

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 5, no. 1 & 2, year 2012, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 5, no. 1 & 2, year 2012,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2012 IARIA

International Journal on Advances in Software

Volume 5, Number 1 & 2, 2012

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan

Marc Aiguier, École Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio

Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernández, Instituto Tecnológico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Università di Pisa, Italy

Renato Amorim, University of London, UK

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Barbara Rita Barricelli, Università degli Studi di Milano, Italy

Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Imen Ben Lahmar, Institut Telecom SudParis, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany

Ateet Bhalla, NRI Institute of Information Science and Technology, Bhopal, India

Ling Bian, University at Buffalo, USA

Kenneth Duncan Boness, University of Reading, England

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada

Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universität Potsdam, Germany

Mikey Browne, IBM, USA

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad del Este, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Alexandra Suzana Cernian, University POLITEHNICA of Bucharest, Romania

Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

PR

Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto, Spain

Noël Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Cláudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México

Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy

Hepu Deng, RMIT University, Australia

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Università di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Indiana University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada

Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elçi, Süleyman Demirel University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraíba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

João M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy

Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany

Félix J. García Clemente, University of Murcia, Spain

José García-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Università degli Studi di Verona, Italy

Robert L. Glass, Griffith University, Australia

Afzal Godil, National Institute of Standards and Technology, USA

Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Pascual Gonzalez, University of Castilla-La Mancha, Spain

Björn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, Aalen University, Germany

Carlos Granell, European Commission / Joint Research Centre, Italy

Christoph Grimm. TU Wien, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany

Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Phuong H. Ha, University of Tromso, Norway

Ismail Hababeh, German Jordanian University, Jordan

Herman Hartmann, University of Groningen, The Netherlands

Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania

Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia

Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Nittaya Kerdprasop, Suranaree University of Technology, Thailand

Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia

Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan

Youngjae Kim, Oak Ridge National Laboratory, USA

Roger "Buzz" King, University of Colorado at Boulder, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic

Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia

Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Philippe Lahire, Université de Nice Sophia-Antipolis, France

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Università dell'Insubria, Italy

Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Shuai Ma, Beihang University, China

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy

Leonardo Mariani, University of Milano Bicocca, Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina

Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

Stephan Mäs, Technical University of Dresden, Germany

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Muhanna A Muhanna, University of Nevada - Reno, USA

Antonio Navarro Martín, Universidad Complutense de Madrid, Spain

Filippo Neri, University of Naples, Italy

Toàn Nguyên, INRIA Grenobel Rhone-Alpes/ Montbonnot, France

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Marcellin Julius Nkenlifack, Université de Dschang, Cameroun

Michael North, Argonne National Laboratory, USA

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universität Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania

Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Eric Pardede, La Trobe University, Australia

Rodrigo Paredes, Universidad de Talca, Chile

Päivi Parviainen, VTT Technical Research Centre, Finland

João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal

Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal

Willy Picard, Poznań University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Sören Pirk, Universität Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Dilip K. Prasad, Nanyang Technological University, Singapore

Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany

Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raúl Romero, University of Córdoba, Spain

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Bernd Resch, Massachusetts Institute of Technology, USA

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Università degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

Aitor Rodríguez-Alsina, University Autonoma of Barcelona, Spain

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Arun Saha, Fujitsu, USA

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada

Patrizia Scandurra, University of Bergamo, Italy

Giuseppe Scanniello, Università degli Studi della Basilicata, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Austrian Institute of Technology, Austria

Cristina Seceleanu, Mälardalen University, Sweden

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Alin Stefanescu, University of Pitesti, Romania

Lena Strömbäck, SMHI, Sweden

Kenji Suzuki, The University of Chicago, USA

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan

Antonio J. Tallón-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

Ioan Toma, STI, Austria

Božo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Università degli Studi dell'Insubria, Italy

Peter Trapp, Ingolstadt, Germany

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Åbo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLinq Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Jianwu Wang, San Diego Supercomputer Center / University of California, San Diego, USA

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Sebastian Wieczorek, SAP Research Center Darmstadt, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universität München, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China

Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China

Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e

Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsø, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software

Volume 5, Numbers 1 & 2, 2012

CONTENTS

pages 1 - 14
Combining Explicitness and Classifying Performance via MIDOVA Lossless Representation for
Qualitative Datasets
Martine Cadot, Université de Nancy/LORIA, France
Alain Lelu, Université de Franche-Comté/LASELDI, France

pages 15 - 26
Testing of an automatically generated compiler, Review of retargetable testing system
Ludek Dolihal, Faculty of Information Technology, BUT, Czech Republic
Tomas Hruska, Faculty of Information Technology, BUT, Czech Republic
Karel Masarik, Faculty of Information Technology, BUT, Czech Republic

pages 27 - 35
Compiler-based Differentiation of Higher-Order Numerical Simulation Codes using Interprocedural
Checkpointing
Michel Schanen, LuFG Informatik 12: Software and Tools for Computational Engineering, RWTH Aachen University,
Germany
Michael Förster, LuFG Informatik 12: Software and Tools for Computational Engineering, RWTH Aachen University,
Germany
Boris Gendler, LuFG Informatik 12: Software and Tools for Computational Engineering, RWTH Aachen University,
Germany
Uwe Naumann, LuFG Informatik 12: Software and Tools for Computational Engineering, RWTH Aachen University,
Germany

pages 36 - 52
A Programming Paradigm based on Agent-Oriented Abstractions
Alessandro Ricci, University of Bologna, Italy
Andrea Santi, University of Bologna, Italy

pages 53 - 64
Design by Contract for Web Services: Architecture, Guidelines, and Mappings
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Matthias Herrmann, Furtwangen University of Applied Sciences, Germany
Andreas Hülzenbecher, Furtwangen University of Applied Sciences, Germany

pages 65 - 75
An Implementation Approach for Inter-Cloud Service Combination
Jie Tao, Karlsruhe Institute of Technology, Germany
Daniel Franz, Karlsruhe Institute of Technology, Germany
Holger Marten, Karlsruhe Institute of Technology, Germany
Achim Streit, Karlsruhe Institute of Technology, Germany

pages 76 - 90
User-driven Service Retrieval Platform for Converged Environments

Edgar Camilo Pedraza Alarcon, University of Cauca, Colombia
Julian Andres Zuñiga Gallego, University of Cauca, Colombia
Luis Javier Suarez Meza, University of Cauca, Colombia
Juan Carlos Corrales, University of Cauca, Colombia

pages 91 - 109
Ad hoc Iteration and Re-execution of Activities in Workflows
Mirko Sonntag, Institute of Architecture of Application Systems, University of Stuttgart, Germany
Dimka Karastoyanova, Institute of Architecture of Application Systems, University of Stuttgart, Germany

pages 110 - 120
Modeling Disjunctive Context in Access Control
Narhimene Boustia, Computer Science Department- Saad Dahlab University of Blida, Algeria
Aicha Mokhtari, Computer Science Department - USTHB, Algeria

pages 121 - 130
Seeing the Big Picture: Influence of Global Factors on Local Decisions
Terry Bossomaier, Charles Sturt University, Australia
Michael Harré, University of Sydney, Australia
Vaenthan Thiruvarudchelvan, Charles Sturt University, Australia

pages 131 - 145
An Adaptive Computational Intelligence Algorithm for Simulation-driven Optimization Problems
Yoel Tenne, Formerly Kyoto University, Japan
Kazhuiro Izui, Kyoto University, Japan
Shinji Nishiwaki, Kyoto University, Japan

Combining explicitness and classifying performance via MIDOVA lossless
representation for qualitative datasets

Martine Cadot
Université de Nancy/LORIA,

Département Informatique
 Nancy - France

Martine.Cadot@loria.fr

Alain Lelu

Université de Franche-Comté/LASELDI
LORIA

Nancy - France
Alain.Lelu@univ-fcomte.fr

Abstract—Basically, MIDOVA (Multidimensional Interaction
Differential of Variability) lists the relevant combinations of K
boolean variables in a datatable, giving rise to an appropriate
expansion of the original set of variables, and well-fitted to a
number of data mining tasks. MIDOVA takes into account the
presence as well as the absence of items. The building of level-k
itemsets starting from level-k-1 ones relies on the concept of
residue, which entails the potential of an itemset to create
higher-order non-trivial associations – unlike Apriori method,
bound to count the sole presence of itemsets and exposed to the
combinatorial explosion. We assess the value of our
representation by presenting an application to three well-
known classification tasks: the resulting success proves that
our objective of extracting the relevant interactions hidden in
the data, and only these ones, has been hit.

Keywords-symbolic discrimination; variable interaction;
machine learning; classification; non-linear discrimination;
user comprehensibility; feature construction; feature selection;
itemset extraction

I. INTRODUCTION
We introduce here a novel representation of an

observation × variable datatable with binary modalities. This
representation aims at enlightening the interactions between
variables hidden in the data. It takes into account the
negative as well as positive modalities of the variables, and
eliminates redundancy, since it lists the only itemsets
necessary and sufficient for reconstituting the data.

In order to assess the validity and usability of such a
representation, we present an application of it to
classification tasks on a few well-known test datasets. It must
be clear that the main subject of this paper is not another
classification method, which should be systematically
assessed against the best existing ones on a broad variety of
datasets: our success on a small number of classification
tasks is nothing but a sufficient clue for arguing that the
proposed representation is useful in many data mining
applications, whether supervised (e.g., classification) or not
(e.g., data-driven modeling).

We depart here from the two main research lines in data
mining:

- the statistical line relies on correlations, covariances or
contingency tables for assessing the two-by-two relations
between variables, and generally ignores the interactions of
rank three or more.

- the symbolic line (knowledge discovery) is bound to
extract frequent itemsets or association rules in sparse
datatables, which restrains it in practice to enlighten the sole
interactions between positive modalities of the variables, and
results in an excessive accumulation of logical conjunctions
needing empirical frequency thresholds.

In contrast, our method 1) takes into account the 2N
facets of each order-N relation, including negative modalities
when necessary, 2) self-limits the number and nature of the
extracted relations to the ones necessary and sufficient for
reconstituting the whole datatable, up to a permutation of the
observations.

The assessment of a new data representation is far from
being trivial: it is widely agreed that unsupervised data
representations are difficult to assess. In our case an extra
difficulty lies in the fact that few people use and interpret
order-3 and higher interactions discovered in an
unsupervised framework. Using a supervised one is thus a
way for us to circumvent this limitation. This is why we have
decided to feed a classic and well-known machine learning
method (Naïve Bayes) with extra data issued from our
MIDOVA representation of the datatable as is now exposed.

The illustrative objective of this paper is to present a
proof-of-concept solution for a problem of ever-growing
importance for software industry: in the framework of
discrimination tasks, when facing massive and mostly
qualitative data as it becomes common now, there is a
growing need to explicit the reasons underlying a given
discrimination, i.e., to uncover the variables or combination
of variables intervening in the discrimination function.

The core principle of Support Vector Machines is that
classification performance is increased by increasing the
dimensionality of the representation space in which the
discrimination task has to be performed, and not by reducing
it. This paradox is explained by the concept of interaction:
two (or more) variables may not have the same effect as each
one separately. In particular the combination of two (or
more) variables may impact the target variable, while none
of these variables would do that individually. This principle
inspired us for setting up an enlarged data-space in
classification problems involving binary variables, for the
time being: our aim is to detect all the order-k interactions,
so as to select those involving the target variable. We will
show below that the number of combinations to consider is
tractable: 1) this number is intrinsically limited by the

1

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

number of described entities (or “cases”, “individuals”,
“observations”) in the data, 2) at the k-th level, it is far
below the number of theoretical combinations – as k
increases, it decreases abruptly after its initial growth phase.
Our solution has been briefly exposed yet in DBKDA 2010
[1]. As subtle combinatorics considerations are to be
developed, we will take more pages here, and thoroughly
examine all the facets of our solution considering a single toy
example. Let us turn now to our main topic.

For supervised classification tasks, the main criterion is
the overall classification performance, i.e., best generalizing
power. In this regard, it is widely admitted that kernel
Support Vector Machines [2] have outperformed their
competitors. But in many application areas, the explicitness
of the discrimination function is also a major criterion:
kernel SVMs are blackboxes not akin to “explain” their
decisions. The “kernel trick” is a powerful by-pass for
computation costs, but at the expense of turning the decision
process blind. This is a big concern in domains with life-
threatening issues, such as medical or military ones. It is
impossible to let a machine take (or suggest) such decisions
of vital importance without explaining why, i.e., without
clarifying what variables or combination of variables are
involved in each specific decision-making.

In this respect, many other classification methods,
whether linear as Naïve Bayes [3] or Fisher discrimination
[2], or non-linear, such as Rule-based Classifiers [4] or
Learning Classifier Systems [5], are explicit: they display (or
may display) the (possibly weighted) list of variables or
combinations of them leading to their classification decision.

Our objective is to meet both criteria of explicitness and
performance, restricted here to the case of Boolean variables
(i.e., qualitative variables with two modalities, True and
False, noted by a and ā for the variable a). The solution we
propose consists of expanding the original variables with
Boolean conjunctions of these ones. This idea has yet been
worked out [6] in the framework of the Apriori method for
extracting frequent itemsets [7]. Let us recall that an
“itemset” as defined in Apriori is an unordered list of
variables, its “support” is the number of co-occurrences of
these variables in the dataset, and if the support exceeds a
given threshold, the itemset is said “frequent”. In this paper,
we will deepen the presentation of our MIDOVA method,
first described in French in [8], then in English in DBKDA
2010 [1]. As it is an unsupervised information extraction
method, we will assess its performance applying it to
supervised machine learning tasks, and comparing its results
to the best published ones. The excellent classification
performance obtained is mainly due to the conjunction of its
original features, among which: it takes into account
negative modalities as well as positive ones, it replaces the
straightforward support criterion of Apriori-like methods by
our “residue” criterion, detailed below.

First we will present the MIDOVA representation of a
datatable: its context and motivation, its general and core
principles, and an overview of the algorithm and its pseudo-
code expression. Then we will detail the whole MIDOVA
process on a toy dataset. At last the experimental section will
present the application of MIDOVA expansion to the most

basic discrimination problem: 2 classes and qualitative data,
taken out of the UCI repository. Conclusions will be drawn,
as well as perspectives.

II. MIDOVA REPRESENTATION
After some generalities on MIDOVA, the reader will be

presented a small example illustrating the essential concepts
of component of an itemset, degree of freedom, support,
residue and gain. We will insist on the concept of variation
interval and illustrate it by Venn diagrams. We will confirm
that MIDOVA uncovers the two clusters we had placed in
our dataset. At the end we will develop some quantitative
assessments of MIDOVA, especially in comparison to
Apriori.

A. Context of the MIDOVA representation
We consider the case of a relation R between two sets, a

set S of n individuals (or instances) si (1≤i≤n), and a set V of
p binary variables (or variables) vj (1≤j≤p). For example the
individuals are patients in a hospital, and the (dichotomous)
variables are the symptoms they experience, or not. Or the
individuals are clients of a supermarket, and the variables are
the products they are akin to buy, or not.

A first way to represent these data is as a list of lists: the
lists of symptoms experienced by each patient, or the lists of
commodities bought by each client, i.e., a set of sales slips.
The second representation is more appropriate for reasoning:
a Boolean matrix with n rows and p columns, and value 1 at
the crossing of row i and column j if the individual
experiences the symptom, or else the value 0. It is well
known that these two representations are equivalent, the first
one being a generally compact form of the second (as it gets
rid of the zero values). The datasets illustrating our method
are formatted as Boolean matrices.

We will propose a third representation, which is a set of
itemsets. This representation is rooted in the extension of the
statistical concept of contingency table between two
variables a and b, to the concept of “contingency hyper-
table” between more than two variables. The classic
contingency table includes values in the four cells describing
how the total number n of individuals distributes respectively
along the four crossings of a and b (i.e., the counts of
individuals who simultaneously satisfy a and b, a and , a
and , and). Note that the first count is the support of
itemset ab. In the same way, the three-way contingency table
(between three variables) will be a cube with eight cells, and
the appending of one more variable doubles the number of
cells where the individuals distribute. As the sum of these
cells is n, their content is smaller and smaller, and empty
cells are more and more common. We call components of
our k-itemsets (itemsets of length k, i.e with k variables) the
cells of the k-way contingency table. Note that our definition
of an itemset is more general than the one generally
accepted, in that it includes all the cells of the contingency
table, and not the sole “True, True, ...True” one. Note also
that we have started from the 2-way contingency table,
which is the most common one, by increasing the dimension,
but for the sake of generality we also define the 1-way
contingency tables for the 1-itemsets, i.e., with only one

2

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variable and the empty itemset of 2V, which we will admit
being satisfied for all the individuals.

B. Principles for building the MIDOVA representation
The core principle of MIDOVA is based on the

properties of contingency tables, which can be extended to
hyper-tables. They are expressed in terms of marginal totals
and degrees of freedom.

1) Marginal totals and degrees of freedom
The sums of all the counts corresponding to a variable,

e.g., a, in a k-way contingency table are the exact counts of
the (k-1)-way contingency tables with all variables except a.
For example, in Figure 2, Row 2, the first 2-way contingency
table corresponds to variables a and b, with four counts (3
individuals who verify a and b, 4 who verify a but not b, 2
who verify b and not a, 6 who verify nor a nor b). In its right-
hand column, marginal totals are the two counts of a (7
individuals who verify a, 8 who do not verify a), the same as
those written in the 1-way table of a (Figure 2, Row 1). In
the bottom row of this 2-way table, the marginal totals are
the two counts of b (5, 10) also written in the 1-way table b.
In other words, the marginal sums are forcing the counts in
the cells of the table, restraining the “freedom” of their
contents.
The concept of “degrees of freedom” embeds the number of
cells whose content may be fixed independently from the
others – within limits we will express below. In our case of
Boolean variables, the degree of freedom of each hyper-
table is equal to one because all counts can be written as an
algebraic expression of x (where x is the count of some
fixed cell),and of the marginal values (see Figure 1 and
Figure 2, and details of calculations in Section C).

2) MIDOVA indicators
In the previous paragraph, we have seen that the values

of the cells of a K-way contingency table (i.e., the
components of a K-itemset), are all linked to the value x of a
single cell (i.e., to a single component) and to marginal
values (i.e., to components of its sub-itemsets) by means of
simple algebraic expressions. At step k-1, the x value is
unknown, but it is possible to obtain its variation interval,
i.e., its different values. For example, for itemset ab in Figure
1, the variation interval of x is [2 ; 7], and for itemset abc in
Figure 2, the variation interval of x is [1 ; 2] (for details of
calculations, see Section C; for an interpretation of the
variation interval see Section F 4).

Three useful properties of itemsets are ensuing (their
proofs are in [8].)

 The variation intervals of the all components of a k-
itemset are entirely determined by the components of
its (k-1)-itemsets.

 The components of a k-itemset all have the same
amplitude noted L, “liberty”.

 L is a non-increasing function of k.
We define two parameters: 1) Mr, the “MIDOVA-

residue”, equal to 2k-1e, where e is the gap (i.e., absolute
difference) between the support and the closest bound of its

variation interval, 2) Mg, the “MIDOVA-gain”, which is
proportional to the difference between the support s and the
center c of its variation interval, Mg=2k-1(s-c). Let us recall
that the support is the content of the “True True...True” cell
corresponding to the case of values of variables all equal to
1.

Mr is a non-negative integer, which cannot exceed the
value n/2 where n is the total number of subjects When the
residue Mr of a k-itemset is zero, it remains no more liberties
(L=0) for the k’-itemsets (where k’>k) including the same
variables. This frozen situation stops their computation. This
k-itemset is interesting in that it corresponds to an exact
relation between all its variables. Its sub-itemsets may be
also interesting: they correspond to relations between fewer
variables, thus more general, but these relations are not
exact, and have a number of counter-examples which
increases with Mr.

Mg is an integer that takes values between –n/2 and n/2.
If the gain Mg of a k-itemset is zero, the relation between the
k variables can be rigorously deduced from the lower-level
relations between k-1 variables. In the opposite case, the
greater the absolute value of Mg, the larger the
unexpectedness in this relation, and the more interesting it is.
If its value is positive, the appended variable increases the
relation between the previous variables, and decreases it
otherwise.

C. Illustration of the MIDOVA principles
At the left of Figure 1, we have represented the 0-way

contingency table corresponding to the 0-itemset, with 0
variable, always true, and the 1-way contingency tables
respectively corresponding to the 1-itemsets a (true for 7
subjects) and b (true for 5 subjects), with the total n in the
marginal cell. The 2-way contingency table corresponding
to the 2-itemset ab is displayed at the right-hand part of the
Figure 1. The components of itemset a are in the marginal
column and the component of itemset b in the marginal row,
and among the four cells of the table, only one cell can be
affected independently of the other cells. We have chosen the
cell corresponding of the number of individuals who satisfy a
but not b, and the unknown number x is written in this cell.

Figure 1. Expression of the 4 components of itemset ab given a, b and the
total n

The other counts of the table are relative to x and the four
marginal sums, their algebraic expression can be easily
derived. For example, as the sum of the two cells in the first
line is 7 (in blue, in the marginal column of the 2-way table,
and in the first column of the 1-way table of 1-itemset a,
which indicates that 7 subjects verify a), the number of
subjects who verify a and b is 7-x. In the same way, as
Column 2 contains two cells, which total is 10 (in red, in the
marginal row of the 2-way table, and in the second column
of the 1-way table of 1-itemset b), and as the cell in the first

3

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

row contains x, the second cell contains 10-x. And the value
of the last cell derives by difference between the total of
Row 2 (8, bold and blue) and the content (10-x) of the other
cell of Row 2.

Figure 2. Expression of the 8 components of itemset abc given ab, ac, bc,
a, b, c and n (a=v2, b=v4, c=v3 from Table 1)

.The value of x can vary between 2 and 7 because the

four counts of the 2-way table (7-x, x, x-2 and 10-x) must be
non negative. It follows that the liberty of the ab itemset is
L=7-2=5. In Figure 2, we have the same items a and b, the ab
itemset has been fixed (x=4), and a new item c has been
added, with ac and bc itemsets, which are all known through
their tables. The abc itemset is unknown, but the eight counts
of the 3-way table in the third row depend on the value of x
and on the marginal sums. It may be observed that the value
of x is between 1 (as x-1, which is the count of individuals
satisfying b and c but not a, cannot be negative) and 2 (as 2-
x, which is the count of individuals satisfying a but neither b
nor c, may not be negative), and so is L=2-1=1 for the abc
itemset. For the sequence of itemsets a, ab, abc, the
corresponding sequence of the L values of liberty is 15, 5, 1.

The computation of Mr and Mg for the abc itemset is
developed in Section F.4: in the case of x=1, the three
variables a, b, c are equivalent to the variables v2, v4, v3 of
the Table I

D. Representation of a MIDOVA sequence
When one knows the count of a unique cell per each

contingency table (there are 2p such tables), it is enough for
reconstructing the whole relation R. To this special role we
will assign by convention the cell where all variables are set
to 1, corresponding to the support of the itemset. For
example in Figure 2 the relation between a, b, c is wholly
defined, if x=1, by: Ø(15), a(7), b(5), c(7), ab(3), ac(5),
bc(2), abc(2).

Generally (and fortunately), not all itemsets appear in the
MIDOVA representation. As soon as an itemset is frozen
(Mr=0), no following itemset is set up (i.e if abc is frozen, no
abcd, abce, abcde, …, itemset will ensue). When the grand
total n distributes among the 2k cells of a k-way contingency
table and n<2k, then one cell at least is empty, and no more-
than-k-dimensional table will be created. The maximum
order of a component of R will be log2(n)+1.

E. MIDOVA algorithm
The MIDOVA algorithm is a levelwise algorithm,

derived from the Apriori one [7]. The major difference
between our algorithm and the Apriori one is our criterion of
positive Mr allowing to enlarge a k-itemset into a k+1-
itemset, instead of a support exceeding a threshold. In our
algorithm, we have added (through the function
“conditions”) the possibility of saving the only itemsets with
a support, and/or a gain and/or a residue greater than given
thresholds. The description of MIDOVA algorithm
comprises 3 parts: the variables, the functions and the main
procedure.

1) Variables

- V : list of the variable headings in lexicographic order
- M : boolean matrix of the relation R
- L0 : empty list
- e : element of a list
- it1 : k-association, i.e., list of k variable headings in lexicographic order

with their 2k components (number of individuals in each cell)
- it2 : the same as it1, with lenqth k+1
- it0 : empty association
- k : lenqth of the associations at the current step
- I : global list of the Midova-oriented representation, accompanied for

each association with its heading and other measures computes from its
components

- L1 : list of associations built at step k
- L2 : sub-list of associations saved for the k+1 step
- Mr : Midova residue
- Possible_follow_up is a boolean variable, true if it is possible to extract

in L2 an association built upon association it1

2) Functions

conditions(it) : boolean function ; true if association it checks up the
conditions specified by the user, for example thresholds of support,
gain and/or residue, computed starting from the components of the
association.

append(I, it) adds the it association to I, keeping just the heading and
the sole part of information issued from the components wanted by the
application designer, e.g., support, gain, residue.

parc_L2(it, k, j) boolean function ; true if the heading of the jth
association in the L2 list next to it has the same (k-1) first elements as
the it heading.

create_it(M, i) builds an association starting from its heading and its
list of components computed from M.

succ(L2, it1, j) identifies the successor of it1 located j slots further in
the L2 list.

extract(it2) extracts the (k-1)-subassociations in the heading of it2
except the two fisrt ; e.g : extract(“abdf”) yields the list [“adf”, “bdf”]

rech_co_L2(M, it1, k, j) tests the grouping of the k- association it1
with the k-association it3 positioned j slots further in the L2 list. It
yields the it2 heading by appending the last variable of it3 heading to
the list of variables of the it1 heading. It checks then whether any sub-
association included in it2 exists in L2. If not, the computed
association is void. Else it creates the it2 association appending to its
heading the values of its 2k components computed from M.

4

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Pseudo-code for rech_co_L2 function

rech_co_L2(M, it1, k, j)

it3=succ(L2, it1, j)
it2=concat(intit(it2),intit(it3)[k])
succeed=True
list_itextract(it2)
it3=succ(L2, it3,1)
for it in liste_it do

while not(it3=it0) and (it3<it) do
it3=succ(L2, it3,1)

end
if not(it=it4) then

succeed=False
return it0

end
end
it2create_it(M, it2)
return it2

3) Main procedure

Pseudo-code for generating the MIDOVA representation
#Initialisation :
K 1 ; I L0 ; L1 L0 ; L2 L0
for e in V do

it create_it(M, e)
L1 L1 + it

end
for e in L1 do

If conditions(e) then append(I, e) end
If Mr(e)>0 then L2 L2 + e end

end

#further steps
while not (L2 = L0) do

k k+1, L1 L0
for it1 in L2 do

 j1
 Possible_follow_up parc_L2(it1, k, j)
 while Possible_follow_up do

it2 rech_co_L2(M, it1, k, j)
if not(it2=it0) then L1 L1 + it2 End
jj+1
Possible_follow_up parc_L2(it1, k, j)

 end
end
L2 L0
for e in L1 do

If conditions(e) then append (I, e) end
If Mr(e)>0 then L2 L2 + e end

end
end

F. Running MIDOVA on a toy dataset
We illustrate here the whole MIDOVA operation line on

a small example of dataset, extending from the raw matrix
representation, to the interpretation of the final MIDOVA
results. For the sake of clarity, we take a simpler example
than the partial one presented in the above subsection. Table
1 displays our artificial dataset, showing the Boolean values
of 15 subjects s1, s2, …, s15 for 10 variables v1, v2,…, v10.
One may read, for example, that for the subject s2, 5
variables upon 10, i.e., v1, v2, v3, v4 and v9, are true; or that
the variable v6 is true for 4 subjects upon 15, i.e., s10, s12,
s14 and s15.

TABLE I. BOOLEAN TABLE OF 15 SUBJECTS (E.G.,.PATIENTS)AND 10
VARIABLES (E.G., SYMPTOMS)

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
s1 1 1 1 1 1 0 0 0 0 0
s2 1 1 1 1 0 0 0 0 1 0
s3 1 1 1 0 1 0 0 0 0 0
s4 1 1 0 1 1 0 0 0 0 0
s5 1 1 0 0 1 0 1 0 0 0
s6 1 1 1 0 0 0 0 0 0 0
s7 1 0 1 0 1 0 0 0 0 0
s8 1 1 1 0 0 0 0 1 0 0
s9 1 0 0 1 1 0 0 0 0 0
s10 1 0 0 0 0 1 1 0 0 0
s11 1 0 1 0 0 0 0 1 1 0
s12 1 0 0 0 0 1 1 0 0 0
s13 1 0 0 1 0 0 1 1 1 0
s14 1 0 0 0 0 1 1 0 1 0
s15 1 0 0 0 0 1 1 1 1 0

1) Scrutinizing a few 2-itemsets
The link between two variables is akin to be more or less

pronounced, spanning from a complete opposition to a
complete similarity through a complete unrelatedness. We
exemplify below these three situations of respectively: 1)
opposition, or contradiction, 2) linkage, or attraction 3)
independence, or lack of connectedness.
The itemset A={v4 ; v6}
- includes two variables, thus its length k is 2.
- As the variable v4 is true for the five subjects s1, s2, s4, s9

and s13, it appears that no subject satisfying v6 belongs to
this list, thus the support of A is zero.

- Its support could have been 1, 2, 3 or 4, but not further,
depending on the possible number or common subjects.
The variation interval of the support of A is therefore [0 ;
4], with a lower bound binf=0 and an upper bound bsup=4.

- As seen above, its residue is a function of the gap
(absolute value of the difference) between its actual
support and the closest bound; in this case, Mr=2k-1(s-binf)
and its value is zero since s= binf =0.

- Its gain is a function of the difference between its actual
support and the center of the variation interval (c=2),
Mg=2k-1(s-c), i.e., -4.

This itemset is interesting in that it sheds light on an
opposition between v4 and v6: the subjects who satisfy v4 do
not satisfy v6, and vice-versa. This is precisely the type of
knowledge we try to mine out of the data. But its super-
itemsets {v1, v4, v6}, {v2, v4, v6}, …, {v10, v4, v6} are
uninteresting: no need to return to Table 1 to conclude that
their supports are zero, this conclusion proceeds from the
zero support of A. We call A a frozen itemset for it does not
generate super-itemsets carrying an extra knowledge, out of
its own contribution. The zero value of the residue points at
this frozen situation.

The itemset B={v6, v7} is true for 4 subjects, those who
satisfy v6; v7 is true for these 4 subjects and two other ones,
s5 and s13. Its support is 4 and its variation interval is [0; 4]
as above. As the support equals the lower bound, the residue

5

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Mr of B appears to be zero and the gain Mg is 4. B bears
interesting information, i.e., all the subjects for which v6 is
true satisfy also v7. This can be also expressed by the
association rule v6v7 whose confidence is 100%. Its
super-itemsets are uninteresting: no need to return to Table 1
for delineating the subjects who satisfy the 3-itemset {v6; v7;
v9}, they are exactly those satisfying {v6; v9}. The itemset
B is frozen, as pointed out by its zero residue.

The itemset C={v6, v9} is true for 2 subjects, s14 and
s15, sharing both variables, while v6 and v9 are respectively
true for 4 and 5 subjects. The variation interval of this
itemset is again [0; 4], but the support s=2 of C is now
central in the interval, which corresponds to a residue of
value 4 and a gain of 0. This zero gain shows that the relation
between v6 and v9 is uninteresting. Conversely, as Mr is
greater than zero, this itemset is not frozen, and one has to
consider its derived and possibly interesting super-itemsets.

2) MIDOVA selection of the k-itemsets

The MIDOVA algorithm works level-wise, which means
that once established, the level-k itemsets are combined for
deriving the level-(k+1) ones. A level-(k+1) itemset needs
k+1 level-k itemsets. In this way the 3-itemset {v2, v3, v4}
derives from the three 2-itemsets {v2, v3}, {v2, v4} and {v3,
v4}.

- Level 1: the 1-itemsets, made of a single variable,
are generated ; there are ten of them.

- Level 2: the 1-itemsets are combined by twos for
creating the 2-itemsets. For generating the sole
knowledge-carrying 2-itemsets, the 1-itemsets with
non-zero residues are selected, which eliminates
the two variables v1, true for all the subjects, and
v10, true for none of them (their residues are zero,
and their respective gains are 7.5 and -7.5). In this
way 28 2-itemsets are to be processed instead of the
45 ones when keeping v1 and v10. Considering
these 28 itemsets, 8 are frozen (Mr=0), among
which 7 have zero support and gains between -6
and -4, and one has support and gain values of 4.
They won’t contribute to build the upper levels, but
as their gain values are important, they are left apart
for the final interpretation step. The 20 remaining
2-itemsets are kept for building the next levels.
Four of them have a zero gain, the others spread
from -4 to 3.

- Level 3: The 20 2-itemsets with Mr≠0 are
combined by threes for building the 3-itemsets,
yielding 22 of them, among which only three have a
non-zero residue; therefore, this sole number
prevents building any 4-itemsets. Their gain values
are zero. Among the remaining 19 with a zero
residue, two only have a non-zero gain, i.e., {v2,
v3, v4} with a support of 2 and a gain value of 2,
and {v2, v3, v5} with a support of 2 and a gain
value of -2.

In this way we have built the wholeness of the k-itemsets
akin to provide pieces of information about the dataset.
Throughout three steps, 10, 28 and 22 itemsets respectively
have been considered, summing up to 60 (see Annex).

Among these ones, those taken into account for building the
ones at the next k+1 level amounts to respectively 8, 20 and
3; those with non-zero gain have been 10, 24 and 2,
establishing in this way a total of 26 interesting relations
between variables (out of the trivial 1-itemsets).

3) Differences between MIDOVA algorithm and Apriori-

like ones
In Table II, the wholeness of the 1023 k-itemsets (k>0)
potentially built starting from the data are split up and
counted in reference to the zero value, or not, of their
residues and gains. They yield from the MIDOVA process
parameterized without any residue threshold instead of the
threshold value 1 assigned above. There are then as many
k-itemsets as combinations of variables, i.e., 1024=210. The
first itemset is the void one, which includes no variable, and
is true for 15 subjects – it has been taken out from the
itemset list as a trivial and uninteresting one. The last one is
the « full » itemset which includes all the variables, but is
true for no subject. The 26 interesting itemsets are
emphasized in boldface, so as to point out the efficiency of
our algorithm compared to a brute force one who would
examine the 1023 itemsets. It is noticeable that, in the scope
of a fair comparison between the Apriori algorithm and ours,
Apriori should be considered as such: its efficiency follows
from the sole principle of applying a threshold to the
supports, an option we have discarded in order to retain the
itemsets with zero supports, as these ones mostly points to
interesting opposition relations. Moreover, 7 itemsets out of
the selected 26 ones have a zero support.

TABLE II. HOW THE 1023 ITEMSETS EXHAUSTIVELY ISSUED FROM
TABLE 1 DISTRIBUTE AS REGARDS TO THE VALUE ZERO OR NOT OF THEIR

MR AND MG INDICES.

 Number of k-itemsets

 k 1 2 3 4 5 6 7 8 9 10 Total

Mg=0 17 115 210 252 210 120 45 10 1 980 Mr=0
 Mg≠0 2 8 2 12

 Total 2 25 117 210 252 210 120 45 10 1 992

Mg=0 4 3 7 Mr>0
 Mg≠0 8 16 24

 Total 8 20 3 31

Total 10 45 120 210 252 210 120 45 10 1 1023

Going on with the subject line of enlightening the

differences between our principles and Apriori’s, we have
shown in Figures 3 an 4 how do interesting itemsets rise or
not in both methods, starting from the exhaustive 1023
itemsets:
- The 623 firsts, lexically ranked for each increasing value

of k (1<k<6: 45 2-itemsets, 120 3-itemsets, 210 4-itemsets,
252 5-itemsets).

- The remaining ones (k>=6) have zero-valued supports,
residues and gains.

6

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In both figures, the x axis indicates the rank of the
itemset according to the above-mentioned ordering, and the
dotted line visually recalls the number k.

0
1
2
3
4
5
6
7

0 100 200 300 400 500 600

nb_items residue

Figure 3. Residues of all k-itemsets of Table I.

In Figure 3, the y axis specifically stands for the
MIDOVA residues, in order to enlighten how soon our
algorithm locates the « no-future » value of k, thus how soon
the algorithm is stopped.

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

nb_items support gain

Figure 4. Interesting k-itemsets of Table 1, mined with MIDOVA or

Apriori (with threshold 0)

In Figure 4, the y axis stands for the support and gains of
the successive itemsets. It visually jumps out that 1) gain and
support measure totally different phenomena, 2) MIDOVA
does detect the strong gain values that clearly stands out as
grouped for the small values of k. These two features explain
both the good performance of MIDOVA, able to detect the
wholeness of the interesting itemsets, and only these ones,
including those with zero support, and its relative efficiency,
compared to Apriori parameterized with a zero support
threshold.

More precisely, one may read in Table III that among the
627-528=99 k-itemsets extracted by MIDOVA or Apriori
with zero threshold, only 19 of them (17 2-itemsets and 2
3-itemsets) are simultaneously selected by the two methods –
and the number of common items would still decrease using
Apriori with a threshold. This confirms that the 26 inter-
variable relations mined out from the Table I are different by
nature from those issued from the Apriori family algorithms.

TABLE III. HOW THE 627 K-ITEMSETS (1<K<6) ISSUED FROM TABLE 1
DISTRIBUTE, ACCORDING TO ZERO OR NON-ZERO VALUES OF SUPPORTS AND

GAINS

supp>s |gain|>g0 2 3 4 5 Total

Mg=0 9 82 189 248 528 support=0
 Mg≠0 7 7

Mg=0 12 36 21 4 73 support≠0
 Mg≠0 17 2 19

 Total 45 120 210 252 627

As we have already interpreted the meaning of three

examples of 2-itemsets, we now interpret the only two
interesting relations between 3 variables.

4) Interpreting the 3-itemsets with non-zero gain

Let us examine first the itemset D={v2, v3, v4}. In
Figure 5 a Venn diagram shows how the 15 subjects
distribute among the three variables v2, v3 and v4. In this
ensemblist layout, the subjects are splitted in 8 parts
according to their values of the three considered variables.
For example s7 and s11 are in the segment of v3 exterior to
v2 and v4, as their values for v3 are 1, whereas they are zero
for v2 and v4. In the same way the s1 and s2 subjects lie in
the central part common to the three variables, as their values
are 1 for all of them. Thus the support of the itemset D is 2.

Figure 5. Venn diagram of the {v2, v3, v4} itemset.

The variation interval of the support can be found by

trying to modify the support of D without modifying the
supports of its component 2-itemsets. This can be done by
moving the subjects from one area to another one: the only
possible configuration is shown in Figure 6.

Figure 6. Transfer of 4 subjects of the {v2, v3, v4} itemset: the

movements are drawn in the left-hand figure, resulting in the right-hand
configuration.

In the left part of Figure 6, blue arrows indicate the

authorized movements of the subjects (starting from a yellow
area, where the number of negative variables is even, to a
white one). As far as each support of the 2- and 1-itemsets

7

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

includes as much yellow areas as white ones (one each for
the 2-itemsets and two for the 1-itemsets), their values are
kept unchanged. For example the sub-itemset {v2, v3},
which included at the left a white area with 3 subjects and a
yellow one with 2, now includes at the right a white area of 4
and a yellow one of 1, while its support stays the same
(5=3+2=4+1) – obeying a kind of conservation principle, so
to speak. The sub-itemset {v2}, which included two white
areas with 1 and 3 subjects, and two yellow ones with 1 and
2 subjects, now includes two white ones with 2 and 4, and
two yellow ones with with 0 and 1, whereas its support keeps
constant (7=(1+3)+(1+2)=(2+4)+(0+1)). Implementing these
changes of the variation interval can be done by just
modifying the four values in the datatable. This can be done
in different ways, one of which is displayed in Figure 7. In
the left-hand part of the table the values of Figure 1 are
reproduced, and the values to be changed for decreasing the
support of D from 2 to 1 are highlighted in yellow; at the
right-hand part of the table, these values have been modified.

Figure 6 shows the only possibility for the variation of
the D itemset subjected to the stability conditions of the
supports of its sub-itemsets. It follows that the variation
interval of its support is [1; 2], of center 1.5 and gain
Mg=2k-1(s-c)= 22(2-1.5)=2, which points out a tight relation
between v2, v3 and v4, relatively to the three underlying 2-
relations, i.e., (v2 and v3, v2 and v4, v3 and v4).

Figure 7. An example of modification of 4 subjects of the {v2, v3, v4}

itemset for implementing the changes in Figure 6.

The second 3-itemset with non-zero gain is E={v2, v3,

v5}, which Venn diagram is shown in Figure 8.

Figure 8. Venn diagram of the {v2, v3, v5} itemset.

In the same way Figure 9 shows the only way to move
subjects in order to modify the support of E without
modifying the supports of its component 2-itemsets, which
yields a variation interval [2; 3] for the support, and thus a
gain of -2 expressing a loosening of the link between the 3
variables v2, v3 and v5.

Figure 9. Transfer of 4 subjects of the {v2, v3, v5} itemset: the

movements are drawn in the left-hand figure, resulting in the right-hand
configuration.

5) Global interpretation

The reader may probably have observed that our example
data had a special structure: apart from v1, always true, and
v2, never true, the variables v2 to v5 mainly characterize the
subjects s1 to s9, and so do the variables v6 to v9 for the
subjects s10 to s15. This fact explains why the k-itemsets
with non-zero gain extracted by MIDOVA are quasi-
exclusively of order 2, because the dominant structure in the
table is an opposition between two subject clusters. In this
framework, the 2-itemsets that link the variables
characterizing one cluster are mainly endowed with a high
positive gain, whereas those linking two variables from
different clusters tend to have highly negative gains, while
being mostly characterized by a zero support. We can
conclude that MIDOVA has uncovered the knowledge that
had been incorporated in the data, i.e., the existence of two
contrasting clusters, a bit blurred with some noise.

G. Performance assessment of MiDOVA vs. Apriori

TABLE IV. NUMBER OF ITEMSETS AS A FONCTION OF 1) THEIR
LENGTH, 2) THE ALGORITHM (WBC DATASET, FROM UCI REPOSITORY)

MIDOVA with all

variables
MIDOVA with
class: benign

k Apriori Mr=0 Mr>0 Total Mr=0 Mr>0 Total

2 4095 1652 2443 4095 23 66 89
3 121485 23750 7931 31681 1119 368 1487
4 2672670 12134 1174 13308 762 83 845
5 46504458 186 0 186 18 0 18
6 666563898 0 0 0 0 0 0
7 8,09 E+9

… …

Tot. 2,48 E+27 37722 11548 49270 1922 517 2439

As an example, we have performed MIDOVA and

Apriori on the UCI test-data Wisconsin Breast Cancer
(WBC) [9; 10]. This test set comprises ten categorical
variables, among which the target variable with the Benign /

8

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Malignant modalities, 8 with ten modalities and 1 with 9
modalities; all these were translated into 91 dichotomous
variables, observed for 699 individuals. In Table IV the
length of itemsets is in the first column; in the second and
third ones are displayed the number of itemsets obtained
with Apriori and MIDOVA respectively, with threshold 0,
separating those with zero residue, the others, and those who
include the target variable with value = Benign.

The Apriori algorithm yields 4095 2-itemsets (see
Table IV), which are all the possible combinations of these
91 variables 2 by 2; MIDOVA too because none of these 91
variables could be eliminated, by default of zero residue
value. However more than a third of these 4095 itemsets
(1652) have a zero residue, and are thus eliminated from the
list of itemsets grounding the building of 3-itemsets. At next
step (k=3) the number of itemsets grows significantly
(31 681, ie. 7.7 times more than at step 2), but much lesser
than with Apriori (29.7 times more than at step 2). Among
the 3-itemsets generated by MIDOVA, a large proportion has
a zero residue (23 750, i.e., more than 70%). From step 3 to
step 4 the number of itemsets is multiplied by 22 with
Apriori, 0.42 with MIDOVA (see Figure 10). At step 5, 186
itemsets are kept by MIDOVA, all of them with a zero
residue, which explains that no itemset of length>5 exists, at
the same time when the number of itemsets keeps growing
exponentially in Apriori. At last, 1922 itemsets have been
kept as candidate variables (“expansion” of the original ones)
for predicting the benign target modality.

6,67 6,08
7,368,209,22

10,50
12,14

14,33

17,40

22,00

29,67

0,000,01
0,42

7,74

-5

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12

Itemset length

C
oe

ffi
ci

en
t

A Priori
Midova

Figure 10. Multipliers for the number of itemsets – an Apriori and
MIDOVA comparison (WBC dataset, from UCI repository)

In this way, only a minor part of the 49 270 components

of the MIDOVA decomposition is used for the classification
task, i.e., the most relevant itemsets in this respect: the ones
with Mr=0, Mg≠0 and including the label variable C, thus
expressing the tightest relationship with this variable. We
will take advantage of this observation in next section III.

H. Effectiveness of MIDOVA
When no threshold support is applied, the maximum

complexity at level 2 is O(Ns, Nv2), where Ns and Nv are the

number of subjects and variables respectively. The
complexity at the further levels depends heavily on the
presence or not of interactions, and their distribution along
the successive levels. For example, a structure of simple
clusters, i.e., “blocks”, mainly results in 2-itemsets, with few
higher-order ones. It is the case in our toy example in
subsection F, where the only two order-three itemsets may
be considered as random noise.

We are aware that many enhancements of the Apriori
algorithm have been published since [7]. However these
variants do not change, to our knowledge, the basic
principles at work, and could also be applied for increasing
the efficiency of MIDOVA – this prospect is one of our
current interests.

III. NAÏVE BAYES CLASSIFICATION OF THE EXPANDED
DATATABLE

We address now the application of MIDOVA to the
classification problem. For the sake of simplicity we will
tackle the 2-class problem. The class variable C is thus a
binary one, and its modality is known for each observation of
the learning set. As MIDOVA gives a complete view of how
any variable is related to the other ones, C included, we have
applied it to the learning set and we have selected the only
subset of k-itemsets involving C with 0-valued residue, and
extracted their 0-valued components (corresponding to the
cells of count 0 in the k-way contingency table). Each
component results in a new variable, product of the values 0
or 1 of its variables (except C). We call “MIDOVA
expansion” the set of components and “MIDOVA-expanded
datatable” the datatable with the new variables.

For the sake of simplicity again we will use the most
basic classification approach, i.e., the Naïve Bayes method
This approach poses the hypothesis of independent variables,
i.e., the log-odd for a data-vector to belong to class C is the
sum of the contributions from priors and separate
contributions from each of the variables.

Which translates, in our specific case of two classes C
and ¬C and binary components of data-vectors x={xi}:

 For each variable i the contribution si writes:

si = log(P(xi |C)) – log(P(xi |¬C))

 For a new data-vector
Evidence(x) = log(P(C)) – log(P(¬C)) + <x,s> (1)

where P(.) is a probability, and <.,.> is a dot product.

Our parameter tuning heuristics for optimizing the
generalization accuracy criterion, i.e., error percentage, (or
F-score variant if necessary) is as follows:

 0 – We start from the MIDOVA-expanded datatable,

whose number of variables depends on our threshold
parameters for the gain Mg and residue Mr indices,
generally Mg>0, Mr=0.

 1 – A first pass on the training set yields the ordered
list of variables most contributing to the
classification, sorted by decreasing si unsigned
values.

9

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 2 – A 5-fold (or 6-fold) cross-validation on the
training set yields the “optimal cut” Iopt for the
number of relevant variables.

 3 – A last pass on the whole training set, with
parameter Iopt, yields the optimal value for the
evidence threshold Eopt.

 4 – The test set is then classified with formula (1)
and parameters Iopt and Eopt.

IV. EXPERIMENTS
To our knowledge, public access test sets fitting to our

requirements of qualitative datasets - binary or categorical –
with two classes are uncommon. We present here a
benchmarking of our classification method on three UCI
repository dataset, All records containing unknown values
have been removed. [9, 10, 11]: Tic-Tac-Toe, Wisconsin
Breast Cancer, and Monks-2 [12] (known to be the most
difficult of the three Monks problems).

As our aim in this paper consists in assessing the
soundness of a novel data decomposition, and not in
presenting a competitive learning algorithm, we have not
tried to assess our MIDOVA application on the many other
public access test sets with a k-class output variable (k>2),or
with numerical attributes to discretize. This way we avoid 1)
further uncertainties in the comparisons due to the
discretization steps, and 2) reprogramming other reference,
or highly successful, methods, in our present proof-of-
concept phase.

A. Tic-Tac-Toe
We have encoded the nine 3-category nominal variables

(empty / cross / circle) into 27 binary variables, plus 2 binary
variables for the class variable (“win/loose”). 638 instances
are in the train set, 320 in the test set. The cross begins the
game, and has to play when the given configuration instance
appears.

The MIDOVA expansion yields 102 components, each
including C or ¬C (i.e., non C), with Mg>0 and Mr=0.

After reordering these variables, the Naïve Bayes
parameter tuning, with a 6-fold cross-validation, keeps the
Iopt=32 most relevant ones, with threshold Eopt=.8716,
resulting in the maximum, but yet attained, accuracy of
100% on the test set.

Note that a variant with 5-fold cross-validation results in
2 test errors (Accuracy=99.37%), and another one with
Iopt=100 results in 3 errors (Accuracy=99.06%).

Our method allows us to interpret the ordered list of the
relevant itemsets: for example, the 4 top ones, with a
prominent gain index of 168, encode the four diagonal
patterns (O,X,O) and (X,O,X) associated with “loose” (the
latter configuration is included in 68 instances, 42 “loose”
and 26 “win”); the next 6 ones, with a gain of 144, encodes
the trivial cases of three circles aligned in a row or a column,
also associated with “loose”, and so on…

B. Wisconsin Breast cancer
This dataset consists in 683 patients (train set: 455; test

set: 228) described along 9 ordinal scales. Eight of the scales
have ten values, and one has nine ones.

For the sake of not losing the orderliness information, we
have encoded each of the nine variables as follows: the ith
value is encoded by i “1” and 10-i “0” (for example, V1-3
results in {1 1 1 0 0 0 0 0 0 0}).

The MIDOVA expansion on these 89 binary variables
yields 1283 components, each including C or ¬C, with Mg>0
and Mr=0.

After reordering these variables, the Naïve Bayes
parameter tuning, with a 5-fold cross-validation, keeps the
Iopt=130 most relevant ones, with threshold Eopt=.3189,
resulting in the maximum, not yet attained by explicit
methods to the best of our knowledge, accuracy of 98.24%
on the test set (4 errors). The recent reference [13] reports a
99.63% accuracy using a blind method (Artificial
Metaplasticity Multilayer Perceptron)

Note that a variant with a standard binary coding scheme
results in 5 errors (Accuracy=.9781).

Like any rule-based method, ours allows a medical expert
to interpret the ordered list of the relevant itemsets, which
top elements are:

Malignant←V2.5,V4.2
Malignant←V2.5,V7.4
Malignant←V2.5,V4.3
Malignant←V6.4 ,V4.2
Malignant←V2.6,V4.2
Malignant←V6.8,V7.4
Malignant←V2.5,V7.5

Malignant←V3.5,V6.4,V7.4
Malignant←V3.5,V7.5
…………………………
Benign←V2.5,V3.4
…………………………
Benign←V1.4,V6.4,V7.4
…………………………

C. Monks-2
Monks2 is the harder of the three Monks problems: the

solution cannot be described simply as a conjunction of
disjunctions, it needs a method for pulling the concept of
“exact number (n) of variables with value 1 amongst m
ones” out of sample data.

We have encoded the six 3 nominal variables into 19
binary variables, plus 2 binary variables for the class variable
(“two features/else”). 169 instances are in the train set, 432
in the test set.

The MIDOVA expansion yields 99 components, each
including C or ¬C, with Mg>0 and Mr=0.

After reordering these variables, the Naïve Bayes
parameter tuning, with a 5-fold cross-validation, keeps all of
the Iopt=99 of them, with threshold Eopt=1.6994, resulting
in the honorable accuracy of 71.5% on the test set: in the
review [12], 9 symbolic learning techniques upon 24 result
in a clearly better score. We are aware of only one SVM
method [14] resulting in a better score (85.3%)..

Our method is clearly adapted to detecting classification
rules expressed as conjunctions of disjunctions, not to more
sophisticated hypotheses. But our experience is that this
ability is enough for most of the real-life problems in the
domain of supervised learning.

V. RELATED METHODS
Since the very beginning of this paper, we have

continuously compared our method to Apriori: let us recall
that our main objective here is to expose a novel
representation of a 0/1 database, made of “salient” itemsets,
close to the representation issued from Apriori, but with a
very different definition of “salient”.

10

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

First, we will summarize the main similarities:
- Both are levelwise methods, starting from order-1

itemsets for building order-2, order-3, …ones.
- Both aim at extracting the “local” information

embedded in the interactions between two and more
variables, resulting in a representation far from the global
“datacloud” scheme of most of the data analysis methods.

- Both use anti-monotone properties: as regards to
Apriori, the support of an itemset never exceeds the support
of its subsets; concerning MIDOVA, the residue of an
itemset never exceeds the residue of its subsets.

Then, the main differences are as follows:
-An implicit hypothesis needed by Apriori for giving rise

to tractable computations is that each instance has a
description of a “pick-any” type: it consists of a small
number of items picked among a large number of potential
ones, as it is the case for “market basket” data or language
data – hence itemsets never include absent items in real-life
applications. On the contrary MIDOVA is well-fit for any
type of boolean data, whether pick-any or not, for it takes
symmetrically into account both presence or absence of an
item.

- The general principle of both methods are different:
Apriori operates by counting the occurrences of
combinations of the items, while MIDOVA condenses the 2K
facets of the huge K-way contingency table implicitly
defined by any N × K boolean datatable into a list of its
essential facets, where essential means “necessary and
sufficient for rebuilding the datatable”.

- Both aim at minimizing the number of extracted
itemsets, but Apriori uses frequency thresholds, while
MIDOVA uses other criteria, preserving the cases where
interesting itemsets may be unfrequent, if not absent (it is the
case of the XOR function, and more generally of situations
of exclusiveness – in a medical context, to characterize
health may be as important as characterizing illness; see the
benign/malignant example above).

- As a stopping criterion, Apriori uses support thresholds,
while MIDOVA uses “residue”, a rigorous measure of the
association potential of a considered itemset.

As regard to the illustrative part of our paper, which
concerns the classification problem, we will review a few
families of methods close to our classification scheme:

- The principles of the Association Rule-based Classifiers
are as follows: 1) they start, as we do, from a Boolean matrix
including the target variable, 2) they mine all the high-
confidence association rules with a single variable in the
right part – we use our novel MIDOVA process instead, 3)
they filter the only rules implying the target variable, as we
do, 4) they implement a rule-ordering strategy, generally
based on support and confidence, instead of our Naïve
Bayes-based expansion/selection process. The Large Bayes
method of [6] is a salient reference in the 90’s. The
references [15] and [4] report maximal accuracy rates of
respectively 93.95% and 95.1% on WBC data, 92.6% and
98.2% on Tic-Tac-Toe, and no results on the Monks
problems. Harmony [16] has taken over in the 2000’s. It uses
an instance-centric rule generation framework where the
ordering of local rule lists is based on confidence, entropy or

correlation criteria. At the end of the process and for each
class, these lists are merged and sorted by the chosen
criterion: when an unknown test instance is presented, the
sums of the criterion for the k first relevant rules in each
class are computed and compared, determining then the
presumed class label. The recent reference [17] reports a
95.85% Harmony score for WBC data, and 97.98 for TTT. It
presents a general scheme close to ours: the authors first
create new features (based on frequency criteria, unlike ours)
for expanding the data, then they use classic learning
methods, among which Naïve Bayes, for the classification
task. Their results with and without their “Feature Creation”
(FC) expansion are reported in the recapitulative Table V.

Learning Classifier Systems (LCS) [5] are not as close to
our method as it could seem at first glance: these incremental
data-streaming algorithms use genetic optimization for the
selection of best-fitted classification rules. This problem
being harder than our batch-processing objective, no surprise
that a 95,5% accuracy has been reported on WBC data [18].

TABLE V. REPORTED ACCURACIES FORWISCONSIN BREAST

CANCER, TICTACTOE AND MONKS2 DATASETS (
a
: REPORTED IN [17])

 WBC TTT Monks2
Method

Naïve Bayes 97.88
a
 68.47

 a
 67.0

Naïve Bayes + FC 96.59
 a

 79.72
 a

 n.a.

Harmony 95.85
 a

 97.98
 a

 n.a.
(CBA (Classification Based on

Associations) 93.95 92.6 n.a.
GARC (Gain based Association Rule

Classification) 94.8 100.0 n.a.
LCS (Learning Classifier System) 95.5 n.a. n.a.

Naïve Bayes + MIDOVA 98.24 100.0 71.5
Maximum reported performance with

blind methods 99.58 100.0 85.3

VI. CONCLUSIONS AND PERSPECTIVES
We have presented in this text a novel representation

scheme for qualitative data sets: a list of frequent and
infrequent itemsets condensing all the noticeable, non-trivial
information embedded in the interactions between Boolean
variables. We have shown that this list is far less prone to the
combinatorial explosion than the one resulting from the
Apriori algorithm and that the maximum order of the
interesting itemsets is limited to log2N+1, N being the
number of instances in the database.

For proving the quality of this representation, we have
decided to put it into practice in a supervised framework, in
which a quantitative assessment is possible, specifically in
the framework of the two-class discrimination problem. For
this purpose, we have selected the subset of itemsets related
to the class variable, resulting in an expanded datatable. We
have chosen the Naïve Bayes classification method for
providing the explicit discrimination criterion we wished and
assess the quality of our data expansion.

11

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The results on three open-access test datasets are
satisfactory:we have proven on two test datasets (WBC and
Tic-Tac-Toe) that, as a matter of accuracy performance, our
derived classification method could compete with SVMs,
while reaching the same human readability of the results as
Learning Classifier Systems or Classification Association
Rules. Honorable results were obtained on the Monks2
problem, which is an artificial test bench for general artificial
intelligence.

Apart from developing non-supervised applications of
our representation method, such as data-driven modeling, our
middle-term prospects are many in the machine learning
domain:

 Classify more than two classes and include splits on
numerical variables, which could multiply our
possible test benches, and outline more precisely the
qualities and limits of our approach; we already
know that on the Monks-2 dataset, our performance
is good, but not excellent.

 Scale-up the implementation of our algorithm, for
tackling real-life problems.

 Use another selection and classification method as
Naïve Bayes, if necessary.

 Increase our theoretical understanding of the
method, and bridge the gap with statistical learning
approaches.

REFERENCES
[1] Cadot M. and Lelu A. 2010. Optimized Representation for

Classifying Qualitative Data. DBKDA 2010, pp. 241-246
[2] Guermeur Y. 2002. Combining discriminant models with new

multi-class SVMs. Pattern Analysis and Applications (PAA),
Vol. 5, N. 2, pp. 168-179.

[3] Naïm P., Wuillemin P. H., Leray P., Pourret O. and Becker A.
2007. Réseaux bayésiens, Collection Algorithmes, Eyrolles,
Paris.

[4] Chen, G., Liu, H., Yu, L., Wei, Q., and Zhang, X. 2006. A
new approach to classification based on association rule
mining. Decis. Support Syst. 42, 2 (Nov. 2006), pp. 674-689.
(DOI= http://dx.doi.org/10.1016/j.dss.2005.03.005, 2012-06-
01)

[5] Bull L. (Editor), Bernada-Mansilla Ester (Editor), John
Holmes (Editor), , 2008. Learning Classifier Systems In Data
Mining, Springer

[6] Meretakis D. and Wuthrich B. 1999. Classification as mining
and use of labeled itemsets. ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery
(DMKD-99).

[7] Agrawal R. and Srikant. R. 1994. Fast algorithms for mining
association rules in large databases, Research Report RJ 9839,
IBM Almaden Research Center, San Jose, California.

[8] Cadot, M. 2006. Extraire et valider les relations complexes en
sciences humaines : statistiques, itemsets et règles
d’association. Ph. D. thesis, Université de Franche-Comté
(DOI= http://www.loria.fr/~cadot/cadot_these_2006.pdf ,
2012-06-01)

[9] UC Irvine Machine Learning Repository
(http://archive.ics.uci.edu/ml/,2012-06-01).

[10] http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wiscons
in+%28Original%29 , 2012-06-01.

[11] http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame,
2012-06-01.

[12] Thrun S. and al. 1991. The MONK's Problems: A
Performance Comparison of Different Learning Algorithms.
S. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J.
Cheng, K. De Jong, S. Dzeroski, S.E. Fahlman, D. Fisher, R.
Hamann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger,
R.S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich H.
Vafaie, W. Van de Welde, W. Wenzel, J. Wnek, and J. Zhang.
(DOI= http://robots.stanford.edu/papers/thrun.MONK.ps.gz,
2012-06-01)

[13] Marcano-Cedeño A., Quintanilla-Domínguez J., Andina D.,
2010. Breast cancer classification applying artificial
metaplasticity algorithm, Neurocomputing, Volume 74, Issue
8, pp. 1243-1250.

[14] Rüping S. 2001. Incremental learning with support vector
machines, in Proceedings of the 2001 IEEE International
Conference of Data Mining.

[15] Rajanish Dass. 2008. Classification Using Association Rules,
IIMA Working Papers 2008-01-05, Indian Institute of
Management Ahmedabad, Research and Publication
Department. Downloadable in RePec: (DOI=
http://ideas.repec.org/p/iim/iimawp/wp02079.html, 2012-06-
26)

[16] Wang J. and Karypis G. 2005. HARMONY: Efficiently
Mining the Best Rules for Classification. SIAM International
Conference on Data Mining, pp. 205-216

[17] Gay D., Selmaoui-Folcher N., Boulicaut J.F. 2012.
Application-independent feature construction based on
almost-closedness properties, Knowledge and Information
Systems, Volume 30, Issue 1, pp.87-111, Springer.

[18] Wilson, S. W. 2002. Compact rulesets from XCSI, in
Advances in learning classifier systems: Fourth international
workshop, IWLCS 2001. (LNAI 2321), P. L. Lanzi, W.
Stolzmann, and S. W. Wilson, Eds. Springer-Verlag, pp. 196–
208.

12

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ANNEX

For the sake of comparability with other methods: K-itemsets extracted by MIDOVA out of the data in Table 1

k: #_items k-itemset Support Gain Residue Frozen ? Interesting ? Interaction sign

1 {v01} 15 7.5 0 *
1 {v02} 7 -0.5 7
1 {v03} 7 -0.5 7
1 {v04} 5 -2.5 5
1 {v05} 6 -1.5 6
1 {v06} 4 -3.5 4
1 {v07} 6 -1.5 6

1 {v08} 4 -3.5 4
1 {v09} 5 -2.5 5
1 {v10} 0 -7.5 0 *

2 {v02; v03} 5 3 4 * +
2 {v02; v04} 3 1 4 * +
2 {v02; v05} 4 2 4 * +
2 {v02; v06} 0 -4 0 * * -

2 {v02; v07} 1 -4 2 * -
2 {v02; v08} 1 -2 2 * -
2 {v02; v09} 1 -3 2 * -
2 {v03; v04} 2 -1 4 * -
2 {v03; v05} 3 0 6
2 {v03; v06} 0 -4 0 * * -
2 {v03; v07} 0 -6 0 * * -
2 {v03; v08} 2 0 4

2 {v03; v09} 2 -1 4 * -
2 {v04; v05} 3 1 4 * +
2 {v04; v06} 0 -4 0 * * -
2 {v04; v07} 1 -3 2 * -
2 {v04; v08} 1 -2 2 * -
2 {v04; v09} 2 -1 4 * -
2 {v05; v06} 0 -4 0 * * -
2 {v05; v07} 1 -4 2 * -
2 {v05; v08} 0 -4 0 * * -
2 {v05; v09} 0 -5 0 * * -
2 {v06; v07} 4 4 0 * * +
2 {v06; v08} 1 -2 2 * -
2 {v06; v09} 2 0 4
2 {v07; v08} 2 0 4
2 {v07; v09} 3 1 4 * +
2 {v08; v09} 3 2 2 * +

3 {v02; v03; v04} 2 2 0 * * +
3 {v02; v03; v05} 2 -2 0 * * -
3 {v02; v03; v08} 1 0 0 *
3 {v02; v03; v09} 1 0 0 *
3 {v02; v04; v05} 2 0 4

13

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3 {v02; v04; v07} 0 0 0 *
3 {v02; v04; v08} 0 0 0 *
3 {v02; v04; v09} 1 0 0 *
3 {v02; v05; v07} 1 0 0 *
3 {v02; v07; v08} 0 0 0 *
3 {v02; v07; v09} 0 0 0 *
3 {v02; v08; v09} 0 0 0 *
3 {v03; v04; v05} 1 0 4
3 {v03; v04; v08} 0 0 0 *
3 {v03; v04; v09} 1 0 4
3 {v03; v08; v09} 1 0 0 *
3 {v04; v05; v07} 0 0 0 *

3 {v04; v07; v08} 1 0 0 *
3 {v04; v07; v09} 1 0 0 *
3 {v04; v08; v09} 1 0 0 *
3 {v06; v08; v09} 1 0 0 *
3 {v07; v08; v09} 2 0 0 *

14

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Testing of an automatically generated compiler

Review of retargetable testing system

 Ludek Dolihal
Department of Information systems

Faculty of information technology, Brno University of
Technology

Brno, Czech Republic
idolihal@fit.vutbr.cz

 Tomáš Hruška, Karel Masařík
Department of Information systems

Faculty of information technology, Brno University of
Technology

Brno, Czech Republic
{hruska, masarik}@fit.vutbr.cz

Abstract— for testing automatically generated C compiler for
embedded systems on simulator, it is necessary to have
corresponding support in the simulator itself. Testing programs
written in C very often use I/O operations. This functionality can
not be achieved without support of the C library. Hence the
simulator must provide the interface for calling the functions of
the operation system it runs on. In this paper, we provide a
method that enables running of programs, which use functions
from the standard C library. After the implementati on of this
approach we are able to use the function provided by the C
library with limitations given by the hardware. Mor eover we add
the overview of the testing system, which is used in our project.
The system allows testing hardware and also software part of the
project.

Keywords - Porting of a library, C library, compiler testing,
simulation, hardware/software codesign, Codasip.

I. INTRODUCTION

This article is closely related to the paper [1] published at
the ICCGI 2011. It will discuss the problematic of testing of
the automatically generated compiler more closely, will focus
on all major stages of compiler generation and on testing of the
stages. As the main aim of the Lissom project [2]
(commercialized under the registrated mark Codasip -
www.codasip.com) is hardware software codesign we have to
test not just the software part but also the hardware part.

 One goal of our research group is an automatic generation
of C compilers for various architectures. Currently we are
working on Microprocessor without Interlocked Pipeline
Stages (MIPS). To minimize the number of errors in the
automatically generated compilers, it is necessary to put the
generated compilers under test. Because the whole process of
the compiler generation is highly automatic and we do not
have all the platforms, for which we develop, available for
testing, we use simulators for compiler testing instead of the
chips or development kits. In order to test the C compiler
within any simulator, it is necessary to add the support for the
C library functions into the simulator, which is used for the
testing. The C programming language is still one of the most
used languages for programming of embedded systems. Hence
it is important to provide the reliable C compiler to the
developers.

The support of the library is crucial in our project. We
need to use tests written in C for the compiler testing and the
tests commonly use I/O functions, functions for memory
management etc. This paper presents the idea of fitting the
simulator, where the testing is performed, with support of the
C library and later on the implementation of this method.

The paper is organized in the following way. Second
section provides the position of the testing in the Lissom
project. After that we sketch the concept of retargetable testing
system. Overview of the current stage of the testing is provided
in section four. Then the short overview of related work is
given, section six discusses the reasons for choosing the
library. Sections seven and eight discuss theoretical and
practical side of adding the library support into the simulator.
Section nine describes the process of testing. Section ten
presents the results obtained from commercial testsuite and
finally section eleven concludes the paper.

II. RELATED WORK

As the core of the paper is dedicated to the testing of the
compiler in the simulator we will focus mainly on related work
in this area.

Simulators in general are one of the most popular solutions
as far as embedded systems development is concerned. They
are very often used for testing. We tried to pick up several
examples that are connected to embedded systems
development, and were published in a form of article. The
Unisim project is not aimed at embedded systems but provides
interesting idea.

Paper [6] presents a system that is very similar to the one
that is developed within our project. It is called Upfast. The
article describes system that generates different tools from a
description file such as we do. The article mentions that C
libraries were developed, but no closer information is given. It
seems that in the simulator of the Unisim project the support
for C language library have been right from the beginning.
Unfortunately this is not our case. Porting of the library is
critical for us, because without the support it is very difficult to
test and evaluate the results of any tests.

Another interesting system including simulator is described
in [7]. The project is called Rsim and is focused on simulation

15

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of shared memory multiprocessors. The Rsim project works
under Solaris. The Rsim simulator can not use standard system
libraries. Unfortunately it is not explained why. Instead the
Rsim provides commonly used libraries and functions. The
Rsim simulator was tested for support of C library. All system
calls in the Rsim are only emulated, no simulation is
performed. In our system we will simulate the calls when
necessary. The Rsim does not support dynamically linked
libraries and our system also does not consider dynamic
linking at the current state. Unfortunately in this article is not
mentioned how the support for C library functions was added
into the simulator.

 Unisim project [8] was developed as an open simulation
environment, which should deal with several crucial problems
of today simulators. One of the problems is a lack of
interoperability. This could be solved, according to the article,
by a library of compatible modules and also by the ability to
inter-operate with other simulators by wrapping them into
modules. Though this may seem to be a little out of our
concern the idea of the interface within the simulator that
allows adding any library is quite interesting. In our case we
will have the possibility to add or remove modules from the
library in a simple way. But the idea from the Unisim project
would make the import of any other library far easier than it is
now.

The articles above are all related to simulations. The C
programming language is not a new one and it is not possible
to list all the articles that are in any way related to any library
of C language. The different ways of compiler testing of any
language are listed in [13]. The simulator is either created in a
way that it already contains the library or it has at least some
interface, which makes it easier to import the library in case it
is wrapped in a module. Unfortunately our simulator does not
contain such interface.

III. POSITION IN LISSOM PROJECT

In the Lissom project we focus mainly on hardware
software codesign. In order to deliver the best possible
services we want to provide the C compiler for a given
platform as the C language is one of the main development
languages for embedded systems. The C compiler is
automatically generated from the description file. Besides the
C compiler there are a lot of tools that are also generated from
the description file. The tools include mainly:

• simulators,

• assembler,

• disassembler,

• profiler,

• hardware description.

 The simulators can be generated either from a cycle
accurate or an instruction accurate model. The profiler was
thoroughly described in [3].

 The description file is written in ISAC [4] language. The
ISAC language is an architecture description language (ADL).
It falls into the category of mixed ADL.

We would like to produce the whole integrated
development environment for hardware software co-design.
This IDE should provide all the necessary tools for developers
when designing embedded systems from the scratch. The
simulator is part of the IDE and C library support is part of the
simulators (in the IDE can be more that one simulator).

The tool for generating compilers is called backendgen and
is also embedded in the IDE. The quality of a compiler is
crucial for the quality of software that is compiled by
compiler. Hence it is very important to test the compiler that is
generated by the backendgen. Via locating errors in the
compiler itself we can afterwards identify and fix problems in
the generation tools and in the whole process of development.

The backendgen closely cooperates with the semantic
extractor. The semantic extractor as the title suggests, extracts
the semantics of the instructions specified in the ISAC file and
after that the backendgen creates backend of the compiler that
recognizes given instructions. Both these phases of the
compiler generation will be discussed later on.

The primary role of the C library is to enlarge the range of
constructions that can be used during the process of testing.
Testing of basic constructions such as if-statement, loops or
function calls is important. On the other hand it is highly
desirable to have a possibility of printing outputs or exiting
program with different exit values and this can not be done
without a C library support. The exit values are the basic
notification of program evaluation and debugging dumps are
also one of the core methods of debugging. Note that all the
tests are designed for the given embedded system, and the tests
are run on the simulator. The tests are aimed mainly on
robustness of the system.

Secondary role of the library in the whole process of
development is providing additional functions for writing
programs. One of the most used functions is a group of
functions used for allocating memory, string comparison and
parsing, input/output methods etc.

As it is possible to generate several types of simulators in
the Lissom project, it will be necessary to add the library
support into all types of simulators. It should not include any
substantial changes to the process of generation.

IV. CONCEPT OF THE RETARGETABLE TESTING SYSTEM

Forget about the technical details for a while and let us
have a closer look at the concept of the testing system. We
should define the goals we would like to achieve with our
testing system. The Lissom project should have a robust
system of testing that is built modularly. As the system should
support hardware as well as software testing it should be
composed of two main modules.

The very first question that should be answered is what
parts of the project we need to test. The main aim and focus of
this article is on the testing of the compiler backend. But there

16

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are also other parts of the project that should be tested. The
hardware realization of the chip, that was mentioned above is
one of them. Also important is testing of tools that are not
directly connected to the compilation toolchain, for example
disassembler. This leads us to dividing the software module
into two separate modules.

The testing system should be multiplatform and highly
modular and also highly configurable. The addition of the new
platform that should undergo the tests should be trivial. The
microprocessors that we are going to test can vary in many
ways. We need to support all these features of the
microprocessors.

The task, for which the embedded system is going to be
developed varies widely. On the other hand the tools that will
be used for the development will stay more or less the same in
all circumstances. This leads us also to the idea of the core
system and many modules that should be optionally connected
into the process of testing via interfaces.

As it was mentioned in the section 2 we can have either
cycle or instruction accurate model. For the full testing we
should have both of them. Full testing here means testing
hardware as well as software part. Unfortunately it is not
always possible. The testing system must reflect this and be
able to adjust the testing to the actual conditions.

As far as the software testing is concerned we should take
into account the different levels of compiler optimalization as
certain errors can be sensitive to this.

It is crucial to work with the most up to date tools so
interface to any version system is a must. There should be also
other interfaces, mainly the output ones. The system should be
able to automatically inform a user about the result of the
testing. There should be the email interface to send the result
of testing to the person that performs it. We can also argue
about interface to a bug tracking system such as Bugzilla or
Trac. Though this interface would allow us to report the bugs
automatically there is a risk of flood of false reports (the
situation that one problem triggers others). Another issue is
connected with the information that should be filled when the
bug is created.

This problem could be solved by addition of a database
between the testing system and the bug reporting tool. In the
database we could keep records about the bugs that are
currently reported and not yet fixed, hence we could avoid the
redundancy of the bugs. Once the bug is fixed we could
invalidate the database entry and if the same problem occurs
again it could be reported again.

The notice about most up to date tools used for the testing
leads to one module. The core module should responsible for
creation of all possible tools but not for testing of any kind. It
should just verify that all the source code is valid and that tools
can be created. Between the phase of creation of the tools and
the testing of the tools is clearly defined interface. These two
parts can be run separately.

Right from the beginning we should take into account that
all our tools can be used under both UNIX and Windows

operation system. This is not a problem as far as the high
programming languages are concerned (such as C or Java) for
the programming of the devices. However the testing, which is
the same in this case as running the testsuite should also be
possible on both operation systems. And as the testsuite is
created in Bash we must provide the basic support of the
UNIX tools also under Windows. The solution here can be
either MinGW or some other support such as Cygwin.

This brings us to the choice implementation language for
the testing system. Unfortunately, the high level programming
is not suitable for this kind of project. The testing involves an
editing of various files, creating (make-ing the tools) control of
return values and so on. Mainly for this reason, we chose the
scripting in Bash as the best possibility. This brought us some
difficulties as we will see later.

Our users will also use a different operation system and
also different distributions of the UNIX systems. So from the
beginning we must consider this. Not only different operation
systems and also different releases must be taken into account
as the there might be different versions of the GCC compilers
for example. The only way, we can sufficiently handle this is
virtualization of the machines where the testing system will
run.

At least some of the components of the testing system
should be usable separately. It would be without all doubts
useful to run just testing without the prior build of the tools.
The tools can be built via the graphical interface for example.
Dually, we can encounter a situation when the build of tools is
sufficient and no testing should be performed. Arguably, the
likelihood of the first case is higher. It is also given by the fact
that there are several ways of building development tools.

Hence the module for the testing itself should stand alone
and should have the clearly defined interface. For the thorough
testing we should have as many tests as possible.
Unfortunately, this goes against the principle of embedded
systems. The microcontrollers often have very reduced
instruction set, so the chips are not capable of executing the
tests. Therefore, we need a system of the test selection that will
ensure that just the clearly defined subset of tests will be
compiled and executed for the given platform.

Hand in hand with the selection of the tests goes their
evaluation. The selection of the tests should be centralized as
much as possible. On the contrary, the evaluation of the tests
can not be centralized thanks to the different testsuites we use
in our project. They have different formats of the output and
also exit codes differ in the meaning.

Together with the results and evaluation goes an issue
connected with the reporting of the errors. Once we encounter
an error and we want to report it we should know who is
responsible for the error (or which tool generated the error).
This could be determined via testing the tools separately. In
case of testing all the tools together, we can rely just on error
messages and on temporary files that could be created. By the
temporary files we mean the files that are output of one tool
and input of the very next tool.

17

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. OVERVIEW OF THE TESTING SYSTEM IN LISSOM

PROJECT

At this point, I would like to give an overview of the
testing system in the Lissom project. It should give the reader
more precise information about the whole system and how the
library fits into the whole. Our testing system is written in the
Bash language. It consists of set of scripts. The testing system
was originally developed for the UNIX systems. Should it also
work under the Windows, it is necessary to support in the form
of the MinGW. This approach brings on problems such as
different paths on various systems or different settings of
environment variables that have to be dealt with.

The testing system or testsuite as it is called in our project
performs four basic tasks:

• testing of the tools for the development,

• testing of the backend of the C compiler,

• hardware testing,

• creation of the releases and packages of the models.

Now let us have a closer look at the parts of the project one
by one.

A. Tools for the development

As far as the testing of the tools for the development is
concerned it consists of several phases, which should be
performed in given order.

As we always need to work with the most up to date tools
the first thing that must be performed is the download of all
necessary source code from repository.

The first phase is a build of all the tools. Even though the
advanced IDE are used during the development very often
happened that the source code can not be compiled.

Once the tools are created, the testing phase begins. We
perform the testing of each tool and also testing of the
toolchain to make sure that the cooperation is guaranteed.

Some of the tools such as assembler or simulator are
platform dependent. So we have to keep in the repository the
source codes for the testing for each platform. For the
architecture independent tools this costs can be saved. The
same problem occurs for the reference output. Certain tools
can also have different levels of optimization and/or
generation of information for profiling. Thanks to this fact the
number of reference results grows rapidly. Currently, we are
working on the new version of the testing system, and one of
the tasks is to lower the number of reference outputs. Another
weakness is that we do need the reference output. It is usually
gained manually.

As mentioned earlier, we have different kinds of
simulators. We perform testing on all kinds of simulators with
all possible levels of generation of profiling information. The
amount of generation of profiling information can be specified
during the simulator generation. This is in contrast with testing

of the compiler backend, where we use just one simulator and
generate minimal amount of profiling information.

Figure 1. The scheme of testing of the development tools

We also perform tests that ensure the integrity of the whole
system and a compatibility of the tools. In other words, we
must ensure that if we add some new features into one of the
tools the rest of them will be able to cope with these changes.

Typically, we bring some testing input written in an
assembly language to the assembler and go through all the
phases. In the end we should gain the executable file and be
able to run it in the simulators with the correct return value.
We also try to disassemble the executable. The code we
receive should have the same functionality as the source one.

It may seem that both mentioned approaches are the same.
However, the crucial difference is that while in the first case
the tested component can go through the testing process
without errors, there can be some issues connected with the
file formats and interfaces between the tools. The first way of
testing is on the other hand used for experiments with new
features of particular components that are not supported by the
whole toolchain yet. Figure one shows the process of testing of
development tools. We have a simple program in C usually.
This program goes through the whole toolchain. It is
assembled, linked, simulated and in the end disassembled.
After each stage we compare the result and referential value.

The hardware testing is also performed in this module.
However we automatically perform just the tests of the
syntactic correctness. No workbenches are executed.

B. C compiler backend

As far as testing of the compiler is concerned we first need
to create the compiler and compiler driver. After that we can
start testing. Here we will describe the process of the compiler
generation and creation of compiler driver. The testing process
itself will be thoroughly described later.

Assembly Build of tools

Linking
Referential

values

Disassembly

Simulation

18

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The LLVM project [10] is used by our research group as a
base we build on. LLVM stands for low level virtual machine.
It is a project focused on creation of modular compiler that
provides aggressive optimalization. In fact, the frontend and
the middlend part of the compiler are used without massive
changes. The part that is crucial from our point of view is the
compiler backend.

The backend part is responsible for printing the assembler.
This part is generated automatically by backendgen. As we use
certain parts of the LLVM with no or small modifications we
added the Lissom target into the LLVM project. This way we
build programs that are later used for compilation of source
code. Namely we create Clang this way. Clang is a frontend of
the compiler provided by the LLVM project.

Given that we have built the LLVM project, we can start
with the creation of compiler backend. This phase begins with
the semantic extraction. As mentioned before the input of the
whole process is file written in ISAC language. From the file
that represents instruction accurate model of a microcontroller
we extract semantics. After this phase, we get file that captures
meaning of the instructions. More precise information about
the semantic extraction phase can be found in the article [5].

The file with the extracted semantics is one of the inputs of
the backend generator. The backendgen generates source files
mainly in the C language that are later on compiled by
ordinary C compiler (ie. gcc). As it is generated from the
model it is clear that compiler backend is platform dependent.
The semantic extractor and backend generator very closely
cooperate. After the successful generation of the compiler
backend we can create the compiler driver. The other tools that
are required for the translation process are generated from the
model before the backend is created. The brief overview of the
backend generation can be found in here [5].

While the generation of all the tools is a must for the test
compilation, it is not compulsory to build the compiler driver,
but it simplifies the translation process considerably. The gcc
compiler is in fact also compiler driver. We use compiler
driver provided by the LLVM project. It is called llvmc. The
tools that are used, parameters that are accepted by the tools
and also the order of execution are described by the given
syntax. The llvmc description has three parts. The first part is
the description of the tools that are going to be used. In the
second part, one must provide the languages (and its suffixes)
that are the input and the output of each tool. Finally, we
specify the relations between the tools. We can think of it as a
graph. The tools became the nodes and we can think of the
relations as of edges. The input and output languages are
properties of the nodes.

We also use compiler-rt project of the LLVM. The
compiler-rt project provides implementations of the low-level
code generator support routines. This routines and calls are
generated when a target does not have a short sequence of
native instructions to implement a core IR operation. In fact,
when the compiler does not know how to achieve certain
behavior with the given instruction set it has a look at the
compiler-rt library whether there is a call that could be used.

The main part of the library is composed around the
floating point arithmetic. The functions have single float
precision (which is denoted by the sf in the name of the
function) and also double float precision (denoted by the df in
the name of the function). As our processors do not usually
have its own instructions for floating point arithmetic we very
often use this library to provide the floating point emulation.

Figure 2. Scheme of testing of the compiler backend

The second figure shows in what order are the phases of
backend testing executed. The libraries are not integral part of
testing. It is possible to run the testing system without them.

The compiler-rt is for us just another library. We link it
statically during the test compilation together with newlib for
example. One of the issues is that this library is aimed at 32-
bit systems. We would like to use it in simulators that simulate
behavior of 16-bit processors. This has not been tested yet.

C. Packaging and releases

This module is a part of the testing system from the
beginning. It was originally created for the building of the
packages. As we currently support rpm distributions as well as
deb distributions and also the Windows, the packaging system
must reflect that.

The packaging system automatically creates the packages
for the currently supported platforms. The package includes all
the tools that are needed for the development on a given
platform. Currently we support Ubuntu and Debian releases,
Fedora, CentOS, OpenSUSE and Windows 7. For the majority
of the UNIX distributions, we maintain the current release and
previous one. All this systems run as virtual servers. The

LLVM build

Build of tools

Semantic

extraction

Backend

generation

Build of

compiler

driver

Testing

Build and

installation

of Newlib

19

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

created packages are automatically uploaded at our web pages,
where can be downloaded by our co-developers and users.

Later also the packaging of the models and the model
documentation were added. These are also available from the
web pages. We have also started with nightly builds to ensure,
that the committed changes do not affect the build in a
negative way. Yet another advantage of nightly builds is that if
any package is needed with the changes that were made within
the last 24 hours the package was already created overnight
and we do not have to wait for it to build. We can be uploaded
it at the server where it is available to the customers.

D. Stability of the system

For a long time, we had problems with the stability of the
whole testing system. As it is composed purely of the Bash
scripts, we very often faced the problem, that one part of the
testing system broke down according to an error but the build
went on and the error was lost deep in the logs. This was
typical situation during the night build, when the system is
unobserved. In the morning we realized, that the packages
were not created and started to look for the reasons. As our
system creates a lot of logging information it was not always
easy to identify the reason.

To solve this problem we decided to create simple wrapper
and wrap all the commands except the calls of our procedures
and functions. The wrapper performs the command that is
given to it as a parameter and controls various variables.
Clearly one of the most important is the return value of the
command. If the return value is out of range we simply call
system exit and the whole process stops with the clearly
specified error message.

Even more important is the fact that we know the exact
place where the error occurred. Unfortunately, this is not true
in case we apply parallel build. But the wrapper is applied on
the Bash commands so we at least know the command where
the error occurred hence we can narrow the area and focus on
the command more precisely. After the application of the
wrapper the stability of the whole system improved.

VI. CHOOSING THE LIBRARY

As we are focused mainly on embedded systems and we
design the whole process of compiler development for them
we dedicated quite a lot of time to choosing the correct library.
It was clear right from the beginning that glibc is needlessly
large and therefore not suitable for use in embedded systems.
We need library that satisfies following criteria:

• minimalism,

• support for porting on different architectures,

• well-documented,

• new release at least once a year,

• compatibility with glibc,

• modularity.

All these conditions were satisfied by few libraries.
Amongst those we chose Newlib [9]. This library is largely
minimalistic. It does not contain certain modules, because,
according to the authors, it would be against the minimalism.
In certain areas it sacrifices better performance in favor of
minimalism. For example functions for I/O could be optimized
for different platforms, but there is just one version for all
platforms written in portable C that is optimized for space.

As far as the new releases are concerned, it can be said that
the library is alive. New version is released at least once a
year. This is very important because we need to keep pace with
the up to date versions of glibc. There are other minimalistic
libraries compatible with glibc, but quite a lot of them are not
maintained sufficiently.

Another reason for choosing the newlib is the
documentation that is provided with the library. Whole process
of porting the library to different platform is well-documented
and thanks to the wide use of the library it is not difficult to
find help.

The most important reason for choosing the newlib is the
fact, that it has already been ported to several platforms. One
document is dedicated to the process of porting and even
though we do not port the library to new architecture it can
provide us with very useful information. During the process of
porting we will perform steps that are similar to porting the
library to any new architecture.

Unfortunately this library is dependent on kernel header
files. But during the porting we will get rid of these
dependencies. We will need to use this library under UNIX
systems as well as under Windows.

VII. THEORY OF PORTING

The main reason for porting the library into simulator is the
fact that we need to add the support for C functions into the
simulator itself. To be precise, we want to use the libc
functions such as printf, malloc, free etc. in the programs that
will be used for testing of the compiler. And because we do
not possess the development kits for all the platforms we use
simulators instead.

If one does not grant libc library support in the simulated
environment, the number of constructions we can use and test
is very limited.

Consider the following simple example written in C:

int main(int argc, char **argv)

{

 if(strcmp(“alpha”,”beta”)==0)

{ return 1;}

 else

{ return 0;}

}

20

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Even this simple program can not be executed, because it
uses function strcmp that is part of the C library. This program
can not be compiled unless the inclusion of string.h and
possibly some other header files is included.

On the contrary the main aim of testing is to cover as wide
area as possible and also try as many different combinations of
functions as we can. However, this goes against the idea of
embedded solutions. And because we focus especially on
embedded systems, we do not even try to cover all the
functions provided by glibc or in our case newlib. In fact we
will use and hence test only functions that can run under the
simulated environment and are useful for the programs that
will be executed on the given platform. Moreover embedded
systems are not designed for use of vast number of
constructions that programming languages offer. Typically
there is just one task, usually quite complicated, that is
launched repeatedly. As we will see the functions that we will
use form just small part of newlib. The functions that are not
important to us can be easily removed via configuration
interface or it is possible to remove them manually. Following
categories are examples of unimportant functions:

• threads, we assume that in simple programs for
embedded systems one will not use threads,

• locales, all the locales were removed from the library,

• math functions for computing sin, cos etc.

• inet module, even though networking plays important
part in modern embedded systems whole module was
removed,

• files and operations with files, our application do not
need interface for working with files.

 Now we come to the important parts of the library. Simply
spoken all that really has to remain from the library are the
sysdeps, this is the core of the whole system (how to allocate
more memory etc.), then important modules such as stdio (for
outputs, inputs) and other modules we wish to preserve. In our
case we wished to preserve following parts of the newlib
library:

• stdio, this was the main reason for porting the library,
to get in human readable form output from the simulator,

• module for working with strings and memory, in our
applications we would like to use functions such as memcpy,
strcpy, strcat etc.,

• memory functions, for example malloc, free, realloc,

• abort, exit,

• support for wchar, but without support of different
encodings.

Some parts of the library could not be removed because of
the dependencies. According to our estimations nearly 40
percent of the library was disabled or removed measured by
the size of the library.

There are several ways of building the library and also
different methods of using it. There is a possibility of building
a position independent code. Even though this is an interesting
solution we decided against it. Instead of PIC (position
independent code) we are going to compile the library into
single object and then link it to the program statically. The
position of library in the whole process of testing is shown in
the figure 3. The library is linked to the program and after that
the program is loaded into the simulator.

Figure 3. Scheme of calling printf function

Now return to the functions that remain in the library. They
can be divided into two groups. First group consists of
functions that are completely serviced within the simulated
environment. For example function strcmp falls into this
category. This function and its declaration remains unchanged
within the simulator if it is written in portable C. These
functions are not tied with kernel header files so there is no
need to change them.

The second group of functions consists of functions that are
translated to the call of system function. Function printf can
be used as an example of this group of functions. The call of
printf function can be divided into three phrases that are
illustrated at the following picture.

In the beginning the call of printf function is translated on
the call of system function, with the highest probability it is
going to be the call of function Write. Write, being the POSIX
function, is offered by the operation system. But as we want to
use the simulator on UNIX platform as well as on Windows
systems we have to remove these dependencies. To do so we
will use the special instruction principle.

A. Use of ported library of UNIX and Windows systems

Before we get to the principle of special instruction method
we should explain why we need to use this method. The main
reason why we should remove the dependencies on the kernel
header files is the fact, that we must be able to use the library

Program Newlib

Simulator

Operation System

Hardware

21

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

under UNIX systems and also under Windows like operation
systems.

As long as we use the library under UNIX systems
everything should be all right. Though even on UNIX systems
there might be differences amongst the different versions of
the header files. But once we use the Windows based system
we can not use header file functions any more. It would almost
certainly result in a crash of the system.

In our project we currently support several UNIX
distributions as well as Windows. Use of other operating
systems is not considered.

B. Special instruction principle

The special instruction principle means, that we will use
instruction with the opcode that is not used within the
instruction set for the special purpose. So far all architectures
that were modeled within the Lissom project had several free
opcodes. It is typical that the instruction sets do not use all
operation codes that are provided. But in case of no free
opcode this method can not be used. The special instruction
principle will be used for ousting the dependencies on kernel
header files.

Functions provided by operation system are called by the
syscall mechanism. The system calls can be quite easily
detected. Each library should have defined the syscall
mechanism in special source file. This syscall mechanism
differs, as they usually are platform dependent. So i386
architecture will have different syscall mechanism than arm.

Syscalls together with other code that is platform
dependent are kept in a specific folder. When the library is
compiled, the platform dependent code is kept in a special
archive and is separated from the platform independent code.
Figure 4 shows this situation. We must link two different
archives to the program we wish to execute. The C library and
the archive containing syscalls and other platform dependent
code such as runtime etc.

We wish to preserve the mechanism. The syscalls will
remain in the library, but with different meaning. The file
containing syscall will be changed in the following way: in the
beginning the parameters of the syscall will be placed at the
given addresses in the memory and we will also define where
the syscall return value will be placed. Afterwards the call of
the chosen instruction will be performed. It is also possible to
put the parameters into registers, but some platforms have
limited number of registers, hence this method could cause
problems.

Figure 4. Scheme of calling the simulator via newlib layer

The syscall mechanism is in fact a wrapper of the system
call. The call will be passed to the simulator that will do the
call and return the result.

C. Simulators

As was mentioned before, all the simulators are generated
automatically. In the beginning all the source files are
generated by specialized tools. When the generation phase is
finished the simulator is build by a Makefile. It will be
necessary to add into this process following information:

• information about which instruction (opcode) calls
the system function,

• the simulator will have to know the convention for
storing parameters,

• the simulator will have to recognize which system
function is going to be called,

• the simulator will have to perform the call of the
correct system function.

 First three points will be solved within the model of an
instruction set. The instruction with the opcode that is not used
will be declared. The instruction behavior will be defined in
the following way: according to the parameters it will call the
given system function. The simulator will have to recognize
the system it runs under and call the correct function. For
example on UNIX system it will be function write and in
Windows WriteFile. This should be solved by the libc library
of the given platform. The following figure demonstrates the
call of special instruction.

Program Newlib

syscalls

Simulator

22

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Calling sequence of specialized instruction

When the special instruction is called, we need to identify,
which system function we need to execute. This information
must be passed out of the simulator.

The parameters that were placed at the given position at the
simulated memory can remain unchanged. They will be later
passed to the specific system call.

One important issue is connected with the simulated
memory. As we would like to correctly simulate the operations
with memory such as malloc, realloc etc. we need to tell the
simulator how many memory it can simulate. This will be
done by the special file that will be passed to the linker. This
file will contain symbols that will declare how much memory
can be used.

We also considered completely different attitude to this
problem. Instead of monitoring calls of system function we
could monitor memory accesses. But it would slow down
whole process of simulation.

VIII. PROCESS OF PORTING

Before the whole process of porting begins we need to
download the newlib. There are two possibilities. It is possible
to download only the library or there is a whole toolchain for
development of embedded system for given architecture, so
called buildroot.

The main advantage of downloading the whole buildroot is
that once it is built you get whole set of development tools
including various compilers, linkers, debugers, strip programs
etc. You also get the build of newlib. These tools are quite
useful in the beginning when you remove unwanted modules
from the library, because they can be used for rebuilding the
library.

One of the problems we faced is that we need to have the
compiler for the architecture we are developing for. In other
words if we want to create a library for testing C compiler on a
given platform we need a compiler for the same platform that
is already created. The compiler will be used for building the
newlib. Moreover the compiler must have exactly the same

instruction set. In the future we would like to use the generated
compiler for building the library. This requires high quality of
backendgen and generated backend.

Because we are going to use the library in the simulator
and the simulator can handle only instructions of the specified
instruction set, then the library must be translated to the
instruction set that is recognized by the simulator. For building
the simulator we can use common gcc for Windows or UNIX,
because it runs under common system.

This may be the first big problem in the whole process of
porting. It is not hard to find a compiler for given platform.
Nowadays there are specialized compilers for nearly all
architectures used in embedded systems. The buildroot for
newlib contains more than dozen of different architectures
such as MIPS, arm, mipsel, sparc etc. There are even different
versions of the mircoarchitectures in case of MIPS for
example.

Problem is that thanks to the aim of the whole Lissom
project, there we usually use specialized instruction sets or we
use some generic instruction set and add certain specialized
instructions. After this customization it is usually impossible to
use generic compiler for building the library.

We could use for building the library the compiler that we
want to test but currently it is not stable enough for building
large programs. The best solution of this problem is usually
building a specialized toolchain including GNU binutils and
GNU compiler collection. As was mentioned once the
generated backend is stable enough it will be used for building
the library.

Several issues we faced during the process were closely
related to the buildsystem of the library. The library contains a
system of makefiles. This system is hierarchical and usually
the makefiles from the upper levels are included. So if for
example we would like to compile any test examples that are
included in the newlib we switch to the given directory and
call make. This will call all the makefiles from the above
directory. This is very effective, because only the makefile in
the root directory contains variables defining which compiler,
assembler, linker will be used. On the other hand it is very
difficult to modify this system in case we want to build the
different parts of the library using different tools.

Currently we are using for the development the set of our
tools containing archiver, linker, asembler and compiler. The
currently used compiler is called mips-elf-gcc. It is not
generated automatically but was created especially for this
purpose as our generated compiler is not yet stable enough.
Linker and archiver are not generated automatically but were
developed in Lissom project.

Our tools are not compatible with the tools that were
originally used for building the library. Our tools do not
support so wide variety of parameters so some of them had to
be erased from the configuration files and some were just
changed to suit our needs.

Call of Special Instruction

Identify the System Function

Call the System Function

Windows Unix

23

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Currently we use set of scripts, which preprocess the flags.
In the scripts we erase the flags we do not need and do
necessary substitutions.

The buildsystem of the library starts by parsing the
configuration file and accord to the content of the file are set
different macros and variables. When doing manual changes to
the buildsystem we have basically two possibilities:

• change the configuration file or,

• do the changes later in the Makefiles.

The first possibility is cleaner but the Makefiles often
check if the option is present in the configuration file and ends
with error in case the option is missing. Hence it is more
convenient to do the necessary changes in the Makefiles.
Thanks to the hierarchical structure it is in most cases
sufficient to do the change in just one place.

We also use different formats of the output files. Output of
our assembler is an object file .obj that is not compatible with
.o that is the usual output of gcc compiler. Currently we use
mips-elf-gcc just for compilation from C to assembler. After
this phase we use automatically generated assembler to
compile the files from assembly language to object files that
are later used by the archiver.

In the theoretical part we mentioned the need to link
special file containing information how much memory can be
used. The file will contain symbols defining the beginning and
the end of memory space that can be used. It will have the
following syntax:

#file defining memory boundaries

define start 256

define stop 768

Given that the numbers are in kB the simulator can
simulate up to 512 kB of memory. Character # denotes
comment.

As far as the convention for storing parameters is
concerned, we have chosen following approach: first
parameter says, which system function is going to be called. In
the newlib it is a list of system functions for UNIX systems.
The rest of the parameters (2-7) are passed to the function call.
The parameters remain unchanged. They are passed to the
system function in the exactly same state, in which were saved
in the memory before calling the special instruction. The
special instruction itself has no parameters. When the
instruction is called, all the parameters have to be stored in the
memory at given addresses.

A Automation of the porting process

As for the first time all the steps were performed manually.
In the future we would like to automatize this process as much
as possible. Without doubts we could remove the needless
parts of the library automatically. The needless parts would be
identified by the configuration file and also the special
instruction principle could be highly automatic. If we have
spare instruction we will choose it and compose it into the

simulator. Unfortunately there are steps that need to be
performed manually. For example we need to provide the
runtime for the simulators and the corresponding sections
needs to be specified in the ISAC file.

Runtime is also one of the files that are written by hand in
assembler. There are also other files written in assembly
language and hence are platform dependent. In case of MIPS
platform there were 8 files that contained assembly language.
For example syscalls or memcpy functions are ale
implemented in assembler. In order to minimize number of
files written by hand we decided to provide as much files
written in portable C as possible. We managed to replace all
but two files by C implementations. All that have to be
provided is the runtime and syscall mechanism.

IX. PROCESS OF TESTING

Now when we have thoroughly gone through the library
porting, we can have a look at the test selection issues.

A. Test selection phase

As we have a large amount of tests from the different
sources (gcc-testsuite, llvm-testsuite, etc.), we need a universal
approach that will define, which tests are suitable for the
compilation and execution on a given platform.

We have created a system of files that restricts the number
of the tests that can be compiled on a given platform according
to the libraries that are available. The libraries are just one of
the test selection criteria; also other characteristics are taken
into account for example the size of the registers or the size of
stack.

The naming convention for these files is very simple. The
file bears same name as the test does but have suffix .x instead
of .c. The system is hierarchical. We can have the hierarchy
because we support a nesting of the directories and we keep .x
files not just for the tests, but also for the directories. In case of
the directory the .x file has the same name as the directory with
the .x suffix.

These files have minimal functionality. We try to keep
their size as small as possible. Their typical functionality is
that according to some state of the flags the test is excluded
from testing, because implicitly all the directories and all the
tests are selected for the testing. So, if we want to exclude the
tests or whole directories from testing we have to indicate this.

As the size of the files is kept minimal the functionality and
flag settings must be done elsewhere. This is performed
centrally in the main testing module. The functions that check
the current state of the flags and control what libraries are
accessible for linking to the given platform are declared here.
The centralization in this case has purely practical base. The
typical usage of the .x files is that we disable testing of the
whole directories according to the libraries that are accessible.
The .x files can also bear other functionality. We can for
example set different variables. We can specify flags that
should be added to the compilation or add some files to the
linker as in the following example.

24

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if ["$C_LIB" == "0"]; then
 FILE_DEPS+=crt0.o
fi

On the level of files we most often use the .x files for the
filtering the test that depend on the compiler-rt library for a
given platform. As usually only few tests of any directory
depend on the compiler-rt and the dependence does not have
to be same for all platforms, the best solution is to condition
the test execution by the platform and the compiler-rt
presence. This is demonstrated in the following example.

is_arch "mips_basic" $1
 if ["$?" == "0"]; then
 if ["$RUNTIME_LIB" == "0"]; then
 RUN_TEST=0
 fi
 fi

The presence of certain libraries can be also criteria for
testing because some tests have library dependencies. The
biggest advantage of this approach and also the main reason
for introduction of this system is its universality. We employ
the tests from the LLVM testsuite, the gcc testsuite, the
Mibench [11] set of tests and we also have tests that were
created within our project. The system of the .x files can be
used for all these sources as long as we use just the tests
without the testing infrastructure that is provided in several
cases.

The only set of tests that we use together with the
infrastructure that is provided together with the tests is the
Perennial testsuite [12].

B. Test compilation and execution

The compilation of the tests is performed in the central
module. As we have the system of the .x files we enter only
those directories that are suitable for the testing on the given
platform. So before entering the directory with tests we check
the .x file for a given source and consult the restrictions that
are defined by the .x file and set all the variables denoted by
the file.

If the directory is feasible for testing we cycle through the
tests in an order denoted by the test list. The .x file is always
checked first, and if nothing blocks the test it is compiled. The
presence of the .x files is not compulsory. As mentioned earlier
the default setting is to go through all directories and execute
all tests. But if the file is present it will be checked.

If there are any problems during the test compilation they
are logged. We keep the list of the tests that were not compiled
successfully together with the output of the compiler. The logs
are kept for every platform that is tested to avoid an
overwriting. It is also possible to create unique log not just for
each platform but for every run of the testing system. These
logs could be in the future stored in the database to keep
precise testing history. The tests are compiled and executed
several times with different levels of compiler optimalization.
Currently we support levels from 0 up to 4.

C. Logging information and test evaluation

The test evaluation is kept decentralized. As we deploy
tests from different sources we need to keep the test evaluation
together with the tests. For some tests we evaluate on the basis
of exit code, but there are the tests that produce for example
text output and we have to compare the output with the
referential values (this is where the library comes to use).

The decentralization in this case means that we keep for
every directory a shell script that takes care of test execution
and evaluation.

As in case of test compilation we keep detailed logging
information. We keep the output of the simulator and after the
test evaluation we list it into the list of passed tests or failed
tests according to the result of evaluation. The logs are created
for every tested platform and can bear time reference.

X. RESULTS OF PERENNIAL TESTSUITE

For having a comparison with commercial compilers we
tested our automatically generated compiler with commercial
Perennial testsuite. The results described here were gained
from the generated MIPS compiler.

 The testing was performed on our complete toolchain.
The tests were compiled by our generated compiler and
afterwards executed the tests on our simulator that was also
automatically generated.

We have only part of the Perennial testsuite. We used only
the tests that examine the core of the compiler. We excluded
some of the tests that can not be compiled due to the header
files dependencies we do not support. The tests in the testsuite
are divided into groups according to the chapter of the
standard that is tested. We use tests for the clauses 5 and 6. We
have mainly tests for the standard C90 and several tests for
C99 standard. Currently wa have no tests for C11 standard.

The final number of tests that we execute is 796. From
796 tests are 794 tests compiled and executed correctly. Only
two tests fail either during the compilation or return incorrect
value. The results are summarized in the following table.

Table 1: Results of the Perennial testsuite

Compiler All
tests

Pass
tests

Fail
tests

Not
compiled

Not
executed

Lissom 796 794 2 2 0
Gcc 796 796 0 0 0

As the table shows, just 2 tests do not succeed. After

closer look we realised that this two tests use trigraphs, that are
not supported in the llvm frontend. This tests can not be
compiled by the current version of the llvm. The tests were
compiler with O2 optimalization.

The table also provides comparison with gcc compiler for
i386 platform. The gcc compiler in version 4.6.3. compiles all
the tests and the programs are executed correctly. We were
also interested in how much time does the program spend by
syscall execution. We compiled for our platform a program
that accomplished MPEG decoding. The input and output

25

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

streams of the program were redirected into the files. The
profiling of the MPEG decoder showed, that execution of
syscalls took less than 2% of time.

XI. CONCLUSION

In this paper, we gave the overview of the testing system in
our project and sketched the idea of adding the support for the
C library into the simulator. The motivation is quite clear: to
be able to use the library functions in the tests that are run on
the simulator of the given microcontroller. The special
instruction principle was proposed, which enables us to
forward the call of system function. It also allows us to
identify, which system function is called. This principle is
quite universal and can be used for the majority of platforms.
After implementation of this method, we are able to run all the
functions that are commonly used such as I/O functions,
memory management and string functions, etc. Moreover, we
can adjust the library according to our needs. Thanks to the
modularity we can enable or disable any module. This may
turn to be an advantage, because the complete library occupies
tens of megabytes and the compilation and linking such a
library can be time consuming.

We also tested our generated compilers with the
commercial Perennial testsuite. We had only chosen a subset
of tests that should validate the core of the compiler. The
compiler was tested against the C90 and C99 standard with
good results when we take into account the fact, that the
compiler is generated automatically. The fact that we can
easily compose new testing systems into our own together with
the results we gained is encouraging.

 ACKWNOWLEDGEMENTS

This research was supported by doctoral grant GA CR
102/09/H042, by the grants of MPO Czech Republic FR-
TI1/038, by the grant FIT-S-11-2 and by the research plans
MSMT no. MSM0021630528. This work was also supported
by the IT4Innovations Centre of Excellence Project
CZ.1.05/1.1.00/02.0070 and by the Artemis EU Project
SMECY.

REFERENCES
[1] L Dolihal and T. Hruska,, “Porting of C library, Testing of
generated compiler”, In proceedings of ICCGI 2011, Jun. 2011, pp.125-130,

[2] Lissom Project. http://www.fit.vutbr.cz/research/groups/lissom
[online, accessed: 18.6.2012]

[3] Z. Přikryl, K. Masařík, T. Hruška, and A. Husár, “Generated
cycle-accurate profiler for C language”, 13th EUROMICRO Conference on
Digital System Design, DSD'2010, Lille, France, pp. 263—268.

[4] K. Masarik, T. Hruska, and D. Kolar, “Language and
development environment for microprocessor design of embedded systems”,
In proceedings of IFAC workshop of programmable devices and embedded
systems PDeS 2006, pp. 120-125, Faculty of electrical engineering and
communication BUT, 2006

[5] A. Husar, M. Trmac, J. Hranac, T. Hruska, and K. Masarik,
“Automatic C Compiler Generation from Architecture Description Language
ISAC”, Sixth Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science (MEMICS'10) -- Selected Papers, pp. 47-53.

[6] S. Onder and R. Gupta,, "Automatic generation of
microarchitecture simulators," Computer Languages, 1998. Proceedings.
1998 International Conference on , vol., no., pp.80-89, 14-16 May 1998

[7] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve,, "Rsim:
simulating shared-memory multiprocessors with ILP processors ," Computer ,
vol.35, no.2, pp.40-49, Feb 2002,

[8] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard,
D. Penry, O. Temam, and N. Vachharajani, "UNISIM: An Open Simulation
Environment and Library for Complex Architecture Design and Collaborative
Development," Computer Architecture Letters , vol.6, no.2, pp.45-48, Feb.
2007

[9] newlib. http://sourceware.org/newlib/ [online, accessed:
18.6.2012]

[10] C. Lattner and S.V. Adve, ” LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”, Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO'04),
Palo Alto, California, Mar. 2004

[11] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.
Mudge, and R.B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite”, Workload Characterization, Dec. 2001, pp.3-
14, doi:10.1109/WWC.2001.990739

[12] Perennial testsuite, http://www.peren.com/ [online, accessed:
18.6.2012]

[13] A.S. Kossatchev and M.A. Posypkin, “Survey of compiler testing
methods”, Programming and Computer Software, Jan. 2005, pp.10-19, doi:
10.1007/s11086-005-0008-6

26

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Compiler-based Differentiation of Higher-Order Numerical Simulation Codes using
Interprocedural Checkpointing

Michel Schanen, Michael Förster, Boris Gendler, Uwe Naumann
LuFG Informatik 12: Software and Tools for Computational Engineering

RWTH Aachen University
Aachen, Germany

{schanen,foerster,bgendler,naumann}@stce.rwth-aachen.de

Abstract—Based on algorithmic differentiation, we present
a derivative code compiler capable of transforming implemen-
tations of multivariate vector functions into a program for
computing derivatives. Its unique reapplication feature allows
the generation of code of an arbitrary order of differentiation,
where resulting values are still accurate up to machine precision
compared to the common numerical approximation by finite
differences. The high memory load resulting from the adjoint
model of Algorithmic Differentiation is circumvented using
semi-automatic interprocedural checkpointing enabled bythe
joint reversal scheme implemented in our compiler. The entire
process is illustrated by a one dimensional implementation
of Burgers’ equation in a generic optimization setting using
for example Newton’s method. In this implementation, finite
differences are replaced by the computation of adjoints, thus
saving an order of magnitude in terms of computational
complexity.

Keywords-Algorithmic Differentiation; Source Transforma-
tion; Optimization; Numerical Simulation; Checkpointing

I. I NTRODUCTION

A typical problem in fluid dynamics is given by the
continuous Burgers equation [2]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1)

describing shock waves moving through gases.u denotes
the velocity field of the fluid with viscosityν. Similar
governing equations represent the core of many numerical
simulations. Such simulations are often subject to various
optimization techniques involving derivatives. Thus, Burg-
ers’ equation will serve as a case study for a compiler-based
approach to the accumulation of the required derivatives.

Suppose we solve the differential equation in (1) by
discretization using finite differences on an equidistant one-
dimensional grid withnx points. For given initial conditions
ui,0 with 0 < i ≤ nx we simulate a physical process by inte-
grating overnt time steps according to the leapfrog/DuFort-
Frankel scheme presented in [3]. At time stepj we compute

ui,j+1 for time stepj + 1 according to

ui,j+1 = ui,j−1 −
∆t

∆x
(ui,j (ui+1,j − ui−1,j))

+
2∆t

∆x2
(ui+1,j − (ui,j+1 + ui,j−1) + ui−1,j) ,

(2)

where ∆t is the time interval and∆x is the distance
between two grid points. In general, if the initial conditions
ui,0 cannot be accurately measured, they are essentially
replaced by approximated values. To improve their accuracy
additional observed valuesuob ∈ R

nx×nt are taken into
account. The discrepancy between observed valuesuob

i,j and
simulated valuesui,j are evaluated by the cost function

y =
1

2

nx∑

i=1

nt∑

j=1

(ui,j − uob
i,j)

2 , (3)

which allows us to obtain improved estimations for the initial
conditions by applying, for example, Newton’s method [4] to
solve the data assimilation problem with Burgers’ equation
as constraints [5]. The single Newton steps are repeated until
the residual costy undercuts a certain threshold.

In Section II, we introduce Algorithmic Differentiation
(AD) as implemented by our derivative code compilerdcc
covering both the tangent-linear as well as the adjoint model.
Section III provides a user’s perspective on the application
of dcc. Higher-order differentiation models are discussed
in Section IV. Finally, the results of our case study are
discussed in Section VII.

II. A LGORITHMIC DIFFERENTIATION

The minimization of the residual is implemented by
resorting to Newton’s second-order method for mini-
mization. In general, Newton’s method may be applied
to arbitrary differentiable multivariate vector functions
y = F (x) : Rn → R

m. This algorithm heavily depends on
the accurate and fast computation of Jacobian and Hessian
values, since one iterative stepxi → xi+1 is computed by

xi+1 = xi −∇2F (xi)
−1 · ∇F (xi) . (4)

27

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The easiest method of approximating partial derivatives
∇xi

F uses the finite difference quotient

∇xi
F (x) ≈

F (x+ h · ei)− F (x)

h
, (5)

for the Cartesian basis vectorei ∈ R
n and with x ∈ R

n,
h → 0. In order to accumulate the Jacobian of a multivari-
ate function the method is rerunn times to perturb each
component of the input vectorx. The main advantage of
this method resides in its straightforward implementation;
no additional changes to the code of the functionF are nec-
essary. However, the derivatives accumulated through finite
differences are only approximations. This represents a major
drawback for codes that simulate highly nonlinear systems,
resulting in truncation and cancellation errors or simply
providing wrong results. In particular by applying the Taylor
expansion to the second-order centered difference quotient
we derive a machine precision induced approximation error
of ǫ

h2 , with ǫ being the rounding error.
AD [6] solves this problem analytically, changing the un-

derlying code to compute derivatives by applying symbolic
differentiation rules to individual assignments and usingthe
chain rule to propagate derivatives along the flow of control.
The achieved accuracy only depends on the machine’s pre-
cisionǫ. There exist two distinct derivative models, differing
in the order of application of the associative chain rule. Let
∇F be the Jacobian ofF . The tangent-linearcode

F
(↓
x,y

↓

) dcc
−→ Ḟ

(↓
x,

↓

ẋ,y
↓
, ẏ
↓

)
,

where

ẏ = ∇F (x) · ẋ

and y = F (x) ,

(6)

of F computes the directional derivativėy of the outputsy
with respect to the inputsx for a given directionẋ ∈ R

n,
while arrows designate inputs and outputs. By iteratively set-
ting ẋ equal to each of then Cartesian basis vectors inRn,
we accumulate the entire Jacobian. This leads to a runtime
complexity identical to finite differences ofO(n) · cost(F),
where cost(F) denotes the computational cost of a single
function evaluation.

By exploiting the associativity of the chain rule, the
adjoint code

F
(↓
x,y

↓

) dcc
−→ F̄

(↓
x,

↓
x̄
↓
,y
↓
,
↓
ȳ
)

,

where

y = F (x)

and x̄ = x̄+∇F (x)
⊺
· ȳ ,

(7)

of F computesadjoints x̄ ∈ R
n of the inputsx for given

adjoints ȳ ∈ R
m of the outputs. To accumulate the entire

Jacobian we have to iteratively setȳ equal to each Cartesian
basis vector ofRm yielding a runtime complexity ofO(m) ·

cost(F). Note that for scalar functions withm = 1 the
accumulation of the Jacobian amounts to the computation
of one gradient yielding a runtime cost ofO(1) · cost(F)
for the adjoint model compared toO(n) · cost(F) for the
tangent-linear model. In this particular case, we are able to
compute gradients at a small constant multiple of the cost
of a single function evaluation. The reduction of this factor
down toward the theoretical minimum of three [6] is one
of the major challenges addressed by ongoing research and
development in the field of AD [7], [8].

The core idea of this paper is to develop a source
transformation tool or compiler that transforms a given C
code into its differentiated version. In general, this increases
the differentiation order fromd to d + 1. I.e., by taking
as an input a handwritten first-order code we end up with a
second-order code. Taking this insight a step further we want
that our tool accepts its output as an input. Thus, starting
from a given code, we are able to iteratively generate an
arbitrary order of differentiation code. This unique feature
is being presented in Section IV.

Furthermore our derivative code compiler is able to use
checkpointing techniques for the adjoint mode, by using
joint reversal as opposed to split reversal as a reveral
technique. This will be explained in Section V.

III. DCC - A DERIVATIVE CODE COMPILER

Numerical optimization problems are commonly
implemented as multivariate scalar functions
y = F (x) : Rn → R, describing some residualy of a
numerical model. We assume that the goal is to minimize a
norm of this residualy by adapting the inputsx. Therefore,
for better readability and without the loss of generality, in
this paper, we will only cover multivariate scalar functions.

The main link betweendcc and the mathematical models
of AD is the ability to decompose each function implemen-
tation into single assignment code (SAC) as follows:

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j .
(8)

The entire program is regarded as a sequence ofp+ 1 ele-
mental statements. In each statement an elemental function
ϕj is applied to a set of variables(vi)i≺j yielding the unique
intermediatevariablevj with i ≺ j denoting a dependence
of vj on vi. The independentinputs are given byvi = xi

for i = 0, . . . , n− 1 while thedependentoutput ofF is the
final valuey = vn+p. Whendcc applies the tangent-linear
model to each of thep+ 1 assignments, we obtain

for j = n, . . . , n+ p

v̇j =
∑

i≺j

∂ϕj

∂vi
· v̇i

vj = ϕj(vi)i≺j .

(9)

Considering thej-th assignment in (9), the localk-th entry
of the gradient(∂ϕj

∂vk
)k≺j is provided in v̇j by setting v̇k

28

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to one and all(v̇i)k 6=i≺j to zero. The gradient component
(∂y
∂xk

)k∈{0,...,n−1} is obtained by evaluating (9) and setting
ẋk to one and all other(ẋi)k 6=i∈{0,...,n−1} to zero. To get
the whole gradient we have to evaluate (9)n times letting
ẋ range over the Cartesian basis vectors inR

n. The adjoint
model is acquired by transforming (8) into:

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j

for i ≺ j andj = n+ p, . . . , n

v̄i = v̄i +
∂ϕj

∂vi
(vk)k≺j · v̄j .

(10)

The first part consists of the original assignmentsj =
n, . . . , n + p and is calledforward section. The reverse
sectionfollows with the computation of the adjoint variables
in the orderj = n+p, . . . , n. Note the reversed order of the
assignments as well as the changed data flow of the left and
right-hand sides compared with the original assignments. To
compute the local gradient(∂ϕj

∂vk
)k≺j we have to initialize

(v̄i)i≺j with zero andv̄j with one. The initialization with
zero is mandatory because(v̄i)i≺j occurs in (10) on both
sides of the adjoint assignment. According to (7), the adjoint
variable v̄j is an input variable. Therefore it is initialized
with the Cartesian basis vector inR.

The important advantage of the adjoint model is that by
evaluating (10) only once we obtain the full gradient∂y

∂x

in x̄i = v̄i for i = 0, . . . , n − 1. To achieve this we have
to initialize (x̄i)i=0,...,n−1 with zero andȳ with one. As
mentioned abovēx must be zero because it occurs not only
on the left-hand side in (7) andy is initialized with the value
of the Cartesian basis vector inR.

In (8), we assumed that the input code is given as a
SAC. This is an oversimplification in terms of real codes.
The adjoint code has to deal with the fact that real code
variables are overwritten frequently. One way to simulate the
predicate of unique intermediate variables is to store certain
left-hand side variables on a stack during the augmented
forward section. Candidates for storing on the stack are
those variables that are being overwritten and are required
for later use during the computation of the local gradients
and associated adjoints. Before evaluating the corresponding
adjoint assignment in the reverse section the values are
restored from the stack.

For illustration purposes we consider Listing 1 show-
ing an implementation of the non-linear reduction
y(x) =

∏n−1

i=0
sin(xi). dcc parses only functions withvoid

as a return type (line 1). All inputs and return values are
passed through the arguments, which in turn only consist
of arrays (called by pointers) and scalar values (called by
reference). Additionally we may pass an arbitrary number of
integer arguments by value or by reference. We assume that
all differentiable functions are implemented using valuesof
type double. Therefore, only variables of typedouble are

1 void t 1 f (i n t n , double∗ x , double∗ t1 x
2 , double& y , double& t1 y)
3 {
4 . . .
5 for (i n t i =0; i<n ; i ++) {
6 y=y∗ s i n (x [i]) ;
7 t1 y=t1 y∗ s i n (x [i]) +y∗cos (x [i]) ∗ t1 x [i] ;
8 }
9 . . .

10 }

Listing 2: Tangent-linear version off as generated bydcc

1 for (i n t i =0; i<n ; i ++) {
2 t1 x [i]=1 ;
3 t 1 f (n , x , t1 x , y , t1 y) ;
4 g rad i en t [i]= t1 y ;
5 t1 x [i]=0 ;
6 }

Listing 3: Driver for t1 f

directly affected by the differentiation process.

1 void f (i n t n , double ∗x , double &y)
2 {
3 i n t i =0;
4 y=0;
5 for (i =0; i<n ; i ++) {
6 y=y∗ s i n (x [i]) ;
7 }
8 }

Listing 1: dcc input code.

Using the command linedcc f.c -t, we instruct the
compiler to use the tangent-linear (-t) mode in order to
generate the functiont1 f (tangent-linear,1st-order version
of f) presented in Listing 2. The original function arguments
x and y are augmented with their associated tangent-linear
variablest1 x andt1 y. Inside a driver program this code has
to be rerunn times letting the input vectort1 x range over
the Cartesian basis vectors inRn to accumulate the entire
gradient. Listing 3 shows how to use the generated code of
Listing 2 in a driver program. Lines 2 and 5 let input variable
t1 x range over the Cartesian basis vectors. By settingt1 x[i]

to 1 the functiont1 f (line 3) computes the partial derivative
of y with respect tox[i].

The command linedcc f.c -a tells dcc to apply
the adjoint mode (-a) to f.c. The result is the function
a1 f (adjoint, 1st-order version off) shown in Listing 4.
As in the tangent-linear case each function argument is
augmented by an associated adjoint component, herea1 x

and a1 y. As mentioned above we need a stack in the
adjoint code for storing data during the forward section.
The augmented forward sectionuses stacks to store values
that are being overwritten and to store the control flow. The
actual implementation of the stack is not under consideration
here; therefore we replaced the calls to the stacks with macro
definitions for better readability. By default,dcc generates

29

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

code that uses static arrays, which ensures high runtime
performance. There are three different stacks used in the
adjoint code. The stack calledCS is for storing the control
flow, FDS takes floating point values andIDS keeps integer
values. The unique identifier of the two basic blocks [9] in
the forward section are stored in lines 6 and 9. For example,
after evaluating the augmented forward section of Listing 4,
the stackCS contains the following sequence

0, 1, . . . , 1
︸ ︷︷ ︸

n times

(11)

In line 10, variabley is stored onto the stack because it
is overwritten in each iteration although needed in line 21.
Hence, we restore the value ofy in line 20. For the same
reason we store and restore the value ofi in line 11 and
19. The reverse section consist of a loop that processes
the control flow stackCS. The basic block identifiers are
restored from the stack and depending on the value, the
corresponding adjoint basic block is executed. For example,
the sequence given in (11) as content in theCS stack leads
to a n-times evaluation of the adjoint basic block one and
afterward one evaluation of the adjoint basic block zero.
The basic block one in line 9 to 11 has the corresponding
adjoint basic block in line 19 to 22. In contrast to (7), in
line 22 the adjointa1 y is not incremented but assigned.
This is due to the fact thaty is on both hand sides of
the original assignment in line 10. This brings an aliasing
effect into play. This effect can be avoided with help of
intermediate variables; making this code difficult to read.
For that reason we show the adjoint assignment without
intermediate variables.dcc generates adjoint assignments
with intermediate variables and incrementation of the left-
hand side as shown in (7). Thedcc-generated code and the
one shown here are semantically equivalent. To accumulate
the gradient using the functiona1 f, we again have to write
a driver, presented in Listing 5. It is sufficient to initialize
the adjoint variablea1 y and call the adjoint functiona1 f

only once to get the whole gradient (line 2), illustrating the
reduced runtime complexity of the adjoint mode.

1 a1 y=1;
2 a1 f (n , x , a1 x , y , a1 y) ;
3 for (i n t j =0; j<n ; j ++)
4 g rad i en t [j]= a1 x [j] ;

Listing 5: Driver for a1 f

IV. H IGHER ORDER DIFFERENTIATION

Numerical optimization algorithms often involve higher-
order derivative models. Thus, the need for Hessians is
imminent. With this in mind,dcc was designed to generate
higher-order derivative codes effortlessly using itsreappli-
cation feature. dcc is able to generatejth-order derivative
code by reading(j−1)th-order derivative code as the input.
In this section we will focus on second-order models.

1 void a1 f (i n t n , double∗ x , double∗ a1 x ,
2 double& y , double& a1 y)
3 {
4 i n t i =0;
5 / / augmented forward sec t i on
6 CS PUSH(0) ;
7 y=0;
8 for (i =0; i<n ; i ++) {
9 CS PUSH(1) ;

10 FDS PUSH(y) ; y=y∗ s i n (x [i]) ;
11 IDS PUSH(i) ;
12 }
13 / / reverse sec t i on
14 while (CS NON EMPTY) {
15 i f (CS TOP==0) {
16 a1 y =0;
17 }
18 i f (CS TOP==1) {
19 IDS POP(i) ;
20 FDS POP(y) ;
21 a1 x [i]+=y∗cos (x [i]) ∗a1 y ;
22 a1 y=s i n (x [i]) ∗a1 y ;
23 }
24 CS POP;
25 }
26 }

Listing 4: Adjoint dcc output

The tangent-linear mode reapplied to the first-order
tangent-linear code (6) withm = 1 for scalar functions
yields the second-order tangent-linear code

Ḟ
(↓
x,

↓

ẋ, y
↓
, ẏ
↓

) dcc
−→ ˜̇

F
(↓
x,

↓

x̃,
↓

ẋ,

↓

˜̇x, y
↓
, ỹ
↓
, ẏ
↓
, ˜̇y
↓

)
,

where
˜̇y =

(
∇2F (x) · ẋ

)⊺
· x̃+∇F (x) · ˜̇x ,

ẏ = ∇F (x) · ẋ ,

ỹ = ∇F (x) · x̃ and

y = F (x) .

(12)

Again, dcc generates exactly the implementation of the
mathematical model. As we see in (12), the term∇F (x) · ˜̇x
must be equal to0 in order to accumulate the entries of
the Hessian∇2F . As a consequence,̃ẋ must be set to0 on
input. The product

(
∇2F (x) · ẋ

)⊺
·x̃ represents a projection

of the Hessian, determined by the vectorsẋ and x̃. In our
case withm = 1 the Hessian∇2F ∈ R

n×n hasn2 entries.
To compute the entry∇Fi,j of the Hessian the vectors

x̃ and ẋ have to be set to thei-th and j-th Cartesian
basis vectors, respectively. In order to accumulate the whole
Hessian this step has to be repeated for each entry, yieldinga
computational complexity ofO

(
n2

)
·cost (F). Taking either

adjoint or tangent-linear first-order input code, we reapply
dcc by invokingdcc -t -d 2 t1_foo.cpp. This tells
dcc to generate second-order (-d 2) tangent-linear (-t)
derivative code while avoiding internal namespace clashes.

Looking at the possible combinations of the two dif-
ferentiation models, there exist another three second-order

30

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

models. We may either apply the adjoint model to the
tangent-linear code or apply the adjoint mode to the adjoint
code. We will focus on the model where tangent-linear mode
is applied to the adjoint code, calledtangent-linear over
adjoint mode.

This time the adjoint code (7) is taken as the input for the
reapplication of the tangent-linear mode, obtaining

F̄
(↓
x,

↓
x̄
↓
, y
↓
,
↓
ȳ
) dcc
−→ ˙̄F

(↓
x,

↓

ẋ,
↓
x̄
↓
, ˙̄x
↓
, y
↓
, ẏ
↓
,
↓
ȳ,

↓

˙̄y
)

,

where

ẏ = ∇F (x) · ẋ ,

y = F (x) ,

˙̄x = ˙̄x+ ẋ
⊺ · ∇2F (x) · ȳ +∇F (x)⊺ · ˙̄y and

x̄ = x̄+∇F (x)
⊺
· ȳ .

(13)

The generated implementation computes the term
ẋ⊺ · ∇2F (x) · ȳ. This time we do not end up with
one single entry, but we are able to harvest one complete
row ∇2Fi of the Hessian in˙̄x. To achieve this, the term
∇F (x)⊺ · ˙̄y and thus ˙̄y must be set to0 on input. The
scalarȳ must be set to1. Finally to compute a row of the
Hessian∇2Fi, ẋ must be set to thei-th Cartesian basis
vector. As such, we have to rerun this modeln times in
order to accumulate the whole Hessian, yielding only a
linear increase in runtime complexity ofO(n) · cost (F).

The desired dcc command is dcc -a -d 2
t1_foo.cpp resulting in the filea2_t1_foo.cpp. The
option-a instructsdcc to generate adjoint code.

V. REVERSAL STRATEGIES - CHECKPOINTING

One inherent disadvantage of the adjoint AD model over
the tangent-linear model is its high memory consumption.
In the reverse section of an adjoint code, each adjoint
computation of a non-linear operation is dependent on a
value computed during the forward run. As we have seen in
Section III this value is stored on a data stack if it happens
to be overwritten. In real world programs this process is not
the exception but the rule. Memory locations are rewritten
and reused as often as possible so that the program is as
memory efficient as possible. For the adjoint AD model this
results in one consumed memory location for nearly every
statement. For example, updating a thousand times a variable
of type double precision (e.g.,x = x + y2) results at least
in an additional memory usage of eight thousand bytes. For
each execution of this statement we have one value pushed
on the stack byFDS PUSH(x).

There are several strategies to address this issue. We will
present checkpointing, the core method of every AD tool
to reduce memory consumption. In particular we will focus
on howdcc deals with checkpointing and how the memory
footprint may be influenced by the user.

Augmented forward

mode

Reverse mode

Store mode

Restore mode

a1 h

a1 g

a1 f

a1 h

a1 g

a1 f

(a) Split Reversal

a1 h

a1 g

a1 f

a1 h

a1 g

a1 f

a1 h

a1 g

a1 g

(b) Joint Reversal

Figure 1: Reversal models

First we look at the reversal strategy ofdcc. In general
the adjoint model consists of a forward section and a reverse
section. What happens in the case of interprocedural code
where a function calls an arbitrary number of functions.
There are two distinct ways of adjoining interprocedural
code, namelysplit reversaland joint reversal.

Split reversal, presented in Figure 1a is the straightforward
way of adjoining code. It strictly sticks to the adjoint model.
The original code is executed in an augmented forward run.
The augmentation essentially amounts to the additional stack
operations introduced in Section III. These stacks are global
data structures indcc.

The augmented forward section is visualized by a square
with two right arrows . One arrow stands for the values
that are pushed on the stack. The other arrow represents the
original function evaluation. The augmented forward section
of f calls the augmented forward section ofg, which itself
calls the augmented forward section ofh. Each function
pushes its computed values on the floating point data stack
(FDS).

After the augmented forward section off the reverse
section off starts, marked by a square with two left arrows

. This corresponds to the reverse adjoint computation with
the needed function values being popped from the stack.
Through the reverse section off the reverse sections ofg
andh are eventually called.

In the end, there are two ways of calling a function in
split reversal: in augmented forward mode and reverse mode.
Memory consumption of split reversal is always directly
related to the sum of pushes in the forward section.

Joint reversal, as shown in Figure 1b exploits the interpro-
cedural structure of the program by introducing checkpoint-

31

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ing at each function call. Each function needs to be able to
store and restore its arguments.

We first start by callingf in augmented forward mode
. If a function runs in augmented forward mode it will

make subcalls instore mode . Store mode results ing
storing its arguments (down arrow) and running the original
code ofg (right arrow), which itself calls the original code
of h (right arrow).

The reverse mode off calls g in restore mode .
g restores its arguments and runs in augmented forward
mode leading toh called in store mode. In joint reversal
the forward section is immediately followed by the reverse
section. Sog starts its reverse section resulting inh called in
restore mode.h restores its arguments and starts its forward
section followed by the reverse section. Afterh has returned,
g finished its reverse section, which eventually leads tof

finalizing its reverse section.
By joining the forward and reverse section, the values

that are pushed on the stack in the forward section are
being popped from the stack in the following reverse section.
This has two benefits. For one, memory access is struc-
turally more local leading to a more efficient exploitation
of cache memory. Additionally, memory consumption is
significantly reduced since interprocedural code consumes
far less memory than the sum of all the push operations. In
split reversal we had two ways of calling a function whereas
in joint reversal we have three; store, restore+augmented
forward and reverse mode. We now compare the two reversal
schemes along the call graph presented in Figure 1.

For the sake of simplicity, we assume that the original
function evaluation, the forward section and the reverse
section off ,g andh have each a computational cost of1.
Additionally, we assume that all the pushes of a function’s
forward section have a memory consumption of1. Finally,
we assume that storing the arguments of a function has
no additionally memory footprint. Taking all of this into
account we now compare the two reversal schemes on the
call graph presented in Figure 1.

Split reversal runs all three functions in their forward and
reverse section. So we end up with a computational cost
of six. All the forward sections are called after each other,
therefore the memory consumption is three.

In joint reversal afterf has finished its forward section
we have a memory consumption of1. Only the values off
have been pushed on the stack. We assume thatg is called
in the middle off . So half of the values were popped from
the stack at the moment wheng is called in restore mode
(memory=0.5). Wheng ends its forward section, memory
consumption is at1.5. Assuming thath is called in the
middle of g we end up with a peak memory consumption
of 2 after the forward section ofh. The computational cost
amounts to the number of squares in the picture, which is
equal to9.

In general, joint reversal is a trade off between memory

consumption and computational cost. Memory consumption
is reduced by a third from3 to 2 whereas the computation
cost has risen by fifty percent from6 to 9. There has been
more investigations into the mixing of these two strategies.
[10] shows that the optimal reversal strategy is NP-complete.
dcc uses joint reversal as its sole reversal scheme putting
the emphasis on memory efficient code. In the next chapter
we will demonstrate how we exploit this feature to achieve a
more efficient memory footprint for our Burgers simulation.

VI. BURGERSIMPLEMENTATION

As has been described in Section I we compute the ve-
locity field according to (2). We use dynamic programming
by introducing a data arrayu[i][j] storing the velocity for a
grid point i in time stepj. The functionh implementing the
computation of the velocity field has the following signature:

1 void h (i n t& nx , / / number o f g r i d po i n ts
2 i n t t0 , / / f i r s t t ime step to s t a r t

w i th
3 i n t n , / / number o f t ime steps to

compute
4 double& cost , / / cos t f u n c t i o n
5 double∗∗ uob , / / observa t ions
6 double∗∗ ub , / / basic s ta tes
7 double∗∗ u , / / model s o l u t i o n s
8 double∗ ui , / / i n i t i a l cond i t i ons
9 double& dx , / / space increment

10 double& dt , / / t ime increment
11 double& r , / / Reynolds number
12 double& dtdx ,
13 double& c0 ,
14 double& c1
15)

Listing 6: Function h

This function computesu[i][j] and updatescost for all grid
pointsxi, 0 ≤ i < nx and for all time stepst0 ≤ j < n.
Supposing that for each time step we need doc·nx pushes on
the stack, we end up with approximatelyc ·nx ·n pushes for
the entire simulation. This is also the memory consumption
for calling the adjoint codea1 h.

The code will now be restructured according to a recursive
checkpointing scheme by relying on the interprocedural joint
reversal mode present indcc.

1 void h (. . .) {
2 . . .
3 h a l f =n−t0 / 2 ;
4 t1= t0+ h a l f ; n0= t1 ; n1=n ;
5 i f (d i f f > 2) {
6 g (nx , t0 , n0 , cost , uob , ub , u , u i , dx , dt , r ,

dtdx , c0 , c1) ;
7 g (nx , t1 , n1 , cost , uob , ub , u , u i , dx , dt , r ,

dtdx , c0 , c1) ;
8 }
9 else

10 h (nx , t0 , n , cost , uob , ub , u , u i , dx , dt , r ,
dtdx , c0 , c1) ;

11 }

Listing 7: Function h

32

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a1 h a1 h

a1 g a1 g

a1 g

a1 f

a1 h a1 h

a1 g a1 g

a1 g

a1 f

(a) Call graph of a1f

a1 h

a1 g

a1 h

a1 g

a1 ha1 h

a1 g

a1 h

a1 g

a1 h

a1 g

(b) Call graph of a1f (cont.)

Figure 2: Burgers recursive call tree joint reversal

g has the same signature ash. Its task is to decompose the
interval of time steps, callingh on a subinterval of[t0, n].

The resulting call tree as well as its joint reversed coun-
terpart is illustrated in Figure 2.

We assume that theh has a computational cost of1 over
the entire interval fromt0 to n. If we call h in over the entire
interval we end up with a forward and a reverse section
adding up to a computational cost of2. In our new structure
we assume thatf and g have no computational cost and
no memory consumption. In our exampleh has a cost of1

2

since it only runs over half the interval oft0 to n. We callh
10 times. Thus the computational cost of this call tree is5.
Note that this is independent from the depth of our recursive
call tree. The memory consumption though is halved at every
increase of the recursive call three depth. Ultimately memory
consumption can be reduced to the number of pushes in one
single time step.

VII. C ASE STUDY

A. Differentiation of the original code

As discussed in Section I, we run a test case on an inverse
problem based on Burgers’ equation (1). As a start we take
the code presented in [3] implementing the original function
with the signature of

Table I: Time and memory requirements for gradient com-
putation

n 250 500 1000 2000
f (s) 0.03 0.08 0.15 0.32
TLM (s) 33 109 457 1615
ADJ (s) 0.21 0.43 0.85 1.82
TLM-ADJ (s) 150 587 2286 8559
IDS size 7500502 15001002 30002002 60004002
FDS size 5000002 10000002 20000002 40000002
CS size 7500503 15001003 30002003 60004003

1 vo id f (i n t n , i n t nt , double& cost , double∗∗
u , double∗ ui . . .)

2 {
3 . . .
4 }

Listing 8: Signature of Burgers’ function

Taking n grid points of ui as the initial conditions we
integrate overnt timesteps. The values are saved in the two
dimensional arrayu for each grid pointi and time stepj .

To solve the inverse problem we need the derivatives of
cost with respect to the initial conditionsui.

The results in Table I represent the runtime of one full
gradient accumulation as well as the memory requirements
in adjoint and tangent-linear mode. Additionally one Hessian
accumulation is performed using the tangent-linear over
adjoint model (13). Different problem sizes are simulated
with varying n. We also mention the different stack size
shown in Section III.

If we assume four bytes per integer and control stack
element plus eight bytes for a floating data stack element
we end up with a memory requirement of≈ 610 MB for
the Hessian accumulation. The tests were running on a
GenuineIntel computer with Intel(R) Core(TM)2 Duo CPU
and with 2000.000 MHz CPU.

The execution time of the tangent-linear gradient compu-
tation is growing proportionally to the problem sizenx and
the execution time off:

FM :
cost(F ′)

cost(F)
∼ O(n). (14)

The single executon oft1 f takes approximately twice as
long as the execution off.

The execution time of the adjoint gradient computation is
growing only proportional to the execution time off:

AM :
cost(F ′)

cost(F)
∼ O(1). (15)

Finally we accumulate the Hessian using tangent-linear
over adjoint mode. Here, the runtime is growing linearly
with respect ton as well asf since the dimension of the
dependentcost is equal to1.

FM −AM :
cost(F ′′)

cost(F)
∼ O(n). (16)

33

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II: Recursive checkpointing withn = 100000. Interval
size of100000 amounts to no recursion.

Interval size FDS size Runtime(s)
100000 29999610 69,3
10000 2062706 74,9
1000 433242 76,5
100 229410 79,1
10 202292 88,3

For scalar functions in particular, the runtime complexity
for accumulating the Hessian using AD is the same as the
runtime complexity of the gradient accumulation using finite
difference. This enables developers to implement a second-
order model where a first-order model has been used so far.

B. Differentiation using recursive checkpointing

Based on the recursive checkpointing scheme presented
in Section V and its implementation in Section VI we
conducted benchmarks varying the interval size threshold for
diff where the recursion ofg will stop by eventually calling
h. The first order adjoint model was applied to compute a
single gradient accumulation. The benchmarks were run on a
cluster node consisting of a single thread on a Sun Enterprise
T5120 cluster.

At an interval size of 100 we see major memory savings
of around 98% whereas the runtime is only marginally
increased by around 15% from 69,3s to 79,1s. This illustrates
that checkpointing is crucial to reduce a computational prob-
lem in memory space while keeping the runtime complexity
at a feasible level.

VIII. C ONCLUSION & FUTURE WORK

We have presented a source transformation compiler for
a restricted subset of C/C++. As such,dcc runs on any
system with a valid C/C++ compiler making it a very
portable tool. Its unique reapplication feature allows code
to be transformed up to an arbitrary order of differenti-
ation. While relying to the adjoint model for the higher-
order differentiation, we save one order of magnitude of
computational cost compared to a tangent-linear only or
finite difference code. However, the adjoint model poses
a high memory load, making an efficient checkpointing
scheme crucial. Otherwise, a computation for large scale
codes is even unfeasible. This is solved by resorting to
interprocedural checkpointing, enabled by the joint reversal
structure of the generated adjoint code. We illustrated the
entire development process along a case study based on a
one-dimensional implementation of the Burgers equation.

Not mentioned in this paper are several extensions not
directly linked to the derivative code compiler presented
here. As large simulation codes run on cluster systems, they
mostly rely on parallelization techniques. The most widely
used parallelization method is MPI. Hence, while applying
the adjoint mode all the MPI calls need to be reversed too

[11]. This feature has been integrated intodcc using an
adjoint MPI library [12]. Additionally there are attempts to
achieve the same goal with OpenMP [13]. For the sake of
brevity we also did not mention the program analysisdcc
performs like for exampleactivity andTBRanalyses [14].

The compiler is open-source software (Eclipse Public
License) and available upon request. This paper should serve
as first guideline on how to differentiate C code using this
tool.

Finally, the development ofdcc is largely application
driven, especially with regard to its ability in parsing the
entire C/C++ language.

REFERENCES

[1] M. Schanen, M. Foerster, B. Gendler, and U. Naumann,
“Compiler-based Differentiation of Numerical Simulation
Codes,” in ICCGI 2011, The Sixth International Multi-
Conference on Computing in the Global Information Tech-
nology. IARIA, 2011, pp. 105–110.

[2] D. Zwillinger, “Handbook of Differential Equations, 3rd ed,”
Boston, MA, p. 130, 1997.

[3] E. Kalnay, “Atmospheric Modeling, Data Assimilation and
Predictability,” 2003.

[4] T. Kelley, Solving Nonlinear Equations with Newton’s
Method, ser. Fundamentals of Algorithms. Philadelphia, PA:
SIAM, 2003.

[5] A. Tikhonov, “On the Stability of Inverse Problems,”Dokl.
Akad. Nauk SSSR, vol. 39, no. 5, pp. 195–198, 1943.

[6] A. Griewank and A. Walter,Evaluating Derivatives. Prin-
ciples and Techniques of Algorithmic Differentiation (2nd
Edition). Philadelphia: SIAM, 2008.

[7] G. Corliss and A. Griewank, Eds.,Automatic Differentiation:
Theory, Implementation, and Application, ser. Proceedings
Series. Philadelphia: SIAM, 1991.

[8] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Nau-
mann, Eds.,Automatic Differentiation of Algorithms – From
Simulation to Optimization. New York: Springer, 2002.

[9] A. Aho, M. Lam, R. Sethi, and J. Ullman,Compilers.
Principles, Techniques, and Tools (Second Edition). Reading,
MA: Addison-Wesley, 2007.

[10] U. Naumann, “DAG Reversal is NP-complete,”Journal of
Discrete Algorithms, vol. 7, no. 4, pp. 402–410, 2009.

[11] P. Hovland and C. Bischof, “Automatic Differentiationfor
Message-Passing Parallel Programs,” inParallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First
Merged International ... and Symposium on Parallel and
Distributed Processing 1998, mar-3 apr 1998, pp. 98 –104.

[12] M. Schanen, U. Naumann, and M. Foerster, “Second-Order
Adjoint Algorithmic Differentiation by Source Transforma-
tion of MPI Code,” inRecent Advances in the Message Pass-
ing Interface, Lecture Notes in Computer Science. Springer,
2010, pp. 257–264.

34

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] M. Foerster, U. Naumann, and J. Utke, “Toward Adjoint
OpenMP,” RWTH Aachen, Tech. Rep. AIB-2011-13,
Jul. 2011. [Online]. Available: http://aib.informatik.rwth-
aachen.de/2011/2011-13.ps.gz

[14] L. Hascoët, U. Naumann, and V. Pascual, “To-be-recorded
Analysis in Reverse Mode Automatic Differentiation,”Future
Generation Computer Systems, vol. 21, pp. 1401–1417, 2005.

35

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Programming Paradigm based on
Agent-Oriented Abstractions

Alessandro Ricci
University of Bologna

Via Venezia 52, 47521 Cesena (FC), Italy
a.ricci@unibo.it

Andrea Santi
University of Bologna

Via Venezia 52, 47521 Cesena (FC), Italy
a.santi@unibo.it

Abstract—More and more the notion of agent appears in differ-
ent contexts of computer science, often with different meanings.
Main ones are Artificial Intelligence (AI) and Distributed AI,
where agents are exploited as a technique to develop systems
exhibiting some kind of intelligent behavior. In this paper,
we introduce a further perspective, shifting the focus from
AI to computer programming and programming languages. In
particular, we consider agents and related concepts as general-
purpose abstractions useful for programming software systems
in general, conceptually extending object-oriented programming
with features that – we argue – are effective to tackle some
main challenges of modern software development. The main
contribution of the work is the definition of a conceptual space
framing the basic features that characterize the agent-oriented
approach as a programming paradigm, and its validation in
practice by using a platform called JaCa, with real-world
programming examples.

Keywords-agent-oriented programming; multi-agent systems;
concurrent programming; distributed programming

I. INTRODUCTION

More and more the notion of agent appears in different
contexts of computer science, often with different meanings.
In the context of Artificial Intelligence (AI) or Distributed
Artificial Intelligence (DAI), agents and multi-agent systems
are typically exploited as a technique to tackle complex
problems and develop intelligent software systems [1][2][3].
In this paper, we discuss a further perspective, which aims
at exploiting the value of agents and multi-agent systems as
a programming paradigm, providing high-levels concepts and
mechanisms that are effective to tackle main challenges that
characterize modern and future programming, concerning e.g.
concurrency, distribution, autonomy, adaptivity.

Concurrency, in particular, due to the widespread diffusion
of multi-core technologies, is more and more an important
topic of mainstream programming—besides the academic re-
search contexts where it has been studied for the last fifty
years. This situation is pretty well summarized by the sentence
the free lunch is over as put by Sutter and Larus in [4], which
means that nowadays concurrency is an issue that cannot be
ignored or overlooked even in everyday programming, being it
more and more a must-have feature for improving performance
and responsiveness of programs. Besides introducing fine-
grain mechanisms or patterns to exploit parallel hardware and
improve the efficiency of programs in existing mainstream lan-

guages, it is now increasingly important to introduce higher-
level abstractions that “help build concurrent programs, just as
object-oriented abstractions help build large component-based
programs” [4]. We argue that agent-oriented programming –
as framed in this paper – provides such level of abstraction,
providing a rich set of concepts and mechanisms.

Actually, the idea of agent-oriented programming is not
new in the context of AI/DAI: the first paper about AOP
is dated 1993 [5], and since then many agent programming
languages have been proposed in literature [6][7][8]. The
objective of AOP as introduced in [5] was the definition of
a post-OO programming paradigm for developing complex
applications, providing higher-level features compared to ex-
isting paradigms. In spite of this objective, it is apparent
that agent-oriented programming has not had a significant
impact on mainstream research in programming languages and
software development, so far. We argue that this depends on
the fact that (in spite of few exceptions) most of the effort
and emphasis have been put on theoretical issues related to
AI themes, instead of focusing on the key principles and the
practice of programming. This is the direction that we aim at
exploring in our work and in this paper, which is a revised
and extended version of a previous contribution [9].

The remainder of the paper is organized as follows. After
presenting related work (Section II), we first define a concep-
tual space to describe the basic features of a general-purpose
programming paradigm based on agent-oriented abstractions
(Section III). Then, we provide a first practical evaluation
by exploiting an agent-oriented platform called JaCa (Sec-
tion IV), which actually integrates two different existing agent
technologies, Jason [10] and CArtAgO [11]. After giving an
overview of the main JaCa elements, in Section V we discuss
in detail some selected features of JaCa programming, which
are relevant for the development of software systems, and in
Section VI we provide an overview of the application domains
where JaCa has been effectively applied so far. Finally, in
Section VII we discuss the main features that are currently
missing in existing agent technologies, paving the way to the
design and development of a new generation of agent-oriented
programming languages. Concluding remarks are provided in
Section VIII.

36

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK ON AGENT-ORIENTED
PROGRAMMING

As mentioned in the introduction, most of the agent-oriented
programming languages and technologies – in particular those
based on cognitive model/architectures such as the Belief-
Desire-Intention (BDI) one [12] – have been introduced in
the context of (Distributed) Artificial Intelligence [6][7][8].
Besides, in the context of AOSE (Agent Oriented Software
Engineering) some agent-oriented frameworks based on main-
stream programming languages – such as Java – have been
introduced, targeted to the development of complex distributed
software systems. A main example is JADE (Java Agent DE-
velopment Framework) [13], a FIPA-compliant [14] platform
that makes it possible to implement multi-agent systems in
Java. JADE is based on a weak notion of agency: JADE agents
are Java-based actor-like active entities, communicating by
exchanging messages based on FIPA ACL (Agent Communi-
cation Language). So there is not an explicit account for high-
level agent concepts – goals, beliefs, plans, intentions are ex-
amples, referring to the BDI model – that are exploited instead
in agent-oriented programming languages to raise the level of
abstraction adopted to define agent behaviour. Also, JADE has
not an explicit notion of agent environment, defining agent
actions and perceptions, which are key concepts for defining
agent reactiveness. Differently from JADE, the JaCa platform
presented in this paper allows for programming agents using
a BDI-based computational model and has an explicit notion
of shared programmable environments – perceived and acted
upon by agents – based on the A&A (Agents and Artifacts)
conceptual model [15], described in next sections.

Another example of Java-based agent-oriented framework is
simpA [16], which has been conceived to investigate the use
of agent-oriented abstractions for simplifying the development
of concurrent applications. simpA shares many points with
the perspective depicted in this paper: however it is based
on a weak model of agency, similar to the one adopted in
JADE. Differently from JADE, it explicitly supports a notion
of environment, based on A&A.

Besides the different underlying models, both JADE and
simpA do not explicitly introduce a new full-fledge agent-
oriented programming language for programming agents, be-
ing still based on Java. A different approach is adopted by
JACK [17], a further platform for developing agent-based soft-
ware, which extends the Java language with BDI constructs –
such as goals and plans – for programming agents, integrating
the object-oriented and agent-oriented levels. Finally, similarly
to JADE, Jadex [18] is a FIPA compliant framework based
on Java and XML, but adopting the BDI as underlying agent
architecture.

III. AN AGENT-ORIENTED ABSTRACTION LAYER

Quoting Lieberman [19], “The history of Object-Oriented
Programming can be interpreted as a continuing quest to
capture the notion of abstraction – to create computational
artifacts that represent the essential nature of a situation,
and to ignore irrelevant details”. In that perspective, in

this section we identify and discuss a core set of concepts
and abstractions introduced by agent-oriented programming.
While most of these concepts already appeared in literature in
different contexts, our aim here is to highlight their value for
framing a conceptual space and an abstraction layer useful for
programming complex software systems.

A. The Background Metaphor

Metaphors play a key role in computer science, as means for
constructing new concepts and terminology [20]. In the case
of objects in OOP, the metaphor is about real-world objects.
Like physical objects, objects in OOP can have properties and
states, and like social objects, they can communicate as well
as respond to communications.

The inspiration for the agent-oriented abstraction layer that
we discuss in this paper is anthropomorphic and refers to the
A&A (Agents and Artifacts) conceptual model [15], which
takes human organizations as main reference. Fig. 1 (on
the left) shows an example of such metaphor, represented
by a human working environment, a bakery in particular.
It is a system where articulated concurrent and coordinated
activities take place, distributed in time and space, by peo-
ple working inside a common environment. Activities are
explicitly targeted to some objectives. The complexity of
the work calls for some division of labor, so each person
is responsible for the fulfillment of one or multiple tasks.
Interaction is a main dimension, due to the dependencies
among the activities. Cooperation occurs by means of both
direct verbal communication and through tools available in the
environment (e.g., a blackboard, a clock, the task scheduler).
So the environment – as the set of tools and resources used
by people to work – plays a key role in performing tasks
efficiently. Besides tools, the environment hosts resources that
represent the co-constructed results of people work (e.g., the
cake). Activity Theory [21] and distributed cognition [22]
remark the fundamental role that such artifacts (i.e., resources
and tools) have in human work and organization, both as media
to enable and make it efficient communication, interaction and
coordination and, more generally, to extend human cognitive
and practical capabilities [23].

Following this metaphor, we see a program – or software
system – as a collection of autonomous agents working and
cooperating in a shared environment (Fig. 1): on the one side,
agents (like humans) are used to represent and modularize
those parts of the system that need some level of autonomy
and pro-activity—i.e., those parts in charge to autonomously
accomplish the tasks in which the overall labor is split; on the
other side, the environment is used to represent and modu-
larize the non-autonomous functionalities – called artifacts in
Activity Theory – that can be dynamically composed, adapted
and used (by the agents) to perform the tasks.

A main feature of this approach is that it promotes a
decentralized control mindset in programming [24]. Such a
mindset has two main cornerstones.

The first one is the decentralization and encapsulation of
control: there is not a unique locus of control in the system,

37

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

WHITEBOARD

ARCHIVE

COM. CHANNEL

TASK SCHEDULER

RESOURCE

CLOCK BAKERY
workspace

workers can join
dynamically the workspace

ENVIRONMENT

AGENTS

observe
use

communicate with

ENV. RESOURCES

Fig. 1. (Left) Abstract representation of the A&A metaphor in the context of a bakery. (Right) Abstract representation of an agent-oriented program composed
by agents working within an environment.

which is instead decentralized into agents. It is worth remark-
ing that here we are assuming a logical point of view over
decentralization—not strictly related to, for instance, physical
threads or processes. The agent abstraction extends the basic
encapsulation of state and behavior featured by objects by
including also encapsulation of control, which is fundamental
for defining and realising agent autonomous behaviour.

The second cornerstone is the interaction dimension, which
includes coordination and cooperation. There are two basic
orthogonal ways of interacting: direct communication among
agents based on high-level asynchronous message passing
and environment-mediated interaction (discussed in Subsec-
tion III-D) exploiting the functionalities provided by environ-
ment resources.

B. Structuring Active Behaviors: Tasks and Plans

Decentralization and encapsulation of control, as well as
direct communication based on message passing, are main
properties also of actors, as defined in [25]. The actor model,
however, does not provide further concepts useful to structure
the autonomous behavior, besides a simple notion of behavior.
This is an issue as soon as we consider the development of
large or simply not naive active entities. To this end, the agent
abstraction extends the actor one introducing further high-level
notions that can be effectively exploited to organize agent
autonomous behavior, namely tasks and plans.

The notion of task is introduced to specify a unit of work
that has to be executed—the objective of agents’ activities.
So, an agent acts in order to perform a task, which can be
possibly assigned dynamically. The same agent can be able
to accomplish one or more types of task, and the type of the
agent can be strictly related to the set of task types that it is
able to perform.

Conceptually, an agent is hence a computing machine that,
given the description of a task to execute, it repeatedly chooses
and executes actions so as to accomplish that task. If the task

concept is used as a way to define what has to be executed, the
set of actions to be chosen and performed – including those
to react to relevant events – represent how to execute such
task. The first-class concept used to represent one such set
is the plan. So the agent programmer defines the behavior
of an agent by writing down the plans that the agent can
dynamically combine and exploit to perform tasks. For the
same task, there could be multiple plans, related to different
contextual conditions that can occur at runtime.

On the one side, tasks and plans can be used to define the
contract explicitly stating what jobs the agent is able to do;
on the other side, they are used (by the agent programmer) to
structure and modularize the description of how the agent is
able to do such jobs, organizing plans in sub-plans.

This approach makes it possible to frame a smooth path
in defining different levels of abstraction in specifying plans
and, correspondingly, different levels of autonomy of agents.
At the base level, a plan can be a detailed description of the
sequence of actions to execute. In this case, task execution is
fully pre-defined, since the programmer provides a complete
specification of the plan; the level of autonomy of the agent is
limited in selecting the plan among the possible ones specified
by the programmer. In a slightly more complex case, a plan
could be the description of a set of possible actions to perform,
and the agent uses some criteria at runtime to select which one
to execute. This enhances the level of autonomy of the agent
with respect to what strictly specified by the programmer. An
even stronger step towards autonomy is given by the case in
which a plan is just a partial description of the possible actions
to execute, and the agent dynamically infers the missing
ones by exploiting information about the ongoing tasks, and
about the current knowledge of its state and the state of the
environment.

38

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Integrating Active and Reactive Behaviours: The Agent
Execution Cycle

More and more the development of applications calls for
flexibly integrating active and reactive computational behav-
iors, an issue strongly related to the problem of integrating
thread-based and event-based architectures [26]. Active behav-
iors are typically mapped on OS threads, and the asynchronous
suspension/stopping/control of thread execution in reaction to
an event is an issue in high-level languages. So, for instance,
in order to make a thread of control aware of the occurrence
of some event – to be suspended or stopped – it is typically
necessary to “pollute” its block of statements with multiple
tests spread around.

In the case of agents, this aspect is tackled quite effectively
by the control architecture that governs their execution, which
can be considered both event-driven and task-driven. The
execution is defined by a control loop composed by a possibly
non-terminating sequence of execution cycles. Conceptually,
an execution cycle is composed by three different stages (see
Fig. 2):

• sense stage – in this stage the internal state of the agent
is updated with the events collected in the agent event
queue. So this is the stage in which inputs generated by
the environment during the previous execution cycle –
including messages sent by the other agents – are fetched.

• plan stage – in this stage the next action to execute is
chosen, based on the current state of the agent, the agent
plans and agent ongoing tasks; additionally, agent state
is also updated to reflect such a choice.

• act stage – in this stage the actions selected in the plan
stage are executed.

The agent machine continuously executes these three stages,
performing one execution cycle at each logical clock tick. Con-
ceptually, the agent control flow is never blocked—actually it
can be in idle state if, for instance, the executed plan states that
no action has to be executed until a specific event is fetched in
the sense stage. This architecture easily allows, for instance,
for suspending a plan in execution and execute another plan
to handle an event suddenly detected in the sense stage.

While in principle this makes an agent machine less efficient
than machines without such loops, this architecture allows
to have a specific point to balance efficiency and reactivity
thanks to the opportunity to define proper atomic actions.
Besides, in practice, by carefully design the execution cycle
architecture, it is possible to minimize the overheads – for
instance by avoiding to cycle and consuming CPU time if there
are no actions to be executed or new events to be processed –
and eventually completely avoid overheads when needed—for
instance, by defining the notion of atomic (not interruptible)
plan, whose execution would be as fast as normal procedures
or methods in traditional imperative languages.

D. “Something is Not an Agent”: the Role of the Environment
Abstraction

Often programming paradigms strive to provide a single
abstraction to model every component of a system. This

sense stage

plan stage

act stage

events

actions

Agent State

Agent Program
(plans)

Agent Ongoing
Tasks

clock

Event
queue (sensor)

Action buffer
(actuator)

Fig. 2. Conceptual representation of an agent architecture, with in evidence
the stages of the execution cycle.

happens, for instance, in the case of actor-based approaches.
In Erlang [27] for example, which is actor-based, every macro-
component of a concurrent system is a process, which is the
actor counterpart. This has the merit of providing uniformity
and simplicity, indeed. At the same time, the perspective in
which everything is an active, autonomous entity is not always
effective, at least from an abstraction point of view. For in-
stance, it is not really natural to model as active entities either a
shared bounded-buffer in producers/consumers architectures or
a simple shared counter in concurrent programs. In traditional
thread-based systems such entities are designed as monitors,
which are passive.

Switching to an agent abstraction layer, there is an apparent
uniformity break due to the notion of environment, which is a
first-class concept defining the context of agent tasks, shared
among multiple agents.

From a designer and programmer point of view, the envi-
ronment can be suitably framed as such non-autonomous part
of the system used to encapsulate and modularize those func-
tionalities and services that are eventually shared and exploited
by the autonomous agents at runtime. More specifically, by
recalling the human metaphor, the environment can be framed
as the set of objects functioning as resources and tools that
are possibly shared and used by agents to execute their tasks.
In order to avoid ambiguity with objects as defined in Object-
Oriented Programming, here we will refer to these environ-
ment entities as artifacts, following our inspiring metaphor and
adopting the terminology typically used in Activity Theory
and Distributed Cognition. In that perspective, a bounded-
buffer, a shared data-base etc. can be naturally designed and
programmed as artifacts populating the environment where –
for instance – producers/consumers agents work. Differently
from agents, artifacts conceptually are not meant to be used to
represent and implement autonomous / pro-active / re-active
/ task-oriented computational entities, but – more similar to
passive objects or components or services – entities providing
some functionality through a proper interface, that can be
perceived and accessed by agents though actions.

39

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Using and Observing the Environment

To be usable by agents, an artifact provides a set of
operations – that constitute its usage interface – encapsulating
some piece of functionality. Such operations are the basic
actions that an agent can execute on instances of that artifact
type. So the set of actions that an agent can execute inside an
environment depend on the set of artifacts that are available in
that environment. Since artifacts can be created and disposed
at runtime by agents, the agent action repertoire can change
dynamically.

The execution of an operation (action) performed by an
agent on an artifact may complete with a success or a failure—
so an explicit success/failure semantics is defined. Actions
(operations) are performed by agents in the act stage of the
execution cycle seen previously. Then, the completion of an
action occurs asynchronously, and is perceived by the agent
as a basic type of event, fetched in the sense stage. This can
occur in the next execution cycle or in a future execution cycle,
since the execution of an operation can be long-term. So, an
important remark here is that the execution cycle of an agent
never blocks, even in the case of executing actions that – to
be completed – need the execution of further actions of other
agents. This means that an agent, even if “waiting” for the
completion of an action, can react to events perceived from
the environment and execute a proper action, following what
is specified in the plan.

Aside to actions, observable properties and observable
events represent the other side of agent-environment interac-
tion, that is the way in which an agent gets input information
from the environment. In particular, observable properties
represent the observable state that an artifact may expose,
as part of its functionalities. The value of an observable
property can be changed by the execution of operations of
the same artifact. A simple example is a counter, providing an
inc operation (action) and an observable state given by an
observable property called count, holding the current count
value. By observing an artifact, an agent automatically receives
the updated value of its observable properties as percepts at
each execution cycle, in the sense stage. Observable events
represent possible signals generated by operation execution,
used for making observable an information not regarding the
artifact state, but regarding a dynamic condition of the artifact.
Taking as a metaphor a coffee machine as an artifact, the
display is an observable property, the beep emitted when the
coffee is ready is an observable event. Choosing what to model
as a property or as an event is a matter of environment design.

IV. EVALUATING THE IDEA WITH EXISTING AGENT
TECHNOLOGIES: THE JACA PLATFORM

The aim of this section is to show more in practice some
of the concepts described in the previous section. To this end,
we will use existing agent technologies, in particular a plat-
form called JaCa, which actually integrates two independent
technologies: the Jason agent programming language [10] –
for programming agents – and the CArtAgO framework [11],
for programming the environment.

falsestopped

stop

PRODUCER
AGENTS

CONSUMER
AGENTS

100n_items_to_produce

put

get

EXTENDED BOUNDED BUFFER

HUMAN USER
TOY WORKSPACE

Fig. 3. A toy workspace, with producer and consumer agents interacting by
means of a ExtBBuffer artifact.

A. JaCa Overview

Following the basic idea discussed in Section III - a JaCa
program is conceived as a dynamic set of autonomous agents
working inside a shared environment, that they use, observe,
adapt according to their tasks. The environment is composed
by a dynamic set of artifacts, as computational entities that
agents can dynamically create and dispose, beside using and
observing them.

In the following, we introduce only those basic elements
of agent and environment programming that are necessary to
show the features discussed at the conceptual level in the
previous section. To this end, we use a toy example about
the implementation of a producers-consumers architecture,
where a set of producer agents continuously and concurrently
produce data items that must be consumed by consumer agents
(see Fig. 3). Further requirements are that (i) the number of
items to be produced is fixed, but the time for producing each
item (by the different producers) is not known a priori; (ii) the
overall process can be interrupted by the user anytime.

The task of producing items is divided upon multiple
producer agents, acting concurrently—the same holds for con-
sumer agents. To interact and coordinate the work, agents share
and use an ExtBBuffer artifact, which functions both as a
buffer to collect items inserted by producers and to be removed
by consumers and as a tool to control the overall process by the
human user. The artifact provides on the one side operations
(actions for the agent) to insert (put), remove (get) items
and to stop the overall activities (stop); on the other side, it
provides observable properties n_items_to_produce and
stopped, keeping track of, respectively, the number of items
still to be produced (which starts from an initial value and is
decremented by the artifact each time a new item is inserted)
and the stop flag (initially false and set to true when the stop
operation is executed).

In the following, first we give some glances about agent
programming in Jason by discussing the implementation of
a producer agent (see Fig. 4), which must exhibit a pro-active
behavior – performing cooperatively the production of items,
up to the specified number – but also a reactive behavior:

40

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if the user stops the process, the agents must interrupt their
activities. For completeness, also the source code of the
consumer agent is reported (Fig. 5). Then we briefly consider
the implementation of the ExtBBuffer artifact, to show in
practice some elements of environment programming.

B. Programming Agents in Jason
Being inspired by the BDI (Beliefs-Desires-Intentions) ar-

chitecture [12], the Jason language constructs that program-
mers can use can be separated into three main categories:
beliefs, goals and plans. An agent program is defined by an
initial set of beliefs, representing the agent’s initial knowledge
about the world, a set of goals, which correspond to tasks as
defined in Section III, and a set of plans that the agent can
dynamically compose, instantiate and execute to achieve such
goals. Logic programming is used to uniformly represent any
piece of data and knowledge inside the agent program, beliefs
and goals in particular.

Beliefs are represented as Prolog-like facts – that are atomic
logical formulae – and represent the agent knowledge about:

• Its internal state – an example is given by the
n_items_produced(N) belief, which is used by a
producer agent to keep track of the number of items
produced so far. Initially N is zero, and then it is dy-
namically updated by the agent in plans, by means of
specific internal actions.

• The observable state of the artifacts that the agent is
observing—in the example, every producer agent ob-
serves the sharedBuffer artifact, which has two
observable properties: n_items_to_produce, repre-
senting the number of items still to be produced, and
stopped, a flag which is set if/when the process needs
to be stopped.

At design time the agent developer may want to define the
agent’s initial belief-base, by specifying some initial beliefs:
then, beliefs can be added or removed at runtime, according
to the agent changes to its state and to the resources that the
agent dynamically decides to observe.

An agent program may explicitly define the agent’s initial
belief-base and the initial task or set of tasks that the agent
has to perform, as soon as it is created. In Jason goals
– i.e., tasks – are represented by Prolog atomic formulae
prefixed by an exclamation mark. Referring to the example, the
producer agent has an initial task to do, which is represented
by the !produce goal. Actually, tasks can be assigned also
at runtime, by sending to an agent achieve-goal messages.

Then, the main body of an agent program is given by the
set of plans, which define the pro-active and reactive behavior
of the agent. Agent plans are described by rules of the type
Event : Context <- Body, where Event represents
the specific event triggering the plan, Context is a boolean
expression on the belief base, indicating the conditions under
which the plan can be executed once it has been triggered,
and Body specifies the sequence of actions to perform, once
the plan is executed. The actions contained in a plan body can
be split in three categories:

• Internal actions, that are actions affecting only the in-
ternal state of the agent. Examples are actions to create
sub-tasks (sub-goals) to be achieved (!g), to manage
task execution – for instance, to suspend or abort the
execution of a task – to update agent inner state – such
as adding a new belief (+b), removing beliefs (-b).
Internal actions include also a set of primitives that allow
for managing Java objects – which is the data model
supported by CArtAgO – on the Jason side: so it is
possible to create new objects (cartago.new_obj),
invoke methods on objects (cartago.invoke_obj),
etc.) and other related facilities (the prefix cartago. is
used to identify in Jason the library to which the specific
actions belong to).

• External actions, that are actions provided by the envi-
ronment to interact with artifacts—as will be detailed in
next section, these actions correspond to the operations
provided by artifacts and included in artifact interfaces:
so the repertoire of the actions of an agent is dynamic
and depends on the number and type of artifacts available
in the environment;

• Communicative actions (.send,.broadcast), which
make it possible to communicate with other agents by
means of message passing based on speech acts.

Referring to the example, the producer agent has a main
plan (lines 8-10), which is triggered by an event +!produce
representing a new goal !produce to achieve. Since the
agent has an initial !produce goal (line 4), then this
plan will be triggered as soon as the agent is booted. By
means of an internal action !g, the main plan generates two
further subgoals to be achieved sequentially: !setup and
!produce_items.

The plan to handle !setup goal (lines 12-14) creates a
new instance called sharedBuffer of type ExtBBuffer
by means of a predefined action called makeArtifact, and
then starts observing it by executing the predefined action
focus specifying its identifier. This plan fails if the artifact
had been already created (by another producer), generating
a -!setup goal failure event: a plan managing the failure
is specified (lines 16-18), which simply finds out the exact
identifier of the existing artifact and starts observing it.

Then, two plans are specified for handling the goal
!produce_items. One (lines 20-25) is executed if
there are still items to produce—i.e., if the agent has not
the belief n_items_to_produce(0). Note that the
value of this belief depends on the current state of the
sharedBuffer artifact. This plan first produces a new
item (subtask !produce_item), then inserts the item
in the buffer by means of a put action, whose effect
is to execute the put operation on the artifact; if this
action succeeds, the plan goes on by updating the belief
n_items_produced incrementing the number of items
produced and generates a new subgoal !produce_items
to repeat the task. Actually, when executing an external
action – such as put – it is possible to explicitly
denote the artifact providing that action, in order to avoid

41

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 /* Producer agent */
2

3 n_items_produced(0). /* initial belief */
4 !produce. /* initial goal */
5

6 /* plans */
7

8 +!produce
9 <- !setup;

10 !produce_items.
11

12 +!setup
13 <- makeArtifact("sharedBuf","ExtBBuffer",[],Id);
14 focus(Id).
15

16 -!setup
17 <- lookupArtifact("sharedBuf",Id);
18 focus(Id).
19

20 +!produce_items : not n_items_to_produce(0)
21 <- !produce_item(Item);
22 put(Item);
23 -n_items_produced(N);
24 +n_items_produced(N+1);
25 !produce_items.
26

27 +!produce_items : n_items_to_produce(0)
28 <- !finalize.
29

30 +!produce_item(Item) <- ...
31

32 +!finalize : n_items_produced(N)
33 <- println("completed - items produced: ",N).
34

35 -!produce_items
36 <- !finalize.
37

38 +stopped(true)
39 <- .drop_all_intentions;
40 !finalize.

Fig. 4. Source code of a producer agent.

1 /* Consumer agent */
2

3 !consume.
4

5 +!consume: true
6 <- ?bufferReady;
7 !consumeItems.
8

9 +!consumeItems
10 <- get(Item);
11 !consumeItem(Item);
12 !consumeItems.
13

14 +!consumeItem(Item) <- ...
15

16 +?bufferReady : true
17 <- lookupArtifact("sharedBuffer",_).
18

19 -?bufferReady : true
20 <-.wait(50);
21 ?bufferReady.

Fig. 5. Source code of a consumer agent.

1 /* Main of the multi-agent program */
2

3 MAS prodcons {
4 environment: c4jason.CartagoEnvironment
5

6 agents:
7 producer agentArchClass c4jason.CAgentArch #10;
8 consumer agentArchClass c4jason.CAgentArch #10;
9 }

Fig. 6. Main configuration file of the producers-consumers program.

ambiguities, by means of Jason annotations: put(Item)
[artifact_name("sharedBuffer")];. The other
plan (lines 27-28) is executed if there are no more items
to produce—the n_items_to_produce belief referred
in the plan context contains the updated value of the
corresponding observable property in the artifact. In this case
the !finalize task is executed, and it prints on standard
output the number of items produced by the agent. The
println action corresponds to the operation with the same
name provided by an artifact called console, which is
available by default in every workspace.

The reactive behavior of an agent can be realized by plans
triggered by a belief addition/change/removal – corresponding
to changes in the state of the environment – and by the failure
of a plan in achieving some goal. In the example, the producer
agent has a plan (lines 38-40) which is executed when the
belief stopped about the observable property of the artifact
is updated to true. This means that the user wants to interrupt
and stop the production. So the plan stops and drops all the
other possible plans in execution – using an internal action
.drop_all_intention – and the !finalize subtask
is executed.

Finally, the producer agent has also a plan (lines 35-36) to
react to the failure of the !produce_items task, which
is expressed by the event -!produce_items. This can

happen when the agent, believing that there are still items to
be produced, starts the plan to produce a new item and tries to
insert it in the buffer. However, the put action fails because
other agents produced in the meanwhile the missing items.

The semantics of the execution of plans reacting to events
is defined by Jason reasoning cycle [10] (shown in Fig. 7),
which is a more articulated version of the execution cycle
described in Section III. In particular, the plan stage in this
case includes multiple steps, to select – given an event – a
plan to be executed. So an agent can have multiple plans in
execution but only one action at a time is selected (in the plan
stage) and executed (in the act stage). By executing an action,
a plan is suspended until the action is completed (with success
or failure). A detailed description of the cycle – as well as of
the Jason syntax – can be found in [10].

C. Programming the Environment in CArtAgO
The implementation of the ExtBBuffer artifact is shown

in Fig. 8. Being CArtAgO a framework on top of the Java
platform, artifact-based environments can be implemented
using a Java-based API, exploiting the annotation framework.
Here we don’t go too deeply into the details of such API, we
just introduce the main concepts that have been mentioned in
Section III; for more information, the interested reader can
refer to CArtAgO papers [11] and the documents that are part
of CArtAgO distribution [28].

42

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable
Plans

Means
Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context
Check

Event
Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

Fig. 7. A representation of Jason reasoning cycle (taken from [10]). In the first steps, the environment is perceived (step 1) and the beliefs about the state
of the environment updated (step 2), by means of a customizable belief-update function (BUF). Besides input information from the environment, beliefs are
updated also with messages possibly sent by other agents (step 3), filtered according some criteria defining “socially acceptable” messages (step 4). Then,
updates to the belief base generate external events, appended in the event queue. This concludes the sense stage. Then, in the plan stage events are considered
one by one (step 5), and for each one a relevant and applicable plan is selected (step 5 and 6), if available, from the plan library. If a plan is found, a new
intention is instantiated (step 8), representing the plan in execution. The plan stage is completed by selecting the next action to do from one of the ongoing
intentions (step 9). Finally, in the act stage the selected action is executed (step 10), and the cycle starts again.

In CArtAgO, an artifact type can be defined by extending
a base Artifact class. Artifacts are characterized by a
usage interface containing a set of operations that agents
can execute to get some functionalities. In the example, the
artifact ExtBBuffer provides three operations: put, get
and stop. The put operation inserts a new element in the
buffer – decrementing the number of items to be produced –
if the stopped flag has not been set, otherwise the operation
(action) fails. The get operation removes an item from the
buffer, returning it as a feedback of the action. The stop
operation sets the stopped observable property to true.

Operations are implemented by methods annotated with
@OPERATION. The init method is used as constructor of the
artifact, getting the initial parameters and setting up the initial
artifact state. Inside an operation, guards can be specified
(await primitive), which suspend the execution of the opera-
tion until the specified condition over the artifact state (repre-
sented by a boolean method annotated with @GUARD) holds. In
the example, the put operation can be completed only when
the buffer is not full (bufferNotFull guard) and the get
one when the buffer is not empty (bufferNotEmpty guard).
The execution of operations inside an artifact is transactional:
among the other things, this implies that at runtime multiple
operations can be invoked concurrently on an artifact but only

one operation can be in execution at a time–the other ones
are suspended. On the agent side, when executing an external
action, the agent plan is suspended until the corresponding
artifact operation has completed (i.e., the action completed).
Then, the action succeeds or fails when (if) the corresponding
operation has completed with success or failure.

Besides operations, artifacts typically have also a set of ob-
servable properties (n_items_to_produce and stopped
in the example), as data items that can be perceived by agents
as environment state variables. Instance fields of the class
instead are used to implement the non observable state of the
artifact—for instance, the list of items items in the example.
Observable properties can be defined, typically during arti-
fact initialization, by means of the defineObsProperty
primitive, specifying the property name and initial value (lines
11-12). Inside operations, observable properties value can
be inspected and changed dynamically by means of prim-
itives such as: getObsProperty, to retrieve the current
value of an observable property (see, for instance, lines
18 and 22), updateObsProperty to update the value,
or updateValue on an ObsProperty object, once the
property has been retrieved with getObsProperty (line
23).

Besides observable properties, an artifact can make it ob-

43

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 import cartago.*;
2

3 public class ExtBBuffer extends Artifact {
4

5 private LinkedList<Object> items;
6 private int bufSize;
7

8 void init(int bufSize, int nItemsToProd){
9 items = new LinkedList<Object>();

10 this.bufSize = bufSize;
11 defineObsProperty("n_item_to_produce",nItemsToProd);
12 defineObsProperty("stopped",false);
13 }
14

15 @OPERATION void put(Object obj){
16 await("bufferNotFull");
17 ArtifactObsProperty stopped =
18 getObsProperty("stopped");
19 if (!stopped.booleanValue()){
20 items.add(obj);
21 ArtifactObsProperty p =
22 getObsProperty("n_item_to_produce");
23 p.updateValue(p.intValue() - 1);
24 } else {
25 failed("no_more_items_to_produce");
26 }
27 }
28

29 @GUARD boolean bufferNotFull(){
30 return items.size() < nmax;
31 }
32

33 @OPERATION void get(OpFeedbackParam<Object> result){
34 await("itemAvailable");
35 Object item = items.removeFirst();
36 result.set(item);
37 }
38

39 @GUARD boolean itemAvailable(){
40 return items.size() > 0;
41 }
42

43 @OPERATION void stop(){
44 updateObsProperty("stopped",true);
45 }
46 }

Fig. 8. Source code of the ExtBBuffer artifact.

servable also events occurring when executing operations. This
can be done by using a signal primitive, specifying the
type of the event and a list of actual parameters. For in-
stance, signal("my_event", "test",0) generates an
observable event my_event("test",0). In the example,
to notify the stop we could generate a stopped signal in
the stop operation, instead of using an observable property.
Observable events are perceived by all agents observing the
artifact—which could react to them as in the case of observ-
able property change.

Java objects and primitive data types are used as data model
binding the agent and artifact layers, in particular to encode
parameters in operations, fields in observable properties and
signals.

To summarize, operations are computational processes oc-
curring inside the artifact, possibly changing the observable
properties and generating signals that are relevant for the
agents using/observing the artifact. An operation is executed
as soon as an agent triggers its execution – by executing
the corresponding action. Given the transactional execution
semantics adopted, only one operation can be in execution at a

time—so no interferences and race conditions occur if multiple
agents use concurrently the same artifact. Like in the case
of monitors, other operations that are possibly concurrently
triggered are blocked (suspended). The conditions that can be
specified with the await command are conceptually similar
to condition variables. Differently from the monitor case (with
threads or processes), if an operation (action) is suspended, the
agent that executed it is not: the execution cycle goes on, to
eventually react to percepts and/or select and execute other
actions from other plans.

Other features of the artifact model implemented in
CArtAgO include: (i) the capability of linking together ar-
tifacts, making it possible for an artifact to execute operations
(called linked operations) on other artifacts; (ii) the capability
of triggering the execution of internal operations from other
operations of the same artifact; and (iii) the capability of
specifying for each artifact type a manual, i.e., a machine
readable document containing the description of the function-
alities provided by the artifacts of this type and the operating
instructions, i.e., how to exploit such functionalities.

D. The Multi-Agent Program in the Overall

Finally, the main or entry point of a JaCa multi-agent
program is given by a Jason source file – with extension
*.mas2j – describing the initial configuration of the system,
in particular the name of the MAS and the initial set of the
agents that must be created and possibly some information and
attributes that concern environment and agent implementation.
The configuration file for the example is shown in Fig. 6,
where ten instances of producer agents and ten instances
of consumer agents are spawned. To launch multiple agents
of the same type (e.g., ten producer agents) the cardinality
can be specified as a parameter in the declaration (#10);
the unique name of the agent in this case is given by the
type and a progressive integer (in the example: producer1,
producer2, etc).

By default, a single workspace called default is created
and the specified agents are joined to this workspace. Actually
a JaCa program can be composed by multiple workspaces and
agents can concurrently join and work in multiple workspaces,
either locally or in remote JaCa nodes. Workspaces can be
created dynamically by agents by exploiting functionalities
that are provided by a set of artifacts that are available, by
default, in each workspace. Among the others, such a set
includes: a console artifact, providing functionalities for
printing on standard output; a workspace artifact, providing
functionalities for managing the current workspace, including
creating new artifacts (makeArtifact operation), dispos-
ing existing artifacts (disposeArtifact), discovering the
identifier of existing artifacts (lookupArtifact), setting
the security policies ruling the agent access to artifacts, etc.; a
blackboard artifact, functioning as a blackboard – or better
as a tuple space [29] – providing functionalities for enabling
indirect communication and coordination among agents.

44

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. JACA PROGRAMMING: FURTHER FEATURES

In this section we focus on three main programming features
among the others that are provided by JaCa, namely the
capability of exploiting both direct communication based on
message passing and indirect interaction through artifacts, the
support for building distributed programs and the capability
of integrating existing libraries, such as GUI toolkits. Further
features are described in JaCa and CArtAgO technical doc-
umentation.

A. Integrating Direct Communication and Mediated Interac-
tion

In JaCa agents can interact and communicate in two basic
ways, either exchanging messages through speech acts [30] or
by sharing and co-using artifacts functioning as interaction and
coordination media [31]. The first way is generally referred as
direct communication, while the latter as indirect or mediated
communication. Both types of communication are important
in programming concurrent and distributed programs, and we
allow for exploiting them together.

The direct communication model is the one provided by
the Jason language, based on a comprehensive subset of
the KQML Agent Communication Language [30]. Among the
available performatives, tell makes it possible to inform the
receiver agent about some information (stored in the target
agent as a belief), achieve to assign a new goal, and ask
to request information. These performatives must be included
in the communication action (.send) that actually sends the
message, along with the specific parameters. An agent can
react to the arrival of messages or, at a higher level, to the
effect that the speech acts have, that are uniformly modeled
as belief addition (for the tell performative) or goal addition
(for the achieve performative).

To give a concrete taste of the approach, in the follow-
ing we describe the realization of simplified version of the
Contract Net Protocol (CNP) [32], in which both direct
message passing and artifacts are used. In the example, a
ContractNetBoard artifact (Fig. 11) is used by an an-
nouncer agent (code shown in Fig. 9) and five bidder agents
(Fig. 10) to help their coordination in choosing the agent to
whom allocate a task todo. Once the agent has been chosen,
direct communication is used between the allocator of the task
and the chosen agent to allocate the task and get the results.

Some brief explanation of the program behavior. In the
main configuration file (Fig. 12), one announcer agent and five
bidder agents are launched. The announcer opens the auction
to allocate the task by performing an announce action over
the cnp_board artifact (line 7). The artifact is observed
and used also by the bidder agents, who are available for
doing tasks. The announce action/operation executed by the
announcer creates a new observable property task_todo,
storing information about the new task (Fig. 11, lines 12-17).

As soon as a bidder perceives that there is a new task to do,
it reacts (Fig. 10, lines 10-22) by computing a new bid and
issuing them on the contract net board by performing a bid
action. The action can fail if the auction has been already

Fig. 13. An execution trace of the CNP program, displayed on the Jason
console.

closed by the announcer: in that case a message is printed
on the console (lines 20-22). On the artifact side, the bid
operation (lines 19-28) just adds the new bid to the list of
bids received so far, if the auction is still opened, otherwise the
operation fails (by executing the failed artifact primitive).
As a detail, the third parameter of the bid operation is an
action feedback parameter, i.e., an output parameter of the
action bound to some value by the operation execution itself,
set with a fresh identifier univocally identifying the bid.

The announcer waits some amount of time (2 seconds in
the example), and then closes the auction by invoking the
close operation (lines 8-9), which results in changing the
state observable property of the artifact to "closed" and
returns the list of information about the received bids as an
action feedback parameter (lines 30-36). Such information are
represented by instances of the Bid class. Then, the agent
selects a bid (in the example the first one) and awards the
bidder by performing an award action (lines 10-11), which
results in updating the content of the winner observable
property in the artifact (lines 38-41).

This change is perceived by bidder agents, which react
in a different way depending on the fact that they are the
winner or not (lines 24-28). After awarding, the announcer
then communicates directly with the winner bidder by sending
an achieve message specifying the task to be done (line 15).
To retrieve the identifier of the bidder agent to whom sending
the message, the method getWho is invoked on the selected
bid object by means of the cartago.invoke_obj internal
action.

Then, the awarded bidder reacts to the new goal to achieve
(lines 35-37), just printing a message and then sending a
message to inform the announcer about the task result (line
37). Finally the announcer reacts to the new belief communi-
cated by the bidder (lines 19-20) by printing the result on the
console.

A possible execution trace that can be obtained by launching
the program is reported in Fig. 13, which shows the content
of the Jason console. In that specific execution, four bidders
were able to submit their bid on time and the winner was
the bidder bidder2 (whose bid identifier assigned by the
cnp_board was 1).

45

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 /* announcer agent */
2

3 !allocate_task("t0",2000).
4

5 +!allocate_task(Task,Deadline)
6 <- makeArtifact("cnp_board","ContractNetBoard",[]);
7 announce(Task);
8 .wait(Deadline);
9 close(Bids);

10 !select_bid(Bids,Bid);
11 award(Bid);
12 cartago.invoke_obj(Bid,getWho,Who);
13 println("Allocating the task to: ",Who);
14 .my_name(Me);
15 .send(Who,achieve,task_done(Task,Me)).
16

17 +!select_bid([Bid|_],Bid).
18

19 +task_result(Task,Result)
20 <- println("Got result ",Result," for task: ",Task).

Fig. 9. Source code of the announcer agent.

1 /* bidder agent */
2

3 task_result("t0",303).
4 !look_for_tasks("t0").
5

6 +!look_for_tasks(Task)
7 <- +task_descr(Task);
8 focusWhenAvailable("cnp_board").
9

10 +task_todo(Task) : task_descr(Task)
11 <- !make_bid(Task).
12

13 +!make_bid(Task)
14 <- !create_bid(Task,Bid);
15 .my_name(Me);
16 bid(Bid,Me,BidId);
17 +my_bid(BidId);
18 println("Bid submitted: ",Bid," - id: ",BidId).
19

20 -!make_bid(Task)
21 <- println("Too late for submitting the bid.");
22 .drop_all_intentions.
23

24 +winner(BidId) : my_bid(BidId)
25 <- println("awarded!.").
26

27 +winner(BidId) : my_bid(X) & not my_bid(BidId)
28 <- println("not awarded.").
29

30 +!create_bid(Task,Bid)
31 <- .wait(math.random(3000));
32 .my_name(Name);
33 .concat("bid_",Name,Bid).
34

35 +!task_done(Task,ResultReceiver): task_result(Task,Res)
36 <- println("doing task: ",Task);
37 .send(ResultReceiver,tell,task_result(Task,303)).

Fig. 10. Source code of bidder agents.

1 /* Contract Net Board artifact */
2

3 public class ContractNetBoard extends Artifact {
4 private List<Bid> bids;
5 private int bidId;
6

7 void init(){
8 this.defineObsProperty("state","closed");
9 bids = new ArrayList<Bid>();

10 }
11

12 @OPERATION void announce(String taskDescr){
13 defineObsProperty("task_todo", taskDescr);
14 getObsProperty("state").updateValue("open");
15 bids.clear(); bidId = 0;
16 log("New task announced: "+taskDescr);
17 }
18

19 @OPERATION void bid(String bid, String who,
20 OpFeedbackParam<Integer> id){
21 if (getObsProperty("state").stringValue().equals("open")){
22 bidId++;
23 bids.add(new Bid(bidId,who,bid));
24 id.set(bidId);
25 } else {
26 this.failed("cnp_closed");
27 }
28 }
29

30 @OPERATION void close(OpFeedbackParam<Bid[]> bidList){
31 getObsProperty("state").updateValue("closed");
32 int nbids = bids.size();
33 Bid[] vect = new Bid[nbids]; bids.toArray(vect);
34 bidList.set(vect);
35 log("Auction closed: "+nbids+" bids arrived on time.");
36 }
37

38 @OPERATION void award(Bid prop){
39 signal("winner", prop.getId());
40 log("The winner is: "+prop.getId());
41 }
42

43 static public class Bid {
44 private int id;
45 private String who, descr;
46

47 public Bid(int id, String who, String descr){
48 this.descr = descr; this.id = id; this.who = who;
49 }
50 public String getWho(){ return who; }
51 public int getId(){ return id; }
52 public String getDescr(){ return descr; }
53 public String toString(){ return descr; }
54 }
55 }

Fig. 11. Source code of the CNP board artifact.

1 MAS cnp_example {
2 environment: c4jason.CartagoEnvironment
3 agents:
4 announcer agentArchClass c4jason.CAgentArch;
5 bidder agentArchClass c4jason.CAgentArch #5;
6 }

Fig. 12. Main configuration file of the CNP example, spawning one announcer
agent and five bidder agents.

46

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Distributed Programming and Open Systems Programming

JaCa intrinsically supports concurrent programming, in dif-
ferent ways: by exploiting Jason runtime architecture, agents
are executed concurrently (and in parallel on a parallel HW,
such as multi-core architectures); also, artifacts are executed
concurrently, that is operations requested on different artifacts
are executed concurrently.

Besides, JaCa directly supports also distributed program-
ming: an agent running on some node can join workspaces
that are hosted on a remote nodes, and then work with
artifacts of the remote workspace(s) transparently. A simple
example is shown in Fig. 14, in which an agent joins a
remote test workspace located in acme.org, and, there,
the agent prints some information on the console, creates a
new Counter artifact called c0 and uses it, by executing
the inc operation and reacting to changes to the count
observable property. While working on multiple workspaces,
in JaCa a notion of current workspace is defined, being it
the workspace implicitly referred when the agent invokes an
operation over an artifact without specifying its full identifier.
current_wsp is a predefined agent belief keeping track
of current workspace. When an agent starts its execution,
the current workspace is set by default to the default
workspace. Then, it is automatically updated as soon as the
agent joins other workspaces (including remote ones) or the
agent executes a predefined set_current_wsp action. So,
in the example, by joining the remote test workspace,
this becomes the current workspace, and then the println
action acts on the console artifact there, as well as the
makeArtifact action that creates a new artifact overthere
too. It is worth noting that in the plan reacting to a change to
the count observable property (mapped on count belief),
the agent prints a message on the console in the original
workspace (lines 19-21): to disambiguate what console to use,
in the action an annotation reporting the workspace where the
artifact is stored is specified (line 21). The agent source code
includes also a plan reacting to a failure in the plan handling
the !use_remote goal, due to the fact that a Counter
artifact called c0 was already present in the remote workspace.

So in the overall this facility makes it possible to imple-
ment open systems with dynamic and distributed structure
and behavior, given by the capability of agents of spawning
other new agents dynamically, of joining dynamically existing
workspaces or creating new ones, of creating / disposing arti-
facts belonging to a workspace. Given the distributed program-
ming facility, a workspace can be joined by unknown agents
of JaCa programs that have been spawned independently
from the program where the workspace has been defined.
The possibility of explicitly specifying security policies at a
workspace level – by exploiting the functionalities provided
by the workspace artifact – makes it possible to rule and
govern such openness according to the need.

C. Wrapping Existing Libraries and External Resources

Specific kind of artifacts can be designed and used to wrap
and reuse existing libraries – written in Java but also in other

1 !test_remote.
2

3 +!test_remote
4 <- ?current_wsp(Id,_,_);
5 +default_wsp(Id);
6 println("testing remote..");
7 joinRemoteWorkspace("test","acme.org",WspID2);
8 ?current_wsp(_,WName,_);
9 println("hello there ",WName);

10 !use_remote;
11 quitWorkspace.
12

13 +!use_remote
14 <- makeArtifact("c0","examples.Counter",[],Id);
15 focus(Id);
16 inc;
17 inc.
18

19 +count(V)
20 <- ?default_wsp(Id);
21 println("count changed: ",V)[wsp_id(Id)].
22

23 -!use_remote
24 [makeArtifactFailure("artifact_already_present",_)]
25 <- ?default_wsp(WId);
26 println("artifact already created ")[wsp_id(WId)];
27 lookupArtifact("c0",Id);
28 focus(Id);
29 inc.

1 public class Counter extends Artifact {
2

3 void init(){
4 defineObsProperty("count",0);
5 }
6

7 @OPERATION void inc(){
8 ObsProperty prop = getObsProperty("count");
9 prop.updateValue(prop.intValue()+1);

10 }
11 }

Fig. 14. An agent joining and working in a remote workspace (top), and the
source code of the counter used and observed remotely (bottom).

languages, such as C and C++, exploiting the JNI (Java Native
Interface) mechanism – making their functionalities available
to agents, with a clean and uniform interface—which is the
one provided by the artifact model. This allows in particular
to build JaCa libraries that make it possible to access and
interact with external resources existing in the deployment
context or outside the system (such as a Web Services, a data-
base, a legacy system).

A main example of JaCa library wrapping and integrating
existing technologies is the one that allows for building
and exploiting graphical user interface (GUI) toolkits. GUIs
inside a JaCa program are modeled as artifacts mediating
the interaction between humans and agents. A basic abstract
artifact GUIArtifact is provided to be extended in order
to create concrete GUIs. A GUI is designed then to make it
observable to interested agents the events generated by the
components (buttons, edit fields, list boxes,...) inside the GUI.
Also, as an artifact, it provides operations that allow agents
to interact with the GUI themselves, for instance to set the
content of text fields.

Fig. 15 shows a simple example, in which an agent uses
a GUI to repeatedly display the output of its work and to
promptly react to user input. In particular, the agent creates

47

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 package c4jexamples;
2 ...
3 public class View extends GUIArtifact {
4 private MyFrame frame;
5

6 public void setup() {
7 frame = new MyFrame();
8 defineObsProperty("value",0);
9 linkActionEventToOp(frame.stopButton,"stop");

10 linkWindowClosingEventToOp(frame, "close");
11 frame.setVisible(true);
12 }
13

14 @INTERNAL_OPERATION void stop(ActionEvent ev){
15 signal("stopped");
16 }
17

18 @INTERNAL_OPERATION void close(WindowEvent ev){
19 signal("closed");
20 }
21

22 @OPERATION void setOutput(int value){
23 frame.updateOutput(""+value);
24 getObsProperty("value").updateValue(value);
25 }
26

27 class MyFrame extends JFrame {
28 private JButton stopButton;
29 private JTextField output;
30

31 public MyFrame(){
32 setTitle(".:: View ::.");
33 setSize(200,100);
34 JPanel panel = new JPanel();
35 setContentPane(panel);
36 stopButton = new JButton("stop");
37 stopButton.setSize(80,50);
38 output = new JTextField(10);
39 output.setText("0"); output.setEditable(true);
40 panel.add(output); panel.add(stopButton);
41 }
42 public void updateOutput(String s){
43 output.setText(s);
44 }
45 }
46 }

1 count(0).
2 !do_task_with_view.
3

4 +!do_task_with_view
5 <- makeArtifact("gui","c4jexamples.View",[],Id);
6 focus(Id);
7 !do_task.
8

9 +!do_task
10 <- -count(C);
11 C1 = C + 1;
12 +count(C1);
13 setOutput(C1);
14 !do_task.
15

16 +stopped : value(V)
17 <- .drop_all_intentions;
18 println("stopped - value: ",V).
19

20 +closed
21 <- .my_name(Me);
22 .kill_agent(Me).

Fig. 15. Implementing and using GUI in JaCa: the View artifact (left), the agent using the GUI (right—top) and the output of the program (right—bottom).

a GUI artifact called View, providing one stop button and
one output edit text. The structure of the GUI – based on
Java Swing library – is defined by the MyFrame class,
as it would be in a traditional OO program. An instance
of this class is created inside View and events generated
by the GUI components are linked to internal operations
of the artifact by means of a set of predefined methods
implemented in GUIArtifact. In particular an action event
generated by frame.stopButton causes the execution of
the internal operation stop, which generates an observable
event stopped, and the window closing event is mapped
onto the close operation, which generates a closed event.
The agent first creates an instance called gui of the View
artifact, and then repeatedly uses the view to display the results
of its task, by means of the setOutput action (operation).
While doing this task, the agent also observes the GUI and as
soon as a stopped event is perceived, the agent reacts by
suspending all its current ongoing activities (intentions) and
printing in standard output a message. If a closed event is
perceived, the agent terminates.

VI. USING JACA IN REAL-WORLD APPLICATION
CONTEXTS

We are currently applying the JaCa platform in different
application domains, to stress the benefits but also the weak-
nesses of its programming model and more in general of the
proposed agent-oriented programming approach.

One of these domains is the development of distributed
applications based on Service-Oriented Architecture (SOA)
and Web Services (WS) in particular. In that context, agents
and multi-agent systems are deserving increasing attention
both from the applicative viewpoint, as an effective technique
to build complex SOA applications dynamically composing
and orchestrating services [33], and from the foundational
viewpoint, as a reference meta-model for the service-based
approach, as suggested by the W3C Web Services Architecture
reference document [34]. To this end, programming models
and platforms are needed to build SOA/WS applications as
agent-oriented systems in a systematic way, exploiting the
existing agent languages and platforms to their best, while
enabling their co-existence and fruitful co-operation. In that
context, we devised a library of artifacts on top of the JaCa

48

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

platform, enabling the development of SOA/WS applications
in terms of workspaces populated by agents and artifacts.
Agents encapsulate the responsibility of the execution and con-
trol of the business activities characterizing the SOA-specific
scenario, while artifacts encapsulate the business resources and
tools needed by agents to operate in the application domain.
In particular, artifacts in this case are exploited to model
and engineer those parts in the agent world that encapsulate
Web Services aspects and functionalities – e.g., interaction
with existing Web Services (agents as service consumers),
implementation of Web Services (agents as service providers)
– eventually wrapping existing non-agent-oriented code. First
results of this work are available in [35].

We are also investigating the adoption of our approach
for the engineering of advanced Ambient Intelligence (AmI)
applications. For the AmI context, a relevant research issue
concerns how to concretely program non-intrusive applications
exhibiting features such as context-awareness, personalisation,
adaptivity and anticipation of users’ desires [36]. To this
end we applied our approach for realising a typical AmI
application [37]: the management of a rooms allocation prob-
lem in the context of a smart co-working space – e.g., a
school, an office building, etc. – where people can book
and use rooms according to their needs and to the current
occupancy schedule. The application has to set an autonomous
and adaptive room management behavior in accordance with:
(i) the events that are currently held – e.g., regulating the
room temperature in accordance with the number of the event’s
participants, automatically turning off the lights for teaching
events involving a projector, etc. – and (ii) also on the base
of rooms (re)allocation in accordance with incoming user
requests—i.e., aiming at optimising the number of events the
system can host at any given time. Agents as usual encapsulate
the control and decision-making part of the application, in this
case related to monitoring and controlling facilities in rooms
as well as deciding appropriate strategies to use for dynamic
rooms allocation. The artifact-based distributed environment
instead has been exploited to model and interface with the
physical devices in the rooms (lights, temperature controllers,
etc.), to model and represent high-level shared data structures
with related operations (such as registers keeping track of
room participants and schedules), besides typical coordination
artifacts.

Another project where our agent-oriented programming
approach has been applied concerns the engineering of an
agent-based Machine-To-Machine (M2M) management infras-
tructure. M2M refers to technologies allowing the construction
of automated and advanced services and applications (e.g.,
smart metering, traffic redirection, and parking management)
that largely make use of smart devices (sensor and actuators of
different kinds, possibly connected through a Wireless Sensor
and Actor Network (WSAN)) communicating without human
interventions. In [38] is discussed the realisation of an agent-
based infrastructure to enable the deployment of city-scale
M2M applications that share a common set of devices and
network services. In such infrastructure each WSAN area

1 !init.
2

3 +!init
4 <- focus("NotificationManager");
5 focus("SMSService");
6 focus("ViewerArtifact").
7

8 +sms_received(Source, Message) : not (state("running"))
9 <- showNotification(Source, Message,

10 "jaca.android.sms.ViewerArtifact", Id).
11

12 +sms_received(Source, Message) : state("running")
13 <- append(Source, Message).

Fig. 16. Source code of the Jason agent that manages the SMS notifications.

Fig. 17. The two different kinds of SMS notifications: (a) notification per-
formed using the standard Android status bar, and (b) notification performed
using the ViewerArtifact.

group is modelled through a CArtAgO workspace, where an
agent acting as a gateway collects data sent from all the agents
managing and controlling M2M devices (sensors, actuators)
through artifacts. Finally a dynamic pool of agents regulate
the functioning of each M2M infrastructural node in accor-
dance with the current workloads experimented in the M2M
infrastructure. The governance infrastructure is evaluated using
a Smart Parking Management scenario, where an M2M system
monitors the parking occupation in order to reduce traffic and
to guide drivers through the streets.

The final domain we are considering in this paper is the
engineering of smart mobile applications, in particular for
pervasive and context-aware computing scenarios. To this end,
JaCa has been ported on the Android platform [39], enabling
the development of Android applications using agent-oriented
programming [40] [41]. The project is called JaCa-Android.
Actually, besides porting the technology, JaCa-Android in-
cludes a library of artifacts that allows agents running into
an Android application to seamlessly access and exploit all
the features provided by the smartphone and by the Android
SDK. Just to have a taste of the approach, Fig. 16 shows a
snippet of an agent playing the role of smart user assistant,

49

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with the task of managing the notifications related to the
reception of SMS messages: as soon as an SMS is received,
a notification must be shown to the user. A SMSService
artifact is used to manage SMS messages, in particular this
artifact generates an observable event sms_received each
time a new SMS is received. A ViewerArtifact is used
to show SMS messages on the screen and to keep track
– by means of the state observable property – of the
current status of the viewer, that is if it is currently visualized
by the user on the smartphone screen or not. Finally, a
NotificationManager artifact is used to show messages
on the Android status bar, providing a showNotification
operation to this end. Depending on what the user is actually
doing and visualizing, the agent shows the notification in
different ways. The behavior of the agent, once completed the
initialization phase (lines 1-6), is governed by two reactive
plans. The first one (lines 8-10) is applicable when a new
message arrives and the ViewerArtifact is not currently
visualized on the smartphone’s screen. In this case, the agent
performs a showNotification action to notify the user
of the arrival of a new message using the status bar (Fig. 17,
(a)). The second plan instead (lines 12-13) is applicable when
the ViewerArtifact is currently displayed on screen and
therefore the agent could notify the SMS arrival by simply
appending the SMS to the received message list showed by
the viewer (Fig. 17, (b)): this is done by executing the append
operation provided by ViewerArtifact.

For a developer able to program using the JaCa program-
ming model, moving from one application context to another
is a quite straightforward experience. Indeed, she can continue
to design and program the business logic of the applications
by suitably defining the Jason agents’ behavior, and she only
need to acquire the ability to work with the artifacts that are
specific of the new application context.

VII. TOWARDS A NEW GENERATION OF
AGENT-ORIENTED PROGRAMMING LANGUAGES FOR

COMPUTER PROGRAMMING

By exploiting existing agent technologies (Jason and
CArtAgO in particular), JaCa makes it possible to con-
cretely experiment agent-oriented programming as a general-
purpose paradigm for computer programming and software
development, getting in practice some of the benefits of agent-
orientation described in Section III. However, the approach
lacks of some fundamental features when compared to current
languages for software development – such as the object-
oriented ones – due to the fact that the agent programming
models / technologies on which JaCa is based have been
designed having Distributed Artificial Intelligence problems
in mind, not software development in general. These missing
features concern desiderata that are not crucial from an AI
point of view, but from a software engineering and program-
ming perspective.

A first important desideratum concerns error checking, i.e.,
the possibility to detect errors in programs before executing
them. Not only syntax errors, but also errors concerning the

semantics of the program: examples are allocating tasks to
agents that have not plans to handle them, or executing actions
that are not part of the interface of an artifact, or rather
having agent plans that react to events that are never generated
by the artifacts used in the plans. To this purpose, current
AOP languages offer very limited and ad-hoc capabilities.
In programming languages and software engineering, this
issue is addressed by introducing a sound notion of type and
type systems [42]. So designing agent-oriented programming
languages with strong typing would allow for type checking
programs at compile type, strongly impacting on the process
of program development.

Typing is important also for the program organization and as
a conceptual tool for building more clean and elegant systems.
In fact, the definition of a notion of subtyping is the base for
introducing conceptual specialization in program organization,
and then defining a substitutability principle [43] also in agent-
oriented programs, getting finally a safe way to extend and
reuse program specifications.

Inheritence instead [43] – along more recent mechanisms
such as traits [44] – are important features in OOP to achieve
code reusability and a way to define hierarchies and com-
positions that relate implemented parts of a systems (such
as classes). So we believe that suitable mechanisms that
foster code reuse are important also for the agent-oriented
paradigm, both on the agent side – for instance, making it
possible to define new agents from existing ones, inheriting
their capabilities (such as their plans) – and on the environment
side – for instance, defining the artifact classes by extending
existing ones, so inheriting their operations and observable
properties.

Besides typing and inheritance, a stronger support for
modularity [45]. Finding suitable abstractions and mechanisms
to improve the modularization of agent behavior is a main
issue also in current research in agent programming languages
(examples are [46], [47], [48], [49], [50], [51]). In the case of
Jason for instance, the source code inside an agent to achieve
some goal is fragmented into a flat sequence of typically small
plans, that trigger each other. A notion of module – similar
to the notion of capability [47] adopted by the JACK plat-
form [17]– has been recently proposed to improve Jason agent
modularity [51]. Actually, among all the possible solutions
that can be adopted for achieving a good modularity, we are
interested in those that allow for contextually introducing also
mechanisms for reuse such as inheritance and for keeping
a strong separation between specification of the behaviors
(through typing) and their (hidden) implementation.

Finally, we argue that a modern programming language
designed for software development in general must necessarily
have a good or seamless integration with object-oriented and
functional programming, that are very strong and mature
paradigms for defining and working with data structures and
related purely transformational algorithms. This is not the case
for existing agent programming languages, that are typically
based on logic programming and do not provide a seamless
and efficient support to manipulate objects.

50

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These motivations lead us to explore the definition and
development of new agent-oriented programming languages,
integrating and embedding in a sound way all these features
from their foundation. This is the objective of the simpAL
project, whose first results are reported in [52]. simpAL is an
agent-oriented programming language designed from scratch
so as to embed some main ideas and features of JaCa, but
taking object-oriented programming and in particular Java-
like languages as reference for defining and manipulating data
structures, and to integrate features like an explicit notion
of typing and inheritance. Actually simpAL is not meant to
replace JaCa, which we consider the reference platform–
along with JaCaMo [53], which extends JaCa to support
also organization-oriented programming—for exploring the
development of multi-agent systems for tackling problems in
Distributed Artificial Intelligence contexts.

VIII. CONCLUSION

In this paper, we discussed agent-oriented programming as
an evolution of Object-Oriented Programming representing the
essential nature of decentralized systems where tasks are in
charge of autonomous computational entities, which interact
and cooperate within a shared environment. In the state-of-
the-art, agents and multi-agent systems have been explored so
far mainly as an approach for tackling AI and DAI problems:
in this paper we solicited a further perspective, which aims
at exploring the value of agent-orientation as a programming
paradigm, providing an effective level of abstraction to tackle
the complexities which characterize modern programming
(e.g, concurrency). In order to show in practice some of
the main concepts underlying the approach, we exploited the
JaCa platform, which is based on existing agent-oriented
technologies—the Jason language to program agents and
CArtAgO framework to program the environment. JaCa tech-
nology can be used to concretely experiment the approach for
developing real-world applications tackling some of the main
aspects that characterize today software system complexity,
such as concurrency, distribution, reactivity, flexibility and
autonomy. Finally, we shed a light on some fundamental
features that are missing today in existing agent programming
technologies and languages (such as typing and inheritance),
which can be considered a must-have for us to investigate
agent-orientation as a general-purpose paradigm for computer
programming and software development. Future work will
be devoted in particular to both verify the effectiveness of
the approach in practice, using agent-oriented programming
to tackle relevant programming problems and projects, and
to improve our current models and technologies—JaCa and
simpAL, in particular.

REFERENCES

[1] Nicholas R. Jennings. An agent-based approach for building complex
software systems. Commun. ACM, 44(4):35–41, 2001.

[2] Mike Wooldridge. An Introduction to Multi-Agent Systems. John Wiley
& Sons, Ltd, 2002.

[3] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern
Approach. Prentice Hall, 2009.

[4] Herb Sutter and James Larus. Software and the concurrency revolution.
ACM Queue: Tomorrow’s Computing Today, 3(7):54–62, September
2005.

[5] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

[6] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fal-
lah Seghrouchni. Special Issue: Multi-Agent Programming, volume 23
(2). Springer Verlag, 2011.

[7] Rafael H. Bordini, Mehdi Dastani, and Amal El Fallah Seghrouchni, ed-
itors. Multi-Agent Programming Languages, Platforms and Applications
- Volume 1, volume 15. Springer, 2005.

[8] Rafael H. Bordini, Mehdi Dastani, Amal El Fallah Seghrouchni, and
Jürgen Dix, editors. Multi-Agent Programming Languages, Platforms
and Applications - Volume 2. Springer, 2009.

[9] Alessandro Ricci and Andrea Santi. Agent-oriented computing: Agents
as a paradigm for computer programming and software development. In
Proc. of the 3rd Int. Conf. on Future Computational Technologies and
Applications (Future Computing ’11), pages 42–51, Rome, Italy, 2011.
IARIA.

[10] Rafael Bordini, Jomi Hübner, and Mike Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons,
Ltd, 2007.

[11] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment
programming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23:158–192, 2011.

[12] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice.
In 1st Int. Conf. on Multi Agent Systems (ICMAS’95), 1995.

[13] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.
Developing Multi-Agent Systems with JADE. Wiley, 2007.

[14] The Foundation of Intelligent Physical Agents organization (FIPA) –
http://www.fipa.org, last retrieved: July 5th 2011.

[15] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the
A&A meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17 (3), December 2008.

[16] Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli. simpA: An
agent-oriented approach for programming concurrent applications on top
of java. Science of Computer Programming, 76(1):37 – 62, 2011.

[17] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas.
JACK intelligent agentsTM — summary of an agent infrastructure. In
Proc. of 2nd Int. Workshop on Infrastructure for Agents, MAS, and
Scalable MAS, 2001.

[18] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A
BDI reasoning engine. In Rafael Bordini, Mendi Dastani, Jurgen Dix,
and Amal El Fallah Seghrouchni, editors, Multi-Agent Programming.
Kluwer, 2005.

[19] Henry Lieberman. The continuing quest for abstraction. In ECOOP
2006, volume 4067/2006, pages 192–197. Springer, 2006.

[20] Michael David Travers. Programming with Agents: New metaphors
for thinking about computation. Massachusetts Institute of Technology,
1996.

[21] Bonnie Nardi, editor. Context and Consciousness: Activity Theory and
Human-Computer Interaction. MIT Press, 1996.

[22] David Kirsh. Distributed cognition, coordination and environment
design. In Proceedings of the European conference on Cognitive Science,
pages 1–11, 1999.

[23] Alessandro Ricci, Andrea Omicini, and Enrico Denti. Activity Theory as
a framework for MAS coordination. In Paolo Petta, Robert Tolksdorf,
and Franco Zambonelli, editors, Engineering Societies in the Agents
World III, volume 2577 of LNCS, pages 96–110. Springer, April 2003.

[24] Mitchel Resnick. Turtles, Termites and Traffic Jams. Explorations in
Massively Parallel Microworlds. MIT Press, 1994.

[25] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[26] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 2008.

[27] Joe Armstrong. Erlang. Commun. ACM, 53:68–75, September 2010.
[28] CArtAgO project web site – http://cartago.sourceforge.net, last retrieved:

July 5th 2011.
[29] David Gelernter. Generative communication in Linda. ACM Transac-

tions on Programming Languages and Systems, 7(1):80–112, January
1985.

[30] Y. Labrou, T. Finin, and Yun Peng. Agent communication languages:
the current landscape. Intelligent Systems and their Applications, IEEE,
14(2):45 –52, mar/apr 1999.

51

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi, and Luca Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In Proc. of the 3rd Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’04),
volume 1, pages 286–293, New York, USA, 19–23July 2004. ACM.

[32] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Trans. Comput., 29:1104–
1113, December 1980.

[33] Michael N. Huhns, Munindar P. Singh, and Mark et al. Burstein.
Research directions for service-oriented multiagent systems. IEEE
Internet Computing, 9(6):69–70, November 2005.

[34] W3C Web Service Architecture – http://www.w3.org/TR/ws-arch/, last
retrieved: June 21th 2012.

[35] Alessandro Ricci, Enrico Denti, and Michele Piunti. A platform for
developing soa/ws applications as open and heterogeneous multi-agent
systems. Multiagent Grid Syst., 6:105–132, April 2010.

[36] P. Remagnino and G. L. Foresti. Ambient intelligence: A new multidisci-
plinary paradigm. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 35(1):1–6, 2005.

[37] A. Sorici, O. Boissier, G. Picard, and A. Santi. Exploiting the jacamo
framework for realising an adaptive room governance application. In
Proc. of the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11, pages 239–
242. ACM, 2011.

[38] C. Persson, G. Picard, F. Ramparany, and O. Boissier. A jacamo-
based governance of machine-to-machine systems. In Proc. of the
10th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS 12), Advances in Soft Computing Series.
Springer, 2012.

[39] Android Platform web site – http://www.android.com/, last retrieved:
June 21th 2012.

[40] Andrea Santi, Marco Guidi, and Alessandro Ricci. JaCa-Android: An
agent-based platform for building smart mobile applications. In M. et al.
Dastani, editor, Languages, Methodologies, and Development Tools for
Multi-Agent Systems, volume 6822 of LNAI, pages 95–119. Springer,
2011.

[41] JaCa-Android project web site – http://jaca-android.sourceforge.net/,
last retrieved: June 21th 2012.

[42] Luca Cardelli and Peter Wegner. On understanding types, data abstrac-
tion, and polymorphism. ACM Comput. Surv., 17:471–523, December
1985.

[43] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental
modification mechanism or what like is and isn’t like. In Proceedings
of the European Conference on Object-Oriented Programming, ECOOP
’88, pages 55–77, London, UK, UK, 1988. Springer-Verlag.

[44] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and
Andrew P. Black. Traits: A mechanism for fine-grained reuse. ACM
Trans. Program. Lang. Syst., 28:331–388, March 2006.

[45] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15:1053–1058, December 1972.

[46] M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and
Frank S. de Boer. Goal-oriented modularity in agent programming. In
Proc. of the 5th Int. Joint Conf. on Autonomous agents and Multiagent
systems (AAMAS’06), pages 1271–1278, New York, NY, USA, 2006.
ACM.

[47] P. Busetta, N. Howden, R. R onnquist, and A. Hodgson. Structuring
BDI agents in functional clusters. In N.R. Jennings and Y. Lespèrance,
editors, Intelligent Agents VI, volume 1757 of LNAI, pages 277–289.
Springer, 2000.

[48] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability
concept for flexible BDI agent modularization. In Programming Multi-
Agent Systems, volume 3862 of LNAI, pages 139–155. Springer, 2005.

[49] Peter Novák and Jürgen Dix. Modular BDI architecture. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1009–1015, New York, NY, USA,
2006. ACM.

[50] Koen Hindriks. Modules as policy-based intentions: Modular agent
programming in GOAL. In Programming Multi-Agent Systems, volume
5357 of LNCS, pages 156–171. Springer, 2008.

[51] Neil Madden and Brian Logan. Modularity and compositionality in
Jason. In Proceedings of International Workshop Programming Multi-
Agent Systems (ProMAS 2009). 2009.

[52] Alessandro Ricci and Andrea Santi. Designing a general-purpose
programming language based on agent-oriented abstractions: the simpal

project. In Proc. of the compilation of the co-located workshops
on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, VMIL’11,
SPLASH ’11 Workshops, pages 159–170, New York, NY, USA, 2011.
ACM.

[53] Olivier Boissier, Rafael H. Bordini, Jomi F. Hbner, Alessandro Ricci, and
Andrea Santi. Multi-agent oriented programming with jacamo. Science
of Computer Programming, (0):–, 2011.

52

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design by Contract for Web Services: Architecture, Guidelines, and Mappings

Bernhard Hollunder, Matthias Herrmann, Andreas Hülzenbecher
Department of Computer Science

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

Email: hollunder@hs-furtwangen.de, matthias.herrmann@hs-furtwangen.de, huelzena@hs-furtwangen.de

Abstract—Software components should be equipped with
well-defined interfaces. With design by contract, there is a well-
known principle for specifying preconditions and postcondi-
tions for methods as well as invariants for classes. Although
design by contract has been recognized as a powerful vehicle for
improving software quality, modern programming languages
such as Java and C# did not support it from the beginning. In
the meanwhile, several language extensions have been proposed
such as Contracts for Java, Java Modeling Language, as well as
Code Contracts for .NET. In this paper, we present an approach
that brings design by contract to Web services. We not only
elaborate a generic solution architecture, but also define its
components and investigate the foundations such as important
guidelines for applying design by contract. Technically, the
contract expressions imposed on a Web service implementation
will be extracted and mapped into a contract policy, which will
be included into the service’s WSDL interface. Our solution
also covers the generation of contract-aware proxy objects to
enforce the contract policy on client side. We demonstrate how
our architecture can be applied to .NET/WCF services and
JAX Web services.

Keywords-Design by contract; Web services; WS-Policy;
Contract policies; WCF; JAX; Contracts for Java; Contracts-
aware proxies.

I. INTRODUCTION

Two decades ago, Bertrand Meyer [2] introduced the
design by contract (DbC) principle for the programming lan-
guage Eiffel. It allows the definition of expressions specify-
ing preconditions and postconditions for methods as well as
invariants for classes. These expressions impose constraints
on the states of the software system (e.g., class instances,
parameter and return values) which must be fulfilled during
execution time.

Although the quality of software components can be
increased by applying design by contract, widely used
programming languages such as Java and C# did not support
contracts from the beginning. Recently, several language
extensions have been proposed such as Code Contracts
for .NET [3], Contracts for Java [4] as well as Java
Modeling Language [5] targeting the Java language. Com-
mon characteristics of these technologies are i) specific

This is a revisited and substantially augmented version of “Deriving
Interface Contracts for Distributed Services”, which appeared in the Pro-
ceedings of the Third International Conferences on Advanced Service
Computing (Service Computation 2011) [1].

language constructs for encoding contracts, and ii) extended
runtime environments for enforcing the specified contracts.
Approaches such as Code Contracts also provide support for
static code analysis and documentation generation.

In this work, we will show how Web services can profit
from the just mentioned language extensions. The solution
presented tackles the following problem: Contracts con-
tained in the implementation of a Web service are currently
completely ignored when deriving its interface expressed in
the Web Services Description Language (WSDL) [6]. As
a consequence, constraints such as preconditions are not
visible for a Web service consumer.

Key features of our solution for bringing contracts to Web
services are:

• simplicity
• automation
• interoperability
• client side support
• feasibility
• usage of standard technologies
• guidelines.
Simplicity expresses the fact that our solution is transpar-

ent for the Web service developer—no special activities must
be performed by her/him. Due to a high degree of automa-
tion, the DbC assertions (i.e., preconditions, postconditions,
and invariants) specified in the Web service implementation
are automatically translated into semantically equivalent
contract expressions at WSDL interface level.

As these expressions will be represented in a program-
ming language independent format, our approach supports
interoperability between different Web services frameworks.
For example, Code Contracts contained in a Windows Com-
munication Foundation (WCF) [7] service implementation
will be translated into a WSDL contract policy, which can be
mapped to expressions of the Contracts for Java technology
deployed on service consumer side. This client side support
is achieved by generating contract-aware proxy objects. The
feasibility of the approach has been demonstrated by proof
of concept implementation including tool support.

In order to represent contract expressions in a Web ser-
vice’s WSDL, we will employ standard technologies: i) WS-
Policy [8] as the most prominent and widely supported
policy language for Web services, ii) WS-PolicyAttachment

53

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] for embedding a contract policy into a WSDL descrip-
tion, and iii) the Object Constraint Language (OCL) [10]
as a standard of the Object Management Group (OMG)
for representing constraints in a programming language
independent manner.

Design by contract is a useful instrument to improve
service quality by imposing constraints, which must be
fulfilled during execution time. As these constraints are
typically expressed in a Turing complete language, arbitrary
business logic could be encoded. In this paper, we also
present guidelines on how to properly apply design by
contract by identifying functionality, which should not be
part of DbC assertions.

Before we explain our solution in the following sections,
we observe that several multi-purpose as well as domain-
specific constraint languages have already been proposed for
Web services (see, e.g., [11], [12], [13]). However, these
papers have their own specialty and do not address important
features of our approach:

• Contract expressions are automatically extracted from
the service implementation and mapped to an equiva-
lent contract policy.

• Our approach does not require an additional runtime
environment. Instead, it is the responsibility of the
underlying contract technology to enforce the specified
contracts.

• Usage of well-known specifications and widely sup-
ported technologies. Only the notions “contract asser-
tion” and “contract policy” have been coined in this
work.

The paper is structured as follows. Next we will introduce
the basics of design by contract. In Section III, we will
recall the problem description followed by the elaboration
of the solution architecture and an implementation strategy
on abstract level. Guidelines for applying design by contract
will be given in the Sections V and VI. So-called contract
policies will be defined in Section VII. Then we will apply
our strategy to Code Contracts for WCF services (Sec-
tion VIII) and Contracts for Java for JAX-WS Web Services
[14] (Section IX) followed by an example (Section X).
Limitations of the approach will be discussed in Section XI.
The paper will conclude with related work, a summary and
directions for future work.

II. DESIGN BY CONTRACT

Design by contract introduces the so-called assertions to
formalize selected aspects of a software system. Assertions
impose restrictions, which must be met at certain points
during program execution. An assertion can either be a
precondition and postcondition of a method or a class in-
variant. Typically, assertions constrain values of parameters
and variables such as range restrictions and null values. If
an assertion is violated during runtime (i.e., it is evaluated
to false), this is considered to be a software bug [15].

A. Preconditions and Postconditions

Preconditions and postconditions are a means to sharpen
the specification of a method. While the method’s signa-
ture determines the required parameter types, preconditions
and postconditions impose further restrictions on parameter
values. Formally, a precondition (resp. postcondition) of a
method is a boolean expression that must be true at the
moment that the method starts (resp. ends) its execution. In
general, such expressions can be quite complex comprising
logical (e.g. and), arithmetic (e.g. +) and relational opera-
tors (e.g. >) as well as function calls (e.g. size()).

Preconditions ensure that methods are really invoked
according to their specifications. Hence, a violation of a
precondition can be viewed as a software bug in the invoking
client code. In contrast, a method implementation can be
considered incorrect, if its postcondition is violated. This is
due to the fact that the implementation does not conform to
its specification.

B. Class Invariants

A class invariant is a constraint that should be true for
any instance of the class during its complete lifetime. In
particular, an invariant guarantees that only those instances
of a class are exchanged between method invoker and its
implementation that conform to the invariant constraints.
Analogously to preconditions and postconditions, a class
invariant is a boolean expression, which is evaluated during
program execution. If an invariant fails, an invalid program
state is detected.

III. PROBLEM DESCRIPTION

We start with considering a simple Web service that
returns the square root for a given number. We apply Code
Contracts [3] and Contracts for Java [4], respectively, to
formulate the precondition that the input parameter value
must be non-negative.

The following code fragment shows a realization as
a WCF service. According to the Code Contracts pro-
gramming model, the static method Requires of the
Contract class is used to specify a precondition while
a postcondition is indicated by the method Ensures.� �
using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
return Math.Sqrt(d);

}
}� �

Listing 1. WCF service with Code Contracts.

54

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The next code fragment shows an implementation of the
square root service in a Java environment. In this example,
we use Contracts for Java. In contrast to Code Contracts,
Contract for Java uses annotations to impose constraints on
the parameter values: @requires indicates a precondition
and @ensures a postcondition.� �
import javax.jws.WebMethod;
import javax.jws.WebService;
import com.google.java.contract.Requires;

@WebService()
public class Calculator {
@WebMethod
@Requires("d >= 0")
public double squareRoot(double d) {

return Math.sqrt(d);
}

}� �
Listing 2. Java based Web service with Contracts for Java.

Though the preconditions are part of the Web service
definition, they will not be part of the service’s WSDL in-
terface. This is due to the fact that during the deployment of
the service its preconditions, postconditions, and invariants
are completely ignored and hence are not considered when
generating the WSDL. This is not only true for a WCF
environment as already pointed out in [16], but also for Java
Web services environments such Glassfish/Metro [17] and
Axis2 [18].

As contracts defined in the service implementation are
not part of the WSDL, they are not visible to the Web
service consumer—unless the client side developer consults
additional resources such as an up to date documentation
of the service. But even if there would exist a valid docu-
mentation, the generated client side proxy objects will not
be aware of the constraints imposed on the Web service
implementation. Thus, if the contracts should already be
enforced on client side, the client developer has to manually
encode the constraints in the client application or the proxy
objects. Obviously, this approach would limit the acceptance
of applying contracts to Web services.

Our solution architecture overcomes these limitations by
automating the following activities:

• Contracts are extracted from the service implementa-
tion and will be transformed into corresponding OCL
expressions.

• The OCL expressions will be packaged as WS-Policy
assertions—so-called contract assertions.

• A contract policy (i.e., a set of contract assertions) will
be included into the service’s WSDL.

• Generation of contract-aware proxy objects—proxy ob-
jects that are equipped with contract expressions de-
rived from the contract policy.

• Usage of static analysis and runtime checking on both
client and server side as provided by the underlying
contract technologies.

An important requirement from a Web service develop-
ment point of view is not only the automation of these
activities, but also a seamless integration into widely used
Integrated Development Environments (IDEs) such as Visual
Studio, Eclipse, and NetBeans. For example, when deploy-
ing a Web service project no additional user interaction
should be required to create and attach contract policies.

IV. SOLUTION ARCHITECTURE

In this section we introduce the components of the
proposed architecture (see Figure 1). This architecture has
been designed in such a way that is can be instantiated in
several ways supporting both .NET/WCF as well as Java
environments.

Figure 1. Solution architecture.

In short, our approach adopts the code first strategy for
developing Web services. One starts with implementing the
Web service’s functionality in some programming language
such as C# or Java. We assume that some contract technol-
ogy is used to enhance the service under development by
preconditions, postconditions, and invariants. In Figure 1,
this activity is indicated by contract enrichment. At this
point, one ends up with a contract-aware Web service
such as the sample square root service at the beginning of
Section III.

In order to properly evaluate the contracts during service
execution, a contract-aware runtime environment is required.
Such an environment is part of the employed contract
technology.

We adapt the standard deployment of the Web service
such that a contract policy is created and attached to the
WSDL. The exporter component performs the following
tasks:

1) Extraction of contract expressions by inspecting the
Web service implementation.

2) Validation of contract expressions.

55

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Construction of contract assertions and contract poli-
cies.

4) Creation of the service’s WSDL and attachment of the
contract policy.

5) Upload of the WSDL on a Web server.
Note that the generated contract policy is part of the

service’s WSDL and is therefore accessible for the service
consumer. Both the WSDL and the contract policy is used by
the importer component to generate and enhance the proxy
objects on service consumer side. The importer component
fulfills the following tasks:

1) Generation of the “standard” proxy objects.
2) Mapping of the contract assertions contained in the

contract policy into equivalent expressions of the con-
tract technology used on service consumer side.

3) Enhancement of the proxy objects with the contract
expressions created in the previous step.

Note that service consumer and service provider may use
different contract technologies. Due to the usage of OCL as
“neutral” constraint language, syntactic differences between
the underlying programming languages will be compensated.

V. GUIDELINES

As mentioned in Section II, the DbC principle is a
useful instrument to improve service quality by imposing
constraints, which must be fulfilled during execution time.
As the constraints are typically expressed in a Turing
complete language, DbC can be misused for specifying
arbitrary business logic contradicting the idea of interface
contracts. This section is concerned with the question, which
functionality should (not) be realized as DbC assertions. The
conformance to these guidelines can be viewed as quality
checking for DbC usage.

In the following, we take a closer look to the following
areas:

1) Side effect free operations
2) Validation of external input data
3) Exception handling with assertions
4) Visibility of member variables and data types
5) Subtyping.

A. Side Effect Free Operations

In [15], the nature of assertions is described to be applica-
tive. The term emphasizes that assertions should behave like
mathematical functions and hence should not produce any
side effects. As a consequence, read access to resources such
as member variables is feasible, however their modification
is disallowed. Strictly speaking, the term applicative not only
excludes modifications of the object the assertions applies
to, but also the invocation of operations that change the state
of runtime objects such as logging or console entities.

It should be noted that in DbC technologies such as Eiffel
[19], Code Contracts for .NET [3], Contracts for Java [4]

and Java Modeling Language [5] assertions may invoke
arbitrary functions of the underlying programming language.
In their current versions, these technologies do not check the
applicative nature of DbC assertions. In other words, a DbC
designer does not get hints when invoking functions that
directly or indirectly produce side effects.

B. Validation of External Input Data

Bertrand Meyer recommends that assertions must not
be used for input validating (cf. [15]). Preconditions and
postconditions are “between” the method caller and the
method provider within a software component. In this sense,
both caller and provider are part of the same software and
do not represent an external system. Although a Web service
consumer is typically part of a different software component,
there is a deep logical dependency between service consumer
and service provider component, which means that both
components belong to the same system.

In contrast, validation of data coming from external sys-
tems should not be performed in DbC assertions. The logic
for checking the quality of those data should be implemented
in separate, standalone (importer) components by means of
typical validation constructs such as if/else.

C. Exception Handling with Assertions

This aspect addresses the question how to proceed if an
assertion is violated during runtime. Modern programming
languages support well-known exception handling strategies
based on try/catch blocks to locate abnormal situations and
to start appropriate compensation actions.

Although current DbC technologies allow exception han-
dling for dealing with failed assertions, a DbC designer
should not intermix both techniques. Otherwise, an excep-
tion thrown by the DbC runtime environment should be
handled by the surrounding application logic. This would not
only have a negative impact on the overall code structure,
but would also violate the first guideline “side effect free
operations”.

D. Visibility of Member Variables and Data Types

Web Services consumers and providers can be viewed
as two parts of a common software system. However,
both components are typically deployed and executed in
separated runtime environments. As indicated in Figure 1,
the Web service consumer sees an abstraction of the service
implementation and its contained DbC assertions by means
of the WSDL interface description. Thus, implementation
details are not passed to the client.

For example, suppose that an assertion specified in the
Web service implementation accesses a private member
variable. As private member variables are not contained in
a WSDL, this information is missing on consumer side.
Obviously, it would not be possible to check this assertion
in components, which invoke the Web service. The same

56

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

situation arises when specific data types and classes are
embedded into DbC assertions, which are not available
in the client environment. Thus, DbC assertions should
only contain variables, data types, and methods that are
meaningful and available also on Web service consumer
side.

E. Subtyping

As most DbC technologies allow inheritance of precon-
ditions and postconditions, it has to be considered how to
handle such circumstances. Liskov and Wing [20] analyzed
problems, which may occur in such settings. They argue that
preconditions should not be strengthened by preconditions
defined in derived classes. In contrast, postconditions and
class invariants should not be weakened in the same way.
This principle is also called behavioral subtyping.

Current DbC technologies apply a pragmatic approach
to ensure this principle. They simply build disjunctions of
the inherited preconditions. Analogously, postconditions and
invariants are connected by a conjunction, which means
that derived DbC assertions never become weaker (see, e.g.,
[21]). Of course, from a DbC developer point of view one
would expect more support exceeding this basic syntactic
manipulation.

VI. AUTOMATED RECOGNITION OF GUIDELINES

The automated detection of the described guidelines
would be a useful feature of a DbC infrastructure. In the
following, we elaborate to what extent such an approach
would be feasible.

A. Side Effect Free Operations

Basically, the automated recognition of side effects is
possible. We have to distinguish several cases. For example,
suppose an assertion invokes a function that does not return
any value (i.e., the return type is void). The only reason for
calling this function is due to its side effects. The same is
true in situations where return values are not processed in
DbC assertions.

Another indicator for side effects are assignments to
member variables such as this.x = 5;. Such statements can
be easily identified by inspecting the code structure. It should
be noted that some programming languages provide build-in
support for declaring methods that have only limited access
to resources. For example, in C++ member function can be
marked with the keyword const, indicating that the function
will not change the state of its enclosing objects [22].

In Code Contracts, the property Pure can be used to mark
methods as side effect free. As described in [3], the current
version behaves as follows: If a method not marked as Pure

is used within an assertion, a warning is generated.
When it comes to automated recognition of side effects

of entities such as logging or console, different strategies
are conceivable. One strategy would be to disallow such

method calls at all, even though they are not part of the
“real” business logic. Such a restrictive approach would be
inline with the applicative nature of DbC assertions. One
could also imagine a more liberal strategy, which allows
the usage of well-defined operations (e.g., System.out.

println, BufferedWriter, etc. in a Java environment). Such
method calls may facilitate debugging and testing both of the
software system and the attached DbC assertions.

B. Validation of External Input Data

As described in the previous section, data received from
external systems should not be validated by means of DbC
assertions. To check this guideline, it must be figured out,
whether a specific data source should be considered external.
Due to the fact that DbC technologies support function calls
within assertions, data can be fetched from arbitrary sources
as shown in the following listing.� �
private int userNumberInput() {
try {

return Integer.parseInt(new BufferedReader(new
InputStreamReader(System.in)).readLine());

} catch (Exception e) { return -1; }
}
@Requires({ "userNumberInput() != -1" })
public int add(int a, int b) {
return a + b;

}� �
Listing 3. Example for validating external input.

This code fragment applies Contracts for Java for spec-
ifying a precondition, which depends on data read from an
input stream.

In this case, it is obvious that the precondition does not
have any semantic relationship to the add method and should
therefore be avoided. However, in general there are situa-
tions, which are more complicated. For example, consider
a method that processes data taken from files or network
sockets. Depending on its functionality, the validation of
the received data may be part of the method’s contract
(and hence should be specified in a precondition) or may
define some separate processing, which is only required in
a specific context. Thus, an automatic compliance checker
for this guideline is conceivable only in limited settings.

C. Exception Handling with Assertions

In contrast to the previous guideline, this rule can be
recognized automatically. This can be achieved by analyzing
the syntactic structure of the DbC assertions.

D. Visibility of Member Variables and Data Types

In general, due to the modifiers for visibility of member
variables such as private, it could be derived automatically
whether a member variable used in a DbC assertion is really
meaningful to a local client.

Now suppose a client application, which invokes a Web
service. As mentioned before, such a client sees the data

57

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

types and its embedded members, which are published in
the WSDL of the Web service implementation. Hence, it
can be checked whether a DbC assertion contains a member
or a data type, which is not occurring in the WSDL. Hence,
the exporter component can fully check this guideline.

E. Subtyping

Finally, the fifth guideline demands the conformance to
the behavioral subtyping principle. In the previous section
we observed that most DbC technologies have chosen a
pragmatic approach by simply joining preconditions, post-
conditions, and invariants in derived classes (see, e.g., [23],
[4]). However, this simple rewriting does not really solve
the specification error.

In contrast, Code Contracts comes with a different strat-
egy. As mentioned in [3], this technology does not allow
adding any preconditions in derived types. For postcondi-
tions and invariants the behavior is similar to that of the
corresponding Java technologies.

It should be noted, that a full validation of the subtyping
principle is general not possible. Given two expressions
(e.g., preconditions), it is in general not decidable for Turing
complete DbC languages whether the one expression entails
the other.

F. DbC Infrastructure Extensions

We have investigated to what extent an automated recog-
nition of the proposed guidelines is possible. We have seen
that most of the guidelines can be checked by inspecting the
syntactic structure of the source code. So far, we have not
implemented such a “code inspector”. The focus of our work
is the elaboration of an overall solution architecture, which
identifies important components for, e.g., the extraction
of DbC expressions and the generation of contracts-aware
proxy objects.

A conformance checker for the proposed guidelines is not
part of this work. In fact, we believe that such a functionality
should be provided by concrete DbC technologies. The
designers of DbC implementations such as [3] and [4] can
use this information to improve their approaches. Basically,
we assume that a DbC compiler should produce warnings,
if guidelines are violated.

VII. CONTRACT POLICIES

Having investigated important guidelines for DbC asser-
tions, we now take a closer look to the exporter compo-
nent. As shown in Figure 1, this component creates the
interface contract for Web services, which is represented
by a WSDL description together with a contract policy. In
this section, we start with defining the building blocks of
contract policies, followed by a very short introduction to the
Object Constraint Language (OCL). In the final subsection,
examples are given.

A. Contract Assertions

We now define contract assertions and contract policies,
which allow the representation of constraints in some neu-
tral, programming language independent format. We apply
the well-known WS-Policy standard for the following rea-
sons: WS-Policy is supported by almost all Web services
frameworks and is the standard formalism for enriching
WSDL interfaces. With WS-PolicyAttachment [9], the prin-
ciples for including policies into WSDL descriptions are
specified.

WS-Policy defines the structure of the so-called assertions
and their compositions, but does not define their “content”.
To represent preconditions, postconditions, and invariants,
we need some language for formulating such expressions.
We decided to use the Object Constraint Language (OCL)
because of its high degree of standardization and sup-
port by existing OCL libraries such as the Dresden OCL
Toolkit [24].

To formally represent constraints with WS-Policy, we
introduce so-called contract assertions. The XML schema
as follows:� �
<xsd:schema ...>
<xsd:element name = "ContractAssertion"/>
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "Precondition"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "Postcondition"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "Invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "Name"

type = "xs:string"/>
<xsd:attribute name = "Context"

type = "xs:anyURI"
use = "required"/>

</xsd:complexType>
</xsd:schema>� �

Listing 4. XML schema for contract assertions.

A ContractAssertion has two attributes: a manda-
tory context and an optional name for an identifier. The
context attribute specifies the Web service to which the
constraint applies. To be precise, the value of the context
attribute is the name of the operation as specified in the
portType section of the WSDL. In case of an invariant,
the context attribute refers to the type defined in the types
section.

The body of a contract assertion consists of a set of OCL
expressions. Depending on the surrounding element type the
expression represents a precondition, a postcondition, or an
invariant. The expressions may refer to the parameter and
return values of an operation as well as to the attributes of
a type.

58

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. OCL Expressions

OCL is a formal language for specifying particular aspects
of an application system is a declarative manner. Typically,
OCL is used in combination with the Unified Modeling
Language (UML) [25] to further constrain UML models.
In OCL, “a constraint is a restriction on one or more values
of (part of) an object-oriented model or system” [26]. In our
context, OCL expressions will be used to specify constraints
for Web services.

We use the following features of OCL in contract asser-
tions:

• The basic types Boolean, Integer, Real, and
String.

• Operations such as and, or, and implies for the
Boolean type.

• Arithmetic (e.g., +, *) and relational operators (e.g., =,
<) for the types Integer and Real.

• Operations such as concat, size, and substring
for the String type.

• The collection types Set and Sequence.
• The construct Tuple to compose several values.
In order to impose restrictions on collections of objects,

OCL defines operations for collection types. Well-known
operations are:

• size(): returns the number of elements in a collection
to which the method applies.

• count(object): returns the number of occurrences
of object in a collection.

• includes(object): yields true if object is an
element in a collection.

• forAll(expr): yields true if expr is true for all
elements in the collection.

• select(expr): returns a subcollection containing
all objects for which expr is true.

• reject(expr): returns a subcollection containing
all objects for which expr is false.

These operations may be used to constrain admissible
values for collections occurring in the service’s WSDL.

Before we give some examples, we introduce the key-
words @pre and result, which can be used in post-
conditions. To impose restrictions on the return value of a
service, the latter keyword can be used. In a postcondition,
the parameters may have different values at invocation and
termination, respectively, of the service. To access the orig-
inal value upon completion of the operation, the parameter
must be equipped with the prefix @pre.

C. Examples

The first example considers the square root service from
Section III, extended by a postcondition. The XML fragment
in Listing 5 shows a formulation as a contract assertion. The
identifier d in the precondition refers to the parameter name
of the service as specified in the WSDL.

� �
<ContractAssertion context="SquareRootService">
<Precondition>
d >= 0

</Precondition>
<Postcondition>

result >= 0
</Postcondition>

</ContractAssertion>� �
Listing 5. Contract assertion for square root service.

The next example illustrates two features: i) the definition
of an invariant and ii) the usage of a path notation to
navigate to members and associated data values. Consider
the type CustomerData with members name, first name
and address. If address is represented by another complex
data type with members such as street, zip and city, we can
apply the path expression customer.address.zip to
access the value of the zip attribute for a particular customer
instance.

Whenever an instance of CustomerData is exchanged
between service provider and consumer, consistency checks
can be performed as shown in the following figure:� �
<ContractAssertion context="CustomerDataService">
<Invariant>
this.name.size() > 0

</Invariant>
<Invariant>
this.age >= 0

</Invariant>
<Invariant>
this.address.zip.size() >= 0

</Invariant>
</ContractAssertion>� �

Listing 6. An invariant constraint.

To demonstrate the usage of constraints on collections
we slightly extend the example. Instead of passing a single
customerData instance, assume that the service now
requires a collection of those instances. Further assume
that the parameter name is cds. In order to state that
the collection must contain at least one instance, we can
apply the expression cds->size() >= 1. With the help
of the forAll operator one can for instance impose the
constraint that the zip attribute must have a certain value:
cds->forAll(zip = 78120).

VIII. CODE CONTRACTS AND WCF

We now instantiate the solution architecture presented in
Section IV. We start with investigating Code Contracts for
WCF (this section); the following section applies Contracts
for Java to JAX Web services.

A. Exporting Contract Policies

In WCF, additional WS-Policy descriptions can be at-
tached to a WSDL via a so-called custom binding. Such
a binding uses the PolicyExporter mechanism also
provided by WCF. To export a contract policy as described in

59

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section IV, a class derived from BindingElement must
be implemented. The inherited method ExportPolicy
contains the specific logic for creating contract policies.
Details for defining custom bindings and applying the WCF
exporter mechanism are described elsewhere (e.g., [16]) and
hence are not elaborated here.

B. Creating Contract Assertions

Code Contracts expressions are mapped to corresponding
contract assertions. Thereby we distinguish between the
creation of i) the embedding context and ii) OCL expressions
for preconditions, postconditions, and invariants.

In Code Contracts, a precondition (resp. postcondition)
is specified by a Contract.Requires statement (resp.
Contract.Ensures). Thus, for each Requires and
Ensures statement contained in the Web service imple-
mentation, a corresponding element (i.e., Precondition
or Postcondition) will be generated. The context at-
tribute of the contract assertion is the Web service to which
the constraint applies.

According to the Code Contracts programming model, a
class invariant is realized by a method that is annotated with
the attribute ContractInvariantMethod. For such a
method, the element Invariant will be created; its con-
text is the type that contains the method.

Let us now consider the mapping from Code Contracts
expressions to corresponding ones of OCL. We first observe
that Code Contracts expressions may not only be composed
of standard operators (such as Boolean, arithmetic and
relational operators), but can also invoke pure methods, i.e.,
methods that are side-effect free and hence do not update
any pre-existing state. While the standard operators can be
mapped to OCL in a straightforward manner, user defined
functions (e.g., prime number predicate) typically do not
have counterparts in OCL and hence will not be translated
to OCL. For a complete enumeration of available OCL
functions see [10], [26].

The following table gives some examples for selected
features:

Code Contracts OCL
0 <= x && x <= 10 0 <= x and

x <= 10
x != null not x.isType

(OclVoid)
Contract.OldValue(param) @pre param
Contract.Result<T>() return
Contract.ForAll cds->forAll
(cds, cd => cd.age >= 0) (age >= 0)

Table 1. Mapping of Code Contracts expressions to OCL.

In the first two examples x denotes a name of an operation
parameter. They illustrate that there are minor differences
regarding the concrete syntax of operators in both languages.
The third example shows the construction how to access
the value of a parameter at method invocation. While Code

Contracts provide a Result method to impose restrictions
on the return value of an operation, OCL introduces the
keyword return. In the final example, cds represents a
collection; the expressions impose restrictions, which must
be fulfilled by all instances contained in the collection.

C. Collections and Functions

OCL provides a limited set of collection types and func-
tions. Table 2 shows how important collection types and
functions of C# will be mapped to OCL.

C# OCL
System.Collections.Generic.
HashSet(Of T)

Set

System.Array Sequence
System.Collections.Generic.List(
Of T)

Sequence

!System.Linq.Enumerable.Any() Collection.
isEmpty()

System.Collections.ICollection.
Count()

Collection.
size()

System.Collections.Generic.List.
Add(object)

Sequence
.append(
object)

int % int Integer.mod
(int)

System.Math.Max(double, double) Double.max(
double)

System.String.ToUpper() String.
toUpper()

System.String.Concat(String) String.
concat(
String)

System.String.Substring(intStart,
intOffset)

String.
substring
(intStart
- 1,

intStart +
intOffset)

Table 2. Mapping types and functions from C# to OCL.

It should be noted that there are some widely used
types, which are not supported by OCL. An example is a
type representing dates. Such a type is part of Java (e.g.,
java.util.Date) and C# (e.g., DateTime in the .NET
system namespace). In such a case we propose the following
strategy. We define a set of “virtual” OCL types (e.g.,
OCL_Date) together with the mapping rules between the
corresponding types in the programming languages such as
C# and Java. Thus, we can easily extend OCL by additional
types, which are typically used in DbC assertions and which
should be available at WSDL interface level. Of course, the
implementations of the mappings to OCL must be adapted
accordingly.

D. Importing Contract Assertions

As shown in Figure 1, the role of the importer com-
ponent is to construct contract-aware proxy objects. WCF
comes with the tool svcutil.exe that takes a WSDL
description and produces the classes for the proxy objects.

60

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note that svcutil.exe does not process custom policies,
which means that the proxy objects do not contain contract
assertions.

WCF provides a mechanism for evaluating custom poli-
cies by creating a class that implements the IPolicy-
ImporterExtension interface. In our approach, we
create such a class that realizes the specific logic for parsing
contract assertions and for generating corresponding Code
Contracts assertions. As the standard proxy class is a partial
class, the created Code Contracts assertions can be simply
included by creating a new file.

IX. CONTRACTS FOR JAVA FOR JAX WEB SERVICES

In this section, we consider a contract technology for Java.
The principles of this description can be carried over to other
Java based contracts technologies.

A. Exporting Contract Policies

In Contracts for Java [4], the preconditions, postcon-
ditions, and invariants are expressed with the annotations
Requires, Ensures, and Invariant, respectively. An
example has been given in Section III.

The reflection API of Java SE allows the inspection of
meta-data. In order to access the annotations of methods we
apply these API functions. Given a method (which can be
obtained by applying getMethods() on a class or an in-
terface), one can invoke the method getAnnotations()
to get its annotations. Such an annotation object represents
the contract expression to be transformed into an OCL
expression.

Before we consider in more detail this transformation,
we discuss how to create and embed contract policies
into WSDL descriptions. A Web services framework pro-
vides API functions for these tasks; these functions are
not standardized, though. As a consequence, we need to
apply specific mechanisms provided by the underlying Web
services frameworks.

Basically, the developer has to create a WS-Policy with
the assigned assertions. To include the policy file into the
service’s WSDL, one can use the annotation @Policy,
which takes the name of the WS-Policy file and embeds
it into the WSDL. Other frameworks create an “empty”
default policy, which can be afterwards replaced by the full
policy file. During deployment, the updated policy will be
embedded into the service’s WSDL.

B. Creating Contracts Assertions

In Contracts for Java, the expressions contained in the
@requires, @ensures, and @invariant annotations
are either simple conditions (e.g., d >= 0) or complex
terms with operators such as && and ||. As in Code
Contracts, the expressions may refer to parameter values
and may contain side-effect free methods with return type

boolean. Similar to the mapping of Code Contracts ex-
pressions, these methods will not be mapped to contract
assertions (see Section VIII-B).

The following table gives some hints how to map expres-
sions from Contracts for Java to OCL.

Contracts for Java OCL

0 <= x && x <= 10 0 <= x and x <= 10
x != null not x.isType(OclVoid)
old(param) @pre param
result return

Table 3. Mapping of selected Contracts for Java expressions to OCL.

Note that Contracts for Java currently does not provide
special support for collections (such as a ForAll operator).
Thus, a special predicate needs to be defined by the contract
developer.

C. Collections and Functions

As for C#, we will also give mappings from Java collec-
tion types and functions to OCL (see Table 4).

Java type OCL type
java.util.Set Set
java.util.Array Sequence
java.util.List Sequence

java.util.Collection.isEmpty() Collection.
isEmpty()

java.util.Collection.size() Collection.
size()

java.util.List.add(object) Sequence
.append(
object)

int % int Integer.mod
(int)

java.lang.Math.max(double, double
)

Double.max(
double)

java.lang.String.toUpperCase() String.
toUpper()

java.lang.String.concat(String) String.
concat(
String)

java.lang.String.substring(
intStart, intEnd)

String.
substring(
intStart -
1, intEnd)

Table 4. Data type mappings from Java to OCL.

D. Importing Contract Assertions

To obtain the (standard) proxy objects, tools such as
WSDL2Java are provided by Java Web services frame-
works. Given a WSDL file, such a tool generates Java
classes for the proxy objects. In order to bring the contract
constraints to the proxy class, we apply the following
strategy:

1) Import of the contract policy contained in the WSDL
description.

2) Enhancement of the proxy classes by Contracts for
Java expressions obtained from the contract policy.

61

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There is no standardized API to perform these tasks.
However, Java based Web services infrastructures provide
their specific mechanisms. A well-known approach for ac-
cessing the assertions contained in a WS-Policy is the
usage of specific importer functionality. To achieve this, one
can implement and register a customized policy importer,
which in our case generates @requires, @ensures,
and @invariant annotations for the contract assertions
contained in the WS-Policy.

The second step interleaves the generated expressions with
the standard proxy classes. A minimal invasive approach is
as follows: Instead of directly enhancing the methods in the
proxy class, we create a new interface, which contains the
required Contracts for Java expressions. The proxy objects
must only slightly be extended by adding an “implements”
relationship to the interface created. This extension can be
easily achieved during a simple post-processing activity after
WSDL2Java has been called.

X. EXAMPLE

As an example, consider a weather data Web ser-
vice as provided by the National Weather Service (NWS,
http://www.weather.gov). We take a closer look to
the NDFDgenByDay service, which is described as follows:
“Returns National Weather Service digital weather forecast
data. Supports latitudes and longitudes for the continen-
tal United States, Hawaii, Guam, and Puerto Rico only.
Allowable values for the input variable “format” are “24
hourly” and “12 hourly”. The input variable “startDate”
is a date string representing the first day (Local) of data to
be returned. The input variable “numDays” is the integer
number of days for which the user wants data.”

Many of the Web services provided by NWS require a
latitude and a longitude both specifying the geographical
point of interest. Depending on the service, additional pa-
rameters such as the start date and length of the forecast.
If called successfully, such a service will return a string,
which represents the weather forecast encoded in the Digital
Weather Markup Language (DWML).

The following listing shows the service’s interface with
WCF/C#.� �
using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface WeatherService {
[OperationContract]
string NDFDgenByDay(

decimal latitude, decimal longitude,
System.DateTime startDate,
int numDays,
string format);

}� �
Listing 7. WCF/C# interface of NDFDgenByDay.

With the help of the Code Contract technology we formal-
ize some of the constraints expressed in the documentation.
Listing 8 focusses on selected preconditions and postcondi-
tions of the service.� �
public class WeatherServiceImpl : WeatherService {
public string NDFDgenByDay(

decimal latitude,
decimal longitude,
System.DateTime startDate,
int numDays,
string format) {

Contract.Requires(latitude > 120 && ...);
Contract.Requires(longitude < -175 && ...);
Contract.Requires(numDays > 0 && numDays < 8);
Contract.Requires(format.Equals("12 hourly") ||

format.Equals("24 hourly"));
Contract.Ensures(

Contract.Result<string>().Length > 0);

// here follows the implementation
// of the core functionality
return ... ;
}
}� �

Listing 8. Excerpt of a NDFDgenByDay implementation.

Given this description of the service, our approach auto-
matically derives a representation of the DbC constraints.
In particular, it creates a contract assertion with an OCL
encoding of the constraints (see Listing 9).� �
<ContractAssertion context="NDFDgenByDay">
<Precondition>

latitude > 120 && ...
</Precondition>
<Precondition>

longitude < -175 && ...
</Precondition>
<Precondition>

numDays > 0 && numDays < 8
</Precondition>
<Postcondition>

result.size() > 0
</Postcondition>

</ContractAssertion>� �
Listing 9. Contract assertion for the weather service.

As described above, this contract assertion is packaged
into a contract policy, which will be attached to the weather
service’s WSDL. This interface description is used to gen-
erate the contract-aware clients for .NET/WCF (cf. Section
VIII-D) and JAX (cf. Section IX-D).

XI. LIMITATIONS AND OPEN ISSUES

We have already mentioned that contract languages have
a higher expressivity than OCL. They in particular allow the
usage of user-defined predicates implemented, e.g., in Java
or C#. As OCL is not a full-fledged programming language,
not every predicate can be mapped to OCL. In other words,
only a subset of the constraints will be available at interface
level. At first sight, this seems to be a significant limitation.
However, the role of preconditions and postconditions is

62

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

usually restricted to perform (simple) plausibility checks on
parameter and return values. OCL has been designed in this
direction and hence supports such kinds of functions.

Although WS-Policy [8] and WS-PolicyAttachment [9]
are widely used standards, there is no common API to export
and import WS-Policy descriptions. As mentioned before,
Web services infrastructures have their specific mechanisms
and interfaces how to attach and access policies. Thus, the
solutions presented in this paper must be slightly adapted
if another Web services framework should be used. For
instance, the exporter and importer classes for processing
contract policies must be derived from different interfaces;
also the deployment of these classes must be adapted.

Finally, we observe that the exception handling must be
changed, if contract policies are used. This is due to the fact
that the contract runtime environment has the responsibility
to check the constraints. If, e.g., a precondition is violated,
an exception defined by the contract framework will be
raised, that contains a description of the violation (e.g., that
the value of a particular parameter is invalid). This must be
respected by the client developer—at least during the test
phase of the software application.

XII. RELATED WORK

There are several approaches that increase the expres-
sivity of WSDL towards the specification of constraints.
An overview of different constraint validation approaches
is given in Froihofer [27] together with an evaluation of
different implementation strategies ranging from in-place
injection to wrapper- and compiler-based approaches. In
particular, the impact on performance was investigated. In
[28], Web services are enhanced by using DbC expressions
to add behavorial information. In contrast to our work, the
DbC assertions are not extracted from the Web service’s
implementation.

With WS-PolicyConstraints ([11], [29]) there is a domain
independent, multi-purpose assertion language for formal-
izing capabilities and constraints as WS-Policy assertions.
Basically, this language could be used to define code contract
constraints. However, since WS-PolicyConstraints does not
have an implementation, we use OCL expressions within
contract assertions.

There are some results originating from the service moni-
toring area that are related to our approach. A communality
is the usage of formal languages for specifying additional
requirements for services not expressible within WSDL.
Languages such as WS-Col (cf. [30]), WS-Policy4MASC
(cf. [31]) and annotated BPEL (cf. [32]) are optimized for
monitoring messages and support, for example, message
filtering, logging and correlation. However, this is not the
target of our approach. Instead, our focus lies on the usage
of the standardized language OCL for the specification of
constraints.

The formalization of security constraints for Web services
is a hot topic since the early days of Web services. WS-
Security [33] and WS-SecurityPolicy [12] are two well-
known and widely used specifications for imposing con-
straints addressing encryption and attachment of signatures
for Web services. These approaches do not compete with
our approach, but can be applied in addition.

XIII. CONCLUSIONS

In this paper, we have elaborated a solution architecture
that brings design by contract to Web services. Through
our approach, important constraints (i.e., preconditions and
postconditions for methods as well as class invariants) are no
longer ignored, but will be included into the service’s WSDL
interface description. As a consequence, service consumers
not only see the parameter types required to successfully
invoke the Web service, but also restrictions imposed on the
types such as range restrictions.

We would like to stress two important features of our
approach. First, our solution is based on well-known and
widely used standards such as WS-Policy and the Object
Constraint Language. Hence, no proprietary frameworks are
required to implement the solution architecture. Second, in
order to show the feasibility of our approach, we have instan-
tiated our architecture with two different DbC technologies
and Web services frameworks.

As mentioned in Sections V and VI, the proposed guide-
lines can be viewed as quality checker. This means that only
those expressions should be contained in DbC assertions,
which are inline with the design by contract principle.

ACKNOWLEDGMENTS

We would like to thank Ahmed Al-Moayed, Varun Sud,
and the anonymous reviewers for giving helpful comments
on an earlier version. This work has been partly supported
by the German Ministry of Education and Research (BMBF)
under research contract 17N0709.

REFERENCES

[1] B. Hollunder, “Deriving interface contracts for distributed ser-
vices,” in The Third International Conferences on Advanced
Service Computing, 2011, p. 7.

[2] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25,
no. 10, pp. 40 –51, oct 1992.

[3] Microsoft Corporation, “Code contracts user manual,”
http://research.microsoft.com/en-us/projects/contracts/-
userdoc.pdf, last access on 06/10/2012.

[4] N. M. Le, “Contracts for java: A practical framework for
contract programming,” http://code.google.com/p/cofoja/, last
access on 08/15/2011.

[5] Java Modeling Language. http://www.jmlspecs.org/, last ac-
cess on 06/10/2012.

63

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl/, last access on 06/10/2012.

[7] J. Löwy, Programming WCF Services. O’Reilly, 2007.

[8] Web Services Policy 1.5 - Framework. http://www.w3.org/-
TR/ws-policy/, last access on 06/10/2012.

[9] Web Services Policy 1.5 - Attachment. http://www.w3.org/-
TR/ws-policy-attach/, last access on 06/10/2012.

[10] Object Constraint Language Specification, Version 2.2,
http://www.omg.org/spec/OCL/2.2, last access on 06/10/2012.

[11] A. H. Anderson, “Domain-independent, composable web
services policy assertions,” in POLICY ’06: Proceedings of
the Seventh IEEE International Workshop on Policies for
Distributed Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 149–152.

[12] WS-SecurityPolicy 1.3. http://docs.oasis-open.org/ws-
sx/wssecuritypolicy/v1.3, last access on 06/10/2012.

[13] A. Erradi, V. Tosic, and P. Maheshwari, “MASC - .NET-
based middleware for adaptive composite web services,” in
IEEE International Conference on Web Services (ICWS’07).
IEEE Computer Society, 2007.

[14] E. Hewitt, Java SOA Cookbook. O’Reilly, 2009.

[15] B. Meyer, Object-Oriented Software Construction (Book/CD-
ROM) (2nd Edition), 2nd ed. Prentice Hall, 3 2000.
[Online]. Available: http://amazon.com/o/ASIN/0136291554/

[16] B. Hollunder, “Code contracts for windows communication
foundation (WCF),” in Proceedings of the Second Interna-
tional Conferences on Advanced Service Computing (Service
Computation 2010). Xpert Publishing Services, 2010.

[17] A. Goncalves, Beginning Java EE 6 Platform with GlassFish
3. Apress, 2009.

[18] D. Jayasinghe and A. Afkham, Apache Axis2 Web Services.
Packt Publishing, 2011.

[19] B. Meyer, Eiffel : The Language (Prentice Hall Object-
Oriented Series), 1st ed. Prentice Hall, 10 1991. [Online].
Available: http://amazon.com/o/ASIN/0132479257/

[20] B. H. Liskov and J. M. Wing, “Behavioral subtyping using
invariants and constraints,” Tech. Rep., 1999.

[21] Y. Feldman, O. Barzilay, and S. Tyszberowicz, “Jose: Aspects
for design by contract80-89,” in Software Engineering and
Formal Methods, 2006. SEFM 2006. Fourth IEEE Interna-
tional Conference on, sept. 2006, pp. 80 –89.

[22] B. Stroustrup, C++ Programming Language, The (3rd Edi-
tion), 3rd ed. Addison-Wesley Professional, 6 1997.

[23] G. T. Leavens, “Jml’s rich, inherited specifications for be-
havioral subtypes,” in Formal Methods and Software Engi-
neering: 8th International Conference on Formal Engineering
Methods (ICFEM). Springer-Verlag, 2006.

[24] Dresden OCL: OCL support for your modeling language,
http://www.dresden-ocl.org/, last access on 06/10/2012.

[25] Unified Modeling Language (UML), Infrastructure,
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF last
access on 06/10/2012.

[26] J. Warmer and A. Kleppe, The Object Constraint Language:
Getting Your Models Ready for MDA. Addison Wesley,
2003.

[27] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka,
“Overview and evaluation of constraint validation approaches
in Java,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. IEEE Computer
Society, 2007.

[28] M. L. Reiko Heckel, “Towards contract-based testing of web
services,” Electronic Notes Theoretical Computer Science,
vol. 82, pp. 145–5156, 2005.

[29] “WS-PolicyConstraints: A domain-independent web services
policy assertion language,” Anderson, Anne H., 2005.

[30] P. P. Luciano Baresi, Sam Guinea, “WS-Policy for service
monitoring,” in Technologies for E-Services. Springer, 2006.

[31] A. Erradi, P. Maheshwari, and V. Tosic, “WS-Policy based
monitoring of composite web services,” in Proceedings of
European Conference on Web Services. IEEE Computer
Society, 2007.

[32] S. G. Luciano Baresi, Carlo Ghezzi, “Smart monitors for
composed services,” in Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC 2004),
2004, pp. 193–202.

[33] WS-Security. http://www.oasis-open.org/committees/wss, last
access on 06/10/2012.

64

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Implementation Approach for Inter-Cloud Service Combination

Jie Tao, Daniel Franz, Holger Marten, and Achim Streit
Steinbuch Center for Computing

Karlsruhe Institute of Technology, Germany
{jie.tao, holger.marten, achim.streit}@kit.edu, daniel2712@gmx.de

Abstract—Increasing cloud platforms have been developed
in the recent time and are provisioning different services to
customers. The existence of different cloud provides offers the
users an opportunity of combining different cloud services
to run their scientific workflows with lower cost and higher
performance. In this work we developed a framework to
allow combining individual services of different clouds tosolve
complex problems with efficiency. The framework contains a
workflow management system that processes users workflow
descriptions and starts the related services automatically on
the target clouds. A data management component takes care of
the data exchange between the underlying clouds. Moreover,a
prediction model computes the potential cost and performance
of running a workflow on existing clouds, giving users help
in selecting the execution target for better performance/cost
effect.

Keywords-Service Composition, Cloud Computing, Workflow
Engine, Cloud Interoperability

I. I NTRODUCTION

Cloud Computing is an emerging technology for pro-
viding IT capacities as services. Increasing number of
customers is using the resources, such as computational
power, software, storage, and network, offered by various
cloud providers for their daily computation requirement.
However, inter-cloud computing is still a novel topic. We
developed a workflow framework to enable the interaction
across different cloud infrastructures [1].

The service concept has been proposed for several
decades. However, the term of Cloud Computing was known
first in 2008 as Amazon published its Elastic Compute
Cloud (EC2) [2] and Simple Storage Service (S3) [3]. Cloud
Computing became thereafter a hot topic in both industrial
and academic areas. There exist different definitions of
Cloud Computing, including our earlier contribution [4].
Recently, the National Institute of Standards and Technology
(NIST) provides a specific definition: Cloud Computing
is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction [5].

A specific feature of Cloud Computing is that computation
and storage resources are provided as services. In this
way, applications/software can be executed or maintained on
the cloud without the necessity of operating an own local

infrastructure. Such a computing model significantly reduces
the cost for resource and software management, which is
clearly an attractive benefit for small business companies
and research groups. In addition to cost-efficiency, Cloud
Computing shows other advantages such as on-demand re-
source provision, supporting legacy codes, service reliability,
easy management, and so on. Therefore, more and more
cloud infrastructures are established and increasing numbers
of users are joining the cloud world.

The fact that different cloud providers exist brings a
chance to users: combining different cloud services to effi-
ciently solve a complex problem. However, it also introduces
difficulties for deciding to choose which cloud in case
of multiple identical services. Depending on the size and
requirement of tasks as well as the hardware configuration
of clouds the tasks may perform better on some platforms
than on others.

The goal of this work is to design and prototypically
implement a management system that combines different
cloud services to run a user-defined workflow with an
additional functionality of helping users select the cloud
providers.

A workflow is a methodology that splits the computation
of a complex problem into several tasks. A well-known
scenario is to run scientific experiments on the Grid [6],
where an entire computation is partitioned and distributed
over several computing nodes with a result of being able
to process large data sets. This scenario can also occur
on the cloud when scientific applications move to them.
Furthermore, there are other scenarios on the cloud, where
users require the workflow support. For example, users may
compose the services provided by different clouds to benefit
from their diverse functionality and to achieve a better
performance/cost ratio.

Currently, it is possible to run a workflow on the cloud
[7]. However, running workflows is still limited to a single
cloud platform. The partitions (called tasks) of a workflow,
however, may have different behavior on different clouds,
indicating a requirement of running workflows across several
cloud platforms.

To enable this execution mode we developed a workflow
management system with a workflow engine, a data man-
agement component, and a mathematical model for perfor-
mance and cost prediction. In difference to Grid workflow

65

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implementations that target on a unified interface [8], a
cloud workflow system has to cope with different interfaces
and features of individual clouds. In order to enable the
combination of single workflow tasks running on various
clouds, we implemented a cloud abstraction layer to deliver
common access interfaces. The developed framework was
tested with several sample workflows.

The remainder of the paper is organized as following.
Section II gives a short introduction of Cloud Computing,
together with some related work. Section III analyzes the
requirement on a cloud workflow framework and presents
the designed software architecture. Section IV describes our
initial prototypical implementation of the workflow frame-
work in detail. Section V shows the experimental results
with sample workflows. The paper concludes in Section VI
with a short summary and several future directions.

II. BACKGROUND AND RELATED WORK

Cloud Computing introduces a new computing paradigm.
This paradigm uses virtualization as its fundamental technol-
ogy. A traditional computer system runs applications directly
on the complete physical machine. Using virtualization, ap-
plications are executed on virtual machines (VM), with each
VM typically running a single application and a different
operating system.

Cloud Computing distinguishes itself from other comput-
ing paradigms, like Grid Computing, Global Computing, and
Internet Computing, in the following aspects:

• Utility computing model: users obtain and employ com-
puting platforms in computing clouds as easily as they
access a traditional public utility (such as electricity,
water, natural gas, or telephone network).

• On-demand service provisioning: computing clouds
provide resources and services for users on demand.
Users can customize and personalize their computing
environments later on, for example, software instal-
lation, network configuration, as users usually own
administrative privileges.

• QoS guaranteed offer: the computing environments
provided by computing clouds can guarantee QoS for
users, e.g., hardware performance like CPU speed, I/O
bandwidth and memory size. The computing cloud
renders QoS in general by processing Service Level
Agreement (SLA) with users.

• Autonomous system: the computing cloud is an au-
tonomous system and it is managed transparently to
users. Hardware, software and data inside clouds can
be automatically reconfigured, orchestrated and con-
solidated to present a single platform image, finally
rendered to the users.

• Security: the host system monitors the communication
to the VMs, restricting the number of successful at-
tacks. Even if an attack is effective, the attack could

only compromise one VM, while the other applications
and operating systems maintain a secure state.

• Availability: VMs can be easily migrated increasing the
system’s fault tolerance and availability.

Currently established cloud infrastructures mainly deliver
three kinds of services: Infrastructure as a Service (IaaS),
Software as a Service (SaaS), and Platform as a Service.
IaaS targets on an on-demand provision of the computa-
tional resources. The commercial computing cloud Amazon
EC2 and its non-commercial implementation Eucalyptus [9]
are well-known examples of IaaS-featured cloud platforms.
SaaS allows the consumers to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface [5]. An example of SaaS is Web-based email.
PaaS targets on an entire platform including the hardware
and the application development environment. Google App
Engine [10] and Microsoft Azure [11] are examples of PaaS-
featured clouds.

The concept of resource sharing in Cloud Computing is
similar to Grid Computing. Cloud Computing allows on-
demand resource creation and easy access to resources,
while Grid Computing developed standards and provides
various utilities. Table I shows several major features of both
computing paradigms. A detailed comparison between Grid
and Cloud Computing can be found in [12].

One utility implemented on the Grid is the workflow
management system. Production Grids, such as WLCG [13],
TeraGrid [14], and EGEE [15], commonly support the exe-
cution of scientific workflows on the underlying resources.
There are also various implementations of workflow engines
on the Grid. Examples are ASKALON [16], Unicore [17],
Kepler [18], GridAnt [19], Pegasus [20], and GridFlow [21].
An overview of these workflow systems is presented in [22].

The research work on workflow management systems on
the cloud has been started. A well-known project is the
Cloudbus Toolkit [23] that defines a complete architecture
for creating market-oriented clouds. A workflow engine is
also mentioned in the designed architecture and described
in detail in [24]. The authors analyzed the requirement and
changes needed to be incorporated when moving scientific
workflows to clouds. They also described the visions and
inherent difficulties when a workflow involves various cloud
services.

In the sense of service combination, there are several
efforts on automated processes [25]–[27]. For service com-
position on the cloud research issues have been discussed
[28], [29] and practices have been conducted as well [30]. In
addition, there are also activities on preparing and executing
workflows [31] on such composite services. Recently, sci-
entists proposed the idea of “federated clouds” [32], which
can effectively utilize several clouds to enhance the QoS.

Existing work on cloud workflow systems is either in the
research phase or an implementation work within a single

66

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
CLOUD VS. GRID: A FUNDAMENTAL COMPARISON.

Cloud Computing Grid Computing
Objective Provide desired computing platform Resource sharing

via network enabled services Job execution
Infrastructure One or few data centers Geographically distributed,

heterogeneous/homogeneous resources heterogeneous resources,
under central control no central control, VO
Industry and business Research and academic organization

Middleware Proprietary, several reference implementationsWell developed, maintained,
exist, e.g., Amazon and documented

Application Suited for general applications Special application domains
like High Energy Physics

User interface Easy to use/deploy, no complex user Difficult to use and to deploy
interface required Need new user interface,

e.g., commands, APIs, SDKs, services
Business model Commercial: pay-as-you-use Publicly funded: use for free
Enabling technology Virtualization, SaaS, Web 2.0, Web service, ...HPC, Grid infrastructure, middleware
QoS Possible Little support
On-demand provisioning Yes No

cloud platform. The work presented in this paper aims at
a prototypical implementation of a workflow engine that
enables the execution of a workflow across different cloud
platforms thereby using their individual services. Such a tool
is currently still not available. Our goal is to simply provide a
new functionality rather than to investigate a comprehensive
solution. Therefore, we majorly focus on the design of an
architecture and a prototypical implementation with basic
functionalities. Our main contributions are the workflow
engine that enables inter-cloud service combination and the
proposal of a prediction model for estimating the execution
time of tasks on different clouds.

III. A RCHITECTUREDESIGN

Grid Computing has been investigated for more than a
dozen of years and established standards. Cloud Computing,
in contrast, is a novel technology and has not been standard-
ized. The specific feature of each cloud brings additional
challenges to implementing a workflow engine on clouds.

A. Design Challenges

Grid workflows may be executed in several resource
centers but the involved resources are contained in a single
Grid infrastructure and hence can be accessed with the
same interface. Cloud workflows, however, run usually on
different clouds.

Figure 1 shows a sample scenario of running workflows
on clouds. While some tasks may be executed on the same
cloud, e.g., cloud C1, some others may run on different
cloud platforms. The data are transferred from one cloud
to another in order to deliver the output of one task to
other tasks. Unfortunately, different clouds use also different
data format. Furthermore, existing clouds have their own
access interfaces. A standard, called Open Cloud Computing
Interface (OCCI) [33], has been proposed and several imple-
mentations are currently available. However, this standard is

C6

C1

C2 C3 C4

C5

Figure 1. A sample execution scenario of cloud workflows.

only supported by a few cloud infrastructures. To link the
services of different clouds, an abstraction layer is therefore
required for providing an identical view with the data and
interfaces of the target cloud infrastructures.

Additionally, the service price varies across cloud
providers. Cloud users usually expect an optimal perfor-
mance vs. cost tradeoff: i.e., acquiring the best service
with the lowest payment. While increasing number of cloud
infrastructures is emerging, there may be several choices to
run a workflow task. A prediction model, which is capable
of estimating the performance and cost of an execution on
a specific cloud, can help users select an appropriate cloud
for their tasks.

Based on the aforementioned observations, we designed
a software architecture for the proposed cloud workflow
engine and defined a performance-cost model. The following
two subsections give some details.

B. Software Architecture

Figure 2 demonstrates the software architecture of the pro-
posed workflow engine for Cloud Computing. It contains a

67

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Mediator

 Cloud API
Example: RunNode(User, ResourceID)

RunServer(UserID, RamSize, CPUCount)

StartNode(UserHandle, NodeHandle, ImageHandle)

Access Interface

 Cloud A

Workflow Runtime

 Cloud B

Access Interface

Figure 2. Software architecture of the workflow engine.

workflow runtime system, the cloud API, and the underlying
cloud infrastructures. Users submit their workflows using
a client side interface. Based on the description of tasks
in a workflow, the execution time of the tasks on different
clouds is predicted. Using this information users extend the
workflow description by specifying a target cloud for each
task. In the following, the workflow runtime handles the
execution of tasks on the clouds and delivers the results to
the users.

An important component in the architecture is the cloud
abstraction layer, shown in the middle of Figure 2. The task
of this layer is to implement a unified API for accessing
different clouds. The runtime environment of the workflow
engine uses this API to run the tasks in a workflow.

The abstraction layer defines common functions for cloud
activities. It also contains a mediator that translates thefunc-
tions in the unified API to concrete calls to the underlying
cloud platforms. For example, the function RunNode() is
provided for running a virtual machine instance on any IaaS-
featured cloud. During the runtime the mediator replaces
the function by a cloud specific one, in this example, either
StartNode for cloud A or RunServer for cloud B. It also
maps the function parameters in the functions of the unified
API to the functions of the APIs of individual clouds. Fur-
thermore, the mediator handles the authentication/security
issues.

C. Prediction Model

Cloud users not only take care of the execution perfor-
mance but pay more attention to the payment for using
resources on the clouds. As an initial design, we bring the
two most important metrics, application execution time and
the cost, into the prediction model. Workflows in this work
are defined as: A workflow is comprised of several tasks,
each is combined with an application/software that is either

executed on an IaaS-cloud or hosted as a Web service on a
SaaS/PaaS-cloud.

The execution time of a workflow (EoW in short) can be
calculated with the following mathematical form:

EoW = EoT1 + DT1 + EoT2 + DT2 + + EoTn (1)

whereEoTi is the execution time of taski andDTi is the
time for transferring data fromTi to Ti+1. Note that we
ignore the time to start a service on the cloud as well as
data transfers from and back to the customer environment.

The execution time of a single task depends on the
features of the host machine on which the task is running.
Roughly, it can be presented with:

EoT = f(Scomp, Fcpu, Smem, SI/O) (2)

where the parameters are size of the computation, frequency
of CPU, size of memory and cache, and size of the input/out-
put data. For parallel applications, an additional parameter,
the communication speed, has to be considered.

The price of a service on a cloud is usually determined by
the node type and the location of the resource. Each cloud
provider maintains a price table, where concrete payment (in
US$ per hour) is depicted. Based on this table, we calculate
the cost of a workflow task with:

CoT = f(EoT, $/h) (3)

The cost of executing a workflow is then calculated as
following:

CoW = CoT1 + CoT2 + + CoTn (4)

The functions for computing the execution time of a
task can be designed differently with a tradeoff between
complexity and accuracy. We implemented a simple model,
which is detailed in the next section.

IV. I NITIAL IMPLEMENTATION

Based on the designed architecture described above, we
implemented a prototype of the cloud workflow framework.
This initial implementation focused on the following com-
ponents:

• Cloud abstraction
• Runtime execution environment and data management
• Prediction model

A. Cloud Abstraction

To run a workflow on diverse clouds, an abstraction layer
is required for the purpose of hiding the different access
interface each cloud presents to the users. We use jClouds
[34] as the base of this work. jClouds provides a framework
for transferring programs and their data to an IaaS-cloud and
then starting an instance to execute the program on the cloud.
The current release of jCloud can connect several IaaS-
clouds including Amazon EC2. There are other IaaS cloud

68

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

abstraction libraries, such as libcloud [35] and deltacloud
[36]. We use jCloud as the base of this work due to its
feature of supporting SSH and a number of cloud providers.

jClouds defines an API for accessing the underlying
IaaS platforms. For SaaS/PaaS-featured clouds, however,
there exists currently no implementation for an abstraction
layer. Our main task in extending jClouds is to develop an
S+P abstraction that interacts with SaaS-featured and PaaS-
featured clouds.

The S+P abstraction contains two kinds of functions, GET
and POST, for transferring data and service requests. Their
input and output are defined in XML documents. This is
identical to all clouds. Each cloud, however, requires specific
input and output formats as well as different parameters for
service requests. Our solution is to use XSL Transformation
(XSLT) [37] to map the input and output of the service
functions to the required data format and service parameters.

XSLT is a part of the Extensible Stylesheet Language
(XSL) family and usually adopted to transform XML doc-
uments. An XSLT file describes templates for matching the
source document. In the transformation process, XSLT uses
XPath, an interface for accessing XML, to navigate through
the source document and thereby to extract information or to
combine/reorganize the separate information elements. For
this work an XSLT document is introduced for some data
formats, like SOAP. For others, such as binary and JSON
(JavaScript Object Notation), a data transformation is not
needed.

SaaS/PaaS services are started via HTTP-based protocols.
A service request is sent to the service URL via GET/POST.
Information like Cookies, SOAP actions and other parame-
ters can be wrapped in the message head. The content of the
call is either contained in the body of the HTTP message
in case of POST calls or coded in the URL in case of GET
calls.

The process of invoking a SaaS or PaaS service with the
developed S+P abstraction contains the following steps:

• Processing the input data of the service request.
• Constructing a URL for the service. Information about

Cookies, SOAP actions, and other parameters, is con-
tained in the head of the message, while the body of
the message defines the request.

• A service request is sent to the aforementioned URL,
together with the data.

• The results of the service are downloaded as raw data.
For the data formats like SOAP, where the results are
coded, an XSLT document is defined to extract the
useful information.

B. Workflow Execution and Inter-Cloud Data Transfer

In order to allow an easier understanding of the tasks for a
cloud workflow execution engine, we take a simple workflow
as an example. Figure 3 demonstrates the sample workflow
consisting of eight tasks, T-a to T-f, which are combined

T−f

T−d1

T−d2

SaaS

SaaS

T−d3

IaaS

T−e

SaaSIaaS

 T−c

T−b

SaaS

IaaS

 T−a

IaaS

Figure 3. A simple cloud workflow.

through a respective data flow. A task can be a program or
an available Web service on a SaaS or PaaS cloud. For the
former, the program is executed on an IaaS cloud, while
for the latter the cloud provides resources for running the
software. The workflow and its tasks are defined by the user
in the following XML file:

<w o r k f l o w d e f i n i t i o n>
< t a s k name=” a ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” i n ” />
<o u t p u t f i l e t y p e =” some / t ype ” name=” oa ” />

< / t a s k>
< t a s k name=”b ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” oa ” />

<o u t p u t f i l e t y p e =” some / t ype ” name=” ob ” />

< / t a s k>
< t a s k name=” c ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” oa ” />

<o u t p u t f i l e t y p e =” some / t ype ” name=” oc ” />

< / t a s k>
< t a s k name=” d1 ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” ob ” />
<o u t p u t f i l e t y p e =” some / t ype ” name=” od1 ” /

>

< / t a s k>
< t a s k name=” d2 ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” ob ” />
<o u t p u t f i l e t y p e =” some / t ype ” name=” od2 ” /

>

< / t a s k>
< t a s k name=” d3 ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” ob ” />
<o u t p u t f i l e t y p e =” some / t ype ” name=” od3 ” /

>

< / t a s k>
< t a s k name=” e ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” oc ” />
<o u t p u t f i l e t y p e =” some / t ype ” name=” oe ” />

< / t a s k>
< t a s k name=” f ”>

< i n p u t f i l e t y p e =” some / t ype ” name=” od1 ” />

< i n p u t f i l e t y p e =” some / t ype ” name=” od2 ” />

< i n p u t f i l e t y p e =” some / t ype ” name=” od3 ” />

< i n p u t f i l e t y p e =” some / t ype ” name=” oe ” />

<o u t p u t f i l e t y p e =” some / t ype ” name=” of ” />
< / t a s k>

69

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<workf low from=” a ” t o =”b” />
<workf low from=” a ” t o =” c ” />
<workf low from=”b ” t o =” d1 ” />
<workf low from=”b ” t o =” d2 ” />
<workf low from=”b ” t o =” d3 ” />
<workf low from=” c ” t o =” e ” />
<workf low from=” d1 ” t o =” f ” / >

<workf low from=” d2 ” t o =” f ” / >

<workf low from=” d3 ” t o =” f ” / >

<workf low from=” e ” t o =” f ” / >

< / w o r k f l o w d e f i n i t i o n>

The workflow definition mainly describes the input and
output of each task and thereby also specifies the data flow
between the tasks. In the concrete example the root element
workflowdefinitionis specified by the tasks to be executed,
where each task is combined with an input node and an
output node. The last taskf, for example, has four input
nodes describing the source of its input as shown in Figure
3. The last few lines of the XML document define the data
flow between individual tasks, with help of theworkflow
element. The data flow from task a to task b and task c,
from task b to task d1, task d2, and task d3, and so on.

The tasks, however, are not defined in the workflow
document but described in a separate configuration file. An
example is a task for extracting texts from a video. This
task is used in a language translation workflow that will
be introduced in the next section. The following XML file
defines this task:

< t a s k name=” v i d e o t o t e x t ” t ype =” IaaS ”>

<b i n a r y name=” j u l i u s ” p a r a l l e l =”
s e q u e n t i a l ”>

< i n p u t t ype =” v i deo / f l v ” param=” ” />
<o u t p u t t ype =” t e x t / p l a i n ” param=” ” />

< / b i n a r y>
< / t a s k>

In the example, the IaaS taskvideototextis defined with a
binary calledjulius that will be sequentially executed on an
IaaS cloud. The type of its input and output is also specified
in the XML file.

The primary work of the workflow execution engine is
to interpret the workflow definition and starts each of the
tasks on a cloud, based on the configuration XML files. In
addition, the engine is also responsible for transferring the
result of one task to its successor and downloading the final
results to the user. The first task is performed within a single
cloud and contains the following steps, which are all covered
by the cloud abstraction described above:

• Transferring data (program or service parameters) to
the target cloud.

• Executing the program on an IaaS cloud or invoking
the Web service on the SaaS or PaaS cloud. In the case
of IaaS, a virtual machine instance has to be started
and some scripts are executed for configuration and
program installation.

• Extracting the results out of the cloud.
To deliver the output of one task to the next task as

input, the workflow execution engine has to interact with
both participating clouds and to handle the inter-cloud com-
munication. We implemented mechanisms for the following
data transfers:

• IaaS to SaaS/PaaS: We use SSH to transfer data from
the IaaS node to the local host and then use HTTP to
deliver the data further to the SaaS/PaaS request;

• SaaS/PaaS to SaaS/PaaS: Data are extracted from the
HTTP stream, stored temporally on the host, and then
applied to the next HTTP request;

• SaaS/PaaS to IaaS: Locally storing the data, which
are again extracted from an HTTP stream, and then
transferring them to the IaaS node via SSH;

• IaaS to IaaS: We transfer the data directly from one
IaaS node to the other that is potentially located on a
different cloud. This is an optimization for removing
the overhead caused by an intermediate storage.

Finally, the result of the entire execution is downloaded
to the user or stored on the last cloud.

C. Performance & Cost Prediction

The proposed prediction model, as described in the pre-
vious section, involves several hardware parameters that can
be only acquired at the runtime by accessing the cloud
resources. For the prototypical implementation, we devel-
oped a simple model without using the runtime resource
information of the underlying infrastructures.

Our model is based on the execution history of similar
tasks, which are defined as tasks executing the same pro-
gram. The execution history is stored in a user database that
contains the following main data structures:

• tasks: identifies each individual task with a unique ID
and the associated program.

• I/O: defines the size of input and output files of tasks.
• node class: describes a computing node with node ID,

node name, cloud name, payment cycle, and startup
time.

• execution: describes an execution of a task on a
node with several attributes including program name,
node class, size of I/O, and execution time.

• node price: gives the per-cycle-price of the computing
nodes.

• node location: gives the country and continent the node
is located.

We use an SQLite [38] database system to store the
data structures. Figure 4 shows a screenshot of the SQLite
database browser, where the data structures and the stored
data are presented. The database browser allows us to simply
modify the data items and to view the data. As examples,
Figure 5 and 6 show the node and execution data collected
during our tests. The browser depicts the data in the form
of tables.

70

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. The data structures in an SQLite database.

Figure 5. Node class information stored in the SQLite database.

The concrete table in Figure 5 lists all possible computing
nodes on the Amazon EC2. EC2 uses a unit of one hour to
calculate the cost of running instance leading to a payment
cycle of 3600 (in seconds). We tested three different EC2
nodes and the startup time of these nodes can be seen in the
last column of the table.

We also tested different tasks on various computing nodes.
The table in Figure 6 depicts the execution information of
the first twelve tests, with the data size of the task on the

Figure 6. Task execution information stored in the SQLite database.

first column, the ID of the target computing node on the
second, the task ID on the third, the number of nodes used
for the test on the fourth, and the execution time on the
last column. The sixth line, for example, shows that task 2
with an input data of 65964 bytes was executed on two EC2
“c1.medium” nodes (node ID 8) in 47 seconds.

For each task in a new user-defined workflow, the potential
execution time is calculated for all registered clouds and
their associated computing nodes. The payment is then
calculated according to the price published by the cloud
providers. The first five{cloud, node} pairs with the best
performance vs. cost tradeoff are shown to the users to help
them select the optimal target platforms.

We use the following algorithm to predict the execution
time of a new task presented witht(p,s), where the first
attribute is the program to be executed ands is the size of
the input data.

First, the average execution time of the program on a node
ns is calculated with the following equation:

t(p,ns) =

n∑

i=1

ti(p,ns,si)

n

whereti(p,ns,si) is the time measured with the recorded
ith execution of programp on nodens with a data size ofsi,
andn is the number of executions. Here,t(p,ns) is associated
with the average data sizes(p,ns), which is calculated in a
similar way. The execution time of the new taskt(p,s) can
then be estimated with

t(p,s) =

s
s(p,ns)

· t(p,ns)

Wdata

71

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
AN EXAMPLE OF EXECUTION HISTORY.

Tests Size of data (KB) Execution time (seconds)
1 300 15
2 100 12
3 200 13
4 250 14
5 300 14

We introduce a weight variableWdata to represent the
influence degree of the input size on the execution time.
The value of this variable may vary from task to task and
shall be choosen based on experimental results.

Now we show an example for a better understanding of
the prediction model. The sample data is depicted in Table II,
which contains five history executions on a computing node.
The size of data is presented in Kbytes while the execution
time in seconds.

According to the data in the table, we acquire the calcu-
lation results as:

t(p,ns) =
15 + 12 + 13 + 14 + 14

5
= 13.6

s(p,ns) =
300 + 100 + 200 + 250 + 300

5
= 230

The execution time of taskt(p,150) on the related comput-
ing node is:

150
230 · 13.6

0.7
= 12.67

where we assume an I/O influence of weight 0.7 to the
execution of the program.

V. EXPERIMENTAL RESULTS

To evaluate the developed framework, several workflows
were tested. In this section, we present the results with two
examples. The first workflow processes 3D scenes with a
result of creating a video. The second workflow performs
film synchronization whereby to translate the spoken text
from Japanese to English.

The first workflow, depicted in Figure 7, contains two
main tasks,3dscenetopictures(the raytracer) andpicture-
tovideo. The raytracer acquires a scene file and a camera file
as input and splits the scene into single pictures based on the
position defined in the camera file. The single pictures are
then processed by the second task to produce a continuous
video.

We apply the Tachyon [39] raytracer for the first task
which needs an MPI cluster on an IaaS cloud because the
software is parallelized with MPI. To combine the pictures
to a video, the program FFmpeg [40] is applied. We run this
task on a single IaaS node. The workflow is defined in the
following XML file:

<w o r k f l o w d e f i n i t i o n>
< t a s k name=”3 d s c e n e s t o p i c t u r e s ”>

< i n p u t f i l e t y p e =”∗ . d a t ” name=” scene ” />
< i n p u t f i l e t y p e =”∗ . cam” name=” camera ” />
<o u t p u t f i l e t y p e =” image / ppm” name=” images

” />
< / t a s k>
< t a s k name=” p i c t u r e s t o v i d e o ”>

< i n p u t f i l e t y p e =” image / ppm” name=” images ”
/>

<o u t p u t f i l e t y p e =” v i deo / a v i ” name=” v i deo ”
/>

< / t a s k>
<workf low from=”3 d s c e n e s t o p i c t u r e s ”

t o =” p i c t u r e s t o v i d e o ” />
< / w o r k f l o w d e f i n i t i o n>

The second workflow, as shown in Figure 8, is comprised
of four components: the language identifier (taskvideoto-
text), a translator (tasktranslatejatoen), the text synthesizer
(task texttospeech), and the taskjointovideo. The language
identifier acquires a video file as input and outputs its text
in Japanese. The output is then delivered to the language
translator, where an English text is produced. In the follow-
ing, the text synthesizer converts the text to speech, which
is combined with the video via the last task of the workflow.

We apply the language identifier Julius [41] to process the
audio that is extracted from the video by FFmpeg. In order
to speed up the process, an audio is first partitioned and
the partitions are then processed in parallel. Hence, an MPI
cluster is required for this task. For language translation, the
translation service of Google is applied. In order to model a
SaaS to SaaS data transfer and to verify our cloud abstrac-
tion, the Japanese text is first translated to German and then
to English. The tasktexttospeechis implemented using the
speech synthesizer eSpeak [42]. Finally, the aforementioned
FFmpeg program combines the audio with the video. The
workflow definition is as following:

<w o r k f l o w d e f i n i t i o n>
< t a s k name=” v i d e o t o t e x t ”>

< i n p u t f i l e t y p e =” v i deo / f l v ” name=” v i deo ”
/>

<o u t p u t f i l e t y p e =” t e x t / p l a i n ” name=”
j a t e x t ” />

< / t a s k>
< t a s k name=” t r a n s l a t e j a t o d e ”>

< i n p u t f i l e t y p e =” t e x t / p l a i n ” name=” j a t e x t
” />

<o u t p u t f i l e t y p e =” t e x t / p l a i n ” name=”
d e t e x t ” />

< / t a s k>
< t a s k name=” t r a n s l a t e d e t o e n ”>

< i n p u t f i l e t y p e =” t e x t / p l a i n ” name=” d e t e x t
” />

<o u t p u t f i l e t y p e =” t e x t / p l a i n ” name=”
e n t e x t ” />

< / t a s k>
< t a s k name=” t e x t t o s p e e c h ”>

< i n p u t f i l e t y p e =” t e s t / p l a i n ” name=” e n t e x t
” />

72

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Data flow of the 3D-render workflow.

Figure 8. Data flow of the workflow film synchronization.

<o u t p u t f i l e t y p e =” aud io / wave ” name=” aud io
” />

< / t a s k>
< t a s k name=” j o i n t o v i d e o ”>

< i n p u t f i l e t y p e =” v i deo / f l v ” name=” v i deo ”
/>

< i n p u t f i l e t y p e =” aud io / wave ” name=” aud io ”
/>

<o u t p u t f i l e t y p e =” v i deo / f l v ” name=”
r e s u l t v i d e o ” />

< / t a s k>
<workf low from=” v i d e o t o t e x t ” t o =”

t r a n s l a t e j a t o e n ” />
<workf low from=” t r a n s l a t e j a t o d e ” t o =”

t r a n s l a t e d e t o e n ” />
<workf low from=” t r a n s l a t e d e t o e n ” t o =”

t e x t t o s p e e c h ” />
<workf low from=” t e x t t o s p e e c h ” t o =”

j o i n t o v i d e o ” />
< / w o r k f l o w d e f i n i t i o n>

For the experiments we requested an account on EC2. The
test results are shown in Table III and Table IV for each
workflow. The tables show the execution time of tasks of a
single workflow on different nodes of EC2. In the case of
Google, the Web service is executed on a Google machine,
which cannot be specified by the user.

The execution time of a task is presented with the mea-
sured time and the predicted one, where the former was
acquired at runtime by measuring the duration of a task
from submission to termination and the latter was calculated
using the developed prediction model. It can be seen that the
accuracy of our model varies between the tasks, where the

value with the second workflow is relative better. For the
3D render, the model underestimates the execution time in
most cases, while an alternating behavior can be seen with
the second workflow. Altogether, we achieved the best case
with a difference of 3.4% between the real execution time
and the predicted one, while the worse case shows a value
of -21.2%. The difference is caused by the fact that the
time for executing a program can vary significantly from
one execution to the other, even though the executions are
performed successively. This indicates that a more accurate
model is required for a better prediction, which shall be our
future work.

The values in the last column of the tables are calculated
by multiplying the real execution time by the payment. It
is expected that both the execution time and the payment
are low. Hence, we use the values in the last column to
represent the performance vs. cost tradeoff, where a lower
value indicates a better behavior. Observing Table III it can
be seen that the nodes “m1.small” have a better behavior.
This may be associated with the concrete tasks, which do not
demand a high computation capacity. With larger programs,
e.g., the taskvideototextin the second workflow, a node
with higher capacity, “m1.large” in this case, behaves better.
However, the best choice is to use the free services provided
by some clouds, such as the translation service on Google.

VI. CONCLUSIONS ANDFUTURE WORK

As various cloud platforms are emerging, it is possible
for users to involve several clouds to run a complex job,

73

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III
EXPERIMENTAL RESULTS WITH THE3D RENDER WORKFLOW(85 CAMERA POSITIONS).

Task Node Execution time Performance vs. Cost
Measured Predicted Difference (%)

m1.small 145 138 -4.8 12.40
3dscenetopictures c1.medium 56 52 -7.1 19.03

m1.large 48 42 -12.5 17.97
m1.small 59 48 -18.6 5.01

picturetovideo c1.medium 47 37 -21.2 15.97
m1.large 44 36 -18.2 14.96

Table IV
EXPERIMENTAL RESULTS WITH THE WORKFLOW OF SYNCHRONIZING A FOUR MINUTES VIDEO.

Task Node Execution time Performance vs. Cost
Measured Predicted Difference (%)

m1.small 665 688 3.4 168.04
videototext c1.medium 341 355 4.1 116.30

m1.large 257 271 5.4 87.20
translatejatoen 45 40 -11.1 0

m1.small 26 22 -15.4 1.87
texttospeech c1.medium 22 20 -9.1 7.47

m1.large 19 17 -10.5 6.46
m1.small 89 104 16.8 7.60

jointovideo c1.medium 87 94 8.0 29.60
m1.large 97 75 -12.4 33.02

for example, a workflow. For this functionality, users need
a framework to manage the execution of single tasks on
different clouds and to deliver the result of one task to
another task that may run on a different infrastructure.

We designed and implemented such a workflow manage-
ment system for cloud users. The main components of the
framework includes a workflow engine for task execution, a
cloud abstraction to enable the interoperability of different
cloud platforms, a data management component that handles
inter-cloud communications, and a prediction model for
estimating the cost and performance of running the workflow
tasks on different cloud nodes. Initial experiments on the
prototypical implementation showed the functionality of the
framework.

In the next step of this work we will improve the predic-
tion model with involvement of the runtime information of
the cloud platforms. We will also provide the users with
a more friendly interface to describe their workflows. A
resource broker is planed as well to serve as a mediator
for users to detect the best cloud services.

REFERENCES

[1] D. Franz, J. Tao, H. Marten, and A. Streit, “A Workflow
Engine for Computing Clouds,” inProceedings of the 2nd
International Conference on Cloud Computing, GRIDs, and
Virtualization (CLOUD COMPUTING 2011). ISBN: 978-1-
61208-153-3, Roma, Italy, September 2011.

[2] “Amazon Elastic Compute Cloud,” [Online], http://aws.
amazon.com/ec2/ (accessed: 2012-06-20).

[3] “Simple Storage Service,” [Online], http://aws.amazon.com/
s3/ (accessed: 2012-06-20).

[4] L. Wang, M. Kunze, and J. Tao, “Performance evaluation of
virtual machine-based Grid workflow system,”Concurrency
and Computation: Practice & Experience, vol. 20, pp. 1759–
1771, October 2008.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” [Online], http://csrc.nist.gov/publications/drafts/
800-145/Draft-SP-800-145cloud-definition.pdf (accessed:
2012-06-20).

[6] B. Asvija, K. V. Shamjith, R. Sridharan, and S. Chattopad-
hyay, “Provisioning the MM5 Meteorological Model as Grid
Scientific Workflow,” in Proceedings of the International
Conference on Intelligent Networking and Collaborative Sys-
tems, 2010, pp. 310–314.

[7] Y. Wei and M. B. Blake, “Service-Oriented Computing and
Cloud Computing: Challenges and Opportunities,”IEEE In-
ternet Computing, vol. 14, no. 6, pp. 72–75, 2010.

[8] G. Fox and D. Gannon, “Special Issue: Workflow in Grid
Systems,”Concurrency and Computation: Practice and Ex-
perience, vol. 18, no. 10, pp. 1009–1019, 2006.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-source
Cloud-computing System,” inProceedings of Cloud Com-
puting and Its Applications, October 2008, available: http:
//eucalyptus.cs.ucsb.edu/wiki/Presentations (accessed: 2012-
06-20).

[10] “Google App Engine,” [Online], http://code.google.com/
appengine/ (accessed: 2012-06-20).

[11] “Windows Azure Platform,” [Online], http://www.microsoft.
com/windowsazure/ (accessed: 2012-06-20).

74

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computingand
Grid Computing 360-Degree Compared,” inProceedings of
the Grid Computing Environments Workshop, 2008. GCE’08,
2008, pp. 1–10.

[13] WLCG, “Worldwide LHC Computing Grid,” [Online],
http://lcg.web.cern.ch/lcg/ (accessed: 2012-06-20).

[14] P. H. Beckman, “Building the TeraGrid,”Philosophical trans-
actions - Royal Society. Mathematical, physical and engineer-
ing sciences, vol. 363, no. 1833, pp. 1715–1728, 2005.

[15] EGEE, “Enabling Grids for E-sciencE,” [Online], project
homepage: http://www.eu-egee.org/ (accessed: 2012-06-20).

[16] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr,
and H. L. Truong, “ASKALON: a tool set for cluster and
Grid computing,”Concurrency and Computation: Practice &
Experience, vol. 17, pp. 143–169, February 2005.

[17] M. Riedel, D. Mallmann, and A. Streit, “Enhancing Scientific
Workflows with Secure Shell Functionality in UNICORE
Grids,” in Proceedings of the IEEE International Conference
on e-Science and Grid Computing. IEEE Computer Society
Press, December 2005, pp. 132–139.

[18] D. Barseghian, I. Altintas, M. B. Jones, D. Crawl, N. Potter,
J. Gallagher, P. Cornillon, M. Schildhauer, E. T. Borer, E. W.
Seabloom, and P. R. Hosseini, “Workflows and extensions to
the Kepler scientific workflow system to support environmen-
tal sensor data access and analysis,”Ecological Informatics,
vol. 5, pp. 42–50, 2010.

[19] G. von Laszewski, K. Amin, M. Hategan, N. J. Z. S. Hampton,
and A. Rossi, “GridAnt: A Client-Controllable Grid Workflow
System,” in37th Hawaii International Conference on System
Science. IEEE CS Press, January 2004.

[20] S., D. Karastoyanova, and E. Deelman, “Bridging the Gap
between Business and Scientific Workflows: Humans in the
Loop of Scientific Workflows,” inIEEE International Con-
ference on eScience, 2010, pp. 206–213.

[21] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “Grid-
Flow:Workflow Management for Grid Computing,” inPro-
ceedings of the International Symposium on Cluster Comput-
ing and the Grid, May 2003, pp. 198–205.

[22] J. Yu and R. Buyya, “A Taxonomy of Workflow Management
Systems for Grid Computing,”Journal of Grid Computing,
vol. 3, no. 3-4, pp. 171–200, September 2005.

[23] R. Buyya, S. Pandey, and C. Vecchiola, “Cloudbus Toolkit
for Market-Oriented Cloud Computing,” inProceeding of the
1st International Conference on Cloud Computing, December
2009, pp. 978–642.

[24] S. Pandey, D. Karunamoorthy, and R. Buyya,Cloud Comput-
ing: Principles and Paradigms. Wiley Press, February 2011,
ch. 12, pp. 321–344.

[25] S. McIlraith, T. C. Son, and H. Zeng, “Semantic web ser-
vices,” IEEE Intelligent Systems, vol. 16, pp. 46–53, 2001.

[26] D. Fensel and C. Bussler, “The web service modeling frame-
work WSMF,” Electronic Commerce Research and Applica-
tions, vol. 1, pp. 113–117, 2002.

[27] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Con-
straint driven Web service composition in METEOR-S,” in
Proceedings of the IEEE International Conference on Service
Computing, 2004, pp. 23–30.

[28] F. Tao, L. Zhang, and Y. Hu,Cloud Manufacturing: Develop-
ment and Commerce Realization of MGrid, in Resource Ser-
vice Management in Manufacturing Grid System. John Wiley
& Sons, Inc, 2012, ch. 15, doi: 10.1002/9781118288764.

[29] C.-H. Hsuand and H. Jin, “Services Composition and Vir-
tualization Technologies,”IEEE Transactions on Services
Computing, vol. 4, no. 3, pp. 181–182, 2011.

[30] S. Wang, Q. Sun, H. Zou, and F. Yang, “Particle Swarm Op-
timization with Skyline Operator for Fast Cloud-based Web
Service Composition,”Mobile Networks and Applications,
April 2012, online available: DOI: 10.1007/s11036-012-0373-
3.

[31] “The OASIS committee, Web Services Business Process
Execution Language (WS-BPEL),” [Online], http://www.
oasis-open.org/committees/tchome.php?wgabbrev=wsbpel
(accessed: 2012-06-20).

[32] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy,
K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman,
E. Levy, A.Maraschini, P. Massonet, H. Munoz, and G. Tof-
fetti, “Reservoir - When One Cloud Is Not Enough,”IEEE
computer, vol. 44, no. 3, pp. 45–51, March 2011.

[33] “Open Cloud Computing Interface,” [Online], http://occi-wg.
org/ (accessed: 2012-06-20).

[34] “jclouds,” [Online], http://www.jclouds.org/ (accessed: 2012-
06-20).

[35] “Apache Libcloud – a unified interface to the cloud,” [Online],
http://libcloud.apache.org/ (accessed: 2012-06-20).

[36] “Deltacloud – an API that abstracts the difference between
clouds,” [Online], http://incubator.apache.org/deltacloud/ (ac-
cessed: 2012-06-20).

[37] M. Kay, XSLT 2.0 Programmer’s Reference. Wrox, 3 edition,
August 2004.

[38] “SQLite,” [Online], http://www.sqlite.org/ (accessed: 2012-
06-20).

[39] J. Stone, “An Efficient Library for Parallel Ray Tracingand
Animation,” In Intel Supercomputer Users Group Proceed-
ings, Tech. Rep., 1995.

[40] “FFmpeg,” [Online], http://www.ffmpeg.org/ (accessed: 2012-
06-20).

[41] “Open-Source Large Vocabulary CSR Engine Julius,”
[Online], http://julius.sourceforge.jp/enindex.php (accessed:
2012-06-20).

[42] “eSpeak text to speech,” [Online], http://espeak.sourceforge.
net/ (accessed: 2012-06-20).

75

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User-driven Service Retrieval Platform for
Converged Environments

Edgar Camilo Pedraza Alarcón
GIT

University of Cauca
Popayán, Colombia

epedraza@unicauca.edu.co

Julián Andrés Zúñiga Gallego
GIT

University of Cauca
Popayán, Colombia

gzja@unicauca.edu.co

Luis Javier Suarez Meza
GIT

University of Cauca
Popayán, Colombia

ljsuarez@unicauca.edu.co

Juan Carlos Corrales
GIT

University of Cauca
Popayán, Colombia

jcorral@unicauca.edu.co

Abstract—Today, there is an abundance of information and ser-
vices in heterogeneous contexts, such as converged environments
(Next Generation Networks) available for end users. However,
the developments of Telecommunications and Internet converged
services represent a high level of complexity for users without
technical skills, since user’s requests are represented by complex
expressions that describe the required services. Thus, the search
and selection of these services depend on the ability of the user
to retrieve the most suitable ones, converting this labor in an
inefficient task. With this in mind, and in order to improve
the time to create convergent services, this paper proposes a
novel approach that supports the automatic retrieval of services
in converged environments, considering functional and non-
functional properties of end-user’s requests in natural language.
Finally, we present the prototype that implements our proposed
architecture and particularly, we describe in detail the defined
tasks for natural language processing (NLP).

Index Terms—automatic service retrieval; converged envi-
ronments; natural language; Telecommunications and Internet
services.

I. INTRODUCTION

Service retrieval that accomplishes user requests is under-
stood as an important stage in the composition process [1],
[2], this allows the user to find and use a service based on a
published description of its functionality or operational param-
eters [3]. Currently, services retrieval offers new challenges
driven by the convergence of Web and telecommunications
domains around the IP protocol, enabling the use of diverse
and innovative services, regardless of the customer access
network [4].

As result, operators and SMEs (Small and Medium Enter-
prises) that provide applications, services and content, must
adapt their IT (Information Technology) infrastructure in order
to develop capabilities to create and deploy new converged
services with low time to market [5]. Understanding converged
services, as the coordination of a range of services from
different vendors, such that for end user view, it is a single
service [6].

The above mentioned, both with new trends in application
environments, where users are important generators of con-
tent and applications, opens up towards a new paradigm in
which non-technical individuals are able to design and create
their own fully customized services by integrating Web and
telecommunication components, an activity that years ago was

done only by expert developers due to its complexity. This
context has led to the development of various projects focused
on service retrieval. However, these approaches require that
users specify their request with formal expression, which
becomes complex for ordinary users, even more in dynamic
and varied context, as converged environment (Web + Telco)
[7], [8]. In many approaches, the retrieval process is limited
to Web services, leaving aside other kind of resources. On
the other hand, converged environments also cover resources,
such as: data, Telecom capabilities, widgets, APIs, and so on,
which facilitates the compliance with the user’s request, but
the complexity of service retrieval for end users is still very
high due to the technical knowledge required.

In order to overcome the aforementioned issues, in this
paper, we propose an architecture for automatic service re-
trieval in converged environments, considering the services
functional properties (e.g., inputs, outputs, preconditions and
effects) and non-functional properties (e.g., QoS, such as:
availability, response time, reputation, etc) requested by the
user in natural language (NL), to reduce the complexity in the
creation of converged services for end users. In the description
of the architecture, we focus on describing with more detail the
natural language processing (NLP) mechanisms over the other
functionalities because the main objective of this approach is
to support the end user, This not only ensures a correct match
between the user request and the system results but also pro-
vides mechanisms to maintain a relevant quality of the input
(request) of the user. Finally, we present an evaluation of each
task from proposed NLP module. The preliminary evaluation
shows promising results in contrast to related approaches.

Typically, NLP is useful to analyze and produce semantic
representations of the user’s request, providing needed infor-
mation to identify functional and nonfunctional properties of
services. Therefore, we propose the use of NLP techniques
to improve the process of service retrieval from requests
made in NL. In this regard, we reduce NLP techniques to
a problem of selection of possible terms, that represent the
interface or functionality of a service, or terms that are used
to describe a general order of execution of services (generic
control flow), clarifying that our approach does not cover
a formal composition process, but displays the responses of
independent retrieved services after its execution in a generic

76

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

order.
To do this, we adapt existing algorithms and develop rules

for selecting terms according to certain conditions and compli-
ance with regular expressions. The result obtained after this
process, is a set of terms classified into several categories,
the terms are used for obtaining services with their generic
execution order. Thus, with the identification of key terms
for the selection of services, supported by NLP techniques
and adaptation of algorithms for matching services with those
terms, it is possible to make an more accurate and automatic
retrieval of services available within both Web and telecom-
munications domains.

The remainder of this paper is structured as follows: in the
next section, we review the work related to the different topics
that involves the current research. We present the problem
statement in Section III. In Section IV we compare our
approach with an existing one showing the advantages for
the user. Then, in Section V, a high-level description of the
proposed architecture is presented. To provide greater clarity
an example is discussed in Section VI. In section VII we
present a general evaluation of the system and finally in
Section VIII we conclude the paper.

II. STATE OF THE ART

retrieval can be addressed under two main approaches:
syntactic and semantic. The searching of services from a
syntactic approach, considers either, interfaces matching tech-
niques (e.g., WSDL, IDL) or keyword searching [9] that
require exact matches at the syntactic level between the
parameters of service descriptions. This leads to deficient
results in the retrieval of service, obtaining services that do not
correspond to the initial search criteria. The semantic approach
allows the establishment of relationships between concepts
that define the functionality of services (functional properties)
and additionally, considers formal descriptions constructed
by non-functional properties [10], achieving a more precise
description of services and improving the quality of results
(retrieved services) according to user needs [11]. From the
foregoing, and given the nature of the problem, the proposed
solution focuses on services retrieval based on lightweight
semantics and NLP.

In turn, currently, an extension of previous approaches,
is being widely accepted in the Web, where services are
described by simple labels (tags) for different users, which cor-
responds to a classification of collaborative services through
labels, without hierarchy or kinship default [12], [13]. A num-
ber of studies have shown that a set of tags added to resources,
is rich and compact enough to describe and characterize, with
a good degree of accuracy, the main concepts they represent
[13].

The most relevant related works are described in two
sections according to the main components of our proposal:
NLP applications and user-driven service retrieval.

A. NLP Application
One of the most popular NLP applications is Siri. Siri is a

personal assistant that resides on iPhone 4S and performs a

range of tasks understanding natural speech. Siri is based on
artificial intelligence and NLP mechanisms, is able to know
which application to open based on natural language requests.
Working on the operating system level [14], with information
from contacts, music library, calendars, reminders, and Apple’s
data centers, Siri is able to understand the requests and return
responses [15]. Siri works with the built-in application of
IPhone including weather, stocks, messaging, and others, but
leaves aside the retrieval of external resources such as web
services and some telecommunication capabilities, in addition,
to our knowledge, Siri does not consider non-functional prop-
erties.

In [16], the IBM research team developed a supercomputer
that performs analysis phases of natural language questions
composed by hundreds of algorithms, some of these phases
present a similar approach with the proposed ones in this
paper. However, it requires a complex system composed of
multi-core hardware processor, hardware capabilities that are
still difficult to migrate to some end users devices such as
PDAs or cell phones.

In the work developed in [17], the authors address the
selection of Web services based on requests expressed in nat-
ural language, this solution is based on language restrictions,
matching the structure of the request with predefined patterns
for decomposition into blocks using keywords. Subsequently,
the request is processed and transformed into a data flow and
control model expressing the general logic of the new service.
In addition, the authors propose the use of a common ontology
and a NL dictionary, in order to relate textual fragments with
functional parameters of such services. This work presents
disadvantages when limiting requests to simple sentences.

Based on concepts graphs and conceptual distance measure,
a solution is presented in [2]. Its purpose is to calculate the
similarity between the user’s request, represented by keywords,
and services available in a repository. Within the linguistic
analysis, different processes are performed: text segmentation,
irrelevant word removal, elimination of derivatives (stemming)
and grammatical corrections. The authors admit their proposals
lack of dynamic adaptation at runtime.

The approach of [10] re-uses the converged services creation
environment of project SPICE (Service Platform for Innova-
tive Communication Environment) [18] to facilitate services
retrieval with different types of semantic annotations. The
author focuses his work on the development of an intelligent
agent in charge of analyzing the application in NL to extract
semantic information, specifically the goals, from which addi-
tional semantic information is derived, as inputs and outputs,
which are used to retrieve services and report their order
composition. However, retrieval’s throughput and processing
critically depend on the amount of services stored in the
repository.

B. User-Driven Service Retrieval

Some tools and techniques have been developed to enhance
resource retrieval (e.g., photos, videos, services) taking into ac-
count the information generated by the users, an example is the

77

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Folksonomy Ontology Enrichment Tool (FLOR) [19], which
performs an automatic semantic enrichment of collaborative
tagging systems, from user generated tags, creating a semantic
layer to describe the concepts of those tags and their relations.
The tool reuses existing knowledge such as online ontologies
indexed in the Watson Semantic Web Gateway and WordNet,
the system also performs three phases that guarantees a lexical
processing of terms, a sense expansion and a final semantic
enrichment. The major drawback is that the tool presents high
percentages of incorrect semantic enrichment, mainly due to
the semantic expansion phase for the differences in term’s
definition of Wordnet and the online ontologies.

The prototype developed in [20] is implemented to improve
the information retrieval in tag-based systems. Taking as input
the tags provided by the end-users, the prototype adds system
tags from semantic ontologies (WordNet or MultiWordNet), or
tag clusters imported from the Flickr website, to annotate and
retrieve videos previously imported from real tag-based system
(Youtube). While a generic architecture is developed without
delving into the different stages, the key ideas and concepts
are useful in directing the enrichment of user-generated tags
with sources of knowledge.

In [21], the work is based on the collaborative tagging of
web services, where users annotate indexed Web services with
keywords, in order to define structured collaborative tagging,
differing between tags: input, output, and behavior of a service.
In the proposed technique, the authors define a matchmaker
for the Web services retrieval, which involves two stages:
classification and service ranking. However, the language used
as input is based on a system query, i.e., the user’s query is
realized in a formal language.

From the previous review, limitations are evident because
most of them are based on Web services retrieval with func-
tional preferences, leaving aside in first place, non-functional
requirements that may provide more sense to services se-
mantic descriptions, and second, not considering other kind
of resources such as Telecommunication capabilities. Also,
many works are not end-user centered, which makes them
complex for ordinary users, moreover these works are based
on formal languages, or they are limited to simple phrases
made in natural language, therefore, flexible requests made
in natural language are not considered. Apart from [17], the
approaches lack in showing the retrieved services in a flow
to express the logic of the request, useful for subsequent
service composition process. Finally, the automatic retrieval
of services in converged environments is a recent topic of
research, where, considering all the above features has not yet
been developed.

Therefore, we propose a novel end-user centered approach
which facilitates the interaction of the user with the system
through requests made without formal languages, considering
techniques to expand the search in order to increase the
accuracy of the services retrieval process and with a rec-
ommendation service system. Our approach also considers
functional and non functional parameters of services and the
arrangement of the retrieved services in a generic flow to

express the logic of the request.

III. PROBLEM STATEMENT

One of the key challenges of competitiveness of the existing
telecommunications companies is the reduction of time in the
process of creating new converged services. For this reason,
converged services creation environment has been developed
[22], [23], [24], which require formal requests with complex
expressions by the developer, in order to compose services
that are selected manually. The service manual selection shows
that the process of creating converged services depends on the
ability of the developer to select the most appropriate services,
which is wasteful and inefficient work, since it is difficult for
the human capacity to generate compositions that go hand in
hand with the growing number of services available on the
Web and Telecommunications domains.

In this vein, the creation time of converged services can
be improved by reducing the complexity of the activities.
Activities such as the selection of atomic services that are
part of a composite service, need to be more flexible and
agile [25], [26], [27]. To achieve this, it is necessary to define
mechanisms to facilitate this process, such as making requests
in a simpler and understandable language, with the intention
of automating tasks in the identification of requirements and
selection of services.

In this scenario, we propose an approach that allows the
services retrieval in a converged environment that meets
the end-users requirements. Therefore, the following problem
statement is formulated:

How to reduce the complexity of services retrieval to end
users in a converged environment, by ensuring compliance
with their requirements?

IV. CHALLENGES AND SOLUTIONS

The proposed architecture considers problems found in cur-
rently user-driven systems for services retrieval that simplifies
this process by allowing users make requests in natural lan-
guage. To illustrate our proposal, let us consider an application
created by Yahoo! Pipes [28], the application required by the
user, retrieves food and beverage businesses for sale feeds from
a website related with ”food”, also filters the content based on
the title and the description that must contain the word ”food”
and retrieves two tagged images from Flickr [29] with the word
”food” applying a similar filter. Finally, the application joins
the retrieved information and organizes it to publish items for
viewing. This process is outlined in Figure 1.

Thus, this application can be summarized to a request like:
”Get pictures of food and places selling food”. However,
for that, in this tool seven components were needed, also it
requires additional configuration by the user, such as defining
the URL of the feed website, manage filtering rules and define
the retrieved information flow between components. It is also
necessary that the user knows the different components and the
functionality of each one, for example the user must know that
Flickr is an image hosting website. The complexity and level

78

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Application created using YahooPipes

of knowledge required for this application is not appropriate
for a common end-user.

Addition to the above restrictions, with the increase of
online repositories and development of Telecommunication
services, high precision service retrieval is required, also it is
necessary to develop systems that are increasingly intuitive and
easy to handle for users without technical skills, and that allow
the automation of tasks in the identification of requirements
and selection of convergent services. These challenges can
be addressed considering facilities such as the use of natural
language, which improves the user interaction with the system.

Also, there are other important features that should be
taken into account to meet user requirements, such as speed
rates of resource retrieval process or the possibility that can
give a tool to allow a user to learn from others users of
the tool (social-aware recommendation concept [30]). These
features are considered in the system, through collaborative
tagging mechanisms [21], which are an alternative solution
of ontology-based approaches. Ontology-based approaches are
inadequate primarily because the ontologies are expensive in
creation and maintenance, also end-users are not involved in
the development process of ontology, which fails to use a
different vocabulary to request a service. On the other hand,
collaborative tagging allows that users can see the annotation
made by other users on the resources and hence extract
the semantics from annotation of the community, [21]. This
approach allows the handling of different kind of resources,
which facilitates work in convergent environments. However,
it is appropriate to clarify that due to the magnitude of the
project, the description of the tagging mechanisms is omitted,
and will be presented in future papers.

Our proposal allows the user to make a request as simple

as: ”I want to receive pictures of food and places selling
food”, to retrieve components that perform this functionality.
Additionally, our approach shows to the user how these
components are arranged in the flow, which facilitates the
interaction of the user with the system through requests made
without formal languages. Likewise, our proposal recommends
services during and after of the user’s request and uses NLP
techniques applied to the request, taking advantage of collabo-
rative tagging and formal knowledge sources; thus, the system
retrieves and publishes the outcome of the converted user’s
request into a components flow that represents the desired
service. A Detailed explanation of the conceptual model and
architecture is presented in the next section.

V. ARCHITECTURE

This section contains a detailed description of the architec-
ture proposed, for automatic services retrieval in converged
environments. The architecture is organized in four phases:
Natural Language Analysis, Recommendation, Matching and
Association. Phases are also composed of internal modules that
carry out small process, most of them sequentially organized.
The system has as input, user’s request made in NL from
a mobile device, and gives finally a service ranking and a
generic control flow as output. In section VI, is described in
more detailed the results of the system, how act this modules
and how a requester can execute them. Below, architecture
modules are described with its respective functionality.

• SpellChecker: This module receives user’s requests and
checks over possible mistakes, underlining misspelled
words.

• Autocomplete: The module auto completes some words
of the request, showing a possible word representing what

79

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the user wants to write.
• Tokenizer: It has as input the NL request and from this,

it obtains words, phrases or symbols called tokens.
• Filter Words: is the responsible for removing non-sense

words by comparing with a set of words previously
identified.

• Words Tagging: tags words according to its grammatical
category (e.g., she ”pronoun”, loves ”verb”, animals
”noun”).

• Named Entity Recognition (NER): It classifies the words
into ”functional” or ”control” categories. In ”functional”
exists also two different categories: ”input-output” and
”behavior”.

• Semantic Analyzer: in charge of semantic disambiguation
process of input words, by selecting the correct meaning
of a word according to request’s context.

• Normalization tags: functions as a stemmer, obtaining
their corresponding lemmas from the input words. (e.g.,
doggie or dogs becomes dog).

• Coreferencer: Associates possessive pronouns with the
reference subject of the sentence (e.g., ”Make a call to
Mary and then send a present to her” - relates her with
Mary).

• Non Functional Requirements Recommender: It searches
non-functional parameters in the repository from func-
tional request previously written by user.

• Service Recommender: It searches request-service infor-
mation in the repository obtained from prior inputs of
users.

• Matcher Functional Requirements: It obtains from cluster
services, the first rank, by matching functional require-
ments.

• Ranking Generator: It obtains the final ranking of ser-
vices considering, if exists, non-functional requirements,
of services, such as QoS.

• Services: conformed by Web and Telecommunications
domain services, which can be conceptually organized
by their functional properties.

• Folksonomy: It reflects through tags the collective intelli-
gence of a crowd or a community (wisdom of the crowds)
in giving meaning to available resources (Power Tags)
(e.g. QoS, Telco, IT, among many others), supporting
functional (internal categories input-output and behavior)
and non-functional properties descriptions.

• Flow Ranking Repository: It stores an association of ser-
vice (tags) obtained at the end of the semantic matching
phase.

• Non-functional Repository: It stores an association of
non-functional and functional parameters of cluster’s ser-
vices.

• Generic Flow Generator: It generates an generic control
flow, based on keywords taken from the user’s request
processed.

• Flow-Ranking Associator: It associates the flow obtained
by the Generic Flow Generator module with the ranking
output of the matching semantic phase, obtaining the final

output of the architecture.
Below we provide a more detailed description of the different
stages and processes that take place in the modules of the
proposed architecture (Figure 2).

A. Phase of Natural Language Analysis (NLA)

The development of the first phase can be performed
through some techniques like: Gate-NLP, Open-NLP, Apache
UIMA [31], [32], among others, which implement modules
mentioned above. Taking into account diverse specifications
and criteria such as performance, documentation and exten-
sion, we have selected the technique called GATE (General
Architecture for Text Engineering [29]). This is a suite tool
developed at the University of Sheffield and is a Lesser Gen-
eral Public License. This technique also offers an architecture
that contains functionality for plugging in all kinds of NLP
software.

In the same way, Gate is a platform that contains an infor-
mation extraction system named A Nearly New Information
Extraction System (ANNIE). This has a set of diverse modules
like: sentences splitter, tokenizer, part of speech (POS) tagger,
gazetteer, named entities and a co-reference tagger. Moreover,
ANNIE also provides functionalities as: information extraction
through Gate GUI, or can be a starting point for more specific
tasks, such as machine translation, information retrieval or the
one done in this project. On the other hand, Gazetteer is an
important and unknown task that together with JAPE (Java
Annotation Patterns Engine) are the elements used for de-
tecting entity lists such as organizations, places, names, dates
among others. In this sense, JAPE allows the establishment of
grammatical rules in order to obtain words annotations, while
Gazetteer contains a set of lists with words classified.

It is important to consider that GATE provides a com-
prehensive set of elements similar to the modules showed
in this paper, however, the proposed approach adapts the
modules supported by GATE and enriches them with exter-
nal modules added as semantic analyzer, filtering of words,
the auto-complete and spell checker module, as well as the
novel approach oriented towards the use of natural language
processing, to recover services which have not been developed
in depth previously.

AAlready immerse in the architecture, we must assume
initially that a user makes a request from his/her mobile device
in NL. While user is typing the request, two modules are
evaluating this input: in one side, the SpellChecker module
is inspecting for misspelled words. If one word is identified
as incorrect, the system underlines the word to warn user about
his mistake. On the other hand, the Auto-complete module is
constantly inspecting all the words typed, when it identifies a
coincidence, between first letters of a word and a set of words
stored in a repository, it will suggest a list of terms to the end
user; then he can decide if he wants to auto-complete the word
with the recommendations or not.

Then sentences of the request are received by the Tokenizer
module, where tokenization operation starts, it obtains simple
lexical units from complex sentences, by removing existing

80

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. Architecture of the System.

spaces or punctuation marks, admiration marks, exclamation
marks and question marks. Additionally, this module corrects
simple lexical errors that may arise in the request; those
ignored by the user, when entered the request, or those
ignored when SpellChecker module warned, i.e., all misspelled
word that are easily identifiable. Afterward, the sentences
are processed through Filter Words module, here, the system
removes all the words that have coincidence with a set of
words that have been store previously and considered as
unimportant. Later, the sentence passes through Words Tagging
module, where is pretended to classify words of the sentence
according to their grammatical category. The module also aims
to undertake an analysis based on linguistic rules, trying to
identify and compensate syntactic and structural errors.

Once completed these operations, the request is more con-
sistent, but remains complex. Therefore, we established the
Named Entity Recognition module, which performs a classi-
fication between ”Control” and ”Functional” words according
to its meaning, from which, control words are directed to Flow
Ranking Generator module, whereas functional words are
directed to Semantic Analyzer and Recommender modules. In
this sense two categories have been established: input-output
and behavior, both executed to identify special features of
services. To perform words identification in each category, was
necessary to establish some rules that allowed words category
selection, e.g., numeric types are considered as input-output
category. For the previous case, any number in the request
would be classified and taken into account as input-output
feature of service. This is achieved by name entities transducer,

where a set of rules (JAPE) are defined.
Once all the words have been selected in different cate-

gories, it is important to consider the semantic ambiguity, for
which the Semantic Analyzer module, identifies the correct
sense according to its context, i.e., it identifies the correct
sense of a word with multiple meanings in a sentence. All
the possible senses are extracted from Wordnet and the way
we choose the correct meaning, is through Lesk algorithm
[30]. Once having the correct meaning, the most important
word in the definition is selected; this term will be used
in the matching phase. In Normalization tags module, the
system obtains the respective lemmas, from all the words
coming from the previous module. Lemma is the canonical
form of a word, and it is used as an aid in the subsequent
phase of the system. In the final stage of linguistic analysis,
the co- reference module establishes a relationship between
a possessive pronoun with the main subject of the sentence.
This is done in order to understand different relationships of
one subject in the user’s request.

All of above modules allow an easy identification of key-
words, which will represent user’s requests. This stage offers
to users, greater flexibility in the use of language, allowing
establishing a wider range of possibilities. On the other hand,
the phase identifies conditional words (e.g., if, then, later) and
order words (sequence) (e.g., first, second), used in Generic
Flow Generator module, mentioned at association phase.

B. Recommender phase

This phase is composed of two modules and both are
executed while the matching phase performs the search of ser-

81

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vices through functional requirements. In this way, the phase
initially is going to show recommendations about generic
control flow with services to the user. If the user selects one
recommendation, the execution of the two remaining phases
would be avoided, and straightaway the process finished. Oth-
erwise, the process continues in the matching phase. It is worth
mentioning, that there is an estimated time of response, where
users can select or not, any diagram recommendation. In case
the time is finished, the system will understand that the user
has not accepted any recommendation. The module in charged
for the above task is the Service Recommender, which obtains
a list of generic control flow with services of the repository
from obtained keywords classified as functional. The second
module in this phase is called Non Functional Requirements
Recommender, this searches non-functional parameters from
the Non Functional Repository using the obtained keywords
classified as functional, the result is shown to the user, and if
one or more are selected, it becomes the input of the Ranking
Generator module, else nothing happened.

C. Matching Phase

At this stage there are two important modules, responsible
for selecting the most appropriate and accurate service, accord-
ing to a set of input terms: Initially, is important to consider
all the described service tags, because they are semantically
enriched, using different knowledge sources like Wordnet
and Flickr. Thereby, is obtained a biggest set of terms that
describe the services. In the same way, all input terms are
semantically enriched, this process facilitates the matching
process described below.

Matcher Functional Requirements use both, the terms en-
riched that describe services, which also are obtained from
a repository, and the terms obtained from the input request.
This module makes a syntactic comparison between mentioned
terms, and obtains as a result an ordered list of the services
that present more syntactic coincidences. In other words, this
module is in charge of functional matching requirements to
obtain the first service’s ranking, it also considers some words
classifications (input-output, behavior) and services descrip-
tion, that make possible the service selection process.

The second module refers to the Ranking Generator which
use a weighting algorithm, i.e., once the first ranking of
services is obtained, this module tuned the ranking with non-
functional parameters, taken from the Recommender phase.
The Ranking Generator module uses a timer, which provides a
time out for an entry of those parameters, here user must entry
those parameters which consider important to complement its
request. If he/she doesn’t entry anything, the system only will
consider functional parameters and the ranking established
would be the presented one before, otherwise, the system will
obtain those non-functional parameters selected by the user.

Often users don’t select the most appropriate non-functional
parameters, for this reason the system will give to each non-
functional parameter a weighing in the ranking generation.
Although all parameters are going to be considered, the highest
weighing is for those selected by end user. In summary, the

ranking of non-functional parameters is obtained taking into
account the selected and non-selected parameters and their
respective service values, then is generate a list of services
with the best non-functional values. Finally, through a factor
named tuning factor, is obtained the final ranking which joins
functional and non-functional parameters. The tuning factor
gives greater or lesser weight to a given ranking, depending
on the configuration system input made by user. This phase
is also related with a Service Logic Execution Environment
SLEE, specifically JAIN-SLEE, which is characterized as an
execution environment with low latency, high performance and
synchronously event orientation. With this is intended that,
once services are discovered and ranked, is necessary to have
an execution interface to each detected service, in the case
where they were going to be executed in the association phase.

We argue that requests can be enriched with non-functional
parameters, in order to provide optimum results that best fit to
end user requirements, since such properties are very important
for better understanding of the user’s request, because they
represent features such as quality, efficiency, availability, etc.

D. Association phase
This is the last stage of the system and begins with the

Generic Flow Generator module. It receives as input, terms
classified as Control words obtained from NER through NLA
phase. The module infers a basic structure of ordered oper-
ations that represents the basic control flow, useful for the
service composition process, which is performed once the
most relevant atomic services have been retrieved. The Flow-
Ranking Associator module receives as inputs the service
ranking from the semantic matching phase and the basic
control flow (obtained from the previous module) in order
to generate the services generic control flow (stored in Flow
Ranking Repository) which in turn represents the output of the
entire system.

VI. CASE STUDY

This section describes the functionality of the proposed
architecture through an example that details each of the
phases of the general process for automatic service retrieval
in converged environments through natural language requests.
To do so, consider the following situation. Suppose that an
executive requires a service to coordinate meetings and obtain
meetings reports. The executive requests from his cell phone
by using natural language, the following: ”I want to receive
traffic reports of Bogotá via messages, minutes before the
meeting and if I have not made it to the meeting, I want to
receive audio content of the decisions taken.”

A. Information Retreival with Natural Language Analysis
1) Tokenizer: Considered as the first NLP operation to be

performed in processing of the request (result 1 in the Figure
3), the result obtained by identifying each ”atomic” unit is as
follows. ”I - Want - to - receive - traffic - reports - of - Bogotá
- via - messages - , - minutes - before - the - meeting - and -
if - I - have - not - made - it - to - the - meeting - , - I - want
- to - receive - audio - content - of - the - decisions - taken ”

82

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. Example of the Natural Language Analysis Module.

2) Filter Words: Following the idea of [17], it is necessary
to remove common words of the request or words that do not
add significant meaning, to not create noise in the final result,
removing the following words: ”I, want, to, of, have, to, I,
want, to, of” Thus, the result is (part of the significant terms
are shown as result 2 in the Figure 3): ”receive - traffic -
reports - Bogotá - via - messages - , - minutes - before - the -
meeting - and - if – not - made - it -the - meeting - , - receive
- audio - content - the - decisions - taken”

3) Words Tagging: Given the possibility of ambiguous
words, it is necessary to perform a tagging process to help
clarify this ambiguity. Thus, the words from the previous
module are classified according to the grammatical category
handled by GATE annotations [33]. The result obtained after
performing the POST procedure (Part of Speech Tagging) is
(result 3 in the Figure 3) shown in the Table I.

4) Named Entity Recognition: In the process to extract
word entities with the annotated words resulting from the
previous module, the system classifies words into functional
or control categories, for the classification of functional cate-
gories, the terms are annotated based on service interface, i.e.,
through its inputs, outputs and behavior (service functionality).
Therefore, if the term corresponds to an input or output
parameter, then it is annotated as ”inputoutput”, and if the
term corresponds to a behavior parameter, it is annotated as
”behavior”. The Gazetter makes the classification for matches
between the terms obtained from the previous module and
terms obtained from the Gazetter lists, the matching terms
are annotated with majortype annotations, which define the
type of the list, i.e., the categories ”control”, ”inputoutput”
and ”behavior” and minortype (specific annotations), that

represent subcategories as: location, person, number, devices,
food, etc. For this case in particular, the Gazetter annotates the
word Bogotá with a majortype ”inputoutput” and minortype
”location”, and annotates the terms ”messages”, ”traffic”,
”reports” as part of the behavior category without additional
subcategories. In addition, the gazetter finds that the word
”before” is in the list called control.lst so it is also annotated
with a majortype ”control”.

To complement the Gazetter, we use Java Annotation Pat-
terns Engine (JAPE). JAPE provides ?nite state transduction
over annotations based on regular expressions [34]. For exam-
ple, we define that tokens tagged as verb by Gate (VB, VBD,
VBG, VBN, and VBZ [33]) and without majortype annotations
provided by the Gazetter, are annotated as a behavior term. The
terms ”receive” and ”meeting”, fulfill with this rule and are
annotated as behavior terms. Another rule defined with JAPE
is that tokens of type punctuation are listed as terms of control
(e.g., commas are grouped in this category).

Finally, considering the order of words, blocks of terms are
created in a separated way by the annotations of control, the
result is shown in the Table II.(The first Block with the control
terms are represented as the result 4 in the Figure 3).

5) Semantic Analyzer: At this point, we detail the sense
disambiguation of the words classified as functional, based on
dictionary definitions [35], using the Lesk algorithm [36]. This
algorithm is based on the assumption that words that co-occur
in a phrase tend to share the same topic. In our proposal, the
disambiguation process of a term is performed with the Lesk
algorithm and WordNet 1.7, which takes as input the words
from the NER module and counts the number of common
words between the terms from the NER module and each

83

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
WORDS TAGGING RESULTS

No Tag Type Tag

1 VBP receive
2 NN traffic
3 NNS reports
4 NNP Bogotá
5 IN via
6 NNS messages
7 , ,
8 RB before
9 DT the
10 NN meeting
11 CC and
12 IN if
13 RB not
14 VBD made
15 PRP it
16 DT the
17 VBG meeting
18 VBP receive
19 JJ audio
20 NN content
21 DT the
22 NNS decisions
23 VBN taken

sense of the ambiguous word given by the dictionary. Finally,
the highest scoring sense (the greater number of common
words) is selected. For this example, ”report” can be verb
or noun, and may have several meanings: a written document
describing the findings of some individual or group, a short
account of the news, the act of informing by verbal, a sharp
explosive sound (especially the sound of a gun firing), card a
written evaluation of a student’s scholarship and deportment,
etc. Thus, from which the system determines the first choice
as relevant to this case. This and other disambiguated terms
are shown in the result 5 of the Figure 3. Consequently,
the first term of type noun, from the correct sense given by
the algorithm, is added to the blocks previously created to
improve the search in the matching module; therefore, in the
example, the word ”document”, which correspond to the sense
of the term ”report”, is added to the terms to be used in the
matching and is also added to the category that belongs the
term ”report”, i.e., the category behavior.

TABLE II
NAMED ENTITY RECOGNITION RESULTS

Block Category Terms

1
Functional-Behavior

Receive
Traffic
Reports
Messages

Functional-InputOutput-Location Bogotá
Control ,

2 Functional-InputOutput-Time Before
Control Minutes

6) Normalization Tags: The system uses the Porter algo-
rithm inside GATE, provided through the snowball project
[37] to make the process of stemming. The Porter algorithm
removes affixes using rules and lists of words following the

pattern of algorithms known as affix removals [38]. Although
the algorithm used in the system is one of the most simple,
has proven to be as good as other algorithms in assessments
of precision and recall for information retrieval [39].

In the example, the terms of interest to normalize are those
classified as behavior or inputoutput. These terms represent
the request made by the executive. The rules used by the
algorithm are based on the ”measure” (m) of the word, which
corresponds to the number of vowels that are followed by a
consonant character; for example, the term ”receive” when
m is greater than 1, the algorithm replaces the suffix e by
null, resulting ”receiv”. Other terms such as ”messages” and
”minutes” can accomplish several conditions of the algorithm:
initially the S suffix of these terms is replaced by null, resulting
”message” and ”minute” terms respectively, where the final
result given by the algorithm are the terms ”messag” and
”minut”. Other terms are treated similar depending on their
fulfillment with the rules defined by the algorithm, some of
these terms are shown as the result 6 in the Figure 3. Finally,
the terms are added to the blocks as the terms of the semantic
analyzer.

7) Coreferencer: With this module, the system generates
additional annotations of type co-reference, such annotations
indicate the pairs pronoun/entity, where the entity is the
antecedent that refers to the pronoun. In the example, ”it”
in the context ”if I have not made it to the meeting” has
a notation (Behavior type ENTITY MENTION TYPE with
matches in the position [118, 125]) that corresponds to the
word ”meeting” indicating that the pronoun ”it” refers to
”meeting”.

B. Recommender

1) Service Recommender: The terms classified as func-
tional are used to search recommendations in the Flow Rank-
ing Repository, from previous results made by other users.
A feature has been added to the system, common in lot of
web tools and services. It consists in a simple autocomplete
feature which takes as input the terms stored in the Flow
Ranking Repository to recommend terms of service while the
user types the request. Consider that while the user texts ”want
to receive traff”, the system will suggest the option ”traffic”
according to previous requests made by other users stored in
the repository Another kind of recommendation comes after
sending the request to the system, considering the case for the
existence of some match with the words: ”traffic reports” the
result shown to the executive is a list of generic flows with
services, outcome from previous requests by other users of the
system (see Figure 4).

If the executive doesn’t select any recommendation, so the
remaining processing continues

2) Non Functional Requirements Recommender: This rec-
ommender searches non functional parameters from the Non
Functional Repository using the terms classified as functional,
the result considering the case for the existence of matches
with the words: ”traffic reports” is as follows: ”Precision, real-
time, cost ...” The executive chooses the option ”precision” and

84

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4. Results of the Service Recommender Module

it is accepted by the system.

C. Semantic comparison between the processed request and
Service Cluster

1) Matcher functional requirements: The input for this
stage is represented by the output given by the NLA module
(Table III). At this point, we consider that social software

TABLE III
OUTPUT GIVEN BY THE NLA MODULE

Block Category Terms

1 Functional-Behavior

Receive
Traffic
Reports
Messages
Receive
Messag
Document
Communication
Aggregation
Report

Functional-InputOutput Bogotá

2 Functional-InputOutput
Minutes
Minut
Time

3 Functional-Behavior
Meeting
Gathering
Meet

4 Functional-Behavior
Meeting
Meet
It

5 Functional-Behavior

Receive
Audio
Content
Taken
Receiv

has some disadvantages (ambiguity, variation of terms, and flat
organization of tags). Works as [40] exceed the limitations with

TABLE IV
RELEVANT SERVICES FOR THE RANKING PROCESS

Block Service Name Description

1

PostItService Creates messages and re-
ceive new answers.

ReportingService Provides report data and
network usage data.

QueueService Offers a reliable, highly
scalable hosted queue for
storing messages as they
travel between computers.

DealService v1 Webservice to receive
newest deals, top deals,
categories, and so on.

TopLabService Answers on messages.
USWeather Gest five day weather re-

port for a given zipcode.

2
Airport Gets Airport Code, City-

OrAirport Name, Coun-
try, Country Abbrv, Coun-
tryCode,GMT Offset Run-
way Length in Feet, Run-
way Elevation in Feet.

HeaderTimeService Returns the current time.
StrikeIronRealTimeQuery Retrieves informattion for

the stocks that are traded
on the Island ECN mar-
ketplace.

3 CommitteeMeetingService Information on committee
meetings of the Washing-
ton State Legislature.

4 CommitteeMeetingService Information on committee
meetings of the Washing-
ton State Legislature.

5
PostItService Creates messages and re-

ceive new answers.
Perceval VoIP manage Downloads message audio

file.
AWSECommerceService Exposes Amazon’s prod-

uct data and e-commerce
functionality.

semantic technologies, so that knowledge sources enrich the
tagspaces semantically. In [41], the approach addresses the fact
that one tag can sometimes be mapped to different Wordnet
synsets, where each synset corresponding to one meaning of
the tag. Following the former idea, our system enriches the
terms obtained from the Natural Language Analyzer module,
expanding the search with sources of knowledge (Flickr and
Wordnet).

In this way, the limitations of social software are partially
overcome. Hence, from the terms obtained, the system classi-
fies services: a service is classified as relevant or not depending
on whether it shares some terms of input, output or behavior
(service interface) with the terms of the expanded user search.
Once the algorithm for classification of services is applied, a
relevant set of services to each block is obtained. The services
used in this example are taken from seekda information system
[42], the result is presented in the Table IV.

Note that, the classification component uses the obtained
services for the ranking process. Thus, the algorithm gives
more importance to those services that match both input-output
and behavior parameters with the user’s search terms than
those that only match one of the two categories. The result of

85

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V
RANGING OFF SERVICES CONSIDERING ONLY FUNCTIONAL

PARAMETERS

Block Service Ranking
1 1. ReportingService

2. QueueService
3. DealService v1
4. PostItService
5. TopLabService
6. USWeather report

2 1. HeaderTimeService
2. StrikeIronRealTimeQuery
3. Airport

3 1. CommitteeMeetingService
4 1. CommitteeMeetingService
5 1. Perceval VoIP manage

2. PostItService
3. AWSECommerceService

TABLE VI
RANGING OFF SERVICES CONSIDERING ONLY FUNCTIONAL

PARAMETERS

Block Service Name
1 1. ReportingService

2. DealService v1
3. QueueService
4. PostItService
5. USWeather
6. TopLabService

2 1. StrikeIronRealTimeQuery
2. HeaderTimeService
3. Airport

3 1. CommitteeMeetingService
4 1. CommitteeMeetingService
5 1. Perceval VoIP manage

2. PostItService
3. AWSECommerceService

the ranking process considering only the functional parameters
is shown in the Table V.

2) Ranking Generator: The generated ranking is subjected
to a tuning based on the non-functional parameters chosen
by the user. In this case, the executive chose the parameter
”precision” of three available parameters (precision, real-time
and cost). The final ranking has two components, the original
ranking and the new ranking function generated with non-
functional parameters, this function gives more weight to the
services that have the precision as a non-functional parameter.
As result we obtain the new reordered ranking (Table VI).

It is worth noting that the words are stored as terms of
service interface, in order to speed up the fulfillment of future
requests.

D. Retrieval-based Association

1) Flow Ranking Generator: The input for the final stage
are the control terms that separate the service blocks retrieved
in the previous module: , (Control) - before (Control) - and
(Control) - if (Control) - not (Control) -, (Control). These terms
are mapped to the most primitive workflow patterns described
in [43]. The sequential pattern with the terms like and, before
or commas, draws blocks one after the other in the order in
which they are defined. The parallel pattern with therms like

or, draws the blocks in the same level and share the same root.
The other pattern that we consider was the conditional pattern
with therms like if, the pattern draws a block and bellow it,
follows a parallel pattern to the others blocks.

As a result, the system creates a generic flow composed by
five blocks, separated by control terms detected by the system:

Block 1 Separator Term: , (Control).
Block 2 Separator Term: before (Control).
Block 3 Separator Terms: and (Control) - if (Control) - not

(Control).
Block 4 Separator Term: , (Control).
The result is shown in the Figure 5.
The reason why we choose to make a flowchart of basic

components instead of standardized diagrams as UML, was
because we consider that the flowchart is simpler to understand
for end users. The generated graph has simple conventions: it
represents the start and end nodes with a circle, the blocks
of services that follow sequential or parallel patterns are
represented as rectangles and the block with a conditional
pattern is drawn as a rhomb.

2) Flow Ranking Associator: In this phase, the system
replaces the generic blocks generated in the previous phase, for
the block of retrieved services, with the exception of the start
and end nodes. The result obtained is shown in the Figure 5.
The conditional blocks, as the other blocks show the user the
mapping of its queries in a generic flow, but the execution
of the services is performed only in two ways: sequential
and parallel. In the case of conditional blocks, the system
executes the first service of the block in a sequential manner,
the other blocks also execute the first service following one
of the patterns. The execution of the services is performed
by two different clients developed: one for web services,
which selects the operation most similar to the service name
and creates default values for the input; the other one for
Telecommunication capabilites sends a Soap message to a
Service Logic Execution Environment (SLEE) with the name
of the service, and this executes the service with a default
agent. In both cases, the responses are returned to the system.
This way the user can see its logic request translated to
a diagram and the response of the services. The services
response is stored in a file indicating the name of the service,
its response and the flow pattern that followed (sequential or
parallel), this file and the graphic file are sent to the cell
phone to be visualized by the user. This way, the user can
retrieve services available on dynamic and varied context, see
its functionality through the result after its execution and be
useful to perform a formal composition process.

3) Result Storage: The terms are stored keeping a rela-
tionship with the services that were retrieved with the flow
generated, given the possibility of future requests, in order to
reduce processing time.

VII. EXPERIMENTAL STUDY

In this section, we present a perception of the quality of
output according to the input, through two different evaluations
of the first architecture phase (Analysis of Natural Language)

86

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Generic Control Flow

to determine also the viability of our proposal. Initially to
the first evaluation, we took the most important module for
the analysis of natural language requests; this module was
Named Entity Recognition and was chosen, taking into account
different features such as adaptation and relevance in the
phase. The assessment was focused on measuring the accuracy
of the system to classify entities that have already been defined
by experts. Based on the measures defined in [44], [45]:
Precision is the ratio of the number of correct words annotated
as the entity by the system and the number of annotations of
the entity given by the system, and the Recall is defined as the
ratio between the number of correct words annotated as the
entity by the system and the number of annotations of words
as a specific entity given by the user. To develop the evaluation
was used a corpus, obtained from different descriptions of the
Google Play services. We use as a search parameter key words
that were on the lists of the Gazetter. A Java program was
implemented, to create the corpus from the android services
description. The program removes useless characters leaving
7355 words.

The Behavior entities considered are: message, call, maps,
email, music, send, video, messenger and sms; the In-
put/Output entities considered are: location, person, number
and time; and the Control entities: before, however, if, or, and
while.

With this in mind, experts who evaluated the system man-
ually attributed annotations to the entities that describe the
service interface (Input-Output, Behavior). Such assignments
were performed according to the types of entities or words
specified. The results for the NER evaluation are shown in

Table X, where: Entity Made by the System (EMS), Correct
Entity by the System (CES) and Entity Given by the User
(EGU) The second one is a general evaluation about user’s

TABLE VII
NER EVALUATION RESULTS

Entity Precision Recall EMS CES EGU
message 1 0,67 4 4 6

call 1 1 9 9 9
maps 1 1 14 14 14
email 1 0,67 6 6 9
music 1 0,89 17 17 19
send 1 0,94 18 18 19
video 1 0,52 11 11 21

messenger 0,9 0,36 10 9 25
sms 0,74 1 23 17 17

location 0,17 0,01 6 1 78
person 0,06 1 117 7 7
number 0,62 1 141 88 88

time 0,47 0,19 38 18 92
before 1 1 3 3 3

however 1 1 1 1 1
if 1 0,67 4 4 6
or 0,97 1 39 38 38

while 1 1 2 2 2

satisfaction, unlike to the precision and recall evaluation
presented before. At first, we collect a set of forty five (45)
requests in natural language from several Web users, collected
from a survey that asked them, about the possible requests
they would do to a retrieval service system in their mobile
devices. In this vein, is important to consider that system will
only understand readable and meaningful requests; however,
in the case where a meaningless or misspell sentences be
entered, the system will try to process them, in order to deliver
consistent results to the user’s request. All requests were
categorized in high, medium and low scope, i.e., according
to its content. Low scope represents requests without sense or
without real services which cannot be implemented because
its complexity (e.g., How do I fix this problem?), medium
scope refers to incomplete or ambiguous service requests,
which can be executed, but not in an ideal way (e.g., How
do I get to ”x site”?), and finally high scope request, are
those which contains an adequate and reliable information of
services (as the request shown in the example given). From
former categories were selected randomly eight (8) answers,
which became in input’s system. To each request was obtained
a set of properties and characteristics (e.g., word’s grammatical
category, number of identified services, etc.) which were being
given by the system. To the evaluation, two important aspects
were considered. In one side, we looked at classification of
input words, organized in these groups: Behavior, Input/Output
and Control. In the other side, we review the number of
services identified and the words included in them.

Once taking all output system, ten human experts, with high
knowledge in this subject, evaluated the outputs obtained by
system. Experts were selected from research group named GIT
(Group of Telematic Engineering) from Cauca’s University,
who work in the area of telematic services.

87

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6. Word classification satisfaction

Historical examples of this kind of evaluation methodolo-
gies are exemplified by ”the fiuma comparative evaluation
of parsers of French (Abeillé), ”the fi or competition of
morphological analyzers for German” or ”the Morpholympics
(Hauser)” [39]. Thus, in order to determine trends of system’s
outputs, a survey was developed and applied to the above
mentioned experts, in December of 2011. The survey applied
to experts consisted of eight questions; each one represented
the processing of only one request, and shows the classification
of words from the sentences and the identification of the
number of services. Two different sections can be recognized
in the survey. The first one identifies words from input
sentences that can be classified into behavior, input/output
and control categories: Control words, Behavior words and
Input/Output words. Experts have chosen, if they were agreed
or disagreed with each proposed classification system. Percents
of satisfaction are showed in Figure 6, where it is possible to
show that higher percent of agreed selection was in Control
category with a 91.6% and the lower one was presented in
Behavior category with 68.1%. Also, in Input/Output category
the 81.2% were agreed with the proposed selection. In the
same way, experts were asked if they were agreed or disagreed
with the number of services identified and the words detected
in each service. Results in Figure 7, showed that 86.1% of
experts considered that the number of services identified were
optimums, while 13.8% not, and on the other hand 62.9% con-
template as adequate the classification of words in each service
against a 37.0%. The other section of the survey, evaluates in
general terms, whether the system is consider as excellent,
good, regular or a bad system, according to all identification,
selection and classifications parameters that were used. For
this, the Figure 8 shows both outcomes, degree of satisfaction
in number of services and words classification. In both cases
was observed that most of the experts considered the system
as good with a total of 41.6% and 59.7% respectively and
only a minority considered a bad system with 2.7% and
1.3%. From this study we are able to determine if word’s

Fig. 7. Service classification satisfaction

Fig. 8. General Evaluation

classification was optimums or not. Thus, results showed that
Behavior classification had the lowest level of acceptance by
experts, demonstrating the need to improve all the set of words
and rules that govern and compose this category. This also
implies that for subsequent tasks, specifically to development
of matching phase, we must establish a higher percent of
weigh to all Input/Output words, because they obtained better
acceptance than behavior. Regarding identification of Control
words, the percent of agreed is high, ensuring that control
flow will be correctly established. In general terms the cate-
gorization of a good system by majority of experts, shows the
adequate performance of the system, although can be improved
in some aspects like rules definition, Gazetters lists, patterns
and others related to increase exactitude levels.

VIII. CONCLUSION

This study presented a novel approach which facilitates the
service retrieval process in converged environments, reducing
complexity and habitual restrictions on incoming requests.
Thereby, inexperienced users can express their needs in natural
language, unlike other solutions that use templates restricting

88

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user’s expression. The system also takes into account from user
request, functional and non-functional parameters, to enrich
and give higher accuracy to retrieval service process.

The proposed system, processes requests made from mobile
devices, and delivers a generic control flow as output, which
contains the most suitable services to the users. From user’s
request analysis, we obtained a set of words classified in
three different groups: Behavior, Control and Input/Output,
which are used into matching module, to compare with char-
acterization services tags. In the same way the folksonomy-
based matchmaking, allowed an improvement of the system,
by adapting to dynamic vocabulary and reducing the one used
by end users.

In the proposed experimental study, where was assessed the
quality of the outputs system, trends among experts revealed
good acceptance in most of evaluated aspects, all above 55%.
However, the survey also showed that Behavior classification
must be improved to increase performance and accuracy of
service retrieval.

The study of diverse techniques and related works, showed
that implementing natural language analysis for service se-
lection process, is efficient since it enhances and facilitates
the processes, reducing the time required, complexity and
increasing the number of eligible users. On the other hand, the
implementation of a recommendation phase and auto-complete
module, facilitated the understanding and interaction with the
user, since it leads to formal elements in an informal request,
without establish limitations in capturing requirements.

The proposed semantic words enrichment, increased ac-
curacy in syntactic matching process, because when users
enter words in a request, often they do not match the terms
that describe services in the repository. Finally, the inclusion
of non-functional properties in the service retrieval process,
allows obtain not only the most related services to requests
users, but also ensures that these services are the most optimal
in terms of availability, response time documentation and other
non-functional parameters.

IX. FUTURE WORK

As a complementary work, we can consider the enhance-
ment of natural language phase, considering a module with
more specific rules, to obtain higher accuracy of retrieval
words. Natural Language Analysis phase could be also im-
proved adding a module which detects meaningless request or
incoherent and misspelled requests, to filter them and avoid
the whole retrieval process of the system. As future work,
the prototype can be extended to other language like Spanish,
German, Mandarin, etc. Also the number of services and their
respective descriptions (Functional and Non-functional prop-
erties) can be expanded involving other types of repositories
which can enrich the current records.

As shown in the description, the system only executes
services in an isolated manner, so for future work could
be consider the execution of services taking into account
the interfaces of the services such as, input/output features,
respecting the order indicated in the generic control flow.

The generation of control flow, can be improved taking
into account service interfaces. Finally for future work can
be established and developed the other phases that composed
the architecture as recommender phase, matching phase and
association phase, to complete all functionality for which it
was designed.

ACKNOWLEDGMENT

The authors would like to thank Universidad del Cauca,
COLCIENCIAS and TelComp2.0 Project for supporting the
Research of Camilo Pedraza and Julián Zúñiga

REFERENCES

[1] E. C. Pedraza, J. A. Zuniga, L. J. Suarez Meza, and J. C. Corrales,
“Automatic service retrieval in converged environments based on natural
language request,” in SERVICE COMPUTATION 2011, ser. 978-1-
61208-152-6, Rome, Italy, September 25 2011, pp. 52–56.

[2] F.-C. Pop, M. Cremene, M.-F. Vaida, and M. Riveill, “On-
demand service composition based on natural language requests,”
in Sixth International Conference on Wireless On Demand
Network Systems and Services., ser. WONS’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 41–44. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1688899.1688905

[3] A. Bandara, “Semantic description and matching of services for
pervasive environments,” Ph.D. dissertation, University of Southampton,
2008. [Online]. Available: http://eprints.ecs.soton.ac.uk/16403/

[4] ITU-T, “Series y: Global informationinfrastructure, internet protocol
aspectsand next-generation networks,” INTERNATIONAL TELECOM-
MUNICATION UNION, Tech. Rep., 2001.

[5] D. Moro, D. Lozano, and M. Macias, “Wims 2.0: Enabling telecom
networks assets in the future internet of services,” in Proceedings of
the 1st European Conference on Towards a Service Based Internet, ser.
ServiceWave ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 74–85.

[6] ITU-T, “Converged services framework functional requirements and
architecture,” INTERNATIONAL TELECOMMUNICATION UNION,
Tech. Rep., 2006.

[7] J. M. E. Carlin and Y. B. D. Trinugroho, “A flexible platform
for provisioning telco services in web 2.0 environments,” in
Fourth International Conference on Next Generation Mobile
Applications, Services and Technologies. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 61–66. [Online]. Available:
http://dx.doi.org/10.1109/NGMAST.2010.23

[8] G. Bond, E. Cheung, I. Fikouras, and R. Levenshteyn, “Unified
telecom and web services composition: problem definition and future
directions,” in Proceedings of the 3rd International Conference on
Principles, Systems and Applications of IP Telecommunications, ser.
IPTComm ’09. New York, NY, USA: ACM, 2009, pp. 13:1–13:12.
[Online]. Available: http://doi.acm.org/10.1145/1595637.1595654

[9] S. Hagemann, C. Letz, and G. Vossen, “Web service discovery - reality
check 2.0,” in Proceedings of the Third International Conference on
Next Generation Web Services Practices, ser. NWESP ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 113–118. [Online].
Available: http://dx.doi.org/10.1109/NWESP.2007.31

[10] S. Kirati, “A demonstration on service compositions based on natural
language request and user contexts,” Master’s thesis, Norwegian Uni-
versity of Science and Technology (NTNU), Department of Telematics,
June 2008.

[11] E. Al-Masri and Q. H. Mahmoud, “Discovering the best web service: A
neural network-based solution.” in SMC. IEEE, 2009, pp. 4250–4255.

[12] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and A. Ranganathan,
“Wishful search: interactive composition of data mashups,” in
Proceedings of the 17th international conference on World Wide Web,
ser. WWW ’08. New York, NY, USA: ACM, 2008, pp. 775–784.
[Online]. Available: http://doi.acm.org/10.1145/1367497.1367602

[13] K. Bischoff, C. S. Firan, W. Nejdl, and R. Paiu, “Can all tags
be used for search?” in Proceedings of the 17th ACM conference
on Information and knowledge management, ser. CIKM ’08. New
York, NY, USA: ACM, 2008, pp. 193–202. [Online]. Available:
http://doi.acm.org/10.1145/1458082.1458112

89

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] Apple. (2011, November) Getting to know siri. [Online]. Available:
http://media.wiley.com/product data/excerpt/80/11182992/1118299280-
40.pdf

[15] (2012) iphone user guide. [Online]. Available:
http://manuals.info.apple.com/en US/iphone user guide.pdf

[16] IBM. (2011, August) What is watson? [Online]. Available: http://www-
03.ibm.com/innovation/us/watson/what-is-watson/index.html.

[17] A. Bosca, F. Corno, G. Valetto, and R. Maglione, “On-the-fly construc-
tion of web services compositions from natural language requests.” JSW,
vol. 1, no. 1, pp. 40–50, 2006.

[18] C. Christophe, “Specification of pro-active service infrastructure for
attentive services,” SPICE, Tech. Rep., 2007.

[19] S. Angeletou, “Semantic enrichment of folksonomy tagspaces,” in
Proceedings of the 7th International Conference on The Semantic Web,
ser. ISWC ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 889–894.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-88564-1 58

[20] M. Magableh, “A generic architecture for semantic enhanced tagging
systems,” Ph.D. dissertation, Montfort University, 2011.

[21] G. Maciej, C. Giacomo, P. Marcin, and G. Maria, “Wscolab: Structured
collaborative tagging for web service matchmaking.” in WEBIST (1),
J. Filipe and J. Cordeiro, Eds. INSTICC Press, 2010, pp. 70–77.

[22] S. E. Antonio Javier, “Open platform for user-centric service creation
and execution,” Telefónica I+D (ES), University of Valladolid (ES),
Davidov, (BG), Ericsson (ES), Huawei (CN), IRIS (IT), JBoss (CH),
Alcatel (DE), NEC (PT), Politecnico di Torino (IT), Portugal, Telecom
Inovação (PT), Telecom Italia (IT), University of Madrid (ES), Tech.
Rep., 2008.

[23] C. Christophe, “Service platform for innovative communication envi-
ronment,” France Telecom (F), Alcatel (F), DoCoMo Communications
Laboratories Europe (D), Telefonica (ESP), Telecom Italia (I), Telenor
(NOR), Siemens (D,A), Ericsson (NL), Nokia (FIN), Stichting Telem-
atica Instituut (NL), NEC Europe (UK) , Bull (F), Fraunhofer FOKUS
(D), University of Kassel (D), Alma Consulting Group (F), University of
Brussels (B), IRIS (I), Neos (I), University of Surrey (UK), Norvegian
University of Science and Technology (NOR), Politecnico di Torino
(I),Telekomunikacja Polska (POL), Tech. Rep., 2008.

[24] N. Jorg, L. Klostermann, F. loannis, S. Ulf, d. R. Frans, and O. Ulf,
“Ericcson composition engine, next-generation in.” Ericcson, Tech. Rep.,
2009.

[25] ITU-T, “Enhanced telecom operations map (etom) the business process
framework,” INTERNATIONAL TELECOMMUNICATION UNION,
Tech. Rep., 2004.

[26] H. Jiejin, “A practical approach to the operation of telecommunication
services driven by the tmf etom framework,” Master’s thesis, Universitat
Poliècnica de Catalunya, 2009.

[27] TmForum. (2010) Information framework
(sid)in depth. TmForum. [Online]. Available:
http://www.tmforum.org/InformationFramework/6647/home.html.

[28] Yahoo. (2012) Pipes. [Online]. Available: http://pipes.yahoo.com/pipes/
[29] (2012) Flickr de yahoo. [Online]. Available: http://www.flickr.com/Flic
[30] A. Maaradji, H. Hacid, R. Skraba, A. Lateef, J. Daigremont, and

N. Crespi, “Social-based web services discovery and composition
for step-by-step mashup completion,” in Proceedings of the 2011
IEEE International Conference on Web Services, ser. ICWS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 700–701.
[Online]. Available: http://dx.doi.org/10.1109/ICWS.2011.122

[31] H. Cunningham, “Gate, a general architecture for text
engineering,” Computers and the Humanities, vol. 36, pp.
223–254, 2002, 10.1023/A:1014348124664. [Online]. Available:
http://dx.doi.org/10.1023/A:1014348124664

[32] Apache. (2010) Apache opennlp de-
veloper documentation. [Online]. Available:
http://opennlp.apache.org/documentation/manual/opennlp.html

[33] GATE. (2011) Part-of-speech tags used in the hepple tagger. [Online].
Available: http://gate.ac.uk/sale/tao/splitap7.html

[34] (2011) Developing language processing components with gate version
6. [Online]. Available: http://gate.ac.uk/sale/tao/splitap7.html

[35] N. Iulia, “Desambiguación semántica automática,” Ph.D. dissertation,
University of Barcelona, 2002.

[36] M. Lesk, “Automatic sense disambiguation using machine
readable dictionaries: how to tell a pine cone from an ice
cream cone,” in Proceedings of the 5th annual international
conference on Systems documentation, ser. SIGDOC ’86. New

York, NY, USA: ACM, 1986, pp. 24–26. [Online]. Available:
http://doi.acm.org/10.1145/318723.318728

[37] Snowball. (2011) Stemming algorithms. [Online]. Available:
http://snowball.tartarus.org/

[38] W. B. Frakes, “Term conflation for information retrieval,” in Proceedings
of the 7th annual international ACM SIGIR conference on Research
and development in information retrieval, ser. SIGIR ’84. Swinton,
UK, UK: British Computer Society, 1984, pp. 383–389. [Online].
Available: http://dl.acm.org/citation.cfm?id=636805.636830

[39] D. A. Hull, “Stemming algorithms: a case study for detailed evaluation,”
J. Am. Soc. Inf. Sci., vol. 47, no. 1, pp. 70–84, 1996.

[40] P. Mika, “Ontologies are us: A unified model of social networks and
semantics,” Web Semant., vol. 5, no. 1, pp. 5–15, Mar. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.websem.2006.11.002

[41] D. Laniado, D. Eynard, and M. Colombetti, “A semantic tool
to support navigation in a folksonomy,” in Proceedings of the
eighteenth conference on Hypertext and hypermedia, ser. HT ’07.
New York, NY, USA: ACM, 2007, pp. 153–154. [Online]. Available:
http://doi.acm.org/10.1145/1286240.1286282

[42] Seekda. (2012) Web service search. [Online]. Available:
http://webservices.seekda.com/search

[43] P. Ahana, “Workflow : Patterns and specifications,” Master’s thesis,
Indian Institute of Technology, 2007.

[44] P. Patrick, C. Stéphane, and H. Lynette, “Principles of evaluation in
natural language processing,” TAL, vol. 48, p. 23, 2007.

[45] M. King, “Evaluating natural language processing systems,” Commun.
ACM, vol. 39, no. 1, pp. 73–79, January 1996. [Online]. Available:
http://doi.acm.org/10.1145/234173.234208

90

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ad hoc Iteration and Re-execution of Activities in Workflows

Mirko Sonntag, Dimka Karastoyanova
Institute of Architecture of Application Systems
University of Stuttgart, Universitaetsstrasse 38

70569 Stuttgart, Germany
sonntag@iaas.uni-stuttgart.de, karastoyanova@iaas.uni-stuttgart.de

Abstract—The repeated execution of workflow logic is usually
modeled with loop constructs in the workflow model. But there
are cases where it is not known at design time that a subset of
activities has to be rerun during workflow execution. For
instance in e-Science, scientists might have to spontaneously
repeat a part of an experiment modeled and executed as
workflow in order to gain meaningful results. In general, a
manually triggered ad hoc rerun enables users reacting to
unforeseen problems and thus improves workflow robustness.
It allows natural scientists steering the convergence of scientific
results, business analysts controlling their analyses results, and
it facilitates an explorative workflow development as required
in scientific workflows. In this paper, two operations are
formalized for a manually enforced repeated enactment of
activities, the iteration and the re-execution. The focus thereby
lies on an arbitrary, user-selected activity as a starting point of
the rerun. Important topics discussed in this context are
handling of data, rerun of activities in activity sequences as
well as in parallel and alternative branches, implications on the
communication with partners/services and the application of
the concept to workflow languages with hierarchically nested
activities. Since the operations are defined on a meta-model
level, they can be implemented for different workflow
languages and engines.

Keywords-workflow ad hoc adaptation; iteration; re-
execution; service composition

I. INTRODUCTION

Imperative workflow languages are used to describe all
possible paths through a process. On the one hand, this
ensures the exact execution of the modeled behavior without
deviations. On the other hand, it is difficult, if not
impossible, to react to unforeseeable and/or un-modeled
situations that might happen during workflow execution,
e.g., exceptions, changes in regulations in business
processes, etc. This is the reason why flexibility features of
workflows were identified as essential for the success of the
technology in real world scenarios [2, 3, 4]. In [5], four
possible modifications of running workflows are described
as advanced functions of workflow systems: the deletion of
steps, the insertion of intermediary steps, the inquiry of
additional information, the iteration of steps.

This paper focusses on the iteration of steps. Usually,
iterations are explicitly modeled with loop constructs.
However, not all eventualities can be accounted for in a
process model prior to runtime. Imagine a process with an

activity to invoke a service. At runtime, the service may
become unavailable. The activity and hence the process will
fail, leading to a loss of time and data, if the underlying
service middleware cannot tackle the problem with failing
services. An ad hoc operation to rerun the activity (maybe
with modified input parameters) could prevent this situation.

Figure 1. Example for the flexible development of a scientific workflow

(borrowed from [6])

The repetition of workflow logic is not only meaningful
for handling faults. In the area of scientific workflows, the
result of scientific experiments or simulations is not always
known a priori [6, 7, 8, 9]. Scientists may need to take
adaptive actions during workflow execution. In this context,
rerunning activities is basically useful to enforce the
convergence of results, e.g., redo the generation of a Finite
Element Method (FEM) grid to refine a certain area in the
grid, repeat the visualization of results to obtain an image
with focus on another aspect of a simulated object, enforce
the execution of an additional simulation time step. A
simplified example for an explorative development of a
scientific workflow is given in Figure 1 (the example is
borrowed from [6]). In this scenario, a scientist wants to
perform a search for a DNA sequence in a particular genome
using a Blat Web service. He models a workflow with three

91

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tasks and puts them in the order presented in (Figure 1a):
“Execute MobyBlat” invokes the scientific Web service;
“Create User” creates the input for MobyBlat containing a
specific database to search in and providing user credentials;
“Create BlatJob” configures the search operation and
contains the DNA sequence to search for in the selected
genome. The scientist runs this workflow (Figure 1a). He
takes a look at the result of the MobyBlat service and
discovers that the result format is a MOBY-S XML object.
The result object contains a URL to the final result, the Blat
report. In order to download the report he adapts the running
workflow by appending two additional tasks: “Extract URL”
gets the URL to the Blat report out of the MOBY-S XML
object; “Run Perl Script” starts a Perl script that downloads
the report (Figure 1b). The scientist inspects the downloaded
report and recognizes that it has an inappropriate format.
Hence, he reruns the workflow from the “Create BlatJob”
task on (Figure 1c). In this second execution, he configures
the BlatJob so that the Blat Web service delivers the
expected format (Figure 1d). With this the scientist finishes
the development of this scientific workflow in an iterative
manner. The ad hoc adaptation of the workflow and the ad
hoc rerun operation prevent a loss of data, time and money
compared to a restart of the complete workflow and hence
the creation of a new workflow instance. This is especially
the case for long-running (scientific) workflows. In the
example, the scientist does not have to provide the input for
the “Create User” task again. There are other scenarios
where the visualization of scientific results is repeated
several times with different parameters without a need to
rerun the complete long-running scientific simulation.

A significant number of approaches exist for enabling the
repetition of activities in workflows. Existing approaches use
modeling constructs (e.g., loops, BPEL retry scopes [10]),
workflow configurations (e.g., Oracle BPM [11]), or an
automatic rerun of faulted activities (e.g., Pegasus [12]) to
realize the repeated execution of workflow parts. An
approach for the ad hoc repetition of workflow logic with an
arbitrary starting point that was user-selected at runtime is
currently missing in industrial workflow engines and
insufficiently addressed in research. Such functionality is
useful in both business and scientific workflows. In business
workflows it can help to address faulty situations, especially
those where a rerun of a single faulted activity (usually a
service invocation) is insufficient, or changes in the control
logic needed to address new requirements. In scientific
workflows it is one missing puzzle piece to enable
explorative workflow development [7, 8] and to control and
steer the convergence of results.

This paper therefore focusses on enabling the rerun of
activities in workflows from arbitrary points in the workflow
model. Two operations on workflow instances are
formalized to enforce the repetition of workflow logic: the
iteration works like a loop that reruns a number of activities;
the re-execution undoes work completed by a set of activities
with the help of compensation techniques prior to the
repetition of the same activities. The operations are defined
on the level of the workflow meta-model. Thus, the
operations can be implemented in different workflow

languages and engines. Problems such as data handling
issues, the communication with partners, or how the concept
can be applied in workflow languages with block structures
are identified and discussed. This paper is a logical
continuation of our work presented in [1]. Note that the
terms “workflow” and “process” are used interchangeably.

The rest of the paper is organized as follows. Section II
shows the workflow meta-model used in this work. Section
III describes the iterate and re-execute operations. Section
IV addresses data handling issues and Section V applies the
approach in more complex workflow graphs including
parallel and alternative branches. Section VI discusses
implications of the approach on message-receiving and
message-sending activities, on reruns within loops, and on
reruns in workflow languages with block structures. Section
VII shows how users interact with a workflow system that
implements the manually enforced repetition of workflow
logic. Section VIII is devoted to the prototypical
implementation of the concepts based on BPEL. Section IX
presents work related to the research topic of this paper.
Finally, Section X concludes the paper.

II. META-MODEL

The workflow meta-model used in this paper is based on
the one provided in [5]. It is adapted where appropriate in
order to accommodate the aspects needed to describe the
repeated execution of workflow logic. A process model is
considered a directed, acyclic graph (Figure 2). The nodes
are tasks to be performed (i.e., activities). The edges are
control connectors (or links) and prescribe the execution
order of activities. Data dependencies are represented by
variables that are read and written by activities. In the
description of the meta-model (S) is used as the power set
of a given set S.

b

number
Activity Variable

Data
connector

Control
connector c

a

Figure 2. Example for a process model

A. Modeling

A workflow model can be expressed with the help of sets
for the different workflow elements defined in the following.

Definition “Variables, V”. The set of variables defines all
variables of a process model:

 V Í M ´ S (1)

M is the set of names and S denotes the set of data
structures. Each v Î V has assigned a finite set of possible
values, its domain DOM(v) [5].

Definition “Activities, A”. Activities are functions that
perform tasks. The set of all activities of a process model is

92

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 A Í M ´ C. (2)

C is the set of all conditions in a process model and is
used here as join condition for an activity. If j Î C evaluates

to true at runtime, the activity is instantiated and scheduled
(i.e. the navigator is going to execute the activity). Variables
can be assigned to activities via an input variable map

 i: A ↦ (V) (3)

and an output variable map

 o: A ↦ (V). (4)

Input variables may provide data to activities and
activities may write data into output variables. Furthermore,
compensating activities that undo the effects of an activity
can be assigned by a compensate activity map

 c: A ↦ A

This map reflects the concept that activities can be
considered as pairs consisting of an activity and its
compensating activity. The idea is geared towards the
approach of sagas [13]: The workflow can thereby be
considered as a long-lived transaction implemented as saga,
i.e. as non-atomic transaction that consists of a sequence of
atomic sub-transactions T1, …, Tn; an activity a Î A with a
compensating activity is like an atomic sub-transaction Tj in
a saga, and the compensating activity c(a) can be compared
to a compensating transaction Cj.

Definition “Links, L”. The set that denotes all control
connectors/links in a process model is

 L Í A ´ A ´ C. (6)

Each link connects a source with a target activity. Its
transition condition t Î C determines at runtime if the link is
followed. Two activities can be connected with at most one
link (i.e., links are unique).

Definition “Process Model, G”. A process model is a
directed acyclic graph denoted by a tuple

 G = (m, V, A, L) (7)

with a name m Î M.

B. Execution And Navigation

For the execution of a process model, a new process
instance of that model is created, activities are scheduled and
performed, links are evaluated, and variables are read and
written. These tasks (i.e., the navigation) are conducted
according to certain rules. The component of a workflow

system that supervises workflow execution and that
implements these rules is called the navigator. The notion of
time in the meta-model is reflected with ascending natural
numbers. Each process instance possesses its own timeline.
At time 0 Î Գ a process is instantiated. Each navigation step
increases the time by 1. In the following, the navigation rules
that are most important for this work are presented.

If an activity is executed, an activity instance is created
with a new unique id. If the same activity is executed again
(e.g., because it belongs to a loop), another activity instance
is created with another id. The same holds for links and link
instances. A new id can be generated with the function
newId() that delivers an element of the set of ids, ID.

Process, activity and link instances are considered sets of
tuples. This allows navigating through a process by using set
operations. Navigation steps are conducted by creating new
tuples and adding them to sets (instantiation of an activity/a
link) or by deleting tuples from sets and adding modified
tuples (to change the state of existing activity/link instances).

Definition “Variable Instances, VI”. Variable instances
provide a concrete value c for a variable v (i.e., an element of
its domain) at a point in time t. The finite set of variable
instances is denoted as

 VI = {(v, c, t) | v Î V, c Î DOM(v), t Î Գ}. (8)

The set of all possible variable instances is VI
all.

Definition “Activity Instances, AI”. The set of activity
instances is denoted as

 AI = {(id, a, s, t) | id Î ID, a Î A, s Î S, t Î Գ}. (9)

At a point in time t an activity instance a Î AI has an

execution state s Î S = {S, E, C, F, T, COMP, D}. The meaning
of the states is as follows:

 S, scheduled: The activity is in the execution queue of
the navigator but not yet running. The navigator is
going to execute the activity in future.

 E, executing: The activity is running.
 C, completed: The activity was successfully executed.
 F, faulted: A fault happened during activity execution.
 T, terminated: Abortion of a scheduled or executing

activity by the user.
 COMP, compensated: The compensation activity

c(model(a)) was executed successfully for a completed
activity.

 D, dead: The activity is located in a dead path, i.e., a
path with links evaluated to false. It was neither
scheduled nor executed.

The function model(a) for an activity instance a = (id, a,

s, t) Î AI delivers its activity model a. Note that there is at
most one instance of an activity in AI. That way AI exactly

93

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reflects the process instance state in the current iteration.
There is no influence by activity states from former
iterations. While this condition is inherent for workflows
without loops, it must be explicitly ensured by the navigator
component of the workflow engine for more complex
workflow executions including loops or manual ad hoc
reruns of activities (in the focus of this work).

In the following, three sets are defined that help to
capture the state of a process instance and that are used to
navigate through a process model graph. These sets extend
the meta-model described in [5].

Definition “Active Activities, AA”. The finite set of active
activities AA contains all activity instances that are scheduled
or currently being executed:

 AA Í AI, "a Î AA: state(a) Î {S, E}. (10)

The function state(a) for an activity instance a = (id, a,
s, t) Î AI returns its current state s Î S.

Definition “Finished Activities, AF”. The finite set of
finished activities AF contains all activity instances that are
completed, faulted, terminated, or dead:

 AF Í AI, "a Î AF: state(a) Î {C, F, T, D}. (11)

This set is needed to assure a preconditions for the
repetition of activities and for the compensation of already
completed work. Note that compensated activities are not
part of AF because their effects are undone.

Definition “Evaluated Links, LE”. The finite set of
evaluated links LE contains link instances whose transition
condition is already interpreted. Link instances refer to the
instantiated link l, have a truth value c for the evaluated
transition condition and an execution time t:

 LE = {(l, c, t) | l Î L, c Î {true, false}, t Î Գ}. (12)

Note that each link has at most one link instance in LE for
one process instance. If a link is evaluated repeatedly (e.g.,
due to a loop or a manual ad hoc rerun), the old link instance
must be removed from LE. This is ensured by the navigator
component of the workflow engine in order to prevent an
interference of link instances of different workflow
iterations. Note that the set of evaluated links is usually not
part of the context of a workflow instance in typical
workflow engines (cf. [5, 14, 15]). The link state (i.e., the
truth value c) is only important to evaluate the join condition
of the link’s target activity and can be thrown away
afterwards. In this work, the context of process instances is
extended by storing the truth value for all evaluated links
because it is needed for a correct join behavior if join
activities are rerun. The set LE is very similar to the markings
of control connectors known from ADEPT [3, 16].

Definition “Wavefront, W”. The set of all active activities
and evaluated links, for which the target activity is not yet
scheduled, is called the process instance’s wavefront

 W = AA ∪ LA (13)

with LA Í LE, "l Î LA: ∄a Î AA ∪ AF:

target(model(l)) = model(a). The function model(l) for a
link instance l = (l, c, t) Î LE delivers its link model l. The

function target(l) for a link l = (a, b, c) Î L returns its
target activity b.

Definition “Process Instance, pg”. An instance for a process
model g is now defined as a tuple

 pg = (VI, AA, AF, LE). (14)

TABLE I. THE NAVIGATION EXAMPLE SHOWS HOW THE WORKFLOW ENGINE EXECUTES A WORKFLOW INSTANCE BY SET OPERATIONS.

Time VI AA AF LE
1 {(number, 100, 1)} {} {}
2 {(number, 100, 1)} {(382, a, S, 2)} {} {}
3 {(number, 100, 1)} {(382, a, E, 3)} {} {}
4 {(number, 100, 1) , (number, 101, 4)} {(382, a, E, 3) {} {}
5 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {}
6 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {(a-b, true, 6)}
7 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)}
8 {(number, 100, 1) , (number, 101, 4)} {(383, b, S, 8)} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)}
9 {(number, 100, 1) , (number, 101, 4)} {(383, b, E, 9)} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)}
10 … … … …

The set of all process instances is denoted as Pall. As

navigation example consider the workflow model in Figure 2
and a corresponding workflow instance in Table 1. Say the
workflow is instantiated and the variable number Î V is

initialized with 100 (time step 1). Then, activity a Î A is
scheduled (2) and executed (3). Suppose activity a models

the invocation of a program that increases a given number by
1. The variable “number” is used as input value for this
operation and is hence updated (4), i.e., the tuple
representing the variable instance is substituted. Activity a
completes and its corresponding instance tuple is deleted
from AA and a new tuple containing the new activity instance
state with increased time step is added to AF (5). Now the

94

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

navigator evaluates the transition condition of the links a-b
and a-c; a-b’s condition evaluates to true (6), a-c’s to
false (7). As a consequence, the target activity of a-b is
scheduled and executed (8 and 9). Note that even though the
navigator manipulates the tuples, all these actions are
recorded in the audit trail [5].

III. ITERATION AND RE-EXECUTION

Based on the meta-model described above the repeated
execution of workflow parts is described in this section. As
already proposed in [10], two repetition operations are
thereby distinguished. The first operation, iteration, reruns
workflow parts without taking corrective actions or undoing
already completed work. The second operation, re-execution,
resets the workflow context and execution environment with
compensation techniques prior to the rerun (e.g., de-
allocating reserved computing resources, undoing completed
work).

a

b

c

e f g

i j k

d

h

l

Wavefront

m

Completed activity

Evaluated link

Executing activity

Unscheduled activity

Evaluated link
in the wavefront
(unscheduled
target activity)

Inactive link

Start activity

Iteration
body

Scheduled activity

T

T T

T

T

T T

T T

T

Repeat
from here

Terminated activity

Compensated activity

Dead activity

Figure 3. Example of a process instance

Before going into the details of the iteration of workflow
parts several important terms are introduced (see Figure 3).
The point from where a workflow part is executed repeatedly
is denoted as the start activity (activity c in the figure). The
start activity is chosen manually by the user/scientist at
workflow runtime. The workflow logic from the start activity
to those active activities and active links that are reachable
from the start activity are called iteration body (activities c,
e, f, g, i, j, the links in between and link g-k). The iteration
body is the logic that is executed repeatedly. Note that
activities/links reachable from the iteration body but not in

the iteration body are executed normally when the control
flow reaches them (e.g., activities k and l).

For the iteration/re-execution of logic it is important to
avoid race conditions, i.e., situations where two or more
distinct executions of one and the same path are running in
parallel. These situations can occur in cyclic workflow
graphs or can be introduced by the manual rerun of activities
this work deals with. For example, if the repetition is started
from activity c in Figure 3, a race condition emerges because
activities i and j on the same path are still running: activity l
could be started if i and j complete while a competing run is
started at c. There are two ways to avoid race conditions in
this scenario. Firstly, the workflow system can wait until the
running activities in the iteration body are finished without
scheduling any successor activities (here: l). The rerun is
triggered afterwards. Secondly, running activities in the
iteration body can be terminated and the rerun can start
immediately. A workflow system should provide both
options to the users. In some cases it is meaningful to
complete running work prior to the rerun (e.g., to reach a
consistent system state), in other cases an abortion is a better
choice (e.g., because the result of running work is
unimportant or the activities being executed are long-
running). This has to be decided on a per-case-basis by the
user. In the rest of the paper the focus lies on the option
“termination” since it is more complex and requires one step
more than the option “wait for completion”. However, “wait
for completion” can be derived from the descriptions by
omitting the explicit termination of activities in the
examples.

Definition “Activities in Iteration Body”. A function is
needed that finds all activity instances in the iteration body
of an activity in a given process instance. The function is
useful for terminating active activities in the iteration body
(or for waiting for their completion) to avoid race conditions
and for resetting finished activities to avoid interference of
activity execution states in different activity runs:

 activitiesInIterationBody: A ´ Pall ↦ (AI) (15)

Let a Î A be an activity in process model g and pg Î Pall

an instance of g. Then activitiesInIterationBody(a,
pg) = {a1, …, ak}, a1, …, ak Î AI "i Î {1, …, k}:

model(ai) is reachable from activity a. An algorithm for the
“activities in iteration body” function can be implemented by
walking through the workflow graph beginning with activity
a until the wavefront or an already visited activity is reached.
The activity instance for each considered activity is stored.
Since each activity is visited at most once, the algorithm is in
O(n), with n as the number of activities in the workflow
model.

Race conditions can also occur if evaluated links in the
iteration body remain in the process instance. In Figure 3, a
race condition could appear as follows. If activity h
completes and the link h-k is evaluated, the join condition of
activity k could become true. Activity k would then be
started although a competing execution of the same path

95

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

arises due to the repetition of activity c. That is why such
links have to be found and reset, i.e., they are deleted from
the set of evaluated links LE.

Definition “Links in Iteration Body”. A function is needed
that finds all evaluated links in the iteration body in a given
activity and process instance:

 linksInIterationBody: A ´ Pall ↦ (LE) (16)

Let a Î A be an activity of process model g and pg Î Pall

an instance of g. Then linksInIterationBody(a, pg) =
{l1, …, lk}, l1, …, lk Î LE "i Î {1, …, k}: model(li) is
reachable from activity a. An algorithm for the “links in
iteration body” function can be implemented by traversing
the workflow graph starting from activity a. Each path has to
be followed only until the wavefront or an already visited
activity is reached. Since each link is visited at most once,
the complexity of such an algorithm is in O(n), where n is
the number of activities in the workflow model.

A. Iteration

Parts of a workflow may be repeated without the need to
undo any formerly completed work. A scientist may want to
enforce the convergence of experiment results and therefore
repeats some steps of a scientific workflow.

Definition “Iterate Operation”. The iteration is a function
that repeats logic of a process model for a given process
instance. A specified activity is the starting point of the
operation. The input data elements for the iteration are either
the current variable values or are loaded from a specified
variable snapshot that belongs to the start activity.

 : A ´ Pall ↦ Pall (17)

Let a Î A be the start activity of the iteration and

p_ing, p_outg Î Pall two process instances. Here, p_ing is the

input for the operation and p_outg is the resulting instance
with changed state that is ready to start with the iteration.
The pre-condition is that only already instantiated but no
dead activities can be used as start activity:

 $n Î AA ∪ AF: state(n) ∉ {D} ∧ model(n) = a. (18)

This prevents (1) using the operation on dead paths and
(2) jumping into the future of a process instance, which are
both not a repetition of completed workflow logic.

Then (a, p_ing) = p_outg, p_ing = (VI
in, A

A
in, A

F
in, L

E
in)

and p_outg = (VI
out, A

A
out, A

F
out, L

E
out) :

1. VI
out = VI

in
2. AA

out = AA
in \ activitiesInIterationBody(a, p_ing) ∪

{(newId(), a, S, t)}, t is a new and youngest time step
3. AF

out = AF
in \ activitiesInIterationBody(a, p_ing)

4. LE
out = LE

in \ linksInIterationBody(a, p_ing)

The variables remain unchanged (1.). This reflects the
case where the current variable values are taken as input for
the iteration. All active successor activities from a are
terminated, i.e., deleted from the set of running activities AA
(2.). All finished activities in the iteration body are reset, i.e.,
removed from the set of finished activities AF (3.). All
evaluated links in the iteration body are reset, i.e., their
evaluation result is deleted from the set of evaluated links LE
(4.). The start activity is scheduled (added to the set of active
activities with status scheduled, S) so that the workflow logic
is repeated beginning with the start activity (2.). The join
condition of the start activity is not evaluated again.

In the second case of the operation, a variable snapshot
is loaded prior to the iteration. The loaded variable values are
taken as input for the iteration:

1. VI
out = VI

in ∪ loadSnapshot(b, p_ing, e, V’)
Here, b Î A is the activity to load the snapshot for (the

start activity or a predecessor thereof), e Î Գ is the execution
number of b needed to select the correct snapshot instance,
V’ Í V is a subset of variables to be loaded from the
snapshot. The complete definition of the function can be
found in Section IV in (21). Shapshots are stored during
process execution before each activity that modifies
variables. A snapshot is uniquely addressed by its
corresponding activity b and an execution number e. The
latter is needed because there can be several snapshot
instances for an activity—one for each activity execution.
The subset of variables V’ can be specified by the user to
select particular variables that should be loaded from a
snapshot. That means it is possible to load only a part of a
snapshot. This is especially important for iterations in
parallel paths. Variables that are not loaded from the
snapshot have the same value as in the original process
instance p_ing. For more details about data handling see
Section IV.

a b c d fe
T T T Ta)

b)

Iterate

a b c d fe
T

c) a b c d fe
T

terminate & reset

New wavefront

Wavefront

Terminated activity

Figure 4. Iteration in a sequence of activities. The user requests the

iteration of activities (a). The iteration body is reset and active activities are
terminated (b). Finally, the start activity of the iteration is scheduled (c).

As an example for the ad hoc iteration of workflow logic
consider Figure 4. There is a sequence of activities. Activity
e is currently being executed. The user wants to iterate the
workflow with activity b as start activity (Figure 4a). The
path from b to the wavefront is traversed, visited links are
reset (b-c, c-d and d-e in the example), and scheduled or

96

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

running activities are terminated (activity e), as shown in
Figure 4b. Finally, a data snapshot is loaded (if requested by
the user) and the start activity (b) is scheduled (Figure 4c).

B. Re-execution

It is also needed to repeat parts of a workflow as if they
were executed for the first time. Completed work in the
iteration body has to be reversed/compensated prior to the
repetition. A scientist may want to retry a part of an
experiment because something went wrong. But the
execution environment has to be reset first (e.g. stateful
services have to be set to their initial state, computing
resources have to be released).

Algorithm “Compensate Iteration Body”. For the
compensation of completed work in the iteration body an
algorithm with the following signature is defined:

 compensateIterationBody: A ´ Pall ↦ (VI
all) (19)

The function compensates all completed activities of the
iteration body in reverse execution order. It delivers the
values of variables that were changed during compensation.
Let a Î A be the start activity of the re-execution and p Î Pall
a process instance for the model of activity a. Then
compensateIterationBody(a, p) = {v1, …, vk} with p =
(VI, AA, AF, LE), v1, … , vk Î VI

all works as follows (Note:

The function time(f) with f Î AI delivers the time of the last
state change of activity instance f.):

function compensateIterationBody(a, p)
1 Vresult ← Æ

2 F = {f Î AF | state(f) == completed
model(f) is reachable from a}

3 while (|F| > 0) do
4 if |F| > 1 then

5 $m Î F: "n Î F, n ¹ m:

time(m) > time(n) execute
compensating activity c(model(m))

6 else

7 $m Î F execute compensating
activity c(model(m))

8 end if
9 F ← F \ {m}
10 for each (v Î o(c(model(m)))) do

11 if ($w Î Vresult: model(w) = v) then
12 Vresult ← Vresult \ {w}
13 end if
14 Vresult ← Vresult	 ∪ {(v, c, t)}, c is the

new value of variable v, t is the
timestamp of the assignment

15 end for
16 end while
17 return Vresult

A similar algorithm for the creation of the reverse order

graph is also proposed in [17]. But the intention of the

Algorithm “Compensate Iteration Body” is to deliver the
changed variable values as result of the compensation
operation.

Definition “Re-execute Operation”. The re-execution is a
function that repeats logic of a process model for a given
process instance with a given activity as starting point. The
input data for the re-execution is taken from a variable
snapshot that belongs to the start activity or a predecessor of
the start activity. The “re-execute” uses the “compensate”
operation to reset already completed work in the iteration
body.

 : A ´ Pall ↦ Pall (20)

The start activity a Î A, the process instances

p_ing, p_outg Î Pall, and the pre-condition are similar to the
iterate operation. The difference is the calculation of VI

out:
(a, p_ing) = p_outg :

1. VI
out = VI

in ∪ compensateIterationBody(a, p_ing)
∪ loadSnapshot(b, p_ing, t, V’).

The variable values might be modified as a result of the
compensation of completed work in the iteration body or by
loading a data snapshot (1.). Note that the start activity for
the re-execution is scheduled after the compensation is done
and the snapshot is loaded.

An example for the re-execution of activities is given in
Figure 5. In a sequence of activities, activity e is currently
being executed. The user decides to re-execute the workflow
from activity b (Figure 5a). The path from b to the wavefront
(activity e) is followed. All links on this path are reset (links
b-c, c-d, and d-e) and all activities in the wavefront reachable
from b are terminated (activity e). Now, all completed
activities in the iteration body are compensated in reverse
execution order (Figure 5b). Note that only completed
activities with an attached compensation activity can be
compensated. Finally, a data snapshot is loaded and the start
activity is scheduled (Figure 5c).

a b c d fe
T T T Ta)

c)

Re‐execute

a b c d fe
T

b) a b c d fe
T

terminate & reset

compensate

Wavefront

New wavefront

Compensated
activity

Figure 5. Re-execution in a sequence of activities. The user wants to re-

execute activities (a). The iteration body is reset, active activities are
terminated, and completed activities are compensated in reverse execution
order (b). Finally, a data snapshot is loaded and the start activity for the re-

execution is scheduled (c).

97

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In practice, compensation of already completed work is
not always possible. An invoked service must provide an
operation to undo the results of a former request. For
instance, a service with an operation to book a hotel room
should also provide an operation to cancel the booking. The
 operation relies on such compensation operations of
services to conduct the compensation of already completed
workflow logic in the iteration body. It is up to the person
that models the considered workflow to integrate
compensation logic in form of a compensating activity c(a)
for an activity a. This is a prerequisite for the correct and
desired functionality of the re-execution.

IV. DATA HANDLING

For the repetition of workflow parts the handling of data
is of utmost importance. Some of the questions that arise are:
Where to store data that the former iteration has produced?
What data should be taken as input for the next iteration? A
mechanism is needed to store different values for same
variables and to load appropriate/correct variable values for
iterations. Variables might also be reset by the compensation
of the iteration body as is done in the “re-execute” operation.
This strongly depends on the compensation logic and
invoked services. But it cannot be guaranteed that the former
variable values are restored by the compensation. Hence,
another mechanism is needed.

The desired functionality can be realized by saving
snapshots of variables during workflow execution. Available
workflow engines store an audit trail [5, 18] that contains,
amongst others, values of variables changed by the
successfully executed activities. However, the audit trail
saves variables incoherently. The proposed snapshot
mechanism contains only variables that are visible for a
particular activity, their current values and a timestamp. The
data footprint of snapshots can be minimized as follows:
values for variables that did not change between two
snapshots do not have to be stored again; pointers to the
values of variables can be used to still be able to refer to
them.

Snapshot
to load

a

dc

b

e

a

dc

b

e

S
Rerun

a) b)

Stored
snapshot

T

T T

T T

T

T T

T T

Figure 6. Storing snapshots after variable-modifying activities (a) vs.

storing snapshots before variable-modifying activities (b).

Snapshots are stored with every activity that changes
variables. If snapshots are saved after variable-changing
activities, the workflow graph must always be traversed to

find the correct snapshot for an “iterate” or “re-execute”
operation. In Figure 6a, the workflow ought to be rerun from
activity c. But the nearest previous snapshot of c belongs to
activity a. Another approach is to store the snapshots before
variable-changing activities. In Figure 6b, the rerun starts
from the variable-modifying activity c and the snapshot of c
can be loaded without a need to traverse the workflow graph.
Storing snapshots before the execution of variable-changing
activities renders the finding of a snapshot for the start
activity of a rerun more efficient.

However, if the start activity of a rerun is a non-variable-
changing activity, an algorithm is needed to find the nearest
preceding snapshot. The simplest case is a sequence of
activities. The snapshot to be considered belongs to the
nearest preceding variable-modifying activity. In Figure 7a,
the rerun is started from activity b, the corresponding
snapshot to load belongs to b’s predecessor, activity a. A
more complex case arises when there are competing
snapshots in a parallel branching. In Figure 7b, the rerun is
started from activity e. There are two nearest preceding
snapshots located in the branching just before e, one for
activity c and one for activity d. This conflict can be solved
by the user by manually selecting the snapshot to load. An
automatic solution would be to take the snapshot with the
youngest timestamp.

Iteration
body

Sequence case:
Load nearest
snapshot in the
past

Competing snapshots:
Load user‐selected or
youngest snapshot

a

dc

b

e

a

dc

b

e

a) b)

T

T T

T T

T

T T

T T

Snapshots in parallel paths:
B = 1, in normal execution
B = 0, when snapshot loaded
 Load only snapshot subset

Write B = 1

Read B

Write A = 1

Read A

Write A = 0,
write B = 0

a

ec

b

d f

g

c)

T

T T

T

t = 1 t = 2

T

A=0
B=0

A=0
B=0

Figure 7. Iteration with non-snapshot activities as start activity with

unique (a) and competing (b) snapshots. Iterations in parallel paths can
cause the problem of lost updates (c).

In parallel paths, the problem of lost updates might
occur: loading a snapshot in one path might overwrite the
result of a write operation in a parallel path. A simple
example is given in Figure 7c. The two global variables A
and B are both initialized with 0 by activity a. In the c/d-
branch, activity c increases A by 1 and activity d reads A; in
the e/f-branch activity e increases B by 1 and activity f reads
B. The snapshots of c and e have stored the initial values of
A and B. Imagine that c and e are already executed and
hence variables A and B have the value 1. Now, the user
wants to rerun branch c/d starting with c. The snapshot of c
is loaded. Both variables get the value 0, which is correct for
A but means a lost update for B. The problem cannot be
solved by loading another snapshot in the near environment
of activity c (the snapshots of a, c and e have the same

98

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

content). It must therefore be possible to load only a subset
of variables stored in a snapshot. If this is done manually, the
user must be able to gain insight into the content of
snapshots and to determine the variables to load. An
automatic solution is also feasible: all variables that are
written in the iteration body can be selected out of the
snapshot. In the example, the iteration body consists of
activities c and d. The only write operation in the iteration
body targets variable A. Hence, variable A can automatically
be selected from the snapshot stored before c.

Due to the rerun of activities (manually or in loops) there
can be several snapshots for each variable-modifying
activity—one snapshot for each execution of the activity.
These multiple snapshots are called snapshot instances. The
user must be given the means to select the particular
snapshot instance to be used for the rerun; recommendations
may facilitate correctness. In Figure 8, activities c and d of
the sample workflow in Figure 7c are iterated multiple times.
This leads to a chain of executions of activities c and d. The
current value of variable A was taken for each rerun. There
are now three snapshot instances for activity c with different
values for variable A. Imagine the user wants to iterate again
from c. Besides the start activity, he has to select the
variables that should be loaded out of the snapshot (variable
A) and the concrete snapshot instance. The snapshot instance
is identifiable via the execution number of the corresponding
activity. For example, the snapshot with A = 100 belongs to
the 1st execution of activity c; A = 101 belongs to the 2nd
execution of c; and so on. The selected variables of a
snapshot instance are re-initialized according to the values
stored in the snapshot.

A=101 A=102 A=103

c1 d1 c2 c3 d2

A=100 A=101 A=102

nth execution
of the activity

Figure 8. Multiple snapshot instances can exist for one activity.

Now, a function to load snapshot instances can be
defined. This function is used by the “iterate” and “re-
execute” operations to deliver the correct input for the next
enforced run of the corresponding workflow logic.

Definition “Load Snapshot”. The “load snapshot” function
loads variable instances for a process instance and a subset of
variables. The signature of the function is defined as follows:

 loadSnapshot: A ´ Pall ´ Գ ´ (V) ↦ (VI). (21)

Let a Î A be the activity the snapshot belongs to,

pg Î Pall an instance of process model g, e Î Գ the execution
number for activity a that identifies the snapshot instance,
and V’ Î (V) the selected variables to load from the

snapshot. Then loadSnapshot(a, pg, e, V’) = {v1, …, vn},

v1, …, vn Î VI "k Î {1, …, n}: model(vk) Î V’, i.e.,
variable instances are loaded only for the given variables.

V. REPETITION IN COMPLEX WORKFLOW GRAPHS

In activity sequences, the wavefront consists only of a
single element and there are no concurrent and hence no join
nodes, which does not pose any complications for iteration
and re-execution. This section shows the application of the
two ad hoc rerun operations in complex workflow graphs
with parallel and alternative branches. The most important
issue to solve is to guarantee a correct behavior at join nodes
when iterating or re-executing them. In common workflow
languages, a join node is activated not until all incoming
links are evaluated and the join condition is evaluated to
true. Consider the example in Figure 9. The join node d has
three predecessors, a, b and c. Only if the links a-d, b-d and
c-d are followed, and the join condition of d is true, can d
be scheduled (Figure 9a-c). This join behavior prevents (1)
missing link values in the join condition of join nodes, and
(2) race conditions, i.e., undesired multiple executions of join
nodes or ambiguous behavior.

a c

d

b

F

a c

d

b

F T

a c

d

b

F T T

a c

d

b a c

d

b a c

d

b

T

a) b) c)

d) e) f)

Dead
activity

Figure 9. Join behavior of the meta-model. A join activity cannot be

executed unless all incoming links are evaluated (a-c). Typically, link states
are not stored by the engine (d), which makes a rerun in parallel or

alternative branches impossible (e and f).

After the evaluation of the join condition, the values of
incoming links of the corresponding activity are not needed
anymore. Thus, link values are usually not stored beyond the
context of the join node (Figure 9d). This is the typical way
of dealing with links in conventional workflow engines. In
Petri net-based workflows [19] and BPMN [14], link values
are tokens that get consumed by the transition of a join node
or a gateway, respectively. In BPEL [15], the link values are
bound to boolean variables that are visible only in the
context of the target activity instance. That means these
variables are destroyed after the execution of the target
activity and hence the old link states are lost. As a
consequence, a join activity in the iteration body of an
“iterate” or “re-execute” operation can lead to a deadlock. In
Figure 9e, the iteration body consists of activity b and the
join activity d. After the execution of b activity d would
never be executed because of the missing states of links a-d
and c-d (Figure 9f). Storing the set of evaluated links LE in

99

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the context of process instances (see Definitions “Evaluated
Links” and “Process Instance”) helps solving this problem.
The following different use cases show the application of the
concept in different situations.

A. Start activity is in a completed AND-branching

The first case discussed is the one in which the start
activity for the rerun is located in a parallel, already
completed branch. That means the join activity that closes
the branching is at least scheduled. Figure 10 shows an
example of this case. The parallel branching of activities b to
g is completed. The user requests an iteration or re-execution
from activity c (Figure 10a). The path beginning with c is
followed forward to the wavefront (Figure 10b). All links on
this path are reset; all activities in the wavefront reachable
from c are terminated (activity h). In case the user wants to
re-execute the workflow logic, all completed activities on the
path from the start activity c to the wavefront that have
assigned a compensation activity (here: c, e and g) are
compensated in reverse execution order. Note that the other
path of the considered parallel branch, containing activities d
and f, and the branch i to m remain unchanged. Finally, start
activity c is scheduled (Figure 10c). The wavefront now
consists of the activities l and c and the link f-g. In the course
of the further execution of the process instance the join
activity g can run normally since the state of link f-g is stored
in LE.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

T
T

T

T

T

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

T
T

T

T

a)

c)

Iterate/Re‐execute

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

T
T

T

Tb)

Parallel
branching

Wavefront

terminate & reset

compensate
(re‐execute case)

New
wavefront

Figure 10. Rerun in an AND-branching.

B. Start activity is in a completed XOR-branching

The rerun in an already completed XOR-branching is
very similar to the AND-branching case. In the meta-model,
an XOR-branching is achieved with the help of mutual
excluding transition conditions of outgoing links of split
nodes. In Figure 11a, the link b-c was evaluated to true,
whereas b-d is false. Hence, activities b through g
implement an alternative branch. The path containing the
link b-d, the activities d and f and the link f-g is dead. The
join behavior in the meta-model requires all links to be
evaluated before a join node can be executed. That is the
reason why an algorithm for dead path elimination (DPE) is
used to set all links in a dead path to false [5]. In the
example, this holds for the links d-f and f-g. Activities on a
dead path are not executed; their state is simply set to dead
(activities d and f). In this scenario, the user wants to rerun
the workflow from activity c which is located in the
completed path of the XOR-branching. Due to the DPE and
the set of all evaluated links LE, this case can now be
addressed exactly the same way as the ad hoc rerun in
completed AND-branches.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

F
F

T

T

F

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

F
F

T

F

a)

b)

Iterate/Re‐execute

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

F
F

T

Fc)

Alternative
branching

Wavefront

New
wavefront

terminate & reset

compensate
(re‐execute case)

Dead activities

Figure 11. Rerun in an XOR-branching.

Note that there are cases where a branching in a process
model can be an AND in some process instances and an
XOR in other instances. It depends on the selected transition
conditions and the process context (e.g. variable values) if
one, all or a particular number of branches is followed during
workflow execution. In BPMN, this behavior can be
modeled with an inclusive gateway [14]. However, such

100

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cases are covered by the concept because links in dead
branches are evaluated (to false) in the course of the DPE.

C. Start activity is before a branching

In this case, the start activity is located before a
branching, i.e., the iteration body contains branching
activities. In Figure 12a, the user reruns the workflow with b
as start activity. The two outgoing links of b show that it is a
branching activity. In order to address this case, all paths
beginning with b are followed to the wavefront (Figure 12b).
All visited links are deleted from LE (b-d, d-f, f-g, b-c and c-
e) and all visited scheduled or running activities are
terminated (e). In the re-execute case, the reachable
completed activities that can be compensated (c and d) are
compensated in reverse execution order. After that, the start
activity is scheduled (Figure 12c) and the workflow can be
resumed.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

T
T

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

a)

b)

Iterate/
Re‐execute

F

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

c)

Wavefront

compensate
(re‐execute case)

terminate
& reset

New
wavefront

terminate
& reset

Figure 12. Rerun when the start activity is located before a branching.

Figure 13a shows a more complex scenario. Note that the
difference to the previous workflows is that link j-f was
deleted and link d-k added. The user wants to rerun the
workflow beginning with activity b. The iteration body thus
contains two branching (b and d) and two join activities (g
and k). All links on the path from b to the wavefront are reset
and all scheduled/running activities are terminated (Figure
13b). It is sufficient to visit the activities and links only once
with the algorithm, like activities g and h and link g-h. In the
re-execution case, the completed activities on the considered
path are compensated in reverse execution order (g, f, e, d,
and c). The start activity (b) is then scheduled and the rerun
operation is complete (Figure 13c).

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

F
F

T

T

F

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T

a)

b)

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T

c)

Wave‐
front

terminate & reset

terminate & resetcompensate
(re‐execute case)

New wavefront

Iterate/
Re‐execute

T

T

Figure 13. Complex rerun scenario with several branches.

D. Repetition in Dead Paths

As shown above the concept to enforce the rerun of
workflow logic can be applied in sequences of activities, in
parallel and alternative branches, and in complex graphs. An
interesting research question is (1) whether the start activity
of a rerun can be located in a dead path and (2) whether such
an operation would be meaningful. Note that there is a
difference between a dead path and a path that is not (yet)
executed. A dead path belongs to the past of the workflow
instance while a not executed path is the future of the
workflow instance. That means the latter is a jump to the
future, that can be realized by a “skip” operation, which,
however, is not part of this work.

The precondition of the “iterate” and “re-execute”
operation is that the state of the start activity is scheduled,
executing, completed, faulted or terminated (see Section
III.A). The iteration/re-execution in dead paths is thus not
allowed. However, if this precondition was neglected,
repeating activities in a dead path would technically be
possible with the presented concept. As an example consider
Figure 14a. The user requests the repetition of activity f,
which is located in a dead path. As usual, the path from f to
the wavefront is followed, links are reset (f-g and g-h),
running activities terminated (h) and completed activities
compensated (g, in case of a re-execute), as shown in Figure
14b. Then, the start activity f is scheduled and can be
executed when the workflow is resumed. Although
conceptually feasible, the operation has several problems.
The result is obviously an unrealistic execution history.
Activity f gets executed although its predecessors d, i and j
were not enacted (Figure 14c). Further, the operation is not

101

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

really an iteration or a re-execution because at least the start
activity was not executed before the operation. Hence, it is
not a repeated execution of activities but rather an ad hoc
change of a process instance that enforces the execution of a
dead path. That is why the above-mentioned precondition
prevents a repetition of activities in dead paths.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

F

F F F

F

F
F

T

T

F

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

a)

b)

F

F

a

b

i

c

d

j

e

f

k

g

m

n

h

l

c)

Iterate/
Re‐execute

Wavefront

F

F F F

F

F
F

T

T
T

F

F

terminate & reset

compensate
(re‐execute case)

T

F

F F F

F

F
F

T

T
T

F

F

New wavefront

T

Figure 14. Rerun in a dead path.

However, although it is not recommend using the
“iterate/re-execute” operation in dead paths, a workflow
system implementing the approach should provide as much
flexibility as possible for scientists or other users. The user
must decide whether the operation helps to achieve the
desired goals. With the help of the precondition the
workflow system is able to detect that the user is about to
conduct an ad hoc rerun in a dead path. The user should then
be requested if he really wants to apply the operation in a
dead path and if so, the system conducts the operation as
shown in this section.

VI. IMPLICATIONS ON THE EXECUTION CORRECTNESS

Workflows consist of different activity types, e.g., for
sending/receiving messages, loops, or variable assignment.
The enforced repetition of workflow logic has to account for
different activity types, especially those that interact with
external entities such as clients, humans, or
services/programs. The main problem is that the repetitions
are not reflected in the workflow logic because they are an
ad hoc user operation. Hence, the aforementioned external
entities do not know a priori the exact behavior of the
workflow. An uncoordinated rerun of workflow logic can
lead to multiple invocations of services, multiple identical

work items in the work list for human users or an infinite
waiting for messages because the communication partner
does not know that a message must be sent again.

A. Message-receiving Activities

If a message receiving activity is repeated, it would wait
infinitely for the message because it was already consumed.
Three cases can be distinguished to solve this problem.
Firstly, the original message sent by the partner in a former
iteration is taken as incoming message for the next run of the
activity. However, if the activity was iterated several times,
there may be different versions of the incoming message.
The user then has to select the desired message.

Workflow Engine Service

a

c

b

d

T

T

T

User

1. Instantiate

2. Invoke
service

3. Send message
to workflow

4. Iterate
from c

5. Inform
service about
iteration

6. Re‐send
message

“Rerun”
callbackIterate

Re‐execute

Figure 15. Repetition of a message-receiving activity. The communication

partner is informed about the rerun of the activity over a special “rerun
callback” operation. The partner then can re-send the message or send an

adapted (i.e., updated) message to the engine.

Secondly, the message sending partner re-sends the
message or sends an adapted message. The partner needs to
be informed about the repetition of the activity. A simple
solution is that partners provide a special “rerun callback”
that can be used by the workflow engine to propagate the
iteration or re-execution. An architecture for this concept is
shown in Figure 15. The workflow engine provides the
“iterate” and “re-execute” operations. The considered
workflow that is deployed on the engine implements two
operations, one for its instantiation and one to receive a
message from a service. The course of action in this setting is
as follows. The user invokes (i.e., instantiates) the workflow
(1). The workflow calls a matching service in an
asynchronous manner (2) and provides a callback for the
response (activity c). The invoked service creates the
response message and sends it to the engine (3). The engine
correlates the message to the particular workflow instance
(e.g., via the instance id or some other information that
uniquely identifies the workflow instance). Now the user
decides to iterate the workflow logic with activity c as start
activity and invokes the corresponding “iterate” operation
(4). The workflow then waits again for the message of the
service. The engine informs the partner about the iteration
that took place in the workflow instance. This is done by
invoking the special “rerun callback” provided by the partner
(5) or a mechanism in the service infrastructure performing
the same functionality. The engine’s message contains at
least the following information: the original message of the

102

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

partner (in case the partner did not persistently store the
message), the engine’s address, and correlation information
to identify the workflow instance. The partner then decides
whether to re-send the message or to send an adapted one
(6). Sending an adapted message is useful if the information
distributed by the partner has to be updated (e.g., sensor
data). The engine has to find the partners to be considered in
order to invoke their “rerun callback”. It first searches for all
message-receiving activities in the iteration body. Then, it
determines the addresses of the related partners. The
addresses can be found in the “ReplyTo” header field of a
message received in a former run of the workflow logic (if
WS-Addressing [20] is used). Or it is taken from a message
that was sent to a partner by a message sending activity in
the same workflow instance. This scenario has the
disadvantage that it has many implications on the partners’
services and/or infrastructure and would be difficult to
enable in a standard manner.

Thirdly, message-receiving activities are usually related
to message-sending activities. The workflow system or the
user pays attention that if a message-receiving activity is
iterated, its corresponding message-sending activity is
iterated, too. The reason is that an incoming message is often
the response to a message sent to a partner. Hence, repeating
the invocation of the partner will make the partner send the
message again to the workflow engine (or an adapted
message with updated content).

A workflow system that implements the ad hoc rerun
should support all three cases. It depends on the implemented
message exchange pattern, on the concrete function realized
by the partner and on whether the partner is stateful or
stateless to select (possibly with user-support) the adequate
mechanism for the repetition of message-receiving activities.

B. Message-sending Activities

The repetition of message sending activities is straight
forward for idempotent services. Non-idempotent services
should be compensated prior to a repeated invocation, as is
done in the re-execution operation. If the iteration operation
repeats the execution of non-idempotent services, then the
user is responsible for the effect of the operation.

C. Loops

Iterations within modeled loops can have an
unforeseeable impact on the behavior of workflows. The
context of workflows might be changed in a way that leads
to infinite loops (e.g., because the repetition changes variable
values so that a while-condition can never evaluate to
false). Usually, a workflow system provides operations to
change variable values (e.g., in a process repair component).
This functionality can be used to resolve infinite loops.

It can also happen that the start activity of an iteration or
re-execution is located within an already completed loop.
The operation causes the loop to run again. In its first
iteration the loop body begins with the start activity of the ad
hoc rerun. From its possible second iteration on the complete
loop body is executed. The user must be able to select the
particular iteration of the loop that should be repeated. This
can be done with the help of a variable snapshot loaded prior

to the rerun because the former variable values represent the
iteration of a loop (e.g., via a counter variable).

D. Workflow Languages with Block Structures

In practice, a workflow is not a simple graph consisting
of nodes and edges. There are often also hierarchically
nested elements. In BPMN, there is the concept of sub-
processes that are containers for arbitrary workflow logic
[14]. BPEL offers structured activities (e.g., the sequence,
flow, or while activity) that can contain other activities for
a simplified modeling of complex workflows [15]. The rerun
of activities in hierarchical structures has to account for
parent-child-relationships of activities.

a b c d

Rerun

T
T

a)

e f g
T

h i jT

a b c d
Tb)

e f g

h i j

a b c d
Tc)

e f g

h i j

Wavefront

Figure 16. Rerun in workflows with block-structures

Figure 16 illustrates an example for the rerun in
hierarchically nested activities. The process model contains a
sequence of activities c and d followed by a parallel
branching of f/g and i/j (Figure16a). Because of the nesting,
the wavefront of the considered process instance (the shaded
activities) is stretched across the complete process. All
parent activities with at least one active child are also active.
Hence, the termination and resetting of the path from the
start activity to the wavefront is more complex. In the
example, d is the start activity of the rerun (Figure 16a). The
atomic activities d, f, g and i as well as the parent activities b,
e and h have to be terminated or reset (Figure 16b).
Moreover, the start activity cannot be simply scheduled. It
must be checked whether the corresponding parent activity is
active. If so, the start activity can be scheduled. If not, the
parent must be scheduled instead of the start activity itself
(and possibly the parent of the parent, etc.). It is important to
make sure that, although the parent activity is scheduled,
only a subset of its child activities will be executed. In Figure

103

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

16c, the parent activity b of the start activity d is scheduled.
But it must be ensured that activity c is not executed again.
Realizing this behavior in a workflow engine is highly
implementation-specific.

E. Impact on Scopes

In modern workflow languages such as BPMN or BPEL,
the concept of scopes is used to denote containers for
activities, data objects and correlation keys; they span
transaction boundaries and specify fault handling logic as
well as logic to handle incoming events. At the beginning of
their execution, scopes initialize their context. That means
fault handlers and event handlers are installed and local
variables are instantiated.

If a rerun is conducted with the start activity being
located in an already completed scope, this scope has to be
scheduled because of the parent-child relationship discussed
before. The scope’s context has to be initialized again. In
case of a re-execution, the scope’s effects have to be undone
before the workflow can be resumed. Invoking the scope’s
compensation handler undoes the work of the complete
scope. This is the desired behavior only when the start
activity is the first activity in the scope. Otherwise the
specific compensation handler of the scope must not be
executed, but rather only the compensation handlers of the
activities following the identified start activity in the reverse
execution order.

The repetition of activities also has an impact on fault
and compensation handlers attached to scopes. Fault and
compensation handlers can be used to undo already
completed work. If logic is rerun within these handlers, it
must be ensured that the corresponding scopes are not
compensated multiple times.

VII. USER INTERACTION WITH THE WORKFLOW SYSTEM

A workflow system that implements the ad hoc rerun of
workflow logic must provide a monitoring tool that allows
users to continuously follow the execution state of process
instances (see Figure 17(1)). The user interacts with the
system as follows. If the user detects a faulty or unintended
situation, he can suspend the workflow (2) and manually
trigger an iteration/re-execution (3).

T

Workflow
Engine

a

c

b

d

T

User

Instance
Monitor

1. Publish execution
events

3. Conduct rerun

4. Request snapshot
specification

6. Specify snapshot
activity, execution
number and variables

5. Inspect snapshots

2. Suspend workflow

7. Resume workflow

Figure 17. User interaction with a workflow system that implements the

concept of the enforced repetition of workflow logic

The workflow system asks him to specify which snapshot
instance should be taken for the rerun and which contained
variables should be loaded (4). The user can inspect different
snapshot instances and the values of their variables in order
to determine the desired snapshot instance (5). He specifies
the snapshot instance with the corresponding variable-
modifying activity, the execution number of the activity, and
the subset of variables to be loaded. The process instance
state is changed in the engine as described in Section III
through V. Finally, the user resumes the workflow instance
(7). Note that steps 4 to 6 are omitted if the user conducts an
iteration of activities with the current variable values, i.e.,
without loading a snapshot.

VIII. IMPLEMENTATION

The implementation of the “iterate” and “re-execute”
operations is based on the Apache Orchestration Director
Engine (ODE) [21] as BPEL engine and on the Eclipse
BPEL Designer [22] as GUI for the users of the system.

A. Architecture of the System

Figure 18 shows the high level architecture of the
workflow system that implements the ad hoc rerun of
workflows. Components with dashed lines are new or
extended. The scientist/user interacts with Eclipse and the
BPEL Designer plugin in order to model and run workflows.
The Execution Control component enables starting of
workflows directly in the BPEL Designer. A special dialog
requests the user to specify the content for the input message.
Deployment of workflows happens transparent for the user.
The underlying workflow engine is hidden. Workflow
instances can be suspended and resumed. The Instance
Monitor visualizes the current execution state of running
workflows by coloring activities and links. The scientist can
inspect and change values of variables and endpoint
references assigned to partner links.

Eclipse Framework

A
p
ac
h
e
 O
D
E

BPEL Designer

Execution
Control

Iteration/
Re‐execution

Instance
Monitor

Breakpoint
Registry

Navigator

Auditing

D
e
p
lo
ym

e
n
t

Web
Service

Scientists

In
te
gr
at
io
n
 L
ay
e
r

Publish
execution
events

Load
data

Deploy, invoke,
suspend/resume,
iterate/re‐execute, …

Model and run
workflows

Invoke

Web Interface

P
ro
ce
ss
 M

gm
t.

Ev
en

t
P
u
b
lis
h
er

It
er
at
e/
R
e
‐e
xe
cu
te

Figure 18. High level architecture of the prototype

104

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to suspend workflows at points of particular
interest for the user, it is possible to set breakpoints at
activities or links in a Breakpoint Registry. The Iteration/Re-
execution component provides the ad hoc rerun operations to
the user. A wizard helps the user to find and select the
desired snapshot instance to load prior to the rerun. The
needed information is fetched from the workflow engine.
When a rerun is conducted, the activity states of the instance
monitor are refreshed and an iterate/re-execute operation of
the engine is invoked.

Apache ODE provides interfaces to deploy and undeploy
processes (Deployment component) and to access
information about process models and instances (Process
Management component). Web services are invoked over an
Integration Layer. There is also a Web Interface for user,
which does not play a role in this work. The Apache ODE
was extended with an Event Publisher that emits execution
events of workflow instances, e.g., activity ready, activity
running, or link evaluated. These events are received by the
BPEL Designer’s Instance Monitor and used to color
activities and links. The Navigator is the heart of the
workflow engine. It traverses the workflow graph and
executes activities. An extension of the Navigator and the
database is that variable and partner link values are stored as
snapshot before the execution of variable changing activities.
The new Iterate/Re-execute component provides the two
rerun operations to clients. The component loads a
variable/partner link snapshot according to the input of the
user. Then, the execution queue of the navigator is adapted:
activity instances that have to be terminated are removed
from the execution queue; a new instance of the start activity
is scheduled (and possibly new instances of its parent
activities), i.e. put to the execution queue.

An Auditing component external to the workflow engine
stores the published execution events persistently. The BPEL
Designer makes use of the Auditing to load the state of a
workflow instance into the Instance Monitor. This has the
advantage that the engine’s execution events are not lost
even if Eclipse is shut down during workflow execution.

The following two sections provide more details on the
extensions of the BPEL Designer and the Apache ODE.

B. Extensions of the BPEL Designer

The scientist can use the functions of the Execution
Control from the extended toolbar menu (Figure 19a). A
workflow can be started, suspended, resumed and
terminated. If a breakpoint is reached during execution, a
skip breakpoint operation releases the breakpoint and the
workflow execution proceeds.

In order to implement the Instance Monitor the Eclipse
Modeling Framework (EMF) ecore model for BPEL was
extended with a state attribute for all activities and links. It
holds the state of activities/links based on the execution
events of the engine. The state indicates the color of each
element (Figure 19b): yellow is running, green is completed,
red is faulted, orange means a breakpoint is reached, and
grey are dead activities.

Start/Resume

Suspend Terminate

Skip Breakpoint

Running activity

Completed activity

Breakpoint reached

Unscheduled
activity

Toolbara)

b)

Figure 19. BPEL Designer extension: (a) Execution Control in the toolbar

and (b) the Instance Monitor.

When a workflow is suspended, the user can iterate or re-
execute workflow logic via the context menu of an activity
(Figure 20). The selected activity is then the start activity of
the operation (activity B in the figure).

Ad hoc rerun
operations

Figure 20. The user can select the iterate/re-execute operations from the

context menu of activities.

A wizard opens that guides the user step by step through
the snapshot selection process. First, the activity to load the

105

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

snapshot for has to be chosen. This can be the start activity
or a predecessor thereof. The latter can happen when the start
activity is no variable-changing activity and hence does not

possess a snapshot. The wizard shows all snapshot instances
for the selected activity.

Figure 21. Wizard to select variable snapshots.

The user can have a look at the snapshot content, i.e., at
the values of stored variables (Figure 21) and partner links. It
is possible to select only a subset of stored variables (Figure
21) and partner links to be loaded in the course of the rerun,
which can prevent a lost update of variables in parallel paths.
When the snapshot selection is done, the Instance Monitor is
refreshed, i.e., the state of all activities in the iteration body
is set to inactive. Finally, the iterate/re-execute operation of
the Apache ODE is invoked.

C. Extensions of the Apache ODE

The Navigator was extended so that each variable-
changing activity persistently stores a snapshot with all
visible variables and partner links before its execution. This
pertains to receive, pick, invoke and assign activities.
Three new tables are created in the database to store the
snapshots (Figure 22). The table ODE_SNAPSHOT holds
information about snapshot instances: the corresponding
process instance, the scope the stored variables and partner
links belong to, the creation time, the version, and an XPath
expression pointing to the corresponding activity. The table
ODE_SNAPSHOT_VARIABLE stores the concrete values
of variables that belong to a snapshot. And finally, the table
ODE_SNAPSHOT_PARTNERLINKS holds the values of
partner links stored in snapshots. A partner link can have up
to two values, one EPR for each of the at most two roles.
There is another new table, ODE_LINK_INSTANCE, used
to save the state of link instances as discussed in Section V.

The Web service interface of Apache ODE was extended
with five operations. The iterate/re-execute start the ad
hoc rerun for a specific workflow instance. Both require the
process instance ID, the XPath expression of the start
activity, the XPath expression of the activity to load the
snapshot for, the snapshot version (i.e., the execution
number), and a list of variables and partner links to load. The
getSnapshots operation delivers all snapshot instances for
a given process instance and activity, but without loading the
concrete values of the stored activities/partner links; the

getSnapshotPartnerLinks and getSnapshot-
Variables operations are then used to load concrete values
out of a snapshot identified via the process instance and
snapshot ID. This functionality is distributed on several
operations for the sake of smaller messages. It is often
sufficient to load just some general information about a
snapshot and not all the contained values.

ODE_SNAPSHOT_VARIABLE

PK ID

FK1 Snapshot ID
Name
Data
...

ODE_PROCESS_INSTANCE

PK Process Instance ID

State
Process ID
...

ODE_SCOPE

PK Scope ID

FK1 Process Instance ID
State
Parent Scope ID
...

ODE_SNAPSHOT_DATA

PK Snapshot ID

FK1 Process Instance ID
FK2 Scope ID

Creation Time
Version
Activity XPath

ODE_SNAPSHOT_PARTNERLINKS

PK ID

FK1 Snapshot ID
Name
My EPR
Partner EPR
...

ODE_LINK_INSTANCE

PK Link Id

FK1 Process Instance ID
State
Link XPath

Figure 22. Extension of the database schema to store variable/partner link

snapshots and the state of link instances.

106

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The two most critical parts of the ad hoc rerun are (1) to
correctly and consistently adapt the content of the execution
queue and (2) to adapt the activity instance of the start
activity’s parent. In Apache ODE, the execution queue is an
object that holds a list with all scheduled activity instances,
another list with all channels used to send information
between activities (e.g. a child activity uses a channel to
inform its parent about its completion), and a third list with
completed activities. All activity instances and channels that
belong to activities in the iteration body have to be removed
from these lists.

The modification of the start activity’s parent has to be
implemented per activity type. It is currently realized for
sequence and flow activities. In a sequence, the
sequence activity instance is scheduled again but only with
the start activity and all successor activities as children. All
activities preceding the start activity are omitted because
they do not belong to the iteration body. In a flow, all
completed activities of the former iteration have to be
marked as not completed and are scheduled again. Their
activity guards make sure that the activities are executed not
until their join conditions can be evaluated. Only the start
activity of the rerun is executed without evaluation of its join
condition.

IX. RELATED WORK

The term “iteration of activities” is mentioned in [5] as
one of the change operations that can be performed in a
workflow; no details are available about how iteration should
be performed. In ADEPT, it is possible to perform manual ad
hoc backward jumps that are similar to the rerun operations
in this paper, as claimed in [16]. The target activity of the
jump is executed again. The previous execution state is
restored based on the execution and data element history.
While in [16] it is said that an operation for ad hoc backward
jumps exists, no details such as algorithms, applications on
workflow languages with hierarchically nested elements, or
impact of different activity types are provided as is done in
this work. In the scientific workflow system e-BioFlow,
scientists can re-execute manually selected tasks with the
help of an ad hoc workflow editor [6]. The set of activities
that should be (re-)executed must be marked explicitly. No
other activities are (re)executed; no distinction is made
between iteration and re-execution operations. Following the
approach in this paper, the user only has to provide the start
activity for the rerun and the successor activities are then
executed as prescribed by the workflow model.

Repetition of workflow logic can be achieved language-
based with certain modeling constructs. A general concept to
retry and rerun transaction scopes in case of an error is
shown in [23] for the case of business transactions. Eberle et
al. [10] apply this concept to BPEL scopes. In BPMN [14]
this behavior can be modeled with sub-processes, error
triggers and links. In IBM MQSeries Workflow a Flow
Definition Language (FDL) activity is restarted if its exit
condition evaluates to false. ADOME [24] can rerun
special repeatable activities if an error occurs during activity
execution; the approach is applicable only for single

activities, not for groups of activities. In Apache ODE, an
extension of BPEL’s invoke activity enables retrying a
service invocation if a failure happens [25]. These
approaches have special modeling constructs in common to
realize the repetition. In these cases, the rerun is pre-modeled
at design time. In contrast to these approaches, the solution
in this paper aims at repeating a workflow starting from an
arbitrary, not previously specified point.

Iterations can also be realized by configuring workflow
models with deployment information. Invoke activities in the
Oracle BPEL Process Manager [11] can be configured with
an external file so that service invocations are retried if a
specified error occurs. The concept to retry activities until
they succeed is also subject of [26] and also in [27] where
the service selected for the retry is identified using a
semantic description of selection criteria. The scientific
workflow system Taverna [28] allows specifying alternate
services that are taken if an activity for a service invocation
fails. In contrast to these and other available similar
approaches, this paper advocates a solution where the rerun
can be started spontaneously without a pre-configuration of
workflows from an arbitrary point.

The scientific workflow system Pegasus can
automatically re-schedule a part of a workflow if an error
occurs [12]. Successfully completed tasks are not retried.
The Askalon workflow system provides a checkpointing-like
functionality to handle runtime faults [29]. Kepler’s Smart
Rerun Manager can be used to re-execute complete
workflows [30]. Tasks that produce data that already exists
are omitted. The main difference of these approaches to this
paper is that the ad hoc rerun allows selecting the starting
point of the iteration (manually) and hence this functionality
can be used for different purposes, e.g. explorative workflow
development, steering of the convergence of scientific
results, or fault handling.

Checkpointing in workflow management is a technique
to store the complete workflow state at specific execution
points geared towards transactions spheres [31]. If a failure
happens, these checkpoints can be used to rollback a
workflow, i.e., load its former state, and run a part of the
workflow again. Assurance points (AP) [32] are a similar
concept that store data at critical points in a workflow. APs
are user defined at modeling time and enable backward
recovery of a complete process, retry of a workflow part, and
forward recovery. Compared to the approach in this paper,
checkpoints and assurance points cannot be used to rerun a
workflow part starting from an arbitrary activity chosen at
runtime. Apart from this, the retry functionality of APs can
be compared to the re-execute operation in this work because
already completed work from the current wavefront to the
AP is compensated. In [33], an aspect-oriented approach for
dynamic checkpointing in workflows is introduced. It allows
selecting and changing checkpoint positions at workflow
runtime in order to transfer running workflows from one to
another workflow engine instance. The approach can be used
to rerun activities of a workflow in an ad hoc manner. In
contrast to the approach in this paper, the rerun would
require an additional step: the selection of an adequate
checkpoint in the future of a workflow instance that will be

107

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the target of a rerun later on. Thus, the scientist must prepare
a rerun before the execution of the workflow part, which is
more restrictive than the ad hoc rerun proposed in this work.

In [34], the authors present and describe several types of
flexibility in process-aware information systems. The option
“Undo task A” in the flexibility type “Flexibility by
deviation” is similar to the iterate/re-execute operation in this
work. The control is moved back just before the execution of
a task (= iteration); in some cases, it is meaningful to
compensate already completed work (= re-execution). No
further details are provided about data issues, how race
conditions are avoided, how parallel/alternative/dead paths
are dealt with, or how block-structures influence the
approach as it is done in this work.

X. CONCLUSION AND FUTURE WORK

This paper dealt with the formal description of two
operations to enforce the rerun of workflow logic during
workflow execution: the iterate operation reruns activities
starting from a manually selected activity; the re-execute
operation undoes completed work in the iteration body
before rerunning activities. The distinctive features of the
approach are that the repetition does not have to be modeled
or configured previously and that arbitrary activities can be
used as starting point for the rerun. It was shown that the
approach can be applied in sequences of activities, parallel
and alternative branches as well as in more complex
scenarios that include the repetition of join activities.
Furthermore, an adoption of the operations in dead paths has
been investigated. An ad hoc rerun in dead paths is not
recommended because it is literally no rerun of activities.
But it should be up to the user to decide about the meaning
of such an operation. One of the main issues when repeating
activities is the question which data to take as input for the
next run. This issue is addressed with the help of data
snapshots that are stored before each variable-modifying
activity and that are loaded in the course of the rerun.

Real world processes depend on external communication
partners, services or clients. An operation for the repetition
of activities has to account for dependencies on messages
from partners and on the impact of repeatedly delivered
messages on services invoked by the workflow. There are
three ways to deal with the repetition of message-receiving
activities: reuse a message received in a former iteration,
inform the communication partner about the ad hoc rerun
and the partner re-sends the message, and repeat a message-
receiving activity together with its corresponding preceding
message-sending activity. Furthermore, it was shown how
users interact with such a flexible workflow system. A
workflow instance monitor that shows the workflow progress
in real-time and that allows an immediate intervention of the
user is of utmost importance in this setting. The concepts
presented in this paper are based on an abstract meta-model
and thus can be applied to existing or future workflow
engines and languages. It was shown how the ad hoc rerun
works in languages with concepts for block-based modeling
and scopes, such as BPEL or BPMN. The implementation of
the iterate and re-execute operations for BPEL in the Eclipse

BPEL Designer and Apache ODE evaluate the formal
concepts presented in this paper and proof their feasibility.

The enforced repetition of workflow logic is a step
towards the goal to enable an explorative workflow
development, especially in the field of scientific workflows.

In future, we will also work on an ad hoc “skip”
operation that allows omitting activities, e.g., if the result of
the respective activities is already present.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] M. Sonntag and D. Karastoyanova, “Enforcing the Repeated

Execution of Logic in Workflows,” Proc. of the 1st
International Conference on Business Intelligence and
Technology (BUSTECH 2011), 2011.

[2] W. M. P. van der Aalst, T. Basten, H. Verbeek, P. Verkoulen,
and M. Voorhoeve, “Adaptive workflow: on the interplay
between flexibility and support,” Proc. of the 1st Conference
on Enterprise Information Systems (ICEIS), 1999, pp. 353–
360.

[3] M. Reichert and P. Dadam, “ADEPTflex—Supporting
dynamic changes of workflows without losing control,”
Journal of Intelligent Information Systems, Special Issue on
Workflow Management Systems, vol. 10(2), 1998, pp. 93–
129.

[4] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow
evolution,” Journal of Data and Knowledge Engineering,
Elsevier, vol. 24(3), 1998, pp. 211–238.

[5] F. Leymann and D. Roller, “Production workflow—Concepts
and techniques,” Prentice Hall, 2000.

[6] I. Wassink, M. Ooms, and P. van der Vet, “Designing
workflows on the fly using e-BioFlow,” Proc. of the
International Conference on Service Oriented Computing
(ICSOC), 2009.

[7] R. Barga and D. B. Gannon, “Scientific vs. business
workflows,” in: I. Taylor, E. Deelman, D. B. Gannon, and M.
Shields (Eds.), “Workflows for e-Science—Scientific
workflows for grids,” Springer, 2007, pp. 9–18.

[8] G. Vossen and M. Weske, “The WASA approach to workflow
management for scientific applications,” Workflow
Management Systems and Interoperability, NATO ASI Series
F: Computer and System Sciences, vol. 164, Springer, 1998,
pp. 145–164.

[9] M. Sonntag and D. Karastoyanova, “Next generation
interactive scientific experimenting based on the workflow
technology,” Proc. of the 21st IASTED International
Conference on Modelling and Simulation (MS), 2010.

[10] H. Eberle, O. Kopp, F. Leymann, and T. Unger, “Retry scopes
to enable robust workflow execution in pervasive
environments,” Proc. of the 2nd Workshop on Monitoring,
Adaptation and Beyond (MONA+), 2009.

[11] Oracle BPEL Process Manager,
http://www.oracle.com/us/products/middleware/application-
server/bpel-home-066588.html

[12] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi,
“Pegasus: Mapping large-scale workflows to distributed
ressources,” In: I. Taylor, E. Deelman, D. B. Gannon, and M.
Shields (Eds.), “Workflows for e-Science—Scientific
workflows for grids,” Springer, 2007, pp. 376–394.

108

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] H. Garcia-Molina and K. Salem, “Sagas,” Proc. of the ACM
Sigmod International Conference on Management of Data,
pp. 249–259, 1987, doi:10.1145/38713.38742.

[14] Object Management Group (OMG), “Business Process
Modeling Notation (BPMN) Version 1.2,” OMG
Specification, 2009.

[15] OASIS, “Web Services Business Process Execution Language
(BPEL) Version 2.0,” OASIS Standard, 2007,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html

[16] M. Reichert, P. Dadam, and T. Bauer, “Dealing with forward
and backward jumps in workflow management systems,”
International Journal of Software and Systems Modeling
(SOSYM), vol. 2(1), 2003, pp. 37–58.

[17] R. Khalaf, “Supporting business process fragmentation while
maintaining operational semantics: a BPEL perspective,”
Doctoral Thesis, ISBN: 978-3-86624-344-6, 2008.

[18] Workflow Management Coalition, “Audit Data Specification,
Version 1.1,” WfMC Specification, 1998.

[19] W. M. P. van der Aalst, “The application of Petri nets to
workflow management,” Journal of Circuits, Systems and
Computers, vol. 8(1), 1998, pp. 21–66.

[20] World Wide Web Consortium (W3C), “Web Services
Addressing 1.0 – Core,” W3C Recommendation, 2006,
http://www.w3.org/TR/ws-addr-core/

[21] Apache Software Foundation, “Apache Orchestration Director
Engine (ODE),” http://ode.apache.org/

[22] Eclipse BPEL Project, “Eclipse BPEL Designer,”
http://www.eclipse.org/bpel

[23] F. Leymann, “Supporting business transactions via partial
backward recovery in workflow management systems,” Proc.
of the Conference on Database Systems for Business,
Technology and Web (BTW), Springer, 1995.

[24] D. Chiu, Q. Li, and K. Karlapalem, “A meta modeling
approach to workflow management systems supporting
exception handling,” Journal of Information Systems,
Elsevier, vol. 24(2), 1999, pp. 159–184.

[25] Apache Software Foundation, “Failure and Recovery in
Apache ODE,” http://ode.apache.org/activity-failure-and-
recovery.html

[26] P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “Compensation
is not enough,” Proc. of the 7th International Enterprise
Distributed Object Computing Conference (EDOC), 2003.

[27] D. Karastoyanova, F. Leymann, and A. Buchmann, “An
approach to parameterizing Web service flows,” Proc. of the
3rd International Conference on Service Oriented Computing
(ICSOC), 2005, pp. 533–538, doi:10.1007/11596141_45.

[28] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P.
Li, and T. Oinn, “Taverna: a tool for building and running
workflows of services,” Journal of Nucleic Acids Research,
vol. 34, Web Server issue, 2006, pp. 729–732,
doi:10.1093/nar/gkl320.

[29] E. Deelman, D. B. Gannon, M. Shields, and I. Taylor,
“Workflows and e-Science: An overview of workflow system
features and capabilities,” International Journal of Future
Generation Computer Systems, Elsevier Science Publishers,
vol. 25(5), 2009.pp. 528–540.

[30] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance
collection support in the Kepler scientific workflow system,”
International Provenance and Annotation Workshop (IPAW),
Springer, LNCS, vol. 4145, 2006, pp. 118–132.

[31] Z. Luo, “Checkpointing for workflow recovery,” Proc. of the
38th ACM Southeast Regional Conference, 2000, pp. 79–80,
doi:10.1145/1127716.1127735.

[32] S. Urban, L. Gao, R. Shrestha, and A. Courter, “Achieving
recovery in service composition with assurance points and
integration rules (short paper),” Proc. of the OTM
Conferences (1), 2010, pp. 428–437.

[33] S. Marzouk, A. J. Maâlej, and M. Jmaiel, “Aspect-oriented
checkpointing approach of composed Web services,” Proc. of
the 1st Workshop on Engineering SOA and the Web (ESW),
Springer, LNCS, vol. 6385, 2010, pp. 301–312.

[34] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M.
P. van der Aalst, “Process flexibility: a survey of
contemporary approaches,” Proc. of the 4th International
Workshop CIAO! and the 4th International Workshop
EOMAS, Springer, LNBIP, vol. 10, 2008, pp. 16–30.

All links were last checked on June 26, 2012.

109

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Modeling Disjunctive Context in Access Control
Narhimene Boustia, Saad Dahlab

University of Blida, Algeria
nboustia@gmail.com

Aicha Mokhtari
USTHB, Algeria

aissani mokhtari@yahoo.fr

Abstract—To provide dynamic authorizations to users, access
control must take into account context. Using this idea, we
develop a Contextual Multi-Level Access Control Model based
on Description Logic with Default and Exception named
DL−CMLACδε. To give a formal representation of this model,
we define a non monotonic description logic based system
by which we can deal with default and exceptional language
called JClassic+

δε. It is an extension of JClassicδε in order
to introduce disjunction of concepts. JClassic+

δε is expressive
enough to be of pratical use, it can handle a ”weakened kind
of disjunction” with the connective lcs allowing a tractable
subsumption computation. The connective lcs has the same
properties as the LCS external operation to compute the least
common subsumer of two concepts. Connectives of JClassic+

δε
are used in a cleaver way to represent authorization in a default
context, an exceptional context and composed context.

Keywords - Description logic; reasoner; disjunction; ac-
cess control; context.

I. INTRODUCTION

The purpose of access control models is to assign permis-
sions to users. The most interesting would be to have the
ability to set dynamic permissions, i.e., context-dependent.
Contexts express different types of extra conditions or con-
straints that control activation of rules expressed in the access
control policy. there are several types of context:

- The Temporal context that depends on the time at which
the subject is requesting for an access to the system,

- the Spatial context that depends on the subject location,
- the User-declared context that depends on the subject

objective (or purpose),
- the Prerequisite context that depends on characteristics that

join the subject, the action and the object.
- the Provisional context that depends on previous actions

the subject has performed in the system.
We also assume that each organization manages some

information system that stores and manages different types of
information. To control context activation, each information
system must provide the information required to check that
conditions associated with the context definition are satisfied
or not. The following list gives the kind of information related
to the contexts we have just mentioned:

- A global clock to check the temporal context,
- the subject environment and the software and hardware

architecture to check the spatial context,
- the subject purpose to check the user-declared context,
- the system database to check the prerequisite context,

- an history of the action carried out, to check the provi-
sional context.

We are interested in modeling the user-declared context,
particularly disjunction of several constraints [1].

Literature provides a wide range of access control models
and policy languages. One of them is multilevel access control
commonly used by military organisations in order to protect
the confidentiality of their informations [2]. We propose to
develop an access control model inspired from multilevel
access control with the introduce of user-declared context to
provide dynamic authorization.

In our model, authorization depends not only on classifica-
tion and clearance levels, but also on the current context, in
which user requests a right of access. Each change of context
implies a change in permissions.

There are several type of user-declared contexts. It could be
the regular one (what we call in our work default context) like
it may be an exception to the current context. For example, in
current days, each patient in a hospital is treated by his own
doctor, but when there is an exception like an emergency, the
authorization should change.

Context can be composed of several contexts (constraints).
For example, under normal circumstances, the family has
the right to visit the patient but when there is a risk of
contamination and/or unknown disease, family loses this right.
In this paper, we are interested in disjunction of context (or).

To provide a formal representation, we use the JClassic+δε
[1] developed by us for this purpose. It is a description logic-
based system augmented with two operators δ (for default)
and ε (for exception) inspired by ALδε description logic [3]
and ”lcs” (for disjunction).

This kind of non-monotonic reasoning in description logic
is not sufficiently developed. Actually, there is no system, in
our sense, developed on this kind of reasoning in the web [4].

Description logics are powerful knowledge representation
systems providing well-founded and computationally tractable
classification reasoning. However, expression of disjunction of
concepts has previously been infeasible due to computational
cost.

Donini [5] shows that concept disjunction makes subsump-
tion computation co-NP-Complete. However, disjunction is
very useful for knowledge representation.
JClassic+δε is an extension of JClassicδε [6], [7] by the

operator of disjunction ”lcs”. This operator allows us to define
context disjunction in access control.

The ”lcs” connective has the same properties as the LCS

110

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

external (External insofar as LCS is not a connective of the
language) operation introduced by Borgida et al. [8], which
computes the least common subsumer of two concepts (The
Least Common Subsumer of two concept A and B belonging
to a language L is the most specific concept in L that subsumes
both A and B) [9]. It was introduced by Ventos et al. in Classic
to allow disjunction with a reasonable computation [10], [11].

Because of JClassicδε has been given an intensional se-
mantics, JClassic+δε is provided with an intentional semantics
(called CL+

δε) based on an algebraic approach. For this, we
have first to build an equational system, which highlights the
main properties of the connectives. The equational system
allows to define axiomatically the notion of LCS operation.

The main operation, the computation of the subsumption
relation of JClassic+δε, is used to classify and deduce knowl-
edge. The inheritance relation is used to compute the inherited
properties.

In this paper, we first present our description logic system
JClassic+δε and we give definition of ”lcs”. We illustrate then
the use of this reasoner for access control, using a small
demonstration to show how authorization can be given to user.

II. RELATED WORK

Several approaches have been proposed to model context in
access control. As we have seen earlier, the context makes it
possible to express different kinds of constraint.

In RBAC family models, many works were done in this
sense, some of them extend RBAC model to deal with access
control based on user’s location context [12], [13], [14], [15],
[16], [17], or temporal context [18]. They suggest to combine
concept of role with spatial or temporal condition to obtain
contextual roles.

Georgiadis and al. [19] present a team- based access control
model that is aware of contextual information associated with
activities in application. Hu et al. [20] developed a context-
aware access control model for distibuted healthcare appli-
cation. To provide context-aware access control, the model
defines the notion of context type and context constraint.

In OrBAC family, context is represented by an argument in
the predicate Permission [21].

Several extension where done to take into account various
types of context such as spatial, temporal and composed
context [22], [23].

In these approaches, context is still modeled by an argument
in a predicate using some algebra to write context, the authors
don’t present how the final value of context is calculated. Add
to this, first order logic is known to be semi-decidable.

In our approach, context can be atomic or composed context
using conjunction or disjunction.

III. JClassic+δε
JClassic+δε is an non monotonic reasoner based on descrip-

tion logic with default and exception [3], which allows us to
deal with default and exceptional knowledge.

The set of connectives of JClassic+δε is the union of the
set of connectives of ALδε [3] presented in [7], [24], [25] and
the connective ”lcs”.

The connective δ intuitively represents the common notion
of default. For instance, having Animal as a conjunction with
the concept δF ly in the definition of the concept Bird states
that birds generally fly.

The connective ε is used to represent a property that is not
present in the description of the concept or of the instance
but that should be. For instance, the definition of Penguin in
JClassic+δε is Penguin v Bird u Flyε. The Flyε property
expresses the fact that fly should be in the definition of Penguin
since it is a bird. The presence of Flyε in the definition
of Penguin makes it possible to classify Penguin under the
concept Bird.

Formally, the subsumption relation uses an algebraic se-
mantics. The main interest of this approach is the introduction
of the definitional point of view of default knowledge: from
the definitional point of view, default knowledge can be part
of concept definition whereas from the inheritance is only
considered as a weak implication. A map between the defi-
nition of concept and its inherited properties is done with the
calcuation of its normal form. This combinating of definitional
and inheritance levels improves the classification process.

In this section, we first present the syntax of our system,
we then give details about its algebraic semantic.

A. Syntax of JClassic+δε
The set of connectives of JClassic+δε is the union of the set

of connectives of CLδε [6] and the connective lcs. JClassic+δε
is defined using a set R of primitive roles, a set P of primitive
concepts, the constant ⊥ (Bottom) and > (Top) and the
following syntax rule (C and D are concepts, P is a primitive
concept, R is a primitive role).
δ and ε are unary connectives, u is a binary conjunction

connective and ∀ enables universal quantification on role
values. The Terminological language is given in Table 1.

B. Semantic of JClassic+δε
We endow JClassic+δε with an intentional algebraic seman-

tic denoted CL+
δε.

This framework covers the different aspects of the formal
definition of concepts and subsumption in our language. The
calculating of denotations of concepts in CL+

δε is used in
computing subsumption in the algorithm Sub+δε. CL

+
δε allows

first to show that Sub+δε is correct and complete and secondly
to give a formal characterization of calculation of subsumption
used in the implementation of JClassic+δε.

Subsumption is considered from two points of view:
- A descriptive point of view: it consists on the comparison

of terms through an equational system;
- A structural point of view: it consists on a comparison of

normal forms of concept

1) EQ: an equational system for JClassic+δε: In order to
serve as the basis for the definition of an algebraic seman-
tics, an equational system EQ is defined. From a descriptive
point of view, the calculation of subsumption consists on the
comparison of terms through the equational system EQ. This

111

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C,D → > the most general concept
| ⊥ the most specific concept
| P primitive concept
| C uD concept conjunction
| ¬P negation of primitive concept (This restriction to primitive concept in the negation is a choice to avoid the untractability)
| ∀r : C C is a value restriction on all roles R
| R AT-LEAST n cardinality for R (minimum)
| R AT-MOST n cardinality for R (maximum)
| δC default concept
| Cε exception to the concept
| ClcsD concept disjunction

TABLE I
SYNTAX OF JClassic+δε

system fixes the main properties of the connectives and is used
to define an equivalence relation between terms and then to
formalize the subsumption relationship.

∀A,B,C ∈ JClassic+δε:
01: (A uB) u C = A u (B u C)
02: A uB = B uA
03: A uA = A
04: > uA = A
05: ⊥ uA = ⊥
06: (∀R : A) u (∀R : B) = ∀R : (A uB)
07: ∀R : > = >
08: R AT-LEAST m u R AT-LEAST n = R AT-LEAST

maxi(m,n)
09: R AT-LEAST 0 = >
10: R AT-MOST m u R AT-MOST n = R AT-MOST

mini(m,n)
11: R AT-MOST 0 = ∀R : ⊥
12: R AT-LEAST m u R AT-MOST n (if n ≤ m).
13: (A lcs B) lcs C = A lcs (B lcs C)
14: A lcs B = B lcs A
15: A lcs A = A
16: A lcs > = >
17: A lcs ⊥ = A
18: (δA)ε = Aε

19: δ(A uB) = (δA) u (δB)
20: A u δA = A
21: Aε u δA = Aε

22: δδA = δA
23: (Aε)ε = δA

Axioms 01 to 12 are classical; they concern description
logic connectives properties [26], [27]. Axioms 13 to 17
concern the connective ”lcs”. The following ones correspond
to ALδε connectives properties[3], i.e., properties of δ and ε
connectives.

Descriptive Subsumption:
We denote vd for descriptive subsumption. vd is a partial

order relation on terms. Equality (modulo the axioms of EQ)
between two terms is denoted =EQ. =EQ is a congruence
relation which partitions the set of terms, i.e., =EQ allows
to form equivalence classes between terms. We define the

descriptive subsumption using the congruence relation and
conjunction of concepts as follow:

Definition 1: (Descriptive Subsumption)
Let C and D two terms of JClassic+δε, C vd D, i.e., D

subsume descriptively C, iff C uD =EQ C.

From an algorithmic point of view, terms are not eas-
ily manipulated through subsumption. We adopt a structural
point of view closer to the algorithmic aspect of computing
subsumption. This allows us to first formalize calculation
of subsumption in the implementation of JClassic+δε and
secondly to endow JClassic+δε with an intensional semantics.

To define the subsumption relation between two concepts
using their description, we need to compare them. For this,
concepts are characterized by a normal form of their properties
rather than by the set of their instances.

2) Normal Form of concept: We present in this section the
structural point of view for the subsumption in JClassic+δε.
This point of view has two main advantages: it is very close to
the algorithmic aspects and is a formal framework to validate
the algorithmic approach, which is not the case description
graph.

We define a structural concept algebra CL+
δε, which is used

to give an intensional semantic in which concepts are denoted
by the normal form of their set of properties. The structural
point of view of subsumption consist then to compare the
normal forms derived by applying a homomorphism from set
of terms of JClassic+δε to elements of CL+

δε.

CL+
δε: an intensional semantic for JClassic+δε

From the class of CL-algebra, we present a structural
algebra CL+

δε, which allows to endow JClassic+δε with an
intentional semantic.

Element of CL+
δε are the canonical intentional representation

of terms of JClassic+δε (i.e., Normal form of the set of their
properties). We call an element of CL=

δε normal forms.
Definition of CL+

δε means definition of a homomorphism h,
which allows to associate an element of CL+

δε to a term of
JClassic+δε.

Using the equational system, we calculate for each concept

112

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a structural denotation, which is a single normal form of this
concept. The calculation of a normal form from a description
of a concept can be seen as a result of term “rewriting” based
on the equational system EQ.

The normal form of a concept defined with description
T (noted nf(T)) is a pair 〈tθ, tδ〉 where tθ contains strict
properties of T and tδ the default properties of T.
tθ and tδ are 6-uplet of the form (dom,min,max,π,r,ε) with:
dom: is a set of Individuals, if the description contain the

property ONE-OF else the symbol UNIV.
min (resp. max): is a real, if the description contain the

property Min (resp. Max) else the symbol MIN-R (resp. MAX-
R).
π: is a set of primitive concept in description T.
r: have the form 〈R, fillers, least,most, c〉 where:

R: the name of Role.
fillers: set of Individuals, if the description contain the

property R Fills, else ∅.
least (resp. most): is an integer, if the description contain

AT-LEAST (resp. AT-MOST), else 0 (resp. NOLIMIT).
c: is the normal form of C, if the description contain

the property ∀R : C.
ε: set of 6-uplet with the form (dom, min, max, π, r, ε).
Example: The normal form of concept C ≡ A u δB is:
fn (C) = (〈Univ,Min−R,Max−R, {A} , ∅, ∅〉 ,

〈Univ,Min−R,Max−R, {A,B} , ∅, ∅〉).

The interpretation of connectors and constants of CL+
δε is

given in Table 2. b0 is a constant used as a denotation of ⊥
[6].

Structural Subsumption:
Two terms C and D of JClassic+δε are structurally equiv-

alent iff their normal forms are equal. We denote vs for
structural subsumption. vs is a partial order relation.

The structural equality of two terms of JClassic+δε is noted
=CL. =CL is a congruence relation as =EQ in descriptive
subsumption.

We define the structural subsumption using the congruence
relation and conjunction of concepts as follow:

Definition 2: (Structural Subsumption)
Let C and D two terms of JClassic+δε, C vs D; i.e., D

subsume structurally C, iff C uD =CL C.

Theorem 1: (Equivalency between descriptive subsump-
tion and structural subsumption)

Let C and D two terms of JClassic+δε, C vs D⇔ C vd D.

To infer new knowledge in this system, the susbsumption
relation is the main operation. In the next section, we outline
the subsumption algorithm handling defaults and exceptions
named Subδε.

IV. INFERENCE IN JClassic+δε
There are several reasoning services to be provided by

a DL- system. We concentrate our work on the following

basic ones, which are classification of concepts (TBox) and
instance checking (ABox). These two services basically use
the subsumption relation.

A. The Subsumption Relation

Borgida [8] defines the subsumption based on a set theoretic
interpretation as follow: “The concept C subsume D, if and
only if the set of instances of C include or is equal to a set of
instances of D”.

However, the general principle of computing subsumption
between two concepts is to compare their sets of properties,
not their sets of instances.

For this, we use an intensional semantics which is closer
to the algorithmic aspects of computing subsumption, and this
by defining a normal form of description called descriptive
normal form.

Algorithm of Computing Subsumption Sub+δε
Sub+δε is an algorithm of computing subsumption of the

form Normalization- Comparison. It is consists of two steps,
first, the normalization of description, and then a syntactic
comparison of the obtained normal forms.

Let C and D be two terms of JClassic+δε. To answer the
question “Is C subsumed by D?” we apply the following
procedure. The normal forms of C and “C u D” are calculated
with the procedure of normalisation.

There are two steps in the comparison. We compare the
strict parts of the two concepts. If these are equal, then we
compare the default parts. If the two normal forms are equal,
the algorithm returns “Yes”. It returns “No” otherwise.

Algorithm 1 Algorithm Sub+
δε

Require: C and D two description of concepts of JClassic+δε
Ensure: Response “Yes” or “No” to question “Is C subsumed

by D?”
{Compute normal forms}
fn(C) ← Normalization(C)
fn(C u D) ← Normalization(C u D)
{Treatment of bottom}
if fn(C)=b0 then

Response ← “Yes”
else

if fn(C u D)=b0 then
Response ← “No”

else
{Comparison of the obtained normal forms}
Compar(fn(C)θ, fn(Cu D)θ, rep1)
if rep1=”Yes” then

Compar(fn(C)δ , fn(Cu D)δ , rep1)
Response ← rep2

else
Response ← “No”

end if
end if

end if

113

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

JClassicδε CL+
δε

> ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

P ≺ (UNIV, MIN-R, MAX-R, P, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

ONE-OF E ≺ (E, MIN-R, MAX-R, P, ∅, ∅),
(E, MIN-R, MAX-R, ∅, ∅, ∅)�

MIN u ≺ (UNIV, u, MAX-R, ∅, ∅, ∅),
(UNIV, u, MAX-R, ∅, ∅, ∅)�

MAX u ≺ (UNIV, MIN-R, u, ∅, ∅, ∅),
(UNIV, MIN-R, u, ∅, ∅, ∅)�

∀R : C(C 6≡ >etC 6≡ ⊥) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, |cθ.dom|, c〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, |cθ.dom|, c〉}, ∅)�

∀R : CetC ≡ ⊥ ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅)�

∀R : CetC ≡ > ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

RFILLSE(E 6= ∅) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R,E, |E|, NOLIMIT, t〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R,E, |E|, NOLIMIT, t〉}, ∅)�

R FILLS ∅ ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

RAT − LEASTn(n 6= 0) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, n,NOLIMIT, t〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, n,NOLIMIT, t〉}, ∅)�

R AT-LEAST 0 ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

RAT −MOSTn(n > 0) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, n, t〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, n, t〉}, ∅)�

R AT-MOST 0 ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅)�

C uD c ⊗ d
C lcs D c LCS d
δ C ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅), cδ �
Cε ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, cδ),

(cδ.dom, cδ.max, cδ.min, cδπ , cδr , cδε ∪ cδ)�
⊥ b0

TABLE II
INTERPRETATION OF CONNECTORS AND CONSTANTS OF CL+

δε

The completeness, correctenness and the polynomial com-
putation of JClassicδε have been proved in [7].

B. Classification of concept

The classification of concepts is an operation which inserts
a concept to the most appropriate place in the hierarchy.
The classification process allows to find subsumption relations
between concepts in the taxonomy (hierarchy) and insert new
concept in the hierarchy.

In the JClassic+δε reasoner, the classification of a concept
consists of two phases: first phase is to find the most specific
concepts that subsume the concept C (the concept C is
to classify), they are called subsumeurs (SPS). The second
phase search the most general concepts than C, we call them
subsumed (GSP), it also establish new relations between the
concept to classify C, its SPS and its GSP.

The classification process is triggered when we create a new
concept (primitive or defined).

C. Instance recognition

The recognition of instances is to find for a given individual
the most specific concepts which it may be an instance.

We used the method to achieve Abstraction-Classification
mechanism instantiation of concepts.

The method Abstraction - Classification
This method allows the instantiation of the individual, it

consists of two phases:

Abstraction: calculates the abstract concept of the individ-
ual containing all the information in the form of an abstract
defined concept.

Classification: is to find the abstract concept of SPS, the
SPS corresponds to the direct instances of individual, in other
words: To determine whether an object O is instance of a
concept C, we calculate the abstract concept AO, we then
check if C subsumes AO. If so, we deduce that O is an instance
of concept C, else O is not an instance of concept C.

Ex: if an individual named ”Sara” eats only plants, the
reasoner determine that Sara is an instance of concept VEG-
ETARIAN.

D. Inheritance relation

The inheritance relation allows to compute the inherited
properties of a concept. These properties are the basic ones
in inferential systems.

The inheritance relation serves as a basis for retrieving the
inherited properties, it also helps in distinguishing strict and

114

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

default inherited properties and answering questions concern-
ing conflicts and consistency.

The main task of the inheritance relation is to retract
exceptions from the denotation of a concept (the two ε parts
of denotation). The inheritance-form scenario of a concept C
is:

1- Replace each exception at an even level by a default in
the denotation of C.

2- For each role of C, recursively call inheritance with the
role value restriction.

3- Suppress P (resp. P◦) in cδπ if P◦ (resp. P) is in cφπ .
The resulting denotation is called the inheritance form of C
(The set of primitive concepts P is complemented with a new
set P◦ in order to denote negation. There is no axiom that
relates a primitive concept to its negation. This set P◦ is then
theoretically necessary, but transparent for the user).

Using this relation, we deduce the inherited properties,
and type them between strict and default ones. The inherited
properties are those found in the inheritance form of the
concept. The strict ones (resp. the default ones) are those in
the strict (resp. default) part.

Algorithm 2 Inheritance Map

inheritance: CL+
δε → CL

+
δε, such that

inheritance(a)=
res ← ≺ (aθπ, ∅, ∅), (aδπ , ∅, ∅)�
for all y ∈ aθε ∪ aδε do

res ← res ∪ transform(y,aθε)
end for
for all ≺r, p � ∈ aθr do

res ← res ∪ ≺ (∅, ≺ r, inheritance(p)�, ∅), (∅, ∅, ∅)�
end for
for all ≺r, p � ∈ aδr do

res ← res ∪ ≺ (∅, ∅, ∅), (∅, ≺ r, inheritance(p)�, ∅)�
end for
let res be ≺ (resθπ, resθr, resθε), (resδπ , resδr, resδε)�
for all x ∈ resθπ do

suppress x◦ from resδπ
end for
for all x◦ ∈ resθπ do

suppress x from resδπ
end for
return res

We detailed in the next section the connective ”lcs” and the
operation LCS, by which we compute normal form of A lcs
B (A and B are concepts).

V. THE COMPUTATION OF ”LCS”

The least common subsumer has been introduced in de-
scription logic by Borgida et al. [8] as an external operation
to compute the LCS of two concepts.

The LCS of two concepts A and B belonging to a language
L is the most specific concept in L that subsumes both A and
B.

Definition 3: Let L a terminological language, v the nota-
tion of subsumption relation in L

LCS: L × L → L
LCS(A,B) → C ∈ L iff:
A v C and B v C (C subsume both A and B),
@ D ∈ L such that A v D,B v D and D ⊆ C (i.e., there is

no common subsumers to A and B, which is subsumed strictly
by C)

The next algorithm is to compute the LCS where input are
the normal form of two concepts A1 and A2 and the output
is the LCS of A1 and A2.

Let a and b two normal forms A and B with a and b 6= b0
(b0 is the normal form of ⊥).

Algorithm 3 LCS
Require: a=≺ aθ,aθ � and b=≺ bθ,bθ � two normal forms

of A and B.
Ensure: c=≺ cθ,cθ � the normal form of LCS(A,B)
cθπ ← aθπ ∩ bθπ
cθr ← ∅
for all ≺r, d � ∈ aθr do

if ∃ ≺r, e � ∈ bθr then
f ← LCS(d,e)
cθr ← cθr ∪ ≺r, f �

end if
end for
cθε ← aθε ∩ bθε
cδπ ← aδπ ∩ bδπ
cδr ← ∅
for all ≺r, d � ∈ aδr do

if ∃ ≺r, e � ∈ bδr then
f ← LCS(d,e)
cδr ← cδr ∪ ≺r, f �

end if
end for
cδε ← aδε ∩ bδε

JClassic+δε can be used in differents application. We will
use it to formalize our contextual multilevel access control
model, in which the context could be in different forms.

VI. APPLICATION TO ACCESS CONTROL

To show how we can use our description logic-based system
and how we can infer new knowledge, we define a knowledge
base adapted to formalize a dynamic access control model
named DL − CMLACδε (Contextual Multi-Level Access
Control Model based on Description Logic with Default and
Exception).

In this model, authorization to subject is assigned depending
on context. We consider first that the context is by default
normal, and we represent it using the operator of default (δ).
Then, each change of context is considered as an exception to
the current context, this change is represented by the operator
of exception (ε). We give, as an example, one ABox to show
how authorization can be deduced.

115

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We are intersted in one kind of policy, which is a multilevel
access control commontly used by military organizations in
order to protect the confidentiality of their informations [2].

In multilevel access control model, a subject s can access to
an object o only if its clearance level is greater than or equal
to the classification level of the object.

To allow the policy designer to define a security policy
independently of the implementation, we introduce an abstract
level.

Subject and Object are respectively abstracted into Role
and View. A role is a set of subjects to which the same
security rule apply and similarly, a view is a set of objects to
which the same security rule apply. For example, the subject
”John” plays the role of ”Doctor” in the organization ”Service
of Pediatrics” and the view ”Medical record” corresponds to
the object ”Medical record of patient”. A clearance level is
assigned to the role and a classification level is assigned to
a View. An abstract authorization is assigned to a role on a
view in a given context if its clearance level is greater than or
equal to the classification level of the view.

The concrete authorization is derived from the abstract one
depending on context.

In our approach, we take into account the context by
considering the following postulate.

Postulate 1 (Normal context). By default, the context is
normal (usual context).

Postulate 2. All actions that are not permitted are prohib-
ited.

Figure 1 describes the general architecture of our access
control model.

Fig. 1. Architecture of DL− CMLACδε

A. TBox

We now conceptualize access control model by a DL knowl-
edge base capturing its characteristics, including the context
with the use of defaults (δ) and exceptions (ε), using the Bell

and La Padula model [28]. We define then TBox and ABox
axioms with examples to illustrate their content and use.

We define a DL knowledge base K. The alphabet of K
includes the following atomic concepts: Subject, Object, Role,
View, LevelR and LevelV. The TBox includes the following
axioms.

• Role attribution axiom:
Subject v >
Role v >
Employ v EmployS.Subject u EmployR.Role

It defines the relationship between subject and role,
where:
EmployS and EmployR are binary relations such as:
- EmployS : EmployS links the concept Employ to the
concept Subject
- EmployR : EmployR links the concept Employ to the
concept Role.

• View definition axiom:
Object v >
V iew v >
Use v UseO.Object u UseV.V iew

It defines relationship between object and view, where:
UseO and UseV are binary relations such as:
- UseO : UseO links the concept Use to the concept
Object.
- UseV : UseV links the concept Use to the concept View.

• Classification definition axiom:
LevelV v >
Attribute v AttributeV.V iew uAttributeL.LevelV

It defines relationship between the view and its classifi-
cation level, where:
AttributeV and AttributeL are binary relations such as:
- AttributeV : AttributeV links the concept Attribute to
the concept View.
- AttributeL : AttributeL links the concept Attribute to
the concept LevelV.

• Clearance definition axiom:
LevelL v >
Assign v AssignR.Role uAssignL.LevelR

It defines relationship between the view and its classifi-
cation level, where:
AssignR and AssignL are binary relations such as:
- AssignR : AssignR links the concept Assign to the
concept Role.
- AssignL : AssignL links the concept Assign to the
concept LevelR.

Depending on the model of Bell and La Padula [28], there
are two types of authorization, one for reading permission
and another one for writing permission. And because we have
two levels in our model: abstract and concrete level, we will
give axioms for abstract permission (reading and writing) and
axioms for concrete permission (reading and writing).

116

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To define a default permission, we use the following axioms.

• Reading Permission attribution axiom: defines the rela-
tion between role and view. A default reading permission
is given to role R on a view V when its clearance level
is greater than or equal to the classification level of the
view.
δRPermission v RPermissionR.Role u
RPermissionV.V iew uAttribute uAssign u LevelR
Where:
RPermissionR and RPermissionV are binary relations
such as:
- RPermissionR : RPermissionR links the concept RPer-
mission to the concept Role.
- RPermissionV : RPermissionV links the concept RPer-
mission to the concept View.
- LevelR v haslevel At-least LevelV

• Writing Permission attribution axiom: defines the rela-
tion between role and view. A default writing permission
is given to role R on a view V when its clearance level is
less than or equal to the classification level of the view.
δWPermission v WPermissionR.Role u
WPermissionV.V iewuAttributeuAssignuLevelR
Where:
WPermissionR and WPermissionV are binary relations
such as:
- WPermissionR : WPermissionR links the concept
WPermission to the concept Role.
- WPermissionV : WPermissionV links the concept
WPermission to the concept View.
- LevelR v haslevel At-most LevelV

A concrete permission is expressed with the next axioms.

• Concrete Reading Permission axiom:
Is−Rpermitted v Is−RpermittedS.SubjectuIs−
RpemittedO.Object

A concrete reading permission is given to subject S on
an object O, where:
Is-RpermittedS, Is-RpermittedO are binary relations such
as:
- Is-RpermittedS : Is-RpermittedS links the concept Is-
Rpermitted to the concept Subject.
- Is-RpermittedO : Is-RpermittedO links the concept Is-
Rpermitted to the concept Object.

• Concrete Writing Permission axiom:
Is − Wpermitted v Is − WpermittedS.Subject u
Is−WpemittedO.Object

A concrete writing permission is given to subject S on
an object O, where:
Is-WpermittedS, Is-WpermittedO are binary relations
such as:
- Is-WpermittedS : Is-WpermittedS links the concept Is-
Wpermitted to the concept Subject.
- Is-WpermittedO : Is-WpermittedO links the concept Is-
Wpermitted to the concept Object.

Definition of rules of security:
δIs−Rpermitted v Employ u Use u δRPermission
δIs−Wpermitted v Employ u Use u δWPermission

- If a subject S is employed in a role R (Employ), and if
there is a relation between an object O and a view V (Use),
and if we have a default reading permission (resp. default
writing permission) relation between role R and a view V
(δRPermission) (resp. (δWPermission)), we deduce that
a subject S is by default permitted to perform action of
reading (resp. writing) on object O (δIs−Rpermitted) (resp.
δIs−Wpermitted), and because Is−Rpermitted v δIs−
Rpermitted (resp. Is−Wpermitted v δIs−Wpermitted)
(a concrete permision can be deduced from a default per-
mission), we can finally say that a subject S is permitted to
perform action of reading (resp. writing) on object O.
Is−Rpermittedε v Employ u Use uRPermissionε
Is−Wpermittedε v Employ u Use uWPermissionε

- By cons, if we have an exception on a read-
ing permission concept wrote RPermissionε (resp. wrint-
ing permission concept wrote WPermissionε) , we say
that we have an exception on a concept Is-Rpermitted
wrote Is−Rpermittedε (resp. exception on a concept Is-
Wpermitted wrote Is−Wpermittedε) , and because Is −
Rpermitted 6v Is−Rpermittedε (resp. Is−Wpermitted 6v
Is−Wpermittedε) (a concrete permission can not be deduced
from an exceptional permission), we can deduce that a subject
S is prohibited to perform action of reading (resp. writing) on
object O.

B. The ABox

It contains statment about individuals. We could have many
ABox for one TBox depending on applications. We illustrate
this in the next section, we show how a security policy can be
handled by our tool and how we can infer authorizations.

- Using instances of Table 3, the system cannot infer that
Jean has the default permission to read the PS1 because
the classification level of the role Secretary which is played
by Jean is less than the clearance level of the view Project-
statistics. And because the default permission cannot be de-
duced, the concrete permission cannot also be deduced.

Suppose now that the assistant is absent, and the director
needs statistics of the project.

The context now is different, and it is considered as an
exception to the default one. We can give the secretary a
temporary permission by changing his classification level, this
changement is only valid in this context.

We can now deduce that Jean has the default permission
to read the PS1 because the context Absence of the Assistant
is true.

Then we add this instance to the ABox :
δPermission(P1).

Where:
δRPermission(P1) v RPermisionV.V iew(Project −

statistics) uRPermissionR.Role(Secretary)
uAttribute(At2) uAssign(As4) u LevelR

117

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ABox
Role(Director);
Role(Assistant);
Role(Secretary);
Subject(Adam);
Subject(Sara);
Subject(Jean);
View(Project-contract);
View(Project-statistics);
View(Project-description);
Object(PC1);
Object(PS1);
Object(PD1);
LevelR(Secret);
LevelR(Confidential);
LevelR(Public);
LevelV(Secret);
LevelV(Confidential);
LevelV(Public);
Employ(E1) v EmployS.Subject(Adam) u EmployR.Role(Director);
Employ(E2) v EmployS.Subject(Sara) u EmployR.Role(Assistant);
Employ(E3) v EmployS.Subject(Jean) u EmployR.Role(Secretary);
Use(U1) v UseO.Object(PC1) u UseV.view(Project− contract);
Use(U2) v UseO.Object(PS1) u UseV.view(Project− statistical);
Use(U3) v UseO.Object(PD1) u UseV.view(Project− description);
Attribute(At1) v AttributeV.V iew(Project− contract) uAttributeL.LevelV (Secret);
Attribute(At2) v AttributeV.V iew(Project− statistics) uAttributeL.LevelV (Confidential);
Attribute(At3) v AttributeV.V iew(Project− description) uAttributeL.LevelV (Public);
Assign(As1) v AssignR.Role(Director) uAssignL.LevelR(Secret);
Assign(As2) v AssignR.Role(Assistant) uAssignL.LevelR(Confidential);
Assign(As3) v AssignR.Role(Secretary) uAssignL.LevelR(Public);

TABLE III
ABOX

and, Assign(As4) v AssignR.Role(Secretary) u
AssignL.LevelR(Confidential)

• Access control if the context Absence of the Assistant
is true: Suppose that user Jean want to read the PS1, can
he obtain that privilege?
We know that:
- Jean plays the role of Secretary: Employ(E3);
- and, PS1 is an object used in the view Project-statistics:
Use(U2);
- and, in this context, Secretary has a clearance level equal
to Confidential: Assign(As4);
- and, Project-statistics has a classification level equal to
Confidential: Attribute(At2);
- and finally, by default, each person who plays the role of
Secretary is permitted to consult Project-statistics when
the assistant is absent: δRPermission(P1).
Formally, we write:
Employ(E1) u Use(U1) u δRPermission(P1)
Using security rules, we can deduce that the preceding
proposition subsumes δIs−Rpermitted(I1).
Where:
Is − Rpermitted(I1) v Is −
RpermittedS.Subject(Sara) u Is −
RpemittedO.Object(DB − Exam)
And because Is − Rpermitted(I1) v δIs −
Rpermitted(I1), we can deduce that Jean is permitted

to read PS1 if the assistant is absent.

• suppose that the assistant is absent and a substitute
was brought: can Jean read PS1?
In the context Assistant absent + substitute present ,
the system deduce a new instance P2 and we add to the
ABox the next rule:
Permision(P1)ε v δPermission(P2)
We know that:
- Jean plays the role of Secretary: Employ(E3);
- and, PS1 is an object used in the view Project-statistics:
Use(U2);
- and, in this context, Secretary has a clearance level equal
to Confidential: Assign(As4);
- and, Project-statistics has a classification level equal to
Confidential: Attribute(At2);
- and finally, by default, each person who plays the role of
Secretary is permitted to consult Project-statistics when
the assistant is absent and there is a new substitute:
δRPermission(P2).

We obtain:
Employ(E3) u Use(U2) u δPermission(P2)
≡ Employ(E3) u Use(U2) u δPermission(P1)ε

We know that Aε ≡ δAε, we obtain:
≡ Employ(E3) u Use(U2) u Permission(P1)ε

Using security rules, we can deduce that the precedent

118

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

proposition subsumes Is− permitted(I1)ε.

And, because Is − permitted(I1) 6v Is −
permitted(I1)ε, we cannot deduce Is-permitted(I1).
Therefore Jean is not permitted to read PS1 when there
is a substitute to the absent assistant.

Our policy language allows us to have more than one
exception in a context. Exception at an even level cancel
the effects of exceptions and therefore infers the property by
default [3].

Supose that we have a disjunction of context, for example
”absence of assistant or absence of assistant with substitute
present”, here we can use the connective ”lcs” to deduce
permission

• lcs(absence of assistant, absence of assistant with
substitute present): Suppose that user Jean wants to read
PS1; can he obtain that privilege?
We know that:
- Jean plays the role of Secretary: Employ(E3);
- and, PS1 is an object used in the view Project-statistics:
Use(U2);
- and, in this context, Secretary has a clearance level equal
to Confidential: Assign(As4);
- and, Project-statistics has a classification level equal to
Confidential: Attribute(At2);
- and we have the two previous permissions Permis-
sion(P1) and Permission(P2), defined respectively for the
context (absence of assistant) and context (absence of
assistant with substitute present).

We obtain:
Employ(E3) u Use(U2) u
lcs(δPermission(P1), δPermission(P2))
≡ Employ(E3) u Use(U2) u
lcs(δPermission(P1), δPermission(P1)ε)

using lcs properties, we obtain:
≡ Employ(E3) u Use(U2) u δPermission(P1)
Using security rules, we can deduce that the precedent
proposition subsumes δIs− permitted(I1).

And, because Is − permitted(I1) v δIs −
permitted(I1), we can deduce Is-permitted(I1). There-
fore Jean is permitted to read SP1 when one of these
contexts is true (absence of assistant, absence of assistant
with substitute present).

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper has led to the definition
of a new system based on description logic that is expressive
enough to be used as part of an application and to represent de-
fault knowledge and exceptional knowledge. The JClassic+δε
highlights the interests and the relevance of defaults in con-
ceptual definition. For the JClassic+δε language, we have
given a set of axioms outlining the essential properties of the
connectives from this definitional point of view: property links
default characteristics to exceptional or strict ones. This set of

axioms induces a class of CL+
δε-algebra of which the terms

are concept descriptions. Using the conjunction connectives
u and ”lcs”, the set of concept can be partially ordered
w.r.t the equational system (descriptive subsumption in free
algebra). JClassic+δε is defined with a universel algebraic
corresponding to a denotational semantic, where terms are
denoted exactly by sets of strict and default properties.

This system consists of three modules: a module for rep-
resenting knowledge, a module to use that knowledge and a
module to update knowledge. The module which allows to use
knowledge is endowed with a subsumption algorithm which
is correct, complete and polynomial.

In our work, the description logic is endowed with an
algebraic intensional semantics, in which concepts are denoted
by a normal form of all their properties. These normal forms
(i.e., elements of the intensional semantic) are used directly
as an input to the algorithm of subsumption and algorithm of
deductive inferences.

The developed tool has been used to describe our contextual
access control model in which authorization is assigned to
a subject according to its role in an organization in a given
context. The two operators of default and exception are used
in a clever way to assign permission depending on the context.
Each time, the context changes, permissions are redefined and
re-assigned to subjects.

Context can take several values, it can be a default one,
an exception to the actual context, conjunction of contexts or
disjunction of context. In this paper, we specially lay emphasis
upon the last one.

An interseting topic for future research is to extend our
tool to take into account spacial-temporal context to make our
system more expressive with keeping a reasonable complex-
ity. We also envisage to explore other appropriate and real
applications.

REFERENCES

[1] N. Boustia and A. Mokhtari. JClassic+δε: A Description Logic
Reasoning Tool: Application to Dynamic Access Control. In Proc.
The Second International Conference on Computational Logics, Alge-
bras, Programming, Tools, and Benchmarking, Computation Tools’11,
September 25-30, 2011, Rome, pp. 25-30, ISBN: 978-1-61208-159-5.

[2] D. E. Denning. Multilevel secure database systems: Requirements and
model. In NAS/AFSB Summer Study on Multilevel Database Manage-
ment Security, Working Paper, June 1982.

[3] F. Coupey and C. Fouqueré. Extending conceptual definitions with
default knowledge. Computational Intelligence, vol 13, no 2, pp. 258-
299 , 1997.

[4] http://www.cs.man.ac.uk/ sattler/reasoners.html. April, 2012.
[5] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity

of concept languages. In Principles of language representation and
reasoning: second international conference, pp. 151-162, 1991.

[6] N. Boustia and A. Mokhtari. A Contextual Multilevel Access Control
Model. In Int. J. Internet Technology and Secured Transactions, Vol. 3,
No. 4, pp. 354-372, 2011.

[7] N. Boustia and A. Mokhtari. A dynamic access control model. In
Applied Intelligence Journal, Volume 36, Number 1, pp. 190-207, DOI
10.1007/s10489-010-0254-z, 2012.

[8] A. Borgida and P.F. Patel-Schneider. A Semantic and Complete
algorithm for subsumption in the CLASSIC description logic. Artificial
Intelligence Research, vol 1, pp. 277-308, 1994.

119

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] W.W. Cohen, A. Borgida and H. Hirsh. Computing Least Common
Subsumer in Description Logic. In 10th National Conference of the
American Association for Artificial Intelligence, pp. 754-760, San Jose,
California, 1992.

[10] V. Ventos and P. Brésellec. Least Common Subsumption as a connective.
In Proceeding of International Workshop on Description Logic, Paris,
France, 1997.

[11] V. Ventos, P. Brésellec and H. Soldano. Explicitly Using Default
Knowledge in Concept Learning: An Extended Description Logics Plus
Strict and Default Rules. In Logic Programming and Nonmonotonic
Reasoning, 6th International Conference, LPNMR 2001, pp. 173-185,
Vienna, Austria, September 17-19, 2001.

[12] A. Corradi, R. Montanari, and D. Tibaldi. Context-Based Access Control
in Ubiquitous Environments. In 3rd IEEE International Symposium on
Network Computing and Applications (NCA), August 2004.

[13] S. Fu and C.-Z Xu. A Coordinated Spatio-Temporal Access Control
Model for Mobile Computing in Coalition Environments. In In 19th
IEEE International Parallel and Distributed Processing Symposium,
April 2005.

[14] F. Hansen and V. Oleshchuk. Spatial Role-Based Access Control Model
for Wireless Networks. In IEEE 58th Vehicular Technology Conference,
VTC 2003-Fall, volume 3, October 2003.

[15] M. Strembeck and G. Neumann. An Integrated Approach to Engineer
and Enforce Context Constraints in RBAC Environements. In ACM
transactions on information and System Security, 7(3), pp.392-427,
2004.

[16] H. Wedde and M. Lischka. Role-Based Access Control in Ambient and
Remote Space. In 9th ACM Symposium on Access Control Models and
Technologies (SACMAT 2004), USA, June 2004.

[17] G. Zhang and M. Parashar. Dynamic Context-aware Access Control for
Grid Applications. In 4th International Workshop on Grid Computing,
November 2003.

[18] J.B.D. Joshi, E. Bertino, and A. Ghafoor Generalized Temporal Role-
Based Access Control Model. 17(1), pp. 4-23, January 2005.

[19] C.K. Georgiadis, I. Mavridis, G. Pangalos and R.K. Thomas. Flexible
Team-based Access Control Using Contexts. In Sixth ACM Symposium
on Access Control Models and Technologies, pp. 21-27. ACM Press,
Chantilly, 2001.

[20] J. Hu and A.C. Weaver. A Dynamic, Context-Aware Security Infras-
tructure for Distributed Healthcare Applications. In First Workshop on
Pervasive Privacy Security, Privacy, and Trust, Boston, MA, USA, 2004,
http://www.pspt.org/techprog.html

[21] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based
Access Control. In 4th IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy’03), Lake Come, Italie, June
2003.

[22] F. Cuppens and A. Miège. Modelling Contexts in the ORBAC Model.
In 19th Annual Computer Security Applications Conference, Las Vegas,
December 2003.

[23] H. Debar, Y. Thomas, F. Cuppens and N. Cuppens-Boulahia. Enabling
Automated Threat Response through the Use of a Dynamic Security
Policy In”Journal in Computer Virology (JCV), 3, 3 (2007), pp. 195-
210, 2007.

[24] N. Boustia and A. Mokhtari. Representation and reasoning on ORBAC:
Description Logic with Defaults and Exceptions Approach. In Workshop
on Privacy and Security - Artificial Intelligence (PSAI), pp. 1008-1012,
ARES’08, Spain, 2008.

[25] N. Boustia and A. Mokhtari. DLδε −OrBAC: Context based Access
Control. In Proc. WOSIS’09, pp. 111-118, Italy, 2009.

[26] R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L. Alperin
Resnick, and A. Borgida. Living with CLASSIC: When and How to Use
a KL-ONE-Like Language. In John Sowa, ed., Principles of Semantic
Networks: Explorations in the representation of knowledge, pp. 401-456,
Morgan-Kaufmann: San Mateo, California, 1991.

[27] R.J. Brachman, D.L. McGuinness, L. Alperin Resnick, and A. Borgida.
CLASSIC: A Structural Data Model for Objects. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data,
pp. 59-67, June 1989.

[28] D.E. Bell, and L.J. LaPadula Secure Computer System: Unified
Exposition and Multics Interpretation. In MITRE Technical Report MTR-
2997, July, 1975.

120

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Seeing the Big Picture: Influence of Global Factors

on Local Decisions

Terry Bossomaier∗, Michael Harré∗†, Vaenthan Thiruvarudchelvan∗

∗Centre for Research in Complex Systems

Charles Sturt University

Bathurst, Australia

e-mail: {tbossomaier,vthiru}@csu.edu.au
†Centre for the Mind

University of Sydney

Sydney, Australia

e-mail: michael.harre@sydney.edu.au

Abstract—This paper extends recent work studying the de-
velopment of human expertise in the game of Go. Although it
appears like a simple game on the surface, Go is actually the
most difficult of all established games for artificial intelligence,
with no computer program yet reaching the top international
level on a full 19×19 board. On smaller boards with sizes like
9×9, computers are competitive, implying that the understanding
of complex global interactions is the key to human superiority.
The temporal analysis of game positions yields some interesting
insights in into local/global analysis. By mining thousands of
positions from online games, we show that at some player levels,
the sequence of plays leading up to a local position is a stronger
determinant of the next move than the position alone. This
suggests that the sequence of plays is an indicator of global
strategic factors and thus provides a context for the next move
in addition to the local position. Using perceptual templates
introduced in other work, we demonstrate that this global context
appears at the very earliest stages of cognition.

Keywords—game of go; decision making; entropy; online data
mining

I. INTRODUCTION

The big picture often influences or overrides local factors

in many areas of human expertise, from board games to

politics. Challenging games, such as Chess and Go, provide an

excellent framework for studying expertise [1][2][3][4], since

they are both strategically deep but tightly constrained. This

paper presents a striking demonstration of this, using data

mined from thousands of decisions in online games. In recent

work, we have demonstrated transitions in the acquisition of

expertise in the game of Go [5]. This game is interesting

because it is currently the most difficult of all established

games for computational intelligence. This contrasts with

Chess, where the IBM computer Deep blue [6][7] was able

to defeat world champion Garry Kasparov.

We also demonstrated therein, from calculation of mutual

information (eqn. 5) between moves, that one of these has

the character of a phase transition [8]. The idea of a phase

transition comes originally from physics, from the study of

phenomena like the melting of ice to give water. When

such a physical phase transition occurs, there is a dramatic

reorganisation of the system. In this case, water molecules

which were fixed rigidly in place in ice become free to move

around, and perhaps travel long distances. During a phase

transition, systems exhibit long-range order, where there are

correlations in activity or structure over large distances and

system parameters often exhibit power-law behaviour, or fat-

tailed distributions. Another example of a phase transition is

in adding edges to random graphs. At a certain point each

graph shows a transition: the average path length (the number

of steps from one node to another) rises to a peak, and then

drops back down again.

A dynamical system example is the Vicsek model developed

for studying magnetic transitions in solid-state physics [9]. In

this model particles travel around a two dimensional grid, and

when they come within some specified distance of each other,

their directions of movement partially align. Phase transitions

occur in this system as particles flow around in groups, like

flocks of birds, but dynamically—continually forming and

dissolving.

Mutual information is a precisely defined quantity, origi-

nating from Shannon’s mathematical theory of communica-

tion [10]. It is a system property which measures the extent

to which the structure or behaviour of one part of a system

predicts the behaviour of another. In the Vicsek model above,

the direction and velocity of one particle provides some

information about the direction of all the other particles. The

mutual information peaks during the phase transition [9][11]

and, along with other characteristics like long-range order and

power-law behaviour, is thought to be a general property of

phase transitions.

Previous work [8] has already demonstrated phase transi-

tions in collective human decisions in Go. In this paper, we

found a peak in mutual information as a function of rank

amongst Go players, from 1 Dan Amateur through to the very

top players, 9 Dan Professionals [8]. We also present evidence

that there is global influence on local decisions, and that the

influence is greatest during the phase transition. The evidence

121

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the global factors arises from temporal analysis: the next

move is more predictable given the sequence which led up to

it, compared with just using the position at which it is made.

We argue below that this arises from the global information

inferred from the sequence.

Section II describes the conceptual background or expertise

(sections II-B and III-B discuss perceptual templates, which

form one of the earliest stages of processing of a Go board.

It turns out that for professional players, these templates

have a strong non-local character, supporting the findings

from mutual information.) Sections III and IV describe the

methods and results respectively. The discussion (section V)

and conclusions (section VI) round off the paper.

II. EXPERTISE AND PERCEPTION

The study of expertise in games owes much to Fernand

Gobet and his colleagues, summarised in his book Moves in

Mind [1]. However, the methods used in Go in this paper

rely on a new methodology introduced in [12]. The next two

sections discuss these in turn.

A. State of the Art in Game Expertise

Much of the work on human expertise has been based on

games, especially Chess, as in Gobet’s extensive work [1][13].

One of the key ideas, essentially from Nobel Laureate Herbert

Simon, is that human expertise involves building a huge library

of patterns [14][15]. The application of these ideas in artificial

intelligence for games is relatively new however [16].

These patterns build up through the formation of chunks,

psychological observables like the memory of Chess positions,

well predicted by models like CHREST [3]. The way the

cognitive structures in the brain might change as expertise

develops, and in particular the appearance of phase transitions,

is a relatively new idea introduced by Harré and Bosso-

maier [8][5].

Further recent advances have been limited, particularly in

Go, where a combination of the gamespace complexity [17]

and a lack of genuinely human-like heuristics like an evalua-

tion function make progress difficult. However with the devel-

opment of ever more effective random sampling techniques,

such as the UCT-Monte Carlo approach currently favoured

by AI system developers [18], some progress has been made

in achieving strong amateur play. However, these techniques

do not address the inherent complexity of the game nor the

techniques that humans have developed in order to address

this, almost completely because it is difficult to investigate.

Of relevance to game players is the current state of the

game, the likely future states of the game and in what order

those future moves will be played. The current state of the

game is very well approximated by the pieces currently on

the board (this excludes some technical rules about repeated

positions that are only rarely relevant), and these can be

divided up loosely into tactical, strategic and distracting pieces.

Tactical pieces are involved in local battles for territory, while

strategic pieces play a role in long-term plans spanning the

entire board. Distractors play only weak roles in either of the

preceding plan types. Of course, a single stone can participate

in both local and global strategies. In terms of future states

of the game, we considered only local patterns and what was

played in the local area – a purely tactical aspect of the game.

This leaves only the strategic relationships as a source of

information that might perturb the actual moves made. It is

this external influence on tactical plays that is implicit in the

global contextual analysis of this paper.

We argue that the sources of information players use in

order to make good decisions are of two types: local and

global. Every level of player in our study has learned a great

deal about the game of Go over the course of their lives; we

now want to make explicit and quantify this information. We

do this by looking at the probability distributions of moves

made in a variety of different positions. The relevance of the

division of the problem space into these two parts can be seen

in the work of Stern et al. [19]. They were able to produce

‘best-in-class’ move prediction for professional players in Go,

achieving a 34% success rate. This was achieved by training

their system on 181,000 expert game records and using a

Bayesian framework for matching moves to positions.

The level of success achieved in this work highlights one

of the principal difficulties of good performance in complex

tasks: exact pattern matching is not enough. AI systems need to

be able to model how non-local aspects – i.e., information that

cannot be derived by exactly matching board configurations –

influence decisions. Loosely interpreted, this is what is called

influence in Go and had not been reported in the research

literature before our recent work.

B. Kohonen Maps & Perceptual Templates

If local decisions involve global factors, the question arises

as to where in the cognitive hierarchy global information

appears. We use the recent work on perceptual templates

to show that it starts at the very lowest levels. Perceptual

templates are the building blocks of perception, experienced

preattentively and fundamental to rapid decision making – the

instant appraisal of situations by experts, the guiding of eye

movements and expert memory for real-world positions.

A novel way to determine such perceptual templates in-

volves the use of Kohonen maps trained on game data [12].

The templates so found can then be analysed for global prop-

erties. Teuvo Kohonen [20] introduced self-organising maps

(SOMs) as a model of human visual information processing.

Although they help explain some structural characteristics of

the visual cortex, they have found considerable practical use

in the signal-processing domain, especially image processing.

A SOM is a competitive learning process, comprising of

a selectable number of neurons. Each neuron has a random

weight vector, and a set of inputs of the same dimension. In the

case of an image, the inputs would be the colour components

of each pixel.

Training proceeds as follows. A pattern from the training

set is presented to each neuron in the map. There will be one

neuron which is closer (different metrics of proximity may

be used) to the pattern than any of the others. The weights of

122

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

123

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the position in which the move was made. If we now average

over all positions, we get the entropy of moves given positions.

This is the conditional entropy, defined in eqn. 4.

For each possible move on the Go board mi, three proba-

bility distributions were computed:

1) the probability of the move occurring, P (mi)
2) the conditional probability, P (mi|qi), of the move, mi

occurring from a given position, qi
3) the conditional probability, P (mi|si) of the move oc-

curring from a given position, reached by a particular

order of moves, si.

From these results, the entropy and mutual information

(eqn. 5) were calculated, but this paper addresses findings from

the entropies alone. A discussion of the primary results from

mutual information is given in [8].

The move entropy, H(M), is taken over all moves which

can arise at each level in the game tree (i.e., for the six moves

in the sequence):

H(M) = −
∑

i

P (mi) log2[P (mi)] (3)

For the first move in the region there are 49 possible

positions, decreasing to 44 after five moves, giving a maximal

entropy of log
2
44 = 5.5 bits, which would occur if all

moves were equally likely. But since the moves are chosen

strategically, they are far from random, so the measured

entropies are much lower than this.

The conditional entropy, C(M |Q), is the move entropy

calculated from the moves which can arise in a given context,

such as position qj , or sequence of moves sj leading to a

position:

C(M |Q) = −
∑

i

∑

j

P (mi|qj) log2[P (mi|qj)] (4)

From the conditional entropies, we can calculate the mutual

information, I(Q,M) using Shannon’s formula [10], eqn. 5:

I(Q,M) = H(M)− C(M |Q) (5)

The same expressions are used for an ordered sequence of

moves, replacing qj with sj . These entropic quantities are now

calculated across all ranks, from 2 Kyu Amateur (am2kyu),

through the amateur ranks to am6d, onto the highest rank of 9

Dan Professional (pr9d). The results are shown in Figs. 1–3.

B. Perceptual Templates

For our work, we use a separate 50x50 SOM (2500 neurons)

for each of the 361 intersections of the Go board. Each SOM

is trained on board states directly preceding a move at that

point, mined from the online gameplay database. Board states

are represented as linearized length-361 vectors with values

equal to −1, 0 or 1, representing black stone, empty or white

stone respectively. Games were normalized to always start with

a white stone, and no deduplication along axes of symmetry

Threshold # Templates Average Size

0.9 10,929 11.1

0.8 26,318 13.8

0.7 55,553 15.2

0.6 145,534 16.5

0.5 364,557 18.3

TABLE I. Number of perceptual templates and their average sizes
(maximum Euclidean distances) per threshold.

was carried out. The weight vectors of the neurons was also

constrained to this range, facilitating easy template extraction.

Further details may be found in [12], from which trained

SOMs were reused. The ones used for this paper are taken

from games 5 Dan Professional and above. 18,000 games were

used in training each map.

The spatial topology of a trained SOM is usually of signifi-

cance in typical uses, however we discard this information. We

consider the weight vectors of each neuron at every point as

potential perceptual templates. Neurons which have strongly

learned patterns of stones across the board will then be

extracted as templates. Thus the number of potential templates

equals the total number of neurons, 361× 2500 = 902, 500.

However, since there are on average only about 7 training

games per neuron, the learned weights are still quite noisy.

Therefore, actual templates are extracted from the weight

vectors by thresholding the weights to 1, 0, or −1 using

thresholds of k and −k, for values of k of 0.5, 0.6, 0.7, 0.8

and 0.9. After thresholding, empty and duplicate templates

are removed, leaving useful templates. Table I records the

resulting number of templates at each threshold. Examples of

these templates are shown in Fig. 2, which may be locally

clustered as in subfigures a. and b., but are often non-local as

in c. and d. Further procedural details can be found in [12].

IV. RESULTS

Fig. 3 summarises the key findings of the paper. It shows the

conditional entropy as a function of move in the sequence of

six, averaged across all ranks, both amateur and professional.

Note that the moves are logged as they occur in the game.

They are not necessarily in sequence. In other words, this is

not a game on a small board region but a window on a full

19×19 game. Since the standard of play is professional for

this analysis, extremely weak moves are unlikely to occur and

will not appear in the game records. Error bars are calculated

as in Harré et al. [5]. Up to move three, the entropy for both

the ordered and unordered cases are the same. At move three,

they fall dramatically, but the ordered average falls about a

third more.

Fig. 4 shows the entropy at each move from a given position.

For purely random moves, the entropy at each move in the

sequence would be between 5 and 6 bits (Section III). The

entropies observed are of course much lower – usually less

than 2 bits – reflecting the structure inherent in the game.

124

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

125

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

126

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000
Stone Counts, thres = 0.9

Stones

T
e
m

p
la

te
 C

o
u
n
t

Figure 6. Number of templates containing a given number of stones,
threshold = 0.9.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Stone Counts, thres = 0.8

Stones

T
e
m

p
la

te
 C

o
u
n
t

Figure 7. Number of templates containing a given number of stones,
threshold = 0.8.

the templates have a distance of 12 or greater, implying that

they include stones in different corners of the board. There

could be a small number of templates occupying one corner

and the centre, but these would need to have distances around

12, where we find a minima instead.

Also salient are the twin peaks around 3 and 18, possibly

representing corner clusters and cross-board patterns respec-

tively. As we lower the threshold, the proportion of templates

spanning the board increases until it dominates at 0.5, while

the peak at 3 stones vanishes.

V. DISCUSSION

There are three very interesting features of these results,

which we consider in turn: a) the difference between ordered

and unordered play, b) the way the conditional entropy varies

with rank, and c) how perceptual templates span the entire

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Stone Counts, thres = 0.7

Stones

T
e

m
p

la
te

 C
o

u
n

t

Figure 8. Number of templates containing a given number of stones,
threshold = 0.7.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 10

4 Stone Counts, thres = 0.6

Stones

T
e

m
p

la
te

 C
o

u
n

t

Figure 9. Number of templates containing a given number of stones,
threshold = 0.6.

board.

That the ordered and unordered play differ, implies that

the position at each move is not the sole determinant of the

opponent response. The much lower conditional entropy after

the first three moves for the ordered case strongly suggests that

the sequence of moves has revealed something of the global

context which has in turn fed back into move selection. To see

this, imagine that black is strong in one area of the board and

white in another. Since relationships between localised groups

of stones are of great strategic importance in Go, the locations

of these areas will strongly influence the order of moves made

in the local area we examine. The first three moves implicitly

contain some of this information, which subsequently reduces

the range of options in the next three moves.

The gradual decline in entropy with rank for amateur and

professional reflects a gradual reduction in the space or range

127

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

4 Stone Counts, thres = 0.5

Stones

T
e

m
p

la
te

 C
o

u
n

t

Figure 10. Number of templates containing a given number of stones,
threshold = 0.5.

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400
Euclidean Distances, thres = 0.9

Closest Integer

T
e
m

p
la

te
 C

o
u
n
t

Figure 11. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.9.

of options, which we could conceive of as the elimination of

poor moves in established situations, similar to mastering the

openings in Chess.

Our data and results are explicitly based on an analysis of

the local information, but by implication they also say a great

deal about the global context that influences these localised

decisions. The first three moves in our study have a reason-

ably similar conditional entropy of about 1.4 – 1.6 bits of

information. This is the amount of information that is common

between each successive move within the local region. Such

measures of information are the best estimate of how much

one stochastic variable can tell us about another [10].

The only other source of information available to the players

are the pieces on the board that were not included within

our local region. We exclude the possibility of being able

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Euclidean Distances, thres = 0.8

Closest Integer

T
e
m

p
la

te
 C

o
u
n
t

Figure 12. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.8.

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Euclidean Distances, thres = 0.7

Closest Integer

T
e

m
p

la
te

 C
o

u
n

t

Figure 13. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.7.

to read the other opponent. While it is a debated issue as

to the importance of opponent-reading skills in a complete

information game such as Go, we believe that it is relatively

insignificant. The strategical influence of the other stones on

the board that were not within the local area of study, is a

much more significant factor. The changing influence that non-

local information has on decisions during a game, is evident in

the significant drop-off in the conditional entropy after move

three in Fig. 3, a drop in shared information of nearly an

order of magnitude for the ordered play and about half that

for unordered play. This is consistent with the observation

that, at the time of writing, the best computer Go programs

are close to professional-level on small boards like 7×7,

but rapidly deteriorate on larger boards, as global influences

become important.

This change in conditional entropy in the corner regions of

128

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Euclidean Distances, thres = 0.6

Closest Integer

T
e

m
p

la
te

 C
o

u
n

t

Figure 14. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.6.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
x 10

4 Euclidean Distances, thres = 0.5

Closest Integer

T
e
m

p
la

te
 C

o
u
n
t

Figure 15. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.5.

the board as the game progresses might be due to the shrinking

size of the move space as the board fills up. While this might

have some minor influence on our results, we should also

expect such changes to be almost linear as the number of

available positions only drops by a total of 1/43 per move. It

is also possible, but exceptionally unlikely, that after the third

move, players choose much more randomly – i.e., without

concern for pieces on the board, local or not – than they

did for the first three moves. Considering the vast training

literature available to players that readily teaches them the

many different variations of the first six moves within a corner,

and how to contextualise these decisions by considering what

stones occupy nearby areas, we consider this to be an unlikely

proposition.

Instead we argue that it is just this external influence, the

influence of the stones arrayed on the rest of the board that is

having such a striking influence on the conditional entropy.

This is perhaps not so surprising when considered in the

light of the state of the game itself, after three moves have

been played in the corner. These first moves can be thought

of as establishing the board layout in terms of an ‘opening

book’; highly stylised placement of local stones, where the

local pattern can be thought of as effectively uncoupled from

the rest of the board, or at least equally coupled for these

first moves. This coupling then changes significantly from the

fourth move onwards, where greater consideration needs to

be afforded to the other pieces on the board. This change in

the focus of gameplay significantly reduces the information

coupling between local moves and local stones on the board.

The use of global information is supported by the analysis

of the perceptual templates. A large fraction of templates

cover more than one corner of the board, implying that global

analysis starts at the very earliest perceptual levels. As the

threshold is reduced to 0.5, the number of local templates

actually gets eclipsed by non-local ones. An additional finding

from our results is that the majority of perceptual templates

contain less than ten stones, regardless of noise threshold and

number of templates. Even at the 0.5 threshold, where most

templates are non-local, the average number of stones remains

small. This median figure of around 5 – 7 is on the order of

human working memory capacity and similar to the figures in

Gobet’s CHREST models [1]. This is therefore an important

issue, subject to future research.

The complete disappearance of entropy at the high amateur

ranks is very interesting. It suggests that at this level, play

has become somewhat stereotyped, and a major change in

thinking is needed to advance—which indeed seems to happen

on turning professional. Thus, this loss of entropy is consistent

with the long-range order found in phase transitions by Harré

et al. [8]. They observed a peak in mutual information at the

transition to professional play, indicating some sort of major

cognitive reorganisation.

At present, we do not know how to quantify such a

reorganisation, and this remains an exciting open question.

Ongoing work is attempting to apply the CHREST models to

Go [3], and to determine how the phase transitions might be

predicted.

A. Implications for Computer Go

The objective of this study was to determine some character-

istics of human Go expertise. These may subsequently be fed

into the computer Go domain, but that was not our motivation

here. Our analysis is once-off, so the time-complexity of our

computations is irrelevant. The methods as described in this

paper have never been used before, and no prior work has

attempted to identify the influence of global factors in Go.

VI. CONCLUSIONS

The analysis of large volumes of data has generated pow-

erful new insights into human cognition in the Game of Go,

with potential applicability to other domains. We have shown

129

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that low-level perceptual templates of professional players are

non-local, i.e., include features from the whole board. The

paper links this to earlier work on mutual information in

local positions, which we infer to be influenced by global

factors. The sequence of moves leading to a position was

shown to provide more information about the next move than

the position alone, which could be accounted for by global

contextual information provided by the former.

The big challenge for future work is to determine if these

properties hold in other domains. Poker is the ideal next game

to study: it is the second most difficult established game

for computers to play well, and has the additional features

of incomplete information, stochastic elements and theory of

mind.

In 2012, Zen, one of the top computer Go programs, won

games against 6 Dan Amateur players, and came much closer

to beating professional-level players than any program has

before. But computer Go relies heavily on Monte Carlo Tree

Search, which is nothing like human tactics or strategy. It

remains desirable to try to understand and mimic the way

humans learn and play. A big open question is whether the

future of game playing software, or software in general, will

adopt these strategies. The human brain trades off search speed

and accuracy for robustness and possibly scalability. Human

decisions may sometimes be inferior, but they rarely exhibit

the catastrophic failures resulting from software bugs. The

extent to which the strategies of human expertise and computer

algorithms hybdridise will be one of the really exciting topics

of the next decade.

ACKNOWLEDGEMENT

This work was supported by the Australian Research Coun-

cil under Discovery Project DP0881829 and the US Airforce

under grant 104116.

REFERENCES

[1] F. Gobet, Moves in Mind; The Psychology of Board

Games. Psychology Press, Sep. 2004. [Online]. Available:
http://www.worldcat.org/isbn/1841693367

[2] A. D. Groot and F. Gobet, Perception and memory in chess: Heuristics

of the professional eye. Assen: Van Gorcum, 1996.

[3] F. Gobet, P. Lane, S. Croker, P. Cheng, G. Jones, I. Oliver, and
J. Pine, “Chunking mechanisms in human learning,” Trends in Cognitive

Sciences, vol. 5, pp. 236–243, 2001.

[4] K. Ericsson and N. Charness, “Expert performance: its structure and
acquisition,” American Psychologist, vol. 49, pp. 725–7247, 1994.

[5] M. Harré, T. Bossomaier, and A. Snyder, “The development of human
expertise in a complex environment,” Minds Mach., vol. 21, pp. 449–464,
August 2011. [Online]. Available: http://dx.doi.org/10.1007/s11023-011-
9247-x

[6] X. Cai and D. Wunsch, “Computer Go: A grand challenge to AI,” in
Challenges for Computational Iintelligence. Springer Berlin, 2007, pp.
443–465.

[7] M. Campbell, A. Hoane, and F. Hsu, “Deep blue,” Artificial Intelligence,
vol. 134, no. 1-2, pp. 57–83, 2002.

[8] Harré, M. S., Bossomaier, T., Gillett, A., and Snyder, A., “The
aggregate complexity of decisions in the game of go,” Eur. Phys.

J. B, vol. 80, no. 4, pp. 555–563, 2011. [Online]. Available:
http://dx.doi.org/10.1140/epjb/e2011-10905-8

[9] R. Wicks, S. Chapman, and R. Dendy, “Mutual information as a tool for
identifying phase transitions in dynamical complex systems with limited
data,” Phys. Rev. E, vol. 75, 2007.

[10] C. Shannon and W. Weaver, The Mathematical Theory of Communica-

tion. Univ. Ill. Press, Urbana, 1949.
[11] S.-J. Gu, C.-P. Sun, and H.-Q. Lin, “Universal role of correlation entropy

in critical phenomena,” Journal of physics A, 5 2006.
[12] M. Harré and A. Snyder, “Intuitive expertise and perceptual templates,”

Minds and Machines, pp. 1–16, 2011, 10.1007/s11023-011-9264-9.
[Online]. Available: http://dx.doi.org/10.1007/s11023-011-9264-9

[13] F. Gobet and P. Chassy, “Expertise and intuition: a tale of three theories,”
Minds and Machines, vol. 19, pp. 151–180, 2009.

[14] W. Chase and H. Simon, “The mind’s eye in chess,” in Visual Informa-

tion Processing, C. W.G., Ed. Academic Press, NY, 1973, pp. 215–281.
[15] F. Gobet and H. Simon, “Five seconds or sixty? presentation time in

expert memory,” Cognitive Science, vol. 24, pp. 651–682, 2000.
[16] J. Rubin and I. Watson, “A memory-based approach to two-player texas

hold’em,” in AI 2009: Advances in Artificial Intelligence, Proceedings,
ser. Lecture Notes in Artificial Intelligence, A. Nicholson and X. Li,
Eds. Springer, 2009, vol. 5866, pp. 465–474, 22nd Australian Joint
Conference on Artificial Intelligence DEC 01-04, 2009 Melbourne,
Australia.

[17] J. Tromp and G. Farnebäck, “Combinatorics of Go,” Computers and

Games, pp. 84–99, 2007.
[18] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for Monte-

Carlo Go,” in Twentieth Annual Conference on Neural Information

Processing Systems (NIPS 2006). Citeseer, 2006.
[19] D. Stern, R. Herbrich, and T. Graepel, “Bayesian pattern ranking for

move prediction in the game of go,” in Proceedings of the 23rd

international conference on Machine learning. ACM, 2006, pp. 873–
880.

[20] T. Kohonen, “Self-organized formation of topologically
correct feature maps,” Biological Cybernetics, vol. 43,
pp. 59–69, 1982, 10.1007/BF00337288. [Online]. Available:
http://dx.doi.org/10.1007/BF00337288

[21] D. Kahneman, Thinking, Fast and Slow. Farrar, Straus and Giroux,
2011.

130

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Adaptive Computational Intelligence Algorithm
for Simulation-driven Optimization Problems

Yoel Tenne
Formerly with the Department
of Mechanical Engineering and

Science,
Faculty of Engineering,

Kyoto University,
Kyoto, Japan

email: ytennex-e04@yahoo.com

Kazuhiro Izui
Department of Mechanical
Engineering and Science,
Faculty of Engineering,

Kyoto University,
Kyoto, Japan

email: izui@prec.kyoto-u.ac.jp

Shinji Nishiwaki
Department of Mechanical
Engineering and Science,
Faculty of Engineering,

Kyoto University,
Kyoto, Japan

email: shinji@prec.kyoto-u.ac.jp

Abstract—Modern engineering design optimization often eval-
uates candidate designs with computer simulations. In this setup,
there will often exist candidate designs which cause the simulation
to fail and would have no objective value assigned to them. This,
in turn, can degrade the effectiveness of the design optimization
process and lead to a poor final result. To address this issue, this
paper proposes a new computational intelligence optimization
algorithm which incorporates a classifier into the optimization
process. The latter predicts which candidate designs are expected
to cause a simulation failure, and its prediction is used to bias
the search towards candidate designs for which the simulation is
expected to succeed. However, the effectiveness of this approach
depends on the classifier being used, but it is typically not
known a-priori which classifier best suits the problem being
solved. To address this issue, the proposed algorithm employs
a statistically rigorous procedure to autonomously select the
classifier type, and to adjust the classifier selection procedure with
the goal of improving its accuracy. A performance analysis with a
simulation-driven design problem demonstrates the effectiveness
of the proposed algorithm.

Index Terms—expensive optimization problems; computational
intelligence; modelling; classification; model selection.

I. I NTRODUCTION

Nowadays engineers often usecomputer simulationsto eval-
uate candidate designs, with the goal of reducing the duration
and cost of the product design process. Such simulations,
which must be properly validated with laboratory experiments,
transform the design process into an optimization problem
having three distinct features [2]:

• The simulation acts as the objective function, namely, it
assigns candidate designs their corresponding objective
values. However, the simulation is often a legacy code
or a commercial software whose inner workings are
inaccessible to the user, and so an analytic expression for
this function is unavailable. Such ablack-box function
precludes the use of optimizers which require an analytic
function.

• Each simulation run iscomputationally expensive, that
is, it requires considerable computer resources, and this
severely restricts the number of candidate designs which
can be evaluated.

• Both the real-world physics being modelled, and the
numerical simulation process, may result in an objec-
tive function having a complicated nonconvex landscape,
which makes it difficult to locate an optimum.

Accordingly, such optimization scenarios are commonly
termed in literature asexpensive black-box optimization prob-
lems [2].

A framework which has proven effective in such chal-
lenging problems is that ofmetamodel-assisted computational
intelligence(CI) algorithms. It combines ametamodelwhich
approximates the expensive black-box function and provides
predicted objective values at a much lower computational
cost, with aCI optimizer which seeks an optimum of the
metamodel. Due to its explorative nature, a CI optimizer often
performs well in challenging nonconvex landscapes.

While the above optimization framework has proven ef-
fective, simulation-driven optimization problems often present
another challenge, namely, some candidate designs will cause
the simulation to fail, and would therefore not provide the ex-
pected objective value. We refer to such designs assimulator-
infeasible(SI), while those for which the simulation completes
successfully are termedsimulator-feasible(SF). SI designs
have two main implications on the optimization search:

• Since they do not have a corresponding objective value,
the objective function becomes discontinuous, and this
exacerbates the difficulty of the optimization search.

and

• Such designs can consume a large portion of the allotted
computational resources without providing any objective
values, and can therefore degrade the search effectiveness
and lead to a poor final result.

A fundamental assumption in this study is that the simulation
failures are caused by an unknown limitation of the simulation
code, and that they are not random. This implies that repeated
evaluations of a SF candidate solution will consistently suc-
ceed, while repeated evaluations of a SI candidate solution
will consistently fail. Limitations of the simulation codecan
be attributed to a variety of reasons, for example, the inability

131

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to handle complex geometries, or an attempt to simulate
physical conditions which are not supported by the numerical
approximations employed in the simulation.

Based on the description so far, we summarize the under-
lying settings and core assumptions on which this paper is
based:

• The optimization problem involves a black-box objective
function which is computationally expensive to evaluate.

• The black-box objective function may have a complicated
nonconvex landscape which exacerbates the optimization
difficulty.

• Some candidate solutions will cause the simulation to fail,
namely it will return no objective value. Such failures are
nonrandom, but their cause is unknown.

Numerous studies have referred to such simulation failures
and the difficulties they introduce into the optimization search,
for example, Büche et al. [3], Okabe [4], and Poloni et al. [5].
The multitude of such references indicates that SI candidate
designs are common in real-world applications, and therefore
that it is important to effectively handle them. Two main strate-
gies for handling SI vectors include discarding such vectors
altogether, or assigning them a penalized objective value and
then incorporating them into the metamodel. However, both
of these strategies have significant demerits, for example,they
discard information which can be beneficial to the search,
or they result in a metamodel whose landscape is severely
deformed.

In these settings, this study proposes a new approach
in which a metamodel-assisted CI algorithm incorporates a
classifierinto the optimization search. The role of the classifier
is to predict if a candidate design is SI or not, and its prediction
is then used to bias the search towards candidate designs
predicted to be SF. However, the effectiveness of this approach
depends on the type of classifier being used. Typically, it is
not known prior to the optimization search which classifier
best suits the problem being solved, while an unsuitable
classifier can degrade the search effectiveness. To circumvent
this, this study employs a procedure which autonomously
selects the most suitable classifier type during the search,
based on the statistical procedure ofcross-validation(CV). To
further enhance this procedure, the proposed algorithm also
calibrates during the search thesplit ratio parameter related to
this procedure.

To the best of our knowledge, such a computational in-
telligence algorithm which incorporates a metamodel and
a classifier, and which autonomously selects the classifier
type and calibrates the CV procedure, is new. To evaluate
its effectiveness, the proposed algorithm was tested using
a representative simulation-driven problem of airfoil shape
optimization. Analysis of the test results demonstrates the
effectiveness of the proposed algorithm, and the contribution
of the proposed classifier selection procedure.

The remainder of this paper is as follows: Section II
provides the pertinent background information, Section III
describes in detail the proposed algorithm, and Section IV

provides an extensive performance analysis. Lastly, Section V
concludes this paper.

II. BACKGROUND

This section provides background information on expensive
optimization problems, SI vectors in optimization, and statis-
tical accuracy estimation.

A. Expensive optimization problems

As mentioned in Section I, expensive optimization problems
are common in engineering, and Figure 1 shows the layout of
such problems in which the simulation is viewed as a black-
box function, namely, it assigns objective values to candidate
designs, while its analytic expression is unknown. In this setup,
the candidate designs are represented as vectors of design
variables, and are provided as inputs to the simulation. Overall,
such optimization problems arise in domains ranging from the
design of electronic devices to the design of aircraft, and a
representative problem is described in Section IV-A.

Also as mentioned, the resultant objective function often has
a complicated, nonconvex landscape, which can lead gradient-
based optimizers to converge to a poor final result. This has
motivated the use of CI optimizers in such problems, as they
tend to be more explorative, and hence often perform better in
complicated nonconvex objective landscapes. Such optimizers
typically employ a population of candidate solutions and
manipulate them using a variety of operators. One such widely
used CI optimizer, which is also employed in this study, is the
evolutionary algorithm(EA), whose mechanics are inspired
by the paradigms of adaptation and survival of the fittest. A
baseline EA applies the following operators [6]:

• Selection: The candidate solutions (vectors) with the best
objective value are selected asparents.

• Recombination: Two parents are selected, and their vec-
tors are combined to yield an offspring. This is repeated
several times to generate a population of offspring.

• Mutation: Offspring are selected at random, and some of
their vector components are randomly changed.

The offspring population is then evaluated, and the fittest
candidate solutions, namely, those with the best objective
values, are taken to be the population of the next ‘generation’.
The process then repeats until a termination criterion is met,
for example, if the maximum number of generations has been
reached. Through these operators, the EA drives the population
to adapt to the function landscape, and to converge to an
optimum. While the above description is representative of
many EAs in literature, other variants have been proposed
which may employ different operators. Algorithm 1 gives a
pseudocode of a baseline EA.

Since CI optimizers directly evaluate candidate solutions
and do not use gradient information, they often require many
thousands of function evaluations to yield a satisfactory solu-
tion. This is a major obstacle in applying them to expensive
optimization problems, where the objective function can be
evaluated only a small number of times. As mentioned in
Section I, an established framework to circumvent this is to

132

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

optimizer simulation

candidate solution

objective value

‘black-box’ function

Fig. 1. The layout of an expensive black-box optimization problem. The
optimizer generates candidate solutions, and these are evaluated by the
simulation to obtain their corresponding objective values.The optimizer views
the simulation as a black-box function, that is, having no analytic expression.

Algorithm 1: A baseline evolutionary algorithm (EA)

initialize a population of candidate solutions;
evaluate each candidate solution in the population;
/* main loop */

repeat
select a group of candidate solutions and designate
them asparents;
recombine the parents to createoffspring;
mutate some of the offspring;
evaluate the offspring;
select the candidate solutions which will comprise
the population of the next generation;

until convergence, or maximum number of generations
reached;

employ a metamodel which approximates the true expensive
function and provides the optimizer with predicted objective
values at a much lower computational cost. Metamodels are
typically interpolants trained with previously evaluatedvec-
tors, and variants include artificial neural networks, Kriging,
polynomials, and radial basis functions (RBF) [7]. Numerous
metamodel-assisted CI algorithms have proposed, and exam-
ples include the Kriging assisted EA by Ratle [8] which is
also described in Section IV-C, and Booker et al. [9] which
coupled a pattern search optimizer with quadratic metamodels.
Later examples include Emmerich et al. [10] which used an
evolutionary strategies (ES) optimizer coupled with a Kriging
metamodel, and Liang et al. [11] which coupled an EA with
a least-square fit polynomial metamodel. Poloni et al. [5] and
Muyl et al. [12] studied algorithms coupled with an artificial
neural networks (ANN). Later, Büche et al. [3] studied an ES
optimizer assisted with a Kriging metamodel, and employed
an elaborate sampling scheme which sought solutions based
on different trade-offs of exploration-exploitation, as described
in Section IV-C. More recent examples include Tenne and
Armfield [13], Neri et al. [14] and Zhou et al. [15]. Given the
established effectiveness of the metamodelling framework, it
is also employed in this study.

While metamodels address the issue of computationally
expensive evaluations, they introduce the challenge ofpredic-
tion inaccuracy. Specifically, due to the restricted number of
expensive function evaluations, only a small number of vectors
will be available to train the metamodel, which degrades its
accuracy. In severe cases, the optimizer may even converge

to a false optimum, namely, an optimum of the metamodel
which is a not an optimum of the true expensive function
[16], and it is therefore necessary to safeguard the metamodel
accuracy to ensure the progress of the optimization search.
The proposed algorithm accomplishes this by leveraging on
the trust-region(TR) approach which originated in the field
of nonlinear programming [17], where initially atrial step is
performed to seek an optimum of the metamodel in the TR,
namely, the region where the metamodel is assumed to be
accurate. Next, the TR and metamodel are updated based on
the optimum found, and the process repeats until a termination
condition is met. A merit of the TR approach is that it ensures
asymptotic convergence to an optimum of the true expensive
function [17]. Section III gives a detailed description of the
TR approach implemented in this study.

B. Simulator-infeasible vectors

As mentioned in Section I, this study focuses on expensive
optimization problems with simulator-infeasible (SI) vectors,
namely, which cause the simulation to fail. A multitude of
studies have referred to such vectors and to the difficulties
they introduce into the optimization search. For example,
Poloni et al. [5] described an optimization problem which
involved a computational fluid dynamics analysis, and noted
that some candidate designs caused “failure of the simulation
code”. In another study, Booker et al. [9] described a rotor
blade structural optimization problem in which “attempts to
evaluate the objective function failed”. Similarly, Bücheet al.
[3] described an aerodynamics shape optimization problem
in which “evaluation of all points fails”. Additional pertinent
studies include Liang et al. [11], Conn et al. [18] and Okabe
[4].

Several techniques have been explored in an effort to handle
SI vectors. For example, Rasheed et al. [19] described an
aircraft design optimization problem in which an EA directly
called the expensive simulation, and no metamodels were
employed. A classifier was used to screen candidate design
prior to the simulation call, and those predicted to be SI
were assigned a ‘death penalty’, namely, a fictitious and
highly penalized objective value, to quickly eliminate them
from the population, but no metamodels were employed. In
another related study, Emmerich et al. [10] also used the
penalty approach, but incorporated the penalized vectors into
the metamodel in an attempt to bias the search towards SF
vectors. In contrast, Büche et al. [3] discarded the SI vectors
altogether, so that the metamodel was trained using only the
SF vectors.

These strategies, and similar ones, have several demerits in
the context of expensive optimization problems: a) assigning
SI vectors a penalized objective value and then incorporating
them into the metamodel can severely deform the metamodel
landscape and degrade its accuracy, while b) discarding SI
vectors results in a loss of information which might have
been useful in enhancing the optimization search. As an
example, Figure 2 shows the effect of penalizing SI vectors
and incorporating them into a Kriging metamodel, which is

133

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

described in Section III. Figure 2(a) shows the metamodel
resulting from a sample of 30 SF vectors, while Figure 2(b)
shows the resultant metamodel when 20 SI vectors were added
to the baseline sample and were assigned the worst objective
value from the baseline sample. The metamodel landscape was
severely deformed and consequently locating an optimum of
the true objective function became more difficult.

Such issues have motivated exploring alternative approaches
for handling SI vectors. For example, Tenne and Armfield
[20] proposed an approach which employed two metamodels,
where one was used for approximating the objective function
and another for generating a penalty which was based on the
distance of a new candidate solution to previously encountered
SI ones. Other studies have examined using classifiers for
constrained non-linear programming, though unrelated to SI
vectors [21]. Further exploring the use of classifiers, Tenne
et al. [22] obtained preliminary results with a classifier-assisted
algorithm for handling SI vectors. However, the algorithm used
a single type of classifier, and it did not attempt to select the
classifier during the search. Recently, Tenne et al. [1] presented
a preliminary investigation on a framework which adapts
the classifier type based on the problem being solved. The
present study leverages on the latter framework and extends
it by proposing to also adapt the CV split ratio used in the
classifier selection step. The present study also provides amore
extensive performance analysis.

C. Accuracy estimation

As mentioned in Section I, the proposed algorithm employs
a classifier to predict which candidate designs will cause the
simulation to fail, and to improve the effectiveness of this
approach, it selects the classifier deemed most accurate outof
a family of candidates.

Accuracy estimation is rigorously addressed in the general
statistical framework ofmodel selection, in which a model
refers to any functional relation which is used to explain an
inputs–outputs relation [23]. In the model selection procedure,
several candidate models are prescribed and their accuracyis
estimated, after which the model deemed as the most accurate
is selected as the optimal one. An established procedure for
estimating the model accuracy is that ofcross-validation(CV),
in which the sample of vectors is split into atraining sample
and atesting sample. A candidate model is trained using the
former, and its predictions for the testing vectors are compared
to their already known exact function values.

The CV procedure relies on thesplit ratioparameter, which
determines which portion of data set will be designated as the
training sample and which as the testing sample. This suggests
that the accuracy of the procedure will be affected by the
split ratio used. To verify this, the CV procedure was used to
estimate the accuracy of two candidate classifiers, namely,k
nearest neighbours(kNN) andsupport vector machine(SVM),
whose details are given in Appendix A, and the tests were
performed using the two well-established data setsiris and
yeast provided by Frank and Asuncion [24]. The accuracy
measure used was the total classification error, namely, the

−10
−5 0

5
10−10

0

10
0

0.5

1

·106

(a)

−10
−5 0

5
10−10

0

10

0

5

·106

(b)

Fig. 2. An example of the effect of SI vectors on the metamodel. The
objective function was Rosenbrock, whose optimum is at (1, 1). (a) shows a
Kriging metamodel trained using a sample of 30 SF vectors, and (b) shows
the resultant metamodel when 20 SI vectors were added to the sample and
were assigned the worst objective value of the sample in (a). The landscape
of the resultant metamodel was severely deformed, and the optimum of the
true objective function was masked.

number of items in the testing sample to which the classifier
assigned an incorrect class. To check the effect of different
split ratios, the full data set was initially split in a 80–
20 training-testing ratio, and the accuracy of each classifier
was estimated. The accuracy estimates from this step are
considered as the reference results, since they employed the
full data set. Next, the training sample was used as the baseline
sample, and the accuracy of each classifier was estimated by
using each of the following training-testing split ratios in turn:
0.8–0.2, 0.5–0.5, and 0.2–0.8 . Table I shows the test results
and the rankings of the two classifiers. It follows that the
rankings corresponding to the 0.5–0.5 and 0.2–0.8 split ratios
matched those obtained with the full sample, while those of
the 0.8–0.2 split ratio differed. This in turn verifies the above
assumption, namely, that the split ratio affected the accuracy
of the CV procedure.

Since the optimal split ratio is unknown prior to the ac-
curacy estimation step, it is possible that an unsuitable value
would be used, which in turn would degrade the accuracy of

134

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the CV procedure. To circumvent this, the proposed algorithm
employs a procedure to autonomously select a suitable split
ratio, as described in Section III.

III. PROPOSED ALGORITHM

This section describes the proposed algorithm in detail,
and explains how it addresses the optimization challenges
discussed in Sections I and II. The algorithm leverages on
three paradigms:

• Classification of candidate vectors: Each candidate vector
is treated as having two attributes, namely, itsobjective
value, which is predicted by a metamodel, and itsclass,
namely, if it is SI or SF, which is predicted by a classifier.

• Selection of the classifier type: Typically, it is not known
prior to the optimization search which classifier type is
most suitable to the problem being solved. To circumvent
this, during the optimization search the proposed algo-
rithm uses the CV procedure to autonomously select the
most suitable type of classifier. To further improve the
accuracy of this approach, the proposed algorithm also
continuously selects during the search the most suitable
split ratio value.

• Trust-region (TR) optimization: Given the inherent meta-
model inaccuracy, a TR framework is employed to ensure
convergence to an optimum of the true expensive func-
tion.

The proposed algorithm operates in five main steps: ini-
tialization, training a metamodel, selecting the classifier type
and training a corresponding classifier, performing a TR trial
step to seek an optimum, and performing the TR updates. The
details of these steps are as follows:

Step 1) Initialization: The proposed algorithm begins by gen-
erating an initial sample of vectors using a Latin
hypercube (LH) design of experiments [25]. This is a
statistically oriented sampling method which ensures
that the sample is space-filling, namely, that the vec-
tors are distributed throughout the search space, which
improves the accuracy of the resultant metamodel.
A sample ofs vectors is generated as follows. The
range of each variable is split intos equally sized
intervals, and one point is sampled at random in
each interval. Next, a sample point is selected at
random and without replacement for each variable,
and these samples are combined to produce a vector.
This sequence is repeated fors times to create the

TABLE I
CLASSIFIER ACCURACY RANKINGS BY DIFFERENTCV SPLIT RATIOS

Split ratio Error Rank Error Rank

Full 2 1 3 2

0.8 1 2 0 1
0.5 1 1 2 2
0.2 5 1 7 2

Highlighted lines have the same ranks as those ob-
tained with the full sample.

complete sample, which is then evaluated with the
expensive simulation and is stored in memory. After
this step, the main optimization loop begins.

Step 2) Metamodel training: In this step, the proposed algo-
rithm trains a metamodel by using the SF vectors
stored in memory and ignores the SI vectors. In this
study a Kriging metamodel was employed, based on
its prevalence in literature [3, 26, 27]. This metamodel
is statistically-oriented and combines two compo-
nents: a ‘drift’ function, which is a global coarse
approximation of the true expensive function, and a
local correction based on the correlation between the
interpolation vectors. Given a set of evaluated vectors,
xxxi ∈R

d , i = 1. . .n , the Kriging metamodel is trained
such that it exactly interpolates the observed values,
that is, m(xxxi) = f (xxxi) , wherem(xxx) and f (xxx) are the
metamodel and true objective function, respectively.
Using a constant drift function [28] gives the Kriging
metamodel

m(xxx) = β +κ(xxx) , (1)

with the drift functionβ and local correctionκ(xxx) .
The latter is defined by a stationary Gaussian process
with mean zero and covariance

Cov[κ(xxx)κ(yyy)] = σ2c(θ ,xxx,yyy) , (2)

wherec(θ ,xxx,yyy) is a user-prescribed correlation func-
tion. A common choice for the latter is the Gaussian
correlation function [28], defined as

c(θ ,xxx,yyy) = Πd
i=1exp

(

−θ (xi − yi)
2) , (3)

and combining it with the constant drift function
transforms the metamodel from (1) into the following
form

m(xxx) = β̂ + rrr(xxx)TRRR−1(fff −111β̂) . (4)

Here, β̂ is the estimated drift coefficient,RRR is the
symmetric matrix of correlations between all inter-
polation vectors,fff is the vector of objective values,
and 111 is a vector with all elements equal to 1.rrrT is
the correlation vector between a new vectorxxx and the
sample vectors, namely,

rrrT = [c(θ ,xxx , xxx1), . . . ,c(θ ,xxx , xxxn)] . (5)

The estimated drift coefficient̂β and varianceσ̂2 are
obtained from

β̂ =
(

111TRRR−1111
)−1

111TRRR−1 fff , (6a)

σ̂2 =
1
n

[

(fff −111β̂)TRRR−1(fff −111β̂)
]

. (6b)

Fully defining the metamodel requires the correlation
parameterθ , whose optimal value,θ ⋆ , is typically
taken as the maximizer of the metamodel likelihood.
In practise, the latter is obtained by minimizing the
negative log-likelihood, namely

θ ⋆ : min−
(

n log(σ̂2)+ log(|RRR|)
)

. (7)

135

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While a different correlation parameter can be used
for each variable, this study follows the practise
prevalent in literature in which the metamodel em-
ploys a single correlation parameter. This results in a
univariate likelihood function, which is relatively easy
to optimize.

Step 3) Classifier selection and training: In the next step, the
proposed algorithm trains a classifier to predict if a
vector is SF or SI. To further improve this technique,
the proposed algorithm employs the CV to select
during the search a classifier deemed as most suitable
out of a family of candidates. To further enhance the
accuracy of this procedure, the proposed algorithm
employs an additional step to identify a suitable split
ratio for the CV procedure, out of a prescribed set of
candidate ratios. The details of the procedure are as
follows:

3.1) The set of vectors stored in memory is split into
sample A and sample B in a 80–20 split ratio.

3.2) Using only sample A, the proposed algorithm
loops over the prescribed set of candidate split
ratios,si, i = 1. . .ns , wherens is the number of
candidate of ratios, and for each it performs the
following steps:

3.2.1) It generates a training sample and a test-
ing sample based on sample A.

3.2.2) For each candidate type of classifier, the
proposed algorithm trains a correspond-
ing classifier using the training sample,
and then estimates the classifier’s accu-
racy by using the testing sample, where
the accuracy measure is thetotal classifi-
cation error, defined as

e =
l

∑
i=1

(

ĉ(xxxi) 6= F(xxxi)
)

, (8)

wherexxxi , i = 1. . . l , are the vectors in the
testing sample, ˆc(xxx) is the prediction of
the classifier which was trained using the
training sample, andF(xxxi) is the true and
known class of the testing vectors. For the
latter,F(xxxi) = 1 was used for a SF vector,
andF(xxxi) =−1 for a SI vector.

3.2.3) The candidate classifiers are ranked based
on their obtained total classification er-
rors, which yields a vector of ranksrrri ,
where i is the index of the current split
ratio being considered.

3.3) After completing the above procedure for all
candidate split ratios, the proposed algorithm
loops over the set of candidate classifier types,
and using the samples A and B obtained in step
3.1, it trains a classifier using sample A, and es-
timates the classifier’s accuracy using sample B.
The classifier types are ranked based on their

estimated accuracies, which yields a vector of
ranksrrr0 .

3.4) The proposed algorithm selects as the optimal
split ratio (s∗) the one whose corresponding
ranks vectorrrri is most similar to the reference
ranks vectorrrr0 . This similarity is measured by
the l1 norm, namely

s∗ = si∗ , i∗ : min
i=1...ns

‖rrri − rrr0‖1 , (9)

wherei∗ is the index of the optimal split ratio.
The basis for this procedure is that the most
suitable split ratio should yield a ranks prediction
which is relatively insensitive to the sample
size. Therefore, the ranks vectors obtained in
step 3.2.3, namely,rrri , i = 1. . .ns , which were
obtained based on the training sample derived
from sample A, are compared to the ranks vector
from step 3.4, namely,rrr0 , which was obtained
based on the full set of vectors stored in memory.

3.5) After identifying the most suitable split ratio,
the proposed algorithm selects the classifier type
which had the lowest prediction error in the
selected split ratio, and trains a classifier, des-
ignated asc(xxx) , using all the vectors stored
in memory. This classifier is then used in the
optimization search performed in step 4.

In this study the proposed algorithm selected between
three classifiers types:k nearest neighbours(kNN),
linear discriminant analysis(LDA), andsupport vector
machine (SVM), whose details are given in Ap-
pendix A. The candidate values for the training-testing
split ratios were 0.8–0.2, 0.5–0.5, and 0.2–0.8 .

Step 4) TR trial step: The best vector in the memory storage
is taken as the TR centre (xxxb), and a TR trial-step is
performed, namely, an optimizer is invoked to find an
optimum in the bounded region

T = {xxx : ‖xxx− xxxb‖2 6 ∆} , (10)

where ∆ is the TR radius. The optimizer used is
the real-coded EA of Chipperfield et al. [29], which
follows the setup described in Section II-A, namely, it
begins by selecting a set of parents, recombines them
to produce offspring, mutates some of the offspring,
and selects the population of the next generation
from the union of the offspring and the best parents.
Table II gives the complete parameter settings of this
EA, which are based on those suggested in literature
[29, 30].
During the trial step, the EA uses the followingmodi-
fied objective functionwhich combines the prediction
of the metamodel from Step 2 and the classifier from
Step 3, as follows

m̂(xxx) =

{

m(xxx) if c(xxx) is SF

p if c(xxx) is SI
(11)

136

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
INTERNAL PARAMETERS OF THEEA UTILIZED IN THIS STUDY [29]

Population size 100
Generations 100
Selection Stochastic universal selection (SUS)
Recombination Intermediate, applied with probabilityp = 0.7
Mutation Breeder Genetic Algorithm (BGA) mutation, applied

with probability p = 0.1
Elitism 10%

namely, the EA receives the objective value predicted
by the metamodelm(xxx) if the classifier predicts a
vector is SF, but it receives the penalized objective
value p otherwise. The latter is taken as the worst
objective value in the initial LH sample.
This formulation enhances the optimization search in
two main aspects. First, the classifier accumulates the
information about the SI vectors encountered during
the search and uses it to predict the distribution of
such vectors in the search space, so this potentially
beneficial information is not discarded. Second, the
classifier’s prediction is used to bias the search but
without affecting the metamodel landscape, and this
avoids the issues discussed in Section II-B. To visu-
alize the effect of this setup, and to demonstrate the
predictions of the metamodel, the classifier, and how
they are combined into a single modified objective
function, Figure 3 gives a synthetic example with
the Rosenbrock function. The plots show that the
landscape predicted by the modified objective func-
tion closely follows that of the baseline metamodel,
and embeds the knowledge on the location of the SI
vectors, but it is only minimally deformed.

Step 5) TR updates: The optimum found by the EA,xxx⋆ , is
evaluated with the true expensive function, which
yields the exact objective valuef (xxx⋆) . Following the
classical TR framework [17], the proposed algorithm
performs the following updates:

• If f (xxx⋆)< f (xxxb): The trial step was successful since
the predicted optimum is indeed better than the
current best solution, namely,xxxb . Accordingly, the
TR is centred at the new optimum, and the TR is
enlarged by doubling its radius.

• If f (xxx⋆)> f (xxxb) andthere are sufficient SF vectors
inside the TR: The search was unsuccessful since
the predicted optimum is not better than the current
best vector. However, since there are sufficient SF
vectors in the TR, the metamodel is deemed as
being sufficiently accurate to justify contracting the
TR. Accordingly, the TR is contracted by halving
its radius.

• If f (xxx⋆) > f (xxxb) and there are insufficient SF
vectors inside the TR: The search was unsuccessful,
but this may be since the metamodel is inaccurate
due to an insufficient number of SF vectors in the
TR. Therefore, the algorithm samples new vectors
(xxxn) inside the TR, as explained below.

-10 0 10
-10

0

10

Objective function and sample vectors

SF
SI

Kriging

Metamodel
prediction

KNN LDA
SVM

SF
SI

Classifiers
prediction

-10 0 10
-10

0

10

Modified objective function

Fig. 3. An example showing how the proposed algorithm generated the
modified objective function. The objective function was Rosenbrock, and the
sample was comprised of 26 SF vectors and 9 SI vectors. The proposed
algorithm trained a Kriging metamodel using the SF vectors, and trained the
classifiers using the entire sample. ThekNN classifier was deemed as the
most accurate, and therefore its prediction was used in the modified objective
function. The landscape of the latter was modified based on thepredictions
regarding SI vectors, but it was only minimally deformed.

As a change from the classical TR framework, the
proposed algorithm contracts the TR only if it con-
tains a sufficient number of SF vectors, to avoid a
too rapid TR contraction and premature convergence
[17]. To select a suitable threshold value (q) for the
number of these vectors, numerical experiments have
been performed and are described in Section IV-B.
Another change from the classical TR framework is
the sampling of new vectors to improve the accuracy
of the metamodel in the TR. There are two con-
siderations in selecting these vectors: i) they should
improve the metamodel accuracy locally around the
current optimum, and alternatively ii) they should
improve the metamodel accuracy over the entire TR,
and particularly in regions sparse with vectors [31].
Since these are typically two opposing considerations,
the proposed algorithm generates several new vectors
which correspond to different trade-offs between these
considerations. The vectors are taken as the minimiz-
ers of the following objective function

h(xxx) = wh1(xxx)+(1−w)h2(xxx) , (12)

137

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where the minimization is performed by the real-
coded EA described earlier. Here,h1(xxx) is therankof
the vectorxxx based on its objective value, such that the
best vector in the EA population is assigned a rank of
1, the following one a rank of two, and so on. Also,
h2(xxx) is therankof the vectorxxx based on its distance
from existing vectors in the TR, where the vector in
the EA population which is farthest is given a rank
of one, the vector having the 2nd largest distance
is given a rank of two, and so on. The weightw
defines the trade-off between the two considerations,
wherew = 1 implies a vector is searched based only
on its objective value, which will result in the new
vector being in the vicinity of the TR centre, while
w = 0 implies a vector is searched based only on
its distance to existing vectors in the TR, which will
result in a vector being away from existing vectors.
Equation (12) uses a rank based approach to make
the search more consistent across different objective
functions. To identify suitable weights, numerical
experiments have been performed and are described
in Section IV-B.
To complete the algorithm description, several addi-
tional points are noted:

• While in the description above the proposed algo-
rithm used a Kriging metamodel and selected be-
tween akNN, linear discriminant analysis (LDA),
and SVM classifiers, other types of metamodels and
classifiers can be readily used.

• To avoid a numerical breakdown of the metamodel
training process, the proposed algorithm evaluates
a new vector and adds it to the memory storage
only if it differs from those already stored.

• There is some computational overhead introduced
by the proposed algorithm due to the classifier
selection step. However, since no expensive eval-
uations are involved in this step, and since the
classifiers’ training phase is computationally cheap,
the overhead is minimal.

To complete the description of the proposed algo-
rithm, Figure 4 gives a schematic layout of its op-
timization iteration, and Algorithm 2 gives its pseu-
docode.

train a
metamodel

perform a TR
trial step using
the modified

function

perform
TR updates

select a
split ratio

select and train
a classifier

Fig. 4. The layout of an optimization iteration of the proposed algorithm. The
iteration begins by training a metamodel and classifier, including selection of
the classifier type and CV split ratio. This is followed by a TRtrial step to
locate an optimum of the modified objective function, and lastly updates of
the TR to ensure the progress of the search.

Algorithm 2: Proposed optimization algorithm

/* initialization */
generate an initial LH sample;
evaluate the sample vectors and store in memory;
/* main optimization loop */
repeat

/* train a metamodel */
use the SF vectors stored in memory to train a
metamodel;
/* select and train a classifier */
split the vectors stored in memory into a sample A
and a sample B;
for each candidate split ratiodo

split sample A into a training sample and testing
sample using the candidate split ratio;
for each candidate classifier typedo

train a classifier using the training sample;
estimate the classifier accuracy using the
testing sample;

rank the classifiers based on their accuracies;

for each candidate classifier typedo
train a classifier using sample A;
estimate the classifier accuracy using sample B;

rank the classifiers based on their accuracies to
obtain a ranks vectorrrr0;
select the split ratios∗ whose corresponding ranks
vector is most similar torrr0;
select the classifier type which produced the lowest
prediction error whens∗ was used, and train a
classifier using all vectors stored in memory;
/* perform a TR trial step */
set the TR centre to the best vector stored in memory;
use a real-coded EA to find an optimum of the
modified objective function in the TR;
/* perform TR updates */
evaluate the predicted optimum with the true
expensive function;
if the new optimum is better than the best vector in
memory then

double the TR radius
else if the new optimum is not better than the best
vector in memoryandthere are sufficient vectors in the
TR then

halve the TR radius;

else if the new optimum is not better than the best
vector in memoryandthere are insufficient vectors in
the TR then

add new vectors in the TR to improve the
metamodel accuracy;

add to the memory storage all the new vectors
evaluated with the true expensive function;

until maximum number of analyses completed;

138

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. N UMERICAL EXPERIMENTS

This section describes the numerical experiments used to
evaluate the performance of the proposed algorithm. It begins
by describing the test problem employed, it then describes a
parameter sensitivity analysis which was used to select suitable
settings for the algorithm parameters, and lastly it describes
and analyzes a set of benchmark tests.

A. Problem description

The test problem employed was that of airfoil shape op-
timization, as it is both simulation-driven and contains SI
vectors, as explained below. The formulation of the problemis
as follows. During flight, an aircraft generateslift , namely, the
force which counters the aircraft weight and keeps it airborne,
and drag, which is an aerodynamic friction force obstructing
the aircraft movement. Both the lift and drag result from the
flow of air around the aircraft wing whose cross-section is
the airfoil. The optimization goal is then to identify an airfoil
shape which maximizes the lift and minimizes the drag. In
practise, the design requirements for airfoils are specified in
terms of the nondimensional lift and drag coefficients,cl and
cd , respectively, defined as

cl =
L

1
2ρV 2S

(13a)

cd =
D

1
2ρV 2S

(13b)

whereL andD are the lift and drag forces, respectively,ρ is
the air density,V is the aircraft speed, andS is a reference
area, such as the wing area. Also important is theangle of
attack(AOA), which is the angle between the aircraft velocity
and the airfoilchord line, defined as the straight line joining
the leading and trailing edges of the airfoil. Figure 5 givesa
schematic layout of the airfoil problem.

Candidate airfoils were represented with the Hicks-Henne
parameterization [32], in which the profile of a candidate
airfoil is defined as

y = yb +
h

∑
i=1

αibi(x) , (14)

whereyb is a baseline airfoil profile, taken as the NACA0012
symmetric airfoil,bi are basis functions, which following [33],
are defined as

bi(x) =

[

sin

(

πx
log(0.5)

log(i/(h+1))

)]4

, (15)

andαi ∈ [−0.01,0.01] are coefficients, which are the problem’s
design variables. Ten basis functions were used for the upper
and lower airfoil profile, respectively, resulting in 20 design
variables overall. Figure 5 shows the layout of the airfoil
problem and the Hicks-Henne parametrization. The lift and
drag coefficients of candidate airfoils were obtained by using
XFoil, a computational fluid dynamics simulation for analysis
airfoils operating in the subsonic regime [34]. Each airfoil
evaluation required up to 30 seconds on a desktop computer.
To ensure structural integrity, the thickness of an airfoil(t)

AOA

x

z

Chord line

Velocity

Lift

Drag

0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

+

x

z

Baseline airfoil: NACA0012

0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

x

z Basis functions

Fig. 5. A schematic layout of the airfoil problem showing the physical
quantities involved, and the Hicks-Henne parameterizationsetup.

between 0.2 to 0.8 of its chord length had to be equal to or
larger than a critical valuet⋆ = 0.1 .

The airfoil shape optimization problem is a pertinent test
case since it contains SI vectors, and their prevalence is
strongly affected by the angle of attack (AOA) defined earlier.
Specifically, since the turbulence of the flow field increases
with the AOA, at higher angle values it will be more difficult
to complete the aerodynamics analysis, which will result in
more simulation failures, and therefore, more SI trial designs.
To verify this, 30 different airfoils were sampled and evaluated
in identical flight conditions, except for the AOA which was
increased from 20◦ to 50◦ . Figure 6 shows the obtained results,
where, as expected, the number of failed analyses increased
with the AOA. Therefore, by changing the AOA we could
change the density of SI vectors in the search space, and
hence the relative difficulty of the tests. In view of these
results, the numerical experiments included three optimization
scenarios, namely, with AOA= 20◦ ,30◦ , and 40◦ , which
following Figure 6, correspond to a low, medium and high
density of SI vectors in the search space, respectively.

B. Parameter sensitivity analysis

As described in Section III, the proposed algorithm relies
on two main parameters, namely:

• q : The minimum number of vectors in TR to invoke a
TR contraction.

and

• wi : The weights used for generating new vectors to
improve the metamodel accuracy (xxxn).

139

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10 20 30 40

0

10

20

30

40

Angle of attack (degrees)

A
n

al
ys

is
fa

ilu
re

s
(%

)

Fig. 6. Simulation failures as a function of the angle of attack (AOA).

To identify suitable values for these parameters, in turn,
each parameter was assigned one of three candidate values,
and ten optimization runs were repeated with the AOA= 30◦

setting.
Table III shows the obtained results, where the best mean

statistic is emphasized. It follows that suitable parameter
settings are a threshold value ofq = 20 , and a set of weights
w = {0.8,0.5,0.2} , resulting in three new vectors being added
in the TR to improve the metamodel accuracy. Accordingly,
these settings were used in the benchmark tests described in
the next section.

C. Benchmark tests: Results and analysis

For a comprehensive evaluation, the proposed algorithm
was benchmarked against two representative algorithms from
literature:

• EA with Periodic Sampling(EA–PS) [35]: The algo-
rithm safeguards the metamodel accuracy by periodi-
cally evaluating a small subset of the population with

TABLE III
TEST STATISTICS FOR THE PARAMETER SENSITIVITY ANALYSIS

(a) q : Number of vectors in the TR needed to contract the TR

2 (=0.1d) 10 (=0.5d) 20 (=d)

Mean 9.794e-01 8.772e-01 8.568e-01
SD 5.631e-02 6.540e-02 7.462e-02
Median 9.984e-01 8.674e-01 8.434e-01
Min(best) 8.409e-01 7.875e-01 7.527e-01
Max(worst) 1.028e+00 1.001e+00 1.005e+00

d : Dimension of objective function.

(b) w : Weights used for generating new vectors in the TR

{0.8,0.2} {0.8,0.5,0.2} {0.8,0.6,0.4,0.2}

Mean 9.126e-01 8.741e-01 8.772e-01
SD 6.099e-02 7.245e-02 6.540e-02
Median 9.400e-01 8.847e-01 8.674e-01
Min(best) 7.880e-01 7.175e-01 7.875e-01
Max(worst) 9.661e-01 9.947e-01 1.001e+00

the true objective function, and incorporating them into
the metamodel. The algorithm begins by generating an
initial sample of vectors (candidate solutions), evaluating
them with the expensive function, and training a Kriging
metamodel. It then uses a real-coded EA to seek an
optimum of the metamodel, where the EA is run for
10 generations. The ten best members of the resultant
population are then evaluated with the true expensive
function, and are incorporated into the metamodel. This
process repeats until the maximum number of expensive
function evaluations is reached. In the benchmark tests,
the EA was identical to the one used by the proposed
algorithm and used the same parameters given in Table II.

• Expected Improvement with a Covariance Matrix Adapta-
tion Evolutionary Strategies optimizer(EI–CMA-ES) [3]:
The algorithm combines a covariance matrix adaptation
evolutionary strategy (CMA-ES) optimizer [36] with a
Kriging metamodel, and updates the latter based on the
expected improvement framework [37]. The algorithm
begins by generating an initial sample of vectors, and
evaluates them with the true function. Its main loop
then begins, where at each generation it trains a Kriging
metamodel by using both the recently evaluated vectors
and those stored in memory which are nearest to the
best solution. A CMA-ES optimizer is then invoked to
locate an optimum of the metamodel in a bounded region
defined by the metamodel training sample. In the spirit of
the expected improvement framework [37], the function
being minimized is

f̂ (xxx) = m(xxx)−ρζ (xxx) , (16)

wherem(xxx) is the Kriging metamodel prediction,ρ is a
prescribed coefficient, andζ (xxx) is the estimated Kriging
prediction error, which is zero at sampled vectors since
there the true objective value is known. The search is
repeated forρ = 0,1,2, and 4 , to obtain four solutions
corresponding to different search profiles, namely, rang-
ing from a local search (ρ = 0) to a more explorative
one (ρ = 4). All non-duplicate solutions found are eval-
uated with the true expensive function, and are stored
in memory. In case no new solutions were evaluated,
for example, because they already match those stored
in memory, a new solution is generated by perturbing
the current best one. Following Büche et al. [3], the
algorithm used a training set of 100 vectors comprising
of the 50 most recently evaluated ones and 50 nearest-
neighbours, and the CMA-ES used the default settings
given in Reference [36].

To also study the contribution of the proposed procedure
of selecting the classifier type and calibrating the CV split
ratio during the search, the benchmark tests also included the
following two variants of the proposed algorithm which were
identical to it in operation, except that they used a fixed type of
classifier, and therefore did not use the procedures in question:
variant i) VK : a variant which used akNN classifier, and
variant ii) VS : a variant which used an SVM classifier.

140

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For all algorithms the limit of simulation calls was set to
200, and their initial sample was generated by a LH procedure
and consisted of 20 candidate solutions. To support a valid
statistical analysis, 30 runs were repeated for each algorithm
at each test case. This was done only for the benchmarking
purpose, and is not required in an ordinary optimization search.

For a thorough evaluation, three performance measures
were analyzed: i) the final objective value obtained by each
algorithm, ii) the number of SI vectors generated by each
algorithm during its optimization search, and iii) the classifier
type and split ratio which were selected by the proposed
algorithm during its optimization search. The details of these
analyses are as follows:

• Final objective value: To compare the effectiveness of the
algorithms, Table IV gives the test statistics of mean,
standard deviation (SD), median, best, and worst final
objective values obtained by each algorithm in each
optimization scenario, with the best mean and median
statistics emphasized. The table also gives the signifi-
cance level (α) at which results of the proposed algorithm
were better than those achieved by the other algorithms,
where the significance levels considered were 0.01, 0.05,
or an empty entry otherwise. Statistical significance was
determined using the Mann–Whitney nonparametric test
[38, p.423–432].
It follows that the proposed algorithm consistently per-
formed well, as indicated by its mean and median statis-
tics. Also, statistical significance comparisons show that
it outperformed the two reference algorithms from litera-
ture, namely, EA–PS and EI–CMA-ES in the AOA=20◦

case, and outperformed the EA–PS algorithm in the
AOA=30◦ and 40◦ cases. In contrast, the EA–PS algo-
rithm typically achieved either the worst or second worst
mean statistic, which highlights the demerit of the penalty
approach it employs, namely, that incorporating penalized
vectors into the training sample can result in deformation
of the metamodel landscape and consequently degrade the
search effectiveness. It is noted that the performance gains
achieved by the proposed algorithm varied depending on
the problem setting (the AOA), and were more modest in
the high AOA settings where the high prevalence of SI
vectors exacerbated the optimization difficultly. However,
even modest performance gains can be significant, which
justifies the minor added computational overhead incurred
by the proposed algorithm.
Lastly, test statistics also show the contribution of the
procedure for selecting the classifier type and split ratio,
as indicated by the comparisons to the two variants VK
and VS. This indicates that adapting the optimization
algorithm to the problem being solved improved the
search effectiveness.

• Number of SI vectors encountered during the search:
Table V gives the resultant test statistics for the number
of SI vectors generated by each algorithm in the three op-
timization scenarios. These statistics are important since

they indicate the efficiency of each algorithm, namely, the
extent of computer resources wasted during its search.
Results show that the EA–PS algorithm consistently
obtained the best mean statistic, which indicates that it
typically generated the least amount of SI vectors. This
is attributed to the penalty approach it employs which
deforms the metamodel landscape and consequently bi-
ases the optimization search away from the vicinity of
previously encountered SI vectors. However, this setup
also resulted in poor final objective values, as indicated
by the test statistics in Table IV.
In contrast, the optimization search of the proposed
algorithm resulted in a higher number of SI vectors in
all scenarios, which suggests that in this test problem
locating good candidate solutions required exploring SI
candidate solutions.

• Variation of the classifier type and split ratio during the
search: The goal of this analysis was to study the
contribution of the procedure for selecting the classifier
type and split ratio, namely, if predominantly a single
classifier type and split ratio were selected during the
search, which would imply the procedure was redundant,
or if the selected types were varied frequently.
Figure 7 shows representative results from a test run
with AOA=20◦ , and from another run with AOA=40◦ .
It follows that in both runs, the classifier type and the
split ratio were frequently updated during the search.
In the AOA=20◦ case, the SVM andkNN classifiers
were selected a similar number of times, while LDA
was selected less frequently, which indicates that it was
deemed as less accurate. With the split ratio, all settings
were selected during the search, with the 0.8 setting being
selected more frequently than the 0.5 and 0.2 settings.
In the AOA=40◦ case, the SVM andkNN classifiers were
both frequently selected. However, the LDA classifier was
not selected during the run, which indicates that it was
consistently deemed as the least accurate. With respect
to the split ratio, and similarly to the AOA=20◦ case,
all settings were selected during the search, with the 0.8
setting being used more frequently.
Overall, these results, coupled with the test statistics in
Table IV indicate that: a) the optimal classifier type and
split ratio varied not only between different optimization
scenarios, but also during the optimization search itself,
and b) adapting the optimization algorithm during the
search improved the search effectiveness.

V. CONCLUSION AND FUTURE WORK

In modern engineering, computer simulations are often
used to evaluate candidate designs. This setup yields an op-
timization problem of a computationally expensive black-box
function, namely, whose analytic expression is unknown and
which can be evaluated only a small number of times. Often,
such problems will also involve candidate designs which cause
the simulation to fail. Therefore, such designs would not have

141

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV
STATISTICS FOR THE BEST SOLUTION FOUND

Algorithm

AOA Proposed VK VS EA–PS EI–CMA-ES

20

Mean 3.737e-01 3.890e-01 3.885e-01 4.418e-01 5.675e-01
SD 7.018e-03 2.845e-02 3.926e-02 5.773e-02 2.102e-01
Median 3.717e-01 3.857e-01 3.718e-01 4.333e-01 5.052e-01
Min(best) 3.649e-01 3.603e-01 3.626e-01 3.674e-01 3.584e-01
Max(worst)3.902e-01 4.392e-01 4.911e-01 5.686e-01 9.638e-01
α 0.01 0.05

30

Mean 9.273e-01 9.475e-01 9.616e-01 9.842e-01 9.322e-01
SD 7.314e-02 8.652e-02 4.662e-02 1.237e-01 8.289e-02
Median 9.388e-01 9.495e-01 9.521e-01 1.026e+00 9.180e-01
Min(best) 7.989e-01 7.836e-01 8.832e-01 7.113e-01 8.197e-01
Max(worst)1.003e+00 1.081e+00 1.022e+00 1.099e+00 1.205e+00
α 0.05

40

Mean 1.023e+00 1.027e+00 1.032e+00 1.112e+00 1.044e+00
SD 3.888e-02 4.637e-02 4.319e-02 4.635e-02 4.347e-02
Mmedian 1.015e+00 1.029e+00 1.045e+00 1.116e+00 1.034e+00
Min(best) 9.490e-01 9.505e-01 9.675e-01 1.006e+00 9.746e-01
Max(worst)1.088e+00 1.111e+00 1.090e+00 1.204e+00 1.154e+00
α 0.01

TABLE V
STATISTICS FOR THE NUMBER OFSI VECTORS ENCOUNTERED DURING

THE SEARCH

Algorithm

AOA Proposed VK VS EA–PS EI–CMA-ES

20

Mean 1.610e+01 4.800e+00 1.280e+01 4.267e+00 9.033e+00
SD 3.242e+01 4.894e+00 1.561e+01 2.477e+00 1.785e+01
Median 4.500e+00 4.000e+00 5.000e+00 4.500e+00 2.000e+00
Min(best) 1.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00
Max(worst)1.070e+02 1.400e+01 4.900e+01 9.000e+00 8.100e+01

30

Mean 3.330e+01 3.970e+01 2.630e+01 9.967e+00 2.467e+01
SD 1.532e+01 2.445e+01 1.778e+01 4.846e+00 1.489e+01
Median 3.350e+01 3.700e+01 2.000e+01 1.050e+01 2.200e+01
Min(best) 1.200e+01 1.400e+01 9.000e+00 1.000e+00 9.000e+00
Max(worst)5.500e+01 8.100e+01 6.500e+01 1.900e+01 8.700e+01

40

Mean 6.290e+01 4.790e+01 5.720e+01 2.267e+01 4.743e+01
SD 2.429e+01 1.795e+01 2.296e+01 8.515e+00 1.618e+01
Median 6.500e+01 4.700e+01 5.600e+01 2.100e+01 4.850e+01
Min(best) 2.100e+01 2.200e+01 1.700e+01 1.300e+01 2.100e+01
Max(worst)9.600e+01 7.800e+01 9.900e+01 4.300e+01 8.400e+01

an objective value assigned to them, and consequently they
can degrade the effectiveness of the optimization search.

Existing approaches for handling such candidate designs in-
clude assigning them a penalized objective value or discarding
them altogether, but both of these approaches have significant
demerits, as discussed in Section II. In these settings, this study
has proposed a new computational intelligence optimization
algorithm which incorporates a classifier into the optimiza-
tion search. The latter predicts which candidate designs are
expected to cause the simulation to fail, and this prediction is
used to bias the search towards candidate designs for which the
simulation is expected to succeed. However, the effectiveness
of this setup depends on the type of classifier being used, but
typically it is not known prior to the optimization search which
classifier type is most suitable to the problem being solved.
To address this, the proposed algorithm autonomously selects
during the search an optimal classifier type out of a family
of candidates, based on the CV procedure. To further enhance
the accuracy of this approach, it also selects during the search

kNN

LDA

SVM

C
la

ss
ifi

er

50 100 150 200
0.2

0.5

0.8

Function evaluations

S
p

lit
ra

tio

(a) AOA=20◦

kNN

LDA

SVM

C
la

ss
ifi

er

50 100 150 200
0.2

0.5

0.8

Function evaluations

S
p

lit
ra

tio

(b) AOA=40◦

Fig. 7. The classifier type and split ratio selected by the proposed algorithm
during two test runs.

the split ratio of the CV procedure.
The effectiveness of the proposed algorithm was evalu-

ated with a simulation-driven test problem of airfoil shape
optimization which is representative of real-world problems.
Analysis of the experiments results shows that:

• Incorporating a classifier into the optimization search was
an effective approach to handle SI vectors, as indicated
by the test statistics of the final function value.

• Penalizing SI vectors and incorporating them into the
metamodel training sample reduced the number of failed
evaluations, but also yielded a poorer final result. In con-
trast, the proposed algorithm typically evaluated a larger
number of SI vectors, which indicates that obtaining a
good SF solution may require exploring a multitude of
SI ones.

• The optimal classifier type and split ratio varied not

142

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only between optimization scenarios, but also during the
optimization search itself. Also, adapting the optimiza-
tion algorithm during the search improved the search
effectiveness, as indicated by the comparisons to the two
variants of the proposed algorithm which did not employ
this procedure.

Overall, the proposed algorithm effectively performed an opti-
mization of a computationally expensive black-box function in
the presence of SI candidate designs. Prospective future work
includes improving the algorithm’s effectiveness in problems
with a high prevalence of SI vectors, and dynamic optimization
problems, namely, which vary with time.

APPENDIX A
CANDIDATE CLASSIFIERS

Classifiers originated in the domain on machine learning
with the goal of class prediction. Mathematically, given a set
of vectorsxxxi ∈R

d , i = 1. . .n , which are grouped into several
classes such that each vector has a corresponding class label
F(xxxi) ∈ I, for example,I = {−1,+1} , a classifier performs
the mapping

c(xxx) : Rd → I , (17)

wherec(xxx) is the class assigned by the classifier.
In this study, the proposed algorithm selects from three

established classifier variants [39]:

• k Nearest Neighbours(KNN): The classifier assigns the
new vector the class of its closest training vector, namely:

c(xxx) = F(xxxNN) : d(xxx,xxxNN) = min d
(

xxx,xxxi
)

, i = 1. . .n ,
(18)

whered(xxx,yyy) is a distance measure such as thel2 norm.
An extension of this technique is to assign the class most
frequent among thek > 1 nearest neighbours (kNN). In
this study the classifier usedk = 3 .

• Linear Discriminant Analysis(LDA): In a two-class prob-
lem, where the class labels areF(xxxi)∈ I= {−1,+1} , the
classifier attempts to model the conditional probability
density functions of a vector belonging to each class,
where the latter functions are assumed to be normally dis-
tributed. The classifier considers the separation between
classes as the ratio of: a) the variance between classes,
and b) the variance within the classes, and obtains a
vector www which maximizes this ratio. The vectorwww is
such that it is orthogonal to the hyperplane separating
the two classes. A new vectorxxx is classified based on its
projection with respect to the separating hyperplane, that
is,

c(xxx) = sign(www · xxx) . (19)

• Support Vector Machines(SVM): The classifier projects
the data into a high-dimensional space where it can be
more easily separated into disjoint classes. In a two-
class problem, and assuming class labelsF(xxxi) ∈ I =
{−1,+1} , an SVM classifier tries to find the best clas-
sification function for the training data. For a linearly
separable training set, a linear classification function is

the separating hyperplane passing through the middle of
the two classes. Once this hyperplane has been fixed,
new vectors are classified based on their relative position
to this hyperplane, that is, whether they are “above”
or “below” it. Since there are many possible separat-
ing hyperplanes, an SVM classifier adds the condition
that the hyperplane should maximize its distance to the
nearest vectors from each class. This is accomplished by
maximizing the Lagrangian

LP =
1
2
‖www‖−

n

∑
i=1

αiF(xxxi)(www · xxxi +b)+
n

∑
i=1

αi , (20)

where n is the number of samples (training vectors),
F(xxxi) is the class of theith training vector, andαi > 0 ,
i = 1. . .n , are the Lagrange multipliers, such that the
derivatives ofLP with respect toαi are zero. The vector
www and scalarb define the hyperplane.

REFERENCES

[1] Y. Tenne, K. Izui, and S. Nishiwaki, “A computational
intelligence algorithm for simulation-driven optimiza-
tion problems,” inProceedings of the Third International
Conference on Future Computational Technologies and
Applications, Future Computing 2011, Rome, Italy, In-
ternational Academy, Research, and Industry Association
(IARIA). IARIA XPS Press, 2011, pp. 127–134.

[2] Y. Tenne and C. K. Goh, Eds.,Computational Intelli-
gence in Expensive Optimization Problems, ser. Evolu-
tionary Learning and Optimization. Springer, 2010,
vol. 2.

[3] D. Büche, N. N. Schraudolph, and P. Koumoutsakos,
“Accelerating evolutionary algorithms with Gaussian pro-
cess fitness function models,”IEEE Transactions on Sys-
tems, Man, and Cybernetics–Part C, vol. 35, no. 2, pp.
183–194, 2005.

[4] T. Okabe, “Stabilizing parallel computation for evolu-
tionary algorithms on real-world applications,” inPro-
ceedings of the 7th International Conference on Optimiza-
tion Techniques and Applications–ICOTA 7. Tokyo:
Universal Academy Press, 2007, pp. 131–132.

[5] C. Poloni, A. Giurgevich, L. Onseti, and V. Pediroda,
“Hybridization of a multi-objective genetic algorithm, a
neural network and a classical optimizer for a complex
design problem in fluid dynamics,”Computer Methods in
Applied Mechanics and Engineering, vol. 186, no. 2–4,
pp. 403–420, 2000.

[6] K. A. de Jong, Evolutionary Computation:A Unified
Approach. MIT Press, Cambridge, Mass. 2006.

[7] T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K.
Allen, “Metamodels for computer-based engineering de-
sign: Survey and recommendations,”Engineering with
Computers, vol. 17, pp. 129–150, 2001.

[8] A. Ratle, “Accelerating the convergence of evolutionary
algorithms by fitness landscape approximations,” inPro-
ceedings of the 5th International Conference on Parallel
Problem Solving from Nature–PPSN V, A. E. Eiben,

143

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T. Bäck, and H.-P. Schwefel, Eds. Berlin: Springer,
1998, pp. 87–96.

[9] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini,
V. Torczon, and M. W. Trosset, “A rigorous framework
for optimization of expensive functions by surrogates,”
Structural Optimization, vol. 17, no. 1, pp. 1–13, 1999.

[10] M. T. M. Emmerich, A. Giotis, M. Özedmir, T. Bäck,
and K. C. Giannakoglou, “Metamodel-assisted evolution
strategies,” inThe 7th International Conference on Paral-
lel Problem Solving from Nature–PPSN VII, ser. Lecture
Notes in Computer Science, J. J. Merelo Guervós, Ed.,
no. 2439. Berlin: Springer, 2002, pp. 361–370.

[11] K.-H. Liang, X. Yao, and C. Newton, “Evolutionary
search of approximated N-dimensional landscapes,”In-
ternational Journal of Knowledge-Based Intelligent Engi-
neering Systems, vol. 4, no. 3, pp. 172–183, 2000.

[12] F. Muyl, L. Dumas, and V. Herbert, “Hybrid method for
aerodynamic shape optimization in automotive industry,”
Computers and Fluids, vol. 33, no. 5–6, pp. 849–858,
2004.

[13] Y. Tenne and S. W. Armfield, “A framework for memetic
optimization using variable global and local surrogate
models,” Journal of Soft Computing, vol. 13, no. 8, pp.
781–793, 2009.

[14] F. Neri, X. del Toro Garcia, G. L. Cascella, and N. Sal-
vatore, “Surrogate assisted local search on PMSM drive
design,”International Journal for Computation and Math-
ematics in Electrical and Electronic Engineering, vol. 27,
no. 3, pp. 573–592, 2008.

[15] Z. Zhou, Y.-S. Ong, P. B. Nair, A. J. Keane, and K. Y.
Lum, “Combining global and local surrogate models to
accelerate evolutionary optimization,”IEEE Transactions
on Systems, Man, and Cybernetics–Part C, vol. 37, no. 1,
pp. 66–76, 2007.

[16] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for
evolutionary optimization with approximate fitness func-
tions,” IEEE Transactions on evolutionary computation,
vol. 6, no. 5, pp. 481–494, 2002.

[17] A. R. Conn, K. Scheinberg, and P. L. Toint, “On the
convergence of derivative-free methods for unconstrained
optimization,” in Approximation Theory and Optimiza-
tion: Tributes to M.J.D. Powell, A. Iserles and M. D.
Buhmann, Eds. Cambridge; New York: Cambridge
University Press, 1997, pp. 83–108.

[18] ——, “A derivative free optimization algorithm
in practice,” in Proceedings of the Seventh
AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. Reston,
Virginia: American Institute of Aeronautics and
Astronautics, 1998, AIAA paper number AIAA-1998-
4718.

[19] K. Rasheed, H. Hirsh, and A. Gelsey, “A genetic al-
gorithm for continuous design space search,”Artificial
Intelligence in Engineering, vol. 11, pp. 295–305, 1997.

[20] Y. Tenne and S. W. Armfield, “A versatile surrogate-
assisted memetic algorithm for optimization of computa-

tionally expensive functions and its engineering appli-
cations,” in Success in Evolutionary Computation, ser.
Studies in Computational Intelligence, A. Yang, Y. Shan,
and L. Thu Bui, Eds. Berlin; Heidelberg: Springer-
Verlag, 2008, vol. 92, pp. 43–72.

[21] S. Handoko, C. K. Kwoh, and Y.-S. Ong, “Feasibility
structure modeling: An effective chaperon for constrained
memetic algorithms,”IEEE Transactions on Evolutionary
Computation, vol. 14, no. 5, pp. 740–758, 2010.

[22] Y. Tenne, K. Izui, and S. Nishiwaki, “Handling undefined
vectors in expensive optimization problems,” inProceed-
ings of the 2010 EvoStar Conference, ser. Lecture Notes
in Computer Science, C. Di Chio, Ed., vol. 6024/2010.
Berlin: Springer, 2010, pp. 582–591.

[23] K. P. Burnham and D. R. Anderson,Model Selection and
Inference: A Practical Information-theoretic Approach.
New York: Springer, 2002.

[24] A. Frank and A. Asuncion, “UCI Machine Learning
Repository,” 2010. [Online]. Available: http://archive.
ics.uci.edu/ml

[25] M. D. McKay, R. J. Beckman, and W. J. Conover, “A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code,”
Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[26] K. S. Won and T. Ray, “Performance of Kriging and
Cokriging based surrogate models within the unified
framework for surrogate assisted optimization,” inThe
2004 IEEE Congress on Evolutionary Computation–CEC
2004. Piscataway, NJ: IEEE, 2004, pp. 1577–1585.

[27] H. You, M. Yang, D. Wang, and X. Jia, “Kriging model
combined with Latin hypercube sampling for surrogate
modeling of analog integrated circuit performance,” in
Proceedings of the Tenth International Symposium on
Quality Electronic Design–ISQED 2009. Piscataway,
NJ: IEEE, 2009, pp. 554–558.

[28] J. R. Koehler and A. B. Owen, “Computer experiments,”
in Handbook of Statistics, S. Ghosh, C. R. Rao, and P. R.
Krishnaiah, Eds. Amsterdam: Elsevier, 1996, pp. 261–
308.

[29] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fon-
seca,Genetic Algorithm TOOLBOX For Use with MAT-
LAB, Version 1.2, Department of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield,
1994.

[30] K. A. de Jong and W. M. Spears, “An analysis of the
interacting roles of population size and crossover in
genetic algorithms,” inProceedings of the 1st Workshop
on Parallel Problem Solving from Nature–PPSN I, H.-P.
Schwefel and R. Männer, Eds. Berlin: Springer, 1990,
pp. 38–47.

[31] W. R. Madych, “Miscellaneous error bounds for multi-
quadric and related interpolators,”Computers and Math-
ematics with Applications, vol. 24, no. 12, pp. 121–138,
1992.

[32] R. M. Hicks and P. A. Henne, “Wing design by numerical
optimization,”Journal of Aircraft, vol. 15, no. 7, pp. 407–

144

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

412, 1978.
[33] H.-Y. Wu, S. Yang, F. Liu, and H.-M. Tsai, “Comparison

of three geometric representations of airfoils for aerody-
namic optimization,” inProceedings of the 16th AIAA
Computational Fluid Dynamics Conference. American
Institute of Aeronautics and Astronautics, 2003, AIAA
2003-4095.

[34] M. Drela and H. Youngren,XFOIL 6.9 User Primer, De-
partment of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, MA, 2001.

[35] A. Ratle, “Optimal sampling strategies for learning a
fitness model,” inThe 1999 IEEE Congress on Evolution-
ary Computation–CEC 1999. Piscataway, New Jersey:
IEEE, 1999, pp. 2078–2085.

[36] N. Hansen and A. Ostermeier, “Completely derandom-
ized self-adaptation in evolution strategies,”Evolutionary
Computation, vol. 9, no. 2, pp. 159–195, 2001.

[37] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient
global optimization of expensive black-box functions,”
Journal of Global Optimization, vol. 13, pp. 455–492,
1998.

[38] D. J. Sheskin,Handbook of Parametric and Nonparamet-
ric Statistical Procedures, 4th ed. Boca Raton, Florida:
Chapman and Hall, 2007.

[39] X. Wu, V. Kumar, R. J. Quinlan, J. Ghosh, Q. Yang,
H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu,
Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg,
“Top 10 algorithms in data mining,”Knowledge and
Information Systems, vol. 14, pp. 1–37, 2008.

145

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

