been extended by

identifying a set of data quality priorities from user

prototypes, to establish their corresponding weights during

the assessment process [1].

The Assessment Model has been enhanced by

identifying a subjective assessment method to incorporate

secondary quality properties.

 The new Reference, Measurement and Assessment

Models have been implemented within the original Data

Quality Manager Prototype. Therefore, the DQM is now

able to suggest a set of ranked data quality properties to

inexperienced users to assist them with the analysis of a

number of data sources to query the best ad-hoc ranked

data sources to support informed decision making.

 The Data Quality Manager is able now to assess

automatically, semi automatically or manually. However,

more information from specialists is required in order to

corroborate the prioritization and testing of the

effectiveness of the stereotypes identified. This further

feedback from the specialists is part of future work.

 There are some quality properties whose measurement and

assessment methods are suitable to be enhanced as is the

case of accuracy and uniqueness. The incorporation or data

mining techniques is also part of future work.

 In the case of data quality interdependencies, we have

taken a conservative approach by computing the average of

the components in order to obtain the overall quality

measure of an specific secondary data quality property, we

have no identified any correlation among them, this

correlation is part of our future work.

The present research is part of an effort to improve data

quality in order to help users to make business by taking

informed decisions. Consequently, after performing

subjective and objective data quality assessments,

comparing the results of the assessments, is important to

identify discrepancies, and to determine root causes of

errors for determining and taking necessary actions for

improvement.

REFERENCES

[1] P. Angeles and F. Garcia-Ugalde, “Relevance of quality criteria

according to the type of information systems”, Proc. International

Conference on Advances in Databases, Knowledge, and Data

Applications (DBKDA 12), Mar. 2012, pp. 175-181, ISBN: 978-1-

61208-185-4.

[2] P. Angeles and L.M. MacKinnon, “Managing Data Quality of

integrated data with Known Provenance”, International Journal of

Information Quality, ISSN (Online): 1751-0465, ISSN (Print): 1751-

0457, Vol.2 No. 3, 2011.

[3] P. Angeles and F. Garcia-Ugalde, “Assessing data quality of

integrated data by quality aggregation of its ancestors”, Computación

y Sistemas, Vol. 13 No. 4, ISSN 1405-5546.

[4] P. Angeles and F. Garcia-Ugalde, “Assessing quality of derived non

atomic data by considering conflict resolution function”, Proc.

International Conference on Advances in Databases (DBKDA 09),

Mar. 2009, pp. 81-86, IEEE Computer Society, ISBN: 978-0-7695-

3550-0 doi>10.1109/DBKDA.2009

[5] P. Angeles and F. Garcia-Ugalde, “A data quality practical approach,

International Journal On Advances in Software, Vol. 2, No. 3, 2009,

pp. 259-274, ISSN 1942-2628.

[6] P. Angeles and F. Garcia-Ugalde, “User stereotypes for the analysis

of data quality according to the type of information systems”, Proc.

International Association for Scientific Knowledge (IASK 08), E-

Activity and Leading Technologies, pp. 207-212, Dec. 2008.

[7] Ballou, D.P., Wang, R.Y., Pazer, H., and Tayi, G.K., “Modeling

information manufacturing systems to determine information

product quality”, Management Science, Apr. 1998, pp. 462–484.

[8] C.Cappiello, C.Francalanci, B.Pernici, P.Plebani, and

M.Scannapieco, "Data quality assurance in cooperative information

systems: a multi-dimension quality certificate", Proc. International

Workshop "Data Quality in Cooperative Information Systems"

(DQCIS 2003), pp. 64 -70 Siena, Italy, 2003.

[9] M. Jarke, M.A. Jeusfeld, C. Quix, and P.Vassiliadis, “Architecture

and quality in data warehouses an extended repository approach”,

Journal on Information Systems, Vol. 24", no.3, pp. 229-253, 1999.

[10] Lee Y. and Strong D. “Knowing-Why about data processes and data

quality”, Journal of Management Information Systems, Vol. 20, No.

3, pp. 13 – 39. 2004.

[11] F. Naumann, J. Freytag, and U. Lesser, "Completeness of

information sources", Workshop on Data Quality in Cooperative

Information Systems (DQCIS2003), pp. 583-615, Cambridge, Mass.,

2003.

[12] L. Pipino, W.L. Yang, and R. Wang, "Data quality assessment",

Communications of the ACM, Vol. 44 no. 4e, pp.211-218, 2002.

[13] Redman “Data Quality for the Information Age”, Boston MA.,

London: Bartech House, 1996.

[14] D.M. Strong, W.L. Yang, and R.Y. Wang, "Data quality in context",

Communications of the ACM, vol. 40, no. 5, pp. 103-110, 1997.

[15] R.Y. Wang, M.P. Reedy, and A. Gupta, "An object-oriented

implementation of quality data products”. Workshop on Information

Technology Systems, 1993.

[16] Wang R. Y., and Strong D.M. “Beyond accuracy: What data quality

means to data consumers”, Journal of Management of Information

Systems, vol. 12, no 4 1996, pp. 5 -33.

[17] R. Wang, "A product perspective on total data quality management",

Communications of the ACM, vol. 41, no. 2, pp.58-65, 1998.

[18] Barnett, V., and Lewis, T.: 1984, Outliers in statistical data, John

Wiley & Sons, New York.

[19] R.K. Bock, and W. Krischer, ”The data Analysis brief book”

Springer 1998.

[20] Buchheit R. B., “Vacuum: automated procedures for assessing and

cleansing civil infrastructure data”, PhD Thesis, May 2002

[21] Maletic, J. I., and Marcus, “Data cleansing: Beyond integrity

checking”. Proc. Conference on Information Quality (IQ2000)

(Massachusetts Institute of Technology, October 2000), pp. 200-209.

[22] F. Naumann, and C. Roker C., "Assessment methods for information

quality criteria", Proc. International Conference on Information

Quality (IQ2000), Cambridge, Mass., 2000.

[23] F. Naumann, "Quality-Driven query answering for integrated

information systems", Lecture Notes in Computer Sciences LNCS

2261, Springer Verlag, Heidelberg, 2002.

[24] TPCH, TPC Benchmark ™ H, Standard Specification Revision 2.3.0

Transaction Processing Performance Council www.tpc.org.info

(retrieved: December 2012).

[25] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”,
2nd ed.The Morgan Kaufmann Series in Data Management Systems,
Jim Gray, Series Editor
Morgan Kaufmann Publishers, 2006. ISBN 1-55860-901-6.

401

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Analyzing 3D Complex Urban Environments

Using a Unified Visibility Algorithm

Oren Gal

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mail: orengal@technion.ac.il

Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology
Haifa, Israel

e-mail: doytsher@technion.ac.il

Abstract - This paper presents a unique solution for the

visibility problem in 3D urban environments. We shall

introduce a visibility algorithm for a 3D urban environment,

based on an analytic solution for basic building structures. A

building structure is presented as a continuous

parameterization approximating of the building’s corners. The

algorithm quickly generates the visible surfaces' boundary of a

single building. Using simple geometric operations of

projections and intersections between visible pyramid volumes,

hidden surfaces between buildings are rapidly computed.

Furthermore, extended visibility analysis for complex urban

environments, consisting of mass modeling shapes, is

presented. Mass modeling consists of basic shape vocabulary

with a box as the basic structure. Using boxes as simple mass

model shapes, one can generate complex urban building blocks

such as L, H, U, and T shapes. The visibility analysis is based

on concatenating the analytic solution for the basic single box

building structure. The algorithm, demonstrated with a

schematic structure of an urban environment and compared to

the Line of Sight (LOS) method, demonstrates the computation

time efficiency. Real urban environment approximated to the

3D basic shape vocabulary model demonstrates our approach.

Keywords - Visibility; 3D; Urban environment; Spatial analysis;

Mass modeling

I. INTRODUCTION

In the past few years, the 3D GIS domain has developed
rapidly, and has become increasingly accessible to different
disciplines. Spatial analysis in a 3D environment appears to
be one of the most challenging topics in the communities
currently dealing with spatial data. One of the most basic
problems in spatial analysis is related to visibility
computation in such an environment. Visibility calculation
methods aim to identify the parts visible from a single point,
or multiple points, of objects in the environment.

The visibility problem has been extensively studied over
the past twenty years, due to the importance of visibility in
GIS, computer graphics, computer vision and robotics. Most
previous works approximate the visible parts to find a fast
solution in open terrains, and do not challenge or suggest
solutions for a dense urban environment. The exact visibility
methods are highly complex, and cannot be used for fast

applications due to the long computation time. Gal and
Doytsher [1] recently presented a fast and exact solution for
the 3D visibility problem in urban environments based on an
analytic solution. Other fast algorithms are based on the
conservative Potentially Visible Set (PVS) [2]. These
methods are not always completely accurate, as they may
include hidden objects' parts as visible due to various
simplifications and heuristics.

In this paper, we introduce a new, fast and exact solution
for the 3D visibility problem from a viewpoint in an urban
environment, which does not suffer from approximations.
We consider a 3D urban environment building modeled as a
cube (3D box) and present an analytic solution for the
visibility problem. The algorithm computes the exact visible
and hidden parts from a viewpoint in an urban environment,
using an analytic solution, without the expensive
computational process of scanning all objects' points. The
algorithm is demonstrated by a schematic structure of an
urban environment, which can also be modified for other
complicated urban environments, with simple topological
geometric operators. In such cases, computation time grows
almost linearly.

Our method uses simple geometric relations between the
objects and the lines connecting the viewpoint, and the
objects' boundaries by extending the visibility boundary
calculation from 2D to a 3D environment, using
approximated singular points [3]. The spatial relationship
between the different objects is computed by using fast
visible pyramid volumes from the viewpoint, projected to the
occluded buildings.

Based on our visibility solution [1], we extend our
research and introduce a fast and exact solution to the 3D
visibility problem in complex urban environments, generated
by mass modeling shapes and a procedural modeling
method. Our solution can be carried out in a near Real Time
performance. We consider a 3D urban environment, which
can be generated by grammar rules. The basic entities are
basic vocabulary mass modeling, such as L, H, T profile
shapes that can be separated into simple boxes. Based on our
visibility method, we analyze the spatial relations for each
profile and compute the visible and the hidden parts. Each
box is a basic building modeled as 3D cubic
parameterization, which enables us to implement an analytic

402

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solution for the visibility problem, without the expensive
computational process of scanning all the objects' points.

The algorithm is demonstrated by a collection of basic
mass modeling shapes of an urban environment, where each
shape can be sub-divided into a number of boxes. Using an
extension of our analytic solution for the visibility problem
of a single box from a viewpoint, an efficient solution for a
complex environment is demonstrated. We also compared
computation time between the presented method and the
traditional "Line of Sight" (LOS) method.

II. RELATEDWORK

Accurate visibility computation in 3D environments is a
very complicated task demanding a high computational
effort, which could hardly have been performed in a very
short time using traditional well-known visibility methods
[4], [5]. Previous research in visibility computation has been
devoted to open environments using DEM models,
representing raster data in 2.5D (Polyhedral model). Most of
these works have focused on approximate visibility
computation, enabling fast results using interpolations of
visibility values between points, calculating point visibility
with the LOS method [6], [7].

A vast number of algorithms have been suggested for
speeding up the process and reducing the computation time
[8]. Franklin [9] evaluates and approximates visibility for
each cell in a DEM model based on greedy algorithms. An
application for sitting multiple observers on terrain for
optimal visibility cover was introduced in [10]. Wang et al.
[11], introduced a Grid-based DEM method using viewshed
horizon, saving computation time based on relations between
surfaces and Line Of Sight (LOS), using a similar concept of
Dead-Zones visibility [12]. Later on, an extended method for
viewshed computation was presented, using reference planes
rather than sightlines [13].

One of the most efficient methods for DEM visibility
computation is based on shadow-casting routine. The routine
cast shadowed volumes in the DEM, like a light bubble [14].
Other methods related to urban design environment and open
space impact treat abstract visibility analysis in urban
environments using DEM, focusing on local areas and
approximate openness [15], [16]. Extensive research treated
Digital Terrain Models (DTM) in open terrains, mainly
Triangulated Irregular Network (TIN) and Regular Square
Grid (RSG) structures. Visibility analysis on terrain was
classified into point, line and region visibility, and several
algorithms were introduced based on horizon computation
describing visibility boundary [17], [18].

Only a few works have treated visibility analysis in urban
environments. A mathematical model of an urban scene,
calculating probabilistic visibility for a given object from a
specific viewcell in the scene, has been presented by [19].
This is a very interesting concept, which extends the
traditional deterministic visibility concept. Nevertheless, the
buildings are modeled as circles, and the main challenges of
spatial analysis and building model were not tackled.

Other methods were developed, subject to computer
graphics and vision fields, dealing with exact visibility in 3D
scenes, without considering environmental constraints.

 Plantinga and Dyer [5] used the aspect graph – a graph
with all the different views of an object. Shadow boundaries
computation is a very popular method, studied by [2],[20],
[21]. All of these works are not applicable to a large scene,
due to computational complexity.

As mentioned, online visibility analysis is a very
complicated task. Recently, off-line visibility analysis, based
on preprocessing, was introduced. Cohen-Or et al. [22] used
a ray-shooting sample to identify occluded parts. Schaufler et
al. [23] use blocker extensions to handle occlusion.

Shape grammars, which are an inherent part of the
procedural modeling method, have been used for several
applications over the past years. The first and original
formulation of shape grammar deals with arrangement and
location of points and labeled lines. Therefore, this method
was used for architecture applications, for construction and
analysis of architectural design [24].

Modeling a 3D urban environment can be done by
dividing and simplifying the environment using a set of
grammar rules consisting of basic shape vocabulary of mass
modeling [25]. By that, one can simply create and analyze
3D complex urban environments using computer
implementation.

Automatic generation or modeling of complex 3D
environments, such as the urban case, can be a very
complicated task dealing with fast computations analysis. In
our case, visibility computation in 3D environments is a very
complicated task, which can hardly be performed in a very
short time using traditional well-known visibility methods,
due to the environment's complexity, modeled with or
without a procedural modeling method.

III. URBAN ENVIRONMENT MODELING

A. Procedural Modeling

Procedural modeling consists of production rules that
iteratively create more and more details. In the context of
urban environments, grammar rules first generate crude
volumetric models of buildings, named as mass modeling,
which will be introduced in the next sub-section. Iterative
rules can also be applied to facade windows and doors.
Modeling processes of the environment also specify the
hierarchical structure.

Shape grammar, which is also called Computer
Generated Architecture (CGA) shape, produces buildings'
shells in urban environments with high geometric details. A
basic set of grammar rules was introduced by Wonka et al.
[25].

Procedural modeling enables us to create fast and
different three-dimensional urban models using a
combination of random numbers and stochastic rule selection
with different heights and widths. An example model using
these four rules is depicted in Figure 1.

B. Mass Modeling

Modeling urban environments can be a very complicated
task. The simplest constructions use boxes as a basic
structure. By using boxes as simple mass models, one can

403

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generate basic buildings blocks such as L, H, U, and T
shapes, demonstrated in Figure 2.

Figure 1. Generating Urban Environment Using CGA Shape Based on

Mass Modeling (source: [26])

An extended mass modeling of roofs and facades for

building models was introduced by Muller et al. [26]. In this
paper, we introduce visibility analysis of the basic shape
vocabulary of mass modeling using a box’s basic structure,
described as visibility computation of a basic shape
vocabulary.

Figure 2. Basic Shape Vocabulary for Mass Modeling (source: [27])

IV. PROBLEM STATEMENT

We consider the basic visibility problem in a 3D urban
environment, consisting of 3D buildings modeled as 3D

cubic parameterization

 , and viewpoint

Given:

 A viewpoint in 3D coordinates

 Parameterizations of N objects

 ,
describing a 3D urban environment model

Computes:

 Set of all visible points in

 from

This problem would appear to be solved by conventional

geometric methods, but as mentioned before, this demands a
long computation time. We introduce a fast and efficient
computation solution for a schematic structure of an urban
environment that demonstrates our method.

V. ANALYTIC VISIBILITY COMPUTATION

A. Analytic Solution for a Single Object

In this section, we first introduce the visibility solution
from a single point to a single 3D object. This solution is
based on an analytic expression, which significantly
improves time computation by generating the visibility
boundary of the object without the need to scan the entire
object’s points.

Our analytic solution for a 3D building model is an
extension of the visibility chart in 2D introduced by Elber et
al. [3] for continuous curves. For such a curve, the silhouette
points, i.e. the visibility boundary of the object, can be seen
in Figure 3:

Figure 3.Visible Silhouette Points SCV from viewpoint V to curve C(t)

(source: [3])

The visibility chart solution was originally developed for

dealing with the Art Gallery Problem for infinite viewpoint;
it is limited to 2D continuous curves using multivariate
solver [3], and cannot be used for on-line application in a 3D
environment.

Based on this concept, we define the visibility problem in
a 3D environment for more complex objects as:

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z

(1)

Where 3D model parameterization is , and the

viewpoint is given as . Solutions to equation (1)

generate a visibility boundary from the viewpoint to an
object, based on basic relations between viewing directions

from to using cross-product characters.
A three-dimensional urban environment consists mainly

of rectangular buildings, which can hardly be modeled as
continuous curves. Moreover, an analytic solution for a
single 3D model becomes more complicated due to the
higher dimension of the problem, and is not always possible.
Object parameterization is therefore a critical issue, allowing
us to find an analytic solution and, using that, to generate the
visibility boundary very quickly.

1) 3D Building Model: Most of the common 3D City

Models are based on object-oriented topologies, such as 3D

Formal Data Structure (3D FDS), Simplified Spatial Model

(SSS) and Urban Data Model (UDM) [28]. These models are

very efficient for web-oriented applications. However, the

fact that a building consists of several different basic features

makes it almost impossible to generate analytic

representation. A three-dimensional building model should

be, on the one hand, simple, enabling analytic solution, and

404

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the other hand, as accurate as possible. We examined

several building object parameterizations, and the preferred

candidate was an extended n order sphere coordinates

parameterization, even though such a model is a very

complex one, and will necessitate a special analytic solution.

We introduce a model that can be used for analytic solution

of the current problem. The basic building model can be

described as:

1
, ,

1

1 1, 350, 1

n

n

x
x t y z c

x

t n c c

 (2)

This mathematical model approximates building corners,

not as singular points, but as continuous curves. This

building model is described by equation (2), with the lower

order badly approximating the buildings' corners, as depicted

in Figure 4. Corner approximation becomes more accurate

using n=350 or higher. This approximation enables us to

define an analytic solution to the problem.

(a)

(b)

 (c)

Figure 4. Topside view of the building model using equation (2) -

(a) n=50; (b) n=200; (c) n=350

We introduce the basic building structure that can be

rotated and extracted using simple matrix operators (Figure

5). Using a rotation matrix does not affect our visibility

algorithm, and for a simple demonstration of our method we

present samples of parallel buildings.

Figure 5. 3D Analytic Building Model with Equation (2), where

2) Analytic Solution for a Single Building: In this part

we demonstrate the analytic solution for a single 3D building

model. As mentioned above, we should integrate building

model parameterization to the visibility statement. After

integrating eq. (1) and (2):

co s co s

0 0

0 0

0 0 0

1

1

'(,) ((,) (, ,)) 0

() 1 0

() 1 0

350, 1 1

n t n tz z

n n

y x

n n

y x

C x y C x y V x y z

x V n x x V

x V n x x V

n x

(3)

Where the visibility boundary is the solution for these
coupled equations. As can be noted, these equations are not
related to Z axis, and the visibility boundary points are the
same ones for each x-y surface due to the model's
characteristics. Later on, we address the relations between a
building's roof and visibility height in our visibility
algorithm, as part of the visibility computation.

The visibility statement leads to two polynomial N order
equations, which appear to be a complex computational task.
The real roots of these polynomial equations are the solution
to the visibility boundary. These equations can be solved
efficiently by finding where the polynomial equation
changes its sign and cross zero value; generating the real
roots in a very short time computation (these functions are
available in Matlab, Maple and other mathematical programs
languages). Based on the polynomial cross zero solution, we
can compute a fast and exact analytic solution for the
visibility problem from a viewpoint to a 3D building model.
This solution allows us to easily define the Visible Boundary
Points.

Visible Boundary Points (VBP) - we define VBP of the
object i as a set of boundary points j=1..Nbound of the visible

surfaces of the object, from viewpoint .

1 1 1

2 2 21..

1 0 0 0

, ,

, ,
(, ,)

..

, ,

bound

bound bound bound

j N

i

N N N

x y z

x y z
VBP x y z

x y z

 (4)

Roof Visibility – The analytic solution in equation (3)
does not treat the roof visibility of a building. We simply

check if viewpoint height is lower or higher than the

building height
and use this to decide if the roof is

visible or not:

0 maxCi
zV Z h (5)

If the roof is visible, roof surface boundary points are
added to VBP. Roof visibility is an integral part of VBP
computation for each building. Currently, we assume flat
roof surfaces that will be extended to more complex roof
models in our future work.

Two simple cases using the analytic solution from a
visibility point to a building, including visible roofs, can be
seen in Figure 6. The visibility point is marked in black, the
visible parts colored in red, and the invisible parts colored in
blue. The visible volumes are computed immediately with a

405

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

very low computation effort, without scanning all the
model’s points, as is necessary in LOS-based methods for
such a case.

(a) (b)

Figure 6. Visibility Volume computed with the Analytic Solution.

Viewpoint is marked in black, visible parts colored in red and invisible

parts in blue. VBP marked with yellow circles - (a) single building; (b) two

non-overlapping buildings

B. Visibility Computation in Urban Environments

In the previous sections, we treated a single building
case, without considering hidden surfaces between buildings,
i.e. building surface occluded by other buildings, which
directly affect the visibility volumes solution. In this section,
we introduce our concept for dealing with these spatial
relations between buildings, based on our ability to rapidly
compute visibility volume for a single building generating
VBP set.

Hidden surfaces between buildings are simply computed
based on intersections of the visible volumes for each object.
The visible volumes are easily defined using VBP, and are
defined, in our case, as Visible Pyramids. The invisible
components of the far building are computed by intersecting
the projection of the closer buildings' VP base to the far
building's VP base.

1) The Visible Pyramid (VP):we define VPi
j=1..Nsurf(x0, y0,

z0) of the object i as a 3D pyramid generated by connecting

VBP of specific surface j to a viewpoint V(x0, y0, z0).

Maximum number of Nsurf for a single object is three. VP

boundary, colored with green arrows, can be seen in Figure

7. The intersection of VPs allows us to efficiently compute

the hidden surfaces in urban environments, as seen in the

next sub-section.

2) Hidden Surfaces between Buildings:As we mentioned

earlier, invisible parts of the far buildings are computed by

intersecting the projection of the closer buildings' VP to the

farther buildings' VP base.

Let
 ,

be visible pyramid from a viewpoint

 , The Projected Surface

from the closer

buildings'
 to the farther buildings'

 base plane

consists of projection of
 points:

2

1

1 1 1

2 2 2

, ,

, ,

..

, ,

..

, ,

j

i

bound bound bound

p p p

p p p

VP

VP
pi pi pi

pN pN pN

x y z

x y z

PS
x y z

x y z

 (6)

Where the normal of

 base plane is (a,b,c) and the

plane can be written as . The projected

point

 described in equation (6) is:

1 1 1

1

1 1 1

1

1 1 1

1

2 2 2

2 2 2

2 2 2

i i i

i

i i i

i

i i i

i

VBP VBP VBP

pi VBP

VBP VBP VBP

pi VBP

VBP VBP VBP

pi VBP

ax by cz d
x x a

a b c

ax by cz d
y y b

a b c

ax by cz d
z z c

a b c

 (7)

The Intersected Surface

, between

 and

 base

plane can generally describe as polygons intersection:

2 2 2

1 1 1
2 2

j j j

i i i

VP VP VPJ J

VP VP VP
IS PS VP PS VP (8)

The Intersected Surface

 is also the invisible one

from a viewpoint , as can be seen in Figure 9.

Figure 7. A Visible Pyramid from a viewpoint (marked as a black dot) to

VBP of a specific surface

For simplicity, we demonstrate the method with two

buildings from a viewpoint one (denoted as the

first one) of which hides, fully or partially, the other (the
second one).

406

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b)

(c)

Figure 8. Generating VP - (a) VP1
1
 boundary colored in green lines; (b)

VP2
1
 boundary colored in purple lines; (c) the two buildings - VP1

1
 in green

and VP2
1
 in purple, and intersected surface in white

As seen in Figure 8, in this case, we first compute VBP

for each building separately, VBP1
1..4, VBP2

1..4; based on
these VBPs, we generate VPs for each building, VP1

1, VP2
1.

After that, we project VP1
1 base to VP2

1 base plane, as seen
in Figure 9, if existing. At this point, we intersect the

projected surface in VP2
1 base plane,

, and update

VBP2
1..4 and VP2

1 (removing the intersected part). The
intersected part is the invisible part of the second building
from viewpoint V(x0, y0, z0) which is hidden by the first

building

 (marked in white in Figure 9).

Figure 9. Projection of VP1

1 to VP2
1
 base plane (projected surface) marked

by dotted lines

Figure 10. Computing Hidden Surfaces between Buildings by using the

Intersected surface on VP2
1
 base Plane.

In a case of a third building, in addition to the buildings

presented in Figure 10, the projected VP will only be the
visible ones, and the VBP and VP of the second building will
be updated accordingly (as described in the next sub-
section). In cases of several buildings, the VP base would not
necessarily be rectangular, due to the intersected surface
profile of previous projections. We demonstrated a simple
case of an occluded building. A general algorithm for a more
complex scenario, which contains the same actions between
all the combinations of VP between the objects, is detailed in
the next sub-section. Projection and intersection of 3D
pyramids can be done with simple computational geometry
elements, which demand a very low computation effort.

C. Visibility Analysis for a Basic Shape Vocabulary

In this section, we present an analysis of visibility aspects
of a basic shape vocabulary, as part of the mass modeling of
urban environments. Mass modeling shapes consist of boxes
as a basic structure, in different shapes such as L, T, U, and
H. Based on visibility analysis for a single box, and the
hidden surfaces removal between overlapping boxes
introduced above, we demonstrate an accurate and fast
visibility solution for mass modeling buildings profiles.

1) L Shape Vsibility: We demonstrate visibility analysis

for an L shape, which can be split into two separate boxes.

The profile shape consists of boxes which overlap the

visible surfaces, in some cases of the viewpoint location.

Let the L shape be separated into two boxes A (Figure

11(a)) and B (Figure 11(b)), visible parts are colored in

green, and invisible parts are colored in purple. We compute

the VBP of each box - . In the next phase, a

visible pyramid is computed for each box -

Projection of

 to
 base plane and intersection

between pyramids are colored in black in these figures. The

final visible part of L shape can be seen in Figure 11(c). A

similar case, with a different viewpoint regarding the L

shape, can be seen in Figure 12.

407

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

(c)

Figure 11.L Shape Visibility Analysis - (a) Box A and Viewpoint; (b) Box B
and Viewpoint where the Hidden Surface Removal is colored in black; (c) L

Shape with the visible and invisible parts

(a)

(b)

(c)

Figure 12.L Shape Visibility Analysis - (a) Box A and Viewpoint; (b) Box B
and Viewpoint; (c) L Shape with the aggregated visible and invisible parts

2) T Shape Visibility: In this case, we demonstrate

visibility analysis for a T shape, which can be split into two

separate boxes (similar to the L shape case) – A (Figure

13(a)) and B (Figure 13(b)), the visible parts are colored in

green and invisible parts in purple; and the viewpoint V

colored by a black dot. We compute the VBP of each box -

 . In the next phase, a visible pyramid is

computed for each box -

 Projection of

 to

 base plane and intersection between pyramids

(colored with black) can be seen in Figure 13(c). The final

visible part of the T shape can be seen in Figure 13(d).

(a) (b)

(c) (d)

Figure 13.T Shape Visibility Analysis - (a) Box A and Viewpoint;

(b) Box B and Viewpoint; (c) Hidden Surface Removal colored in black

and visible surface colored in green; (d) T Shape with the visible and

invisible parts

3) U Shape Visibility: In this case, we demonstrate the

visibility analysis for a U shape, separated into three

different boxes - A (Figure 14(a)), B (Figure 14(b)) and C

(Figure 14(c)), visible parts are colored in green and

invisible parts in purple; and the viewpoint V colored by a

black dot. We compute the VBP of each box. In the next

phase, a visible pyramid is computed for each box. The

outcome of the projection and intersection between visible

pyramids can be seen in Figure 14(d) and 14(e), colored

with black. The final visible parts of the U shape can be

seen in Figure 14(f).

4) H Shape Visibility: In this case, we demonstrate

visibility analysis for an H shape, separated into three

different boxes – A (Figure 15(a)), B (Figure 15(b)) and C

(Figure 15(c)), visible parts are colored in green and

invisible parts in purple; and the viewpoint V colored by a

black dot. We compute the VBP of each box. In the next

phase, a visible pyramid is computed for each box. The

outcome of the projection and intersection between visible

pyramids are colored in black. The final visible part of the H

shape can be seen in Figure 15(d) and 15(e) from two

different views.

(a) (b)

408

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14.U Shape Visibility Analysis - (a) Box A and Viewpoint with

visible part colored in green; (b) Box B and Viewpoint with visible part

colored in green; (c) Box C and Viewpoint with visible part colored in

green; (d) – (e) Hidden Surface Removal colored in black and visible

surface colored in green; (f) U Shape with the visible and invisible parts

Figure 15.H Shape Visibility Analysis - (a) Box A and Viewpoint with

visible part colored in green; (b) Box B with visible part colored in green;

(c) Box C with visible part colored in green and Hidden Surface Removal

colored in black ; (d)-(e) H Shape with the visible and invisible parts

D. Visibility Algorithm Pseudo - Code

1. Given viewpoint V(x0, y0, z0)
2. For i=1:1:Nmodels building model

 2.1. Calculate Azimuth
i and Distance

iD from

 viewpoint to object

2.2. Set and Sort Buildings Azimuth Array []i

2.3. IF Azimuth Objects (i, 1..i-1) Intersect

 2.3.1. Sort Intersected Objects j=1:1:Ninsect

 By Distance
 2.3.2. Compute VBP for each intersected

 building,
int sec

1..

1..
boundN

j NVBP
.

 2.3.3. Generate VP for each intersected

 building,
int sec

1..

1..
surfN

j NVP

 2.3.4. For j=1:1:Ninsect-1

 2.3.4.1. Project 1.. surfN

jVP base to

1..

1
surfN

jVP
base plane, if exist.

 2.3.4.2. Intersect projected surfaces in

1..

1
surfN

jVP
base plane.

 2.3.4.3. Update 1..

1
boundN

jVBP
and

1..

1
surfN

jVP

 End
 Else
 Locate Building in Urban Environment
 End
 End

E. Visibility Algorithm – Complexity Analysis

We analyze our algorithm complexity based on the
pseudo code presented in the previous section, where n
represents the number of buildings. In the worst case, n
buildings hide each other. Visibility complexity consists of
generating VBP and VP for n buildings, complexity.
Projection and intersection are also complexity.

The complexity of our algorithm, without considering
data structure managing for urban environments, is .

1. O(1)
2. O(n)
2.1. O(1)
2.2. O(1) – Data structure operator
2.3. O(1) – Data structure operator
 2.3.1. O(1) – Data structure operator
 2.3.2. (1)n O

 2.3.3. (1)n O

 2.3.4. O(1) – Data structure operator
 2.3.4.1. (1)n O

 2.3.4.2. (1)n O

 2.3.4.3. (1)n O

We analyze the visibility algorithm complexity of the
LOS methods, where n represents the number of buildings
and k represents the resolution of the object. The exact
visibility computation requires scanning each object and
each object’s points, O(nk) where usually k>>n.

VI. RESULTS

We have implemented the presented algorithm and
tested some urban environments on a 1.8GHz Intel Core
CPU with Matlab. First, we analyze the versatility of our
algorithm on four different test scenes with different

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e)

409

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

occluded elements. These test scenes can be seen in Figures
(17)-(20).

After that, we compare our algorithm to the basic LOS
visibility computation, to prove accuracy and computational
efficiency.

Urban environments modeled with mass modeling of a
built-up environment consisting of basic shape vocabulary
were also tested. First, we analyzed the versatility of our
algorithm on a synthetic test scene with different occluded
elements (Figure 19) and then on real data -Gibson House
Museum Region, Beacon St, MA, USA (Figure 20).

A. Computation Time and Comparison to LOS

The main contribution of this research focuses on a fast
and accurate visibility computation in urban environments.
We compare our algorithm time computation with the
common LOS visibility computation demonstrating our
algorithm's computational efficiency.

1) Visibility Computation Using LOS: The common

LOS visibility methods require scanning all of the object’s

points. For each point, we check if there is a line connecting

the viewpoint to that point which does not cross other

objects. We used the LOS2 Matlab function, which

computes the mutual visibility between two points on a

Digital Elevation Model (DEM) model. We converted our

last test scene (Figure 20) with one to 58 buildings to DEM,

operated LOS2 function, and measured CPU time after
model conversion. Each building with DEM was modeled

homogonously by 50 points. The visible parts using the

LOS method were the exact parts computed by our

algorithm. The computation time of the LOS method was

about 10,130 times longer than that of our analytic

solutionalgorithm in this scene (4,257 sec vs. 0.42 sec). The

CPU times of our analytic solution and the LOS method are

depicted in Figure 16.

Figure 16.CPU Computation Times of the LOS and our algorithm. CPU

was measured with an increasing number of buildings from one to 58.

LOS method took 10,130 times longer than our algorithm

In case of mass modeling (Figure 19), computation time

of the LOS method was about 6,600 times longer than that

of our analytic solution (1,650 sec vs. 0.25 sec).
Over the last years, efficient LOS-based visibility

methods for DEM models, such as Xdraw, have been

introduced in order to generate approximate solutions [7].
However, the computation time of these methods is at least
O(n(n-1)), and, above all, the solution is only an
approximate one.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an efficient algorithm for visibility
computation in an urban environment, modeling basic
building structure with mathematical approximating for
presentation of buildings’ corners. Our algorithm is based
on a fast visibility boundary computation for a single object,
and on computing the hidden surfaces between buildings by
using projected surfaces and intersections of the visible
pyramids.

We have presented an extension from a basic box to a
complex urban environment model using the basic shapes
vocabulary of mass modeling. Each shape of this modeling
can be sub-divided into several boxes, which stand for a
basic building structure.

The main contribution of the method presented in this
paper is that it does not require special hardware, and is
suitable for on-line computations based on the algorithms'
performances, as presented above. The method generates an
exact and quick solution to the visibility problem in
relatively complex urban environments, modeled or
generated by using procedural modeling consisting of basic
shape vocabulary, which can be used for real urban
environments, as seen in Scene no. 3. Using these basic
shapes, one can create buildings having different shapes
(including, for example, balconies).

Complexity analysis of our algorithm has been
presented, as well as the computational running time
compared to the LOS visibility computation showing
significant improvement of time performance.

Further research will focus on facing multi-viewpoints
for optimalvisibility computation in such environments,
generalizing the presented building model such as cylinders
and cones taking into account Level of Details (LOD) and
roof modeling.

REFERENCES

[1] O. Gal and Y. Doytsher, "Fast and Accurate Visibility
Computation in a 3DUrban Environment", in Proc. of the
Fourth International Conference on Advanced Geographic
Information Systems, Applications, and Services, Valencia,
2012, pp: 105-110.

[2] G. Drettakis and E. Fiume, "A Fast Shadow Algorithm for
Area Light Sources Using Backprojection," In Computer
Graphics (Proceedings of SIGGRAPH ’94), 1994, pages 223–
230.

[3] G. Elber, R. Sayegh, G. Barequet, and R. Martin, "Two-
Dimensional Visibility Charts for Continuous Curves," Shape
Modeling International 05, MIT, Boston, USA, 2005, pp. 206-
215.

[4] Y. Chrysanthou, "Shadow Computation for 3D Interactive
and Animation," Ph.D. Dissertation, Department of Computer
Science, College University of London, UK, 1996.

[5] H. Plantinga and R. Dyer, "Visibility, Occlusion, and Aspect
Graph," The International Journal of Computer Vision, vol.
5(2), pp.137-160, 1990.

410

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] Y. Doytsher and B. Shmutter, "Digital Elevation Model of
Dead Ground," Symposium on Mapping and Geographic
Information Systems (Commission IV of the International
Society for Photogrammetry and Remote Sensing), Athens,
Georgia, USA, 1994.

[7] W.R. Franklin and C. Ray, " Higher isn’t Necessarily Better:
Visibility Algorithms and Experiments," In T. C. Waugh & R.
G. Healey (Eds.), Advances in GIS Research: Sixth
International Symposium on Spatial Data Handling, 1994, pp.
751–770. Taylor & Francis, Edinburgh.

[8] G. Nagy, "Terrain Visibility," Technical report,
Computational Geometry Lab, ECSE Dept., Rensselaer
Polytechnic Institute, 1994

[9] W.R. Franklin, "Siting Observers on Terrain," in D.
Richardson and P. van Oosterom, eds, Advances in Spatial
Data Handling: 10th International Symposium on Spatial Data
Handling. Springer-Verlag, 2002, pp. 109–120

[10] W.R. Franklin and C. Vogt, "Multiple Observer Siting on
Terrain with Intervisibility or Lores Data," in XXth Congress,
International Society for Photogrammetry and Remote
Sensing. Istanbul, 2004.

[11] J. Wang, G.J. Robinson, and K. White, "A Fast Solution to
Local Viewshed Computation Using Grid-based Digital
Elevation Models," Photogrammetric Engineering & Remote
Sensing, vol. 62, pp.1157-1164, 1996.

[12] D. Cohen-Or and A. Shaked, "Visibility and Dead- Zones in
Digital Terrain Maps," Eurographics, vol. 14(3), pp. 171- 180,
1995.

[13] J. Wang, G.J. Robinson, and K. White, "Generating
Viewsheds without Using Sightlines," Photogrammetric
Engineering & Remote Sensing, vol. 66, pp. 87-90, 2000.

[14] C. Ratti, "The Lineage of Line: Space Syntax Parameters
from the Analysis of Urban DEMs'," Environment and
Planning B: Planning and Design, vol. 32, pp. 547-566, 2005.

[15] D. Fisher-Gewirtzman and I.A. Wagner, "Spatial Openness
as a Practical Metric for Evaluating Built-up Environments,"
Environment and Planning B: Planning and Design vol. 30(1),
pp. 37-49, 2003.

[16] P.P.J. Yang, S.Y. Putra, and W. Li, "Viewsphere: a GIS-based
3D Visibility Analysis for Urban Design Evaluation,"
Environment and Planning B: Planning and Design, vol. 43,
pp.971-992, 2007.

[17] L. De Floriani and P. Magillo, "Visibility Algorithms on
Triangulated Terrain Models," International Journal of
Geographic Information Systems, vol. 8(1), pp. 13-41, 1994.

[18] L. De Floriani and P. Magillo, "Intervisibility on Terrains," In
P.A. Longley, M.F. Goodchild, D.J. Maguire & D.W. Rhind
(Eds.), Geographic Information Systems: Principles,
Techniques, Management and Applications,1999, pp. 543-
556. John Wiley & Sons.

[19] B. Nadler, G. Fibich, S. Lev-Yehudi, and D. Cohen-Or,"A
Qualitative and Quantitative Visibility Analysis in Urban
Scenes," Computers & Graphics, 1999, pp. 655-666.

[20] S. J. Teller, "Computing the Antipenumbra of an Area Light
Source," Computer Graphics, vol. 26(2), pp.139-148, 1992.

[21] J. Stewart and S. Ghali, "Fast Computation of Shadow
Boundaries Using Spatial Coherence and Backprojections," In
Computer Graphics, Proceedings of SIGGRAPH 1994, pp.
231-238.

[22] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario,
"Conservative Visibility and Strong Occlusion for Viewspace
Partitioning of Densely Occluded Scenes," In
EUROGRAPHICS’98, 1998.

[23] G. Schaufler, J. Dorsey, X. Decoret, and F.X. Sillion,
"Conservative Volumetric Visibility with Occluder Fusion,"
In Computer Graphics, Proceedings of SIGGRAPH 2000, pp.
229-238.

[24] F. Dowing and U. Flemming, "The bungalows of buffalo"
Environment and Planning B 8, 1981, 269–293.

[25] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant
architecture”. ACM Transactions on Graphics 22, 3, 2003,
669–677.

[26] P. Muller, P. Wonka, S. Hawgler, A. Ulmer, and L.C. Gool,
“Procedural Modeling of Buildings” In Proceedings of ACM,
SIGGRAPH 2006, pp. 614-623.

[27] G. Schmitt, Architectura et machina. 1993, Vieweg&Sohn.

[28] S. Zlatanova, A. Rahman, and S. Wenzhong, "Topology for
3D Spatial Objects," International Symposium and Exhibition
on Geoinformation, 2002, pp. 22-24.

411

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (a) (b)

 (c) (d)

Figure 17.Scene number 1 - Eight buildings in an Urban Environment, V(x0, y0, z0)= (0,15,10) - (a) Topside view; (b)-(d) Different views demonstrating the

visibility computation using our algorithm. CPU time was 0.15 sec

Figure 18.Scene number 2 - Six Buildings in an Urban Environment, where viewpoint is higher than the projected building, V(x0, y0, z0)= (0,15,10) - (a)

Topside view; (b)-(c) Different views demonstrating visibility computation using our algorithm. CPU time was 0.14 sec

(a) (b)

(c)

412

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

12

Figure 19.Scene number 3 - Nine basic shape structures of buildings in an Urban Environment, V(x0, y0, z0)= (3,-5,2) - (a) Topside view; (b)-(d) Different

views demonstrating the visibility computation using our algorithm. CPU time was 0.25 sec

(a)
(b)

(c)
(d)

413

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

13

(a)

 (b) (c)

 (d)

Figure 20. (a) Scene number 4 - Real Data of Urban Environments. (a) Gibson House Museum Region, Beacon St, MA, USA (Google Maps); Visible parts

colored in red and invisible parts with green (b) Topview Modeling; (c)-(d) Sideviews. V(x0, y0, z0) = (80,20,20). CPU time was 0.42 sec

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

