


The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 4, no.3 & 4, year 2011, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 4, no. 3 & 4, year 2011,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2011 IARIA



International Journal on Advances in Software

Volume 4, Number 3 & 4, 2011

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

Meikel Poess, Oracle, USA
Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France
 Sven Apel, University of Passau, Germany
 Kenneth Boness, University of Reading, UK
 Hongyu Pei Breivold, ABB Corporate Research, Sweden
 Georg Buchgeher, SCCH, Austria
 Dumitru Dan Burdescu, University of Craiova, Romania
 Angelo Gargantini, Universita di Bergamo, Italy
 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany
 Jon G. Hall, The Open University - Milton Keynes, UK
 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands
 Hermann Kaindl, TU-Wien, Austria
 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore
 Herwig Mannaert, University of Antwerp, Belgium
 Roy Oberhauser, Aalen University, Germany
 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
 Eric Pardede, La Trobe University, Australia
 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe
 Robert J. Pooley, Heriot-Watt University, UK
 Vladimir Stantchev, Berlin Institute of Technology, Germany
 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan
 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania
 Michael Grottke, University of Erlangen-Nuremberg, Germany
 Josef Noll, UiO/UNIK, Sweden
 Olga Ormandjieva, Concordia University-Montreal, Canada



 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania
 Liviu Panait, Google Inc., USA
 Kenji Saito, Keio University, Japan
 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India
 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France
 Jameleddine Hassine, Cisco Systems, Inc., Canada
 Sascha Opletal, Universitat Stuttgart, Germany
 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
 Meikel Poess, Oracle, USA
 Kurt Rohloff, BBN Technologies, USA
 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France
 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France
 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria
 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany
 Qiming Chen, HP Labs – Palo Alto, USA
 Ela Hunt, University of Strathclyde - Glasgow, UK
 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain
 Chih-Cheng Hung, Southern Polytechnic State University, USA
 Jianhua Ma, Hosei University, Japan
 Milena Radenkovic, University of Nottingham, UK
 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil
 Marius Slavescu, IBM Toronto Lab, Canada
 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA
 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy
 Krzysztof Rogoz, Motorola, USA
 Sergio Soares, Federal University of Pernambuco, Brazil
 Alin Stefanescu, University of Pitesti, Romania



 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore
 Ann Dunkin, Hewlett-Packard, USA
 Tejas R. Gandhi, Virtua Health-Marlton, USA
 Lars Moench, University of Hagen, Germany
 Michael J. North, Argonne National Laboratory, USA
 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden
 Edward Williams, PMC-Dearborn, USA



International Journal on Advances in Software

Volume 4, Numbers 3 & 4, 2011

CONTENTS

The OMiSCID 2.0 Middleware: Usage and Experiments in Smart Environments

Rémi Barraquand, INRIA, France

Dominique Vaufreydaz, INRIA, France

Rémi Emonet, INRIA, France

Amaury Negre, INRIA, France

Patrick Reignier, INRIA, France

231 - 243

On a New Method for Derivative Free Optimization

Lennart Frimannslund, Department of Informatics, University of Bergen, Norway

244 - 255

A Systematic Review and Taxonomy of Runtime Invariance in Software Behaviour

Teemu Kanstrén, VTT, Finland

256 - 274

Interface Contracts for WCF Services with Code Contracts

Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany

275 - 285

Answering Complex Requests with Automatic Composition of Semantic Web Services

Brahim Batouche, Public Research Center Henri Tudor, Luxembourg, Luxembourg

Yannick Naudet, Public Research Center Henri Tudor, Luxembourg, Luxembourg

Frédéric Guinand, University of LeHavre, France

286 - 307

Scripting Technology for Generative Modeling

Christoph Schinko, Institut f. ComputerGraphik & WissensVisualisierung, TU Graz, Austria

Martin Strobl, Institut f. ComputerGraphik & WissensVisualisierung, TU Graz, Austria

Torsten Ullrich, Fraunhofer Austria Research GmbH, Graz, Austria

Dieter W. Fellner, GRIS, TU Darmstadt & Fraunhofer IGD, Darmstadt, Germany

308 - 326

Simulation and Test-Case Generation for PVS Specifications of Control Logics

Cinzia Bernardeschi, Department of Information Engineering, University of Pisa, Italy

Luca Cassano, Department of Information Engineering, University of Pisa, Italy

Andrea Domenici, Department of Information Engineering, University of Pisa, Italy

Paolo Masci, School of Electronic Engineering and Computer Science, Queen Mary University of

London, United Kingdom

327 - 341

The CloudMIG Approach: Model-Based Migration of Software Systems to Cloud-

Optimized Applications

Sören Frey, Software Engineering Group, University of Kiel, Germany

Wilhelm Hasselbring, Software Engineering Group, University of Kiel, Germany

342 - 353



A Formal Language for the Expression of Pattern Compositions

Ian Bayley, Oxford Brookes University, UK

Hong Zhu, Oxford Brookes University, UK

354 - 366

A Pattern-based Adaptation for Abstract Applications in Pervasive Environments

Imen Ben Lahmar, Institut Telecom; Telecom SudParis, France

Djamel Belaïd, Institut Telecom; Telecom SudParis, France

Hamid Mukhtar, National University of Sciences and Technology, Pakistan

367 - 377

On the Quality of Relational Database Schemas in Open-source Software

Fabien Coelho, CRI, Mathématiques et Systèmes, MINES ParisTech, France

Alexandre Aillos, CRI, Mathématiques et Systèmes, MINES ParisTech, France

Samuel Pilot, CRI, Mathématiques et Systèmes, MINES ParisTech, France

Shamil Valeev, CRI, Mathématiques et Systèmes, MINES ParisTech, France

378 - 388

Using Statistical Information for Efficient Design and Evaluation of Hybrid XML Storage

Lena Strömbäck, SMHI, Sweden

Valentina Ivanova, Linköping University, Sweden

David Hall, Linköping University, Sweden

389 - 400

A Proposal of a New Compression Scheme of Medium-Sparse Bitmaps

Andreas Schmidt, Karlsruhe Institute of Technology, Germany

Daniel Kimmig, Karlsruhe Institute of Technology, Germany

Mirko Beine, Karlsruhe University of Applied Sciences, Germany

401 - 411

Turning Large Software Component Repositories into Small Index Files

Marcos Paixão, Federal University of Sergipe, Brazil

Leila Silva, Federal University of Sergipe, Brazil

Talles Brito, Federal University of Paraíba, Brazil

Gledson Elias, Federal University of Paraíba, Brazil

412 - 421

Superposition of Rectangles with Visibility Requirement: A Qualitative Approach

Takako Konishi, Kwansei Gakuin University, Japan

Kazuko Takahashi, Kwansei Gakuin University, Japan

422 - 433

Efficient Non-Sequential Access and More Ordering Choices in a Search Tree

Lubomir Stanchev, Indiana University - Purdue University Fort Wayne, USA

434 - 441

Transactional Composition and Concurrency Control in Disconnected Computing

Tim Lessner, Reutlingen University of Applied Sciences, Germany

Fritz Laux, Reutlingen University of Applied Sciences, Germany

Thomas Connolly, University of the West of Scotland, Scotland, UK

Malcolm Crowe, University of the West of Scotland, Scotland, UK

442 - 460



Verifiable Constraints for Ambients of Persistent Objects

Suad Alagic, University of Southern Maine, USA

Harika Anumula, University of Southern Maine, USA

Akinori Yonezawa, Advanced Institute of Computational Science, Japan

461 - 470

Models of 40-Year Spatial Development of Cities in the Czech Republic in a geographic

information system

Lena Halounová, Faculty of Civil Engineering, CTU in Prague, Czech Republic

Karel Vepřek, Faculty of Civil Engineering, CTU in Prague, Czech Republic

Martin Řehák, Faculty of Civil Engineering, CTU in Prague, Czech Republic

471 - 478

Rainbow Table Optimization for Password Recovery

Vrizlynn Thing, Institute for Infocomm Research, Singapore

Hwei-Ming Ying, Institute for Infocomm Research, Singapore

479 - 488

An Augmented Reality Platform for the Enhancement of Surgical Decisions in Pediatric

Laparoscopy

Lucio Tommaso De Paolis, Department of Innovation Engineering - University of Salento, Italy

Giovanni Aloisio, Department of Innovation Engineering - University of Salento, Italy

489 - 498

Retrieval of 3D Medical Images via Their Texture Features

Xiaohong Gao, Middlesex University, United Kingdom

Yu Qian, Middlesex University, United Kingdom

Martin Loomes, Middlesex University, UK

Richard Comley, Middlesex University, UK

Balbir Barn, Middlesex University, UK

Alex Chapman, Middlesex University, UK

Janet Rix, Middlesex University, UK

Rui Hui, General Navy Hospital, China

Zengmin Tian, General Navy Hospital, China

499 - 509

Ontology Structure, Reasoning Approach and Querying Mechanism in a Semantic-

Enabled Efficient and Scalable Retrieval of Experts

Witold Abramowicz, Poznan University of Economics, Poland

Elżbieta Bukowska, Poznan University of Economics, Poland

Monika Kaczmarek, Poznan University of Economics, Poland

Monika Starzecka, Poznan University of Economics, Poland

510 - 520

Block Matching Motion Estimation with Variable Search Window Size

Ionut Pirnog, “Politehnica” University of Bucharest, Romania

Claudia Cristina Oprea, “Politehnica” University of Bucharest, Romania

521 - 531

Automatic Categorisation of E-Journals by Synonym Analysis of n-grams 532 - 542



Richard Hussey, University of Reading, United Kingdom

Shirley Williams, University of Reading, United Kingdom

Richard Mitchell, University of Reading, United Kingdom



231

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The OMiSCID 2.0 Middleware: Usage and Experiments in Smart Environments

Rémi Barraquand∗, Dominique Vaufreydaz†∗, Rémi Emonet∗, Amaury Nègre∗, Patrick Reignier‡∗
∗PRIMA Team - INRIA/LIG/CNRS - 655, avenue de l’Europe - 38334 Saint Ismier Cedex

see http://www-prima.inrialpes.fr/
†Université Pierre-Mendès-France - BP 47 - 38040 Grenoble Cedex 9
‡Université Joseph Fourier - BP 53 - 38041 Grenoble Cedex 9

{Remi.Barraquand,Dominique.Vaufreydaz,Remi.Emonet,Amaury.Negre,Patrick.Reignier,omiscid-info}@inria.fr

Abstract—OMiSCID 2.0 is a lightweight middleware for
ubiquitous computing and ambient intelligence. Its main
objective is to bring Service Oriented Architectures to all
developers. After reviewing related works, we demonstrate
how OMiSCID 2.0, compared to other available solutions,
integrates easily in classical workflows without adding any
constraints on the development process. A basic overview of
our middleware is given along with brief technical descriptions
demonstrating its User Friendly Application Programming
Interface. This application programming interface makes it
straightforward to expose, look for or send information
between software components over the network. We illustrate
the usage of OMiSCID 2.0, the new version of our lightweight
middleware, through case-studies that have been experienced
in international research projects. Particularly, we demonstrate
its advantages in both development and research projects,
illustrating its radical cut down effect in development time,
improving software reuse and easing redeployment notably in
the context of Wizard of Oz experiments conducted in smart
environments.

Keywords-Service Oriented Architecture; Ubiquitous
Computing; Middleware; Wizard Of Oz; Smart Environments.

I. INTRODUCTION

Today’s vision of ubiquitous computing is only half way
achieved. The multiplication of low cost devices along with
the miniaturization of high performance computing units
technically allow the design of environment widespread
by cameras, motion detectors, automatic light controls,
pressure sensors or microphones. Those devices, thanks to
wireless networks, can communicate together with mobile
and personal equipments such as cellular phones, photo
frames or even personal assistants. On the other hand, the
quiet and peaceful aspect of this vision where computing
units can understand each others in order to collaborate is
yet a research problem.

Build upon this network of devices, ambient intelligence
tries to address the problem of making devices refer to
users in an appropriate way by making them aware of their
activity: current task, availability, focus of attention, etc. In
this context, smart environments or intelligent environments
refer to environments that are spread with sensors and
actuators which sense users’ activities and respond according
to them.

In this attempt, activity understanding remains a complex
and challenging problem relying on the ability to constantly
aggregate information from an ever changing medium of
devices and media. A medium of information, which is in
constant evolution due to the fact that media and devices,
come and go, break and evolve. Mobility in this context
is no longer an option. In order to guaranty the best user
experience, services provided to the user should be available
everywhere and at any-time. The intelligent part –the one
that guarantees the best mapping between perceptions and
actions, must, in some way, be carried along with the user
in its daily activities and could, for instance, find itself
embedded in a mobile phone. While the user will carry
his mobile phone, the later will have to dynamically adapt
to the current environment, connecting to available sensors
and actuators, scanning for and exchanging with available
services.

Ambient intelligence, thus, relies on a large number
of different fields of expertise and brings along many
challenges. Among these challenges, one that plays a
central role is the handling of dynamicity in software
architectures. This paper addresses the use of the OMiSCID
[2] middleware that fits in between the network of
devices and ambient intelligence. It aims to ease the
design of agile Service Oriented Architecture (SOA)
and to solve constraints of pervasive computing and
intelligent environments. OMiSCID manages services in
the environment, by providing cross-platform/cross-language
tools for easy description, discovery and communication
between software components.

In the next section, we introduce the needs for such a
middleware and we present our approach, focusing on key
functionalities and concepts. Benefits of using OMiSCID
are shown with some refactoring and reusability examples.
Finally, the use of OMiSCID is illustrated by the design of
a Wizard of Oz experiment.

II. UBIQUITOUS COMPUTING REQUIREMENTS

The overall goal of the PRIMA research group is
the elaboration of a scientific foundation for interactive
environments. An interactive environment requires the
capabilities of perception, action and communication. An



232

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

environment is said to be perceptive if it is capable of
maintaining a model of its occupants and their activities.
Such a model may include the identity of individuals,
an estimation of their position, their recent trajectory,
as well as recognition of the activities of individuals
and groups. An environment becomes active when it is
capable of action. Actions may include presentation of
information. They may also include the capability to
manage visual and acoustic communications, as well as the
capability to transport documents and material. Controlling
an environment that is perceptive and active requires a
capability to interact. This capability may rely on speech
recognition, gesture or object manipulation interpretation,
observation of people interactions. Among those challenges
is the one of developing and integrating these three
capabilities.

For instance, in order to build ambient intelligence
applications, many software services, developed by
specialists using multiple techniques and languages, must
dynamically interconnect to furnish users with the best
comfort as possible. In the context of international research
projects, such as DARPA or EU funded projects, the
problem get even more complex as the differences among
research groups involved are important. Differences include
habits and historical/technical backgrounds. In order to help
non software-architect researchers to interact and better
collaborate, we need a simple and usable solution that
addresses a common problem: how to find, to interconnect
and to monitor services within the context of cross-language,
cross-platform and distributed applications?

To solve this problem, one can envision many different
approaches. The first one is to agree, a priori, about a
specific programming convention, e.g., languages, platforms,
technologies and so on. This solution can be adopted in
small groups and must be driven by underlying technologies.
This, however, has many drawbacks. For instance, it may
oblige people to learn a new language or a new framework.
Additionally, the agreement achieved between scientists and
developer involved is subject to change, depending on the
evolution of technologies but also on the evolution of the
team members. An alternative scenario is to list all the
software components and try to find a common way to
interconnect them, no matter the platforms/languages used
or any other constraints that might appear.

The alternative scenario is often approached by the
implementation of a middleware, aiming to abstract lower
software components. Bellow we list properties that such a
middleware should have, at least in ubiquitous computing
and ambient intelligence, our research area:

• Attractiveness: To be attractive, a middleware must
be available in several programming languages (C++
for video/audio processing, Java for lighter processing,
enterprise integration or user interfaces development,
scripting language for rapid prototyping) on multiple

operating systems (Windows, Linux, MacOSX/iOS,
Android).

• Extensibility: To be accepted, the integration of a
middleware in existing programs must be timeless,
costless and effortless. Adding new functionalities must
be as simple as possible.

• Networking: Networking capabilities must support, a
various, always stretching, range of protocols like peer
to peer connections (IP address/port) or more complex
interconnection protocols using service description and
discovery for instance. Ad-hoc networks should also
be supported. The middleware must also support the
exchange of various data types between the software
components, from simple text message or formatted
data structure to huge data like audio/video flows.

• maintainability and sustainability. Maintainability
includes readability of the source code, a friendly
and user oriented API, predictability of the software
behaviors and monitoring of running processes over
the network. Sustainability is the potential for the long-
term maintenance and reuse of software components.
Sustainability is strongly correlated to maintainability.

Two widely used solutions are OSGi and Web Services.
They are compared in Table I. OSGi [3] is the first
typical solutions to provide most of the requirements listed
formerly. It permits construction of Java applications locally
by recruiting components. Using iPOJO [4], it is possible
to declaratively describe services and requirements using
annotations for instance in order to avoid writing dedicated
code. Using specific adapters, like in R-OSGi [5] it is
also possible to search for non local services. Exposing an
OSGi service to multiple protocols (like UPnP [6], Web
Services, etc.) can be easily achieved using the ROSE (also
named Chameleon) [7] ecosystem over an OSGi platform.
H-OMEGA [8] proposes also an alternative using UPnP
for device discovery and a centralized server for code
management. Nevertheless, it is difficult to combine all the
evolutions of OSGi. Additionally, even if it is possible to
use JNI for C/C++ application, OSGi is dedicated to Java.

Web Services [9] are also a widely used solution
for distributed applications. They permit to use web
technologies in order to construct distributed applications.
Services are described with the Web Services Description
Language (WSDL) and can be discovered using WS-
Discovery. As presented in Table I, Web Services are not
designed to handle huge data flows. Moreover, even if there
are several alternatives to WSDL, like the Business Process
Execution Language for Web Services (BPEL4WS) [10] or
the Web Ontology Language for Services (OWL-S) [11],
they all provide service descriptions that are not easy to
handle for a non specialist.

Finally, the last possible solution is to use a specialized
middleware, usually dedicated to a specific task and/or
environment. We can illustrate this solution by focusing on



233

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Smart Flow II [12]. This middleware is very efficient in
managing the data flow from many multimedia sources at
the same time on several computers. But its force is also its
weakness: it is difficult to configure and to manage other
type of data.

From the previous sections, we can see that none of the
reviewed solutions fulfils all the identified requirements.
This assumption motivated our effort to develop the
OMiSCID middleware. In the following sections, we will
present the underlying concept and philosophy behind the
OMiSCID middleware solution.

III. OMISCID BASICS

OMiSCID stands for Opensource Middleware for
Service Communication Inspection and Discovery [2].
It was designed to answer the problem of integration
and capitalization of heterogeneous code inside smart
environments. OMiSCID is distributed under a MIT-like
license (free for both commercial and non-commercial
applications), fully open source and available on our
forge [13].

A. Concepts

The OMiSCID middleware is built around 3 main
concepts: services, connectors and variables. They are
detailed in the following sections.

1) Services: A service is a piece of software that exposes,
in a transparent and light way, functionalities for a specific
task. Functionalities are thus visible and available for any
other services over the network without any implementation
constraint. A service exports its functionalities and its state
through its connectors and variables. At least, a service
contains:

• name. This variable must represent the main function of
the service. It should be human readable like Camera;

• class. This variable allows to logically organize services
in categories, for instance VideoProcessing;

• id. This unique id over the network is automatically
generated by OMiSCID. Services can be distinguished
using this id.

• hostname. Computer name where the service is
running;

• owner. Owner is the login which starts the service on
hostname;

• control port. The control port is a connector used to
control and manage the service.

Aggregating all these information, we obtain a service
description that can be used to search and interconnect
services. Services in OMiSCID are self-described, as
opposed to domain specific standards like Bluetooth
profiles [14] or UPnP standard device categories [6] for
instance. As stated by David Svensson Fors et al. [15],
standards need to be exhaustive which is not that easy, even
for small applications like controlling a printer.

Granularity of what is a service is dependent of
the developer’s choice. Nevertheless, one must choose
granularity smallest as possible in order to increase
reusability and maintainability. Monolithic services are not
desirable: high level services will not likely be reusable in
other contexts. On the opposite, tiny services, i.e., services
providing too basic functionalities, are also a very bad choice
as they increase communication schema and debugging cost.

Among dozens of services we developed, we can cite
four examples to illustrate our granularity choice: the light
controller service which is controls the light in a room,
the video service that streams data from a camera over the
network, the speech activity detection service that estimates
whether the sound from a microphone service contains
speech, and the 3D tracker service that inputs video streams
from video processing services in order to compute the 3D
positions of people in a room (see Section VI-A).

2) Connectors: Connectors are communication ports that
can be instantiated by any service to exchange data with
other services. Services can have several connectors to
logically separate data according to their origin. Each
connector is independent from the others. It is identified by
a name, a human readable description and a set of sockets
where it can be reached.

Connectors can send data over TCP or UDP. In this
last case, OMiSCID guaranties (re)ordering of messages.
In case of message lost, each peer is notified. Connectors
can send data (input type), receive data (output) or both
(input/output).

3) Variables: Variables describe the service and its state.
A service can expose as many variables as needed. Variables
are defined by these attributes:

• Name. Name of the variable (254 characters max);
• Description. A human description of the variable;
• Type. Type is given as a text attribute. It can be used

to parse variable value;
• Access type. It is possible to define constant variable. In

case of a constant variable, value of the variable cannot
be changed after starting the service. Variables can
also be read only: modification requests coming from
another service will then be automatically rejected;

• Value. This attribute contains the value of the variable.
Any service can register to another one to receive

notifications when the value of one or several variables
changes.

B. Communications

Messages are atomic elements of all communications in
OMiSCID. They are sent using a connector to a specific
peer or to all listening services at once. The receiver
will be notified that a new message is ready when it is
fully available. Each message is provided with contextual
information such as the service and connector it comes from.



234

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: COMPARISON OF WIDELY USED SOLUTIONS

Description cross-language cross-platform Messages Huge data flows Service discovery over the network

OSGi approach No (Java) Yes Yes Possible Using R-OSGi for instance

Web Services Yes Yes Yes Not designed for Using WS-Discovery

Even if OMiSCID is not limited to these, there are 2 kinds
of workflows that are usually mixed:

• A peer to peer approach. After receiving a message
from a service and processing it, a response message
is sent back to it. Input/output connectors are used in
this case;

• A data flow approach. After receiving a message on
an input connector and processing it, a message with
the result is broadcasted on another output connector
in order to continue the processing chain.

Message can be sent as raw binary chunk or as text, which
allows lot of flexibility for developers. Binary messages
are often used to stream real time data such as video or
audio. Text communication can be enhanced by using XML,
YAML [16] or JSON [17] format and allows for more
advanced operation and extensions (see Section IV-C).

C. Service discovery in dynamic context

Also known as service discovery, the ability to browse,
find and dynamically bind running services, is one of the
most important features of SOA, particularly in ubiquitous
computing environments. It is not uncommon to filter
services based on their current state, description or provided
functionalities. Filters can be used in two different ways:

• An ask-and-wait approach asking for the list of services
that match a certain criterion. This procedure will wait
until at least one service match or that a timeout is
reached rising an exception.

• An ask-and-listen approach notifying the application by
the means of callback or listener whenever a service
that matches the criteria appears or disappears.

OMiSCID provides the basic logical combination of
predefined search criteria (variable value/name, connector
properties, etc.). They are implemented as functor (function
object). For instance, to search a Camera service with an
output connector named data flow or a service Encoding not
running on the same computer, one can write the following
(C++) filter:

Or ( And ( NameIs ( ” Camera ” ) ,
HasConnec tor ( ” d a t a f low ” , AnInput ) ) ,

And ( NameIs ( ” Encoding ” ) ,
Not ( H o s t I s ( GetLocalHostName ( ) ) ) )

It is possible to extend filter capabilities providing more
complex search primitives by implementing custom functor
objects. Figure 7 and Section VII-C give clues about
OMiSCID service discovery capabilities.

D. OMiSCID Gui

OMiSCID provides a simple solution to declare, to
discover and to interconnect services. However, in an
ecosystem spread with a multitude of services, it becomes a
requirement, for both the users and the developers, to have
an interface helping the visualization, the monitoring, the
interactions and the control of all the services. Additionally,
the debugging of a service (or a federation of services) in this
wild ecosystem can, without appropriate tools, be a painful
task. Given this facts, we developed a graphical front-end to
OMiSCID: the OMiSCID Gui (see Figures 1 and 2).

OMiSCID Gui is a powerful tool built over the Netbeans
platform and provides the developer with a graphical
interface for multiple management tasks. It inherits many
of the advantages from the Netbeans platform: portability,
modularity, advanced window management, etc. OMiSCID
Gui comes with light core modules and is extensible at
infinite. One of the core modules is a service browser that
displays all the services present within the environment as
well as their connectors and variables. The service browser
also provides an extensible set of contextual operations to be
applied on the selected services. Default operations include
for example monitoring a connector (watching or sending
messages) and monitoring a variable (watching changes or
sending modification requests). Among all the extensions
available and easily installed using the Netbeans Plugin
interface, one can find:

• A simple variable plotter that can dynamically create
and display evolution of (numeric) service variables
(see Figure 2);

• A family of plugins that allow the display of 2D
information such as video stream or custom shapes
representing for instance regions of interest of a 2D/3D
tracker;

• A plugin that displays a graph of the services present
in the environment along with their interconnections;

• A lot of other plugins such as real time audio stream
player, 3D visualization tools, cameras controls, etc.

OMiSCID Gui comes with a public plugins repository
already packed with visualization, controls, debugging
plugins and can be extended by developers. All Netbeans
platform plugin can also be integrated into our platform and
vice versa. Its ease of use makes it a must-have tool for
OMiSCID development, demonstration and service oriented
application development.



235

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2: OMiSCID Gui. Public available plugins like running services properties (top left corner), variable value plotter
(middle bottom), camera view (right bottom), service video controller (top right) are depicted.

IV. BRIEF TECHNICAL DESCRIPTION

One crucial requirement when designing a middleware
for such heterogeneous research area is to make it usable by
most of the people involved.

A. Multiplatform/Cross-Language

OMiSCID was designed with cross-platform/cross-
language capabilities in mind. There are actually 3 supported
implementation of OMiSCID: C++, Java and Python
(PyMiSCID, note that the Python version used to be a simple
wrapper around the C++ one). Moreover, the Java version
can be used from Matlab and any other language running
on the Java virtual machine (JavaFX script, scala, groovy,
JavaScript, etc.) We also provide an OSGi abstraction
layer that exposes OMiSCID with standard OSGi paradigm.
OMiSCID was developed over a set of guidelines rather
than over strict specifications. All the implementations
are fully written in the target language, thus ensuring

speed, reliability, close integration with data structures and
programming paradigm.

All versions are fully cross-platform and works on Linux,
Windows and OS X both 32 bits and 64 bits. The C++
version uses an abstraction layer that provides common
system objects like sockets, threads, mutexes, etc. The Java
version has been successfully used on portable devices like
a PDA and on the Android platform. All implementations
can interoperate with each other on any supported platforms.

B. User Friendly API

In order to simplify interpersonal communications
between OMiSCID users, we developed a common User
Friendly API. It was defined to be easy to learn, easy to
use and portable in several languages. Indeed, concepts,
methods and parameters follow the same API in C++, Java
and Python. However, each implementation takes advantage
of the language specificities and design patterns. The API



236

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: OMiSCID Gui session while monitoring and
debugging multi-camera tracking system. Basic OMiSCID
Gui functionalities are visible: monitoring of running
services properties (top left corner), camera and tracking
views (top right, available public plugins), video service
controller in order to control 2 video services (right bottom)
and the add-in manager to show active plugins (left bottom).

provides simple callback/listener mechanisms. Thus, one can
be notified of many different events: a new connection from
a service, a disconnection, a new message, a remote variable
changed, etc.

The final User Friendly API is designed to be non-
invasive. The OMiSCID code, inside a service, must be
short, understandable and disjoined of the core source code.
For instance, the following is a short example written in C++
that shows how to create a service with an output connector,
how to register it over the network and finally how to send
data to everyone connected to it:

# i n c l u d e <Omiscid . h>
u s i n g namespace Omiscid ;

/ / C r e a t e a s e r v i c e named camera
S e r v i c e ∗ pServ = S e r v i c e F a c t o r y . C r e a t e ( ” Camera ” ) ;
/ / Add a o u t p u t c o n n e c t o r t o i t
pServ−>AddConnector ( ” d a t a f low ” ,

” images s t r e a m ” , AnOutput ) ;
/ / R e g i s t e r and s t a r t t h e s e r v i c e
pServ−>S t a r t ( ) ;
/ / . . .
/ / Send a v i d e o b u f f e r t o a l l c l i e n t v i a
/ / t h e ” v i d e o f low ” c o n n e c t o r
pServ−>S e n d T o A l l C l i e n t s ( ” v i d e o f low ” , B u f f e r ) ;

C. New functionalities in OMiSCID 2.0

The current version of the OMiSCID middleware is 2.0.
This version brings new requested functionalities: object
serialization and remote procedure call.

Indeed, the philosophy of OMiSCID is to exchange
information between services using either binary or textual

messages without any standard on the format of those
messages. However it has been requested by developers
to provide a simpler way to encode and decode textual
messages. Thus, OMiSCID 2.0 provides a simple way
to marshal and unmarshal any object to a JSON [17]
representation. This allows easy communication between
services without paying attention to the parsing and
serialization of messages. The second improvement is the
ability for a service to expose some of its functionalities by
the means of remote callable methods. Such distant calls
can be done either in a synchronous or in an asynchronous
manner. Again these extensions are cross-platforms, cross-
languages and benefit of specific improvement or features
depending on the implementing language.

D. Performances

With the intention to provide our community with
insight about OMiSCID performances, we conducted several
experiments. Each one of these experiments were done on
a cluster of computers called Grid5000 [18]. The choice of
using a cluster is motivated by the fact that computers are on
an isolated network, without any kind of perturbation (e.g.,
network maintenance, backup in progress, etc.). Moreover,
it insure that each operating systems is newly installed,
thus without side-effects of having old libraries or an
unstable/tweaked system. The last criteria that motivate this
choice is that experiments performed on Grid5000 are easily
reproducible.

To evaluate the OMiSCID discovery process, we set up
dedicated tests performing registering and searching tasks.
Regarding the registering operation, at first sight, it is not a
costless operation. Indeed we must generate and validate,
for each newly created service, a unique service id (see
Section III-A1) over the network. Our experiment shows
that registering 100 services from 3 different computers
takes less than 1 second. Regarding the searching task,
also referred as lookup task, even if it is a linear process
for OMiSCID (search time is linear in terms of number
of running services to query), searching involves network
communication and thus may takes time. Our experiments
reveal that finding a service among more than 400 others,
distributed over 4 computers and using a simple variable
value takes less than 20 ms long in average. Obviously,
performing more specific searches, using for instance user-
defined search filter (processing video stream to select a
camera for instance) will eventually take more time.

Another performance measurement we performed was
the latency introduced by OMiSCID message splitting
mechanism (see Section III-B). Those tests were performed
between two computers. We compared results using NTTCP
—a Linux program that measures the transfer-rate between
two computers, and using OMiSCID. Each test was run
1000 times using messages ranging from 512 bytes to 2
megabytes. The result show that the latency introduced by



237

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OMiSCID for message handling is around 4ms in average
comparing to usual TCP/IP connections.

The reader might refer to [19] for other tests on
performance and scalability.

V. CASES STUDY

For the past few years, we have used OMiSCID
middleware in different research projects [20], [21], [19],
[22]. In [19], OMiSCID is used to redesign a complete 3D
Tracking system as well as an automatic cameraman. The
redesign reduces the number of software components and
has the advantage to provide shared and reusable services.
For instance, both architectures use the same video grabbing
services. This service provides real time streaming of camera
images. This stream is simultaneously accessible by multiple
services such as visualization services and image processing
ones: movement detector, person detector, posture estimator.

OMiSCID middleware allows robustness for service
discovery, reliable communication, connection and
disconnection but also ease the federation of services.
In [22], [21], OMiSCID is used for the implementation
of a smart agent. The perception of the agent is provided
by services dynamically discovered in the environment
allowing the agent to construct a situation model [23] of
the current situation. The agent is yet another service and,
according to its perception, it is able to perform actions in
the environment by sending orders to actuator services. In
[22] the knowledge of the agent is distributed and can be
stored on remote database using a combination of OSGi
and OMiSCID. Each service developed is a reusable piece
of software, which, by extension, ensures a decrease of
development time along the years.

In the following sections, we will introduce a 3D video
tracker —an OMiSCID redesigned example, some examples
illustrating reusability (e.g., a network of Multi-modal
Towers and Human Simon Game). The last illustration,
present a Wizard of Oz experiment conducted in our lab
which show various usage and benefits of using OMiSCID.

VI. SHOWCASE: REFACTORING, REUSABILITY AND
MONITORING

A. Refactoring, the 3D Video Tracker case

To interact with people in smart environment, it is
important to be able to detect people as well as to maintain
an estimation of their current state e.g., position, speed,
posture, etc. We have developed a video tracking system
adapted to dynamic and complex environment. The 3D
tracking was initially an improvement over an existing
2D tracker. It was running multiple 2D trackers and, by
merging the different outputs, was able to compute a
pseudo 3D estimation. This tracker had initially a monolithic
architecture for performance reason: image acquisition and
tracking process were done within a single process.

A full 3D tracker must estimate directly the targets in 3D
using information from several cameras. Evolution from 2D
to 3D tracking required a change in the architecture as the
complexity became too high to run on a single processor.
For instance, the number of camera increasing from one to
four and sometimes many more cameras. For robustness,
reusability and maintainability reasons it is mandatory to
split image acquisition and processing software part.

The chosen architecture is shown in Figure 3. This
architecture introduces a new concept: service factory.
Services factories are services (following the factory method
pattern) that are designed to start but also instantiate, on
demand, a (parametric) service. Factories can be seen as
daemon services, ready to launch other service(s) as to fulfil
applications needs. Such scheme eases the deployment of
distributed applications. In this example, a Video Service
Processing Factory can create a Video Service Processing
(VSP) with special pipeline treatments over images from a
camera.

The architecture is thus modular and distributed in order to
reduce computation time and to avoid costly images transfer
over the network:

• A video service is in charge of grabbing images from
each camera;

• A video service processor (VSP) factory is attached to
each video service. Its role is to initialize one or more
VSP in charge of image processing tasks;

• The main tracker program is in charge of targets
tracking; it automatically detects all VSP Factories,
requests for VSP creation and connects to them.

This refactoring, performed for the 3D tracker, allows us
to create lots of software components that are reused later
in many other perceptive applications.

Demonstrations of the 3D tracker system are available on
the PRIMA channel (see the Tracker, Human Simon Game
and more videos on the PRIMA channel [24]).

B. Reusability, the Multimodal-Tower Network case

In the context of the CASPER project (Communication,
Activity Analysis and Ambient Assistance for Senior
PERsons), a project for maintaining elderly people at
home, we developed a multi-modal localization system.
This system (see Figure 4) associates on each tower an
omnidirectional camera with an array of microphones.
Tracking is done combining visual tracker of bodies and
acoustic tracker of people when they speak.

Building such application is facilitated by the reusability
of already available services: microphone service for audio
recording, speech activity detection service, video service for
images acquisition, VSP factory (see previous section) for
video processing. Only one service was built in this case, the
localization service. This service can dynamically register,
using filters (see Section III-C), to all data coming from all



238

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Camera

Video Service

VSP Factory

vsp

Computer 1

Computer 2

3D Tracker

Camera

Video Service

VSP Factory

vsp

Camera

Video Service

VSP Factory

vsp

Figure 3: Video tracker architecture. For each camera, a
Video Service is in charge of grabbing images and sends
them to a Video Service Processor (VSP). This Video
Service Processor is instantiated on demand by a VSP
Factory. The 3D tracker service automatically finds all VSP
Factories, asks them to create VSP and connects to them as
to handle targets management.

towers in the room. Then, after an auto-calibration phase, it
can track speaking targets in the room.

As it is usually the case, reusability increases
maintainability. Using services in many different contexts
is a good way to deeply test them in adverse conditions,
with new client services. For instance, in the realisation
of this system, we highlighted different issues in certain
existing services that were not evident to spot before their
integration in this particular setting. It is not worth to say
that, correcting problems in a service is a benefit for all
applications using it.

C. Reusability, the Human Simon Game case

Validating performances of a 3D video tracking system
is usually done using well known databases containing
annotated recordings providing ground truth labels. The
results of the evaluated system are then compared to
the ground truth using different kinds of metrics and
thresholds in order to provide a score. Such approach are
very convenient to validate a tracking system regarding
the state-of-the-art (for publication purpose for example).
However, generally, the tests are performed off-line and
the thresholdings often lead to imprecise measurements.
Additionally, test-databases are usually designed to evaluate
very specific characteristics and are conditioned as well
by very specific environmental conditions. As a result,
the outcomes obtained by testing your system over such
databases are not necessary representative of the real
performance of your system. They might not highlight the
particular benefits your system is bringing compared to other
existing solution. Robustness to environmental artefacts,
such as change in light exposure or random ambient noise
for instance, is often omitted. In an attempt to provide an
online alternative for the validation of our 3D video tracking

Figure 4: Multimodal tower equipped with an
omnidirectional camera and a set of microphones.
Multiple towers may be disseminated in the environment
and constitute a sensory-network used to follow and infer
activity of elderly people at home. One can see the tower
itself, a view from one panoramic camera (top right) and the
auto-calibration algorithm configuring the relative position
of 3 towers.

Figure 5: Human Simon Game. Players follow projected
instructions on the wall. They play against each other. They
must run and squat in cells to activate them. As in usual
simon game, the activation sequence is longer each turn10.



239

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system, we designed an experimental-game showing, in real
time, the performance (speed performance, number of false
detections, resistance to occlusions, etc.) of our solution in
adverse conditions (rapid moves, occlusions, bad lightning
condition, etc.).

In order to achieve this goal, we designed a Human Simon
Game (see video on the PRIMA channel [24]) based on
the famous game for child: one need to remember an audio
sequence associated to blinking color buttons. In our case,
as seen on Figure 5, we decided to virtually cut the room
space in 9 cells, each representing a ”blinking button” of the
Simon game. Cells can be activated by one or two players
squatting and standing back up in it. The game is similar to
the usual Simon Game but is adapted for two players: each
player has a color and must validate an always increasing
sequence of cells by moving and squatting over the virtual
3x3 grid.

In our case, setting up this validation system was an easy
task. The 3D video tracker, the posture estimator (for squats),
the steerable projector (projecting the game interface on a
wall in front of the players) were all existing services that
we reused. The only software component developed was the
core algorithm of the actual game.

VII. FULL CASE STUDY: WIZARD OF OZ EXPERIMENT

In the field of human-computer interaction, a Wizard of
Oz (WOz) experiment is a research experiment, in which
subjects are confronted with a computer system that subjects
believe to be autonomous, but that is actually being operated
or partially operated by some hidden experimenter(s): the
wizard(s). The goal of such experiments is to study the
usability, acceptability and efficiency of a proposed system,
functionality or interface —often hypothetic or unfinished—
by evaluating the interaction of the subjects with it rather
than focusing on the quality of the proposed solution. The
advantages of performing a WOz experiment versus actually
evaluating the real system or interface are that it saves time
and money. Indeed the WOz experiment is a quick and
cheap way of (in)validating a set of proposed functionalities
without investing resources in a system that might be, first,
reconsidered regarding the feedbacks collected from the user
experience, and second, just impossible to design due to
the absence of required technologies to build it, or the lack
of budget and/or time. In the WOz, certain functionalities
can be implemented while reconsidering the other. For
instance, if we consider the case of smart environments —
environment equipped with sensors and actuators designed
to provide assistance to user in daily tasks and activities,
it can be very annoying and sometimes not an option, to
dispose of a perfectly working environment if the only
functionality wanted to be evaluated is, for instance, how
users manage to undo an action performed in the background
by this environment —switching the TV off, turning the
music back on, opening the shutter or raising up/down

the volume of some other devices. A more time-efficient
and money-efficient option would be to focus the resources
on the functionalities of interest and manage to fake the
other functionality by, for instance, remote controlling the
environment by one or more experimenter. In a WOz
experiment, the missing functionalities are emulated by
an experimenter hidden from the subjects performing the
evaluation. In most settings, subjects are located in a room
along with the system to evaluate while the wizard operates
in another room. Both rooms can be separated by a beam
splitter allowing the wizard to observe and react accordingly
to the subject(s) actions.

A. Requirements

Even if performing a Wizard of Oz (WOz) remains in
many ways more advantageous, depending the context of
the experiment, setting up such experiment requires an
important preparation. Importantly, additional constraints
appear if the settings have to be mobile, i.e., to be carried
in different places. The wizard must have access to a
multitude of information in order to control the system as
well as possible. Without the presence of a beam splitter, the
environment must be equipped with cameras, microphones
and speakers to record and stream the scene in real time.
Among those devices, the wizards (there might be more
than one), also need the proper controllers to remotely
manipulate the system. Such a setting requires an extensive
use of wireless or wired communication between software
components: controllers and controlees. In addition, the
coupling between software components has to be able to
change and to be easy to achieve. Allowing for instance
to deploy debuggers, loggers or visualization tools at
runtime. The more reusable the perceptual/actuator software
components are, the cheapest and fastest the experiments
will be.

B. Experimental Settings

On an ongoing research project [25], we sought to
evaluate the behavior of subjects immersed in a ubiquitous
environment while asked to teach a smart agent how to
control the space. Among few, the objectives were to validate
hypothesis about human-machine interaction as well as to
collect constructive outcomes that will help future design of
ambient systems.

Four kinds of actor are to be considered in this
experiment: the subjects, the smart agent, the environment
and the wizards. The subjects by group of 2 or 3, are asked
to teach the agent to control the environment in order to
organize a small meeting. A classic example would be for
the subjects to teach the agent to switch on a light when
people are entering the room, and, to switch it back off
when everybody is leaving.

The agent is embodied by a personal mobile phone with
wireless capabilities, on which we deployed a learning



240

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Camera
Camera

Cameras

Microphones

Steerable
Camera
ProjectorX10

X10
X10

X10

X10

Figure 6: PRIMA’s Smartroom. The smartroom is equipped
with perceptive equipments (cameras and microphones),
and with actuators (mobile steerable camera/projector pair,
X10 power controllers). It has been designed to permit
immersive user studies with activity recognition (perception
and situation modelling) and system feedbacks.

software and a simple user interface. This interface allows
collecting real-time feedbacks from the subjects (good, bad)
during the session. Alternatively the agent can be embodied
by other devices such as, for instance, a robot. In this
case, more perceptual components are available for the
experimenters and the interaction between the subjects and
the agent is different (e.g., the rewards are more natural to
provide). The agent, as any other service, connects through
the wireless network to a situation modeller service that
provides a situation model [21] of the current situation.
When requested by the subjects, the agent performs an action
in the environment by sending orders to actuator services
present in the environment. Subjects can, whenever they
agree or disagree, give a positive or negative reward to the
agent. With such a settings, the agent learns to control the
environment, senses and acts using dynamically discovered
services, and finally, learns from the feedback provided by
the subjects the correct association between situations and
actions.

The environment is an office (Figure 6) spread with
many actuators and sensors. OMiSCID allows each of them
to be accessible and controllable by services all-over the
network (Figure 7). Among the sensors we find: cameras,
microphones, a thermometer and a weather station. All the
actuators are controllable by OMiSCID connectors and their

states can be queried by those connectors or are exposed
through variables. Among the actuators, we list: a steerable
video projector, some x10 controllers, loud speakers and
even windows shutter.

For this experiment, we needed two wizards. The first
wizard was in charge of simulating certain actuators in the
environment such as pressure detectors under the chairs
and sofas. Indeed, it was told to the subjects that each
chair was mounted with pressure detector to detect when
someone sits. Because we had no such device installed in our
environmental facility, we emulated those actuators using a
user interface plugged into OMiSCID Gui. The simulating
interface was seen as yet another service that can be used by
the situation modeler to build up a better situation model.
The second wizard was controlling the overall experiment
using a master interface. This interface allowed writing real-
time observations through an annotator service, as well as
taking control over all the services in the environment. Such
a master control for instance let the wizard speed up the
experiment by helping the agent to guess better actions
(when subjects got exhausted).

C. OMiSCID At Glance

For this experiment we deployed more that 20 services
spread on 5 computers running different operating systems
(Linux, Windows and MacOSX). Figure 7 presents some
of the devices present in the environment as well as
the interconnection of services. Due to the complexity of
the schema some services have been removed. We next
review some of the advantages of using OMiSCID in this
experiment:

1) Multi-platform: 5 computers have been used during
the experiments, two of them by the wizards. One of the
wizards was using MacOS, on which we deployed the master
control. Due to driver issue the sound recording system was
using a Microsoft powered computer. The video streaming
as well as all the other services (archiver, x10, etc) were
running on Linux hosts.

2) Multi-language: To design the services, we have
used different languages. C++ was used for performance
reasons such as for the video and sound processing/capture
services. Python is a really powerful language for the rapid
prototyping of application. We used Python to quickly
develop the x10 or the PanTilt controllers. Java has been
used to develop some of the OMiSCID Gui module but also
to access the different online web services exposed in the
environment such as the weather service. JavaFX was used
to develop the wizard control’s interface. Its script language
makes it easy to use for inexpensive user interface design.

3) Service Discovery: The simple but powerful service
discovery system provided by OMiSCID has been used to
dynamically connect services together. The best examples
are the situation modeler and the archiver. Using a service
repository, they were able to filter services that were present



241

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Video 
Service

Camera

Video 
Service

Camera

Situation
Modeller

Mobile Phone

Agent

Hard Drive

Archiver

Steerable 
Projector

Content
Controller

Pan/Tilt
Controller

Light Light

...

X10 
Controller

Presence
Provider

Pressure
ProviderWizard

Interface

OMiSCID
GUI

Annotator

Global
Controller

OMiSCID
GUI

Wizard
Interface

Music
Controller

Speaker

Microphone
Service

Microphone

Temperature
Controller

Weather

Weather
Provider

Temperature
Provider

Termometer
shutter

Shutter
Controller

heat

Figure 7: Graph of services for our Wizard of Oz experiment. Services used were mostly created for other experimentations
(video services, microphone service, music controller, etc.) and were directly reused and interconnected with specific
orchestrating services for this experiment (annotator, global controller).

in the environment in order to connect to them. For instance
the situation modeler was looking for all services having
connector or variable exposing state information. Using that
state information, it was able to provide a situation model
on an output connector. The archiver was responsible to
backup any information transmitted between services on
a hard drive. The archiver was continuously looking for
all services having output connector. Thus it was easy for
instance to deploy or shutdown services on the fly during
the experiment.

4) Communication: Communication between services
was achieved using different format. For video and sound
services, data were raw binary information tagged with time
stamps. Web services such as the weather provider were
communicating information using XML on their connector.
The PanTilt controller exposed its commands by the means
of remote callable methods, and presented its internal state
using readable variable.

5) OMiSCID Gui: OMiSCID Gui was used by the wizard
for different purpose. Firstly, the streamed sound and video

were played by the embedded player. Indeed, we have
developed OMiSCID Gui modules to play video and listen to
audio stream in real-time. Those modules have been used to
get a feedback of what was happening into the experimental
facility disposed into another building. Secondly, OMiSCID
Gui was used to control the archiver and other services.

6) Reusability: Each of the service used in this
experiment is a reusable piece of software that can be carried
and deployed easily. For a wizard of Oz experiment, only
the hardware and the equipments (cameras, microphones)
have to be transported and reinstalled. Everything else is
deployable instantly and can adapt to the configuration:
number of computers, operating systems, number and nature
of devices, etc.

VIII. CONCLUSION

OMiSCID is an efficient and lightweight solution for
the rapid prototyping of Service Oriented Architectures and
applications in the context of ubiquitous computing and
ambient intelligence. The solution provides a user-friendly



242

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

API to declare, to describe, to discover and to interconnect
services as well as to manage their communications.

To be attractive, OMiSCID offers to researchers
several facilities for ubiquitous computing with its multi-
platform, cross-language capabilities and interoperability.
The underlying concepts as well as the API are user friendly
and directed toward usability, extensibility, reusability and
maintainability. In contrast to existing solutions, the API is
non-invasive which keeps the developed solution portable to
other paradigm if mandatory. OMiSCID can also be mixed
or extend other middleware solutions as we did with the
OSGi platform. Using OMiSCID for service discovery, one
can built an ubiquitous application interconnecting dozens
of services. All networking aspects are handle by the
middleware as this solution does not rely on the number of
computers, operating systems or network configuration. One
can concentrate about core services that will orchestrate the
full application. As transfer-rate performances are not altered
by OMiSCID usage, it is possible to transfer data from a
simple integer to huge video streams. Target applications
are thus not limited by OMiSCID.

Along with this middleware, OMiSCID Gui provides
developers with an extensible, portable and modular
platform that ease development and debugging, and
improve maintainability of OMiSCID demonstrations and
applications.

OMiSCID has successfully been used in several academic
research projects and more recently in a wizard of Oz
experiment. Such an experiment requires an important
amount of resources and preparations, particularly when
realized in smart environments. We have presented
how OMiSCID and OMiSCID Gui can greatly reduce
development time, maximizing reusability of existing
software, and eases redeployment.

IX. ACKNOWLEDGEMENT

For their past work on OMiSCID and/or experimentations
depicted in this article, the authors would like to thank (in
anti-chronological order) Wafa Benkaouar, Matthieu Langet,
Jean-Pascal Mercier, Julien Letessier and Sébastien Pesnel.

REFERENCES

[1] R. Barraquand, D. Vaufreydaz, R. Emonet, and J. Mercier,
“UBICOMM 2010 paper Case Study of the OMiSCID
Middleware: Wizard of Oz Experiment in Smart
Environments,” in The Fourth International Conference
on Mobile Ubiquitous Computing, Systems, Services and
Technologies, Florence, Italy, 2010.

[2] R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier,
“O3miscid: an object oriented opensource middleware for
service connection, introspection and discovery,” in 1st IEEE
International Workshop on Services Integration in Pervasive
Environments, Lyon (France), jun 2006.

[3] “OSGi Alliance,” accessed 17-January-2012. [Online].
Available: http://www.osgi.org/

[4] C. Escoffier, R. S. Hall, and P. Lalanda, “ipojo: an extensible
service-oriented component framework,” Services Computing,
IEEE International Conference on, vol. 0, pp. 474–481, 2007.

[5] D. Wang, L. Huang, J. Wu, and X. Xu, “Dynamic software
upgrading for distributed system based on r-osgi,” in CSSE
’08: Proceedings of the 2008 International Conference on
Computer Science and Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 227–231.

[6] “Referenced specifications UPnP forum,” accessed
17-January-2012. [Online]. Available: http://upnp.org/
sdcps-and-certification/standards/referenced-specifications/

[7] “OW2 chameleon,” accessed 17-January-2012. [Online].
Available: http://wiki.chameleon.ow2.org/xwiki/bin/view/
Main/Rose

[8] C. Escoffier, J. Bardin, J. Bourcier, and P. Lalanda,
“Developing User-Centric Applications with H-Omega,”
in Mobile Wireless Middleware, Operating Systems, and
Applications - Workshops. Springer Berlin Heidelberg, April
2009, pp. 118–123.

[9] M. Papazoglou, Web Services: Principles and Technology.
Prentice Hall, September 2007.

[10] R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-oriented
composition in bpel4ws.” in WWW (Alternate Paper Tracks),
2003.

[11] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein,
D. Mcdermott, D. Mcguinness, B. Parsia, T. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. Sycara, “Bringing
semantics to web services: The owl-s approach,” in SWSWPC
2004, ser. LNCS, J. Cardoso and A. Sheth, Eds., vol. 3387.
Springer, 2004, pp. 26–42.

[12] A. Fillinger, L. Diduch, I. Hamchi, M. Hoarau, S. Degre, and
V. Stanford, “The nist data flow system ii: A standardized
interface for distributed multimedia applications,” in World of
Wireless, Mobile and Multimedia Networks, 2008. WoWMoM
2008. 2008 International Symposium on a, 23-26 2008, pp.
1 –3.

[13] “OMiSCID Forge,” accessed 17-January-2012. [Online].
Available: http://omiscid.gforge.inria.fr/

[14] “The official bluetooth SIG member website |
specification: Adopted documents,” accessed 17-January-
2012. [Online]. Available: https://www.bluetooth.org/
Technical/Specifications/adopted.htm

[15] D. Svensson Fors, B. Magnusson, S. Gesteg\aard Robertz,
G. Hedin, and E. Nilsson-Nyman, “Ad-hoc composition
of pervasive services in the PalCom architecture,” in
Proceedings of the 2009 international conference on
Pervasive services, ser. ICPS ’09. London, United Kingdom:
ACM, 2009, p. 83–92, ACM ID: 1568213.

[16] “YAML on Wikipedia,” accessed 17-January-2012. [Online].
Available: http://en.wikipedia.org/wiki/YAML

[17] “JSON Website,” accessed 17-January-2012. [Online].
Available: http://www.json.org/



243

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jégou,
S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet, “Grid’5000: a large scale,
reconfigurable, controlable and monitorable Grid platform,” in
6th IEEE/ACM International Workshop on Grid Computing -
GRID 2005, Seattle, USA, 11 2005.

[19] R. Emonet, “Semantic description of services and service
factories for ambient intelligence,” Ph.D. dissertation,
Grenoble INP, sep 2009.

[20] J. L. Crowley, D. Hall, and R. Emonet, “Autonomic computer
vision systems,” in Advanced Concepts for Intelligent Vision
Systems, ICIVS 2007, J. Blanc-Talon, Ed. IEEE, Eurasip,,
Aug 2007.

[21] R. Barraquand and J. L. Crowley, “Learning polite behavior
with situation models,” in HRI ’08: Proceedings of the
3rd ACM/IEEE international conference on Human robot
interaction. New York, NY, USA: ACM, 2008, pp. 209–
216.

[22] S. Zaidenberg, P. Reignier, and J. L. Crowley, “An architecture
for ubiquitous applications,” Ubiquitous Computing and
Communication Journal (UBiCC), vol. 4, no. 2, jan 2009.

[23] J. L. Crowley, P. Reignier, and R. Barraquand, “Situation
models: A tool for observing and understanding activity,” in
in Workshop People Detection and Tracking, held in IEEE
International Conference on Robotics and Automation, Kobe,
Japan, 2009.

[24] “PRIMA Channel on Youtube,” accessed 17-January-
2012. [Online]. Available: http://www.youtube.com/user/
PrimaChannel

[25] R. Barraquand, P. Reignier, and N. Mandran, “The Sorceress
of Oz,” in Workshop for Pervasive Intelligibility, part of the
Pervasice Conference, San Francisco, USA, 2011.



244

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On a New Method for Derivative Free Optimization

Lennart Frimannslund
Department of Informatics

University of Bergen
Bergen, Norway

Email: lennart@ii.uib.no

Trond Steihaug
Department of Informatics

University of Bergen
Bergen, Norway

Email: trond.steihaug@ii.uib.no

Abstract—A new derivative-free optimization method for
unconstrained optimization of partially separable functions
is presented. Using average curvature information computed
from sampled function values the method generates an average
Hessian-like matrix and uses its eigenvectors as new search
directions. Numerical experiments demonstrate that this new
derivative free optimization method has the very desirable
property of avoiding saddle points. This is illustrated on two
test functions and compared to other well known derivative
free methods. Further, we compare the efficiency of the new
method with two classical derivative methods using a class of
testproblems.

Keywords-Generating Set Search, Derivative-Free Optimiza-
tion, Saddle points, Sparsity.

I. I NTRODUCTION

Continuous optimization is an important area of study,
with applications in statistical parameter estimation, eco-
nomics, medicine, industry — simply put, anywhere a math-
ematical model can be used to represent some real-world
process or system which is to be optimized. Mathematically,
we can express such a problem as

min
x∈D⊆Rn

f(x), (1)

wheref is the objective function, based on the model which
is defined on the domainD. These models can range from
simple analytic expressions to complex simulations. Well
known optimization methods such as Newton’s method use
derivatives to iteratively find a solution. These derivatives
must somehow be provided, either through explicit formu-
las/computer code, or, for instance, automatic differentiation.

Suppose, however, that the objective function is pro-
duced by some sort of non-differentiable simulation, or
that it involves expressions which can only be computed
numerically, such as the solution to differential equations,
integrals, and so on. In this case derivatives might not exist,
or they may be unavailable if the numerically computed
function is subject to some kind of adaptive discretization
and truncation and therefore is non-differentiable, unlike the
underlying mathematical function. In these cases derivative-
based methods are not directly applicable, which leads to the
need of methods that do not explicitly require derivatives.

For an introduction to derivative free methods the reader is
referred to [3].

Generating set search (GSS) methods are a subclass
of derivative-free methods for unconstrained optimization.
These methods can be extended to handle constraints, but
we will focus on the unconstrained case where the domain
D in the problem (1) is equal toRn. A comprehensive
introduction to these methods can be found in [14]. In their
most basic form these methods only use function values
and do not collect any information such as average slope or
average curvature information. Computing this information,
however, can significantly speed up convergence, and this is
done in the methods presented in [4], [6].

In addition, information about the structure of the function
known a priori can also be useful. Suppose that the objective
function f can be written as a sum of element functions,

f =

m
∑

i=1

fi,

where each element function has the property that it is un-
affected when we move along one or more of the coordinate
directions. For example, we might have

f(x1, x2, x3) = f1(x1, x2) + f2(x2, x3). (2)

Then, the function is said to be partially separable [10] and
we say thatfi has a large null space. Iff is partially
separable and twice continuously differentiable, then its
Hessian matrix,

∇2f(x) =









∂2f

∂x2

1

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n









,

will be sparse. For the function (2) the Hessian element
∂2f

∂x1∂x3
will be zero. If the function (2) is not twice contin-

uously differentiable, then the matrix of the corresponding
finite differences, that is, the matrix with



245

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[

f(x1 + h, x2, x3 + k)− f(x1 + h, x2, x3)

−f(x1, x2, x3 + k) + f(x1, x2, x3)
]/

(hk) = 0, (3)

in position (i, j) = (1, 3) (and with similar expressions
for all other (i, j)-pairs) will be sparse for anyx, and any
nonzeroh and k, none of which have to be the same for
each(i, j)-pair. The sparsity structure is the same as for the
differentiable case, so that the expression (3) is identically
zero. This result can be extended to any partially separable
function, as proved in [7].

In [23], a GSS method which exploits such structure
is presented, which is applicable to the case where these
element functions are individually available.

In this paper, we present a GSS method which takes
advantage of the partially separable functions, without re-
quiring the element functions (which may or may not be
differentiable) to be available. It is an extension of the paper
[6]. We use the concept of average curvature introduced in
[6].

This paper is organized as follows. In section II, we
outline a basic framework for GSS, as well as the previous
work of the authors on which the present paper is based. In
Sections III and IV, we present the handling of partially
separable functions and the convergence to second order
stationary points. Section V contains a discussion of the
methods used in the comparison and Section VI specifies
the test functions. The main part of this paper is the
testing presented in Section VII. Here, we define region of
convergence and in the two sections VII and VIII we present
the numerical properties of the methods on the two test
functions. In Section IX, we show the efficiency of method
derived in this paper compared to two classical methods for
derivative free optimization. Concluding remarks are given
in Section X.

II. GENERATING SET SEARCH USING CURVATURE

INFORMATION

We restrict ourselves to a subset of GSS methods, namely
sufficient decrease methods with2n search directions, the
positive and negative ofn mutually orthogonal directions,
of unit length. These directions will in generalnot be the co-
ordinate directions. A simplified framework for the methods
we consider is given in Figure 1. The univariate function
ρ must be nondecreasing and satisfylimx↓0

ρ(x)
x

= 0.
For simplicity, increasing the step length can be thought
of as multiplying it by 2, and decreasing it as dividing
by 2, although these rules may be more advanced. For
the formal requirements on these rules, see [14]. Given
mild requirements on the functionf the step lengthδ will
ultimately go to zero, and the common convergence criterion
for all GSS methods is thatδ is smaller than some tolerance.

Given set of search directionsQ, step lengthδ and an
initial guessx← x0.
While δ is larger than some tolerance

Repeat untilx has been updated or allq ∈ Q have
been used:

Get next search directionq ∈ Q.
If f(x+ δq) < f(x)− ρ(δ)

Updatex: x← x+ δq.
Optionally increaseδ.

End if

End repeat
If no search direction provided a better function
value, decreaseδ.
Optionally updateQ.

End while

Figure 1. Simplified framework for a sufficient decrease GSS method.

As can be seen from the pseudo code in Figure 1, the
set of search directions can be periodically updated. In [6],
the authors present a method that computes average curva-
ture information from previously sampled points, assembles
this information in a Hessian-like matrix and uses the
eigenvectors of this matrix as the search directions, which
amounts to a rotation of the old search directions. Once this
rotation has been performed, the process restarts, and new
curvature information is computed, periodically resulting in
new search directions. It is shown that the efficiency of the
method can be greatly improved compared to just using the
coordinate directions as the search directions throughout.

A similar scheme, which aligns the basis to the average
direction the search progresses, appeared as early as 1960
in [24] and implemented in 1973 [16]. To illustrate the idea
of curvature information we use a quadratic model function
by assuming we are minimizing, say,

g(y) = φ+ bT (y − x) +
1

2
(y − x)TC(y − x),

whereC is a symmetric matrix. The search directions are
positive and negative of the column vectors of the orthogonal
matrix Q, that is,

Q =
[

q1 q2 · · · qn
]

.

Sinceg is a quadratic function, we have

qTi Cqj =
g(x+ δiqi + δjqj)− g(x+ δiqi)− g(x+ δjqj) + g(x)

δiδj
.

For a general functionf the computation of curvature
information can be done in the following way, which is
a slight modification of the methodology presented in [6].
Consider Figure 2, and assume that the current point is the



246

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a b

cd

q1

q2

Figure 2. Location of sampled points used for curvature computation.

Outcome Notes
SS The search alongq1 moves the current best point

to b, and the search alongq2 moves the current best
point toc. The function value atd must be computed
separately.

SF The search alongq1 moves the current best point
to b, and the search alongq2 computes the function
value atc, but does not move the current best point.
The function value atd must be computed separately.

FS The search alongq1 computes the function value at
point b, but does not move the current best point. The
search alongq2 computes the function value at point
d. The function value at pointc must be computed
separately.

FF Neither the search alongq1 norq2 update the current
best point, but the function values at pointsb andd
are obtained. The function value at pointc must be
computed separately.

Table I
THE FOUR POSSIBLE OUTCOMES WHEN SEARCHING ALONG TWO

CONSECUTIVE DIRECTIONS. S MEANS SUCCESS, F MEANS FAILURE.

point markeda, and that the next two search directions in
the repeat-loop in the pseudo code are the directions shown,
q1 and q2. When searching along two directions in a row,
there are four possible outcomes. Success-success (both the
search alongq1 andq2 produce function values which satisfy
the sufficient decrease condition), success-failure (the search
along q1 produces a sufficiently lower function value, but
the search alongq2 does not), failure-success, and finally
failure-failure. In all of these four cases, by computing the
function value at a fourth point, the function values at four
points in a rectangle can be obtained. The details are given
in Table I. The function values at four such pointsa, b, c
andd can be inserted into the formula

f(c)− f(b)− f(d) + f(a)

‖b− a‖ ‖d− a‖ . (4)

If the objective function is twice continuously differen-
tiable, then the next lemma will show that (4) is equal to
qT1 ∇2f(x̂)q2, where x̂ is some point within the rectangle
abcd. If the function is not twice continuously differentiable,
(4) captures the average curvature in the rectangle.

The rectangle lies in the plane spanned by the search
directionsq1 andq2 since these were used consecutively. By
successively reordering how the “get next search direction”

statement considers the directions inQ, one can obtain cur-
vature information with respect to all then(n−1)/2 possible
different combinations of search directions, in a finite and
uniformly bounded number of steps, which depends onn
since there areO(n2) elements of curvature information
which must be assembled. (For this reason, the method is not
suitable forn larger than about30, but exploiting structure
can allow for much largern, as will be explained in Section
III.)

The following lemma is a slightly modified version of [5,
Lemma 3.5] and can be found in calculus textbooks usually
as a part of showing that the Hessian matrix is symmetric
if the function is sufficiently smooth.

Lemma 1:Suppose the objective functionf : Rn 7→ R is
twice continuously differentiable, assume we have given two
orthogonal search directionsqi andqj , and have computed

f(x), f(x+ hqi), f(x+ kqj), andf(x+ hqi + kqj)

for somex and some scalarsh andk. Let elementij, i > j
of the symmetric matrixCQ be

(CQ)ij =
f(x+ hqi + kqj)− f(x+ hqi)− f(x+ kqj) + f(x)

hk
.

Then,
(CQ)ij = qTi ∇2f(x̂)qj ,

wherex̂ = x+ τhqi + σkqj for someτ, σ ∈ [0, 1].
The matrixCQ containsqTi ∇2f(x̂)qj in positions(i, j) and
(j, i), which is curvature information with respect to the
coordinate system defined by then directionsq1, . . . , qn in
Q. Note that the point̂x is different for each(i, j)-pair. Also
note that bothqi ∈ Q and−qi ∈ Q. The diagonal elements
of CQ must be computed separately, for instance when
the step length is reduced, since the preceding repeat-loop,
combined with the currentf -value then gives the function
values at three equally spaced points on a straight line for
all n search directions.

Once the matrixCQ is complete, it is subjected to the
rotation

C = QCQQ
T , (5)

whereQ is the matrix with then unique search directions
as its columns, ordered so that they correspond to the
ordering of the elements inCQ. C now contains curvature
information with respect to the standard coordinate system.
The search directions inQ are then replaced with the
positive and negative of the eigenvectors ofC.

To build upCQ in a systematic fashion we need to specify
one way to choose the order. For instance, forn = 4 and one
wants to compute(CQ)21, (CQ)31, (CQ)24, and (CQ)34,
then one can let the order of the directions be:

q1, q2, −q1, q3, −q2, q4, −q3 −q4 .

Here, the search alongq1 and q2 enables us to compute
(CQ)21. The directions−q1 andq3 provide us with(CQ)31,



247

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and so on. A discussion and analysis of ordering are found
in Macklem [17].

We now investigate the relationship betweenC and
∇2f(x). The search directions are the orthogonal directions
q1, . . . , qn and assume that the elements(CQ)ij of the
symmetricm × m matrix CQ have been computed at the
points

{

xij , xij + hijqi, xij + kijqj , xij + hijqi + kijqj
}

,
(6)

for all (i, j), i ≥ j and (CQ)ji set to be equal to(CQ)ij .
Let N be the union of all such points and let

δ = max
z,y∈N

‖z − y‖, (7)

and

N =

{

x ∈ R
n | max

y∈N
‖x− y‖ ≤ δ

}

. (8)

Lemma 2:Assume thatf is twice continuously differen-
tiable and∇2f is Lipschitz-continuous inN
‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, for all x, y ∈ N .

Let then× n symmetric matrixCQ be computed with the
points (6). Then anyx ∈ N satisfies

‖QCQQ
T −∇2f(x)‖ ≤ nLδ. (9)

The proof can be found in [6] and we will in the next
section prove a more general result. In case of a quadratic
functionL = 0, the exact Hessian matrix is recovered. The
second derivative is only required to be locally Lipschitz
with respect toN .

III. E XTENSION TO SEPARABLE FUNCTIONS

Suppose the functionf is partially separable. As men-
tioned in the introduction, the Hessian will be sparse iff is
twice continuously differentiable, and if the Hessian is not
defined, the matrix of average curvature information will
be sparse [7]. Letr be the number of nonzero elements in
the lower diagonal of these curvature matrices. Then, even
though the matrixC can be restricted to have this sparsity
pattern, the matrixCQ cannot be assumed to be sparse, since
we cannot expect the finite differences (4) to be zero for
arbitrary search directionsQ. However, sparsity can still be
exploited.

Given two matricesA ∈ R
m×n and B ∈ R

r×s, the
Kronecker productA⊗B is amr× ns block matrix given
as

A⊗B =







A11B · · · A1nB
...

...
Am1B · · · AmnB






. (10)

The Kronecker product is useful in the present context
because of the relation

AXB = C ⇔ (BT ⊗A)vec(X) = vec(C). (11)

Herevec(X) andvec(C) are vectors containing the entries
of the matricesX andC stacked row-wise [13].

Using (10) and (11) the rotation (5) can be written
implicitly as

(QT ⊗QT )vec(C) = vec(CQ). (12)

Since we impose a sparsity structure onC as well as
symmetry, all the entries in the upper triangle, as well as
all the zero entries ofvec(C) can be removed from (12),
resulting in the overdetermined equation system

(QT ⊗QT )Pcvec(C) = vec(CQ), (13)

where the vectorvec(C) contains ther elements ofC to
be determined, and then2 × r 0-1 matrixPc adds together
the columns corresponding to upper and lower diagonal
elementsCij and Cji for all off-diagonal elements, and
deletes the columns corresponding to zero entries inC. For
example, ifC is to be tridiagonal and is of size3× 3, that
is,

C =





× ×
× × ×
× ×



 ,

then it has one zero element and five nonzero elements in
the lower triangle, so thatPc has size9× 5 and reads:

Pc =





























1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1





























. (14)

Since the equation system (13) is overdetermined, we can
selectr rows from the coefficient matrix and the right-hand
side, resulting in ther × r equation system

Prow(QT ⊗QT )Pcvec(C) = Prowvec(CQ), (15)

whereProw is an r × n2 0-1 matrix which selectsr rows.
Prow will be the first r rows of a permutedn2 × n2

identity matrix. The resulting equation system (15) will be
significantly smaller than its counterpart (12) when a sparsity
structure is imposed onC, and the corresponding effort
required to compute the right-hand side is similarly smaller.
If there are onlyO(n) elements to be determined, then the
number of steps needed to compute the entire right-hand side
Prowvec(CQ) does not depend onn, which does away with
the practical limit on dimension discussed in the previous
section.

Exactly which rowsProw should select in order to create
a well-conditioned coefficient matrix is nontrivial, and is
sometimes called the subset selection problem in the liter-
ature (see e.g., [9]). One suitable solution procedure is to



248

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

determine these rows by computing a strong rank-revealing
QR factorization of the transpose ofProw(QT ⊗ QT ) and
selecting the rows chosen by the theory and algorithms of
Gu and Eisenstat, presented in [11]. An implementation of
this selection procedure can be found in [21].

IV. CONVERGENCE THEORY

The method presented so far, being a sufficient decrease
method with 2n search directions which are the positive
and negative ofn mutually orthogonal directions, adheres to
the algorithmic framework and convergence theory of Lucidi
and Sciandrone [15]. We can therefore state the following
theorem, without proof.

Theorem 3:Supposef is continuously differentiable,
bounded below and the level setL(x) = {y | f(y) ≤ f(x)}
is compact. Then, the method converges to a first-order
stationary point.

We now prove that iff is twice continuously differen-
tiable, then the computed curvature matrixC converges to
the true Hessian in the limit.

Define

A = Prow(QT ⊗QT )Pc.

Let f be twice continuously differentiable and Hessian
Lipschitz-continuous in the sense that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖. (16)

Definer pairs of vectorsp(k), q(k) k = 1, . . . , r, all of unit
length, such that thekth row of A is equal to

(

p(k)T ⊗ q(k)T
)

Pc. (17)

This means some of these vectors will be equal, but the pairs
will be unique. In addition letr pointsxk, k = 1, . . . , r, be
such that elementk of Prowvec(CQ),

(Prowvec(CQ))k = p(k)T∇2f(xk)q(k).

Let η be such that

max
i,j
‖xi − xj‖ = η.

Let N be the neighborhood of points such that

N =
{

x | ‖x− xk‖ ≤ η, k = 1, . . . , r
}

.

For convenience, let us restate (15), as

Avec(C) = Prowvec(CQ). (18)

Lemma 4:AssumeA is invertible. LetC be the symmet-
ric n×n matrix constructed from the solution of (18). Then,
there exists anx ∈ N such that

‖∇2f(x)− C‖ ≤ ‖A−1‖nLη.

Proof. Let us rewrite the contents ofProwvec(CQ):

(Prowvec(CQ))k

= p(k)T∇2f(xk)q(k)

= p(k)T
(

∇2f(x) +∇2f(xk)−∇2f(x)
)

q(k)

=
[

p(k)T∇2f(x)q(k)
]

+
[

p(k)T (∇2f(xk)−∇2f(x))q(k)
]

. (19)

Then, and in addition definingh = vec(∇2f(x)), equation
(18) can be written as

Avec(C) = Ah+ ǫ. (20)

Here(Ah)k is the expression in the first parenthesis of (19),
and ǫk is the expression in the last parenthesis of (19). If
we consider the norm of a single element inǫ, this is

|ǫk| ≤ ‖p(k)‖ ‖∇2f(xk)−∇2f(x)‖ ‖q(k)‖
≤ Lη, (21)

using (16) and the fact thatp andq have unit length. When
solving (18), we get

vec(C) = h+A−1ǫ.

If we consider a single element ofvec(C) and h we can
write

|(vec(C))k − hk| ≤ ‖A−1‖|ǫk|,

which can also be written

|Cij − (∇2f(x))ij | ≤ ‖A−1‖|ǫk| (22)

Using the property of the 2-norm that

‖A‖2 ≤ nmax
i,j
|aij |,

as well as (21) we can extend (22) to

‖C −∇2f(x)‖ ≤ ‖A−1‖nLη,

which completes the proof.�
We must now prove that there always exists a matrixA with
rankr, and that the term‖A−1‖ is uniformly bounded. Since
A is made up of the rows of the matrix(QT ⊗QT )Pc, there
will be a choice of rows which imply full rank if the matrix
(QT ⊗QT )Pc has rankr.

Lemma 5:For any orthogonal matrixQ and any sparsity
structure to be imposed onC, the matrix (QT ⊗ QT )Pc

has full rankr, and its smallest singular valueσr satisfies
σr ≥ 1.
Proof. Since Q is orthogonal, so isQT , and also
(QT ⊗QT ). For any sparsity structure, right-multiplying
(QT ⊗ QT ) with Pc either adds together two columns, or
deletes columns. Consequently, the columns of the resulting
matrix (QT ⊗ QT )Pc are orthogonal (which implies full
rank), and have either length one or length

√
2. It then



249

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

follows that the singular values are equal to the length of
the column vectors, either 1 or

√
2. �

If we consider (14) and the corresponding(QT ⊗ QT )Pc,
the norm of first column of(QT ⊗QT )Pc is 1 and the norm
of the second column is

√
2.

Lemma 6:Prow can be chosen such that for a givenn,
the smallest singular value ofA is uniformly bounded below,
and consequently that‖A−1‖ is uniformly bounded.
Proof. This result follows from the theory and methods of
Gu and Eisenstat [11], which guarantee that the rows ofA
(or equivalently the columns ofAT , as is done in [11]) can
be selected from the rows of(QT ⊗QT )Pc in such a way
that the smallest singular value ofA is larger than or equal
to the smallest singular value of(QT ⊗QT )Pc, divided by
a low order polynomial inn andr. Sincen andr are given
and the smallest singular value of(QT ⊗QT )Pc is always
larger than or equal to 1, the result follows.�

Finally, we show thatη goes to zero as the GSS method
converges to a stationary point.

Lemma 7:Assume that the step length expansion factor
is uniformly bounded by, say,M . Then, as the step length
δ go to zero, so doesη.
Proof. That the step lengthδ goes to zero is an integral part
of the convergence theory of GSS methods and is proved
in e.g. [14]. η is the diameter of neighborhood of points
N . Since all the points inN lie within the rectangles of
points used in the formula (4), it follows thatη must be
smaller than maximum possible distance between the first
and the last points used for computingC (the corner points
of the rectangleabcd in Figure 2). Suppose, that when the
computation ofC is started the step length isδmax, and
that the maximum possible number of step length increases
beforeC is computed ist. Then we have

η ≤
t

∑

k=0

δmaxM
k−1.

The only variable in this expression isδmax, and we know
it goes to zero as the method converges. Consequently, so
mustη. �
This allows us to state the following theorem:

Theorem 8:Assume thatf is twice continuously differ-
entiable, bounded below and that the level setsL(x) are
compact. Then, as the method converges,C converges to
the true Hessian.
The proof follows from the preceding Lemmas. This result,
together with the preliminary numerical results in this paper
allows us to conjecture that the method actually converges
to second-order stationary points.

V. TESTING DERIVATIVE FREE OPTIMIZATION METHODS

The purpose of the following sections is to report on
numerical experiments on two unconstrained optimization
problems where methods risk terminating at a saddle point,

avoiding a nearby strict local minimizer. For visualization
purposes we have chosen problems with two unknowns.

The first problem is a modification of a problem suggested
by Wolfe [26]. In its unmodified form this problem has been
used to show that gradient based methods tend to converge
to a saddle point. The modification will make the function
bounded below and introduce a local minimizer but not
change the region where gradient based methods converge
to the saddle-point. The second example is a modification of
a function presented in [1], which has a very narrow cone
of negative curvature. Again the modification will make the
function bounded below and introduce local minimizers.

Generating set search methods described in the previous
sections are shown to converge to stationary points and the
set of search directions in the limit will be the eigenvalues
of the Hessian matrix at the solution. If the Hessian matrix
at the stationary point has a negative eigenvalue, one of the
search directions will be a descent direction. A generating
set search should therefore not experience convergence to
the saddle points of the two test functions. A generating set
search method is compared with two methods which do not
have the same property to generate descent at a saddle point.

In the second part of the experiments we compare the
efficiency of GSS-CI with two classical derivative free
methods on a class of test problems.

A. The methods

The three methods primarily used in testing, are GSS-CI,
NEWUOA and NMSMAX. We will briefly discuss two
additional methods, MDSMAX and fminsearch.

1) GSS-CI:This is the method presented in the previous
sections and [8], [2], and is based on the method of [6]. Since
the method gathers average slope information the method
can consequently perform Newton-like steps at regular in-
tervals.

The initial search directions are chosen to be the pos-
itive and negative coordinate vectors. Each pair of search
directions (e.g.±qi, whereqi is a search direction) has a
step lengthδi associated with it. In our experiments these
are initially set to the same value,0.2‖x0‖1, but they will
be increased or decreased individually depending on the
success or failure of the search along the corresponding
pairs of search directions. A search is deemed successful
it it produces sufficient decrease, that is, if

f(x+ δiqi) < f(x)− ρ(δi),

whereρ : R 7→ R is nondecreasing function satisfying a few
technical requirements, outlined in [14]. In our implemen-
tation we use

ρ(δ) = 10−4δ2.

The termination criterion is that the product of all the step
lengths should be less than or equal to a tolerance. In our



250

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experiments this is
n
∏

i=1

δi ≤
(

10−4‖x0‖1
)n

.

B. NEWUOA

NEWUOA [22] is an interpolation method, where the
number of interpolation points can be determined by the
user. The remaining degrees of freedom are taken up by
minimizing the Frobenius norm of the difference between
one Hessian approximation and the next.

An initial vectorx0 ∈ R
n, the numberm of interpolation

points, and the initial and final values of a trust region radius,
namelyρbeg and ρend must be provided by the user. The
number of interpolation pointsm is a fixed integer from the
intervaln+2 ≤ m ≤ 1

2 (n+1)(n+2). It is recommended to
usem = 2n+1 for efficiency. The initial interpolation points
xi, i = 0, 1, 2, . . . ,m, have the property that‖xi − x0‖2 =
ρbeg, i = 1, 2, . . . ,m, unlessm > 2n + 1, in which case

this distance is
√
2ρbeg. The termination criterion is related

to the radiusρend.

C. NMSMAX

NMSMAX [12] is an implementation by Nicholas J.
Higham of the classical Nelder-Mead simplex method [20].
The user can choose whether the initial simplex is right-
angled or regular (with sides of equal length). The initial
simplex size is not input by the user, but taken to be the order
of max(‖x0‖∞, 1). The method terminates when either the
maximum number of function evaluations is reached, or
when the relative size of the simplex, is below a certain
threshold. That is,

1

max(1, ‖v0‖1)
max
1≤i≤n

‖vi − v0‖1 ≤ tol.

Herev0 andvi, i = 1, . . . , n are the vertices of the simplex.
In our experiments we use tol= 10−6‖x0‖1.

D. The methods MDSMAX and fminsearch

We also included a brief test of the methods MDSMAX,
which is an implementation by Nicholas J. Higham of the
multidirectional search method due to Virginia Torczon [25],
and fminsearch [18], which is the Matlab implementation of
the Nelder-Mead method.

VI. T HE FUNCTIONS

The two functions are in two variables, are twice contin-
uously differentiable and bounded below.

A. Function I – A Narrow Positive Cone

The function (23) is a modification of a test function in
[1]:

f(x, y) = (9x− y)(11x− y) +
x4

2
. (23)

It has a saddle point at the origin, and two local minimizers
at (x, y) = ±(1, 10). Level curves for this function can be
seen in Figure 8.

x

y

−4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3. Level curves for the function (24).

B. Function II – Modified Wolfe Function

The second function (24) is a modified version of a test
function due to Wolfe [26]:

f(x, y) =
x3

3
+

y2

2
− 2

3
(min[x,−1] + 1)3, (24)

It has a saddle point at the origin and a minimum at(x, y) =
(−2 −

√
2, 0). Level curves for this function are shown in

Figure 3. The original function (not bounded below) is given
by f(x, y) = x3

3 + y2

2 .

VII. N UMERICAL EXPERIENCE

Region of Convergence:The region of convergence of
a stationary point is the set of starting points for which a
given method terminates close to the stationary point. In
addition to the input parameters for the methods we need to
specify the tolerance (or distance between) the terminating
point and the stationary point. A globally convergent method
on a sufficiently smooth function is characterized by for all
starting points, the method will for anyε > 0 generate an
iterate xk so that‖∇f(xk)‖ ≤ ε. However, the stopping
criteria of the implementation may be based on changes
in the function values or on the difference between two
iterates. Even the case‖∇f(xk)‖ ≤ ε will in general not
guarantee that the distance between the stationary point and
xk is small. We can thus expect that even if the methods
terminate successfully, the distance to a stationary point
will not be smaller than the tolerance for some starting
points. For simplicity we say that a method terminates at
a stationary point when it terminates at a point that satisfies
the tolerance.

A. Function I

For this function we generate starting points in the fourth
quadrant{(x, y)|x ≤ 0, y ≥ 0}. The minimizers of the
function are in the first and third quadrants, so we expect
the methods to terminate successfully at the minimizers



251

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if started in these quadrants. This is confirmed in the
preliminary numerical testing. Furthermore, because of the
symmetry of the function we can choose either the second
or fourth quadrants, at least for GSS-CI and NEWUOA.

GSS-CI:We discretize the area[−8, 0]× [0, 10], into a
201 × 201 grid of points, and start the method with initial
step length0.2‖x0‖1 for all directions, and the termination
criterion is that the product of all the step lengths should
be less than or equal to(10−4‖x0‖1)n. (If x0 = 0 then
nonzero values are used.) The results are given in Figure 4.
In the figure, a blue color means that the method terminated

Figure 4. GSS-CI on the functionf = (9x1−x2)(11x1−x2)+
1

2
x4

1
. The

initial step length is0.2‖x0‖1 for all directions, and the termination crite-
rion that the volume of the ellipsoid defined by the scaled search directions
should be proportional to10−4‖x0‖1, that is,

∏
i δi ≤ [10−4‖x0‖1]n.

(The discretization is201 × 201.)

close to(x, y) = (1, 10) for the corresponding starting point,
red color means termination close to(x, y) = (−1,−10).
As one can see, the method does not terminate close to
the saddle point for any of these starting points. When
starting at the origin, setting a nonzero step length results in
convergence to a minimizer.

NEWUOA: We generate starting points on a1001 ×
1001 discretization of the region[−8, 0] × [0, 10], and
run NEWUOA with parametersρbeg = 0.2‖x0‖1, and
ρend = 10−5‖x0‖1. (Once again, ifx0 = 0 then nonzero
values are used.) The results are visualized in Figure 5. As
before, blue color means that the method terminated close
to (x, y) = (1, 10) for the corresponding starting point, red
color means termination close to(x, y) = (−1,−10). In
addition, green means termination close to the origin, and
orange means none of the above. As one can see, the method
does terminate close to the saddle point for some starting
points, and these points make up a small region on the
border between the basins of attraction of(x, y) = (1, 10)
and (x, y) = (−1,−10).

Figure 5. Plot of basins of attraction for NEWUOA on
f = (9x1 − x2)(11x1 − x2) +

1

2
x4

1
, with ρbeg= 0.2‖x0‖1 and

ρend= 10−5‖x0‖1. (The discretization is1001 × 1001.)

To check if the basins of attraction are sensitive to the
termination criterion we repeat the experiment, but this time
with ρend= 10−6‖x0‖1. The results are given in Figure 6.
As we can see in this figure, the starting points for which
the method terminates at the saddle point are still wedged
between the red and blue regions, but the green region is
now much smaller.

Figure 6. Decreasingρend in NEWUOA to 10−6‖x0‖1 will basically
not change the region of convergence for the local minimizers, but the
region of convergence to the saddle-point gets smaller, squeezed between
the regions of convergence to the local minimizers. (The discretization is
1001 × 1001.)

Similarly, we test what happens with a looser convergence
criterion, namelyρend = 10−4‖x0‖1. The results are in



252

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. For this convergence criterion the green region is

Figure 7. Increasingρend in NEWUOA to 10−4‖x0‖1 will force many
starting points not to be accepted as close to a stationary point. The regions
are basically the same, but the region of convergence for thesaddle-point
is larger. (The discretization is1001 × 1001.)

much larger, and there are also large orange regions, which
correspond to termination no closer to any of the stationary
points than 0.2.

NMSMAX: For NMSMAX, we discretize the region
[−10, 10]× [−10, 10] into a 201 × 201 grid. We choose a
right-angled initial simplex. The size of the initial simplex
is not determined by the user, but we set the termination
criterion to be a simplex size of10−6‖x0‖1. The results, as
well as level curves of the function are given in Figure 8. As
one can see, for about half the fourth quadrant the method
terminates at the saddle point, even though the convergence
criterion is quite strict. In addition, termination at the saddle
point occurs for points close to the negativey-axis, and along

Figure 8. Level curves of the function (23), and starting points for which
NMSMAX terminates at the saddle point at the origin, marked in black.

Figure 9. Level curves for the function (24) as well as starting points for
which NEWUOA terminates at the saddle point at the origin, marked in
black.

the liney = −x.
It is also interesting to note that in this case, the behavior

in quadrants two and four arenot the same.

B. Function II

For this function we discretize the region[−4, 2]× [−2, 2]
into a 601× 401 grid.

GSS-CI: Using the same parameter settings as for
function I, GSS-CI once again terminates at the (single)
minimizer, so an attraction basin plot would simply be
the region filled with one color. (Whenx0 = 0, nonzero
step lengths are used, and the method converges to the
minimizer.)

NEWUOA: For this function we also use the same
parameter values as before, namelyρbeg = 0.2‖x0‖1 and
ρend= 10−6‖x0‖1. The results are in Figure 9. As one can
see, there is a relatively large collection of points in the first
and second quadrants, for which the method terminates at
the saddle point at the origin.

To see if the cause of this behavior was the number of
interpolation points (2n + 1 in this case), we also tried
a full quadratic model, by using six interpolation points.
The results for this case are in Figure 10. As one can see,
the black region now has a different shape, but is located
approximately in the same position, and is of similar size.

NMSMAX: For this function, NMSMAX terminates at
the saddle point for a few starting points on they-axis only.

VIII. T ESTING THE METHODSMDSMAX AND

FMINSEARCH

MDSMAX: The results are reported in Figures 11 and
12 and Figures 13 and 14. For the function (24) termination
close to the saddle points rarely occurs, and when it does
the corresponding starting points lie along straight lines, one
at the upper right corner of Figure 14, and one on they-axis
close to the bottom of the figure using right angled simplex.



253

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Level curves for the function (24) as well as starting points
for which NEWUOA terminates at the saddle point at the origin, marked
in black. Number of interpolation pointsm = 6.

However, MDSMAX has serious problems with stagnation
on the function (23), as can be seen in Figures 11 and 12.

fminsearch: This method has few problems on these
functions, except when the starting points lie on one of
the axes. For the function (23), 208 of the 40401 starting
points result in termination close to the saddle point, 201 of
these 208 points being on thex-axis. For the function (24),
890 of the 241001 starting points result in termination close
to the saddle point, all of these on or immediately next to
the y-axis. These results were obtained using the standard
convergence tolerances. Tightening the convergence criteria
gives an even more favorable result.

Figure 11. MDSMAX on the functionf = (9x − y)(11x − y) + x4

2
.

Red means termination close to(x, y) = (1, 10), blue means termination
close to(x, y) = (−1,−10), green termination close to the saddle point
at the origin, and orange means stagnation. Regular simplex.

Figure 12. MDSMAX on the functionf = (9x − y)(11x − y) + x4

2
.

Red means termination close to(x, y) = (1, 10), blue means termination
close to(x, y) = (−1,−10), green termination close to the saddle point
at the origin, and orange means stagnation. Right-angled simplex.

Figure 13. MDSMAX on the functionf = x3

3
+ y2

2
− 2

3
(min[x,−1] +

1)3. Blue means termination close to the minimum at(x, y) = (−2 −√
2, 0), red means termination close to the saddle point at the origin.

Regular simplex.

IX. EFFICIENCY

Moré and Wild [19], benchmarked different derivative-
free optimization solvers on 53 smooth problems. In this
test we use the same set of problems and two of the
same solvers (NEWUOA and NMSMAX) as Moré and
Wild [19]. We run the three methods on each problem, and
declare a success if a method uses less than 5000 function
evaluations, and the gradient corresponding to the solution
satisfies‖∇f(x)‖ ≤ 10−2, where this gradient is computed
with finite differences. The corresponding data profile is



254

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. MDSMAX on the functionf = x3

3
+ y2

2
− 2

3
(min[x,−1] +

1)3. Blue means termination close to the minimum at(x, y) = (−2 −√
2, 0), red means termination close to the saddle point at the origin. Right-

angled simplex.

shown in Figure 15. The horizontal axis is number of
equivalent gradient evaluations, i.e. one equivalent gradient
is n function evaluations. As one can see from the figures
NEWUOA solves the most problems if one has a tight
computational budget, and GSS-CI solves the most problems
if one has as moderate computational budget. NMSMAX
performs the weakest among the methods on these functions.

X. D ISCUSSION

The simplex method [20] is one of the most used
derivative free optimization methods. In this note we have
used the implementations NMSMAX and fminsearch of
the simplex method. The other three methods discussed
in the paper represents different approaches of derivative
free optimization. We have shown that GSS-CI solves the
most problems if one has as moderate computational bud-
get compared to NEWUOA and NMSMAX. The methods
NEWUOA, NMSMAX, and fminsearch may terminate close
to the saddle point while GSS-CI will not converge to
the saddle point for these two examples. This supports the
observed convergence properties of GSS-CI. The regions of
convergence are dependent on the input parameters and the
results presented are typical behavior of the methods.

ACKNOWLEDGEMENTS

The authors would like to thank Mike Powell and
Nicholas J. Higham for helpful comments on the experi-
ments and on an earlier version of the section on basin of
attraction. The authors would also like to thank Marielba
Rojas for the help on rank revealing QR.

The first author gratefully acknowledges partial funding
from The Norwegian Research Council, Gassco and Statoil.

Figure 15. Data profile for the smooth functions of the test set of Moré
and Wild [19].

REFERENCES

[1] M. A. Abramson. Second-order behavior of pattern search.
SIAM Journal on Optimization, 16(2):315–330, 2005.

[2] M. A. Abramson, L. Frimannslund, and T. Steihaug. A
subclass of generating set search with convergence to second-
order stationary points. To be submitted, 2011.

[3] A. R. Conn, K. Scheinberg, and L. N. Vicente.Introduction
to Derivative-Free Optimization. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2009.

[4] I. D. Coope and C. J. Price. A direct search conjugate
directions algorithm for unconstrained minimization.The
ANZIAM Journal, 42(E):C478–C498, 2000.

[5] C. H. Edwards. Advanced Calculus of Several Variables.
Academic Press, 1973. ISBN 0–12–232550–8.

[6] L. Frimannslund and T. Steihaug. A generating set search
method using curvature information.Computational Opti-
mization and Applications, 38(1):105–121, 2007.



255

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] L. Frimannslund and T. Steihaug. Sparsity of the average
curvature information matrix. PAMM, Proc. Appl. Math.
Mech., 7:1062101–1062102, 2007.

[8] L. Frimannslund and T. Steihaug. A new generating set search
algorithm for partially separable functions. InProceedings
ADVCOMP 2010: The Fourth International Conference on
Advanced Engineering Computing and Applications in Sci-
ences, pages 65–70. The International Academy, Research
and Industry Association (IARIA), 2010. ISBN:978-1-61208-
000-0.

[9] G. H. Golub and C. F. van Loan.Matrix computations. Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[10] A. Griewank and Ph. L. Toint. On the unconstrained opti-
mization of partially separable functions. In M. Powell, edi-
tor, Nonlinear Optimization 1981, pages 301–312. Academic
Press, 1982.

[11] M. Gu and S. C. Eisenstat. Efficient algorithms for computing
a strong rank-revealing QR factorization.SIAM Journal on
Scientific Computing, 17(4):848–869, 1996.

[12] N. J. Higham. The Matrix Computation Toolbox.
http://www.ma.man.ac.uk/˜higham/mctoolbox.

[13] R. A. Horn and C. R. Johnson.Topics in matrix analysis.
Cambridge University Press, Cambridge, United Kingdom,
1991.

[14] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by
direct search: New perspectives on some classical and modern
methods.SIAM Review, 45:385–482, 2003.

[15] S. Lucidi and M. Sciandrone. On the global convergence of
derivative-free methods for unconstrained optimization.SIAM
Journal on Optimization, 13(1):97–116, 2002.

[16] M. Machura and A. Mulawa. Algorithm 450 Rosen-
brock function minimization.Communications of the ACM,
16(8):482–483, 1973.

[17] M. Macklem. Low Dimensional Curvature Methods in
Derivative-free Optimization on Shared Computing Networks.
PhD thesis, Computer Science, Dalhousie University, Halifax,
Nova Scotia, Canada, 2009.

[18] The MathWorks, Inc., Natick, Massachusetts, USA.MATLAB
Optimization Toolbox User’s Guide, 2010.

[19] J. J. Moré and S. M. Wild. Benchmarking derivative-free
optimization algorithms. SIAM Journal on Optimization,
20(1):172–191, 2009.

[20] J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7:308–313, 1965.

[21] S. R. Pope.Parameter Identification in Lumped Compartment
Cardiorespiratory Models. PhD thesis, North Carolina State
University, Raleigh, North Carolina, USA, 2009.

[22] M. J. D. Powell. Large-Scale nonlinear optimization, vol-
ume 83 ofNonconvex Optimization and its applications, chap-
ter The NEWUOA software for unconstrained optimization
without derivatives, pages 255–297. Springer US, 2006.

[23] C. P. Price and Ph. L. Toint. Exploiting problem structure
in pattern search methods for unconstrained optimization.
Optimization Methods and Software, 21(3):479–491, 2006.

[24] H. H. Rosenbrock. An automatic method for finding the
greatest or least value of a function.The Computer Journal,
3(3):175–184, Oct. 1960.

[25] V. Torczon. Multi-Directional Search: A Direct Search
Algorithm for Parallel Machines. PhD thesis, Department
of Mathematical Sciences, Rice University, Houston, Texas,
1989. Available as Tech. Rep. 90-07, Department of Compu-
tational and Applied Mathematics, Rice University, Houston,
Texas 77005-1892.

[26] P. Wolfe. Convergence conditions for ascent methods. II:
Some corrections.SIAM Review, 13(2):185–188, 1971.



256

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Systematic Review and Taxonomy of Runtime Invariance in Software Behaviour

Teemu Kanstrén
VTT Technical Research Centre of Finland

Oulu, Finland
teemu.kanstren@vtt.fi

Abstract— Describing software runtime behaviour in terms of
its invariant properties has gained increasing popularity and
various tools and techniques to help in working with these
invariants have been published. These typically take a specific
view on the possible and supported properties. In many cases it
is also useful to view these in a wider context to enable a deeper
understanding of possible invariance and to provide more
extensive support across different domains. This paper aims to
identify different aspects of the runtime invariance based on a
review  of  existing  works,  and  to  present  these  results  in  a
taxonomy that positions the different aspects in relation to
each other. The goal is to provide support for their use in
practice and to help identify possible research directions. A
systematic review has been performed to identify relevant
works in the literature. From these, a set of relevant properties
have been collected to form the taxonomy. The resulting
taxonomy has been structured to describe the different
properties of runtime invariance. One main axis gives an
overview of usage domains. One describes process related
properties that are further classified to specification and
evaluation related properties. A third main axis describes
properties of runtime invariance itself and is further classified
to properties of measurements, patterns and scope. It is
concluded that the taxonomy provides a representation of
different properties of runtime invariance used in current
works. It can be used as a basis for modelling and reasoning
about software runtime behaviour generally or as a basis for
specialization in different domains.

Keywords-systematic review; software behaviour; runtime
invariance; taxonomy

I. INTRODUCTION

This paper extends on previous work presented in [1].
Runtime invariance as discussed in this paper describes
software behaviour in terms of its invariant properties as
observed through dynamic analysis. Dynamic analysis uses
as its basis information captured as observations from a
(finite) set of program executions, such as test executions
[2]. In line with these definitions, runtime invariance is
defined here similar to [3] as a set of properties that hold at a
certain point or points in a program execution. As a
distinction from some uses of the term “invariant properties”,
in this paper runtime invariance includes not only separate
program points but also invariants over the overall behaviour
of the observed system. That is, runtime invariance in this
context refers to properties that are true for every observed
execution. Recently the use of such invariants has become an
increasingly popular technique in supporting different
software engineering tasks (e.g., [4,5,6]).

Examples of runtime invariance include data-flow
constraints (e.g., x always greater than 0 [3]), control-flow
constraints (e.g., request always followed by a reply [7]), or
their combinations (e.g., x is always greater than 0 when
request is followed by a reply [8]). Runtime invariance can
be specified manually as a model of expected behaviour for
further processing with automated tools (e.g., [7]) or built
(mined) based on observed behaviour (e.g., [3]). A model
based on observed behaviour can also be referred to as
describing likely invariance as it is based on observations
made from a set of program executions, which typically do
not cover the entire program behaviour state-space [3].

The idea of documenting and using invariants to reason
about program behaviour at run-time can be seen to be as old
as programming itself ([9,10]). Using invariants expressed in
first-order logic to capture formal constrains on program
behaviour was introduced as early as 1960's [9] by the
pioneering work of Floyd [11] and Hoare [12].

Runtime invariance can be used in a variety of software
engineering tasks and domains, such as helping in program
comprehension [3], behaviour enforcement [13], test
generation and oracle automation [6], or debugging [14].
Thus, when explicitly defined, a set of runtime invariants
forms a basis for building automated support for many
domains of software engineering.

There exist a number of tools to support the use of
runtime invariance in different tasks (e.g., [3,6,15]). Many of
these tools use a specific set of invariants for a specific
domain. When applying runtime invariance in different
domains, it is useful to also consider them in a wider context.
When a set of invariants needs to be provided, either as
manually defined input for evaluation by an automated
processing tool, or as output (templates) from an automated
specification mining tool, being able to generally reason
about this invariance is needed for their effective use.

This paper describes a taxonomy of runtime invariance in
software behaviour, describing different properties of these
invariants. This is based on review of existing works on
research and use of such invariants. The study is structured
to describe how the invariants are specified and used, what
kind of invariant patterns over software behaviour they
capture, in which scope of behaviour they apply, and what
information about the system behaviour is needed to be able
to express and evaluate them.

The goal is to provide a systematic definition of the
different properties of runtime invariance in software
behaviour based on existing work, to facilitate their use in
practice and to help form a basis for identifying future
research directions.



257

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper is structured as follows. Section II describes
the overall approach taken to perform the survey and to
create the taxonomy. Section III presents the taxonomy itself.
Section IV provides two examples of applying the taxonomy.
Finally, Section V provides discussion followed by the
concluding remarks.

II. TAXONOMY BUILDING APPROACH

The taxonomy presented in this paper is based on
performing a review of existing works in use and research on
runtime invariance of runtime software behaviour. This
review follows guidelines for performing systematic
literature reviews (SLR) from [16]. SLR has been shown to
be a robust and reliable research method in software
engineering research [17]. In relation to the most common
reasons for performing a SLR defined in [16], the intent here
is to summarize existing works related to the use and
research on the different properties of runtime invariance in
software behaviour. Additionally, while not directly
addressed by the resulting taxonomy, also two other most
common reasons for a SLR defined in [16] can be observed
as being supported by the provided taxonomy. Regarding
these two, the taxonomy can be used as a framework to help
position new research activities in the area, and to help
identify gaps in current research.

A SLR can be defined in terms of the following features:
a review protocol, a search strategy, selection criteria, and
the definition of the information to be obtained from each
included  study  [16].  Finally,  data  also  needs  to  be
synthesized to summarize the results [16]. The rest of this
section discusses the approach taken in more detail relative
to  each  of  these  features.  The  approach  for  the  survey  and
taxonomy creation is also inspired by the taxonomy building
approaches taken by Ducasse et al. [18] and Kagdi et al. [19],
as well as the approaches for SLR taken by Cornelissen et al.
[2] and Ali et al. [20].

A. Development of a Review Protocol
As noted before, the approach taken in this paper follows

the guidelines for performing a SLR given in [16].
According to this, a review protocol should specify the
methods that are used to perform the SLR. This includes
defining the research questions, the search strategy, selection
criteria, data extraction method, and synthesis approach [16].
Figure 1 illustrates the development process for the review
protocol taken in the study presented in this paper. The first
step is identifying the research questions that the survey is
aiming to answer. The second step defines the search scope
in terms of resources (journals, conferences, etc.) to be
searched and the strategy for searching these resources. The
selection criteria define what studies will be included in the
SLR. A separate step of quality assessment is also possible at
this point but in this paper this is embedded in the selection
criteria as will be discussed in the following subsections. The
data extraction strategy defines how the relevant information
from each chosen study is extracted. Finally, the data needs
to be synthesized to answer the research questions.

Piloting the different steps is also important in order to be
able to identify any mistakes and problems in the procedures.

For the study presented in this paper, a preliminary study
was conducted and published as a conference paper [1]. For
this pilot study, comments were requested from experts in
the field and also received from the conference peer-review
(identified in the acknowledgements). The feedback from
these instances was incorporated into different phases of the
review protocol, which was then applied to produce the
extended version of the study presented in this paper.

Figure 1. Development process for the review protocol.

B. Research Questions
The research questions should support the goal of the

study, which here has been stated as providing a systematic
definition of the different properties of runtime invariance in
software behaviour in order to facilitate their use in practice
and to help in identifying future research directions. To
support this goal, the following research questions are
addressed:

RQ-1: What are the properties of the processes used in
analyzing  software  behaviour  in  terms  of  its  runtime
invariance?

RQ-2: What are the properties used to describe runtime
invariance in software behaviour?

The first question is related to how the invariants over
software runtime behaviour are used, and the second one to
how the invariants themselves are defined.

C. Search Strategy
For reasons similar to those presented in [2], the main

approach for performing the search has been manually over
the selected publication venues. These reasons include the
lack of support in current software engineering libraries for
the identification of relevant research and primary studies,
and the lack of common keywords across different venues or
any such standard in relation to runtime invariance.



258

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 1. Venues for article selection.

Abbr. Description
ASE International Conference on Automated

Software Engineering
CSMR European Conference on Software Maintenance

and Reengineering
FSE European Software Engineering Conference /

Symposium on the Foundations of Software
Engineering

ICSE International Conference on Software
Engineering

ICSM International Conference on Software
Maintenance

ICST International Conference on Software Testing
ISSTA International Symposium on Software Testing

and Analysis
WCRE Working Conference on Reverse Engineering
IST Information and Software Technology
JSME Journal of Software Maintenance and Evolution
JSS Journal of Systems and Software
STVR Software Testing, Verification and Reliability
TOSEM ACM Transactions of Software Engineering

and Methodology
TSE IEEE Transactions on Software Engineering

The search venues are described in Table 1. The first
eight of these are conferences and the last five are journals.
The timeframe for the initial paper selection is from January
2001 until October 2010. This timeframe is chosen in order
to provide a reasonable scope for the survey similar to those
of [2] and [20]. It also scopes the start of the survey around
the publication of one of the seminal papers on analysis of
runtime invariance by Ernst et al. [3]. The selection of
venues is based on the selection of well-known conferences
and journals in the area of general software engineering and
runtime  analysis,  similar  to  those  in  [2]  and  [20].
Additionally, it was scoped by the results of the pilot study
([1]), which started by examining the related publications
collected over time on the Daikon tool website [21] (the tool
originally described in [3]) and by performing keyword
searches over digital library databases (e.g., IEEE Xplore,
ACM Digital Library). The search venues in this paper are a
composition from these different inputs, focusing on those
that were found to be most relevant in the pilot study.

Similar to [2], in addition to the initial article selection
from the venues listed in Table 1, interesting references from
the chosen papers in the initial selection were also checked
and relevant ones included in the survey. Where the authors'
expertise in the field allowed to identify additional relevant
references (e.g., [22]), these were also included.

As the focus of the study is on runtime invariance from
the dynamic analysis viewpoint, the selection of papers and
venues is also focused on the domain of analysing software
runtime behaviour via dynamic analysis. However, as this
can be seen to share many relevant properties with domains
such as formal specification in general, also relevant works
in other domains as referenced from the main body of works
have been included in the taxonomy. However, to provide a

clear scope for the survey and to limit the scope of the study
to a reasonable set, further exploration of the relations of the
given taxonomy to other domains such as the formal
methods community is left as a topic for future works.

D. Selection Criteria and Process
With regards to the research questions, two selection

criteria for choosing the papers to be included were defined:
1. The selected papers directly discuss the use of invariants

in relation to runtime software behaviour
2. The papers discuss modelling software behaviour in

terms of properties that can be observed during runtime.
When these models can be viewed in terms of
invariance, they are considered relevant.

Table 2 lists the number of selected papers in relation to
the selected venues. Due to the very large number of papers
altogether (5817), it was not possible to read every paper
fully. Instead, for each paper the title and abstract were first
checked for relevance. If this provided no conclusion, the
introduction and the conclusions were also reviewed for
relevance. Finally, if needed, the full paper was read in order
to define its suitability for inclusion. The total number of
papers fully read is listed in the third column in Table 2 and
is overall 348 papers.

The row titled “other” in Table 2 refers to papers that
were included from venues other than the ones listed in
Table 1. These come from the survey done in the pilot study,
which included the papers listed on the Daikon website,
digital library searches and from the reference checking in
this extended study. Unfortunately the total number of such
papers was not recorded during the pilot study and thus only
the number of selected papers is given for these venues. The
“selected” numbers in Table 2 reflect the references linked to
the different axes of the taxonomy described in section III.

Table 2. Overview of study selection.

Venue Papers Read Selected
ASE 406 49 12
CSMR 343 19 2
FSE 306 14 6
ICSE 481 25 20
ICSM 587 16 3
ICST 152 16 2
ISSTA 173 52 8
WCRE 277 17 3
IST 810 25 6
JSME 174 9 0
JSS 1270 29 3
STVR 101 11 2
TOSEM 132 8 3
TSE 605 58 7
Other - - 16
Total 5817 348 93

As  mentioned,  the  process  of  SLR  can  also  include  a
separate step of quality assessment after the paper selection
step. Related to this, an exclusion criterion was also used. A
paper was included only if it was observed as contributing



259

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

something new to the building of the taxonomy. For
example, when a paper presents some further research on
specific properties of invariance already discussed in a
previous paper, only the earlier paper is included. This is an
approach similar to that taken by Ducasse et al. [18], and
does not mean that other papers would not be interesting. It
simply scopes the study from the research question
perspective.

Thus the taxonomy does not aim to include all possible
papers dealing with runtime invariance but rather those in the
selected venues that contribute to the definition of a
taxonomy observed as best capable of answering the
research questions.

E. Data Extraction and Synthesis
In building the taxonomy, an initial version of the main

axes and their classes was defined based on the seminal work
of Ernst et al. [3] on analyzing the runtime invariance of
software behaviour. This was then refined based on review
of other works and how these contributed to evolving the
taxonomy and its different properties. This resulted in a more
advanced and more fully structured version of the taxonomy.
At this point the pilot study was submitted for conference
peer-review. As noted before, based on the received
feedback a more systematic survey was conducted in terms
of a SLR, which was then used to update the taxonomy
similar to the way the initial approach is described above.

In building the taxonomy, the Protégé ontology editor
tool was used to capture and describe the different aspects
and classes of the taxonomy. An adapted version of Binder's
“fishbone” diagram [23] is used in section III to describe the
different aspects of the taxonomy, focusing on specific
properties one at a time. For space reasons, the description of
the different properties is kept at a general level and for
specific (and possibly more formal) definitions the reader is
referred to the original references given.

The descriptions of the fishbone show the high-level
properties as bold, mid-level properties as italics bold, and
specific properties in italics. As noted before, given
references are not intended to be all-inclusive but to give a
set of examples. However, for clarity and space no “e.g.” is
repeated for all of the references.

III. TAXONOMY OF RUNTIME INVARIANCE

This section presents the actual taxonomy of runtime
invariance in software behaviour created based on the
performed literature review. It is split into four subsections.
The first subsection defines the main axes of the taxonomy
and shows the overall picture. The second subsection
describes different usage domains for such invariants. The
third subsection describes the properties of the invariants
themselves. Finally, the fourth subsection describes process-
related properties for how such invariants are specified and
evaluated. As noted before, the intent is to provide coverage
of the different elements while including references observed
as adding new elements to the taxonomy. Thus the intent is
not to provide full coverage of all possible references for the
described properties.

A. Main Axes
The generic process flow of using invariants in analysing

software runtime behaviour, along with related properties for
each  step,  is  presented  in  Figure  2.  This  flow  can  be
described as starting with specification of the invariant
information that describes the software runtime behaviour of
interest. Analysing the runtime behaviour requires capturing
a set of observed measurements as a basis for the analysis,
termed here as measurement. Depending on how the
specification is done (automated mining vs. manual
specification), it can also be interlinked with the
measurement phase. Finally, in the evaluation phase the
specified model of expected runtime invariance is compared
against the observed model of actual runtime invariance.

The  specification  step  is  influenced  by  a  set  of
specification properties that describe how the invariant
information is formed. The invariant information describes
the expected invariance and is formed as output from this
step. This is then used as input for the measurement and
evaluation steps. All steps in this process are related to the
usage domain of the process. This means that the different
phases of the process are impacted by the intended usage
domain. The step of evaluation itself is described in this
paper in terms of evaluation properties, which describes the
general domain-independent properties of evaluation.

Figure 2. Flow of Elements.

The main axes of the taxonomy are divided into one axis
describing the usage domains of runtime invariance, two for
describing the process-related properties and three axes
related to properties of runtime invariance itself. The
invariance related axes embedded in the “invariant
information” block in Figure 2 are measurements, patterns
and scope.

Effectively making use of and reasoning about a concept
requires thoroughly understanding it. Subsection III.B starts
by describing a set of common usage domains for runtime
invariance from the surveyed works. The properties of
invariant information described in section III.C further
describe the different elements of the runtime invariance
itself. Finally, the properties of process described in section
III.D provide more detailed insights into working with these
invariants, related to their specification and evaluation.

B. Usage Domains
In order to use invariants as a basis to describe and

analyse software runtime behaviour it is important to
understand the context in which they can be applied. This



260

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

includes both the targeted application domain (e.g., test
automation or runtime adaptation) as well as the type of
application (online or offline). The axis presented in this
section aim to provide a basis for understanding what
runtime invariance can be used for, how one might use them,
and where one might be interested in their application. While
this subsection synthesizes the surveyed related works, it
should be noted that other application are also possible.

The usage properties refer to the context and type of
application of the runtime invariance and are illustrated in
Figure 3. This includes both the usage domains describing
what the invariants are used for, and usage types describing
if they are applied in an operational system or separately
from it.  Here the domains are split into five high-level usage
domains, which can be observed from two viewpoints:
online and offline use. These usage related properties can be
observed to help answer questions such as “How is runtime
invariance applied and where?”.

Figure 3. Usage Domains for Runtime Invariance.

Considering the type of use, in offline use, the invariants
are applied separately from the execution of the analysed
program. In this case, the observations (collected at runtime)
about the runtime behaviour can be analysed external to the
operational system. In online use the application of the
invariants is linked to the executing program. In this case, the
invariants are analysed while the system is operational and
possibly the results are fed back to the operational system in
some form.

Considering the five usage domains behaviour enforcing
techniques guide the online operation of the observed
system. Static analysis is focused on automated analysis of
given static artifacts and thus mainly operates offline.
Besides these two, the other domains can make equal use of
both online and offline approaches. In the following, each of
these usage domains is described in more detail.

Static analysis is not considered in this paper deeply as
the focus is on runtime invariance in terms of dynamic
analysis. However, some different usage relations can be
identified. The invariants can be used as input for static
analysis to check if they hold generally or only in specific
cases ([24,25]). When information about the program
structure is available, the correctness and accuracy of
runtime invariants can also be checked and improved with
combination of static analysis techniques such as symbolic
execution ([26]). Invariants observed as useful and true in

terms of runtime behaviour and dynamic analysis can be
turned into more generic checks for static analysis ([14]).
Although some specifications of invariants can be more
suitable  for  dynamic  and  others  for  static  analysis  ([27]),
many properties of static analysis can also be applied in the
context of dynamic analysis and the other way around
([7,28,29]). Finally, as runtime invariants are defined in
terms of some formalism, static analysis techniques can also
be applied to check a chosen set  of  interesting properties in
their specification, including their correctness and
completeness in general and with regards to the observed
runtime behaviour ([30]).

Behaviour specification is a basic concept for any
application of runtime invariance, as the expected invariants
need to be specified before they can be applied. Use cases for
invariance in runtime behaviour specification include
defining application programming interface constraints (e.g.,
size() always >= 0 [25,31]), defining rules
(constraints to be obeyed) for successful integration of a
component with others ([32,33]), describing the valid
(supported) input-space of a component ([32,34]), and
defining error handling rules ([35,36]). A component can
generally be anything from a method, a composition of
classes, a service, or a complete software system.

Invariance also forms a basis for generic formal
specification [7], which can be used to verify the actual
behaviour against the specific expected behaviour [37]. This
also includes constraints for executing a specific
functionality [36]. The different properties related to
specification of runtime invariance are described in more
detail in section III.D.1). A core concept related to this is the
requirement to be able to reason about the different
properties of potential runtime invariance. A systematic
definition for the properties of runtime invariance is needed
in order to have a basis for reasoning about their composition
and use. Such a definition is given by the taxonomy of
invariant properties in section III.C. A specification can be
produced either manually, or with the help of an automated
specification mining tool.

Behaviour analysis of software runtime behaviour is a
human-oriented process typically supported by automated
tools. A set of runtime invariants is provided to the user as a
basis for analyzing the system behaviour. This can be used
for different types of tasks. In the software engineering
domain, for example, failure cause location (debugging) can
be supported by analyzing how the invariants change over
time in an operational system and reporting any significant
changes preceding an observed failure ([5,14,29]). This is
possible as the runtime invariance of the program can be
observed as changing over time. Similarly, debugging can be
supported by comparing the invariants observed over both
failing and non-failing program executions ([5,38]). Software
evolution tasks can be supported by presenting any changes
over given invariants when changes are made to a program
to make the impacts of changes more explicit ([3,29,39]),
such as changed interaction sequences and input-output
transformation [39]. Another example in this domain is
suggesting refactoring based on mined invariant
specifications (e.g., to remove observed constant parameter)



261

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[40], and by using given invariant specifications as contracts
to define checks for properties that need to hold after
refactoring [41]. Additionally, the invariants can support
tasks such as program comprehension by providing a
documentation that describes the software behaviour in terms
of its important (invariant) behaviour ([3,4,32]). This can
also take the form of asking queries to identify invariant
sequences to find related sequences of behaviour
([42,43,44]).

When implementing automated software analysis
features based on runtime invariance, different approaches
for different domains can be taken. In security assurance
observing a set of core invariants over specific variables,
such as kernel data structures or session state variables, can
be used to identify potential security attacks when the
expected invariants are violated ([45,46,47]). In the same
line, runtime invariance patterns over system interactions
(such as library calls) can also be used to identify the origin
of mutated code for purposes such as to protect against code
theft [48] or to identify mutating malware [49]. Runtime
monitoring in general can be implemented to check that the
runtime behaviour conforms to the specified invariant
specifications in all executions [50,51]. In case errors are
observed, error correcting actions can be considered [51],
which is a form of behaviour enforcing.

Behaviour enforcing mechanisms take as input the
information from behaviour analysis and additionally take
automated action to modify the behaviour based on
differences in the actual observed runtime invariance vs the
specified expected runtime invariance. Automatic adaptation
mechanisms can use invariants to choose a new state for the
software based on which specified invariants hold at
different points in time [13]. Invariants can also be used to
ensure that failure states specified in terms of invariants are
avoided by modifying runtime behaviour that is observed to
be outside the given set of invariants (the expected
behaviour) to fit inside the expected invariants
([29,52,53,54,55]). For example, a specific case can be
observed in disallowing saving of data or updating the state
(of the user interface) when an invariant does not hold [56].

Test automation is basically a comparison of expected
runtime behaviour to actual observed runtime behaviour.
Defining a test case requires defining test inputs, expected
outputs and their relations. Any automated test case basically
requires defining the software runtime behaviour in terms of
invariance for the automated test case to be able to produce
any holding verdicts over the observed behaviour. Thus test
automation is a fruitful application domain for runtime
invariance.

A basic application is in defining the test oracle (the
component that evaluates the test results) in terms of
invariance. Such invariants typically define how a part of the
system behavior is expected to work, in terms of properties
such as determinism ([57,58]), data processing ([4,14,59]),
message transitions ([6,60]), and their combinations
([22,61]). This is also related to the previously mentioned
aspect of runtime monitoring for correctness in terms of
using specified runtime invariance as a set of constantly
running online test oracles ([29,35,50,62]). It is also related

to the previously mentioned aspect of specifying how a
component should work in relation to its use environment, in
using runtime invariance specifications as a means to check
how a new or updated component works in different
environments ([31,39]).

In addition to test oracles, a test case requires producing
valid input for the system under test. Here invariant models
can be used to define valid data ranges, value relations and
similar properties as a basis for a data model to be used to
generate test data to cover these models ([61,63,64]).
Another option is to generate test data to try to break
previously defined invariants in order to further explore
behaviour and to try to extend the model of invariance
([10,59,65,66]). Various approaches to generate test data
from these models include search-based algorithms [64],
random test generation [63], and generating test data to fulfill
the different invariants defined [66].

The above mentioned uses of creating test coverage to
cover or break invariants are in themselves also examples of
using runtime invariance to reason about test coverage. A
second aspect related to this is mutation analysis, which is
used to change the SUT and to see how well a set of tests
finds the mutations (with failing tests). Invariants can be
used to also optimize SUT mutant coverage [10,67], but this
can also be applied the other way around to evaluate the
quality of the invariants themselves ([49,51]). In this case,
the invariants are mutated and executions over these
invariants are used to evaluate if the invariants are valid or if
they catch useful changes in software behavior.

C. Properties of Invariance
This subsection describes the different aspects and

properties related to describing runtime invariance itself. It
starts with defining the properties of measurements for the
actual runtime observations. Following this, it presents a set
of different patterns of runtime invariance that are built from
these observations. Finally, the different scopes of runtime
invariance that allow for defining where these patterns of
runtime invariance can be expected to hold are described.

1) Measurement Properties
As described in section III.A, any evaluation of runtime

invariance requires first capturing the required information
(observations) about the runtime behaviour. Similarly, as
also noted in section III.A, this information can also be used
as input in the specification phase. Thus, it can be said that
any application of runtime invariance analysis requires also
capturing a set of suitable information to describe this
invariance. In this paper this information is referred to as
measurements.

The basis for describing software behaviour in terms of
its runtime invariance is the measurements used to observe
this invariance. This in turn requires one to understand what
kind of measurements can be made directly from the system,
what kind of further measurements can be derived from these
basic measurements, and how we may classify all these
measurements. This information provides means to describe
the system using the higher level invariant patterns presented
in section III.C.2). It provides means to create more
extensive patterns, and to evaluate the options available and



262

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needed to capture the required information as well as to
understand what is needed to instrument the system to
acquire these measurements. The axis presented in this
section aims to support these goals by providing an overview
of what types of measurements are used in existing works.

The properties of these measurements are illustrated in
Figure 4. These properties can be observed as helping to
answer questions such as “What kind of basic measurements
are used to observe runtime invariance?”,  “What other
measures can we derive from these basic measures?”, and
“How can we characterize the different measurements?”.

Figure 4. Measurement Properties.

The information type of  the  measurements  can  be
classified into two different types of static and contextual
information [28]. Static information in a dynamic runtime
setting is information that is always the same for a given
point of observation. For example, during a specific point of
execution, a message passed can always be the same type of
a message (e.g., method call named publishData()) and
is thus static over different executions of this point.
Contextual information describes dynamic information that
changes over the executions of a single point depending on
the context (e.g., test case or user session) of the observed
information. For example, the time of observation, parameter
values, and the thread of execution for a given message all
can change over different executions of the same program
point ([28,68]). The set of observations can also be grouped
("sliced") according to their contextual information, such as
process (thread) id to produce a set of invariants over the
scope represented by that slice ([15,28,68]). In this case, the
scope (context) identifier becomes the basic measure (e.g.,
thread id [69] or a constant parameter value [28]).

The term base measure here refers to a type of
measurement information that describes some basic value of
runtime behaviour as it is observed. A basic value for any
observation is the time when it occurred or was observed
([28,60,63,68]). For dataflow the base measures include
variable data values and their basic data types such as
Boolean values, integers, and character sequences (Strings)
[3]. In the scope of object oriented programs the runtime
type of an object can also be used as a base measure data
value ([14,70]).

From the control-flow perspective, base measures are
messages passed between different elements of the control-
flow. Perhaps the most basic measure related to this is the
identifier of the message passed, but also the sender and
receiver objects ([71,72]). Examples of measurement targets
include method invocations between components (such as
classes or services) ([8,39,71,72]) or invocations on
graphical user interface (GUI) operators ([6,61]).

A specific case of control-flow is error handling flows
identified by an error status.  Error  scenarios  can  be
classified to generic errors and application specific errors
([6,59]). Generic errors can be related to properties shared by
different applications such as database access errors and
user-interface  (e.g.,  HTML  or  DOM  tree  for  a  web-
application [6]) error codes. When represented in a uniform
way (e.g., by programming language exception mechanisms
[59]), these can be generally observed in the system
behaviour (e.g., by an automated tool supporting a given
domain). For example, all Java exceptions can be taken to
describe a message that denotes erroneous behaviour being
observed [59]. Application specific errors need to be
described separately for each application in terms of
application specific invariants. For example, one may expect
a given error response to a message outside a given set of
valid input [22].

A derived measure is something that is not directly
observed in the system behaviour, but the value of which is
rather derived from one or more base measures. To produce
derived measures for data-flow,  the  base  measures  for  a
system can be grouped based on invariant scopes [3]. For
example, the values of variable x before and after a program
point can be considered separately as variables x1 and x2, to
describe a pattern saying x1>x2. In this example, there are
two derived measures x1 and x2, both of which are scoped
data values. The different scopes are discussed in section
III.C.3).

Runtime control-flows are typically described in terms
events and states ([46,61,68,73,74]). These are viewed here
as derived measures for control-flow. From this viewpoint,
an event can be described as an identifiable, instantaneous
action in the observed software behaviour, such as passing a
specific message or committing a transaction [69]. Similarly,
a state can be described as values of properties that hold over
time, such as over interactions between components. This
information can be, for example, held in message parameters
or inside components internal state variables [46]. A related
property is branching, which defines how several different
paths of events and states can be taken in the software
behaviour. This can be described in terms of invariance of
state when observing which paths are taken and which ones
are  not  ([5,75]).  In  this  case,  the  taking  of  a  branch
constitutes an invariant.

Statistical properties describe additional information for
other base- or derived-measures. Support and confidence are
two values commonly used together ([3,15,28]). Support
defines the number of times a measure is observed in
behaviour ([15,36]). Confidence can be used with the same
definition [3] but also as a definition for how often another
measure is observed in relation to support, meaning how



263

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

often a precondition is followed by a post-condition
([15,28,76]).

Probability defines  the  threshold  for  a  measure  to  be
observed in a given scope, which can be used in different
ways. A measure with low probability (support percentage)
can be excluded from analysis to address anomalies
([3,13,15,69]). Different approaches are used for this
depending on the target invariants, from low level thresholds
(e.g., 1% or less [3]) to higher levels (e.g., 20% [15]). The
probability can also refer to probabilities of a measurement
value inside a range of allowed values [13,77]. Deviations
from the expected values are typically given a probability
which can then define the significance of the deviation
([13,14,46]). This threshold can be used for different
purposes such as identifying probable failure causes [14],
security attacks [46], possible state transitions [77], and to
decide new states for automated adaptation [13].

Equality of objects can be defined in different ways.
Besides expecting measures to be exactly equal, semantic
equality can also be considered (e.g., two lists can be
considered semantically equal while focusing on contained
objects and ignoring their ordering [57]).

Distance defines the window inside which two events are
observed and considered for evaluating a pattern of
invariance.  Thus  it  can  be  seen  as  related  to  the  scope  of
invariance as described in section III.C.3). Events and
correlations observed inside a shorter time-window are seen
to represent more likely “true” invariance [58]. Dominance is
a measure used to remove overlapping patterns where one
includes the other as a sub-pattern ([78,79]).

Significance defines the importance of an invariant
violation or of the measured variable. With regards to
invariant violations, different approaches to significance can
be taken where the latter observed violations are given
higher priority as they are seen to be closer to a failure [14],
or earlier violations as they are expected to have more impact
on later behaviour [53]. When a variable is observed as
having no correlation with other variables it can be
considered as irrelevant for analysis purposes ([31,40]). The
significance of observations and invariants can also be
defined according to the number of observations ([13,58]).

2) Patterns
Having a set of measurements available in itself is not

useful alone. They provide a basis for analysing the runtime
invariance of the system but do not tell much about the
invariance itself. A statistical derived measure can
sometimes be useful in terms of considering basic runtime
invariance in terms of single measurements at a single point
of execution. However, more complex patterns describing
relations between the measurements in different scopes (e.g.,
over time, described in more detail in section III.C.3)) are
also needed. This includes considering their relation to the
overall control-flow in terms of their occurrence in the given
scope, their concurrent interleaving and sequential ordering.
It also includes considering how the values interact in terms
of data-flow and whether a specified invariance should be
expected as normal or exceptional behavior of the system.
Knowing these more advanced patterns enables describing
and analysing the runtime invariance more effectively. The

axis presented in this section aims to support these goals by
providing an overview of what types of patterns are used in
existing works.

Analysis of runtime invariance is basically about
analysing patterns of invariance over the observed behaviour.
The set of such patterns identified in this paper is shown in
Figure 5. In relation to the different types of measurements
described in section III.C.1), control-flow related patterns
describe ordering of events or states in the observed system
([7,63]). Data-flow related patterns describe the data-flow of
the observed software, such as what values a given variable
takes during the software execution ([3,74]). These patterns
can be observed as helping to answer questions such as
“How are the different measurements grouped?”, “What are
their relations to each other?”, and “What type of behaviour
do they describe?”.

Together these can be combined to represent the overall
behaviour of the software in terms of the control-flow
combined with the data-flow. A basic way to describe these
combinations is in terms of conditional dependence; a
control-flow event can only be followed by one of many
(branches) depending on a given condition
([8,27,73,76,78,79]). A natural way to express these
conditions is then in terms of invariants related to the data-
flow in the context of that control-flow. For example, event
P1 can be followed by event P2 when x<0 or by P3 when
x>=0 ([8,22,78]).

Overall, these are referred to here as behavioral
invariants, where the constraints for a given control-flow
pattern are defined in terms of its data-flow invariants. These
can be described in terms of models at different abstraction
levels as discussed in section III.D.1).

Figure 5. Patterns of Runtime Invariance.

Each pattern can further be related to describing different
type of behaviour, which can be generally classified as
exceptional (error) or normal (correct) behaviour of the
observed system ([6,25]). Errors can be classified as either
persistent, in being possible to identify them at different
points, or as transient, in which case they are not observable
after some set of events [80]. Exceptional states can also
refer to more than just error situations, such as behavior
deviation and need for adaptation [13]. A basic approach to



264

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

detection of exceptional states is to look for deviations of a
model describing the “correct” behavior, and to act on the
observed exceptions with a predefined strategy ([6,13,61]).

Patterns related to runtime invariance of control flow can
be defined as describing the sequential dependencies
between a programs events and states ([7,76]). In the
following discussion the term “event” is used to refer to both
events and states. Here, the control-flow patterns are
classified to three main categories related to concurrency,
occurrence and ordering.

Concurrency in runtime analysis can be categorized as
an event stream produced from several sources at a time
[76]. Determinism defines that a set of operations always
produces the same result, even if performed with different
parallel schedules, as long as the start state is the same [57].
Bounded refers to allowing at most N threads to execute at
one time in a single block [81]. This can also be referred to
in terms or overlapping or sequential blocks [69]. Exclusion
is a pattern only allowing one thread (from a set of threads)
in a single block (or a set of blocks) [81], and can also be
referred to as mutual exclusion ([61,69]). Resource is  a
pattern where a thread can execute only if enough resources
from a resource pool shared by a group of threads are
available [81]. A barrier pattern  relates  to  two  or  more
threads having to wait at the edge of a synchronization block
to exit at the same time [81]. Relay is similar to barrier but
allows exit of thread t1 from region r1 after thread t2 enters
r1 [81]. Both relay and barrier can also be generalized to
groups of threads (or event sources) arriving and leaving
[81]. When these constraints of invariance are not met,
problems can occur. For example, if two or more events
affect the same state asynchronously, they typically will
corrupt the overall application state if executed concurrently
[82].

Occurrence related patterns describe properties related to
observing an event or a state [7]. The grouped pattern
describes two or more events always appearing together
regardless of their ordering ([58,76,83]). For example, the
methods setHost() and setPort() can be called to set
up properties for a connection in any order but must always
appear together [58]. The grouping can be seen in relation to
context, coupling an event to its context in allowing only
certain events in a certain context (state) [83]. Absence
defines an expectation that the measure does not exist in the
defined scope [7]. Existence denotes that the measure exists
in a scope [7], and can be extended as bounded existence
defining that the measure exists N time in a scope, where N
denotes either exact, minimum or maximum number
([7,78]). Universal defines an expectation that the measure
applies to the whole scope ([7,29,84]). Periodicity describes
a measure repeating over a given cycle (scope) ([76,85]).
The alternative pattern defines a set of events out of which
one should be observed in a given scope ([86,87]).

Ordering describes the patterns of order between the
different events ([7,88]). Precedence describes a specific
event P always occurring before another specific event Q [7],
also referred to as a precondition ([27,29]). Any number of
events can also be observed between the two events
([15,58,63]), and it is possible to define the number of

allowed events in between [58,84]. A specific case of this is
chain precedence, which specifies that a sequence of events
(Q1,Q2,Q3,…) is always preceded by another sequence of
events (P1,P2,P3,…)  [7].  This  can  also  be  related  to  an
event enabling or disabling another on in the future [89].

The opposite of precedence is response which defines
that event P is always followed by event Q ([27,29]). Similar
to precedence, also here any number of events can be
observed between the two events ([15,58,63]), and it is
possible to define the number of allowed events in between
([58,84]). The scope for response can be defined in different
terms such as inside a given time duration [85]. This is again
a specific case of chain response, which defines that a
sequence of events (P1,P2,P3,…) is always followed by
another sequence of events (Q1,Q2,Q3,…)  [7].  This  can
also be related to relation of objects to events, such as a
created object always being passed as a parameter or an
object that is related to event A also being related to event B
[90].

Related to the precedence and response patterns, and also
to the grouped occurrence pattern, two or more events can
also be grouped together as an alternating sequence such as
ABABAB ([76,78]). Further, it is also possible to define other
more specialized cases such as events in the alternating
sequence repeating multiple times, AB*C, where B is
repeated 1-N times between A and C [78], or a cutoff in the
end of the sequence (ABABA) [15].

Inclusion can be used to define an event always
appearing inside another, where the dominating event must
then be defined in terms of a larger scope ([63,85,88]). For
example, an event A can hold while a specific state B holds
[88], or when one is observed, another must also hold for a
given scope [85]. Exclusion is the opposite of inclusion and
defines that when a dominating event holds, a specific other
event cannot hold. For example, when state B holds, event A
is now allowed ([61,83]). Related to this and also the
alternation pattern, it is also possible to define that when
event A holds, event B does not, but when A no longer holds,
B must hold [88]. Some basic examples are disallowing
communication with a thread that is not started [91], or a
model dialog disallowing communication with other dialogs
(states) [61].

Patterns related to runtime invariance of data flow
describe properties and relations over variable values during
program execution ([3,74]). The assigns pattern defines that
in a defined scope, values of specific variables are assigned
to (modified) ([3,25]). This can also be described in terms of
values that are not modified [3]. Value change is an
evolutionary pattern that describes how a value changes over
time in a given context ([14,27,92]). This pattern defines the
expected scale of change for a variable in a given scope. For
example, the expectation can be that change in value is
always small (within a given threshold such as change<5)
([14,92]). Examples of specific case are a variable that is
never set (null value) ([3,27]), and a value that is generally
constant in the given scope [27].

A value range describes a variable always having a value
inside a defined range in a given scope (e.g.,



265

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3,14,27,33,56]). Examples include value always being
constant, one of a set of possible values (e.g., one of 1,2,4)
and a value between given boundaries (e.g., 1<x<4)
([3,14,86]). Common constants such as zero or one can also
be considered a specific case in itself ([3,14]). Optimizing
for performance a subset can also be selected such as looking
for positive (x>0) or negative values (x<0) [14]. Another
example is that the contents of a character string are expected
to be a human readable character ([27,64,93]). This can be
further extended with a probability distribution describing
how often each character is expected to be observed [46].
For user interfaces, it is also possible to define a possible set
of UI widgets and their values ([56,61]).

A value relation pattern describes how one variable is
related to another ([3,31]). These can be basic mathematical
operations (e.g., x<y or x=y+1), or their combinations [3].
Relations can also be described in terms of the relation of
one variable to several others, such as the relation of
program output to its inputs [31], or as a variable always
belonging to a larger set (member of another array variable)
[3,27]. In the case of larger sets of values (e.g., arrays), the
same relations can be described internally between the
elements of the set [3]. Additionally, a set of specific
relations can be considered such as one set (array) reversing
another  or  matching  a  subset  of  a  bigger  set  [3].
Additionally, a single value (e.g., a given variable or a
constant) can be described to always be included in a given
set [3]. The evolution of different variables can also be
linked so that when the value of one changes, the other must
change also [94].

3) Scope of Invariance
While the patterns described in section III.C.2) describe

the basic important properties of runtime invariance, simply
defining these patterns without defining when they are
expected or observed to hold is not sufficient. To effectively
describe the runtime invariance of a system, it is also
important to be able to define when this invariance is
expected to hold. This scope can be defined in terms of
events or time specifying the constraints for when the pattern
should hold. The axis presented in this section aims to
support these goals by providing an overview of what types
of scopes for different patterns are used in existing works.

Figure 6. Scope of Invariance.

The scope of an invariant defines when and where a
specific pattern of runtime invariance is expected to hold.
This scope element of the taxonomy is shown in Figure 6.
This part of the taxonomy can be observed to help answer
questions such as “Where and when do the patterns of
runtime invariance apply?” and “What defines these scopes
of runtime invariance?”.

In the following descriptions, the term event is used to
refer to both control-flow events and states and data-flow
measures.  The  scope  is  split  into  two  main  categories  of
time-based scope and event-based scope, which are
discussed next.

An event-based scope defines the scope in terms of
relations between events and observations. An invariant may
define that it should hold after a given event [7]. Specific
cases of this are defining the tail of an event set, where on N
last events are considered [3], or when an event is never
expected to occur after a given observation [88]. For
example, using the tail scope, the relations between the last 2
observations can define how a value in a set increments [3].
More specifically than after an event generally, another event
may be defined as the end condition in which case the
invariant should hold after the observed start event until the
observed end event (termed as the after-until scope) [7]. This
can also be defined as the state holding true until a specific
event is observed or forever if the end condition is never met
[84]. A similar scope is between, which defines two events in
between which the invariant pattern should hold [7].
However, the difference is that this holds only once both the
start and end events have been observed, and after-until
holds from the first observation of the start event [7].
Specific examples of these are the start and end of a method
invocation on a component ([3,46]).

As opposed to the after scope, an invariant pattern can
also be defined to hold only before a given event is observed
[7]. Similar to the tail for the after scope, here the first N
observations of a set can be considered with the term of head
[3].  A global invariant pattern should hold for all observed
behaviour during the program execution [7]. The scope can
also be defined in combination with a specific slice of the
program behaviour, such as a thread ([28,68]) or a specific
web application session [46]. In this case the scope becomes
a combination of the context slice and one of the other scope
definitions discussed above.

A time-based scope defines the scope in terms of
relation of the observations to the passage of time. Different
aspects of the duration of time can be used to define the
scope in terms of time. The basic form can be defining the
start time and length [63], or defining an event as instant
without specific timing constraints [69]. The duration can
also be specified as an interval with a minimum or maximum
time [88]. It is also possible to define a minimum or  a
maximum time (duration) for a pattern to hold without
specifying the other bound [85]. Additionally, the time
duration can be combined with an event-based scope to
produce a hybrid scope. For example, an invariant pattern
can be defined to hold after 10 time units (according to
choice of time unit) until a specific event is observed [88].



266

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Process Properties
In addition to the properties of invariance itself, it is

useful to consider the properties of the process used to work
with these invariants. The properties of the process in this
section are described in terms of two main axes as noted in
section III.A. These are the properties related to specification
and evaluation of runtime invariance. The third step of
measurement as described in section III.A is most closely
related to the invariant information described in section III.C
and thus not covered in this section.

1) Specification Properties
In addition to understanding how and where the runtime

invariants are applied, it is also important to understand how
runtime invariance can be expressed and where the
information to describe a system in terms of this runtime
invariance comes from. This helps to choose effective means
both to specify the expected runtime invariance for a system,
and to express it in suitable and effective terms for analysis.
The axis presented in this section aims to support these
goals. This provides a basis for specifying invariants using
the detailed properties of runtime invariance presented in
section III.C.

The different aspects related to the specification of
runtime invariance are illustrated in Figure 7. The
expression axis describes the different aspects relevant to
how the invariants are expressed in specifications, including
the expression language and the abstraction level of the
expression. The specification source describes the different
sources of information for the specification. The method of
specification defines how the specification is created. These
different properties can be observed to help answer questions
such as “Where does the information to define runtime
invariance come from?”,  “How is the runtime invariance
defined and reasoned about?”,  and  “How is runtime
invariance expressed?”.

Figure 7. Specification Properties.

Different types of methods can be used to obtain the
information for specifying the invariants. One is to fully
(automatically) reverse engineer these from observing
program behaviour ([3,38,80]), commonly referred to as
specification mining. The opposite of this is describing the
invariants manually based on specifications or expert
knowledge ([6,29,80]). Finally, a hybrid approach can be
taken, where an initial specification is first generated with

tools similar to the automated approach, and this reverse-
engineered information is manually augmented with
information from specifications and as feedback from
continuously evaluating this preliminary model
([22,37,42,71]).

As noted above, the method of specification is closely
related to the source of the information used for the
specification. Natural language documents such as
requirements specifications can be manually analysed to find
a set of relevant invariants [22]. Expert knowledge about the
system behaviour can also be used to specify runtime
invariance at different abstraction levels, for example,
specified by domain experts as describing high-level system
behaviour [56], or as lower level invariant properties
specified by developers with detailed knowledge about the
implementation [29].

Source code and program execution are two sources of
information most suited for automated analysis. Source code
is a static artefact, but where available can also be used as an
additional input for dynamic analysis such as providing
interface definitions ([22,44,95]), or to provide additional
information for assisting in dynamic analysis [26]. Program
execution is observed in terms of dynamic analysis to capture
how the observed system behaves in a given context such as
a test case [2].

From the different sources of information, one needs to
capture a set of invariants covering the relevant properties of
dynamic behaviour in the software. Experiments have shown
that combining both manual and automated sources of
information gives the best results, where both provide useful
invariants not identified by the other approach [96].

Expression needs to define the invariance using a
suitable expression language, and at the chosen abstraction
level. The abstraction level of the specification can be
described as defining the overall execution of the system or
focusing on specific parts of execution ([88,97]). This
definition at different levels is also described in terms of
different types of languages, such as automata for overall
behaviour and assertion style specifications for specific
properties ([37,98]). A relevant concept for definition of
runtime invariance for a component is the hierarchical
relations of the different components, where a subtype can be
viewed to also inherit the invariant definitions of its
supertype ([29,34]).

In terms of the abstraction level, different focuses for
partitioning the modeling can be taken. For example, models
can be classified at the implementation, design, and domain
level [98]. This can be translated to the internal
implementation of components (e.g., embedded checks for
specific properties [27,29]),  the  external  interfaces  of
components as subsystems ([35,50]), or the overall system
(domain) behaviour ([8,61]). Different types of approaches
can be taken that combine different viewpoints from these.
For example, some approaches define small-scale state-
machines for specific parts of execution ([60,62,99]), which
are then combined to form larger wholes to be checked, with
the expectation that the larger whole needs to be covered
([18,60,78,99]).



267

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A benefit of a small-scale specification can be seen in
making it easier to produce a suitable formal specification
for a specific property ([51,57]). Small (more specific)
invariant definitions are seen as more suitable for specific
low-level checks, but for system-level checks they can
become too complicated and interleaved ([51,99]). In this
sense, a different type of an approach such as specifying of
larger-scale state-machines is seen as more appropriate
([51,99]). To reduce the complexity of managing specific
checks some recommend defining fewer checks, and
focusing on effective specifications that embed the important
elements of behaviour ([27,51]). In this way, the larger
specification can also be composed of several smaller ones
[99].

For a higher-level specification a common model is
different forms of a state-machine ([8,61,89,93]). Guards can
be defined in terms of invariance over data values ([8,33]).
Similarly, the possible transitions can be viewed as
invariants in possible actions in a specific state
([8,61,89,93]). Many approaches in analyzing the state-
machines are similar to how low-level invariants are
combined to form state-machines. In this case, high-level
state-machines are decomposed into smaller invariants for
various analysis purposes, such as using expected transitions
of chosen length as test oracles ([89,93]).

To support the different types of specification methods,
the expression language needs to be both formal to allow for
automated tools to effectively process them but also
understandable to a human user in order to also support their
manual review and analysis where needed. Domain specific
languages (DSL) can be used to describe the invariants
specifically for a chosen domain, such as in form of test
oracles for web-applications ([6,56,98]). Other application
domains include analysis support for refactoring [41],
synchronization [81], determinism [57], general temporal
properties [88], and test definitions in terms of runtime
invariance [100]. Besides direct support, specific domains
from more generic models can also be supported through
model transformation (e.g., to monitoring code for runtime
correctness [83]). Many of these languages are specifically
designed to support modeling of the chosen set of properties
for runtime invariance ([41,56,57,60,63,81,88,100]).

Besides these specific expression languages, also generic
languages can be used. For example, the object constraint
language from the unified modeling language can be used to
express invariants ([101,102]), or live sequence charts to
express invariance in event ordering [43]. Logical
expressions can be used as a basis for defining invariance in
themselves ([42,84,85]), or as part of the specific languages
[41]. Regular expressions are generic expressions intended to
express patterns over strings, and thus form a natural basis
for expressing also patterns of runtime invariance. In this
case, the event stream is expressed as a string of events, and
regular expressions are used to express patterns over these
events ([58,100]). Perhaps the most expressive means to
define invariant properties is in terms of programming
languages, which allows using their full expressiveness to
define the invariance. This can take different forms, such as
interleaving with the implementation code to be compiled

with the program itself ([25,29]), writing them separately as
a basis for a separate monitoring program [35], or as “model
programs” for how parts are expected to behave allowing to
execute the invariant definition separately with or with the
implementation to perform different analysis and checks
[50].

A common approach to support the definition of
invariants is in using pattern templates. This is especially
true in the specification mining approach, where a set of
templates are defined and reflected against the actual
observed behaviour to report observed invariants matching
the template definitions ([3,14,58]). Templates are also used
in manual specification ([41,103]). In both cases, the
templates describe a predefined set of patterns, which are
then parameterized according to the expected or observed
runtime behaviour. The set of patterns of runtime invariance
is described in the section III.C.2) of this paper.

As mentioned previously, an important aspect of
specifying runtime invariance is that the specification should
support both manual analysis and processing by automated
tools in relation to the methods of working with these
invariants. The languages described above are mainly
focused on effective description from the automated
processing perspective. One approach to address this is to
produce specifications in a programming language when
targeting developers in order to provide a familiar language
to reason in [37]. Along with the different language
transformations discussed before (in relation to [83]), it is
also possible to provide transformations into natural
language to support easier comprehension of the
specifications (e.g., into structured English [85]). A related
specification approach is also that of grammar-based
specification, which aims to describe the invariance in terms
of sentences of events [99].

Formal textual specification of complex behaviour has
also been shown to be very hard for humans [103]. To
address this, besides using textual languages and
transformation between them, visual representations can also
be seen as a more natural way of expressing invariance for
humans ([56,103]). In this case, the transformation is done
from the visual representation to a more machine processable
form.

2) Evaluation Properties
In relation to this overall process flow described in

section III.A, the overall process of runtime invariance
evaluation is also related to the step of measurement and
typically consists of three distinct steps:  Collecting
information (a set of events) from the runtime execution of
the program, building a model of runtime invariance based
on these observations, and comparing this model against the
specified reference model of runtime invariance
([88,93,104]).

Specific aspects to consider in evaluating the runtime
invariance include how extensive evaluation is done in terms
of depth and frequency, the cost-effectiveness of these
choices, and how the evaluation check is performed.
Effective evaluation requires considering these different
aspects together when building the evaluation for the case at
hand. The axis presented in this section aims to support these



268

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

goals by providing an overview of the different properties
related to evaluation of runtime invariance in existing works.

The evaluation properties are illustrated in Figure 8. This
is described in terms of three main properties. The depth of
evaluation defines how extensively evaluation is performed.
Triggers are events or states that trigger the evaluation of a
specific runtime invariant pattern. Finally an evaluation
function needs to be defined to check each defined invariant
property. These properties can be observed to help answer
questions such as “How is runtime invariance evaluated?”,
“How extensively is it evaluated?”, and “What is the impact
of different properties of evaluation?”.

Figure 8. Evaluation Properties.

The depth of evaluation defines how extensively
evaluation is performed. One approach is to define a priority
to each defined check and to choose when an evaluation is
performed to evaluate only checks of a given priority or
higher [27]. Different properties for different types of
components can be evaluated at different levels, such as
checking a library while in development thoroughly and after
release, focusing in more detail how the clients interact with
it [29]. The evaluation level can also be defined in terms of
evaluated data, such as if input is given, if it is of correct type
and if it meets the domain-specific checks defined for it [56].
The breadth of evaluation can also be defined in terms of
which components are checked, such as checking only
properties of the active component, all components in the
scope, or all components accessible [105].

The check defines the evaluation function for each
specified property of runtime invariance. Similar to the level
of evaluation, it is also possible to define the severity level of
deviations from expected invariance, such as informative,
warning and error [56]. When a deviation is observed, the
cause of deviation can be classified to one of three options:
the original specification was lacking due to insufficient
input, the observing a feature in a specific context or
environment that was not previously considered, or that there
is a real failure observed in the runtime behavior [67]. The
checks can be classified to two main types: the property must
never be violated, or the property must always hold [84].
Different approaches to reporting the status of violations can
be taken, such as reporting only violations [58], reporting
also passing checks with chosen filtering criteria [28], or
reporting the status of all checks. The threshold for when a
deviation from the specification is considered significant
enough to be reported can also vary according to the
properties of specified runtime invariance (as discussed in
more detail in section III.C), such as reporting only

violations for a property when a certain number (threshold)
of violations for that property have been observed [58].

The evaluation trigger defines when the evaluation is
performed. The cost effectiveness of evaluating invariants is
related to the frequency and depth of their evaluation
([60,97]). Different options for frequency can  be,  for
example, to check a single property for a single component
or for all components after each event, to check all properties
after each event, or to check all properties after larger
execution points (e.g., test case [97]). Some trade-offs to
consider include checking a single property not always
revealing errors [97], performing checks often helping in
finding “transient” errors that are no longer visible in later
states [80], and the increased cost and power of fully
performing all possible checks at all times [97]. One
approach is to focus the checks on a specific set of chosen
events and properties [56].

IV. EXAMPLES

This section illustrated mapping the taxonomy presented
in the previous section to practical concepts in terms of two
different types of runtime behaviour modelling approaches.
The first one describes modelling specific aspects of runtime
invariance in a distributed sensor data collection system. The
behaviour of interest in this case is event-focused, where
patterns over sequences of interactions are important and
should be observed to hold and are observed while the
system is operational (online). A second example is provided
in terms of a data visualization application. In this case, the
data-flow aspects are more important and the invariance is
analysed separately from its operation (off-line).

The examples presented here are intended to illustrate
how different properties of runtime invariance in software
behaviour can be defined for different systems. From this,
different approaches can be taken to build required support
for different usage domains. The details for this support are
left for specific works in those domains, while we illustrate a
set of specific invariant properties for each.

A. Case 1: Sensor Data Collection
This case example describes a mapping of the taxonomy

for describing the runtime behaviour of a system in terms of
a model-based testing tool called OSMOTester [106]. The
target system is a sensor-platform server-node that manages
a set of sensor-nodes. This section uses as an example a
single feature related to keeping track of the dynamic non-
persistent runtime state of the node.

As one of the main properties of upholding this state, the
server needs to keep track of all available sensor nodes that
register to the system. The sensor’s registration is by sending
a specific message. After this, the constant keep-alive
messages need to be provided to uphold the registration. If
one is not received for duration of 10 seconds from a
registered sensor, it is removed from the list of connected
sensors and a matching event is generated to inform any
interested clients of the sensor platform.

Considering the process perspective of the taxonomy,
this is mainly in the test automation usage domain. The tool
we use applies a generic programming language (Java) to



269

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model the behaviour so this sets the expression language. For
abstraction level, our focus with this example is on a specific
behavioural property, which could be extended in following
iterations to include further properties separately or
integrated into a subsystem model. The specification
approach in this case is manual specification with the help of
expert knowledge and documentation, although tools such as
Daikon could be used to provide invariants over observed
executions as input as well. From the evaluation perspective,
in the case of test automation, we wish to evaluate all
relevant aspects for the property under analysis, report only
the deviations and their cause. These aspects define the
process related properties for this example in relation to the
taxonomy.

Considering the properties of invariance perspective, we
can define as basic measurements the registration messages,
keep-alive messages, the sender of the messages (the sensor
node) and the time of receiving any message. Of these, the
messages themselves are static information, whereas the
timestamps and the sender are contextual information. As an
example pattern of invariance, we can define an expectation
as “Keep-alive observed continuously after registration with
a minimum of 10s interval”. Several other patterns could also
be formulated, including the timeout and first registration
itself. These aspects define the invariant information related
properties for this example in relation to the taxonomy.

B. Case 2: Data Visualization Tool
This second case example describes a mapping of the

taxonomy for a tool used to help visualize and analyse
behavioural data collected from the execution of a system.
This section uses as an example a single feature of observing
historical data over time. This feature allows taking several
different measurement values and comparing their evolution
over time independently and in relation to each other using
graphical visualizations.

Considering the usage domain and process perspectives,
in this case, the analysed data is not captured and used in
real-time but rather the tool is used to load data from a log
file, making this practically an offline approach. The
application domain is specifically behaviour analysis, and the
applied representation language in this case is a visual
language in terms of graphical representations. The
abstraction level depends on which part of the system is
described in the log file, but is typically the overall system
behaviour. The trigger and depth of evaluation are in this
case related to the information captured during the runtime
logging step, and depends on how the system in
instrumented. The evaluation checks are performed by the
human user based on the visualizations and their
manipulations.

Considering the properties of invariance perspective, the
basic measurements include time and data values. The
relevant patterns are mainly data-flow oriented due to
analysing data value evolution over time. This includes value
change as observed over time for a single variable, and value
relations as observed across the different visualized values.
As the visualization produces a separate graph for each
value, each of these is a contextual slice and the scope of

these graphs is always time-based. We can further define
derived measures as statistical properties of the observed
data and use those to define events that can be used to define
further scopes for patterns and comparison.

V. DISCUSSION

The taxonomy and its classes presented above are based
on the existing work in the literature. In this sense it limits
itself to discuss properties only relevant to those in the
chosen works. Additionally, it is possible to use and explore
other possible relations. For example, many of the described
control-flow patterns also apply to data flow patterns. For
example, a value may be defined to precede another value
(relating to the precedence control-flow pattern). Similarly,
the set of data-flow patterns can be considered to apply in the
context of control-flow. For example, the range of possible
control-flow options following one control-flow event can be
in a given range of possible defined control-flow events or
states (related to value-range data-flow pattern).

It is also possible to take different viewpoints on the
different properties discussed categorized in the taxonomy
presented in this paper. For example, the taxonomy lists a set
of time-based scopes, and a set of patterns related to the
ordering of events. In other cases, for example, Konrad and
Cheng define a set of patterns such as bounded response
where a reply is expected in a given timeframe [85]. This is
an  example  where  a  set  of  properties  presented  in  the
taxonomy in this paper are combined to form a specific set of
patterns in a given domain. Specifically, the taxonomy
presented in this paper aims to decompose these into their
constituting parts that can be composed in different ways.
While this is more generic and provides a basis for wider
application, in practical application in different domains, it
may be more suitable to specify a set of more specific
patterns such as those defined in [85]. In this case the
taxonomy can be used as an aid to create the set of suitable
patterns.

Overall, the discussion in this paper is from the generic
viewpoint of using runtime invariance. When a set of
invariants are defined for a system, one important aspect to
consider is how representative these are in describing the
relevant properties of software behaviour. When defined
manually by an expert, the invariants can be expected to
describe relevant and important properties. However, even in
these cases important invariants can be missing and in many
cases no invariants are defined at all. In these cases,
automated inference techniques can be used to assist in
finding invariants. Both of these cases have been shown to
be valid as also discussed in section III.D.1). Improving the
means  to  help  manually  define  invariants  and  to
automatically mine for relevant ones thus is an interesting
research question. Potential approaches to investigate include
using a set of chosen invariants known to be interesting in
the given domain, using combined information from static
analysis, relying on statistical values to report the more
interesting ones, and providing more advanced support for
combining both the manual and automated approaches as
also discussed in section III.D.1).



270

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Discussion on the statistical properties of different
patterns and measures highlight differences in the applied
approaches. For example, in many cases the invariant
patterns that have only low support level (i.e., there are few
cases) are not reported. In the extraction phase, this can be
useful in removing patterns observed merely due to chance
that  may  be  incorrect  in  themselves  due  to  interleaving  of
concurrent behaviour, or completely irrelevant in the general
context [3]. On the other hand, sometimes all observed
behaviour is important regardless of their probability. This
can be, for example, behaviour that is only rarely observed in
the observed executions but is still equally important for the
overall system behaviour (e.g., error handling or corner
cases) [22].

Use of invariants in different domains as discussed here
is not limited to those aspects discussed. In fact, many
systems use invariants for various purposes but these are not
always discussed in terms of invariance. For example, as
discussed in section III.D, in test automation the test oracle
practically  always  needs  to  be  described  in  terms  of
invariance, where the input is expected to produce a given
output (the relation of input to output should be invariant). In
this sense, defining invariants as discussed here can be
beneficial in a wider context of how people think about the
behaviour of programs. However, presenting a meaningful
language to describe the invariants and use them in different
contexts, as well as furthering people’s understanding of
their relation to different domains, can be required for
adopting them as a concept more widely. Use of domain-
specific languages and related tools is an option for this.

Understanding and using invariants generally requires
specific considerations for specific usage purposes. For
example, one may refactor code based on suggestion from
invariant analysis [40] but this also needs to consider the part
where the human user needs to read the code and understand
it. If the refactoring reduces this understanding by hiding
information, this refactoring may be more harmful for the
overall software maintenance. Similar needs for
understanding the invariants in general ought to be
considered.

Application of different properties depends on the target
domain as well as the process it is used to support. For
example, in testing it may be more appropriate to report all
results of invariant evaluation. On the other hand, in runtime
(online) monitoring of an operational system it is more
useful to optimize the evaluation approach to minimize the
intrusiveness on the system.

The case examples presented in section IV are from
actual applications of the taxonomy, where different people
have applied the taxonomy with the help of the author. In
these cases, the typical approach has been to start with some
specific properties and progressing from those iteratively to
include more functionality. Thus, an iterative approach of
adoption from the taxonomy can be seen as a useful process
for its application. However, more extensive case studies in
software behaviour analysis and application of the taxonomy
are left as a topic for future work.

These case examples also illustrate how the taxonomy
could be used as a basis for building domain-specific

languages to support analysing different topics of runtime
invariance. For example, in modelling system behaviour in
terms of runtime invariance for test automation as presented
in the first case example, a domain-specific language could
allow composing modelling components based on the
different types of measurements, patterns and scopes into test
models. Similarly, in the second case example, the properties
could be used to provide more generic base for features to
manipulate and visualize the measurement data in terms of
derived measures and patterns. These studies are left as a
topic for future works.

VI. CONCLUSIONS

Today, runtime invariance is used in the context of many
aspects of software design and analysis. The invariants for
different systems are as different as their behaviour, but this
paper has collected a set of common properties from existing
works and presented a taxonomy describing these common
properties. This should help give a more common
understanding of runtime invariance in software behaviour
and help in using invariants to describe it in different
domains.

The presented taxonomy is based on six main facets, one
describing the usage domains, two related to processes of
using the invariants and three related to the information
describing the invariants themselves. Overall the focus can
be defined as describing the invariant information in the
context of the process.

The main contribution of this paper is presenting the
underpinning of a classification overview for understanding
the space of runtime invariance. This provides a basis for
more thorough reasoning about invariants, building tool
support and identifying future research questions. Some
specific questions identified include possibilities of
providing more focused domain-specific invariants on top of
the taxonomy and providing more extensive tool support for
using the invariants according to the taxonomy presented, as
existing tools only consider parts of it.

ACKNOWLEDGMENT

The  author  wishes  to  thank  Arie  van  Deursen,  Ali
Mesbah, and the anonymous reviewers in the PATTERNS
2010 conference for their useful comments and discussions
on the pilot study. The author also wishes to thank Lars
Ebrecht for the interesting discussion and comments on the
extended version of the taxonomy.

REFERENCES

[1] T. Kanstrén, "Towards a Taxonomy of Dynamic Invariants
in Software Behaviour," in 2nd Int'l. Conf. on Pervasive
Patterns and Applications (PATTERNS 2010), Lisbon,
Portugal, 2010, pp. 20-27.

[2] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,
and R. Koschke, "A Systematic Survey of Program
Comprehension through Dynamic Analysis," IEEE
Transaction on Software Eng., vol. 35, no. 5, pp. 684-702,
2009.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,



271

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

"Dynamically Discovering Likely Program Invariants to
Support Program Evolution," IEEE Transactions on
Software Eng., vol. 27, no. 2, pp. 99-123, Feb. 2001.

[4] M. Boshernitsan, R. Doong, and A. Savoia, "From Daikon to
Agitator: Lessons and Challenges in Building a Commercial
Tool for Developer Testing," in Int'l. Symposium on
Software Testing and Analysis (ISSTA 2006), Portland,
Maine, 2006, pp. 169-179.

[5] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K.
Vaswani, "HOLMES: Effective Statistical Debugging via
Efficient Path Profiling," in Int'l. Conf. on Software Eng.
(ICSE 2009), Vancouver, Canada, 2009, pp. 34-44.

[6] A. Mesbah and A. van Deursen, "Invariant-Based Automatic
Testing of Ajax User Interfaces," in Int'l. Conf. on Software
Eng. (ICSE 2009), Vancouver, Canada, 2009, pp. 210-220.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Patterns in
Property Specifications for Finite-State Verification," in
Int'l. Conf. on Software Eng. (ICSE 1999), Los Angeles, CA,
USA, 1999, pp. 411-420.

[8] D. Lorenzoli, L. Mariani, and M. Pezzè, "Automatic
Generation of Software Behavioral Models," in Int'l. Conf.
on Software Eng. (ICSE 2008), Leipzig, Germany, 2008, pp.
501-510.

[9] L. A. Clarke and D. S. Rosenblum, "A Historical Perspective
on Runtime Assertion Checking in Software Development,"
ACM SIGSOFT Software Engineering Notes, vol. 31, no. 3,
pp. 25-37, 2006.

[10] D. Schuler, V. Dallmeier, and A. Zeller, "Efficient Mutation
Testing by Checking Invariant Violations," in Int'l.
Symposium on Software Testing and Analysis (ISSTA 2009),
Chicago, USA, 2009, pp. 69-80.

[11] R. Floyd, "Assigning Meaning to Programs," in Symposium
on Applied Mathematics, 1967, pp. 19-32.

[12] C.A.R. Hoare, "An Axiomatic Basis for Computer
Programming," Communications of the ACM, vol. 12, no.
10, pp. 576-580, 1969.

[13] L. Lin and M. D. Ernst, "Improving the Adaptability of
Multi-Mode Systems via Program Steering," in Int'l.
Symposium on Software Testing and Analysis (ISSTA 2004),
Boston, Massachusetts, USA, 2004, pp. 206-216.

[14] S.  Hangal  and  M.  Lam,  "Tracking  Down  Software  Bugs
Using Automatic Anomaly Detection," in Int'l. Conf. on
Software Eng. (ICSE 2002), Orlando, Florida, USA, 2002,
pp. 291-301.

[15] D. Lo and S. Khoo, "SMArTIC: Towards Building an
Accurate, Robust and Scalable Specification Miner," in Int'l.
Symposium on Foundations of Software Eng. (FSE 2006),
Portland, Oregon, USA, 2006, pp. 265-275.

[16] B. Kitchenham, "Guidelines for Performing Systematic
Literature Reviews in Software Engineering," Keele
University, Keele, Staffs, EBSE Technical Report 2007.

[17] S. MacDonell, M. Shepperd, B. Kitchenham, and E. Mendes,
"How Reliable are Systematic Reviews in Empirical
Software Engineering?," IEEE Transaction on Software
Eng., vol. 36, no. 5, pp. 676-687, Sept./Oct. 2010.

[18] S. Ducasse and D. Pollet, "Software Architecture
Reconstruction: A Process-Oriented Taxonomy," IEEE

Transactions on Software Eng., vol. 35, no. 4, pp. 573-591,
2009.

[19] H. Kagdi, M. L. Collard, and  J.  I.  Maletic,  "A  Survey  and
Taxonomy of Approaches for Mining Software Repositories
in the Context of Software Evolution," Journal of Software
Maintenance and Evolution, vol. 19, no. 2, pp. 77-131, 2007.

[20]  M.  S.  Ali,  M.  A.  Babar,  L.  Chen,  and  K-J. Stol, "A
Systematic Review of Comparative Evidence of Aspect-
Oriented Programming," Information and Software
Technology, vol. 52, no. 9, pp. 871-887, 2010.

[21] MIT Program Analysis Group. (2012, January) Daikon-
related invariant detection publications. [Online].
http://groups.csail.mit.edu/pag/daikon/pubs/

[22] T. Kanstrén, A Framework for Observation-Based Modelling
in Model-Based Testing. Oulu, Finland: VTT, 2010.

[23] R. V. Binder, "Design for Testability in Object-Oriented
Systems," Communications of the ACM, vol. 37, no. 9, pp.
87-101, Sept. 1994.

[24] J.  W.  Nimmer  and  M.  D.  Ernst,  "Invariant  Inference  for
Static Checking: An Empirical Evaluation," ACM SIGSOFT
Software Engineering Notes, vol. 27, no. 6, pp. 11-20, 2002.

[25] L.  Burdy  et  al.,  "An  Overview  of  JML  Tools  and
Applications," Int'l. Journal in Software Tools for
Technology Transfer, vol. 7, no. 3, pp. 212-232, June 2005.

[26]  C.  Csallner,  N.  Tillmann,  and  Y.  Smaragdakis,  "DySy:
Dynamic Symbolic Execution for Invariant Inference," in
Intl. Conf. on Software Eng. (ICSE 2008), Leipzig,
Germany, 2008, pp. 281-290.

[27] D. S. Rosenblum, "Towards a Method of Programming with
Assertions," in Int'l. Conf. on Software Eng. (ICSE 1992),
Melbourne, Australia, 1992, pp. 92-104.

[28] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das,
"Perracotta: Mining Temporal API Rules from Imperfect
Traces," in Int'l. Conf. on Software Eng. (ICSE 2006),
Shanghai, China, 2006, pp. 282-291.

[29] B. Meyer, "Applying Design by Contract," Computer, vol.
25, no. 10, pp. 40-51, 1992.

[30] S.  Sims,  R.  Cleaveland,  K.  Butts,  and  S.  Ranville,
"Automated Validation of Software Models," in Int'l. Conf.
on Automated Software Eng. (ASE 2001), San Diego, USA,
2001, pp. 91-96.

[31] S.  McCamant  and  M.  Ernst,  "Early  Identification  of
Incompatibilities in Multi-Component Upgrades," in
European Conf. on Object-Oriented Programming (ECOOP
2004), Oslo, Norway, 2004, pp. 440-464.

[32]  J.  Whaley,  M.  C.  Martin,  and  M.  S.  Lam, "Automatic
Extraction of Object-Oriented Component Interfaces," in
Int'l. Symposium on Software Testing and Analysis (ISSTA
2002), Roma, Italy, 2002, pp. 218-228.

[33] A. Coronato, A. d'Acierno, and G. De Pietro, "Automatic
Implementation of Constraints in Component based
Applications," Information and Software Technology, vol.
47, no. 7, pp. 497-509, 2005.

[34] C. Csallner, Y. Smaragdakis, and T. Xie, "DSD-Crasher: A
Hybrid Analysis Tool for Bug Finding," ACM Transactions
on Software Eng. and Methodology, vol. 17, no. 2, pp. 1-37,
2008.



272

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] J-M. Jézéquel, D. Deveaux, and Y. Le Traon, "Reliable
Objects: Lightweight Testing for OO Languages," IEEE
Software, vol. 18, no. 4, pp. 76-83, 2001.

[36] S. Thummalapenta and T. Xie, "Mining Exception-Handling
Rules as Sequence Association Rules," in Int'l. Conf. on
Software Eng. (ICSE 2009), Vancouver, Canada, 2009, pp.
496-506.

[37] J. Henkel, C. Reichenbach, and A. Diwan, "Discovering
Documentation for Java Container Classes," IEEE
Transactions on Software Eng., vol. 33, no. 8, pp. 526-543,
2007.

[38] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, "Statistical
Debugging: A Hypothesis Testing-Based Approach," IEEE
Transactions on Software Eng., vol. 32, no. 10, pp. 831-848,
Oct. 2006.

[39] L. Mariani, S. Papagiannakis, and M. Pezzé, "Compatibility
and Regression Testing of COTS-Component-Based
Software," in Int'l. Conf. on Software Eng. (ICSE 2007),
Minneapolis, USA, 2007, pp. 85-95.

[40] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin,
"Automated Support for Program Refactoring Using
Invariants," in Int'l. Conf. on Software Maintenance (ICSM
2001), Florence, Italy, 2001, pp. 736-743.

[41] N. Ubayashi, J. Piao, S. Shinotsuka, and T. Tamai,
"Contract-Based Verification for Aspect-Oriented
Programming," in Int'l. Conf. on Software Testing,
Verification, and Validation (ICST 2008), Lillehammer,
Norway, 2008, pp. 180-189.

[42]  S.  Ducasse,  T.  Gîrba,  and  R.  Wuyts,  "Object-Oriented
Legacy System Trace-Based Logic Testing," in European
Conf. on Software Maintenance and Reeng. (CSMR 2006),
Bari, Italy, 2006, pp. 37-46.

[43] David Lo and Shahar Maoz, "Mining Scenario-Based
Triggers and Effects," in 23rd Int'l.l Conf. on Automated
Software Engineering (ASE 2008), L'Aquila, Italy, 2008, pp.
109-118.

[44] D. Ganesan et al., "Architectural Analysis of Systems based
on the Publisher-Subscriber Style," in Working Conference
on Reverse Engineering (WCRE 2010), Boston, USA, 2010,
pp. 173-182.

[45] M. Christodorescu, S. Jha, and C. Kruegel, "Mining
Specifications of Malicious Behaviour," in Joint meeting of
the European Software Eng. Conf. and the Symposium on
the Foundations of Software Eng. (ESEC/FSE 2007),
Dubrovnik, Croatia, 2007, pp. 5-14.

[46] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
"Swaddler: An Approach for the Anomaly-Based Detection
of State Violations in Web Applications," in Int'l.
Symposium on Recent Advances in Intrusion Detection
(RAID 2007), Queensland, Australia, 2007, pp. 63-86.

[47] A.  Baliga,  V.  Ganapathy,  and  L.  Iftode,  "Automatic
Inference and Enforcement of Kernel Data Structure
Invariants," in 24th Annual Computer Security Applications
Conf. (ACSAC 2008), 2008, pp. 77-86.

[48] D. Schuler, V. Dallmeier, and C. Lindig, "A Dynamic
Birthmark for Java," in Int'l. Conf. on Automated Software
Eng. (ASE 2007), Atlanta, Georgia, USA, 2007, pp. 274-282.

[49] M.  Feng  and  R.  Gupta,  "Detecting  Virus  Mutations  via

Dynamic Matching," in Int'l. Conf. on Software
Maintenance (ICSM 2009), Edmonton, Canada, 2009, pp.
105-114.

[50] M. Barnett and W. Schulte, "Runtime Verification of.NET
Contracts," Journal of Systems and Software, vol. 65, no. 3,
pp. 199-208, 2003.

[51] Y. Le Traon, B. Baudry, and J-M. Jézéquel, "Design by
Contract to Improve Software Vigilance," IEEE
Transactions on Software Eng., vol. 32, no. 8, pp. 571-586,
Aug. 2006.

[52] B. Demsky et al., "Inference and Enforcement of Data
Structure Consistency Specifications," in Int'l. Symposium
on Software Testing and Analysis (ISSTA 2006), Portland,
Maine, 2006, pp. 233-243.

[53] D. Lorenzoli, L. Mariani, and M. Pezze, "Towards Self-
Protecting Enterprise Applications," in Int'l. Symposium on
Software Reliability (ISSRE 2007), Trollhättan, Sweden,
2007, pp. 39-48.

[54] J. H. Perkins et al., "Automatically Patching Errors in
Deployed Software," in Symposium on Operating System
Principles (SOSP 2009), Big Sky, USA, 2009, pp. 87-102.

[55] Y. Wei et al., "Automatex Fixing of Programs with
Contracts," in Int'l. Symposium on Software Testing and
Analysis (ISSTA 2010), Trento, Italy, 2010, pp. 61-71.

[56] M. Book, T. Brückmann, V. Gruhn, and M. Hülder,
"Specification and Control of Interface Responses to User
Input in Rich Internet Applications," in Int'l. Conf. on
Automated Software Eng. (ASE 2009), Auckland, New
Zealand, 2009, pp. 321-331.

[57] J. Burnim and K. Sen, "Asserting and Checking
Determinism for Multithreaded Programs," in Joint meeting
of the European Software Eng. Conf. and the Symposium on
the Foundations of Software Eng. (ESEC/FSE 2009),
Amsterdam, The Netherlands, 2009, pp. 3-12.

[58] M. Gabel and Zhendong. Su, "Online Inference and
Enforcement of Temporal Properties," in Int'l. Conf. on
Software Eng. (ICSE 2010), Cape Town, South Africa, 2010,
pp. 15-24.

[59] C. Pacheso and M. D. Ernst, "Eclat: Automatic Generation
and Classification of Test Inputs," in European Conf. on
Object-Oriented Programming (ECOOP 2005), Glasgow,
UK, 2005, pp. 504-527.

[60] J. H. Andrews and Y. Zhang, "General Test Result Checking
with Log File Analysis," IEEE Transaction on Software
Eng., vol. 29, no. 7, pp. 634-648, July 2003.

[61]  A.  M.  Memon,  "An  Event-Flow  Model  of  GUI-based
Applications for Testing," Journal of Software Testing,
Verification and Reliability, vol. 17, no. 3, pp. 137-157,
2007.

[62] L. Ebrecht and K. Lemmer, "Highlighting the Essentials of
the Behaviour of Reactive Systems in Test Descriptions
Using the Behavioural Atomic Element," in 2nd Int'l. Conf.
on Pervasive Patterns and Applications (PATTERNS 2010),
Lisbon, Portugal, 2010, pp. 53-59.

[63]  M. Auguston,  J.  B.  Michael,  and M-T.  Shin, "Environment
Behavior Models for Automation of Testing and Assessment
of System Safety," Information and Software Technology,
vol. 48, no. 10, pp. 971-980, 2006.



273

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[64] M. Alshraideh and L. Bottaci, "Search-Based Software Test
Data  Generation  for  String  Data  Using  Program-Specific
Search Operators," Software Testing, Verification and
Reliability, vol. 16, no. 3, pp. 175-203, 2006.

[65] B. Korel and A. M. Al-Yami, "Assertion-Oriented
Automated Test Data Generation," in Int'l. Conf. on
Software Eng. (ICSE 1996), Berlin, Germany, 1996, pp. 71-
80.

[66] T. Xie and D. Notkin, "Tool-Assisted Unit-Test Generation
and Selection Based on Operational Abstractions," Journal
of Automated Software Eng., vol. 13, no. 3, pp. 345-371,
July 2006.

[67] M. Harder, J. Mellen, and  M.  D.  Ernst,  "Improving  Test
Suites via Operational Abstraction," in Int'l.Conf. on
Sofware Eng. (ICSE 2003), Portland, Oregon, USA, 2003,
pp. 60-71.

[68] J. E. Cook and A. L. Wolf, "Discovering Models of Software
Processes from Event-Based Data," ACM Transactions on
Software Eng. and Methodology, vol. 7, no. 3, pp. 215-249,
1998.

[69] J. E. Cook and Z. Du, "Discovering Thread Interactions in a
Concurrent System," Journal of Systems and Software, vol.
77, no. 3, pp. 285-297, Sept. 2005.

[70] C. Csallner and Y. Smaragdakis, "Dynamically Discovering
Likely Interface Invariants," in Int'l. Conf. on Software Eng.
(ICSE 2006), Shanghai, China, 2006.

[71] J. Huselius and J. Andersson, "Model Synthesis for Real-
Time Systems," in 9th European Conference on Software
Maintenance and Reengineering (CSMR 2005), Manchester,
UK, 2005, pp. 52-60.

[72] S. Ali et al., "A State-Based Approach to Integration Testing
based on UML Models," Information and Software
Technology, vol. 49, no. 11-12, pp. 1087-1106, 2007.

[73] R. Allen and D. Garlan, "Formalizing Architectural
Connection," in Int'l. Conf. on Software Eng. (ICSE 1994),
Sorrento, Italy, 1994, pp. 71-80.

[74] J. Yang and D. Evans, "Automatically Inferring Temporal
Properties for Program Evolution," in Int'l. Symposium on
Software Reliability Eng. (ISSRE 2004), Saint-Malo,
Bretagne, France, 2004, pp. 340-351.

[75] N.  Kuzmina,  J.  Paul,  R.  Gamboa,  and  J.  Caldwell,
"Extending Dynamic Constraint Detection with Disjunctive
Constraints," in Int'l. Workshop on Dynamic Analysis
(WODA 2008), Seattle, Washington, 2008, pp. 57-63.

[76]  J.  E.  Cook  and  A.  L.  Wolf,  "Event-Based Detection of
Concurrency," in 6th International Symposium on
Foundations of Software Engineering (FSE 1998), Paris,
France, 1998, pp. 35-45.

[77] M. Pradel and T. R. Gross, "Automatic Generation of Object
Usage Specifications from Large Method Traces," in Int'l.
Conf. on Automated Software Eng. (ASE 2009), Auckland,
New Zealand, 2009, pp. 371-382.

[78] M. Gabel and Z. Su, "Javert: Fully Automatic Mining of
Temporal Properties from Dynamic Traces," in 16th
International Symposium on Foundations of Software
Engineering (FSE 2008), Atlanta, USA, 2008, pp. 339-349.

[79] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani,

"Mining Quantified Temporal Rules: Formalism,
Algorithms, and Evaluation," in Working Conference on
Reverse Engineering (WCRE 2009), Lille, France, 2009, pp.
62-71.

[80] A. Memon and Q. Xie, "Using Transient/Persistent Errors to
Develop Automated Test Oracles for Event-Driven
Software," in Int'l. Conf. on Automated Software Eng. (ASE
2004), Linz, Austria, 2004, pp. 186-195.

[81] X.  Deng,  M.  B.  Dwyer,  J.  Hatcliff,  and  M.  Mizuno,
"Invariant-Based Specification, Synthesis and of
Synchronization in Concurrent Programs," in Int'l.l Conf. on
Software Eng. (ICSE 2002), Orlando, Florida, 2002, pp. 442-
452.

[82] A. Machetto, P. Tonella, and F. Ricca, "State-Based Testing
of  Ajax  Web  Application,"  in Int'l. Conf. on Software
Testing, Verification and Validation (ICST 2008),
Lillehammer, Norway, 2008, pp. 121-130.

[83] P.  O.  Meredith,  D.  Jin,  F.  Chen,  and  G.  Rosu,  "Efficient
Monitoring of Parametric Context-Free Patterns," in Int'l.
Conf. on Automated Software Eng. (ASE 2008), L'Aquila,
Italy, 2008, pp. 148-157.

[84] N. Walkinshaw and K. Bogdanov, "Inferring Finite-State
Models with Temporal Constraints," in Int'l. Conf. on
Automated Software Eng. (ASE 2008), L'Aquila, Italy, 2008,
pp. 248-257.

[85] S. Konrad and B. H.C. Cheng, "Real-Time Specification
Patterns," in Int'l. Conf. on Software Eng. (ICSE 2005), St.
Louis, Missouri, USA, 2005, pp. 372-381.

[86] C. Ackermann, M. Lindvall, and R. Cleaveland, "Recovering
Views of Inter-System Interaction Behaviors," in Working
Conf. on Reverse Engineering (WCRE 2009), Lille, France,
2009, pp. 53-61.

[87] S. Thummalapenta and T. Xie, "Alattin: Mining Alternative
Patterns for Detecting Neglected Conditions," in Int'l. Conf.
on Automated Software Eng. (ASE 2009), Auckland, New
Zealand, 2009, pp. 283-294.

[88] P. Bellini, P. Nesi, and D. Rogai, "Expressing and
Organizing Real-Time Specification Patterns via Temporal
Logics," Journal of Systems and Software, vol. 82, no. 2, pp.
183-196, 2009.

[89] X. Yuan and A. M. Memon, "Iterative Execution-Feedback
Model-Directed GUI Testing," Information and Software
Technology, vol. 52, no. 5, pp. 559-575, 2010.

[90] A. Wasylkowski and A. Zeller, "Mining Temporal
Specifications from Object Usage," in Int'l. Conf. on
Automated Software Eng. (ASE 2009), Auckland, New
Zealand, 2009, pp. 295-306.

[91] K. Saleh, A. A. Boujarwah, and J. Al-Dallal, "Anomaly
Detection in Concurrent Java Programs Using Dynamic Data
Flow Analysis," Information and Software Technology, vol.
43, no. 15, pp. 973-981, 2001.

[92] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P.
Reiss, "A Dataflow Language for Scriptable Debugging," in
Int'l. Conf. on Automated Software Engineering (ASE 2004),
Linz, Austria, 2004, pp. 218-227.

[93] A. Cavalli, C. Gervy, and S. Prokopenko, "New Approaches
for Passive Testing Using an Extended Finite State Machine
Specification," Information and Software Technology, vol.



274

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

45, no. 12, pp. 837-852, 2003.
[94] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst,

"Dynamic Inference of Abstract Types," in Int'l. Symposium
on Software Testing and Analysis (ISSTA 2006), Portland,
Maine, USA, 2006, pp. 255-265.

[95] J.  Henkel  and  A.  Diwan,  "Discovering  Algebraic
Specifications from Java Classes," in European Conf. on
Object-Oriented Programming (ECOOP 2003), Darmstadt,
Germany, 2003, pp. 431-456.

[96] N. Polikarpova, I.  Ciupa,  and  B.  Meyer,  "A  Comparative
Study of Programmer-Written and Automatically Written
Contracts," in Int'l. Symposium on Software Testing and
Analysis (ISSTA 2009), Chicago, USA, 2009, pp. 93-104.

[97] Q. Xie and A. M. Memon, "Designing and Comparing
Automated Test Oracles for GUI-Based Software
Applications," ACM Transactions of Software Eng. and
Methodology, vol. 16, no. 1, pp. 1-36, Feb. 2007.

[98] N.  Delgado,  A.  Q.  Gates,  and S.  Roach,  "A Taxonomy and
Catalog of Runtime Software-Fault Monitoring Tools,"
IEEE Transactions on Software Eng., vol. 12, no. 30, pp.
859-872, Dec. 2004.

[99] C. Zhao, J. Kong, and K. Zhang, "Program Behavior
Discovery and Verification: A Graph Grammar Approach,"
IEEE Transactions on Software Eng., vol. 36, no. 3, pp. 431-
448, May/June 2010.

[100] Y.  J.  Ren  and  F.  Chang,  "ATTEST:  A  Testing  Toolkit  for
Validating Software Properties," in Int'l. Conf. on Software
Maintenance (ICSM 2007), Paris, France, 2007, pp. 469-
472.

[101] T.  H.  Gibbs,  B.  A.  Malloy,  and  J.  F.  Power,  "Automated
Validation of Class Invariants in C++ Applications," in Int'l.
Conf. on Automated Software Eng. (ASE 2002), Edinburgh,
UK, 2002, pp. 205-214.

[102] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka,
"Overview and Evaluation of Constraint Validation
Approaches in Java," in Int'l. Conf. on Software Eng. (ICSE
2007), Minneapolis, USA, 2007, pp. 313-322.

[103] G. J. Holzmann, "The Logic of Bugs," in Int'l. Symposium
on the Foundations of Software Eng. (FSE 2002),
Charleston, South Carolina, USA, 2002, pp. 81-87.

[104] J.  Burnim  and  K.  Sen,  "DETERMIN:  Inferring  Likely
Deterministic Specifications of Multithreaded Programs," in
Int'l. Conf. on Software Eng. (ICSE 2010), Cape Town,
South Africe, 2010, pp. 415-424.

[105] A. Memon, I. Banerjee, and Adithya. Nagarajan, "What Test
Oracle Should I Use for Effective GUI Testing," in Int'l.
Conf. on Software Eng. (ICSE 2003), Portland, Oregon,
USA, 2003, pp. 164-173.

[106] T. Kanstrén. (2012, January) OSMOTester - Simple Model-
Based Testing Tool. [Online].
http://code.google.com/p/osmo/



275

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Interface Contracts for WCF Services with Code Contracts

Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

Email: hollunder@hs-furtwangen.de

Abstract—Windows Communication Foundation (WCF) is
a widely used technology for the creation and deployment
of distributed services such as Web services. Code contracts
are another .NET technology allowing the specification of pre-
conditions, postconditions and invariants for .NET interfaces
and classes. The embedded constraints are exploited for static
analysis, runtime checking, and documentation generation.
Basically, WCF services can be equipped with code contracts.
However, it turns out that the WSDL interfaces generated for
deployed WCF services do not include expressions for code
contracts. Hence, the constraints imposed on WCF services are
not visible for a service consumer. Though a proper integration
of both technologies would bring additional expressive power
to WCF and Web services, there does not exist a solution
yet. In this paper, we present a novel approach that brings
code contracts to WCF. Our solution comprises the integration
of code contracts expressions at WSDL level as well as
the generation of contracts aware proxies. The feasibility of
the approach has been demonstrated by a proof of concept
implementation.

Keywords-Code Contracts, Windows Communication Foun-
dations, WCF, Web Services, WS-Policy, WSDL, Contracts
Aware Proxies.

I. INTRODUCTION

Code contracts [2] are a specific realization of the design
by contract concept proposed by Bertrand Meyer. With code
contracts, i) methods of .NET types can be enhanced by
preconditions and postconditions, and ii) .NET types can
be equipped with invariant expressions that each instance
of the type has to fulfill. While the application developer
specifies code contracts for interfaces and classes, it is the
responsibility of the runtime environment for checking the
constraints and signaling violations. Furthermore, following
tools are available for code contracts:

• Static code analysis;
• Documentation generation;
• Integration into VisualStudio IDE.

From a theoretical point of view, static code checking has its
limitations and cannot detect all possible contract violations.

This is a revisited and substantially augmented version of “Code Con-
tracts for Windows Communication Foundation (WCF)”, which appeared
in the Proceedings of the Second International Conferences on Advanced
Service Computing (Service Computation 2010) [1].

Nevertheless, it is a sophisticated instrument to help iden-
tifying common programming errors during compile time
thus improving code quality at an early stage.

With the Windows Communication Foundation (WCF),
service-oriented, distributed .NET applications can be devel-
oped and deployed on Windows. WCF provides a runtime
environment for hosting services and enables the exposition
of .NET types, i.e., Common Language Runtime (CLR)
types, as distributed services. WCF employs well-known
standards and specifications such as XML [3], WSDL [4],
SOAP [5], and WS-Policy [6]. The Web Services Interop-
erability Technology (WSIT) project [7] demonstrates how
to create Web services clients and implementations that
interoperate between the Java platform and WCF.

When developing a WCF service, one starts with the
definition of an interface (e.g., in C#) that is annotated with
the ServiceContract attribute. Without this attribute, the
interface would not be visible to a WCF client. To realize the
service, a class is created that implements the interface. Dur-
ing service deployment, WCF will automatically generate
an interface representation in the Web Services Description
Language (WSDL) for the service. WSDL is programming
language independent and allows the creation of client
applications written in other programming languages (e.g.,
in Java) and running on different platforms. With the help
of tools such as svcutil.exe and wsdl2java so-called
proxy classes for specific programming languages can be
generated. A proxy object takes a local service invocation
and forwards the request to the real service implementation
on server side by exchanging so-called SOAP documents.

In order to combine contracts with WCF, one may proceed
as follows: The methods in a WCF service implementation
class are equipped with code contracts expressions, that im-
pose preconditions, postconditions, as well as object invari-
ants. The C# compiler will not produce any errors and will
create executable intermediate code, which can be deployed
in a WCF environment. However, the constraints imposed by
code contracts are completely ignored when WCF generates
the WSDL for the service. As a consequence, a WCF client
application cannot profit from the code contracts attached to
the service implementation. This behavior has already been
observed elsewhere [8]; however, a generic solution has not
been elaborated yet.



276

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper presents a novel approach for deriving interface
contracts for WCF Services with code contracts. The strat-
egy is as follows. When deploying a WCF service, the code
contracts expressions contained in the service implementa-
tion class are extracted. Next, these expressions are encoded
as assertions of WS-Policy [6]. The obtained WS-Policy de-
scription will be attached to the service’s WSDL. On service
consumer side, the generation of the proxy classes will be
enhanced by including the code contracts expressions, which
are extracted from the WS-Policy description of the WSDL.

The approach has the following features:
• It combines standard technologies such as WSDL and

WS-Policy to bring code contracts to the interfaces of
WCF services.

• The approach is transparent from a WCF service
development point of view. The generation of both
the interface contracts and the contracts aware proxy
objects is completely automated.

• Code contracts will be already checked on client side,
including static code analysis. This may save resources
during runtime because invalid service requests will not
be transmitted to server side.

• The feasibility of the approach has been demonstrated
by a proof of concept implementation.

As indicated in [9, page 100], “software contracts play a
key role in the design of classes for testability.” Thus, with
our approach, a WCF developer has a further instrument for
improving the quality of distributed .NET components. This
is mainly due to the fact that additional constraints are now
visible at the interface level in a formalized manner.

The paper is structured as follows. The next section will
shortly introduce the underlying technologies. Section III
will recapitulate the problem description; the solution pro-
posed will be presented in Section IV. Section V will
show how to represent code contracts with WS-Policy and
how to attach a WS-Policy description to a WSDL file.
Then, in Section VI, an implementation strategy (proof of
concept) will be described. Section VII will give more details
on interface contracts creation, followed by related work.
Section IX concludes the paper.

II. FOUNDATIONS

This section will give a brief overview on the required
technologies. We start with introducing code contracts, fol-
lowed by WCF and WS-Policy.

A. Code Contracts

With code contracts [2] additional expressivity is brought
to .NET interfaces and classes by means of preconditions,
postconditions, and object invariants. A method can be
equipped with preconditions and postconditions. A precon-
dition is a contract on the state of the system when a
method is invoked and typically imposes constraints on
parameter values. Only if the precondition is satisfied, the

method is really executed; otherwise an exception is thrown.
In contrast, a postcondition is evaluated when the method
terminates, prior to exiting the method.

Code contracts provide a Contract class in the name-
space System.Diagnostics.Contracts. Static methods
of Contract are used to express preconditions and postcon-
ditions. To give an example, consider a method squareRoot

that should not accept negative numbers. This could be
encoded as follows:� �
using System.Diagnostics.Contracts;

class MyService {
double squareRoot(double d) {

Contract.Requires(d >= 0);
Contract.Ensures(Contract.Result<int>() >= 0);
return Math.Sqrt(d);

}
}� �

Defining a precondition and a postcondition for squareRoot.

The Contract.Requires statement defines a precon-
dition by means of a boolean expression. To specify the
postcondition that the return value of squareRoot is also
non-negative, we apply the Contract.Ensures method.
With help of the expression Contract.Result<int> the
return value of the method can be referred to.

Object invariants of code contracts are conditions that
should hold on each instance of a class whenever that object
is visible to a client. During runtime checking, invariants are
checked at the end of each public method. In order to specify
an invariant for a class, an extra method is introduced that is
annotated with the attribute ContractInvariantMethod.
Within this method, the conditions are defined with the
method Contract.Invariant.

To give an example, consider the type CustomerData

with members name, first name, identifier, and address. For
sake of simplicity, the following excerpt does not show the
complete class definition, but focuses on the specification
of an invariant. The invariant ensures that any instance of
CustomerData must have a name with a certain length, a
non-negative identifier, as well as a real address instance.� �
using System.Diagnostics.Contracts;

class CustomerData {
string name;
string firstName;
int identifier;
Address address;

[ContractInvariantMethod]
void ObjectInvariant(){

Contract.Invariant(
name.length() >= 2 && identifier > 0 &&
address != null);

}
}� �

Definition of an invariant.



277

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The expressions contained in code contracts may not
only be composed of standard operators (such as boolean,
arithmetic, and relational operators), but can also invoke pure
methods, i.e., methods that are side-effect free and hence
do not update any pre-existing state. Code contracts also
provide the universal quantifier Contract.ForAll and the
existential quantifier Contract.Exists.

Both quantifiers expect a collection and a predicate, i.e., a
unary method that returns a boolean. Universal quantification
yields true if the predicate returns true on all the elements in
the collection. Analogously, existential quantification checks
whether the predicate is fulfilled for at least one element in
the collection.

The above squareRoot example shows how precondi-
tions and postconditions can be specified for classes. As
a method in an interface is described only by its sig-
nature and does not have a body, Contract.Requires

and Contract.Ensures statements cannot be part of an
interface definition. Code contracts foresee a simple trick to
encode constraints for interface methods: the required con-
straints are specified in a separate class, which is associated
with the interface.

Suppose a class AContract should implement code con-
tracts for an interface IA. Then IA is annotated with the
attribute [ContractClass(typeof(AContract))], and
the class AContract is equipped with [ContractClass-

For(typeof(IA))]. Now the code contracts of ACon-

tract apply to the interface IA.
Note that most methods of the Contract class are

conditionally compiled. It can be configured via symbols
to which degree code contracts should be applied during
compilation. Code contracts can be completely turned on,
which means that a full checking is performed, and off,
i.e., all Contract methods are ignored. It is also possible
to check only selected code contracts constraints such as
preconditions (for details see [2]).

B. Windows Communication Foundation

According to [10], “WCF is a software development
kit for developing and deploying services on Windows.”
Services are autonomous, distributed and have well-defined
interfaces.

An important feature of a WCF service is its location
transparency: a consumer always uses a local proxy object
– regardless of the location (local vs. remote) of the service
implementation. The proxy object has the same interface as
the service and forwards a call to the service implemen-
tation by exchanging SOAP documents. As the messages
are independent of transport protocols, WCF services may
communicate over different protocols such as HTTP, TCP,
IPC and Web services.

The following listing shows the squareRoot functional-
ity from above as a WCF service.

� �
using System.ServiceModel;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

return Math.Sqrt(d);
}

}� �
squareRoot as a WCF service.

The ServiceContract attribute maps the interface to a
technology-neutral service contract in WSDL. To be part of
the service contract, a method must be explicitly annotated
with OperationContract. In order to implement the ser-
vice, a class is created that inherits the interface as shown
in the example.

Besides service contracts WCF also provides so-called
data contracts. Data contracts are types, which can be passed
to and from the service. There are built-in types such as
int and string. Custom types can be declared as data
contracts with help of the DataContract attribute. The
CustomerData from above can be published as a data
contract as follows:� �
using System.ServiceModel;

[DataContract]
class CustomerData {
[DataMember]
string name;
[DataMember]
string firstName;
[DataMember]
int identifier;
[DataMember]
Address address;

}� �
CustomerData as data contract.

In order to successfully deploy a WCF service, the WCF
runtime environment requires the definition of at least one
endpoint. An endpoint consists of

• an address,
• a binding defining a particular communication pattern,
• a contract that defines the exposed services.
Endpoints are typically defined in an XML configuration

file (external to the service implementation), but can also be
created programmatically.

During deployment, WCF generates a WSDL interface
description for the service. A WSDL description has an
interchangeable, XML-based format and comprises different
parts, each addressing a specific topic such as the abstract
interface and data types, the mapping onto a specific com-
munication protocol such as HTTP, and the location of a
specific WCF service implementation.



278

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are tools that transform WSDL descriptions into
a programming language specific representation. Such a
representation comprises classes for the proxy objects used
by client applications. WCF delivers the tool svcutil.exe,
which generates proxy classes for, e.g., C# together with a
configuration file containing endpoint definitions. Basically,
a proxy object constructs a SOAP message, which is sent to
server side. A SOAP message consists of a body, containing
the payload of the message (including the current parameter
values of the request), and an optional header, containing
additional information such as addressing or security data.

C. WS-Policy

When taking a closer look to a generated WSDL file one
will find a couple of policy entries. These entries add further
information to the service such as security requirements,
reliable messaging, and arbitrary constraints. For example,
it can be formally described that the parameter values of a
request are to be encrypted during transmission.

WS-Policy is a widely used specification [6] to formulate
policies in an interoperable manner. Almost all application
servers including WCF support WS-Policy. In general, WS-
Policy is a framework for defining policies, which comprise
so-called (WS-Policy) assertions. A single assertion may
represent a domain-specific capability, constraint or require-
ment and has an XML representation.

The following XML fragment shows how to associate a
WS-Policy description to a service definition.� �
<definitions name="Service">
<Policy wsu:Id="SamplePolicy">
<ExactlyOne>

<All>
<IncludeTimestamp/>
<EncryptedParts>
<Body/>

</EncryptedParts>
</All>

</ExactlyOne>
</Policy>
...
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#SamplePolicy"/>
<operation name="squareRoot"> ... </operation>

</binding>
...

</definitions>� �
WS-Policy attachment to a WSDL description.

In the example, a WS-Policy description is embedded
into the WSDL of the squareRoot service. To be pre-
cise, via the PolicyReference element (for details see
[6], [11]) a policy can be attached to a service. The
top-level Policy element of a policy description has the
child element ExactlyOne, which contains a set of so-
called policy alternatives. Each alternative is surrounded by
the All operator. The (single) alternative in the sample
policy contains two assertions: IncludeTimestamp and

EncryptedParts. This policy requires that the caller of
the service has to

• include a time stamp into the SOAP message
• encrypt the body of the SOAP message.

Note that an attached policy description is part of the
WSDL interface of the service and must be taken into
account by the service invoker. In the example, the WCF
server side runtime environment would immediately reject
the request (without performing squareRoot), if a client
does neither include a time stamp nor encrypt the message
body.

This example also demonstrates the declarative approach
of WS-Policy. Additional, non-functional requirements can
be formally described with corresponding assertions in a
policy. Policies are external to the service implementation
and can be simply combined. The WCF runtime environment
has the responsibility to obey the policy.

WS-Policy itself does not come with concrete assertions.
Instead, related specifications such as WS-SecurityPolicy
[12] and WS-ReliableMessaging [13] apply WS-Policy to
introduce specific assertions (e.g., IncludeTimestamp and
EncryptedParts from the example above) covering spe-
cific domains. The respective specifications do not only
define the syntax, but also the meaning of the assertions
and their impact on the Web services runtime behavior.

WS-Policy has been designed in such a way that further,
custom-designed assertions can be introduced. Our approach
exploits this features to encode contracts expressions and to
attach them to the service’s WSDL.

III. PROBLEM DESCRIPTION

Suppose we want to create a WCF service with code
contracts. A straightforward approach to combine both tech-
nologies would be as follows:� �
using System.ServiceModel;
using System.Diagnostics.Contracts;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
Contract.Ensures(Contract.Result<int>() >= 0);
return Math.Sqrt(d);

}
}� �

WCF service with code contracts.

We define a WCF service interface as usual according to
the WCF programming model. In addition to the previous
implementation of Section II-B, the squareRoot service is
equipped with a precondition and a postcondition.



279

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We first note that this WCF service implementation will
be successfully compiled and deployed. However, we also
observe that the WSDL description created during the de-
ployment phase does not include any information about code
contracts contained in the service’s implementation. In other
words, code contracts expressions are completely ignored
and are not part of the WSDL interface.

There are two important consequences to stress here:
1) Code contracts imposed on the service implementation

will not be considered when generating the proxy
classes.

2) Clients of the WCF service are not aware of any code
contracts expressions. Hence, code contracts support
such as static analysis and runtime checking is not
available on client side.

Thus, if a client invokes the squareRoot service passing
a negative number as argument, the proxy object will for-
ward the request to the server. The server itself will delegate
the request to the service implementation. During the execu-
tion of the service, the code contracts runtime environment
will eventually detect the violation of the precondition. The
execution will be aborted and an exception will be returned
to the client.

In the following, we will elaborate a concept that brings
code contracts to the client side, thus enabling constraint
checking already before passing the request via a network
protocol to the server.

IV. CODE CONTRACTS AND WCF: THE CONCEPT

The overall concept of our solution for combining WCF
and code contracts is illustrated in Figure 1.

One starts with implementing a WCF service according
to both the WCF and the code contracts programming
models.The service may use methods of the Contract class
such as Requires and Ensures to specify preconditions
and postconditions. For WCF data contracts, invariants can
be defined.

During service deploying, the WCF infrastructure gener-
ates a WSDL for the service. Our approach will perform the
following additional activities:

1) The code contracts expressions are extracted from the
WCF service implementation class and are translated
into corresponding WS-Policy assertions (so-called
code contracts assertions).

2) A PolicyReference element is included into the
WSDL of the service according to the WS-Policy-
Attachment specification. The reference points to the
code contracts assertions from the previous step.

The right part of Figure 1 shows the strategy to create
proxy objects that are equipped with code contracts, so-
called contracts aware proxies. In a first step, we derive the
standard proxies from the WSDL by applying svcutil.exe

provided by WCF. Then, these proxies will be enhanced in
the following way:

1) Extraction of the code contracts assertions attached to
the service’s WSDL.

2) Creation of corresponding preconditions as well as
postconditions and their integration into the proxy
classes. Classes derived for data contracts are extended
by invariant methods.

Before we will discuss each of these steps in more
detail, we make some observations. First of all, the standard
programming models both for WCF and code contracts can
be applied when implementing a service. The enhanced de-
ployment infrastructure has the responsibility to perform the
above mentioned activities. By automating these activities,
our approach is transparent from a developer point of view.

Secondly, code contracts imposed on WCF services are
also available for client technologies other than .NET. In
fact, Web services technologies such as JAX-WS [14] ex-
tended by Java-based contract technologies can also profit
from the code contracts assertions attached to the WCF
service’s WSDL. In Section VII-B, we will elaborate this
feature in more detail.

Finally, we observe that our solution exploits and applies
widely used technologies and specifications such as WS-
Policy and WS-PolicyAttachment, which are supported by
WCF and almost all Java-based Web services infrastructures.
Thus, no proprietary frameworks must be installed to realize
our approach.

V. CODE CONTRACTS ASSERTIONS FOR WS-POLICY

To formally represent code contracts expressions with
WS-Policy, we introduce a WS-Policy assertion type, which
is called CodeContractsAssertion.

The XML schema is defined as follows. Note that we
omit, for sake of simplicity, some attributes such as target-
Namespace.� �
<xsd:schema ...>
<xsd:element name = "CodeContractsAssertion"/>
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "requires"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "ensures"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "context"

type = "xs:anyURI"
use = "required"/>

<xsd:attribute name = "name"
type = "xs:anyURI"/>

</xsd:complexType>
</xsd:schema>� �

XML schema for CodeContractsAssertion.



280

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Combining code contracts and WCF.

A CodeContractsAssertion assertion has two at-
tributes: a mandatory context and an optional name.
The context attribute specifies the service to which the
constraint applies. To be precise, the value of the context
attribute is the (uniquely defined) name of a service as
specified in the binding section of the WSDL. In case
of an invariant, the context refers to a type defined in
the types section. The name attribute can be applied to
attach additional information to an assertion, which is not is
processed.

The body of a CodeContractsAssertion consists of a
set of requires, ensures, and invariant elements. The
values of these elements have the type xsd:string and
should be valid code contracts expressions. An expression
contained in a requires (resp. ensures) element repre-
sents a precondition (resp. postcondition) and typically refers
to parameter names of the service. Note that these names
are also part of the WSDL and can therefore be resolved
properly.

An invariant expression applies to instances of data
types used as service parameters. Such an expression may
impose restrictions on the public members of the type, which
are visible to a WCF client application.

Note that a code contracts expression contained in a
service implementation class may impose restrictions on
members, which are not visible – and hence are not mean-
ingful – at WSDL interface level. Section VII will discuss
this issue in more depth.

The created CodeContractAssertions are packaged
into a WS-Policy description, which is attached via a
PolicyReference to the service definition. The following
WS-Policy description is produced for the WCF square-

Root service from Section III.

� �
<definitions name="Service">
<Policy wsu:Id="CCPolicy">
<ExactlyOne>

<All>
<CodeContractsAssertion

name="squareRootAssertion"
context=
"IService.squareRoot(System.Double)">

<requires>
d >= 0

</requires>
<ensures>

Contract.Result<int>() >= 0
</ensures>

</CodeContractsAssertion>
</All>

</ExactlyOne>
</Policy>
...
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#CCPolicy"/>
<operation name="squareRoot"> ... </operation>

</binding>
...

</definitions>� �
Code contracts policy for the squareRoot service.

In the following section, we will describe how to techni-
cally realize our concept.

VI. PROOF OF CONCEPT

We start with elaborating how to create and attach policies
for code contracts during the WCF deployment process.
Thereafter, we will focus on the activities at the service
consumer side, which especially covers the generation of
contracts aware proxies.



281

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Code Contracts Extraction

Given a WCF service implementation, we need some
mechanism to obtain its preconditions, postconditions and
invariants. API functions have been published to access
code contracts expressions. These functions are part of the
Common Compiler Infrastructure project [15]. We adapted
the proposed visitor pattern to obtain the methods’ code
contracts expressions and created a function getCode-

ContractsForAssembly that computes for a given assem-
bly a code contracts dictionary. This dictionary is organized
as follows:

• The key is the full qualified name of the method.
• The value is a list of strings each representing a code

contracts expression. Each expression has the prefix
requires:, ensures:, or invariant: to indicate its
type.

The function getCodeContractsForAssembly can be
implemented in straightforward manner by using types
defined directly or indirectly in the namespace Micro-

soft.Cci.

B. Creation of WS-Policy Code Contracts Assertions

In this step, we create an XML representation for the
code contracts expressions according to XML schema for
CodeContractsAssertion as defined in the previous sec-
tion.

We have realized a function createCodeContracts-

Assertions that takes a filled dictionary from the previous
step. It iterates on the keys and performs the following
actions:

• For each key, a CodeContractsAssertion is created.
The value of its context attribute will be the key’s name.

• For each expression contained in a key’s value, an
XML element is embedded into the CodeContracts-

Assertion. Depending on the well-defined prefix, the
XML element will be either requires, ensures, or
invariant.

The result of this step is a complete list of Code-

ContractsAssertions for the code contracts expressions
in the service’s implementation. How to embed a set of
CodeContractsAssertions as a WS-Policy description
into a WSDL file is described next.

C. WS-Policy Creation and Attachment

In WCF, additional policies can be attached to a WSDL
file via custom bindings [16]. We define a custom binding
that uses the PolicyExporter mechanism also provided
by WCF. To achieve this, we implement two classes:

• ExporterBindingElementConfigurationSection

• CCPolicyExporter.
The former class is derived from the abstract WCF

class BindingElementExtensionElement. The inherited
method CreateBindingElement is implemented in such

a way that an instance of the CCPolicyExporter class
is created. CCPolicyExporter has BindingElement as
super class and implements the ExportPolicy method,
which contains the specific logic for creating code contracts
policies. Figure 2 visualizes the class layout.

Figure 2. Class diagram for WS-Policy creation.

We have implemented the ExportPolicy method in the
following way. In a first step, getCodeContractsFor-

Assembly is invoked to obtain the filled dictionary. Next,
createCodeContractsAssertions produces an XML
representation for the code contracts expressions, which is
then embedded into a valid WS-Policy description. Finally,
a policyReference element pointing to this policy is
embedded into the WSDL. Thus, we end up with an enriched
WSDL description as shown at the end of the previous
section.

To publish the service, a so-called endpoint must be
configured (for details see, e.g., [10]). We have to change
the standard configuration file of the WCF service such that
the custom binding will be used:

1) In the definition of the service endpoint, the attribute
binding is changed to customBinding and the at-
tribute bindingConfiguration is set to exporter-
Binding.

2) In the bindings section, the customBinding ele-
ment declares exporterBinding.

3) The element bindingElementExtensions is in-
troduced in the extensions section. Its add ele-
ment specifies the assembly in which the Exporter-

BindingElementConfigurationSection class is
implemented.

During service deployment, WCF now uses the custom
binding. As a result, the generated WSDL file will contain
the code contracts policy.



282

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Importing Code Contracts Policies

In order to invoke a service, a WCF client application
requires a definition of a service endpoint. Typically, this
is declared in a configuration file, similar to the one used
on server side. In the metadata section of this file we
included the definition of a so-called policy importer. By
default, custom policies attached to a WSDL will not be
evaluated when importing a WSDL.

In order to process code contracts policies, the policy-

Importers element refers to the class CCPolicyImporter
of Figure 3.

Figure 3. Class diagram for accessing WS-Policy descriptions.

We have realized this class in the following way. It imple-
ments the WCF interface IPolicyImporterExtension,
which declares the ImportPolicy method. When process-
ing a WSDL interface description, the runtime environment
invokes this method and passes the attached policy descrip-
tion. CCPolicyImporter implements ImportPolicy in
such a way that a code contracts dictionary (similar to
the one on server side as described in Section VI-A) is
constructed. To achieve this, the private method Process-

CCAssertions iterates on the code contracts assertions of
the policy and adds corresponding entries to the dictionary.
This dictionary will be used to enhance the proxy classes,
which is shown next.

E. Enhanced Proxy Generation

The tool svcutil.exe does not process custom policies.
Hence, the standard proxy classes generated do not contain
any code contracts constraints.

In our proof of concept we have realized the following
approach. First, we apply svcutil.exe to create the stan-
dard proxy classes. In a second step, the following activities
are performed:

1) Create an additional source file that will contain all
constraints found in the code contracts policy. This
file is called contract file.

2) Link the contract file to the proxy class. Note that we
do not want to modify the proxy class generated by
svcutil.exe, because this would result in a strong
dependency to the concrete code structure of the proxy.

Before we discuss the structure of the contract file, we
observe that the generated proxy has a public interface (the
proxy interface) that describes the supported services. There
is also a public partial class (the proxy class) that implements
the proxy interface. A client application instantiates the
proxy class and invokes a provided service.

In the proof of concept, we apply the following strategy
to bring the code contracts to the proxy. We create a
new interface (the contract interface), that contains those
methods that must be equipped with preconditions and post-
conditions. We also introduce a further class (the contract
class) implementing the contract interface. The inherited
methods are implemented in the contract class in such a
way that they contain the required Contract.Requires

and Contract.Ensures statements. The contract class will
be annotated with ContractClassFor to indicate that the
constraints apply to the methods of the contract interface.
The details for linking a contract class to an interface can
be found at the end of Section II-A.

Next, we extend the partial proxy class in the contract
file by inheriting the proxy interface. As the contract class
is linked to the proxy interface, the preconditions and
postconditions are also applicable to the proxy class.

For an invariant expression contained in the code con-
tract policy we proceed as follows. The partial proxy
class to which the invariant applies will be extended in
the contract file by a new method that is annotated with
ContractInvariantMethod. This method contains the
required Contract.Invariant statements. This completes
the generation and linkage of the contract file with the proxy
generated by svcutil.exe.

F. Data Contracts

In WCF, data contracts are types that can be passed to and
from the service. In addition to built-in types such as int

and string, user defined data contracts can be introduced
be annotating a class with the DataContract attribute.
WCF will serialize all fields marked with DataMember. To
impose object invariants on data contracts, methods anno-
tated with ContractInvariantMethod will be introduced
in the class context. The Contract.Invariant statements
contained in these methods will then be managed by code
contracts runtime.

As an example consider a data contract CustomerData
(cf. Section II-A) with members such as name and ad-
dress and an object invariant method that imposes re-
strictions on possible values. Suppose a WCF service
createCustomer takes an instance of CustomerData. Be-
cause CustomerData is part of the service’s signature, it has
a representation as complexType in the WSDL. Therefore,
svcutil.exe will generate a corresponding partial C# class
CustomerData, which is used by the service consumer
to construct instances. This class provides public setters



283

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and getters for the members, but contains only a default
constructor to create “empty” instances.

In order to invoke the createCustomer service, a client
may proceed as follows:

1) Create an empty instance of CustomerData.
2) Set the specific values of the members with the public

setters.
3) Pass the instance to the service.
Unfortunately, the code contracts runtime environment on

client side will report an error after the first step. This is due
to the fact that the empty members will (probably) define
an invalid state of the instance, which is recognized by the
object invariant.

To overcome this problem, one needs on client side a
public constructor that takes all relevant customer data and
constructs a properly initialized instance, which conforms
to the object invariant. However, such a constructor is not
generated by the standard svcutil.exe tool.

Therefore, part of the enhanced proxy generation is also
the introduction of a suitable public constructor for a data
contract class. This constructor will be part of the partial
proxy class introduced in the contract file.

Observe that on WCF service provider side this is not
an issue, though. When introducing a data contract, specific
constructors can be implemented by the creator of the WCF
service. These constructors are available for general usage
on WCF provider side.

G. Exception Handling

There are two separated code contracts runtime environ-
ments: one on WCF service consumer side and one on WCF
service provider side.

As described in Section 7 of [2], code contracts support
several runtime behavior alternatives. By default, a contract
violation yields an “assert on contract failure”. Thereafter,
a user interaction is required to continue or abort program
execution. While this behavior may be acceptable on client
side during the development and testing phase, an analogous
behavior would not be helpful on WCF provider side. Each
time a violation occurs, the WCF service process requires a
user interaction, which means that the server process must be
observed the whole time. In general, this is not acceptable,
not even during development and testing.

To remedy this problem, we disable “assert on contract
failure” in the WCF service project. As a consequence, a
contract violation now leads to the creation of an exception,
which will be handled by the WCF runtime environment.
By default, WCF returns a FaultException to the client
indicating that something went wrong without giving de-
tailed information. In order to embed the real reason into
the exception (e.g., a “Precondition failed: d >= 0” mes-
sage) the IncludeExceptionDetailInFaults parameter
of the ServiceBehavior attribute in the WCF service

implementation class is set to true as shown in the following
listing:� �
using System.ServiceModel;
using System.Diagnostics.Contracts;

[ServiceBehavior
(IncludeExceptionDetailInFaults = true)]

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
Contract.Ensures(Contract.Result<int>() >= 0);
return Math.Sqrt(d);

}
}� �

Exception creation for a WCF service with code contracts.

On client side, standard exception handling can be applied
to inspect the exception’s reason.

H. Development Model

To sum up, the development model that brings code
contracts to WCF services is as follows:

1) Creation of a WCF service and an assembly with
VisualStudio as usual, e.g., as WCF Service Library
project.

2) Definition of a service endpoint that includes a mod-
ified configuration file with a custom binding as de-
scribed in Section VI-C.

3) Deployment of the WCF service by launching the
project. The published WSDL will contain a code
contracts policy.

4) Creation of a WCF client project with VisualStudio as
usual.

5) Invocation of the ClientConnectorTool, which is
part of the proof of concept. This tool has a graphical
user interface (see Figure 4) and generates for a
specified WSDL contracts aware proxies, which will
be included into a selected client project and assembly,
respectively.

6) Usage of the code contracts infrastructure on client
side.

Figure 4. Tool for generating contracts aware proxies.



284

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It should be noted that the code contracts processing
is transparent to the developer – with the exception that
the code contracts runtime environment and tools are now
available on client side.

Our approach has the following advantages for the client
developer. First, a static analysis of the code contracts can
be performed, which helps detecting invalid invocations of
WCF services during compile time. Second, during runtime
a validation of the constraints will already be performed
on client side. As a consequence, invalid service calls are
not transmitted to the service implementation thus saving
resources such as bandwidth and server consumption.

VII. CREATING CODE CONTRACTS POLICIES: A
CLOSER LOOK

Before discussing interoperability issues in VII-B, we will
observe that in general only a subset of the code contracts
expressions of the service implementation should be mapped
to code contracts policies.

A. Limitations

When specifying code contracts for a WCF implementa-
tion class, one may impose constraints on private members,
which are not visible at the WSDL interface level. As a
consequence, it is not helpful to map these constraints to
contracts policies. Therefore, the generated contract policies
should only contain constraints, which are meaningful to
service consumers and hence can be validated on client side.
To be precise, the code contracts policy should constrain
the parameter and return values of WCF services as well
as the public members of data contracts types. Constraints
in the service implementation, which are not mapped to
the code contracts policy, will be checked by the contracts
environment on server side.

As mentioned in Section II-B, code contracts expressions
may not only be composed of standard operators (such as
boolean, arithmetic and relational operators), but can also
invoke pure methods, i.e., methods that are side-effect free.
For example, suppose that a precondition checks whether a
parameter value of type int is a prime number. This can be
achieved by invoking a custom predicate isPrimeNumber

in the Contract.Requires statement. In order to check
this precondition during service invocation, the implementa-
tion of the predicate must be available on client side. Thus,
when importing code contracts policies on client side, only
those predicates should be included into the contracts aware
proxies, which are known on client side. Otherwise, the
compiler will report an error on client side.

B. Interoperability

So far we have assumed that both on client and server side
there is a .NET environment supporting the code contracts
technology. Due to the interoperability of the Web ser-
vices technology, Java based technologies may invoke WCF

services (see [14], Section 12). In our current approach,
the code contracts expressions are implemented in a .NET
language and must adhere to the specific syntax of C# or VB.

In order to use code contracts policies in a Java-based
client environment, the expressions must be translated into
equivalent Java expressions. As argued in [17], it is of
advantage to represent expressions in contracts policies in
a neutral, programming language independent format. In
fact, the Object Constraint Language (OCL) of the Object
Management Group [18] is a standardized language for
formalizing constraints. In [17], the mappings from C# and
Java, respectively, to OCL and vice versa are elaborated in
more detail.

VIII. RELATED WORK

There are two research areas, which are related to our
approach:

• Design by contract technologies;
• Constraints for policy languages.
While the former category comprises the realization of the

design by contract principle for programming languages, the
latter covers formalisms for specifying constraints for Web
services.

Recently, several language extensions for Java have been
proposed towards the specification of preconditions and
postconditions for methods as well as invariants. Two well-
known frameworks are Contracts for Java [19] and Java
Modeling Language [20]. Typically, annotations such as
@Requires and @Ensures are introduced by the frame-
works to impose additional constraints. These approaches
are targeting at the core Java programming language and do
not address the impact on Web services environments such
as JAX-WS. As in the case of WCF, these annotations are
completely ignored when generating a service’s WSDL. As
argued in [17], our concept is rather generic and can also
be applied to Java environments.

The formalization of non-functional requirements for Web
services is a hot topic since the early days of Web services.
Based on WS-Policy, WS-SecurityPolicy [12] is a well-
known specification for imposing security constraints for
Web services such as message integrity and confidentiality.
There are proposals for defining domain-independent asser-
tion languages such as WS-PolicyConstraints [21] and WS-
Policy4MASC [22], which can in principle be used to en-
code code contracts expressions. However, these and related
approaches do not address how to map constraints embedded
in the service implementation to these formalisms.

IX. CONCLUSION

In this paper, we have elaborated a concept that brings
code contracts to WCF. To be precise, we have shown how to
i) derive interface contracts for WCF services and ii) create
contracts aware proxy objects. As a consequence, WCF
application developers can now profit from the additional



285

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expressive power of code contracts including runtime and
tool support. It has been stressed elsewhere that there did
not exist a solution to the problem.

Our approach exploits well-known standards such as
WSDL, WS-Policy, and WS-PolicyAttachment. We have
described how to represent code contracts expressions by
means of WS-Policy assertions. This representation will be
used to generate an enhanced client proxy infrastructure,
thus allowing the evaluation of the WCF service’s code
contracts already on client side. The developer of a WCF
client application now explicitly sees important constraints
imposed on the service implementation thus reducing the
number of service invocations with invalid parameter values.

As noted in the section on related work, there are design
by contracts approaches for Java. An interesting direction
for future work is concerned with the question how interface
contracts can be mapped to the Java environment. A solution
may map code contracts expressions into a programming-
language independent representation (e.g., in OCL). Af-
terwards, the OCL constraints will be translated into the
specific syntax of the design by contracts technology used
on service consumer side. Hence, a Java client application
can also profit from the code contracts embedded in the
WCF service implementation [17].

Currently, we are elaborating a tool that facilitates the
development of Web services with Quality of Service (QoS)
attributes such as security, performance and robustness [23].
As code contracts can be viewed as a sophisticated instru-
ment to produce more robust and fault-tolerant software
components, an interesting question is how to embed design
by contracts technologies into the more general setting of
tool support for arbitrary (QoS) attributes.

ACKNOWLEDGMENTS

I would like to thank the anonymous reviewers for giving
helpful comments. This work has been partly supported by
the German Ministry of Education and Research (BMBF)
under research contract 17N0709.

REFERENCES

[1] B. Hollunder, “Code contracts for Windows Communication
Foundation (WCF),” in Proceedings of the Second Interna-
tional Conferences on Advanced Service Computing (Service
Computation 2010). Xpert Publishing Services, 2010.

[2] Microsoft Corporation, “Code contracts user manual,” http://
research.microsoft.com/en-us/projects/contracts/userdoc.pdf,
last access Jan. 2012.

[3] Extensible Markup Language (XML) 1.1. http://www.w3.org/
TR/xml11/, last access Jan. 2012.

[4] Web Services Description Language (WSDL) 1.1. http://
www.w3.org/TR/wsdl/, last access Jan. 2012.

[5] SOAP Version 1.2. http://www.w3.org/TR/soap/, last access
Jan. 2012.

[6] Web Services Policy 1.5 - Framework. http://www.w3.org/
TR/ws-policy/, last access Jan. 2012.

[7] Web Services Interoperability Technology (WSIT). https://
wsit.dev.java.net, last access Jan. 2012.

[8] Writing rock solid code with Code Contracts. http://blog.
hexadecimal.se/2009/3/9, last access Dec. 2011.

[9] D. Esposito and A. Saltarello, Microsoft .NET: Architecting
Applications for the Enterprise. Microsoft Press, 2009.

[10] J. Löwy, Programming WCF Services. O’Reilly, 2007.

[11] Web Services Policy 1.5 - Attachment. http://www.w3.org/
TR/ws-policy-attach/, last access Jan. 2012.

[12] WS-SecurityPolicy 1.3. http://docs.oasis-open.org/ws-sx/
wssecuritypolicy/v1.3, last access Jan. 2012.

[13] WS-ReliableMessaging 1.2. http://docs.oasis-open.org/ws-rx/
wsrm/v1.2/, last access Jan. 2012

[14] E. Hewitt, Java SOA Cookbook. O’Reilly, 2009.

[15] Common Compiler Infrastructure: Code Model and AST API.
http://cciast.codeplex.com/, last access Jan. 2012.

[16] J. Smith, Inside Windows Communication Foundation. Mi-
crosoft Press, 2007.

[17] B. Hollunder, “Deriving interface contracts for distributed ser-
vices,” in Proceedings of the Third International Conferences
on Advanced Service Computing (Service Computation 2011).
Xpert Publishing Services, 2011.

[18] OMG, “Object constraint language specification, version 2.2,”
http://www.omg.org/spec/OCL/2.2, last access Jan. 2012.

[19] N. M. Le, “Contracts for java: A practical framework for
contract programming,” http://code.google.com/p/cofoja/, last
access Jan. 2012.

[20] Java Modeling Language. http://www.jmlspecs.org/, last ac-
cess Jan. 2012.

[21] A. H. Anderson, “Domain-independent, composable web
services policy assertions,” in POLICY ’06: Proceedings of
the Seventh IEEE International Workshop on Policies for
Distributed Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 149–152.

[22] A. Erradi, P. Maheshwari, and V. Tosic, “WS-Policy based
monitoring of composite web services,” in Proceedings of
European Conference on Web Services. IEEE Computer
Society, 2007.

[23] B. Hollunder, A. Al-Moayed, and A. Wahl, “A tool chain for
constructing QoS-aware web services,” in Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions. IGI Global, 2011.



286

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Answering Complex Requests with Automatic Composition of Semantic Web
Services

Brahim Batouche
Public Research Center Henri Tudor,

Luxembourg
brahim.batouche@tudor.lu

Yannick Naudet
Public Research Center Henri Tudor,

Luxembourg
yannick.naudet@tudor.lu

Frédéric Guinand
University of Le Havre,

France
frederic.guinand@univ-lehavre.fr

Abstract—Today, there is a growing need for user to be able
to express, and get answers to more complex requests, those
including multiple functionalities, conditions, constraints and
objectives. Complex requests including multiple functionalities
only can not usually be answered with one single Web service.

As multiple services are needed, the problem is then to
find good combination using the available services. This paper
contributes to answering this issue. It focuses on the problem
of semantic Web services composition to answer such requests.

We propose an automatic composition algorithm designing
the answering composition. The algorithm takes into account
all suitable composition structures. The set of answering
composition is modeled as a graph, which supports the selection
of the best composition according to the request constraints and
objectives.

Keywords-complex web request; composition of web services;
semantic web services.

I. INTRODUCTION

Electronic commerce (e-commerce) presents an important
average gain for enterprises of different domains: tourism,
transport, etc. For this reason the e-commerce has a growing
interest in Web services to publish its products. Addition-
ally, the Web services relative simplicity gives information
providers and users easy access to new content. They are
now widely available on the Web. For instance in 2009, the
number of Web pages for e-tourism (electronic tourism) has
been estimated to 65.2 billions, and represents in Europe
25.7% of the market [1]. As a side effect of this success,
customer requirements become more and more complex,
such that finding a single service fitting the specific needs
of a user is unlikely.

Let us consider someone wanting to organize a stay in
Rome. Using natural language, he/she could express his/her
wish as: “ I want to visit Rome for a week-end, I would
like to go there by airplane and to stay in an hotel”. Such
request has two functionalities: flight and hotel booking.
A functionality is associated to a service and each one
accepts inputs and produces outputs. The departure and
destination cities of the flight are the input parameters of
the flight service. The localization and the date are the input
parameters of the hotel service. These parameters have to be

coherent, e.g. the arrival date in Rome has to be the same
as the starting date of the Hotel reservation.

The request is processed in two steps: a first step for
determining the services able to answer the different func-
tionalities, i.e., the services allowing to book a flight and to
book an hotel, and a second step for actually executing the
functionalities, i.e., actual booking of flight and hotel. The
first step is achieved by calling informative services (IS),
while the second one is performed by active services (AS).
IS output is used as input by AS.

This paper is an extension of [2]. We propose an algo-
rithm for automatically finding all candidate compositions
answering a complex request, without a priori knowledge
of the composition structure. When the request does not
formally specify any chaining between the request elements,
the algorithm finds suitable composition structures based on
the available services. The structure of the composite service
depends obviously on the request, but also of the available
services. The underlying problem is not trivial because there
are many possible combinations of services, as well as many
composition structures.

Services composition is useful in many different domains,
e.g., tourism, transport, multimedia, etc. Some of them
involve a dynamic environment where at any time events
can affect previously computed compositions. The proposed
algorithm can compensate services failures by finding a new
executable composition when this happens.

In Section I-A and I-B we define respectively the research
context and the useful definitions. In Section II, we present
the state of the art and our contributions. In Section III,
we formalize the problem elements: service, request and
answering composition. In Section IV, we present how to
describe semantically Web services and complex request. In
Section V, we present the model of answering compositions.
Section VI present our algorithm for automatic construction
of a composition. Section VII is concerned with an experi-
mentation results on which we assess our algorithm. Section
VIII present specific cases of request resolutions. Finally, we
conclude in Section IX.



287

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Background

Complex requests such as the example presented here
before, cannot be answered with one single service. Dif-
ferent processing steps are required. [3] decomposes the
request resolution into: service presentation, service trans-
lation, composition generation, composition evaluation, and
composition execution. In [4], the request processing is de-
composed into: Web services discovery, planning, execution,
and optimization. In [5], the request treatment follows three
steps: discovery, plan generation and plan optimization. It
appears that the choice of the resolution steps depends on
the considered point of view: [4], [5] take the customer point
of view, while [3] considers the provider point of view.

In this paper, we take the customer point of view and we
consider both the composition design time and runtime to
define our resolution steps. Design time can be decomposed
in three steps: services discovery, composition design (or
planning [4]) and selection of compositions. Runtime can
be decomposed into execution and adaptation steps [6].
We propose a general resolution process for answering
complex request made of five steps: (1) description of re-
quest functionalities, constraints and objectives; (2) services
discovery: to find suitable services; (3) composition design:
to determine how the services can be composed together
to answer the request, and to design the corresponding
composite service; (4) selection of answer(s): to select the
composited services fulfilling the best the request objec-
tive(s) and respecting the request constraint(s), and finally
(5) composition execution.

Figure 1 illustrates the different steps from the user
request to the actual execution of the different services. The
outputs of one step are the inputs of the following one. This
paper focuses on steps (1) and (3), the step (2) being not
considered as it is widely studied (see e.g., [7]). We also
discuss the dynamic composition case, occurring when either
services are faulty on when they can no more be invoked at
execution time.

The request solving is decomposed into service discov-
ery and service selection. When the request is complex
we design the answer using composition of existing Web
service. The automatic composition provides the answering
composition set. Then the selection of the best composition
can require an optimization method.

Automatic composition is based on automatic service
discovery and combines the different discovered services
to answer a complex request. Functional parameters in
the request are used to find services, while non-functional
parameters (request constraints and objectives) are exploited
to select the best matching services.

B. Overview and Definitions

Web services composition consists in two steps: design
time (design of composition answering a request) and run-
time (composition execution). At design time, two steps can

Figure 1. Complex request processing principle.

also be considered: (1) the search of possible compositions
regarding the available services; and (2) the selection of best
compositions based on request objective and constraint. In
the following we provide related definitions.

1) Composition Design: The composition design can be
performed in three ways: automatically, semi-automatically
and manually. Moreover, the composition can be abstract or
executable.

Manual composition is a combination of services directly
specified directly by a designer. Semi-automatic composition
determines the composing services and their control flow
progressively by interrogating the user. Automatic compo-
sition determines the composing services and their control
flow progressively without user interaction.

An executable composition allows services invocation and
can be used as a composite service. An abstract composition
comprises only the functionalities and their control flow,
without giving any execution possibility.

Following our requirements, we consider executable ser-
vices only. Indeed, the automatic composition requires being
able to invoke some services at design time: in particular
informative services, which will provide input data for other
services. Additionally, the composition itself needs to be
executable.

The composition of Web service is designed to achieve
a specific goal. This goal is achieved by composing many
services, and then building a new service, called “compos-
ite service”. The composite service can be modeled as a
composition path, tree, organization of agents, chromosome,
etc. The building of a composite service involves different
composition structures such as: sequence, choice, switch,
while, split (starting parallelism) and split-joint (ending
parallelism), see Figure 2. Many other terms are used for
naming composition structures like: control flow, execution
plan, and planning. In this paper these terms will be used
as synonyms.

2) Composition Runtime: The composition runtime can
be done in static or dynamic environment, the composition
in dynamic environment is named “ dynamic composition”



288

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Composition structures illustration

while in static environment it is named “static composi-
tion”. The dynamic composition takes into account possible
execution failures (service breakdown) and provides some
executable alternative composition(s). This case is not con-
sidered in static composition [6].

II. STATE OF THE ART

Since our work concerns three items: complex request
description, automatic composition design and answering
composition model, this section presents the existing works
in these areas and highlight our contributions.

A. Complex Request Description

Several works try to describe semantically the complex
request. In [8], a complex request is presented as a set of
inputs, outputs and conditions, which are formalized in de-
scription logic ALN . The works [9], [10] present a complex
request as an abstract composite Web service and use service
profile of OWL-S [11]. The service model can be used
to describe the internal structure. However, decomposing a
request in a connected set of services, estimating data and
control flow, is not obvious for users.

The request formalization used in [8], [10], [9] is some-
how limited. [8] considers the request I/O and condition,
but the use of ALN as a formalization language makes it
difficult to use with existing services standards implementa-
tions (using, e.g., OWL-S). The works [10], [9] use OWL-S
description, but they do not consider all the request elements
of formula 1, such as constraint and objective.

We modelled our request ontology to take into account
all the elements specified in the request formalization (for-
mula 1), and with the objective of keeping full advantage
of existing works on semantic Web services, such as the
matchmaking service OWL-MX [12]. Additionally, the user
request needs to be formalized in such a way it can directly
be used to find matching services.

B. Composition Models

Before analyzing the existing works, we present our
requirements. According to our objectives, the composition
model should fulfill the five following points: (1) represent a
search space for optimization, specifying functional and non-
functional parameters of each composition. (2) support all
possibles composition structures: sequence, choice, switch,
while, split and split-joint, (3) allow the composition in-
vocation, (4) support dynamic environment and dynamic

composition: allowing to search for alternative compositions
when failures occur during execution, (5) allow the transla-
tion of compositions into existing Web services description
languages.

A model for the composition of Web services represents
a set of services and their links, achieving a specific set
of functionalities. According to researchers point of view
and requirements, the composition is modeled by different
mathematical representation: Petri nets [13], [14], [15], [16],
[17], Directed Acyclic Graph [18], [19], [5], Workflows [20],
[3], Situation Calculus [21], UML diagrams [22], Finite
State System [23] or Multi Agents System (MAS) [24].

1) Petri nets: Are the widely used to model services
composition, because they allow to model the steps and
events in distributed system and consider the compositions
structures. The composition is modeled with a set of places,
transitions and tokens: places correspond to services, transi-
tions correspond to input/output exchanges between services,
tokens correspond to atomic operations [14]. Functional and
non-functional parameters of services are specified in the
places of Petri nets, and not specified in the transitions.
We can not model services having values of parameters
according to other service, because non-functional param-
eters are specified in the places. For example, when the
hotel reservation cost changes according to the travel agency
service, the hotel service can have different costs (non-
functional parameter value), which cannot be specified in
the same place [13], [14], [15], [16], [17]. Non-functional
parameters could be specified as a transition weight vector,
but Petri nets are not specifically designed to achieve this
goal.

2) Directed Acyclic Graphs: DAG can be used to rep-
resent the execution order of services. The graph nodes
represent the services and the arcs represent the data flow
between services. The composition is modeled as a path.
The functional parameters are specified in the node and the
non-functional parameters are specified on the arcs. This
structure allows to overcome the limit of Petri nets models.
However, unlike Petri nets, DAG have some restrictions that
prevent representing all the structures illustrated in Figure 2.
For instance, DAG acyclic constraints is incompatible with
the loop/while structure. To overcome this limit DAGs can
be adapted for different composition structures [18], [19],
[5].

3) The following synthesis can be made about the other
approaches: Workflow presents a composition as a sequence
of tasks and the message flow between services. The work-
flow semantic [20] allows to facilitate the interoperability
of heterogeneous Web services. Workflows can model com-
position structures, but do not allow representing multiple
compositions. UML activity diagrams is a descriptive model,
inspired from Petri nets model [22]. The UML diagram
is used for describing one compositions, and not a set.
Situation calculus is efficient to construct the composition



289

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in dynamic environment, because it represents the actions,
and the situation as a sequence of actions. However, it
is not obvious to exploit situation calculus to evaluate
a composition. Additionally, it cannot be used to model
multiple compositions, since it builds one composition step
by step [21]. Finite state system (FSS) represents a set of
states and transitions. States represent the services. Transi-
tions consider all possible actions to execute a composition.
However, FSS represents a composition as a sequence of
services, and it is not well suited to consider other structures
such as split or split-joint. Last, with Multi Agents System
(MAS) [24] a services composition can be represented by a
set of agents. Roles of agents corresponds to functionalities
of services; input, output, precondition and effect. The MAS
can be used to model the organization of compositions, but
it provides a model that cannot be used as an optimization
search space, because the non-functional parameters are not
considered.

Each of the aforementioned models, has advantages and
drawbacks for a specific requirement, but fails to meet all
requirements listed at beginning of this section. Among the
possible models we have listed, only the DAG is suitable,
because it can be easily adapted to our requirements of
supporting any composition structure and composition ex-
ecution. Adaptation of the other models remains a priori too
complex, without any foreseen benefit.

C. Automatic Composition Design

As defined in I-B1, automatic composition allows design-
ing a composition without interrogating the user, defining
the different Web services components and their composition
structures. Some works [25], [26], [27], [15], [28], [29], [16],
[24], [17] try to achieve this goal.

In [25], rules are used to generate a sequence of Web
services, from the relations between them. Sequences are
the only composition structures considered in that work.

In [26] a flooding algorithm is used. It first looks for
services matching a request input. Then the algorithm pro-
gresses step by step by finding next services having input
matching the output of previously selected services. The
progression finishes when a selected service output matches
with the request output.

An architecture for automatic Web service composition
is proposed in [27], which according to the authors, allows
fast composition of OWL-S services. The proposed approach
uses implicitly a flooding algorithm. However, while authors
provide interesting ideas for the design of the composite ser-
vice and automating service invocation, they only consider
sequences of services.

[15] proposes an algorithm based on matrix-equation
approach and the provided compositions are modeled with
Petri Nets. The compositions are built to answer a request.
During the building, the method allows to check the reacha-
bility of the composition, by checking accessibility of states

from initial state. This approach is also useful to verify the
validity of the built composition by other methods, but it
does not allow the evaluation of the composition.

Oh, Lee, and Kumara [29] present an AI-planning al-
gorithm of Web services composition, called WSPR. The
algorithm relies on the request input and output, and then
achieves the composition in two steps: (1) It computes the
cost to achieve the composition, beginning with the request
input. (2) This cost is used as guidance, to minimize the
length of the sequence of services. This approach allows
designing and selecting the composition at the same time,
which it is not possible for any request, as discussed in
section VIII-A. Additionally it considers only the sequence
structure.

The algorithm in [28] builds a composition graph from a
given request. It identifies first the input and output of the
request and searches for a matching service. If none can be
found, a service having only a matching output is selected
and recursively, subsequent services having output matching
with the input of the latter service and input matching with
the request input are sought. The algorithm ends when a
sequence of services starting with the request input and
ending with its output is found, or when the set of available
services has been visited. While the algorithm allows the
composition execution, it is limited to sequences structures,
such as [26]. The algorithm in [28] uses an inverse direction
of built [26], and it has been designed to minimize the
number of compositions, because generally an input can
correspond to services having different outputs. The method
of [26] is suitable to have a large set of compositions.

[16] presents an algorithm for “configuration” of com-
positions and selection of the best composition according
to the services cost. The compositions are modeled with
Petri Nets and are selected by considering the non-functional
requirements. This approach allows to configure and select
the composition at the same time, as in [29].

In [24], a MAS is used to answer a user request using
automatic composition. The composition is based on a rea-
soning loop to determine the composition plans answering
the request. An agent is limited to an OWL-S service and its
functional parameters describing the agent role. The agents
collaborate to provide the composition needed. The proposed
reasoning algorithm allows to detect the composition plan
according to the service semantic, but it does not consider
all composition structures.

[17] builds the composition relying on semantic of service
input/output. An hypergraph representation, as in [30], is
used to determine the suitable services, and then to model the
composition with Petri Nets. Using the semantic of services
I/O ensures the coherency of composed services. The use of
an hypergraph allows the determination of suitable compo-
sitions according to functional parameters, without consid-
ering non-functional parameters. However, it considers only
the sequence structure. According to our requirements, it is



290

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

suitable to model all compositions without selection. The
latter is reported in the compositions optimization step.

To automate the composition design, considering our re-
quirements, the dedicated algorithm has to allow determining
the composition structures and executing the composition.
For this, we have to rely on the semantic of services
input and output (as in [17]), and also on the semantic of
composition structures.

D. Contributions

Our contributions to the Web services composition re-
search field are respectively:

1) To formalize the different concepts of the problem:
Web service, complex request and composition of Web
service.

2) To propose an ontology (OWL-CR) describing seman-
tically the complex request.

3) To model the composition by considering all require-
ment cited at beginning of section II-B.

4) To propose an algorithm solving a complex request
with automatic composition, which considers any
composition structures and detects them automatically.

5) To determine when the composition requires an opti-
mization. When this is the case, we explain how to
represent the composition set as a search space for
optimization. In the other case, we explain how to
select the best composition.

The existing studies address the composition problem only
partially, and none of them considers all the points cited
above. Additionally, no formalization of the problem can be
found in the state of the art. In the following section, we
clearly state the problem to solve.

III. FORMALIZATION

The problem space of automatic service composition con-
cerns three main elements: a complex Web request to solve,
a set of available Web services and service compositions that
are form the services to answer the request. In this section,
We formalize these elements.

A. Complex Request

Definition 1: A complex request illustrates a service a
user asks for, following a specific goal, for which he/she
specifies both functional and non-functional parameters. It
can be represented as a set of functionalities on which
conditions can be expressed, and a set of constraints and
objectives expressing non-functional parameters.

The complex request can then be written as a three-
tuple: R =< FR,D,NFR >, where FR = (FRi)

T is the
vector of functionalities, T being the transposition operator,
where each functionality FRi

is mandatory or optional and
has as input and output respectively IFRi

and OFRi
. D =

{d1, ..., dr} is a set of conditions, where a condition refers

to a request functionality input (IFRi
) or output (OFRi

); and
NFR is the set of non-functional parameters.

Lets first write IR = {IFRi
} and OR = {OFRi

},
denoting respectively the input and output set of the request,
NFR can be defined as NFR =< C,B, λ >, where C =
{c1, · · · , cm} is the set of constraints, B = {obj1, ..., objk}
is the set of objectives, and λ is the set of importance levels
associated to objectives. Finally, this leads to the following
formula:

R =< IR,OR,D, C,B, λ > (1)

Conditions D differ form constraints C in that they have
to be verified by services answering a part of the request
or for instantiating the input parameters of service (e.g.,
the depart and destination cities for a transport service),
while constraints allow filtering the set of answering services
or data obtained by the Informative Service (IS), or the
composition obtained by the automatic composition process
[2].

Objectives of B will have to be minimized (e.g., cost,
time) or maximized (e.g., performance, availability). In a
specific context, an objective will be minimized (e.g., the
service execution time is minimized) and maximized in an-
other context (e.g., the leisure activity time is maximized).

Constraints and objectives can refer to data, e.g., the
flight price must not exceed 200 Euro (Cd), or, minimize
the flight price (Bd). They can refer to services, e.g., the
service price must not exceed 5 Euro (Cs) (minimization);
or to the composition, e.g., the travel price must not ex-
ceed 3000 Euro (Cc) (minimization). We write accordingly
C =< Cd, Cs, Cc > and B =< Bd, Bs, Bc > . It should be
noticed that a composition constraint Cc can refer to one or
multiple optional functionality(s) (e.g., if the price exceeds
2500 Euro, then cancel the sports activity service to reduce
the price).

The importance levels λ are specified by the user. They
can concern one single functionality (e.g., the transport price
is more important than its quality.) or the whole request (e.g.,
the price is more important than the quality, globally). In
the first case, we write λi,l, where i and l are respectively
the objective and functionality indexes. In the latter case,
it is simply written λi. The set of objectives importance
levels can be written: λ = {λi,l, λi}. Additionally λ can be
a single value (e.g., λ1 = 0.4, λ2 = 0.6) or an interval (e.g.,
λ1 ∈ [0, 0.4[, λ2 ∈ [0.6, 1[ ). We have

∑i=k
i=1 λi = 1, and

∀l,
∑i=k

i=1 λi,l = 1. We note that a request functionality can
be answered with a service or a composition of services. The
latter can contain different types of services, informative,
active or the both.

Finally, the request conditions can induce different kinds
of dependency between functionalities. We distinguish three
functionalities dependency types: no dependency, one-to-



291

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one dependency and global dependency. The two latter are
defined in Definition 2. Different strategies will be applied
depending on their kind, as will be explained in section
VIII-B.

Definition 2: One-to-one dependency in the request
means that all dependencies existing between request func-
tionalities concern at most two of them, and each function-
ality has at most one dependency.

Definition 3: Global dependency in the request means
that there exists at least one functionality having more than
one dependency.

B. Web Services

The literature proposes several definitions of Web ser-
vices. Basically: a Web service is a collection of pro-
tocols and standards used for exchanging data between
applications [31]. More specifically: Web services are self-
contained, modular business applications that have open,
Internet-oriented, standards-based interfaces [32]. Very
specifically: a Web service is a software application identi-
fied by a URI, whose interfaces and bindings are capable of
being defined, described, and discovered as XML artifacts. A
Web service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-
based protocols [33].

Mathematically, we formalize a Web service as a five-
tuple:

S :=< ID,FP,NF , CS,NS >, (2)

where ID denotes the service identifier and access
(e.g., service URI), FP denotes its functional parame-
ters, Input,Output, Precondition,Effect (IOPE); NF
denotes its non-functional parameters (e.g., service name,
service price, etc.), CS denotes the composition structure
(i.e., the service control flow); and NS is the set of ID
inner services (or operations). The existing Web service
languages try to annotate this five-tuple by describing them
syntactically or semantically.

A Web service is modeled according to a specific goal.
For this reason, there exist three Web service models [34]:
black box, white box and semi-transparent box. The black
box describes only the service functionalities, FP , the semi-
transparent box describes FP and the service composition
structures, CS , and the white box details all inner services,
NS . According to [34], the white box is hardly useable,
because it implies formalizing the service program in too
much details.

Solving a complex request implies modeling both the
existing services and the answering compositions. Regarding
existing services, the black box model is privileged because
knowing the functional parameter of services is enough to
discover matching services. For the answering compositions,

which can be used as an optimization search space, the
mixed use of white box and semi-transparent box (white-
semitransparent box) is suitable. This allows describing all
inner services NS and composition structures CS .

There are two types of service: informative service (IS)
and active service (AS). The first provides some data
(e.g., list of things) and does not modify its database after
invocation. The second performs an action and modifies its
database after its invocation (e.g., flight booking). There
are significant differences between IS and AS regarding
their usage in our resolution approach. Indeed, the IS will
be executed at composition time to aggregate the provided
information in the composition, whereas the AS will be
executed at composition runtime, i.e., after the optimization
has been performed, and after the user has selected its
preferred composition among the best compositions pro-
posed by the optimization method. The service can answer
a request functionality partially or completely.

C. Composition of Web Services

Web services compositions is the combination of multiple
service operations. These operations can follow a specific in-
vocation order (i.e., a control flow or composition structure).
A service composition can be formalized as a triple:

SC :=< OP, CF , E >, (3)

where OP denotes the set of service operations
{op1, ..., opj}, CF denotes the set of control flow constructs
(or composition structures) and E ⊆ (OP∪CF)×(OP∪CF)
are edges connecting operations and control flow constructs
[35]. For example, if we consider a DAG of composition
G =< N,A >, where N is the set of nodes and A the set of
arcs, we have: SC :=< OP = N, CF = {Arc sequence},
E = A >.

In order to define the set CF , we first review the most
common Web service composition languages: OWL-S and
BPEL4WS [36]. The existing languages for Web services
composition allow to model different composition structures
in different ways. Taking the most commonly known, we ob-
served the following. The structures modeled by OWL-S are:
”sequence”, ”any-order”, ”if-then-else”, ”choice”, ”while”,
”until”, ”split” and ”split-joint”. Differently, BPEL4WS [36]
uses: ”sequence”, ”switch”, ”while”, ”pick” and ”flow”. A
mapping between the two representations involves two op-
erators: equivalence (e.g., “choice” is equivalent to “pick”);
decomposition (e.g., the “flow” structure in BPEL4WS can
be decomposed into two structures of OWL-S: “split” and
“split-joint”; “switch” is set of imbrication “if-then-else”).
So, “while”, “until”, and “any-order” can be described by
other structures.

In order to insure a compatibility with the different
representations and keeping a generic approach, we focus



292

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Service composition illustration: tree, flow and graph, where, AT
means Available Train, AF means Available Flight, BT means Book Train,
BF means Book Flight, AH means Available Hotel, BH means Book Hotel,
ARC means Available Rentals Car, RC means Rent Car, PT means Plan
Touristic map, CW means City Weather, SN start node and EN end node.

on elementary structures (sequence (sq), choice (ch), switch
(sw), split (sp), split-joint (sj)), from which many others
can be modeled. Consequently, CF is defined as:

CF = {sq, ch, sw, sp, sj}, (4)

1) Composition Structures Illustration: A composition
may comprise several different structures, which can them-
selves contain combinations of structures. A tree represen-
tation helps understanding and visualizing the composition:
the leaves are service operations, the nodes and the root
are the compositions structures. A flow representation cor-
responds to the reading of the composition tree by following
a depth-first search.

Let us consider a composition answering the following
request: “I want to travel from City A to City B, reserve
several hotel rooms in destination city where each booking is
billed separately, rent a car for six people, have the weather
forecast and plan for the destination city”. The Figure 3
shows the composition tree, the corresponding composition
path and the composition graph.

2) Characteristics of Composition Structures : In the
following, we describe the different composition structures,
and we provide a syntax for them.

Sequence ”→”: This structure defines a total order be-
tween services. There are two ways to detect the order: (1)
checking the match between services IOPE (Input, output,
precondition and effect); (2) checking the dependency be-
tween the services answering the question: which service
cancels the other when it is canceled?

Choice ”+” (or-split): This structure represents a choice
between several services that have a same functionality.
Choice(A,B1, B2, · · · , Bk) ≡ (A −→ B1) ∨ (A −→
B2) ∨ · · · ∨ (A −→ Bk), knowing that service A precedes
all services {Bi} which have the same functionality.

If-then-else ”⊗c”: This structure is the classical condition
branching. It allows a conditional service execution or choice
of services input parameters values. This structure checks a
request condition, and controls a service if at least one of
its functional parameters corresponds to a request condition
predicate. The switch structure is based on If-then-else
structure, because it represents an imbrication of this latter.
In the following, switch and if-then-else terms are used as
synonyms.

Split ”`”: This structure indicates a simultaneous start
of multiple services (or services chains) that can be paral-
lelized. The parallelized services have the same predecessor
and provide different types of outputs. Each parallelized
service can start a new sub-path in the composition. All
services chains starting at a split will be executed in parallel
and ended with a split-joint. Split(A,B1, B2, · · · , Bk) ≡
(A −→ B1) ∧ (A −→ B2) ∧ · · · ∧ (A −→ Bk).

Split-joint ”a”: This structure ends a parallel structure,
where different composition paths belong to a same ”split”
and the last services {Bi}, in parallel chains, have the same
successor A. Split-Joint (B1, B2, · · · , Bk, A) ≡ (B1 −→
A) ∧ (B2 −→ A) ∧ · · · ∧ (Bk −→ A), where services {Bi}
end the parallel composition paths. It is possible that services
from a same split do not end with the same Split-joint.

Any-Order ”�”: This structure represents a random in-
vocation of services. It is not elementary because it means
the choice between all possible alternatives, i.e., it can be
expressed using choice and sequence structures: A � B ≡
(A −→ B) + (B −→ A). At execution time, such structure
can be replaced by a sequence or a parallel structure [37]. I
can be noticed that if the number of services involved in the
any-order structure is large, the replacement by a parallel
structure may be very costly, since it is a combinatorial
enumeration.

While ”⊕c” and until ”	c ”: These structures are used
for iterative service invocation, and they are not elementary
because they can be constructed with if-then-else and se-
quence structures: ⊕c(A) = ⊗c −→ A ∧ A −→ ⊗c and
	c(A) = A −→ ⊗c ∧ ⊗c −→ A.

The Table I summarizes the detection rules of composition



293

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Composition structure Detection rule
Sequence (A,B) M(OA, IB) ≤ ε ∨ (M(OA,OR[i]) ≤ ε ∧M(IR[i+ 1], IB) ≤ ε)
Choice (Bi, Bj) M(OBi

, OBj
) ≤ ε ∧A→ {Bi, Bj}

If-then-else (A) dom(ai) = OA

Split (A,Bi, Bj) M(OBi
, OBj

) > ε ∧A→ {Bi, Bj}
Split-joint (Bi, Bj , A) M(OBi

, OBj
) ≤ ε ∧ {Bi, Bj} → A ∧ n.id(Bi) ≡ n.id(Bj)

Table I
DETECTION RULE OF ELEMENTARY COMPOSITION STRUCTURES,

where, I,O are respectively input,output; A,B are Web service; IR,OR are respectively the request input/output; ai is a predicate of request condition ;
n.id(Bi) denotes the split identification, where service Bi belong, M the matching level and ε the matching threshold.

structures.
In our example in Figure 3, the AF and AT are structured

with “choice” structure, because their output classes match.
The AH service is controlled with “switch” structure because
the request condition “rent a car for six people” refers to
the car capacity. The latter is a property of the ARC output
class. So on for the other structures.

IV. SEMANTIC DESCRIPTION

The complex request resolution requires describing se-
mantically the Web services and the complex request. Se-
mantic web services provides knowledge to discover, com-
pose and invocate services. The semantic description of a
complex request provides knowledge needed to solve the
request.

A. Semantic Web Service

Semantic Web Services approaches add a semantic layer
to elements of Web services, ID,FP,NF , CS,NS (see
equation 2). This allows the automation of discovery, com-
position and invocation of Web services over the Web. Then,
the main question is: Which semantic layer is needed to
automate service discovery, composition and invocation?.

Existing works focus on specific elements of equation 2.
For example, the WSLA (Web Service Level Agreement)
project [38] adds a semantic layer on NF , addressing
service management issues and challenges in a Web services
environment on SLA specification, creation and monitoring.
The WSDL-S [39] language adds a semantic layer to WSDL,
i.e., on ID, CS and FP . The METEOR-S (Managing
End-To-End Operations for Semantic Web Services) project
[40] presents a semantic annotation of WSDL, addressing
the issues related to workflow process management for
large-scale, complex workflow process applications in real-
world multi-enterprise heterogeneous computing environ-
ments. METEOR-S is based on approaches described in
[41], [18], to define an extensible ontology that describes
the properties of quality of service.

According to our point of view, services discovery can
be automated by adding a semantic layer to FP; services
composition can be automated by adding a semantic layer to
FP , CS and NS; and service invocation can be automated
by adding a semantic layer to ID and FP . OWL-S is

currently the most known and referred language for semantic
web services. It allows more flexibility than METEOR-S by
relying on a domain ontology. The process view taken by
the latter not only induces some complexity in the reasoning,
but also is unnecessary for the needs of our research.

The Semantic Web Services language OWL-S provides
semantic layers namely for ID (service grounding), CS and
NS (service model). FP is modeled by the service profile,
but the semantics of IO is left to the additional use of a
domain ontology, as well as the semantics of PE, which in
[10] is described with SWRL rules. NF description is also
left to the use of an additional QoS ontology.
In the following section, we present an ontology for de-
scribing complex requests and useable with OWL-S services
description.

B. The Complex Request Ontology: OWL-CR

The ontology for Complex Request we have designed is
illustrated in Figure 4. The root class of OWL-CR is the class
Request. Two main properties, namely hasFunctionality
and hasNFparameter, allow respectively to formalize the
different functionalities and non-functional parameters of a
request.

For each functionality, a Functionality Profile
is defined, which can be Mandatory or Optional. The
optional profile is not taken into account when its consider-
ation induces the non-respect of a constraint. Each element
of the request in formula 1 has a corresponding class in
the ontology. For a given request R, the IFRi

, OFRi
are

input or output classes of a service domain ontology (in
our case, the travel booking service ontology), the condition
D is described using the ruleml:Impl class of SWRL,
defining a rule. This is formalized using respectively the
hasInput, hasOutput and hasCondition proper-
ties. The parameter type in Input and Output classes
allow specifying the URI of corresponding classes in a
service domain ontology modeling services characteristics
in a particular domain.

The non-functional parameters, constraints C and the
objectives B, are respectively instances of Constraint
and Objective, which can depend on the non-
functional parameters of Service, Data or Answered
composition. The importance level of an objective λ



294

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Web service complex request ontology (OWL-CR)

is an instance of Importance Level, which can be a
Fixed level or Variable level. The objective has
an optimization direction: Min or Max, used to specify how
it has to be exploited.

The ontology OWL-CR contains different cardinalities
(0,1), (0, n), (1,1) and (1,n), where n ≥ 1. According to the
OWL language capability, it has been formalized in OWL
DL. OWL-CR is used as a language to describe complex
requests. Practically, this means that users inputs, through
a dedicated user interface, are used to construct a request
description formalized in OWL-CR.

For an ideal situation, functional and non-functional pa-
rameters of the request need to be expressed using the same
domain and QoS ontologies of the services to be queried.
The OWL-CR ontology we have designed for expressing
requests uses directly these ontologies. Moreover, it exploits
SWRL to formalize the conditions.

V. MODELS OF ANSWERS

The goal of this section is to present how the set of valid
compositions answering a request is modeled, according to
the request characteristics. The request functionality depen-
dencies have an impact on the adapted compositions models.
One can numerate three cases:

1) When no dependency is specified, the composition is
modeled as a sequence following a random order and
the set of compositions can be modeled as a graph.

2) In the case of one-to-one dependencies, the composi-
tion is modeled as a sequence following the specified
order of dependent functionalities and the set of com-
position can be modeled as a graph.

3) When the dependencies are global, a composition can
be modeled as a sequence and we cannot model the
set of valid compositions as a graph. We detail this
point in section VIII-B.

A. Graph of Compositions

When the request contains no dependency or one-to-one
dependencies, the compositions answering the request are
modeled as a graph. The composition graph G models the
set of possible connexion between services. The complete
paths starting from the first node and ending at the last node
of the graph, are composition answering the request. G is
composed of several layers according to request functionali-
ties. Each layer contains a set of services answering the same
request functionality. The composition graph is formulated
as: G =< N,A >, where N is a set of nodes {nj} and A
is a set of arcs {ai}. An arc is defined as ai =< b, e, w >,
where b is the depart node, e is the destination node and
w is a weight. Nodes ni correspond to service. G has two
special nodes representing the start, sn =< IFR1

>, where
IFR1

is the first element of the request input; and the end of
all compositions en =< OFRl

>, where l is the index of the
last functionality. The composition paths of G are defined
by the following definitions.

Definition 4: Let Ω be the set of paths in a composition
graph answering a request R. We have:
∀x = (b→ e) ∈ Ω : b = sn, e = en

Corollary 1: ∀x ∈ Ω,∀c ∈ Cc ∪ Cd: x |=
ci,∃I,M(IFRi

, I) ≤ ε, ∃O,M(OFRj
, O) ≤ ε,∀IFRi

∈
IR,∀OFRj

∈ OR.
Where |= is the satisfaction symbol, I/O is the in-

put/output of inner services of x, Cc, Cd are set of con-



295

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

straints referring respectively to composition and data, ε is
the matching threshold level and M(y, z) is the matching
level between y and z.

A composition path has both functional and non-
functional parameters. Functional parameters are affected to
the nodes (i.e., service I/O), and non-functional parameters
are affected to arcs. An arc weight is a vector containing
request objectives values vobji for the arc destination node.
Formally, let ai,j : (ni → nj) be an arc and wai,j

its weight,
wai,j

=
(
vobj1(nj), · · · , vobjk(nj)

)T
.

The composition graph is executable when it allows
invoking the compositions. The nodes then contain the com-
munication protocol, which is specified in service grounding
of OWL-S description.

The composition graph can consider all defined composi-
tion structures or only the sequence structure. Considering
all composition structures is a way to expand the search
space of objectives, because we consider different evaluation
functions of an objective.

The evaluation function of objectives can change ac-
cording to the composition structure (as detailed in table
??). For example, the duration (dr) objective has different
evaluation functions: (max(dri)) for a parallel structure and
(
∑
dri) for a sequence structure. For some parameters, it

never changes. For example, the price (pr) objective has the
evaluation function (

∑
pri), for any composition structures.

When the evaluation functions of all request objectives
are the same for any composition structures, we consider
only the sequence structure and the composition graph is
then acyclic. The latter can become cyclic if we consider
additionally if-then-else structures. When we consider all
possible composition structures, the obtained composition
graph is called multi-structure: its paths are adapted to
consider the composition structures.

In summary, considering the request functionalities have
no global dependency, when the request objectives have
the same evaluation function fobji for all the composition
structures (cs), the composition graph is acyclic. Otherwise,
the graph is multi-structures.

1) Multi-Structures Composition Graph: In order to an-
swer all of our requirements and in particular considering
all compositions structures. We adapt the DAG to a Multi-
Structures Composition Graph (MSCG). We define a node
as a six-tuple:

n =< NT, id, URIS , URIDA, Is, Os >, (5)

where NT is the node type, with NT = {IS, AS, DA,
SW}, where IS is an informative service, AS is an active
service, DA is data and SW is a switch node that represents
a conditional structure. id is an identifier for nodes starting
a parallel structure (id = φ if n does not belong to a parallel
structure); URIS is the service URI (URIS = φ if NT =

DA); and URIDA is the data URI (URIDA = φ if NT =
IS or AS). Is/Os are respectively the input and output
of the service represented by the node.

The formalization (5) is suitable to have short runtime
complexity but unsuitable to have low memory complexity,
because some elements are useful only during the compo-
sition design, such as NT, Is, Os. However, the nodes are
memorized as : n =< URI, id >.

The switch node is used to model the request conditions
D in each composition. It is defined as: nSW =< NT =
SW, di, HF >, where di is a request condition, and HF
is a hash function, that is used to store reference to nodes
verifying the condition. For this reason, the switch node is
a kind of meta-node containing several nodes.

In the MSCG, composition structures (St) are represented
as a combination of a node and arcs. We write: St :=<
N,A >. The Table II gives the different forms for each
kind of structure.

Structures node definition
while and until < SW,A1 >
if-then-else < SW,φ >
sequence, choice, split and split-joint < φ,A2 >

Table II
DEFINITION GRAPHIC OF COMPOSITION STRUCTURES,

where A1 is the sequence-arcs, and A2 is respectively the set of
sequence-arc, split-arc and split-joint-arc.

In MSCG, the arc weights must be adapted for specific
cases. If the destination node type is data (NT (nj) = DA),
then some objectives are not defined, because non-functional
parameter of service are not the same at data base property.
For example, the runtime objective might be missing in
data representing hotel related information. In this case, we
affect a neutral value to the objective. If the type of the arc
destination node is “switch” (NT (nj) = sw), then wai,j

will be affected by neutral value, because switch node has
any impact in weight of composition.

As detailed in section VIII-A, the optimization can be
required. If so, the MSCG is transformed to provide a
suitable search space. The composition structures (if-then-
else, parallel) have not any impact on optimization and are
note considered. The MSCG will then be transformed by
reducing these structures. The obtained composition graph
is cyclic if the MSCG contains while/until structures, it is
acyclic otherwise.

The split and split-joint represent a specific type of
structure, and they are transformed into a node regrouping all
services belonging to the parallel structure. The associated
arcs are transformed into sequence arcs. The weight of the
split arc is recalculated as:
Let ai,j : ni → nj be an arc, if ai,j be a split type, then
wai,j

=
(
vobj1(ffl), · · · , vobjk(ffl)

)T
. ai,j ← sequence.

If ai,j = splitJoin, then ai,j ← sequence, where ffl is the



296

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evaluation function of the flow structure. Finally, the MSCG
transformation and the recalculation of arc weights allow
building a suitable set of answering composition (called
optimization search space), considering all the composition
structures.

2) Acyclic Composition Graph: The acyclic composition
graph (ACG) contains only sequences. Its nodes can be
defined as nodes of MSCG, but to simplify the representation
of node, one single type of node will be used and it contains
variables for data URI (URIDA), informative service URI
(URIIS), and active service URI (URIAS).

n =< URIDA, URIIS , URIAS > (6)

Where the service URIs, URIIS , URIAS , correspond
respectively to the OWL-S description of informative and
active services.

The arc weight values waj,j+1 , are calculated by consid-
ering all values of DA, IS and AS:

vobji(nj+1) = vobji(DA) + vobji(IS) + vobji(AS).

The weight waj,j+1
values of an arc (aj,j+1 : nj → nj+1)

are the sum of the destination node nj+1 elements (DA, IS,
AS). These weights will be used in the optimization step, to
evaluate the composition.

VI. COMPOSITION DESIGN ALGORITHMS

The goal of composition design algorithms is to build
the composition graph answering the request, which will
be used as an optimization search space. As explained in
the previous section, when the composition design considers
only sequence structures, the graph is acyclic (ACG); when
all composition structures are taken into account, the graph
is a MSCG. When the request functionalities dependency
is global, the search space cannot be modeled as a graph.
It is then modeled as a set of clusters. A cluster regroups
the services matching a request functionality (FR[i]), and a
cluster is created for each request functionality. A request
functionality can require an informative service (IS), active
service (AS) or both. When an IS is used, it is executed.
For each data, it generates a node is created. This node
integrates the link (URI) of the informative service and the
corresponding active service if it is required, and then it is
affected to the corresponding cluster.

The proposed design composition algorithms, process
progressively the request to build the executable composition
graph. The process logic is based on the flooding algorithm
and checks the composition structures. This checking is
based on the characteristics of composition structures (as
said in section III-C2). We present in the following two
algorithms: algorithm 1 considers only sequence structures,
and algorithm 2 considers all composition structure.

A. Composition Algorithms

We name the current layer, Lk, the set of nodes in
the composition graph having a same depth level, being
processed by the algorithm: Lk = {ni}. Initially Lk contains
the starting node sn of G, Lk = {sn}. One step of the
algorithm corresponds to the full coverage of Lk. The node
of Lk being processed during an iteration is named current
node (Lk[i]), where i is the node index. We denote T the
temporary buffer, L a layer of nodes, Lend the end layer,
Ld a layer of data, di a condition and ai a statement in a
condition.

Algorithm 1: ACG: Design composition algorithm (Re-
quest R)

1: Lk, Lk+1, LEnd ← φ;
2: Lk.add(sn(IFR1

));
3: N.addAll(Lk); // Add all nodes of Lk;
4: i← 0;
5: while i < |Lk| do
6: Lk[i] : current node;
7: sj ← SelectNextServices(Lk[i]); // Algorithm 3.
8: for sj : NextService do
9: AddArcSequence(Lk[i], sj);

10: if sj /∈ N then
11: if EndFunctionality[sj ] then
12: LEnd.add(sj);
13: else
14: Lk+2 ← RunInformativeService(sj); //

Algorithm 4.
15: for DAk : Lk+2 do
16: sj ← Concatenation(sj , DAk);
17: Lk+1.add(sj);
18: end for
19: end if
20: else
21: Lk+1.add(sj);
22: end if
23: end for
24: N.addAll(Lk+1); Lk ← Lk+1; Lk+1 ← φ;
25: i++;
26: end while
27: Return ACG;

From a request, first fill in the current graph layer with
matching services and process it (line 2 for starting and line
24 during processing). For each node in the current layer,
select the next services according to their matching with
functionalities FRi

(Algo. 1 or Algo. 2 - line 7, call Algo.
3). The set of nodes created from next services is put into the
next layer. When the current node output matches with one
of the FRi outputs, the algorithm carries on with next node in
the current layer. Otherwise, services having inputs matching
the current node output are selected. Corresponding nodes
are created after checking they do not already exist in the
set of nodes N of G.



297

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 2: MSCG: Design Composition algorithm
(Request R)

1: Lk, Lk+1, T, LEnd ← φ;
2: Lk.add(sn(IFR1

));
3: N.addAll(Lk);
4: i← 0;
5: while i < |Lk| do
6: Lk[i] : current node;
7: sj ← SelectNextServices(Lk[i]);
8: for sj : NextService do
9: AddArcSequence(Lk[i], sj);

10: if sj /∈ N then
11: if EndFunctionality[sj ] then
12: LEnd.add(sj);
13: else
14: T.add(sj);
15: if Lk[i] ∈ Split then
16: GetInSplit(sj , Lk[i]);
17: end if
18: end if
19: CheckSplitJoint(i, Lk, sj);
20: Lk+2 ← RunInformativeService(sj ,D);
21: if |Lk+2| = 0 then
22: SW ← CheckCondition(sj ,D);
23: if SW 6= null then
24: T.add(SW );
25: end if
26: else
27: Lk+1.addAll(Lk+2);
28: end if
29: else
30: CheckSplitJoint(0, Lk, sj);
31: end if
32: ChechSplit(Lk[i], T );
33: Lk+1.addAll(T );
34: T ← φ;
35: end for
36: N.addAll(Lk+1); Lk ← Lk+1; Lk+1 ← φ; Lk+1 ←

φ;
37: i++;
38: end while
39: Return MSCG;

An arc-sequence is created between the current node and
each of the next nodes. When a selected service is an IS,
it is invoked to obtain the data it provides before creating
the arc (Algo. 1-line 14, Algo 2-line 20, call to Algo 5).
Once the data are obtained (filling the data layer Ld), the
algorithm creates an arc-sequence between the node of
the service and each one of the data nodes. The selected
service node is then replaced by the set of data nodes.

B. Sub-Branches Used in Composition Algorithms
Algorithm 3: SelectNextServices (Service si)

1: if M(Outputsi , OutputFRi
) > ε then

2: if M(Inputsi , Inputsj ) ≤ ε then
3: sj selected;
4: if M(OutputFRi+1

, Outputsj ) ≤ ε ∧ |IR| = i+ 1
then

5: EndFunctionality[sj ]← true;
6: end if
7: end if
8: else
9: if M(InputFRi+1

, Inputsj ) ≤ ε then
10: sj selected;
11: if M(OutputFRi+1

, Outputsj ) ≤ ε ∧ |IR| = i+ 1
then

12: EndFunctionality[sj ]← true;
13: end if
14: end if
15: end if
16: Return selected sj ;

When a next node has been newly created, i.e., the service
corresponding to the node, is not selected already (Algo. 2,
Algo. 5, Line 10), the algorithm checks the existence of
a condition. This is the case if the output of the service
represented by the node corresponds to one of the request
conditions, or if the class of data represented by the node
contains predicates used in a condition (Algo. 6). In this
case, we create a SW-node and link it to the node by an arc-
sequence. The node following the SW-node is then selected
according to the first node output.

Algorithm 4: Run informative service (Service s)

1: Ld ← φ;
2: if s: informative Service then
3: Ldata ← Runs(s);
4: end if
5: for i = 1, |Ldata| do
6: AddArcSequence(s, Ldata[i]);
7: end for
8: Return Ldata;
Algorithm 5: Run informative service (Service s, Condi-

tion D)
1: Ld ← φ;
2: if s: informative Service then
3: Ldata ← Runs(s);
4: end if
5: SW ← CheckConditionData(Ldata[0],D);
6: Ldata.add(SW );
7: for i = 1, |Ldata| do
8: AddArcSequence(s, Ldata[i]);
9: if SW 6= null then

10: AddArcSequence(Ldata[i], SW );



298

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

11: end if
12: end for
13: Return Ldata;

Algorithm 6: CheckCondition (Node n, Condition D )

1: for i = 1, |L| do
2: if (n is service) then
3: if (a1∨a2∨. . .∨) ∈ class(Outputs)∨QoSs then
4: SW ← CreatSwitchNode(di);
5: AddArcSequence(L[i], SW );
6: end if
7: else
8: if (a1 ∨ a2 ∨ . . .∨) ∈ DataClass(n) then
9: SW ← CreatSwitchNode(di);

10: end if
11: end if
12: T ← T

⋃
SW ;

13: if (d1 ∨ d2 ∨ . . . ∨ dn) ∈ class(Inputs) then
14: AddArcSequence(SW, s);
15: end if
16: end for
17: Return SW ;

When all Fri have been covered, the next node is affected
to the end layer (Algo. 2, Line 12). Otherwise, it is put into
the next layer for (Algo. 1, Line 21), and for Algo. 2, it
is put into temporary buffer, and later into the next layer
(Line 33), after checking the split structure. The checking
of split-structures is performed when the temporary buffer
is full, containing all nodes matching the current node. The
checking of split-joint-structure is performed when the next
node is selected. Hence, the algorithm checks split-joint
structure before the split structure. The process checks the
existence of a split-joint structure starting from next node
(Algo. 7). If it is selected from N of G, it is possible to
find a node which can precede the next node. In this case, a
complete check is performed (Algo. 2, Line 30), otherwise
only a partial check is necessary (Algo. 2, Line 19). The
complete check considers all nodes of the current layer.
The partial check considers a current node and current layer
nodes which have not been yet processed.

Algorithm 7: CheckSplitJoint (SerciceIndex i, NextLayer
Lk+1, Service s)

1: IsSplitJoint← false;
2: if M(Inputs, OutputL[i]) ≤ ε ∧ L[i] ∈ Split then
3: for m = i+ 1, |L| do
4: if M(Inputs, OutputL[m]) ≤ ε ∧

SameSplit(L[m], L[i]) then
5: IsSplitJoint← true;
6: AddArcSplitJoint(L[i], L[m], s);
7: GetOutSplit(L[m]);
8: end if
9: if (M(Inputs, OutputL[m]) > ε ∧ L[m] ∈ Split

then

10: if SameSplit(L[m], L[i]) then
11: GetInSplit(s, L[i]);
12: end if
13: end if
14: end for
15: if IsSplitJoint then
16: GetOutSplit(L[i]);
17: end if
18: end if

The algorithm 7 creates a split-joint-arc when it detects
nodes, L[i], L[m], having the same succeeding node (s:
ends the parallel structure), and they have the same split-
structure. After creation of split-joint-arc (Algo. 7, Line 6),
the nodes leave the split structure (Algo. 7, line 7, line 16).
The concatenation of parallel structures is possible, when
paths of a same split-structure do not meet in a same split-
joint structure. The node ending split s is then included in
the parallel structure split (Algo. 7, line 11).

Algorithm 8: CheckSplit (Service s, Temporary buffer T )

1: for i = 1, |T | − 1 do
2: for j = i+ 1, |T | do
3: if (M(OutT [i], OutT [j]) > ε) then
4: AddArcSplit(s, T [i], T [j]);
5: GetIntoSameSplit(T [i], T [j]);
6: end if
7: end for
8: end for
The checking for the existence of a split structure (Algo.

8) is performed between the current node and the nodes
in the temporary buffer T [j]. If these nodes have different
functionalities (i.e., different output), we create a split-arc
and add them in the same split structure (Algo. 8, line 5).
Then all following nodes are affected to this split structures
(Alg. 2, line 15-16). When all nodes of the current layer are
processed, the next layer becomes the current layer and so
on until the next layer is empty. The algorithm terminates
when this state is reached.

C. Algorithm Complexity

An algorithm complexity can be evaluated from two
aspects. Time complexity measures the processing time,
while Memory complexity measures the manipulated data
size.

1) Time Complexity: In the algorithm 2, each request
functionality (FR[i]) implies at least one iteration of the
algorithm. This leads to a total of at least card(FR) it-
erations. An iteration involves L̄ (L̄ is the average services
layers size) discovered services, and for each discovered ser-
vice there are card(D) verifications of condition, card(Cs)
verifications of service constraint , and O(split − joint)
verifications of split-joint if the discovered service belongs
to a split structure. For each iteration, the algorithm checks



299

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

O(split) times the split structure. Discovered informative
services are executed and all their provided data verified.

The algorithm has then a complexity order of card(FR)×
L̄×card(D)×card(Cs)×O(split)×O(split−joint). Con-
dition and constraint checking have a constant complexity,
but the split

checking process has a complexity of vector sort, in the
worst case O(split) = L̄× log(L̄). The split-joint checking
process has a complexity order L̄. In conclusion, in the worst
case, the algorithm complexity equals O(card(FR) × L̄ ×
(L̄2× log(L̄))×card(D)×card(Cs)). Since the discovered
service L̄, are important, then the complexity algorithm is
cubic and has an order L̄3.

The complexity of algorithm 1 equals O(card(FR) ×
card(Cs) × L̄). This complexity is linear because
card(FR)× card(Cs) is constant.

To conclude, our algorithms have a cubic complexity
(Algo. 2) or linear complexity (Algo. 1). The most influential
element is the number of discovered services. Therefore, the
more services answering the request functionality, the more
important is the resolution time. The number and severity
of constraints put on services and data in the request will
reduce the number of services. However too much or strict
constraints can lead to empty layers in the composition
graph.

2) Memory Complexity: It is important to reduce the
memory used by the composition graph. Generally, we can
store the graph nodes and their arcs, but we cannot save
all paths of the graph, because the memory complexity is
exponential (L̄l), where L̄ is the average layer size and
l = card(FR) is the layer number.

Concerning ACG, the nodes size is: O(card(N)) = r +
(l× (2× L̄)) + 2 ≈ lL̄, where r = card(D) is the condition
number. We multiply L̄ by 2, because each functionality
can require both informative and active services, and (+2)
corresponds to the start and the end node (sn, en). The arcs
size is: O(card(A)) = l × (L̄2 + L̄× r) ≈ l × L̄2,

Concerning MSCG, in the worst case, the nodes size is:
O(card(N)) = l × r × (L̄ + L̄) + 2 = 2lrL̄. The arcs
size is: O(card(A)) = l × (r × L̄2) + r × (L̄ + L̄) = l ×
r × L̄2 + 2 × l × r × L̄, which can be approximated by:
O(card(A)) ≈ l×r×L2. However, the memory complexity
of a transformed MSCG is the same as for ACG.

VII. EXPERIMENTATION

The experiments we have conducted focus on three points:
complex request description and services composition au-
tomatic design. For the request description, we give some
example requests in natural language, and then describe
manually their functionalities, conditions, constraints and
objectives. For the automatic composition, we check its
correctness by assessing the suitability of composition struc-
tures regarding the request and available services. The sec-
ond point is the processing time of the composition design

algorithm. Based on its complexity, the size of matching
services has an important impact for the processing time.

A. Implementation and Hypotheses

The used Web services are described semantically, using
the OWL-S Language. For that purpose, we implemented
a program generating OWL-S descriptions of services. This
program relies on the Jdom API [42]. The type of service
(input and output) is defined by referring to a domain
ontology of travel booking The values of QoS parameters
are randomly generated: price and reputation of service are
considered.

We used different APIs at the different levels of the
resolution process. (1) Jena [43], and SPARQL [44] are used
to check the data constraints (Cd) and conditions (D). (2)
The OWL-S API [45] is used to read the OWL-S service
description and also to check services constraints (Cs). (3)
Pellet [46] is used to check the matching level between I/O
of services and the request, through the OWLS-MX API.

Our experiments have been conducted with the following
set of hypotheses:

(1) Web services are formally described with OWL-S. We
do not consider mapping with other Web services semantic
description language.

(2) A QoS ontology is used within the OWL-S services
descriptions, in order to describe the non-functional param-
eters such as price and reputation.

(3) A specific service domain ontology linked to a domain
ontology is used to describe service I/O. In our experimen-
tation cases, we have used the Travel Booking ontology
which is associated to the MobileTTE Tourism ontology
[47]. Request and services use this same ontology.

(4) We do not consider the necessary mapping of services
described with different domain ontologies: all the services
are described using a same travel booking ontology.

(5) As a consequence of (4), the matching process pro-
vides binary responses, even if the OWLS-MX API [12] that
we use implements a full matchmaking process. Moreover
only inputs and outputs parameters are exploited in the
matchmaking.

Finally, the computing environment used to implement
and test the application is a Core2 Duo CPU based machine
(1.58 GHz) with 2.89 GB of RAM.

B. Complex Request Description

The tourism domain has been chosen as use case, because
it offers a rich set of services. Moreover, the planning of a
tourism trip is a classical example of service composition
problem that anyone can face today. We consider the fol-
lowing request: “We want to travel from City A to City B,
to reserve several individual hotel rooms in destination city
where each booking is billed separately, rent a car for six
people and if a car does not allow six people, then rent two
cars. I want to know the weather forecast and get a map



300

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the destination city. Additionally, choose a museum visit
or city monument visit according to the weather. The whole
at best price and reputation, and the price must not exceed
3000 Euro”.

This request has four functionalities: transport, hotel,
car renting, city information. Each request functionality
is characterized with the input and output class. Theses
classes are detailed in Table III.Note that the city information
functionality can be answered with different services such
as, city weather, city map, and city museum service. These
services can be executed in parallel because they have the
same input type and provides different output types (as
detailed in Table I).

This request contains three conditions, D = {d1, d2, d3}
:
(1) A condition referring to the hotel billing (d1): “each
booking is billed separately”. This condition is written as,
d1 : if (a1 < a2) ⇒ c1 = false, where a1 is the reserved
rooms number, a2 is the billed reservations and c1 is the
achieved payment.
(2) A condition referring to the weather state (d2): “choose
the museum visit or city monument according to the
weather”. This condition is written as, d2 : if (a3 =
good)⇒ c2 = c3. Where a3 is the weather condition, c2 is
cultural activity and c3 is monument visit.
(3) A condition referring to the rental car type (d3): “when
a car does not allow six people, then rent two cars”. This
condition is written as, d3 : if (a4 < 6) ⇒ c4 = 2. Where
a4 is the car capacity and c4 is the number of cars.
The request predicates a1, a2, a3, a4, c1, c2, c3, c4, corre-
spond to properties in the domain ontology. a1 and a2
are properties of the “BookedHotelInput” class. a1 is
the data property “numberOfrooms”, a2 is the object
property “paymentBookHotel”. a3 is a property of the
“WeatherOutput” class, and corresponds to the data
property “weather-condition”. a4 corresponds to the
data property “carCapacity”, and it is a property ofthe
“CarInfo” class, and so one.

The request contains two objectives, price and rep-
utation, and one constraint, the price. The price and
reputation are described in the QoS ontology. Formally
the request elements are: IR = {I1, I2, I3, I4}, OR =
{O1, O2, O3, O4}, D = {d1, d2, d3}, C = {Cd, Cs, Cc},
Cd = φ, Cs = φ, Cc = {price}, B = {Bd, Bs, Bc},
Bc = {price, reputation}.

Table IV details some experimented requests. The initial
request, described at the beginning of this section can be
formalized with R2 or R4, where the request functionalities
order is different. The request R1 is less complex and
corresponds to: “I want to travel from City A to City B,
reserve an hotel room in destination city and rent a car. The
whole at best price and reputation, and the price does not
exceed 3000 Euro”.

The request R3 corresponds to request R1 by adding the

requirements: “(1) reserve several hotel rooms and each
booking is billed separately; (2) rent a car for six people
and when a car does not allow six people, then rent two
cars; (3) know the weather forecast and get a map for the
destination city”.

We choose these specific requests, in order to evaluate
the correctness of the automatic composition, by analyzing
the different compositions designed by the algorithm. The
requests R1, · · · ,R4 are described semantically with the
OWL-CR ontology.

In the following section, we present our experiments and
the obtained results. The experiments rely on different use
cases, each use-case corresponding to a specific request.

C. Automatic Composition Results

Algorithm, 1 and 2 have been used to answer the request.
In our tests, the matching threshold has fixed to 1, and the
similarity threshold to 0.

The composition design algorithms search the available
services in a UDDI, in order to design answer(s) for a
given request. This UDDI contained references of services
covering in particular the functionalities of the request: hotel,
transport, rent a car and city information.

In order to evaluate the algorithm performances, we
present and discuss two types of experiments. The first one
concerns the correctness of composition. The second one
concerns the composition performances in terms of response
time.

1) Composition Correctness: The assessment of the com-
position correctness consists in verifying that the designed
composition answers all request functionalities and detects
correctly the composition structures whatever their numbers
and the number of different ones.

Figures 5 and 6 illustrate a composition graph answering
the request R1, where the rectangle presents the informative
service, a circle presents an active service (the same meaning
for the following Figures), and the graph contains only
the choice and sequence structures. The graph on Figure 5
contains 10 answering services by layer. For better visibility,
the graph on Figure 6 contains only 2 answering composition
by layers.

Observing the graph, it can be seen that, the
transport request is answered either by an atomic
service, Booktransport, or a composite service
{Availabletransport → BookF light}. This illustrates
that, for each request functionality, the algorithm can find
one single matching service or builds sub-composition.

The Figure 7 illustrates the composition graph resulting
from the processing of request R2, which requires multiple
composition structures: sequence, while, choice, switch, split
and split-joint. The graph illustrates clearly the composition
structures and for more visibility, each layer is limited to two
services. We recall that arcs →,`,a illustrate respectively:
sequence, split, and split-joint. The structure switch “sw2”



301

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Class Properties
I1 : InTransportClass departCity, destinationCity, travelDate
I2 : InHotelClass roomNumber, arrivedDate, departDate
I3 : InRentCarClass dateT ime4Take, dateT ime4Make, InRentCarClass
I4 : InCityInformation cityName,Date
O1 : OutTransportClass flightOrTrainNumber , reservationNumber, placeNumber
O2 : OutHotelClass reservationNumber
O3 : OutRentCarClass reservationNumber
O4 : OutCityInformation Map,weather,Heritage,Museum

Table III
INPUT AND OUTPUT CLASSES

Request Formalization
R1 < {I1, I2, I3}, {O1, O2, O3},D = φ, C = {price},B = {price, reputation}, λ = φ >
R2 < {I1, I2, I3, I4}, {O1, O2, O3, O4}, {d1, d2, d3}, {price}, {price, reputation}, φ >
R3 < {I2, I1, I3, I4}, {O2, O1, O3, O4}, {d1, d3}, {price}, {price, reputation}, φ >
R4 < {I2, I1, I4, I3}, {O2, O1, O4, O3}, {d1, d2, d3}, {price}, {price, reputation}, φ >

Table IV
EXPEREMENTED REQUEST

Figure 5. Executable service composition graph for R1 (10 services) Figure 6. Executable service composition graph for R1 (2 services)



302

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

checks the city weather and it belongs to the parallel
structure (between split and split-joint), this shows that the
automatic composition algorithm can provide an imbrication
of composition structures.

Figure 7. Executable service composition graphs for R2

The graph composition structures, illustrated Table V, are
coherent with structure characteristics defined in Table I. For
example, AF and AT are structured with a “choice” structure
because their output classes match. AT and BF are structured
with a “sequence” because the output of AT matches with
the input of BF. BH is structured with a “while” because
“each booking is billed separately”; the condition checking
is before and after BH. A “switch” structure sw1 follows
ARC service because the request condition “rent a car for
six people” refers to the car capacity predicate and it belong
to the output of ARC. RC is followed by structure a “split”,
opening parallelism, because the following services CW
and CM have different functionalities. CB and CHM are
followed by a “split-joint”, ending parallelism, because they
are included in the same split structure and are followed by
the same node “end”. The same holds for the other structures
(Figure 8 and Figure 9).

In the built composition graphs, we have tested if the
composition structures can be detected correctly. After this

Composition structure participating services
Choice (AH0,AH1), (BF0, BF1), (AH0, AH1), etc
Sequence (AT0, BF0),(AT0, BF1),(BF0, AH0), etc
While BH0, BH1
Switch sw0, sw1, sw2
Split RC0, RC1
Split-joint end

Table V
STRUCTURES IN THE COMPUTED COMPOSITIONS,

where, AT denotes Available Transport, AF denotes Available Flight, BT
denotes Book Train, BF denotes Book Flight, AH denotes Available

Hotel, BH denotes Book Hotel, ARC denotes Available Rentals Car, RC
denotes Rent Car , CB denotes City Bus, CW denotes City Weather, CM

denotes City Map, and CHM denotes City Heritage Museum.

verification, we test the limit of this detection, such as, (1)
test if the services following split structure can proceed, at
the same time, the split-joint structure. (2) test if a parallel
structure, split and split-joint can be in the middle of a
composition path.

The Figure 8 and Figure 9 illustrate the composition
graph resulting from the processing of request R3, and R4

respectively. The view is limited to two services by layers
for sake of readability.

The graph on Figure 8 illustrates the services following a
split and preceding a split-joint in the same time. In this test
we have removed from the UDDI registry, the following
services: ‘‘City Heritage Museum’’ and ‘‘City
bus’’.

The graph on Figure 9 illustrates the possibility that the
split and split-joint can be detected in the middle of the
composition. The parallel structure follows BookFlight,
and precedes AvailabeRantelsCar.

2) Performance Experiment: As said in section VI-C1,
the complexity of composition algorithms depend strongly
on the answering services number (the width of its layers).
We have conducted experiments to evaluate this influence.

Considering the composition graph answering the request
having four request functionalities (R2), the Table VI sum-
marizes the layer size impact on the composition design
response time. Where card(N), card(A) are respectively
nodes and arcs size of the composition graph, L̄ is the
average layer size. We recall from the analysis made in
section VI-C2, that card(N) ≈ 2lrL̄ and card(A) ≈ lrL̄2,
where r is the number of conditions of the request and l the
number of layer. The Figure 10 illustrates the evolution of
the execution time with respect to the average layer size.

If we consider that averagely each functionality can have
about 15 answering services, the request processing requires
600 seconds (about 10 minutes) to return the MSCG
and about 3 minutes to return ACG. As shown in Table
VI and VII, the algorithm processing time depends on the
number of answering services (L̄) can be limited thanks to
request constraints. We note that the larger the number of
request constraints (services Cs and data Cd), the smaller



303

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Executable service composition graph for R3

L̄ card(N) card(A) time (second)
2 24 42 25
4 45 124 57
6 65 246 89
8 85 408 108
10 105 610 194
12 125 852 333
14 145 1134 484
16 165 1456 740
18 185 1818 1098
20 205 2220 1641

Table VI
DISCOVERED SERVICES INFLUENCE ON RUNTIME WITH MSCG.

L̄ card(N) card(A) time (second)
2 16 32 28
4 30 120 49
6 44 264 73
8 58 464 94
10 72 720 119
12 86 1032 143
14 100 1400 171
16 114 1824 194
18 128 2304 220
20 142 2840 248

Table VII
DISCOVERED SERVICES INFLUENCE ON RUNTIME WITH ACG.

Figure 9. Executable service composition graph for R4

Figure 10. Dependence between average layer size and execution time.

the number of answering services and then the smaller the
processing time.

VIII. SPECIFIC CASES

The complex request resolution method changes accord-
ing to the characteristics of composition graph, request
dependencies type and dynamic events. In this section, we
discuss these specific cases.



304

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. One Step and Multi Steps Resolution

The composition graph can be a layered digraph (order
pair of sets, as illustrated in Figure 3) in which the nodes of
too consecutive layers are all connected together, (i.e., there
exists an arc au,v between each node u and v of consecutive
graph layers, lk and lk+1). This case is formalized by the
following condition:

∀i ∈ {1 · · · k},∀u ∈ li,∀v ∈ li+1 : au,v ∈ A. (7)

At design time, the selection of compositions answering
a request may or may not require an optimization method,
depending on the composition graph structure and the num-
ber of objectives in the request. Considering the request
functionalities have no global dependency, the composition
does not require an optimization method when: (a) the
graph layers respect the condition 7 and there is only a
request objective (card(B) = 1); or (b) the objectives
can be combined because their importance levels λ are
fixed (λi = x, x ∈ [0, 1]), thus allowing to order them.
Optimization is not required when condition 7 is verified
and the following condition is verified:

(card(B) = 1) ∨ (card(B) > 1 ∧ λ 6= φ ∧ λi = x) (8)

In this case, the request functionalities can be treated sep-
arately, for each request functionality, and several matching
services can be found. The more suitable one is selected
according to the request objectives and constraints, and then
executed. In other words, if this condition is verified, the
steps: (2) service discovery, (3) composition design, (4)
optimization of compositions, (5) execution of compositions,
(illustrated in Figure 1) can be merged in one step.

In any other case, an optimization method is required
to select the best composition. Therefore, we distinguish
two types of request processing: one step resolution (no
optimization) and multi-steps resolution (with optimization),
as illustrated in figure 11.

The automatic composition is also adapted consequently:
composition with selection for one step resolution, and
composition without selection for multi-steps resolution. The
compositions selection without optimization method means
that this selection is done during the composition (left-
hand side of Figure 12). When the composition selection is
done with an optimization method, the composition design
provides the set of composed services (right-hand side of
Figure 12), in order to use it as an optimization search space.

The composition design steps are finally the following,
the required steps depending on the need for optimization:

(0) Formalize user request with OWL-CR. (1) Read the
request functionalities. Then for each functionality: (2) Find
the corresponding services using the discover process,

which uses the matchmaker process for computing a match-
ing level between request input/output and existing services.
The discovered services and data are then filtered, according
to the service constraints (cs) and data constraints (cd).

(3) The Composition design takes into account the
possible composition structures by considering the request
conditions D.

(4) Select the best service according to the request objec-
tive(s) B.

(4A) and (5A): Go to the next functionality, if the
discovered (4A)/selected (5A) service fulfills the current
functionality.

(4B) and (5B): consider again the same treated function-
ality, if the discovered (4B) or selected (5B) service does
not fulfill the functionality. In this case, we consider the
discovered or selected service output as a next request input.

B. Global Dependencies and Compositions Model

The existence of global dependencies generates some
complexity in composition modeling. This is because the
compositions graph will be designed with multiple layers
of matching services and only subsequent layers can have
relation arcs between them. Indeed, the checking at each
node of the arcs history requires to maintain a list of all
preceding paths to consider the relations with the following
layers, which is a task having an exponential complexity
[48]. The memory complexity for a node in the graph can
be L̄l, where L̄ is the average number of layers and l is
the number of layer. Let ni, ni+1 be nodes; to check the
existence of an arc aj : ni → ni+1, we may require to
check conditions related to nodes [n1 · · ·ni−1].

We can neglect the path history by modeling the set of
compositions as a graph, but without any guaranty regarding
the validity of the composition. To be able to considering
valid compositions only, we model the compositions as
a set of clusters, each cluster corresponds to a set of
services answering a request functionality. Then the validity
of the compositions is checked during the initial step of the
optimization.

C. Dynamic Events Processing

As said in section I-A, the steps (3-5: composition,
optimization, execution) can be concerned by dynamical
events, because on the one hand, random events can lead to
service breakdown, affecting quality of service, and on the
other hand because new services can appear. This impacts
the composition design, the composition optimization and
the composition execution.

During the composition design, perturbations can be ne-
glected, because the composition design takes few time, and
considers available services only.

During composition optimization, a specific mechanism
has to be taken into account.



305

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Solving request steps

Figure 12. Automatic composition flow

During composition execution, the events are consid-
ered within the composition representation. When this one
does not provide an alternative solution, we create a sub-
composition corresponding to a new request and then select
the best sub-composition with or without optimization. The
new created request considers only the functionalities, that
have not been fulfilled. We consider a functionality is
completely achieved only when the corresponding active
service is executed. Let i be an index of the last completed
functionality, the new request is formalized as:

R =< F [i+1,...],D, C,B, λ > (9)

Then we reuse an automatic composition algorithm (see
section VI). In order to reduce the time of resolution, we
suggest using algorithm 1 instead of algorithm 2, because it
has lower resolution complexity.

To estimate the possibility of reparation, without recre-
ating sub-composition that already exit in the graph, we
calculate the k−connectivity of the composition graph.

The k−connectivity of a composition graph evaluates
how many nodes can breakdown with assuring that the
graph has the compositions alternatives. For example, if
k=3, then for each depart-destination node, maximally two
nodes can be deleted for assuring the possibility of finding
an alternative path (k − 1: maximal number of nodes,
whose can be deleted). For a fully connected composition
graph, k corresponds to a minimal size of existing layers,
k = min(card(L)).

IX. CONCLUSION AND FUTURE WORK

This paper proposes a groundwork for solving complex
Web requests with Web services composition considering
the request processing steps. The set of compositions are
modeled according to the request characteristics ( request
objectives and constraints). When there exist global depen-
dencies, the set of possible compositions can not be modeled
as a graph. In this case, compositions are modeled as a set of
clusters. When the request dependency is not global, the set
of compositions is modeled as a directed graph. The latter
can be built with the algorithms we proposed.

Our algorithms answer a request, and in order to define
answering compositions, exploit existing Web services and
a semantic description of both request and services. If the
request objectives or constraints have different evaluation
function for different composition structures, then the com-
position algorithm 2 can be used. Otherwise, algorithm 1
is used. The composition graphs built by the algorithms,
MSCG or ACG, can be used as a search space for the
optimization process. In addition, if one of the composed
services breaks down, the proposed algorithms support the
repairing of the original composition.

We cited conditions allowing to choose automatically the
suitable composition algorithm, suitable model of composi-
tions and suitable resolution steps.

Experiments show the correctness of obtained composi-
tions, concerning all composition structures, and the runtime
performance. When only sequence structures are considered,
the runtime complexity is linear with the average Web
services. When all composition structures are considered,



306

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the runtime complexity is cubic.
In the future work, we look: (1) to consider better the

personalized knowledge of user, [49], [50] consider the com-
position answering a request as a personalized composition.
According to our point of view, the answering composition
is personalized when it answers a request by considering its
conditions D. The personalization can be widen, by consid-
ering the user profile for example. (2) To define the process
allowing the transformation, from MSCA, ACG or clusters
set to OWL-S or BPEL4WS description. This transformation
does not consider the data (input values if services) and
concerns only the non-personalized composition, in order to
add them to the services base.

ACKNOWLEDGMENT

This work has been performed under the PhD grant TR-
PhD-BFR07 funded by the Luxembourg National Research
Fund (FNR).

REFERENCES

[1] C. H. Marcussen, “Trends in European Internet Distribution -
of Travel and Tourism Services,” Tech. Rep., 2009. [Online].
Available: http://www.crt.dk/uk/staff/chm/trends.htm

[2] B. Batouche, Y. Naudet, and F. Guinand, “Algorithm to solve
web service complex request using automatic composition of
semantic web service,” in COGNITIVE, 2010, pp. 84 – 89.

[3] J. Rao and X. Su, “A survey of automated web service
composition methods,” in Proceedings of the First Interna-
tional Workshop on Semantic Web Services and Web Process
Composition, SWSWPC 2004, 2004, pp. 43–54.

[4] D. B. CLARO, “ SPOC - Un canevas pour la composition
automatique de services web ddis la ralisation de devis,”
Ph.D. dissertation, Universit d’angers, october 2006.

[5] B. Jeong, H. Cho, and C. Lee, “On the functional
quality of service (fqos) to discover and compose
interoperable web services,” Expert Syst. Appl., vol. 36,
pp. 5411–5418, April 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1497653.1498400

[6] Z. Li, L. O’Brien, J. Keung, and X. Xu, “Effort-oriented
classification matrix of web service composition,” in
Proceedings of the 2010 Fifth International Conference
on Internet and Web Applications and Services, ser.
ICIW ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 357–362. [Online]. Available:
http://dx.doi.org/10.1109/ICIW.2010.59

[7] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith,
M. Paolucci, K. Sycara, D. L. Mcguinness, E. Sirin,
and N. Srinivasan, “Bringing semantics to web
services with owl-s,” World Wide Web, vol. 10,
pp. 243–277, September 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1285732.1285745

[8] C. REY, “D 2 CP et computeBCov: Un prototype et
un algorithme pour la découverte de services web dans
le contexte du web sémantique,” Ingénierie des systèmes
d’information(2001), vol. 8, no. 4, pp. 83–112, 2003.

[9] M. Klusch, B. Fries, and K. Sycara, “Automated semantic
web service discovery with owls-mx,” in AAMAS ’06:
Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems. New York, NY,
USA: ACM Press, 2006, pp. 915–922. [Online]. Available:
http://dx.doi.org/10.1145/1160633.1160796

[10] U. Rerrer-Brusch, “Service Matching with Contextualised
Ontologies,” Ph.D. dissertation, University of Paderborn, oc-
tober 2006.

[11] D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott,
S. Mcilraith, S. Narayanan, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, “OWL-S: Semantic Markup
for Web Services,” Nov. 2004. [Online]. Available:
http://www.w3.org/Submission/OWL-S/

[12] M. Klusch, B. Fries, and M. Khalid, “Owls-mx: Hybrid owl-s
service matchmaking,” in Proceedings of 1st Intl. AAAI Fall
Symposium on Agents and the Semantic Web, 2005.

[13] S. Narayanan and S. A. McIlraith, “Simulation, verification
and automated composition of web services,” in WWW, 2002,
pp. 77–88.

[14] R. Hull and J. Su, “Tools for composite web services: a short
overview,” ACM SIGMOD Record, vol. 34, no. 2, pp. 86–95,
2005.

[15] A. Brogi and S. Corfini, “Behaviour-aware discovery of web
service compositions,” International journal of Web services
research, Tech. Rep., 2006.

[16] P. Xiong, Y. Fan, and M. Zhou, “Qos-aware web service
configuration,” IEEE Transactions on Systems Man and Cy-
bernetics Part A Systems and Humans, vol. 38, no. 4, pp.
888–895, 2008.

[17] X. Tang, C. Jiang, and M. Zhou, “Automatic
web service composition based on horn clauses
and petri nets,” Expert Syst. Appl., vol. 38, pp.
13 024–13 031, September 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2011.04.102

[18] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Sheng, “Quality driven web services composition,” Pro-
ceedings of the 12th international conference on World Wide
Web, pp. 411–421, 2003.

[19] X. X. Yifei Wang, Hongbing Wang, “Web Services Selection
and Composition based on the Routing Algorithm,” 10th
IEEE International Enterprise Distributed Object Computing
Conference Workshops, pp. 57–66, 2006.

[20] J. Cardoso and A. Sheth, “Semantic e-workflow composition,”
Journal of Intelligent Information Systems, vol. 21, pp. 191–
225, 2003.

[21] H. Levesque, F. Pirri, and R. Reiter, “Foundations for the
situation calculus,” pp. 159–178, 1998.

[22] J. T. E. Timm, “Specifying semantic web service composi-
tions using uml and ocl,” in In 5th International Conference
on Web Services. IEEE press, 2007.



307

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] R. Kazhamiakin and M. Pistore, “A parametric communica-
tion model for the verification of bpel4ws compositions,” in In
Mario Bravetti, Lela Kloul, and Gianluigi Zavattaro, editors,
EPEW/WS-FM, volume 3670 of Lecture Notes in Computer
Science. Springer, 2005, pp. 318–332.

[24] D. Pellier and H. Fiorino, “Un modle de composition automa-
tique et distribue de services web par planification,” in Revue
d’Intelligence Artificielle, volume 23, no. 1, 2009, pp. 13–46.

[25] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit
for web service composition,” in Proceedings of the 11th
International WWW Conference (WWW2002), Honolulu, HI,
USA, 2002.

[26] S.-C. Oh, B.-W. On, E. J. Larson, and D. Lee, “Bf*: Web ser-
vices discovery and composition as graph search problem,” e-
Technology, e-Commerce, and e-Services, IEEE International
Conference on, pp. 784–786, 2005.

[27] M. Klusch and A. Gerber, “Semantic web service composition
planning with owls-xplan,” in In Proceedings of the 1st Int.
AAAI Fall Symposium on Agents and the Semantic Web, 2005,
pp. 55–62.

[28] E. M. Goncalves da Silva, L. Ferreira Pires, and M. J. van
Sinderen, “An algorithm for automatic service composition,”
in 1st International Workshop on Architectures, Concepts and
Technologies for Service Oriented Computing, ICSOFT 2007,
Barcelona, Spain, E. M. Goncalves da Silva, L. Ferreira Pires,
and M. J. van Sinderen, Eds. INSTICC Press, July 2007,
pp. 65–74.

[29] S.-C. Oh, D. Lee, and S. R. T. Kumara, “Web service planner
(wspr): An effective and scalable web service composition
algorithm,” Int. J. Web Service Res., vol. 4, no. 1, pp. 1–22,
2007.

[30] C. Rey, “Dcouverte des meilleures couvertures d’un concept
en utilisant une terminologie Application la dcouverte de
services web smantiques,” Ph.D. dissertation, Universit Blaise
Pascal - Clermont II, dcembre 2004.

[31] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web
services. concepts, architectures and applications,” 2003.

[32] UDDI, “Uddi technical white paper,” September 2000.

[33] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard, “Web services architec-
ture,” World Wide Web Consortium, Note NOTE-ws-arch-
20040211, February 2004.

[34] L. Bourgois, “Représentation et comparaison de Web services
complexes avec des logiques dynamiques,” Ph.D. dissertation,
Universite Paris 13- Villetaneuse, june 2007.

[35] J. Schaffner, H. Meyer, and M. Weske, “A formal model for
mixed initiative service composition,” Services Computing,
IEEE International Conference on, pp. 443–450, 2007.

[36] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana, BPEL4WS,
Business Process Execution Language for Web
Services Version 1.1, IBM, 2003. [Online]. Available:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf

[37] S. V. Hashemian and F. Mavaddat, “Automatic
composition of stateless components: a logical
reasoning approach,” in Proceedings of the 2007
international conference on Fundamentals of software
engineering, ser. FSEN’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 175–190. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1775223.1775235

[38] L. H. P. G. Dan, A., “Web service differentiation with service
level agreements,” White Paper, IBM Corporation, Tech. Rep.,
March, 2003.

[39] “http://www.w3.org/Submission/WSDL-S/,” 12-12-2011.

[40] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Dynamic
Web Service Composition in METEOR-S,” 2004.

[41] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Modeling
Quality of Service for Workflows and Web Service Pro-
cesses,” Web Semantics Journal: Science, Services and Agents
on the World Wide Web Journal, vol. 1, no. 3, pp. 281–308,
2004.

[42] “http://www.jdom.org/docs/apidocs/,” 12-12-2011.

[43] hp, “Jena - A Semantic Web Framework for Java,” available:
http://jena.sourceforge.net/index.html, 2002.

[44] E. P.hommeaux and A. Seaborne, “Sparql query language for
rdf (working draft),” W3C, Tech. Rep., March 2007. [Online].
Available: http://www.w3.org/TR/2007/WD-rdf-sparql-query-
20070326/

[45] “http://www.mindswap.org/2004/owl-s/api/,” 12-12-2011.

[46] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz,
“Pellet: A practical OWL-DL reasoner,” Web Semantics:
Science, Services and Agents on the World Wide Web,
vol. 5, no. 2, pp. 51–53, Jun. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2007.03.004

[47] J.-D. Labails, “Description de l’ontologie des ressources
touristiques,” MobileTTE WP5.1: Standard d’interoprabilit
pour les donnes touristiques, Technical Report, Henri Tudor
Public Research Center, Luxembourg, Tech. Rep., 2006.

[48] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1979.

[49] P. Albers and O. Licchelli, “Composition de services web
personalis,” in Intelligence Artificielle et Web Intelligence
Conference, Grenoble, July 2007.

[50] S. Khapre and D. Chandramohan, “Personalized web service
selection,” in International Journal of Web Semantic Tech-
nology (IJWesT) Vol.2, No.2, April 2011.



308

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Scripting Technology for Generative Modeling

Christoph Schinko¶, Martin Strobl¶, Torsten Ullrich§, and Dieter W. Fellner¶‡

¶ Institut für ComputerGraphik & WissensVisualisierung, Technische Universität Graz, Austria
c.schinko@cgv.tugraz.at, m.strobl@cgv.tugraz.at

§ Fraunhofer Austria Research GmbH, Graz, Austria
torsten.ullrich@fraunhofer.at

‡ GRIS, TU Darmstadt & Fraunhofer IGD, Darmstadt, Germany
d.fellner@igd.fraunhofer.de

Abstract—In the context of computer graphics, a generative
model is the description of a three-dimensional shape: Each
class of objects is represented by one algorithm M . Further-
more, each described object is a set of high-level parameters
x, which reproduces the object, if an interpreter evaluates
M(x). This procedural knowledge differs from other kinds
of knowledge, such as declarative knowledge, in a significant
way. Generative models are designed by programming. In order
to make generative modeling accessible to non-computer scien-
tists, we created a generative modeling framework based on the
easy-to-use scripting language JavaScript (JS). Furthermore, we
did not implement yet another interpreter, but a JS-translator
and compiler. As a consequence, our framework can translate
generative models from JavaScript to various platforms. In this
paper we present an overview of Euclides and quintessential
examples of supported platforms: Java, Differential Java, and
GML. Java is a target language, because all frontend and
framework components are written in Java making it easier to
be embedded in an integrated development environment. The
Differential Java backend can compute derivatives of functions,
which is a necessary task in many applications of scientific
computing, e.g., validating reconstruction and fitting results of
laser scanned surfaces. The postfix notation of GML is very
similar to that of Adobes Postscript. It allows the creation of
high-level shape operators from low-level shape operators. The
GML serves as a platform for a number of applications because
it is extensible and comes with an integrated visualization
engine. This innovative meta-modeler concept allows a user
to export generative models to other platforms without losing
its main feature – the procedural paradigm. In contrast to
other modelers, the source code does not need to be interpreted
or unfolded, it is translated. Therefore, it can still be a very
compact representation of a complex model.

Keywords-Generative modeling, procedural modeling, com-
puter graphics, JavaScript, compiler

I. INTRODUCTION

Offering an easy access to programming languages that
are difficult to approach directly reduces the inhibition
threshold dramatically. Especially in non-computer science
contexts, easy-to-use scripting languages have gained a lot
of attention in the past few years.

In the context of Cultural Heritage, the Generative-
Modeling-Language (GML) is an established procedural
modeling environment designed for expert users. The aim

of the Euclides modeling framework is to offer an easy-
to-use approach to facilitate these platforms. The trans-
lation mechanism for GML within Euclides has already
been described in “Euclides – A JavaScript to PostScript
Translator” and presented at the International Conference on
Computational Logics, Algebras, Programming, Tools, and
Benchmarking [1].

Originally, scripting languages like JavaScript were de-
signed for a special purpose, e.g., to be used for client-side
scripting in a web browser. Nowadays, the applications of
scripting languages are manifold. JavaScript, for example,
is used to animate 2D and 3D graphics in VRML [2] and
X3D [3] files. It checks user forms in PDF files [4], controls
game engines [5], configures applications, and performs
many more tasks. According to J. K. OUSTERHOUT script-
ing languages use a higher level of abstraction compared to
system programming languages as they are often typeless
and interpreted to emphasize the rapid application develop-
ment purpose [6]. Whereas system programming languages
are designed for creating algorithms and data structures
based on low-level data types and memory operations. As
a consequence, graphics libraries [7], graphics shaders [8]
and scene graph systems [9], [10] are usually written in
C/C++ dialects [11], and procedural modeling frameworks
use scripting languages such as Lua, JavaScript, etc.

A. Geometric Modeling

When describing the shape of three-dimensional objects,
two different approaches are established:
• composing an object of basic primitives (points, trian-

gles, quads, etc.),
• creating a procedural description [12].

A composition of primitives can be achieved by conventional
geometric modeling or by using 3D acquisition devices,
which are always more or less noisy. Whereas, a procedural
description is based on an ideal object rather than a real
one and is often used to describe an object’s inherent
properties. Its strength lies in a very compact description,
which, compared to conventional geometric descriptions,
is not dependent on the number of primitives but on the



309

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Generative knowledge
and procedural 3D models
in JavaScript source files

standard XML for sustainable
documentation and long-term
archival

commonly used 3D formats
and viewers (GML, Java, etc.)
for visualization

internet file formats (HTML)
for publishing and distribution

differentiated code
for numerical optimization

The Euclides
framework:

- lexical
scanner

- grammar
parser

- translator
to various
platforms

Figure 1. The meta-modeler approach of the Euclides framework has many advantages. In contrast to script-based interpreters, Euclides parses and
analyzes the input source files, builds up an abstract syntax tree (AST), and translates it to the desired platform. Its platform and target independence as
well as various exporters for different purposes are the main characteristics of Euclides.

model’s complexity itself. However, generative models must
not be seen as a replacement for established geometric de-
scriptions, but as a semantic enrichment. Another advantage
of procedural modeling techniques is the included expert
knowledge within an object description. For example, clas-
sification schemes used in architecture, archaeology, civil
engineering, etc. can be mapped to procedures, thus making
the object easily identifiable by digital library services
(indexing, markup and retrieval). For a specific object only
its type and its instantiation parameters have to be identified.
In combination, these two methods can be used to perform
detailed mesh comparisons, which can reveal the smallest
changes and damage of digitized artifacts. Such analysis and
documentation tasks are valuable in the context of cultural
heritage [13], [14].

B. Cultural Heritage

Procedural modeling techniques are well studied in the
fields of computer-aided design and engineering. Unfortu-
nately, in the context of cultural heritage, model complexity,
model size, and imperfection have dimensions several orders
of magnitude higher than many other fields of applica-
tions [15]. Cultural heritage artifacts often have a high
inherent complexity, since they represent masterpieces of
the human creative genius. As such artifacts are seldom
single findings, they are therefore often embedded in larger
excavation sites. An archaeological excavation may have an
extent on the scale of kilometers with a high richness of
detail on the scale of millimeters. Domain knowledge by
cultural heritage experts and procedural modeling techniques
are keys to cope with this complexity and size [16].



310

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Generative modeling inherits methodologies of 3D model-
ing and programming, which leads to drawbacks in usability
and productivity. The need to learn and use a programming
language is a significant inhibition threshold especially for
archaeologists, cultural heritage experts, etc. who are seldom
experts in computer science and programming. The choice
of the scripting language has a huge influence on how easy
it is to get along with procedural modeling. This is why we
use JavaScript – a beginner friendly, structured language.

C. JavaScript

JavaScript features a rather intuitive syntax, which is easy
to read and to understand. A comprehensible, well-arranged
syntax is useful, since source code is more often read than
written. JavaScript supports features like dynamic typing and
first-class functions. The most important feature is, that it
is wide-spread amongst non-computer scientists – namely
designers and creative coders. This is the reason why there
are numerous tutorials available on the internet, resulting
in an easy access to the language. JavaScript is used in
many different environments and has evolved from being
used only in a web-browser to a flexible multi-purpose
scripting language. Our integrated scripting solution adds
another chapter to the history of JavaScript usage.

Our meta-modeler approach Euclides is based on
JavaScript and differs from other modeling environments
in a very important aspect: target independence. Usually,
a generative modeling environment consists of a script
interpreter and a 3D rendering engine. A generative model
(3D data structures with functionality) is interpreted directly
to generate geometry, which is afterwards visualized by an
integrated rendering engine.

In our system a model’s source code is not interpreted
but parsed into an intermediate representation, an abstract
syntax tree (AST). After a validation process it is translated
into a target language. The process of

parsing → validating → translating

offers many advantages as illustrated in Figure 1. The val-
idation step involves syntax and consistency checks. These
checks are performed to ensure the generation of a correct
intermediate representation and to provide meaningful error
messages as early as possible within the processing pipeline.
The translation step, like every compilation/translation (see
Section II, Related Work), consists of a parser frontend (see
Section III, JavaScript Frontend), middleware, and backend
(see Section IV, Target Backends), and offers platform inde-
pendence (see Section V, Conclusion and Future Work). The
same code basis can be translated into different languages
for various purposes.

II. RELATED WORK

A. Generative Modeling

Procedural modeling systems often rely on grammars to
describe the rules behind generative components. Early sys-
tems based on grammars were Lindenmayer systems [17],
or L-systems for short. These systems provide the means
for modeling plants, where they were successfully applied.
Starting with simple strings, complex strings are created by
using a set of string rewriting rules. A predefined set of
rules is applied to an initial string forming a new, possibly
larger string. The L-systems approach reflects a biological
motivation. In order to use L-systems to model geometry
an interpretation of the generated strings is necessary. The
modeling power of these early geometric interpretations
of L-systems was limited to creating fractals and plant-
like branching structures. This leads to the introduction of
parametric L-systems. The idea is to associate numerical
parameters with L-system symbols to address continuous
phenomena, which were not covered satisfactorily by L-
systems alone.

CGA Shape, CityEngine: L-systems in combination
with shape grammars are successfully used in procedural
modeling of cities [18]. Parish and Müller presented a
system that generates a street map including geometry for
buildings given a number of image maps as input. For
that purpose L-systems have been extended to allow the
definition of global objectives as well as local constraints.
However, the use of procedurally generated textures to
represent facades of buildings often results in a limited level
of detail. In later work, Müller et al. describe a system [19] to
create more detailed facades based on a split grammar called
CGA shape. A framework called the CityEngine provides a
modeling environment for CGA shape. It relies on different
views to guide an iterative modeling process.

Lipp et al. presented another modeling approach [20]
following the notation of Müller [21] that deals with the
aspects of more direct local control of the underlying gram-
mar by introducing visual editing. The idea is to modify
elements selected directly in a 3D-view, rather than editing
rules in a text based environment. Principles of semantic
and geometric selection are therefore combined as well as
functionality to store local changes persistently over global
modifications.

Model Graphs: A modeling method as well as a
graphical user interface for the creation of natural branching
structures was proposed by Lintermann et al. [22]. The
idea is to represents the modeling process with a structure
tree, which can be altered using specialized components
describing geometry as well as structure. Another set of
components can be used for defining global and partial
constraints. These components are described procedurally
using creation rules, which include recursion. Geometric
data is generated according to the structure tree via a tree



311

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

traversal, where the components generate their geometrical
output themselves.

Ganster et al. propose a procedural modeling approach
[23] based on structure trees as well. They describe an
integrated framework relying on a visual language. The infix
notation of the language requires the use of variables, which
are stored on a heap. A graph structure represents the rules
used to create an object. Special nodes allow the creation of
geometry, the application of operators as well as the usage
of control structures. Various attributes can be set for nodes
used in a graph. Directed edges between nodes define the
order of execution, in contrast to a visual data flow pipeline
where data is transported between the different stages.

Hierarchical Description: Finkenzeller presented an-
other approach for detailed building facades [24] called
ProcMod. It features a hierarchical description for an entire
building. In order to create a building, the user provides a
coarse outline and a basic style of the building including
distinguished parts. The system then generates a graph rep-
resenting the building. In the next step, the graph is traversed
and geometry for every element of the graph is generated.
This results in a detailed scene graph, in which each element
can be modified afterwards. The version described has some
limitations: for example, organic structures and inclined
walls cannot be modeled.

Postfix Expressions: Havemann proposes a stack based
language called Generative Modeling Language (GML),
which allows, but is not limited to, creating polygonal
meshes [25]. The postfix notation of the language is very
similar to that of Adobe Postscript. High-level shape op-
erators are created from low-level shape functionality. The
GML serves as a platform for a number of applications,
because it is extensible and comes with an integrated visu-
alization engine.

An extended system presented by Mendez et al. combines
semantic scene-graph markups with generative modeling
[26]. The purpose of the system is the generation of semantic
three dimensional models of underground infrastructure. A
geospatial database and a rendering engine are combined
in order to create an interactive application. The GML
is used for on-the-fly generation of procedural models in
combination with a conventional scene graph system with
semantic markup.

Scripted Modelers: In contrast to specialized generative
modelers, there are a number of 3D modeling software
packages available like Autodesk MayaTM or 3ds MaxTM.
They provide a variety of tools for modeling with polygons,
non-uniform rational B-splines (NURBS) and predefined
primitives. In addition to a graphical user interface (GUI), a
scripting language is supplied to extend the functionality. It
enables tasks that cannot be achieved easily using the GUI
and speeds up complicated or repetitive tasks.

Processing and Grasshopper: Processing stands for a
programming language and a development environment. It

was initially created to serve as a software sketchbook and to
teach students fundamentals of computer programming [27].
It quickly developed into a tool that is used for creating
visual arts. Processing is basically a Java-like interpreter
offering a new graphics and utility API together with some
usability simplifications. A large community behind the tool
produced over seventy libraries to facilitate computer vision,
data visualization, music, networking, and electronics.

Another tool with a creative background is Grasshopper
[28]. Its main purpose is the creation of graphical algo-
rithms. It is a graphical editor for Rhino’s 3D modeling
tools designed to be used without programming skills -
unlike RhinoScript. In Grasshopper programs are created
by dragging components onto a canvas and interconnecting
these components. Many components create, but are not
limited to, 3D geometry. Similar to Processing, there is a
large community behind the tool.

B. JavaScript

JavaScript started as a simple client-side scripting
language. Nowadays, there are a number of projects
that use JavaScript in innovative ways. EMScripten
(https://github.com/kripken/emscripten) is a LLVM to
JavaScript compiler. LLVM stands for low level virtual
machine, and is an intermediary representation for code
compiled from languages such as C, C++ or Objective-C.
LLVM output used by EMScripten is similar to assembly
language.

The difficulty in translating an LLVM AST to JavaScript
is that the high level representation of the source languages is
lost. A translator hence needs to compact ambiguous assem-
bly statements into general, high level language code. The
EMScripten algorithm, called relooper, produces output that
models a virtual machine. The heap of the virtual machine
is a huge array. A growing machine’s stack is modeled as
a variable that serves as an index to the heap. Necessary
control flow such as goto and arbitrary labels are modeled
as looping switch-statements. EMScripten author Zakai is
demonstrating the versatility of the transpiler by porting
the computer game DOOM to JavaScript. The JavaScript
output of compiled DOOM is accelerated by the optimizing
compiler GClosure by Google.

Similar to a virtual machine, Bellard has written a PC
emulator that runs in JavaScript. It uses JavaScript’s typed
arrays to emulate a feature-stripped 486 CPU. Typed arrays
allow to apply views on an existing array, by which a
programmer can access the array contents as differently
sized chunks. This way, an array of 32 bit sized numbers
might be accessed as 16 bit array. This way of addressing
allows extracting single bytes from an array of integers.
Obviously, bit-level handling is possible and facilitated, if
one uses a byte to represent a machine-bit, scaling available
memory by a factor of 8. To demonstrate the power of the
emulator, Bellard shows a version of a small GNU/Linux



312

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distribution that is properly executed by his JavaScript-based
PC emulator.

III. JAVASCRIPT FRONTEND

A. Lexer and Parser

Despite the name, JavaScript is unrelated to the program-
ming language Java, even if it copies many names and nam-
ing conventions. It is a functional programming language
with support of structured programming constructs in C-
style (e.g., if-statements, for-loops, switch-statements). In
analogy to C, JavaScript differentiates between expressions
and statements. However, there are a few important aspects
that need to be mentioned:
• In contrast to C-style block-level scoping, JavaScript

supports function-level scoping.
• Types are dynamic and they are associated with values;

i.e., a variable’s value defines its type.
• Functions are objects themselves and therefore can be

assigned to variables, returned by functions, passed as
arguments, and manipulated like any other object [29].

As JavaScript is typically interpreted, its design reflects
interactivity. It relies on a run-time environment, i.e., an
object model provides the functionality to communicate with
the host environment. Furthermore, the default entry point
for a parser is a statement rule as visualized in Figure 2.
It does not have a mandatory, enclosing class structure or a
main function as entry point. Additionally, the interactivity
is reflected in required forward declarations, which can be
created via forward references, as functions are first-class
citizens.

The statement rule is split up in several sub-rules like
statementIf, statementDoWhile, statementExpression. While
these rules are rather straightforward, the statementNative-
Code rule is a special feature of our grammar. It allows to
embed native code into JavaScript. When JavaScript code
gets translated, it is sometimes necessary to embed code
written in the target language – so called native code. As
a consequence, each platform-dependent library is available
in all target versions. An illustrating example is taken from
the Java version of the Euclides’ IO library. It shows how
writing output to the text console is handled.

The function io_stdout_write writes a text message
to Standard Out. If necessary the parameter msg will be
converted to a string. In order to be JavaScript compliant,
native code is embedded in comments using the special
character sequence /*% */ to denote the beginning of
a native code section. A similar mechanism is used to allow
parsing annotations, where the special character sequence
/*@ */ is used to denote an annotations section inside
a comment. Annotations are used similar to preprocessor
directives in C. They are evaluated by the parser and
additionally embedded in the target source code.

Figure 2. The entry point for a JavaScript parser is a statement rule,
because JavaScript is typically interpreted in a run-time environment –
statement by statement. As a consequence, the JavaScript grammar does
not contain any enclosing class structures.

/*@

euclides.suppress_warning_unreferenced_o ←↩
bject.io_stdout_write;

*/

/**
This function writes a text message to

standard out. The parameter ’msg’ will be

converted to a ’string’, if necessary.

*/

function io_stdout_write(msg)

{
/*%

System.out.print(usr_msg.toString());

*/

}

In the example above, the annotations technique is used to
suppress a warning of an unreferenced object, which might
occur, if the function is not used.



313

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Abstract Syntax Tree

Our parser for JavaScript is written using ANother Tool
for Language Recognition (ANTLR). ANTLR provides a
framework for constructing recognizers, interpreters, com-
pilers, and translators from grammatical descriptions [30].
It introduces a strategy called LL(*) parsing, which extends
the LL(k) parsing strategy with lookahead of arbitrary length
without explicitly specifying it. The purpose of using this
framework is to syntactically and semantically check the
provided input for JavaScript compliance and at the same
time to generate an intermediate representation: an abstract
syntax tree.

The AST offers three entry points into a script. The first
entry point is the “obvious” representation: a sequence of
statements. Each statement contains all included substate-
ments and expressions as well as associated comments. The
leaves of the AST store tokens together with formatting in-
formation (line and position). This tree structure is extended
by reference and occurrence links; e.g., each method call
references the method definition and each variable definition
links to all its occurrences.

The list of all variables represents a second entry point to
explore the AST. Each entry consists of the variable name,
the statement in which it is defined, the scope of the variable
as well as all occurrences in the source code.

Last but not least, the third entry point lists all function
implementations including anonymous functions with com-
plete function body. Similar to the contents of the variable
list, each entry offers the function name, its defining state-
ment, the scope of the function, the number of parameters
this function takes, as well as all occurrences in the source
code.

These structures are not only needed during the translation
process, but they are valueable inspection tools. Euclides’
automatic documentation system exports these views and
data structures in a collection of XHTML files: Using
markup techniques directly jumping between occurrences
and definitions of variables, function, etc. is possible; e.g.,
a screenshot of the automatic documentation created for the
fibonacci example

function fibonacci(index) {
switch (index) {
case 0:

case 1:

return 1;

default:

return fibonacci(index-2)

+ fibonacci(index-1);

}
}

var fibs = fibonacci(42);

Figure 3. The Euclides documentation target represents JavaScript as
a sustainable, standard-conform XML document can be displayed in an
arbitrary web browser.

is shown in Figure 3. All globally and locally defined
variables are listed in the Variables view. Several properties
are available for each variable:
• Comments. Any comments associated with a variable

are preserved and included.
• Location. The line of code (source, its line number and

file name) where the variable is declared.
• Visibility. The name together with the scope, in which

the variable is available.
• References. All references and uses of the variable in

the source code including file name, line number and
declaration statement.

Similarly to the Variables view, the Functions view is a
collection of all functions defined in the source code and
consists of the same four properties mentioned above. The
Statements view is a collection of all statements of the source
code together with filename and line number, which allows,
for example, identifying duplicate code snippets. Also it
gives a nice overview of the complexity of the source code.
In the files view, the source code is available as XML
document.

C. Libraries

A collection of libraries for geometry (GEO), graphi-
cal user interfaces (GUI), input/output (IO), mathematics
(MATH) and some utilities (UTL) are available for the
Euclides framework. They offer functionality to conveniently
create generative models together with basic user interface
elements. A simple example visualization of a Sierpinski



314

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tetrahedron with GUI components to control the subdivision
depth is shown in Figure 4.

IV. TARGET BACKENDS

When translating source code into target language
code [31], the need to establish a proper naming standard
quickly arises. A runtime environment is implemented using
symbols and constructs available in the target language.
Naming these constructs may interfere with the naming of
code to be translated. For example, there may very likely be
a function called main in the runtime environment rendering
this name to be reserved. In order to overcome these
limitations, all names in the translated code are extended
with the prefix usr_, if it corresponds one-to-one to a name
in JavaScript. Otherwise it is prefixed with sys_.

Additionally, dealing with different target languages not
only means dealing with naming issues, but also dealing
with character encoding. A character may be allowed to be
used in JavaScript, but forbidden in a target language. As a
consequence, we introduced lists of allowed characters and
rules for character replacements to handle all naming issues.

These two mechanisms ensure the validity and consistency
concerning naming and encoding issues of the generated
code. The result of a name translation is always a name,
which is

1) valid in the target language and
2) does not collide with any predefined names, name

spaces, or keywords.

A. Java

Although Java and JavaScript have some similarities, the
concepts of both languages show major differences. Java is a
statically typed, class-based, general-purpose programming

Figure 4. This figure shows how a Sierpinski tetrahedron example
translated to the Java target looks like. A small GUI with a drop-down list
to select the subdivision depth together with a 3D view of the Sierpinski
tetrahedron at subdivision depth five is scripted using Euclides.

language designed to have a minimum of implementation
dependencies to be able to follow the credo: “write once,
run anywhere”.

It is chosen as a target language, because all frontend and
framework components are written in Java making it easier
to be embedded in an integrated development environment.

Data Types: Because of conceptual differences in the
typing system, it is unpractical to project JavaScript data
types onto built-in Java data types. For example, JavaScript
makes no difference between integer numbers or floating-
point numbers. There is just one data type called number

that may hold any type of number. Similar difference can
be found when comparing the remaining data types.

Dynamic typing is another big difference between the two
languages. As a consequence, each JavaScript data type is
re-built in Java to match its functionality making a total of
seven data types. These data types are wrapped in a class
called Var, which provides the properties,

• getType()

• length(int ii)

access functions

• accessArray(int ii, Var index)

• accessObject(int ii, String attribute)

• assign(int ii, Var variable)

• delete(int ii, Var variable)

• executeDirect(int ii, Var THIS, Var[]

parameters)

• executeIndirect(int ii, String attribute,

Var[] parameters)

and conversion methods applicable to all JavaScript vari-
ables:

• toArray()

• toBoolean()

• toFunction()

• toNumber()

• toObject()

• toString()

• toUndefined()

In these methods the parameter ii always refers to a table
entry, which references the corresponding line of JavaScript
source code; e.g. each data type can be accessed like an
array. In case of an array, the access is “as supposed”, in case
of a String it is character-wise, in all other cases an implicit
conversion creates a new, empty array. As our runtime
environment produces warnings, if implicit conversion take
place, the implementation of an array access includes the
statement Log.variableTypeChangeImplicit(ii);. In
the messages table (generated by the compiler) entry #ii
references information needed for a reasonable warning; e.g.
during the execution of



315

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

var number = 42;

number = "Hello World";

the runtime environment produces the warning

assignment provoked a warning.
type : variable type change by assignment
file : C//Users/ullrich/warning.ecs
line : 2
details : number = "Hello World";

The access functions reveal the implementation details and
the mappings of the Java types.
Boolean: The corresponding Java type is boolean.
Number: A JavaScript number is mapped to double.
String: String is mapped to String.
Array: A JavaScript array is realized using the collection
ArrayList<Var>.
Object: And an object in JavaScript is mapped to
HashMap<String,Var>.
Function: The corresponding object to a JavaScript functor
is a function pointer implementation in Java via abstract
objects.

With these data types comes the necessity to use a runtime
environment in the translated Java code. Whenever a variable
is created or a value is assigned, a method-call is performed
– thus significantly increasing the execution time of the
code. However, for creating variables, a factory pattern is
applied with the inherent advantage of exchangeability. This
design pattern is extensively used by the “Differential Java”
backend, which is described in the next section.

Concerning language constructs a wide range can be
translated easily, since they have the same semantic meaning
in both languages. Sometimes, there is the need to utilize
temporary variables, which implicate a possible naming
conflict with variable names used in the original JavaScript
source code. This problem is tackled by prefixing all original
JavaScript names and additionally creating unique names for
temporary variables as mentioned before.

Functions: In Java, invokable routines are called meth-
ods and they are similar to, but not quite like functions in
JavaScript. The runtime environment provides a class for
JavaScript functions to mimic their behavior. An important
property of functions in JavaScript is that they can be
undefined. Therefore, when instantiating an empty func-
tion in Java, a dummy with the correct behavior is returned.
Executing a function in the Java runtime environment is done
by calling the execute method in the function class. In
addition to function parameters, an environment reference
is passed to the function in order to enable correct interac-
tion with the immediate environment. Functions extend an
abstract class called Fct defining all necessary methods:
• getID()

• getName()

• getTranslatedName()

• getAnnotations()

• getParam()

• getParams()

• execute(int ii, Var THIS, Var[]

parameters)

• execute(int ii, Var THIS, Var

usr_vecArray)

They reside in a public, final class called Function.
Consequently, the function

function add(a, b) {
return a + b;

}

gets translated to

@Override

public Var execute(int ii, Var THIS,

Var usr_a, Var usr_b) {
try {
{

if (Main.AVOID_UNREACHABLE_CODE_ERROR)

return Op.ADD(0, usr_a, usr_b);

}
} catch (EuclidesRuntimeException exp) {
throw exp;

} catch (RuntimeException exp) {
Log.uncaughtException(ii);

System.err.println(exp);

System.exit(0);

}
return Factory.initUndefined();

}
The body of the function is embedded in a try-catch block

in order to throw runtime exceptions or halt execution in
case of an unhandled exception. The value undefined is
returned in case a runtime exception occurs. Please note, the
static constant Main.AVOID_UNREACHABLE_CODE_ERROR

is always true and only needed to avoid – as it says
– “unreachable code errors” thrown by Java compilers,
for example, if a return-statement is followed by further
statements.

Translated functions and parameters are named just like
their JavaScript-counterparts (except for the usr_ prefix).

Operators: Since JavaScript data types are not mapped
to native Java data types, all operators need to be recreated in
the Java runtime environment as well. A total of 35 operators
grouped in unary, binary and tertiary operators are available.
Since each operator is applied via a method call, they can
be easily exchanged. Operators are collected as methods in
a public, final class called Op. As an example, the following
operation

var c = 19.0 + 23.0;



316

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

results in

Variable.usr_c.assign(1, Op.ADD(0,

Factory.initNumber(19.0),

Factory.initNumber(23.0)));

The result of the call to Op.ADD with the two numbers
as parameters is stored in a new variable, which is returned
and then used as a parameter for the assignment operation.

Control Flow: Control flow statements are widely
identical in both languages. One of the differences, however,
is the switch-statement. For a switch-statement in Java only
primitive data types are allowed, whereas JavaScript allows
all types to be used, attributable to dynamic typing. In order
to obtain a correct translation, the switch-statement needs to
be rewritten, which is done directly in the translated code.
The first step is to analyze the statement from back to front
comparing each case with the switching expression. Then
the result is stored in a temporary variable and the switch-
statement is rebuilt in reverse order using the temporary
variable as switching expression. As a result

switch (favoritelanguage) {
case "Java":

io_stdout_write("Good choice!");

break;

case "C":

io_stdout_write("Bad choice");

break;

default:

io_stdout_write("I have no idea");

}

becomes

int sys_42 = 0;

if (Op.EQ(9, Variable.usr_favoritelanguage,

Factory.initString("C")).toBoolean())

sys_42 = 1;

if (Op.EQ(10, Variable.usr_favoritelanguage,

Factory.initString("Java")).toBoolean())

sys_42 = 2;

switch(sys_42) {
case 2:

Function.usr_io_stdout_write.execute(11,

THIS, Factory.initString("Good choice!"));

if (Main.AVOID_UNREACHABLE_CODE_ERROR) break;

case 1:

Function.usr_io_stdout_write.execute(12,

THIS, Factory.initString("Bad choice"));

if (Main.AVOID_UNREACHABLE_CODE_ERROR) break;

default:

Function.usr_io_stdout_write.execute(13,

THIS, Factory.initString("I have no idea"));

}

The corresponding translation in Java creates the tem-
porary variable sys_42 for comparisons and a switch-
statement in reverse order to rebuild the behavior of the
JavaScript counterpart.

Once all target files containing source code are generated,
they are compiled using the Java compiler included in Java
Platform, Standard Edition (Java SE). The resulting class
files are automatically packed into a single JAR file for easy
execution. As a last step, the JAR file is digitally signed to be
ready-to-use for Java Web Start. The signature information
becomes part of the embedded manifest file.

B. Differential Java

Besides the previously described Java target, Euclides
offers a Differential Java backend. Computing derivatives
of functions is a necessary task in many applications of sci-
entific computing, e.g. validating reconstruction and fitting
results of laser scanned surfaces [32], [33]: In combination
with variance analysis techniques, generative descriptions
can be used to validate reconstructions. Detailed mesh com-
parisons can reveal smallest changes and damages. These
analysis and documentation tasks are needed not only in the
context of cultural heritage but also in engineering and man-
ufacturing. The Euclides framework is used to implement
generative models, whose accuracy and systematics describe
the semantic properties of an object; whereas the actual
object is a real-world data set (laser scan or photogrammetric
reconstruction) without any additional semantic information.

This analysis task needs derivatives of the distance-based
objective function as well as the embedded procedural
descriptions. According to Hammer et al. [34] there are three
different methods to obtain values of derivatives:
• Numerical differentiation uses difference approxima-

tions to compute approximations of the derivative val-
ues.

• Symbolic differentiation computes explicit formulas
for the derivative functions by applying differentiation
rules.

• Automatic differentiation also uses the well-known
differentiation rules, but it propagates numerical values
for the derivatives.

Automatic differentiation combines the advantages of sym-
bolic and numerical differentiation [35]. There are two
important things to mention:
• Numbers instead of symbolic formulas must be han-

dled.
• The computation of the derivative values is done auto-

matically together with the computation of the function
value.

Automatic differentiation evaluates functions specified by
algorithms or formulas. All operations are performed accord-
ing to the rules of a differentiation arithmetic given by “C++
for Verified Computing” [34]. First order differentiation



317

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

x

x x 3

sin

t1

×
t2

×
t3

+

t4

Figure 5. The evaluation of the term x2 + 3 sinx at x0 = 1.3
using differentiation arithmetic does not only return its value but also
its derivative value. The computational complexity of this differentiation
arithmetic (forward method) is at most a small multiple of the cost of
evaluating the term itself.

arithmetic is an arithmetic for ordered pairs in the one-
dimensional case: the first component contains the value
u(x) of the function u : R → R at the point x ∈ R. The
second component contains the value of the derivative u′(x).
Familiar rules of calculus are used in the second component.
The operations in these definitions are operations on real
numbers.

An independent variable x and the arbitrary constant c
correspond to the ordered pairs

(x, 1) and (c, 0), (1)

since dx
dx = 1, and dc

dx = 0. If the independent variable x
of a formula for a function f : R → R is replaced by
X = (x, 1), and if all constants are replaced by their (c, 0)
representation, then the evaluation of f using the rules of
differentiation arithmetic gives the ordered pair

f(X) = f((x, 1)) (2)
= (f(x), f ′(x)). (3)

For example, Figure 5 shows an AST whose evaluation
at x0 = 1.3 illustrates the calculation of its derivative values
at intermediate subterms. For elementary functions

s : R→ R (4)

the rules of differentiation arithmetic must be extended using
the chain rule

s(U) = s((u, u′)) (5)
= (s(u), u′ · s′(u)). (6)

This way the sine function is defined by

sinU = sin(u, u′) (7)
= (sinu, u′ · cosu). (8)

The result of this structure and its corresponding operators is
the algebra of dual numbers [36], which can be implemented
in three ways:

Many programming languages offer an overloading mech-
anism that replaces each real number by a pair of real num-
bers including the differential. Each elementary operation on
real numbers is overloaded, i.e., internally replaced by a new
one, working on pairs of reals, that computes the value and
its differential. In this way the original program is virtually
unchanged.

Another approach uses source code transformation. This
technique adds new variables, arrays, and data structures
into the program that will hold the derivatives and the new
instructions that compute them. This approach does not
depend on language features such as operator overloading.

The third way to implement automatic differentiation does
not modify a program or its source, but the platform (e.g.
Java Virtual Machine, .Net Common Language Runtime,
etc.) it runs on.

The Java differential target uses the third approach to
automatically obtain derivatives. This is done by replacing
variables and operators in the runtime environment, which
is an easy task, since variables and operators are created
using the factory pattern. The following listing shows the
differences between standard and differential multiplica-
tion operator. As expected, the standard operator returns
a variable initialized with the result of the multiplication
operation.

/**

* Binary operator multiply.

*

* @param ii Information index.

* @param v1 The first operand.

* @param v2 The second operand.

* @return The result.

*/

public static Var MUL(int ii, Var v1, Var v2)

{
if (!v1.getType().equals(Type.NUMBER)

|| !v2.getType().equals(Type.NUMBER))

Log.deviantOperatorCallNoNumber(ii);

return Factory.initNumber(

v1.toNumber() * v2.toNumber());

}

The differential operator calculates the derivatives of the
operands and stores them in an array. Then a resulting array
is constructed out of the calculated derivatives and returned
as a variable.



318

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

/**

* Binary operator multiply.

*

* @param ii Information index.

* @param v1 The first operand.

* @param v2 The second operand.

* @return The result.

*/

public static Var MUL(int ii, Var v1, Var v2)

{
if (!v1.getType().equals(Type.NUMBER)

|| !v2.getType().equals(Type.NUMBER))

Log.deviantOperatorCallNoNumber(ii);

double[] d1 = v1.toDifferential();

double[] d2 = v2.toDifferential();

double[] r = Factory.differential();

r[0] = d1[0] * d2[0];

for(int i=1; i<r.length; i++)

r[i] = d1[i]*d2[0] + d1[0]*d2[i];

return Factory.initNumber(r);

}

C. GML

The Generative-Modeling-Language (GML) is a procedu-
ral modeling environment predominantly used in the context
of Cultural Heritage [37]. The corresponding translation
mechanism within Euclides has already been described in
“Euclides – A JavaScript to PostScript Translator” and
presented at the International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmark-
ing [1].

Data Types: In JavaScript each variable has a par-
ticular, dynamic type. It may be undefined, boolean,
number, string, array, object, or function. GML
also has a dynamical type system. Unfortunately, both type
systems are incompatible to each other. Therefore, trans-
lating JavaScript data types to GML poses two particular
problems: On the one hand, the dynamic types must be
inferred at run time. On the other hand, GML’s native data
types lack distinct features needed by JavaScript. GML-
Strings, for example, cannot be accessed character-wise. We
solved these problems by implementing JavaScript-variables
as dictionaries [25] in GML. Dictionaries are objects that
map unique keys to values. These dictionaries hold needed
metadata and type information as well as methods, which
emulate JavaScript behavior. As we will show later, we will
utilize GML’s dictionaries for scoping as well.

The system translation library for GML, which every
JavaScript-translated GML program defines prior to ac-
tual program code, contains the function sys_init_data,

which defines an anonymous data value in the sense of
JavaScript data.

/sys_init_data {
dict begin
/content dict def
content begin
/type edef
/value edef
/length { value length } def

end
content
end

} def

sys_init_data opens a new variable-scope by defining
a new, anonymous dictionary and opening it. In this new
scope, another newly created dictionary is defined by the
name content. This content-dictionary receives three en-
tries: type, value and the method length. Each entry
value is taken from the top of GML’s stack. The newly cre-
ated dictionary is then pushed onto the stack and the current
scope is destroyed by closing the current dictionary, leaving
the anonymous dictionary on the stack. In GML notation,
a JavaScript-variable’s content is defined by pushing the
actual value and a pre-defined constant to identify the type of
the variable (such as Types.number, Types.array, etc.)
onto the stack, and calling sys_init_data. The translator
prefixes all JavaScript-identifiers with usr_ (in order to
ensure that all declarations of identifiers do not collide with
predefined GML objects) and uses the following translations:

Undefined: Variables of type undefined result from op-
erations that yield an undefined result or by declaring a
variable without defining it. var x; leads to x being of
type undefined. It is translated to

/usr_x Nulls.Types.undefined
Types.undefined sys_init_data def

Boolean: In JavaScript, boolean values are denoted by the
keywords true and false. The translation simply maps
these values to equivalent numerical values in GML, which
interprets them. The JavaScript-statement var x = true;

becomes

/usr_foo 1 Types.bool sys_init_data def

Number: All JavaScript numbers (including integers) are
represented as 32-bit floating point values. As GML stores
numbers as 32-bit floats internally as well, we simply map
them to GML’s number representation. For the sake of
completeness, var x = 3.14159; is translated to

/usr_x 3.14159 Types.number sys_init_data def

String: Although GML does support strings, they cannot
be accessed character-wise. We cope with this limitation by
defining strings as GML-arrays of numbers. Each number
is the Unicode of the respective character. As GML allows
to retrieve and to set array-elements based on indexes, this



319

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach meets all conditions of JavaScript-strings. The
statement var x = "Hello World"; becomes

/usr_x
[ 72 101 108 108 111 32 87 111 114 108 100 ]
Types.string sys_init_data def

Array: JavaScript arrays allow to hold data with dif-
ferent types, the array’s contents may be mixed. This
behavior is in line with GML. The JavaScript-example
var x = [true, false, "maybe"]; has a straightfor-
ward translation:

/usr_x [ 1 Types.bool sys_init_data
0 Types.bool sys_init_data
[109 97 121 98 101]
Types.string sys_init_data ]
Types.array sys_init_data def

Object: In JavaScript an object consists of key-value-pairs,
e.g., var x = {x: 1.0, y: 2.0, z: 42}; This struc-
ture is mapped to nested GML-dictionaries. The value of a
variable’s content is a dictionary of its own. This dictionary
contains the entries corresponding to JavaScript-object’s
members, which are also defined as variable contents.

The example above defines a JavaScript-object of name x

with key-value-pairs x to be 1, y to be 2, and z to be 42:

/usr_x dict begin
/obj dict def obj begin
/usr_x 1.0 Types.number sys_init_data def
/usr_y 2.0 Types.number sys_init_data def
/usr_z 42.0 Types.number sys_init_data def
end obj

Types.object sys_init_data end def

Opening an anonymous dictionary creates a new scope. In
this scope, a dictionary is created and bound to the name
/obj. It is then opened and its members are defined, just like
anonymous variables would be. The object dictionary is then
closed, put on the stack, and used to define an anonymous
variable. The enclosing anonymous scoping dictionary is
then closed and simply discarded.

JavaScript objects may hold functions. Our translator
Euclides handles JavaScript object-functions like ordinary
functors (next subsection) and assigns their internal name to
a key-value-pair.

Function: JavaScript has first-class functions. There-
fore, it is possible to assign functions to variables,
which can be passed as parameters to other func-
tions, for example. In the following example, a func-
tion function do_nothing() {} is declared and de-
fined. Afterwards, the function is assigned to a variable
var x = do_nothing;. If we abstract away from the
translation of the function do_nothing, the statement
var x = do_nothing; becomes:

/usr_do_nothing {
%% ... definition of function omitted ...

} def

/usr_x
/usr_do_nothing Types.function

sys_init_data def

In JavaScript, x can now be used as a functor, which acts
the same ways as do_nothing. Because such functors can
be reassigned, it is necessary to handle functor calls (x())
differently than ordinary function calls (do_nothing()).
In this situation Euclides creates a temporary array, which
contains the functor parameters and passes this array as well
as the variable referencing the function name to a system
function sys_execute_var. This system function resolves
the functor and determines the referenced function, unwraps
the array and performs the function call.

Functions: In GML, functions are defined using clo-
sures, such as /my_add { add } def. If this function
my_add is executed, the closure { add } is put onto the
stack, its brackets are removed, and the content is executed.

To execute a GML function, its parameters need to be put
on the stack prior to the function call: 1.0 2.0 my_add

The resulting number 3.0 will remain on the stack. Please
note, that GML functions may produce more than one result
(left on the stack) at each function call. This allows to
define functions with more than one result value. Following
JavaScript, called functions return only one value by con-
vention. The number and names of function parameters are
known at compile time. Only functors (referenced functions
stored in variables) may change at run time and cannot be
checked ahead of time.

Translated functions and parameters are named just like
their JavaScript-counterparts (except for their usr_ prefix).
Scopes: As JavaScript uses a scoping mechanism different
to GML, it has to be emulated. This is a rather difficult
task, which has to take the following properties of JavaScript
scopes into account.
• JavaScript functions may call other functions or them-

selves.
• Called functions may declare the same identifiers as the

calling functions.
• Within functions other functions may be defined.
• Blocks might be nested inside functions, redefining

symbols or declaring symbols of the same name.
The translator uses GML’s dictionary mechanism to emulate
JavaScript-scopes. A dictionary on the dictionary stack can
be opened and it will take all subsequent assignments to
GML-identifier (variables). Since only the opened dictionary
is affected, this behavior is the same as the opening and
closing scopes in different scoped programming languages,
such as C or Java.

Thus an assignment /x 42 def can be put into an
isolated scope by creating a dictionary (dict), opening



320

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it (begin), performing the assignment, and closing the
dictionary (end). The following example shows how such
GML scopes can also be nested:

dict begin
/x 3.141 def %% x is 3.141
dict begin %%
/x 4 def %% x is 4.0

end %% x is 3.141
end %% x is unknown

As noted before, JavaScript supports redefinition of iden-
tifiers that were declared in a scope below the current one.
Fortunately, GML exhibits just the same behavior when
reading out the values of variables/keys from dictionaries of
the dictionary stack. Consequently, the following example
works as expected.

dict begin
/x 42 def
dict begin
/y x 1 add def %% y is now 43

end
end

However, assignments to variables have to be handled
differently in GML. The Generative Modeling Language
does not distinguish between declaration and definition, any
declaration must be a definition and vice versa.

The translator solves this problem. It uses a system
function called sys_def, which is included into all trans-
lated JavaScript sources automatically. This function applies
GML’s where operator to the dictionary stack in order to
find the uppermost dictionary, where the searched name is
defined. The operator returns the reference to the dictionary,
in which the name was found.
Control Flow for Functions: The Generative Modeling
Language and all PostScript dialects lack a dedicated jump
operation in control flow. Imperative functions often require
the execution context to jump to a different point in the
program at any time - and to return from there as well.

Fortunately, GML provides an exception mechanism. A
GML exception is propagated down GML’s internal execu-
tion stack until a catch instruction is encountered. In this
way it overrides any other control structure it encounters. We
use GML’s exception mechanism to jump outside a function
as illustrated in the following empty function skeleton:

/usr_foo {
dict begin
/return_issued 0 def
{ dict begin
%% ... function body omitted ...
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

In this empty skeleton, the function opens a new anonymous
scope. Inside this scope dict begin . . . end the local
identifier /return_issued is set to 0. Afterwards a GML
try-catch-statement { try_block } { catch_block }
catch contains the JavaScript-function implementation. In
this translation, the catch block redefines /return_issued
to 1 to indicate that a JavaScript return statement has been
executed in the function body. JavaScript functions without
any return statement automatically return null resp.
in GML Nulls.Types.undefined Types.undefined

sys_init_data. A corresponding JavaScript-return
statement, e.g., return 42;, is translated to

42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is put onto the stack. The
actual function body’s scope is closed end, and the throw

operator is applied. The distinction of whether the end of
the function body was reached by normal program flow or
via a return statement determines, if a return value needs to
be constructed (null) and put onto the stack.

Parameters to functions are simply put on the stack. The
function body retrieves the expected number of parameters
and assigns them to dictionary entries of the outer scope
defined in the function translation. A complete example of
a translated JavaScript-function shows the interplay of all
mechanisms. The simple JavaScript-function

function foo(n) { return n; }

is translated to

/usr_foo {
dict begin
/usr_n edef
/return_issued 0 def
{ dict begin
usr_n
end
throw
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

A function call, for example foo(3), yields the trans-
lation 3.0 Types.number sys_init_data usr_foo. If
we assign the function foo to a variable foo_functor, the
calling convention in GML would change significantly.



321

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

/usr_foo_functor
/usr_foo Types.function sys_init_data def

is called via

[ 3.0 Types.number sys_init_data ]
usr_foo_functor sys_execute_var

and represents the JavaScript call foo_functor(3.0);
Exceptions: The language JavaScript offers support for

throwing exceptions as shown in the following example:

throw "Error: unable to read file.";

Its syntax is similar to a return statement. To implement such
behavior, we also use GML’s exception handling mechanism.
The Euclides translator adds a call to the predefined system
function sys_exception_return_handler at the end of
each translated function (see example above).

Throwing an exception in JavaScript translates into a
global GML variable exception_thrown being set to 1,
closing the current dictionary and calling GML’s throw.
The sys_exception_return_handler will check if an
actual exception is being thrown, and if so, calls throw

again. A catch-block inside a JavaScript program would set
exception_thrown to 0.

Operators: The evaluation of expressions demands
variables to be accessed. While GML provides operators that
operate on their own set of types, they obviously cannot be
used to access the translated/emulated JavaScript-variables.
For this reason, the Euclides translator automatically in-
cludes a set of predefined GML functions that substitute
operators defined in JavaScript.
Value Access: Performing the opposite operation to
sys_init_data, sys_get_value will retrieve the data
saved in a JavaScript-variable resp. its GML-dictionary. For
example, to retrieve v.value the function sys_get_value

is applied to v.

/sys_get_value { begin value end } def

Element Access: The system function sys_get imple-
ments string, array and object access. Applied to a string / an
array Arr and index k, it will return the element Arr[k]. If
its parameters are an object Obj and an attribute name, the
function sys_get executes Obj.name. This may result in a
value, which is put on the stack or in a function, which
is called. Conforming to JavaScript, it returns JavaScript
undefined for any requested elements that do not exist.

/sys_get {
dict begin
/idx exch def /var exch def

var.type Types.string eq {
%% ... handling strings ...

} if

var.type Types.array eq {

%% ... handling arrays ...
} if

var.type Types.object eq {
var sys_get_value idx known 0 eq {

%% return null, if element
%% does not exist
Nulls.Types.undefined
Types.undefined sys_init_data

} if
var sys_get_value idx known 0 ne {

%% access element
var sys_get_value idx get

} if
} if
end

} def

Analogous to sys_get, sys_put inserts data into strings
and arrays, or defines members of objects. If sys_put

encounters an index k that is out of an array’s range, the
array is resized and filled with JavaScript undefineds.
Functors: The already mentioned routine
sys_execute_var inspects a given variable. If it is
a function, it will retrieve the array supplied to hold all
parameters and execute the function. The dynamic binding
of functions to variables requires to consider two situations
at run time: The functor receives the correct amount of
parameters for its function, or the number of parameters
does not correspond to the referenced function. In the
latter case, the function is not called and null is returned
instead.

At compile time, a function is defined to expect a concrete
number of parameters. This information is kept to perform
parameter checks at run time. In this way, the correct number
of parameters for all functors can be determined any time.
JavaScript built-in Operators: To illustrate the translation
of relational, arithmetical or bit-shift operators defined by
JavaScript, we discuss the equal operator ==. It is (like
all such operators) mapped to a corresponding routine
sys_eq. Depending of the operands’ types it delegates the
comparison to subroutines such as bool_eq, string_eq
or array_eq that perform the actual comparison. If the
types and the values do match, sys_eq directly returns the
JavaScript-value true. If types do not match, the variable is
converted to the type of the respective operand, as specified
by JavaScript, and then compared.

Control Flow: The JavaScript if-then-else statement
corresponds one-to-one to the same GML statement. Con-
sequently, the conditional expression is translated straight-
forwardly. Using the expression mapping introduced in
the previous section (e.g. sys_eq implements the equality
operator), the JavaScript statement

if(a == b) { c = a; } else { c = b; }

is translated into:



322

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

%% if (a==b)
usr_a usr_b sys_eq sys_get_value
{ %% then:

dict begin {
dict begin

/usr_c usr_a sys_def
end

} exec end
}
{ %% else:

dict begin {
dict begin

/usr_c usr_b sys_def
end

} exec end
} ifelse

The exec-statements (and their closures) stem from the fact
that both sub-statements, the then-part and the else-part, are
statement blocks { ... }. These blocks are executed within
their own, new scopes.

Loops: GML supports different types of looping control
structures, which have similar names to JavaScript-loops
(e.g., both languages have a for-loop). However, the GML
counterparts have different semantics (e.g., GML’s for-loop
has a fixed, finite number of iterations, which is known
before execution of the loop body, whereas JavaScript-loops
evaluate the stop condition during execution, which may
result in endless loops). The Euclides translator uses the
GML loop mechanism, which is an infinite loop that can
be quit using the exit operator.

An important problem is that control structures such as
for, while and do-while are not only controlled by the
loop’s stop condition, but also by JavaScript statements such
as continue and break within the loop body (besides
return and throw as mentioned before). The statement
break immediately stops execution of the loop and leaves
it, whereas continue terminates the execution of the cur-
rent loop iteration and continues with the next iteration
of the loop. Therefore, we translate an empty while loop
while(false) { ... } to

{ /continue_called 0 def
{ 0 Types.bool sys_init_data
sys_get_value not { exit } if
{ dict begin

%% ... loop body omitted ...
end

} exec
} loop
continue_called not { exit } if

} loop

GML’s exit keyword terminates the current loop. This
behavior is leveraged by the Euclides translator to implement
break and continue. The translation uses two nested loops
that will run infinitely.

Prior to the begin of the inner loop /continue_called

is set to 0. At the top of the inner loop, the loop condition is

tested. If the condition evaluates to false, the inner loop is
exited using GML’s exit. Otherwise a new scope is created
and the loop-statement executed within that scope.

During loop iterations, there are three scenarios under
which a loop can terminate:

1) If the loop condition is met: When the condition
evaluates to false, the inner loop is exited. Since
continue_called is not set to true, the outer loop
will terminate as well.

2) If the loop body encounters JavaScript break

(resp. GML exit): Again, the inner loop is left.
continue_called will not be set to true, hence
the outer loop will also terminate.

3) If the function returns: GML’s exception throwing
mechanism will unwind the stack until the catch-
handler at the end of the function is encountered.

If the loop body encounters a JavaScript-continue state-
ment, continue_called will be set to true and the GML
exit command will immediately stop the inner loop. Since
continue_called is set, execution does not leave the
outer loop, however. As a consequence, continue_called
becomes 0 again, and execution re-enters the inner infinite
loop.

The do-while-statement is translated very similar to the
while-statement. The only semantic differences in JavaScript
are that execution will enter the loop regardless of the
loop-condition and that the loop-condition is tested after
loop body execution. Euclides translates an empty do-while-
statement do { ... } while(false) as follows:

{ /continue_called 0 def
{ { dict begin

%% ... loop body omitted ...
end

} exec
0 Types.bool sys_init_data

sys_get_value not { exit } if
} loop
continue_called not { exit } if
0 Types.bool sys_init_data
pop

} loop

Due to a semantic difference of JavaScript continue in
do-while-loops, this statement needs to be handled differ-
ently. If continue is encountered, the loop condition must
still execute before the loop body is re-entered, because
side effects inside the loop condition may occur (such as
incrementing a counter). Euclides handles this problem by
executing the condition expression a second time in the
outer loop. Since expressions always return values, any value
resulting from the loop-expression has to be popped off the
stack.

Although GML has a for operator, it is semantically
incompatible with JavaScript’s one. Its increment is a con-
stant number, and so is the limit. In JavaScript, both in-
crement and limit must be evaluated at each loop body



323

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

execution. Therefore, we translate for just like the pre-
vious constructs by two nested loops with the increment
condition repeated in outer loop (due to continue seman-
tics). Finally, Euclides translates the JavaScript statement
for (var i=0; i<1; i++) { } to GML via

dict begin
%% initialization (i=0)
/usr_i 0.0 Types.number sys_init_data def
{ /continue_called 0 def

{ %% condition (i<1)
usr_i 1.0 Types.number
sys_init_data sys_lt
sys_get_value not { exit } if
{ dict begin

%% ... loop body ...
end

} exec
%% increment (i++)
usr_i

usr_i 1 Types.number
sys_init_data sys_add

/usr_i sys_edef
pop

} loop
continue_called not { exit } if
%% increment again (i++)
usr_i
usr_i 1 Types.number
sys_init_data sys_add

/usr_i sys_edef
pop

} loop
end

In JavaScript, the following for-in statement
for(var x in array) statement; is semantically
equivalent to:

for(var i = 0; i < array.length; i++) {
var x=array[i]; statement;

}

This construction loops over the elements of an array
provides the loop body with a variable holding the current
element.
Selection Control Statement: The translation of the
JavaScript switch statement poses several difficulties:
• If a case condition is met, execution can “fall through”

till the next break is encountered.
• If a break is encountered, the currently executed
switch statement must be terminated.

• Of course, switch statements may be nested.
To develop a semantically consistent solution, we did

not want to alter the translation of JavaScript-break inside
switch statements (compared to loops). We solve the prob-
lem of breaking outside the switch statement by imple-
menting it as a loop that is run exactly once. In GML it reads
like 1 { loop_instructions } repeat. This way our
translation of break shows semantically correct behavior,

it terminates the loop. Consider the following JavaScript-
program:

var x = 0, y = 0;

function bar() { return 3; }

function foo(i) {
switch(i) {
case 0:

case 1:

case 2: x = 1;

case 4: x = 3;

case bar(): x = 2; break;

default: y = 5;

}
}

The function foo will be translated to:

/usr_foo
{ dict begin

/usr_i edef
/return_issued 0 def
{ dict begin
/switch_cnd_met1 0 def
1 { usr_i 0.0

Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
} if

usr_i
1.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
} if

usr_i
2.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 1;
/usr_x 1.0 Types.number
sys_init_data sys_def

} if

usr_i
4.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 3;
/usr_x 3.0 Types.number
sys_init_data sys_def

} if

usr_i usr_bar



324

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 2;
/usr_x 2.0 Types.number
sys_init_data sys_def
exit

} if
%% y = 5;
/usr_y 5.0 Types.number
sys_init_data sys_def

} repeat
currentdict /switch_cnd_met1 undef end

}
{ /return_issued 1 def } catch

return_issued not {
Nulls.Types.undefined
Types.undefined sys_init_data

} if
end
sys_exception_return_handler

} def

This example shows that we introduce an internal vari-
able /switch_cnd_metX for traversing the case state-
ments. As soon as a case statement condition is met,
/switch_cnd_metX is set to true, leading execution into
every encountered case statement.

The Euclides translator takes into account that switch
statements may be nested. As it traverses the AST,
it keeps book of all internal variable to ensure a
unique name (switch_cnd_met1, switch_cnd_met2, . . . ,
switch_cnd_metN).

The example translation shows that for foo(3) the cases
0, 1, 2, 4 and 3 (= bar()) will only execute case 3, where
the 1 { } repeat statement will be broken out of with the
GML exit operator. The default block will be executed in
any case if execution is still inside the repeat statement,
no further state is checked for default.

The JavaScript to PostScript translation target reduces
the inhibition threshold of the GML significantly. Even
advanced GML users, who already know how to program
in PostScript style, can use Euclides to translate algo-
rithms, which are often presented in a imperative, procedural
(pseudo-code) style [38].

V. CONCLUSION AND FUTURE WORK

The correct translation of control flow structures to vari-
ous target platforms is a non-trivial task. For example, due
to the fact that there is no concept of goto in the PostScript
language and its dialects, the main challenge is the complete
translation of JavaScript into a PostScript dialect including
all control flow statements. To the best of our knowledge,
this is the first complete translator. Other projects (PdB
by Arthur van Hoff, pas2ps by Dulith Herath and Dirk
Jagdmann) do not support e.g., return statements.

The main contribution is the meta-modeler concept, which
allows a user to export generative models to other platforms
without losing its main feature the procedural paradigm. It is
well suited for procedural modeling, has a beginnerfriendly
syntax and is able to generate and export procedural code for
various, different generative modeling or rendering engines.
The source code does not need to be interpreted or unfolded,
it is translated. Therefore, it can still be a very compact
representation of a complex model.

The target audience of this approach consists of beginners
and intermediate learners of procedural modeling techniques
and addresses application domain experts (e.g., archaeolo-
gists in a cultural heritage project) who are seldom computer
scientists. These experts are needed to tap the full potential
of generative techniques.

The current IDE only offers basic functionality and some
convenience when creating, editing or translating source
code. For further improvements, we envisage using a Swing-
based IDE framework like the NetBeans Platform, which of-
fers a modular approach for creating rich applications. In the
backend, further optimizations concerning the performance
of the generated code are planned - e.g., more direct mapping
onto native data types. Additional target languages would
extend the application field of the framework.

The Euclides modeler is available in version 2.0 and can
be downloaded at: http://www.cgv.tugraz.at/euclides.

ACKNOWLEDGMENT

We would like to thank Richard Bubel for his valuable
support on ANTLR and the JS grammar. In addition, the
authors gratefully acknowledge the generous support from
the European Commission for the integrated project 3D-
COFORM (www.3Dcoform.eu) under grant number FP7
ICT 231809, from the Austrian Research Promotion Agency
(FFG) for the research project METADESIGNER, grant
number 820925/18236, as well as from the German Research
Foundation (DFG) for the research project PROBADO under
grant INST 9055/1-1 (www.probado.de).

REFERENCES

[1] M. Strobl, C. Schinko, T. Ullrich, and D. W. Fellner, “Eu-
clides – A JavaScript to PostScript Translator,” Proccedings of
the International Conference on Computational Logics, Alge-
bras, Programming, Tools, and Benchmarking (Computation
Tools), vol. 1, pp. 14–21, 2010.

[2] D. Brutzman, “The virtual reality modeling language and
Java,” Communications of the ACM, vol. 41, no. 6, pp. 57
– 64, 1998.

[3] J. Behr, P. Dähne, Y. Jung, and S. Webel, “Beyond the Web
Browser – X3D and Immersive VR,” IEEE Virtual Reality
Tutorial and Workshop Proceedings, vol. 28, pp. 5–9, 2007.



325

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] F. Breuel, R. Bernd, T. Ullrich, E. Eggeling, and D. W.
Fellner, “Mate in 3D – Publishing Interactive Content in
PDF3D,” Publishing in the Networked World: Transforming
the Nature of Communication, Proceedings of the Interna-
tional Conference on Electronic Publishing, vol. 15, pp. 110–
119, 2011.

[5] M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno,
“SpiderGL: a JavaScript 3D graphics library for next-
generation WWW,” Proceedings of the 15th International
Conference on Web 3D Technology, vol. 15, pp. 165–174,
2010.

[6] J. K. Ousterhout, “Scripting: Higher Level Programming for
the 21st Century,” IEEE Computer Magazine, vol. 31, no. 3,
pp. 23–30, 1998.

[7] R. B. OpenGL Architecture, OpenGL Reference Manual,
R. B. OpenGL Architecture, Ed. Addison-Wesley Publishing
Company, 1993.

[8] NVidia, “NVIDIA CUDA C Programming Guide.”

[9] D. Reiners, G. Voss, and J. Behr, “OpenSG: Basic concepts,”
Proceedings of OpenSG Symposium 2002, vol. 1, pp. 1–7,
2002.

[10] G. Voß, J. Behr, D. Reiners, and M. Roth, “A multi-thread
safe foundation for scene graphs and its extension to clusters,”
Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization, vol. 4, pp. 33–37, 2002.

[11] B. Eckel, Thinking in C++: Introduction to Standard C++,
Practical Programming, B. Eckel, Ed. Prentice Hall, 2003.

[12] T. Ullrich, C. Schinko, and D. W. Fellner, “Procedural Mod-
eling in Theory and Practice,” Poster Proceedings of the
18th WSCG International Conference on Computer Graphics,
Visualization and Computer Vision, vol. 18, pp. 5–8, 2010.

[13] R. Berndt, G. Buchgraber, S. Havemann, V. Settgast, and
D. W. Fellner, “A publishing workflow for cultural heritage
artifacts from 3d-reconstruction to internet presentation,” in
Digital Heritage. Third International Conference, EuroMed
2010, M. Ioannides, D. W. Fellner, A. Georgopoulos, and
D. Hadjimitsis, Eds., vol. 6436. Springer, 2010, pp. 166–
178, doi:10.1007/978-3-642-16873-413.

[14] M. Strobl, R. Berndt, V. Settgast, S. Havemann, and D. W.
Fellner, “Publishing 3D Content as PDF in Cultural Her-
itage,” Proceedings of the 10th International Symposium on
Virtual Reality, Archaeology and Intelligent Cultural Heritage
(VAST), vol. 6, pp. 117–124, 2009.

[15] V. Settgast, T. Ullrich, and D. W. Fellner, “Information
Technology for Cultural Heritage,” IEEE Potentials, vol. 26,
no. 4, pp. 38–43, 2007.

[16] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Model-
ing Procedural Knowledge – a generative modeler for cultural
heritage,” Proccedings of EUROMED 2010 - Lecture Notes
on Computer Science, vol. 6436, pp. 153–165, 2010.

[17] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic
Beauty of Plants, P. Prusinkiewicz and A. Lindenmayer, Eds.
Springer-Verlag, 1990.

[18] Y. Parish and P. Mueller, “Procedural Modeling of Cities,”
Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, vol. 28, pp. 301–308,
2001.

[19] P. Müller, G. Zeng, P. Wonka, and L. Van Gool, “Image-
based Procedural Modeling of Facades,” ACM Transactions
on Graphics, vol. 28, no. 3, pp. 1–9, 2007.

[20] M. Lipp, P. Wonka, and M. Wimmer, “Interactive Visual
Editing of Grammars for Procedural Architecture,” ACM
Transactions on Graphics, vol. 27, no. 3, pp. 1–10, 2008.

[21] P. Müller, P. Wonka, S. Haegler, U. Andreas, and L. Van Gool,
“Procedural Modeling of Buildings,” Proceedings of 2006
ACM Siggraph, vol. 25, no. 3, pp. 614–623, 2006.

[22] B. Lintermann and O. Deussen, “A Modelling Method and
User Interface for Creating Plants,” Computer Graphics Fo-
rum, vol. 17, no. 1, pp. 73–82, 1998.

[23] B. Ganster and R. Klein, “An Integrated Framework for
Procedural Modeling,” Proceedings of Spring Conference on
Computer Graphics 2007 (SCCG 2007), vol. 23, pp. 150–157,
2007.

[24] D. Finkenzeller, “Detailed Building Facades,” IEEE Computer
Graphics and Applications, vol. 28, no. 3, pp. 58–66, 2008.

[25] S. Havemann, “Generative Mesh Modeling,” PhD-Thesis,
Technische Universität Braunschweig, Germany, vol. 1, pp.
1–303, 2005.

[26] E. Mendez, G. Schall, S. Havemann, D. W. Fellner,
D. Schmalstieg, and S. Junghanns, “Generating Semantic
3D Models of Underground Infrastructure,” IEEE Computer
Graphics and Applications, vol. 28, pp. 48–57, 2008.

[27] C. Reas and B. Fry, Processing: A Programming Handbook
for Visual Designers and Artists. MIT Press, 2007.

[28] S. Davidson, “Grasshopper- generative modeling for rhino,”
online: http://www.grasshopper3d.com/, 2011.

[29] D. Flanagan, JavaScript. The Definitive Guide, 5th ed.
O’Reilly Media, 2006.

[30] T. Parr, The Definite ANTLR Reference – Building Domain-
Specific Languages, T. Parr, Ed. The Pragmatic Bookshelf,
Raleigh, 2007.

[31] T. Ullrich, U. Krispel, and D. W. Fellner, “Compilation of
Procedural Models,” Proceeding of the 13th International
Conference on 3D Web Technology, vol. 13, pp. 75–81, 2008.

[32] C. Schinko, T. Ullrich, T. Schiffer, and D. W. Fellner, “Vari-
ance Analysis and Comparison in Computer-Aided Design,”
Proceedings of the International Workshop on 3D Virtual
Reconstruction and Visualization of Complex Architectures,
vol. XXXVIII-5/W16, pp. 3B21–25, 2011.

[33] T. Ullrich and D. W. Fellner, “Generative Object Definition
and Semantic Recognition,” Proccedings of the Eurographics
Workshop on 3D Object Retrieval, vol. 4, pp. 1–8, 2011.



326

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[34] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, C++
Toolbox for Verified Computing, R. Hammer, M. Hocks,
U. Kulisch, and D. Ratz, Eds. Springer, 1997.

[35] A. Griewank and A. Walther, Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation,
A. Griewank and A. Walther, Eds. SIAM, 2008.

[36] M. L. Keler, “On the Theory of Screws and the Dual Method,”
Proceedings of A Symposium Commemorating the Legacy,
Works, and Life of Sir Robert Stawell Ball Upon the 100th
Anniversary of ”A Treatise on the Theory of Screws”, vol. 1,
pp. 1–12, 2000.

[37] S. Havemann and D. W. Fellner, “Generative Parametric
Design of Gothic Window Tracery,” Proceedings of the 5th
International Symposium on Virtual Reality, Archeology, and
Cultural Heritage, vol. 1, pp. 193–201, 2004.

[38] T. H. Cormen, C. Stein, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, T. H. Cormen, C. Stein, C. E.
Leiserson, and R. L. Rivest, Eds. B&T, 2001.



327

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Simulation and Test-Case Generation for PVS

Specifications of Control Logics

Cinzia Bernardeschi, Luca Cassano, Andrea Domenici

Department of Information Engineering

University of Pisa, Italy

{c.bernardeschi, l.cassano, a.domenici}@ing.unipi.it

Paolo Masci

School of Electronic Engineering and Computer Science

Queen Mary University of London, UK

paolo.masci@eecs.qmul.ac.uk

Abstract—We describe a framework for the simulation of
control logics specified in the higher-order logic of the Prototype
Verification System. The framework offers a library of prede-
fined modules, a method for the composition of more complex
modules, and an event-driven simulation engine. A developer
defines a system architecture by composing its model out of
library modules, possibly introducing new module definitions,
and simulates the behaviour of the system model by providing
its input waveforms, which are given as functions from time to
logic levels. The generation of simulation scenarios (test cases)
can be automated by using parametric waveforms that can be
instantiated through universal and existential quantifiers. We
demonstrate the simulation capabilities of our framework on two
simple case studies from a nuclear power plant application. The
main feature of this approach is that our formal specifications
are executable. Moreover, once the simulation experiments give
developers sufficient confidence in the correctness of the speci-
fication, the logic models can serve as the basis for its formal
verification.

Keywords-PVS; simulation; validation; test-case generation;
control logics.

I. INTRODUCTION AND MOTIVATION

Control systems combine real-time requirements and non-

trivial control tasks whose failure may compromise safety.

Subtle design faults, difficult to avoid and tolerate, and the

possibility of failures caused by the occurrence of non-obvious

combinations of events, make such systems hard to certify with

respect to safety requirements.

The use of formal methods is increasingly being required by

international standards and guidelines for the development of

safety critical digital control systems. Formal methods are in

fact recognised as a fault avoidance technique that can increase

dependability by removing errors at the requirements, speci-

fication and design stages of development. In this paper, we

present a methodology (introduced in [1]) for the simulation of

control logics, formally specified in the higher-order logic of

the Prototype Verification System (PVS) [2], a specification and

verification system that combines an expressive specification

language with an interactive theorem prover. Thus, the same

model can be used both for simulation and formal verification

of system properties.

Formal methods are highly recommended by such standards

as the EN 50128:2001 European Standard [3] in the require-

ments specification and in the design and the validation of

railway control and protection systems, and the IAEA NS-

G-1.1 Standard [4] in digitalised instrumentation and control

systems in nuclear power plants.

On the other hand, verification and validation (V&V) of

embedded systems relies heavily, and often exclusively, on

simulation and testing. In particular, simulation is often the

only V&V tool in the development of ASIC- and FPGA-based

hardware. A typical development process for such systems

involves creating a block-diagram model through a CAD tool

that generates a model of the hardware at successive levels

of detail, and each of these intermediate models is simulated.

Alternatively, the initial model may be expressed in a hardware

description language such as Verilog [5] or VHDL [6].

A rigorous development process would benefit from the

combined application of formal verification, simulation, and

testing. In particular, simulation would be a means to validate

specifications against requirements. However, verification tools

(such as theorem provers and model checkers) and simulation

tools use different languages, and few designers are versed in

the use of both kinds of tools.

The work presented in this paper is focused on the vali-

dation of high level specifications of control logics, relying

on executable formal specifications. We note that executable

specifications are more commonly based on process algebras

or state machine formalisms that are more amenable to com-

puter execution than logic-based formalisms, but they suffer

the problem of state explosion [7].

It is assumed that the development process of a control

system starts from a specification expressed as function block

diagrams. This specification can be translated into a high-

order logic theory that guides the execution of a simulator.

When the simulation results make developers confident that

their specifications express the intended system behaviour, a

more detailed and formal analysis of its properties may be

done by theorem proving.

In function block diagrams, each block represents some

operation on digital or analog signals. Such operations in-

clude, for example, Boolean functions, comparison, voting,

integration and differentiation. Functional blocks may be

implemented in many ways: a single functional block may

correspond to one or more hardware modules, a group of

blocks may be implemented in a single hardware module, and

a block or group may be implemented in software executed



328

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by some programmable device. This work addresses systems

where only digital (i.e., discrete-valued) signals are present.

We have developed a library of purely logic specifications

for typical control system components, a methodology to

combine them into more complex systems, and a simulation

engine capable of animating the formal specifications with

the PVS ground evaluator. The library comprises definitions

for basic concepts, such as time, signals, and events. The

simulation framework also enables test cases (input data to the

simulations) to be automatically generated by using parametric

waveforms that can be instantiated through universal and

existential quantifiers.

The paper is organised as follows. Section II reports related

work on formal verification of digital control systems. We

introduce the PVS system in Section III, then we describe

the theories for the logical specification of signals and control

components (Section IV) and the theory defining the simu-

lator including a theory for the events associated to signals

(Section V). In Section VI, we describe two simple case

studies from the field of control logics for nuclear power plants

(NPPs), and, finally, the conclusion is found in Section VII.

II. RELATED WORK

The last few years have seen a continuous increase in

usage of digital components in safety critical control systems.

Digital control systems are flexible and enable sophisticated

control schemas to be realized. However, these systems are

complex and call for advanced tools and techniques to ensure

compliance with safety requirements. A few examples in the

literature point out to the difficulties in anticipating all risk

situations and to the fact that apparently harmless events (such

as small unforeseen changes in a sequence of operations) may

lead to catastrophic consequences. These reasons motivate the

introduction of formal methods in the development process of

control systems as early as their first phases (as acknowledged

by international standards). Such methods afford a precise

representation of control schemas and make it possible to

reason on control systems properties in a rigorous manner.

The application of these methods, however, must deal with

the problem of complexity of the systems to be analysed

and is therefore an advanced research topic with interesting

theoretical implications and relevant practical advantages.

In many research works, digital control system specifica-

tions are analyzed with logical-mathematical methods. Two

lines of research emerge from these works, addressing meth-

ods based on model checking [8] and theorem proving [9],

respectively. Model checking relies on generating a state

model of system behavior. Properties expressed in temporal

logic are automatically verified by model-checking algorithms.

Theorem proving relies on a logic language and a collection of

inference rules specific of each language. Verification is done

by proofs assisted by a theorem proving tool that can apply

inference rules in an entirely or partially automatic manner.

Several works have explored the use of model checkers

and theorem provers in the field of instrumentation and con-

trol. For instance, Krämer et al. [10] used the Isabelle/HOL

theorem prover for modelling and verifying programs for

programmable logic controllers. They demonstrated the utility

of using formal methods on such systems, and in particular

they argued that the sheer exercise of formalising system

descriptions given with graphical languages, such as function

block diagrams, is able to point out incomplete information

about functionalities, ambiguities, contradictions and design

flaws.

Wan et al. [11] used the Coq theorem prover for modelling

and verifying programs for programmable logic controllers

with timers. They addressed the problem of reasoning on

specifications that involve timers, and they propose a set of

axioms suitable to ease the modelling of timers at different

levels of abstraction.

Jee et al. [12] translated function block diagrams into

semantically equivalent Verilog programs that can be checked

with the SMV model checker, and they implemented also a

visualisation tool for animating the specifications.

Various works, like Vyatkin and Hanisch [13], and Missal

et al. [14], translated function block diagrams into Signal Net

Systems, a generalisation of Petri Nets, and then used ad hoc

analysis tools for analysing properties of interest on the Signal

Net System specification, such as reachability of dangerous

states and validation of arbitrary input/output specifications.

VHDL and Verilog are commonly used for logical circuits

design. Their key advantage is that they allow the behaviour of

a system to be modeled and simulated before synthesis tools

translate the design into real hardware. The problem of formal

verification of VHDL designs is dealt with in [15] where the

behaviour of a VHDL design is specified with temporal logic

formulas and a model checker is applied for the verification

of the design. In [16], a language to design circuits and prove

properties in the Nqthm theorem prover [17] is shown. The

language can be translated to a subset of VHDL.

Jain et al. [18] verified circuits described in Verilog with

a model checking and predicate abstraction technique, and

developed a model checking tool, VCEGAR, suitable to verify

safety requirements of control system specified in Verilog [19].

The model checking analysis of complex control systems

suffers of the state-space explosion problem, thus requiring

abstraction techniques where verification is performed on a

set of abstract states. Theorem provers are fundamental in this

application field, even if this kind of tools requires specific

competence of the control designer and verification is semi-

automatic.

In our work, on the other hand, we have investigated the pos-

sibility of integrating an event-based simulation environment

into a theorem proving system: simulations give designers an

intuitive and effective way for investigating the behaviour of

a system through test cases; theorem proving enables analysts

to explore all possible behaviours of the system, which is

essential in safety critical domains for detecting design errors

in advance.

PVS is currently one of the most popular and powerful

theorem provers, that has been used for formal reasoning in

several application domains [20]. In particular, it has been



329

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used in various works to specify and verify hardware systems,

e.g., in [21][22][23]. Other application fields include fault

tolerant systems [24], wireless sensor network protocols [25],

and distributed cognition systems [26].

With our approach, the formal specifications are executable

and they can be simulated with the ground evaluator of PVS.

This way, once the simulation experiments give developers

sufficient confidence in the correctness of the specification,

the same PVS models can serve as the basis for the formal

verification of properties in the theorem prover of PVS. It is

known that a large share of defects in computing systems stem

from errors in the formulation of specifications [27].

III. PVS AND PVSIO

The distinguishing characteristics of PVS [2] are its expres-

sive specification language and its powerful theorem prover.

The PVS specification language builds on classical typed

higher-order logic with the usual base types, bool, nat,

integer, real, among others, and the function type con-

structor (e.g., type [A -> B] is the set of functions from set

A to set B). Predicates are functions with range type bool.

The type system of PVS also includes record types, dependent

types, and abstract data types.

PVS specifications are packaged as theories that can be

parametric in types and constants. A collection of built-

in (prelude) theories and loadable libraries provide standard

specifications and proved facts for a large number of theories.

A theory can use the definitions and theorems of another

theory by importing it.

For instance, consider the following theory execution:

execution: THEORY

BEGIN
State: TYPE
tf : VAR [State -> State]
execute(n_steps: nat)(tf):

RECURSIVE [State -> State] =

LAMBDA (s: State):

IF n_steps = 0

THEN s

ELSE

LET s_prime = tf(s) IN

execute(n_steps - 1)(tf)(s_prime)

ENDIF

MEASURE n

END execution

The theory defines a State and a (higher-order) function

execute that recursively applies n_steps of a state-

transition function tf, that is provided as a parameter. As

all functions in PVS must be total, the termination of the

recursion has to be demonstrated; the MEASURE part provides

the information to the typechecker and prover to ensure this.

Thus, the execution theory provides a generic mechanism

to describe the execution of a system, that can subsequently

be used for simulation.

The PVS environment has an automated theorem prover

that provides a collection of powerful primitive inference

procedures that are applied interactively under user guidance

within a sequent calculus framework. The primitive inferences

include propositional and quantifier rules, induction, rewriting,

simplification using decision procedures for equality and linear

arithmetic, data and predicate abstraction [28].

Although PVS offers a very expressive specification lan-

guage, a large subset of the language is actually executable:

all ground expressions of ground type are executable; the

only fragments of the language that are not executable are

uninterpreted functions, quantification over infinite domains,

free variables, and equalities between higher-order terms.

However, the evaluation is nonstrict, and expressions may be

executed even if they contain unexecutable subexpressions.

PVS includes a ground evaluator [29] that can be used to

evaluate, test, and animate PVS specifications by executing

them on concrete data. The core of the ground evaluator is

a translator that compiles executable PVS expressions into

Common Lisp code. The translation is performed lazily, i.e.,

the translation of an expression happens only when its value

is actually required. The ground evaluator also consists of an

evaluation environment, which is an interactive read-eval-print

loop that allows the user to input expressions, and returns the

result of their evaluation.

The techniques used in the ground evaluator to associate

Lisp programs with PVS functions are also available to the

PVS user, who can provide pieces of Lisp code (called

semantic attachments) and attach them to PVS symbols.

This mechanism is useful to allow expressions that involve

unexecutable constructs, such as uninterpreted functions, to be

handled by the evaluator, by associating them with a suitable

implementation.

Using this mechanism, the PVSio package [30] extends the

ground evaluator with a predefined library of imperative pro-

gramming language features such as side effects, unbounded

loops, and input/output operations, and also provides a high-

level interface for writing user-defined semantic attachments.

Thus, PVS specifications can be conveniently animated within

the read-eval-print-loop of the ground evaluator.

In our framework, we exploit the expressiveness of the

PVS specification language for enabling a natural mapping

between higher order logic specifications and systems models

described as function block diagrams. We employ the mech-

anisms provided by PVSio for implementing a customisable

simulation environment suitable to animate the model of the

system expressed in higher order logic.

IV. MODELLING CONTROL LOGICS

In this section, we describe the PVS theories developed

to formally model control logics. We start with the PVS

theories that model time, logic levels, signals, and basic

operations on signals. Then, we introduce samples of the

library for the basic digital modules of a system, such as

logic gates and timers. Finally, we show how to build complex

components out of basic elements. The developed theories

are executable: definitions always use interpreted types and

quantification is always performed over bounded types. In the

following sections, only the time_th theory will be shown in

a syntactically complete form; only some relevant fragments



330

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of PVS code will be shown in the rest of the paper for the

other theories.

A. Time

Time is modelled as a variable ranging over the continuous

domain of real numbers. Theory time_th (shown below)

contains the type definition of time (modelled as ranging over

the continuous domain of real numbers) and time interval.

In the theory, time represents the relative time with respect

to an initial time. The initial time is the zero reference

point: negative time values represent time instants preceding

the initial time, while positive time values represent time

instants following the initial time. Type interval models

time intervals with a non-negative real number (instantaneous

time intervals have duration zero).

time_th: THEORY

BEGIN

time: TYPE = real

interval: TYPE = {t: time | t >= 0}
END time_th

B. Logic Levels

The logic levels of hardware circuits correspond, in the

real world, to voltage or current levels. Besides the classical

zero and one values, additional levels are needed to model

unknown values and high impedance. Unknown values are

useful to model the logic level when the digital circuit is

powered up, while high impedance is useful to represent open

circuits or mis-wiring situations (e.g., the designer forgets to

wire a port of the digital circuit).

Theory logic_levels_th provides the definitions of the

logic levels and of the logical operators over the four-valued

logic. In the theory, logic levels are modelled with natural

numbers (each level is associated with a unique number),

and each level is associated with a mnemonic name and a

recogniser predicate (denoted by the mnemonic name followed

by a question mark symbol). In the following fragment, we

show the definitions of types and constants, and the definition

of the basic logical operator lAND over the four-valued logic.

Other definitions are in Appendix A.

logic_levels_th: THEORY

BEGIN

%-- logic level (type definition)

logic_level: TYPE = below(4)

%-- names of logic levels

zero: logic_level = 0

one: logic_level = 1

Z: logic_level = 2 %-- high impedance

U: logic_level = 3 %-- unknown

%-- logical AND in a four-valued logic

lAND(v1, v2: logic_level): logic_level =

IF one?(v1) AND one?(v2) THEN one

ELSIF zero?(v1) OR zero?(v2) THEN zero

ELSE U ENDIF

% ...

END logic_levels_th

C. Signals

A signal describes the variation of a logic level over time,

and we represent signals as functions from the domain of time

to logic levels. Signal transitions are specified pointwise, by

comparing the logical level of the signals at two closely spaced

time points. The spacing between time points corresponds to

the time resolution of the digital circuit, i.e., the minimum

amount of time required by the components in the circuit for

detecting two observable variations of a signal. This allows

us to simplify the definition of signals transitions, and also

to define executable functions for detecting signals transitions

over the continuous time domain. Note that the generality of

properties proved on specifications involving the concept of

time resolution does not affected the generality of the proof,

because the actual value of the time resolution can be left

unspecified (i.e., any value is possible) when doing the proof.

Theory signals_th contains, besides the definition of

signal, the symbolic constant for time resolution, tres,

which models the minimum time between two observable

variations of a signal, and the definitions of utility functions

to shift a signal in time (time_shift) and to build periodic

signals (periodic).

Basic signals provided in the theory are: constval, a

constant logical level; step, a signal that goes from zero to

one at time τ ; pulse, a signal that is one only in the time

interval [τ, τ + d), where d is the interval size.

Some useful predicates on signals are defined, such as

rising_edge?, used to detect if a signal s has a rising

edge at time tau. Logical operations on signals are defined

(sOR, sAND, sNOT), that apply the operator to the values of

signals at each given time. Sample definitions of this theory

follow. More definitions are in Appendix A.

signals_th: THEORY

BEGIN

IMPORTING time_th, logic_levels_th

%-- signal (type definition)

signal: TYPE = [time -> logic_level]

%-- symbolic constant of the minimum time

% between two observable variations in a signal

tres: posreal

%-- definition of basic waveforms

step(tau: time): signal =

LAMBDA (t: time):

IF t >= tau THEN one ELSE zero ENDIF

% ...

%-- time shift of the signal

time_shift(s: signal, offset: time): signal =

LAMBDA (t: time): s(t - offset)

%-- logical operators in a four-valued logic

sAND(s1, s2: signal): signal =

LAMBDA (t: time):

IF one?(s1(t)) AND one?(s2(t))

THEN one

ELSIF zero?(s1(t)) OR zero?(s2(t))

THEN zero

ELSE U ENDIF

% ...

END signals_th



331

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

q

q’

r

s

(a) (b)

r

s q’

q

SR

y
0

x
00

x
01

G
0

y
1x

10

x
11

G
1

Fig. 1. An SR flip-flop.

D. Digital Modules

In our framework, a control logic is a composite digital

module, obtained by connecting basic digital modules. Digital

modules are characterised by a set of ports, a state, and a

transition function.

Ports are abstractions of the terminals of physical devices.

Each port is identified by its category (one of input, output,

internal) and its port number within the category. Basic

modules have only input and output ports, whereas composite

modules also have internal ports. In a composite module, the

input and output ports are its externally visible terminals,

and its internal ports are the ports of the (basic) component

modules that are not externally visible. For example, a NOR

gate is modelled as a module with two input ports, one output

port, and no internal ports. Another example is an SR flip-flop,

which can be modelled either as a basic module (Figure 1(a))

with two input ports, two output ports and no internal ports,

or as a composite module built from two NOR gates. In this

case, the resulting system is shown in Figure 1(b), where ports

x00 of gate G0 and x11 of gate G1 are input ports, ports y0
of G0 and y1 of G1 are output ports, and ports x01 and x10

are internal ports.

The state of a module is defined as the set of signals

(i.e., functions of time modelling waveforms) applied to, or

generated by, the module at a given time. Defining the state

as a set of time functions instead of instantaneous values

makes it possible to define the behaviour of some modules

in terms of properties of such functions, thus allowing for

better expressiveness. As an example, we may consider the

specification of a timer, whose output depends on the shape

(namely, the presence of a rising edge) of its input signal,

along with the current value of the output:

timerM(d: posreal): basic_digital_module(1, 1) =

LAMBDA (t: time):

LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND

zero?(port0(output(s)), t)

THEN s

WITH [output := ports(pulse(t + delay, d))]

ELSE s

ENDIF

With this approach, a state transition occurs when a signal

on a port is replaced by a different one. For example, let us

consider the timer defined above, timerM. Let us suppose that

the initial signals on the output port of the timer is a constant

logical zero (constval(zero)) and that the input signal is

a step, with rising edge at t = t∗ (step(t_star)). As long

as t < t∗, the output signal remains a constant logical zero,

because the condition expressed in timerM is false. When

t = t∗, the condition in timerM becomes true, and the state

changes: the constant logical zero signal on the output port

is replaced with a pulse signal of duration d starting after a

propagation latency (pulse(t + delay, d)). As a signal

is formally defined over the whole time axis, all signals in the

context of a given state are meant to be ‘sliced’ to the time

interval in which the state holds. In the previous example,

the temporal evolution of the timer defines two states, each

of which is associated to a validity interval: the first state

is characterised by a step(t_star) on the input port, a

constval(zero) on the output port, and is valid in the

time interval [0, t∗); the second state has step(t_star)

on the input port, pulse(t_star + delay, d) on the

output port, and is valid in the time interval [t∗,+∞).
The transition function specifies how the state

changes according to a module’s functionality. Theory

digital_modules_th contains type definitions for the

state of a digital module (state) and for transition functions

(digital_module). Type state is a record that maintains

the lists of signals applied at any time on its ports. It has

one list of signals for each of the three port categories, and

a port of the system is identified by its position in the list

of the corresponding category. In the rest of this paper the

term signal will sometimes be used instead of port, so that

‘signal x’ means ‘the signal present at port x.’ The transition

function type digital_module is time-dependent and has

the signature [time → [state → state]]. The theory includes

also a number of auxiliary functions to build lists of ports

(i.e., of signals) and to select a specific port of a module,

such as ports(n), ports(s, n), etc. The first definitions

of the theory follow.

digital_modules_th THEORY

BEGIN

IMPORTING signals_th

%-- type definitions

ports: TYPE = list[signal]

state: TYPE = [# input: ports, output: ports,

internal: ports #]

digital_module: TYPE = [time -> [state -> state]

%-- port contructors

ports(n: nat): RECURSIVE

{p: ports | length(p) = n} =

IF n = 0 THEN null

ELSE cons(constval(U), ports(n - 1)) ENDIF

MEASURE n

ports(s: signal, n: nat): RECURSIVE

{p: ports | length(p) = n} =

IF n = 0 THEN null

ELSE cons(s, ports(s, n - 1)) ENDIF

MEASURE n



332

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

%-- port selectors

port(p: ports, i: below(length(p))): signal =

nth(p,i)

% ...

END digital_modules_th

Types state and digital_module are very general,

and they are refined by subtyping in the theories for basic

digital modules and composite digital modules, discussed

below.

E. Basic Digital Modules

Basic digital modules are elements without a visible internal

structure, defined only by their input and output ports and by

their transition function. The state of a basic module has an

empty list of internal signals, and the lists of input and output

signals have a predefined length.

Basic modules are classified into two categories, combi-

natorial and sequential. The output signals in the next state

of combinatorial modules (i.e., logic gates) depend only on

the output signals of the current state, whereas in sequential

modules (such as timers and flipflops) the output signals in

the next state depend on both the input and the output signals

of the current state.

The theory is parametric with respect to a delay parameter,

representing the time needed by the component to change its

outputs when its inputs change.

In addition to the parameterized definitions for the state and

transition function types, the theory contains a state constructor

(new_state). Part of the theory is shown below.

basic_digital_modules_th[delay: nonneg_real]: THEORY

BEGIN IMPORTING digital_modules_th

state(nIN, nOUT: nat): TYPE =

{s: state | length(input(s)) = nIN AND

length(output(s)) = nOUT AND

length(internal(s)) = 0 }

basic_digital_module(nIN, nOUT: nat): TYPE =

[time -> [state(nIN, nOUT) -> state(nIN, nOUT)]]

% ...

END basic_digital_modules_th

This theory is imported by other theories that define various

classes of basic blocks, such as logic gates, timers, and flip-

flops, presented in the following.

1) Logic gates: The logic_gates_th theory defines

the transition functions of the basic combinatorial gates. The

theory is parameterized by the propagation delay of the gates.

As the state is defined by the signals at the ports (and not

the instantaneous values), the new state will normally be equal

to the previous one, unless the environment applies different

signals to the inputs (e.g., a pulse replaces a constant level).

The definition for the NOR gate is shown below.

logic_gates_th[delay: nonneg_real]: THEORY

BEGIN IMPORTING basic_digital_modules_th

gateNOR: basic_digital_module(2, 1) =

LAMBDA (t: time): LAMBDA (s: state(2, 1)):

s WITH [output := ports(time_shift(

sNOR(port0(input(s)), port1(input(s))),

delay))]

% ...

END basic_digital_modules_th

2) Timers: The timers_th theory defines devices that

generate a single pulse when they receive a rising edge on their

input port. The pulse duration is a parameter of the device.

Their response to the input depends on previous values of the

output and possibly of the input(s). The theory defines also

resettable timers, whose output drops to zero on receiving a

rising edge at the reset port. An excerpt of the PVS theory

follows. More definitions in Appendix A.

timers_th[delay: nonneg_real]: THEORY

BEGIN

IMPORTING basic_digital_modules_th

%--timer

timerM(d: posreal): basic_digital_module(1, 1) =

LAMBDA (t: time):

LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND

zero?(port0(output(s)), t)

THEN s

WITH [output := ports(pulse(t + delay, d))]

ELSE s ENDIF

% ...

END timers_th

3) Flip-flops: The flipflop_th theory defines 1-bit

memory registers. Let us consider the SR flip-flop (Fig-

ure 1(a)). Ports s and r are the set and reset terminals, the

stored bit is on the output marked q, and q′ is its complement.

Ports q and q′ hold their previous value when s and r are both

zero. If s becomes one while r is zero, then q is one, and stays

at one even after s returns zero. Similarly, if r becomes one

while s is zero, then q is zero, and stays at zero even after

r returns zero. The PVS specification of the SR flip-flop is

shown in Appendix A.

F. Composite Digital Modules

Basic digital modules can be connected together to create

composite digital modules. The corresponding theory contains

only the high-level definition for the state and the transition

function, and for a state constructor (not shown).

state(nIN, nOUT, nINT: nat): TYPE =

{s: state | length(input(s)) = nIN AND

length(output(s)) = nOUT AND

length(internal(s)) = nINT}

composite_digital_module(nIN, nOUT, nINT: nat):

TYPE = [time -> [state(nIN, nOUT, nINT)

-> state(nIN, nOUT, nINT)]]

A composite module is modelled by the composition of the

transition functions of its components, whose form depends

on the interconnections of the components.

In order to build the composite module, one must first

define the system state, i.e., the union of its input, output,

and internal ports. Then the subsets of the composite system

state relative to the components (component substates) must

be identified. Then a composite transition function is defined

along the following lines: (i) Each port of the composite

module is assigned a unique name by equating the port to

a variable of type signal in a LET expression (e.g., r =



333

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

port0(input(st)) gives the name r to the first input

port of state st); (ii) for each basic component, we define its

current substate by selecting its input and output signals from

the current system state; (iii) for each basic component, we

define its next substate as a variable of type state, and we

equate it to the basic component’s transition function applied

to the current substate defined in the previous step; (iv) the

output signals of the new system state are the union of the

output signals of the new substates of the basic components

connected to the system output; (v) the internal signals of the

next system state are the union of the internal signals of the

new substates of the basic components.

The composite transition function applies the transition

functions of the basic components to the respective substates,

obtaining a set of new substates that may not be consistent.

Suppose, for example, that a composite module M is made

of two inverters m1 and m2 in cascade, and that in the initial

state there is a constant zero at the input of m1, a constant one

between m1 and m2, and a constant zero at the output of m2.

If, at time t, the input signal to m1 becomes a step function,

the evaluation of the composite transition function places an

inverted step between m1 and m2, but leaves a constant zero at

the output of m2, since its transition function is computed with

the previous substate. Therefore, the final state of a transition

is computed by an iterative process (similar to a fixed-point

computation) that repeatedly applies the transition function

until a consistent state is reached, i.e., a state s such that

s = fT (s), where fT is the composite transition function.

As an example, we show the composite module of the SR

flip-flop built from a pair of cross-coupled NOR logic gates.

With reference to Figure 1(b), in this example port x01 is

renamed as r1, and x10 as s1.

flipflopSR: composite_digital_module(2, 2, 2) =

LAMBDA (t: time):

LAMBDA (st: state(2, 2, 2)):

LET r = port0(input(st)),

s = port1(input(st)),

q = port0(output(st)),

q_prime = port1(output(st)),

r1 = port0(internal(st)),

s1 = port1(internal(st)),

nor0 = gateNOR[tres](t)(new_state(2, 1)

WITH [input := ports(r, r1),

output := ports(q)]),

nor1 = gateNOR[tres](t)(new_state(2, 1)

WITH [input := ports(s, s1),

output := ports(q_prime)])

IN st WITH [output := ports(port0(output(nor0)),

port0(output(nor1))),

internal := ports(port0(output(nor1)),

port0(output(nor0)))]

In the system transition function flipflopSR, we let

signal r be the signal on the first input port (port0) of the

current system state st, and similarly for s, q, q_prime,

s1, and r1. Then, substate nor0 of gate G0 is the result of

transition function gateNOR. The argument of this function

is a state with input signals r and r1, and output signal q. A

similar description applies to nor1.

The state returned by flipflopSR is the current state

st with the output signals set equal to the output signals

of the next substates of the two NOR gates. Similarly, the

internal ports are set equal to the output signals due to the

cross-coupling of NOR gates.

V. THE EVENT-DRIVEN SIMULATOR

This section describes an event-driven simulator of digital

modules. First, we introduce events, i.e., instants when a signal

may change its value. Second, we extend the specification of

the system with events. Third, we present the event-driven

simulation engine, which uses the extended specification to

evaluate the system only at specific instants, instead of at

periodic steps as in time-driven approaches [31].

A. Events

Theory events_th defines the type event as a record

with fields t, the instant of a single event or of the first of

a series of periodic events, and T, the period of the series

(single events have T=0). The theory includes the ordering

relation between events and operations on list of events. Some

definitions are shown below.

BEGIN IMPORTING time_th

event: TYPE = [# t: time, T: interval #];

<(e1, e2: event): bool =

(t(e1) < t(e2)) OR

(t(e1) = t(e2) AND T(e1) < T(e2))

B. Annotated Signals

In theory annotated_signals_th we annotate the

formal specification of signals with the list of events associated

with each signal. We redefine the type signal as a record

with the fields val, the functional specification of the signal,

and evts, the set of instants when the waveform changes

value. For example, the set of events associated with a constant

level generator is empty, while the set of events associated with

a pulse generator at time τ and duration d contains events τ
and τ + d, both with period T = 0.
The basic operators on signals are re-defined to calculate

the events of the resulting signal, whose events are the union

of events of the operator parameters.

Some events in the resulting signal may not affect the

signal value. For example, in the case of sOR, if initially

one of the inputs is a constant one, no set of events on the

other input causes any change in the output. Such redundant

events, however, do not affect the simulation results. The event

annotation is therefore correct as the application of operators

to signals yields a signal whose annotation contains all the

instants when the signal changes according to its definition.

An informal justification of this statement follows in the next

paragraphs.

First, we consider the basic signals, having a finite number

of events: constval, which has a given constant logic level at all

instants; step, which has logic level zero at all instants before

a given time t, and one for all other instants; pulse, which has

logic level one at all instants in a given interval [t, t+ d], and
zero for all other instants. Therefore, the annotated versions



334

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
OPERATOR EVENT ANNOTATIONS.

Operator Events

NOT(s1) events(s1)
AND(s1,s2) events(s1) ∪ events(s2)
OR(s1,s2) events(s1) ∪ events(s2)
timeshift(s1,D) add D to the time of each e ∈ events(s1)
periodic(s1,T ) make each non-periodic e ∈ events(s1) periodic

with period T , keep periodic ones unchanged

of constval has no events, step has one event at the instant of

the rising edge of the signal, and pulse has two events, one at

the instants of the rising edge and one at the falling edge of

the signal. The definitions for these signals are as follows:

constval(v: logic_level): signal =

(# val := LAMBDA (t: time): v,

evts := new_event(0) #)

step(tau: time): signal =

(# val := LAMBDA (t: time):

IF t >= tau

THEN one ELSE zero ENDIF,

evts := new_event(tau) #)

pulse(tau: time, d: posreal): signal =

(# val := LAMBDA (t: time):

IF t >= tau AND t < tau + d

THEN one ELSE zero ENDIF,

evts := new_event(tau) + new_event(tau + d) #)

We now consider the signal operators, whose behaviour

with respect to signal annotation is shown in Table I. As an

example, the following fragment shows the definition of the

sNOR operator:

BEGIN IMPORTING events_th, logic_levels_th

sNOR(s1a, s2a: signal): signal =

LET s1 = val(s1a), s2 = val(s2a),

f = LAMBDA (t: time):

IF one?(s1(t)) OR one?(s2(t)) THEN zero

ELSIF zero?(s1(t)) AND zero?(s2(t)) THEN one

ELSE U ENDIF,

e = evts(s1a) + evts(s2a)

IN (# val := f, evts := e #)

Let si be a correctly annotated signal occurring as the i-th
operand of an operator. Let s be the signal generated by the

operator, and let Es be the set of events that annotate signal

s. Let τ(e) be the time value (i.e., the value of the t field) of

an event e, and let ω(e, i) be the time of the only occurrence

of event e, if i = 0, or of its i-th occurrence otherwise. We

finally define a non-periodic signal s as alive in an interval I
if I is the shortest time interval containing all events of s.

The logical operators annotate s with the union of the events
of si. The annotation is correct because the signal generated

by any logical operators may change level only at the instants

in which at least one of the signals occurring as an operand

changes level.

The timeshift operator annotates s with a set of events Es

where ∀e′ ∈ Es, ∃e ∈ Es1 such that τ(e′) = τ(e) + D,

where D is the offset that delays (positive offset) or advances

(negative offset) the signal waveform. The annotation is correct

because a signal delayed by D has all its original events

posticipated of D, and a signal advanced by D has all its

original events anticipated by D.

The periodic operator annotates s with a set of periodic

events Es where ∀e′ ∈ Es, ∀i ∈ IN, ∃e ∈ Es1 such that

ω(e′, i) = τ(e) + iT , where T is the period parameter of

the operator. The annotation is correct because the periodic

extension of a signal alive in an interval I has all events

repeated with a period T , where T is greater than the length

of I .
Annotated signals carry all the information needed by the

simulator to handle events, so the specification of the digital

modules remains unchanged.

C. Simulator

The simulator maintains a list of events (worklist), initialised

with the starting time of the simulation. The events are listed

in ascending order without duplicates. At each simulation step,

the simulator extracts the first event (current event) from the

worklist, and then it computes the next state by applying the

system transition function at the time specified by the event.

Then, the events associated with the signals in the generated

state are inserted in the working list, provided that they are

not earlier than the current event.

1) Worklist: Theory worklist_th defines the type

worklist as a list of events, provides the function

get_first that, given a current time, returns the first

event associated with a set of signals and greater than the

current time, and the function update_wl that updates the

worklist. Function update_wl finds the new events in the

next state and inserts them in the worklist. Note that, since the

model of the system may contain ideal modules that update

instantaneously their output ports, function update_wl must

not remove the current event from the worklist as long as the

generated state is not consistent (Section IV-F). For this reason,

if the next state is different from the current state, then also

the current event is inserted in the worklist.

The PVS specifications of these simple worklist manipula-

tions are not shown.

2) Simulation Engine: The simulation engine applies the

system transition function and returns the state of the system

after a certain number of steps. It uses a customisable dump

function to output a simulation trace.

The input parameters are the maximum number of steps, the

system transition function, the worklist, the output stream for

the trace, and the names of the signals. The function is called

with an initial worklist containing all events of the initial state

and an event for the initial time.

At each step, the function (i) gets the simulation time from

the first event in the worklist, (ii) generates the next system

state, (iii) updates the worklist, and (iv) outputs the system

state.

The simulation terminates when either the new worklist is

empty, or the maximum number of steps is reached. The PVS

specification of the function follows.



335

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simulate_system(n_steps: nat)

(f: [time -> [state -> state]])

(wl: worklist) (outf: OStream, pn: port_names):

RECURSIVE [state -> state] =

LAMBDA (s: state):

IF n_steps > 0 AND length(wl) > 0

THEN

LET curr_t = t(get_first(wl)),

s_prime = update_state(s)(curr_t, f),

wl_prime = update_wl(wl)(curr_t, s, s_prime),

dbg = dump(outf, pn, s, s_prime,

wl, wl_prime, curr_t)

IN simulate_system(n_steps - 1)(f)(wl_prime)

(outf, pn)(s_prime)

ELSE s ENDIF

The following excerpt shows how the digital module

flipflopSR is simulated. In function sim_flipflopSR,

the initial state is constructed from the signals at the ports, the

worklist is initialised, and simulate_system is invoked

with the transition function as an argument. The reset port is

initially fed with a constant zero signal, the set port with a

pulse of 4s at time 0.3, and q (q′) holds a constant zero (one).

sim_flipflopSR(N_STEPS: nat): bool =

LET r = constval(zero), s = pulse(0.3, 4),

q = constval(zero), q_prime = constval(one),

r1 = q_prime, s1 = q,

initial_st = new_state(2, 2, 2)

WITH [input := ports(r, s),

output := ports(q, q_prime),

internal := ports(r1, s1)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(N_STEPS)(flipflopSR)

(initial_wl)(outf, pn)(initial_st)

IN TRUE

The simulation trace can be a list of event times, signal

values and worklist contents at each step, or a Value Change

Dump [5] output, readable by a visualisation tool.

D. Automated Execution of Test-Cases

In this section we show how PVS constructs can be con-

veniently used to execute test cases, relying on the PVS

ground evaluator. The ground evaluator interprets a universal

quantifier by generating all possible values for the quantified

variable (provided it has a discrete type) and evaluating the

formula for each value. Universal quantifiers may then be

used much like for instructions in imperative programming

languages.

In the following example, the test_flipflopSR func-

tion uses the FORALL quantifier to generate all possible

combinations of logical levels. Each combination defines an

initial state for an SR flip-flop, and each state is used to com-

pute a next state. The ground evaluator implicitly transforms

the universally quantified formula into a loop that, at each

iteration, applies the transition function and prints out the

values at the ports in the initial and in the next state.

test_flipflop_th: THEORY

BEGIN %--imports omitted

% ...

discrete_time: TYPE = below(2)

test_flipflopSR: bool =

FORALL (t_set, t_reset: discrete_time):

FORALL (v1, v2: logic_level):

v1 /= v2 IMPLIES

(LET initial_st = new_state(2, 2, 2)

WITH [input := ports(pulse(t_reset, 1),

pulse(t_set, 1)),

output := ports(constval(v1),

constval(v2)),

internal := ports(constval(v2),

constval(v1))],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(5)(flipflopSR)

(initial_wl)(outf,pn)(initial_st)

IN TRUE)

% ...

END test_flipflop_th

In Appendix B, we show an excerpt of the output generated

by the above function, where each test case shows the signal

values at the initial state (generated by the variable quantifiers)

and the values at successive steps of the simulation.

VI. CASE STUDIES: A STEPWISE SHUTDOWN LOGIC

As an illustration of the practical applicability of the frame-

work presented in this paper, we report on a simple case

study from the field of Instrumentation and Control for NPPs.

Two high-level descriptions of a control logic, expressed as

Function Block Diagrams [32], have been manually translated

into PVS specifications using the presented framework, and

the specifications have been animated to simulate the control

logic. Simulated test cases have been automatically generated,

allowing a possible malfunction to be detected at this early

stage of development.

A. Description of a Stepwise Shutdown Logic

A stepwise shutdown process keeps process variables (such

as, e.g., temperature or neutron flux) within prescribed thresh-

olds by applying a corrective action (e.g., inserting control

rods) not immediately to its full extent, but gradually, in a

series of discrete steps separated by settling periods.

A Stepwise Shutdown Logic (SSL) was analysed in [33]

with a model checking approach. The framework proposed in

this paper is used to analyse the same system.

The requirements of the SSL, as described in [33], can

be informally stated as follows: if an alarm signal (e.g.,

overpressure in a pipe) is asserted, the system must assert a

control signal to drive a corrective action for three seconds

(active period), then the control signal is reset for twelve

seconds (wait period) and the cycle is repeated until either

the alarm signal is reset or a complete shutdown is reached.

An operator, however, by activating a manual trip signal, may

force the wait periods to be shortened in order to accelerate

the process.

B. Design A

Figure 2 shows the main part of design A, where m is the

manual trip, p is an alarm signal, and out is the control signal.

When all signals are low, the output t2_out of timer T2 is

low, and the AND gate is enabled. When p is asserted, its

rising edge passes through the AND gate to the input of the

T1 timer that sends a 3 s pulse to the output. The output is fed

back to the input of T2, a resettable timer with a pulse duration



336

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systemA: composite_digital_module(nIN, nOUT, nINT) =

LAMBDA (t: time):

LAMBDA (st: state(nIN, nOUT, nINT)):

LET m = port0(input(st)), p = port1(input(st)), out = port0(output(st)),

t2_in = port0(internal(st)), t2_out = port1(internal(st)),

%... similar definitions for or1_in, and_en, and_out

rtimer = rtimerM[T1](D2)(t)(new_state(2,1)

WITH [input:=ports(t2_in,m), output:=ports(t2_out)]),

or1 = gateOR[T0](t)(new_state(2,1) WITH [input:=ports(or1_in,p), output:=ports(or1_out)]),

inh_and = gateANDH[T0](t)(new_state(2,1) WITH [input:=ports(and_en,and_in), output:=ports(and_out)]),

timer = timerM[T2](D1)(t)(new_state(2,1) WITH [input:=ports(t1_in), output:=ports(out)])

IN st WITH [input := ports(m, p),

output := ports(port0(output(timer))),

internal := ports(port0(output(timer)), port0(output(rtimer)), m,

port0(output(or1)), port0(output(rtimer)), port0(output(or1)),

port0(output(inh_and)), port0(output(inh_and)))]

Fig. 3. PVS model of the Stepwise Shutdown Logic.

15 s

3 s

R
t2_out

rtimer

T2m

OR ANDp

t1_in

timer

T1

outor_out

Fig. 2. A simplified view of a stepwise shutdown logic, design A.

of 15 s. The output pulse of T2 disables the AND gate that

in turn resets the input of T1. Since T1 is not resettable, its

output pulse lasts for three seconds, then returns to low for

the remaining 12 s of the T2 pulse. After this wait period, the

output of T2 goes low, the AND gate is enabled, and T1 starts

a new pulse if an input signal is still asserted.

If p is high, and m is asserted during a wait period, T2 is

reset and its output enables the AND gate, allowing the trip

signal to reach T1 and restart it at the end of the 3 s pulse.

The SSL is modelled by the systemA transition function

(see Figure 3), according to the guidelines in Section IV. All

components are assumed to introduce a delay of 1 ms.

In the rest of this section we show some simulated situ-

ations. First we examine a few scenarios generated with the

procedure described in Section V-D.

1) Automated Execution of Test-Cases: Assuming that an

overpressure (say) signal p is asserted at time t = 1 s and

remains constant thereafter, we study the possible effects of a

manual trip request by letting the time of occurrence of the

request vary over a given interval. More precisely, we model

the request as a 1 s pulse on the m line, with an initial instant t0
varying between 1 and N seconds, with steps of one second.

This is done by the following code:

sim_systemA_test(N:nat): bool =

FORALL(t0: below(N)):

LET

initial_st = new_state(nIN, nOUT, nINT)

WITH [input := ports(pulse(t0,1), step(1)),

output := ports(constval(zero)),

internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(NSTEPS)(systemA)

(initial_wl)(outf, pn)(initial_st)

IN TRUE

The maximum number of simulation steps for each run

(NSTEPS) was set at one hundred.

The simulator outputs of the initial four test cases (t ∈
{1, 2, 3, 4}) are summarised in Tables II, III, IV, and V.

Examining the data recorded in these tables, we notice that

two different behaviours are exhibited by the system, as shown

by Tables II and V on one hand, and Tables III and IV on the

other hand. With the manual trip signal activated at t0 = 1 s

(Table II) and at t0 = 4 s (Table V), the simulation executes

the maximum requested number of steps, up to a simulated

time of 271.039 s and 259.037 s, respectively.

TABLE II
AUTOMATED TESTS FOR DESIGN A (t0 = 1).

t0 = 1

time m p out worklist

0. 0 0 0 [ 0 001 1 2 ]
0.001 0 0 0 [ 0.002 1 2 ]
0.002 0 0 0 [ 1 2 ]
1. 1 1 0 [ 1 001 2 ]
1.001 1 1 0 [ 1.002 2 ]
1.002 1 1 1 [ 1.003 2 ]
1.003 1 1 1 [ 1.004 2 ]
1.004 1 1 1 [ 2 ]
2. 0 1 1 [ 2 001 ]
. . . . . . . . . . . . . . .

256.035 0 1 0 [ 256.036 ]
256.036 0 1 1 [ 256.037 ]
256.037 0 1 1 [ 256.038 ]
256.038 0 1 1 [ 259.036 ]
259.036 0 1 0 [ 271.037 ]
271.037 0 1 0 [ 271.038 ]
271.038 0 1 1 [ 271.039 ]
271.039 0 1 1 [ 271.04 ]

We observe that the worklist is not empty at the last step,

and deduce that the simulation could proceed for a greater

(possibly unbounded) number of steps. This is supported by

the periodic pattern shown by the values of the out signal.

This is the expected behaviour, where the output signal skips a

wait period when the manual trip button is depressed and, after



337

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III
AUTOMATED TESTS FOR DESIGN A (t0 = 2).

t0 = 2

time m p out worklist

0. 0 0 0 [ 0.001 1 2 3 ]
0.001 0 0 0 [ 0.002 1 2 3 ]
0.002 0 0 0 [ 1 2 3 ]
1. 0 1 0 [ 1.001 2 3 ]
1.001 0 1 0 [ 1.002 2 3 ]
1.002 0 1 1 [ 1.003 2 3 ]
1.003 0 1 1 [ 1.004 2 3 ]
1.004 0 1 1 [ 2 3 ]
2. 1 1 1 [ 2.001 3 ]
2.001 1 1 1 [ 2.002 3 ]
2.002 1 1 1 [ 3 ]
3. 0 1 1 [ 3.001 ]
3.001 0 1 1 [ 3.002 ]
3.002 0 1 1 [ 4.002 ]
4.002 0 1 0 [ ]

TABLE IV
AUTOMATED TESTS FOR DESIGN A (t0 = 3).

t0 = 3

time m p out worklist

0. 0 0 0 [ 0.001 1 3 4 ]
0.001 0 0 0 [ 0.002 1 3 4 ]
0.002 0 0 0 [ 1 3 4 ]
1. 0 1 0 [ 1.001 3 4 ]
1.001 0 1 0 [ 1.002 3 4 ]
1.002 0 1 1 [ 1.003 3 4 ]
1.003 0 1 1 [ 1.004 3 4 ]
1.004 0 1 1 [ 3 4 ]
3. 1 1 1 [ 3.001 4 ]
3.001 1 1 1 [ 3.002 4 ]
3.002 1 1 1 [ 4 ]
4. 0 1 1 [ 4.001 ]
4.001 0 1 1 [ 4.002 ]
4.002 0 1 0 [ ]

the button is released, produces a series of regularly spaced

pulses as long as the overpressure signal is active.

The other two tables (Tables III and IV), instead, show that

the simulation stopped early, with an empty worklist at the

last step. This proves that the system ‘freezes’ with the output

stuck at zero, whereas it should produce periodic pulses.

Comparing these cases, and other cases not shown, we may

formulate the hypothesis that the logic malfunctions when a

manual trip is issued during the active period of the output

pulse, as in the situations illustrated by Tables III and IV. To

test this hypothesis, we explore some hand-crafted scenarios,

discussed in the rest of the section.

2) No manual trip: Signal p is a step function with the

rising edge at t = 1 s, and signal m is a constant zero (no

manual intervention). The control logic produces a series of

pulses that drive the plant towards a shutdown, as expected

(Figure 4).

3) Manual trip in the wait period: Signal p is a step

function with the rising edge at t = 1 s and signal m is a

step function with the rising edge at t0 = 5 s. This means

TABLE V
AUTOMATED TESTS FOR DESIGN A (t0 = 4).

t0 = 4

time m p out worklist

0. 0 0 0 [ 0.001 1 4 5 ]
0.001 0 0 0 [ 0.002 1 4 5 ]
0.002 0 0 0 [ 1 4 5 ]
1. 0 1 0 [ 1.001 4 5 ]
1.001 0 1 0 [ 1.002 4 5 ]
1.002 0 1 1 [ 1.003 4 5 ]
1.003 0 1 1 [ 1.004 4 5 ]
1.004 0 1 1 [ 4 5 ]
4. 1 1 1 [ 4.001 5 ]
. . . . . . . . . . . . . . .

244.037 0 1 1 [ 247.035 ]
247.035 0 1 0 [ 259.036 ]
259.036 0 1 0 [ 259.037 ]
259.037 0 1 1 [ 259.038 ]

0 10 sec 20 sec 30 sec 40 sec

p

m
or_out
t2_out
t1_in
out

Time

Fig. 4. Simulation of design A, no manual trip.

that the trip switch is pushed during the first wait period. As

expected, that wait period is interrupted, a new 3 s output

pulse is generated, and the subsequent pulses are generated

with the normal 15 s cycle, since the trip switch has not been

released and the resettable timer responds only to a rising edge

(Figure 5).

4) Manual trip in the active period: In this instance, signal

p is a step function with the rising edge at t = 1 s and signal

m is a pulse of duration 1 s starting at t0 = 2 s, followed

by another pulse of duration 3 s at t1 = 10 s. In this case,

the manual intervention occurs during the active period of

the first output pulse. Contrary to the requirements, after the

end of this output pulse, the output is stuck at zero and no

further corrective action takes place, even if the alarm (high

pressure) persists and the manual trip switch is pressed again.

A fundamental safety requirement is thus violated (Figure 6).

The PVS code for this critical case follows.

sim_system3A: bool =

LET initial_st =

new_state(nIN, nOUT, nINT)

WITH [input := ports(pulse(2,1)+pulse(10,3),

step(1)),

output := ports(constval(zero)),

internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(NSTEPS)(systemA)

(initial_wl)(outf, pn)(initial_st)

IN TRUE



338

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10 sec 20 sec 30 sec 40 sec 50 sec 60 sec
Time
p
m
or_out
t2_out
t1_in
out

Fig. 5. Simulation of design A, manual trip in the wait period.

0 10 secTime
m

p

or_out

t2_out

t1_in

out

Fig. 6. Simulation of design A, manual trip in the active period.

C. Design B

Figure 7 shows the main part of design B. This design is

identical to design A except for the management of the manual

trip: in design B, the manual trip signal is fed to a 3 s timer

whose output is ORed with the overpressure signal and with

the output of the other 3 s timer, and the 15 s timer is not

resettable. We translated this schema into a PVS specification

and simulated it under the same scenarios used for checking

design A. The simulation experiments did not detect any

malfunctions. In particular, Figure 8 shows the output for the

problematic scenario of Section VI-B4 that caused a safety

violation for design A. With design B, the logic honours the

two manual interventions, then it keeps issuing 3 s pulses, thus

fulfilling the safety requirement.

The safety of Design B in the situation considered can be

proved along the lines of the following proof sketch.

1) As explained in Section IV-F, the transition function of

the compound module must be applied repeatedly until

the actual successor state is computed. We define a micro

step as a single application of the transition function, and

a macro step as a sequence of micro steps leading from

a consistent state to its consistent successor.

2) Starting from an initial state where signalm is a constant

zero, p is a step function at t = 1, and all internal

signals are assumed to be constant zeroes, we prove

the existence of a sequence of micro steps leading to

a consistent state at t = 1. This part of the proof is a

set of simple lemmas, one for each n-th micro step, of

the form:

init = s(n− 1) ∧ next = f(t)(init) ⇒ next = s(n)

where f is the transition function, and s(n − 1) and

3 s

timer

T3

15 s

3 s

timer

T2

T1

timer

m

p

t3_out

t2_out

or_out

t1_in out
OR AND OR

t1_out

Fig. 7. A simplified view of a stepwise shutdown logic, design B.

Fig. 8. Simulation of design B, manual trip in the active period.

s(n), i.e., the initial and final states of the micro step,

are given.

3) Then we prove, in the same way, that consistent states

are reached at time t = 4 (after the 3 s pulse) and t =
16 (after the 15 s pulse).

4) We prove that the state at t = 16 is equivalent (modulo

a 15 s translation) to the state at t = 1.
Therefore, with the given signals at the input (in par-

ticular, without manual trip), the system has a periodic

behavior, as it returns to the same conditions every 15 s.

More precisely, it produces 3 s pulses (generated by

timer T1, see Figure 7) with a 15 s period.

5) Since signal m is fed to a 3 s timer whose output is

ORed with the output of T1, this signal cannot suppress

the control signal, therefore Design B is safe for any

possible timing of signal m.

A small sample of the lemmas used in the proof are in

Appendix C.

VII. CONCLUSION AND FUTURE WORK

In the present work, a framework for the simulation of

control logics specified in the higher-order logic of the PVS

has been introduced. The framework is based on a library of

purely logic specifications for typical control system compo-

nents, and an approach to define an event-driven simulator

capable of executing the logic specifications is shown. The

library includes theories to model logic signals over time,

where time is a variable in the domain of real numbers. The

simulator is based on the paradigm of event-driven-simulation,

and its core component is defined as a function in the higher-

order logic language of the PVS theorem proving environment.

The approach has been applied to a simple case study in the

field of nuclear power plants. The same case study had been



339

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

previously studied by other researchers with a model checking

approach [33]. Further, compliance of one of the designs with a

safety requirement has been demonstrated by theorem proving.

This work is part of our current research activity aiming at

developing a simulation and analysis framework for control

logics that enables developers to rely both on simulation and

theorem proving to assess the correctness of specifications and

designs.

REFERENCES

[1] C. Bernardeschi, L. Cassano, A. Domenici, and P. Masci, “Debugging
PVS specifications of control logics via event-driven simulation,” in
First International Conference on Computational Logics, Algebras, Pro-

gramming, Tools, and Benchmarking (COMPUTATION TOOLS 2010).
Lisbon, Portugal: IARIA, November 21–26 2010.

[2] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal Verification
for Fault-Tolerant Architectures: Prolegomena to the Design of PVS,”
IEEE Trans. on Software Engineering, vol. 21, no. 2, pp. 107–125, 1995.

[3] “Railway applications – Software for railway control and protection
systems,” CENELEC, European Committee for Electrotechnical Stan-
dardization, Tech. Rep. EN 50128:2001 E, 2001, european standard.

[4] “Software for Computer Based Systems Important to Safety in Nuclear
Power plants,” IAEA, International Atomic Energy Agency, Tech. Rep.
NS-G-1.1, 2000.

[5] “IEEE Standard Verilog Hardware Description Language,” IEEE, Tech.
Rep. IEEE Std 1076-2000, 2000.

[6] “IEEE Standard VHDL Language Reference Manual,” IEEE, Tech. Rep.
IEEE Std 1076-2000, 2000.

[7] E. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems, vol. 8, pp.
244–263, 1986.

[9] J. McCarthy, “Checking mathematical proofs by computer,” in Sympo-

sium on Recursive Function Theory. American Mathematical Society,
1961.

[10] B. J. Krämer and N. Völker, “A highly dependable computing archi-
tecture for safety-critical control applications,” Real-Time Syst., vol. 13,
pp. 237–251, November 1997.

[11] H. Wan, G. Chen, X. Song, and M. Gu, “Formalisation and verification
of programmable logic controllers timers in Coq,” Software, IET, vol. 5,
no. 1, pp. 32–42, February 2011.

[12] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, and P. Seong,
“FBDVerifier: Interactive and visual analysis of counter-example in
formal verification of function block diagram,” Journal of Research and

Practice in Information Technology, vol. 42, no. 3, pp. 171–189, 2010.

[13] V. Vyatkin and H.-M. Hanisch, “Modelling of IEC 61499 function
blocks a clue to their verification,” in XI Workshop on Supervising and

Diagnostics of Machining Systems, no. 35, 2000, pp. 59–68.

[14] D. Missal, M. Hirsch, and H.-M. Hanisch, “Hierarchical distributed
controllers - design and verification,” in IEEE Conference on Emerging

Technologies and Factory Automation (ETFA 2007), Sept. 2007, pp.
657–664.

[15] D. Deharbe, S. Shankar, and E. Clarke, “Formal verification of VHDL:
the model checker CV,” in XI Brazilian Symposium on Integrated Circuit

Design, 1998, pp. 95 –98.

[16] D. Russinoff, “ A Formalization of a Subset of VHDL in the Boyer-
Moore Logic,” Formal Methods in System Design, vol. 7, no. 1/2, pp.
7–26, 1994.

[17] R. Boyer and J. Moore, A Computational Logic Handbook. Academic
Press, 1988.

[18] H. Jain, D. Kroening, N. Sharygina, and E. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying RTL Ver-
ilog,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems,, vol. 27, no. 2, pp. 366 –379, feb. 2008.

[19] H. Jain, N. Sharygina, and E. Clarke, “VCEGAR: Verilog counterex-
ample guided abstraction refinement,” in Tools and Algorithms for the

Construction and Analysis of Systems (TACAS07), 2007.

[20] S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “PVS: an
experience report,” in Applied Formal Methods, ser. LNCS. Springer-
Verlag, 1998, no. 531, pp. 338–345.

[21] S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A tutorial on using
PVS for hardware verification,” in Theorem Provers in Circuit Design

(TPCD ’94), ser. LNCS, R. Kumar and T. Kropf, Eds. Springer-Verlag,
1997, no. 901, pp. 258–279.

[22] M. Srivas, H. Rueß, and D. Cyrluk, “Hardware verification using PVS,”
in Formal Hardware Verification: Methods and Systems in Comparison,
ser. LNCS, T. Kropf, Ed. Springer-Verlag, 1997, no. 1287, pp. 156–205.

[23] C. Berg, C. Jacobi, and D. Kroening, “Formal verification of a basic
circuits library,” in Proc. of IASTED Int. Conf. on Applied Informatics,

Innsbruck (AI 2001. ACTA Press, 2001.

[24] H. Pfeifer, “Formal verification of the TTP group membership algo-
rithm,” in Formal Methods for Distributed System Development Pro-

ceedings of FORTE XIII/PSTV XX 2000, T. Bolognesi and D. Latella,
Eds. Pisa, Italy: Kluwer Academic Publishers, October 2000, pp. 3–18.

[25] C. Bernardeschi, P. Masci, and H. Pfeifer, “Analysis of wireless sensor
network protocols in dynamic scenarios,” in 11th International Sym-

posium on Stabilization, Safety, and Security of Distributed Systems

(SSS09), ser. Lecture Notes in Computer Science, vol. 5873. Springer,
2009, pp. 105–119.

[26] P. Masci, P. Curzon, A. Blandford, and D. Furniss, “Modelling dis-
tributed cognition systems in PVS,” in 4th Intl. Workshop on Formal

Methods for Interactive Systems (FMIS2011), 2011.

[27] R. R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” in Proceedings of the IEEE International Sympo-

sium on Requirements Engineering, 1993, pp. 126–133.

[28] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS: com-
bining specification, proof checking, and model checking,” in Computer-

Aided Verification, CAV ’96, ser. LNCS, R. Alur and T. Henzinger, Eds.
Springer-Verlag, 1996, no. 1102, pp. 411–414.

[29] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert, “Eval-
uating, testing, and animating PVS specifications,” Computer Science
Laboratory, SRI International, Tech. Rep., 2001.

[30] C. Muñoz, “Rapid prototyping in PVS,” National Institute of Aerospace,
Hampton, VA, USA, Tech. Rep. NIA 2003-03, NASA/CR-2003-212418,
2003.

[31] A. M. Law and D. Kelton, Simulation Modeling and Analysis. McGraw-
Hill, 2000.

[32] “Programmable controllers - Part 3: Programming languages, ed2.0,”
IEC, International Electrotechnical Commission, Tech. Rep. IEC 61131-
3, 2003.

[33] K. Björkman, J. Frits, J. Valkonen, J. Lahtinen, K. Heljanko, I. Niemelä,
and J. J. Hämäläinen, “Verification of Safety Logic Designs by Model
Checking,” in Sixth American Nuclear Society International Topical

Meeting on Nuclear Plant Instrumentation, Control, and Human-

Machine Interface Technologies (NPIC&HMIT 2009). Knoxville,
Tennessee, USA: American Nuclear Society, LaGrange Park, IL, USA,
2009, on CD-ROM.

APPENDIX A

SAMPLE PVS DEFINITIONS

In this appendix we show more extensive samples from the

PVS theories discussed in this paper.

A. Logic Levels

logic_levels_th: THEORY

BEGIN

%-- logic level (type definition)

logic_level: TYPE = below(4)

%-- names of logic levels

zero: logic_level = 0

one: logic_level = 1

Z: logic_level = 2 %-- high impedance

U: logic_level = 3 %-- unknown

%-- logical AND in a four-valued logic

lAND(v1, v2: logic_level): logic_level =

IF one?(v1) AND one?(v2) THEN one

ELSIF zero?(v1) OR zero?(v2) THEN zero



340

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ELSE U ENDIF

%-- logical OR in a four-valued logic

lOR(v1, v2: Logic_level): Logic_level =

IF one?(v1) OR one?(v2) THEN one

ELSIF zero?(v1) AND zero?(v2) THEN zero

ELSE U ENDIF

%-- logical NOT in a four-valued logic

lNOT(v: Logic_level): Logic_level =

IF one?(v) THEN zero

ELSIF zero?(v) THEN one

ELSE U ENDIF

% ...

END logic_levels_th

B. Signals

signals_th: THEORY

BEGIN

IMPORTING time_th, logic_levels_th

%-- signal (type definition)

signal: TYPE = [time -> logic_level]

%-- symbolic constant of the minimum time

% between two observable variations in a signal

tres: posreal

%-- definition of basic waveforms

constval(v: logic_level): signal =

LAMBDA (t: time): v

step(tau: time): signal =

LAMBDA (t: time):

IF t >= tau THEN one ELSE zero ENDIF

pulse(tau: time, d: posreal): signal =

LAMBDA (t: time):

IF t >= tau AND t < tau + d

THEN one

ELSE zero

ENDIF

%-- periodic signal constructor

periodic(s: signal, T: interval): signal =

LAMBDA (t: time):

LET tmod =

IF T > 0

THEN t - T * floor(t / T)

ELSE t

ENDIF

IN s(tmod)

%-- time shift of the signal

time_shift(s: signal, offset: time): signal =

LAMBDA (t: time): s(t - offset)

%-- logical operators in a four-valued logic

sAND(s1, s2: signal): signal =

LAMBDA (t: time):

IF one?(s1(t)) AND one?(s2(t))

THEN one

ELSIF zero?(s1(t)) OR zero?(s2(t))

THEN zero

ELSE U ENDIF

sOR(s1, s2: signal): signal =

LAMBDA (t: time):

IF one?(s1(t)) OR one?(s2(t))

THEN one

ELSIF zero?(s1(t)) AND zero?(s2(t))

THEN zero

ELSE U ENDIF

sNOT(s: signal): signal =

LAMBDA (t: time):

IF one?(s(t)) THEN zero

ELSIF zero?(s(t)) THEN one

ELSE U ENDIF

% ...

END signals_th

The function for building periodic signals needs some ex-

planation. The function has two arguments —the specification

of a signal s in a base interval [0, T ), and the duration of

the interval T— and generates a periodic signal by using

modulo arithmetic on time instants, i.e., given a time instant

t, the signal value at t is obtained by evaluating the signal at

t− T × ⌊t/T ⌋.

C. Basic Digital Modules

logic_gates_th[delay: nonneg_real]: THEORY

BEGIN IMPORTING basic_digital_modules_th

gateNOR: basic_digital_module(2, 1) =

LAMBDA (t: time): LAMBDA (s: state(2, 1)):

s WITH [output := ports(time_shift(

sNOR(port0(input(s)), port1(input(s))),

delay))]

% ...

END basic_digital_modules_th

timers_th[delay: nonneg_real]: THEORY

BEGIN

IMPORTING basic_digital_modules_th

%--timer

timerM(d: posreal): basic_digital_module(1, 1) =

LAMBDA (t: time):

LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND

zero?(port0(output(s)), t)

THEN s

WITH [output := ports(pulse(t + delay, d))]

ELSE s ENDIF

%--resettable timer (reset is input port1)

rtimerM(d: posreal): basic_digital_module(2, 1) =

LAMBDA (t: time):

LAMBDA (s: state(2, 1)):

IF rising_edge?(port1(input(s)), t)

THEN

IF one?(port0(output(s)), t)

THEN s WITH

[output := ports(sNOT(step(t + delay)))]

ELSE s

ENDIF

ELSIF rising_edge?(port0(input(s)), t)

THEN

IF zero?(port0(output(s)), t)

THEN s WITH

[output := ports(pulse(t + delay, d))]

ELSE s

ENDIF

ELSE s ENDIF

% ...

END timers_th

flipflopSR: basic_digital_module(2, 2) =

LAMBDA (t: time):

LAMBDA (st: state(2, 2)):

LET r = port0(input(st)),

s = port1(input(st)),

q = port0(output(st)),

q_prime = port1(output(st))

IN IF zero?(s, t) AND zero?(r, t) THEN st

ELSIF one?(s, t) AND zero?(r, t)

THEN IF zero?(q, t) AND one?(q_prime, t)

THEN st WITH [output := ports



341

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<PVSio> test_flipflopSR;

TEST 0001

<r:1, s:1, q:0, q’:1, r1:1, s1:0> WL:[0 1]

t=0

<r:1, s:1, q:0, q’:1, r1:1, s1:0> WL:[0.001 1]

t=0.001

<r:1, s:1, q:0, q’:0, r1:0, s1:0> WL:[1 1.001]

t=1

<r:0, s:0, q:0, q’:0, r1:0, s1:0> WL:[1.001]

t=1.001

<r:0, s:0, q:1, q’:1, r1:1, s1:1> WL:[1.002]

t=1.002

<r:0, s:0, q:0, q’:0, r1:0, s1:0> WL:[1.003]

TEST 0010

<r:1, s:1, q:1, q’:0, r1:0, s1:1> WL:[0 1]

t=0

<r:1, s:1, q:1, q’:0, r1:0, s1:1> WL:[0.001 1]

t=0.001

<r:1, s:1, q:0, q’:0, r1:0, s1:0> WL:[1 1.001]

t=1

<r:0, s:0, q:0, q’:0, r1:0, s1:0> WL:[1.001]

t=1.001

<r:0, s:0, q:1, q’:1, r1:1, s1:1> WL:[1.002]

...

Fig. 9. Test output for SR flip-flop

(step(t+delay), sNOT(step(t+delay)))]

ELSE st ENDIF

ELSIF zero?(s, t) AND one?(r, t)

THEN IF one?(q, t) AND zero?(q_prime, t)

THEN st WITH [output := ports

(sNOT(step(t+delay)), step(t+delay))]

ELSE st ENDIF

ELSE st WITH [output := ports(2)]

ENDIF

APPENDIX B

THE EVENT-DRIVEN SIMULATOR

This appendix contains supplementary material on the

event-driven simulator.

A. Automated Execution of Test-Cases

In Figure 9 we show an excerpt of the output generated

by function test_flipflopSR V-D. As an example, test

TEST 0001 represents the case when there is a pulse on set

and reset at time 0, and therefore the value of r and s is 1 in

the initial state; q and q_prime have values 0 and 1. In this

example, each test simulates up to five events of the system,

and it can be noticed that they are not sufficient to reach a

final system state (the final worklist is not empty).

APPENDIX C

PROOF SKETCH

As reported in Section VI-C, the proof of the safety re-

quirement for Design B relies on a sequence of lemmas, each

defining the state resulting from a micro-step, i.e., a single

application of the composite transition function.
As an example, the following PVS code is the lemma for

the first micro-step, with the transition function computed at
time t = 1:

sys_B_lemma1: LEMMA

FORALL (init, nxt: state(nIN, nOUT, nINT)):

init =

(# input := ports(constval(zero), step(1)),

output := ports(constval(zero)),

internal := rep_ports(constval(zero), nINT) #)

AND nxt = systemB(1)(init)

=>

port0(internal(nxt)) =

constval(zero) % t2_in

AND port1(internal(nxt)) =

constval(zero) % t2_out

AND port2(internal(nxt)) =

constval(zero) % or1_in_1

AND port3(internal(nxt)) =

step(1) % or1_in_2

AND port4(internal(nxt)) =

step(1) % or1_out

AND port5(internal(nxt)) =

constval(zero) % and_en

AND port6(internal(nxt)) =

step(1) % and_in

AND port7(internal(nxt)) =

constval(zero) % and_out

AND port8(internal(nxt)) =

constval(zero) % t1_in

AND port9(internal(nxt)) =

constval(zero) % t1_out

AND port10(internal(nxt)) =

constval(zero) % t3_out

AND port0(output(nxt)) =

constval(zero) % or2_out

After a few micro-steps, a consistent state is reached. A state
is proved to be consistent by a lemma such as the following:

sys_B_lemma6: LEMMA

FORALL (init, nxt: state(nIN, nOUT, nINT)):

init =

(# input :=

ports(constval(zero), step(1)),

output := ports(pulse(1, 3)),

internal :=

cons(pulse(1, 3), % (0) t2_in

cons(pulse(1, 15), % (1) t2_out

cons(constval(zero), % (2) or1_in_1

cons(step(1), % (3) or1_in_2

cons(step(1), % (4) or1_out

cons(pulse(1, 15), % (5) and_en

cons(step(1), % (6) and_in

cons(spike(1), % (7) and_out

cons(spike(1), % (8) t1_in

cons(pulse(1, 3), % (9) t1_out

cons(constval(zero),

null))))))))))) % (10) t3_out

#)

AND nxt = systemB(1)(init)

=>

nxt = init

Each lemma is proved by asserting a few simple axioms

on the properties of signals and basic gates, then using the

automatic PVS proof strategies assert and grind, thus requiring

minimal human effort.



342

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The CloudMIG Approach: Model-Based Migration of Software Systems to
Cloud-Optimized Applications

Sören Frey and Wilhelm Hasselbring

Software Engineering Group
University of Kiel

24118 Kiel, Germany
{sfr, wha}@informatik.uni-kiel.de

Abstract—Cloud computing provides means for reducing
over- and under-provisioning through enabling a highly flexible
resource allocation. Running an existing software system on
a cloud computing basis can involve extensive reengineering
activities during the migration. To reduce the correspondent
effort, it is often possible to deploy an existing system widely
unmodified in IaaS VM instances. However, this simplistic
migration approach does not solve the challenge of over-
and under-provisioning or scalability issues per se, as our
experiments using Eucalyptus and the popular open source
system Apache OFBiz show. Moreover, current migration
approaches suffer from several further shortcomings. For
example, they are often limited to specific cloud environments
or do not provide automated support for the alignment with
a cloud environment. We present our model-based approach
CloudMIG which addresses these shortcomings. It aims at sup-
porting SaaS providers to semi-automatically migrate existing
enterprise software systems to scalable and resource-efficient
PaaS and IaaS-based applications. To facilitate reasoning about
the suitability of certain cloud environments for a given system
and the degree of alignment during the reengineering process,
we introduce the Cloud Suitability and Alignment (CSA)
hierarchy. For example, Apache OFBiz used in our experiments
is initially categorized “cloud compatible” but not “cloud
optimized” as it does not exploit the cloud’s advantages.

Keywords-Approach CloudMIG, Cloud Computing, Model-
based software migration to cloud-based applications, Resource-
efficient cloud-based applications, Eucalyptus, CSA hierarchy.

I. INTRODUCTION

Most enterprise applications’ workload underlies substan-

tial variations over time. For example, user behavior tends

to be daytime-dependent or media coverage can lead to

rapidly increasing popularity of provided services. These

variations often result in over- or under-provisioning of data

center resources (e.g., #CPUs or storage capacity). Cloud

computing provides means for reducing over- and under-

provisioning through supplying elastic services. Thereby,

the conformance with contractually agreed Service Level

Agreements (SLAs) has to be ensured. Considering legacy

software systems, is there a way established enterprise

applications can benefit from present cloud computing tech-

nologies? For reasoning about this issue, it is useful to

clarify the main participants in providing and consuming

cloud computing services. Three different roles can be

distinguished. Software as a Service (SaaS) providers (cloud

users) offer software services, which are being utilized by

SaaS users. For this purpose, the SaaS providers may build

upon services offered by cloud providers (cloud vendors). In

the following, we will employ the terms SaaS user, SaaS

provider, and cloud provider.

Newly developed enterprise software may easily be de-

signed for utilizing cloud computing technologies in a green-

field project. Though, SaaS providers may also consider to

grant responsibility of operation and maintenance tasks to a

cloud provider for an already existing software system. Run-

ning established enterprise software on a cloud computing

basis may involve extensive reengineering activities during

the migration. Nevertheless, instead of recreating the func-

tionalities of an established software system from scratch for

being compatible with a selected cloud provider’s environ-

ment, a migration enables the SaaS provider to reuse sub-

stantial parts of a system. The number of system parts which

might be migrated is dependent on the weighting of several

parameters in a specific migration project. For example, im-

plications concerning the performance or structural quality

metrics regarding the resulting software architecture can be

taken into account. Furthermore, aligning a software system

to a cloud environment’s special properties during the migra-

tion process has the potential to increase the software sys-

tem’s efficiency. For example, a reengineer could decide to

prefer utilization of certain resources according to their pric-

ing. Considering such kinds of favorable resource utilization

and a cloud environment’s specific scalability mechanisms

can improve overall resource efficiency (e.g., according to

the aforementioned prioritization) and scalability. However,

there are several major obstacles which can impede such

migration projects. Current approaches are often limited to

specific cloud environments or do not provide automated

support for the alignment with a cloud environment, for

instance. In this work, we propose our model-based approach

CloudMIG, which addresses these shortcomings and focuses

on the SaaS provider perspective. The semi-automated ap-

proach aims at assisting reengineers in migrating existing

enterprise software systems to scalable and resource-efficient

Platform as a Service (PaaS) and Infrastructure as a Service



343

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(IaaS) based applications. This paper is an updated and

extended version of [1]. It mainly adds two contributions

to the original version. First, experiments were conducted

utilizing the IaaS cloud environment Eucalyptus [2] and the

open source system Apache OFBiz [3] that illustrate the

limitations of simplistic migration strategies and advocate

profound evaluation and reengineering measures during a

migration. Second, we introduce the Cloud Suitability and

Alignment (CSA) hierarchy that enables a classification

of existing software systems regarding their suitability for

specific cloud environments and their level of alignment after

initial migration steps.

The remainder of the paper is structured as follows:

The related work is described in Section II. Section III

presents the experiments utilizing Eucalyptus and Apache

OFBiz. These constitute an example scenario for demon-

strating the shortcomings of the prevalent simplistic mi-

gration approaches that are described in Section IV. The

CSA hierarchy forms a basis for reasoning about migration

alternatives and is introduced in Section V. Our approach

CloudMIG is then presented in the following Section VI,

before Section VII draws the conclusions and outlines future

work.

II. RELATED WORK

CloudMIG supports reengineers to migrate existing enter-

prise software systems to the cloud and to reduce complexity

aligning their system with the targeted cloud environment.

The general complexity of legacy system migration as well

as potential measures to cope with the complexity are

described in [4]. The authors in [5] sketch a research agenda

in cloud technologies and summarize the currently published

cloud computing literature. Issues and challenges regarding

the cloud computing technology are investigated in [6]. Here,

the integration of existing legacy systems in the cloud is

regarded a challenging subject, as currently the cloud land-

scape is diversified and there is a lack of common practices

and general interoperability. With CloudMIG we address the

prevalent heterogeneity concerning cloud environments and

strive towards a more generic migration approach.

A case study of migrating an enterprise IT system to

an IaaS cloud environment is presented in [7]. The case

study shows achievable costs savings in the cloud en-

vironment. However, the authors recommend to consider

overall organizational implications as well. A large science

database was migrated to the cloud in [8]. The main hurdles

the authors faced lay in the transfer of huge amounts of

data and performance degradations when trying to avoid

changes to the schema and settings. The design and an

evaluation of the tool CloudAnalyst is presented in [9].

It is a visual modeller that utilizes the cloud simulation

framework CloudSim [10] for analyzing cloud computing

environments and applications. Different user bases, as well

as various regions, data centers, applications, and workloads

can be modeled. A simulation can be used to estimate the

operational costs. However, different application architecture

candidates have to be modeled manually, no information

concerning the structure of an existing software system can

be applied automatically, and the cloud’s utilized resources

cannot be varied dynamically during a simulation run.

The authors in [11] contribute a performance and cost

assessment of real cloud infrastructures. Here, the authors

modeled a Service-Oriented Architecture (SOA) e-business

application and two different workloads. Different pricing

plans and hosting scenarios were modeled and implica-

tions on performance were evaluated as well. Moreover,

platform limitations were explored on a coarse grained

level. Our Cloud Environment Constraint (CEC) model

(see Section IV) allows a more detailed view and automatic

detection capabilities on a source code level compared to

the system level used in that work. The authors deter-

mine a considerable potential for cutting costs running the

modeled application in the cloud. However, they point out

that “optimizing applications for very specific cost models

may result in vendor lock in and a lack of flexibility and

maintainability.” In [12], the authors propose a conceptual

cloud adoption toolkit that addresses the challenges of cloud

adoption in enterprises. The toolkit provides five tools/

techniques. Among those, the cost modeling tool utilizes

Unified Modeling Language (UML) deployment diagrams to

model an intended architecture for running existing software

systems in a cloud environment. The deployment model

is then augmented with price information that enables au-

tomated cost estimation for a specific cloud environment.

In comparison, CloudMIG is intended to generate target

architecture candidates for arbitrary cloud environments and

to calculate the estimated costs for each deployment and in

dependence of the observed or expected workload.

A profit-driven service request scheduling approach for

clouds is described in [13]. Here, a particular focus is on a

service provider and consumer perspective. Service requests

have to be scheduled to satisfy the concerns of the service

providers as well as the consumers. In this context, a pric-

ing model and two profit-driven service request scheduling

algorithms are presented. Linear programming is applied

by the authors in [14] for addressing a task throughput

maximization problem in a budget-constrained scenario.

Our CSA hierarchy evaluates the suitability and alignment

of an existing software system with respect to a specific

cloud environment. It focuses on technical opportunities

and limitations and incorporates an automated detection

of CEC violations (see Section IV). In contrast to that,

the suitability index for the adoption of cloud computing

technologies presented in [15] includes rather non-technical

characteristics like the sensitivity of the system’s data or its

criticality. Nevertheless, it also considers the scale of existing

IT resources and observed resource utilization patterns as

well.



344

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I. EUCALYPTUS HARDWARE CONFIGURATION

Component Variant
CPU type 2x AMD Opteron 2384 2.7GHz (4 cores)
RAM 16 GB DDR2-667
Network 1 Gbit/s

Table II. VM INSTANCE TYPES

Name #CPU cores RAM (MB)
Standard.M 1 512
Standard.L 2 1,024
Memory.M 2 2,048
Memory.L 2 3,584
Compute.M 4 2,048
Compute.L 6 2,048

Table III. VM INSTANCE TYPE PRICE MODEL

VM instance type Costs/hour ($)
Standard.M 0.3
Standard.L 0.4
Memory.M 0.5
Memory.L 0.75
Compute.M 0.6
Compute.L 1.15

III. EXAMPLE SCENARIO

The experiment setup of our example scenario is de-

scribed in Section III-A, the results are then presented in

Section III-B.

A. Experiment Setup

We investigated the deployment of Apache OFBiz 9.04

into an installation of Eucalyptus. Apache OFBiz is a Java-

based open source E-Commerce/ Enterprise Resource Plan-

ning (ERP) system. For instance, it provides several modules

for accounting, order processing, and human resource man-

agement that are accessible via a web-based Graphical User

Interface (GUI).

Eucalyptus is a cloud software for building private, hybrid,

or public IaaS clouds. Its Application Programming Inter-

face (API) is compatible with the popular Amazon EC2 and

S3 services and it is also available in an open source version.

Therefore, Eucalyptus is ideally suited for building cloud

computing research test beds. The hardware listed in Table I

was utilized for Eucalyptus’ cluster and node controllers

responsible for allocating and controlling the cluster of

Virtual Machines (VMs). The superordinate cloud controller

node was installed on an identically equipped machine.

However, that second machine did not provide dedicated

resources for VM allocation. In typical IaaS offerings as

well as with Eucalyptus, a cloud user can choose between

different VM instance types as basic building blocks. A VM

instance type determines the hardware configuration that is

available for running the user’s virtual machine. With every

start of a VM an appropriate instance type can be assigned

according to the user’s current needs.

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Experiment time [min]

In
te

r−
ar

riv
al

 ti
m

e 
[m

s]

0 4 8 12 16 20 24

Figure 1. Inter-arrival time function.

To evaluate the implications of VM instance type selection

we configured the six different VM instance types that are

listed in Table II. In many cloud offerings, the VM instance

types are priced on a pay-per-use basis and proportional

to supplied resources (e.g, see [16], [17]). The selection of

proper VM instance types may therefore have a substantial

impact on overall operational costs. Since in real cloud

offerings the amply equipped VM instance types are more

costly by tendency, we used the price model shown in

Table III that roughly follows this principle. The inter-arrival

time function illustrated in Fig. 1 was applied to simulate a

typical day night cycle usage pattern where the experiment

minutes map to the hours of a day. Our employed user

behavior emulated customers visiting the web store and

browsing a product category. The number of user requests

exhibits two peaks, one in the morning and one in the

evening hours.

It should be noted that the demo installation of Apache

OFBiz 9.04 was used that applies the rather slow embedded

Java database Derby to deliver the demo catalog products.

However, as the focus of our experiments was to compare

the implications resulting from different VM instance types,

this does not affect the results’ validity. We were particularly

interested in the resulting variations concerning the response

times and the observed CPU utilizations. Regarding the

response times we defined a limit of 1.5s that should not be

exceeded for our test user sequence and which can be seen

as a part of a virtual SLA [18]. As illustrated in Fig. 2, the

usage of one single instance of a VM instance type was not

always sufficient to fulfill the SLA. Here, one Standard.L

instance provokes an SLA violation in the evening hours

(Fig. 2 b). The single Standard.M instance (Fig. 2 a) exhibits

an even more distinctive under-provisioning, as the CPU was



345

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

often used up to the full. As a consequence, Apache OFBiz

repeatedly just returned error messages after experiencing

a massive increase in response times up to minute 19, and

therefore, caused the test to stop. Hence, in the following,

we also investigated the minimum number of instances

concerning each VM instance type that were necessary to

satisfy the SLA. Here, we always maximized the Java Virtual

Machine (JVM) heap size that could be configured according

to the VM instance type specifications and that was available

to Apache OFBiz.

B. Results

An overview regarding the measured response times and

CPU utilizations following the varying load for each applied

VM instance type is presented in Fig. 3. To stay below the

1.5s SLA response time limit, two instances of the Stan-

dard.M and Standard.L VM instance types were required in

each case. The according Fig. 3a) and Fig. 3b) therefore

show the average response times and CPU utilizations for

both instances. The response times and CPU utilizations

generally followed the usage pattern with a rise during peak

times and exhibiting lower phases otherwise. Nevertheless,

considering the response times this effect manifests more

blurred for the aggregated measurements of the two Stan-

dard.M and Standard.L instances. Regarding the Standard.M

instances the overall CPU utilization was still rather high.

An interesting detail can be noticed in the Fig. 3c) - 3f)

as there are short bursts around the 14th minute when the

number of user requests leaves behind a local minimum.

Besides for the Standard.M VM instance type, the CPU

utilizations fluctuate at a rather low level. Fig. 4 underlines

this observation by showing the average CPU utilization for

each experiment. Incorporating the Standard.M VM instance

type, the avg. CPU utilizations range from 16%-59%, which

translates to an avg. CPU over-provisioning ranging from

41%-84% at the same time. As mentioned before, we assume

presence of a pay-per-use billing model. Considering our

defined VM instance type price model (see Table III) the

resulting operational costs being extrapolated for one month

are presented in Fig. 5. Here, we simplifying presume that

the usage pattern repeats each day and therefore the number

of the minimally required instances remains stable. The cost

minimum is reached by utilizing one Memory.M instance.

IV. CURRENT SHORTCOMINGS

The example scenario described in Section III reveals sev-

eral general challenges considering the migration of software

systems to a cloud environment. These shortcomings of the

prevalent simplistic migration approaches form basic tech-

nical difficulties of cloud migration projects that need to be

addressed by reengineers when migrating existing systems to

the cloud and reworking them for optimized alignment. The

example scenario emulates a common approach to minimize

the migration effort and to obtain working results in a

Standard.M (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

00
0

40
00

0
60

00
0

80
00

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
Response time SLA
CPU utilization

Standard.L (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
50

0
10

00
15

00
20

00
25

00
30

00

0 4 8 12 16 20 24
0

10
20

30
40

50
60

70
80

90
10

0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
Response time SLA
CPU utilization

(a)

(b)

Figure 2. SLA violation when using a single instance of the Standard.M (a)
or Standard.L (b) VM instance type.

short period. It deploys the regarding software system to

coarse grained IaaS building blocks (VMs). After altering

the persistency layer the existing system can be used in a

cloud environment.

However, the experiments presented in Section III high-

light many open issues. Running an existing application

in the cloud does not imply relief of under- and over-

provisioning concerns as such. Instead of supplying inap-

propriate physical on premise hardware configurations, the



346

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Standard.M (2x)

Experiment time [min]

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
[m

s]

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

Av
er

ag
e 

C
P

U
 u

til
iz

at
io

n 
[%

]

Average response time
Average CPU utilization

Standard.L (2x)

Experiment time [min]

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
[m

s]

0
20

0
40

0
60

0
80

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

Av
er

ag
e 

C
P

U
 u

til
iz

at
io

n 
[%

]

Average response time
Average CPU utilization

Memory.M (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

Memory.L (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

Compute.M (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

Compute.L (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

(a) (b)

(c) (d)

(e) (f)

Figure 3. Response times and CPU utilizations for each VM instance type. Two instances were used for Standard.M (a) and Standard.L (b).



347

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

under- and over-provisioning of resources can easily be

migrated to a cloud environment itself. For example, an

inappropriate number of VM instances or unsuitable VM

instance types could be employed. Fig. 2 demonstrates the

resource under-provisioning in our example scenario. The

hardware configuration of Standard.M and Standard.L VM

instance types is too restricted for utilizing just a single

instance. In this case the response times exceed the defined

limit and cause a violation of the SLA. Moreover, this

scenario shows the constrained scalability of an application

running in a cloud environment. The operation in a cloud

does not solve scalability issues per se. For example, an

IaaS-based application often needs to have built-in self-

adaptive capabilities for leveraging a cloud environment’s

elasticity. In contrast to the former example, Fig. 4 gives

evidence for over-provisioning of cloud resources. Our ex-

periments resulted in a maximum of average 84% over-

provisioning of CPU resources for the Compute.L VM

instance type implicating more than doubled operational

costs compared to the possible minimum (see Fig. 5).

Nevertheless, the effects on additional expenditures cannot

simply be evaluated according to the over-provisioning of

resources. They depend on other factors as for example

the selected VM instance type and do not necessarily scale

linearly, as can be seen in Figs. 4 and 5, considering

the Compute.M VM instance type in contrast. Comparing

different cloud vendors would additionally complicate a cost

estimation, as the different price models and VM instance

type configurations impede assessment of real world usage

scenarios as well. Hence, a better support for anticipating the

operational costs without limiting the modeling capabilities

to, for example, a set of specific cloud environments, a

set of particular configurations, or resource types as VMs

is needed. This is especially the case when incorporat-

ing PaaS cloud environments, which follow other design

paradigms and offer basic building blocks that differ from

the VMs used in IaaS-based clouds. Furthermore, our exam-

ple scenario utilizes a repeating usage pattern as well as ho-

mogeneous VM instance types and a constant number of VM

instances during an experiment run. This is likely to change

in real world scenarios and adds additional complexity in

evaluating migration alternatives and estimating the related

costs. Further difficulties may arise considering architectural

limitations of an existing system. For example, if distribution

and parallelization is omitted in the present system design,

there may emerge data inconsistency issues when scaling up

horizontally while joining the VM instances to an existing

data persistency layer. Moreover, exhibiting a reproducible

short burst in response times after leaving behind a local

minimum in the number of requests (see Section III-B),

the experiments revealed an unexpected behavior of the

application running in the cloud. In that regard, some effects

may generally be hard to predict and therefore require

profound evaluation.

Standard.M
(2x)

Standard.L
(2x)

Memory.M
(1x)

Memory.L
(1x)

Compute.M
(1x)

Compute.L
(1x)

Av
er

ag
e 

C
P

U
 u

til
iz

at
io

n 
an

d 
C

P
U

 o
ve

r−
pr

ov
is

io
ni

ng
 p

er
 e

xp
er

im
en

t [
%

]

0
10

20
30

40
50

60
70

80
90

10
0

Average CPU utilization
Average CPU over−provisioning

Figure 4. Average CPU utilization per conducted experiment. The state-
ments in parentheses indicate the nr. of instances used for each VM instance
type to satisfy the SLA.

Standard.M
(2x)

Standard.L
(2x)

Memory.M
(1x)

Memory.L
(1x)

Compute.M
(1x)

Compute.L
(1x)

C
os

ts
 p

er
 m

on
th

 fo
r t

he
 u

til
iz

ed
 V

M
 in

st
an

ce
 ty

pe
s 

[$
]

0
20

0
40

0
60

0
80

0

Min. costs

Figure 5. Extrapolated operational costs per month. The statements in
parentheses indicate the nr. of instances used for each VM instance type to
satisfy the SLA (included in calculation).

As mentioned before, the scalability issues as well as

challenges regarding under- and over-provisioning are most

often not solved by merely deploying an existing software

system in a virtual machine and running it in an IaaS cloud

environment. Therefore, we argue that migrating typical

enterprise software to a cloud-based application usually

implies an architectural restructuring step for aligning it

with a cloud environment and exploit the cloud’s offered

advantages. However, knowledge about the internal structure



348

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of an existing software system is often insufficient and

therefore an architectural model has to be reconstructed

first. The architectural model serves as a starting point

for restructuring activities towards a cloud-optimized tar-

get architecture, which at the moment most often has to

be created manually. This often is not an easy task, as

construction of the advanced architecture usually presumes

profound comprehension of the existing one. Furthermore,

the target architecture must comply with the specific cloud

environment’s offered resources and imposed constraints, for

example application frameworks and limitations of program-

ming interfaces in PaaS cloud environments, respectively.

In this context, we introduced the notions of Cloud

Environment Constraints (CECs), CEC violations, and CEC

violation severities in [19] and [20]. For example, consid-

ering the cloud environment Google App Engine for Java

a CEC would be the restriction of its sandbox environment

that limits usage of Java Runtime Environment (JRE) types

to only a subset of all types. A system that shall be migrated

and that utilizes such an excluded type so far would raise a

CEC violation. We defined the three CEC violation severities

Warning, Critical, and Breaking that describe the likely

effort for fixing a CEC violation, whereas the Breaking
severity is most serious and causes the CloudMIG process

to stop, for instance.

Besides the need for an automated detection of the CEC

violations, a mapping model that describes the relationships

between system parts of the status quo and a target architec-

ture is required as well. Future workload in combination with

the target architecture arrangement will determine resource

utilization of the cloud environment during operation. As

most cloud providers follow the paradigm of utility comput-

ing, and therefore, charge resource utilization on a pay-as-

you-use basis, the arrangement of the target architecture has

a direct impact on the operational costs.

To condense the difficulties and challenges described

in this section, the shortcomings of today’s simplistic

migration approaches from typical enterprise software to

cloud-based applications can be summarized as follows:

S1 Applicability: Solutions for migrating and aligning en-

terprise software to cloud-based applications are limited

to particular cloud providers.

S2 Level of automation: To align existing systems with

a cloud environment and to enable them to exploit

the cloud’s offered advantages, a reengineering step

is required. Here, a target architecture and a mapping

model currently often have to be built entirely manual.

Additionally, the target architecture’s violations against

the cloud environment’s constraints are not identified

automatically at design time.

S3 Resource efficiency: Various migrated software sys-

tems are not designed to be resource-efficient and do

not leverage the cloud environments’ elasticity, because

even transfering an established application to a new

cloud environment can be a cumbersome task itself.

Over- and under-provisioning of resources is a chal-

lenge in cloud environments, too. Furthermore, means

for evaluating a target architecture’s dynamic resource

utilization at design time are most often inadequate.

This even strengthens the general problem that esti-

mating the future operational costs for arbitrary cloud

environments is difficult.

S4 Scalability: Scalability remains a concern in cloud

environments as well. Automated support for evaluating

a target architecture’s scalability at design time is rare

in the cloud computing context.

V. CSA HIERARCHY

To reason about the challenges emerging when migrating

a specific system to a cloud environment and restructuring

its architecture to facilitate a smooth integration into the

cloud’s service landscape, one has to judge the system’s

suitability upfront and the level of alignment with the

cloud environment once the first steps are accomplished. To

enable an evaluation and classification of software systems

in this respect, we introduce the coarse grained Cloud

Suitability and Alignment hierarchy (CSA hierarchy). As

illustrated in Fig. 6, it comprises the five levels cloud
incompatible, cloud compatible, cloud ready, cloud aligned,

and cloud optimized. The levels are defined employing

the notions of CECs, CEC violations, and associated CEC

violation severities (see Section IV) and constitute revisited

and modified applications of CloudMIG’s workflow states

explained in [19]. The five CSA hierarchy levels are being

described in the following.

L0 Cloud incompatible: At least one CEC violation with

severity Breaking exists.

L1 Cloud compatible: No CEC violations with severity

Breaking exist.

L2 Cloud ready: No CEC violations exist.

L3 Cloud aligned: The execution context, utilized cloud

services, or the migrated software system itself were

configured to achieve an improved resource consump-

tion (measurable in decreased costs that are to this

effect charged by the cloud provider) or scalability

without pervasively modifying the software system.

L4 Cloud optimized: The migrated software system was

pervasively modified to enable automated exploitation

of the cloud’s elasticity. For example, it’s architecture

was restructured to increase the level of parallelization.

An evaluation was conducted to identify system parts

which would experience an overall benefit from substi-

tution or supplement with offered cloud services. These

substitutions and supplements were performed.



349

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. The CSA hierarchy.

The CSA hierarchy is “constructive” in its levels L1-L4. For

example, for classifying a software system as cloud aligned
it has to be cloud compatible and cloud ready as well. It

should be noted that the CSA hierarchy solely considers

technical concerns related to a migration to the cloud.

In particular, it does not take organisational or economic

restrictions into account, for example regarding governance

issues, security policies, or a company’s business model.

Regarding the example scenario in Section III, there exist

no CEC violations that would impede proper execution after

Apache OFBiz’s database is transfered to Eucalyptus’ persis-

tent block storage, for instance. Concerning Eucalyptus, this

activity is sufficient to lift Apache OFBiz 9.04 from cloud
compatible to cloud ready. However, only through selecting

the Memory.M VM instance type the application would be

cloud aligned (see Fig. 5).

The CSA hierarchy defines the relationship of a specific

configuration of a software system (e.g., regarding the ver-

sion of the system’s software architecture) and a specific

version of a cloud environment. A system being cloud ready
concerning a specific cloud environment might be cloud
incompatible regarding another one. Moreover, even for the

same cloud environment this could change over time due

to modifications of the incorporated cloud services offered

by the cloud environment. Hence, the classification of a

software system S regarding the CSA hierarchy depends on

its configuration Θ and the cloud services Λ offered by a

cloud environment. More specifically, the cloud environment

provides n cloud services. A cloud service k is present

in a particular version v: λv
k ∈ Λ. The classification of

S regarding the CSA hierarchy level is then called Γ.

Therefore, we can define a CSA tuple as follows:

(
S,Θ,

n⋃
k

λv
k,Γ

)
(1)

CSA tuples are utilized to compare cloud environment

alternatives or competing software architectures when con-

sidering reengineering activities, for instance.

Existing
System

A2

Actual
Architecture

A1

Utilization
Model

Cloud Environment 
Model

Target
Architecture

Mapping
Model

A1

?

?

Constraint
Violations

A3

A4,A3

A5

Rating

A

B
C

A6
Migrated
System

A4,A3

Legend:

A1: Extraction
A2: Selection
A3: Generation
A4: Adaptation
A5: Evaluation
A6: Transformation

Optional

Mandatory

Figure 7. CloudMIG Overview.

VI. THE APPROACH CLOUDMIG

CloudMIG is composed of six activities for migrating an

enterprise system to a cloud environment while addressing

the shortcomings described in Section IV. It provides model-

driven generation of considerable parts of the system’s tar-

get architecture. CEC violations are revealed automatically

through analyzing an extracted system model. Furthermore,

feedback loops allow for further alignment with the specific

properties of the cloud environment and foster resource

efficiency and scalability on an architectural level. Figure 7

outlines the approach. Its activities (A1-A6) are briefly de-

scribed in the following, including the incorporated models.

A. Activity A1 - Extraction

CloudMIG aims at the migration of established enterprise

applications. Usually, the architecture of software systems

tends to erode over time. Therefore, initially envisioned ar-

chitectures frequently diverge from actual implementations.

The knowledge about the internal structure is often incom-

plete, erroneous, or even missing. As CloudMIG utilizes a

model transformation during generation of its target archi-

tecture (cf. A3), a representation of the software system’s

actual architecture has to be available first. Concerning this

issue, an appropriate model is extracted by means of a soft-

ware architecture reconstruction methodology. We propose

OMG’s Knowledge Discovery Meta-Model (KDM) [21] for

building a suitable meta-model.

For leveraging the commonly applied utility computing

paradigm, the target architecture has to be laid out resource-

efficient and elastic. Therefore, CloudMIG includes the

extraction of an established software system’s utilization

model acting as a starting point. The utilization model (resp.

its meta-model) includes statistical properties concerning

user behavior like service invocation rates over time or

average submitted datagram sizes per request. Relevant



350

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information can be retrieved from various sources. For

example, considering log files or instrumenting the given

system with our tool Kieker [22] for setting up a monitoring

step constitute possible techniques. Furthermore, the utiliza-

tion model contains application-inherent information related

to proportional resource consumption. Metrics of interest

could be a method’s cyclomatic complexity or memory

footprint. We propose OMG’s Structured Metrics Meta-

Model (SMM) [23] as a foundation for building the related

meta-model.

B. Activity A2 - Selection

Common properties of different cloud environments are

described in a Cloud Environment Model (CEM) [19].

Selecting a cloud provider specific environment as a target

platform for the migration activities therefore implies the

selection of a specific instance of the CEM. For example, the

CEM comprises entities like VM instances or worker threads

for IaaS and PaaS-based cloud environments, respectively.

As a result, for every cloud environment, which shall be

targeted with CloudMIG, a corresponding instance of CEM

has to be created once beforehand. Transformation rules

define possible relationships to the architecture meta-model.

We plan to attach further information related to scalability

issues to the included entities, which can be configured

by the reengineer in activity A4. For example, VM in-

stances could provide hooks for controlling their lifetime

dependent on dynamic resource utilization during runtime.

Furthermore, the CEM includes constraints imposed by

cloud environments restricting the reengineering activities

(CECs). For example, the opening of sockets or the access

to the file system are often constrained.

C. Activity A3 - Generation

The generation activity produces three artefacts, namely

a target architecture, a mapping model, and a model

characterizing the target architecture’s violations of the

cloud environment constraints. The latter lists the CEC

violations and results in the construction of an initial

CSA tuple. These constraint violations explicitly highlight

the target architecture’s parts which have to be redesigned

manually by the reengineer (cf. A6). The mapping model

assigns elements from the actual architecture to those

included in the target architecture. Finally, the target

architecture constitutes a primary artefact. It is realized

as an instance of the CEM, which embeds this model.

We propose the three phases P1-P3 for the generation of

the target architecture that are illustrated in Figure 8. The

phases are constructed as follows.

P1 - Model transformation: The phase P1 produces an

initial assignment from elements of the existing architecture

to cloud-specific elements available in the CEM. The initial

P
1.

 M
od

el
 tr

an
sf

or
m

at
io

n
P

2.
 C

on
fig

ur
at

io
n

P
3.

 M
ap

pi
ng

 o
f a

rc
hi

te
ct

ur
al

 e
le

m
en

ts

Perform model
transformation

(1) Adjust rules
and assertions

(2) Prioritize
(3) Pin

architectural
elements

Perform mapping

<<decisionInput>>

[Subsequent run]

[Ready for mapping]

[Configuration required]

[First run]

Figure 8. Target architecture generation process.

assignment is created applying a model-to-model transfor-

mation according to the transformation rules included in the

cloud environment model (cf. activity A2).

P2 - Configuration: The phase P2 serves as a configuration

of the algorithm used for obtaining a mapping of archi-

tectural elements in the phase P3. During P2, a reengineer

may adjust rules and assertions for heuristic computation (cf.

P3). A rule could be formulated like the following examples:

“Distribute the five most frequently used services to own

virtual machines” or “The server methods responsible for at

least 10% of overall consumption of the CPU time shall be

moved to client side components if they do not need access

to the database”. An exemplary assertion could be: “An

existing component must not be divided in more than 3 re-

sulting components”. It is intended to provide a set of default

rules and assertions. In addition to that, the reengineer will

be given the possibility to modify them either via altering



351

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the regarding numerical values or applying a corresponding

domain-specific language (DSL). In both cases, the rules and

assertions have to be prioritized after their selection. Hereby,

the reengineer determines their significance during execution

of P3. This means that architectural elements which are

related to higher-weighted rules will be considered priorly

for assignment and therefore have a stronger impact on the

further composition of the target architecture. Furthermore, a

reengineer may pin architectural elements. This prevents the

rearrangement of previously assigned architectural elements

to other target architecture components in phase P3.

P3 - Mapping of architectural elements: The phase P3

improves the initial assignment of architectural elements

generated in phase P1 referring to resource-efficiency. There-

fore, the formulated rules are utilized and the compliance

of the resulting architecture with the defined assertions is

considered. There exists an enormous number of possible

combinations for assigning architectural elements. Efficiency

improvements for one resource can lead to degradation for

other resources or impair some design quality attributes. For

example, splitting a component’s parts towards different

virtual machines can improve relative CPU utilization, but

may lead to increased network traffic for intra-component

communication and a decreased cohesion. Additionally,

those effects do not necessarily have to move on linearly

and moreover, the interrelations are often ambiguous as well.

Therefore, we propose application of a heuristic rule-based

approach to achieve an overall improvement. A potential

algorithm is sketched in Listing 1 and it works as follows.

The rules are considered successively according to their

priority. Thus, rules with higher priorities are weighted

higher and have a stronger impact on the generated target

architecture. The selection criterion of a rule is defined to

deliver a set of scalar architectural elements. All possible

subsets of the set are rated respective to the quality of

the target architecture that would result, if the elements in

the subset would be assigned correspondingly. This aims

at considering interdependencies at the level of a single

rule. For regarding interdependencies on an inter-rule level,

the formulated assertions are taken into account. A rule is

only applied if the reengineer did not formulate an assertion

with a higher priority that would be violated after the

rule’s execution. Furthermore, the rule is applied to all

mentioned subsets in order of their score. However, the

rule is only utilized if no rearrangement of elements is

necessary whose subset was rated higher. The same applies

to assignments that would lead to rearrangement of elements

that were placed by rules of higher priority or formerly

pinned elements.

D. Activity A4 - Adaptation

The activity A4 allows the reengineer to manually adjust

the target architecture towards case-specific requirements

1: EPinned ← Pinned architectural elements

2: R← All rules

3: A← All assertions

4: RSort ← Sort R descending by priority

5: EAllAffected ← EPinned

6: for all r in RSort do
7: Er ← All architectural elements delivered by r’s

selection criterion

8: PE
r ← Power set of Er

9: Score← New associative array

10: for all pEr in PE
r do

11: Score[pEr ]← Rate pEr
12: end for
13: ScoreSort ← Sort Score descending by score

14: ScoreKeys
Sort ← Keys of ScoreSort

15: for all pEr in ScoreKeys
Sort do

16: EFormerlyAffected ← pEr ∩ EAllAffected

17: ENeedReassignment ← Elements of

EFormerlyAffected that need reassignment

conc. r
18: if ENeedReassignment == ∅ then
19: AHigherPrio ← All a ∈ A with higher priority

than r
20: if �a ∈ AHigherPrio with r violates a then
21: Apply rule r to all elements in pEr
22: EAllAffected = EAllAffected ∪ pEr
23: end if
24: end if
25: end for
26: end for
Listing 1. Rule-based heuristics for creating a mapping of architectural
elements that improves resource efficiency.

that could not be fulfilled during generation activity A3. For

example, the generation process might not have yielded an

expected assignment of a critical component. Furthermore,

for leveraging the elasticity of a cloud environment, the

reengineer might configure a capacity management strategy

by means of utilizing the hooks provided by entities con-

tained in the CEM (cf. A2).

E. Activity A5 - Evaluation

For being able to judge about the produced target archi-

tecture and the configured capacity management strategy,

A5 evaluates the outcomes of the activities A3 and A4.

The evaluation involves static and dynamic analyses of the

target architecture. The results can be aggregated in a CSA

tuple. For example, metrics as LCOM or WMC can be

utilized for static analyses. Considering the target archi-

tecture’s expected runtime behavior, we propose to apply

a simulation on the basis of CloudSim. Thus, we intend

to contribute a transformation from CloudMIG’s CEM to

CloudSim’s simulation model.



352

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Activity A6 - Transformation

This activity comprises the actual transformation of the

enterprise system from the generated and improved target

architecture to the aimed cloud environment. No further

support for actually accomplishing the implementation is

planned at this time.

VII. CONCLUSION AND FUTURE WORK

We presented an overview concerning our model-based

approach CloudMIG for migrating legacy software systems

to scalable and resource-efficient cloud-based applications. It

concentrates on the SaaS provider perspective and facilitates

the migration of enterprise software systems towards generic

IaaS and PaaS-based cloud environments. We argued for ex-

plicit reengineering activities during the migration and mo-

tivated them based on experiments we conducted using the

cloud software Eucalyptus and the e-commerce/ ERP system

Apache OFBiz. Our example scenario demonstrated some

of the limitations regarding the currently prevalent sim-

plistic migration approaches. Considering the reengineering

activities, CloudMIG is intended to generate considerable

parts of a resource-efficient target architecture utilizing a

rule-based heuristics. To classify the suitability of cloud

environments for given systems and the degree of alignment

during a reengineering process, we introduced the CSA

hierarchy. The future work focuses on the realization, im-

provement, and evaluation of CloudMIG’s target architecture

generation and evaluation activities (A3 and A5).

REFERENCES

[1] S. Frey and W. Hasselbring, “Model-Based Migration of
Legacy Software Systems to Scalable and Resource-Efficient
Cloud-Based Applications: The CloudMIG Approach,” in
Proceedings of the First International Conference on Cloud
Computing, GRIDs, and Virtualization (Cloud Computing
2010), Lisbon, Portugal, Nov. 2010, pp. 155–158.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-
Source Cloud-Computing System,” in Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009. CCGRID ’09, May 2009, pp. 124–131.

[3] The Apache Software Foundation, “The Apache Open For
Business Project (Apache OFBiz),” http://ofbiz.apache.org/,
(Accessed January 20, 2012).

[4] L. Wu, H. Sahraoui, and P. Valtchev, “Coping with legacy
system migration complexity,” in Proceedings. 10th IEEE In-
ternational Conference on Engineering of Complex Computer
Systems, 2005. ICECCS 2005, Jun. 2005, pp. 600–609.

[5] I. Sriram and A. Khajeh-Hosseini, “Research Agenda in
Cloud Technologies,” CoRR, vol. abs/1001.3259, 2010.

[6] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues
and Challenges,” in Proceedings of the 24th IEEE Interna-
tional Conference on Advanced Information Networking and
Applications (AINA), 2010, pp. 27–33.

[7] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville,
“Cloud Migration: A Case Study of Migrating an Enterprise
IT System to IaaS,” CoRR, vol. abs/1002.3492, 2010.

[8] A. Thakar and A. Szalay, “Migrating a (Large) Science
Database to the Cloud,” in HPDC ’10: Proceedings of the
19th ACM International Symposium on High Performance
Distributed Computing. New York, NY, USA: ACM, 2010,
pp. 430–434.

[9] B. Wickremasinghe, R. Calheiros, and R. Buyya, “CloudAna-
lyst: A CloudSim-Based Visual Modeller for Analysing Cloud
Computing Environments and Applications,” in Proceedings
of the 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2010, pp.
446–452.

[10] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya,
“CloudSim: A Novel Framework for Modeling and Simula-
tion of Cloud Computing Infrastructures and Services,” CoRR,
vol. abs/0903.2525, 2009.

[11] P. Brebner and A. Liu, “Performance and Cost Assessment of
Cloud Services,” in Service-Oriented Computing, ser. Lecture
Notes in Computer Science, E. Maximilien, G. Rossi, S.-T.
Yuan, H. Ludwig, and M. Fantinato, Eds. Springer Berlin/
Heidelberg, 2011, vol. 6568, pp. 39–50.

[12] D. Greenwood, A. Khajeh-Hosseini, J. W. Smith, and I. Som-
merville, “The Cloud Adoption Toolkit: Addressing the
Challenges of Cloud Adoption in Enterprise,” CoRR, vol.
abs/1003.3866, 2010.

[13] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou,
“Profit-Driven Service Request Scheduling in Clouds,” in
Proceedings of the 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid), May 2010,
pp. 15–24.

[14] W. Shi and B. Hong, “Resource Allocation with a Budget
Constraint for Computing Independent Tasks in the Cloud,”
in Proceedings of the IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom),
Dec. 2010, pp. 327–334.

[15] S. C. Misra and A. Mondal, “Identification of a company’s
suitability for the adoption of cloud computing and modelling
its corresponding Return on Investment,” Mathematical and
Computer Modelling, vol. 53, no. 3-4, pp. 504–521, 2011.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb.
2009.

[17] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-
ner, “A break in the clouds: towards a cloud definition,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55,
2009.

[18] W. Iqbal, M. Dailey, and D. Carrera, “SLA-Driven Adaptive
Resource Management for Web Applications on a Heteroge-
neous Compute Cloud,” in CloudCom, ser. Lecture Notes in
Computer Science, M. G. Jaatun, G. Zhao, and C. Rong, Eds.,
vol. 5931. Springer, 2009, pp. 243–253.



353

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] S. Frey and W. Hasselbring, “An Extensible Architecture for
Detecting Violations of a Cloud Environment’s Constraints
During Legacy Software System Migration,” in Proceedings
of the 15th European Conference on Software Maintenance
and Reengineering (CSMR 2011), T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE Computer Society, Mar. 2011, pp.
269–278.

[20] S. Frey, W. Hasselbring, and B. Schnoor, “Automatic
conformance checking for migrating software systems to
cloud infrastructures and platforms,” Journal of Software
Maintenance and Evolution: Research and Practice, doi:
10.1002/smr.582, 2012.

[21] Object Management Group, Inc., “Architecture-Driven
Modernization (ADM): Knowledge Discovery Metamodel
(KDM), V. 1.3,” http://www.omg.org/spec/KDM/, (Accessed
January 20, 2012).

[22] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,
S. Frey, and D. Kieselhorst, “Continuous monitoring of
software services: Design and application of the Kieker
framework,” Department of Computer Science, University of
Kiel, Germany, Tech. Rep. TR-0921, Nov. 2009.

[23] Object Management Group, Inc., “Architecture-Driven Mod-
ernization (ADM): Structured Metrics Meta-Model (SMM),
V. 1.0 Beta 3,” http://www.omg.org/spec/SMM/, (Accessed
January 20, 2012).



354

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Formal Language for the Expression of Pattern Compositions

Ian Bayley and Hong Zhu
Department of Computing and Communication Technologies

Oxford Brookes University
Oxford OX33 1HX, UK.

Email: ibayley@brookes.ac.uk, hzhu@brookes.ac.uk

Abstract—In real applications, design patterns are almost
always to be found composed with each other. Correct appli-
cation of patterns therefore relies on precise definition of these
compositions. In this paper, we propose a set of operators on
patterns that can be used in such definitions. These operators
are restriction of a pattern with respect to a constraint,
superposition of two patterns, and a number of structural
manipulations of the pattern’s components. We demonstrate
the uses of these operators by examples. We also report a case
study on the pattern compositions suggested informally in the
Gang of Four book in order to demonstrate the expressiveness
of the operators.

Keywords-Design patterns, Pattern composition, Object ori-
ented design, Formal methods.

I. INTRODUCTION

As codified reusable solutions to recurring design prob-
lems, design patterns play an increasingly important role
in the development of software systems [2], [3]. In the
past few years, many such patterns have been identified,
catalogued [2]–[15], formally specified [16]–[20], and in-
cluded in software tools [21]–[31]. Although each pattern is
specified separately, they are usually to be found composed
with each other in real applications. It is therefore vital to
represent pattern compositions precisely and formally, so
that the correct usage of composed patterns can be verified
and validated.

The composition of design patterns have been studied by
many authors informally, e.g., in [32], [33]. Visual notations
such as the Pattern:Role annotation, and a forebear based on
Venn diagrams, have been proposed by Vlissides [34] and
widely used in practice. They indicate where, in a design,
patterns have been applied so their compositions are com-
prehensible. These notations focus on static properties. In
[35], Dong et al. developed techniques for visualising pattern
compositions in such notations by defining appropriate UML
profiles. Their tool, deployed as a web service, identifies
pattern applications, and does so by displaying stereotypes,
tagged values, and constraints. Such information is delivered
dynamically with the movement of the user’s mouse cursor

This paper is an extended and revised version of the paper [1] presented
at the 2nd International Conference on Pervasive Patterns and Applications
(PATTERNS 2011)

on the screen. Their experiments show that this delivery on
demand helps to reduce the information overload faced by
designers.

More recently, Smith proposed the Pattern Instance Nota-
tion (PIN), to visually represent the composition of patterns
in a hierarchical manner [36]. Most importantly, he also
recognised that multiple instances of roles needed to be
better expressed and he devised a suitable graphic nota-
tion for this. However, while many approaches to pattern
formalisation have been proposed, very few authors have
investigated pattern composition formally. Two of those who
have are Dong et al. [37]–[41] and Taibi and Ngo [18], [42],
[43], respectively.

As far as we know, Dong et al. were the first to study
pattern composition in a formal setting [37]. In their ap-
proach, a composition of two patterns is defined as a pair of
name mappings. Each mapping "associates the names of the
classes and objects declared in a pattern with the classes and
objects declared in the composition of this pattern and other
patterns" [37]. They illustrate this by composing Composite
with Iterator [37]–[39]. Dong et al. also demonstrated that
how structural and behavioural properties of the instances of
patterns and their compositions can be inferred from their
formal specifications.

In [41], they developed this approach further recently in
their study on the commutability of pattern instantiation with
pattern integration, another term for pattern composition.
A pattern instantiation was defined as a mapping from
names of various kinds of elements in the pattern to classes,
attributes, methods, etc., in the instance. An integration of
two patterns was defined as a mapping from the set union
of the names of the elements in the two patterns into the
names of the elements in the resulting pattern. However,
in a recent study of the compositions of security patterns
[40], they merely presented the compositions in the form
of diagrams, from which they manually derived the formal
specifications afterwards.

Taibi and Ngo [43] took an approach very similar to this,
but instead of defining mappings for pattern compositions
and instantiations, they use substitution to directly rename
the variables that represent pattern elements. Instantiation
replaces these variables with constants, whereas composition



355

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

replaces them with new variables, before then combining the
predicates. They illustrated the approach by combining the
Mediator and Observer patterns in [42] and the Command
and Composite patterns in [43].

In [44], we formally defined a pattern composition oper-
ator based on the notion of overlaps between the elements
in the composed patterns. We distinguished three different
kinds of overlaps: one-to-one, one-to-many and many-to-
many. The compositions in Dong et al. and Taibi’s ap-
proaches all have overlaps that are one-to-one. However,
the other two kinds are often required. For example, if the
Composite pattern is composed with the Adapter pattern in
such a way that one or more of the leaves are adapted then
that is a one-to-many overlap. This cannot be represented
as a mapping between names, nor by a substitution or
instantiation of variables. However, although our overlap
based operator is universally applicable, we found in our
case study that it is not very flexible for practical uses and
its properties are complex to analyse.

In this paper, therefore, we revise our previous work
and take a radically different approach. Instead of defining
a single universal composition operator, we propose a set
of six more primitive operators, with which each sort of
composition can then be accurately and precisely expressed.
This paper makes the following three the main contributions.
• A set of operators on design patterns are formally

defined.
• The uses of the operators in pattern-based software de-

sign are illustrated by classic examples in the literature.
• The expressiveness of the operators is demonstrated

by a case study on the compositions of the patterns
suggested by the Gang of Four book [2].

The remainder of the paper is organised as follows.
Section II provides a background by reviewing the different
approaches to pattern formalisation. Section III formally
defines the six operators. Section IV gives two examples to
illustrate how compositions can now be specified. Section
V reports a case study in which we used the operators to
realise all the pattern combinations suggested by the Gang
of Four (GoF) book [2]. Section VI concludes the paper with
a discussion of related works and future work.

II. BACKGROUND

In the past few years, researchers have advanced several
approaches to the formalisation of design patterns. In spite
of differences in these formalisms, the basic underlying
ideas are quite similar. In particular, valid pattern instances
are usually specified using statements that constrain their
structural features and sometimes their behavioural features
too. The structural constraints are typically assertions that
certain types of components exist and have a certain static
configuration. The behavioural constraints, on the other
hand, detail the temporal order of messages exchanged
between the components that realise the designs.

The various approaches to pattern formalisation differ
in how they represent software systems and in how they
formalise the predicate. For example, Eden’s predicates are
on the source code of object-oriented programs [19] but they
are limited to structural features. Taibi’s approach in [18] is
similar but he takes the further step of adding temporal logic
for behavioural features. In contrast, our predicates are built
up from primitive predicates on UML class and sequence
diagrams [20]. These primitives are induced from GEBNF
(Graphic Extension of Backus-Naur Form) definition of
the abstract syntax of graphical modelling languages [45],
[46]. Nevertheless, the operators on design patterns used in
this paper are generally applicable and independent of the
particular formalism used. Still, the example specifications
of GoF patterns come from our previous work [20].

As examples, Figures 1 and 2 show the specifications
of the Object Adapter and Composite design patterns, re-
spectively. The class diagrams from the GoF book have
been reproduced to enhance readability; while their sequence
diagrams are omitted for the sake of space. The primitive
predicates and functions we use are explained in Table I.
All of them are either induced directly from the GEBNF
definition of UML, or are defined formally in terms of such
predicates. The predicate trigs is particularly important in
describing dynamic behavioural properties and it is formally
defined as follows.

trigs(m,m′) ,

toAct(m) = fromAct(m′) ∧m < m′

Specification 1: (Object Adapter Pattern)
Components

1) Client, Target, Adapter,Adaptee ∈ classes,
2) requests, specreqs ⊆ operations,

Dynamic Components
1) mr,ms ∈ messages

Static Conditions
1) requests ⊆ Target.opers,
2) specreqs ⊆ Adaptee.opers
3) Adapter −−. Target,
4) Adapter −→ Adaptee,
5) Client −→ Target

Dynamic Conditions
1) mr.sig ∈ requests
2) ms.sig ∈ specreqs
3) trigs(mr,ms)

Figure 1. Specification of Object Adapter Pattern



356

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Specification 2: (Composite)
Components

1) Client, Component, Leaf, Composite ∈ classes
2) operation ∈ operations

Dynamic Components
1) m1,m2 ∈ messages

Static Conditions
1) operation ∈ Component.opers
2) Leaf −−. Component
3) Composite−−. Component
4) Client −→ Component
5) Composite �−→∗ Component
6) ¬Leaf �−→∗ Component
7) operation.isAbstract

Dynamic Conditions
1) m1.sig = Composite.operation
2) isOp(m2)
3) trigs(m1,m2)
4) m2.sig = Leaf.operation =⇒
¬∃m3 ∈ messages · trigs(m2,m3) ∧ isOp(m3)

Figure 2. Specification of Composite Pattern

The definition of the Composite pattern uses an auxiliary
predicate isOp defined on messages as follows.

isOp(m) ,

m.sig = Leaf.operation ∨
m.sig = Composite.operation

In general, a design pattern P can be defined abstractly
as an ordered pair 〈V, Pr〉, where Pr is a predicate on
the domain of some representation of software systems, and
V is a set of declarations of variables free in Pr. In other
words, Pr specifies the structural and behavioural features
of the pattern and V specifies its components. Let V =
{v1 : T1, · · · , vn : Tn}, where vi are variables that range
over the type Ti of software elements. The semantics of the
specification is a ground predicate in the following form.

∃v1 : T1 · · · ∃vn : Tn · (Pr) (1)

Note that, for the sake of readability, in the examples we
split the predicate in the specification into two parts: one for
static conditions and the other for dynamic conditions as in
[16], [18], [37] and [20]. In the sequel, we write Spec(P )

Table I
THE FUNCTIONS AND PREDICATES USED IN THE EXAMPLES

ID Meaning
classes The set of class nodes in the class diagram
operations The set of operations in the class diagram
C.opers The operations contained in the class node C
m.sig The signature of the message m as operation
X −−. Y Class X inherits class Y directly or indirectly
X −→ Y There is an association (either direct or

indirect) from class X to Y
X �−→ Y There is an composite or aggregate relation

(either direct or indirect) from X to Y
C.op The redefinition of op for class C
trigs(m,m′) Message m is sent to the activation from

which message m′ is afterwards sent
isAbstract(C) Class C is abstract
op.isAbstract Operation op is abstract
fromLL(m) The lifeline from which message m is sent
toLL(m) The lifeline to which message m is sent
l.class The class of the lifelines
hasParam(m, p) p is one of the parameters of message m
returnV alue(m) The value returned by message m

to denote the predicate (1) above, V ars(P ) for the set of
variables declared in V , and Pred(P ) for the predicate Pr.

Note further that the above definition can easily be gener-
alised or adapted so that the predicates in pattern specifica-
tions are defined on the domain of program implementations
and their dynamic behaviours.

We can formally define the conformance of a design
model m to a pattern P , written as m |= P , and reason
about the properties of instances based on the patterns they
conform to, but we omit the details here for the sake of
space. Readers are referred to [20] and [45]. The theory
developed in this paper remains valid so long as this notion
of conformance is valid and the logic is consistent. However,
for the sake of simplicity, this paper only considers designs
represented as models.

III. OPERATORS ON PATTERNS

We now formally define the operators on design patterns.

A. Restriction operator

The restriction operator was first introduced in our previ-
ous work [44], where it is called the specialisation operator.

Definition 1: (Restriction operator)
Let P be a given pattern and c be a predicate defined on
the components of P . A restriction of P with constraint c,
written as P [c], is the pattern obtained from P by imposing
the predicate c as an additional condition on the pattern.
Formally,

1) V ars(P [c]) = V ars(P ),
2) Pred(P [c]) = (Pred(P ) ∧ c). ut
For example, a variant of the Adapter pattern in which

there is only one request and one specific request, hereafter
known as Adapter1, can be formally defined as follows.



357

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adapter1 ,

Adapter[||requests|| = 1 ∧ ||specreqs|| = 1].

Restriction is frequently used in the case study, particu-
larly in the form P [u = v] for pattern P and variables u
and v of the same type. This expression denotes the pattern
obtained from P by unifying u and v to make them the same
element.

Note that the instantiation of a variable u in pattern P
with a constant a of the same type of variable u can also
be expressed by using restriction: P [u = a].

This operator does not introduce any new components into
the structure of a pattern, but the following operators do.

B. Superposition operator

Definition 2: (Superposition operator)
Let P and Q be two patterns. Assume that the compo-

nent variables of P and Q are disjoint, i.e., V ars(P ) ∩
V ars(Q) = ∅. The superposition of P and Q, written P ∗Q,
is a pattern that consists of both pattern P and pattern Q as
formally defined below.

1) V ars(P ∗Q) = V ars(P ) ∪ V ars(Q);
2) Pred(P ∗Q) = Pred(P ) ∧ Pred(Q). ut
For example, the superposition of Composite and Adapter

patterns, Composite ∗ Adapter, requires each instance to
contain one part that satisfies the Composite pattern and
another that satisfies the Adapter pattern. These parts may or
may not overlap, but the following expression does enforce
an overlap, as it requires that the Leaf class be the target
of an Adapter.

(Composite ∗Adapter)[Target = Leaf ]

The requirement that V ars(P ) and V ars(Q) be disjoint is
easy to fulfil using renaming. An appropriate notation for
this will be introduced later.

C. Extension operator

Definition 3: (Extension operator)
Let P be a pattern, V be a set of variable declarations that

are disjoint with P ’s component variables (i.e., V ars(P ) ∩
V = ∅), and c be a predicate with variables in V ars(P )∪V .
The extension of pattern P with components V and linkage
condition c, written as P#(V • c), is defined as follows.

1) V ars(P#(V • c)) = V ars(P ) ∪ V ;
2) Pred(P#(V • c)) = Pred(P ) ∧ c. ut

D. Flatten operator

Definition 4: (Flatten Operator)
Let P be a pattern, (xs : P(T )) ∈ V ars(P ), x 6∈

V ars(P ), and Pred(P ) = p(xs, x1, · · · , xk). The flatten-
ing of P on variable xs, written P ⇓ xs\x, is the pattern
defined as follows:

1) V ars(P ⇓ xs\x) =
(V ars(P )− {(xs : P(T ))}) ∪ {x : T};

2) Pred(P ⇓ xs\x) = p({x}, x1, · · · , xk).
Note that P(T ) denotes the power set of T . For example,

in the specification of the Adapter pattern, the component
variable requests is a subset of operations so its type is
P(operation).

The single-leaf variant of the Adapter pattern Adapter1
can also be defined as follows.
Adapter1 ,

(Adapter ⇓ requests\request) ⇓ specreq\specreqs
As an immediate consequence of this definition, we have

the following property. For x1 6= x2 and xs1 6= xs2,

(P ⇓ xs1\x1) ⇓ xs2\x2 = (P ⇓ xs2\x2) ⇓ xs1\x1. (2)

Therefore, we can overload the ⇓ operator to a set of
component variables. Formally, let XS be a subset of P ’s
component variables all of power set type, i.e., XS =
{xs1 : P(T1), · · · , xsn : P(Tn)} ⊆ V ars(P ), n ≥ 1 and
X = {x1 : T1, · · · , xn : Tn} ∩ V ars(P ) = ∅, we write
P ⇓ XS\X to denote P ⇓ xs1\x1 ⇓ · · · ⇓ xsn\xn.

Note that our pattern specifications are closed formulae,
containing no free variables. Although the names given to
component variables greatly improve readability, they have
no effect on semantics so, in the sequel, we will often omit
new variable names and write simply P ⇓ xs to represent
P ⇓ xs\x.

E. Generalisation operator

Definition 5: (Generalisation operator)
Let P be a pattern, x : T ∈ V ars(P ) and xs 6∈ V ars(P ).

The generalisation of P on variable x, written P ⇑ x\xs,
is defined as follows.

1) V ars(P ⇑ x\xs) =
(V ars(P )− {x : T}) ∪ {xs : P(T )},

2) Pred(P ⇑ x\xs) = ∀x ∈ xs · Pred(P ).ut
For example, we can define the Adapter pattern as a

generalisation of the variant Adapter1, as follows:
Adapter ,

(Adapter1 ⇑ request\requests) ⇑ specreq\specreqs
We will use the same syntactic sugar for ⇑ as we do

for ⇓. We will often omit the new variable name and write
P ⇑ x. Thanks to an analogue of Equation 2, we can and
will promote the operator ⇑ to sets also.

F. Lift operator

The lift operator was first introduced in our previous
work [44]. The definition given below is a revised version
that allows lifting not only on class type variables but on
variables of other types too .

Definition 6: (Lift Operator)
Let P be a pattern, X = {x1 : T1, · · · , xk : Tk} ⊂

V ars(P ), k > 0 and Pred(P ) = p(x1, · · · , xn), where
n ≥ k. The lifting of P with X as the key, written P ↑ X ,
is the pattern defined as follows.



358

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) V ars(P ↑ X) = {xs1 : P(T1), · · · , xsn : P(Tn)},
2) Pred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk·

∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · p(x1, · · · , xn). ut
When the key set is singleton, we omit the set brackets

for simplicity, so we write P ↑ x instead of P ↑ {x}.
Informally, lifting a pattern P results in a new pattern

P ′ that contains a number of instances of pattern P . For
example, Adapter ↑ Target is the pattern that contains a
number of Targets of adapted classes. Each of these has a
dependent Client, Adapter and Adaptee class configured
as in the original Adapter pattern. In other words, the
component Target in the lifted pattern plays a role similar
to the primary key in a relational database. Figure 3 is the
pattern defined by expression Adapter ↑ Target.

Specification 3: (Lifted Object Adapters Pattern)
Components

1) Targets,Adapters,Adaptees, Clients ⊆ classes,
2) requestses, specreqses ⊆ P(operations)

Dynamic Components
1) mrs,mss ⊆ messages,

Conditions
∀Target ∈ Targets, ∃Client ∈ Clients,
∃Adapter ∈ Adapters,∃Adaptee ∈ Adaptees,
∃requests ∈ requestses,∃specreqs ∈ specreqses,
∃mr ∈ mrs,∃ms ∈ mss·

1. Static Conditions
1) requests ⊆ Target.opers,
2) specreqs ⊆ Adaptee.opers
3) Adapter −−. Target
4) Adapter −→ Adaptee
5) Client −→ Target

2. Dynamic Conditions
1) mr.sig ∈ requests
2) ms.sig ∈ specreqs
3) trigs(mr,ms)

Figure 3. Specification of Lifted Object Adapter Pattern

IV. EXAMPLES

In this section, we present two examples of using the
operators to define composition of design patterns.

A. Model-View-Controller as Pattern Composition

Model-View-Controller (MVC) is one of the most well-
known design patterns and perhaps the most widely used
one. A detailed description of the MVC design pattern can
be found in [47], which includes the class and sequence
diagrams displayed in Figure 4. We can formalise the pattern
as shown in Figure 5.

It is immediately apparent from the diagrams that the
View and Controller classes are both observers of the Model,
so we can alternatively specify MVC as an extension of the
Observer pattern, whose specification is given in Figure 6.

- Observer 

update
call update 

Model 

coreData 
setOfObservers 

attach(Observer) 
detach(Observer) 
notify 

getData 
service 

A 
attach 

getData 

I 
View 

myModel 
myController 

initialize(Model) create 
ControllermanipulatemakeController 

displayactivate myModel
display myView
update 

attach initialize(Model,View) 
call service handleEvent 

update UCiuuUUg lJIUCeUUle. 

Controller Model 

handleEvent 

View 

seIVice 

update 

getData 

update 

Figure 4. Class and Sequence Diagrams of the MVC Design Pattern

Note that the GoF book puts the notify operation in an
abstract superclass, but we flatten the inheritance hierarchy
for simplicity.

Now, we rename the variables in this pattern in two
different ways to match those used for its two occurrences
within MVC. We call these renamed patterns Observer1
and Observer2.

Observer0 ,

Observer[Model := Subject][getData := getState]

Observer1 ,

Observer0[mu1,mg1 := mu,mg]

[V iew := ConcreteSubject]

Observer2 ,

Observer0[mu2,mg2 := mu,mg]

[Controller := ConcreteSubject]

So, MVC pattern can now be defined as follows.

MVC ,

(Observer1 ∗ Observer2)
#({display ∈ V iew.opers,mh,md ∈ messages,

handleEvent ∈ Controller.opers}
•(Controller −→ V iew ∧

mh.sig = handleEvent ∧md.sig = display ∧
trigs(mu1,md) ∧ trigs(md,mg1)

Here, ∗ is the operator that renames shared variable names



359

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Specification 4: (MVC – Version 1)
Components

1) Model, V iew,Controller,Observer ∈ classes
2) notify, getData, service ∈ operations
3) display, handleEvent, update ∈ operations

Dynamic Components
1) mh,ms,mn,mu1,md,mg1,mu2,mg2 ∈ messages

Static Conditions
1) notify, getData, service ∈Model.opers
2) display ∈ V iew.opers
3) handleEvent ∈ Controller.opers
4) update ∈ Observer.opers
5) V iew −−. Observer
6) Controller −−. Observer
7) Model −→∗ Observer
8) Controller −→ V iew
9) Controller −→Model

10) V iew −→Model

Dynamic Conditions
1) mh.sig = handleEvent
2) ms.sig = service
3) mn.sig = notify
4) mu1.sig = V iew.update
5) md.sig = display
6) mg1.sig = getData
7) mu2.sig = Controller.update
8) mg2.sig = getData
9) trigs(mh,ms)

10) trigs(ms,mn)
11) trigs(mn,mu1)
12) trigs(mu1,md)
13) trigs(md,mg1)
14) trigs(mu1,mg1)
15) trigs(mn,mu2)
16) trigs(mu2,mg2)

Figure 5. Specification of MVC Pattern (Version 1)

before applying ∗ and then renames them back to what
they were. Formally, let P1 and P2 be any given patterns,
{v} = V ars(P1) ∩ V ars(P2) and v1 6= v2 /∈ V ars(P1) ∪
V ars(P2). Then, ∗ is defined as follows, with the obvious
generalisation to more than one variable:

P1∗P2 ,

(P1[v1 := v] ∗ P2[v2 := v])[v := v1 = v2].
The GoF book further proposes the use of Composite with

MVC, to enable views to be nested, and Strategy too, so
that the controller associated with each view is dynamically
configurable. The specification of Strategy pattern is given
in Figure 7. But, it is its lifted version composed with
Composite, which is defined as follows.
StrategyLifted ,

Strategy ⇑ ConcreteStrategy\ConcreteStrategies

This brings us to a new definition of MVC, i.e., MVC2

below. The result of evaluating this definition gives the
specification shown in Figure 8.

Specification 5: (Simplified Observer)
Components

1) Subject, ConcreteObserver,Observer ∈ classes
2) notify, getState, service, update ∈ operations

Dynamic Components
1) ms,mn,mu,mg ∈ messages

Static Conditions
1) notify, getState, service ∈ Subject.opers
2) update ∈ Observer.opers
3) ConcreteObserver −−. Observer
4) Subject −→∗ Observer
5) ConcreteObserver −→ Subject

Dynamic Conditions
1) ms.sig = service
2) mn.sig = notify
3) mu.sig = ConcreteObserver.update
4) mg.sig = getState
5) trigs(ms,mn)
6) trigs(mn,mu)
7) trigs(mu,mg)

Figure 6. Specification of Observer Pattern

Specification 6: (Strategy)
Components

1) Context, Strategy, ConcreteStrategy ∈ classes
2) contextInterface,

algorithmInterface ∈ operations

Dynamic Components
1) mc,ma ∈ messages

Static Conditions
1) contextInterface ∈ Context.opers
2) algorithmInterface ∈ Strategy.opers
3) Context �−→ Strategy
4) ConcreteStrategy −−. Strategy
5) algorithmInterface.isAbstract
6) ¬isAbstract(ConcreteStrategy)

Dynamic Conditions
1) mc.sig = contextInterface
2) ma.sig = ConcreteStrategy.algorithmInterface
3) trigs(mc,ma)

Figure 7. Specification of Strategy Pattern

MVC ′ ,

MVC ∗ (Composite[display = operation ∧
V iew = Component ∧ Controller = Client])

[LeafV iew := Leaf ]

[CompositeV iew := Composite]

MVC2 ,

(MVC ′ ∗ StrategyLifted)
[Controller = Strategy ∧ V iew = Context ∧
handleEvent = algorithmInterface ∧
actionPerformed = contextInterface ∧
ConcreteControllers := ConcreteStrategies]



360

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Specification 7: (MVC – Version 2)
Components

1) Model, V iew,Controller,Observer
Client, LeafV iew,CompositeV iew ∈ classes

2) notify, getData, service ∈ operations
3) display, handleEvent, update ∈ operations

Dynamic Components
1) mh,ms,mn,mu1,md,mg1,mu2,mg2,

m1,m2,mc,ma ∈ messages

Static Conditions
1) notify, getData, service ∈Model.opers
2) display ∈ V iew.opers
3) handleEvent ∈ Controller.opers
4) update ∈ Observer.opers
5) V iew −−. Observer
6) Controller −−. Observer
7) Model −→∗ Observer
8) Client −→ V iew
9) Controller −→Model

10) V iew −→Model
11) LeafV iew −→ V iew
12) CompositeV iew −→ V iew
13) CompositeV iew �−→∗ V iew
14) ¬LeafV iew �−→∗ V iew
15) display.isAbstract
16) V iew �−→ Controller
17) ∀C ∈ ConcreteControllers · C −−. Controller
18) handleEvent.isAbstract
19) ∀C ∈ ConcreteControllers · ¬isAbstract(C)

Dynamic Conditions
1) mh.sig = handleEvent
2) ms.sig = service
3) mn.sig = notify
4) mu1.sig = V iew.update
5) md.sig = display
6) mg1.sig = getData
7) mu2.sig = Controller.update
8) mg2.sig = getData
9) m1.sig = Composite.operation

10) isOp(m2)
11) mc.sig = contextInterface
12) ma.sig = ConcreteStrategy.algorithmInterface
13) trigs(mh,ms)
14) trigs(ms,mn)
15) trigs(mn,mu1)
16) trigs(mu1,md)
17) trigs(md,mg1)
18) trigs(mu1,mg1)
19) trigs(mn,mu2)
20) trigs(mu2,mg2)
21) trigs(mc,ma)
22) trigs(m1,m2)
23) m2..sig = Leaf.operation =⇒
¬∃m3 ∈ messages · trigs(m2,m3) ∧ isOp(m3)

Figure 8. Specification of MVC Pattern (Version 2)

B. A Request-Handling Framework

In [32], the utility of pattern composition was demon-
strated with a case study of pattern-based software design,
in which five design patterns were composed to form an

extensible request-handling framework. As shown in Figure
9, the five patterns are Command, Command Processor,
Memento, Strategy and Composite. The composition can be
expressed in terms of our operators and an explicit definition
of the pattern can thereby be derived.

The last two patterns have already been defined, thus here
are the first three, starting with Command shown in Figure
10, which is based on the simplified version in [32] that
makes the Client also be the invoker.

The original case study treats the memento as being
created by the caretaker, but in fact it is created by the
originator instead, so we have the specification of Memento
in Figure 11.

The Command Processor pattern is not one of the GoF
patterns. Figure 12 is the diagram given in [9] that illustrates
the pattern’s structure and dynamic behaviour. In particular,
the Command Processor object executes requests on behalf
of the clients. Its specification is given in Figure 13.

Now, the request-handling framework, ReqHand, can
be defined as follows using our operators on patterns,
where RH1, RH2 and RH3 are intermediate steps of the
composition.
RH1 , ((Command[Application := Receiver]

⇑ ConcreteCommand\ConcreteCommands
⇑ mn\mns ⇑ me\mes)
∗ CommandProcessor[mee := me])

[Component = Command]

RH2 , (RH1 ∗Memento)

[Command −→ Application ∧
Command = Caretaker ∧
Originator = Application]

RH3 , (RH2 ∗ Strategy ⇑ ma\mas
⇑ ConcreteStrategy\ConcreteStrategies)
[CommandProcessor = Context]

[Strategy := Logging]

[ConcreteStrategies

:= ConcreteLoggingStrategies]

ReqHand ,

(RH3 ∗ Composite ⇑ m2\mls)
⇑ Leaf\Leaves [Command = Component]

[mm := m] [LeafCommands := Leaves]

[ConcreteCommands =

LeafCommands ∪ {CompositeCommands}]
[CompositeCommand := Composite]

Evaluating the above expressions according to the def-
initions of the operators, we have the specification of the
extensible request handling framework shown in Figure 14
for the static and dynamic parts.



361

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Client Command 
Processor Logging

Concrete 
Logging 

Strategy A

Concrete 
Logging 

Strategy B

Command

Composite 
Command

Concrete 
Command A

Concrete 
Command B

Application

Memento

Command Processor: command processor
Strategy: context Strategy: strategy

Command Processor: command
Command: command
Composite: component
Memento: caretaker

Memento: memento

Memento: originator

Command: concrete command
Composite: leaf
Memento: caretaker

Command: concrete command
Composite: leaf
Memento: caretaker

Figure 9. Request Handling Framework

Specification 8: (Command)
Components

1) Command ∈ classes
2) ConcreteCommand ∈ classes
3) Client ∈ classes
4) Receiver ∈ classes
5) execute, action ∈ operations

Dynamic Components
1) mn,me,ma ∈ messages

Static Conditions
1) execute ∈ Command.opers
2) action ∈ Receiver.opers
3) Client −→ Command
4) ConcreteCommand −→ Receiver
5) ConcreteCommand−−. Command
6) execute.isAbstract
7) ¬isAbstract(ConcreteCommand)

Dynamic Conditions
1) mn.sig.isNew
2) me.sig = execute
3) ma.sig = action
4) mn < me
5) fromLL(mn).class = Client
6) fromLL(me).class = Client
7) toLL(mn) = toLL(me)
8) trigs(me,ma)

Figure 10. Specification of Command Pattern

Specification 9: (Memento)
Components

1) Caretaker,Memento,Originator ∈ classes
2) setState, getState ∈ operations
3) createMemento, setMemento ∈ operations

Dynamic Components
1) mcm,mnm,mss,msm,mgs ∈ messages

Static Conditions
1) setState, getState ∈Memento.opers
2) createMemento, setMemento ∈ Originator.opers
3) Caretaker �−→Memento

Dynamic Conditions
1) mcm.sig = createMemento
2) mnm.sig.isNew
3) mss.sig = setState
4) msm.sig = setMemento
5) mgs.sig = getState
6) trigs(mcm,mnm)
7) trigs(mcm,mss)
8) trigs(mss,mgs)
9) mcm < msm

10) fromLL(mcm) = fromLL(msm)
11) toLL(mcm) = toLL(msm)
12) hasParam(msm, toLL(gs))
13) toLL(mnm) = returnV alue(mnm)
14) toLL(mss) = returnV alue(mnm)

Figure 11. Specification of Memento Pattern

Client

execute

Service Request

Execute_request

Command 
Processor

1
Issue request

Function_1

Component execute

Execute request

Function_2

2

Figure 12. Diagram of Command Processor Pattern [9]

Specification 10: (Command Processor)
Components

1) Client, CommandProcessor, Component
∈ classes

2) executeRequest, function ∈ operations
3) me,mf ∈ messages

Static Conditions
1) executeRequest ∈ CommandProcessor.opers
2) function ∈ Component.opers
3) Client −→ CommandProcessor
4) CommandProcessor −→ Component

Dynamic Conditions
1) me.sig = executeRequest
2) mf.sig = function
3) fromLL(me).class = Client
4) trigs(me,mf)

Figure 13. Specification of Command Processor Pattern



362

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Specification 11: (Extensible Request Handler)
Components

1) Command,Client, Application,
CommandProcessor,Memento, Logging,
Client, CompositeCommand ∈ classes

2) ConcreteCommands, LeafCommands,
ConcreteLoggingStrategies ⊆ classes

3) execute, function, operation, action ∈ operations
4) executeRequest, contextInterface ∈ operations
5) setState, getState ∈ operations
6) createMemento, setMemento,

algorithmInterface ∈ operations

Static Conditions
1) execute, function, operation ∈ Command.opers
2) action ∈ Action.opers
3) executeRequest, contextInterface
∈ CommandProcessor.opers

4) setState, getState ∈Memento.opers
5) createMemento, setMemento
∈ Application.opers

6) algorithmInterface ∈ Logging.opers
7) Client −→ Command
8) ∀C ∈ ConcreteCommands · C −→ Application
9) ∀C ∈ ConcreteCommands · C −−. Command

10) execute.isAbstract
11) ∀C ∈ ConcreteCommands · ¬isAbstract(C)
12) Client −→ CommandProcessor
13) CommandProcessor −→ Application
14) Caretaker �−→Memento
15) Command −→ Application
16) Memento −→ Application
17) CommandProcessor �−→ Logging
18) ∀C ∈ ConcreteLoggingStrategies·

C −−. Logging
19) algorithmInterface.isAbstract
20) ∀C ∈ ConcreteLoggingStrategies·
¬isAbstract(C)

21) CompositeCommand−−. Command
22) CompositeCommand �−→∗ Command
23) ∀C ∈ LeafCommands · ¬C �−→∗ Command
24) ConcreteCommands =

LeafCommands ∪ {CompositeCommand}
25) operation.isAbstract

Dynamic Components
1) ma,mee,mf,mc,mm

mcm,mnm,mss,msm,mgs ∈ messages
2) mns,mes,mas,mls ⊆ messages

Dynamic Conditions
1) ∀C ∈ ConcreteCommands ·mnsC .sig.isNew
2) ∀C ∈ ConcreteCommands ·mesC .sig = C.execute
3) ma.sig = action
4) mee.sig = executeRequest
5) mf.sig = function
6) mcm.sig = createMemento
7) mnm.sig.isNew
8) mss.sig = setState
9) msm.sig = setMemento

10) mgs.sig = getState
11) mc.sig = contextInterface
12) ∀C ∈ ConcreteStrategies·

masC .sig = C.algorithmInterface
13) mm.sig = Composite.operation
14) ∀C ∈ LeafCommands· isOp(mlsC)
15) ∀C ·mnsC < mesC
16) ∀C · fromLL(mnsC).class = Client
17) ∀C · fromLL(mesC).class = Client
18) ∀C · toLL(mnsC) = toLL(mesC)
19) ∀C · trigs(mesC ,ma)
20) fromLL(mee).class = Client
21) trigs(mee,mf)
22) trigs(mcm,mnm)
23) trigs(mcm,mss)
24) trigs(mss,mgs)
25) mcm < msm
26) fromLL(mcm) = fromLL(msm)
27) toLL(mcm) = toLL(msm)
28) hasParam(msm, toLL(gs))
29) toLL(mnm) = returnV alue(mnm)
30) toLL(mss) = returnV alue(mnm)
31) ∀C ∈ ConcreteStrategies· trigs(mc,masC)
32) ∀C ∈ LeafCommands· trigs(mm,mlsC)
33) ∀C ∈ LeafCommands·

mlsC..sig = C.operation⇒
¬∃mmm ∈ messages·

trigs(mlsC ,mmm) ∧ isOp(mmm)

Figure 14. Specification of Request Handling Pattern

V. CASE STUDY

In the GoF book, the documentation for each pattern
concludes with a brief section entitled Related Patterns. A
few words are devoted to the comparisons and contrasts that
this title would suggest, but the section mostly consists of
suggestions for how other patterns may be composed with
the one under discussion. These compositions are the subject
of our case study.

On page 106 of the GoF book, for example, it is stated that
A Composite is what the builder often builds. This suggests a
composition of the Composite and Builder patterns, and that
composition can formally be specified using our operators

as follows:

(Builder ∗ Composite)[Product = Component].

Figure 15 shows the relationships between patterns that
we have successfully formalised. The formal definitions of
the relationships are given in Table II; the two numbers
in each row are the arrow label followed by the page
number in the GoF book. The column "Description of the
Relationship"’ quotes what are described in the GoF book.
The column "Formal Expression" gives the expression of the
relationship using the operators.

A similar diagram appears in the GoF book but we have
added five new arrows, numbered in bold font, for the



363

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ta
bl

e
II

F
O

R
M

A
L

D
E

FI
N

IT
IO

N
S

O
F

T
H

E
C

O
M

P
O

S
IT

IO
N

A
L

R
E

L
A

T
IO

N
S

H
IP

S
B

E
T

W
E

E
N

PA
T

T
E

R
N

S

N
o.

Pa
ge

D
es

cr
ip

tio
n

of
th

e
re

la
tio

ns
hi

p
Fo

rm
al

ex
pr

es
si

on
1

10
6

A
C

om
po

si
te

is
w

ha
t

th
e

bu
ild

er
of

te
n

bu
ild

s.
(B

u
il
d
er
∗
C
o
m
p
o
si
te
)
[P

r
o
d
u
ct

=
C
o
m
p
o
n
en

t]
2

17
3,

O
ft

en
th

e
co

m
po

ne
nt

-p
ar

en
t

lin
k

is
us

ed
fo

r
a

C
ha

in
of

R
es

po
n-

si
bi

lit
y.

(C
o
m
p
o
si
te
∗
C
h
a
in

O
f
R
es
p
o
n
si
bi
li
ty
)

[H
a
n
d
le
r
=

C
o
m
p
o
n
en

t
∧

O
p
er

a
ti
o
n
=

H
a
n
d
le
∧

m
u
lt
ip
li
ci
ty

=
1
]

23
2

C
ha

in
of

R
es

po
ns

ib
ili

ty
is

of
te

n
ap

pl
ie

d
in

co
nj

un
ct

io
n

w
ith

C
om

po
si

te
.T

he
re

,a
co

m
po

ne
nt

’s
pa

re
nt

ca
n

ac
t

as
its

su
cc

es
so

r.
3

17
3

W
he

n
D

ec
or

at
or

an
d

C
om

po
si

te
ar

e
us

ed
to

ge
th

er
,

th
ey

w
ill

us
ua

lly
ha

ve
a

co
m

m
on

pa
re

nt
cl

as
s.

(C
o
m
p
o
si
te
′
∗
D
ec
o
r
a
to
r
)
[D

ec
o
r
a
to
r
=

C
o
m
p
o
si
te
′
∧

C
o
m
p
o
si
te
′ .
C
o
m
p
o
n
en

t
=

D
ec
o
r
a
to
r.
C
o
m
p
o
n
en

t
∧

C
o
m
p
o
si
te
′ .
O
p
er

a
ti
o
n
=

D
ec
o
r
a
to
r.
O
p
er

a
ti
o
n
∧

C
o
n
cr
et
eC

o
m
p
o
n
en

t
=

L
ea

f
]

4
17

3
Fl

yw
ei

gh
t

le
ts

yo
u

sh
ar

e
co

m
po

ne
nt

s
[o

f
C

om
po

si
te

].
(C

o
m
p
o
si
te
∗
F
ly
w
ei
g
h
t)

[L
ea

f
s
=
{C

o
n
cr
et
eF

ly
w
ei
g
h
t,
U
n
sh

a
r
ed

C
o
n
cr
et
eF

ly
w
ei
g
h
t}
]

20
6

T
he

Fl
yw

ei
gh

t
pa

tte
rn

is
of

te
n

co
m

bi
ne

d
w

ith
th

e
C

om
po

si
te

pa
tte

rn
to

im
pl

em
en

t
a

lo
gi

ca
lly

hi
er

ar
ch

ic
al

st
ru

ct
ur

e
in

te
rm

s
of

a
di

re
ct

ed
-a

cy
cl

ic
gr

ap
h

w
ith

sh
ar

ed
le

af
no

de
s.

5
17

3
It

er
at

or
ca

n
be

us
ed

to
tr

av
er

se
co

m
po

si
te

s.
(C

o
m
p
o
si
te
∗
I
te
r
a
to
r
′ )

[C
o
n
cr
et
eA

g
g
r
eg

a
te

=
C
o
m
p
o
n
en

t]
6

17
3

V
is

ito
rl

oc
al

is
es

op
er

at
io

ns
an

d
be

ha
vi

ou
rt

ha
tw

ou
ld

ot
he

rw
is

e
be

di
st

ri
bu

te
d

ac
ro

ss
co

m
po

si
te

an
d

le
af

cl
as

se
s

[i
n

th
e

C
om

po
si

te
].

(C
o
m
p
o
si
te
∗
V
is
it
o
r
)
[E

le
m
en

t
=

C
o
m
p
o
n
en

t
∧

O
p
er

a
ti
o
n
=

A
cc
ep

t(
v
)
∧

C
o
n
cr
et
eE

le
m
en

ts
=
{L

ea
f
,C

o
m
p
o
si
te
}]

7
24

2
A

C
om

po
si

te
ca

n
be

us
ed

to
im

pl
em

en
t

M
ac

ro
C

om
m

an
ds

[i
.e

.,
C

on
cr

et
eC

om
m

an
d

in
C

om
m

an
d]

.
(C

o
m
p
o
si
te
∗
C
o
m
m
a
n
d
)
[C

o
m
m
a
n
d
=

C
o
m
p
o
n
en

t
∧

ex
ec
u
te

=
o
p
er

a
ti
o
n
∧

C
o
n
cr
et
eC

o
m
m
a
n
d
=

L
ea

f
]

8
25

5
Fl

yw
ei

gh
t

sh
ow

s
ho

w
to

sh
ar

e
te

rm
in

al
sy

m
bo

ls
w

ith
in

th
e

ab
st

ra
ct

sy
nt

ax
tr

ee
.

(I
n
te
r
p
r
et
er
∗
F
ly
w
ei
g
h
t)

[T
er

m
in

a
lE

x
p
r
es
si
o
n
=

F
ly
w
ei
g
h
t]

9
25

5
V

is
ito

r
ca

n
be

us
ed

to
m

ai
nt

ai
n

th
e

be
ha

vi
ou

r
in

ea
ch

no
de

in
th

e
ab

st
ra

ct
sy

nt
ax

tr
ee

in
on

e
cl

as
s.

(I
n
te
r
p
r
et
er
∗
V
is
it
o
r
)[
E
le
m
en

t
=

A
bs
tr
a
ct
E
x
p
r
es
si
o
n
∧

I
n
te
r
p
r
et

=
A
cc
ep

t(
v
)∧

C
o
n
cr
et
eE

le
m
en

ts
=
{N

o
n
T
er

m
in

a
lE

x
p
r
es
si
o
n
,T

er
m
in

a
lE

x
p
r
es
si
o
n
}]

10
95

A
bs

tr
ac

tF
ac

to
ry

cl
as

se
s

ar
e

of
te

n
im

pl
em

en
te

d
w

ith
fa

ct
or

y
m

et
h-

od
s

of
Fa

ct
or

y
M

et
ho

d.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
((
F
a
ct
o
r
y
M

et
h
o
d
↑
P
r
o
d
u
ct
)
⇑
F
a
ct
o
r
y
M

et
h
o
d
))

[C
r
ea

to
r
=

A
bs
tr
a
ct
F
a
ct
o
r
y
∧

#
A
n
O
p
er

a
ti
o
n
s
=

1
∧

P
r
o
d
u
ct
s
=

A
bs
tr
a
ct
P
r
o
d
u
ct
s
∧

cr
ea

te
M

et
h
o
d
s
⊆

F
a
ct
o
r
y
M

et
h
o
d
s
∧

C
o
n
cr
et
eC

r
ea

to
r
s
=

C
o
n
cr
et
eF

a
ct
o
r
ie
s
∧

A
bs
tr
a
ct
F
a
ct
o
r
y
.C

o
n
cr
et
eP

r
o
d
u
ct
s
=

F
a
ct
o
r
y
M

et
h
o
d
.C

o
n
cr
et
eP

r
o
d
u
ct
s]

11
95

A
bs

tr
ac

tF
ac

to
ry

cl
as

se
s

ca
n

al
so

be
im

pl
em

en
te

d
us

in
g

Pr
ot

ot
yp

e.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
(P

r
o
to
ty
p
e
↑
C
li
en

t)
)
[C

o
n
cr
et
eF

a
ct
o
r
ie
s
⊆

C
li
en

ts
∧

A
bs
tr
a
ct
P
r
o
d
u
ct
s
⊆

P
r
o
to
ty
p
es
∧

C
r
ea

te
P
r
o
d
u
ct
O
p
er

a
ti
o
n
s
⊆

O
p
er

a
ti
o
n
s]

12
95

A
co

nc
re

te
fa

ct
or

y
in

th
e

A
bs

tr
ac

tF
ac

to
ry

is
of

te
n

a
si

ng
le

to
n.

(A
bs
tr
a
ct
F
a
ct
o
r
y
∗
(S

in
g
le
to
n
↑
{S

in
g
le
to
n
})
)
[S
in

g
le
to
n
s
⊆

C
o
n
cr
et
eF

a
ct
o
r
ie
s]

13
11

6
Fa

ct
or

y
m

et
ho

ds
ar

e
of

te
n

ca
lle

d
w

ith
in

Te
m

pl
at

e
M

et
ho

ds
.

(T
em

p
la
te
M

et
h
o
d
∗
F
a
ct
o
r
y
M

et
h
o
d
)

[A
bs
tr
a
ct
C
la
ss

=
C
r
ea

to
r
∧

T
em

p
la
te
M

et
h
o
d
=

A
n
O
p
er

a
ti
o
n
]

14
19

3
A

bs
tr

ac
tF

ac
to

ry
ca

n
be

us
ed

w
ith

Fa
ca

de
to

pr
ov

id
e

an
in

te
rf

ac
e

fo
r

cr
ea

tin
g

su
bs

ys
te

m
ob

je
ct

s
in

a
su

bs
ys

te
m

-i
nd

ep
en

de
nt

w
ay

.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
F
a
ca

d
e)

[A
bs
tr
a
ct
F
a
ct
o
r
y
=

F
a
ca

d
e]

15
16

1
A

bs
tr

ac
t

Fa
ct

or
y

ca
n

cr
ea

te
an

d
co

nfi
gu

re
a

pa
rt

ic
ul

ar
br

id
ge

.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
B
r
id
g
e)

[A
bs
tr
a
ct
P
r
o
d
u
ct
s
=
{A

bs
tr
a
ct
io
n
,I

m
p
le
m
en

to
r
}]

16
19

3
us

ua
lly

on
ly

on
e

Fa
ca

de
ob

je
ct

is
re

qu
ir

ed
.

T
hu

s
Fa

ca
de

ob
je

ct
s

ar
e

of
te

n
Si

ng
le

to
ns

.
(F

a
ca

d
e
∗
S
in

g
le
to
n
)[
F
a
ca

d
e
=

S
in

g
le
to
n
]

17
24

2
A

M
em

en
to

ca
n

ke
ep

st
at

e
th

e
co

m
m

en
d

[i
n

C
om

m
ka

nd
]

re
qu

ir
es

to
un

do
its

ef
fe

ct
.

(C
o
m
m
a
n
d
∗
M

em
en

to
)[
O
r
ig
in

a
to
r
=

C
o
m
m
a
n
d
]

18
24

2
A

co
m

m
an

d
[i

n
C

om
m

an
d]

th
at

m
us

t
be

co
pi

ed
be

fo
re

be
in

g
pl

ac
ed

on
th

e
hi

st
or

y
lis

t
ac

ts
as

a
Pr

ot
ot

yp
e.

(C
o
m
m
a
n
d
∗
P
r
o
to
ty
p
e)
[C

o
m
m
a
n
d
=

P
r
o
to
ty
p
e]

19
27

1
Po

ly
m

or
ph

ic
ite

ra
to

rs
re

pl
y

on
fa

ct
or

y
m

et
ho

ds
to

in
st

an
tia

te
th

e
ap

pr
op

ri
at

e
It

er
at

or
su

bc
la

ss
.

(I
te
r
a
to
r
∗F

a
ct
o
r
y
M

et
h
o
d
)
[C

o
n
cr
et
eC

r
ea

to
r
=

C
o
n
cr
et
eA

g
g
r
eg

a
te
∧

C
r
ea

to
r
=

A
g
g
r
eg

a
te
∧

P
r
o
d
u
ct

=
I
te
r
a
to
r
∧
C
o
n
cr
et
eP

r
o
d
u
ct

=
C
o
n
cr
et
eI

te
r
a
to
r
∧
A
n
O
p
er

a
ti
o
n
=

C
r
ea

te
I
te
r
a
to
r
]

20
27

1
A

n
ite

ra
to

r
ca

n
us

e
a

m
em

en
to

to
ca

pt
ur

e
th

e
st

at
e

of
an

ite
ra

tio
n.

T
he

ite
ra

to
r

st
or

es
th

e
m

em
en

to
in

te
rn

al
ly

.
(M

em
en

to
∗
I
te
r
a
to
r
)
[C

o
n
cr
et
eA

g
g
r
eg

a
te

=
O
r
ig
in

a
to
r
]

21
28

2
C

ol
le

ag
ue

s
ca

n
co

m
m

un
ic

at
e

w
ith

th
e

m
ed

ia
to

r
us

in
g

th
e

O
b-

se
rv

er
.

(M
ed

ia
to
r
∗
O
bs
er

v
er

)
[C

o
n
cr
et
eC

o
ll
ea

g
u
es

=
{C

o
n
cr
et
eS

u
bj
ec
t,
C
o
n
cr
et
eO

bs
er

v
er
}]

22
30

3
T

he
C

ha
ng

eM
an

ag
er

[a
n

in
st

an
ce

of
th

e
M

ed
ia

to
rp

at
te

rn
]m

ay
us

e
th

e
Si

ng
le

to
n

pa
tte

rn
to

m
ak

e
it

un
iq

ue
an

d
gl

ob
al

ly
ac

ce
ss

ib
le

.
(M

ed
ia
to
r
∗
S
in

g
le
to
n
)
[C

o
n
cr
et
eM

ed
ia
to
r
=

S
in

g
le
to
n
]

23
31

3
T

he
Fl

yw
ei

gh
t

pa
tte

rn
ex

pl
ai

ns
w

he
n

an
d

ho
w

St
at

e
ob

je
ct

s
ca

n
be

sh
ar

ed
.

(F
ly
w
ei
g
h
t
∗
S
ta
te
)
[F

ly
w
ei
g
h
t
=

S
ta
te
∧
H
a
n
d
le

=
O
p
er

a
ti
o
n
(e
x
tr
in

si
cS

ta
te
)]

24
31

3
St

at
e

ob
je

ct
s

ar
e

of
te

n
Si

ng
le

to
ns

.
(S

ta
te
∗
(S

in
g
le
to
n
⇑
S
in

g
le
to
n
))

[S
in

g
le
to
n
s
⊆

C
o
n
cr
et
eS

ta
te
s]

25
20

6
It

’s
of

te
n

be
st

to
im

pl
em

en
t

St
ra

te
gy

ob
je

ct
s

as
Fl

yw
ei

gh
t.

(S
tr
a
te
g
y
∗
F
ly
w
ei
g
h
t)

[S
tr
a
te
g
y
=

F
ly
w
ei
g
h
t
∧
a
lg
o
r
it
h
m
I
n
te
r
f
a
ce

=
O
p
er

a
ti
o
n
(e
x
tr
in

si
cS

ta
te
)]



364

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

* Defining 
grammar

* Defining 
traversal

* Changing Skin 
versus guts

(25) Sharing 
strategies

(24)

(23) Sharing 
states

(21) Complex 
dependency 
management

(22) 

(20) Saving 
state of iteration

(19)

(18)

(17) Avoiding 
hysteresis

(16) Single 
instance

(15)
(14) 

(13) Often 
uses

(12) Single 
instance

(11) Configure 
factory dynamically

(10) Implement 
using

(9) Adding 
operations

(8) Sharing 
terminal symbols

(7) Composed 
using

(6) Adding 
operations

(2) Defining 
the chain

(4) Sharing
composites

(1) Creating 
composites

Composite

Iterator

Builder

Decorator

Strategy

Flyweight

Interpreter

Visitor

Memento
Command

Chain of 
Responsibility

Observer

Mediator

Template 
Method

Factory
MethodAbstract

Factory

Singleton
Prototype

Bridge ProxyAdapter

(5) Enumerating 
children

(3) Adding 
responsibilities

to objects

Facade

State

* Defining 
algorithm 

steps

Figure 15. Case Study on Formalising Relationships between GoF Patterns

relationships we have formalised that are discussed in the
main text but not shown on the original diagram. Four other
relationships are unnumbered but asterisked. These do not
represent compositions and so have not been formalised. In
particular, and for a start, it is a specialisation relation that
links Composite and Interpreter. The relationship between
Decorator and Strategy is about the differences between
them, not a suggested composition. So too is the relationship
between Strategy and Template Method. And finally, the
relationship between Iterator and Visitor, has been left
unformalised for the different reason that it is mentioned
in GoF only on the diagram, and not expanded upon in
the main text. Therefore, our case study has covered all the
compositional relationships in the GoF book.

Comparing Table II with Table 2 of [44], which express
the same relationships using composition with overlaps, we
can see that those compositional relationships that require
one-to-many and many-to-many overlaps can all be repre-
sented more accurately using our operators.

In summary, the case studies demonstrated that the oper-
ators defined in this paper are expressive enough to define
compositions of design patterns. Other work by us [44]
has shown that their logic properties and algebraic laws are
useful for proving the properties of pattern compositions.

VI. CONCLUSION

In this paper, we proposed a set of operators on design
patterns that enable compositions to be formally defined with
flexibility. We illustrated the operators with examples. We
also reported a case study on the relationships suggested by

the GoF book [2]. This demonstrated the expressiveness of
the operators when used to compose patterns.

A. Related Work

As far as we know, there is no similar work in the
literature that defines operators on design patterns for pattern
composition or instantiation. The closest work is perhaps
that of Dong et al. [37] and Taibi [18], [42], [43], as
previously discussed in Section I. Here we discuss the
relationship between their work and ours more formally,
using their notation for expositional clarity.

In [38], Dong et al. describe a composition P of patterns
P1, P2, · · ·Pn using a composition mapping C : P1 × · · · ×
Pn → P . This is, in fact, intended to formally represent a
set of signature mappings Ci such that Ci maps the sets of
component names in pattern Pi to P so the properties θi for
each Pi is translated into another property θ′i = C(θi) as a
part of the properties of P . In [39], the composition mapping
is better defined as from the union of the variables in Pi.
For instantiation, the mapping is to constants of classes,
attributes, methods, etc.

The approach of Taibi et al. [42], [43] is very similar
except that they directly rename the components using sub-
stitution. Again, composition replaces variables with vari-
ables, whereas instantiation replaces them with constants.
Formally, if pattern P1 have properties ϕ1 and pattern P2

have properties ϕ2 then the properties of their composition
are given by

Subst{v1\t1, · · · , vn\tn}, ϕ1 ∧ ϕ2,

which, informally, is the conjunction of ϕ1 and ϕ2 after
variables vi have each been replaced by terms ti. Here,



365

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

terms ti are either variables or constants. This approach
has an advantage over that of Dong et al. that instantiation
and composition are represented in the same notation, but
apart from that it is mathematically equivalent, because
substitutions are mappings with the terms restricted to be
either variables or constants. Since substitutions and sig-
nature mappings must both preserve variable types for the
translations to be syntactically valid, neither approach can
express one-to-many or many-to-many overlaps. Moreover,
they are both mathematically equivalent to an application of
our restriction operator with conditions in the simplest form,
u = v. That is why our approach is more expressive, as we
have demonstrated in the case study.

B. Further work

Formal reasoning about design patterns and their com-
positions can naturally be supported by formal deduction
in first-order logic. This activity is well understood, and
well supported by software tools such as theorem provers.
It is desirable to employ or develop such tools for automatic
reasoning about pattern compositions that are expressed as
applications of the operators.

We have seen that pattern compositions can be represented
by different but equivalent expressions. For example, we saw
in Section III that Adapter1 can be expressed either using
the restriction operator or by using the flatten operator, and
these two expressions are equivalent. Inspired by this, we
have investigated the algebraic laws that the operators obey.
This led us to a calculus of pattern composition for reasoning
about the equivalence of such expressions. The results have
been reported in a separate paper [48], thus omitted here.

One of the more important questions in the study of
pattern composition is whether a composition is appropriate
for a particular pair of patterns. Dong et al. addressed this
issue in [37] with their notion of faithfulness conditions.
A composition is faithful to the composed patterns if it
satisfies two conditions: (a) no pattern loses any properties
after composition, and (b) the composition does not add any
new facts to its components. However, Taibi and Ngo argued
that although the first condition is relevant, it is not always
necessary [43]. So further investigation seemed warranted
on how to formalise the notion of appropriateness, and to
prove that the operators presented in this paper have such a
property.

REFERENCES

[1] I. Bayley and H. Zhu, “A formal language of pattern compo-
sition,” in Proceedings of The 2nd International Conference
on Pervasive Patterns (PATTERNS 2010). Xpert Publishing
Services, Nov. 2010, pp. 1–6.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best
Practices and Design Strategies, 2nd ed. Prentice Hall, 2003.

[4] M. Grand, Patterns in Java: A Catalog of Reusable Design
Patterns Illustrated with UML,Volume 1. John Wiley & Sons,
2002.

[5] ——, Patterns in Java, volume 2. John Wiley & Sons, 1999.

[6] ——, Java Enterprise Design Patterns. John Wiley & Sons,
2002.

[7] M. Fowler, Patterns of Enterprise Application Architecture.
Addison Wesley, 2003.

[8] G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison Wesley, 2004.

[9] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oriented Software Architecture. vol. 4: A Pattern Language
for Distributed Computing. John Wiley & Sons, 2007.

[10] M. Voelter, M. Kircher, and U. Zdun, Remoting Patterns. John
Wiley & Sons, 2004.

[11] M. Schumacher, E. Fernandez, D. Hybertson, and F.
Buschmann, Security Patterns: Integrating Security and Sys-
tems Engineering. John Wiley & Sons, 2005.

[12] C. Steel, Applied J2EE Security Patterns: Architectural Pat-
terns & Best Practices. Prentice Hall, 2005.

[13] L. DiPippo and C. D. Gill, Design Patterns for Distributed
Real-Time Systems. Springer-Verlag, 2005.

[14] B. P. Douglass, Real Time Design Patterns: Robust Scalable
Architecture for Real-time Systems. Addison Wesley, 2002.

[15] R. S. Hanmer, Patterns for Fault Tolerant Software. Wiley,
2007.

[16] P. S. C. Alencar, D. D. Cowan, and C. J. P. de Lucena, “A
formal approach to architectural design patterns,” in Proc. of
FME’96, Springer-Verlag, 1996, pp. 576 – 594.

[17] T. Mikkonen, “Formalizing design patterns,” in Proc. of ICSE
1998. IEEE CS, April 1998, pp. 115–124.

[18] T. Taibi, D. Check, and L. Ngo, “Formal specification of
design patterns-a balanced approach,” Journal of Object Tech-
nology, vol. 2, no. 4, Jul.-Aug. 2003.

[19] E. Gasparis, A. H. Eden, J. Nicholson, and R. Kazman,
“The design navigator: charting Java programs,” in Proc. of
ICSE’08, Companion Volume, 2008, pp. 945–946.

[20] I. Bayley and H. Zhu, “Formal specification of the variants
and behavioural features of design patterns,” Journal of
Systems and Software, vol. 83, no. 2, pp. 209–221, Feb. 2010.

[21] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery,” in Proc.
of ICSE 2002. IEEE CS Press, May 2002, pp. 338–348.

[22] D. Hou and H. J. Hoover, “Using SCL to specify and check
design intent in source code,” IEEE Transactions on Software
Engineering, vol. 32, no. 6, pp. 404–423, June 2006.

[23] N. Nija Shi and R. Olsson, “Reverse engineering of design
patterns from Java source code,” in Proc. of ASE 2006, Sept.
2006, pp. 123–134.

[24] A. Blewitt, A. Bundy, and I. Stark, “Automatic verification of
design patterns in Java,” in Proc. of ASE 2005. ACM Press,
Nov. 2005, pp. 224–232.

[25] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern
modelling and instantiation using dpml,” in Proc. of Tools
Pacific 2002. Australian Computer Society, 2002, pp. 3–11.

[26] J. Dong, Y. Zhao, and T. Peng, “Architecture and design
pattern discovery techniques - a review,” in Proc. of SERP
2007, H. R. Arabnia and H. Reza, Eds., vol. II. CSREA Press,
Jun. 25-28 2007, pp. 621–627.

[27] D.-K. Kim and L. Lu, “Inference of design pattern instances
in UML models via logic programming,” in Proc. of ICECCS
2006. IEEE CS Press, Aug. 2006, pp. 47–56.



366

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] D.-K. Kim and W. Shen, “An approach to evaluating structural
pattern conformance of UML models,” in Proc. of SAC’07.
ACM Press, March 2007, pp. 1404–1408.

[29] ——, “Evaluating pattern conformance of UML models:
a divide-and-conquer approach and case studies,” Software
Quality Journal, vol. 16, no. 3, pp. 329–359, 2008.

[30] H. Zhu, I. Bayley, L. Shan, and R. Amphlett, “Tool support
for design pattern recognition at model level,” in Proc. of
COMPSAC 2009. IEEE CS Press, Jul. 2009, pp. 228–233.

[31] H. Zhu, L. Shan, I. Bayley, and R. Amphlett, “A formal
descriptive semantics of UML and its applications,” in UML
2 Semantics and Applications, K. Lano, Ed. John Wiley &
Sons, Nov. 2009.

[32] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oirented Software Archiecture. vol. 5: On Patterns and Pat-
tern Languages. John Wiley & Sons, 2007.

[33] D. Riehle, “Composite design patterns,” in Proc. of OOP-
SLA’97. ACM Press, Oct. 1997, pp. 218–228.

[34] J. Vlissides, “Notation, notation, notation,” C++ Report, Apr.
1998.

[35] J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns
in their applications and compositions,” IEEE Transactions
on Software Engineering, vol. 33, no. 7, pp. 433–453, Jul.
2007.

[36] J. M. Smith, “The pattern instance notation: A simple hi-
erarchical visual notation for the dynamic visualization and
comprehension of software patterns,” Journal of Visual Lan-
guages and Computing, vol. 22, no. 5, pp. 355–374, Oct.
2011, doi:10.1016/j.jvlc.2011.03.003.

[37] J. Dong, P. S. Alencar, and D. D. Cowan, “Ensuring structure
and behavior correctness in design composition,” in Proc. of
ECBS 2000. IEEE CS Press, Apr. 2000, pp. 279–287.

[38] J. Dong, P. S. C. Alencar, and D. D. Cowan, “Correct
composition of design components,” in Proc. of the 4th In-
ternational Workshop on Component-Oriented Programming
in conjunction with ECOOP’99, 1999.

[39] J. Dong, P. S.C.Alencar, and D. Cowan, “A behavioral
analysis and verification approach to pattern-based design
composition,” Software and Systems Modeling, vol. 3, pp.
262–272, 2004.

[40] J. Dong, T. Peng, and Y. Zhao, “Automated verification
of security pattern compositions,” Information and Software
Technology, vol. 52, no. 3, p. 274–295, Mar. 2010.

[41] ——, “On instantiation and integration commutability of
design pattern,” The Computer Journal, vol. 54, no. 1, pp.
164–184, Jan. 2011.

[42] T. Taibi, “Formalising design patterns composition,” Software,
IEE Proceedings, vol. 153, no. 3, pp. 126–153, Jun. 2006.

[43] T. Taibi and D. C. L. Ngo, “Formal specification of design
pattern combination using BPSL,” Information and Software
Technology, vol. 45, no. 3, pp. 157–170, March 2003.

[44] I. Bayley and H. Zhu, “On the composition of design pat-
terns,” in Proc. of QSIC 2008, IEEE CS Press, Aug. 2008,
pp. 27–36.

[45] H. Zhu, “On the theoretical foundation of meta-modelling
in graphically extended BNF and first order logic,” in Proc.
TASE 2010. IEEE CS Press, Aug. 2010, pp. 95–104.

[46] ——, “An institution theory of formal meta-modelling in
graphically extended BNF,” Frontier of Computer Science,
(In Press).

[47] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
oriented Software Architecture. Vol. 1: A System of Patterns.
John Wiley & Sons, 1996.

[48] H. Zhu and I. Bayley, “Laws of pattern composition,” in Proc.
of ICFEM 2010, LNCS, vol. 6447. Springer, Nov. 17-19 2010,
pp. 630–645.



367

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Pattern-based Adaptation for Abstract
Applications in Pervasive Environments

Imen Ben Lahmar∗, Djamel Belaı̈d∗ and Hamid Mukhtar†
∗Institut Telecom; Telecom SudParis, CNRS UMR SAMOVAR, Evry, France

Email: {imen.ben lahmar, djamel.belaid}@it-sudparis.eu
†National University of Sciences and Technology, Islamabad, Pakistan

Email: hamid.mukhtar@seecs.edu.pk

Abstract—Using service-oriented architecture, applications can
be defined as an assembly of abstract components that are
mapped to a concrete level to fulfill their executions. However,
several problems may be detected during their mapping as well
as during their executions, which prevent them to be executed
successfully. Thus, there is a need to adapt them according to
the given contexts. In this article, we present some situational
contexts that may trigger the adaptation of applications at init
time or during their execution. Upon detection of certain changes
in context, the applications are adapted accordingly. For this
goal, we propose a set of adaptation patterns that provide an
extra-functional behavior with respect to the functional behavior
of the applications. These patterns are injected into abstract
applications if a relevant context is sensed to ensure their
mapping as well as their execution.

Keywords-Adaptation patterns, mismatches, abstract applica-
tions, component model.

I. INTRODUCTION

The proliferation of small devices and the increase in
number of services created by various vendors for such
devices have made Service-Oriented Architecture (SOA) a
primary choice for mobile software developers. One particular
approach for developing SOA-based applications is to use
component-based application development.

Using this approach, an application is defined as an assem-
bly of loosely-coupled components, requiring services from
and providing services to each other. Complex applications can
be crafted using an arbitrarily large number of software com-
ponents. Specifically, when developing business applications
using SOA, it becomes inevitable to implement the business
functionality by a mix of self-contained, reusable and loosely
connected components.

In such approach, it is possible to represent an application
by an assembly of abstract components (i.e., services), which
leads to automatic selection of services across various devices
in the environment. At the time of execution, the services
are mapped to concrete components, distributed across various
devices.

To illustrate our point of view, let’s consider a video player
application that provides the functionality of displaying video
to the user. The user is also able to control the playback of the
application. The application is represented by an assembly of
abstract components, which describe only the services required
or provided by the application namely, controlling, decoding

and displaying video. The application has to be mapped to the
concrete components to achieve its realization.

The complexities involved in designing and realizing such
applications have been identified and addressed by many
previous approaches [2] [6] [15].

While the existing approaches may assume that a mapping
from abstract to concrete application can be done effort-
lessly, many problems may arise at init time that prevent it
to be achieved successfully for example the heterogeneity
of interfaces of connections between devices. Furthermore,
applications in pervasive environments are challenged by the
dynamism of their execution environment due to, e.g., user
and device mobility, which make them subjects to unforeseen
failures.

These problems imply mismatches between the abstract
application and the concrete level occurring at init time or
during the execution of the application. That is, the application
cannot be executed in the given context or in the new context if
it changes. Therefore, applications have to be adapted in order
to carry out their mapping, and subsequently, their execution.

In literature, we distinguish two main adaptive techniques,
namely parametric and compositional mechanisms to adapt
applications in pervasive environment [14]. The parametriza-
tion techniques aim at adjusting internal or global parameters,
while the compositional adaptations allow the replacement
of components implementations or the modification of the
applications structure.

In our work, we are interested in the last category, i.e., the
structural adaptation, to overcome the mismatches between the
abstract application and the concrete level with respect to the
functional behavior of the application.

Therefore, in our previous work [4], we have proposed to
transform an abstract application to another one by injecting
adaptation patterns into the abstract application, which provide
an extra-functional behavior allowing the mapping and the
execution of the application. To facilitate the description of the
adaptation patterns, we have defined a generic adapter template
that encapsulates the main features of an adapter.

In this paper, we make the following novel contributions,
some of which extend our previous work [4]: 1) we identify
some situational contexts according to which the application
can be adapted and 2) we propose a set of adaptation patterns
that define the adaptation behavior of an application given a



368

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

certain context.
The rest of the article has been organized as follows.

Section II presents the adaptation context that may trigger
the adaptation of abstract applications. Section III describes
the principle of our structural adaptation approach and the
proposed set of adaptation patterns. In Section IV, we present
an example scenario through which we give an architectural
description of applications and patterns. In Section V, we
present some implementation details, whereas, in Section VI,
we provide an overview of existing related approaches as well
as their limitations. Finally, Section VII concludes this article
with some future directions.

II. ADAPTATION CONTEXTS

A. Classification of Mismatches

A generalized notion of context has been proposed in [1] as
any information that can be used to characterize the situation
of an entity (person, location, object, etc.). We consider
adaptation context as any piece of information that may trigger
the adaptation of the application.

We are interested in contexts that represent the mismatches
between the abstract descriptions of applications and the con-
crete level. These mismatches imply that the current abstract
description could not be realized in the given context, or in
the new context, if it has changed.

We have classified the mismatches level, where they occur,
into three categories: inter-components, intra-device and intra-
devices mismatches (see Figure 1). This categorization covers
not only the software mismatches but also the network and
hardware problems.

At the inter-components level, we consider the mismatches
that may arise at init time due to the non-satisfaction of the
non-functional requirements of the components. These latter
are system requirements which are not of a functional nature,
but contribute decisively to the applicability of the system [9]
like security, reliability, performance, etc. Thus, if they are not
ensured at the concrete level, this may prevent the abstract
application to be well mapped.

At this level, the mismatches may be also related to the
heterogeneity of signatures, protocols or semantic [3]. In the
present work, we do not focus on these mismatches as it has
been previously studied [12] [13] [19]. However, it is possible
to resolve them using our approach.

It is also possible to detect mismatches at intra-device level.
These mismatches denote that the desired characteristics of
devices, as specified by a service or a user, are not satisfied due
to their reduced capacities like using a lower battery power, a
slower CPU, etc. Thus, there is a need to adapt the abstract
application to consider these requirements.

In case of a distributed environment, there is also a need
to consider the mismatches occurring at inter-devices level.
These mismatches may be related to the use of heterogeneous
interfaces of connection, a lower bandwidth, etc. Thus, they
have an impact in the communication between devices.

Fig. 1. Categorization of Mismatches levels

B. Detection of Mismatches

The application resolution and execution is ensured by our
Middleware for Monitoring and Adaptation in heterogeneous
environments (MonAdapter). The architectural design of Mon-
Adapter is depicted in Figure 2.

Fig. 2. Middleware for Monitoring and Adaptation

The middleware consists of a taskResolver component that
maps the user task to the concrete level to identify components
provided by the available devices. To that end, it relies on the
device selection and component selection services to resolve
the user task by mapping it to the concrete components based
on the user preferences and some non-functional aspects [5].

A Mismatch Detector component is used to analyze the
abstract description of the application compared to the capa-
bilities of the selected devices, the user preferences and the
extra-functional requirements of the components. For this goal,
it relies on some monitor to capture the changes of the user
preferences and the execution environment (network status,
arrival and departure of devices or components, etc).

In case of the failure of the mapping or the application’s
execution due to the changes in the context or user preferences,
the Mismatch Detector evaluates the application composition
according to the adaptation policies provided by the Adapta-
tion Policy component. If a policy for adaptation exist for that
mismatch, the Application Composer is informed to adapt the
application accordingly.

III. STRUCTURAL ADAPTATION APPROACH

A. Principle of Our Approach

To overcome a captured mismatch between an abstract
application and the concrete level, there is a need to adapt the
abstract application to ensure its mapping and its execution.

Therefore, in our previous work [4], we have proposed a dy-
namic structural adaptation approach for abstract applications.



369

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

Fig. 3. Transforming abstract application using Adapter composite

Our approach consists of transforming an abstract application
to another one that allows its mapping and execution. The
transformation is ensured by injecting some extra-functional
adapters into the abstract application without modifying its
functional behavior.

For example, as shown in Figure 3, an adapter composite
is injected to adapt the communication between components
A and B. The adapter composite requires the service I of
the component A and exposes a service implementing the
interface I. This provided service will be used by the com-
ponent B, since it corresponds to its required service. Thus,
the abstract application is transformed by adding an extra-
functional adapter to achieve its mapping or its execution.

B. Adaptation Patterns

Fig. 4. Generic adapter template

As the basis for our approach, we have proposed to use
adaptation patterns as adapter composites, which provide
solutions for the detected mismatches between an abstract
application and a concrete level and can be used in different
contexts [4].

An adaptation pattern is defined following an adapter tem-
plate, which consists of an adaptive logic and extra-functional
components as shown in Figure 4. The extra-functional com-
ponent provides transformation services allowing, e.g., encryp-
tion, compression, etc. However, the adaptive logic component
encapsulates the adaptation logic and acts as an intermediate
between the abstract and the extra-functional components. This
component has a generated implementation as it depends to
the interfaces of communicated components.

Using this approach allows us to separate the extra-
functional logic from the business one, and hence, to add
or remove adaptation patterns dynamically from the abstract
application whenever there is a need.

In the following, we present a set of adaptation patterns that
are defined following the adapter template. For each pattern,
we present its description, the context in which, it will be used,
and where it will be used to overcome that mismatch.

The list of the adaptation patterns is not exhaustive. How-
ever, it is possible to define such other patterns following our
adapter template.

1) Encryption and Decryption patterns:
a) Description: we propose an encryption pattern that

intercepts the interaction between components to encrypt
messages transiting over a network in order to prevent the
disclosure of information to unauthorized components. To
use the original message, there is a need to restore it from
the encrypted one. For this purpose, we have composed the
encryption adapter with a decryption one that decrypts the
received messages before using it by the target component.

The encryption and decryption adapters are defined follow-
ing our adapter template. Each adapter consists of an adaptive
logic component and an extra-functional one as shown in the
Figure 5. The extra-functional component exposes a key prop-
erty and provides a service ensuring encryption or decryption
of a message following a symmetric key algorithm.

In case of a symmetric encryption and decryption, the
transmitter and the receiver sides use the same key to exchange
messages. However, if the extra-functional components imple-
ment an asymmetric algorithm, they use two different keys:
public and private key.

b) Adaptation context: The encryption and decryption
patterns will be injected at init time to ensure the security of
the transferred messages, which may be sensitive to disclose
as with credit card numbers and passwords.

The security requirement can be expressed explicitly
through the non-functional requirements of services. If the
concrete components do not ensure this requirement as speci-
fied in the abstract level, there is a need to adapt the application
in order to achieve its mapping.

For this purpose, the encryption and decryption patterns will
be used to overcome the non-satisfaction of the non-functional
requirements of services.

c) Where to use: The encryption and decryption patterns
are used in distributed manner; the transmitter device will
contain the encryption adapter to send encrypted messages,
while the decryption pattern is used by the receiver side to
restore the messages. For example, in Figure 5, an encryption
pattern is used by a device B in order to encrypt the messages
sent from a component B over the network. However, a
decryption pattern was handled in a device A to restore the
original message before using it by a component A.

2) Authentication and Integrity patterns:
a) Description: The authentication pattern is used to sign

the transferred message between two components in order to
ensure that a message has not been tampered with and that



370

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Encryption and Decryption adaptation patterns

Fig. 6. Authentication and Integrity adaptation patterns

it originated from a certain component. The extra-functional
component of the pattern generates a signature digest to add
it at the end of the message before sending this later over the
network.

In the receiver side, there is a need to validate the authen-
tication of the message’s signature to authorize component to
invoke the requested service. Therefore, we have composed
it with an integrity pattern that will prove the validity of a
the transmitted message before forwarding it to the intended
component.

The verification is done by comparing the received digest
with a calculated one. If the message digest of the message
matches the message digest from the signature, then integrity
is also assured. Otherwise, the message is tampered with
during its transfer. Thus, the extra-functional component of
the integrity component, in Figure 6, returns a boolean result
implying the validity of signed messages.

b) Adaptation context: An abstract component may spec-
ify at init time through its non-functional requirements the
need to validate the received messages. If the concrete com-
ponent does not ensure the authentication and the integrity
of messages, this implies a mismatch between the abstract
description and the concrete level.

c) Where to use: The authentication pattern is used by
the transmitter side to send signed messages. In the receiver

side, the integrity pattern will be used to check if the message
is kept intact during its transfer over the network. Figure 6
shows an authentication pattern that is used by device B to
send signed message from a component B to a component
A. However, an integrity pattern is used by the device A, to
validate the received message from the component B.

3) Splitting and Merging patterns:
a) Description: The splitting pattern is used to split a

message into chunks. The pattern consists of an adaptive logic
and an extra-functional component that returns a list of chunks
to send over the network as shown in Figure 7.

To respond to the component’s request, there is a need
to merge the chunks beforehand. Therefore, we propose to
compose the splitter pattern with a merger one to form the
message from the received chunks. Hence, the extra-functional
component of the merger pattern will construct messages from
the received chunks, which are forwarded by the adaptive logic
component to the intended component.

b) Adaptation context: The splitting and merging pat-
terns are used to overcome a problem related to a lower
network signal in order to have a decreased message delay.
This may have an impact certainly for the transfer of bigger
files or messages. In this case, the message is split into
chunks for a quick transfer over a network and then merged
to construct the original message.



371

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. Splitting and Merging adaptation patterns

Fig. 8. Retransmition adaptation pattern

c) Where to use: The splitting pattern will be used by the
transmitter device, while the merging pattern will be used by
the receiver device to fulfill the interaction between devices.
Thus, the component B in Figure 7 is able to send a message
or a file into chunks to the component A for a quick transfer
over a lower network signal.

4) Retransmission pattern:
a) Description: This pattern provides the functionality

of retransmitting a failed call to a remote component. Its
adaptive logic component, as shown in the Figure 8, attempts
to retransmit message whenever a component does not receive
a response to its calls. The component may use some error-
detection codes or acknowledgments to achieve reliable mes-
sage retransmission.

b) Adaptation context: The transmission in pervasive
environment may be subject to failures because of e.g. network
down. This can be captured by tracking the network work for
a period of time. If the statistics shows that the system is
not reliable, thus, the components’ messages could get lost
along the path. When it is not possible to deliver messages
to remote components, the system should attempt to respond
to the component request at the earliest possible opportunity
by trying to retransmit the messages. For this reason, we
propose a retransmission pattern that attempts to retransmit
the messages to render the application reliable at init time.

The retransmission pattern is used also during the execution
of the application, if the network is quick cut-off, to overcome
the loss of messages. Thus, once the network is repaired,
the retransmission pattern is established to retry the sending
of calls. To detect this adaptation context, the middleware
should monitor the status of the supported network, i.e., if
it is activated or not.

c) Where to use: To ensure a reliable communication
between devices, we propose to handle at init time a retrans-
mission pattern in the sender side. For example, Figure 8
shows a retransmission pattern that is used by a device B to
resend the failed call to a device A.

5) Compression and Decompression Patterns:

a) Description: The compression pattern is introduced
between two components communicating with each other over
a network in order to send compressed messages. However, in
the receiver device, there is a need to decompress the message
in order to be used by the target component. Therefore, we
propose to compose the compression pattern with a decom-
pression one to decompress the data before using it by the
target component.

Each adapter consists of an adaptive logic component that
relies on a non-functional component to compress or decom-
press message, as shown in Figure 9.



372

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 9. Compression and Decompression adaptation patterns

Fig. 10. Caching adaptation pattern

b) Adaptation Context: The compression and decom-
pression patterns are introduced in response to a trigger
generated by fluctuation in network QoS. For example, two
components exchanging data may be adapted by using the
compressor and decompressor adapters if the network latency
or the throughput falls below a certain threshold. By using
this adapter composite between the components, all the data
will be compressed before transmission over network, allowing
efficient transfer of data.

c) Where to use: We propose to use the compression
pattern by the sender device in order to send compressed
messages over network. However, the decompression pattern
should be handled in the receiver side to decompress messages
before using it as shown in Figure 9.

6) Caching Pattern:
a) Description: The caching pattern enables the applica-

tion to cache messages in rapid memory. Figure 10 shows
the main features of the caching pattern. It consists of an
adaptive logic component that will first check the cache to
see for example if the response of the component request can
be found there. Failing to find the response in the cache, the
adaptive caching component will forward the call to the target
component. Once it receives the response, it will forward it to
the caller component after storing it in the cache.

Thus, the caching service provides mainly methods for

retrieving, updating and setting message in the cache. We
assume also that the cache is already created else, the caching
service should be able also to create a cache in a device.

b) Adaptation context: The caching pattern can be used
during the execution of the application to avoid the congestion
of a network by storing the responses to the services’ requests.
Therefore, the system should monitor the latency of the used
network to identify if there is not a jitter. Otherwise, a caching
pattern will be injected during the execution application to
avoid the congestion for a further uses.

Moreover, some component may express through their non-
functional requirements the need to have a decreased response
time, for example the response time of service I is less than
50 ms. If the concrete component does not consider this
requirement, there is a need to inject a caching pattern at
init time in order to decrease the response time during the
execution of an application.

c) Where to use: The caching pattern will be used either
by the sender or the receiver side where the message will
be stored. For example, in Figure 10, the pattern is used to
decrease the response time to the requests of the component
B by caching the call to service I in a cache of the device B.

7) Proxy Pattern:
a) Description: The proxy pattern allows components to

access to services offered by others components. Figure 11



373

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11. Proxy adaptation pattern

shows a description of the proxy pattern following the adapter
template. As it can be seen, the proxy pattern represents a
specific case of the adapter template as it contains only an
adaptive logic component that forwards the call of the service
I to the component A.

b) Adaptation Context: The proxy pattern is useful to
overcome the network factor related to the heterogeneity of
network interfaces. For example, if two devices were selected
to map an abstract application and they support two different
connection interfaces, e.g., Bluetooth and Wifi, thus, the map-
ping will fail. Therefore, we propose to introduce the proxy
pattern to act as an intermediate between the communicating
components.

c) Where to use: To intermediate the communication
between devices, we propose to generate the proxy in a third
device. Thus, the components A and B, as shown in Figure
11, can communicate together via the proxy generated in a
device C.

IV. EXAMPLE SCENARIO USING ADAPTATION PATTERNS

Fig. 12. Video Player application

Referring back to the video player application described
in the introductory section, Figure 12 shows an abstract
description of the Video player application that consists of
three components: a VideoDecoder component, a DisplayVideo
component and a Controller Component. The Controller com-
ponent sends a command to the VideoDecoder component to
decode a stored video. The VideoDecoder component decodes
a video into appropriate format. Once the video is decoded,
it is passed to the DisplayVideo component to play it. This is

done using the service provided by the DisplayVideo com-
ponent through an appropriate programming interface. The
description of an application can be done with the help of an
Architecture Description Language (ADL). For this purpose,
we have used Service Component Architecture (SCA) [18] to
describe abstract applications.

SCA provides a programming model for building applica-
tions and systems based on a Service Oriented Architecture.
The main idea behind SCA is to be able to build distributed
applications, which are independent of particular technology,
protocol, and implementation. SCA applications are deployed
as composites. An SCA composite describes an assembly
of heterogeneous components, which offer functionality as
services and require functionality from other components in
the form of references. Along with services and references, a
component can also define one or more properties.

Figure 13 shows an SCA description of the VideoPlayer
application shown previously in Figure 12. It provide Dis-
playVideoService and consists of the controller, videoDecoder
and DisplayVideo abstract components.

Using SCA, it is also possible to specify the services’
requirements abstractly and the components’ implementations
provide the corresponding concrete policies [17]. Abstract
resource requirements can be specified by using @requires
attribute, while the @policySets attribute is used to specify
the concrete resources. The policies are applied to implemen-
tation and contain the requirements that should be fulfilled
before selecting the components to which the policy sets are
attached.

For example, the controller component requires that its
messages sent to the DecodingVideoService, should be au-
thenticated. Therefore, its reference is marked with an intent
”authentication” (line 4 in Figure 13). However, the Decod-
ingVideoService is marked with the ”‘integrity”’ intent to
check the validity of the messages received from the controller
component (line 7 in Figure 13). Figure 14 shows a description
of the authentication abstract intent that is applied to the
component binding.



374

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1<composite name="VideoPlayer">
2 <service name="DisplayVideoService" promote="DisplayVideoComponent/DisplayVideoService" />
3 <component name="ControllerComponent">
4 <reference name=" DecodingVideoService" target="VideoDecoderComponent" requires="authentication"/>
5 </component>
6 <component name="VideoDecoderComponent">
7 <service name="DecodingVideoService" requires="integrity">
8 <interface.java interface="eu.tsp.iaria-example.VideoDecoderInterface" >
9 </service>
10 <reference name="DisplayVideoService" target="DisplayVideoComponent "/>
11 </component>
12 <component name="DisplayVideoComponent">
13 <service name="DisplayVideoService">
14 <interface.java interface="eu.tsp.iaria-example.DisplayVideoInterface" />
15 </service>
16 </component>
17 </composite>

Fig. 13. SCA description of the Video Player Application

<intent name="authentication" constrains="sca:binding">
<description>
Communication through this binding must be authenticated.
</description>
</intent>

Fig. 14. SCA policy intent of an authentication requirement

The resolution of the abstract description of the video player
application into respective concrete components is required
for the realization of the task. We assume that the execution
environment consists of three devices: a Smartphone (SP), a
flat-screen (FS) and a laptop device (LP).

Following the matching algorithm [16], the application
composer of the middleware has identified a Controller and
the VideoDecoder components in SP and a DisplayVideo
component in FS. Thus, the LP device is eliminated.

However, the concrete components of the videoDecoder and
the controller services do not support the policies related to
the authentication and integrity intents as specified in Figure
13. Thus, there is a mismatch between the given abstract
description of the video player application and the concrete
level.

To resolve this mismatch, we propose to inject the au-
thentication and integrity patterns into the abstract application
as shown in Figure 15. Thus, the controller component is
able to send authenticated commands to the VideoDecoder
component. These commands will be validated at first by
the integrity pattern before forwarding it to the videoDecoder
component. As a result, the application is transformed, as
shown in figure 15, to contain the authentication, and the
integrity patterns in addition to its own components.

Figure 16 represents the SCA description of the integrity
pattern. It consists of an adaptive logic component representing
the integrity intent. To this end, we have extended the SCA
description by the @type attribute (line 6) to specify what is

the intent represented by the adaptive logic component if it is
either a proxy or a splitting or a compression patterns.

Moreover, the implementation of the adaptive logic compo-
nent should be generated dynamically since this component
depends to the decodingVideoService of the videoDecoder
component (line 9). For this purpose, we have extended
SCA by a new attribute @generated that specifies if the
implementation is generated or not (line 6). Furthermore,
the adaptive logic component relies on the integrity extra-
functional component to check the validity of the received
message before forwarding it to the VideoDecoder component.

In another case, we assume that during the execution of the
application, the bandwidth of the supported network becomes
weak. This may have an impact on the quality of video
that requires a high QoS. Towards this change of context,
we propose to adapt the abstract video player application by
splitting the frame into chunks and then compress them for a
quick transfer.

For this purpose, we have composed together the splitting,
compression, decompression and merging patterns, as shown
in Figure 15 for a quick transfer of messages with a lower
bandwidth. The splitter adapter will split a frame sent from
the VideoDecoder component to the DisplayVideo one into
chunks. These latter will be compressed before their transfer
over the network. Once the chunks are received by a device,
there is a need at first to decompress them and then to merge
them before forwarding it to the DisplayVideo component.
Hence, the abstract application is adapted by injecting a
composite of adapters to overcome a mismatch triggered by a
low bandwidth.

V. IMPLEMENTATION

In order to validate our approach, we have implemented a
prototype in Java. To that end, we have used SCA [18] to
describe applications in abstract way and then map them to
the concrete components.

The open source software JAVA programming ASSISTant
(Javassist) library [11] is used to generate the byte codes of the



375

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 15. Adaptation of the Video Player application

adaptive logic component of the adaptation patterns. Indeed,
it enables Java programs to define a new class at runtime and
to modify a class file when the Java Virtual Machine (JVM)
loads it.

Moreover, the java API java.lang.reflect is used to obtain
reflective information about classes and objects. This infor-
mation is used by the Javassist library to allow the adaptive
logic component to implement the required service.

VI. RELATED WORK

A lot of work has been devoted to structural adaptation of
component-based applications due to mismatches captured at
the concrete level. In the following, we detail some of the
existing approaches as well as their limitations.

Spalazzese and Inverardi [19] considers a mediator concept
to cope with the heterogeneity of the application-layer proto-
cols. The approach first abstracts the behavioral description
of the mismatching protocols highlighting some structural
characteristics. This is done by using ontology. Then, it checks
the possibility for the two protocols to communicate. If the two
protocols are not complementary, the framework should find
out the suitable mediating connector using some basic media-
tors connectors patterns. However, these mediators connectors
are limited to the protocol level. Moreover, the mediators are
specified only by the framework and their concrete realizations
remain a challenge for the authors.

In the same context, Fuentes et al. propose to use aspectual
connectors that provide support to describe and to weave
aspects to components [8]. However, these connectors are
described at design time, which limits the possibility to extend
applications with new aspects. Moreover, the specification of
connector template relies on the used aspects as well as the
functional behavior of application.

In [13], Li and al. tackle the behavioral mismatches and
propose to use the mediation patterns. They categorize the
mismatching levels and focus their work on signature and
protocol mediations using six basic patterns. The identification
of pattern is done following some rules predefined by the
designer.

The major drawback of this approach is that is limited to
the behavioral mismatches, thus, they do not consider the
mismatches related to hardware, network characteristics of
devices. Moreover, the generation of the mediator pattern is
done by pseudo codes predefined by the designer. However, in
our work, the adaptive logic component of the adaptation pat-
tern is generated dynamically by specifying only it’s required,
provided interfaces and the extra-functional service.

Other related work in this area [7][12] have also investi-
gated matching of Web service interfaces by providing a clas-
sification of common mismatches between service interfaces
and business protocols, and introducing mismatch patterns.
These patterns are used to formalize the recurring problems



376

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <composite name="IntegrityAdapter">
2 <service name = "DecodingVideoService" promote= "AdaptiveLogicComponent/DecodingVideoService" >
3 <component name="AdaptiveLogicComponent" >
4 <service name="DecodingVideoService">
5 <interface.java interface="eu.tsp.iaria-example.VideoDecoderInterface" />
6 <implementation.java type ="Integrity" generated="True" />
7 </service>
8 <reference name="IntegrityComponent"/>
9 <reference name=" DecodingVideoService" target="VideoDecoderComponent" />
10 </component>
11 <component name="IntegrityComponent">
12 <service name="IntegrityService">
13 <interface.java interface="eu.tsp.iaria-example.IntegrityInterface" />
14 </service>
15 </component>
16 <composite>

Fig. 16. SCA description of the integrity pattern

related to the interactions between services. The mismatch
patterns include a template of adaptation logic that resolves the
detected mismatch. Developers can instantiate the proposed
template to develop adapters. For this purpose, they have to
specify the different transformation functions.

We can identify two important limitations compared to
our approach. First, the mismatch patterns are limited to the
interfaces and protocols mismatches. Second, the specification
of adapters supplies some pseudo code predefined by the
designer. However, in our approach, we are able to specify
dynamically the different components of a used pattern; by
generating the implementation of its adaptive logic component
and mapping the extra-functional one following our matching
algorithm

In [10], Cao et al. propose an approach to component
adaptation dealing with non-functional mismatches. Their
adaptation framework includes extra-functional adapters which
mediate the mismatching behaviors between the client and
server. Therefore, they propose to use adapters presented that
provide extra-functional interfaces customized by the user.

Compared to our approach, the specification of adapters
is done with the help of the user, whereas in our work,
the adapters are specified using our template. Moreover, the
specified adapters depend to the adapted application. Hence,
it can be used on other context. However, our patterns may be
used by any applications as their description is independent of
the functional behavior of the application.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have identified some situational contexts
at init time and during the execution of the application,
according to which the application can be adapted. These
contexts represent mismatches between an abstract application
and the concrete level and they may arise at inter-components,
intra-device or inter-devices levels.

Towards these mismatches, we have proposed a set of
adaptation patterns that are injected into an abstract application
to ensure its mapping or its execution. These adapters provide
an extra-functional behavior with respect to the functional

behavior of the application. The list of the adaptation patterns
is not exhaustive. However, it is possible to define such other
patterns following our adapter template.

We are looking forward to identify rules for the use of
adaptation pattern describing where and when the adapter will
be used.

REFERENCES

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In the 1st international symposium on Handheld and
Ubiquitous Computing, HUC’ 99, pages 304–307, Karlsruhe, Germany,
1999.

[2] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel.
Pcom - a component system for pervasive computing. In Proceedings
of the Second IEEE International Conference on Pervasive Computing
and Communications, PerCom’04, page 67, Orlando, FL, USA, 2004.

[3] Steffen Becker, Antonio Brogi, Sven Overhage, Er Romanovsky, and
Massimo Tivoli. Towards an engineering approach to component
adaptation. In Springer-Verlang, LNCS, page 2006. Springer, 2006.

[4] Imen Ben Lahmar, Djamel Belaı̈d, and Hamid Mukhtar. Adapting
abstract component applications using adaptation patterns. In Pro-
ceedings of the Second International Conference on Adaptive and Self-
adaptive Systems and Applications, ADAPTIVE, pages 170–175, Lisbon
Portugal, 2010.

[5] Imen Ben Lahmar, Djamel Belaı̈d, Hamid Mukhtar, and Sami Chaud-
hary. Automatic task resolution and adaptation in pervasive environ-
ments. In Proceedings of the Second International Conference on
Adaptive and Intelligent Systems, ICAIS, pages 131–144, Klagenfurt,
Austria, 2011.

[6] Sonia Ben Mokhtar, Nikolaos Georgantas, and Valérie Issarny. Cocoa:
Conversation-based service composition in pervasive computing envi-
ronments with qos support. Journal Of System and Software, vol 80, no
12:1941–1955, 2007.

[7] Boualem Benatallah, Fabio Casati, Daniela Grigori, H. R. Motahari
Nezhad, and Farouk Toumani. Developing adapters for web services
integration. In Proceedings of the International Conference on Advanced
Information Systems Engineering, CAiSE, pages 415–429, Porto, Por-
tugal, 2005.

[8] Lidia Fuentes, Nadia Gámez, Mónica Pinto, and Juan A. Valenzuela.
Using connectors to model crosscutting influences in software archi-
tectures. In The First European Conference on Software Architecture,
ECSA’07, pages 292–295, Madrid, Spain, 2007.

[9] Matthias Galster and Eva Bucherer. A taxonomy for identifying and
specifying non-functional requirements in service-oriented development.
In IEEE Congress on Services, SERVICES ’08, pages 345–352, Hon-
olulu, Hawaii, USA, 2008.



377

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] Jingang Xie Guorong Cao, Qingping Tan. A new approach to compo-
nent adaptation dealing with extra-functional mismatches. In Interna-
tional Conference on Information Engineering and Computer Science,
Wuhan,China, 2009.

[11] JAVA programming Assistant. http://www.csg.is.titech.ac.jp/ chiba/javassist/.
[12] Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Bena-

tallah, Fabio Casati, and Regis Saint-Paul. Mismatch patterns and
adaptation aspects: A foundation for rapid development of web service
adapters. IEEE Transactions on Services Computing, pages 94–107,
2009.

[13] Xitong Li, Yushun Fan, Stuart Madnick, and Quan Z. Sheng. A pattern-
based approach to protocol mediation for web services composition.
Information and Software Technology (IST), 52:304–323, March 2010.

[14] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and
Betty H.C. Cheng. Composing adaptive software. Journal of IEEE
Computer, 37:56–64, 2004.

[15] Hamid Mukhtar, Djamel Belaı̈d, and Guy Bernard. A graph-based
approach for ad hoc task composition considering user preferences and
device capabilities. In Workshop on Service Discovery and Composition
in Ubiquitous and Pervasive Environments, New Orleans, LA, USA, dec
2007.

[16] Hamid Mukhtar, Djamel Belaı̈d, and Guy Bernard. User preferences-
based automatic device selection for multimedia user tasks in pervasive
environments. In the 5th International Conference on Networking and
Services, ICNS’ 09, pages 43–48, Valencia, Spain, 2009.

[17] Open SOA Collaboration. Sca policy framework v1.00 specifications.
http://www.osoa.org/, 2007.

[18] Open SOA Collaboration. Service component architecture (sca): Sca
assembly model v1.00 specifications. http://www.osoa.org/, 2007.

[19] Romina Spalazzese and Paola Inverardi. Mediating connector patterns
for components interoperability. In The fourth European Conference
on Software Architecture, ECSA’10, pages 335–343, Copenhagen, Den-
mark, 2010.



378

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the Quality of Relational Database Schemas
in Open-source Software

Fabien Coelho, Alexandre Aillos, Samuel Pilot, and Shamil Valeev
CRI, Mathématiques et Systèmes, MINES ParisTech,

35, rue Saint Honoré, 77305 Fontainebleau cedex, France.
fabien.coelho@mines-paristech.fr, firstname.lastname@mines-paris.org

Abstract—The relational schemas of 512 open-source projects
storing their data in MySQL or PostgreSQL databases are inves-
tigated by querying the standard information schema, looking for
overall design issues. The set of SQL queries used in our research
is released as the Salix free software. As it is fully relational and
relies on standards, it may be installed in any compliant database
to help improve schemas. Our research shows that the overall
quality of the surveyed schemas is poor: a majority of projects
have at least one table without any primary key or unique
constraint to identify a tuple; data security features such as
referential integrity or transactional back-ends are hardly used;
projects that advertise supporting both databases often have
missing tables or attributes. PostgreSQL projects appear to be
of higher quality than MySQL projects, and have been updated
more recently, suggesting a more active maintenance. This is even
better for projects with PostgreSQL-only support. However, the
quality difference between both databases management systems
is mostly due to MySQL-specific issues. An overall predictor
of bad database quality is that a project chooses MySQL or
PHP, while good design is found with PostgreSQL and Java.
The few declared constraints allow to detect latent bugs, that are
worth fixing: more declarations would certainly help unveil more
bugs. Our survey also suggests that some features of MySQL and
PostgreSQL are particularly error-prone. This first survey on the
quality of relational schemas in open-source software provides a
unique insight in the data engineering practice of these projects.

Keywords-open-source software; database quality survey; au-
tomatic schema analysis; relational model; SQL.

I. INTRODUCTION

This paper is an extended version of A Field Analysis of
Relational Database Schemas in Open-source Software [1]
presented at DBKDA 2011. Compared to this initial version,
512 schemas are surveyed instead of 407, which enhances
the accuracy of the statistical validation of our analyses; the
maintenance status of the surveyed projects was collected
again as of January 2012; comments have been updated and
added to reflect the new data; more detailed tables are provided
about the results; the bibliography is much more thorough,
with over 50 new references; an appendix describes the advices
available with our schema analyzer; the paper page count,
excluding the appendix, is increased from 7 to 10 pages.

In the beginning of the computer age, software was freely
available, and money was derived from hardware only [2].
Then in the 70s it was unbundled and sold separately in
closed proprietary form. Stallman initiated the free software
movement, in 1983 with the GNU Project [3], and later the

Free Software Foundation [4], which is now quite large [5][6]
and expanding [7] (Predicts 2010) to implement his principle
of sharing software. Such free software is distributed under
a variety of licenses [8], which discuss copyright and lia-
bility. The common ground is that it must be available as
source code to allow its study, change and improvement as
opposed to compiled or obfuscated, hence the expression open
source [9][10][11], This induces many technical, economical,
legal, and philosophical issues. Open-source software (OSS)
is a subject of academic studies [12] in psychology, sociology,
economics, or software engineering, including quantitative
surveys. Developers’ motivation [13][14][15][16][17], but also
organization [18][19][20][21][22][23][24][25][26] and pro-
files [27][28][29] are investigated, as well as user communities
[30]; Existing economic frameworks [31] are used to analyze
the phenomenon, as well as the influence of public poli-
cies [32]. Research focusing on software engineering issues
can also be found. The development of the Apache web server
popular [33] is compared to non-OSS projects [34] and its
user assistance is analyzed [35]. Quantitative studies exist
about code quality in OSS [36][37][38][39][40] and its dual,
static analysis to uncover bugs [41][42]. Database surveys
are available about market shares [43], or server exposure
security issues [44]. This study is the first survey on the quality
of relational database schemas in OSS. It provides a unique
insight in the data engineering practice of these projects.

Codd’s relational model [45] is an extension of the set
theory to relations (tables) with attributes (columns) in which
tuple elements are stored (rows). Elements are identified by
keys, which can be used by tuples to reference one another be-
tween relations. The relational model is sound, as all questions
(in the model) have corresponding practical answers and vice
versa: the tuple relational calculus describes questions, and
the mathematically equivalent relational algebra provides their
answers. It is efficiently implemented by many commercial
and open-source software such as Oracle, DB2 or SQLite.
The Structured Query Language (SQL [46]) is available with
most relational database systems, although the detailed syntax
often differs in subtle and incompatible ways. The standard-
ization effort also includes the information schema [47], which
provides metadata about the schemas of databases through
relations.

The underlying assumption of our study is that applications
store precious transactional user data, thus should be kept con-
sistent, non redundant, and easy to understand. We think that



379

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

database features such as key declarations, referential integrity
and transaction support help achieve these goals. In order to
evaluate the use of database features in open-source software,
and to detect possible design or implementation errors, we
have developed a tool to analyze automatically the database
structure of an application by querying its information schema
and generating a report, and we have applied it to 512 open-
source projects. The notion of the quality of a database schema
design is quite elusive, as shown in Burkett’s overview [48],
with a lot of focus on qualitative assessments. Key criteria such
as understandability, simplicity, expressiveness, maintainabil-
ity or evolvability are hard to transform into basic objective
metrics. A review process has been proposed to evaluate the
quality of relational schemas [49], at the price of mostly man-
ual investigations by field experts. Some quality focus on the
conceptual schema and compare alternative models [50][51]
by recognizing patterns. Following MacCabe’s metric to mea-
sure automatically program complexities [52][53][54], several
metrics address data models [55][56] or database schemata
either in the relational [57][58] or object relational [59]
models, including experimental validations [60]. These metrics
rely on information not necessarily available from the database
concrete schemas. Moreover, such approach help compare
two schemas that model the same application domain, but
are less useful when used about unrelated schemas. We have
rather followed the dual and pragmatic approach [61], which
is not to try to do an absolute and definite measure of the
schema, but rather to uncover issues based on static analyses.
Thus, the measure is relative to the analyses performed and
results change when more are added. Static analysis on user
application codes (not simply the schema) could also be used
to help uncover hidden constraints in a schema (for instance,
a join between two tables suggests a possible foreign key) and
to use them to improve data quality [62], but this is beyond
our simple approach.

The remainder of this paper is organized as follows: Sec-
tion II presents the methodology used in this study. We de-
scribe our tool, our rating strategy and the statistical validation
used on the assertions derived from our analyses; Section III
lists the projects by category and technology, and discusses
similarities and differences depending on whether they run on
MySQL or PostgreSQL; Section IV describes the results of
our survey, with quite a poor overall quality of projects, as
very few database schemas do not raise error-rated advices;
Section V gives our conclusive thoughts.

II. METHODOLOGY

Our Salix automatic analyzer [63], is based on the informa-
tion schema provided by standard databases. It is open-source,
and its schema itself is included in this survey. In this Section,
we discuss the queries, then describe the available advices,
before presenting the statistical validation used.

A. Information schema queries

Our analyses are performed automatically by SQL queries
on the databases metadata using the standard information
schema. This relational schema stores information about the

databases structure, including catalogs, schemas, tables, at-
tributes, types, constraints, roles, permissions, etc. The set
of SQL queries used for this study are released as the
Salix free software. It is based on pg-advisor [64], a
PostgreSQL-specific proof of concept prototype developed in
2004. Some checks are inspired by Currier [65], Baron [66]
and Berkus [67] or similar to Boehm [68]. Note that the
aim is quite different from tools which focus on advising
database administrators, for instance about index creation [69].
Salix creates specific tables for each advice by querying
the information schema, and then aggregates the results in
summary tables in a dedicated schema. It is fully relational in
its conception [70]; there is no programming other than SQL
queries, but a small shell driver which creates the advices,
shows or reports them in some detail to the interested user, and
finally drops them out of the database. Because of performance
issues when querying heavily metadata relations, the tool relies
on tables which are materialized views, although using views
directly would have been a preferred option if possible. The
development of Salix uncovered multiple issues with both
implementations of the information schema.

B. Advice classification and project grading

The 47 issues reported by our SQL queries from the stan-
dard information schema are named advices, as the user is free
to ignore them. Although the performed checks are basic and
syntactic, we think that they reflect the quality of the schemas.
For instance, style advices help with understandability, and
consistency advices help with maintainability. A detailed list
of advices currently implemented in our tool is available [71].
Each advice has a category (19 design, 13 style, 6 consistency,
4 version, 5 system), a severity (7 errors, 21 warnings, 14
notices, 5 informations), and a level (1 raised per database,
10 per schema, 27 per relation, 7 per attribute, 2 per role).
The severity classification is arbitrary and must be evaluated
critically by the recipient: most of them should be dealt with,
but in some cases they may be justifiable. For instance, having
a mix of MySQL back-end engines is considered inconsistent
and tagged as an error, although it may be necessary to do
so because some features (e.g. full-text indexes) are only
available with some back-ends. Moreover, detected errors do
not imply that the application is not fully functional from a
user perspective.

The 19 design advices focus on detecting design errors from
the information available in the metadata. Obviously, semantic
error, say an attribute is in the wrong relation, cannot be
guessed without understanding the application and thus are out
of reach of our automatic analysis. We rather focus on primary
and foreign key declarations, or warn if they are missing. The
rate of non-null attributes is also checked, with the underlying
assumption from our experience that most data are mandatory
in a relation. We also check the number of attributes so as to
detect a possible insufficient conception effort.

The 13 style advices focus on relation and attribute names.
Whether a name is significant in the context cannot be
checked, so we simply look at their length. Short names
are discouraged as they would rather be used as aliases in



380

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queries, with the exception of id and pk which are accepted
as attributes. We also check that the same name does not
represent differently typed data, to avoid confusing the user.

The 6 consistency advices checks for type and schema
consistency in a project, such as type mismatches between
a foreign key and the referenced key. As databases may also
implements some of these checks, it is possible that some cases
cannot be triggered.

The 4 version advices focus on database-specific checks,
such as capabilities and transaction support, as well as ho-
mogeneous choices of back-end engines in a project. This
category could also check the actual version of a database
used looking for known bugs or obsolescence. Only MySQL-
specific version advices are currently implemented.

Finally, the 5 system advices, some of which PostgreSQL-
specific, check for weak passwords, and key and index issues.

These advices aim at helping the schema developer to
improve its relational design. We also use them in our survey
to grade projects with a mark from 0 to 10, computed by
removing points each time an advice is raised, taking more
points if the severity is high, and flooring the result to avoid
negative grades. The grading process is normalized using the
number of possible occurrences, so that larger projects do not
receive lower marks just because of the likelihood of having
more issues for their size. Also, points are not removed twice
for the same issue: for instance, if a project does not have a
single foreign key, the same issue will not be raised again on
every tables. Advices not relevant to our open-source database
schema survey, e.g., weak password checks, were deactivated.

C. Survey statistical validation
The data collected suggest the influence of some parameters

on others. These results deal with general facts about the
projects (say foreign keys are more often used with Post-
greSQL) or about their grading (say MySQL projects get lower
marks). In order to determine significant influences, we ap-
plied Pearson’s chi-square tests [72] to compute probabilistic
degrees of certainty. Beware that these statistical validations
hold for our data set only. It is possible that some unwanted
bias in the project selection process makes statements that are
in reality false appear true, and vice versa. We followed a
one project one vote principle in our analyses, so that these
validations do not take into account the projects sizes or
popularity. Also, our software, as all software, may include
bugs with unexpected consequences. Each checked assertion
is labeled with an expression indicating the degree of certainty
of the influence of one parameter on an other:

very sure The probability is 1% or less to get a result as or
more remote from the average. Thus we conclude that there
is an influence, with a very high degree of certainty.

rather sure The probability of getting such a result is
between 1% and 5% (the usual statistical threshold). Thus
there is an influence, with a high degree of certainty.

marginally sure The probability is between 5% and 25%:
such a result may have been obtained even if there is no
influence. The statement must be taken with a pinch of salt.

not sure The probability is over 25%, or there is not enough
available data to compute it. The test cannot assert that there

is a significant influence. Obviously, no such assertion was
included in this survey.

The rational for choosing Pearson’s chi-square test is that it
does not make any assumption about the distribution of values.
However, it is crude, and possibly interesting and somehow
true results may not be validated. Moreover, the test requires
a minimal population, which is not easily reached on our
small data set especially when criteria are crossed. Finally, it
needs to define distinct populations: for grades or sizes, these
populations are cut at the median value in order to perform
the test on balanced partitions.

We also computed a correlation matrix to look for possible
inter-parameter influence. The result suggested that the param-
eters are pretty independent beyond the obvious links (say the
use of a non-transactional back-end is correlated with isolated
tables), and did no help uncover significant new facts.

III. PROJECTS

We discuss the projects considered in this study, grouped
by categories, technologies, sizes and release dates. We first
present how projects were selected, and then an overview.

A. Project selection

We have downloaded 512 open-source projects starting in
the first semester of 2008, adding to our comparison about
every project that uses either MySQL [73] or PostgreSQL [74]
that we could find and install with reasonable time and effort.
The database schemas included in this study are derived from
a dump of the database after installation, or from the creation
statements when found in the sources. These projects were
discovered from various sources: lists and comparisons of
software on Wikipedia (Software lists about: photo galleries,
content management systems, Internet forums, reference man-
agement, issue tracking systems, wikis, social networking,
church management, student information systems, accounting,
weblog, Internet relay chat, health-care, genealogy, etc.) and
other sites; package dependencies from Linux distributions
such as Debian [75] or Ubuntu [76] requiring databases;
security advisories mentioning SQL [77]; searches on Source-
Forge [78] which use SQL databases.

Some projects were fixed manually because of various
issues, such as: the handling of double-dash comments by
MySQL, attribute names (e.g., out) rejected by MySQL, bad
foreign key declarations or other incompatibilities detected
when the projects were forced to use the InnoDB back-end
instead of MyISAM, or even some PostgreSQL table defini-
tions including a MySQL specific syntax that were clearly
never tested. A particular pitfall of PostgreSQL is that by
default syntax errors in statements from an SQL script are
ignored and the interpreter simply jumps to the next statement.
When installing a project, the flow of warnings often hides
these errors. Turning off this feature requires modifying the
script, as no command option disables it. More than a dozen
PostgreSQL projects contained this kind of issues, which
resulted in missing tables or ignored constraint declarations.



381

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Project Total MySQL PgSQL Both Tables Atts/table
category nb % nb % nb % nb % avg med avg med

CMS 83 16.2 71 18.4 1 3.3 11 11.5 36.6 23 6.6 6.7
System 48 9.4 26 6.7 1 3.3 21 21.9 25.2 9 10.9 7.1
Project 28 5.5 15 3.9 5 16.7 8 8.3 25.4 19 6.9 7.0
Blog 27 5.3 22 5.7 0 0.0 5 5.2 26.8 21 6.9 6.8
Market 22 4.3 21 5.4 0 0.0 1 1.0 53.0 28 7.6 7.2
Forum 19 3.7 17 4.4 0 0.0 2 2.1 23.1 19 8.3 8.6
Accounting 18 3.5 11 2.8 6 20.0 1 1.0 87.8 45 8.8 8.8
Game 16 3.1 16 4.1 0 0.0 0 0.0 26.4 22 6.6 6.9
Mail 16 3.1 8 2.1 1 3.3 7 7.3 10.1 6 5.4 5.0
IRC 13 2.5 6 1.6 1 3.3 6 6.3 14.3 15 6.8 5.8
Homepage 12 2.3 11 2.8 0 0.0 1 1.0 5.1 4 7.0 7.0
Healthcare 11 2.1 6 1.6 2 6.7 3 3.1 89.5 71 11.5 9.5
Phone 11 2.1 5 1.3 2 6.7 4 4.2 18.2 9 14.6 9.0
Address 10 2.0 10 2.6 0 0.0 0 0.0 7.7 7 7.7 7.9
Genealogy 10 2.0 8 2.1 1 3.3 1 1.0 16.4 12 8.4 8.6
Photo 10 2.0 9 2.3 0 0.0 1 1.0 20.2 16 7.1 7.3
Community 9 1.8 7 1.8 0 0.0 2 2.1 17.3 12 8.1 8.0
Music 9 1.8 8 2.1 1 3.3 0 0.0 16.7 8 5.0 6.0
P2P 9 1.8 8 2.1 0 0.0 1 1.0 11.9 7 7.0 8.0
Reference 9 1.8 8 2.1 0 0.0 1 1.0 15.8 16 11.7 8.0
Wiki 9 1.8 7 1.8 1 3.3 1 1.0 15.7 9 5.6 5.7
Calendar 8 1.6 7 1.8 1 3.3 0 0.0 11.1 8 6.1 6.8
Advert 7 1.4 7 1.8 0 0.0 0 0.0 4.0 2 9.0 8.4
Search 6 1.2 6 1.6 0 0.0 0 0.0 18.0 20 6.0 6.0
Student 6 1.2 6 1.6 0 0.0 0 0.0 35.5 28 6.5 6.7
Teaching 6 1.2 3 0.8 1 3.3 2 2.1 13.5 5 4.9 5.3
Conference 5 1.0 4 1.0 1 3.3 0 0.0 73.8 32 6.8 6.2
FAQ 5 1.0 3 0.8 0 0.0 2 2.1 25.0 30 6.6 5.3
Library 5 1.0 4 1.0 1 3.3 0 0.0 63.8 72 7.2 7.3
Survey 5 1.0 3 0.8 0 0.0 2 2.1 25.0 18 6.4 6.4

TABLE I
MAIN CATEGORIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

Project Total MySQL PgSQL Both Tables Atts/table
technology nb % nb % nb % nb % avg med avg med
PHP 399 77.9 335 86.8 8 26.7 56 58.3 29.3 16 7.4 7.2
C 38 7.4 12 3.1 5 16.7 21 21.9 21.3 9 11.5 8.3
Java 22 4.3 8 2.1 6 20.0 8 8.3 67.5 23 9.3 8.2
Perl 21 4.1 10 2.6 5 16.7 6 6.3 44.0 29 6.7 6.7
SQL 8 1.6 6 1.6 1 3.3 1 1.0 27.3 11 4.9 5.0
C++ 7 1.4 5 1.3 1 3.3 1 1.0 11.4 6 15.3 6.0
Python 7 1.4 4 1.0 2 6.7 1 1.0 42.9 17 6.5 6.2
Ruby 7 1.4 4 1.0 2 6.7 1 1.0 49.5 16 7.4 6.7

TABLE II
MAIN TECHNOLOGIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

B. Overview of projects

We have studied the relational schemas of 512 (see appendix
for the full list) open-source projects based on databases: 482
of these run with MySQL, 126 with PostgreSQL, including 96
on both. A project supporting PostgreSQL is very likely to sup-
port also MySQL (76%), although the reverse is not true (only
19%) (very sure), outlining the relative popularity of these
tools. Only 30 projects are PostgreSQL specific. Although
there is no deliberate bias in the selection process described in
the previous section, where we aimed at completeness, some
implicit bias remain nevertheless: for instance, as we can speak
mostly English and French, we found mostly international
projects advertised in these tongues; Table I shows main
project categories, from the personal mundane (game, home-
page) to the professional serious (health-care, accounting,

system). Table II shows the same for project technologies.
Projects in rare categories or using rare technologies do not
appear in these cut-off tables. The result is heavily slanted to-
wards PHP web applications (77%), which seems to reflect the
current trend of open-source programming as far as the number
of projects is concerned, without indication of popularity or
quality. The ratio of PHP projects increases from PostgreSQL
only support (26%) to both database support (58%) (very sure)
to MySQL only support (86%) (very sure): PHP users tend to
choose specifically MySQL, possibly because of traditional
LAMP (Linux, Apache, MySQL, PHP) setups advertised with
PHP programming. For instance, a search on the Amazon
website in January 2012 returns 18 times more results with
PHP MySQL compared to PHP PostgreSQL.

The survey covers 18993 tables (MySQL 13494, Post-



382

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Advice Lvl. Cat. Sev. MySQL PostgreSQL
Proj % Adv % Proj % Adv %

Schema without any FK sch. design error 425 88 425 88 70 55 70 55
Tables without PK nor Unique table design error 262 54 1521 11 76 60 1010 18
FK type mismatch table consist. error 2 0 17 0 10 7 153 2
Backend engine inconsistency sch. version error 30 6 30 6 0 0 0 0
FK length mismatch table consist. error 4 0 6 0 2 1 10 0
Integer PK but no other key table design warn 437 90 7470 55 106 84 2509 45
Homonymous heterogeneous attributes att. style warn 296 61 2294 2 76 60 573 1
Unsafe backend engine used in schema sch. version warn 433 89 433 89 0 0 0 0
Attribute count per table over 40 table design warn 98 20 220 1 25 19 91 1
Isolated Tables table design warn 30 6 979 7 40 31 1300 23
Tables without PK but with Unique table design warn 117 24 405 3 15 11 40 0
Unique nullable attributes att. design warn 73 15 261 0 23 18 172 0
Nullable attribute rate over 80% sch. design warn 34 7 34 7 25 19 25 19
Redundant indexes table system warn 0 0 0 0 23 18 196 3
Attribute name length too short att. style warn 27 5 91 0 16 12 51 0
Large PK referenced by a FK table design warn 10 2 118 0 19 15 216 3
Table name length too short table style warn 16 3 23 0 7 5 17 0
Composite Foreign Key table design warn 5 1 19 0 8 6 26 0
FK not referencing a PK table design warn 2 0 16 0 7 5 23 0
Redundant FK table system warn 1 0 1 0 2 1 6 0
Non-integer Primary Key table design note 268 55 2261 16 81 64 1729 31
MySQL is used base version note 482 100 482 100 0 0 0 0
Attribute count per table over 20 table design note 230 47 684 5 60 47 421 7
Tables with Composite PK table design note 196 40 1781 13 63 50 703 12
Attribute name length quite short att. style note 201 41 748 0 49 38 244 0
Attribute named after its table att. style note 139 28 3114 2 42 33 5033 9
Table without index table system note 0 0 0 0 60 47 719 13
Nullable attribute rate in 50-80% sch. design note 76 15 76 15 33 26 33 26
Table name length quite short table style note 70 14 102 0 28 22 52 0
Table with a single attribute table design note 74 15 419 3 26 20 91 1
Mixed attribute name styles table style note 115 23 1007 7 1 0 37 0
Mixed table name styles sch. style note 51 10 261 54 8 6 22 17
Attribute name length short att. style info 326 67 2911 2 81 64 1047 2
Unsafe backend engine used on table table version info 433 89 10423 77 0 0 0 0
Nullable attribute rate in 20-50% sch. design info 137 28 137 28 41 32 41 32
Table name length short table style info 136 28 258 1 38 30 81 1

TABLE III
LIST OF RAISED ADVICES AND DETAILED COUNTS ABOUT THE 512 PROJECTS

greSQL 5499) containing 166906 attributes (MySQL 114561,
PostgreSQL 52345). The project sizes average at 31.2 tables,
median 16 (from 1 to 607), with 2 to 10979 attributes.
MySQL projects average at 28 tables, median 15 (from 1
to 466), with 238 attributes (from 2 to 9725), while Post-
greSQL projects average 44 tables, median 18 (from 1 to
607), with 415 attributes (from 5 to 10979 attributes). The
largest MySQL project is OSCARMCMASTER, and the largest
PostgreSQL project is ADEMPIERE. Detailed table counts raise
from projects with MySQL only support (average 26.4, me-
dian 15), to both databases (average 34.0, median 17) or
PostgreSQL only (average 75.5, median 30.5). MySQL-only
projects are smaller than other projects (marginally sure):
more ambitious projects seem to use feature-full but maybe
less easy to administrate PostgreSQL. However obvious this
assertion would seem, the statistical validation is weak because
of the small number of projects with PostgreSQL. MySQL
projects that use the InnoDB back-end are much larger that
their MyISAM counterpart (very sure) and are comparable
to projects based on PostgreSQL, with 53 tables on average.
The number of attributes per table is comparable although

smaller for MySQL (average 8.5 – median 7.0) with respect
to PostgreSQL (average 9.5 – median 6.0).

The per-category tables and attributes-per-table counts
shows that accounting, health-care and market projects seem
more ambitious than other categories (marginally sure). The
per-technology analysis counts suggests that Perl, Python and
Java projects are larger than those based on other technologies
(marginally sure).

These projects are mostly recent, at least according to
their status at an arbitrary common reference date chosen as
March 31, 2009: 310 (60%) were updated in the last year,
including 179 (34%) in the last six months, and the others are
either obsolete or stable. The rate of recently updated projects
raises from MySQL-only projects (55%) to projects with
both support (73%) (very sure) or with PostgreSQL support
at (76%) (very sure), but there is no significant difference
on the recent maintenance figures between projects that are
PostgreSQL-only and projects with both databases support.

New data about the status of projects were collected on
January 9, 2012. We could not find 69 projects in this new
survey (61 MySQL-only, 1 PostgreSQL-only and 7 with
both support). Moreover, 153 projects are stale, that is not



383

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

updated between the 2009 and 2012 data (128 MySQL-only,
6 PostgreSQL-only and 19 with both support). Nearly half
of the MySQL projects are stale or lost, while it is only one
quarter of the PostgreSQL projects. MySQL-only projects are
more often lost or stale than others in 2012 (very sure), and
it is still true for MySQL projects compared to PostgreSQL-
only projects (rather sure). More generally, on these new data,
MySQL-only projects are less maintained than others (very
sure), and it is still true compared to projects with both support
(very sure) and compared to projects with PostgreSQL-only
support (rather sure). There are about six months (180 days)
between the median update date of MySQL-only projects and
PostgreSQL-only projects. Even if we ignore lost and stale
projects to focus on projects that were indeed updated in
the 2012 data, PostgreSQL-only projects were more recently
updated than others (rather sure). Yet again, there is no
significant update status difference between projects with
PostgreSQL support and projects that support both databases
on the 2012 data. To conclude, the maintenance of PostgreSQL
projects seems more intense: projects that include PostgreSQL
support were updated more recently both in 2009 and in 2012.

IV. SURVEY RESULTS

We now analyze the open-source projects of our survey
by commenting actual results on MySQL and PostgreSQL,
before comparing them. Table III summarizes the advices
raised for MySQL and PostgreSQL applications. The first four
columns give the advice title, level, category and severity. Then
four columns for each database list the results. The first two
columns hold the number of projects (i.e. schema) tagged and
the overall rate. The last two columns give the actual number
of advices and rate, which varies depending on the level. A
per-project aggregate is also available online [71].

A. Primary keys

A majority of MySQL projects (262 – 54%) have at
least one table without neither a primary key nor a unique
constraint, and this is even worse with PostgreSQL projects
(76 – 60%). The certainty of the observation (rather sure) on
MySQL-only vs PostgreSQL-only is low because of the small
number of projects using the later. As 11% of all MySQL
tables and 18% of all PostgreSQL tables do not have any
key, the view of relations as sets is hindered as tuples are not
identified, and data may be replicated without noticing.

A further analysis gives some more insight. For MySQL,
41% of tables without key do have some KEY option for
indexes, but without the UNIQUE or PRIMARY keyword that
makes it a key. Having KEY not always declaring a key
was clearly a bad design choice. A little 5% of tables
without key have an auto increment attribute, which suggest
uniqueness in practice, but is not enforced. Also, the missing
key declaration often seems to be composite. Some tables
without key declarations are intended as one tuple only, say
to check for the version of the schema or configuration of
the application. Similarly, 28% of PostgreSQL tables without
key have an index declared. Moreover, 22% have a SERIAL

(auto incremented) attribute: Many designers seem to assume

wrongly that SERIAL implies a key. A comment found in
the SQLGREY project source suggests that some keys are not
declared because of MySQL key size limits.

A simple integer primary key is provided on 61% of
tables, with a significantly decreasing rate from MySQL-only
(65%) to both database support (62%) (rather sure) down to
PostgreSQL-only support (39%) (very sure). If these primary
keys were non-semantic numbers to identify tuples, one would
expect at least one other key declared on each table to identify
the underlying semantic key. However it is not the case: most
(85%) of these tables do not have any other key. When a
non simple primary key is available, it is either based on
another type or a composite key. The composite keys are
hardly referenced, but as the foreign keys are rarely declared
one cannot be sure, as shown in the next section.

B. Referential integrity

Foreign keys are important for ensuring data consistency
in relational databases. They are supported by PostgreSQL,
and by MySQL but with some back-end engines only. In
particular, the default MyISAM back-end does not support
foreign keys, and this feature was deemed noxious in previous
documentations: Version 3.23 includes a Reasons NOT to Use
Foreign Keys constraints Section arguing that they are only
useful to display diagrams, hard to implement and terrible for
performance. Foreign key constraints are introduced with the
InnoDB engine starting with MySQL 3.23.44 in January 2001.
Although the constraints are ignored by the default MyISAM
engine, the syntax is parsed, and triggers the creation of
indexes. Version 5.1 documentation has a Foreign Keys Section
praising the feature, as it offers benefits, although it slows
down the application. Caveats describe the inconsistencies that
may result from not using transactions and referential integrity.
From a pedagogical perspective, this is a progress.

Foreign key constraints have long been a missing or avoided
feature in MySQL and this seems to have retained momentum
in many projects, as it is not supported by the default engine:
few MySQL projects (57 – 11% of all projects, but 72% of
those with InnoDB) use foreign key constraints. The foreign
key usage rate is slightly higher (20%) when considering
projects supporting both databases (marginally sure).

Among MySQL projects, 403 (83%) use only the default
MyISAM back-end engine, thus do not have any foreign key
checks enabled. In the remainder, 49 (10%) use only InnoDB,
and 30 (6%) use a combination of both. More projects (21 –
21%) rely on InnoDB among those supporting both MySQL
and PostgreSQL (marginally sure). A third of InnoDB projects
(30 – 37%) are not consistent in their engine choice: 34% of
tables use MyISAM among the 79 InnoDB projects. A legiti-
mate reason for using MyISAM tables in an InnoDB project is
that full-text indexes are only available with the former engine.
However, this only applies to 11 tables in 6 projects, all other
1441 MyISAM tables in InnoDB projects are not justified by
this. A project may decide to store transient data in an unsafe
engine (e.g., memory) for performance reason. However, this
case is rare, as it represents only 15 tables in 8 projects. About
26% of tables use MyISAM as a default implicit choice in



384

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

InnoDB projects, similar to 28% when considering all MySQL
projects. Some engine inconsistencies seems due to forgotten
declarations falling back to the default MyISAM engine.

We have forced the InnoDB back-end engine for all MySQL
projects: 22 additional projects declare 92 new foreign key
constraints previously ignored. These new foreign keys are
very partial, targeting only some tables. They allow to uncover
about two dozen issues, either because the foreign key declara-
tion were failing (say from type errors detected by MySQL) or
thanks to analyses from our tool. Additional checks based on
foreign keys cannot be raised on schemas that do not declare
any of them. Thus isolated tables warnings must be compared
to the number of projects that do use referential constraints: 30
– 52% of these seem to have forgotten at least some foreign
keys, and it is actually the case by checking some of these
projects manually.

The foreign key usage is better with PostgreSQL projects,
although it is still a minority (56 projects – 44%). This rate
is close to the foreign key usage of MySQL projects when
considering InnoDB projects only. It gives a better opportunity
for additional advices to be checked. The foreign key usage
rate raises significantly to 74% when considering PostgreSQL-
only projects vs dual support projects (very sure).

On the very few projects with partial foreign key declara-
tions, several of these declaration reveal latent bugs, including
type mismatch, typically CHAR targeting a VARCHAR or vice
versa, or different integers, and type length mismatch, usually
non matching VARCHAR sizes. We found 23 such bugs out
of the small 1979 declared MySQL attribute constraints, and
163 among the 4424 PostgreSQL constraints. The rate is
greater for PostgreSQL, possibly helped by the use of SERIAL
which may be considered as a primary key by developers
without being declared as such. There are also 153 important
warnings related to foreign keys raised for MySQL, and 265
for PostgreSQL. If this error ratio is extrapolated to the number
of tables, hundreds of additional latent bugs could be detected
using the missing referential constraints.

C. Miscellaneous issues

More issues were found about style, attribute constraints
and by comparing projects with dual database support.

There is 13669 noticeable style issues raised from our
analyses (7640 for MySQL, 6029 for PostgreSQL), relating
to table or attribute names, including a number of one-letter
attribute names or two-letters table names. The id attribute
name is used in the SLASH project with up to 6 different types,
mixing various integers and fixed or variable length text types.
In PHPETITION, a date attribute has types DATE, DATETIME or
VARCHAR. 81% of MySQL projects and 78% of PostgreSQL
have such style issues.

Many projects do not bother with NOT NULL attribute
declarations: 110 MySQL projects (22%) and 58 PostgreSQL
projects (46%) have over half of their attributes null-able. This
does not reflect the overall use of constraints: for MySQL,
the average number of key-related constraints per table is
1.07 (from BOARDPLUS 0.00 to JWHOISSERVER 3.57), while for
PostgreSQL it is 1.24 (from ANDROMEDA 0.00 to ADEMPIERE

4.25). Project ANDROMEDA is astonishing: there is not a single
constraint declared (no primary key, no foreign key, no unique,
no not null) on the 180 tables, although there are a number of
non-unique indexes and of sequences.

It is interesting to compare the schemas of the 96 projects
available with both databases. This dual support must not
be taken at face value: PostgreSQL support is often an
afterthought and is not necessarily functional, including project
such as ELGG, TAGADASH, QUICKTEAM or TIKIWIKI where some
PostgreSQL table declarations use an incompatible MySQL
syntax; 38 (39%) projects have missing tables or attributes
between the MySQL and PostgreSQL versions: 398 tables and
191 individual attributes are missing or misspelled one side or
another. Among the missing tables, 73 look like some kind
of sequence, and thus might be possibly legitimate, although
why the auto increment feature was not satisfactory is unclear.
At the minimum, the functionalities are not the same between
the MySQL and PostgreSQL versions of these projects.

D. Overall quality
We have computed a synthetic project quality evaluation

ranging from 10 (good) to 0 (bad) by removing points based
on advice severity (error, warning, notice), level (schema,
table, attribute) and project size. The MySQL projects quality
average is 4.4± 1.4 (from 9.5 JWHOISSERVER to 0.0 MANTIS),
significantly lower than PostgreSQL 5.4 ± 1.8 (from 9.4
COMICS to 0.0 NURPAWIKI) (very sure). This does not come
as a surprise: most MySQL projects choose the default data-
unsafe MyISAM engine, hence incur a penalty. Also, the
multiplicity of MySQL back-ends allows the user to mix them
unintentionally, what is not possible with PostgreSQL. When
all MySQL-specific advices are removed, the quality measure
is about the same for both databases. However, as PostgreSQL
schemas provide more information about referential integrity
constraints, they are also penalized as more advices can
be raised based on the provided additional information. For
projects which support both databases, the grade’s correlation
is significant and positive (0.55), which is logical as the same
style warnings are triggered on both sides.

Table IV shows the projects per quality decile. The
PostgreSQL-only project quality is more spread than MySQL
projects (very sure). Table V compares the quality of projects
according to size, with small up to 9, medium up to 29, and
large otherwise. The quality is quite evenly distributed among
sizes, which suggests that our effort to devise a size-neutral
grading succeeded. Table VI compares quality based on the
project categories. The number of projects in each category is
too small to draw deep conclusions. Table VII addresses the
technology used in the project: Java and Python lead while C,
PHP and Ruby are near bottom. PHP projects take less care of
their relational design (rather sure), but this may be explained
by the fact that MySQL is used more often in these projects,
and that an unsafe engine is selected more often (very sure).
Yet again, the very small count of projects with some of the
technologies do not allow to draw deep conclusion about them.
Finally, Table VIII and Table IX show that quality evaluation
does not change much depending whether projects are updated
more often.



385

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 25

 50

 75

 100

 125

 150

 175

 0  1  2  3  4  5  6  7  8  9  10
 0

 25

 50

 75

 100

n
u

m
b

e
r 

o
f 

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

MySQL quality

 0

 25

 50

 75

 100

 125

 150

 175

 0  1  2  3  4  5  6  7  8  9  10
 0

 25

 50

 75

 100

n
u

m
b

e
r 

o
f 

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

MySQL quality

 0

 5

 10

 15

 20

 25

 30

 35

 0  1  2  3  4  5  6  7  8  9  10
 0

 25

 50

 75

 100

n
u

m
b

e
r 

o
f 

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

PostgreSQL quality

 0

 5

 10

 15

 20

 25

 30

 35

 0  1  2  3  4  5  6  7  8  9  10
 0

 25

 50

 75

 100

n
u

m
b

e
r 

o
f 

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

PostgreSQL quality
TABLE IV

QUALITY PER DECILE

MySQL projects
Size nb % avg σ min med max

small 181 38 4.7 ± 1.4 0.0 4.5 9.5
medium 164 34 4.2 ± 1.3 0.0 4.3 8.7
large 137 28 4.3 ± 1.4 0.0 4.4 8.2

PostgreSQL projects
Size nb % avg σ min med max

small 44 35 5.3 ± 2.0 0.0 5.3 9.4
medium 37 29 5.5 ± 1.5 2.0 5.3 9.3
large 45 36 5.3 ± 2.0 0.0 5.7 8.1

TABLE V
QUALITY PER SIZE

MySQL projects
Category nb % avg σ min med max

irc 12 2 5.1 ± 1.3 2.0 5.4 7.0
mail 15 3 4.4 ± 1.7 1.7 4.7 8.4
project 23 5 4.3 ± 1.4 0.0 4.6 6.2
system 47 10 4.5 ± 1.4 0.0 4.5 9.5
game 16 3 4.4 ± 2.0 0.9 4.5 9.1
blog 27 6 4.4 ± 0.9 2.5 4.5 7.2
forum 19 4 4.3 ± 0.9 2.4 4.4 5.7
cms 82 17 4.2 ± 1.1 0.0 4.3 8.3
homepage 12 2 4.1 ± 0.9 3.0 4.1 5.9
market 22 5 4.0 ± 1.4 1.8 4.0 8.2
accounting 12 2 4.4 ± 1.9 1.9 3.6 7.5

PostgreSQL projects
Category nb % avg σ min med max

teaching 3 2 7.9 ± 2.2 5.3 8.9 9.4
blog 5 4 6.6 ± 1.1 5.3 6.4 8.2
accounting 7 6 5.9 ± 2.0 2.0 6.4 7.8
cms 12 10 6.1 ± 1.3 4.0 5.9 8.1
irc 7 6 5.4 ± 1.7 2.0 5.6 7.4
phone 6 5 5.2 ± 1.5 3.1 5.3 7.4
project 13 10 5.4 ± 1.6 2.2 5.2 9.3
system 22 17 5.0 ± 2.1 1.6 5.1 9.0
mail 8 6 4.9 ± 1.6 3.0 4.8 7.5
healthcare 5 4 3.2 ± 2.7 0.0 3.3 6.6

TABLE VI
QUALITY PER PROJECT MAIN CATEGORIES

MySQL projects
Techno. nb % avg σ min med max
python 5 1 5.9 ± 2.0 3.7 6.2 8.2
sql 7 1 4.0 ± 2.5 0.0 5.3 5.9
java 16 3 4.8 ± 2.8 0.0 5.2 9.5
c++ 6 1 4.8 ± 1.2 3.3 4.5 7.0
c 33 7 4.6 ± 1.4 2.0 4.4 8.4
php 391 81 4.4 ± 1.2 0.0 4.4 9.1
perl 16 3 3.9 ± 2.1 0.0 4.3 8.7
ruby 5 1 4.5 ± 0.9 3.7 4.2 5.6

PostgreSQL projects
Techno. nb % avg σ min med max
python 3 2 7.0 ± 0.6 6.6 6.8 7.7
java 14 11 6.1 ± 2.4 0.0 6.8 9.3
c++ 2 2 6.7 ± 1.0 6.0 6.7 7.4
perl 11 9 6.0 ± 1.9 2.0 6.1 8.9
sql 2 2 5.8 ± 5.1 2.2 5.8 9.4
php 64 51 5.2 ± 1.6 0.0 5.4 8.2
ruby 3 2 5.1 ± 1.2 4.0 5.0 6.3
c 26 21 4.8 ± 1.9 1.6 5.0 9.0

TABLE VII
QUALITY PER PROJECT MAIN TECHNOLOGIES

MySQL projects
Date nb % avg σ min med max

recent 162 34 4.3 ± 1.3 0.0 4.4 8.6
older 320 66 4.4 ± 1.4 0.0 4.4 9.5

PostgreSQL projects
Date nb % avg σ min med max

recent 59 47 5.3 ± 1.6 0.0 5.3 9.3
older 67 53 5.4 ± 2.0 0.0 5.6 9.4

TABLE VIII
QUALITY PER PROJECT UPDATE IN MARCH 2009

MySQL projects
Date nb % avg σ min med max

recent 112 23 4.3 ± 1.3 0.0 4.5 7.8
older 155 32 4.4 ± 1.5 0.0 4.5 9.5
stale 147 30 4.5 ± 1.4 0.9 4.4 9.1
lost 68 14 4.2 ± 1.0 0.0 4.2 6.3

PostgreSQL projects
Date nb % avg σ min med max

recent 41 33 5.7 ± 1.4 0.0 5.6 7.7
older 52 41 5.2 ± 1.9 0.0 5.3 9.3
stale 25 20 5.1 ± 2.2 0.7 5.3 9.4
lost 8 6 5.5 ± 2.3 2.0 5.5 9.0

TABLE IX
QUALITY PER PROJECT UPDATE IN JANUARY 2012



386

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSION

This is the first survey on the quality of relational schemas
in open-source software. The overall quality results are worse
than envisioned at the beginning of the study. Although we
did not expect a lot of perfect projects, having so few key
declarations and referential integrity constraints came as a
surprise. We must acknowledge that our assumption that data
are precious, and that the database should help preserve its
consistency by enforcing integrity constraints and implement-
ing transactions, is not shared by most open-source projects,
especially when based on MySQL and PHP. This is illustrated
by bug report 15441 [79] about missing keys on tables in
MEDIAWIKI, the software behind Wikipedia: it had no effect on
the software after more than three years, although it triggered
some discussions at the beginning of 2012.

We can only speculate about the actual reasons that explain
the poor quality of the surveyed schemas in open-source
projects. One way to investigate further these issues would be
to collect data about and from the people who designed the
relational schemas of these projects. For instance, if MySQL or
PHP users are found less savvy about software development,
that could account for a lower quality and maintenance of
the corresponding projects. Some interesting questions could
be investigated: What are their educational and professional
background? Did they receive any formal education about
computer programming in general? About relational database
design in particular? Do they consider database design as an
important issue? How are they perceiving the actual quality of
their schemas, and the quality of their software? When did they
started database design? For MySQL, what database engines
do they use? Did the initial policy of discouraging foreign key
usage influence them? We attempted to conduct such a survey
by contacting some people by e-mail and encouraging them to
fill a web form online. The return ratio of this survey attempt
was null. This establishes the fact that schema designers in
open-source software do not wish to answer such questions,
with a very high degree of accuracy.

Another relevant question is whether our results would be
different if we studied closed-source projects developed by
payed professionals, possibly using non open-source database
technologies from Oracle or Microsoft. However, accessing
such data at a level compatible with statistical validation seems
very difficult. If we were to believe some of our experience,
the results could end up being quite similar, especially when
considering PHP/MySQL projects.

It is interesting to note that the first author contributed
both to the best PostgreSQL project (COMICS), and to one of
the worst MySQL project (SLXBBL), which is Salix executed
on its own schema. This deserves an explanation: COMICS

is a small database used for teaching SQL. The normalized
schema emphasizes clarity and cleanliness with a pedagogic
goal in mind. Even so, the two raised warnings deserve to
be fixed, although one would require an additional attribute.
SLXBBL tables generate a lot of errors, because they are
views materialized for performance issues. Also, they rely on
MyISAM because some SQL create table statements must be
compatible with both MySQL and PostgreSQL to ease the tool

portability. Nevertheless, the comparison of schemas allowed
to find one bug: an attribute had a different name, possibly
because of a bad copy-paste.

Acknowledgement

We are indebted to Pierre Jouvelot for helping with the title
and proof reading. We also thank the anonymous reviewers
for their helpful remarks that we tried to address for the better
of the paper.

REFERENCES

[1] F. Coelho, A. Aillos, S. Pilot, and S. Valeev, “A Field Analysis of Rela-
tional Database Schemas in Open-source Software,” in DBKDA: 3rd Int.
Conf. on Advances in Databases, Knowledge, and Data Applications,
IARIA, Ed., no. ISBN:978-1-61208-002-4, St Marteen, The Netherlands
Antilles, Jan. 2011, pp. 9–15.

[2] J. M. Gonzales-Barahona, P. Heras Quiros, and T. Bollinger, “A brief
history of free software and open source,” IEEE Software, pp. 32–33,
Jan. 1999.

[3] R. Stallman, “GNU Project announcement,” http://www.gnu.org/gnu/
initial-announcement.html (2012-01-06), Sep. 1983.

[4] ——, “FSF: Free Software Foundation,” Oct. 1985, www.fsf.org, (2012-
01-06).

[5] A. Deshpande and D. Riehle, “The Total Growth of Open Source,” in
4th Conf. on Open Source Systems (OSS). Springer Verlag, 2008, pp.
197–209.

[6] L. F. Wurster, “As Number of Business Processes Using Open-Source
Software Increases, Companies Must Adopt and Enforce an OSS Policy,”
Gartner Inc, Sep. 2008, iD Number: G00160997.

[7] D. C. Plummer, B. Gammage, K. Harris-Ferrante, and J. Lopez, “Pre-
dicts 2010: Revised Expectations for IT Demand, Supply and Oversight,”
Gartner, Inc, Dec. 2009, iD Number: G00173560.

[8] “Open Source Licences,” http://opensource.org (2012-01-06), Feb. 1998.
[9] K. Crowston, H. Annabi, and J. Howison, “Defining open source

software project success,” in 24th Int. Conf. on Information Systems
(ICIS), 2003, pp. 327–340.

[10] S. Görling, “A critical approach to open source software,” http://flosshub.
org/196 (2012-01-06), 2003.

[11] C. Gacek, T. Lawrie, and B. Arief, “The many meanings of open source,”
IEEE Software, vol. 21, pp. 34–40, 2004.

[12] E. von Hippel, B. Mako Hill, and K. Lakhani, “Free and opensource
software research community,” http://opensource.mit.edu, now offline,
Nov. 2001.

[13] A. Hars, “Working for free? motivations for participating in open-source
projects,” Int. J. of Electronic Commerce, vol. 6, pp. 25–39, 2002, also
IEEE 34th Hawaii Int. Conf. on System Sciences 2001.

[14] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in open source projects: An internet-based survey of contributors
to the linux kernel,” Research Policy, vol. 32, pp. 1159–1177, 2003.

[15] I. horn Hann, J. Roberts, S. Slaughter, and R. Fielding, “An empirical
analysis of economic returns to open source participation (unpublished
working paper),” 2004.

[16] A. Bonaccorsi and C. Rossi, “Altruistic individuals, selfish firms? the
structure of motivation in open source software,” Santa Anna School of
Advanced Studies. Institute for Informatics and Telematics, Tech. Rep.,
Jan. 2004, Fist Monday, http://firstmonday.org/ (2012-01-06).

[17] K. J. Stewart and S. Gosain, “The impacts of ideology on effectiveness
in open source software development teams (working paper),” MIS
Quarterly, vol. 30, pp. 291–314, 2005.

[18] J. E. Cook, “Open source development: An arthurian legend. making
sense of the bazaar,” in Proceedings of the 1st Workshop on Open Source
Software, 2001.

[19] M. S. Elliott and W. Scacchi, “Mobilization of software developers: The
free software movement,” 2006.

[20] ——, “Free software: A case study of software development in a virtual
organizational culture,” in a Virtual Organizational Culture, Working
Paper, Institute for Software Research, Tech. Rep., 2003.

[21] M. S. Elliott, “Free software developers as an occupational community:
Resolving conflicts and fostering,” in Collaboration, Proc. ACM Int.
Conf. Supporting Group Work, 2003, pp. 21–30.

[22] K. Healy and A. Schussman, “The ecology of open-source software
development,” Dept of Sociology, Univ. of Arizona, Tech. Rep., 2003.



387

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] K. Crowston and H. Annabi, “Effective work practices for software
engineering: Free/libre open source software development,” in in Proc.
of WISER. ACM Press, 2004, pp. 18–26.

[24] W. Seidel and C. Niedermeier, “Open source software: Leveraging
software quality in the industrial context,” OSSIE, 2003.

[25] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,
“Understanding Free/Open Source Software Development Processes,”
Software Process: Improvement and Practice, vol. 11, no. 2, pp. 95–
105, May 2006.

[26] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An
empirical study of global software development: Distance and speed,” in
In 23nd Int. Conf. on Software Engineering. IEEE Computer Society,
2001, pp. 81–90.

[27] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “A quantitative
profile of a community of open source linux developers,” University of
North Carolina at Chapel Hill, Tech. Rep., 1999.

[28] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open
source software: Survey and study, floss, part 4: Survey of developers,”
Int. Institute of Infonomics, University of Maastricht, The Netherlands,
Tech. Rep., Jun. 2002.

[29] D. M. Nichols and M. B. Twidale, “The usability of open source
software,” First Monday, vol. 8, 2003.

[30] Eclipse Foundation, “The open source developer report, 2010 eclipse
community survey,” Tech. Rep., Jun. 2010.

[31] J. Lerner and J. Tirole, “The economics of technology sharing: open
source and beyond. working paper 10956. retrieved jun 7, 2005 http:
//www.nber.org/papers/w10956,” J. of Economic Perspectives, vol. 19,
pp. 99–120, 2004.

[32] K. M. Schmidt and M. Schnitzer, “Public subsidies for open source?
some economic policy,” 2002, cEPR Discussion Paper 3793.

[33] Netcraft Ltd, “Web Server Survey,” http://news.netcraft.com/ (2012-01-
06), 2012, running since 1995.

[34] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology, vol. 11, pp. 309–346, 2002.

[35] K. R. Lakhani, “How open source software works: ”free” user-to-user
assistance,” Research Policy, pp. 923–943, 2000.

[36] B. Mishra, A. Prasad, and S. Raghunathan, “Quality and Profits Under
Open Source Versus Closed Source,” in ICIS, no. 32, 2002.

[37] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality
analysis in open-source software development,” Information Systems J.,
2nd Special Issue on Open-Source, vol. 12, no. 1, pp. 43–60, Feb. 2002,
blackwell Science.

[38] E. Capra, C. Francalanci, and F. Merlo, “En Empirical Study on the
Relationship among Software Design Quality, Development Effort and
Governance in Open Source Projects,” IEEE Software Engineering,
vol. 34, no. 6, pp. 765–782, nov-dec 2008.

[39] R. Gobeille, “The FOSSology Project,” in Working Conf. on Mining
Software Repositories, no. 5, Leipzig, Germany, May 2008.

[40] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu, “On
the distribution of bugs in the eclipse system,” IEEE Transactions on
Software Engineering, vol. 99, no. PrePrints, 2011.

[41] Coverty, “Coverty scan open source report,” Coverty, White Paper, 2009.
[42] Veracode, Inc, “State of security report,” White paper, Mar. 2010.
[43] C. Graham, D. Sommer, and B. Sood, “Market Share: Relational

Database Management Systems by Operating System, Worldwide,
2006,” Gartner, Inc, Jun. 2007, iD Number: G00149469.

[44] D. Litchfield, “The Database Exposure Survey 2007,” NGSSoftware
Insight Security Research (NISR), Nov. 2007.

[45] E. F. Codd, “A relational model for large shared databanks,” Communi-
cations of the ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[46] ISO/IEC, “Information technology - database languages - SQL,” 2003,
standard 9075.

[47] ISO/IEC, Ed., 9075-11:2003: Information and Definition Schemas
(SQL/Schemata). ISO/IEC, 2003.

[48] W. C. Burkett, “Database Schema Design Quality Principles,” http:
//www.intergate.com/∼wcb/DbSchemaQuality.pdf, (2012-01-08), Dec.
1997.

[49] O. Herden, “Measuring Quality of Database Schemas by Reviewing –
Concept, Criteria and Tool,” in 5th Int. ECOOP Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering (QAOOSE
2001), Budapest, Hungary, Jun. 2001.

[50] J. Lemaitre and J.-L. Hainaut, “Transformation-based Framework for
the Evaluation and Improvement of Database Schemas,” in Int. Conf.
on Advanced Information Systems Engineering (CAiSE), Hammamet,
Tunisia, Jun. 2010.

[51] ——, “Quality Evaluation and Improvement Framework for Database
Schemas Using Defect Taxonomies,” in Int. Conf. on Advanced Infor-
mation Systems Engineering (CAiSE), London, United Kingdom, Jun.
2011.

[52] T. J. MacCabe, “A Complexity Measure,” IEEE Software Engineering,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[53] M. H. Halstead, Elements of Software Science. New York, USA:
Elsevier, 1977, no. ISBN:0444002057.

[54] H. F. Li and W. K. Cheung, “An empirical study of software metrics,”
IEEE Transactions on Software Engineering, 1987.

[55] M. Piattini, M. Genero, C. Calero, and G. Alarcos, “Data model metrics,”
in In Handbook of Software Engineering and Knowledge Engineering:
Emerging Technologies, World Scientific, 2002.

[56] M. Genero, “A survey of Metrics for UML Class Diagrams,” J. of Object
Technology, vol. 4, pp. 59–92, Nov. 2005.

[57] H. M. Sneed and O. Foshag, “Measuring legacy database structures,” in
European Software Measurement Conf. (FESMA’98), Hooft and Peeters,
Eds., 1998.

[58] M. Piattini, C. Calero, and M. Genero, “Table Oriented Metrics for
Relational Databases,” Software Quality J., vol. 9, no. 2, pp. 79–97,
2001.

[59] A. L. Baroni, C. Calero, F. Ruiz, and F. Brito e Abreu, “Formalizing
object-relational structural metrics,” in Conf. of APSI, Lisbon, no. 5,
Nov. 2004.

[60] C. Calero, M. Piattini, and M. Genero, “Empirical validation of refer-
encial integrity metrics,” Information and Software Technology, vol. 43,
no. 15, pp. 949–957, Dec. 2001.

[61] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communication of the ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[62] A. Cleve, J. Lemaitre, J.-L. Hainaut, C. Mouchet, and J. Henrard, “The
role of implicit schema constructs in data quality,” in Workshop on
Management of Uncertain Data (MUD), Auckland, New Zealand, Aug.
2008, pp. 33–40.

[63] A. Aillos, S. Pilot, S. Valeev, and F. Coelho, “Salix Babylonica: advices
about database relational schemas,” Software from http://coelho.net/
salix/ (2012-01-06), Aug. 2008, version 1.0.0 on 2012-01-27.

[64] F. Coelho, “PG-Advisor: proof of concept SQL script,” Mailed to
pgsql-hackers, Mar. 2004.

[65] J. Currier, “SchemaSpy: Graphical database schema metadata browser,”
Source Forge, Aug. 2005, (2012-01-06).

[66] B. Schwartz and D. Nichter, “Maatkit,” Google Code, 2007, see
duplicate-key-checker and schema-advisor. Part of the Percona Toolkit
as of 2012-01-06 (http://www.percona.com/software/percona-toolkit/).

[67] J. Berkus, “Ten ways to wreck your database,” O’Reilly Webcast, Jul.
2009, (2012-01-06).

[68] A. M. Boehm, M. Wetzka, A. Sickmann, and D. Seipel, “A Tool for
Analyzing and Tuning Relational Database Applications: SQL Query
Analyzer and Schema EnHancer (SQUASH),” in Workshop über Grund-
lagen von Datenbanken, Jun. 2006, pp. 45–49.

[69] G. Singh, “PostgreSQL Adviser,” Software at http://git.postgresql.org/
gitweb/pg adviser.git (2012-01-06), Jul. 2007.

[70] E. F. Codd, “Is Your DBMS Really Relational? Does Your DBMS Run
By The Rules?” ComputerWorld, Oct. 1985.

[71] F. Coelho, “Database quality survey projects and results,” Jan. 2012,
detailed list of projects surveyed in On the Quality of Relational
Database Schemas in Open Source Software, report A/478/CRI.
[Online]. Available: http://www.coelho.net/salix/projects.html

[72] K. Pearson, “On the Criterion that a Given System of Deviations from
the Probable in the Case of a Correlated System of Variables is such
that it Can Reasonably Be Supposed to have Arisen from Random
Sampling,” Philosophical magazine, vol. 5, no. 50, pp. 157–175, Jul-
Dec 1900, Taylor & Francis Ed, London.

[73] MySQL AB, “MySQL – Relational Database Management System,”
http://mysql.com/ (2012-01-06), May 1995.

[74] PostgreSQL Global Development Group, “PostgreSQL – Object-
Relational Database Management System,” http://postgresql.org/ (2012-
01-06), Aug. 1996, based on the Postgres, which started in 1986.

[75] “Debian,” http://debian.org/ (2012-01-06), Aug. 1993.
[76] Canonical Ltd, “Ubuntu,” http://ubuntu.com/ (2012-01-06), Oct. 2004.
[77] SecurityFocus, “Security advisories,” http://securityfocus.com/ (2012-

01-06), Jan. 1999.
[78] “Source Forge,” http://sourceforge.net/ (2012-01-06), 1999.
[79] F. Coelho, “MediaWiki bug 15441,” https://bugzilla.wikimedia.org/

show bug.cgi?id=15441 (2012-01-06), Sep. 2008.



388

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX
LIST OF ADVICES

1) Schema without any FK schema design error
Why use a relational database if data are not related at all?
Well, that might happen...

2) No attribute in table table design error
There must be something in a table.

3) Tables without PK nor Unique table design error
All tuples must be uniquely defined to be consistant with the
set theory. There is no unique subset of attribute which can be
promoted as a PK.

4) Nullable attribute rate over 80% schema design warning
Warning: Most of the time, attributes should be NOT NULL.
Too high a rate of nullable attribute may reveal that some fields
are lacking a NOT NULL.

5) Attribute count per table over 40 table design warning
Having so many attributes in the same table may reveal the
need for additional relations.

6) Composite Foreign Key table design warning
As for primary keys, simple foreign keys are usually better
design, and make updates easier.

7) FK not referencing a PK table design warning
A Foreign Key should rather reference a Primary Key.

8) Integer PK but no other key table design warning
A simple integer primary key suggests that some other key
must exist in the table.

9) Isolated Tables table design warning
In a database design, tables are usually linked together.

10) Large PK referenced by a FK table design warning
Having large primary keys referenced by a foreign key may
reveal data duplication, as the primary key is likely to contain
relevant information.

11) Tables without PK but with Unique table design warning
All tables should have a primary key to be consistant with
the set theory. A unique constraint may be promoted as the
primary key.

12) Attribute has a pseudo ’NULL’ text default
attribute design warning

Possibly the NULL value was intended instead of the ’NULL’
text.

13) Unique nullable attributes attribute design warning
A unique nullable attribute may be a bad design if NULL does
not have a particular semantic.

14) Nullable attribute rate in 50-80% schema design notice
Notice: Most of the time, attributes should be NOT NULL. Too
high a rate of nullable attribute may reveal that some fields are
lacking a NOT NULL.

15) Attribute count per table over 20 table design notice
Having many attributes in the same table may suggest the need
for additional relations.

16) Non-integer Primary Key table design notice
Having integer primary keys without specific application se-
mantics make updates easier.

17) Table with a single attribute table design notice
Possibly some more attributes are needed to have a semantic.

18) Tables with Composite PK table design notice
A simple primary key, without specific semantics, is usually a
better design, and references through foreign keys are simpler.

19) Nullable attribute rate in 20-50%
schema design information

Information: Most of the time, attributes should be NOT
NULL. Too high a rate of nullable attribute may reveal that
some fields are lacking a NOT NULL.

20) FK length mismatch table consistency error
A Foreign Key should have matching referencing and refer-
enced type sizes.

21) FK type mismatch table consistency error
A Foreign Key should have matching referencing and refer-

enced types.
22) Destination table and FK in different schemas

table consistency warning
A constraint and its destination table are usually in the same
schema.

23) Source table and constraint in different schemas
table consistency warning

A constraint and its source table should be in the same schema.
24) Table and index in different schemas

table consistency warning
An index and its table should be in the same schema.

25) Tables linked but in different schemas table consistency
notice
Linked tables are usually in the same schema.

26) Backend engine inconsistency schema version error
Different backends are used in the same database. It may be
legitimate to do so if a particular feature of one backend is
needed, for instance full text indexes.

27) Unsafe backend engine used in schema
schema version warning

An unsafe backend (e.g. MyISAM) used at least once lacks
referential integrity, transaction support, and is not crash safe.

28) MySQL is used database version notice
MySQL lacks important features of the SQL standard, includ-
ing missing set operators.

29) Unsafe backend engine used on table
table version information

An unsafe backend (e.g. MyISAM) lacks referential integrity,
transaction support, and is not crash safe.

30) Schema name length too short schema style warning
A schema name with less than 3 characters is really too short.

31) Table name length too short table style warning
A table name with less than 2 characters is really too short.

32) Attribute name length too short attribute style warning
An attribute name with 1 character is really too short.

33) Homonymous heterogeneous attributes
attribute style warning

Better avoid using the same attribute name with different types
on different tables in the same application, as it may confuse
the developer.

34) Mixed table name styles schema style notice
Better use homogeneous table names.

35) Schema name length quite short schema style notice
A schema name with 4 characters is quite short.

36) Mixed attribute name styles table style notice
Better use homogeneous attribute names.

37) Table name length quite short table style notice
A table name with 3 characters is quite short.

38) Attribute name length quite short attribute style notice
An attribute name of 2 characters is quite short (but ”id” and
”pk”).

39) Attribute named after its table attribute style notice
An attribute contains the name of its table, which is redundant.

40) Schema name length short schema style information
A schema name with 5 characters is short.

41) Table name length short table style information
A table name with 4 characters is short.

42) Attribute name length short attribute style information
An attribute name with 3 characters is short.

43) SuperUser with weak password user system error
SuperUser with empty or username password.

44) Redundant FK table system warning
Redundant Foreign Keys are costly to maintain.

45) Redundant indexes table system warning
Redundant indexes are costly to maintain.

46) User with weak password user system warning
User with empty or username password.

47) Table without index table system notice
Not a single index on a table.



389

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using Statistical Information for Efficient  

Design and Evaluation of Hybrid XML Storage 

 

Lena Strömbäck 
Swedish Meterological and Hydrological Institute 

Folkborgsvägen 1, 601 76 Norrköping 

lena.stromback@smhi.se 

Valentina Ivanova, David Hall 

Department of Computer and Information Science 

Linköpings Universitet 

S-581 83 Linköping, Sweden 

valentina.ivanova@liu.se, david@dpg.se 

 

 
Abstract — Modern relational database management systems 

provide hybrid XML storage, combining relational and native 

technologies. Hybrid storage offers many design alternatives 

for XML data. In this paper we explore how to aid the user in 

effective design of hybrid storage. In particular we investigate 

how the XML schema and statistical information about the 

data can support the storage design process. In our previous 

work, we presented our tool HShreX that uses statistical 

information about a data set to enable fast evaluation of 

alternative hybrid design solutions. In this paper, we extend 

this work by presenting more details about the tool and results 

of an extended evaluation. In particular, this paper gives a 

detailed presentation on how the tool aids in the storage design 

and evaluation process. 

Keywords – XML, Hybrid XML management, indexing, storage 

design. 

I.  INTRODUCTION 

The rapid increase in web based applications yields an 
increasing interest in using XML (eXtensible Markup 
Language) for representation of data. XML is able to 
represent all kinds of data ranging from marked-up text, 
through so called semi-structured data to traditional, well-
structured datasets. Supporting the flexibility that makes 
XML appealing is challenging from data management and 
technical perspectives. Several approaches have been used 
including native databases and shredding XML documents 
into relations. In practice, hybrid storage that combines 
native and relational solutions is of large interest. Hybrid 
storage is provided by the major relational database vendors 
(Oracle, IBM DB2 and Microsoft SQL Server). They offer 
interesting options for storage design where native and 
relational storage can be used side by side.  In our previous 
work [1], we present our tool HShreX that uses statistical 
information about a data set to aid in hybrid storage design. 

Several studies evaluate different solutions for XML 
management. As an example, [2] and [3] provide general 
benchmarks for XML data while [4] and [5] gives a case 
study of XML data within bioinformatics.  For shredding, a 
number of different strategies are available [6]. It is well 
known that the choice of translation strategy affects the 
efficiency [7][8][9] and that the translation can be optimized 
in many ways. However, comparisons of different storage 
strategies [10] and hybrid XML storage [11] [12] [13] has, so 

far, only been studied in a few cases. The above studies 
discuss a number of features that may have an impact on 
how to achieve efficient storage; the complexity and 
regularity of the XML structure; how the data is queried, i.e., 
the access patterns for different entities in the data set; and 
the frequency of references to other sources. 

 
In this paper, we further explore these issues by 

investigating the impact of the application on the 
performance of the database. The properties we are focusing 
on are the XML schema structure and statistical properties of 
the data set. In Section II, we motivate and discuss the goals 
of our work that extends the discussion from [1]. This is 
followed by a discussion of properties and measurements 
relevant for storage design in Section III. We present our tool 
that enables fast evaluation and exploration of storage 
solutions in Section IV. Here, we extend the presentation 
from [1], which give a better understanding on how the tool 
can be used for a fast analyze of properties for a dataset. 
Statistical analysis of the data sets used for the tool 
evaluation is presented in Section V. In Section VI, we 
further extend the previous evaluation to show the feasibility 
of the tool. Related work is presented in Section VII. The 
paper is summarized by presenting our future vision in 
Section VIII. Our long term goal with the work is to present 
a method that can suggest a set of plausible hybrid storage 
models for an application.   

II. MOTIVATION AND GOALS 

Previous work [5][7][14][15][16] has defined efficient 
shredding methods for XML data into relational databases 
that result in fast query times. For hybrid storage, the 
situation is more complex where an inappropriate choice of 
storage design can lead to poor performance [17]. In general, 
automatically shredded relational XML mappings can lead to 
a rather large and complicated structure of relations. On the 
other hand, storing entire XML documents natively in XML 
keeps the structure completely intact to the cost of slow 
access to the data. For hybrid XML storage, we have the 
choice to store parts of the XML structure as relations and 
other parts as XML and can gain from the benefit of a good 
data model and relatively fast performance. The design of a 
good hybrid storage model is complex and dependent on the 
requirements for the specific application [17].  



390

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is important to determine, which properties are relevant 
for designing efficient hybrid storage.  Previous work 
[12][17] discusses a number of guidelines to take into 
account during the design process. These guidelines give 
general advices on how to store data, and we summarize the 
guidelines from [17] as they provide general goals for this 
paper. 

 
Guidelines for hybrid XML storage: 
 

1. Keep together what naturally belongs together. Parts of 

the data that corresponds to a semantic entity is likely to 

be used together. Therefore it is in many cases a good 

idea to keep it stored as XML and not shredded into 

many relations or different representations. 

2. Do not shred parts of the XML where the schema 

allows large variation. As a relational representation is 

less flexible than XML it is usually preferred to store 

parts where the schema allows variation as XML. 

3. Analyze the data to decide actual variation. The XML 

schema gives a good intuition of the possible variation 

of data but it does not give the full picture.  

4. Prefer relational representation for elements that are 

critical for performance. Here, the intuition is to 

identify the XML elements that are critical for query 

performance and common queries for the application.  

5. Prefer the representation that is required for query 

results. For the case where the application requires that 

the result from the query should be returned as XML 

and not as a relational table shredding is not beneficial. 

6. Avoid shredding where new versions of the schema are 

likely to change.  

 
The above guidelines are easy to use and help the user to 

design fairly efficient hybrid XML storage for many 
applications. It should be noted, though, that there are many 
cases where the different guidelines points in different 
directions and where the best tradeoff is given by the need of 
the application. Therefore there is a need for further 
evaluations and studies. 

Exploration and evaluation of alternative solutions is a 
time consuming task. Methods and tools, to aid the user in 

design of hybrid storage, and measurements, that could give 
hints on how to make choices, are of high importance. Based 
on the guidelines we can conclude that in order to refine the 
design guidelines we need to explore properties of the XML 
structure, the XML schema or DTD and the structure of 
actual data. 

In a preliminary evaluation, we compared the query 
efficiency with the amount of data stored as XML in the 
hybrid solution. In our tests, we adopt the shredding 
principles used in ShreX [14][18] as these principles give a 
mapping that captures the semantics of a given XML schema 
for the XML data. To explore hybrid storage we used the 
extended system HShreX [10][19], which also allows hybrid 
XML mappings. The general principle behind the mappings 
of these systems is that complex elements are translated to 
relational tables. Simple elements and attributes are shredded 
to a column in their parent table if they occur at maximum 
once in its parent element. HShreX extends this basic 
shredding by providing hybrid XML storage, i.e., to allow 
parts of the structure to be kept as XML in the final database 
representation. In our study the complexity of the created 
models varies between one or two relations for the models 
stored in pure XML to over 100 relations for the fully 
shredded data models. 

The results of these tests are illustrated in Figure 1. The 
first two graphs show the results for two real data sets from 
the IntAct [20] and UniProt [21] databases. In this case we 
can see that the amount of data stored as XML gives a good 
estimation of the expected query time. For the Michigan 
Benchmark data [22] the estimation is not as good as for the 
two other datasets. This means that the amount of data is a 
good indicator for the performance, but also that further 
statistics about the data could give us better indicators and 
aid in effective storage design. 

III. AVAILABLE INFORMATION 

The general guidelines presented in the previous section 
show that there are three sources of information that are 
important to understand storage requirements for a computer 
application. These are: the general data schema, i.e., the data 
model (guidelines 1 and 2), samples of data to determine 
how the data model is used  and what parts of the data model 
are in most common use (guideline 3), and samples of 

 

 

Figure 1. Run times [ms] (black) and data size [bytes] (grey) for PSI-MI (left), UniProt (middle) and Michigan Benchmark (right) 



391

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queries to determine what kind of queries are often 
performed for the data (guideline 4 and 5). In this work, we 
will examine how to use the data model and statistical 
information for a particular dataset.  

As shown in the previous section, the amount of data 
stored as XML is related to the query performance.  
However, the prediction we get from simply measuring the 
amount of data is not enough, we also need to collect more 
detailed information about the structure of the data. In 
practice, different parts of the XML schema are populated 
differently in different data sets. The XML schema carries 
information about the general structure, but, as for relational 
databases, the schema does not give a full picture of how this 
structure is instantiated for a particular dataset. We want to 
capture this information to create an effective hybrid storage 
model. In previous work [23], where we worked with 
generated data, we could see that also the amount of data at 
various positions in the XML file and the structure of this 
data had an impact on query performance.  We wanted to 
explore this further and collected the following information: 

 Overall statistics for the dataset. With this we mean 
characterizing the general structure of the dataset. For 
this purpose we use simple measures, such as, the total 
number of attributes, elements, and levels in the XML. 
We also collect the number of elements at each level of 
the dataset to determine the fan out of the data.  

 Diversity of the dataset. To get estimations of diversity 
we collect the number of elements and attributes for 
each element or attribute string, at which depths they 
occur and compare those to the number of overall 
elements. We also collect information on how many 
unique search paths occur within the data set and the 
number of their occurrence. 

 Detailed information at each position in the file. This is 
collected by counting the occurrence of element names 
at each level in the file. For each combination of 
parent/child node we count how common the child node 
is for this parent and collect the minimum, maximum 
and mean number of times this child occurs for the 
parent. 
 

Our previous work on generated data has shown that 
parent/child statistics were of particular interest since this 
had a large impact on query performance.  

IV. A TOOL FOR EVALUATION 

To allow easy access to the statistics and aid in 
evaluating storage alternatives we extended our tool HShreX 
to include this new information. The new version of the tool 
can be used to create and evaluate different XML storage 
models. We start with a description of the general 
functionality of the system.  

The general architecture of HShreX is shown in Figure 2. 
The system analyses an XML schema and represents it as a 
tree structure, which facilitates its visual perception. The tree 
structure helps to easily understand and navigate the schema 
components as well. The relational schema is likewise 
created during the schema analyses. Once the database 
structures are created, large datasets, which corresponds to 
the currently parsed schema, can be quickly shredded in the 
database. Each step starting from the XML schema parsing 
and ending in datasets loading is logged and available for 
review in a panel under the main work area.  

The relational schema is created following the shredding 
strategy, mentioned above. The actual XML structure is kept 
by foreign key relations between the created relational tables. 
These shredding rules are described in [10] and include the 
following behavior: 

 Complex elements are shredded into tables. All tables 

will get a primary key field named shrex_id. If the 

complex element is not a root element it will also get a 

foreign key field named shrex_pid that points to its 

parent. This preserves the tree structure in the original 

XML data. If the complex element can have simple 

content (i.e., text content), a special field is created in 

the table to hold any such content. 

 Simple elements are shredded into columns in their 

parent table if they can occur at most once under their 

parent. If a simple element can occur more than once 

under its parent it will be outlined to a separate table. 

 Attributes are shredded into columns in their parent 

table.  

 
The user can alter the data shredding rules using HShreX 

annotations [10]. In this way, the XML data can be 
represented in purely native, mixed and shredded storage 
models. The HShreX annotations provide the opportunity to 
switch rapidly and flexibly between different storage models, 
create them in a database and evaluate their performance 
features. 

HShrex‟s user interface provides three panels, which give 
more details of the schema elements and their mappings. 
Figure 4 gives an overview of the information on these 
panels. In the figure we show details for the element model. 
The first panel (top) lists specific details, such as currently 
applied HShreX annotations, children elements and attributes 
and their occurrences, for the model element in the XML 
schema tree. In this case the model element has three 
attributes and no annotations have been applied.  The second 
(middle) shows HShreX mapping of the selected element or 
attribute in the tree. Following our translation rules, model is 
translated into a relational table, with its three XML 

 
 

Figure 2. The general architecture of HShreX  



392

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attributes translated to attributes in the relational table. Note, 
in particular, the attributes shrex_id and shrex_pid used to 
keep the relational structure. The full relational schema and 
their relations are available in the third panel (bottom of 
Figure 4). 

In this work, the user interface was extended in two 
directions – to provide more convenient work with HShreX 
annotations and to visualize more information for a particular 
dataset.  

A. Annotating the data 

Important for allowing fast evaluations is easy change of 
the shredded representation of the data. Therefore, HShreX 
allows the default shredding rules to be influenced via 
annotations. The supported annotations were originally 
developed for relational shredding of XML [14] and 
extended to allow hybrid XML representation [19].  To get a 
better understanding of the functionality we give an 
overview of the most important annotations: 

 
maptoxml – makes this part of the XML tree to be stored 

natively. The annotation can be used on both complex 

and simple elements. 

ignore – this part of the XML tree will be ignored, i.e., it 

will not be represented in the resulting data model. 

outline – used on simple elements (or attributes) where it is 

desired that they should be stored in a separate table. 

 withparenttable – used to merge a child with its parent in 

order to reduce the number of tables in the model. This 

annotation can be used only for children with a single 

occurrence in the parent. 

 tablename – can be used to simply rename a table but a 

more powerful use is to merge two tables that do not 

have a parent/child relationship (in those cases the 

annotation described above, withparenttable, is used). 
 
These annotations allow a rapid change of shredded 

hybrid storage model. However, in the original system the 
user had to open and edit the XML schema textually. This 
was rather complicated and slowed down the process. 
Therefore we extended the system with a dialog, allowing 
the user to alter annotations directly from the schema tree, 
which is shown in the left pane of HShreX.  

Figure 3 shows the dialog that facilitates manipulation of 
HShreX annotations. While navigating in the schema tree, 
we can open the dialog for the element or the attribute of 
interest and process its annotations. The dialog provides 
functionality for adding annotations, updating, i.e., changing 
values of available annotations and deleting annotations. 
Since some combinations of annotations for an element or an 
attribute are not valid, we validate each annotation regarding 

 
 

 
 

 
 

Figure 4. HshreX main panels, XML schema (top), relational 

mapping (middle) and relational schema (bottom) 

 

Figure 3. Add/remove annotations dialogue 



393

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the already available annotations prior to adding. A useful 
feature is provided through the “Apply all changes to all 
elements of this type” button, i.e., the currently 
added/removed annotations will be applied to all elements of 
this type in the XML schema with a single action. The basic 
data and the annotations, which apply to the element or the 
attribute of interest, are listed in the right side of the dialog. 

B. Statistical analysis of the dataset. 

The second improvement in the user interface is 
orientated towards the statistical information available for a 
particular dataset. HShreX obtains this information by 
analyzing a set of sample XML files representing the dataset. 
We collect the information described in Section III above. 
However, for designing the interface it was important to 
make the statistics easy available for the user at the time 
when it was needed. Therefore we wanted to integrate 
statistical information into the HShreX user interface as far 
as possible.  

In HshreX detailed information, for the element or the 
attribute of interest and its children elements and attributes, 
is presented in the schema tree when a particular dataset is 
loaded to the database in use. The resulting interface is 
shown in Figure 6. When data is loaded into the tool, 
statistical information is shown in the XML Schema Tree 
(left part of the figure) and additional information is 
presented in the XML Schema pane (right part of the figure). 
To start with the statistics show how common the selected 
element is (in this case the element model). The first three 
lines in the pane show that there are 251 occurrences of the 
elements model, all of them on the second level in the XML 
file and in this particular position (path) of the files. As a 
contrast the same value for the element speciesReference is 
shown in Figure 5. From this statistics we can derive that this 
elements is very common, all occurrences are on level 6 in 

the file, but only a bit more than half of them in this 
particular path. 

The remainder of the figures in the XML Schema panel 
shows for each occurrence of child element or attribute 
occurring in the selected element the total number of 
occurrences on the document. 

The XML Schema Tree (left in Figure 6) gives more 
information on the structure of the data. For each child 
element of model it shows how common these are as 
children to model. For instance, listOfCompartments occurs 
in all occurrences of model while listOfRules only occurs in 
129 occurrences of model. This information is of particular 
interest when designing the hybrid model as common 
elements are often beneficial to shred into relations. Three 
different colors are used to facilitate user‟s perception and to 
show how many times a particular child node appears under 
its parent element, i.e., different children nodes are colored 
depending on their frequency of appearance. Thus, the user 
gets fast and highly useful overview of child nodes and can 
prioritize his next studies based on this information.  

In addition, the figures within parenthesis show how the 
minimal, mean and maximum number of occurrences for 
each child elements occurs for this element. For model, we 
can see that each of the child elements occurs exactly once 
(when they are available). For our second example the 

 

Figure 6. Statistics for the Biomodels dataset as used in the HShreX tool.  

 

 

Figure 5. Statistics for the speciesReference element.  



394

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

statistics in Figure 5 shows that each occurrence of 
listOfReactants has one to four child elements 
(speciesReference), the mean number of occurrences is 1.3. 
The amount of statistical data visualized in the schema tree is 
small, however, our experience have shown that it is the 
most useful part of the information available for the dataset. 
The schema tree representation of statistical information aids 
the user decision on what annotations are appropriate to be 
used for a particular dataset and helps to construct proper 
queries with higher efficiency. Further, the statistics can help 
the user to create indexes and optimize queries. The other 
part of the statistical data described in the previous section 
can be found in “Open Main Statistics” and “Open All 
Statistics” dialogs under the “File” menu. In addition 
HShreX can give a summary of all statistics. This summary 

also contains some general facts about the file collection, 
such as, total number of elements attributes and characters, 
the maximum and mean depth of the XML data, the total 
number of unique elements and paths in the data. This data 
gives a very quick overview of the dataset before designing 
the storage solution. 

V. STATISTICAL ANALYSIS OF DATA 

In this section, we show how the statistics can be used to 
explore two selected datasets. For the study we have selected 
two datasets represented in the SBML 2.1 (Systems Biology 
markup Language version 2.1) XML schema [24] XML 
standard. To explore the benefit of our tool and the statistical 
information, we used it for designing hybrid shredding and 
evaluate its performance on the Homo Sapiens dataset from 
the Reactome database [25] and on the BioModels dataset. 
Reactome dataset contains an export of data from the 
Reactome dataset and while the BioModels dataset contains 
simulation models for pathways.  

It turns out that the overall structure of the two datasets is 
very different. A quick overview of the statistical 
information provided by HShreX is given in Table 1. From 
the table we can see that the BioModels data is about three 
times as large as the Reactome data in terms of number of 
attributes and elements. It is also clear that the Reactome 
data have less depth and higher fan out than the BioModels 
data. This means that the data in the first dataset is spread in 
depth (the data is stored on many levels) and the data in the 
second dataset is spread in width (the data is populated 
almost equally within the dataset).  

More interesting is, however, that the number of unique 
elements and especially unique paths is much larger in the 
BioModels data, this hints that there is much more variety in 
the BioModels data than in the Reactome data. We can use 
the user interface to further investigate the differences. 

The statistics available directly in the HShreX schema 
tree for the two datasets are available in Figures 6 and 8. 
This pane gives detailed information for the occurrence of 

 Reactome BioModels 

Files 1 251 

Levels 6 8 

Total elements 31502 93673 

Total Attributes 38062 124756 

Elements on each 
level  

1 
1 
3 

9144 
8358 

13995 

250 
254 

1814 
20008 
32375 
31020 
7951 

1 

Total depth 6 8  

Mean depth 5,15 5,2 

Unique elements 13 35 

Unique paths 14 70 

Table 1: Statistical overview of two our selected datasets 

 
Figure 8. Analysis for the Homo Sapiens dataset.  

 

 
 

 
Figure 7. Statistical data for the reaction element. Reactome (top) 

and BioModels (bottom). 

 



395

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the nodes and their parents and presents a clear view of data 

distribution in the particular dataset.  For Reactome dataset 
all data are collected in the listOfCompartments, 
listOfSpecies and listOfReactants elements. For the  
BioModels dataset, the data is much more spread over 
different parts of the XML schema. Figure 7 shows a further 
analysis of some part of the data, in this case the reaction, 
and shows that the same relation holds, BioModels data is 
more diversified than Reactome data.This analysis shows us 
that a hybrid model for Reactome data can be very simplified 
as only parts of the XML structure needs to be represented. It 
also shows that for both datasets reaction is one element 
critical for performance and thus important for further 
studies. 

VI. EVALUATING THE APPROACH 

Examining the mentioned datasets, using the HShreX 
interface, we noticed that some of the elements and their 
parents occur more often than others, thus our research will 
be more productive if we concentrate on them. In this 
section, we will discuss how we work with HShreX in two 
different application domains. 

A. Bioinformatics data  

Our discussion in the previous section showed that 
reaction and model are important elements in our SBML 
datasets. Therefore in our examples we have applied the 
HShreX annotation maptoxml to the reaction and to the 

model elements in the XML schema. This particular 
annotation/value combination has been selected in order to 
force the HShreX application to store these parts of the data 
as pure XML in the corresponding database. If we do not 
apply any HShreX annotations, the data in the datasets is 
represented in a shredded storage model. HShreX has been 
forced to represent the data in a hybrid and in a pure native 
storage models applying the maptoxml annotation to the 
reaction and model elements respectively.  

We have chosen two of the major database servers 
available on the market and set up their options related to the 
XML data representation in various configurations. Using 
the database servers XML storage capabilities we are able to 
store the XML data with or without associating it with 
corresponding XML schema. The database servers run on 
HP Proliant DL380 G6 Server with two Intel Xeon E5530 
Quad Core HT Enabled processors running at 2.4 GHz (in 
total 16 logical processors) and 30 GB RAM. 

We have created different SQL queries (exemplified in 
Listing 1 and Listing 2) and executed them against the three 
storage models and different database configurations. In 
Query 1, the simpler among both, we retrieve details for a 
reaction where one of its participants is specified. In the 
second query, we join details for reactions and reactions to 
extract participants and products for all reactions. First we 
executed the two queries using only the homo sapiens 

 
Figure 9. Performance [ms] for Query 1 (left) and Query 2 (right) where:  ■ homo sapiens dataset with index,  ■ homo sapiens dataset without index,                             

■ homo sapiens and biomodels datasets with index and  ■ homo sapiens and biomodels datasets without index 

Shredded: 
SELECT d."species", b."shrex_pid", e."species 
FROM sbml_model_listOfReactions_reaction_listOfReactants b,   

     sbml_model_listOfReactions_reaction_listOfProducts c,   
     sbml_model_listOfReactions_reaction_listOfReactants_speciesReference d,  
     sbml_model_listOfReactions_reaction_listOfProducts_speciesReference e         

WHERE c."shrex_pid" = b."shrex_pid"             
  AND b."shrex_id" = d."shrex_pid"              
  AND c."shrex_id" = e."shrex_pid"              

           AND d."species" = 'REACT_5251_1_Oxygen';   
 
Native: 
SELECT reaction.query(   'for $react in //reaction, 

     $rtant in $react/listOfReactants/speciesReference, 
     $prod in  $react/listOfProducts/speciesReference 
     return <path> {data($rtant/@species)} {data($react/@id)}     
                                   {data($prod/@species)} </path>') "test" 

FROM sbml_model_listOfReactions_reaction 
WHERE reaction.exist('//reaction/listOfReactants/speciesReference 
                               [@species="REACT_5251_1_Oxygen"]') = 1; 

 

Listing 2. Sample query for SBML – Query 2 

Shredded: 
SELECT a."id", a."name" 
FROM sbml_model_listOfReactions_reaction a,  

     sbml_model_listOfReactions_reaction_listOfReactants b,  
     sbml_model_listOfReactions_reaction_listOfReactants_speciesReference c                       

WHERE a."shrex_id" = b."shrex_pid"                     
  AND b."shrex_id" = c."shrex_pid"                     

           AND c."species" = 'REACT_5251_1_Oxygen'; 
 
Native: 
SELECT reaction.query(   'for $i in /reaction/listOfReactants/speciesReference 

      where  $i/@species = "REACT_5251_1_Oxygen" 
      return <Details> {$i/../../@id} {$i/../../@name} </Details>') "data" 

FROM sbml_model_listOfReactions_reaction 
WHERE reaction.exist('/reaction/listOfReactants/speciesReference 
                                    [@species="REACT_5251_1_Oxygen"]') = 1; 

 

Listing 1. Sample query for SBML – Query 1 

 



396

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dataset. After that we loaded both datasets at the same time 
and evaluated how the response time changes when the size 
of the data stored in the database increases. The measured 
performance can be influenced by other processes running 
on the server. To reduce this influence, the queries from the 
figures were executed ten times per condition set, and the 
averages of the results are presented. 

First runs were made without any additional 
optimization. Based on the statistics, proper XML indices, 
for each variation of database storage options, were created 
and the same queries were executed again. Thus, we benefit 
from the statistical information available for a particular 
dataset in three ways: we can use the statistics to choose the 
best place for the HShreX annotations regarding our interests 
and in this way switch flexibly and rapidly between different 
storage models. We are as well able to create proper, for 
each storage model, indices based on the view of the data 
distribution in the particular dataset. A final advantage is that 
we can optimize our SQL queries not only creating indices 
but rewriting them based on the data distribution and 
complexity.  

The results from the two different query executions are 
shown in Figure 9. The equivalent positions on the „X‟ 
coordinate in both of the charts correspond to equivalent 
condition sets of database storage options. The results from 
positions 1 and 2 correspond to a fully shredded storage, 
positions 4 – 8 correspond to a hybrid storage and positions 
10 – 14 correspond to a pure native XML storage. Positions 
4 – 8 use the same conditions sets of database storage 
options as positions 10 – 14, however the HShreX annotation 
is applied to different elements. As we expected, there is a 
clear relation between the storage model and the query 
performance, i.e., the execution times are fastest in the 
shredded storage and slowest in the pure native storage. 

Examining the positions 4 – 14 in both result sets we can 
clearly see that the query performance varies with a different 
amount for the different database storage options when the 
size of the data in the database increases. The performance is 
usually improved when the XML indices are created. It is 
worth noting that this is not true for position 11 in Query 2 
where the performance drops considerably when the index is 
used. While positions 4 – 8 in the two results sets are 
comparable, positions 10 – 14 have a lot of differences. 
Positions 13 and 14 in the first results set have the worst 
performance among the results for pure native storage while 
in the second results set they have the best performance. 
Analyzing positions 13 and 14 in the first result set shows 
that indices have excellent performance when the size of the 
data is relatively small and their performance decrease when 
the data size increases. It is worth noting as well the 
differences between positions 7, 8 and respectively 13, 14 in 
the results for Query 1. Positions 7, 13 and 8, 14 respectively 
have the same database storage options – positions 7 and 8 
give the best results while positions 13 and 14 give the worst.  

Analyzing the two result sets we can conclude that 
indices provide better results when used with the hybrid 
storage than with the pure XML storage. The indices 
efficiency increases when the size of the data in the hybrid 
storage increases. During results analysis, we need to 

consider that the results are also affected from the database 
servers XML storage capabilities and created indices. The 
benchmark results are influenced from the data distribution 
in the datasets as well as the SQL queries construction. The 
statistical data available in HShreX facilitates and aids our 
decision where to put HShreX annotations and SQL indices 
and thus HShreX assists us in fast storage construction. 

B. Provenance data 

Scientists in the natural sciences use workflow 
management systems to facilitate their work in development, 
management and execution of data and computation 
intensive experiments. These experiments can be described 
as a sequence of connected activities, where the output of 
one activity is an input to the following. The experiments are 
run multiple times with different configurations of 
parameters where results are produced by each execution. 
The results obtained from different configurations as well as 
the configurations itself are highly important for the 
scientists. They are used for further analysis of the results, as 
well as sharing and reusing experimental data. The scientific 
workflow management systems offer tools for describing 
experiments (workflows), keep track at each step of their 
evolution and execution and store the resulting data products 
in an easily reproducible format. Efficient methods for 
searching and retrieving large amounts of data are essential 
for the scientists in their everyday work, in this context. 

Each workflow system stores the relevant information in 
its own internal format; however most of them can export the 
workflows and execution data as XML. Hence usually the 
workflows are shared in the community in the XML format 
corresponding to a particular vendor XML schema. Using 
our tool HShreX and the particular schema the user can 
obtain a fast overview of the data and to create a storage 
corresponding to its requirements. 

Shredded:   
  SELECT WDDDSO.processor, WDP.shrex_pid 
  FROM workflow_dataflow_processors WDP,  

      workflow_dataflow_datalinks WDD,  
      workflow_dataflow_datalinks_datalink WDDD,         
workflow_dataflow_datalinks_datalink_sink WDDDSI,      
workflow_dataflow_datalinks_datalink_source WDDDSO,  
workflow_dataflow_processors_processor  WDPP 

  WHERE WDP.shrex_pid = WDD.shrex_pid 
AND WDPP.shrex_pid = WDP.shrex_id 
AND WDDD.shrex_pid = WDD.shrex_id 

         AND WDDDSI.shrex_pid = WDDD.shrex_id 
AND WDDDSO.shrex_pid = WDDD.shrex_id       
AND WDDDSI.processor = WDPP.name 
AND WDPP.name = module_name;    
                          

Native: 
  SELECT dataflow.COLUMN_VALUE 
  FROM workflow_dataflow,  
  XMLTable('for $i in //dataflow, 

                    $p in $i/processors/processor/name, 
                    $d in $i/datalinks/datalink 
               where  $p = $d/sink/processor  
                  and $p = $name 
               return if(exists($d/source/processor))  
                      then < Details >{$d/source/processor}{$i}</ Details >  
                      else< Details ><processor>null</processor></ Details >' 
               PASSING module_name AS "name", "dataflow") dataflow;  

 

Listing 3. Input query 



397

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There is a set of specific queries that are highly important 
for scientists in this domain. These are the input and output 
queries [26] (discover the activities immediately before and 
after a particular activity), the upstream and downstream 
queries [26] (discover the activities before and after a 
particular activity in the whole workflow), activity details 
query [26] (shows all parameters for an activity), different 
version queries [27] (show permanent and temporary 
changes in the workflows structures). Since the input and 
upstream queries are foundations for more complex queries 
in this area, they were chosen to show the capabilities and 
benefits from our tool. 

  In this experiment, we use a set with approximately 600 
files generated by the Taverna [28] workflow management 
system. Each file contains at least one workflow. So the total 
dataset contains around 1100 workflows, since an activity 
can be a workflow on its own. Studying the corresponding 
schema and the dataset (guideline 3), and taking into account 

an additional knowledge for the selected queries (guideline 
5), we selected the dataflow and the processors elements to 
apply the HShreX annotation maptoxml. The structure of 
the dataset is shown in Figure 10. The dataflow element 
represents the whole experiment (workflow) and the 
processors element represents the activities in it. The 
datalinks element is another important element – it shows 
how the activities are connected and it has a significant place 
in the domain specific queries. As described in the previous 
section, the maptoxml annotation will force our tool to store 
the corresponding parts of the XML as pure XML. When the 
annotation is applied to the elements the data is represented 
in pure native and respectively in hybrid storage models.  

We have implemented the input and upstream queries 
(Listing 3 and 4) as SQL functions and executed them 
against the three storage models. The input query retrieves 
the activities that immediately precede a given activity. First 
each workflow is checked for presence of the activity 
(identified by its name) and when the activity is available the 
datalink elements are explored in order to find the 
immediately preceding activities. In the upstream query, all 
activities that precede a given activity in a workflow are 
retrieved. In order to find all preceding activities in the 
workflow the input query is executed for every previously 
selected activity until the beginning of the workflow is 
reached. Since the upstream query is highly dependent on the 
structure of the workflow we select and evaluate the query 
performance for two different activities, which are at 

 
Figure 11. Performance [ms] for the input query (left) and the upstream query (right) where:   ■   short path (to the activity regarding the workflow beginning) 

with index,   ■   short path without index,   ■   long path (to the activity regarding the workflow beginning) with index and   ■   long path without index 

 

 
Figure 10. Statistical data for the dataflow element 

 

Shredded: 
UPSTREAM_QUERY (module_name) 
SELECT WDDDSO.processor AS preceeding_name, WDP.shrex_pid 
FROM workflow_dataflow_processors WDP,  

     workflow_dataflow_datalinks WDD,  
     workflow_dataflow_datalinks_datalink WDDD,  
     workflow_dataflow_datalinks_datalink_sink WDDDSI,  
     workflow_dataflow_datalinks_datalink_source WDDDSO,  

              workflow_dataflow_processors_processor WDPP 
WHERE WDP.shrex_pid = WDD.shrex_pid 

          AND WDPP.shrex_pid = WDP.shrex_id 
          AND WDDD.shrex_pid = WDD.shrex_id 
          AND WDDDSI.shrex_pid = WDDD.shrex_id 

                   AND WDDDSO.shrex_pid = WDDD.shrex_id       
          AND WDDDSI.processor = WDPP.name 
          AND WDPP.name = module_name;      
    RETURN UPSTREAM_QUERY (preceeding_name) 

 
Native: 

UPSTREAM_QUERY (module_name) 
SELECT dataflow.COLUMN_VALUE AS preceeding_name 
FROM workflow_dataflow,  
XMLTable('for $i in //dataflow, 

                    $p in $i/processors/processor/name, 
                    $d in $i/datalinks/datalink 
               where  $p = $d/sink/processor  
                  and $p = $name 
               return if(exists($d/source/processor))  
                      then <Details>{$d/source/processor}{$i}</Details>  
                      else <Details><processor>null</processor></Details>' 
               PASSING module_name AS "name", "dataflow") dataflow;      
  RETURN UPSTREAM_QUERY (preceeding_name) 

 

Listing 4. Upstream query 



398

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different distance from the first activity in the workflow. The 
two queries were executed on the same database servers and 
with similar XML storage options as the queries discussed 
above. Initially, they were executed without any 
optimizations and then using the statistics in our tool proper 
indices was created.  

The results from the executions of the input and the 
upstream queries are shown on the left and respectively on 
the right side in Figure 11. The results on the first two rows 
(dark blue and red color) on both figures are obtained using 
an activity close to the beginning of the workflow, while the 
results on the other two rows are obtained using a distanced 
(from the beginning) activity. Analogically to the 
presentation of the bioinformatics data results, the equivalent 
positions on the „X‟ coordinate in both of the charts 
correspond to equivalent condition sets of database storage 
options. The results from positions 1 and 2 correspond to a 
fully shredded storage, positions 4 – 7 correspond to a hybrid 
storage and positions 9 – 12 correspond to a pure native 
XML storage. Positions 4 – 7 use the same conditions sets of 
database storage options as positions 9 – 12, however the 
HShreX annotation is applied to different elements.  

Here, as well as in the bioinformatics data results, the 
query execution times are fastest in the shredded storage 
model. The queries performance for the hybrid storage 
(positions 4 – 7 in both result sets) is very good, sometimes 
even comparable with the performance in the fully shredded 
storage. The structure of the queries, where the joins are 
mainly between shredded relations, has a particular influence 
on these results. It should be noted that the indices lead to 
significant improvement in the input query execution time 
for position 4. Nevertheless, some positions (for instance 
position 7 on the left figure) in the hybrid storage show a 
small loss of performance, when the indices are created. A 
careful examination shows that the query execution times for 
these positions, obtained in the first run after creating the 
indices, are very slow. Each query was run ten times per 
condition set (the average time is shown here) in order to 
reduce the influence of other processes running on the server 
at the same time. Although the other execution times for the 
mentioned positions are very fast, these extreme values 
influence the average of the results. The query performance, 
in the pure native XML storage, is usually improved when 
the indices are created, except the position 10 in both result 
sets, where the indices lead to worse performance. As 
expected, due to the upstream query definition, the execution 
times are dependent on the distance to the selected activity 
regarding the beginning of the workflow (first two rows on 
the right figure against the next two rows). 

Since each scientific workflows management system has 
different internal representation of the data, the sharing and 
reusing of already existing workflows is limited. Thus our 
current work in the domain of the scientific workflows is 
orientated towards development of common data 
representation, optimized for domain specific queries (some 
of them were mentioned earlier). Since the scientific 
workflows are best described as directed acyclic graphs, our 
data model is naturally based on a graph model. Most of the 
domain specific queries are related to graph traversal and 

other graph operations as well. In this context we have 
implemented the input and upstream queries in our specially 
designed model. A comparison between their performance in 
the graph model and the shredded storage obtained with our 
tool HShreX is presented in Table 2. Note that although the 
HShreX shredded storage is not optimized according to the 
requirements in the scientific workflows domain, it has 
comparable performance with the storage specially designed 
for the domain requirements. 

VII. RELATED WORK 

The work presented in this article combines ideas from 
several different areas for XML storage. The first is the work 
on automatic shredding of XML documents into relational 
databases by capturing the XML structure or based on the 
DTD or XML schema for the XML data [5][7][14][18]. The 
intention with these approaches is to create efficient storage 
for the XML data. The resulting data model is often hard to 
understand and is usually hidden from the user via an 
interface providing automatic query translation of XQuery 
into the model. 

The other related area is hybrid XML storage for 
relational databases. The vendors offer different underlying 
representation for the XML type, in some cases it is a byte 
representation of the XML, in other cases it is some kind of 
shredding of the XML data [8][16][29][30]. In addition, 
database vendors provide a number of tools to import XML 
natively or shred the data into the system. These tools are 
intended for design of one database solution, thus generation 
and evaluation of alternative solutions become time 
consuming. 

Interesting work [31] has addressed the question of 
properties of XML data and generating statistical and 
comparative measurements of XML datasets. However, this 
work concentrates on overall measures of properties of the 
dataset and does not consider the more detailed statistical 
measurements that we have found most useful in our work.  

Other related work is found within database optimization 
[32][33]. Query optimization can rely on statistics of data 
and query use for fine tuning their performance [9][34]. 
However, these statistics are often dependent on the internal 
database representation instead of based on the original 
dataset as is necessary for our work. It would be interesting 
to include these measurements in our work to see whether 
they could give added value to our indicators. 

Query HShreX 
storage 

Special 
storage 

Input (short path) 43 50 

Input (long path) 24 17 

Upstream (short path) 183 81 

Upstream (long path) 1463 330 

Table 2: Comparison between query execution times [ms] in HshreX and 

in our specially designed storage 

 



399

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSION AND FUTURE DEVELOPMENT 

The extended HShreX tool is very promising and our 
tests confirms that our tool is very useful for aiding in 
storage design. Using the tools and statistics improves the 
evaluation process and makes it possible to compare a high 
number of alternative hybrid database designs. The statistical 
analysis gives powerful insight in the structure of data and 
aids not only in how to shred the data but also in how to 
construct indices. The added details and experiments, which 
extend this paper from [1], verify these results. 

In particular, we want to compare our set of 
measurements with the more advanced statistical methods 
used in [34]. The final goals would be to use the measure to 
provide suggestions of beneficial hybrid data models for the 
end user, to further automate the process of storage design. 
To reach this goal it is crucial to have access to series of data 
with specific properties to fine tune the indicators and tests. 
Also for this issue we have made a first solution for 
generating data with desired properties [23], which can be 
integrated into our tool. 

One bottleneck with our method is that hybrid data 
models are very complex to query due to the mix of query 
languages. We are currently using SQL/XML, however, if 
we consider a user that want to work on the data as if it was 
XML, this is not feasible. Options are automatic query 
translations from XQuery to the defined model or to provide 
a higher level query language for the user.  

Another very interesting question is hybrid storage 
solutions with several DB architectures as a backend, for 
instance pure native XML databases or specialized databases 
for graphs or RDF storage. This becomes particularly 
important for applications where parts of the data contain 
RDF code or represent graphs as is the case for many system 
biology standards. We have previously evaluated different 
combinations [10][13] and would like to include also these 
options in the HShreX Framework. 

ACKNOWLEDGMENT 

We acknowledge the financial support from the Center 
for Industrial Information Technology and the Swedish 
Research Council. We are also grateful to Juliana Freire for 
support and fruitful discussions regarding this work and for 
Mikael Åsberg for implementation work on the HShreX tool. 

REFERENCES 

[1] L. Strömbäck, V. Ivanova, and D. Hall, Exploring Statistical 
Information for Applications-Specific Design and Evaluation of 
Hybrid XML storage., Proceedings of the International Conference 
on Advances in Databases, Knowledge, and Data Applications 
(DBKDA 2011), Jan. 2011, pp. 108-113. 

[2] AR. Schmidt, F. Waas, M. Kersten, MJ. Carey, I. Manolescu, and R. 
Busse, XMark: A Benchmark for XML Data Management, 
Proceedings of the International Conference on Very Large 
Databases (VLDB 2002), Aug. 2002, pp. 974–985. 

[3] BB. Yao, MT. Özsu, and N. Khandelwal, XBench Benchmark and 
Performance Testing of XML DBMSs, Proceedings of the IEEE 
International Conference on Data Engineering (ICDE 2004), Mar. 
2004, pp. 621-633. 

[4] L. Strömbäck, Possibilities and Challenges Using XML Technology 
for Storage and Integration of Molecular Interactions, Proceedings of 

the International Workshop on Database and Expert Systems 
Applications, Aug. 2005, pp. 575-579, doi:10.1109/DEXA.2005.154. 

[5] Strömbäck, D. Hall, M. Åsberg, and S. Schmidt, Efficient XML data 
management for systems biology: Problems, tools and future vision, 
International Journal on Advances in Software, vol. 2(2-3), 2009, pp. 
217-233, Invited contribution.  

[6] D. Floresco and D. Kossmann, Storing and Querying XML Data  
using an RDMBS, IEEE Data Engineering Bulletin, vol. 22(3), 1999, 
pp. 27-34. 

[7] B. Bohannon, J. Freire, P. Roy, and J. Siméon, From XML Schema to 
Relations:  A Cost-Based  Approach to XML Storage, Proceedings of 
the IEEE International Conference on Data Engineering (ICDE 
2002), Feb.-Mar. 2002, pp. 64-75, doi:10.1109/ICDE.2002.994698. 

[8] H. Georgiadis and V. Vassalos, XPath on steroids: Exploiting 
relational engines for XPath performance, Proceedings of the ACM 
SIGMOD International conference on Management of data 
(SIGMOD 2007), Jun. 2007, pp. 317-328, 
doi:10.1145/1247480.1247517. 

[9] T. Grust, J. Rittinger, and J. Teubner, Why Off-the-Shelf RDMBMSs 
are Better at Xpath Than You Might Expect, Proceedings of the ACM 
SIGMOD International conference on Management of data 
(SIGMOD 2007), Jun. 2007, pp. 949-958, 
doi:10.1145/1247480/1247591.  

[10] L. Strömbäck and D. Hall, An evaluation of the Use of XML for 
Representation, Querying, and Analysis of Molecular Interactions, In: 
T. Grust et. al. (Eds) Current Trends in Database Technology – 
International Conference on Extending Database Technology 2006 
Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA, 
and Reactivity on the Web, Mar. 2006, Revised Selected Papers. 
Lecture Notes in Computer Science, vol. 4254, 2006, pp. 220-233, 
doi:10.1007/11896548_20. 

[11] I. Mlynkova, Standing on the Shoulders of Ants: Towards More 
Efficient XML-to-Relational Mapping Strategies, Proceedings of the 
International Workshop on Database and Expert Systems 
Applications, Sep. 2008, pp. 279-283, doi:10.1109/DEXA.2008.16. 

[12] MM. Moro, L. Lim, and Y-C. Chang, Schema Advisor for Hybrid 
Relational-XML DBMS, Proceedings of the ACM SIGMOD 
International conference on Management of data (SIGMOD 2007), 
Jun. 2007, pp. 959-970, doi:10.1145/1247480-1247592. 

[13] L. Strömbäck and S. Schmidt, An Extension of XQuery for Graph 
Analysis of Biological Pathways, Proceedings of the International 
Conference on Advances in Databases, Knowledge, and Data 
Applications (DBKDA 2009), Mar. 2009, pp. 22-27, 
doi:10.1109/DBKDA.2009.16. 

[14] S. Amer-Yahia, F. Du, and J. Freire, A Comprehensive Solution to 
the XML-to-Relational Mapping Problem, Proceedings of the ACM 
International Workshop on Web  Information and Data Management, 
Nov. 2004, pp. 31-38, doi:10.1145/1031453.1031461. 

[15] D. Barbosa, J. Freire, and AO. Mendelzon, Designing Information-
Preserving Mapping Schemes for XML, Proceedings of the 
International Conference on Very Large Databases (VLDB 2005), 
Aug.-Sep. 2005, pp. 109-120. 

[16] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. 
Naughton, Relational databases for querying XML documents: 
Limitations and opportunities, Proceedings of the International 
Conference on Very Large Databases (VLDB 1999), Sep. 1999, pp. 
302-314. 

[17] L. Strömbäck and J. Freire, XML Management for Bioinformatics 
Applications, Computing in Science and Enineering, vol.13, 
Sep./Oct., 2011, pp. 12-23, 
http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.100. 

[18] F. Du, S. Amer-Yahia, and J. Freire, ShreX: Managing XML 
Documents in Relational Databases, Proceedings of the International 
Conference on Very Large Databases (VLDB 2004), Aug.-Sep. 2004, 
pp. 1297-1300. 

[19] L. Strömbäck, M. Åsberg, and D. Hall, HShreX – A Tool for Design 
and Evaluation of Hybrid XML storage, Proceedings of the 



400

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Workshop on Database and Expert Systems 
Applications, Aug.-Sep. 2009, pp. 417-421, 
doi:10.1109/DEXA.2009.33. 

[20] B. Aranda et al., The IntAct molecular interaction database in 2010, 
Nucleic Acids Research, Oct. 2009, pp. 1-7, doi:10.1093/nar/gkp878. 

[21] The UniProt Consortium The Universal Protein Resource (UniProt), 
Nucleic Acids Research, vol. 36(1), 2008, pp. D190-D195, 
doi:10.1093/nar/gkm895. 

[22] L. Runapongsa, JM. Patel, HV. Jagadish, Y. Chen, and S. Al-Khalifa, 
The Michigan Benchmark: Towards XML Query Performance 
Diagnostics, Information Systems, vol. 31(2), Apr. 2006, pp. 73-97, 
doi:10.1016/j.is.2004.09.004. 

[23] D. Hall and L. Strömbäck, Generation of Synthetic XML for 
Evaluation of Hybrid XML Systems, In: M. Yoshikawa et al. (Eds) 
Database Systems for Advanced Applications 15th International 
Conference, International Workshops: GDM, BenchmarX, MCIS, 
SNSMW, DIEW, UDM, Apr. 2010, Revised Selected Papers. Lecture 
Notes in Computer Science, vol. 6193, 2010, pp. 191-202, 
doi:10.1007/978-3-642-14589-6_20. 

[24] M. Hucka et al., The systems biology markup language (SBML): a 
medium for representation and exchange of biochemical network 
models, Bioinformatics, vol. 19(4), 2003, pp. 524-531, 
doi:10.1093/bioinformatics/btg015. 

[25] Reactome – a curated knowledgebase of biological pathways 
http://reactome.org 25.09.2010. 

[26] L. Moreau et al., Special issue: the first provenance challenge, 
Concurrency and Computation: Practice and Experience, vol. 20(5), 
2007, pp. 409–418. 

[27] C. Scheidegger, D. Koop, H. Vo, J. Freire, and C. Silva, Querying 
and creating visualizations by analogy, IEEE Transactions on 
Visualization and Computer Graphics 13(6), 2007, pp. 1560–1567. 

[28] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, 
and T. Oinn, Taverna: a tool for building and running workflows of 
services, Nucleic Acids Research, 2006, Volume 34, Issue Web 
Server issue, pp. 729-732. 

[29] K. Beyer, F. Özcan, S. Saiprasad, and B. Van der Linden, 
DB2/XML:Designing for Evolution, Proceedings of the ACM 
SIGMOD International conference on Management of data 
(SIGMOD 2005), Jun. 2005, pp. 948-952, 
doi:10.1145/1066157.1066299. 

[30] M. Rys, XML and relational Management Systems: Inside Microsoft 
SQL Server 2005, Proceedings of the ACM SIGMOD International 
conference on Management of data (SIGMOD 2005), Jun. 2005, pp. 
958-962, doi:10.1145/1066157.1066301. 

[31] I. Sanz, M. Mesiti, G. Gurrini, and RB. Llavori, An entropy based 
characterization of the heterogeneity of XML collections, 
Proceedings of the International Workshop on Database and Expert 
Systems Applications, Sep. 2008, pp. 238-242, 
doi:10.1109/DEXA.2008.55. 

[32] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for 
processing Xpath Queries, ACM Transactions on Database Systems, 
vol. 30, No 2, Jun. 2005, pp. 444-491, doi:10.1145/1071610.1071614. 

[33] J. McHugh and J. Widom, Query optimization for XML, Proceedings 
of the International Conference on Very Large Databases (VLDB 
1999), Sep. 1999, pp. 315-326. 

[34] J. Freire, JR. Haritsa, M. Ramanath, P.Roy, and J. Siméon, StatiX: 
making XML count, Proceedings of the ACM SIGMOD International 
conference on Management of data (SIGMOD 2002), Jun. 2002, pp. 
181-191, doi:10.1145/564691.564713. 

 

 
 



401

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Proposal of a New Compression Scheme of Medium-Sparse Bitmaps

Andreas Schmidt∗†, Daniel Kimmig∗, and Mirko Beine†
∗ Institute for Applied Computer Science
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: {andreas.schmidt, daniel.kimmig}@kit.edu

† Department of Informatics and Business Information Systems,
Karlsruhe University of Applied Sciences

Karlsruhe, Germany
Email: andreas.schmidt@hs-karlsruhe.de, bemi0029@hs-karlsruhe.de

Abstract—In this paper, we present an extension of the
WAH algorithm which is currently considered to be one of the
fastest and most CPU-efficient bitmap compression algorithms
available. The algorithm is based on run-length encoding (RLE)
and its encoding/decoding units are chunks of the processor’s
word size. The fact that the algorithm works on a blocking
factor which is a multiple of the CPU word size makes the
algorithm extremely fast, but also leads to a bad compression
ratio in the case of medium-sparse bitmaps (1% - 10%), which
is what we are mainly interested in. A recent extension of the
WAH algorithm is the PLWAH algorithm that has a better
compression ratio due to piggybacking trailing words, looking
“similar” to the previous fill-block. The interesting point here
is that the algorithm is also described to be faster than the
original WAH version under most circumstances, even though
the compression algorithm is more complex. Based on this
observation, we extended the concept of the PLWAH algorithm
to allow so-called “polluted blocks” to appear not only at
the end of a fill-block, but also multiple times inside. This
leads to much longer fills and, as a consequence, to a smaller
memory footprint, which again is expected to reduce the overall
processing time of the algorithm when performing operations
on compressed bitmaps.

Keywords – Compressed bitmaps; WAH algorithm; RLE;
CPU memory gap

I. INTRODUCTION

One of the main reasons for the work reported here is
the increase of the CPU memory gap [1] over the last
years. In the context of database applications, processors
nowadays are able to process data much faster than the data
can be delivered from the main memory to the processor.
In many database applications this leads to a situation
where the processor(s) spend(s) considerable time waiting
for processable data. For this reason, modern processors are
equipped with additional cache memory hierarchies which
are placed on the processor itself to allow for a much faster
access to memory. Accessing a data item that is present
in the first-level cache is up to two orders of magnitudes
faster than accessing a data item residing in main memory
only. Techniques like cache-conscious algorithms [2], [3] or
special memory layouts like in column store databases allow

for further optimisations to minimise the waste of processor
time.

A. Column Stores

In a database system, relations (rows in a database table)
are typically stored together physically. This is illustrated
in Figure 1 at the bottom left. This storage organisation
is called a row store. A column store database system by
contrast stores all values of a specific column sequentially.
This storage organisation is visualised on the lower right of
Figure 1. The information which column value corresponds
to which relation is handled by a tuple identifier (TID). The
TID could be stored explicitly with the column values, but
is generally given implicitly by the position of the value in
the column.

The main advantage of a column store is that only data
values from columns that took part in a specific query are
loaded into the CPU cache and memory1, in contrast to a
row store, where also unnecessary attributes may be loaded,
which are irrelevent in the current context. A disadvantage
of column stores, on the other hand, is that in case of updates
of existing relations or insertions of new relations, lots of
write operations at different positions have to be done, which
is more expensive compared to writing data at only one
physical location.

Based on the splitting of the relations along their columns,
complex predicates have to be processed on a column basis
instead of row by row. The reason for this approach is the
prefetching behaviour of modern processors. If a dataset is
requested by the CPU, not only the requested data item,
but also the content of the following memory area is copied
into the CPU cache2. As a consequence of this behaviour,
the descision whether a complex condition is fulfilled by a

1From secondary storage to main memory and also from main memory
to the CPU-cache.

2With every access to the main memory, a full cache line (8-128 Bytes)
is loaded. This has the advantage that in case of further requests to the
main memory, the requested dataset may already be in the CPU cache.



402

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID  Name     Firstname date-of-birth  sex 

31  Waits     Tom       1949-12-07     M

45  Benigni   Roberto   1952-10-27     M

65  Jarmusch  Jim       1953-01-22     M

77  Ryder     Winona    1971-10-29     F

81  Rowlands  Gena      1930-06-19     F

82  Perez     Rosa      1964-09-06     F

Ro
w-
St
or
e Column-Store

31 45 65 77 81 82 Waits  Benigni  Jarmusch

Tom Roberto Jim

1949-12-07 1952-10-27

M M M F

Ryder  Rowlands  Perez

Winona Gena Rosa

1953-01-22 1971-10-29 1964-09-06

F F

31 Waits Tom 1949-12-07 M 45 Benigni

65 Jarmusch Jim

81 Rowlands Gena 1930-06-19 F

Perez Rosa 1964-09-06 F

Roberto 1952-10-27 M

1953-01-22 M

82

77 Ryder Winona 1971-10-29

F

Figure 1. Comparison of memory layouts of a row store and a column store

relation must be delayed up to the examination of the last
column.

For this reason, we need an additional datastructure,
which remembers the intermediate status of every relation
processed so far. This datastructure is called a positionlist.
A positionlist stores the tuple-ids (TIDs) of the currently
qualified relations. The processing of a complex condition
generates a positionlist for every single predicate which
contains the TIDs of the qualified relations. Afterwards, the
positionlists must be combined with and - or or-semantics.
Figure 2 illustrates this behaviour for the following query:

select id, name
from person

where birthdate < ’1960-01-01’
and sex=’F’

First, the predicates birthdate <’1960-01-01’ and
sex =’F’ must be evaluated, which results in the position-
lists PL1 and PL2. These two evaluations could also be
done in parallel. Next, an and-operation must be performed
on these two positionlists, resulting in the positionlist PL3.
As we are interested in the names of the persons that fulfil
the query conditions, we have to perform another operation,
which finally returns the entries for a column, specified by
the positionlist PL3. Positionlists store the TIDs in ascending
order without duplicates. For this reason, the typical and/or
operations can be performed very fast. The complexity for
both operations is O(∥Pl1∥+∥Pl2∥). Furthermore, the two
most important operations and and or can be performed
as bitwise logical operations by utilizing the corresponding
primitive CPU commands. By exploiting bit-level paral-
lelism, these operations can be performed extremely fast;
with every CPU command, 32 or 64 TIDs (depending on the
processor architecture) can be processed. If the positionlists
are sparse (meaning we have only a small number of bits
set), the underlying bitmap could be compressed easily
using run-length encoding (RLE) [4]to further reduce the
memory that is required to store the data structure. The main

advantage of RLE is that compression and decompression
can be carried out very fast compared to other compression
methods. Furthermore, by using specialised algorithms, the
and- and or-operations can be performed directly on the
compressed lists, which improves the performance even
further.

name

Waits  
Begnini 

Jarmusch  

Ryder     

Rowlands  

Perez    

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29
1930-06-19

1964-09-06

sex

  M
  M

  M

  F

  F

  F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

name

Rowlands

Figure 2. Processing of a query with positionlists

B. Run-Length Encoding

The basic concept of RLE is that for consequtive, identical
data elements, only one data element is stored, along with



403

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the number of consecutive occurrences. Such a consecutive
sequence of identical data elements is called a run, and
the number of occurrences is called the run-length. RLE
is suitable, if many of such runs can be found in a stream
of data. Due to these simple basics, compression and de-
compression can be implemented rather easily compared
to more sophisticated techniques like LZ77 [5]. This is an
important advantage as because of this simplicity, bitwise
logical operations can be carried out without the need to
decompress the bitmaps participating in a query.

Figure 3 gives a short example of the application of RLE
to a character string.

The rest of the paper is organised as follows. In the
next section, we present related work that has been done
in the field of bitmap compression. Particularly, we describe
the main concepts of the well-known Word-Aligned Hybrid
(WAH) [6] algorithm and a recent extension of it, the
Position List Word-Aligned Hybrid algorithm [7]. In Section
III, we present a new compression scheme that is also based
on the WAH algorithm, but introduces a new fill type that is
capable of handling “polluted” runs of bits, i.e., runs that
contain mostly of identical bits. We explain our concept
using an example and discuss possible variations of our
scheme.

In Section IV, we discuss the results of different experi-
ments performed on synthetic bitmaps to analyse factors that
influence the behaviour of our compression scheme.

Our paper will be completed by a short summary and a list
of future work that will be tackled once the implementation
of our algorithm will be available.

II. RELATED WORK

Apart from their application in the context of positionlists,
bitmaps also play an important role in answering multi-
dimensional queries in huge datasets. The main idea here
is that you have a bitmap for every distinct value of a
column [8], [9], [10]. Similar to the example presented
earlier, a set bit at position n of a bitmap indicates that a
dataset has the specific value at this position. The result set
(the TIDs of the relations that match the query criteria) of a
multi-dimensional query is then the result of the appropriate
and or or operations on the bitmaps. In this case, the bitmaps
represent a special index structure for fast multi-dimensional
query processing. This is a very well-known scientific field
and a lot of literature as well as implementations of concrete
algorithms, i.e., [6] can be found.

The problem in finding a suitable representation form and
appropriate algorithms for our positionlist can be mapped
onto solutions for multi-dimensional query processing.

The currently fastest algorithm for bitmap operations
are based on the word-aligned hybrid (WAH) compression
algorithm [11]. The main characteristic of this algorithm is

that it is very CPU-efficient, but leads to a bad compression
factor in case of selectivities of 1% and above.

As the algorithm already is a few years old and the CPU
memory gap is still growing, a difference of up to two orders
of magnitude exist in accessing the CPU cache instead of the
main memory. Our goal is to develop a new algorithm which
does a better job in compressing bitmaps, with selectivities
between 0.01% and 10%, but is still IO-bound to further
benefit from the increasing CPU memory gap as times goes
on.

A. The Word-Aligned Hybrid Algorithm

The WAH algorithm is considered to be one of the fastest
bitmap compression algorithms when it comes to the perfor-
mance of bitwise logical operations on compressed bitmaps.
The main reasons for its efficiency are the simplicity of the
compression scheme and the word alignment requirement
[12]: the size of WAH data units is determined by the word
size of the underlying computer architecture, making WAH
very CPU-efficient.

The scheme distinguishes between two types of blocks:
literal words and fill words. A literal word stores a heteroge-
neous sequence of bits (i. e. a sequence that contains a mix
of set bits and unset bits). A fill word encodes consecutive,
homogeneous sequences of bits (i.e., where all bits have
the same value). The most significant bit (MSB) of a word
is used to distinguish between a fill word(1) and a literal
word(0). In case of a CPU word size of 32, a literal word can
thus store 31 bits (hereinafter, we will focus, without loss of
generality, on the 32-bit version of the algorithm). Fill words
can encode sequences of consecutive either set or unset bits,
so one more bit is needed to distinguish a 0-fill word from
a 1-fill word (also called the fill bit). This leaves 30 bits
to encode consecutive homogeneous sequences of bits. This
number is called the fill length. As WAH imposes the word
alignment requirement, the fill length does not describe the
total length of such a sequence in bits. Instead, the fill length
resembles a multiple of 31-bit-sized, consecutive groups that
have the same value. For example, a fill word with a fill
length of 2 represents two consecutive blocks, and each
block, when decompressed, has a size of 31 bits.

Figure 4 shows the compression of a bitmap of 217
bits (first box). First, the uncompressed bitmap is divided
into equidistant parts of 31 bits (second box). Each part is
classified as fill or literal (third box). Finally, consecutive
fills with the same bit value are combined to single fills
with a corresponding fill length (fourth box).

Figure 5 shows the binary representation of the com-
pressed bitmap from Figure 4. The MSB defines the block
type: a 1 (fill) at the beginning of the first, third, and fifth
word, and a 0 (literal) for all the other words. In case of a
fill, the second bit defines the proper fill type; as we have
0-fills only, all the second MSBs in the fill words are also set
to 0. The remaining bits of each fill word are used to encode



404

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AAAAAAAAAA BBBBBBBB AAAA BBBBBBBBBBBBBBBBBBBB AAAAAAAAAAA

10A 8B 4A 20B 11A

Figure 3. Example of run-length-encoded compression

0..010..010..010..0
50 x 0 63 x 080 x 0

   217 bits

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal0-fill 0-fill0-fill 0-fill

literal literal0-fill(1) 0-fill(2) 0-fill(1)literal

Figure 4. Bitmap compression with WAH

the fill length. Both the header bits and the fill lengths are
highlighted in grey.

0-fill(1): 10 000000 00000000 00000000 00000001 

literal  : 00 000000 00000000 00001000 00000000 

0-fill(2): 10 000000 00000000 00000000 00000010 

literal  : 00 000000 10000000 00000000 00000000 

literal  : 00 000000 00100000 00000000 00000000 

0-fill(1): 10 000000 00000000 00000000 00000001 

Figure 5. Binary representation of the WAH example in Figure 4

The drawback of this algorithm is that in case of medium-
spare bitmaps, the fills are very short, as every single
“pollution”3 causes a running fill to terminate and thus leads
to a full literal block. The switch from a fill to a literal (and
back to a fill) block is an expensive job in terms of memory.

B. Position-List-Word-Aligned-Hybrid Algorithm
PLWAH is a modified WAH compression scheme that

exceeds over WAH in terms of both compression efficiency
and the performance of bitwise logical operations. It is based
on the observation that in many cases, most of the bits that
are available to encode the length of a fill are never needed.
PLWAH uses some of these otherwise wasted bits to hold
a positionlist4. This positionlist is then used to encode a

3pollutionn refers to a single wrong bit
4This positionlist must not be mixed up with the positionlists in column

stores. Here, the positionlist specifies places of skipped bits.

slightly polluted word that immediately follows a fill word.
So, for example to hold the information about a 32-bit

literal word that differs in only one 1 bit from a fill word,
5 bits are needed to describe the position of this wrong bit
(25 = 32)5.

0..010..010..010..0
50 x 0 63 x 080 x 0

   217 bits

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal

0-fill(1,12): 10 011000 00000000 00000000 00000001 

0-fill(2,24): 10 110000 00000000 00000000 00000010 

0-fill(1,22): 10 101100 00000000 00000000 00000001 

0-fill 0-fill0-fill 0-fill

0-fill(length=1, 0-fill(length=2, 0-fill(length=1,
 position=12)        position=22)       position=24)

Figure 6. Bitmap compression with PLWAH

Figure 6 shows the compression of the same bit stream
used in figure 4 with the PLWAH algorithm. Clearly, all three
literals can be piggybacked by the fills that precede them.
This leads to an improvement of the compression ratio by
about 66% compared to the original WAH algorithm.

With this trick, a reduction by a factor of two can achieved
for certain distributions of data. Otherwise, the maximum
length of a fill is reduced by a factor of 25 and may reach
a maximum of 225 instead of 230. This could lead to a
degradation of up to a factor of 5 for very sparse bitmaps6

compared to WAH.

III. CONCEPT

The main difference between WAH/PLWAH and our
concept is that we support the concept of draggled fills,

5for higher pollutions (i.e. 2, 3, . . . wrong bits) 10, 15, . . . bits are needed
to store the position of the wrong bits

6densities of 3 ∗ 10−8 and below



405

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which allows for a small number of false bits inside each
word of a fill. The intention here is to obtain longer fills,
because the switch from a fill to a literal block and back to
a fill is an expensive act in terms of memory.

In contrast to this, our concept does not only allow for
one slightly polluted literal at the end of a fill, but it also
allows for slightly polluted literals to appear at each position
in the fill without reducing the overall length of a fill.

A. Draggled Fill

In addition to the basic WAH word types, our concept
requires the introduction of a new block type called draggled
fill, which can handle the polluted literals inside a fill.
In contrast to the other two block types literal and fill, a
draggled fill has a variable length depending on the number
of polluted words inside. Hence, three different types of
blocks (literal, fill, and draggled fill) must be distinguished.
We distinguish a fill from a draggled fill with the third
most significant bit, so that a 1-fill is identified by the bit
combination of 111, while a draggled-1-fill is identified by
110 (0-fill: 101, draggled-0-fill: 100). The indicator of a
literal remains identical to the WAH algorithm (a 0-bit at
the most significant bit), which still allows us to store 31
bits in each literal. To decide whether or not a literal can be
part of a draggled fill, we first have to define the maximum
number of polluting bits that are allowed to occur in such a
polluted word.

For a 32-bit version of the WAH algorithm, different
degrees of pollution can be defined, from one wrong bit
inside 32, 16, and 8 bits (called pollution factor), to 1, 2, or 4
segments containing wrong bits in a complete 32-bit word7.
Figure 7 presents examples of different pollution factors,
each with the maximum number of skipped bits.

00 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

10 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

10 00 0 0 00 0 0 0 00 0 1 0 0 0 000 0 0 0 0 1 1 0 0 0 0 0

pollution factor: 1 

pollution factor: 2

pollution factor:  4

00 10 0 0 00 1 0 0 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

Figure 7. Possible pollution factors for a block

Each polluted 32-bit word needs a fixed number of bits
for description. The value of needed bits is dependent on
the pollution factor and the maximum length of a fill. In

7To be exact, we do not have 32 bits, but only 31 bits as packing unit.
But for the sake of straightforwardness the concept is explained based on
32 bit throughout this paper. Keep in mind that, without loss of generality,
one bit can be ignored, i.e. the leftmost one.

Table I
MEMORY CONSUMPTION OF DIFFERENT POLLUTION FACTORS

Pollution factor Memory consumption
(in bit)

1 5
2 10
4 16

case of a pollution factor of 1, we only need to specify the
position of the wrong bit, which could be done with 5 bits
(25 = 32). With a pollution factor of 2, we need 4 bits to
specify the position of the wrong bit in the upper half of the
word (i.e., the first 16 bits), and another 4 bits to specify the
position of the wrong bit in the second half of the word. As
there is the possibility that only one of the halves contains a
polluting bit, a mask of another 2 bits is needed to specify in
which part(s) of the word the pollutions occur. Table I gives
an overview of the memory consumption for the remaining
pollution factors (pf ). The formula for the pollution factor
is:

mem = log2(32/pf) +mem mask

with

mem mask =

{
0 if pf = 1
pf if pf > 1

Additional memory is needed to specify the position of
the polluted words. The size is dependent on the maximum
length of a fill. If for example the maximum value is
1024 (210), 10 additional bits are required to specify the
position for each pollutted 32-bit word in the most simple
implementation, where the position is specified by its index
inside the run. Later in Section III-C, we will discuss
different possibilities to identify the wrong words.

Position of polluted word Bitposition(s) inside polluted word

Pollution-factor m > 1: m-bit mask Bitposition 1 Bitposition n. . .

m-times

Draggled-Fill

length of fill number of polluted words

type info (3-bit)

poll.word 1 poll.word n. . . 

head (fixed size) tail (flexible size)

Figure 8. Structure of a draggled fill header

Figure 8 shows the structure of a draggled fill. In contrast
to literal words and fill words, a draggled fill has a variable
size. The fixed-size head contains information about the
word type itself, followed by the overall draggled fill length



406

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the number of polluted words encoded in the draggled
fill. The flexible length tail contains information about each
polluted word. The concrete size of a polluted word depends
on the allowed number of pollutions (as defined by the
pollution factor) and the maximum number of polluted
words that can be encoded in a single draggled fill. Each
polluted word is described by its position inside the draggled
fill and the position(s) of the polluting bit(s). In case of a
pollution factor > 1, an additional bitmask is required to
determine whether or not a bit is set in the specific part of
the word8. Having defined the layout of a draggled fill, it is
necessary in the next step to determine appropriate values
for the maximum length of a draggled fill, the maximum
number of polluted words, and the number of allowed
pollutions in each polluted word (pollution factor). For this
purpose, several experiments were conducted on synthetic
bitmaps with varying distributions and densities, as will be
reported in Section IV. However, to clarify the ideas behind
our concept, we will first demonstrate the function of the
algorithm by a simple example. In this example, we assume
a pollution factor of 2 and both a maximum fill length and
a maximum number of polluted words of 64, meaning that
a draggled fill could consist entirely of polluted words.

B. Example

After the introduction of the concept, the effect will now
be demonstrated using the example given in Figure 9. In
the middle part of the Figure, seven 32-bit blocks can be
seen. Except for the fourth and the sixth block, in which the
former contains two, while the latter contains one polluted
bit(s) (indicated in grey), all remaining blocks contain 0-
bits only. The two polluted blocks are shown in detail in the
upper and lower part of the figure. The pollution factor is set
to 2, meaning that we can accept one wrong bit in every 16-
bit of the block at the most. So both polluted words may be
incorporated in a draggled fill and the overall length of the
fill is 7 words. Besides the overall length, we have to provide
additional information for a draggled fill. This information
includes:

• The number of polluted blocks
• The positions of the polluted blocks inside the fill
• Position of the wrong bits inside a polluted block
The maximum number of polluted blocks depends on the

maximum length of a dragged fill and the number of bits
to specify the number. The same holds for the specification
of the position of the polluted blocks. In our example, we
choose, without loss of generality, a maximum length of a
draggled fill of 649 and a pollution factor of 2. This means
that we need 6 bits (26 = 64) to specify the size of the fill

8This extra bit could also be added to the bit position itself, using 0. . . 0
as a marker that no bit skip occurred in this part of the word.

9for this simple example a value of 8 would be enough - but this does
not seem to be a realistic number

00 00 0 0 01 0 0 0 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

0...0 0...0 0...0 0x.x0 0...0 x...0 0...0

10 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

}

32 bit

Figure 9. draggled fill with two polluted blocks

and another 6 bits to specify the number of polluted blocks
inside the fill.

For each polluted block, we also have to provide the
information on the position of the block inside the fill and
the wrong bits inside. Figure 10 shows a possible memory
layout for the above example in the upper part. The first
three bits are reserved for the block type, then 6 bits for the
fill length field, and another 6 bits for the field indicating
the number of polluted blocks.

In the lower 16 bits of the first word, the information
about the first polluted word inside the fill is contained. In
the defined layout (maximum length: 64, pollution factor:
2), we need exactly 16 bits to specify one polluted word.
The first two bits, labelled as “mask”, identify in which of
the two halves of the word pollutions occur. Possible values
are 01, 10, and 11. The next 6 bits specify the position of
the polluted word inside the fill. As a maximum of 1 wrong
bit can occur inside one 16-bit block, we need 4 more bits to
specify the position (0..15) of the wrong bit inside a single
block. As a pollution can occur in the upper 16 bits and/or
the lower 16 bits of a word, a total of 8 bits is needed to
encode the positions of the polluting bits. In each following
32-bit word, we can now store the information of two more
polluted words - one in the upper half, and one in the lower
half of the word.

In the lower part of Figure 10, the corresponding bit
values for the example in Figure 9 are presented. First, the
block type for a draggled-0-fill is specified, followed by the
information of a fill length of seven with two polluted words.
Then, the ’11’ mask indicates, that there are two skipped
bits in the polluted block at position 4 in the fill. The two
skipped bits can be found at bit position 9 (first 16-bit word)
and bit position 4 (second 16-bit word). In contrast to this,
the second polluted block only contains one wrong bit in the
first 16-bit word (mask ’10’), which can be found at position
15.

The total memory footprint is 64 bits, compared to 160
bits in the original WAH implementation10 and 128 bits in
the PLWAH implementation. Especially in cases of lower
selectivity, the proposed concept is superior with regard to

10160 bits = 32 bits (0-fill, length: 3 ) + 32 bits (literal word) + 32 bits
(0-fill. length: 1) + 32 bits (literal) + 32 bits (0-fill, length: 1)



407

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

type fill-length  polluted Bitpos1 Bitpos2WordPos 1 Wordpos 2 Bitpos1 Bitpos2WordPos 3Bitpos1 Bitpos2

1 0 0     7     2    9    4   4    6   15   

      Mask 

1 1

Bit: 31                          16 15                           0    31                         16 15                           0

1 0

Figure 10. Memory layout of a draggled-0-fill with pollution factor 2

memory footprint. The high memory cost of switching from
a fill to a literal block and back can be avoided in many
cases. And even in the case where no fills can be found, there
is no drawback due to the fact that a literal block can handle
31 bits as in the original WAH-algorithm. However, one
small drawback exists in the case of a very high selectivity
leading to extremely long fills: because of the new block
type, the proposed concept needs one bit more to indicate a
fill block, and so a block can contain a maximum of 229∗31
bits instead of 230 ∗ 31.

C. Variants

In the above concept, we divided each 32-bit block into
equidistant parts, which can contain 1 wrong bit at the most.
This solution was chosen, because it is easy to implement
and also CPU-efficient.

Another, more general solution may be not to divide the
block into equidistant parts, but to allow a maximum of n-
skipped bits to appear inside a 32-bit block. In this case, the
memory consumption is a little bit higher, but it is a more
general model, which can lead to longer fills.

Instead of specifying the index position of a polluted
block, it is also possible to specify the gaps between polluted
blocks (incremental encoding [4]). This leads to a smaller
memory footprint for each polluted block, because a lower
number of bits can be used to specify the increments. In
case the next polluted block is too far away to code the
distance with the chosen number of bits, the fill has to
terminate. Figure 11 gives an example of this encoding. Each
gray square represents a 32-bit block (with unique values,
polluted and mixed). The full length of the fill is 21 blocks.
As you can see, the values of the increments remain small in
contrast to the index encoding in the last line, thus allowing
for a lower number of bits to encode the fill.

32 x 0-bit polluted block mixed block

fill length = 21

   Position:         2             8      11     14        18

   Increment:     +2       +5          +2     +2      +3

   Bitmap blocks:

Legend:

Figure 11. Incremental encoding of “polluted blocks”

All of the above variants require a predefined fixed

number of bits to encode the position of the polluted blocks.
Another possible solution would be to use a Rice (Golomb)
coding [13]. The idea behind this coding scheme is to use
a flexible number of bits to encode arbitrarily long integer
numbers. Small, but frequently appearing numbers only need
a small number of bits, while unfrequent big numbers need
more bits as in a normal coding scheme.

Figure 12 and Figure 13 show a possible encoding of the
examples from Figure 4 (WAH) and 6 (PLWAH) for the
draggled fill WAH algorithm using incremental encoding of
the polluted blocks. As you can see in Figure 13, another
reduction of about 33% can be achieved, additionally leaving
some bits unused, which would be able to hold another
polluted word (if existent). The first three bits indicate
the header type (0-draggled-fill). The next six bits give
the overall length of the fill (7), followed by five bits
indicating the number of polluted words inside the fill (3).
Depending on the value (n) in this field, ⌈(n−1)/3⌉ words11

follow to hold the information about each polluted word.
The information about the first pollution can be stored in
the lower 16 bits of the draggled-fill-header. Here in our
example, the first polluted word follows after one 0-fill word
and has its pollution at bit 12. The first ten bits in the
second word (flexible part) hold the information that the
next polluted word follows after a gap of two 0-fill words
and the polluted position is bit 24. With this encoding (5
bits to store the gap), a maximum gap length between two
polluted words can be 32. The ’x’ characters indicate unused
bits.

0..010..010..010..0
50 x 0 63 x 080 x 0

   217 bits

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal0-fill 0-fill0-fill 0-fill

0-draggled-fill(7, (1[12], 4[24], 6[22])

Figure 12. Bitmap compression with DFWAH

11⌈(3− 1)/3⌉ = 1



408

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

00010110 000000110 110xxxx xxxxxxxx 101 00011 1000011x 00001011 00xxxxxx 

0-draggled-fill(7,3,1[12], 4[24], 6[22])

Figure 13. Binary representation of DFWAH from Figure 12

IV. EXPERIMENTS

As the size of a compressed bitmap is one of the most
critical factors and we need to define the concrete memory
layout for our draggled fill word.

As discussed before, we have some degree of freedom.
First of all, we can choose between different pollution
factors, we have to define how many bits we allocate to hold
the length information or the information for the maximum
numbers of pollutions inside a fill which both can restrict the
maximum length of a draggled fill. The maximum distance
of two pollutions in a fill (see Section III-C) also has a
direct impact on the size of a draggled fill.

To obtain a feeling for appropriate settings of these
values, we conducted a number of different experiments. In
these experiments, we generated long bitmaps with different
distributions.

Then, we took these bitmaps and ran our algorithm on
it. In contrast to a real implementation, we did not have a
maximum size of a fill, a maximum number of pollutions
inside a fill or a maximum gap distance between polluted
words and so on in this “ideal” implementation. We rather
tried to find appropriate values for these parameters.

Input parameters for the bitmap generation are the density
and different distributions (see below). The density is the
fraction of “1” bit inside a bitmap and can be between
zero and one. Our experiments focused on densities between
0.005 (0.5%) and 0.1 (10%), representing our medium-
sparse bitmaps.

In our experiments we distinguish between different dis-
tributions:

• Uniformly distributed bitmaps: In a uniform distribu-
tion, every possible value (0/1) occurs all the time with
the same probability, independently of previous values.
In this case, the density is the same as the probability
that a “1” value occurs. Such bitmaps can be generated
easily using the standard random function.

• Clustered bitmaps: In a clustered distribution, set bits
tend to occur in groups or clusters. Therefore, there
is a higher probability, that more consecutive set bits
occur than in uniformly distributed bitmaps. Clustered
bitmaps typically reflect application data better than
uniform distributions [6]. Bitmaps that follow a clus-
tered distribution can be generated easily with a simple
two-state Markov chain. Figure 14 shows such a finite
state machine with probabilities of p and q for changing
the state from the prior state. The density of such a

distribution can be calculated by d = p ∗ (p + q) [7].
Additionally, the cluster factor f is determined by
f = 1/q. Typically, the input for the generation of a
Markov chain-generated bitmap is the density d and the
clustering factor f . In this case, the probabilities p and
q are calculated by q = 1/f and p = q ∗ d/(1− d).

0 1

p

1-p

q

1-q

Figure 14. Two-state Markov-chain

A. Length of draggled fills

In a first series of experiments, we examined the potential
length of the draggled fills. Figure 15 shows the distribution
of draggled fill lengths for different densities between 0.5%
and 10% and a pollution factor of 2. As expected, the length
of a draggled fill strongly correlates with the density factor.
Additionally, an approximate linear correlation between den-
sity and average/maximum fill length can be observed. For
the interesting densities between 0.005 and 0.1, the average
size of a fill is below 20. In Figure 16, the coverage for the
different distributions in the previous figure is shown. So,
for a density of 0.01, with a maximum fill length of 255 (8
bit memory consumption), 95% of all possible draggled fills
discovered in our experiment are covered. Choosing 10 bits
for the length field, a coverage of 99.999% of all possible
fills can be achieved.

Figure 17 and Figure 18 show the same issue, but with
a Markov distribution and a clustering factor of 2. Here,
the distribution is more compact compared to the uniform
distribution shown before in Figure 15.

Next, we examine a Markov chain-based distribution with
higher clustering factors. A higher clustering factor leads to
a higher possibility of literal words, but also longer runs of
0 bits appear. Figure 19 shows the distribution for different
clustering factors for a distribution with a density 0.01.
Obviously, the length increases approximately linearly with
the clustering factor.

Resume: The longest runs result from uniformly dis-
tributed bitmaps with a low density. For the density range
we are interested in, a maximum length between 255 (8
bits) and 1024 (10 bits) for a fill seems to be an appropriate
value12. For the very small number of possible longer runs,
a second run has to be started. For densities of about 0.05
(5%) and above, even a maximum length of 32 (5 bits) is
ok.

12for a pollution factor of 2.



409

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0
 1  5  25  125  625

O
cc

ur
en

ce

Run Length

Density:    0.1
Density:   0.05
Density:   0.01
Density:  0.005

Figure 15. Distribution of draggled fill lengths with uniform distribution
(pollution factor 2)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  5  25  125  625

co
ve

ra
ge

fill length

Density:    0.1
Density:   0.05
Density:   0.01
Density:  0.005

Figure 16. Coverage for different maximum fill lengths from Figure 15

B. Influence of the pollution factor

The next series of experiments are performed to obtain
an idea of the influence of the different pollution factors.
For a density of 5% (uniform distribution), Figure 20 shows
the distribution of the length for different pollution factors.
As expected, the run-length increases with the increase of
the pollution factor. In all cases, the average number of
pollutions inside a fill is about 74%-77%, irrespedictive of
the pollution factor. In the case of 1% density (not shown),
the number of pollutions inside a run is between 24% and
26% of the overall fill length. A comparable behaviour can
be observed for the other densities of interest.

Figure 21 by contrast, shows the behaviour for the
Markov-chain distribution. As in the previous case, the be-
haviours for different pollution factors are shown. Compared
to the uniform distributions, the advantage of using a higher
pollution factor is smaller, due to the characteristic of the
distribution and the restriction of the positions of wrong bits
inside a polluted word (see Section III-A). As a consequence,
there is no advantage in using a pollution factor of 4,

 0
 1  5  25  125  625

O
cc

ur
en

ce

Run Length

Density:    0.1
Density:   0.05
Density:   0.01

Density:  0.005

Figure 17. Distribution of draggled fill lengths with a Markov distribution,
clustering factor 2 (pollution factor 2)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  5  25  125  625

co
ve

ra
ge

fill length

Density:  0.005
Density:   0.01
Density:   0.05
Density:    0.1

Figure 18. Coverage for different maximum fill lengths from Figure 17

compared to a pollution factor of 1 or 2 - even more so as the
handling is more CPU-intensive and the memory footprint
of a polluted word corresponds to about a factor of 1.6
compared to a pollution factor of 2. The average number
of pollutions inside a fill is between 45% and 47%. This
lower factor is derived from the fact that in the Markov
chain-based distribution used here the ’1’ bits are more
clustered and longer runs of ’0’ bits appear. An increasing
clustering factor for the Markov-chain distribution yields to
longer runs compared to lower values (see also the previous
experiment in Figure 19), but no further improvements for
higher pollution factors.

Resume: Choosing a higher pollution factor yields to
longer runs. Because of the restriction in the layout (see
Figure 7), a number higher than 4 for the pollution factor
does not seem to be meaningful. This is especially true
for the more clustered behaviour of Markov chain-generated
bitmaps. So the values determined in Section IV-A are still
valid for the different pollution factors.



410

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0
 50  100  150  200

O
cc

ur
en

ce

Run Length

Distribution:     M2
Distribution:     M3
Distribution:     M5

Figure 19. Markov-chain distribution: comparison of the influence of
different clustering factors to the run-length (PF: 2, density: 0.01)

 0
 0  5  10  15  20  25  30

O
cc

ur
en

ce

Run Length

PF:    1
PF:    2
PF:    4

Figure 20. Distribution of run-length for different pollution factors
(uniform distribution, density 5%)

C. Distance between pollutions in a draggled fill

As explained in Section III-C, the position of a pollution
can not only be expressed by its position index inside the
fill, but also by the distance to the previous pollution. This
has the advantage, that with a growing size of a fill, the
memory consumption to express the next pollution position
is smaller.

Figure 22 shows the distribution of the gap width for
different densities (uniform distribution, pollution factor 2).
For the densities we are interested in, a maximum gap width
of 16 (covering 95% of all gaps for a 0.01 density) or
possibly 32 (covering 99.99%) is sufficient, which means
that we need 5 or 6 bits memory consumption for the length
field (the maximum gap width for Markov chain-distributed
bitmaps is slightly lower).

Figure 23 shows the coverage for different gap lengths
and different densities. So i.e., with a maximum gap length
of 32 and a density of 0.005, a coverage of 99% can be
achieved. For a density of 1%, this can already achieved

 0
 0  5  10  15  20  25  30  35  40

O
cc

ur
en

ce

Run Length

PF:    1
PF:    2
PF:    4

Figure 21. Distribution of run-length for different pollution factors
(Markov-chain distribution, clustering factor 2, density 5%, pollution fac-
tor 2)

 0
 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

O
cc

ur
en

ce

Gap wide

Density   : 0.005 
Density   : 0.01  
Density   : 0.05  
Density   : 0.1   

Figure 22. Distribution of gaps between pollutions in a draggled fill
(uniform distribution, pollution factor 2)

with a maximum gap length of 16.
More experiments and also some analytical examinations

concerning the size of the bitmaps can be found in [14].

V. CONCLUSION

We presented an extension of the WAH algorithm, which
is currently considered one of the fastest and most CPU-
efficient compression techniques for bitmaps. However, in
the case of a selectivity of 1% and more, the compression
behaviour of WAH is unsatisfying. The reason for this be-
haviour is the blocking factor of 32, which requires packing
of a minimum of 31 bits. Thus, even a single skipped bit
leads to a full literal block, which holds 31 uncompressed
bits.

Our contribution handles this problem by allowing so-
called polluted words to be part of a fill. A polluted word
is a block which has a limited number of wrong bits. The
idea is to describe the position of the polluted words in the
fill and the wrong bits inside it instead of storing the whole



411

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40

O
cc

ur
en

ce

Gap wide

Density   : 0.005 
Density   : 0.01  
Density   : 0.05  
Density   : 0.1   

Figure 23. Coverage of gap width from the distribution in Figure 22

literal word, which takes less memory than ending a fill,
starting a new literal block, and after that starting a new fill.

After presenting the concept of our improved algorithm,
we ran a number of different experiments, to obtain a feeling
of the behaviour of our algorithm for different distributions
(uniform, Markov with different clustering factors), different
pollution factors, and different implementation variants.

VI. FUTURE WORK

Currently, final implementation of our concept is not
yet finished, but we already have a functional prototype
without any optimisations. Our next step will be to integrate
the algorithm in the WAH codebase. To do so, we will
completely rewrite of our functional prototype. Once we
have our implementation finished, we plan a number of
tests with different values for selectivity, reflecting both
synthetical and real world data in order to compare both the
compression ratio and the execution time of the different
operations. Depending on the results, we will eventually
implement different variants of our algorithm, which we
discussed in Section III-C.

REFERENCES

[1] A. Schmidt and M. Beine, “A Concept for a Compres-
sion Scheme of Medium-Sparse Bitmaps,” in DBKDA 2011,
Proceedings of the Third International Conference on Ad-
vances in Databases, Knowledge, and Data Applications, St.
Maarten, The Netherlands Antilles, 2011, pp. 192.–195.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing
database architecture for the new bottleneck: memory access,”
The VLDB Journal, vol. 9, no. 3, 2000, pp. 231–246.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-
conscious structure definition,” in PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming
language design and implementation. New York, NY, USA:
ACM, 1999, pp. 13–24.

[4] I. H. Witten, A. Moffat, and T. C. Bell, Managing gigabytes
(2nd ed.): compressing and indexing documents and images.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE TRANSACTIONS ON INFORMA-
TION THEORY, vol. 23, no. 3, 1977, pp. 337–343.

[6] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Trans. Database
Syst., vol. 31, no. 1, 2006, pp. 1–38.

[7] F. Deliège and T. B. Pedersen, “Position list word aligned
hybrid: optimizing space and performance for compressed
bitmaps,” in EDBT ’10: Proceedings of the 13th International
Conference on Extending Database Technology. New York,
NY, USA: ACM, 2010, pp. 228–239.

[8] P. O’Neil and E. O’Neil, Database: Principles, Programming,
Performance. San Francisco, CA: Morgan Kaufmann, 2001.

[9] J. W. Hector Garcia-Molina, Jeffrey D. Ullman, Database
System Implementation. Prentice-Hall, 2000.

[10] J. Wu, “Annotated references on bitmap
index.” [Online]. Available: http://www-
users.cs.umn.edu/ kewu/annotated.html, retrieved: december,
2011.

[11] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap
indexes for faster search operations,” in SSDBM ’02: Pro-
ceedings of the 14th International Conference on Scientific
and Statistical Database Management. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 99–108.

[12] K. Wu, E. J. Otoo, and A. Shoshani, “A performance
comparison of bitmap indexes,” in CIKM ’01: Proceedings
of the tenth international conference on Information and
knowledge management, ser. New York, NY, USA: ACM,
2001, pp. 559–561.

[13] S. W. Golomb, “Run-length encodings,” IEEE-IT, vol. IT-12,
1966, pp. 399–401.

[14] M. Beine, “Implementation and Evaluation of an Efficient
Compression Method for Medium-Sparse Bitmap Indexes,”
Bachelor Thesis, Department of Informatics and Business In-
formation Systems, Karlsruhe University of Applied Sciences,
Karlsruhe, Germany, 2011.



412

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Turning Large Software Component Repositories into Small Index Files  

 

Marcos Paulo Paixão, Leila Silva 

Computing Department 

Federal University of Sergipe 

Aracaju, Brazil 
marcospsp@dcomp.ufs.br, leila@ufs.br 

Talles Brito, Gledson Elias 

Informatics Department 

Federal University of Paraíba 

João Pessoa, Brazil 

talles@compose.ufpb.br, gledson@di.ufpb.br

 

 
Abstract—Software component repositories have adopted semi-

structured data models for representing syntactic and semantic 

features of handled assets. Such models imply key challenges to 

search engines, which are related to the design of indexing 

techniques that ought to be efficient in terms of storage space 

requirements. In such a context, by applying clustering 

techniques before indexing component repositories, this paper 

proposes an approach for reducing the number of assets in the 

repository, and consequently, the size of index files. Based on 

an illustrative repository, outcomes indicate a significant 

optimization in the number of assets to be indexed, and, as a 

consequence, produces significant gains in storage 

requirements. Besides, it has been assessed in terms of two 

different clustering evaluation methods, evincing that the 

proposed approach can be considered a good clustering 

algorithm because produces compact and well-separated 
clusters. 

Keywords - Component repositories; clustering techniques; 

indexing. 

I.  INTRODUCTION 

By enabling different software developers to share 

software assets, software component repositories have the 

potential to improve software reuse level. However, reuse of 

software assets is in general a hard task, particularly when 

search and selection must be conducted over large-scale asset 

collections. Therefore, in repository systems, it is important 

the development of search engines that can help searching, 

selecting and retrieving required software assets. 

According to Orso et al. [1], the aim of a repository 

system is not to store software assets only, but also metadata 

describing them. Such metadata provides information 
employed by search engines for indexing stored assets. In 

such a direction, as endorsed by Vitharana [2], component 

description models can adopt high level concepts for 

describing component metadata, making possible to express 

syntactic and semantic features, and so, facilitating 

developers to search, select and retrieve assets. In practice, 

currently available component description models have 

adopted approaches based on semi-structured data, more 

specifically XML, allowing structural relationships among 

elements to aggregate semantic to textual values. As 

examples, it can be mentioned RAS [3] and X-ARM [4]. 
However, indexing techniques based on textual 

restrictions are not efficient for semi-structured data. Such 

techniques are unable of indexing structural relationships 
among terms, compromising query precision with false-

positives. Thus, the adoption of semi-structured data implies 

challenges related to the design of indexing techniques that 

ought to be efficient in terms of storage space requirements, 

processing time and precision level of queries, which can be 

constrained by textual and structural restrictions. 

Several proposals can be found in the literature for 

dealing with such problems. Despite their relevant 

contributions, existing techniques do not meet storage space 

and query processing time requirements [5], and also query 

precision level [6]. In such a scenario, the proposal presented 
by Brito et al. [7] represents a noticeable indexing technique 

based on semi-structured data, which can be considered 

precise and efficient in terms of query processing time, but 

suffers from problems related to storage space requirements. 

Such problems occur because generated index files are 

bigger than the input database. Thus, in the context of large-

scale software component repositories, it is still a 

challenging open issue to design indexing techniques that 

minimize the storage space requirements without excessively 

impacting on query processing time and precision.  

In such a context, based on the adoption of clustering 
techniques, this paper proposes an approach for reducing the 

number of assets in the repository, and consequently, 

optimizing the storage space requirements. It is an extended 

and improved version of [8]. The clustering heuristic 

proposed is based on the classical hierarchical algorithm and 

K-means [9]. Taking into account a large-scale component 

repository, the proposed approach identifies clusters (groups) 

of similar software assets and generates new representative 

assets, which in turn must be handled by the indexing 

technique supported by the search engine of the repository. 

Each representative asset has a simplified description, also 

based on semi-structured data, which makes reference to all 
original assets that belong to its cluster of similar assets. In 

order to do that, the paper also proposes a similarity metric 

that has the aim of indicating the set of assets that belongs to 

the same cluster. The bigger the similarity among assets in 

the repository, the lesser is the number of identified clusters, 

and as a result, the lesser is the number of representative 

assets that must be indexed by the search engine, enabling to 

save storage space. In order to validate the proposed 

approach, a random database composed of 14.000 assets has 



413

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

been generated and results indicate that there is a significant 

optimization in terms of the number of assets to be indexed. 

The remainder of this paper is structured as follows. 

Section II describes related techniques, evincing the original 

initiative of applying clustering techniques in the context of 

indexing software component repositories. The adopted 
component description model, called X-ARM, is briefly 

presented in Section III, identifying the main types of assets 

and their relationships. Then, Section IV presents the 

proposed clustering approach for reducing the number of 

assets to be indexed, and so, optimizing storage space 

requirements. After that, some outcomes observed in a 

preliminary evaluation performance are presented in Section 

V. In conclusion, Section VI presents some final remarks and 

delineates future work. 

II. RELATED TECHNIQUES 

Taking into account that the problem of data clustering is 

NP-hard, several heuristics have already been proposed. Xu 
and Wunsch [10] present an interesting review of the 

research field.  In [11], Feng shows that clustering 

algorithms, in particular, hierarchical algorithms and K-

means [9], are equivalent to optimization algorithms of a 

fitness function. 

Clustering techniques have been used in several software 

engineering domains. For example, Mancoridis et al. [12] 

applied clustering in the domain of software maintenance, by 

introducing the concept of software modularization as a 

clustering problem for which search is applicable. A tool 

called Bunch [13] is proposed allowing the application of 
several clustering heuristics to perform search based 

software modularization. Chiricota et al. [14] investigates the 

application of clustering techniques in the domain of reverse 

engineering, in particular, adopting such techniques to 

recover the structure of software systems. Wu et al. [15] 
compares several clustering approaches proposed in the 

context of software evolution. In [16], Li et al. proposes the 

adoption of clustering techniques for encapsulating software 

requirements. Cohen et al. [17] showed how search based 

clustering algorithms could be applied to improve garbage 

collection in Java programs. 

Although clustering techniques are applied in several 

problems of software engineering, for the best knowledge of 

the authors, these techniques have never been adopted in the 
context of indexing software components repositories. 

Therefore, it seems an original contribution to apply such 

techniques when indexing component repositories.   

III. THE X-ARM MODEL 

In order to express syntactic and semantic features of 

software components, Frakes [18] suggests the adoption of 

component description models, which provide a set of 

information that allows search systems to index and classify 

all types of related assets. In such a direction, this paper 

explores the X-ARM description model, which adopts a 

XML-based semi-structured data model, expressing not only 

syntactic information but also semantic properties [4]. 

Besides, X-ARM enables describing several types of 

software assets, which can be produced in component-based 

development processes, proving the required semantic for 

representing their relationships. 

As illustrated in Fig. 1, X-ARM allows describing 
component and interface specifications, as well as 

component implementations.  The component and interface 

specifications can be described in a way that is independent 

or dependent of component model. On the one hand, 

independent specifications do not take into account any 

feature or property of component models, such as CCM, 

JavaBeans, EJB and Web Services. On the other hand, 

dependent specifications ought to consider features and 

properties related to the adopted component models.  

In X-ARM, both dependent and independent interface 

specifications are described as a set of operations. Each 

operation has a name, a set of input or output parameters and 
a return value. In component-based development processes, 

dependent interface specifications must be in conformance 

with their independent counterparts. So, in Fig. 1, it can be 

observed that dependent interface specifications must 

reference to their respective independent interface 

specifications.  

Independent 
Component 

Specification

Dependent 
Component 
Specification

Component 
Implementation

Independent 
Interface 

Specification

Dependent 
Interface 

Specification

required provided

Operation

1

1

Parameter

*

Return

1

1 ..*

1 ..* 1 ..*

*

required

*

provided

1 ..*

1

 
Figure 1. Relationships between artifacts. 

Dependent and independent component specifications 

can make reference to a set of provided and required 

interface specifications. However, it must be noticed that 

independent component specifications can refer to 

independent interface specifications only. Similarly, 

dependent component specifications can refer to dependent 

interface specifications only. In component-based 
development processes, dependent component specifications 

must be in conformance with their respective independent 

counterparts. Therefore, note that dependent component 

specifications must make reference to their respective 

independent component specifications. 

In summary, dependent interface and component 

specifications must be in conformance with their respective 

independent specifications. Besides, for each independent 



414

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specification, several dependent specifications can be 

described, each one in conformance with a given software 

component model. 

In a similar way, in component-based development 

processes, component implementations must be in 

conformance with their respective dependent component 
specifications. So, in Fig. 1, note that component 

implementations must refer to their correspondent dependent 

component specifications.  Besides, for each dependent 

component specification, several component 

implementations can be realized. 

As an example of the description of an asset in X-ARM, 

Fig. 2 illustrates a fragment of a dependent component 

specification. In Fig. 2, all lines are numbered and many 

details have been suppressed for didactic purposes. Line 1 

represents the asset header, in which can be found the asset 

identifier (id). Lines 2 to 4 make reference to the 

independent component specification, from which the 
described asset must be in conformance with. Then, lines 5 

to 14 refer to all dependent interface specifications, which 

are provided by the described dependent component 

specification. Although note illustrated in Fig. 2, required 

interfaces can also be specified in a similar way. 

01 <asset name=“dependentCompSpec-X”

id=“compose.dependentCompSpec-X-1.0-beta”>

02     <model-dependency>

03         <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04     </model-dependency>

05     <component-specification>

06         <interface>

07             <provided>

08                 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09             </provided>

10             <provided>

11                 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12             </provided>

13         </interface>

14     </component-specification>

15 </asset>

Figure 2. Component specification in X-ARM. 

IV. A CLUSTERING BASED INDEXING APPROACH 

As largely recognized in the literature, the task of 

indexing repositories based on semi-structured data is a 

relevant issue [5][6][7]. One of the major challenges is to 

provide an indexing mechanism that reduces storage space 

requirements, but without excessively impacting on query 

processing time and precision level. 

In such a context, this paper proposes a solution for 

optimizing the storage space required by index files. To do 

that, the proposed approach constructs a clustered repository, 

which is composed of representative assets of the set of 

software assets stored in the original repository. Therefore, 
instead of indexing the original repository, the adopted 

search service ought to index the reduced set of 

representative assets, which make reference to the original 

assets. In order to identify the groups of similar assets, and, 

consequently, to construct the representative assets that 

compose each group, the paper also proposes the adoption of 

data clustering techniques. 
Clustering techniques [9] consist of three basic phases: 

(i) extraction of features that express the behavior of the 

elements to be clustered; (ii) definition of the similarity 

metric in order to compare evaluated elements; and (iii) 

adoption of a clustering algorithm. The phase of extracting 

features consists in defining what information is relevant to 

express the evaluated element and how information is 

quantified. Such information defines an attribute vector and 

thus an element can be represented as a point in the 

multidimensional space. The similarity metric expresses in 

quantitative terms the similarity between elements. In 

general, a function is defined for such a purpose, in which 
the Euclidean distance [9] between two points (elements) is 

one of the more common adopted metrics. Finally, the data 

clustering algorithm is a heuristic that has the aim of 

generating groups of elements, in which each group is 

composed of similar elements, according to the adopted 

similarity metric. 

A. Relevant Features 

The approach proposed herein applies the clustering 

technique taking into account the five types of assets that can 

be stored in the repository, that is: dependent and 

independent component specifications, dependent and 

independent interface specifications and component 

implementations. The clustering technique is applied 

separately for each type of asset. Therefore, each type has a 

distinct attribute vector for representing its features. 

The relevant features of an independent interface 

specification are its defined operations, considering their 
names, input and output parameters and return values. 

Consequently, different independent interface specifications 

are considered similar when they have in common a 

considerable subset of defined operations. 

Taking into account dependent interface specifications, 

the relevant features are the referenced independent interface 

specification together with their operations. Thus, different 

dependent interface specifications are considered similar 

when they refer to the same independent interface 

specification or have in common a considerable subset of 

defined operations. 
In relation to independent component specifications, for 

each one, the relevant feature is the set of provided 

independent interface specifications. So, different 

independent component specifications are considered similar 

when they have in common a considerable subset of 

provided independent interface specifications.  

For a dependent component specification, the relevant 

features are its referenced independent component 

specification, as well as its set of provided dependent 



415

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interface specifications. Therefore, different dependent 

component specifications are considered similar when they 

refer to the same independent component specification or 

have in common a subset of provided dependent interfaces. 

Finally, for a component implementation, the relevant 

feature is its referenced dependent component specification. 
Hence, different implementations of the same dependent 

component specification are considered similar. 

As an example, Table I presents the attribute vector of 

the asset illustrated before in Fig. 2.  As can be noticed, the 

asset is a dependent component specification. Therefore, the 

attribute vector is composed of its referenced independent 

component specification (lines 2 to 4) and its set of provided 

dependent interface specifications (lines 5 to 14). 

TABLE I.  ATTRIBUTE VECTOR OF THE ASSET X. 

ID compose.dependentCompSpec-X-1.0-beta 

Independent 

Component 

Specification 

compose.independentCompSpec-Z-1.0-stable 

Dependent 

Interface 

Specification 

compose.dependentIntSpec.A-2.0-stable 
compose.dependentIntSpec.B-3.0-stable 

B. Similarity Metric 

The similarity metric is defined based on the asset 
attribute vector. Since the attribute vector differs between 

distinct types of assets, the similarity metric is also different 

for each type of asset. In this approach the similarity between 

two assets is quantified by an integer number, called 

distance. To avoid negative distances, we defined that the 

initial default distance (di) between two assets is 300. The 

similarity criterion is applied and this value may decrease, in 

such a way that assets are considered more similar when the 

final distance (df) between them approximates to zero.   

 For two dependent component specifications a and b, the 

similarity is defined by (1), where k(a,b) = 0 if both assets 
refer to distinct independent component specifications; 

otherwise k(a,b) = 200. Let I be the number of dependent 

interface specifications provided by both assets and U be the 

set of dependent interface specifications provided by at least 

one of them. The term p(a,b) is defined as p(a,b) = I/U. As 

can be noticed, when p(a,b) is 1 both assets provide the same 

set of dependent interface specifications, and thus they are 

more similar. 

 ��(�, �) = �	 − �(�, �) − �(�, �) × 100 (1) 

In the case of two independent component specifications 
a and b, the similarity is given by (2), where p(a,b) is 

calculated as explained before for dependent component 

specifications, but considering the number of independent 

interface specifications provided by both assets. So, let I be 

the number of independent interface specifications provided 

by both assets and U be the set of independent interface 

specifications provided by at least one of them. The term 

p(a,b) is defined as p(a,b) = I/U. Similarly, when p(a,b) is 1 

both assets provide the same set of independent interface 

specifications and thus, they are more similar. 

 ��(�, �) = �	 − �(�, �) × 300 (2) 

Analogously, for two dependent interface specifications a 

and b, the similarity is calculated as expressed in (3), where 

l(a,b) = 0 if both assets refer to distinct independent interface 

specifications; otherwise,  l(a,b) = 200. The term op(a,b) is 

the ratio of common operations of both assets in relation to 

the union of operations of these assets. Two operations are 

considered similar if they have the same name, the same 

return type and a percentage of coincidence in parameters; 

the value of the percentage is defined by the user.  

 ��(�, �) = �	 − �(�, �) −  ��(�, �) × 100 (3) 

Taking into account two independent interface 

specifications a and b, the similarity is calculated by (4), 

where op(a,b) represents the percentage of common 

operations provided by both interfaces, exactly as explained 

before for dependent interface specifications.  

 ��(�, �) = �	 − ��(�, �) × 300 (4) 

Finally, for two component implementations a and b, the 

similarity is given by (5), where q(a,b) = 0 if both assets 

refer to distinct dependent component specifications; 
otherwise q(a,b) = 300. As can be noticed, when q(a,b) is 

300 both assets implement the same dependent component 

specification, and thus they are similar. 

 ��(�, �) = �	 − �(�, �) (5) 

As an example, consider two dependent component 

specifications C and D, whose attribute vectors are given in 

Table II and Table III, respectively. As these assets refer to 

distinct independent component specifications, according to 

(1), k(C,D) = 0. In this example, C and D have a common 

interface and together provide three different interfaces. 
Thus, I = 1, U = 3 and p(C,D) = 1/3. Hence, df (C,D) = di – 

k(C,D) – p(C,D)*100 = 300 – 0 –  0.33*100 = 276,67. 

TABLE II. ATTRIBUTE VECTOR OF THE ASSET C 

ID compose. depCompSpec-C-2.0-beta 

Independent 

Component 

Specification 

compose.indepCompSpec-A-3.0-stable 

Dependent 

Interface 

Specification 

compose.depIntSpec-A-4.0-mature 

compose.depIntSpec-C-4.0-mature 



416

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. ATTRIBUTE VECTOR OF THE ASSET D 

ID compose. depCompSpec-D-3.0-mature 

Independent 

Component 

Specification 

compose.indepCompSpec-C-3.0-stable 

Dependent 

Interface 

Specification 

compose.depIntSpec-B-2.0-beta 

compose.depIntSpec-C-4.0-mature 

C. Clustering Algorithm 

The proposed clustering algorithm has two stages. In the 

first stage, initially, assets are randomly chosen from the 

respective storage unit and stored in the primary memory. It 

is suggested to exhaust the memory capacity with this 

operation. Next, but still in the first stage, the classical 

hierarchical clustering algorithm [9] is applied to these 

assets. In the beginning of the algorithm each asset is 
considered a cluster.  Then, the algorithm groups 

successively the two nearest clusters, until the distance 

between clusters is greater than an established threshold, 

specified by the user. The algorithm considers the similarity 

metric described previously to compute the distance. The 

combined cluster is considered a representative asset of the 

joined clusters. For each type of asset, the representative 

asset includes the relevant features for the similarity metric 

and also references to the joined assets. At the end of the 

iteration, a directory containing all formed representative 

assets (clusters) is stored in secondary memory. 

Fig. 3 illustrates the main steps of the first stage: (a) 
assets are randomly selected from the repository; (b) clusters 

composed of similar assets are constructed by applying the 

hierarchical clustering algorithm; and (c) representative 

assets are created for representing each cluster. 

(a)

Asset

Randomly Selected Asset

Representative Asset

(b) (c)
 

Figure 3. The first stage. 

In the second stage, a K-means based algorithm [9] is 

adopted. In general terms, representative elements are 

considered centroids. However, differently from K-means, 

such centroids are not recalculated in the proposed approach. 

Indeed, each asset, not yet clustered in the first stage, is 

compared with each representative asset. The asset is 

candidate to be included in a cluster when the distance 

between the asset and the respective representative asset is 

lesser than the threshold. Fig. 4 shows the second stage. 

As depicted in Figs. 4a, 4b, and 4c, considering all 

candidate clusters, the asset is included in the cluster that has 
the minor distance and then the representative element of the 

cluster is reconstructed considering the features of the 

included asset. Otherwise, as shown in Figs. 4d, 4e and 4f, if 

the asset is not a candidate to any cluster, the own asset 

becomes a new representative element and so a new cluster.  

To conclude the description of the approach, it remains to 

explain how the relevant features of representative assets are 

determined. A representative asset, resulted from the 

combination of two clusters composed by dependent 

component specifications, includes all provided dependent 

interface specifications of the joined assets and the 

independent component specification they refer. This 
specification is the one that mostly occurs in the assets that 

form the combined cluster; in the case of a draw one 

specification is chosen arbitrarily. 

Asset                Randomly Selected Asset                Representative Asset

(a)

(b)

(c)

(d)

(e)

(f)  
Figure 4. The second stage. 

For a representative asset resulted from the combination 
of two clusters composed by independent component 

specifications, the relevant features are all provided 

independent  interface specifications of the joined assets. 

A representative asset resulted from the combination of 

two clusters composed by dependent interface specifications 

include as relevant features all operations of the joined 

assets, as well as the independent interface that the 

representative asset implements. This interface is the one 

mostly referred by the joined clusters. 



417

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Taking into account a representative asset resulted from 

the combination of two clusters composed by independent 

interface specification assets, the relevant features are all 

provided operations of the joined assets. 

Finally, for a representative asset resulted from the 

combination of two clusters of component implementations, 
the relevant feature is its referenced dependent component 

specification. This specification is the one mostly frequent in 

the joined assets. 

As an example of the construction of representative 

assets, considers two original assets as shown in Fig. 5 and 

Fig. 6. The representative asset resulted from the 

combination of these assets is described in Fig. 7. As both 

assets are dependent component specifications, observe that 

the representative asset includes all provided dependent 

interface specification (lines 6 to 16 of Fig. 7) and the 

independent component specification that occurs more 

frequently in the original assets. (line 3 of Fig. 7). 

01 <asset name=“depCompSpec-K”

id=“compose.depCompSpec-K-1.0-alfa”>

02      <model-dependency>

03           <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04      </model-dependency>

05      <component-specification>

06           <interface>

07                <provided>

08                     <related-asset name=“depIntSpec-R”

id=“compose.depIntSpec-R-3.0-mature”

relationship-type=“dependentInterface”/>

09                </provided>

10                <provided>

11                     <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

12                </provided>

13           </interface>

14      </component-specification>

15 </asset>
 

Figure 5. Dependent component specification K. 

01 <asset name=“depCompSpec-L”

id=“compose.depCompSpec-L-2.0-pre-alfa”>

02      <model-dependency>

03           <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04      </model-dependency>

05      <component-specification>

06           <interface>

07                <provided>

08                     <related-asset name=“depIntSpec-O”

id=“compose.depIntSpec-O-1.0-alpha”

relationship-type=“dependentInterface”/>

09                </provided>

10                <provided>

11                     <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

12                </provided>

13           </interface>

14      </component-specification>

15 </asset>
 

Figure 6. Dependent component specification L. 

V. RESULTS AND DISCUSSION 

In order to evaluate the proposed distributed clustering 
approach, a set of experiments has been carried out. The 

purpose of such experiments is three-fold. First, it is intended 

to identify the gains in terms of the number of representative 

assets to be indexed when compared with the number of 

original assets. The second purpose is to discover the gain in 

terms of storage space requirements between the clustered 

repository and the original repository. Lastly, such 

experiments have evaluated the quality of the clustering 

approach using well-know metrics.  

01 <asset name=“repDepCompSpec-A1”

id=“compose.repDepCompSpec-A1”>

02      <model-dependency>

03           <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04      </model-dependency>

05      <component-specification>

06           <interface>

07                <provided>

08                     <related-asset name=“depIntSpec-O”

id=“compose.depIntSpec-O-1.0-alpha”

relationship-type=“dependentInterface”/>

09                </provided>

10                <provided>

11                     <related-asset name=“depIntSpec-R”

id=“compose.depIntSpec-R-3.0-mature”

relationship-type=“dependentInterface”/>

12                </provided>

13               <provided>

14                     <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

15                </provided>

16           </interface>

17      </component-specification>

18 </asset>
 

Figure 7. Representative dependent component specification. 

In order to perform the experiments, it has been 

developed a customizable script that automatically generates 

a repository that stores the mentioned X-ARM assets. The 

generated repository has 14.000 assets of different types. 

After creating the repository, the proposed approach has 
been applied for grouping the stored assets in clusters, 

generating their respective representative assets. 

A. Gain in Number of Assets 

Fig. 8 presents the number of each type of asset in the 

original repository and the clustered repositories after the 
application of the proposed approach using different 

thresholds, which vary from 100 to 200 in steps of 25. As 

can be noticed, the proposed approach significantly reduces 

the number of assets. As expected, the number of resulting 

representative assets decreases as the threshold increases. 

When the threshold is increased, two assets have more 

chance of being considered similar, and so, more chance of 

being grouped together. Thus, for example, when the 

threshold is increased from 100 to 200, the total number of 

original assets is reduced to 4,287 and 2,518 representative 

assets, respectively. 



418

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 8. Number of assets. 

For each considered threshold, the gain in number of 

assets has been identified and evaluated. Fig. 9 illustrates the 

gain in terms of the number of assets. For example, when the 

threshold is 150, the number of stored assets in the original 

repository is reduced around 28.5%, dropping from 14,000 
original assets to 3,985 representative assets. As can be 

noticed in Fig. 9, the proposed approach performs a 

significant reduction in the number of stored assets, 

achieving relevant gains between 82% and 69.4%. 

 
Figure 9. Total Gain in number of assets (%). 

However, as shown in Fig. 10, the gains are different for 

each type of asset. Note that, in general, the better gains are 

achieved for component implementations and dependent 

interfaces. Considering component implementations, the 

gains become a little bit more expressive, varying between 

91.1% and 86.1%. For dependent interface specifications, the 

gains are between 88% and 69.8%. In the former case, such 

higher gains can be explained by the considerable amount of 

assets of those types. As can be seen in Fig. 8, the original 

repository has 8,000 component implementations. Thus, this 

type of asset is the prevalent one in the evaluated repository, 

increasing the likelihood of identifying similar assets. 

Furthermore, considering that component implementations 

are considered similar when they refer to the same dependent 

component implementation, it is also possible to correlate 

such a good gain with the existence of different 

implementations of the same component specification, not 
only for different target platforms but also for meeting a 

variety of non-functional requirements, like performance, 

security and cost. Therefore, considering the various 

methods, techniques and algorithms that can be employed to 

meet non-functional requirements, it is obvious that such 

multiple implementations impact on the likelihood of 

identifying similar component implementations. 

 
Figure 10. Gains in number of assets for different types of assets. 

In the case of dependent interface specifications, the 

gains become better due mainly to two reasons. First, in 

software projects, it is not rare to implement different 

versions of software systems for different target platforms. 

So, in component-based software projects, different versions 

imply on several dependent interface specifications for each 

independent interface specification. Considering that 

dependent interface specifications are considered similar 

when they refer to the same independent interface 

specification, it is easy to see that multiple implementations 
impacts on the likelihood of identifying similar dependent 

interface specifications. The second reason is a consequence 

of the high gains in independent interface specifications. For 

instance, consider two dependent interface specifications 

(depInti and depIntj) that refer to two independent interface 

specifications (indepIntx and indepInty), respectively. Now, 

consider that indepIntx and indepInty are clustered as the 

representative asset indepIntc. As a consequence, now, both 

dependent interface specifications depInti and depIntj refer to 

the same representative independent interface specification 

indepIntc. Then, taking into account that dependent interface 
specifications are considered similar when they refer to the 

same independent interface specification, depInti and depIntj 

are clustered and produce the representative asset depIntc. 



419

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Clearly, a high gain in clustering independent interfaces has 

a significant impact in the gain in clustering dependent 

interfaces.  

In terms of dependent component specifications, the 

gains range from 74.5% to 58.4%. One reason for this gain is 

the expressive number of assets in the repository (3,000 
assets according Fig. 8). Furthermore, the existence of 

different versions of software systems for different target 

platforms implies on several dependent component 

specifications for each independent component specification. 

Considering that dependent component specifications are 

considered similar when they refer to the same independent 

component specification, it is clear to notice that multiple 

implementations impacts on the likelihood of identifying 

similar dependent component specifications.  

In relation to independent component specifications, the 

gains are notably low, varying from 41.5% to 8.9%. Besides, 

as can be noticed in Fig. 10, the gain of 41.5% occurs for the 
higher threshold only. When the threshold is 175 and 125, 

the respective gains decrease to 12.9% and 8.9%. Such gains 

are relatively low and indeed not expected. As mentioned 

before, independent component specifications are considered 

similar when they have in common a considerable subset of 

provided independent interfaces. Thus, it is possible to infer 

that such low gains are a consequence of the difficulty of 

finding two or more independent component specifications 

that share a reasonable subset of independent interfaces. 

As can be noticed, the clustering gains in independent 

interfaces specifications impact positively on the gains in 
dependent interface specifications, but give the impression 

that do not impact on the gains in independent component 

specifications. Furthermore, the clustering gains in 

independent component specifications impact on the gains in 

dependent component specifications, which in turn impact 

on the gains in component implementations. 

B. Gain in Storage Requirements 

As already mentioned, the adoption of semi-structured 

data for representing metadata about software components 

implies challenges related to the design of indexing 

techniques that ought to be efficient in terms of storage space 

requirements. Therefore, it is not enough to be efficient in 

reducing the number of assets, but also in downgrading 

storage space requirements for index files.  

In such a direction, the gain in terms of storage space 

required by index files has been evaluated in the original 

repository, containing 14.000 X-ARM assets of different 
types. After generating the clustered repositories by applying 

the proposed approach for different thresholds, the original 

repository and the clustered repositories have been indexed 

using the indexing technique proposed in [7]. Fig. 11 

presents the storage space required by the original repository 

and the clustered repositories, after applying the indexing 

technique. 

As can be noticed, the proposed approach significantly 

reduces the required storage space. As expected, the required 

storage space decreases as the threshold increases. When the 

threshold increases, the number of representative assets 

reduces, and, as a consequence, the storage space required by 

index files also downgrades. Thus, when the threshold 

increases from 100 to 200, the storage space required by 

index files reduces from 10.9 to 7.3MB. 

 

Figure 11. Storage space requirements for different thresholds. 

For each considered threshold, the gain in storage space 

requirements has been identified and evaluated. Fig. 12 

illustrates the gain in terms of storage space requirements. 

For example, when the threshold is 150, the storage space 

required by index files is reduced around 87.3%, dropping 

from 77 to 9.8 MB. As can be noticed in Fig. 12, the 

proposed approach performs a significant reduction in the 
storage space requirements, achieving relevant gains 

between 85.8% and 90.5%. 

 
Figure 12. Total gain in storage requirements. 

C. Clustering Quality 

Of course, it is not enough to evaluate the gains in terms 

of number of assets and storage space requirements. It is also 

imperative to assess the quality of the clustering approach. In 
such a direction, the clustered repositories have been 

assessed in terms of two different clustering evaluation 

methods: Davies-Bouldin index and Silhouette index.  

The Davies-Bouldin index [19] is a clustering evaluation 

method based on internal criterion. It is a function of the 

ratio of the sum of intra-cluster distances (within-cluster 

scatter) to inter-cluster distances (between-cluster 



420

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

separation), as defined in (6), where n is the number of 

clusters, ci is the representative element of cluster i, σi is the 
average distance of all elements in cluster i to representative 

element ci, and d(ci,cj) is the distance between representative 

elements ci and cj. As widely mentioned in the literature, a 

good clustering algorithm must produce clusters with low 

intra-cluster distances (high intra-cluster similarity) and high 

inter-cluster distances (low inter-cluster similarity). Based on 
that, a good clustering algorithm has a small value of Davies-

Bouldin index, representing compact and well-separated 

clusters [20].  

 

�� = 1
� � max	�� �σ	 + σ�

� !	 , !�"#
$

	%&
 (6) 

As can be seen in Fig. 13, the Davies-Bouldin index of 

the clustered repositories for all evaluated thresholds varies 

between 9.60 and 1.66. Such low values for the threshold 

from 100 to 150 evinces that the proposed approach can be 

considered a good clustering algorithm because has produced 

compact and well-separated clusters. Note that the Davies-

Bouldin index increases as the threshold increases. Such a 

trend is already expected and indicates that lower thresholds 

produce higher intra-cluster similarity and lower inter-cluster 
similarity, and so higher quality clusters. 

The Silhouette index [21] is based on the comparison of 

the tightness and separation of the clustered elements. The 

silhouette for each element is calculated as illustrated in (7), 

where ai is the average intra-cluster dissimilarity of element i 

to all other elements within the same cluster, and bi is the 

lowest average inter-cluster dissimilarity of element i to all 

other elements in another cluster. Note that the silhouette 

value varies between -1 and 1. Based on the silhouette for 

each element, the overall average silhouette for all elements 

can be easily calculated. If the overall average silhouette is 

close to 1, it means that elements are well-clustered and are 
assigned to very appropriate clusters. If the overall average 

silhouette is close to -1, it means that elements are 

misclassified and so poorly clustered. 

 

'(() = �	 − �	)�*+�	 , �	, (7) 

As also illustrated in Fig. 13, the overall average 
silhouette of the clustered repositories for all evaluated 

thresholds varies between 0.62 and 0.84. Such values close 

to 1 are evidences that the proposed approach is a good 

clustering algorithm because elements are well-clustered and 

are assigned to appropriate clusters. Note that the silhouette 

index decreases as the threshold increases. Again, such a 

trend is already expected and indicates that lower thresholds 

produce lower intra-cluster dissimilarity and higher inter-

cluster dissimilarity, and so higher quality clusters. 

 
Figure 13. Quality indexes for different thresholds. 

VI. CONCLUSION 

Based on the preliminary results, it can be clearly 

evinced as benefits the potential of the proposed approach in 

significantly clustering an X-ARM repository and 

consequently reducing storage space requirements. It must 
be highlighted that, the bigger the original repository in 

terms of the number of stored assets, the more expressive the 

likelihood of clustering assets, and so the better the gain in 

terms of storage space requirements. 

Taking into account that the indexing technique proposed 

by Brito et al. [7] adopted for indexing the clustered 

repository, the experiments reveal the reduction in the size of 

the original repository implies in an expressive reduction in 

the size of index files of the clustered repository. Besides, 

considering that the technique proposed by Brito et al. has an 

excellent performance in query processing time, even in 
large-scale index files, it is expected a reasonable gain in 

terms of query processing time due to the expressive 

reduction in the size of index files. Therefore, the proposed 

approach clearly makes possible to map large software 

component repositories into small index files. 

However, as often informally said, there is no free lunch. 

That is, in formal words, such expressive gains in terms of 

storage space requirements and query processing time have 

an impact on the query precision level, since the process of 

clustering assets introduces some degree of information loss 

in representative assets. For the experiments of the previous 

section the query precision level vary from 0.41 for the 
threshold of 100 to 0.31 for the threshold of 200. Such 

results can be considered very attractive because, as 

indicated in experiments presented in [22], highly popular 

and adopted search engines like Google and Altavista have 

achieved inferior precision indexes around 0.29 and 0.27, 

respectively. Moreover, in all thresholds the recall index is 

about 0.67. Again, such results can also be considered 

interesting because, as also indicated in [22], Google and 

Altavista have obtained inferior recall indexes around 0.20 

and 0.18, respectively. 

Although these preliminary results indicate the 
usefulness of the approach, a large number of experiments 

must be performed to better evaluate the heuristics and the 



421

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

similarity metric here introduced. In these experiments we 

must investigate several configurations of the repository 

differing on the amount of assets of each type, as well as the 

possibilities of relations among them. Besides, it is also 

under investigation a comparative analysis contrasting the 

proposed heuristics and other ones available in the literature, 
but applied in different research fields.  

ACKNOWLEDGMENT 

This work was supported by the National Institute of 

Science and Technology for Software Engineering (INES – 

www.ines.org.br), funded by CNPq, grants 573964/2008-4. 

REFERENCES 

[1] A. Orso, M.J. Harrold, and D.S. Rosenblum, “Component 
Metadata for Software Engineering Tasks”, Proc. 2nd Int. 
Workshop on Engineering Distributed Objects, 2000, 
pp. 126-140. 

[2] P. Vitharana, F. Zahedi, and H. Jain, "Knowledge-Based 
Repository Scheme for Storing and Retrieving Business 
Components: A Theoretical Design and an Empirical 
Analysis", IEEE Transactions on Software Engineering., vol. 
29, issue 7, July 2003, pp. 649-664. 

[3] OMG, Reusable Asset Specification: OMG Available 
Specification – v2.2, 2005. 

[4] G. Elias, M. Schuenck, Y. Negócio, J. Dias, and S. Miranda, 
“X-ARM: An Asset Representation Model for Component 
Repository”, Proc. 21st ACM Symposium on Applied 
Computing (SAC 2006), France, 2006, pp. 1690-1694. 

[5] W. Meier, “eXist: An Open Source Native XML Database”, 

NODe 2002 Web and Database-Related Workshops on Web, 
Web-Services, and Database Systems, 2002. 

[6] R. Goldman and J. Widom, “DataGuides: Enabling Query 
Formulation and Optimization in Semistructured Databases”, 
Proc. 23rd Int. Conf. on Very Large Data Bases (VLDB 

1997), Greece, 1997, pp. 436-445. 

[7] T. Brito, T. Ribeiro, and G. Elias, “Indexing Semi-Structured 
Data for Efficient Handling of Branching Path Expressions”, 
2nd Inter. Conf. on Advances in Databases, Knowledge, and 
Data Applications (DBKDA 2010), France, 2010, 

pp. 197-203. 

[8] M.P. Paixão, L. Silva, T. Brito and G. Elias, “Large Software 
Component Repositories into Small Index Files”, Proc. 3rd 
International Conference on Advances in Databases, 

Knowledge, and Data Applications (DBKDA 2011), 
pp. 122-127, 2011.   

[9] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, 
Prentice Hall, 1984. 

[10] R. Xu and D. Wunsch, “Survey of Clustering Algorithms”, 
IEEE Transactions on Networks, vol.16, issue 3, May, 
pp. 645-678. 

[11] A. Feng, “Document Clustering – An Optimization Problem”, 

ACM SIGIR 2007, pp. 819-820. 

[12] S. Mancoridis, B.S. Mitchell, C. Rorres, Y.F. Chen, and E.R. 
Gansner. “Using automatic clustering to produce high level 
system organizations of source code”. Proc. IEEE 
International Workshop on Program Comprehension, 

pp. 45–53, 1998. 

[13] B.S. Mitchel and S. Mancoridis. “On the Automatic 
Modularization of Software Systems Using the Bunch Tool”, 
IEEE Transaction on Software Engineering, vol. 32, issue 3,  
pp. 1-16, March 2006. 

[14] Y. Chiricota, F. Jourdan, and G. Melançon, “Software 
Component Capture using Graph Clustering”, Proc. IEEE 
International Workshop on Program Comprehension, 2003. 

[15] J. Wu, A.E. Hassan, and R.C. Holt, "Comparison of 
Clustering Algorithms in the Context of Software Evolution", 
Proc. 21st Int. Conf. on Software Maintenance, 2005, 
pp. 525-535. 

[16] Z. Li, Q.A. Rahman, and N.H. Madhavji, “An Approach to 
Requirements Encapsulation with Clustering”, Proc. 10th 
Workshop on Requirement Engineering, 2007, pp. 92-96. 

[17] M. Cohen, S.B. Kooi, and W. Srisa-an. “Clustering the Heap 

in Multi-Threaded Applications for Improved Garbage 
Collection”, Proc. of  the 8th annual Conference on Genetic 
and Evolutionary Computation, Vol. 2, pp. 1901-1908, 
July 2006.  

[18] W. Frakes and K. Kang, “Software Reuse Research: Status 
and Future”, IEEE Transactions on Software Engineering, 
vol.31, issue 7, July 2005, pp. 529-536. 

[19] D.L. Davies, and D.W. Bouldin, “A Cluster Separation 
Measure”, IEEE Trans. Pattern Anal. Mach. Intelligence, 

vol. 1, pp. 224–227, 1979. 

[20] S. Theodoridis and K. Koutroumbas, Patternn Recognition, 
Academic Press, 2009. 

[21] P.J. Rousseeuw, “Silhouettes: A graphical aid to the 
interpretation and validation of cluster analysis”, Journal of 
Computational and Applied Mathematics, vol 20, 
pp. 53-65, 1987. 

[22] S.M. Shafi and R.A. Rather, “Precision and Recall of Five 
Search Engines for Retrieval of Scholarly Information in the 
Field of Biotechnology”, Webology, vol. 2,  number 2,  2005.

 



422

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Superposition of Rectangles with Visibility Requirement: A Qualitative Approach

Takako Konishi
Graduate School of Science & Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, 669-1337, JAPAN

Email: t.konishi@kwansei.ac.jp

Kazuko Takahashi
School of Science & Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, 669-1337, JAPAN

Email: ktaka@kwansei.ac.jp

Abstract—This paper discusses the superposition of qualita-
tive rectangles so that some parts are visible and other parts are
hidden based on the user’s requirements. Qualitative rectangles
are rectangles whose size and edge ratios are not fixed. We
propose a symbolic representation of the target objects and
discuss superposition on this representation. The operations of
superposing two rectangles can be defined either by superpos-
ing some specified parts of rectangles or by embedding one
rectangle into part of the other rectangle. We investigate the
conditions under which such a superposition succeeds as well as
the manner in which such superposition occurs. We developed
an algorithm for superposing multiple qualitative rectangles
and implemented it.

Keywords-qualitative knowledge representation; superposition;
rectangle packing; spatial database

I. INTRODUCTION

Personal computer users commonly open multiple win-
dows. When many windows are opened on a narrow screen,
the most newly opened window usually appears in the
foreground, sometimes hiding important parts of previously
opened windows. Users must frequently resize windows or
move a window to the foreground to ensure that important
parts are visible. Many users find this process annoying;
it would be more convenient if windows were positioned
automatically so that important or necessary parts remain
visible under the condition that these parts are specified in
advance. Moreover, considering the limited screen space, it
would be more efficient if less important parts of windows
are hidden.

In general, researchers have investigated the efficient
placement of objects as a type of packing problem for
which an optimal solution can be determined [1]. They have
focused on several application areas, such as VLSI design [2]
and label-placement problems [3], [4]. The objective of these
studies has been to determine how multiple objects are
located in a two-dimensional plane under circumstances not
involving superposition, which differs from our objective of
determining placement involving superposition. Therefore,
we cannot directly apply the previously developed algo-
rithms for general placement problems. To the best of the
authors’ knowledge, no study has been performed on the
location of objects involving superposition.

In this study, we discuss rectangle placement with super-
position. We treat rectangles using qualitative representation:
their sizes and the ratios of their edges are unfixed. In each
rectangle, the desired visible part is specified. We discuss
a manner of superposing them so that all desired visible
parts are in the foreground and all desired hidden parts are
in the background. Figure 1 illustrates several examples.
Assume that three rectangles A, B, and C are given with
a requirement of visibility specified by a user. The white
indicates the parts that one wants to be visible, and the
black indicates the parts that one wants to be hidden. In
this figure, (a), (b), and (c) are successful cases, whereas
(d) is not. In (c), first reduce B’s width to fit the vertically-
long-size subpart of the black part of A, then C is put on
the black part in the lower left part of the resultant figure.
In (d), visible black parts remain after superposing A and
B cannot be hidden by C in any superposition of A and
B. In this paper, we show how we evaluate the success of
superposition and placement in these cases.

Note that the sizes or ratios of edges can change during
superposing. We take a qualitative approach. One reason
for this is that it enables symbolic handling of objects. In
general, spatial data can be inconveniently large to store
and handle. Symbolic handling reduces this computational
complexity. Another reason is that it is enough to know
the relative positional relationship of objects on a two-
dimensional plane and their foreground/background relation-
ship, ignoring the exact size or position of each object. Such
an idea is considered to be a type of qualitative spatial
reasoning (QSR) in the field of artificial intelligence [5],
[6], [7], [8].

Our goal is not to find an optimal solution to the packing
problem, but to investigate methods for symbolic treatment
of spatial data and to develop possible application areas of
qualitative spatial reasoning. An earlier version of our work
was reported in [9], [10]. The present study expanded on our
previous research, and this paper provides a more detailed
discussion.

In our QSR approach, target rectangles are divided into
nine types depending on the specified visibility pattern. We
define a unique symbolic representation for each type and
investigate superposition operations using these representa-



423

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A B C

C

A

B

B1A1

A1

B1

A B C

C

B1A1

B1

A1

A B C

C

A1 A2

A1 A2
B1

B1

A B C

fail

A1 B1

(a) (b) (c) (d)
Figure 1. Examples of superposing rectangles

tions. Superposition succeeds if any rectangle is not placed
on the desired visible parts of another rectangle.

We focus on two types of superposition. puton is an
operation that corresponds to superposition of specified parts
of two rectangles. embed is an operation that corresponds
to the embedding of a whole part of one rectangle into
the other rectangle. puton is defined as a function for a
pair of symbolic representations. We show the conditions
for success of puton. embed cannot be defined on the
symbolic representation as puton, but it generates a solution
for superposition that cannot be generated by puton. We
explain these two operations, discuss their properties, and
compare them. We also present an algorithm for superposing
multiple rectangles using these two operations.

This paper is organized as follows. In Section II, we
briefly explain qualitative spatial reasoning, which is the
foundation of our approach. In Section III, we define the
target object and describe its qualitative representation. In
the following two sections, we describe the operations for
superposing a pair of qualitative rectangles, and discuss our
reasoning regarding superposition. In Section IV, we discuss
the puton operation, and in Section V, we discuss the
embed operation. In Section VI, we describe an algorithm
for superposing multiple rectangles and show a behavior of
an implemented system. Finally, in Section VII, we present
our conclusions.

II. QUALITATIVE SPATIAL REASONING
Qualitative spatial reasoning (QSR) is a method for

representing an objective spatial entity qualitatively, rather
than using exact numeral data, and for reasoning about the
properties that hold on these data [6], [7]. It extracts only the
necessary aspects of the objective spatial data and represents
them symbolically. For example, quantitative representation
of Figure 2 is as follows: “There are two objects: one is a
rectangle whose nodes at the bottom left are (1,1) and the
length of the two edges are 3 and 5; the other is a circle
whose center is (5,7) and radius is 2.” However, the figure
can also be qualitatively represented as follows: “There are
two objects that have a common part.” This is sufficient
information for a discussion of the positional relationships

Figure 2. Qualitative versus quantitative representation

of objects. Moreover, if these objects are moving in time,
their positional relationships changes. In some applications,
we only need to focus on the instant in which disconnected
objects change to become connected or in which connected
objects change to have a relationship of inclusion, ignoring
the exact distance between them or the exact size of their
intersection part. QSR can provide a simple representation
and reduce computational complexity.

Various QSR calculi or systems are available depending
on what aspects of spatial data are interested, such as
positional relationship, direction, distance, size, orientation
or shape. Several studies have focused on qualitative spatial
databases. For example, Wang and Liu developed a QSR
application for a geospatial semantic web by constructing a
qualitative spatial database that stores objects and their qual-
itative relations instead of coordinates, from the Geography
Markup Language (GML) [11]. Santos and Amaral proposed
an approach to develop a qualitative database by introducing
qualitative identifiers such as direction and relative distance
and applied it to data mining [12]. Although these studies
have shown the effectiveness of qualitative spatial databases,
further studies are required. Applications of QSR include
geographic information systems, robot planning, navigation,
and spatial databases, but few concrete applications have
been developed to date.



424

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b) (c)

Figure 3. Qualitative rectangles

III. DESCRIPTION

First, we give a symbolic representation to the target
objects.

We call a superposing entity a unit. A unit is a rectangle
and is divided into WHITE, which should be visible, and
BLACK, which should be hidden. BLACK is divided into a
core region and a non-core region, which will be defined
later. The outer side of a unit is called GRAY. The length
of edges and the ratios of a unit and of each region are
unfixed. In contrast, the orientation of a unit should be fixed.
We only use rectangles situated in an upright position and
do not consider those in an inclined orientation. This means
that (a) and (b) in Figure 3 are regarded as equivalent, while
(a) and (c) are regarded as different.

Each connected WHITE is called a white region, the
core region and connected non-core regions are called black
regions, and GRAY is called a gray region. White, black,
and gray regions have attribute values related to visibility,
denoted by ’w,’ ’b,’ and ’g.’ ’w’ and ’b’ denote that regions
should be visible and hidden, respectively. ’g’ denotes that
there is no requirement with respect to visibility.

Considering the structure of web page frames or the
style of dividing a window into sub-windows used in many
applications, we restricted the type of unit to those in
Figure 6.

Any unit can be defined as a qualitative rectangle using
the following operation that fits black plates into a white
rectangle. Conversely, a qualitative rectangle obtained by this
operation is only the units shown in Figure 6. Let a ∗ b
represent a size of a unit whose length is a and height is
b. Consider two black plates whose sizes are x ∗ b (0 ≤
x ≤ a) and a ∗ y (0 ≤ y ≤ b). Fit these plates into a white
rectangle while preserving their orientation using either of
the following procedures. Symbols enclosed in parentheses
denote the names of unit types.

(0) No plate is fit (W).
(1) Only one of the plates is fit (B, I1, I2).
(2) Both plates are fit (L1, T1, PLUS).
(3) Extend L1 and T1, respectively, where the white region

is added to the part on which the edge of size a or b is
connected to the outer part (L2, T2).

Definition 1. The unit obtained in this manner is said to be
valid.

The following theorem clearly holds.

Figure 4. Core region and non-core region of straight-plate-unit

Figure 5. Core region and non-core region of cross-plates-unit

Theorem 2. A unit is valid iff (i) the whole shape is
rectangular, (ii) it has one connected BLACK, and (iii) all
its white regions are convex.

Types I1 and I2 are called straight-plate-units. Types L1,
L2, T1, T2, and PLUS are called cross-plates-units.

For all units other than the W-type unit, the core region is
defined. For B-type and straight-plate-units, the core region
is defined as the entire BLACK (Figure 4). For cross-plates-
units, the core region is defined as the intersection of the
two plates, and the region not included in the core region is
called the non-core region (Figure 5).

We denote the core region of a unit X by CoreX .
The valid unit can be uniquely represented as a quadruple
of attribute values composed of CoreX ’s upper region,
right region, lower region, and left region. We call this a
representation for a unit. For example, the representation for
the unit in Figure 5 is 〈b, b, g, g〉 because the core region has
black regions in its upper side and right side, whereas it is
connected to the outside in its lower side and left side. Note
that the positional relationships of regions are preserved even
if the size of a unit is changed.

Let V,R (R ⊂ V 4), and T indicate a set of attribute
values, a set of representations for units, and a set of types,
that is:

V = {b, w, g}
R = {〈r1, r2, r3, r4〉 | a representation for a valid unit}
T = {’B’,’W’,’I1’,’I2’,’L1’,’L2’,’T1’,’T2’,’PLUS’}

The function rotate(r), which denotes a π/2 clockwise
rotation of a unit r, and the function symm(r), which
denotes a symmetric transformation of a unit r, are defined
as follows:

Let r be 〈r1, r2, r3, r4〉.
rotate : R → R

rotate(〈r1, r2, r3, r4〉) = 〈r2, r3, r4, r1〉
symm : R → R

symm(〈r1, r2, r3, r4〉) = 〈r1, r4, r3, r2〉



425

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. All valid units

The function type that defines the type for a representation
r ∈ R is defined as follows:

type : R → T
type(〈g, g, g, g〉) = ’B’
type(〈w,w,w,w〉) = ’W’
type(〈w, g, g, g〉) = ’I1’
type(〈w, g, w, g〉) = ’I2’
type(〈b, g, g, b〉) = ’L1’
type(〈b, g, w, b〉) = ’L2’
type(〈b, b, g, b〉) = ’T1’
type(〈b, b, w, b〉) = ’T2’
type(〈b, b, b, b〉) = ’PLUS’

For representations r, r′ ∈ R, if r′ = rotate(r) or r′ =
symm(r) holds, then type(r′) is defined as type(r).

Note that W-type is defined with the assumption that a
tiny core region exists and is surrounded by white regions,
as CoreX does not exist.

The projections from r ∈ R to its elements are defined as
follows:

up/dn/lt/rt : R → V

Let r be 〈r1, r2, r3, r4〉.

up(r) = r1

rt(r) = r2

dn(r) = r3

lt(r) = r4

IV. REASONING ABOUT SUPERPOSITION: PUTON
A. The principle

When n (n ≥ 3) units are given, we consider the manner
of their superposition in which all white regions are visible
and all black regions are hidden.

Here, we place units sequentially. k-th unit (n ≥ k ≥ 2)
should be placed on the figure composed of k − 1 units
so that at least one region of the former is placed on at
least one region of the latter. That is, we do not consider
the placement in which, after two units are placed in a
disconnected manner, a third unit is placed onto the black
region of the two rectangles simultaneously. Thus, there
should be at least one W-type unit. Here, we assume that
there is one W-type unit. When more than one W-type unit
exists, the scenario can be considered similarly. Then, the
only one connected rectangular BLACK should be visible
when superposition of n − 1 units is completed.

There are only two operations, puton and embed. puton
is an operation of superposing the core regions of two valid
units, whereas embed is an operation of superposing the
whole unit onto a part of another unit. We describe these
operations in detail.

B. Superposing the core regions

First, we describe puton operation.

Definition 3. Suppose that a straight-plate-unit Y is put on
a unit X . Let CoreX and CoreY be the core regions of X
and Y , respectively. The superposition in which CoreY is
placed exactly on CoreX is called puton operation.

Let Z be the resultant figure of puton, and let CoreZ be
the superposed region of CoreX and CoreY . We extend a
representation for a unit to be available as a representation
for Z. A representation for Z is a quadruple of the attribute
values of visible regions surrounding CoreZ .

First, we compute the attribute values of the regions
around CoreZ . We define the function on, which computes
the attribute value of the visible region when the second
region is placed exactly on the first region, from the attribute
values of the two regions.

on : V × V → V ∪ {fail}
on(b, b) = b
on(b, w) = w
on(w,w) = fail
on(w, b) = fail
on(g, v) = v where v ∈ V
on(v, g) = v where v ∈ V

’fail’ means that the operation failed in that case.
When the result is not fail, X’s black regions are

sometimes visible in Z. If they are connected with CoreZ



426

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

merge two regions encircled
 by white dotted line

<w,b,g,g>Z <w,g,g,g>

Y <w,g,g,g>

change the ratio
of edges

superpose 
Y on X

X <b,b,g,g>

white region

core region

non-core region

Figure 7. A case in which merge is necessary

by lines, it is necessary to merge them to define the merged
region as a new CoreZ . For example, in Figure 7, X and Y
are represented as 〈b, b, g, g〉 and 〈w, g, g, g〉, respectively.
When we place Y on X such that CoreY is placed on
CoreX , the resultant figure Z is represented as 〈w, b, g, g〉.
X’s non-core region is visible and is connected with CoreZ

by a line. Then, this region is merged with CoreZ . This
function merge is defined as follows:

Let r = 〈r1, r2, r3, r4〉. If r satisfies
∧

i=1,...,4(ri 6= fail),
then merge can be defined.

merge : V 4 → R
merge(r) =

〈g, r2, g, r4〉 if r1 = b ∧ r2 6= b ∧ r3 = b ∧ r4 6= b
〈r1, g, r3, g〉 if r1 6= b ∧ r2 = b ∧ r3 6= b ∧ r4 = b
〈g, r2, r3, r4〉 if r1 = b ∧ r2 6= b ∧ r3 6= b ∧ r4 6= b
〈r1, g, r3, r4〉 if r1 6= b ∧ r2 = b ∧ r3 6= b ∧ r4 6= b
〈r1, r2, g, r4〉 if r1 6= b ∧ r2 6= b ∧ r3 = b ∧ r4 6= b
〈r1, r2, r3, g〉 if r1 6= b ∧ r2 6= b ∧ r3 6= b ∧ r4 = b
〈r1, r2, r3, r4〉 otherwise

Success of puton operation
For valid units X and Y whose representations are

r = 〈r1, r2, r3, r4〉 and r′ = 〈r′1, r′2, r′3, r′4〉, respectively,
the puton operation that puts Y on X is defined as follows
and succeeds if (c1) holds.

puton : R × R → R
puton(r, r′) =
merge(〈on(r1, r

′
1), on(r2, r

′
2), on(r3, r

′
3), on(r4, r

′
4)〉)

(c1)
∧

i=1,...4 on(ri, r
′
i) 6= fail.

When the puton operation succeeds, it results in a super-
position in which no white region or black region is put on
a white region, and the following property clearly holds due
to the definition of puton.

Theorem 4. If the puton operation succeeds, BLACK of the
resultant figure is connected.

When the puton operation succeeds, it produces figures
such as Figure 8. (a) is the result of putting I1-type unit on

Figure 8. Resultant figures when puton succeeds

PLUS-type unit, that is, puton(〈b, b, b, b〉, 〈w, g, g, g〉). The
result is 〈w, b, b, b〉. (b) is the result of putting I2-type unit
on L1-type unit, that is, puton(〈b, g, g, b〉, 〈g, w, g, w〉). The
result is 〈g, w, g, w〉. And (c) is the result of putting I1-type
unit on L1-type unit, that is, puton(〈b, g, g, b〉, 〈g, g, g, w〉).
The result is 〈g, g, g, w〉. When superposing multiple units,
we superpose another rectangle on these figures. In this case,
these figures should satisfy two more conditions for continue
superposition: effectiveness and validity.

Let Z be the resultant figure of superposing X and Y .

Definition 5. Z has only one connected BLACK that is
visible and rectangular, then Z is said to be effective.

Definition 6. If Z’s entire shape is rectangular and all of
its white regions are convex, then Z is said to be valid.

From Theorem 4, if Z is valid, then Z is a valid unit.
When n − 1 units are superposed, the resultant figure

should have only one connected visible BLACK, which is
finally hidden by placing the W-type unit. This explains
why the resultant figure of puton should be effective. For
example, Figure 8(a) is not effective. Moreover, the figure
obtained as intermediate data in the process of superposing
n − 1 units should be valid for the following continu-
ous superposition. For example, Figure 8(b) is not valid.
Figure 8(c) is both effective and valid. The conditions of
effectiveness and validity can be checked using the following
rules.
Effectiveness

Let r be a representation for Z. If r satisfies (c2), then



427

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Z’s BLACK is rectangular.
(c2)

∧
i=1,...,4(ri 6= b),

Validity
Let r = 〈r1, r2, r3, r4〉 r′ = 〈r′1, r′2, r′3, r′4〉 and r′′ =

〈r′′1 , r′′2 , r′′3 , r′′4 〉 be representations for units X , Y and Z,
respectively. For the entire shape of Z to be rectangular, the
white region of Y should not be placed on GRAY of X .
Moreover, all of Z’s white regions are convex. Therefore, if
(c3) and (c4) are satisfied, then Z is valid. In the followings,
ri is regarded as ri−4 when i ≥ 5.

(c3) If there exists i (1 ≤ i ≤ 4) such that ri = r′i+2 =
g and that satifies one of the followings:
(i) ri+1 = b ∧ r′i+1 6= g ∧ ri+3 = g ∧ r′i+3 = g
(ii) ri+1 = g ∧ r′i+1 = g ∧ ri+3 = b ∧ r′i+3 6= g
(iii) ri+1 = b ∧ r′i+1 6= g ∧ ri+3 = b ∧ r′i+3 6= g
(iv) ri+1 = g ∧ r′i+1 = g ∧ ri+3 = g ∧ r′i+3 = g

(c4) No i (1 ≤ i ≤ 4) exists such that satisfies either of
the followings.
(i) r′′i = r′′i+1 = b
(ii) r′′i = r′′i+1 = r′′i+2 = w
(ii) (r′′i 6= g) ∧ (r′′i+2 6= g) ∧ (r′′i+1 = b)

C. Result of superposition: puton

In Definition 3, we defined the puton operation for the
superposition of a straight-plate-unit and a unit. In this
subsection, we extend this operation to any pair of unit types.
We also discuss the effectiveness and validity of the resulting
figures when puton succeeds.

1) Superposition on B/W type: Assume that we superpose
some unit on the B-type. The resultant figure is effective if
and only if we superpose the straight-plate-unit, and it is
valid for any type.

In contrast, it is impossible to place any unit on the W-
type.

2) Superposition of straight-plate-units: Assume that we
superpose the straight-plate-unit on the straight-plate-unit.
The resultant figure is not always valid because its entire
shape may not be a rectangle. The resultant figure is always
effective.

3) Superposition of the straight-plate-unit on the cross-
plates-unit: In this case, the resultant figure is not always
valid and not always effective.

4) Superposition of the cross-plates-unit on any type:
In this case, the resultant figure is always invald in case
of putting on the straight-plate-unit, but sometimes valid in
case of putting on cross-plates-unit. It is always ineffective.
However, the puton operation succeeds for several cases.

D. Success of extended puton operation

Here, we show the conditions under which the puton
operation succeeds for any pair of units. In general, when the
puton operation is performed on X and Y , WHITE should

Figure 9. Representation of locations of white regions

Figure 10. The regions to be hidden in L1-type

not be placed on X’s white region. When Y is a cross-
plates-unit, we have to consider its white region located in
the inclined orientation from CoreY . The location of the
white region is represented as the occurrence either of b in
adjacent elements or of b and w in adjacent elements in the
representation for Y . For example, a representation for a
unit in Figure 9 is 〈b, b, w, g〉. The sequence b, b represents
the location of white1, the upper left of CoreY , and the
sequence b, w represents that of white2, the lower part of the
unit. Therefore, the condition on WHITE can be represented
as (c5).

(c5) Let 〈r1, r2, r3, r4〉 and 〈r′1, r′2, r′3, r′4〉 be represen-
tations of X and Y , respectively. There exists some
i (1 ≤ i ≤ 4) such that ri = r′i+2 = g, where r′5
and r′6 are regarded as r′1 and r′2, respectively.

Success of extended puton operation
For any pair of units X and Y , if (c1) and (c5) are

satisfied, the puton operation succeeds.
The puton operation is an operation of superposing core

regions. We can consider another operation in the manner
in which specified parts of both units are superposed, for
example, superposing non-core regions. However, no manner
of superposition other than puton operation will yield an
effective solution. We will prove this property.

Theorem 7. When we superpose the straight-plate-unit on
the cross-plates-unit, only the puton operation will yield an
effective solution.

Proof:
Consider the puton operation that places a straight-plate-

unit Y on an L1-type unit X shown in Figure 10. In this
case, BLACK is divided into three regions: one core region
CoreX and two non-core regions β1 and β2. Let CoreY be
Y ’s core region.



428

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Three patterns of embed operation

Figure 12. embedWhole corresponding to embedPart

.

One or two of the CoreX , β1, β2 should be hidden so that
the resultant superposed figure is effective.
(i) Only one region is hidden.

If only CoreX is hidden, β1 and β2, which are discon-
nected, are visible. Therefore, the result is not effective.
If only β1 is hidden, CoreX , β2 and CoreY are visible
in the resultant figure. Considering the relative position of
CoreX , β1 and β2, it is impossible to make a rectangle by
merging CoreX , β2 and CoreY and to hide β1 at the same
time. Therefore, the result is not effective. Similarly, the
result is not effective if only β2 is hidden.
(ii) Two regions are hidden.

Because β1 and β2 are disconnected, they are not simul-
taneously hidden by a single unit. If both CoreX and β1

are hidden, β2 and CoreY are visible. We must place Y ’s
regions onto both CoreX and β1 to hide them. Moreover,
we must make a rectangle by merging β2 and CoreY . The
only place where CoreY may be placed to satisfy both
conditions is CoreX , and this placement is identical to the
puton operation.

According to the above analysis, the resultant figure is not
effective by any operation other than the puton operation.

Other cases can be similarly proved.

V. REASONING ABOUT SUPERPOSITION: EMBED

A. Superposition by embedding

We can consider another superposition operation of
embed. This operation embeds the whole of one unit into
the whole or a part of BLACK in the other unit. It is defined
on a pair of types, while the puton operation is defined on
a pair of representations for units.

Three patterns of embedding are possible, depending on
the place of embedding.

1) Embed both into the core region and non-core region.
For example, Figure 11(a) shows embedding of L1-
type unit into L1-type unit.

Figure 13. Solution differences between embedWhole and embedPart

.

2) Embed only into the core region. For example, Fig-
ure 11(b) shows embedding of I1-type unit into I1-type
unit. It is possible only when the background unit is
straight-plate-unit.

3) Embed only into the non-core region. For example,
Figure 11(c) shows embedding of I1-type unit into
L1-type unit.

Remind the concept of a plate that is used in the con-
struction of a valid unit. Two types of embed operation can
be defined using this plate.

Definition 8. Placement of the whole unit in its entirety on a
plate of the other unit is called an embedWhole operation
and placement on part of a plate of the other unit is called
an embedPart operation.

The first case and the second case in the above patterns
are embedWhole operations, while the third case is an
embedPart operation.

B. Result of superposition: embed

Next, we discuss the result of embed operation. The
embed operation always succeeds in the sense that any
region is not put on WHITE of the background unit, and the
entire shape of the resultant figure is a rectangle. Therefore,
we discuss only the validity and effectiveness of the resultant
figure.

1) Superposition on B/W type: Assume that we superpose
some unit on the B-type. The resultant figure is effective if
and only if we superpose the straight-plate-unit, and it is
valid for any type.

In contrast, it is impossible to place any unit on the W-
type.

2) Superposition of straight-plate-units: Assume that we
superpose the straight-plate-unit on the straight-plate-unit.
The resultant figure obtained by the embed operation is not
always valid because the white region may not be convex.
The resultant figure is always effective.

Theorem 9. If the result of embedPart operation on
a pair of straight-plate-units is valid and effective, then



429

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Ineffectiveness of embedPart for a pair of cross-plates-units

an embedWhole operation exists that generates the same
result.

Proof.
Assume that the result of embedPart operation on a

pair of straight-plate-units is valid and effective, shown in
Figure 12, for example. If we extend the BLACK of the
foreground unit to fill the core region of the background
unit, this corresponds to the embedWhole operation, which
generates the same result.

It means that two figures in Figure 12 are regarded
as qualitatively equivalent, and this is a characteristic of
qualitative reasoning.

3) Superposition of the straight-plate-unit on the cross-
plates-unit: In this case, the resultant figure obtained is not
always valid and not always effective. embedWhole and
embedPart may generate different solutions for the same
pair. For example, if an I1-type unit is embedded into a
T1-type unit, T2-type is generated by embedWhole, while
T1-type is generated by embedPart (Figure 13).

4) Superposition of the cross-plates-unit on any type: In
this case, the resultant figure is always ineffective but can
yield valid figures in some cases (See Table I).

Moreover, the following property holds.

Theorem 10. If the result of embed operation on a pair
of cross-plates-units is valid, then it is an embedWhole
operation.

Proof.
Assume that the result of embedPart is valid. In this case,

BLACK portions of at least one plate of the background unit
in the resulting figure are visible (Figure 14). These parts are
the ones in which no unit is embedded. In contrast, BLACK
of the foreground unit is visible and is not rectangular. The
union of these portions of BLACK cannot make a shape of
BLACK for any unit. Therefore, embedPart never generates
a valid solution.

5) Valid solutions: Table I shows a pair of unit types
where embed operation generates a valid solution. In this
table, rows show the unit in the foreground, and columns
show the unit in the background. Only the solutions that
differ from those generated by puton operations are shown.
U means there is no solution. The case of U∗ appears to be
successful at first glance, but there is actually no solution.
For example, Figure 15 shows the resultant figure obtained
by the operation of embed for L2 on T1. It is not valid
because it is impossible to align line (1) and line (2).

(2)
(1)

Figure 15. U∗: Invalid example

Unlike the puton operation, we cannot currently formalize
rules for selecting the proper position for embedding or
orientating units to obtain valid solutions. We can only say
that generally, we place WHITE of a pair of superposing
units on the adjacent position.

C. Comparison with puton operation

Table II compares validity and effectiveness between
puton and embed operations. In the table, s and c indicate
straight-plate-unit and cross-plates-unit, respectively.

Theorem 11. (1) If there is a valid solution for the puton
operation, then there is a valid solution by the embedWhole
operation that generates the same solution.
(2) Even if there is no valid solution for the puton oper-
ation, there may be a valid solution by the embedWhole
operation.

Proof.
(1) We cannot obtain a valid solution in the case applying

the puton operation for cross-plates-unit on straight-plate-
unit. Therefore, we consider the remaining three cases.

(i) superposing cross-plates-unit on cross-plates-unit
As both core regions are superposed, a plate of the

foreground unit is put on a plate of the background unit.
Let A be a visible part of a background unit and B be its
invisible part. Moreover, let A′ be a part of the foreground
unit that is placed on the background unit and B′ be its
remaining part. Then, A′ is a foreground of B by puton
operation. If we extend B so that it is a background of both
A′ and B′, it is a solution of embed operation. Since B
corresponds to a single plate, its extention is qualitatively
equivalent to the original one (Figure 16).

(ii) superposing straight-plate-unit on straight-plate-unit
This is proved in a similar way to the case (i).
(iii) superposing straight-plate-unit on cross-plates-unit
It is trivial due to the validity of the resultant figure.
(2) Only the solutions that differ from those generated by

puton operations are shown in Table I.
embed is an operation that is as essential as puton. When

we superpose multiple units using both operations, we can
sometimes obtain solutions that are not obtained only by
a single operation. We can illustrate this using example of
superposition of four units.

Consider superposition of four units X,Y, Z and W
shown in Figure 17. The representations for X,Y, Z and
W are 〈b, b, g, b〉, 〈b, b, g, b〉, 〈w, g, w, g〉, and 〈w,w,w,w〉,



430

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fg\ bk I1 I2 L1 L2 T1 T2 PLUS
I1 I1 I2 T1 L1 L2 T2 L2 T1 T2 T2 U∗

I2 I2 I2 T1 T2 T1 T2 U
L1 L2 U L1 L2 T2 T1 T2 U∗

L2 L2 U L2 L2 U∗ U∗ U
T1 T2 U T1 T2 T1 T2 PLUS
T2 T2 U U U T2 T2 U

PLUS U U U U PLUS U PLUS

Table I
VALID SOLUTIONS FOR THE embed OPERATION

Figure 17. Solution by using puton and embed operations together

Figure 16. Superposing cross-plates-unit on cross-plates-unit

puton embed

validity effectiveness validity effectiveness
s on s some always some always
s on c some some some some
c on c some never some never
c on s never never some never

Table II
COMPARISON BETWEEN puton AND embed

respectively. First, an effective solution for X,Y and Z
should be generated. puton operation succeeds only for
X and Z, that is, puton(X,Z) = 〈w, g, w, g〉, but the
resultant figure is not valid. Therefore, we cannot continue
the operation. In contrast, embed X into Y generates a valid
solution X ′. Next, put Z on this result X ′ using the puton
operation. This yields an effective solution X ′′. Finally, by
putting W on this result X ′′ using the puton operation we
obtain the solution for superposing the four units.

Let Ω be a finite set of valid units that does not include
a W-type unit, where |Ω| ≥ 2, and ω is a W-type unit.

(1) Extract an arbitrary pair of X and Y from Ω.
(2) If superposing Y on X generates a valid and

effective solution,
let Z be the resulting figure.

Otherwise, go back (1) to find another pair.
(3) If |Ω| = 2,

if Z is effective, then Z is a solution.
else go back (1) to find another pair.

else continue.
(4) Set Ω = Ω − {X,Y } ∪ {Z}, and go to (1).

If a solution is generated, then the superposition of
Ω ∪ {w} succeeds.
If it fails in all cases, then there is no solution.

Figure 18. Algorithm for superposing multiple units

VI. RECTANGLE REASONING SYSTEM

A. Algorithm for multiple unit superposition

We explain an algorithm for superposing multiple units.
Here, superposition means either puton or embed operation.
Selecting a unit from a given set of valid units, and perform
superposition operation repeatedly to find a solution. The
algorithm is shown in Figure 18.

B. Reasoning system

We implemented this algorithm using Prolog to code the
main reasoning part and Java for the interface part.



431

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We explain the behavior of the system.
1) Initial state

When the system is invoked, a basic frame is displayed
that shows nine types of units (Figure 19).

2) Selecting the set of units
First, determine the first unit for superposing in the
following manner: select the unit type by pushing the
”select” button from ”action” on the menu bar. Deter-
mine its orientation by pushing the ”rotation” button.
Repeat this procedure until n units are determined.
Multiple units of the same type may be selected. The
selected units are shown on the lower part of the frame
(Figure 20).

3) Superposition
Next, judge if superposition succeeds and generate
the solution if one is available. Find the superposing
manner by pushing the ”start” button from ”file” on
the menu bar. This opens a new window display-
ing the result. If superposition succeeds, the order
of superposition and the positions of each unit are
displayed (Figure 21). Otherwise, the window displays
”No solution.” If more than one solution is possible,
only the first one found is shown.

VII. CONCLUSION AND FUTURE WORK

A. Conclusions

We have discussed superposition of a pair of units and
investigated the conditions that satisfy the result where all
white regions are visible while all black regions are hidden
in the resultant figure when visibility is specified by a user.

• A pair of straight-plate-units always produces an effec-
tive solution either by the puton operation or by the
embed operation.

• The straight-plate-unit on cross-plates-unit can produce
an effective solution in some cases either by the puton
operation or by the embed operation. If a solution
generated by the puton operation is valid, then it is
also generated by the embed operation.

• The cross-plates-unit on any type can produce no
effective solution.

As for the last case, we have shown which pairs can
generate valid solutions.

We also presented an algorithm for superposing a set of
units and implemented this system.

This work is the first study to focus on object placement
with superposition and demonstrates a new application of
QSR.

B. Future Works

We admit only units constructed using two specific plates.
As a result, we have constraints both on BLACK and WHITE
of a unit: BLACK should be one connected and all white
regions are rectangles.

Figure 22. A unit constructed using three plates

Figure 23. Allowing a non-rectangular white region

Assume that we admit a unit obtained by packing three
plates (Figure 22). The above constraint on BLACK still
exists. In this case, there are two core regions.

Next, consider that we weaken the constraint on WHITE.
Assume that we can admit a white region that is not
rectangular (Figure 23). In this case, a white region exists
at the position over the black region viewed from the core
region, whereas in the current definition, a white region can
exist either on the adjacent or inclined orientation of the core
region.

Currently, we can represent each unit uniquely by a
representation using four directions of the core region.
However, if we weaken the constraints and extend the target
objects, we must change this representation, as the above
consideration shows. This process is not straightforward, but
we hope to weaken these constraints in future.

REFERENCES

[1] G. Birgin, R. D. Lobato, and R. Morabito, “An effective
recursive partitioning approach for the packing of identical
rectangles in a rectangle,” Journal of the Operational Re-
search Society, vol. 61, pp. 306-320, 2010.

[2] A. S. Lapaugh, “Layout algorithm for VLSI design,” ACM
Computing Surveys, vol. 28, no. 1, pp. 59-61, 1996.

[3] H. Freeman, “Computer name placement,” in Geographical
Information Systems 1, D. J. Maguire, M. F. Goodchild, and
D. W. Rhind, Eds. John Wiley, 1991, pp. 449-460.

[4] J. Li, C. Plaisant, and B. Shneriderman, “Data object and
label placement for information abundant visualizations,” in
Proceedings of the Workshop of New Paradigms Information
Visualization and Manipulation (NPIV98), 1998, pp. 41-48.

[5] M. Aliello, I. E. Pratt-Hartmann, and J. F. A. K.Van Benthem,
Eds., Handbook of Spatial Logics. Springer-Verlag, 2007.

[6] A. Cohn and S. Hazarika, “Qualitative spatial representa-
tion and reasoning: an overview,” Fundamental Informaticae,
vol. 46, no. 1, pp. 1-29, 2001.

[7] A. Cohn and J. Renz, “Qualitative spatial representation
and reasoning,” Handbook of Knowledge Representation,
Chapt. 13, pp. 551-596, F. van Harmelen, V. Lifschitz, and
B. Porter, Eds., Elsevier, 2008.

[8] M. Egenhofer and R. Franzosa, “On the equivalence of
topological relations,” International Journal of Geographical
Information Systems, vol. 9, no. 2, pp. 133-152, 1995.

[9] S. Kumokawa and K. Takahashi, “Rectangle reasoning: a
qualitative spatial reasoning with superposition,” in Proceed-
ings of 23rd Florida Artificial Intelligence Research Society
Conference (FLAIRS23), 2010, pp. 150-151.



432

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Screenshot of the system: 1. Initial state

Figure 20. Screenshot of the system: 2. Selecting the set of units

Figure 21. Screenshot of the system: 3. Superposition



433

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] T. Konishi, and K. Takahashi, “Symbolic Representation and
Reasoning for Rectangles with Superposition,” The Third
International Conference on Advances in Databases, Knowl-
edge, and Data Applications (DBKDA 2011), pp. 71-76,
January, 2011.

[11] S. Wang and D. Liu, “Qualitative spatial relation database
for semantic web,” in First Asian Semantic Web Conference
(ASWC), 2006, pp. 387-399.

[12] M. Santos and L. Amaral, “Geo-spatial data mining in the
analysis of a demographic database,” Soft Computing - A Fu-
sion of Foundations, Methodologies and Applications, vol. 9,
no. 5, pp. 374-384, 2005.



434

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Efficient Non-Sequential Access and More Ordering
Choices in a Search Tree

Lubomir Stanchev
Computer Science Department

Indiana University - Purdue University Fort Wayne
Fort Wayne, IN, USA

stanchel@ipfw.edu

Abstract—A traditional search tree allows for efficient sequen-
tial access to the elements of the tree. In addition, a search
tree allows for efficient insertion of new elements and efficient
deletion of existing elements. In this article we show how to extend
the capabilities of a search tree by presenting an algorithm for
efficient access to predefined subsets of the indexed elements.
This is achieved by marking some of the elements of the search
tree with marker bits. In addition, our algorithm allows us to
efficiently retrieve the indexed elements in either ascending or
descending direction relative to each of the ordering attributes.

Index Terms—marker bits; search trees; ordering directions;
data structures

I. INTRODUCTION

The paper extends a conference paper on the topic of
efficient access to non-sequential elements of a search tree
([5]). The major contribution of this article is the introduction
of an algorithm that extends the ordering choices for the
elements that are returned. As a minor contribution, we show
that retrieving multiple elements from a search tree with
marker bits takes time that this proportional to the size of
the tree.

A balanced search trees, such as an AVL tree ([1]), an
AA tree ([2]), or a B+ tree ([3]), allows efficient retrieval of
elements that are consecutive relative to an in-order traversal
of the tree. However, there is no obvious way to efficiently
retrieve the elements that belong to a predefined subset of the
stored elements if they are not sequential in the search tree.
Similarly, there is no obvious way of retrieving the elements
in an order that is different from the tree order (or the reverse
of the tree order). For example, consider a database that stores
information about company employees. A search tree may
store information about the employees ordered first by age
ascending and then by name ascending. This search tree can
be used to retrieve all the employees sorted by age, but the
search tree does not efficiently support the request of retrieving
all rich employees (e.g., making more than $100,000 per year)
sorted by age. In this paper, we will show how the example
search tree can be extended with marker bits so that both
requests can be efficiently supported. In addition, we will
show how the search tree can be used to efficiently retrieve
the elements in a different order, for example, ordered by
age descending (rather than ascending) and then by name
ascending.

The techniques that are proposed in this paper will increase
the set of requests that can be efficiently supported by a search
tree. This means that fewer search trees will need to be built.
This approach will not only save space, but will also improve
update performance. For example, [6] shows how our approach
can be applied to perform index merging. Specifically, indices
on the same elements that have different orderings can be
merged when the orderings are on the same attributes. Simi-
larly, indices with orderings on the same attributes that contain
common elements can be merged together.

Naı̈ve solutions to the problem of efficiently accessing a
non-sequential subset of the elements that are indexed fails.
For example, it is not enough to mark all the nodes of the
search tree that contain data elements that belong to the subset.
This approach will not allow us to prune out subtrees because
it can be the case that the parent node does not belong to
an interesting subset, but some of the descendent nodes do
belong. Similarly, efficiently accessing the elements of a search
tree where the ascending and descending direction of the
attributes is changed is not trivial because this can require
both forward and backward scanning.

To the best of our knowledge, detailed explanation of how
marker bits work have not been previously published. Our
previous work [6] briefly introduces the concept of marker
bits, but it does not explain how marker bits can be maintained
after insertion, deletion, or update. Other existing approaches
handle requests on different subsets of the search tree elements
by exhaustive search or by creating additional search trees.
However, the second approach leads to not only unnecessary
duplication of data, but also slower updates to multiple copies
of the same data. Similarly, to the best of our knowledge,
no previous research addresses the problem of efficiently
retrieving the elements of a search tree in order that is different
from the search order or its reverse.

Given a subset of the search elements S, our approach to
efficiently retrieve these elements marks every node in the tree
that contains an element of S or that has a descendant that
contains an element of S. These additional marker bits will
only slightly increase the size of the search tree (with one bit
per tree node), but will allow efficient logarithmic execution
of requests that ask for the elements of S in the tree order. It
will take time proportional to the size of the tree to retrieve
all the elements of S.



435

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The algorithm that returns the elements of a search tree in an
order that changes the ascending and descending direction of
the attributes repeatedly calls the next method. The method
tries to find the “next” element that has the same value for all
but the last attribute as the current node, where next is defined
relative to the direction of the last attribute. If such an element
does not exist, then the method tries to find the next element
that has the same value for all but the last two attributes and
so on, where the next method is recursive.

In what follows, Section II presents core definitions, Section
III describes how to efficiently perform different operations
on a search tree with marker bits, and Section IV contains the
conclusion and directions for future research.

II. DEFINITIONS

Definition 1 (MB-tree): An MB-tree has the following syn-
tax: ⟨⟨S1, . . . , Ss⟩, S,O⟩, where S and {Si}si=1 are sets over
the same domain ∆, Si ⊆ S for i ∈ [1..s], and O is an
ordering over ∆. This represents a balanced search tree of the
elements of S (every node of the tree stores a single element
of S), where the in-order traversal of the tree produces the
elements according to the order O. In addition, every node
of the tree contains s marker bits and the ith marker bit is
set exactly when the node or one of its descendants stores an
element that belongs to Si - we will refer to this property as
the marker bit property.

The above definition can be extended to allow an MB-tree
to have multiple data values in a node, as is the case for a B
Tree. However, this is area for future research.

Going back to our motivating example, consider the MB-
tree ⟨⟨RICH EMPS ⟩,EMPS , ⟨age asc,name asc⟩⟩. This
represents a search tree of the employees, where the ordering
is first relative to the attribute age in ascending order. If two
employees have the same age, then they are ordered relative to
their name in ascending order. The RICH EMPS set consists
of the employees that make more than $100,000 per year.
Figure 1 shows an example instance of this MB-tree. Each
node of the tree contains the name of the employee followed
by their age and salary.

 John, 23, $35,000 

Peter, 22, $20,000       Dave, 30, $20,000

   1

Kate, 27, $35,000Mike, 20, $105,000       Ann, 23, $40,000

                       1

          1

        0

       0          0

Fig. 1. Example of an MB-tree

Each node in the MB-tree contains the name of the em-
ployee, their age, and their salary. Note that Ann and John are
the same age. However, Ann comes before John in the search
order because “Ann” is lexicographically before “John”.

TABLE I
INTERFACE OF A NODE

(operation) (return value)
left() left child
right() right child
parent() parent node
data() stored data
m[i] the i marker bit (1 ≤ i ≤ s)

Above each node, the value of the marker bit is denoted,
where the bit is set exactly when the node or one of its
descendants contains a rich employee. As the figure suggests,
the subtree with root node that contains the name Dave can
be pruned out when searching for rich employees because the
marker bit of the root node is not set. We will show that this
MB-tree can be used to efficiently find not only all employees
sorted by age, but also all rich employees sorted by age.

The tree can also be used to efficiently find employee
(or rich employees) ordered by, for example, age descending
and then name ascending. The query that is asking for all
employees will return the employees in order: Dave, Kate,
Ann, John, Peter, and Mike, while the second query will return
only Mike (the only rich employee). Note that throughout this
paper efficient refers to logarithmic time relative to the size of
the search tree.

III. OPERATIONS ON AN MB-TREE

Although an MB-tree does not need to be binary, in the
following section we will consider only binary trees. The
presented algorithms can be extended to non-binary trees and
this is area for future research. We will assume that every node
of the search tree supports the methods of the interface that
is shown in Table I in constant time, where {Si}si=1 are the
marker bit sets.

Next, we describe how the algorithms for tree update and
search can be extended in the presence of marker bits. Note
that supporting more ordering choices only affects the search
algorithm.

A. Element Insertion

After an algorithm has inserted a leaf node n, it should call
the insert_fix method from Algorithm 1 to update the
marker bits in the tree.

Algorithm 1 insert_fix(Node n)

1: for i← 1 to s do
2: if n.data() ∈ Si then
3: n.m[i]← 1
4: else
5: n.m[i]← 0
6: end if
7: end for
8: insert_parent_fix(n.parent(), n.m)

Lines 1-7 of the code set the marker bits for the new node.
The call to the recursive procedure insert_parent_fix



436

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fixes the marker bits of the ancestors of the inserted node,
where the later procedure is presented in Algorithm 2.

Algorithm 2 insert_parent_fix(Node n, Bit[]
m)

1: if n = null then
2: return
3: end if
4: changed ← false
5: for i← 1 to s do
6: if m[i] = 1 and n.m[i] = 0 then
7: n.m[i]← 1
8: changed ← true
9: end if

10: end for
11: if changed then
12: insert_parent_fix(n.parent(), n.m)
13: end if

We claim that the resulting tree satisfies the marker bit
property. In particular, note that only the marker bits of the
inserted node and its ancestors can be potentially affected by
the insertion. Lines 1-7 of the insert_fix method update
the marker bits of the node that is inserted. If the ith marker
bit of the node is set, then we check the ith marker bit of its
parent node (Lines 6 of the insert_parent_fix method).
If the ith marker bit of the parent is set, then the ith marker bit
of all ancestors will be set because of the marker bit property
and nothing more needs to be done for the ith marker bit.
Conversely, if the ith marker bit of the parent is not set, then
we need to set it and then check the ith marker bit of the parent
of the parent node and so on. This is done by Line 7 and the
recursive call at Line 12, respectively. The variable changed
is used to record whether any of the marker bits of the current
node have been modified. If the variable is equal to true,
then the marker bits of the ancestor nodes will not need to be
updated. Therefore, the marker bits of the inserted node and
its ancestors are updated correctly and the marker bit property
is preserved for the updated search tree.

B. Deleting a Node with Less than Two Children

Deleting a node with two children from a binary tree cannot
be performed by just connecting the parent of the deleted node
to the children of the deleted node because the parent node
may end up with three children. Therefore, we will consider
two cases: when the deleted node has less than two non-null
children and when the deleted node has two non-null children.
The first case is explained next, while the second case is
explained in Section III-D.

An implementation of Algorithm 3 should be called before
a node n with less than two non-null children is deleted. In
the algorithm, n.child() is used to denote the non-null
child of n and m[i] is set when the ith marker bits of the
ancestor nodes need to be checked. The algorithm for the
method delete_parent_fix that updates the marker bits
of n’s ancestors in the search tree is shown in Algorithm 4.

Algorithm 3 delete_fix_simple(Node n)

1: for i← 1 to s do
2: if n.data() ∈ Si and (n is leaf node or

n.child().m[i] = 0) then
3: m[i]← 1
4: else
5: m[i]← 0
6: end if
7: end for
8: delete_parent_fix(n.parent(), m)

Algorithm 4 delete_parent_fix(Node n, Bit[]
m)

1: if n = null then
2: return
3: end if
4: changed←false
5: for i← 1 to s do
6: if m[i] = 1 and n.data()̸∈ Si and (n has no other

child or n.other_child().m[i] = 0) then
7: n.m[i]← 0
8: changed ← true;
9: end if

10: end for
11: if changed then
12: delete_parent_fix(n.parent(), m)
13: end if

Note that we have used n.other_child to denote the
child node of n that is not on the path to the deleted node.
We claim that the deletion algorithm preserves the marker bit
property. In particular, note that only the ancestors of the
deleted node can be affected. If m[i] = 1 (Line 6 of the
delete_parent_fix method), then we check whether the
data in the node belongs to Si and whether the ith marker bit
of the other child node is set. If both conditions are false, then
the only reason the ith marker bit of n is set is because the
data in the deleted node belonged to Si and now this marker
bit needs to be reset (Line 7) and the ancestors of n need to
be recursively checked (Line 12). Conversely, if one of the
conditions is true or m[i] = 0, then the ith marker bit of
n and its ancestors will not be affected by the node deletion.
Therefore, the marker bits of the ancestors of the deleted node
are updated correctly and the marker bit property holds for the
updated search tree.

C. Element Update

Algorithm 5 should be executed after the data in a node n
is modified, where v is the old data value of n. The pseudo-
code updates the marker bits of the node n and then calls
the update_parent_fix method, which is presented in
Algorithm 6.

Note that we have used n.other_child() to denote
the child node of n that is not on the path to the updated
node. The method update_fix preserves the marker bit



437

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 5 update_fix(Node n, Value v)

1: old ← n
2: for i = 1 to s do
3: if n.data() ∈ Si or (n.left() ̸= null and

n.left().m[i] = 1) or (n.right()̸= null and
n.right().m[i] = 1) then

4: n.m[i]← 1
5: else
6: n.m[i] = 0
7: end if
8: if n.m[i] = 1 and old .m[i] = 0 then
9: m[i]← “insert”

10: else if n.m[i] = 0 and old.m[i] = 1 then
11: m[i]← “delete”
12: else
13: m[i]← “no change”
14: end if
15: end for
16: update_parent_fix(n.parent(), m)

Algorithm 6 update_parent_fix(Node n,
Value[] m)

1: if n = null then
2: return
3: end if
4: changed ← false
5: for i = 1 to s do
6: if m[i] = “insert” and n.m[i] = 0 then
7: n.m[i]← 1
8: changed ← true
9: end if

10: if m[i] = “delete” and n.data() ̸∈ Si

and (n.other_child() = null or
n.other_child().m[i] = 0)) then

11: n.m[i]← 0
12: changed ← true
13: end if
14: end for
15: if changed then
16: update_parent_fix(n.parent(), m)
17: end if

property because it is a combination of the insert_fix
and delete_fix_simple methods. In particular, m[i] in
the method update_fix is set to insert when the ith

marker bit of the updated node was changed from 0 to 1 and
to delete when this marker bit was updated from 1 to 0.
The first case is equivalent to a node with the ith marker bit
set being inserted, while the second case is equivalent to a
node with the ith marker bit set being deleted.

D. Deleting a Node with Two Children

As it is usually the case ([4]), we assume that the deletion
of a node n1 with two non-null children is handled by first
deleting the node after n1 relative to the tree order, which

we will denote as n2, followed by changing the data value
of n1 to that of n2. The pseudo-code in Algorithm 7, which
implementation should be called after a node is deleted from
the tree, shows how the marker bits can be updated, where
initially n = n1, p is the parent of n2, v is the value of
the data that was stored in n2, and m[i] = 1 exactly when
n2.m[i] = 1 and n′.m[i] = 0 for all descendants n′ of n2.

Algorithm 7 delete_fix_two_children(n,p,v,m)

1: if p = n then
2: update_fix(n, v)
3: end if
4: changed ← false
5: for i=1 to s do
6: if m[i] = 1 and p.data() ̸∈ Si and (p has no other

child or p.other_child().m[i] = 0) then
7: p.m[i]← 0
8: changed ← true
9: end if

10: end for
11: if changed then
12: delete_fix_two_children(n, p.parent(),

v,m)
13: else
14: update_fix(n, v)
15: end if

In the above code “p has no other child” refers to the condi-
tion that p has no other child than the child that it is on the path
to the deleted node n2. Similarly, p.other_child() is used
to denote the child of p that is not on the path to the deleted
node n2. Note that the above algorithm changes the nodes on
the path from n2 to n1 using the deletion algorithm from the
method delete_parent_fix and the nodes on the path
from n1 to the root of the tree using the update algorithm
from the method update_fix and is therefore correct.

E. Tree Rotation

Most balancing algorithms (e.g., the ones for AVL, red-
black, or AA trees) perform a sequence of left and/or right
rotations whenever the tree is not balanced as the result of
some operation. Here, we will describe how a right rotation
can be performed, where the code for a left rotation is
symmetric. The pseudo-code in Algorithm 8 should be called
with a parent node n2 and a right child node n1 after the
rotation around the two nodes was performed. The pseudo-
code only fixes the marker bits of n1 and n2. The descendants
of all other nodes will not change and therefore their marker
bits do not need to be updated.

F. Time Analysis for the Modification Methods

Obviously, the pseudo-code for the rotation takes constant
time. The other methods for updating marker bits visit the
updated node and possibly some of its ancestors and perform
constant number of work on each node and therefore take order
logarithmic time relative to the number of nodes in the tree.



438

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 8 rotate_right_fix(n1, n2)

1: for i← 1 to s do
2: if n1.data() ∈ Si or (n1 has left child and

n1.left().m[i] = 1) then
3: n1.m[i]← 1
4: end if
5: if n2.data() ∈ Si or (n2 has left child and

n2.left().m[i] = 1) or (n2 has right child and
n2.right().m[i] = 1) then

6: n2.m[i]← 1
7: end if
8: end for

Therefore, the extra overhead of maintaining the marker bits
will not change the asymptotic complexity of the modification
operations.

G. Search

Let us go back to our motivating example from Figure 1.
Our desire is to efficiently retrieve all rich employees in
the tree order. This can be done by repeatedly calling the
implementation of the next method from Algorithm 9. The
terminating condition is when the method returns null. The
algorithm finds the first node after n, relative to the tree order,
that has data that belongs to the set Si, where d is initially set
to false.

Algorithm 9 next(n,i,d)

1: if n.data() ∈ Si and d then
2: return n
3: end if
4: if n.left() is not the last node visited and n.left() ̸=
null and n.left().m[i] = 1 and d then

5: return next(n.left(), i, true)
6: end if
7: if n.right() is not the last node visited and

n.right() ̸= null and n.right().m[i] = 1 then
8: return next(n.right(), i, true)
9: end if

10: if n.parent() = null then
11: return null
12: end if
13: return next(n.parent(), i, d)

The algorithm first checks if the data in the current node
is in Si and d is true. Note that d becomes true when n is a
node that is after the initial node in the search tree. When both
conditions are true, we have found the resulting node and we
just need to return it. Next, we check the left child node. If we
did not just visit it and its ith bit is marked and it is after the
start node relative to the in-order tree traversal order, then the
subtree with root this node will contain a node with data in
Si that will be the resulting node. Next, we check if the right
child has its ith bit marked. This condition and the condition
that we have not visited it before guarantees that this subtree

will contain the resulting node. Finally, if nighter of the child
subtrees contain the node we are looking for, we start checking
the ancestor nodes in order until we find an ancestor that has a
right child node that we have not visited and its ith marker bit
for this child is set. We then visit this subtree because we are
guaranteed that it will contain the resulting node. Therefore,
the algorithm finds the first node after n that has data that is
in Si. Since, in the worst case, we go up a path in the search
tree and then down a path in the search tree, our worst-case
asymptotic complexity for finding the next node with data in
Si is logarithmic relative to the size of the tree, which is the
same as the asymptotic complexity of the traditional method
for finding a next element in a balanced search tree.

Next, we will consider a method that finds all the elements
in the search tree without using the next method and we will
show that this method runs in time that is proportional to the
size of the tree. Note that, in the worst case all nodes belong
to the query result and therefore we cannot do any better. The
algorithm is presented in Algorithm 10. In the method, n is
initially the root node of the search tree. Since the method
visits every node once, it runs in time that is proportional to
the size of the tree. Note that the nodes that are visited by
calling the next method multiple times are the same as the
nodes that are visited by calling the find_all method. In
both cases, the nodes in the tree are visited relative a in-order
traversal of the tree, where subtrees that have root nodes that
are unmarked are pruned out.

Algorithm 10 find_all(n,i)

1: result ← ∅
2: if n.left() ̸= null and n.left().m[i] = 1 then
3: result ← result ∪ find_all(n.left(),i)
4: end if
5: if n.m[i] = 1 then
6: result ← result ∪ {n}
7: end if
8: if n.right() ̸= null and n.right().m[i] = 1 then
9: result ← result ∪ find_all(n.right(),i)

10: end if
11: return result

Next, we will describe a search algorithm that can be used
to efficiently retrieve the elements of the search tree in an
order that this different from the search order. For starters,
we present the method previous that returns the previous
element that belongs to the set Si. The method is presented
in Algorithm 11, where d is initially set to false. Note that
the method previous is analogous to the method next. To
only difference is that it searches for an element to the left
(rather than to the right) of the current element.

Next, we present a method search that is also need in
order to retrieve the elements of the search tree in an order
that is different from the search tree order. The method has
the following properties, where we assume that the search tree
contains elements with attributes {Ai}ai=1 and that the ordering
of the tree is ⟨A1 asc, . . ., Aa asc⟩.



439

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 11 previous(n,i,d)

1: if n.data() ∈ Si and d then
2: return n
3: end if
4: if n.right() is not the last node visited and

n.right() ̸= null and n.right().m[i] = 1 and d
then

5: return previous(n.right(), i, true)
6: end if
7: if n.left() is not the last node visited and n.left() ̸=
null and n.left().m[i] = 1 then

8: return previous(n.left(), i, true)
9: end if

10: if n.parent() = null then
11: return null
12: end if
13: return previous(n.parent(), i, d)

search(A1, P1, . . ., Al, Pl, dir, r,i):

• pre-conditions: l ≤ a and r ∈ [l − 1, l].
• return value: If dir = asc (dir = desc), then this

method returns the the first (last) node n in Si, relative
to the tree order, for which:

1)
r∧

i=1

(n.data.Ai = Pi) and

2) if r < l, then n.data.Al > Pl when dir = asc and
n.data.Al < Pl when dir = desc.

The method returns null when such a node does not
exist.

The method search is used to search for the node that has
the same value for some of the attributes as the current node,
which allows us to go forward and backwards in the tree and
return the elements in the desired order. The pseudo-code for
the method when r = l is presented in Algorithm 12. Note
that we have added a node n as a parameter, which is initially
the root of the search tree. The code when dir = asc and
dir = desc are symmetric. The expression ⟨P1, . . . , Pl⟩ ≺
n returns true when Pj ≤ n.data().Aj for j ∈ [1 . . . l],
but not all inequalities are equalities. Similarly, the expression
n = ⟨P1, . . . , Pl⟩ returns true when Pj = n.data().Aj for
j ∈ [1 . . . l].

The code first checks if the element that we are searching for
is strictly in the left subtree (Lines 2-4) or in the right subtree
(Lines 5-7). Of course, the subtrees are only considered if the
appropriate marker bit is set. If both if statements fail (on
Lines 2 and 5), then the current node has values P1, . . . , Pl

for the attributes A1, . . . , Al, respectively. If there is a node in
the left subtrees with these values, then we recursively call the
method on the left subtree. Otherwise, we simply return the
current root node n. The algorithm finds the first node with
the desired property and therefore is correct. At each step,
the algorithm considers only the left or the right subtree and
therefore it runs in logarithmic time relative to the size of the
tree.

Algorithm 12 search1(n,A1, P1, . . ., Al, Pl,
dir, l,i)

1: if dir = asc then
2: if n.left() ̸= null and n.left().m[i] = 1 and

⟨P1, . . . , Pl⟩ ≺ n then
3: return search1(n.left(),A1, P1, . . .,

Al, Pl, dir, l,i)
4: end if
5: if n.right() ̸= null and n.right().m[i] = 1 and

n ≺ ⟨P1, . . . , Pl⟩ then
6: return search1(n.right(),A1, P1, . . .,

Al, Pl, dir, l,i)
7: end if
8: if n ̸= ⟨P1, . . . , Pl⟩ then
9: return null

10: end if
11: if search1(n.left(),A1, P1, . . ., Al, Pl,

dir, l,i)=null then
12: return n
13: end if
14: return search1(n.left(),A1, P1, . . .,

Al, Pl, dir, l,i)
15: end if
16: if n.right() ̸= null and n.right().m[i] = 1 and

n ≺ ⟨P1, . . . , Pl⟩ then
17: return search1(n.right(),A1, P1, . . ., Al,

Pl, dir, l,i)
18: end if
19: if n.left() ̸= null and n.left().m[i] = 1 and
⟨P1, . . . , Pl⟩ ≺ n then

20: return search1(n.left(),A1, P1, . . ., Al,
Pl, dir, l,i)

21: end if
22: if n ̸= ⟨P1, . . . , Pl⟩ then
23: return null
24: end if
25: if search1(n.right(),A1, P1, . . ., Al, Pl,

dir, l,i)=null then
26: return n
27: end if
28: return search1(n.right(),A1, P1, . . .,

Al, Pl, dir, l,i)

We will next consider the search method when r = l−1.
We will only show the code for when dir l = asc, where
the other case is symmetric. The pseudo-code is presented
in Algorithm 13. Again n is initially the root node of the
tree. The expression ⟨P1, . . . , Pl⟩ ≼ n returns true when
Pj ≤ n.data().Aj for j ∈ [1 . . . l]. The algorithm first checks
to see if the resulting node is the right subtree (Lines 2-4). If
not, then it checks the left subtree (Lines 5-7). If both options
fail, then the algorithm checks if the current root node passes
the condition. If it does, then it returns it (Line 11). If it does
not, then it returns null (Line 9). Therefore, the algorithm



440

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

finds the correct node. The algorithm runs in logarithmic time
on a balanced tree because it calls itself recursively on either
the left or right subtree, but not both.

Algorithm 13 search2(n,A1, P1, . . ., Al, Pl, dir,
r, i)

1: if dir = asc then
2: if n.right() ̸= null and n.right().m[i] = 1 and

n ≼ ⟨P1, . . . , Pl⟩ then
3: return search2(n.right(),A1, P1, . . .,

Al, Pl, dir, r,i)
4: end if
5: if n.left() ̸= null and n.left().m[i] = 1 and

search2(n.left(),A1, P1, . . ., Al, Pl, dir, r,i) ̸=
null then

6: return search2(n.left(),A1, P1, . . .,
Al, Pl, dir, r,i)

7: end if
8: if n ̸= ⟨P1, . . . , Pl−1⟩ or n.data().Al ̸≥ Pl then
9: return null

10: end if
11: return n
12: end if
13: . . .

We will next show how the elements of the search tree can
be efficiently retrieved in the order ⟨A1 dir[1], . . ., Aa dir[a]⟩
where dir[j] ∈ {asc, desc} for j ∈ [1 . . . a]. The algorithm is
presented in Algorithm 14, where the method will return only
elements that belong to the set Si. Note that the variables
{dir[i]}ai=1 are parameters to the method. However, they have
been omitted from the algorithm in order to keep the code
simpler and more understandable.

Algorithm 14 ordered_next(n,i)
1: if dir[a]=asc then
2: n′ ← next(n, i, false)
3: end if
4: if dir[a]=desc then
5: n′ ← previous(n, i, false)
6: end if
7: if n′ ̸= null and

a−1∧
i=1

(n.Ai = n′.Ai) then

8: return n′

9: end if
10: if a = 1 then
11: return null
12: end if
13: n′ ← search(A1, n.A1, . . . , Aa−1, n.Aa−1,

dir[a− 1], a− 2, i)
14: return next_up(n, n′, i, a− 1)

Note that we have used n.Aj to denote the value of
the jth attribute of the element that is stored in node n.
The method calls the next_up method, which in tern can

call the next_down method. The methods are presented in
Algorithms 15 and 16, respectively.

Algorithm 15 next_up(n,n′,i,l)
1: if n′ = null then
2: if l = 1 then
3: return null
4: end if
5: n′ ← search(A1, n.A1, . . . , Al−1, n.Al−1,

dir[l − 1], l − 2, i)
6: return next_up(n, n′, i, l − 1)
7: end if
8: return next_down(n′, i, l)

Algorithm 16 next_down(n,i,l)
1: if n = null then
2: return null
3: end if
4: if l = a then
5: return n
6: end if
7: n′ ← search(A1, n.A1, . . . , Al, n.Al, dir[l + 1], l, i)
8: return next_down(n′, i, l + 1)

Consider first Lines 1-6 of the method ordered_next.
The code first checks whether the next node n′ relative to the
order ⟨A1 dir[1], . . ., Aa−1 dir[a − 1]⟩ has the same values
for the attributed A1, . . . , Aa−1 as n. If this is the case, then
only this node needs to be returned. If this is not the case and
a = 1 (Lines 10-12), then a “next” node does not exist and
the method returns null. If this is not the case and a > 1,
then Line 13 of the code looks for the first node that has the
same value as n for the attributes {Ai}a−2

i=1 and a value for
the attribute Aa−1 that is right after the value of the attribute
Aa−1 for n. In Line 14 of the code the next_up method
is called with the element that is found in the previous line,
where the value for n′ is null when such an element does
not exist.

The method next_up looks for a node n′ that has the

property that
l−1∧
i=1

(n.Ai = n′.Ai) and the value for Al of n′

is right after the value for Al of n. When this is the case,
then the next_down method is executed. It finds the first

element in the search tree for which
l−1∧
i=1

(n.Ai = n′.Ai) holds.

This is indeed the node that needs to be returned. When n′

does not have the desired property, l is decremented by 1 and
next_up is called recursively. If l becomes equal to 0, then a
“next” tuple does not exist and the method next_up returns
null. Since the next method goes up and down a path in the
three, its running time is logarithmic.

IV. CONCLUSION AND FUTURE RESEARCH

We introduced MB-trees and showed how they are beneficial
for accessing predefined subsets of the tree elements. MB-trees



441

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

use marker bits, which add only light overhead to the different
operations and do not change the asymptotic complexity of the
operations. An obvious application of MB-trees is merging
search trees by removing redundant data, which can result
in faster updates because fewer copies of the redundant data
need to be updated. In addition, we showed how elements in
different orders can be retrieved from a search tree. Again,
the application is index merging because fewer indices can
efficiently answer the same set of queries.

One obvious area for future research is showing that the
algorithm for retrieving all the elements of a search tree
that belong to a set Si in a non-trivial order takes time that
is proportional to the size of the tree. Another contribution
would be to present algorithms that extend our algorithms to
secondary storage structures, such as B and B+ trees.

REFERENCES

[1] G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for the Orga-
nization of Information,” Soviet Math. Doklady, vol. 3, pp. 1259–1263,
1962.

[2] A. Andersson, “Balanced search trees made simple,” Workshop on Algo-
rithms and Data Structures, pp. 60–71, 1993.

[3] R. Bayer and E. McCreight, “Organization and Maintenance of Large
Ordered Indexes,” Acta Informatica, vol. 1, no. 3, 1972.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. McGraw Hill, 2002.

[5] L. Stanchev, “Efficient Access to Non-Sequential Elements of a Search
Tree,” The Third International Conference on Advances in Databases,
Knowledge, and Data Applications, DBKDA 2011, pp. 181–185, January
2011.

[6] L. Stanchev and G. Weddell, “Saving Space and Time Using Index
Merging,” Elsevier Data & Knowledge Engineering, vol. 69, no. 10, pp.
1062–1080, 2010.



442

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transactional Composition and Concurrency
Control in Disconnected Computing

Tim Lessner∗, Fritz Laux∗, Thomas Connolly†, Malcolm Crowe†
∗Fakultät Informatik, Reutlingen University, Germany, name.surname@reutlingen-university.de
†School of Computing, University of the West of Scotland, name.surname@uws.ac.uk

Abstract—Composition of software components via Web
technologies, scalability demands, and Mobile Computing has
led to a questioning of the classical transaction concept. Some
researchers have moved away from a synchronous model with
strict atomicity, consistency, isolation and durability (ACID) to
an asynchronous, disconnected one with possibly weaker ACID
properties. Ensuring consistency in disconnected environments
requires dedicated transaction support in order to control
transactional dependencies between software components
and provide a scalable concurrency control mechanism. This
paper contributes a simple expression language using Boolean
operators to define transactional dependencies and further
provides rules to derive an execution semantics that could be
exploited by a transaction manager to control the interaction.
This work also discusses the use of data classes that demarcate
data based on concurrency control related aspects and apply a
certain concurrency control mechanism to each class. Such a
classification allows better trade-off between consistency needs
and the overhead caused by the concurrency control mechanism.

Index Terms—Transaction Management; Disconnected Trans-
action Management; Advanced Transaction Models; Concur-
rency Control; Optimistic Concurrency Control; Semantic Con-
currency Control

I. INTRODUCTION

The last few years have shown a need for mechanisms
and technologies to easily compose scalable and everywhere
available applications. Service Oriented Computing (SOC),
specifically the composition of services as well as the au-
tomated execution of business processes, Cloud Computing,
using infrastructure services via the Web in a pay as you need
manner, and the growth in Mobile Computing solutions, avail-
able everywhere, all represent aspects of this development.
In [1] we have presented our first idea of an optimistic and
disconnected transaction model that supports local autonomy
of software components – a key characteristic of SOC and
Mobile Computing

The challenge for transaction management is to provide
scalable mechanisms that ensure that data stays consistent
across local boundaries between departments or even com-
panies while the boundaries of transactions grow with the
integration of new services –and their software components–
to build new composite applications. In its widest form, data
must be maintained consistently across several world wide
distributed physical nodes due to availability demands and thus
scalability is a key issue. Data often needs to be modified even
if the connection is temporarily lost.

To facilitate loose coupling and increase autonomy, data
should be modified in a disconnected and not in an online
manner. This means that the set of proposed modifications
to data is prepared offline and written back using a different
set of transactions and not the same transactions that have
been executed to read the data. This copes also well with
the asynchronous message exchange that takes place in such
an architecture. Data access is asynchronous too. In such an
architecture, the traditional mechanism to keep locks on a
database until the transaction has finished is no longer prac-
tical for the entire interaction. A locking isolation protocol,
for instance, where other concurrent transactions read only
committed results is not reasonable as it leads to long blocking
time caused by the governing application’s duration and the
asynchronous message exchange.

Mobile Computing requires solutions for offline data pro-
cessing despite the fast distribution and coverage of the mobile
Web. Disconnected situations are frequent and users should be
able to keep their data locally and synchronise the modifica-
tions back afterwards. Essentially, the circumstances in Mobile
Computing are similar to that of SOC in that autonomy of
software components is required including autonomy over the
data they process.

A disconnected approach overcomes this challenge at the
price of weakened isolation. The drawback of a weakened
isolation is that other transactions can read pending results,
which increases the danger for data to become inconsistent.
To ensure consistency a validation must take place between
(i) the phase a component (application) reads and modifies
data locally and (ii) the phase the modifications are eventually
written – merged with the database. Any transaction that is
allowed to make an unverified change to data must specify
a compensation transaction for restoring consistency if the
process needs to be semantically undone later. For transactions
that cannot specify a compensation it is therefore prohibited
to make unverified changes.

Replication mechanisms that intend to increase the avail-
ability of data must scale and ensure that consistency of the
different replicas is at least achieved eventually. An Eager
replication [2] mechanism does not scale for highly repli-
cated systems whereas lazy replication does, at the price that
modifications of a transaction are not synchronised within the
boundary of that transaction. Combining eager replication with
a “master-slave” dissemination protocol scales and replicas
can be made to converge within the transaction boundary [2].



443

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

But, in general, designing a highly replicated system requires
a trade-off between the costs for consistency and scalability
and thus availability [3], [4]. For some data, a mechanism
for eventual convergence of replicas is sufficient, however,
other data might require a much stronger consistency, possibly
serializability. Some applications possibly require real-time
behaviour, others may live with moderate availability. Recent
research [3] shows that adaptive concurrency control based
on a classification of data, leads to a better cost benefit ratio
than one concurrency control to fit all needs. Thus, these
considerations lead to a spectrum of different concurrency
control protocols starting with no consistency at all and ending
up with serializability.

The above review identifies the following characteristics of
transactions that lead to complex transaction management:

1) Composition (dynamic): heterogeneous and autonomous
software components represented as services are loosely
coupled to create new composite applications. Due to
the composition, transactional dependencies among the
components arise.

2) Long-living nature: whereas the actual operations to read
data and write modifications to the database are short
lived1, the overlying application (e.g., workflow) has a
long-living nature. The result is a discrepancy between
the time and the extent to which the physical operations
(reads and writes) need ACID and the time the governing
long-living application does. Isolation and consistency
apply to both the read and the write phase of the
application. However, compensation defeats durability.

3) Replication: nodes are physically distributed and repli-
cation must ensure that replicas converge depending on
the data’s semantics.

4) Disconnection: mobility requires disconnected transac-
tion processing because of physical unavailability of the
network connection. Also, to facilitate loose coupling,
increased local autonomy is helpful to ease composition
and due to an asynchronous message exchange, the set
of proposed modifications to data is prepared offline
for a later transacted sequence of operations on sepa-
rate database connections. Notice, the long-living nature
requires disconnected processing of data too, because
keeping locks for the entire duration of the governing
application would significantly reduce the concurrency.

In this paper, the focus is not on replication. We focus on
composite, long-living, and disconnected transactions based
on our first considerations published in [1]. We have removed
much of the terminological overhead, and clearly demarcate
concepts. One part specifically focuses on the transactional
composition of transactions in a formalised manner using
Boolean algebra (see Section III-B). We also added a section
(see Section III-D) that deals with the classification of data
based on the data’s concurrency control (CC) properties and

1Molina et al. [5] state that to precisely classify a transaction as either
short or long living is complicated. They define a transaction as long living
if to lock data for the transaction’s duration leads to an undesired decreased
concurrency or even thrashing.

a different CC mechanism is applied to each class. The
classification has been inspired by [3], [6]. We present a simple
reference architecture (Section II), where we also introduce
our idea of a “Disconnected Component”. In Section IV, we
present some existing transaction models and mechanisms as
part of the related work, before Section V concludes this paper
and outlines our future work.

II. ARCHITECTURE

We start by introducing a simple reference architecture (see
Figure 1) that consists of three levels: database, middleware,
and application level.

Database systems reside at the database level and they might
be highly distributed as well as replicated. Also heteroge-
neous database federations, so called Multi-Database Systems
(MDBS) [7], can exist. In an abstract view, the entire database
level must be represented as one MDBS. Moreover, since
mobile applications are also part of our architecture and mobile
applications can use the mobile platform’s database to increase
their local autonomy to cope with frequent disconnections, the
database can be logically also considered as a “Mobile MDBS”
according to [8].

The middleware provides data access and owing to the
assumed disconnected and asynchronous nature, data is read,
copied, modified and synchronised back in a sequence of
different independent transactions. A component (see Section
II-A) starts a transaction (or a number of transactions) to
read the data, disconnects, and locally modifies the data. After
the modifications have been performed locally, the component
sends just the changes back and based on these changes the
middleware executes transactions to write the modifications.
The middleware is allowed to use locks for reading and writing
data from or to the database. Transactions in middleware
and database layers are short-lived and locking is feasible,
while retaining locks for the entire duration of the governing
application is not practical.

The middleware plays a key role in this architecture. On
the one hand it provides data access, on the other hand it
has the role of a coordinator. Long running and hierarchically
structured transactions involving many distributed, loosely
coupled, heterogeneous, and autonomous systems require co-
ordination. Also, interactions with external applications require
transactional consistency. However, the middleware cannot
enforce consistency of external systems. Often components
are hosted by the middleware and composed together to build
new applications as in SOC.

Application level refers to any component that implements
concrete business logic. Components may also ship with their
own, possibly replicated, database to increase their autonomy
(see the “Composition Autonomy Pattern” in [9], for example).
Mobile components are part of our reference architecture too.
From a transactional point of view we do not believe that
mobile components differ from stationary ones because both
types of components have to cope with disconnection. For the
remainder of this paper, we refer to a disconnected component



444

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as a software component or just a component if the context is
obvious.

The outer surrounding box in Figure 1 represents a trans-
actional integration of components across the different levels.

A. Disconnected Component

An application consists of several software components that
are either locally or remotely accessed. A component starts a
number of transactions whereas the set of transactions to read
the data is different from the set of transactions to eventually
write the modifications. A component is defined to be either
in its read, disconnected and working, or write phase, which
is similar to Meyer’s “Command Query Separation” pattern
[10]. Figure 2 illustrates the idea.

To ensure consistency, the transition from disconnected
and working to write requires validation. This validation is
performed by a transaction manager but a component must
ensure that the set of changes is passed to the transaction
manager indicating at least the values or version read, and the
new values of data. Technically, this means a component needs
some book keeping functionality as defined in the Service Data
Object (SDO) framework [11], for instance.

Components are allowed to call other component(s) to read
data or to pass their modifications. Components used within
a phase are said to be within this phase. Inside a component,
the execution of flat transactions or calls to other components
is not arbitrary and the implementation reflects an order in
which execution takes place. We require a component to define
this order if not defined elsewhere, e.g., by a workflow. Using
another component is also represented as a transaction because
these calls are transactional too. Their state is made persistent
by writing the messages a component sends and receives to
non-volatile memory. This concept is also known as persistent
queuing. If each component specifies an order of execution, a
composition order is the union of all the components’ orders.
If the read and write phases are separate, each component has
to define two separate orders, one for the read and one for the
write phase.

The Sagas [12] model discusses the notion of compensation
to semantically undo the effects of long running transactions.
Compensation has been introduced to cope with the
requirement for weak isolation that arises if several
transactions form a long living process but each of the sub-
transactions is allowed to commit. Under this circumstance
other transactions may read pending results. In case the
transaction aborts, already committed sub-transactions
need to be undone, which is only possible by executing a
compensation, e.g., to cancel a flight is the compensation of
booking a flight. If a sub-transaction is not compensatable,
it is not allowed to unilaterally commit. The sub-transaction
needs to pre-commit (promise) and wait for the global
commit. If the global outcome is abort, the sub-transaction
needs to rollback (there is no compensation). Compensation
is discussed in Section III and here it is sufficient to introduce
a compensation handler that points to another component that
can implement the compensation.

DEFINITION II.1: (Disconnected Component):
A disconnected component is defined as a quintuplet dc :=

(T r, Tw, Or, Ow, dc−1) with
1) a set of transactions T r to read data,
2) a set of transactions Tw to write modifications,
3) a partial order for reading: Or = (V r, Ee) with V r ⊆

T r and the set of edges Er is defined as ∀tn, to ∈ V r :
tn → to ⇔ e ∈ Ew with e = (tn, to). Transactions
that do not belong to the subset V r are said to be free
transactions and hence can be executed in any order.

4) another partial order for writing: Ow be another partial
order Ow = (V w, Ew) with V w ≡ Tw and the set of
edges Ew is defined as ∀tn, to ∈ V w : tn → to ⇔ e ∈
Ew with e = (tn, to). Transactions that do not belong to
the subset V w are said to be free transactions and hence
can be executed in any order.

5) a compensation handler of dc.

If dc executes transactions T r, it is in its read phase and if
it executes transactions Tw it is in its write phase. Between
these phases dc is in its disconnected and working phase. The
write phase is not required for components that only read data.

The next section introduces the disconnected transaction
model and provides a detailed definition for a transaction.
A recursive model for transactional composition is the sub-
ject of this section too. The composition of disconnected
components is eventually a composition of transactions. The
resulting transactional dependency between two components
is important and we provide a general applicable notion for
them (see Section III-B).

III. TRANSACTION MODEL

The transaction model presented in this section is structured
as follows: first, a general definition for a disconnected flat
transaction is provided. The next part focuses on the compo-
sition of flat transactions and how to formalise the resulting
transactional dependencies based on a Boolean expression.
Based on such an expression, the third part discusses how to
derive the execution structure of a composite transaction. The
fourth part discusses different concurrency control protocols
with a focus on optimistic and semantics based concurrency
control (CC) mechanisms and defines different data classes
according to the discussed CC mechanisms. This is the “Data
View” of this model and its purpose is to demarcate data based
on CC properties.

A. Disconnected, Flat Transaction

Our transaction model starts with the smallest unit: a flat
transaction, the key building block. The following definition
is based on the definition by Weikum and Vossen ([4],p.46)
for a flat transaction.



445

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1: Architecture

Fig. 2: Structure and composition of a dc. Dashed arrows show the data flow between the phases (shown by their related sets
of transactions T r, Tw) and upwards in the composition.



446

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DEFINITION III.1: (Disconnected Flat Transaction I):
1) Let t be a flat transaction that is defined as a pair t =

(op,<) where op is a finite set of steps of the form r(x)
or w(x) and < ⊆ op× op is a partial order.

2) A transaction is either in its reading (p1), disconnected
and working (p2), validating (p3), or writing (p4) phase.
The write phase is not required for read only transac-
tions.

Section “Architecture” states that a software component uses
different transactions to read and write data. This, however,
requires a validation to ensure consistency. These phases have
been introduced to avoid locking and support disconnection.
They are similar to what is known as Optimistic Concur-
rency Control (OCC) [13], [14]. The only formally motivated
difference is the explicit disconnected and working phase
(p2). Usually, in the original OCC model, the actual work
is done within the read phase. “The body of the user-written
transaction is in fact the read phase [...]” [13]. Since we do
not believe that Kung’s reduction represents the actual phases
of a disconnected transaction, these phases are made more
explicit in our model. Later (see Section III-D) we introduce
data classes and apply a certain CC mechanism. In this
section also the phases, especially validation, are thoroughly
discussed.

The next step is to provide a general notion for the com-
position of flat transactions. The idea is to consider a set of
flat transactions and define their composition by a Boolean
expression and based on this expression to derive an execution
structure. The last step is to transform the model into a
recursive model. With this recursive model in hand we have a
general notion for the transactional composition or integration
of software components too.

B. Composition of Transactions and Transactional Dependen-
cies

In complex transaction processing scenarios, such as dis-
tributed or workflow transactions, the “Degree of Transaction
Autonomy” [15] can be expressed by transactional dependen-
cies.

One well known example is a distributed commit where, for
example, two transactions have to either bilaterally commit or
abort. This creates a transactional dependency between the
transactions so that their autonomy is weak (becomes part
of interpretation). In another situation, however, it might be
possible that a transaction is allowed to commit even if other
dependent transactions abort and the autonomy of this first
transaction is high because it is independent of the others’
outcome.

Consider, for example, a transactional workflow like the
booking of a journey with several acceptable outcomes. The
workflow consists of the booking of a hotel, a flight, and the
booking of either a train or a car for a trip at the destination.
So the satisfaction is that the booking of the hotel and the
flight must succeed, whereas for the booking of the train or

the car the allowed outcome is either the first or the second.
Thus, it is required that only the first two transactions commit,
whereas for the later ones only one is allowed to commit. In
an auction, for example, where a user wants to purchase three
items, it could be acceptable to buy just one, two, or all of
them. Both examples show that applications can have different
acceptable outcomes, a so called satisfaction.

Transactional dependencies have been investigated in the
domain of nested and advanced transaction processing [7],
[16], [17] where a parent, for example, depends on the commit
or abort of its children – a property known as “vitality of a
child”. The opposite is known as “dependency of a child”;
that is, a child depends on the commit of its parent. Notice,
vitality and dependency affect the A of ACID.

The next section analyses transactional dependencies de-
fined by a Boolean expression. We believe this is a useful
reduction that makes transactional dependencies computable,
and offers an execution structure.

1) Satisfaction of a Transaction: To represent transac-
tional dependencies it is sufficient to define a satisfactory
(acceptable) outcome for a set of transactions. For exam-
ple, one satisfaction sf for T = {t1, t2, t3} could be
sf1 = (c(t1), c(t2), c(t3)) another sf2(c(t1), a(t2), a(t3))
with c:=commit and a:=abort. Now, if after an execution of
T (assumed, for example, a parallel one) one of the possible
outcomes matches with the pre-defined outcomes sf1 or sf2,
T can be committed. If not, T needs to be aborted and all
(committed) t ∈ T must be rolled back or compensated if
committed already.

Another way of representing a satisfactory outcome uses
Boolean expressions and interpret true as commit and false
as abort. For example, the satisfactory outcome sf for T =
{t1, t2, t3} could be sf = (t1∧t2∨t3). For T = {t4, t5, t6, t7}
the satisfactory outcome could be sf = (t1 ∨ (t2 ∧ (t3 ∨ t4))).
Boolean expressions can express a nested behaviour, which
is a key requirement to model transactional dependencies.
Another benefit of Boolean expressions is that they can be
verified. Boolean expressions would at least allow to compute
the “Satisfiability” (SAT) or “Validity” of the expression
itself. This information makes it easier to reason about the
correctness of transactional dependencies.

DEFINITION III.2 (Satisfaction of transactions):
1) Let Tk = {t1, . . . , tn} be a finite set of t where Tk ⊆ T

is a subset of the superset T of all transactions.
2) The set of satisfactory outcomes defining all ac-

ceptable outcomes for T is defined as: SF (T ) =
{sf1(T1), . . . , sfj(Tk)} with sf(Tk) = expr.

3) Let
expr := (expr) op (expr)
expr := c(t) | a(t)
op := ∧ | ∨ | ⊕ | pl | pr

4) v : TRUE 7→ c(t) and v : FALSE 7→ a(t) with c(t)
being the commit and a(t) the abort of a transaction.

5) Let OUT (T ) = {out(t1), . . . , out(ti)} be the set of the



447

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

atomic transactions’ outcomes after transaction process-
ing with out(t) ∈ {c(t), a(t)}.

6) Let σ : (OUT (T ), sf(T )) 7→ s(T ), with state s(T ) =
c(T ) or a(T ), commit or abort of a set of transactions
T . Each out(ti) is mapped to the according occurrence
in each expr. Validation function σ validates each expr.

Concerning the number of allowed operators op compared
to the number of Boolean operators, the number of allowed
operators is limited to “AND” ∧, “OR” ∨, “XOR” ⊕, and the
two projections pl, pr. See Table I for a complete overview.

1) Operator ∧: The logical “AND” is a common case and
only if both transactions commit, the result is committed.

2) Operator ∨: The logical “OR” represents the situation
where it is sufficient if at least one of the transactions
commits.

3) Operator ⊕: The logical XOR where exactly one trans-
action is allowed to commit.

4) Operators pl, pr are projections and discussed as well as
defined (see Definition III.3) below.

Other Boolean operators are less reasonable with respect to
transactional dependencies. Implication, for example, would
mean that the abort of two transactions, i.e., f → f = t
validates to true even if the transactional system’s state has
not changed. Generally, operators validating abort and abort
(false and false) to true are less reasonable. Except the “XOR”,
operators that validate commit and commit to false are less
reasonable for the same reason. Generally, the semantics of the
logic is that the abort of a transaction is not a correct result,
even though it is consistent. Although the “XOR” operator is
an exception, it is required because in some scenarios only
one of two transactions is allowed to commit (book either the
train or rent a car; buy either this item or the other).

The “NOT” operator is not listed in Table I. To define the
satisfaction of a transaction as not commit (=abort) means
the processing of the transactions is not intended at all. For
example, the expression expr = t1 ∧¬t2 states that a commit
of t1 and an abort of t2 is satisfying. This expression is
equivalent to expr = t1 because to start the execution of
t2 with the goal to let t2 abort is not correct. To model a
transaction with the intention to let the transaction abort is not
reasonable. Even in a situation, for example, to test a system
with the intention to throw an exception, the general semantics
of a transaction requires the transaction to commit to throw the
exception. The ambiguity with this operator is that for a single
transaction t, the possible outcome is indeed expr = t⊕ ¬t.

To resolve this ambiguity and to comply with the correctness
semantics of a transaction, the “NOT” operator is not allowed
in expressions, but in case an expression needs to be optimised
for validation and therefore transformed into a conjunctive
or disjunctive normal form the “NOT” operator might be
required. For instance, expression a ⊕ b can be transformed
into the disjunctive normal form a⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b)

The function v maps true (T ) to the commit of a transaction
and false (F ) to abort.

TABLE I: Operators for transactional dependencies.

# ti tj ∧ ∨ ⊕ pl pr
1 c c c c a c c
2 c a a c c c a
3 a c a c c a c
4 a a a a a a a

To perform a validation OUT (Tk) represents the set of
outcomes of atomic transactions Tk. Based on these outcomes,
the outcomes of composed transactions Tk are computable.
Regarding σ it is important that the state after validation
is actually pending since the final outcome might not be
determinable yet as it possibly depends on the validation of
other dependent Tl.

The projections pl and pr represent a transactional depen-
dency where the outcome (result) of one transaction (operand)
supersedes the other. For pl the left argument supersedes the
right, for pr the right supersedes the left (see Table I).

Special cases of transactional dependencies have been inves-
tigated already and are known as “vitality” or “dependency” of
a transaction. A transaction is said to be vital if its abort leads
the parent transaction to abort too. Non-vital if the child’s abort
does not affect the parent. A transaction is said to depend on
the parent, if the parent’s abort leads the child to abort too. If
not, the transaction is said to be independent.

DEFINITION III.3 (Projection operators): Let the left argu-
ment of a projection be the parent and the right argument
be the child. Then, according to the notions of vitality and
dependency let projection pl be a combination of non-vital and
dependent and let pr be a combination of vital and dependent.

Projection pl is non-vital because even if the child (right
operand) aborts the outcome is still commit. It is dependent
because if the parent (left operand) aborts the global outcome
is abort and the child must be rolled back. The interpretation
of pr is accordingly.

It is also possible to define an interpretation for the other
operators according to the notions of vitality and dependency.
Table II shows the possible combinations of vitality and
dependency and how they map to the operators. Notice that
only mixed outcomes are shown in the table as vitality and
dependency relate to mixed outcomes only. The only exception
–again– is the “XOR” operator because the behaviour is
different in case both transactions commit, as discussed above,
and vitality as well as dependency are not directly applicable to
the “XOR” operator. Notice, our model subsumes the notions
of vitality and dependency.

Strictness (see Table II), which is given if one of the
concepts is dependent or vital, describes the autonomy of a
transaction and a strict operator represents a weak autonomy
whereas a non-strict operator represents autonomy. Although
vitality and dependency are not applicable to “XOR”, it is
strict because the transactions are abort dependent. If both



448

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can commit, both have to abort.
Concerning the validation of an expression, the projection

operators have an interesting property. For example, consider
the expression expr = t1 pl (t2 ∨ (t3 ∧ t4)). If expr is
reduced to expr = expr1 pl expr2 where expr1 = t1 and
expr2 = (t2 ∨ (t3 ∧ t4)) it can be shown that in each possible
distinct permutation of true and false, the outcome of expr1
supersedes expr2 (see Table I). Thus, there is a dominant part
and projection operators (both operators show this behaviour)
should be validated first and the remaining non-dominant part
needs not to be considered for validation.

Based on the observations so far, the precedence, associa-
tivity, and commutativity can be defined as in Definition III.4.

DEFINITION III.4 (Precedence, Associativity, and Commuta-
tivity): The operator precedence is defined from high to low
as follows: projections pl and pr, conjunction ∧, disjunction
∨, and XOR ⊕. The associativity convention is that operators
associate to the right.

LEMMA 1: The projections pl and pr are not commutative.

Proof: By contradiction. Suppose the projections pl and
pr are commutative. Given an expression expri pl exprj and
let expri validate to true and exprj to false, hence the global
result is commit (true). Due to commutativity the global result
is commit too, if exprj commits and expri aborts. As shown
in Table I this is not true and the result is abort in case expri
aborts and exprj commits. Since the proof for expri pr exprj
is equivalent, the projections are not commutative.

Regarding projections and validation, an expression can be
reduced and nondominant parts can be skipped for validation.
Figure 3 shows two example syntax trees. In the first example
the expression expr = (t1 ∨ t2) ∧ (t3 ⊕ (t4 pl (t5 pr t6)))
is reduced to expr′ = (t1 ∨ t2) ∧ (t3 ⊕ t4). Part (t5 pr t6)
is nondominant and does not affect the global outcome.
Similarly, the expression expr = (t1∨t2) pr (t3⊕(t4∧t5∧t6))
is reducible to expr′ = (t3 ⊕ (t4 ∧ t5 ∧ t6)).

DEFINITION III.5 (Reducibility of Projections): In a projec-
tion the argument that is not projected is called non-dominant.
For expri pl exprj the non-dominant part is expri, for
expri pr exprj it is exprj .

LEMMA 2: For validation, an expression expr can be reduced
by all nondominant expressions

Proof: By contradiction. Given an expression
expri pl exprj 6= expri. From Table I it follows directly that
this is not possible.

∧

∨

t1 t2

⊕

t3 pl

t4 pr

t5 t6

(a)

∧

∨

t1 t2

⊕

t3 t4

(b)

pr

∨

t1 t2

⊕

t3 ∧

t4 ∧

t5 t6

(c)

⊕

t3 ∧

t4 ∧

t5 t6

(d)

Fig. 3: (a) Complete and (b) reduced syntax tree of expr =
(t1 ∨ t2) ∧ (t3 ⊕ (t4 pl (t5 pr t6))). (c) Complete and (d)
reduced syntax tree of expr = (t1∨ t2) pr (t3⊕ (t4∧ t5∧ t6))

So far, a representation for transactional dependencies using
a reduced Boolean algebra has been introduced as well as
the required validation rules. The next step is to define the
“Execution Structure” with respect to atomicity.

C. Execution Structure - Atomicity

Operators link transactions and define their transactional de-
pendency, but to ensure atomicity as defined by a satisfaction
expression requires some additional measures. For example,
what is additionally required if two transactions state a strong
dependency indicated by the ∧ operator? What is required
if two transactions are linked by a projection operator? The
idea here is to derive the “Execution Structure” from the sf
function.

For example, given the expression sf = t1 ∧ t2 requires an
atomic commitment, a 2PC for instance, because both have
to commit or abort. Usually, either t1 or t2 plays the role of
the 2PC coordinator or an additional instance fulfils this role.
But, in either case this additional measure of a coordinator is
neither represented by t1 nor by t2. The operator, the ∧ in
this example, indicates the measure that needs to be taken,
namely, to ensure that both transactions belong to the same
composite transaction, which only commits if both children do.
Technically, a transaction manager needs to create a context (a
composite or boundary) to coordinate the interaction among



449

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: Operators, Vitality, and Dependency.

op ti tj vitality, dependency strictness
∧ c a a tj is vital for ti strict
∧ a c a tj depends on ti

∨ c a c tj is non-vital for ti non-strict
∨ a c c tj is independent from ti

⊕ c c a - strict
⊕ c a c -
⊕ a c c -
pl c a c tj is non-vital for ti strict
pl a c a tj is dependent from ti

pr c a a tj is vital for ti strict
pr a c c tj is independent from ti

transactions. Transactional context is a rather implementation
related concept to ensure that each transaction is within the
same boundary, i.e., has the same context, e.g., transaction
id or possibly shared data. It is further possible to define
an atomic completion (Atomic Sphere [18]) for a context.
The boundary in turn demarcates a composite of transactions
and may be a sub-transaction in a larger context. This should
become clear if an application involving several transactions
is modelled as a recursive tree.

So, deriving the composite structure means deriving the
atomicity related execution semantics for the operators and
the result is the actual execution structure itself. For example,
sf = t1 ∧ t2 technically (which measures need to be taken
to ensure atomicity) means TA = (t1, t2) where TA is a
composite requiring an atomic outcome.

Before providing a definition for the derivation, the idea for
the definition is motivated first.

One motivation for a demarcation of sub-transactions is as
follows: Let us assume that an application is not divided into
sub-transactions and represented as one transaction instead.
Then the entire transaction needs to be processed as one
unit of work, which increases the blocking time (in case
locking schema concurrency control protocols are used) of
resources due to the fact that more things need to be processed
within one atomic step. In case OCC is used resources are
not blocked, however, the problem is still the aforementioned
discrepancy between the time the transaction lasts and the
probability of conflicts (the longer the transaction lasts, the
higher the conflict probability). If sub-transactions could be
demarcated though, these units could be processed individually
and interleaved with others to increase the concurrency. The
price in turn is that to individually process sub-transactions
leads to a weakened atomicity because some sub-transactions
possibly have committed before the entire global transaction
has terminated. In case the global transaction aborts, already
committed sub-transactions need to be compensated. This is
only possible if compensations for the already committed
sub-transactions exist2. Compensation can be interpreted as
a necessity to conform to reality like the cancellation of a

2Depending on the isolation (open or closed, see next section) a child’s
result might be visible to all transactions or just the parent. In the latter case
the commit of the parent publishes its children’s results.

booked flight. Here, we are only interested in motivating our
idea, which is based on the notion of compensation, so just
the basics are discussed. For further details on compensation,
see Garcia Molina [12] and Leymann [19].

A sub-transaction (ST) is allowed to unilaterally commit
if: (i) a compensation for ST exists. If the component is a
composite, a compensation for each member must exist; (ii)
in case some members have no compensation, these members
must be free of effects (e.g., read-only transactions are free of
effects). If neither (i) nor (ii) holds, then a unilateral commit
is not possible as long as the global outcome has not been
determined. The outcome is determined if the satisfaction
has been validated, but as long as the outcome has not been
determined, the ST is in state “pre–commit” – a promise to
eventually commit. An abort is always final and in case the
global outcome is abort (satisfaction is false), each committed
or pre-committed ST must compensate or abort and release
its state (“State Release”). In case the global outcome is
commit, each ST can retain its state (“State Retention”), also
the aborted ones.

Applying the idea of “State Retention” and “State Release”
to the operators, it follows that only the non-strict operator (see
Table II) retains its state independent of the global outcome.
The reason is the “OR” explicitly represents a transactional
dependency where one of the transactions is allowed to abort
although the global outcome is commit. This in turn means that
transactions linked with the non-strict operator do not require
to belong to the same directly higher ordered transaction
(composite). Notice that due to the recursive nature they
might be part of some higher ordered transaction (composite).
Regarding strict operators, a situation is given where one of the
sub-transactions commits even though the outcome is abort.
Therefore, the committed transaction has to release its state
and strict operators always require the same directly higher
ordered transaction (composite) for their linked transactions.

First we define a composite transaction as follows:

DEFINITION III.6: (Composite Transaction) Let Ti ∈
{ta, TA} be either a flat transaction ta or a composite

transaction TA where TA :=
m⋃
i=1

Ti.



450

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Notice, this is a re-definition of t and T . From now on,
ta represents a flat transaction as defined in Definition III.1.
Since T might be either a flat transaction or a composite, the
model is recursive.

Next, we define the derivation of a composite as follows:

DEFINITION III.7 (Derivation of the execution structure):
Given an expression Ti op Tj with op ∈ {∧,⊕, pl, pr} it
follows that Ti, Tj are part of a higher (parent) TA with
Ti, Tj ∈ TA. TA is called a derived composite transaction.

EXAMPLE III.1: Given the following expression:
sf = ((ta1 ∧ ta2) ∨ ta3 ∨ (ta4 ∧ ta5) ∨ ta6 ∨ (ta7 ∧ ta8))⊕
(ta9 ∧ (ta10 prl ta11)).
Applying the rule from Definition III.7 the following structure
is derived:
Due to the ⊕:

TA = {TA1, TA2} (1)

Applying the rules on TA1:

TA1,1 = {ta11, ta10}, TA1,2 = {TA1, ta9} (2)
TA1 = TA1,2

Applying the rules on TA2:

TA2,1 = {ta8, ta7}, TA2,2 = {ta6} (3)
TA2,3 = {ta5, ta4}, TA2,4 = {ta3}

TA2,5 = {ta2, ta1}
TA2 = {TA2,1, ta6, TA2,3, ta3, TA2,5}

It is important to understand that none of the TA actually
exists during the time the sf has been defined. A TA is
a derived composite to ensure the atomic outcome of its
components, its nature is purely technical, and it is created
at the time the expression is validated.

Notice, in Example III.1 we can just write T instead of
ta and leave the actual type (TA or ta) open because of the
recursive nature.

The next step is to consider the situation in which a Ti exists
more than once within the same sf . As said, the difference
between a derived composite TA and a T is that TA is
a transactional context, whereas a T exists with respect to
a functional requirement. Assume, for example, given the
following expression sf = (T1 ∧ T2) ∨ (T1 ∧ T3). After the
derivation of the composite structure we have TA1 = {T1, T2}
and T2 = {T1, T3}. This means even if T1 actually exists only
once, the derived execution structure states it belongs to two
different composites. This could be problematic, namely in
case T3 aborts T1 has to abort too, and since T1 belongs also
to TA1, TA2 has to abort too. Thus, T2 is not independent of
T3 and both composites need to be aggregated.

Another reason is that a satisfaction sf may have the
structure sf = sf1∨sf2 . . .∨sfi to model different acceptable

outcomes – a key requirement especially when dealing with
compensation. For example, expr = (T1 ∧ T2)∨ (T1 ∧ T−11 ∧
T2 ∧ T−12 ) where T−1i represents a compensation of Ti. Due
to the rule in Definition III.7 each ∨ operator leads to the
creation of its own boundary, which means there are eventually
different representations for the same sf . There are different
execution paths –this is why a satisfaction is required– but
there is one execution structure only.

DEFINITION III.8 (Union of derived composites): Whenever
two derived composites TA interleave, TAi ∩ TAj 6= ∅, they
have to be joined. Formally, the transitive closure is defined

as TA′+ =
o⋃

n>0
where TA′n = TA′n−1 ∪ {(Ti, Tk) | ∃ Tj :

(Ti, Tj) ∈ TAn−1 ∧ (Tj , Tk) ∈ TAn−1}, i 6= j 6= k.

EXAMPLE III.2: Given the following expression:
sf = T1∧T2∨(T3∨T4)∧(T5∨T6∨(T7∧T8⊕T9∧T10 prl T1)).
Applying the rule from Definition III.7 and III.8 the following
structure is derived:

TA1 = {T3, T4, T5, T6, T7, T8, T9, T10, T1}, (1)
TA2 = {T1, T2}

TA1 ∩ TA2 = T1 ⇒ TAx = {T1, . . . , T10} (2)

As shown, the entire expression requires one derived compos-
ite TAx to control the execution.

EXAMPLE III.3: Given the following expression:
sf = (T1∧T2∨T3)∨ (T4∧T5∨T6)∨ (T1∧T7). Applying the
rule from Definition III.8 recursively the following structure
is derived:

TA1 = {T1, T7} (1)
TA2 = {TA2,1, TA2,2} (2)

TA2,1 = {T6}, T2,2 = {T4, T5}
TA3 = {TA3,1, TA3,2} (3)

TA3,1 = {T3}, T3,2 = {T1, T2}
TA1 ∩ TA3 = T1 ⇒ TAx = {T1, T2, T3, T7} (4)

As shown, the entire expression requires two derived compos-
ites TA1 and TAx to control the execution.

Example III.3 defines the allowed outcomes and based on
the sf , an execution structure is derived. The result are two
derived composites TA1 and TAx, which means, that there
are two independent composites. Assumed, the sf stands for a
workflow, a representation of the workflow itself is missing. To
represent this, a root composite TAR needs to be created. So
the actual execution structure of sf is: TAR := (TA1, TAx).
Notice, a root composite is only required if there are more than



451

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one derived composites after the last step of the recursion. We
come back to the root composite briefly.

The next step is to provide a definition for an atomic
completion protocol of a derived composite TA according to
the “Open Nested Transaction Model” [20].

DEFINITION III.9 (Atomic completion): Each member T of
a derived composite TA (except the root) has to retain its state
in case the outcome of TA is commit. In case the outcome
of TA is abort, T has to release its state by either rolling
back if T is in state pre-commit or by compensation if T has
locally committed already. T is only allowed to unilaterally
and locally commit if it has a compensation T−1. A transaction
retains its state by a local commit, which is only required if
no T−1 exists. TA′ is aborted if all T have released its state
in the opposite order.

The reason why the root has been excluded in Definition
III.9 is that the root is only required if there are more than
two derived TA left after the last step of recursively applying
the rules. This can happen only if independent TA exist, which
in turn means even in case one TA aborts the other may still
commit and retain its state. TAR serves a different need and
technically it just reflects the results of all TA and hence all
T .

An execution order of transactions has not been considered
yet. The reason is that an execution order for transactions is
usually given by the application’s implementation. Sometimes
the order is applied externally to an application, for example,
a workflow model could define the execution order. For our
model it is just important that the order is accessible by the
transaction manager to perform compensation if required. The
order has been defined in Definition II.1.

Summarising this section, based on a sf for a set of transac-
tions it is possible to derive an execution structure. The result
are derived composite transactions that are technically required
to ensure an atomic outcome (compensation is semantically
equivalent to an atomic outcome) as defined by the sf .

The next section focuses on Data Classes and concurrency
control related aspects. Whereas transactional dependencies
affect the atomicity, consistency and isolation are subject of
the next section.

D. Data Classes

As said in the Introduction already, disconnected data
processing requires a non blocking mechanism that is able
to ensure a strong consistency where the state of the data
modified by a transaction has not changed during the execu-
tion – the so called isolation property –. Locking over the
entire lifetime of the governing application is an inadequate
solution. The problem with locking lies specifically in the
long duration and the longer the transaction lasts, the longer
the data is locked, and the less is the concurrency because
other transactions cannot obtain any locks for this data.

Additionally, the longer the transaction lasts the higher is
the probability that the transaction might fail. A proper time
out setting must be considered as complicated because the
database is left unaware about the intended duration of the
application including the user interaction. Notice, even when
using locking separately for the transaction(s) reading data and
the one(s) writing modifications, inconsistencies might still
arise because the transaction(s) to read and the transaction(s)
to eventually write the modifications are logically independent.
Another reason why locking is inadequate is for applications
running on mobile devices. In mobile computing, network
fragmentation and the resulting disconnection is considered
as “being normal”.

OCC is a solution for this issue. However, the problem with
OCC is the discrepancy between the time a transaction lasts
and the probability of of others wanting to modify the data.
This is specifically crucial for update intensive entities –so
called “Hot Spot Fields”.

To provide consistency for fields that are subjected to this
asynchronicity, one solution is to exploit the semantics of fields
where the conflict probability is high3. Hot spot fields are
usually numeric and operations performed on these fields are
thus arithmetic and usually commutative. Also, constraints on
such fields are common too. For example, the current stock of
an item or the number of available seats in a flight is limited.
O’Neil [21] discusses the use of an “Escrow” data type for
such fields. For “Escrow” fields, transactions can request a
kind of a guarantee at their start time to successfully perform
their modifications at the end. The guarantee can even depend
on a constraint. If a guarantee has been granted, the transaction
can continue processing in a disconnected mode and with
the escrowed guarantee in hand, the transaction can commit
successfully, assuming there are no other conflicts with non-
Escrow fields. Concurrency on these fields is increased with
such an approach because locks are required only for the time
the guarantee request is processed (a consistent view on the
“Escrow” field is indispensable during this time). Hence, even
if O’Neil’s concept is pessimistic because actions are taken at
the beginning of a transaction it fits well into a disconnected
architecture.

Laux and Lessner [6] discuss a similar idea, however,
instead of requiring guarantees at the beginning of the trans-
action their approach is optimistic (i.e., no measures at the
beginning of the transaction) and performs a validation before
writing. If the validation fails for a field, “Reconciliation”
is possible if a “Dependency Function” for the conflicting
entity is known and if the transaction wants reconciliation
for the conflicting operations. “Reconciliation” describes the
process of replaying an entire transaction or just the conflicting
operation with the actual state of the database. To replay is
only possible if the transaction or the conflicting operation is
independent of further user input. This type of independence

3To precisely define such a probability requires statistical measures and
usually a Poisson Distribution for conflicting transactions is postulated. See
Kraska et al. [3] for a model for probability based consistency in replicated
database systems.



452

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is similar to the notion of “Logical Access Invariance” [22],
[23].

A “Dependency Function” has the new value, the value
read, and the current value of a field as possible input
parameters and calculates a semantically correct state despite
a conflict. For numeric fields, where operations are additions,
subtractions, and multiplications, this function is a “Linear
Dependency Function” (see [6] for further details).

The drawback of [6] compared to [21] is that in case of a
constraint violation, the transaction has to abort possibly after
a lot of work has been done. This is especially disadvantageous
if the conflict rate is high on that field. Indeed, this reflects the
optimistic behaviour and is therefore intended, but guarantees
like O’Neil’s mechanism would be preferable despite their
pessimistic nature especially if the conflict rate on this field is
high.

Another difference is that Laux and Lessner’s approach
has been designed for architectures where a “change-set” of
proposed data is delivered by the client. The modifications
are then passed to stored procedures or SQL transactions are
generated and executed according to the changes. Change-
sets, for example as used in Service Data Objects (see [11]),
comply with the current nature of computing architectures
where communication is asynchronous, message oriented,
and disconnected. For example, also the work by Thomson
and Abadi [24] is based on the observation that transaction
processing has shifted away from a synchronous to an asyn-
chronous mode. Asynchronous thereby means modifications
are prepared offline and just the results of modifications or
the new values are sent back to the database.

An additional difference between these concepts is that
O’Neil foresees a classification based on a data type, but Laux
and Lessner’s approach is on a transaction or even an operation
base.

Both [6], [21] have in common that their mechanism applies
to a certain kind of data only, usually numeric data. Even if
the concept of a dependency function is a formal improvement
compared to O’Neil, because it defines a precise property for
“Escrow” fields (linear dependent in case of numeric types),
it seems rather questionable to find such functions for non-
numeric types. So, a non-blocking solution for all “Non-
Escrow” fields is needed, which ensures strong consistency
(e.g., serializability) already at the beginning of the trans-
action’s read phase, especially if the conflict probability on
those fields is high. One option is to consider once again
the semantics of those fields as well as the way the data is
accessed. We believe that in many situations semantics are
given so that the conflict rate is very low. For example, data
belongs to a certain instance or node, or data is modified using
insert semantics without even requiring an isolation level of
“Repeatable-Read”.

But after all, some data might be just subject to conflicts.
In a very limited way we believe it is possible to use locking,
namely, only if to lock is “logically motivated”. For example,
a salesman with his associated customers could have an owner
role for these customer data and due to the ownership, locking

is justified. Locking in this context should not be considered
as a mechanism to control concurrency (transparent for de-
velopers), it is rather a mechanism to enforce an ownership
of data due to application specific issues (not transparent for
developers).

In case a lot of data requires a strict locking, our model is
not adequate. For example, frequent calculations over a set of
data with an isolation level of repeatable read.

According to these previous considerations and according
to [6], [21] the following properties are distinguishable (we
will use the following abbreviations in Table III):
• properties of the data: does a constraint (cons) exist, is

the type numeric (num)?
• the operations’ semantics: are operations on this field

commutative (com), is a dependency function known
(dep)?

• is user input independence (in) given?
Notice, a transaction is independent from the user input if

a replay does not require any further user input. That is, the
user’s intention is to execute the transaction despite an existing
conflict with the same input. In case a complete transaction is
about to be replayed, this property must hold for each of the
transaction’s operations. In case a single operation is replayed
only, this property must hold for the specific operation only.

Based on these properties five classes are defined (see
Table III for an overview) where each class has a certain CC
mechanism.

The second class “Reconcilable with constraint RC” intro-
duces a conflict probability P (X) and a threshold th. This
is motivated by the consideration that to request a guarantee
for an “Escrow” field leads to some overhead, which is only
required if P (X) is too high for validation to succeed. In
case P (X) is low, reconciliation should be used to reduce
this overhead and to better comply with an optimistic nature.
A definition for P (X) is part of future work.

Eventually, Definition III.10 re-defines Definition III.1 and
considers the different data classes.

DEFINITION III.10: (Disconnected, Flat Transaction II)
1) Let R,RC,NRE,NRO,NRL be data classes as de-

fined in Table III
2) Let ta be a flat transaction that is defined as a triplet

ta = (op,<, u) where op is a finite set of steps of the
form r(x) or w(x), x ∈ {R,RC,NRE,NRO,NRL}.
And < ⊆ op × op is a partial order, and u denotes the
user input.

3) A transaction is either in its reading (p1), disconnected
and working (p2), validating (p3), or writing (p4) phase.

Definition III.10 makes the semantics of a write operation
not explicit. The reason is that we aim for a classification
based on data.

The issue with the last definition is that ta now technically
becomes a composite transaction of the form TA with children



453

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

taR, taRC , taNRE , taNRO, taNRL since to use a different CC
mechanism means to divide a transaction into a maximum of
five separate transactions (taR, . . . , taNRL). The operator of
the satisfaction sf must be the ∧ operator. In case data of
only one data class is modified the additional composite can
be omitted.

For the remainder, we continue to refer to the composite
with children taR, . . . , taNRL as ta and other composites as
TA.

E. Consistency

To ensure serializability for lengthy or disconnected pro-
cessing validation is required. In locking scheme concurrency
control, Rigorous 2PL [4], [5], [25] ensures serializability but
since locking is not an option for classes R,RC,NRE, and
NRO an equivalent mechanism guaranteeing serializability
is required. Therefore, for R,RC, and NRO an optimistic
validation [14] needs to be performed to test whether a
set of modifications (write-set) of a transaction intersects
with a write-set or read-set of other concurrently executed
transactions. In case the write-set of a validating transaction
intersects with the read- or write-set of a concurrent trans-
action, one of the pairwise conflicting transactions has to
be aborted. Such a validation ensures conflict serializability
(CSR) [4]4. Reformulated the aforementioned means: if the
write-set WSeti (data modified by a transaction i) intersects
with the write-set WSj or read-set RSj (data read by a
transaction) of another transaction, a conflict is present and
one of the pairwise conflicting transactions should be backed
out. Hence, to avoid intersections between two transactions
ensures CSR. Following this observation a validation must
ensure: WSi ∩RSj = ∅ ∧WSi ∩WSj = ∅.

Classes R and RC, however, have an interesting property
and in case validation fails, reconciliation resolves the conflict
and ensures semantic correctness. An algorithm for reconcili-
ation is described in [6].

Transactions modifying escrow data NRE have to request
guarantees during their read phase. Validation as discussed
above is not required because the guarantee ensures consis-
tency already. So, during the validation phase it just has to
be ensured that a guarantee has been granted during the read
phase. For further details it is referred to [21]. For class NRL
it is referred to [25].

Before defining a validation schema, it is important to
briefly discuss the interleaving of phases. During the validation
of one transaction, a consistent view on the data is required.
If during the validation the data changes, validation might be
wrong and as a result inconsistencies would arise. Notice,
if validations succeeds the data will be written. Therefore,
it is usually not allowed that writing and validating data

4CSR means, two operations opi of tai and opj of taj conflict on the
same data item if one of them is a write operation. If there is any cycle
in the conflict graph, serializability is no longer possible. Bear in mind that
serializability testing is NP complete [4].

runs concurrently. So a transaction entering its validation
phase requires exclusive access to its WS. An algorithm for
validation is sketched out below (Figure 4). Notice, this is just
a possible algorithm and one variation is to let a transaction
wait and not abort in case of an intersection. A brief discussion
about OCC and validation is provided in Section IV-A6.

Let
1) dc be a disconnected component
2) Ti be the set of transactions to read the data and Tj to

write the data.
3) RSi ⊆ R ∪RC ∪NRO be the set of data that is read

by Ti
4) WSj ⊆ R ∪RC ∪NRO be the set of modifications.

If Tj enters the validation it has to perform the following
test:

∀Tk | Tk is in its validation or write phase:
if(RSi ∩WSk = ∅ ∧WSj ∩WSk = ∅)
abort dc

else
∀Tk | Tk has committed already:

if(RSi ∩WSk = ∅∧
WSj∩ WSk = ∅ ∧ no constraint violation)

write
else if(RSi ∩WSk = ∅∧

WSj ∩WSk 6= ∅ ∧ no constraint violation ∧
WSj ⊆ R ∪RC)

reconcile
else
abort

end if
end for
end if

end for

Fig. 4: Algorithm for validation

Owing to the recursive nature of our model, consistency of a
composite TA is only successful if all children pass validation.

F. Isolation

Since transactions are composed together and the model
allows for partial commits of a T if a compensation exists,
other transactions may read a state that is invalidated by a
compensation later. Such a situation can lead to a cascading
behaviour of compensation or even worse, inconsistencies can
result. In advanced transaction management, the concepts of
closeness and its opposite openness describe the visibility of
results. If a transaction’s result is passed to its parent only
a “Closed Nested Transaction” [26] is given, if also siblings,
or even all unrelated transactions are allowed to read results,
if the global outcome has not been determined yet an “Open
Nested Transaction” [20], [27] is given. Both the open and
closed transaction model have been subject of considerable
research (see Section IV).



454

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III: Data classes (“Reconciliation” refers to [6], “Escrow” to [21].)

Class Condition recommended CC mechanism
1 Reconcilable R dep ∧ in ∧ com ∧ ¬cons ∧ num Reconciliation
2 Reconcilable with constraint RC dep ∧ in ∧ com ∧ cons ∧ num P (X) < th : Reconciliation,

P (X) ≥ th : Escrow
Non-reconcilable NR (¬dep ∨ ¬in)

3 Non-reconcilable Escrow NRE (¬dep∨¬in)∧com∨cons∧num Escrow
4 Non-reconcilable OCC NRO (¬dep∨¬in)∧(¬num∨¬com)∨

cons
OCC

5 Non-reconcilable Lock NRL all NR where a lock is semanti-
cally required (justified)

Strict 2PL

The focus in the following paragraphs is on the relation-
ship between the data classes and openness and closeness,
respectively. We believe it would be beneficial to exploit
the information given by a data class and to determine to
use either a closed or an open isolation for a transaction.
Usually, this is up to the application developer and may
lead to unexpected inconsistencies. With this information in
hand, however, a transaction manager could provide support
accordingly. Another focus is to incorporate the results of [1]
into this work.

For R and RC data, it is possible to use an open isolation.
The state of data at read time does not affect the commit, thus,
neither rollback nor a compensation affects the commit. Hence,
for data classes R and RC isolation is not a real concern
and transactions operating on R or RC data only, can release
their results immediately and choose an open isolation. The
compensation for reconciliation is defined by the inverse of its
dependency function.

For escrow data NRE, it is irrelevant for other transactions
if a transaction rolls back or compensates. To roll back means
to recall the granted guarantee and the worst thing that could
happen is that another transaction is not able to get a guarantee
because this recalled guarantee denied a guarantee to another
transaction. An inverse operation is also determinable for
escrow data. Hence, transactions operating on NRE data only
can release their results immediately and use an open isolation.

For NRO data, the situation is difficult and the isolation
depends on the use case. Moreover, the conflict rate of an
entity may be different depending on the time or location. And
of course, if no compensation is definable a closed model is
required.

For NRL data, where locking is justified due to functional
requirements, a closed model should be used. Locking in this
model is justified to prevent other transactions from reading
until the transaction has terminated. So, pending results should
also be protected. Assumed NRL data is pivotal for incon-
sistencies or cascading compensation, the requirements based
justification to use locks is rather questionable. Recall, the
motivation for locks in the above discussion was to support
an owner role.

The next step is to incorporate the findings of [1] concerning
openness and closeness into this work.

In [1], a closed nested transaction is used for all transactions
that are executed against the database layer. Hence also for
data of class R, RC, and NRE (depending on the use

case for NRO possibly too), which is according to the last
deliberations not required and a mixed isolation could be
applied instead. For example, a transactions executes one
transaction tNRE to write the booking of a flight where entity
A represents the available seats and is classified as NRE.
And, another tNRO to add the actual booking reflected by an
entity B classified as NRO. Mixed isolation thereby means
that tNRE can unilaterally commit and in case of an abort
needs to run a compensation. Transaction tNRO, however,
needs to await the global outcome to finally commit.

For the composition of software components, [1] suggests
an open model. This complies with standards like the Business
Activity protocol [28] designed for workflow support and
specifically based on the ideas of the open nested transaction
model. The composition of software components to construct
new applications requires flexible transactional support and
must cope with a long living nature and hence the compen-
sation of transactions. This model adopts a utilisation of the
open model at the application level. In case a disconnected
component defines an open isolation but processes NRL data
(or NRO with a high potential for conflicts), the transaction
manager is able to take action and could either set the isolation
to close automatically or just inform the developer about the
potential risk.

Eventually, we adopt the findings of [1] with the exception
to allow for a mixed isolation for composite transactions whose
children run against the database layer.

IV. LITERATURE REVIEW AND RELATED WORK

Due to the amount of work that has been carried out in
transaction management, a rather large amount of existing
work relates to ours.

A. Literature Review

1) Nested Transaction Models: The “Nested Transaction
Model” [26] was an influential extension of the flat transaction
model and a transaction is modelled as a set of recursively
defined sub-transactions resulting in a tree of transactions,
where leafs are flat transactions representing data operations.
In the nested model a child transaction is only allowed to
start when the parent has started and a parent in turn can only
terminate if all its children have terminated. If a child fails the
parent can initiate alternatives, a so called contingency sub-
transaction. However, if the parent transaction aborts all its



455

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

children are obligated to also abort. This in turn requires to
rollback already committed results.

An extension to the nested transaction model was developed
by Weikum and Schenk [27] who introduced the “Open Nested
Transaction Model” that allowed, in contrast to Moss’s model,
other concurrent sub-transactions to read pending results. In
Moss’s model only a parent is allowed to read the result of
its children, however, in the open version other concurrent
sub-transactions are also allowed to read committed results.
The results of a child transaction are only durable after the
commit of the parent. To prevent inconsistencies only those
sub-transactions that commute with the committed ones are
allowed to read their results. Read transactions commute for
instance.

From an implementation point of view, the nested trans-
action model can be emulated by savepoints, furthermore the
model is a generalisation of savepoints (see [25], Chapter 4.7).
Gray and Reuter also discuss the distinction between nested
and distributed transactions and one difference is the nested
structure is determined by the functional decomposition of
the application, hence how the application views a “Sphere
of Control” [18]. The structure of a distributed transaction is
determined by the distribution of the data. For example, if a
transaction must join two tables each stored at a different node,
then of course, the transaction must access both nodes and
can be modelled and executed as a nested transaction, but the
dependencies are different. In the open variant nested model
a transaction can commit and abort independently, whereas a
commit or abort in the distributed model always depends on
each other and only one outcome is possible.

The closed and open nested transaction model can be seen
as the seminal work concerning Advanced, Workflow, or
Business Transaction Models (see [7], [16], [17]).

An important transaction model that provides a formal
correctness criteria for compensation is the Sagas model [12].
A Saga is a transaction that consists of a set of ACID sub-
transactions, however with a predefined execution order, and
further a set of corresponding compensating sub-transactions
must be defined. Notice a compensation transaction is manda-
tory for each sub-transaction. A Saga completes successfully if
either each sub-transaction has committed or the correspond-
ing compensation sub-transaction commits. Generally, a Saga
transaction differs from a Chained Transaction [25], where
already committed results cannot be undone, but especially this
is important to fit the requirements for long-lived transactions.
Moreover, a compensation transaction allows for a relaxation
of full isolation, also atomicity, and increases inter-transaction
concurrency. Locks can be released as soon as a (sub-
)transaction commits, even if the parent is still active because
the rollback is performed by a separate compensation transac-
tion which does not affect the serializability. And, since each
transaction in the Sagas model must define a compensation
transaction, also the cascading of errors can be handled, at least
theoretically. An extension of the Sagas model is the “Nested
Sagas” model [29] that provides mechanisms to structure steps
involved within a long running transaction into hierarchical

transaction structures. However, one drawback of each model
that heavily applies compensation is the requirement for a
compensation operation and as soon as non compensatable
transactions exist, compensation is not feasible.

In this section, some important aspects of nested trans-
actions and the compensation have been briefly explained.
From a historical view, nested transaction models and the so
called “Advanced Transaction Models” (ATM) [16] were the
foundation for a new generation of transaction models, so-
called workflow transaction models [30]. Advanced Transac-
tion Model are sometimes claimed to be less general and more
application specific compared to the ACID model. Workflow
transaction models do not meet this criticism to the same
extent.

Compared to a nested transaction where usually only leaf
nodes represent data operations, within a workflow transaction
model each node can modify data. A more general definition
is: the flat transaction model has evolved vertically to transac-
tion trees, whereas workflows or generally long-computations
represent also a horizontally evolution. Both workflow trans-
action models and ATM have been rarely implemented in the
database layer, rather they have been applied in transaction
coordination protocols at the middleware level.

2) ConTracts: Another important transaction model for
long-computations is the ConTracts model, introduced by [31]
and revised in [32]. This is a conceptual framework for the
reliable execution of long-lived computations in a distributed
environment. The core module of the ConTracts model is
the ConTract script that describes a long-lived computation
similar to a workflow model. The steps involved within this
computation are not single statements but represent programs,
methods, or applications, which can be invoked through a
call interface. In the ConTracts model, the application is
responsible for what happens inside a step, and the ConTract
script is responsible for keeping the control flow alive between
the involved steps, i.e., applications. Similar to the Saga model,
each step must define its compensation step to relax isolation,
reduce blocking time and thereby increase parallelism. In
addition, each step must define an pre- and post-condition (the
ConTracts model calls pre- and post-condition entry- and exit-
invariant. So, the scope of an in-variant is the step. However,
we believe that these invariants are actually conditions as the
scope of an invariant should be the governing application. That
is, an invariant needs to be true over the entire computation).
The pre-condition must hold (validate to true) before the step
can be invoked. For instance, an pre-condition can check if the
data required by the step is locked. So while compensation
facilitates non-blocking, the pre-condition can ensure non-
blocking. Beside the pre-condition an post-condition must also
validate to true before control can pass to the next step.
The concept of post-conditions allows other steps executed
in the future to step back, thus an post-condition can be part
of another pre-condition. The ConTracts model provides its
own definitions of transactional properties and recovery, and
to avoid the shortcomings of the atomicity property a two-
layered recovery mechanism has been introduced. Recovery



456

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and Serializability are derived from the classic serializability
and strictness and the notion of “Prefix Reducibility” [4].
The difference, however, is, since ConTracts are not isolated,
the model introduces conditions that define the structural
dependencies among the different steps. Such a definition
however is not as straightforward as for conflicts between write
operations within a schedule. Not only the data an operation
accesses must be considered, but the semantics of the whole
step must be considered to determine any conflict with other
activities.

Regarding recovery, the model distinguishes between recov-
ery at the step and at the script level. Recovery at the script
level is important to keep the overall computation consistent,
which means, after a failure of a step occurs other steps active
during this time need to be recovered, too; this so called
forward recovery is compensation.

One strength of the ConTract model is its precise definitions
for compensation. The general problem of compensation is
that if compensation of a step is required no other concurrent
transaction should violate the compensation itself. This leads
to the definition of “indirect compensatability”, “indirect com-
pensation chain”, and “absolute compensatability”. Indirect
compensatability defines that within an ordered execution of
two steps s1 and s2 with their corresponding compensation
steps cs1 and cs2 the compensation must follow the same
order to maintain the consistency. The indirect compensation
chain then consists of “all steps for which the indirect com-
pensation relation holds.”. Absolute compensatability defines
a compensation step that is independent of any other com-
pensation step, thus, even an arbitrary execution leads to a
compensated result. The ConTracts model makes no further
statements how far a running workflow must be rolled back.
Based on the definitions provided within the model a complete
roll back is foreseen. The partial rollback of workflows is
particularly addressed in Leymann’s concept of “spheres of
joint compensation” [19].

Leymann’s work [19] basically is built upon the concept
of spheres of control, Sagas, and the ConTract model. The
novelty of his concept is to explicitly enable a partial rollback
of an active workflow and not to rollback the entire workflow,
or more generally: the entire affected tree of transactions. This
reflects more the real situation of long-lived computations in
which not all work must be undone.

The idea is to define a sphere as: “any collection of activities
(steps) of a process is called Sphere of Joint Compensation
(sphere) if either all activities have run syntactically successful
or a all activities must have compensated” [19]. The compen-
sation itself is modelled by adding a compensation activity to
each sphere and activity.

The compensation itself is basically performed by the
execution of all compensation steps of each activity in reverse
order. A composed activity, that is an activity consisting of
other activities, can request a shallow or a deep compensation
and in the latter case all associated compensation operations of
the composed activities have to be executed too. If a shallow
compensation is requested only the compensation associated

with the root activity is executed. An integral compensation
only performs the compensation associated with the sphere
and running the compensation of each encompassed activity
is referred to as discrete compensation. Leymann also provides
compensation modes that define how compensation can impact
the neighbourhood of the activity or sphere, the so called
“Proliferation Property”. When an activity must be compen-
sated the proliferation property defines if the compensation
of the whole sphere must be executed, too. This, in turn,
must validate the integral property and either the sphere’s
compensation must be executed only, or the compensation of
each activity. Since spheres can overlap, the model provides a
definition of how to treat cascading compensation. Generally,
this compensation model can be seen as very complete beside
the general drawbacks of compensation discussed in the next
section, and its concepts have been considered by the Business
Process Execution Language (BPEL) and Business Process
Modelling Notation (BPMN) standard.

3) Concurrency Control for Transactional Processes: The
theoretical framework by Schuldt et al. [33] to reason about
concurrency control and recovery in transaction processes is
an attempt to unify the theory of concurrency control and
recovery for transactional business processes (processes) or
workflows. Schuldt et al. argue that the challenge we face is
to design a single correctness criterion for both concurrency
control and recovery that also copes with the added structure
found in processes. They further observed that the flow of
control introduced by processes is one of the basic semantic
elements, and that a correct execution must obey the already
existing ordering constraints among their different operations
and alternative executions. These constraints determine how
activities of the process can be interleaved during execution.
They further state that the different atomicity properties among
the involved systems can not always fit the strong requirements
of models applying compensation, e.g. ConTracts, where each
operation requires its inverse because it is not guaranteed to
find an inverse.

Similar to other models, they extend the notion of atomicity
by considering also alternatives or a partial rollback of already
executed steps within the process. In practice, tasks are often
executed in parallel to increase the time to market, and
regarding concurrency control without considering recovery
an ordering of these tasks is sufficient, however if recovery is
taken into account, and for one of the steps no compensation
exists, the situation becomes different. Their example is a
production and a corresponding test within a manufacture
where the production usually has no inverse function (at least
no acceptable one). Thus, the production is only allowed to
start if the test terminated successfully because a concurrent
execution can lead, in the case of compensating the test, to an
invalid production if both are executed concurrently.

The general point they address is more how to maintain
correctness if no compensation is given. What follows in their
paper is a theoretical model for correct process schedulers
basically oriented on the Flex Model [34], [35]. The Flex
model introduces, beside the notion of a compensatable sub-



457

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transaction, a “retriable” sub-transaction that can be retried and
eventually succeeds if retried a sufficient number of times,
and a “pivot” sub-transaction that is neither retriable nor
compensatable. Concerning the details of the framework and
its definition for correct schedules, a more general explanation
is provided here. At the database level the serializability of
operations can be expressed by their conflict relationship, and
similar a conflict relationship is defined between activities,
however, at the process level. But, since the internals of an
operation are usually not exposed by an activity the whole
activity needs to be classified to define its conflict relationship
to other activities. Based on the classes of retriable, com-
pensatable and pivot sub-transactions, activities are classified
and a commutativity, a compensation and a effect-free activity
rule can be expressed. These rules in turn can be exploited
by a process task scheduler to produce a correct process
schedule. Summarising, their framework is based on the Flex
transaction model and provides the theoretical foundation to
ensure and reason about the correctness of process schedules
by considering both, concurrency control and recovery within
one model.

4) Web Services and Transactions: A model for the dis-
tributed management of concurrent Web service transactions
is introduced in [36]. Alrifai et al. claim that in the “open and
dynamic Web service environment, business transactions enter
and exit the system independently and under relaxed isolation
transactional dependencies can emerge among independent
business processes which must be taken into account when
compensation is required in order to avoid inconsistency
problems.” Within a closed environment inconsistencies can
be controlled more easily because the dependent transactions
are known. Their work combines an optimistic decentralised
variant of the SGT (Serialization Graph Testing) protocol
that applies an Edge Chasing algorithm to detect potential
global waiting cycles with a transaction scheduling algorithm
that selects the service provider based on their scheduling
offers. The architecture foresees a multi-layered architecture
consisting of a process, a Web service and a resource level
and applies the Multilevel Nested Transaction Model [4], [27]
where each leaf has the same distance to the root. Conflicts
at the resource level are detected by a separate resource-level
concurrency control module, at the service level a service-level
concurrency control module is responsible to detect conflicts.
Conflicts are usually defined by conflict relations expressed as
a transactional dependency graph in their model and global
consistency is ensured if each local system guarantees local
consistency as in distributed database systems (see commit-
order and rigorous scheduling [4]). They apply a 2PC as
atomic commitment protocol.

Their model extends the OASIS Web-Service standards WS-
Coordination [37], WS-Atomic Transaction [38], and WS-
Business Activity [39] (see section IV-A5). However, their
Multilevel Nested Transaction Model only allows commutative
concurrent sub-transactions to read pending results. To define
the commutativity of transactions each transaction type is
divided into atomic steps with compatibility sets according

to its semantics. Transaction types that are incompatible and
are not allowed to interleave at all. Farrag and Özsu [40]
already refined this method by allowing some interleaving
for incompatible types and assuming fewer restrictions for
compatibility. The problem is that finding the compatibility
sets for each transaction step is a O(n2) problem. Alrifai
et al. apply a conflict matrix that defines the conflict sets
of a transaction and hence their approach must deal with a
quadratic complexity too, even their conflict predicates do not
solve the problem because their purpose is only to enable a
conflict detection across autonomous and independent systems.

5) Web Service Transaction Standards: This section briefly
explains and mentions some specification for protocols that
allow for distributed transaction processing in a XML Web
service (WS) architecture. The reason for such a brief ex-
planation is that the specifications are based on the ideas of
the nested and long running transactions, which have been
discussed already (see section IV-A1).

The so called “WS Transactions specifications” are the “WS
Coordination” [37], the “WS Atomic Transaction” [38], and
the “WS Business Activity” [39] specification. In terms of a
WS architecture, they relate to the Quality of Service (QoS)
layer and all these specifications are built on top of the Simple
Object Access Protocol (SOAP) and Web Service Description
Language (WSDL) standards.

The core element is the WS-Coordination (WS-CO) frame-
work that is an “extensible framework for providing protocols
that coordinate the actions of distributed transactions” [37].
The framework allows for a mechanism to register partners
and to allow for a generic control of their interaction. If a
transactional conversation is required an additional framework
that provides a specific atomic commitment protocol, a so
called completion protocol, must be plugged into the WS-
CO framework. The WS Atomic Transaction or the WS
Business Activity framework are such frameworks that provide
completion protocols.

The WS Atomic Transaction (WS-AT) framework provides
two completion protocols namely a volatile 2PC and a durable
2PC. Whereas the first one is intended for services that operate
on volatile, i.e., non persistent data, the second one is, as the
name suggests, for services operating on persistent data. Both
protocols can be used within the same transaction. However,
in such a case the volatile services must complete before
the durable ones. Beside the extensions required to comply
with the WS specification family, the WS-AT specification
addresses the well-known 2PC as introduced by “The Open
Group” [41] and allows for distributed “all-or-nothing” trans-
actions.

In contrast to the all-or-nothing principle of WS-AT, WS
Business Activity (WS-BA) allows for hierarchical nested
scopes possibly requiring compensation, relaxed isolation,
autonomous participants, or abort autonomy for instance. Gen-
erally, WS-BA is a specification for the management of nested
transaction and a so called “mixed outcome” of a transaction is
possible; for example some transactions terminate committed,
some aborted, and others compensated.



458

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In summary, the WS transaction specifications, especially
the WS-BA is an example for a technology that is able to
cope with nested and complex transactions and for more
details on WS-CO, WS-AT or the WS-BA it is referred to
the specifications.

6) Optimistic Concurrency Control: In the early eighties,
Kung [13] introduced OCC, which has not gained as much
consideration as CC protocol in commercial database systems
as locking has. The PyrrhoDB [42] is one database we are
aware of that implements OCC as CC mechanism.

Härder [14] sees the challenge in merging the workspace of
a transaction with the actual state of the database. “Their es-
sential problem consists of merging these copies during COM-
MIT processing thereby regaining a transaction-consistent
database image”. This asynchronism is especially challenging
“when these copies do not match with the units of transfer
(pages)” [14] and when different copies of the database have
to be kept consistent. Notice, Härder’s critique about the
merging of copies seems obsolete and outdated as Multi-
Version Concurrency Control protocols as widely used by
Oracle or PostgreSQL, for example, are subject to the same
problem of merging copies.

Härder goes even further and states that even if OCC has
been defined for applications where conflicts are unlikely,
“locking also behaves quite well in such a particular environ-
ment (no wait or deadlock conflicts), there seems to be little
reason to introduce a specialised control mechanism”. Härder
refers to an empirical comparison that shows that with OCC
the abort rate of transactions is higher compared to locking.
This is due to the property that in locking a transaction waits
rather than restarts. In this case the restart of a transaction
must be considered as being equivalent to an abort. In other
words, as stated by Härder, to wait increases the probability
for success. It is worthwhile to discuss this issue in a little bit
more detail here. One particular problem with OCC is that
it is not possible to get any guarantees in advance. “First
come, first served” is the result of the optimistic behaviour.
By contrast, in locking a sophisticated locking schema can
guarantee a transaction that updates will succeed if constraints
are not violated, and in the absence of physical errors. Hence,
if the update rate on a field is high, the abort rate of locking
is less than with OCC, but for the price that a transaction has
to wait. In this sense waiting is not wasting.

Franaszek et al. [23] come up with the idea to investigate
“the potential reduction in the required concurrency level via
the use of what might be viewed as the pre-fetch property of
transactions which run but do not commit.” These transactions
are said to run in a “virtual execution mode”. Particularly
this means a transaction is executed twice. The first execution
is to determine the required data, calculate the access paths,
and load the data into the cache. The second execution is
to actually commit the transaction with all the data in cache
already and a lock pre-climbing that requests all locks in
one atomic step, which is feasible since the entire data set is
known already. So, the idea of Franaszek’s et al.’s mechanism
is not to restart a transaction even though it is known that the

transaction will fail at commit time and to benefit during the
second execution from the information gathered at the first
run instead. One of the most important considerations thereby
is the notion of “Access Invariance” that is a transaction
will “with high probability perform the same operations on
the same subset of objects without regard to the implied
serial order of execution.” This assumption is adequate as
it would mean the correctness notion of serializability would
be inadequate else. The authors emphasise that there can be
indeed conflicts between transactions or constraints that might
permit transactions from commit, but neither of them does
affect the access invariance in general.

Despite the rather sceptical note by Härder as well as
by Mohan [43] and the fact that OCC has not been imple-
mented by many commercial database vendors as a basic
CC mechanism, OCC fits well into a disconnected computing
architecture where consistency preserving mechanisms are
required as part of a Middleware solutions (see [44]) Laux et
al. [45] thoroughly analyse Row Version Verification (RVV) as
an implementation of OCC if the database does not support
“optimistic locking” per se and their patterns to implement
RVV for some common databases and data access technologies
at the MW layer fits well into a disconnected architecture.

B. Related Work

As presented in the last section, there are many transaction
models that consider a nested and recursive transaction struc-
ture. The ACTA framework [46], [47] provides an independent
language to describe these complex transaction models by
demarcating aspects of atomicity and isolation. Its drawback is
the large terminology and the missing execution semantics. Its
nature is purely descriptive. Eventually, beside the aforemen-
tioned transaction models and their well understood concepts,
the ACTA framework also inspired our work. However, we be-
lieve that to use Boolean expressions to describe transactional
dependencies is easier to comprehend and reduces the large
terminology, which can be found in ACTA. And, a satisfaction
expressions is computable.

The second key piece of this work, the classification of
data, is inspired by [3] and [6]. Kraska et al. use statistical
measures to determine a conflict probability and adapt the
CC mechanism accordingly. Since their work focuses on
the Cloud, replication plays an important role too in their
model. By contrast, this work does not consider replication.
As described in Section III-D, the data classes are according
to Laux and Lessner’s work on Reconciliation [6] and ONeil’s
work [21] on the Escrow data type. Furthermore, we are
specifically interested in the question how the classficiation of
data can be exploited also concerning the isolation property.

Many domains, for example, object orientation, SOC,
or Mobile Computing are confronted with disconnected
situations if an increased local autonomy is required. The
assumption in this work, that there is actually no difference,
and all software components should just run in a disconnected
mode with separate read and write phase. This is inspired
by work on OCC [13], [14], [22], [23], [45] and to divide a



459

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

component into such phases is also similar to the Command
Query Pattern [10], however, in a larger scale.

V. CONCLUSION, CONTRIBUTION AND FUTURE WORK

The contribution of this work is an expression language
for transactional dependencies if transactions are composed
together. An expression is based on Boolean algebra and
can be used by a transaction manager to coordinate the
transactional composition because the execution semantics is
derivable.

Moreover, since we believe that an application of a CC
mechanism should consider the semantics of data and oper-
ations to better trade-off the consistency needs and incurring
costs, and not follow the one CC mechanism fits all needs
paradigm, we have introduced five different data classes using
a certain CC mechanism. In this context we have also analysed
the implications for isolation in a nested transaction. Moreover,
our classification complies with an optimistic attitude, which
in turn complies with the needs of current disconnected and
asynchronous computing architectures.

To impose a phase structure on disconnected components
and analyse the implications on transaction management is
another contribution.

Our goal in the long term is to allow for even better trade-
offs similar to [3]. In our vision applications should express
their transactional requirements like the required level of con-
sistency, processing time, and costs. Due to the composition
this also requires a model that copes with the composition of
requirements, raising the needs for metrics. The classification
of data and a language to express transactional dependen-
cies are first steps. For the future, we also envision to run
transactions in different lanes according to their semantics
and requirements. Such an allocation and division could help
to easier verify and trade-off scalability and consistency de-
mands.

Simulation results that justify a classification of data are
probably the most missing piece in this work. Currently, a
prototypical transaction simulation and reasoning framework
is still under development.

REFERENCES

[1] Tim Lessner, Fritz Laux, Thomas Connolly, Cherif Branki, Malcolm
Crowe, and Martti Laiho. An optimistic transaction model for a
disconnected integration architecture. In DBKDA 2011, The Third
International Conference on Advances in Databases, Knowledge, and
Data Applications, pages 186 – 191, 2011.

[2] Jim Gray and Pat Helland and Patrick E. O’Neil and Dennis Shasha.
The Dangers of Replication and a Solution. In H. V. Jagadish and In-
derpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, pages 173–182. ACM Press, 1996.

[3] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.
Consistency rationing in the cloud: pay only when it matters. Proc.
VLDB Endow., 2:253–264, August 2009.

[4] Gerhard Weikum and Gottfried Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concurrency Control
and Recovery. Morgan Kaufmann, 2002.

[5] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database systems - the complete book (2. ed.). Pearson Education,
2009.

[6] Fritz Laux and Tim Lessner. Escrow Serializability and Reconciliation
in Mobile Computing using Semantic Properties. International Journal
On Advances in Telecommunications, 2(2):72–87, 2009.

[7] Ahmed Elmagarmid, Marek Rusinkiewicz, and Amit Sheth, editors.
Management of heterogeneous and autonomous database systems. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[8] Margaret H. Dunham, Abdelsalam Helal, and Santosh Balakrishnan. A
mobile transaction model that captures both the data and movement
behavior. Mob. Netw. Appl., 2(2):149–162, 1997.

[9] Thomas Erl. SOA Design Patterns. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2009.

[10] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

[11] Michael Beisiegel et al. Service component architecture (sca) v1.00,
2010-11-08, 2007.

[12] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD ’87:
Proceedings of the 1987 ACM SIGMOD international conference on
Management of data, pages 249–259. ACM, 1987.

[13] H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Trans. Database Syst., 6(2):213–226, 1981.

[14] Theo Härder. Observations on optimistic concurrency control schemes.
Inf. Syst., 9:111–120, November 1984.

[15] G. D. Walborn and P. K. Chrysanthis. Supporting semantics-based
transaction processing in mobile database applications. In SRDS ’95:
Proceedings of the 14TH Symposium on Reliable Distributed Systems,
page 31. IEEE Computer Society, 1995.

[16] Ahmed K. Elmagarmid, editor. Database transaction models for ad-
vanced applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1992.

[17] Sushil Jajodia and Larry Kerschberg, editors. Advanced Transaction
Models and Architectures. Kluwer, 1997.

[18] C. T. Davies. Data processing spheres of control. IBM Systems Journal,
17(2):179–198, 1978.

[19] Frank Leymann. Supporting Business Transactions Via Partial Backward
Recovery In Workflow Management Systems. In BTW, pages 51–70,
1995.

[20] Alejandro Buchmann, M. Tamer Özsu, Mark Hornick, Dimitrios Geor-
gakopoulos, and Frank A. Manola. A transaction model for active dis-
tributed object systems, pages 123–158. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[21] Patrick E. O’Neil. The escrow transactional method. ACM Transactions
On Database Systems, 11:405–430, December 1986.

[22] P.A. Franaszek, J.T. Robinson, and A. Thomasian. Access invariance
and its use in high contention environments. In Data Engineering, 1990.
Proceedings. Sixth International Conference on, pages 47 –55, February
1990.

[23] A. Thomasian. Distributed optimistic concurrency control methods
for high-performance transaction processing. Knowledge and Data
Engineering, IEEE Transactions on, 10(1):173 –189, jan/feb 1998.

[24] Alexander Thomson and Daniel J. Abadi. The case for determinism in
database systems. Proc. VLDB Endow., 3:70–80, September 2010.

[25] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[26] J. Eliot B. Moss. Nested transactions: an approach to reliable distributed
computing. Massachusetts Institute of Technology, Cambridge, MA,
USA, 1985.

[27] Gerhard Weikum and Hans-Jörg Schek. Concepts and Applications of
Multilevel Transactions and Open Nested Transactions. In Database
Transaction Models for Advanced Applications, pages 515–553. Morgan
Kaufmann, 1992.

[28] Web services business activity (ws-businessactivity) version 1.1. Online
(accessed 15.08.2011), July 2007.

[29] Hector Garcia-Molina, Dieter Gawlick, Johannes Klein, Karl Kleissner,
and Kenneth Salem. Modeling long-running activities as nested sagas.
Data Eng., 14(1):14–18, 1991.

[30] Ting Wang, Jochem Vonk, Benedikt Kratz, and Paul Grefen. A survey
on the history of transaction management: from flat to grid transactions.
Distrib. Parallel Databases, 23(3):235–270, 2008.

[31] Helmut Wächter and Andreas Reuter. The ConTract Model. In Database
Transaction Models for Advanced Applications, pages 219–263. Morgan
Kaufmann, 1992.



460

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] Andreas Reuter and Kerstin Schneider and Friedemann Schwenkreis.
ConTracts Revisited. In Sushil Jajodia and Larry Kerschberg, editors,
Advanced Transaction Models and Architectures. 1997.

[33] Heiko Schuldt and Gustavo Alonso and Hans-Jörg Schek. Concurrency
Control and Recovery in Transactional Process Management. In Pro-
ceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 31 - June 2, 1999, Philadelphia,
Pennsylvania, pages 316–326. ACM Press, 1999.

[34] Sharad Mehrotra and Rajeev Rastogi and Henry F. Korth and Abraham
Silberschatz. A Transaction Model for Multidatabase Systems. In
ICDCS, pages 56–63, 1992.

[35] Ahmed K. Elmagarmid and Yungho Leu and Witold Litwin and Marek
Rusinkiewicz. A Multidatabase Transaction Model for InterBase. In
Dennis McLeod and Ron Sacks-Davis and Hans-Jörg Schek, editors,
16th International Conference on Very Large Data Bases, August 13-
16, 1990, Brisbane, Queensland, Australia, Proceedings, pages 507–518.
Morgan Kaufmann, 1990.

[36] Mohammad Alrifai and Peter Dolog and Wolf-Tilo Balke and Wolfgang
Nejdl. Distributed Management of Concurrent Web Service Transac-
tions. IEEE T. Services Computing, 2(4):289–302, 2009.

[37] Oasis. Web Services Coordination (WS-Coordination), 2009.
[38] Oasis. OASIS Web Services Atomic Transaction Version 1.2, 2009.
[39] Oasis. OASIS Web Services Business Activity Version 1.2, 2009.
[40] Abdel Aziz Farrag and M. Tamer Özsu. Using semantic knowledge

of transactions to increase concurrency. ACM Trans. Database Syst.,
14(4):503–525, 1989.

[41] The Open Group. Distributed transaction processing: The XA specifi-
cation, 1992.

[42] Malcolm Crowe (University of the West of Scotland). The Pyrrho
database management system (http://www.pyrrhodb.com/, 2010-11-02),
2010.

[43] Mohan. Less optimism about optimistic concurrency control. In
Proceedings of the 2nd International Workshop On Research Issues In
Data Engineering, pages 199–204, 1992.

[44] Philip Bernstein and Eric Newcomer. Principles of transaction process-
ing: for the systems professional. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2009.

[45] Fritz Laux, Martti Laiho, and Tim Lessner. Implementing row version
verification for persistence middleware using sql access patterns. In-
ternational Journal on Advances in Software, issn 1942-2628, 3(3 &
4):407 – 423, 2010.

[46] Panayiotis K. Chrysanthis and Krithi Ramamritham. ACTA: a frame-
work for specifying and reasoning about transaction structure and
behavior. SIGMOD Rec., 19(2):194–203, 1990.

[47] Panos K. Chrysanthis and Krithi Ramamritham. Synthesis of extended
transaction models using acta. ACM Trans. Database Syst., 19:450–491,
September 1994.



461

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Verifiable Constraints for Ambients of Persistent Objects

Suad Alagić and Harika Anumula
Department of Computer Science

University of Southern Maine
Portland, Maine, USA

alagic@usm.maine.edu, harika.anumula@maine.edu

Akinori Yonezawa
Advanced Institute of Computational Science

Kobe, Japan
yonezawa@riekn.jp

Abstract—This paper develops a typed object-oriented
paradigm equipped with message-based orthogonal persistence.
Messages in this paradigm are viewed as typed objects. This
view leads to a hierarchy of types of messages that belong to
the core of typed reflective capabilities. Unlike most persistent
object-oriented models, this model is equipped with general
integrity constraints that also appear as a hierarchy of types
in the reflective core. A transaction is naturally viewed as a
sequence of messages and it is equipped with a precondition
and a postcondition. The presented framework is motivated
by ambients of persistent concurrent and mobile objects. The
practical result supporting the developed model is a verification
technology for ambients of persistent objects based on a higher-
order verification system. This technology applies to static
interactive verification of transactions with respect to the
schema integrity constraints.

Keywords-Object databases; constraints; reflection; transac-
tions; verification.

I. INTRODUCTION

The current object technology has nontrivial problems
in specifying classical database integrity constraints, such
as keys and referential integrity [11][14][15]. No indus-
trial database technology allows object-oriented schemas
equipped with general integrity constraints. In addition
to keys and referential integrity, such constraints include
ranges of values or number of occurrences, ordering, and
the integrity requirements for complex objects obtained by
aggregation [2]. More general constraints that are not nec-
essarily classical database constraints come from complex
application environments and they are often critical for
correct functioning of those applications [3].

Object-oriented schemas are generally missing database
integrity constraints because those are not expressible in
type systems of mainstream object-oriented programming
languages. Since the integrity constraints cannot be specified
in a declarative fashion, the only option is to enforce them
procedurally with nontrivial implications on efficiency and
reliability. The constraints must fit into type systems of
object-oriented languages and they should be integrated
with reflective capabilities of those languages [18]. Most
importantly, all of the above is not sufficient if there is no
technology to enforce the constraints, preferably statically,

so that expensive recovery procedure will not be required
when a transaction violates the constraints at run-time [2][3].

The object-oriented database model presented in this pa-
per integrates message-based orthogonal persistence, object-
oriented schemas equipped with general integrity constraints
accessible by reflection, and transactions that are required to
satisfy the schema integrity constraints. The model is based
on a type system and it offers a significantly different view of
messages in comparison with the mainstream object-oriented
languages. The model applies to ambients of persistent and
concurrent objects.

A message in mainstream object-oriented languages such
as Java or C# is specified in a functional notation. This
functional view fits messages that cause no side-effects and
report the properties of the hidden object state. The func-
tional view also fits queries. Other categories of messages
do not fit the functional notation. An update message is a
message that changes the state of the receiver and possibly
other objects as well. An update message does not have a
result and its semantics does not fit the functional notation.

An asynchronous message [23], in general, does not have
a result either and hence the functional notation is not
appropriate. A particular type of an asynchronous message
(a two-way message) has a result, but this result is not
necessarily immediately available at the point of the message
send. Asynchronous (remote) queries would fit this pattern.
A transient message has a limited lifetime and a sustained
message does not have this limitation. A message may
be one-to-one with a single receiver or a message may
be a broadcast message sent to a set of receiver objects.
Many messages naturally combine the features of the above
mentioned message types. For example, a two-way transient
message, a one-to-one query message, a one-to-many sus-
tained update message, etc. [10].

Further development of this approach leads to an orthog-
onal model of persistence [6] that is based on a special mes-
sage type that promotes the receiver object to persistence. A
transaction is defined as a sequence of messages of different
types. Concurrency control and recovery protocols can now
be implemented in the object-oriented style. Indeed, seri-
alization protocols require knowledge of types of messages
(queries versus updates) and impose an appropriate ordering



462

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of conflicting messages. Similar comments apply to recovery
protocols that are in our view sequences of do, undo and redo
messages.

Object-oriented constraints are a key feature of the pre-
sented model. Specifying the behavior of objects of a mes-
sage type is naturally done using an object-oriented assertion
language. Object-oriented assertion languages allow speci-
fication of database integrity constraints as class invariants,
declarative specification of transactions with pre and post
conditions, and queries whose filtering (qualification expres-
sion) is specified as an assertion predicate. The assertion
languages used to express constraint-related features of the
model presented in this paper are JML (Java Modeling
Language) [12], and Spec# [13].

A database transaction is accessing a large amount of
data. Checking constraints at run-time is often prohibitively
expensive, and violation of constraints may require expen-
sive recovery procedures. The idea of static verification
of transactions is not new [8][20][21]. However, all the
previous attempts failed to produce results at a practical,
applicable level. The main idea is that a transaction is
statically verified to satisfy the schema integrity constraints
so that either no run-time checking or just limited run-time
checking of constraints will be required. This means that
data integrity will be provably guaranteed with no penalty
on efficiency and a significant increase of reliability.

Two critical pieces of the technology that supports the
model presented in this paper are: an extended virtual plat-
form for constraint management and verification techniques
that apply to constraints. The extended virtual machine inte-
grates constraints into the run-time type system, allows their
introspection and enforcement [18]. Verification techniques
apply to object-oriented transactions written in Java or C#.
The verification technologies are based on PVS (Prototype
Verification System) [3], and automatic static techniques of
Spec# [2].

PVS is chosen because of its sophisticated type system
which includes predicate subtyping and bounded parametric
polymorphism. Because of this the PVS type system is a
good match for the type systems of mainstream object-
oriented programming languages. In addition, PVS has pow-
erful logic capabilities and as a higher-order system it allows
embedding of specialized logics suitable for the object-
oriented paradigm such as temporal or separation logic.

We first present in Section II a motivating application
based on ambients of concurrent and service objects. The
fundamentals of the view of messages as typed objects is
developed further in Section III, along with the hierarchy
of message types. The model of persistence is described in
Section IV. Queries and transactions are discussed in Section
V. Type safe reflection, which includes run-time representa-
tion of types (including message types) and assertions is the
subject of Section VI. Finally, in Section VII, we present
our technology based on PVS for static verification of

transactions with respect to the schema integrity constraints.

II. MOTIVATING APPLICATION: AMBIENTS OF
CONCURRENT OBJECTS

In this introductory section, we describe the environments
that lead to the view of messages as typed objects. An
ambient [10] is a dynamic collection of service objects. The
types of service objects are assumed to be derived from the
type ServiceObject. This is why the class Ambient is
parametric and its type parameter has ServiceObject as
its bound type as follows:

abstract class Ambient
<T extends ServiceObject> {. . .}

When a message is sent to an ambient object, one or
more service objects is selected depending upon the type
of the message, and the message is sent to those service
objects. Messages sent to an ambient are in general asyn-
chronous, hence they are of the type Message. When such
a message object is created, it has its identity, a lifetime, and
behaves according to one of the specific subtypes of the type
Message. For example, a transient message has a limited
discovery time and a sustained message does not. Moreover,
messages can be sent to message objects. For example, if a
message is a two-way message, a message that refers to the
future method may be sent to the two-way message object
to obtain the result when it becomes available [23].

An ambient has a filter, which selects the relevant service
objects that belong to the ambient. This predicate is defined
for a specific Ambient class, i.e., a class that is obtained
from the class Ambient by instantiating it with a specific
type of service objects. An ambient has a communication
range, which determines a collection of service objects that
are in the ambient’s range. The reach of an ambient object is
then the collection of all service objects of the given type that
satisfy the filter predicate and are within the communication
range of the ambient object.

The class Ambient is equipped with a scheduler, which
selects the next message for execution according to some
strategy. So the Ambient class looks like this:

abstract class Ambient
<T extends ServiceObject> {

abstract boolean filter(T x);
Set<Message> messages();
Set<T> communicationRange();
Set<T> reach();
invariant (forAll T x)
(x in this.reach() <=>

this.filter(x) and x in
this.communicationRange());

}

An example of a specific ambient class is

class StockBroker extends ServiceObject {
int quote(String stock);
int responseTime();



463

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

. . .
}
class StockBrokerAmbient

extends Ambient<StockBroker> {
String[] displayStocks(){. . .};
void requestQuote(String stock){. . .};
boolean filter(StockBroker x)

{return x.responseTime() <=10;}
}
StockBrokerAmbient stockbrokers =

new StockBrokerAmbient();

In a more general concurrent setting [23], a concurrent
object is equipped with its own virtual machine. A virtual
machine is equipped with a stack, a heap, a queue of
messages, and a Program Counter (PC), as shown in Figure
1.

Stack Heap
messages
Queue of

PC

Figure 1. A concurrent object

interface ConcurrentObject {. . .}
class ConcurrentObjectClass

implements ConcurrentObject {
private VirtualMachine VM();

}

In a concurrent paradigm of [23], a concurrent object
executes messages that it receives by invoking the corre-
sponding methods. In order to be able to do that, the heap
of the object’s virtual machine must contain reflective classes
such as Class, Method, Message, etc. These classes are
stored on the heap of the object’s virtual machine. The heap
also holds the object state. Execution of a method is based
on the object’s stack according to the standard stack-oriented
evaluation model.

A concurrent object gets activated by receiving a message.
If a concurrent object is busy executing a method, the
incoming message is queued in the message queue of the
object’s virtual machine. Messages in the queue will be
subsequently picked for execution when an object is not
busy executing a method. So at any point in time an object
is either executing a single message or else it is inactive
(i.e., its queue of messages is empty).

In the extreme case, all objects are concurrent objects, i.e.,
the class ConcurrentObjectClass is identified with
the class Object. A service object is now defined as a
concurrent object:

interface ServiceObject
extends ConcurrentObject {. . . }

VM VM

VM

VM

CO
CO

CO

SO

Concurrent object

Concurrent object

Concurrent object

Service object

VM

Region

Figure 2. Regions of concurrent and service objects

We can now redefine an ambient in this new setting as a
concurrent object, which represents a dynamic collection of
concurrent service objects:

class Ambient <T extends ServiceObject>
extends ConcurrentObject {

. . . }

Since an ambient is a concurrent object, it has its own
virtual machine with a queue of messages sent to the ambient
object and not serviced yet.

A mobile object is a concurrent object that is equipped
with a location:

interface MobileObject
extends ConcurrentObject{

Location loc();
}

A region is an ambient that captures the notion of locality.
It consists of all concurrent objects within the region as well
as the service objects in that region, as illustrated in Figure
2.

class Region <T> extends Ambient<T> {
Set<ConcurrentObject> objects();
boolean withinRegion(MobileObject x);
invariant (ForAll MobileObject x)

(this.withinRegion(x) =>
x in this.objects());

}

For example, if class Server extends

ServiceObject {. . .} then Region<Server>
would be an example of a region type. Since a region is
a concurrent object, it is equipped with its own virtual
machine. Also, since a region is an ambient, it receives
messages that are queued in the message queue of the
region’s virtual machine to be serviced. Servicing a message
sent to a region amounts to selecting a server object and
sending the message to that server.



464

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. TYPES OF MESSAGES

Non-functional messages in this paradigm are objects.
A message is created dynamically and it has a unique
identifier like any other object. In the concurrent architecture
described in Section II, object identifiers must be global. The
attributes of a message are the receiver object and the array
of arguments along with a reference to a method. Messages
of specific subtypes will have other attributes. This produces
a hierarchy of message types that are subtypes of the type
Message.

interface Message {
Method m();
Object receiver();
Object[] arguments();
int timeStamp();

}

When a message object is created its time stamp is
recorded. The implementing class would have a constructor:

class MessageObject implements Message {
MessageObject(Method m, Object receiver,

Object[] arguments);
int timeStamp();
Method m();
Object receiver();
Object[] arguments(); }

Creating a message could be done just like for all other
objects:

Message msg =
new MessageObject(Method m, Object receiver,

Object[] arguments);

This implies message send in the underlying implemen-
tation. However, Message and MessageObject belong
to the reflective core along with Class, Method, and
Constructor. These types should be final in order to
guarantee type safety at run-time. So an alternative is to
have a special notation to create an asynchronous message.
A functional (and hence synchronous) message is denoted
using the usual dot notation:

x.m(a1,a2,. . .,an).

A non-functional (asynchronous etc.) message would be
created as follows:

Message msg = x<=m(a1,a2,. . .,an).

In general, an asynchronous message does not have a result.
The basic type of a message is point-to-point, one-way,
and immediately executed. This type of a message could
be expressed in a traditional notation

receiver.m(arguments)

In the new paradigm, the result of an asynchronous
message send is a reference to the created message object.
An example is:

Method requestQuote =
getClass(‘‘StockBrokerAmbient’’).getMethod(

‘‘requestQuote’’,getClass(‘‘String’’));
Message requestQuoteMsg =

new MessageObject(requestQuote,
stockbrokers,stock);

An alternative notation looks like this:

Message requestQuoteMsg =
stockbrokers <= requestQuote(stock);

An update message is a message that mutates the state of
the receiver object and possibly other objects as well. An
update message does not have a result, hence we have:

interface UpdateMessage extends Message {. . .}

A special notation for an update message is

x<:=m(a1,a2,. . .,an)

The type of this expression is UpdateMessage.
A two-way message requires a response, which commu-

nicates the result of a message. The result is produced by
invoking the method future on a two-way message [23].
This method has a precondition, which is that the future is
resolved, i.e., that it contains the response to the message.

interface TwoWayMessage extends Message{...}

The implementing class would contain a constructor,
which takes the reply interval as one of its parameters.

class TwoWayMessageObject
implements TwoWayMessage {

TwoWayMessageObject(Method m,
Object receiver, Object[] arguments,

int replyInterval);
boolean futureResolved();
boolean setFuture();
Object future()
requires this.futureResolved();

}

An example of a two way message is:

TwoWayMessage requestQuoteMsg =
new TwoWayMessageObject(requestQuote,

stockbrokers,stock,20);

A suggestive notation for a two way message is:

TwoWayMessage requestQuoteMsg =
stockbrokers <=> requestQuote(stock,20);

A one-to-many message is of the type
BroadcastMessage and it is sent to multiple objects.
Using a suggestive notation for a one-to-many message, we
would have:

Message requestQuoteMsg =
stockbrokers <<=> requestQuote(stock);

A transient message has a discovery time specified as
a finite time interval. If a message is not discovered and



465

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Message

CreateMessage TwoWayMessage

TransientMessage

BroadcastMessage

TransientMessage
SustainedMessage

UpdateMessage

PersistMessage

QueryMessage

SustainedUpdateBroadcastMessage TwoWayTransientQueryMessage

Figure 3. Message type hierarchy

scheduled for execution before its discovery time has ex-
pired, the message will be regarded as expired and will
never be scheduled for execution. The discovery time will
be specified in the constructor of the implementing class.
A suggestive notation for a transient message is <=|. A
sustained message (i.e., a message whose discovery time
is not limited) denoted as <=∼ is specified by a special
message type SustainedMessage.

IV. PERSISTENT OBJECTS

An object is promoted to persistence by executing a
message persist, which specifies a user name and a
name space. This message binds the object to the given user
name in the given name space. The root class Object is
equipped with a method persist, which means that the
model of persistence is orthogonal, i.e., objects of any type
may be promoted to persistence. This is in contradistinction
to the model of persistence in the mainstream object-oriented
languages such as Java or C#, or the model of persistence
in the ODMG (Object Data Management Group) [9], and
most other object data models, which are not orthogonal.

class Object { . . .
void persist(NameSpace scope,String userID);
}

A name space consists of bindings of user names to
objects. Name spaces can be nested. A name space is
equipped with methods for establishing such a binding and
for looking up an object in a name space bound to a given
user id. Typically, name spaces are persistent.

interface NameSpace extends ConcurrentObject{
boolean bind(Object x, String name);
Object lookup(String name);

}

The type PersistMessage is now defined as follows:

interface PersistMessage extends Message {
NameSpace scope();
Object userID(String name);

}

Creation of a persist message is denoted by a special
notation using the symbols <=!persist.

A schema extends a name space with additional methods.
One of them is the method select that returns a set of
objects in the schema that satisfy a given assertion.

interface Schema extends NameSpace { . . .
Set<Object> select(Assertion a);

}

The integrity constraints of a schema are specified in its
invariant as illustrated in the example below. The schema
StockMarket is equipped with a key constraint, a refer-
ential integrity constraint, and a value constraint.

interface Stock {
String code();
float price();

}
interface Broker {
String name();
Set<Stock> stocks();
}
interface StockMarket extends Schema {
Set<Stock> stocks();
Set<Broker> brokers();

invariant
keyConstraint:

(forAll s1,s2 in this.stocks():
(s1.code()==s2.code()) ==>

s1.equals(s2));
refIntegrity:

(forAll b in this.brokers():
(forAll sb in b.stocks():

(exists s in this.stocks():
(sb.code() == s.code()))));

valueConstraint:
(forall s in this.stocks():

s.price() > 0);
}

As for a specific assertion language, our previous results
such as [3][5] are based on JML and more recent exper-
iments are based on Spec# [2][7]. In fact, our extended
virtual platform [18] accommodates a variety of assertion
languages.

V. QUERIES AND TRANSACTIONS

A query message is specified below as an asynchronous
message. Its type is a subtype of TwoWayMessage. So the
result of a query may not be immediately available. When
it is, it will be available by sending a functional message
future to the query message object.

interface QueryMessage
extends TwoWayMessage {

Schema scope();
Assertion query();



466

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

}

Creation of a particular query object is illustrated below
using a special notation with the symbol <=?select:

StockMarket sch; QueryMessage q;
q <=?select(

forAll b in sch.brokers():
(exists s in b.stocks():

s.code()==‘‘SNP500’’));

A database server is a specific subtype of a service (and
hence concurrent) object. It implements a schema:

interface DbServer
extends ServiceObject, Schema {

Sequence<Message> log();
}

Since a database server is a concurrent object, it is
equipped with its own virtual machine. Typically, a database
server is a persistent concurrent object. Hence by reach-
ability, its schema (which includes persistent objects and
integrity constraints) and its virtual machine will also be
persistent.

A database server is equipped with a log of received mes-
sages. Here the view of messages as typed objects is critical.
Committing a transaction requires extraction of the update
and persist messages to reflect those changes in database
collections. Implementing serializability protocols requires
distinguishing update and query messages and controlling
the order of their execution. All of this is possible because
these messages are objects belonging to different types so
that their properties can be inspected by sending functional
messages to those objects.

Unlike the ODMG model [4][9], a transaction type is
parametric. Its bound type specifies that the actual type
parameter must be derived from the interface Schema.

interface Transaction<T extends Schema> {
boolean commit();
boolean abort();

}

Another distinctive feature of the notion of a transaction
with respect to ODMG and other persistent object models is
that a transaction is naturally equipped with a precondition
and a postcondition and it is defined as a sequence of
messages of different types (such as query, update and
persist messages). The implementing class of the interface
Transaction would have the following form:

class TransactionObject<T>
implements Transaction<T extends Schema>{

TransactionObject(T dbSchema);
Sequence<Message> body();
boolean commit();
boolean abort();

}

Taking this approach one step further, a transaction is a
concurrent object defined as follows:

class ConcurrentTransactionObject<T>
implements ConcurrentObject,

Transaction<T extends Schema>
{. . . }

A few illustrative examples of transaction specification
in an object-oriented assertion language are given below.
A transaction insertStock is bound to a schema of
the type StockMarket. The actual update has a frame
specification, which states that this transaction modifies the
set of stocks leaving the set of brokers unaffected. The
precondition specifies that the code of the stock to be
inserted is different from the codes of all existing stocks
in the set of stocks. This guarantees that the key constraint
will not be violated by this insertion. In addition, the
precondition requires that the stock to be inserted satisfies
the schema‘s value constraint. The postcondition guarantees
that the insertion has been performed. More precisely, a
stock with the code of the newly inserted stock does indeed
exists in the set of stocks.

interface insertStock
extends Transaction<StockMarket> {

StockMarket schema();

void update(Stock newStock)
modifies stocks;
requires

(forall s in this.schema().stocks():
s.code() <> newStock.code());

requires (newStock.price() > 0);
ensures

(exists s in this.schema().stocks():
s.code()==newStock.code());

}

The updateStock transaction given below performs an
increase of the value of a stock with the given stock code by
a given percentage. The frame constraint specifies that the
transaction modifies only the set of stocks. The precondition
requires that a stock with a given code does indeed exist
in the set of stocks and that the percentage of increase is
greater than 1. The postcondition guarantees that the stocks
with the given code (there will be only one because of the
key constraint) has been correctly updated.

interface updateStock extends
Transaction<StockMarket> {

StockMarket schema();

void update(String stockCode,
float increase)

modifies stocks;
requires
(exists s in this.schema().stocks():

s.code()==stockCode);
requires (increase > 1);
ensures

(forAll s in this.schema().stocks():



467

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(s.code()==stockCode) ==>
(s.price()==s.price()*increase));

}

A transaction deleteStock involves maintaining the
referential integrity constraint, hence its frame condition
specifies that the transaction modifies both the set of stocks
and the set of brokers. The precondition requires that a stock
with a given code does indeed exist in the set of stocks.
There are two postconditions. The first one guarantees that
the stock has been deleted from the set of stocks. The second
postcondition guarantees that the deleted stock does not exist
in the set of stocks of any broker.

interface deleteStock extends
Transactions<StockMarket> {

StockMarket schema();

void update(Stock delStock)
modifies stocks, brokers;
requires
(exists s in this.schema().stocks():

s.code()==delStock.code());
ensures

(forall s in this.schema.stocks():
s.code()<> delStock.code());

ensures
(forall b in this.schema().brokers():

(forall s in b.stocks():
s.code() <> delStock.code()));

}

VI. REFLECTION

Just like in Java Core Reflection (JCR), reflection in a
language that supports messages as typed objects includes
classes Class, Method, and Constructor. The main
differences in comparison with JCR are:

• Reflection includes the interface Message with its
various subtypes.

• Reflection includes the interfaces Assertion and
Expression with their various subtypes.

The core reflective class Class has the following ab-
breviated signature. A distinctive feature is an assertion
representing a class invariant.

class Class { . . .
String name();
Method[] methods();
Method getMethod(String name,

Class[] arguments);
Assertion invariant();

}

The reflective class Method is defined as follows. Its
distinctive features are a pre condition and a post condition
expressed as assertions. Their type is Assertion.

Class Method { . . .
String name();
Class declaringClass();
Assertion preCondition();

Assertion postCondition();
Class[] arguments();
Class result();
Expression body();
Object eval(Object receiver,Object[] args);

}

The body of a method is an expression evaluated
by the function eval. Just like Assertion, the type
Expression belongs to the reflective core. The method
eval evaluates the method body after binding of variables
occurring in the expression representing the method body
is performed. The variables to be supplied to eval are the
receiver and the arguments.

Availability of assertions in the classes Method and
Class is a major distinction with respect to the current
virtual machines such as JVM or CLR (Common Language
Runtime). This is at the same time a major difference with
respect to the assertion languages such as JML or Spec#. Full
implementation of this distinction is given in our previous
work [18].

VII. VERIFICATION TECHNOLOGY

In order to carry out interactive static verification using
PVS, the source object-oriented constraints must be trans-
lated into the PVS notation. PVS specifications are theories.
A class equipped with constraints will be represented as
a theory. Such a theory will encapsulate the underlying
type along with the associated functions and predicates,
and constraints will be represented as formulas in the
appropriate logic. Since PVS is a higher-order system, it
allows specification of specialized logics, such as temporal
or separation logic. The PVS theory of schemas is equipped
with a predicate consistent, which specifies the database
integrity constraints to be redefined in a specific schema.

The transaction theory given below makes use of bounded
parametric polymorphism available in PVS where the bound
for the type parameter is the theory Schema. A transaction
predicate is binary where the two arguments are the database
state before and after transaction execution. The transaction
predicate is a conjunction of two predicates update and
frame. The update predicate specifies the actual effect
of the transaction in transforming the database state. The
frame predicate specifies the frame of the transaction, i.e.,
those components of the database state that are not affected
by the transaction execution. This predicate is critical in
making the task of the verifier tractable. The integrity
theorem states that if the database state is consistent and
a transaction is executed, the state of the database after
transaction execution will be consistent.

Transaction[(IMPORTING Schema)
T: TYPE FROM Schema]: THEORY

BEGIN
Transaction: TYPE FROM Object
schema: [Transaction -> T]



468

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

update: [T,T ->bool]
frame: [T,T ->bool]

S1,S2: VAR T
transaction(S1,S2):bool = frame(S1,S2) AND

update(S1,S2)

Integrity: THEOREM consistent(S1) AND
transaction(S1,S2)

IMPLIES consistent(S2)
END Transaction

A specific PVS theory for the stock market schema as
specified previously in the object-oriented constraint lan-
guage is given below. This theory imports theories that it
needs and we do not present them in this paper. It also
defines StockMarket as a type derived from the type
Schema representing generic properties of all schemas. The
latter contains the predicate consistent, which is rede-
fined in the theory StockMarket as a conjunction of the
key constraint, referential integrity and the value constraint.
These three constraints are defined in the PVS language
as specified in the theory StockMarket. stocks and
brokers are functions, which return a set of stocks and a
set of brokers respectively associated with a given schema.

StockMarket: THEORY
BEGIN
IMPORTING Sets,Stock,Broker,Schema
StockMarket: TYPE FROM Schema

stocks: [StockMarket -> set[Stock]]
brokers: [StockMarket -> set[Broker]]
S: VAR StockMarket

KeyConstraint(S):bool =
(FORALL (s1,s2: Stock):
(member(s1,stocks(S)) AND
member(s2,stocks(S)) AND
code(s1) = code(s2))

IMPLIES s1=s2)
RefIntegrity(S): bool =

(FORALL (b: Broker):
(member(b,brokers(S)) AND

(FORALL (sB: Stock):
(member(sB,bstocks(b))) IMPLIES

member(sB,stocks(S)))))

valueConstraint(s:Stock): bool =
(value(s)> 0)

valueIntegrity(S): bool =
(FORALL (s:Stock):
member(s,stocks(S))IMPLIES

valueConstraint(s))

consistent(S):bool = KeyConstraint(S) AND
RefIntegrity(S) AND
valueIntegrity(S)

END StockMarket

A transaction theory InsertStock is a PVS repre-
sentation of the corresponding transaction in the object-

oriented assertion language. This transaction theory imports
its schema theory, and it is defined as a transaction type
bound to the schema StockMarket. As in the object-
oriented version, the update predicate specifies that the code
of the stock to be inserted is different from all the existing
codes in the set of stocks and that the new stock satisfies the
schema integrity constraint. In addition, the update specifies
that the set of stocks grows in size and that the new
stock indeed exists in the set of stocks after the insertion
transaction. The frame constraint specifies that the set of
brokers is unaffected by this transaction. In addition, the
frame constraint specifies that all the stocks in the initial set
of stocks are still there after the transaction.

InsertStock: THEORY
BEGIN

IMPORTING StockMarket,
Transaction[StockMarket]

InsertStock: TYPE FROM
Transaction[StockMarket]

S1,S2: VAR StockMarket
s: VAR Stock
newStock: VAR Stock

update(newStock)(S1,S2): bool =
(size(stocks(S2))= size(stocks(S1))+1)
AND (FORALL s:

(member(s,stocks(S1)) IMPLIES
(code(s) /= code(newStock))) AND

valueConstraint(newStock) AND
(member(newStock,stocks(S2))))

frame(S1,S2): bool =
(brokers(S1) = brokers(S2)) AND
(FORALL s: (member(s,stocks(S1))

IMPLIES member(s,stocks(S2))))
END InsertStock

The transaction theory UpdateStock given below rep-
resents the corresponding object-oriented transaction in
the PVS notation. StockUpdate is defined as a type
derived from the type Transaction[StockMarket],
i.e., it specifies transactions associated with the schema
StockMarket. The update predicate specifies that a stock
with a given code exists in the set of stocks and that it has
been correctly updated in the resulting set of stocks after
transcation execution. The frame constraint specifies that this
transaction does not affect the set of brokers nor the size of
the set of stocks. In addition, it specifies that the stocks that
existed initially in the set of stocks will still be there after
the update transaction.

UpdateStock: THEORY
BEGIN

IMPORTING StockMarket,
Transaction[StockMarket]

UpdateStock:
TYPE FROM Transaction[StockMarket]

S1,S2: VAR StockMarket
s: VAR Stock
increase: VAR real



469

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

update(s)(increase)(S1,S2): bool =
(FORALL (s1,s2: Stock):
(member(s1,stocks(S1)) AND

code(s1) = code(s) AND
member(s2,stocks(S2)) AND

code(s2) = code(s)) IMPLIES
(value(s2) = (value(s1)*increase)))

frame(S1,S2): bool =
(size(stocks(S2))= size(stocks(S1))) AND

(brokers(S2) = brokers(S1)) AND
(FORALL (s1:Stock):

(member(s1,stocks(S1)) IMPLIES
(EXISTS (s2:Stock):

member(s2,stocks(S2)) AND
(code(s1)=code(s2)))))

END UpdateStock

A transaction theory DeleteStock follows the above
pattern except that the update and the frame predicate reflect
the requirement that the referential integrity constraint of
the schema StockMarket cannot be violated. The update
predicate specifies that the deletion reduces the size of the set
of stocks. More importantly, it specifies that the stock to be
deleted actually exists in the initial set of stocks and it does
not in the resulting set of stocks after deletion. Moreover,
this update predicate specifies that the deleted stock does not
exist in any set of stocks associated with any broker after
the deletion is performed. The frame constraint specifies that
the stocks with code different from the code of the deleted
stock still exist in the set of stocks after deletion.

DeleteStock: THEORY
BEGIN

IMPORTING StockMarket,
Transaction[StockMarket]

DeleteStock:
TYPE FROM Transaction[StockMarket]

S1,S2: VAR StockMarket
s,s1,s2,sb: VAR Stock
b:VAR Broker
delStock: VAR Stock

update(delStock)(S1,S2): bool =
(size(stocks(S2))=(size(stocks(S1))-1))

AND (EXISTS s: (member(s,stocks(S1)) AND
(code(s)=code(delStock)))) AND

(FORALL s: (member(s,stocks(S2))) IMPLIES
(code(s) /=code(delStock))) AND

(FORALL b: (FORALL sb:
member(sb,bstocks(b)) IMPLIES
(code(sb) /=code(delStock))))

frame(delStock)(S1,S2): bool =
(FORALL s1: (member(s1,stocks(S1)) AND

code(s1) /= code(delStock)) IMPLIES
(EXISTS s2: (member(s2,stocks(S2)) AND

(s1=s2))))
END DeleteStock

VIII. RELATED RESEARCH

The orthogonal model of persistence implemented in [6]
and the ODMG model of persistence [9] are based on
promoting an object to persistence by either binding it to a
name in a persistent name space or making it a component of
an object that is already persistent. Message-based model of
persistence presented in this paper is a further significantly
different development after these initial approaches.

In the ODMG model, queries and transactions are objects,
and so are in our model, with additional subtleties. In our
approach messages are objects, and queries and updates are
particular types of messages. A transaction is a concurrent
object, which consists of a sequence of messages. The fact
that messages are objects makes it possible to construct a
transaction log as a sequence of messages of different types
(queries and updates, checkpoints, commits, etc.).

General integrity constraints are missing from most per-
sistent and database object models with rare exceptions such
as [2][5][8]. This specifically applies to the ODMG model,
PJama, Java Data Objects, and just as well to the current
generation of systems such as Db4 Objects [11], Objectivity
[15] or LINQ (Language Integrated Query) [14]. Of course,
a major reason is that mainstream object-oriented languages
are not equipped with constraints. Those capabilities are only
under development for Java and C# [7][12].

Constraints in the form of object-oriented assertions are
a key component of our approach. Database integrity con-
straints are specified as class invariants, transactions are
specified via pre and post conditions, and queries come with
general filtering (qualification) predicates. In comparison
with object-oriented assertion languages, such as JML [12]
and Spec# [7][13], a major difference is that in our approach
assertions are integrated in the run-time type system and
visible by reflection. This makes database integrity con-
straints accessible and enforceable at run-time. Reflective
constraint management, static and dynamic techniques for
enforcing constraints, and transaction verification technology
are presented in [3][5][18].

Our sources of motivation for the view of concurrent,
distributed and mobile objects were the languages ABCL
[22][23] and AmbientTalk [10]. The core difference is that
both of the above languages are untyped, whereas our ap-
proach here is based on a type system. A further distinction
is that ABCL and AmbientTalk are object-based and our
approach is class based. Other related work is given in [19].
Unlike ABCL reflective capabilities, reflection in this paper
is type-safe. A major distinction is the assertion language as
a core feature of the approach presented in this paper.

A major difference in comparison with our previous paper
[1] is in the verification technology based on a higher-
order verification system PVS as it applies to transaction
verification.

A classical result on the application of theorem prover
technology based on computational logic to the verification



470

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of transaction safety is [20]. Other results include [8] and
the usage of Isabelle/HOL [21]. Our previous results include
techniques based on JML and PVS [3]. Our most recent
results are based on Spec# [2]. Verification techniques of
object-oriented transactions with schemas and transactions
specified in either JML or Spec# are presented in [2][3].

IX. CONCLUSION

Object-oriented assertions allow specification of object-
oriented schemas equipped with database integrity con-
straints, transactions and their consistency requirements, and
queries. The view of messages as typed objects leads to a
typed reflective paradigm equipped with a message-based
orthogonal persistence. Reflection in this paradigm is much
more general than reflection in main-stream typed object-
oriented languages as it includes message and assertion types
that are integrated into the run-time type system.

The presented approach requires more sophisticated users
that can handle object-oriented assertion languages such
as JML or Spec#. Those languages and their underlying
technologies come with nontrivial subtleties as they are
still in the prototype phase. Integrating these technologies
into existing object database systems presents a significant
challenge yet to be addressed in our future research.

One the other hand, the benefits of the availability of
general constraints and static verification of transactions
with respect to those constraints are very significant. Data
integrity as specified by the constraints could be guaranteed.
Runtime efficiency and reliability of transactions are signif-
icantly improved. Expensive recovery procedures will not
be required for constraints that were statically verified. In
addition, more general application constraints that are not
necessarily database constraints could be guaranteed. All
of this produces a much more sophisticated technology in
comparison with the existing ones.

REFERENCES

[1] S. Alagić and A. Yonezawa, Ambients of persistent concurrent
objects, Proceedings of DBKDA 2011 (Advances in Databases,
Knowledge, and Data Applications), pp. 155-161, IARIA 2011.

[2] S. Alagić, P. Bernstein, and R. Jairath, Object-oriented con-
straints for XML Schema, Proceedings of ICOODB 2010,
Lecture Notes in Computer Science 6348, pp. 101-118.

[3] S. Alagić, M. Royer, and D. Briggs, Verification technology for
object-oriented/XML transactions, Proceedings of ICOODB
2009, Lecture Notes in Computer Science 5936, pp. 23-40.

[4] S. Alagić, The ODMG object model: does it make sense?,
Proceedings of OOPSLA, pp. 253-270, ACM, 1997.

[5] S. Alagić and J. Logan, Consistency of Java transactions, Pro-
ceedings of DBPL 2003, Lecture Notes in Computer Science
2921, pp. 71-89, Springer, 2004.

[6] M. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S.
Spence, An orthogonally persistent JavaTM , ACM SIGMOD
Record 25, pp. 68-75, ACM, 1996.

[7] M. Barnett, K. R. M. Leino, and W. Schulte, The Spec#
programming system: an overview, Microsoft Research
2004, http://research.microsoft.com/en-us/projects/specsharp/
[retrieved: December 31, 2011].

[8] V. Benzanken and X. Schaefer, Static integrity constraint man-
agement in object-oriented database programming languages
via predicate transformers, Proceedings of ECOOP ’97, Lec-
ture Notes in Computer Science 1241, pp. 60-84, 1997.

[9] R. G. G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan,
C. Russell, O. Schadow, T. Stanienda, and F. Velez, The Object
Data Standard: ODMG 3.0, Morgan Kaufmann, 2000.

[10] T. Van Cutsem, Ambient references: object designation in
mobile ad hoc networks, Ph.D. dissertation, Vrije University
Brussels, 2008.

[11] Db4 objects, http://www.db4o.com [retrieved: December 31,
2011].

[12] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cook, P. Muller, and J. Kiniry, JML Reference Manual,
http://www.eecs.ucf.edu/∼leavens/JML/ [retrieved: December
31, 2011].

[13] K. R. Leino and P Muller, Using Spec# language, method-
ology, and tools to write bug-free programs, Microsoft Re-
search, http://research.microsoft.com/en-us/projects/specsharp/
[retrieved: December 31, 2011].

[14] LINQ: Language Integrated Query,
http://msdn.microsoft.com/en-us/library/bb308959.aspx
[retrieved: December 31, 2011].

[15] Objectivity, http://www.objectivity.com/ [retrieved: December
31, 2011].

[16] S. Owre, N. Shankar, J. M. Rushby, J. Crow, and M. Srivas,
A tutorial introduction to PVS,
http://www.csl.sri.com/papers/wift-tutorial/ [retrieved:

December 31, 2011].

[17] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-
Clavert: PVS Prover Guide, SRI International, Computer Sci-
ence Laboratory, Menlo Park, California
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf [retrieved: De-
cember 31, 2011].

[18] M. Royer, S. Alagić, and D. Dillon, Reflective constraint
management for languages on virtual platforms, Journal of
Object Technology, vol 6, pp. 59-79, 2007.

[19] J. Schafer and A. Poetzsch-Heffter, JCoBox: Generalizing ac-
tive objects to concurrent components, Proceedings of ECOOP
2010, Lecture Notes in Computer Science 6183, pp. 275-299.

[20] T. Sheard and D. Stemple, Automatic verification of database
transaction safety, ACM Transactions on Database Systems 14,
pp. 322-368, 1989

[21] D. Spelt and S. Even, A theorem prover-based analysis
tool for object-oriented databases, Lecture Notes in Computer
Science 1579, pp 375 - 389, Springer, 1999.

[22] T. Watanabe and A. Yonezawa, Reflection in an object-
oriented concurrent language, Proceedings of OOPSLA, pp.
306-315, ACM Press 1988.

[23] A. Yonezawa, J.-P. Briot, and E. Shibayama, Object-oriented
concurrent programming in ABCL/1, Proceedings of OOP-
SLA, pp. 258-268, ACM Press 1986.



471

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Models of 40-Year  Spatial Development  of Cities in the Czech Republic in a 

geographic information system 

 

     Lena Halounová, Karel Vepřek, Martin Řehák 
Dept. of Mapping and Cartography 

Faculty of Civil Engineering, CTU in Prague 

Prague, Czech Republic 

e-mail: lena.halounova@fsv.cvut.cz 

arch.veprek@tiscali.cz 

martin.rehak.1@fsv.cvut.cz 

 

 

Abstract—There are many indicators of sustainable 

development of towns defined by urban specialists, sociologists, 

economists, etc. The paper presents the first part of a project 

whose goal is to find indicators of harmonic development of 

towns based on analysis of forty years development of fifty 

Czech towns. The indicators are studied in land use spatial 

changes, demography and road traffic intensity changes. First 

ten towns were processed for the period between 1970 and 

2009 being mapped in general urban land use classes and 

related to the measured road density. City land use class areas 

were derived from combination of actual and historical city 

plans and remote sensing data using geographic information 

system tools. It was found that the traffic intensity within 

towns and to and from towns is more dependent on existence of 

close highways and by-pass roads unlike number of 

inhabitants, e.g. Political changes from the communist regime 

to the democratic one was also an important breakpoint in the 

city developments. Increase of the road traffic intensity and 

enlarging of residential areas are features proving the fact. The 

paper presents a methodology of spatial mapping of land use 

classes utilized for determination of town development. The 

city developments and their relation to road traffic are 

documented on maps and graphs. 

Keywords-GIS; remote sensing data; city plan; number of 

inhabitants;  urban model;  land use;  road traffic intensity 

I.  INTRODUCTION  

The development of cities during last decades has faced 

us with a new situation. Most inhabitants in many European 

countries are concentrated in large towns. One fifth of the 

Czech Republic population is living in three largest towns – 

Prague, Brno and Ostrava. Fig. 1 shows percentage of 

inhabitants of all analyzed cities compared to two largest 

cities of the country- Prague and Brno - forming nearly half 

of inhabitants; therefore, the results of the analysis can be 

regarded as really representative.  

Present state of the balance among consumption level of 

society and quality of life is a matter of scientific papers, 

research [2][5][6], many projects [1][7], and political and 

economical discussions in many countries. Life quality is 

directly related to a lot of environmental and socio-

economic conditions. These conditions determine a 

harmonic development which should be based on equivalent 

and adequate demands of the human society. To define 

“adequate” means to take into account both consumption, 

and quality of life. Both are closely connected to the road 

traffic and its intensity. 

 

 
 

Figure 1. Development of percentage of inhabitants of analyzed cities in 

the framework of the Czech Republic 
 

The Department of Mapping and Cartography has been 

processing a COST project focused on a detailed evaluation 

of relations between the quality of life and present behavior 

of the human society. The project goal is to create a model 

allowing improving the present development status in urban 

areas being less demanding and ensuring their sustainable 

development. 

The project is a logical continuation of several projects 

performed by specialists from the Czech Technical 

University (CTU) in Prague in the Czech Republic and the 

State Institute for Regional Planning who have collected and 

summarized large data volume of fifty towns (including 

three largest ones - Prague, Brno and Ostrava) on: 

1. Functional typology comprising five general land 

use classes: housing and infrastructure areas 

summarized into a residential one, industrial and 

agricultural  production areas named areas of 

production, areas of  traffic, areas of recreation 

including sport and green vegetation land, surface 

water areas, etc., and areas of other functions like 

arable land, orchards, meadows, technical 

infrastructure – waste water treatment plant areas, 

quarries, e.g., this classification is used by urban 

planners and the individual city land use maps  

utilize its list.  

2. The second group of land use has been collected 

and recorded by the Czech Office for Surveying, 



472

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Mapping and Cadastre (COSMC) and Czech 

Statistical Office and consists of urban, 

agriculture, forest and water surface areas and other 

function areas. The data are related to 1970, 1980, 

1990, 2000, 2005, and 2008.  

3. Basic components of the environment. 

4. Basic components of the social and economical 

development. 

The last two groups of data were collected within many 

diploma theses for individual cities as the statistical data 

were recorded for districts only. 

The previous projects were focused on statistical data 

collected from the above mentioned sources and their 

processing. They did not comprise any spatial data and no 

spatial analyses were performed. Their city collection 

resulted in a large range of cities differing by population 

(from seventeen thousand to more than one million 

inhabitants), by economic orientation (agricultural, 

industrial, university, touristic), by natural conditions 

(lowland surrounded by agricultural areas, mountainous 

situated large forest areas), by geographic position in the 

republic – close/far to a frontier, etc. The city set is a good 

sample covering practically all Czech city types. 

       The processed project is focused on two new views – to 

select suitable indicators of the sustainable city development 

in the Czech Republic using also spatial characteristics 

together with already collected ones, and the role of the road 

traffic intensity in the development of cities and their mutual 

relation and impacts. 

Individual land use areas offer different conditions for 

living. The same land use classes in different areas and 

therefore all spatial units are characterized by a long list of 

attributes.  

II. CZECH CITIES AND THEIR DEVELOPMENT 

The Czech Republic does not have a continuous political 

and urban development. The development was formed 

mainly by political decisions having a decisive role of the 

urban land use changes. After the Second World War the 

urban development was relatively uneven and can be 

characterized by three types of cities. One type of cities had 

only a relatively slow and continuous spatial evolution 

within their administrative boundaries. The second type are 

cities with growing administrative areas; however, this 

growth was artificial as a result of political decisions to join 

surrounding villages to a close city.  This joining was in two 

phases in 70-ies and 1989. The third group of towns is 

similar to the second one; the only difference is in their 

further separation of one or more early joined villages. The 

separations occurred after changing of the political regime 

in the country at the end of 1989 from the communist to the 

democratic regime. This development definition was firstly 

described and denoted by Vepřek [8]. He uses three new 

terms: core area for town size representing in most cases a 

status in 70-ies of the 20
th

 century (1974, 1976). These were 

years when the process of joining villages to neighbor cities 

became an important phenomenon in administrative 

structure of the country. The joined areas are named 

associated areas by Vepřek in [8]. Urban parts in associated 

regions are denoted agglomerated ones by Vepřek in [8]. 
The parts, which became independent villages, are called 

peripheral areas by Vepřek in [8].  
These spatial developments is archived in Cadastre books 

in the form of table records showing concerned cadastre 
districts and also in COSMC data available on its portal as 
excel files.  The transfer of this information into spatial data 
can show the spatial city development using the cadastre 
districts´ boundaries of an appropriate period. This transfer 
was performed also into city plans, whose processing 
intervals vary in individual towns. City size evolutions 
cannot be derived from remote sensing data. If a town 
belongs to the second or third group, there are large spatial 
changes. The largest parts of these changes are in prevailing 
part represented by agricultural areas. The main difference 
between a core area and associated area are separated urban 
parts occurring in them. 

III. LAND USE MAPS 

The forty years spatial development is characterized (in 

the project) by land use maps of functional classes in 2009, 

2000, 1990, 1980 and 1970. High number of cities covering 

large areas demanded to use time effective method for their 

mapping. Their creation was based on adaptation of city 

plans, remote sensing and statistical data.  

Each urban area has a city plan as given by the Czech 

Law. Land use class determinations were done from land 

use classes applied by urban engineers in city plans which 

have been processed in several-year periods differently in 

individual cities. Therefore the city plans were the first 

information layer for urban land use maps processing. The 

plans comprise maps of the current land use/cover state and 

proposals for the future development and it was necessary to 

separate the urban plans. The process started by creation of 

the latest year map and ended by the 1970 land use map. 

A. Determination of  Land Use Classes 

The first step of creating of the first time level of each 

land use map was a reclassification of the original city plan 

classes. The city map legends are not standardized in the 

country, however, their class lists are more detailed than the 

classes used in the project. The reclassification reflects both 

five above mentioned land use classes and the COSMC land 

use classes distinguishing different ones: built-up, 

agricultural, forest, water, and other areas.  
The final functional classes were residential, production, 

recreational, traffic and other areas. Each class is therefore 
formed by a higher number of city plan classes. The 
residential area is formed by mixed residential region, 
general residential and rural ones, and public areas, e.g. The 
reclassification means also including local roads belonging 
to roads of low level in the state road hierarchy into 
residential or other surrounding areas. The reclassification is 



473

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performed individually for each town according to its city 
plan classes.   

The advantage of this approach was the fact that the basic 
classification was performed by urban specialists.  

B. Land Use Mapping  

As the city plans comprise not only a real status, but also 
an urban plan (as it was mentioned above), the next step was 
to verify the present city plans and the real state of cities as 
they can and really significantly differ from the real state 
especially in newly urbanized areas. The second reason for 
the verification is also the city plans´ date of origin. This part 
of the processing was done by visual interpretation of the 
remote sensing data (aerial photographs) combined with a 
change registration/vectorization of the vector city plan and 
the result was a map of functional classes of the present state. 
The first map = the latest one (2009) was a result of the 
present city plan processing by implementing corrections 
found in discrepancies between the plan and aerial 
orthophotographs. 

The previous time level of the land use map was derived 
from the present land use map copy by comparison with 
aerial photographs collected in between 1950 and 2000, and 
satellite image data (Thematic Mapper, MSS data) covering 
time span from 1970 to 2000. The satellite data were used for 
detection of land use changes between two time levels [6]. 
They were derived from a subtraction of original satellite 
image bands and normalized vegetation index in two 
different years (the 2008 band minus 2000 band, e.g.) and 
thresholding of the subtracted bands making the verification 
easier and quicker. Found changes were pixels with high 
positive or negative values. This approach yielded areas with 
different land cover, however, there was an additional task to 
determine and “translate” each land cover change into 
appropriate land use change. Each functional class comprises 
a wide range of the land cover classes in the aerial 
photographs spatial resolution; however, these detailed 
classes are not in prevailing part detectable on the Thematic 
Mapper data. The Thematic Mapper resolution does not 
allow determining urban functional classes – agriculture area 
spectral behavior can be similar to vegetated areas for some 
plants, etc. The areas with important changes (extreme 
positive and negative pixel values) were verified using the 
aerial photograph taking into account also their shape and 
texture. The oldest map showing the 1970 year was also in  
certain cases visually controlled using aerial 
orthophotomosaic created from aerial orthophotographs 
collected in 50-ies in the last century.  

The principle of mapping based on the latest land use 
map as the first processed level and further steps heading 
back to the previous levels using always copy of the 
“younger” processed period as a base map for the “older” = 
previous time level proved to be the most effective. The 
current city plans´ and present land use state differences 
were not so numerous. There was another advantage of this 
approach; it allows ensuring the correct topology of each 
land use development map set, detected classes and their 
evolution. 

All functional classes were controlled by the statistical 
table data available at the Czech Office for Surveying, 
Mapping and Cadastre for city administrative areas. The 
functional classes in individual years were used for further 
evaluation between the road transport density, town 
development and investments into road network in the form 
of new by-pass, highways, etc. The indicators showing the 
relation were the following: development of functional class 
areas, development of number of inhabitants, development of 
road transport density, and building of new decongesting 
roads. 

IV. ROAD TRAFFIC DATA 

A large data base of the road network development has 
been created by the Road and Motorway Directorate. The 
data base comprises - among others - measurements of the 
road traffic intensity in many points of roads of various 
classes since 60-ies of the 20

th
 century (1968, 1973, 1980, 

1990, 1995, 2000, 2005, and 2010). The road traffic intensity 
is a number of vehicles per 24 hours, which passed through a 
determined point on a road in both directions. It is an average 
of several 24 hours´ data collection. 

The measurements are available in map forms where each 

location is marked together with total amount of passed 

vehicles (including motorcycles), and tables where the 

amount is enumerated in a more detailed way distinguishing 

heavy-duty vehicles, cars and motorcycles.  

V. SOCIO-ECONOMIC DATA 

A deep analysis of another large data volume which has 
been collected since the second half of the 20

th
 century will 

be performed in the proposed project. The data comprise 10-
year research of socio-economic data of environmental 
changes performed at the University of Economics in 
Prague, e.g. Each city is described by several hundreds of 
statistical data. The data were collected by many students of 
the university within their theses. The processing of the data 
is not presented in this paper and is a matter of the further 
research. 

VI. RESULTS 

First twenty cities processed in the first year and a half of 
the project have brought very interesting results.  

Kladno is one of processed towns situated 30 km north 
west from Prague. The town consists both of a core, and 
associated parts. The city was an industrial city in the 
communist period of the republic. The industrial production 
has been extremely declining since 1990 and most 
inhabitants are employed in Prague at present. Fig. 2 shows 
spatial changes of four functional classes between 1969 and 
2009 mapped by the above mentioned method. The dashed 
line (Fig. 2a) determines the core area as an administrative 
city boundary at the end of 70-ies in the 20

th
 century. The 

solid line delineates the administrative city boundary since 
80-ies of the previous century which has not changed. The 
red color patches are residential areas in 1969. The green 
patches are residential areas built between 1969 and 2008 
[3]. 



474

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

               
a)   

 

 

          
b) 
 

 

 
c) 

 

 
d) 

Figure 2a, b, c, d. Development of the Kladno functional classes 

for the 1969 – 2009 period 

 

 

 
 
Figure 3. Example of spatial development of Kladno during last 
40 years shown in administrative, core, associated, built-up and 

non-built-up areas 

 

 
 
Figure 4. Example of spatial development of Kladno  during last 

40 years shown in land use classes 

 

Development of production areas is shown in Fig. 2b, 

facility areas in Fig. 2c), and traffic areas in Fig. 2d.  

Town development is further presented on two graphs – 

Fig. 3 and Fig. 4. Fig. 3 shows administrative, core and 

associated areas with their built-up and non-built-up area. 

Fig. 4 represents built-up core area. Looking at the statistical 

evaluation presented in Fig. 4, we can see that it was the 

area of production whose growth was the steepest in the 

core part. Comparing residential parts development, we can 

find that it covers larger areas with a steeper increase of size 

than those of traffic ones within the core region during last 

20 years. However, there is a new highway passing the town 

in 5 km distance enabling the town to be used in prevailing 

part as a terminal location for the road traffic and not as a 

passing through town location in direction between Prague 

and north-west. The town has not yield larger areas for 

recreation, leisure time, sport, etc., during last 40 years (Fig. 

4). 

The administration area has not changed since 1982. The 

core area changed - unlike most towns - between 1982 and 

1989. The residential area and area of production cover a 

similar part of the built-up area, however, the growth of the 

production area is steeper. Non built-up areas are in a 

prevailing part the forested ones. The associated areas are in 

most cases formed by an agricultural and forest land, 

however, their  sizes decline after the 1989 political change. 

The spatial changes are described in the coincidence table 

 

 

Areas of facilities in 1969 

Growth of areas of facilities till 2009 

Administrative area in 1969 

Administrative area in 2009 

 

Development of residential areas 

Production areas in 1969 

Growth of production areas till 2009 

Administrative area in 1969 

Administrative area in 2009 

 

Development of facility areas 

 

 

Development of traffic areas 

 
Traffic areas in 1969 

Growth of traffic areas till 2009 

Administrative area in 1969 

Administrative area in 2009 
 

 

 

Development of production areas 

Residential areas in 1969 

Growth of residential areas till 2009 

Administrative area in 1969 

Administrative area in 2009 

 

 

 



475

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(Table I.). Each row shows the size of an individual class 

and its transformation between 1950 and 2008. Each column 

comprises original areas forming the present size of an 

individual class. Areas without changes are highlighted in 

diagonal cells of the table.Comparing of the last row  (Sum 

2008) and last column  (Sum 1950) allows to find encrease 

and decrease of class areas.  

 

The road traffic intensity was checked both on local and 

higher level class roads. Both road types express a growth, 

however, mutually uncomparable. The slope of the growth 

is lower after 1995 when a new pass-by highway was built 

(Fig. 5a). This phenomenon is presented as an impact of the 

highway construction out of the city on traffic intensity of 

the individual functional land use classes in Fig. 5b. 
 

 
TABLE 1.  THE COINCIDENCE TABLE SHOWS CHANGES BETWEEN 1950 AND 2008. RESIDENTIAL AREAS HAVE NOT CHANGED ON 207 HECTARES AND 25 % 

OF RESIDENTIAL AREAS HAS TRANSFORMED TO THE  TRAFFIC, OTHER, PUBLIC, FACILITY, PRODUCTION, GREEN, AND AGRICULTURE AREAS (SEE THE 

RESIDENTIAL ROW). ON THE CONTRARY, THE PRESENT STATE OF THE RESIDENTIAL AREA IS NEWLY (AFTER 1950) FORMED BY TRAFFIC, OTHER, PUBLIC, 
GREEN, AGRICULTURE AREAS AND ENLARGED ON 130 % OF THE ORIGINAL SIZE (363 HA) (EXAMPLE OF THE CITY OF MĚLNÍK) 

 

 

 

 

 
 
Figure 5. Sum of all measured segments on higher level roads used also 

for passing traffic and on local roads (a). Traffic intensity calculated as a 
ratio of all vehicles per 24 hours and size of functional areas (b) 

 

Investments into highway and by-pass road 

constructions can be easily recognized from two graphs in 

Fig, 6. Ten towns with the highest number of vehicles per 

24 hours entering and leavig each town were selected and 

compared to  number of their inhabitants. 

The important influence of by-pass roads can be found 

on Fig. 6. The city of Mělník has a very low number and 

growth of inhabitants in last 40 years if compared to 

Ostrava, as an example; however, numbers of measured 

vehicles leaving and coming to both cities are similar. 

Mělník does not have any by-pass road and is situated on 

the direction among Prague and other important Czech 

cities. Analyzing Kolín and Hradec Králové and/or Plzeň, 

their traffic intensity and number of inhabitants show 

analogue situations [3]. 

 

 

 

Land Use  Classes 

Land Use  Classes 

Residential Traffic Forest Other Recreation Public Water Facility Production Green Agriculture Sum 1950 

residential 207,47 5,56 0,00 13,06 0,00 11,79 0,00 8,32 16,94 9,98 4,01 277,14 

traffic 6,24 34,55 0,95 0,34 0,16 9,40 0,00 0,21 1,83 2,86 8,16 64,97 

forest 0,00 0,13 58,72 0,00 0,41 0,13 0,00 0,00 0,00 3,35 0,05 63,25 

other 2,75 0,17 0,00 5,81 0,00 1,28 0,00 0,06 3,72 1,21 1,33 16,33 

recreation 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

public 9,79 9,76 0,19 2,91 0,03 24,55 0,00 1,09 4,40 10,02 11,18 73,92 

water 0,00 0,05 0,00 0,00 0,00 0,27 64,09 0,00 2,39 0,96 0,34 68,10 

facility 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

production 0,68 1,34 0,00 3,61 0,00 2,87 1,50 0,00 66,55 3,54 0,00 80,09 

green 14,09 5,47 0,00 6,94 1,63 10,40 0,00 3,27 8,66 123,28 14,66 188,88 

agriculture 122,17 25,98 0,88 48,32 17,80 57,45 0,01 16,04 102,99 176,20 1082,75 1659,68 

sum 2008 363,19 83,01 60,74 80,99 20,03 118,14 65,60 28,99 207,48 331,40 1122,48 
 

a) 

b) 



476

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 
 

Figure 6 a, b. Comparing of the traffic intensity (a) since 1968 to 2005 
and number of inhabitants (b) in similar periods (till 1991)  

 

The traffic intensity was compared to land use classes in 

individual analyzed years.  
 

 

 

 
 

Figure 7. Graphs showing relation between number of vehicles passing 
through analyzed cities and their area of housing 

 

 

 
 

Figure 8. Graphs showing relation between number of vehicles passing 

through analyzed cities and their area of production 

 

 

 

 
 

Figure 9. Graphs showing relation between number of vehicles passing 

through analyzed cities and their traffic area 

a) 

b) 



477

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. CORRELATION COEFFICIENT OF RELATION BETWEEN ROAD 

INTENSITY OF PASSING VEHICLES AND AREAS OF VARIOUS LAND USE 

 

Correlation coefficient between road traffic intensity and areas 

 

urban 

areas 

areas of 

housing 

areas of 

production 

areas of 

production 

and housing 

traffic 

areas 

1970 0,62 0,60 0,53 0,62 0,59 

1980 0,34 0,35 0,24 0,33 0,57 

1991 0,44 0,47 0,40 0,46 0,66 

2005 0,70 0,67 0,54 0,67 0,68 

 

 

The graphs on Figs. 7, 8 and 9 and Table II show that 

the best correlation between road traffic intensity and land 

use class occurs at traffic areas. These are areas of housing 

that have higher correlation coefficient on traffic intensity 

than areas  of production. The best correlation for all land 

use areas has been found for 2005.  

 

 
 

Figure 10. Development of number of passing vehicles through cities 

and their sum of inhabitants 

 

 
 

Figure 11. Development of residential areas in 10 analyzed cities 

VII. CONCLUSIONS 

The project methodology is based on a multi-

correlational processing using statistical (social, economical, 

geographical and natural) data of cities and spatial land use 

development and changes. There are more than six hundred 

economical, social and other statistical indicators whose 

mutual relation are prepared to be analyzed. The spatial land 

use change developments are visualized by the coincidence 

table (Table I.) and were used as the first group of 

indicators. Their correlation coefficients are in Table II. 

Relations between town development and road traffic 

density showed interesting dependences. The traffic 

intensity changes cannot be generalized for a town as a unit. 

There are serious temporal changes within each town. These 

changes are caused by newly built commercial areas where 

this growth is incomparable to any other locations in the 

city, by new roads passing out of cities, e.g. The road traffic 

is also an important indicator of the economic inhabitant 

level – the traffic increase of personal and heavy-duty 

vehicles intensity on one side and decrease of motorcycle 

intensity and number of inhabitants on the other side since 

70-ies is a proof of the higher economical power of city 

inhabitants which was found at all fifty analyzed cities. The 

fact is also documented on Fig. 10 by increasing sum of 

passing vehicles and decreasing number of inhabitants. The 

higher economical power proves also Fig. 11 accompanying 

Fig.10 and showing the growth of residential areas for the 

decline of inhabitants.  

Results of any urban planning are always long lasting 

phenomena influencing the society. The spatial land use 

changes in 50 various cities will yield a rich source of data 

for the evaluation. The road traffic intensity is information 

on the air pollution; data on life expectancy are an issue 

concerning a social situation and health care, etc. The 

project results should offer a set of usable tools = indicators 

for urban planners and their further urban planning to 

achieve sustainable development of cities in the Czech 

Republic.  

The paper presents a starting part of analysis performed 

for functional classes and road traffic intensity. Spatial 

changes and their relation to the traffic evolution have 

already brought a great deal of information which will be 

processed in a form of one of indicators.  

The first part of the research was presented during the 

IARIA GEOProcessing 2011 [3]. 
The future research is focused on determining a list and 

sequence of indicators for the sustainable development of 

cities. The available data will be processed for selection of 

substantial indicators and their influence.  There are still 

spatial ones, which have not been utilized as – distance to 

frontiers, distance to larger cities, etc. except for mainly 

socio-economical indicators that will be analyzed. 

ACKNOWLEDGMENT 

The paper is financed by two projects: Modeling of urban 
areas to lower negative influences of human activities project 
of the Ministry of Education (OC10011) of the Czech 
Republic and the Management of sustainable development of 
life cycle of constructions, civil engineering firms and 



478

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

regions of the Ministry of Education project (VZ 05 CEZ 
MSM 6840770006) of the Czech Republic. 

REFERENCES 

 [1]   Global City Indicators Program, 

http://www.cityindicators.org/; cit.  07/02/2012. 

[2]   Brugmann, J., “Is there a method in our measurement? The 

use of indicators in local sustainable development planning” , 

Local Environment, vol. 2, issue 1,  February 1997, pp. 59 – 

72. 

[3] Halounová, L., Vepřek, K., Řehák, M., “Geographic 

Information System Models of 40-Year  Spatial Development  

of Towns in the Czech Republic”, The third International 

Conference on Advanced Geographic Information Systems, 

Applications, and Services, GEOProcessing 2011, 

Guadeloupe, France, February 23-28, 2011. 

[4] Howell, E., Pettit, K.L.S., Ormond, B.A., and Kingsley, G.T., 

“Using the National Neighborhood Indicators Project to 

Improve Public Health, Journal of Public Health Management 

and Practice”, vol.  9, May/June 2003, pp. 235-242. 

[5] Kingsley, G.T., Kathryn, L.S., and Pettit, K.L.S., 

“Neighborhood Information Systems: We Need a Broader 

Effort to Build Local Capacity”,  Metropolitan Housing and 

Communities Policy Newsletter, October 2004. 

[6] Lillesand, T.M., Kiefer, R.W., and Chipman, J.W., “Remote 

Sensing And Image Interpretation“, 5th Ed., Wiley, 2010. 
 

[7] United Nations Human Settlements Programme, UN-

HABITAT, Kenya, 

http://ww2.unhabitat.org/programmes/guo/urban_indicators.asp, 

2003, cit  07/02/2012. 

[8]  Vepřek, K. et al., “Analysis of 100 years urban development of 

Hradec – Pardubice regional agglomeration focused on 

detection of general tendencies and regularity” - research 

project VÚP No16-521-503, Terplan Praha, 1983.  

 

 

 



479

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rainbow Table Optimization for Password Recovery

Vrizlynn L. L. Thing, Hwei-Ming Ying

Cryptography & Security Department
Institute for Infocomm Research, Singapore

{vriz,hmying}@i2r.a-star.edu.sg

Abstract—As users become increasingly aware of the need
to adopt strong password, it also brings challenges to digital
forensics investigators due to the password protection of potential
evidence data. In this paper, we discuss existing password
recovery methods and present a design of a time-memory trade-
off pre-computed table coupled with a new sorting algorithm.
We also propose 2 new storage methods and evaluated their
performance based on storage conservation and success rate
improvement. Considering both alpha-numeric passwords and
passwords consisting of any printable ASCII character, we show
that we are able to optimize the rainbow table performance
through an improvement of up to 26.13% in terms of password
recovery success rate, and an improvement of up to 28.57% in
terms of storage conservation, compared to the original rainbow
tables.

Keywords - Digital forensics, password recovery, rainbow table
optimization, time-memory trade-off, cryptanalysis.

I. INTRODUCTION

In computer and information security, the use of passwords
is essential for users to protect their data and to ensure a
secured access to their systems/machines. However, in digital
forensics, the use of password protection presents a challenge
for investigators while conducting examinations. As mentioned
in [3], compelling a suspect to surrender his password would
force him to produce evidence that could be used to in-
criminate him, thereby violating his Fifth Amendment right
against self-incrimination. Therefore, this presents a need for
the authorities to have the capability to access a suspect’s data
without expecting his assistance. While there exist methods to
decode hashes to reveal passwords used to protect potential
evidence, lengthier passwords with larger characters sets have
been encouraged to thwart password recovery. Awareness of
the need to use stronger passwords and active adoption have
rendered many existing password recovery tools inefficient or
even ineffective.

The more common methods of password recovery tech-
niques are guessing, dictionary, brute force and more recently,
using rainbow tables. The guessing method is attempting
to crack passwords by trying “easy-to-remember”, common
passwords or passwords based on a user’s personal information
(or a fuzzy index of words on the user’s storage media). A
statistical analysis of 28,000 passwords recently stolen from a
popular U.S. website revealed that 16% of the users took a first
name as a password and 14% relied on “easy-to-remember”
keyboard combinations [4]. Therefore, the guessing method

can be quite effective in some cases where users are willing
to compromise security for the sake of convenience.

The dictionary attack method composes of loading a file of
dictionary words into a password cracking tool to search for
a match of their hash values with the stored one. Examples of
password cracking tools include Cain and Abel [5], John the
Ripper [6] and LCP [7].

In the brute force cryptanalysis attack, every possible com-
bination of the password characters is attempted to perform a
match comparison. It is an extremely time consuming process
but the password will be recovered eventually if a long enough
time is given. Cain and Abel, John the Ripper as well as LCP
are able to conduct brute force attacks.

In [8-11], the authors studied on the recovery of passwords
or encryption keys based on the collision of hashes in specific
hashing algorithms. These methods are mainly used to research
on the weakness of hashing algorithms. They are too high in
complexity and time consuming to be used for performing
password recovery during forensics investigations. The meth-
ods are also applicable to specific hashing algorithms only.

In [12], Hellman introduced a method, which involves a
trade-off between the computation time and storage space
needed to recover the plaintext from its hash value. It can
be applied to retrieve Windows login passwords encrypted
into LM or NTLM hashes [13], as well as passwords in
applications using these hashing algorithms. Passwords en-
crypted with hashing algorithms such as MD5 [14], SHA-
2 [15] and RIPEMD-160 [16] are also susceptible to this
recovery method. In addition, this method is applicable to
many searching tasks including the knapsack and discrete
logarithm problems.

In [17], Oechslin proposed a faster cryptanalytical time-
memory trade-off method, which is an improvement over
Hellman’s method. Since then, this method has been widely
used and implemented in many popular password recovery
tools. The pre-computed tables that are generated in this
method are known as the rainbow tables.

In [18], Narayanan and Shmatikov proposed using standard
Markov modeling techniques from natural language process-
ing to reduce the password space to be searched, combined
with the application of the time-memory trade-off method to
analyse the vulnerability of human-memorable passwords. It
was shown that 67.6% of the passwords can be successfully
recovered using a 2x109 search space. However, the limitation
of this method is that the passwords were assumed to be



480

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

human-memorable character-sequence passwords.
In this paper, we present a new design of an enhanced

rainbow table [1,2] by proposing a novel time-memory trade-
off pre-computed table structure and a rainbow table sorting
algorithm. Maintaining the core functionality of the rainbow
tables, we optimized the storage space requirement while
achieving the same success rate and search speed.

The rest of the paper is organized as follow. In Section 2,
we present a discussion on the existing time-memory trade-
off password recovery methods. We then give an overview of
our enhanced rainbow table design in Section 3. We describe
the design of our sorting algorithm in Section 4. Analysis and
evaluation are presented in Section 5. The description of the
2 new proposed storage methods is provided in Section 5 due
to the importance of their considerations during evaluations.
Conclusions follow in Section 6.

II. ANALYSIS OF EXISTING WORK

The idea of a general time-memory tradeoff was first
proposed by Hellman in 1980 [12]. In the context of password
recovery, we describe the Hellman algorithm as follows.

We let X be the plaintext password and Y be the cor-
responding stored hash value of X. Given Y, we need to
find X, which satisfies h(X) = Y, where h is a known hash
function. However, finding X = h−1(Y) is feasibly impossible
since hashes are computed using one-way functions, where
the reversal function, h−1, is unknown. Hellman suggested
taking the plaintext values and applying alternate hashing and
reducing, to generate a pre-computed table.

For example, the corresponding 128-bit hash value for a 7-
character password (composed from a character set of English
alphabets), is obtained by performing the password hashing
function on the password. With a reduction function such
as H mod 267, where H is the hash value converted to its
decimal form, the resulting values are distributed in a best-
effort uniform manner. For example, if we start with the
initial plaintext value of ”abcdefg” and upon hashing, we get
a binary output of 0000000....000010000000....01, which is
64 ‘0’s and a ‘1’ followed by 62 ‘0’s and a ‘1’. H = 263 +
1 = 9223372036854775809. The reduction function will then
convert this value to ”3665127553”, which corresponds to a
plaintext representation “lwmkgij”, computed from (11(266)
+ 22(265) + 12(264) + 10(253) + 6(262) + 8(261) + 9(260).
After a pre-defined number of rounds of hashing and reducing
(making up a chain), only the initial and final plaintext values
are stored. Therefore, only the “head” and “tail” of a chain
are stored in the table. Using different initial plaintexts, the
hashing and reducing operations are repeated, to generate a
larger table (of increasing rows or chains). A larger table will
theoretically contain more pre-computed values (i.e., disre-
garding hash collisions), thereby increasing the success rate of
password recovery, while taking up more storage space. The
pre-defined number of rounds of hashing and reducing will
also increase the success rate by increasing the length of the
“virtual” chain, while bringing about a higher computational
overhead.

To recover a plaintext from a given hash, a reduction

operation is performed on the hash and a search for a match
of the computed plaintext with the final value in the table is
conducted. If a match is not found, the hashing and reducing
operations are performed on the computed plaintext to arrive
at a new plaintext so that another round of search to be made.
The maximum number of rounds of hashing, reducing and
searching operations is determined by the chain length. If the
hash value is found in a particular chain, the values in the chain
are then worked out by performing the hashing and reducing
functions to arrive at the plaintext giving the specific hash
value. Unfortunately, there is a likelihood that chains with
different initial values may merge due to collisions. These
merges will reduce the number of distinct hash values in the
chains and therefore, diminish the rate of successful recovery.
The success rate can be increased by using multiple tables with
each table using a different reduction function. If we let P(t)
be the success rate of using t tables, then P(t) = 1 - (1 - P(1))t,
which is an increasing function of t since P(1) is between 0 and
1. Hence, introducing more tables increase the success rate but
also cause an increase in both the computational complexity
and storage space.

In [19], Rivest suggested a method of using distinguished
points as end points for chains. Distinguished points are keys,
which satisfy a given criteria, e.g., the first or last q bits are
all 0. In this method, the chains are not generated with a fixed
length but they terminate upon reaching pre-defined distin-
guished points. This method decreases the number of memory
lookups compared to Hellman’s method and is capable of loop
detection. If a distinguished point is not obtained after a large
finite number of operations, the chain is suspected to contain
a loop and is discarded. Therefore, the generated chains are
free of loops. One limitation is that the chains will merge if
there is a collision within the same table. The variable lengths
of the chains will also result in an increase in the number
of false alarms. Additional computations are also required to
determine if a false alarm has occurred.

In 2003, Oechslin proposed a new table structure [17] to
reduce the probability of merging occurrences. These rainbow
chains use multiple reduction functions such that there will
only be merges if the collisions occur at the same positions
in both chains. An experiment was carried out and presented
in Oechslin’s paper. It showed that given a set of parameters,
which is constant in both scenarios, the measured coverage in
a single rainbow table is 78.8% compared to the 75.8% from
the classical tables of Hellman with distinguished points. In
addition, the number of calculations needed to perform the
search is reduced as well.

In the following sections, we present our enhanced rainbow
table [2] with a novel sorting algorithm [1], and propose 2
new storage methods, so that password lookup in the stored
tables can be optimized.

III. ENHANCED RAINBOW TABLE

In this section, we present a new design of a time-memory
trade-off precomputed table structure.

In this design, the same reduction functions as in the
rainbow table method are used. The novelty lies in the



481

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

chains generation technique. Instead of taking a large set of
plaintexts as our initial values, we systematically choose a
much smaller unique set. We choose a plaintext and compute
its corresponding hash value by applying the password hash
algorithm. We let the resulting hash value written in decimal
digits be H. Following that, we compute (H+1) mod 2j , (H+2)
mod 2j ,......, (H+k) mod 2j for a variable k, where j is the
number of bits of the hash output value. For example, in
MD5 hash, j = 128. These hash values are then noted as the
branches of the above chosen initial plaintext. We then proceed
by applying alternate hashing and reducing operations to all
these branches. We call this resulting extended chain, a block.
The final values of the plaintexts are then stored with this 1
initial plaintext value. We perform the same operations for the
other plaintexts. These sets of initial and final values make up
the new pre-computed table.

To recover a password given a hash, we apply reducing and
hashing operations alternatively until we obtain a plaintext that
corresponds to one of the stored final values, as in the rainbow
table method. After which, we generate the corresponding
branch (e.g., if k = 99 and chain id = 212, the initial value
is the initial plaintext in the third block and the branch id is
12), till the value of the password hash is reached.

A. Differences and Similarities in the designs

We identify and list the differences and similarities between
the design of our new method and the rainbow table method
as follow:

• Both use n reduction functions.
• Instead of storing the initial and final values as a pair

as in the rainbow table, the initial value is stored with
multiple output plaintexts after a series of hashing and
reducing operations. This results in a large amount of
storage conservation in the new method.

• The hashes H, (H+1) mod 2j , (H+2) mod 2j ,...... , (H+k)
mod 2j are calculated in order to generate subsequent
hashes, resulting in the uniqueness of the values in the
1st column of hashes in the new method. The uniqueness
of the hash values is guaranteed unless the total number
of hashes is greater than 2j . This situation is not likely
to happen as it assumes an extremely large table, which
fully stores all the possible pre-computed values.

• In this new design, the recovery of some passwords in
the 1st column is not possible as they are not stored in
the first place. However, we have shown in our analysis
and evaluation [2] that the effect is neglible.

IV. SORTING ALGORITHM

The main drawback of the proposed enhanced rainbow table
is that each password search will incur a significant amount
of time complexity. The reason is that the passwords cannot
be sorted in the usual alphabetical order now, since in doing
so, the information of its corresponding initial hash value will
be lost. The lookup will then have to rely on checking every
single stored password in the table. Therefore, we propose a
sorting algorithm so that password lookup in the stored tables
can be optimized.

We require a sorting of the “tail” passwords to achieve a
fast lookup. Therefore, we introduce special characters that
cannot be found on the keyboard (i.e., non-printable ASCII
characters). There are altogether 161 such characters and we
assume that these non-printable ASCII characters do not form
any of the character set of the passwords. We insert a number
of these special characters into the passwords that we store.
The manner in which these special characters are inserted
will provide the information on the original position of the
passwords in the rainbow table after the table has been re-
arranged in alphabetical order. The consequence is that this
will incur more storage space but we will illustrate later that
the increase in storage space is minimal and is also lesser
than the original rainbow table’s storage requirement. The
advantage of this sorting algorithm is that the passwords can
now be sorted and thus a password lookup can be optimized.

A. Algorithm Design

Definition of notations:
Y = total number of special characters available
w = number of special characters in password
m = length of password
x = special character in password (labelled x1, x2,.....),
1≤ xi≤ Y
p = location of a special character within password (labelled
p0, p1,.....), 0≤ pi≤ m, where xi is placed at location pi−1

within a password(
n
r

)
= n!

(n−r)!r!

From here on, position refers to the original position
of a password in the rainbow table, while placement or
location of a special character refers to its location in a
password.

Password Position Computation
As an example, let 0000000 denote a 7-character password.

The 161 non-printable ASCII characters are used as special
characters x1, x2,........, x161, and are represented by numeric
values from 1 to 161, respectively. The 8 possible locations
of the special characters in a password are represented as
underlines in 0 0 0 0 0 0 0 . Each location can hold more
than one special character.

For example, 0000000 does not carry any special character
and is at position 0. In 0000000x1, x1 is the first (scanning
from rightmost) special character in the password, as denoted
by its subscript value of 1. The position of this password
depends on the numeric value represented by the special
character, x1. Therefore, the position is from 1 to 161
depending on which of the 161 special characters is used
(i.e., 0000000x1 is at position 1 if x1 = 1, and at position
161 if x1 = 161). Continuing in this manner, 000000x10 is
at position 162 if x1 = 1, and at position 322 if x1 = 161.
Therefore, x10000000 is at position 1128 if x1 = 1, and at
position 1288 if x1 = 161.

Ater covering all the locations for special characters in the
password by using only 1 character but without completing



482

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the allocation of special characters for all the passwords in
the password space, we can increase the number of allocated
special characters in the password, one at a time. For the
insertion of 2 characters, 0000000x2x1 is at position 1289 if
x1=x2=1. 0000000x2x1 is at position 1290 if x2 = 1 and x1

= 2. 0000000x2x1 is at position 1291 if x2 = 1 and x1 = 3.
Continuing in this manner, 0000000x2x1 is at position 27209
if x2 = x1 = 161, 000000x20x1 is at position 27210 if x2 =
x1 = 1, and so on.

We derive the following formulas for the computation of
the original position of a password in the rainbow table.

w=1: Original position of password
Yp0 + x1

w=2: Original position of password
Yx2 + x1 + Y2

(
p1+1

2

)
+ Y2p0 + Ym

w=3: Original position of password
Y2x3 + Yx2 + x1 + Y3

(
p2+2

3

)
+ Y3

(
p1+1

2

)
+ Y3p0 +

Y2
(
m+1
2

)
+ Y2m + Ym

w=4: Original position of password
Y3x4 + Y2x3 + Yx2 + x1 + Y4

(
p3+3

4

)
+ Y4

(
p2+2

3

)
+ Y4

(
p1+1

2

)
+ Y4p0 + Y3

(
m+2
3

)
+ Y3

(
m+1
2

)
+ Y3m + Y2

(
m+1
2

)
+ Y2m

+ Ym

For a general w, the original position is given by∑w−1
i=0 (Y ixi+1 + Yw

(
pi+i
i+1

)
) +

∑w−2
i=0

∑i
j=0Yi+1

(
m+j
j+1

)
V. ANALYSIS

In this section, we present an analysis of the proposed
enhanced rainbow table and its sorting algorithm. First, we
analyse the maximum number of special characters required
to sort tables of different sizes and password lengths, as well
as demonstrate the storage conservation achieved. Next, we
analyse the improvement in success rate of password recovery
in the event of storage limitation. The 2 new storage methods
are proposed and the impact on the storage conservation and
success rate are demonstrated in this section.

A. Storage Conservation Analysis

Number of positions that can be assigned without using
any special character
= 1

Number of positions that can be assigned using 1 special
character
= Y(m+1)

Number of positions that can be assigned using 2 special
characters
= Y2[m+1+

(
m+1
2

)
]

Number of positions that can be assigned using 3 special
characters
= Y3[m+1+ 2

(
m+1
2

)
+
(
m+1
3

)
]

Number of positions that can be assigned using 4 special
characters
= Y4[m+1+ 3

(
m+1
2

)
+ 3

(
m+1
3

)
+
(
m+1
4

)
]

For w≥1, the number of positions that can be assigned
using exactly w special characters
= Yw

∑w−1
i=0

(
w−1
i

)(
m+1
i+1

)
Total number of positions that can be identified using
at most w special characters (inclusive of positions that can
be identified for number of special characters smaller than w)
=
∑w

i=0

∑i
j=0Yi

(
m+j−1

j

)
Table I shows the number of positions that can be assigned
given a pre-defined Y, m and w.

TABLE I: Total Number of Positions in Enhanced Rainbow
Table

Y m w Total Number of Positions
161 7 1 1,289
161 7 2 934,445
161 7 3 501,728,165
161 7 4 222,228,147,695
161 7 5 85,897,316,654,087
161 7 6 29,972,224,023,967,164
161 8 1 1,450
161 8 2 1,167,895
161 8 3 689,759,260
161 8 4 333,279,388,555
161 8 5 139,555,298,211,442
161 8 6 52,440,627,036,009,328
161 9 1 1,611
161 9 2 1,427,266
161 9 3 919,549,086
161 9 4 481,326,791,401
161 9 5 217,048,911,627,003
161 9 6 87,385,501,807,956,800
161 10 1 1,772
161 10 2 1,712,558
161 10 3 1,195,270,924
161 10 4 673,765,410,165
161 10 5 325,525,142,663,568
161 10 6 139,795,049,776,791,264

Let s be the total number of passwords to be stored
in a rainbow table. Therefore, the total storage space
required by the original rainbow table is (2 * m * s)
bytes. In the enhanced rainbow table method, for s <∑w

i=0

∑i
j=0Yi

(
m+j−1

j

)
, at most w special characters are

needed to be inserted to each password to identify its position.
However, due to the use of special characters, the passwords
to be stored are no longer of constant length. We propose
two new methods to the storage of the passwords with their
inserted special characters. In method 1, the passwords are
still stored side by side as in the original rainbow table
method. Retrieval of passwords for checking is performed at
a specific fixed length. The w used in method 1 must be a
fixed length too. The total number of positions that can be
identified is reduced as they do not include positions that can



483

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be identified for number of special characters smaller than w.
The total number of positions in storage method 1 is shown
in Table II.

TABLE II: Total Number of Positions in Storage Method 1
(side by side)

Y m w Total Number of Positions
161 7 1 1,288
161 7 2 933,156
161 7 3 500,793,720
161 7 4 221,726,419,530
161 7 5 85,675,088,506,392
161 7 6 29,886,326,707,313,076
161 8 1 1,449
161 8 2 1,166,445
161 8 3 688,591,365
161 8 4 332,589,629,295
161 8 5 139,222,018,822,887
161 8 6 52,301,071,737,797,880
161 9 1 1,610
161 9 2 1,425,655
161 9 3 918,121,820
161 9 4 480,407,242,315
161 9 5 216,567,584,835,602
161 9 6 87,168,452,896,329,808
161 10 1 1,771
161 10 2 1,710,786
161 10 3 1,193,558,366
161 10 4 672,570,139,241
161 10 5 324,851,377,253,403
161 10 6 139,469,524,634,127,680

In storage method 2, we propose storing the passwords
line by line. Therefore, a special character has to be used for
delimitation purpose. A good choice would be the line feed
character. Y is then reduced to 160. The w used in method 2
can be of a variable length. The total number of positions that
can be identified still includes positions that can be identified
for number of special characters smaller than w. The total
number of positions in storage method 2 is shown in Table III.

In storage method 1, the total storage space needed =
(m+w)(s)

In storage method 2, the total storage space needed
=
∑w−1

i=1

∑i−1
j=0Yi(m+i+1)

(
i−1
j

)(
m+1
j+1

)
+ (m+w+1)[s + 1 -∑w−1

i=0

∑i
j=0Yi

(
m+j−1

j

)
]

We consider two main scenarios in the performance
evaluation based on storage space. In the first scenario, any
alpha-numeric characters can be used in the passwords. There
would be 62 characters in total. In the second scenario, we
increase the password character set to include all printable
ASCII characters, which will consist of 95 characters.

TABLE III: Total Number of Positions in Storage Method 2
(line by line)

Y m w Total Number of Positions
160 7 1 1,281
160 7 2 922,881
160 7 3 492,442,881
160 7 4 216,761,242,881
160 7 5 83,263,980,442,881
160 7 6 28,872,966,636,442,880
160 8 1 1,441
160 8 2 1,153,441
160 8 3 676,993,441
160 8 4 325,080,193,441
160 8 5 135,276,811,393,441
160 8 6 50,517,256,459,393,440
160 9 1 1,601
160 9 2 1,409,601
160 9 3 902,529,601
160 9 4 469,484,929,601
160 9 5 210,394,400,129,601
160 9 6 84,180,360,480,129,600
160 10 1 1,761
160 10 2 1,691,361
160 10 3 1,173,147,361
160 10 4 657,188,507,361
160 10 5 315,544,561,307,361
160 10 6 134,667,490,289,307,360

Scenario 1: Alpha-numeric character set in passwords

We consider the cases where the passwords are 7, 8,
9 and 10 characters in length. Table IV shows the required
number of special characters, w, to store all the passwords
when the number of hashing and reduction functions (i.e.,
virtual columns) in the rainbow table are 30,000.

TABLE IV: Required w for Alpha-Numberic Passwords in
Both Storage Methods when virtual columns are 30,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 117,387,154 3 3
8 7,278,003,520 4 4
9 451,236,218,209 4 4
10 27,976,645,528,945 5 5

Table V shows the required number of special characters,
w, to store all the passwords when the virtual columns in the
rainbow table are 100,000.

Table VI shows the storage requirement to store all
the passwords when the virtual columns in the rainbow table
are 30,000, while Table VII shows the storage requirement
when the virtual columns are 100,000. In the case when the
number of virtual columns in the rainbow table is set to
30,000, the improvement in terms of storage conservation
of method 1 over the original rainbow table was 28.57%,



484

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V: Required w for Alpha-Numberic Passwords in
Both Storage Methods when virtual columns are 100,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 35,216,147 3 3
8 2,183,401,056 4 4
9 135,370,865,463 4 4
10 8,392,993,658,684 5 5

25%, 27.78%, and 25% for password length of 7, 8, 9 and
10, respectively. Comparing method 1 over method 2, the
improvement in terms of storage conservation was 9.03%,
7.03%, 7.13%, and 6.11% for password length of 7, 8, 9 and
10, respectively.

In the case when the number of virtual columns in the
rainbow table is set to 100,000, the improvement in terms of
storage conservation of method 1 over the original rainbow
table was 28.57%, 25%, 27.78%, and 25% for password
length of 7, 8, 9 and 10, respectively. Comparing method
1 over method 2, the improvement in terms of storage
conservation was 8.87%, 5.43%, 7.10%, and 5.79% for
password length of 7, 8, 9 and 10, respectively.

TABLE VI: Storage Requirement for Alpha-Numberic Pass-
words when virtual columns is 30,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7
1,643,420,156B

1.53GB
0.0015TB

1,173,871,540B
1.09GB

0.0011TB

1,290,334,534B
1.20GB

0.0012TB

8

116,448,
056,320B
108.45GB
0.1059TB

87,336,
042,240B
81.34GB
0.0794TB

93,935,
897,440B
87.48GB
0.0854TB

9

8,122,251,
927,762B

7,564.44GB
7.39TB

5,866,
070,836,717B
5,463.20GB

5.34TB

6,316,403,
114,126B

5,882.61GB
5.74TB

10

559,532,910,
578,900B

521,105.63GB
508.89TB

419,649,682,
934,175B

390,829.22GB
381.67TB

446,967,965,
115,280B

416,271.36GB
406.51TB

Scenario 2: All printable ASCII character set in passwords

We consider the cases where the passwords are 7, 8,
and 9 characters in length. Table VIII shows the required
number of special characters, w, to store all the passwords
when the number of hashing and reduction functions (i.e.,
virtual columns) in the rainbow table are 30,000.

Table IX shows the required number of special characters,
w, to store all the passwords when the virtual columns in the
rainbow table are 100,000.

TABLE VII: Storage Requirement for Alpha-Numberic Pass-
words when virtual columns is 100,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7
493,026,058B

0.46GB
0.00045TB

352,161,470B
0.33GB

0.00032TB

386,453,457B
0.36GB

0.00035TB

8

34,934,
416,896B
32.54GB
0.0318TB

26,200,
812,672B
24.40GB
0.0238TB

27,706,
065,408B
25.80GB
0.0252TB

9

2,436,675,
578,334B

2,269.33GB
2.22TB

1,759,821,
251,019B

1,638.96GB
1.60TB

1,894,288,
175,682B

1764.19GB
1.72TB

10

167,859,873,
173,680B

156,331.69GB
152.67TB

125,894,904,
880,260B

117,248.77GB
114.50TB

133,629,535,
191,104B

124,452.20GB
121.54TB

TABLE VIII: Required w for All Printable ASCII Character
Passwords in Both Storage Methods when virtual columns are
30,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 2,327,790,987 4 4
8 221,140,143,764 4 4
9 21,008,313,657,487 5 5

TABLE IX: Required w for All Printable ASCII Character
Passwords in Both Storage Methods when virtual columns are
100,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 698,337,297 4 4
8 66,342,043,129 4 4
9 6,302,494,097,247 5 5

Table X shows the storage requirement to store all
the passwords when the virtual columns in the rainbow table
are 30,000, while Table XI shows the storage requirement
when the virtual columns are 100,000. In the case when the
number of virtual columns in the rainbow table is set to
30,000, the improvement in terms of storage conservation of
method 1 over the original rainbow table was 21.43%, 25%,
and 22.22% for password length of 7, 8 and 9, respectively.
Comparing method 1 over method 2, the improvement in
terms of storage conservation was 6.69%, 7.67%, and 6.53%
for password length of 7, 8 and 9, respectively.

In the case when the number of virtual columns in the
rainbow table is set to 100,000, the improvement in terms of
storage conservation of method 1 over the original rainbow
table was 21.43%, 25%, and 22.22% for password length of
7, 8 and 9, respectively. Comparing method 1 over method



485

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2, the improvement in terms of storage conservation was
2.60%, 7.62%, and 6.20% for password length of 7, 8 and 9,
respectively.

TABLE X: Storage Requirement for All Printable ASCII
Character Passwords when virtual columns is 30,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7

32,589,
073,818B
30.35GB
0.0296TB

25,605,
700,857B
23.85GB
0.0233TB

27,440,
124,804B
25.56GB
0.0250TB

8

3,538,242,
300,224B

3,295.24GB
3.22TB

2,653,681,
725,168B

2,471.43GB
2.41TB

2,874,143,
720,612B

2,676.75GB
2.61TB

9

378,149,645,
834,766B

352,179.30GB
343.93TB

294,116,391,
204,818B

273,917.23GB
267.50TB

314,654,315,
991,905B

293,044.67GB
286.18TB

TABLE XI: Storage Requirement for All Printable ASCII
Character Passwords when virtual columns is 100,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7

9,776,
722,158B
9.11GB

0.0089TB

7,681,
710,267B
7.15GB

0.0070TB

7,886,
680,524B
7.35GB

0.0072TB

8

1,061,472,
690,064B
988.57GB
0.9654TB

796,104,
517,548B
741.43GB
0.7241TB

861,768,
412,357B
802.58GB
0.7838TB

9

113,444,893,
750,446B

105,653.79GB
103.18TB

88,234,917,
361,458B

82,175.17GB
80.25TB

94,067,022,
588,305B

87,606.74GB
85.55TB

B. Success Rate Improvement Analysis

Here, we analyse the improvement in terms of success
rate of password recovery. To do so, we set the storage
requirement to be a fixed value and compute the achieveable
success rate. Table XII to Table XV shows the success rate
when the storage is capped at a certain value and the virtual
columns are 30,000 for different password lengths, while
Table XVI to Table XIX shows the evaluation when the
virtual columns are 100,000 instead. The password character
set consists of the alpha-numeric characters.

TABLE XII: Success Rate for 7-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

0.5GB
38347922
117387154

=32.67%

53687091
117387154

=45.74%

48890461
117387154

=41.65%

1GB
76695844
117387154

=65.34%

107374182
117387154

=91.47%

97696907
117387154

=83.23%

1.5GB
115043766
117387154

=98%

117387154
117387154

=100%

117387154
117387154

=100%

TABLE XIII: Success Rate for 8-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

50GB
3355443200
7278003520

=46.10%

4473924266
7278003520

=61.47%

4181941501
7278003520

=57.46%

75GB
5033164800
7278003520

=69.16%

6710886400
7278003520

=92.21%

6246829624
7278003520

=85.83%

100GB
6710886400
7278003520

=92.21%

7278003520
7278003520

=100%

7278003520
7278003520

=100%

We observe from the evaluations that in the event of
storage limitation, method 1 performs significantly better in

TABLE XIV: Success Rate for 9-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

1TB
61083979320
451236218209

=13.54%

84577817521
451236218209

=18.74%

78601112041
451236218209

=17.42%

3TB
183251937962
451236218209

=40.61%

253733452563
451236218209

=56.23%

235674201723
451236218209

=52.23%

5TB
305419896604
451236218209

=67.69%

422889087606
451236218209

=93.72%

392747291405
451236218209

=87.04%



486

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV: Success Rate for 10-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

100TB
5497558138880
27976645528945

=19.65%

7330077518506
27976645528945

=26.20%

6913095382840
27976645528945

=24.71%

300TB
16492674416640
27976645528945

=58.95%

21990232555520
27976645528945

=78.60%

20656990730040
27976645528945

=73.84%

500TB
27487790694400
27976645528945

=98.25%

27976645528945
27976645528945

=100%

27976645528945
27976645528945

=100%

TABLE XVI: Success Rate for 7-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

0.1GB
7669584
35216147

=21.78%

10737418
35216147

=30.49%

9845303
35216147

=27.96%

0.2GB
15339168
35216147

=43.56%

21474836
35216147

=60.98%

19606593
35216147

=55.68%

0.3GB
23008753
35216147

=65.34%

32212254
35216147

=91.47%

29367882
35216147

=83.39%

terms of password recovery success rate compared to both the
original rainbow table and method 2, consistently. Based on
the results above, the improvement in success rate of method
1 over the original rainbow table can reach up to 26.13%.

Table XX to Table XXII shows the success rate when the
storage is capped at a certain value and the virtual columns
are 30,000 for different password lengths, while Table XXIII
to Table XXV shows the evaluation when the virtual columns
are 100,000 instead. The password character set consists of
all the printable ASCII characters.

TABLE XVII: Success Rate for 8-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

10GB
671088640
2183401056

=30.74%

894784853
2183401056

=40.98%

878120504
2183401056

=40.22%

20GB
1342177280
2183401056

=61.47%

1789569706
2183401056

=81.96%

1704075753
2183401056

=78.05%

30GB
2013265920
2183401056

=92.21%

2183401056
2183401056

=100%

2183401056
2183401056

=100%

TABLE XVIII: Success Rate for 9-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

1TB
61083979320
135370865463

=45.12%

84577817521
135370865463

=62.48%

78601112041
135370865463

=58.06%

1.5TB
91625968981
135370865463

=67.69%

126866726281
135370865463

=93.72%

117869384461
135370865463

=87.07%

2TB
122167958641
135370865463

=90.25%

135370865463
135370865463

=100%

135370865463
135370865463

=100%

TABLE XIX: Success Rate for 10-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

50TB
2748779069440
8392993658684

=32.75%

3665038759253
8392993658684

=43.67%

3477121546040
8392993658684

=41.43%

100TB
5497558138880
8392993658684

=65.50%

7330077518506
8392993658684

=87.34%

6913095382840
8392993658684

=82.37%

150TB
8246337208320
8392993658684

=98.25%

8392993658684
8392993658684

=100%

8392993658684
8392993658684

=100%

TABLE XX: Success Rate for 7-Character Printable ASCII
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

10GB
766958445
2327790987

=32.95%

976128930
2327790987

=41.93%

935898773
2327790987

=40.21%

20GB
1533916891
2327790987

=65.90%

1952257861
2327790987

=83.87%

1830683626
2327790987

=78.64%

30GB
2300875337
2327790987

=98.84%

2327790987
2327790987

=100%

2327790987
2327790987

=100%



487

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XXI: Success Rate for 8-Character Printable ASCII
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

1TB
68719476736
221140143764

=31.08%

91625968981
221140143764

=41.43%

84629982776
221140143764

=38.27%

2TB
137438953472
221140143764

=62.15%

183251937962
221140143764

=82.87%

169207800297
221140143764

=76.52%

3TB
206158430208
221140143764

=93.23%

221140143764
221140143764

=100%

221140143764
221140143764

=100%

TABLE XXII: Success Rate for 9-Character Printable ASCII
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

100TB
6108397932088
21008313657487

=29.08%

7853654484114
21008313657487

=37.38%

7361436776533
21008313657487

=35.04%

200TB
12216795864177
21008313657487

=58.15%

15707308968228
21008313657487

=74.77%

14691514295040
21008313657487

=69.93%

300TB
18325193796266
21008313657487

=87.23%

21008313657487
21008313657487

=100%

21008313657487
21008313657487

=100%

Similarly, in the case of using all printable ASCII characters
as the password character set, we observe from the evaluations
that in the event of storage limitation, method 1 performs
significantly better in terms of password recovery success
rate compared to both the original rainbow table and method
2, consistently. Based on the results above, the improvement
in success rate of method 1 over the original rainbow table
can reach up to 23.60%.

TABLE XXIII: Success Rate for 7-Character Printable ASCII
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

3GB
230087533
698337297

=32.95%

292838679
698337297

=41.93%

309549376
698337297

=27.96%

5GB
383479222
698337297

=54.91%

488064465
698337297

=69.89%

488506346
698337297

=69.95%

7GB
536870912
698337297

=76.88%

683290251
698337297

=97.85%

667463317
698337297

=95.58%

TABLE XXIV: Success Rate for 8-Character Printable ASCII
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

500GB
33554432000
66342043129

=50.58%

44739242666
66342043129

=67.44%

41349927716
66342043129

=62.33%

700GB
46976204800
66342043129

=70.81%

62634939733
66342043129

=94.41%

57869032701
66342043129

=87.23%

900GB
60397977600
66342043129

=91.04%

66342043129
66342043129

=100%

66342043129
66342043129

=100%

TABLE XXV: Success Rate for 9-Character Printable ASCII
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

50TB
3054198966044
6302494097247

=48.46%

3926827242057
6302494097247

=62.31%

3696398017280
6302494097247

=58.65%

75TB
4581298449066
6302494097247

=72.69%

5890240863085
6302494097247

=93.46%

5528917396906
6302494097247

=87.73%

100TB
6108397932088
6302494097247

=96.92%

6302494097247
6302494097247

=100%

6302494097247
6302494097247

=100%

VI. CONCLUSIONS

This paper briefly describes our previous work on an
enhanced rainbow table design [2] coupled with a sorting
algorithm [1], which when applied, has a significant
improvement over the orginal rainbow tables. Special
characters are added to the storage to allow the sorting of the
enhanced rainbow tables so that the password lookup time can
be optimized. We further proposed 2 new storage methods
to be applied with the enhanced rainbow table and showed
that even with this insertion of characters to the passwords,
the improvement in storage space required to store the same
number of passwords reaches 28.57% lesser than what is
required in the original tables in the case of alpha-numeric
character set. The improvement, when the password character
set consists of all the printable ASCII characters, reaches
25%. This is achieved while maintaining the same success
rate.

By considering storage space limitations, we also evaluated
the achieveable success rate of password recovery in different
scenarios. Our analysis shows that an improvement of up
to 26.13% and 23.60% can be achieved in terms of success
rate, when compared to the original rainbow tables, for the
alpha-numeric passwords and passwords containing any of
the printable ASCII characters.



488

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

References

[1] H. M. Ying and V. L. L. Thing, “A novel rainbow table
sorting method”, International Conference on Technical and Legal
Aspects of the e-Society (CYBERLAWS), February 2011

[2] V. L. L. Thing and H. M. Ying, “A novel time-memory
trade-off method for password recovery”, Digital Investigation,
International Journal of Digital Forensics and Incident Response,
Elsevier, Vol. 6, Supplement, pp. S114-S120, September 2009

[3] S. M. Smyth, “Searches of computers and computer data
at the United States border: The need for a new framework
following United States V. Arnold”, Journal of Law, Technology
and Policy, Vol. 2009, No. 1, pp. 69-105, February 2009.

[4] Google News, “Favorite passwords: ‘1234’ and ‘password”’,
http://www.google.com/hostednews/afp/article/ALeqM5jeUc6
Bblnd0M19WVQWvjS6D2puvw, [retrieved, January 2012].

[5] Cain and Abel, “Password recovery tool”, http://www.oxid.it,
[retrieved, January 2012].

[6] John The Ripper, “Password cracker”, http://www.openwall.com,
[retrieved, January 2012].

[7] LCPSoft, “Lcpsoft programs”, http://www.lcpsoft.com,
[retrieved, January 2012].

[8] S. Contini and Y. L. Yin, “Forgery and partial key-recovery
attacks on HMAC and NMAC using hash collisions”, Annual
International Conference on the Theory and Application of
Cryptology and Information Security (AsiaCrypt), Lecture Notes in
Computer Science, Vol. 4284, pp. 37-53, 2006.

[9] P. A. Fouque, G. Leurent, and P. Q. Nguyen, “Full key-
recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5”,
Advances in Cryptology, Lecture Notes in Computer Science, Vol.
4622, pp. 13-30, Springer, 2007.

[10] Y. Sasaki, G. Yamamoto, and K. Aoki, “Practical password
recovery on an MD5 challenge and response”, Cryptology ePrint
Archive, Report 2007/101, April 2008.

[11] Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro, “Security
of MD5 challenge and response: Extension of APOP password
recovery attack”, The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology, Vol. 4964, pp. 1-18, April 2008.

[12] M. E. Hellman, “A cryptanalytic time-memory trade-off”,
IEEE Transactions on Information Theory, Vol. IT-26, No. 4, pp.
401-406, July 1980.

[13] D. Todorov, “Mechanics of user identification and authentication:
Fundamentals of identity management”, Auerbach Publications,
Taylor and Francis Group, June 2007.

[14] R. Rivest, “The MD5 message-digest algorithm”, IETF

RFC 1321, April 1992.

[15] National Institute of Standards and Technology (NIST),
“Secure hash standard”, Federal Information Processing Standards
Publication 180-2, August 2002.

[16] H. Dobbertin, A. Bosselaers, and B. Preneel, “Ripemd-
160: A strengthened version of RIPEMD”, International Workshop
on Fast Software Encryption, Lecture Notes in Computer Science,
Vol. 1039, pp. 71-82, Springer, April 1996.

[17] P. Oechslin, “Making a faster cryptanalytic time-memory
trade-off”, Annual International Cryptology Conference (CRYPTO),
Advances in Cryptography, Lecture Notes in Computer Science,
Vol. 279, pp. 617-630, October 2003.

[18] A. Narayanan and V. Shmatikov, “Fast dictionary attacks
on passwords using time-space tradeoff”, ACM Conference on
Computer and Communications Security, pp. 364-372, 2005.

[19] D. E. R. Denning, “Cryptography and data security”,
Addison-Wesley Publication, 1982.



489

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Augmented Reality Platform for the Enhancement  
of Surgical Decisions in Pediatric Laparoscopy 

Lucio Tommaso De Paolis, Giovanni Aloisio 
Department of Innovation Engineering 

University of Salento 
Lecce, Italy 

lucio.depaolis@unisalento.it 
giovanni.aloisio@unisalento.it 

 
 

Abstract— The practice of Minimally Invasive Surgery is 
becoming more and more widespread and adopted as an 
alternative to the classical procedure. This technique presents 
many advantages for the patients, but also some limitations for 
the surgeons. In particular, the lack of depth in perception and 
the difficulty in estimating the distance of the specific 
structures in laparoscopic surgery can impose limits on 
delicate dissection or suturing. The presence of new systems for 
the pre-operative planning can be of great help to the surgeon. 
The use of the Augmented Reality technology shows a way 
forward in bringing the direct advantage of the visualization of 
the open surgery back to minimally invasive surgery and can 
increase for the physician the view of the organs with 
information obtained from the image processing of the patient. 
The developed application allows the surgeon to get 
information about the patient and her/his pathology, 
visualizing and interacting with the 3D models of the organs 
built from the patient’s medical images, measuring the 
dimensions of the organs and deciding the best insertion points 
of the trocars in the patient’s body. This choice can be 
visualized on the real patient using the Augmented Reality 
technology. 

Keywords - Augmented Reality; medical image processing;  
user interface; minimally invasive surgery; preoperative surgical 
planning 

I.  INTRODUCTION 
One trend in surgery is the transition from open 

procedures to minimally invasive laparoscopic 
interventions, where visual feedback to the surgeon is only 
possible through the laparoscope camera and direct 
palpation of organs is not possible. 

Minimally Invasive Surgery (MIS), such as laparoscopy 
or endoscopy, has become very important and the research 
in this field is more and more widely accepted. These 
techniques offer the possibility to surgeons of reaching the 
patient’s internal anatomy in a less invasive way and 
causing only a minimal trauma to patients.  

The diseased area is reached by means of small incisions 
in the body, called ports. Specific instruments and a camera 
are inserted through these ports; during the operation a 
monitor shows what is going on inside the body. The 

surgeon does not have a direct vision of the organs and thus 
he is guided by camera images; this is very different from 
what happens in open surgery because there is no possibility 
to touch the organs. 

The laparoscopic access is an alternative to the open entry 
techniques because it aims to prevent visceral and vascular 
injury due to division of abdominal wall layers. The reasons 
of a limited use of the open-access method is due to the time 
needed for the performance, the difficulty in maintaining the 
pneumoperitoneum because of the gas leakage and the lack 
of a particular evidence for the prevention of intra-
abdominal injury using this method. 

 The vascular injury during the first laparoscopic access is 
the first cause of death in laparoscopy, second only to 
anesthesia and bowel injury, with a reported mortality rate 
of 15%.  

Unlike most of vascular injuries, where the occurrence 
and presentation are immediate, many bowel injuries are not 
recognized at the time of the procedure because of the 
suboptimal visualization.  

To overpass the several complications in the laparoscopic 
access, optically guided trocars are designed to decrease the 
risk of injury to intra-abdominal structures allowing the 
surgeon to visualize abdominal wall layers during the 
placement. 

As a promising technique, the practice of MIS is 
becoming more and more widespread and is being adopted 
as an alternative to classical procedures. 

Shorter hospitalizations, faster bowel function return, 
fewer wound-related complications and a more rapid return 
to normal activities have contributed to accept these surgical 
procedures. 

The advantages of this surgical method are evident on the 
patients, but these techniques involve some limitations to 
surgeons; due to the limited field of view, the position and 
the orientation of the camera require frequently adjustments 
and significant hand-eye coordination is necessary because 
the instrument movements visualized on the screen not 
match the surgeon’s hand movements. 

In addition, the imagery is in 2D and the surgeon can 



490

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

estimate the distance of anatomical structures only by 
moving the camera. In laparoscopic surgery, the lack of 
depth perception and the difficulty in estimating the distance 
from the anatomical structures can impose limitations on 
delicate dissection or suturing. 

Motivated by the benefits that MIS can bring to patients, 
many research groups are now focusing on the development 
of systems in order to assist the surgeons during the surgical 
procedures and to carry out their tasks in both faster and 
safer ways. Other research groups have developed solutions 
to support the preoperative surgical planning and the intra-
operative surgical procedure. 

Even though the interpretation of the computed 
tomography (CT) or the magnetic resonance images (MRI) 
remains a difficult task, the latest developments in medical 
imaging processing make possible the reconstruction of 3D 
models of the organs providing anatomical information 
barely detectable by CT and MRI slices or ultrasound scan 
and an accurate knowledge of patient’s anatomy and 
pathologies as well.  

A suitable use of these models could lead to an 
improvement in patient care by guiding the instruments 
through the body without the direct sight of the physician; in 
addition, these models can be the bases to build the realistic 
virtual environment used in Virtual Reality and Augmented 
Reality applications. 

This paper presents an advanced platform for the 
visualization and the interaction with the 3D patient models 
of the organs built from CT images [1].  

The presence of a system for the pre-operative planning 
can help the surgeon very much and this support is more and 
more important in pediatric laparoscopic surgery where you 
have to understand the exact conditions of the patient’s 
organs and the precise location of the operational site. 

The developed application allows the surgeon to choose 
the points for the insertion of the trocars on the virtual 
model and to overlap them, before starting the real surgical 
procedure, on the real patient body using the Augmented 
Reality technology. 

II. THE AUGMENTED REALITY IN SURGERY 
Appropriate visualization tools and techniques play an 

important role in providing detailed information about 
human organs, pathologies and realistic 3D models of the 
organs of the specific patient. The utilization of visual 
information together with the operation techniques help the 
surgeon during the surgical procedure and provide a 
possible solution to the problems that minimally invasive 
surgery can present. 

In addition, the integration with the Virtual Reality 
technology can change surgical preparation and the 
surgeons can practice and perform a surgical procedure 
before the patient arrives in the operating room; this 

involves not only a reduction of complications, but also 
individual components of the surgery can be honed to 
precision. 

The use of the Augmented Reality technology shows a 
way forward in bringing the direct advantage of the 
visualization of the open surgery back to minimally invasive 
surgery and can increase for the physician the view of the 
organs with information obtained from the image processing 
of the patient [2]. 

Augmented Reality can avoid some drawbacks of MIS 
and can lead to new medical treatments. 

The Augmented Reality research aims to allow the real-
time fusion between the computer-generated digital content 
and the real world. Thanks to Augmented Reality, it is 
possible to see hidden objects and therefore to enhance the 
users' perception and to improve the interaction with the real 
world. The virtual objects, displaying what the users cannot 
detect directly with their own senses, help them to perform 
real-world tasks better. 

In opposition to Virtual Reality technology that gets into 
a synthetic environment but doesn’t make possible the 
vision of the real world, Augmented Reality technology 
allows to see 3-dimensional virtual objects superimposed 
upon the real world. 

Therefore, AR supplements reality rather than completely 
replace it. The user has a feeling that the virtual and real 
objects coexist in the same space. 

Azuma [3] presents a survey of AR and describes the 
characteristics of AR systems, registration and sensing 
errors together with the efforts to overcome them. Using 
Azuma’s definition, an AR system has to fulfil the 
following three characteristics: 

• Real and virtual objects are united in a real 
environment, they appear to coexist in the same 
space; 

• The system is interactive and it performs in real-
time; 

• The virtual objects are registered with the real world. 
Milgram and Kishino [4] defined the Mixed Reality as an 

environment “in which real world and virtual world objects 
are presented together within a single display, that is, 
anywhere between the extrema of the virtuality continuum”  

The Virtuality Continuum extends from the completely 
real through to the completely virtual environment with 
Augmented Reality and Augmented Virtuality ranging 
between. 

Thus Augmented Reality is a mixture of reality and 
virtual reality. It includes both virtual objects and real-world 
elements, but the surrounding environment is real.  

Fig. 1 shows the Milgram’s reality-virtuality continuum. 
In order to have a true AR application, the computer-

generated organs must be accurately positioned on the real 
ones. For this reason it is necessary to carry out an accurate 



491

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

registration phase, which provides, as result, the correct 
overlapping of the 3D model of the virtual organs on the 
real patient [5], [6], [7]. 

In medical applications of the Augmented Reality 
technology, the right detection and the overlapping of the 
fiducial points are very important because even a very slight 
mistake could have very serious consequences on the 
patient. 

 

 
Figure 1.  Milgram’s reality–virtuality continuum 

The integration of the registration algorithm into the 
surgical workflow requires a trade-off of complexity, 
accuracy and invasiveness. The process of registration can 
be obtained using the optical (infrared) tracking systems that 
are the best choice at the moment; these devices are already 
in use in the modern operating rooms. 

For the registration of patient data with the AR system it 
is possible to have a point-based registration approach 
where specific fiducials can be used and fixed on the of the 
patient. These fiducials are touched with a tracked pointer 
and their positions have to match the correspondent 
positions of fiducials placed during the patient scanning and 
segmented in the 3D model. Point-based registration is 
known to be a reliable solution if the set of fiducials is 
carefully chosen. The accuracy depends on the number of 
fiducials, the quality of measurement and the spatial fiducial 
arrangement [8]. 

The simple augmentation of the real scene is not realistic 
enough because, although the organ positions are computed 
correctly, the relative position in depth of real and virtual 
images may not be perceived. 

Indeed, in AR applications, although virtual objects have 
been correctly positioned in the scene, they are visually 
overlapped with all real objects, creating a situation that is 
not sufficiently realistic.  

In particular, this effect is not acceptable for surgical AR 
applications and it is necessary, in addition to a proper 
positioning of the organs in the virtual scene, in order to 
ensure a correct visualization. 

Some solutions have been proposed, but the issue of 
correct depth visualization remains partially unsolved. 

Augmented Reality provides an intuitive human-
computer interface. In surgery this technology makes it 
possible to overlay virtual medical images on the patient, 
allowing surgeons to have a sort of “X-ray vision” of the 
body and providing a view of the patient’s anatomy. 

Augmented Reality technology offers the same visual 
advantages as open surgery in minimally invasive surgery 
and increases the physician’s visual knowledge with 
information gathered from patients’ medical images. 

The patient becomes transparent and this virtual 
transparency makes it possible to find tumours or vessels 
not using the touch, but simply visualizing them thanks to 
augmented reality. 

The virtual information can be displayed directly on the 
patient’s body or visualized on an AR surgical interface, 
showing where the operation must be performed. 

For instance, a physician might also be able to see the 
exact location of a lesion on a patient's liver or the right 
place where to drill a hole on the skull in brain surgery or 
where to perform a needle biopsy of a tiny tumour. 

In general, AR technology may be used in minimally 
invasive surgery for: 

• Training purposes; 
• Preoperative planning; 
• Advanced visualization during the real procedure. 

AR technology in minimally invasive surgery may be 
used for training purposes, pre-operative planning and 
advanced visualization during the real procedure. Several 
research groups are exploring the use of AR in surgery and 
are developing many image-guided surgery systems. 

Devernay et al. [9] propose the use of an endoscopic AR 
system for robotically assisted minimally invasive cardiac 
surgery. One of the problems closely linked to endoscopic 
surgery is that, because of the narrow field of view, 
sometimes it is quite difficult to locate the objects seen 
through the endoscope. The information coming from the 
3D anatomical model of the patient’s organs (built from 
MRI or CT-scan) and the position of the endoscope are not 
sufficient because some organs are displaced by the inflated 
gas. They propose a methodology to achieve coronary 
localization by Augmented Reality on a robotized 
stereoscopic endoscope adding “cartographic” information 
on the endoscopic view and by indicating the position of the 
coronaries with respect to the field of view. 

Bichlmeier et al. [10], [11] focus on the problem of 
misleading perception of depth and spatial layout in medical 
AR and present a new method for medical in-situ 
visualization that allows for improved perception of 3D 
medical imaging data and navigated surgical instruments 
relative to the patient’s anatomy.  They describe a technique 
to modify the transparency of video images recorded by the 
colour cameras of a video see-through HMD. The presented 
method allows for an intuitive view on the deep-seated 
anatomy of the patient providing visual cues to perceive 
correctly absolute and relative distances of objects within an 
AR scene. The results can be applied for designing medical 
AR training and educational applications. Fig. 8 shows an 
application of the developed method. The medical AR scene 



492

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is presented to the observer using an “AR window” [20]. 
Samset et al. [12] present tools based on novel concepts 

in visualization, robotics and haptics providing tailored 
solutions for a range of clinical applications. Examples from 
radio-frequency ablation of liver-tumours, laparoscopic liver 
surgery and minimally invasive cardiac surgery will be 
presented. 

Navab et al. [13], [14] introduce the concept of a 
laparoscopic virtual mirror: a virtual reflection plane within 
the live laparoscopic video that is able to visualize a 
reflected side view of the organ and its interior. The 
Laparoscopic Virtual Mirror is able to reflect virtually the 
3D volume as well as the laparoscope or any other modelled 
and tracked instruments. Combining this visualization 
paradigm with a registration-free augmentation system for 
laparoscopic surgery, it is possible to get a powerful medical 
augmented reality system that could make minimally 
invasive surgeries easier and safer to perform. 

Kalkofen et al. [15] overlay carefully synthetic data on 
top of the real world imagery by taking into account the 
information that is about to be occluded by augmentations 
as well as the visual complexity of the computer-generated 
augmentations added to the view. They solve the problem of 
augmentations occluding useful real imagery with edges 
extracted from the real video stream.  

De Paolis et al. [16] present an Augmented Reality 
system that can guide the surgeon in the operating phase in 
order to prevent erroneous disruption of some organs during 
surgical procedures. Since the simple augmentation of the 
real scene cannot provide information on the depth, a sliding 
window is provided in order to allow the occlusion of part 
of the organs and to obtain a more realistic impression that 
the virtual organs are inside the patient’s body. In addition, 
distance information is provided to the surgeon and an 
informative box is shown in the screen in order to visualize 
the distance between the surgical instrument and the organ 
concerned. When the distance between the surgical 
instrument and some specified organs is under a safety 
threshold, a video feedback as well as an audio feedback in 
the form of an impulse are provided. The frequency of this 
impulse increases when the distance between the surgical 
instrument and the organ concerned decreases. 

Soler et al. [17] present the results of their research into 
the application of AR technology in laparoscopic and 
NOTES (Natural Orifice Transluminal Endoscopic Surgery) 
procedures. They have developed two kinds of AR software 
tools (Interactive Augmented Reality and Fully Automatic 
Augmented Reality) taking into account a predictive 
deformation of organs and tissues during the breathing cycle 
of the patient. A preclinical validation has been performed 
on pigs and results are very encouraging and represent the 
first phase for surgical gesture automation that will make it 
possible to reduce surgical mistakes. 

The collaboration between the MIT Artificial Intelligence 
Lab and the Surgical Planning Laboratory of Brigham [18] 
has led to the development of solutions that support the 
preoperative surgical planning and the intraoperative 
surgical guidance. 

Papademetris et al. [19] describe the integration of image 
analysis methods with a commercial image-guided 
navigation system for neurosurgery (the BrainLAB 
VectorVision Cranial System). 

III. THE INFORMED CONSENT 
In the current climate of increasing awareness, patients 

are demanding more knowledge of the operative process. 
The term "informed consent" explains the process by which, 
before treatment, comprehensive and impartial information 
regarding a planned operative procedure is provided to a 
patient so that he can understand the implications of the 
procedure before consenting. 

Informed consent is a process of communication between 
patient and physician that results in the patient's 
authorization or agreement to undergo a specific medical 
intervention.  

In the communications process the physician discusses 
with the patient about the patient's diagnosis (if known), the 
nature and purpose of a proposed treatment or procedure, 
the risks and benefits of a proposed treatment or procedure, 
the risks and benefits of an alternative treatment or 
procedure and the risks and benefits of not receiving or 
undergoing a treatment or procedure. 

Bollschweiler et al. [20] present the results of the study of 
a new method of consenting improved using a multimedia-
based information program (MM-IP). 80 patients 
undergoing laparoscopic cholecystectomy went through the 
standard informed consent process and a group of patients 
were also given access to a MM-IP. Questionnaires were 
used to evaluate the effectiveness of the MM-IP for 
improving the consent process and were completed before 
surgery in order to evaluate how patients perceived their 
own understanding of important aspects of their illness. 
Patients positively evaluated the use of the MM-IP.  

Eggers et al. [21] present a multimedia program aimed at 
obtaining informed consent from obese patients before 
gastric banding. The result emphasizes that the multimedia 
program clearly benefits both surgeons and patients, but the 
personal contact with the surgeon remains essential because 
the information presented in multimedia format do not 
alleviate patient anxiety. 

Wilhelm et al. [22] evaluate the impact of an extended 
education on patients undergoing cholecystectomy. For 
extended patient information, a professionally built DVD 
was used and the quality of education was evaluated using a 
purpose-built questionnaire. They prove the positive impact 
of an information DVD on patients knowledge; 



493

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nevertheless, they assert that the multimedia tools cannot 
replace personal interaction and should only be used to 
support daily work. 

IV. THE 3D MODELS OF PATIENT’S ORGANS 
In MIS, the use of images registered to the patient is a 

prerequisite for both the planning and the guidance of this 
kind of operations. From the medical image of the patient 
(MRI or CT) it is possible to obtain an efficient 3D 
reconstruction of his anatomy and improve the standard 
slice view by means of the visualization of the 3D models of 
the organs.  

The 3D models of the patient’s anatomy are built from 
the medical images (MRI or CT) of a patient by means of 
the application of segmentation and classification 
algorithms. The grey levels in the medical images are 
replaced by colours and associated to the different organs. 

Several research teams deal with the task of segmentation 
and developed techniques that allow extracting the patient’s 
organs from CT-scan or MRI automatically or interactively. 

Nowadays there are different software used in medicine 
for the visualization and the analysis of scientific images 
and the 3D modelling of human organs; Mimics [23], 3D 
Slicer [24], ParaView [25] OsiriX [26] and ITK-SNAP [27] 
play an important role among these tools. 

In our case studies, the 3D models of the patient’s organs 
have been reconstructed using segmentation and 
classification algorithms provided by ITK-SNAP and by 3D 
Slicer.  

ITK-SNAP provides semi-automatic segmentation using 
active contour methods as well as manual delineation and 
image navigation; it also fills a specific set of biomedical 
research needs. 

 

 
Figure 2.  An example of the image processing using ITK-SNAP. 

3D Slicer is a multi-platform, free and open-source 
software package for visualization and medical image 
computing. The platform provides functionality for 
segmentation, registration and three-dimensional 

visualization of multi-modal image data. 
Fig. 2 shows the result of the image processing using 

ITK-SNAP; the skin and the muscles of the abdominal 
region are displayed in total transparency and the tumour is 
shown in magenta. 

V. THE CASE STUDIES 
We processed two different case studies: the first case 

study, shown in Fig. 3, concerns a two-year-old child with a 
benign tumour of the right kidney; the second case study, 
shown in Fig. 4, concerns a twelve-year-old child with a 
tumour of the peripheral nervous system (ganglioneuroma). 

 

 
Figure 3.  3D model of a child with a tumour at the kidney. 

The slice thickness equal to 3 mm has caused some 
aliasing effects on the reconstructed 3D models that could 
lead to inaccuracies. Therefore we have paid special 
attention to the smoothing of the reconstructed models in 
order to maintain a good correspondence with the real 
organs. 

In our application, the mesh editing has been carried out 
using the open-source MeshLab software application [28]. 

A radiologist has validated the obtained 3D models. 

VI. THE USED TECHNOLOGIES 
In the application, it is necessary to use an optical tracker 

in order to detect without delay the right position and 
orientation of the surgical tool used by the surgeon. The 
tracking system is also used in order to permit the 
overlapping of the virtual organs on the real ones in the 



494

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

augmented visualization of the scene during the real surgical 
procedure. 

Among the different tracking systems based on 
mechanical, optical or visual technologies, we chose an 
optical tracker (the Polaris Vicra of the NDI Inc.) in order to 
avoid the problems typical of the mechanical systems 
associated to the use of metal devices. 

 

 
Figure 4.  Virtual model of a child with a ganglioneuroma. 

The Polaris Vicra optical system [29] tracks both active 
and passive markers and provides precise, real-time spatial 
measurements of the location and orientation of an object or 
tool within a defined coordinate system. 

The system uses a position sensor to detect infrared-
emitting or retro-reflective markers affixed to a tool or 
object; using the information received from the markers, the 
sensor is able to know position and orientation of the tools 
within a specific measurement volume. The system consists 
of 2 IR cameras and some tools with reflective beads placed 
on known geometry frames. The system can calculate the 
real position of the tool in the space with an accuracy of 0.2 
mm and 0.1 of a degree. 

The tracking technology is usually used in the modern 
operating rooms and provides an important help to enhance 
the performance during the real surgical procedures. 

VII. THE USER INTERFACE 
The developed application is supplied with a specific user 

interface that allows the user to take advantage of the 
feature offered by the software. The application is provided 

of 4 sections with the aim to provide support to the surgeons 
in the different steps of the surgical procedure such as the 
study of the case, the diagnosis, the pre-operative planning, 
the choice of the trocar entry points and the simulation of 
the surgical instruments interaction. 

Starting from the models of the patient’s organs, the 
surgeon can note some data about the patient, collect 
information about the pathology and the diagnosis, choose 
the most appropriate positions for the trocar insertion and 
overlap these points on the patient’s body using the 
Augmented Reality technology.  

By means of the user interface it is possible to display all 
the organs of the abdominal region or just some of these 
using the show/hide functionality; it is also possible to 
change the transparency of each organ. 

It is possible to use this platform in order to describe the 
pathology, the surgical procedure and the consequent risks 
to the child’s parents, with the aim of obtaining informed 
consent for the surgical procedure. 

VIII. THE DEVELOPED APPLICATION 
In the developed application, as shown in Fig. 5, all the 

patient’s information (personal details, diseases, specific 
pathologies, diagnosis, medical images, 3D models of the 
organs, notes of the surgeon, etc.) are structured in a XML 
file associated to each patient. 

 

 
Figure 5.  Patient’s data collected in an XML file. 

A specific section for the pre-operative planning includes 
the visualization of the virtual organs. The physician can get 
some measurements of organ or pathology sizes and some 
distances.  

For the computation of the distance between a pair of 
points we have used the PQP library (Proximity Query 
Package) [30]. This section is shown in Fig. 6.  

By means of a detailed view of the 3D model, the surgeon 
can choose the trocar entry points and check if, with this 
choice, the organs involved in the surgical procedure can be 
reached and the procedure can be carried out in the best 
way. 



495

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7 shows the specific section of the user interface for 
the interaction with the 3D models of the patient’s organs. 

By means of a detailed view of the 3D model, the surgeon 
can choose the trocar entry points and check if, with this 
choice, the organs involved in the surgical procedure can be 
reached and if the choice allows carrying out the procedure 
in the best way [31]. 

 

 
Figure 6.  Example of a measurement of organs. 

Complications associated with starting first abdominal 
entry are the first concern for laparoscopic surgeons. In 
order to minimize first access-related complications in 
laparoscopy, several techniques and technologies have been 
introduced in the last years.  

The problem of blind access is that it may imply vascular 
injuries caused by the blind entry of instruments in the 
abdominal cavity. This problem can be solved with the 
direct visualization of under-layer viscera and vessels. 
 

 
Figure 7.  Section for the interaction with the organs. 

Sometimes, using the standard insertion points for the 
surgical tools, also a simple surgical procedure can be very 
difficult because of the specific anatomy of the different 

patients. The surgeon can find it difficult to reach the 
specific organ or to interact with the surgical tools. In this 
case he has to choose another insertion point in order to be 
able to carry out the surgical procedure in the most suitable 
way. 

Our aim is to avoid the occurrence of this situation during 
the real surgical procedure using the visual information 
provided by means of the 3D models of the patient’s 
anatomy. 

In the developed application, in order to verify if the 
chosen insertion points allow reaching properly the specific 
organ interested to the surgical operation and permitting to 
carry out the procedure in a correct way, it is also possible 
to simulate the interaction of the surgical instruments.  

 

 
Figure 8.  Section for the choice of the trocar insertion.  

Our application, by means of an Augmented Reality 
module, supports the placement of the trocars on the real 
patient during the surgery procedure and simulates the 
insertion of the trocars in the patient body in order to verify 
the correctness of the chosen insertion sites.  

The Augmented Reality surgery guidance aims to 
combine a real view of the patient on the operating table 
with virtual renderings of structures that are not visible to 
the surgeon. In this application we use the AR technology in 
order to visualize on the patient’s body the precise location 
of selected points on the virtual model of the patient. 

For the augmented visualization, in order to have a 
correct and accurate overlapping of the virtual organs on the 
real ones, a registration phase is carried out; this phase is 
based on fiducial points and on the use of an optical tracker.  

Fig. 8 shows the section for the accurate choice of the 
trocar insertion points. 

Using the augmented visualization, the chosen entry 
points for the trocars can be visualized on the patient’s body 
through the Augmented Reality technique in order to 
support the physician in the real trocar insertion phase.  

Fig. 9 shows the specific section for the simulation of the 



496

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

surgical tools interaction with the possibility to move the 
trocar entry points using the arrows. 

 

 
Figure 9.  Simulation of the surgical tools interaction. 

Fig. 10 shows the augmented visualization of the chosen 
trocar entry points overlapped on the patient's body (a 
dummy). The yellow points are the fiducials used for the 
registration phase and the red ones are the trocar insertion 
points. 

 

 
Figure 10.  The augmented visualization. 

IX. USABILITY TESTS 
In order to evaluate the validity and the usability of the 

developed application and to receive possible suggestions 
from the users, some tests have been carried out. The test 
phase has been realized in order to allow the users to check 
all the functionalities of the application. 

After a short period of training (5 minutes), the users 
have tried to carry out different procedures and, 
subsequently, they have reported the impressions on a 
specific questionnaire. 15 subjects have been testing the 

application for an average time of 7 minutes and 43 seconds. 
The obtained results can be considered satisfactory and 

some annotations to improve the user interface and the 
usability of the application have been considered. In 
particular, the users have suggested: 

• To improve the session for the choice of trocar entry 
points by means of a more accurate explication about 
the use of the arrows in the interface; 

• To provide a more simple way to store the 
measurements of the organs. 

Fig. 11 shows a graph with the test answers about the 
usability of the different sessions of the application. 

 

 
Figure 11.  Test answers about the usability of the application sessions. 

X. CONCLUTIONS AND FUTURE WORK 
The developed platform offers a tool to visualize the 3D 

reconstructions of the patient’s organs, obtained by the 
segmentation of a CT scan.  

The system allows interacting with the models in order to 
choose the more appropriate insertion pints of the trocars 
and to simulate the placement of these in order to verify the 
validation of this choice. The Augmented Reality module 
supports the placement of the trocars on the real patient’s 
body during the surgery procedure.  

An accurate integration of the virtual organs in the real 
scene is obtained by means of an appropriate registration 
phase based on fiducial points fixed onto the patient. In 
addition, a complete user interface allows a simple and 
efficient utilization of the developed application. 

Furthermore the platform permits to store the patient and 
the pathology information that the surgeon can note during 
the use. 

The platform can support the physician in the diagnosis 
step and in the preoperative planning when a laparoscopic 
approach will be followed. In addition, this support could 
lead to a better communication between physicians and 
patient’s parents in order to obtain their informed consent. 

The building of a complete Augmented Reality system 



497

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that could help the surgeon during the other phases of the 
surgical procedure has been planned as future work; the 
acquisition in real time of a patient’s video and the 
dynamically overlapping of the virtual organs to the real 
patient’s body will be developed taking into account the 
surgeon point of view and the location of medical 
instrument. 

An accurate AR visualization modality will be developed 
in order to provide a realistic depth sensation of the virtual 
organs in the real body. 

Accuracy and usability tests will be also carried out. 
 

ACKNOWLEDGEMENT 
This work is part of the ARPED Project (Augmented 

Reality Application in Pediatric Minimally Invasive 
Surgery) funded by the Fondazione Cassa di Risparmio di 
Puglia. The aim of the ARPED Project is the design and the 
development of an Augmented Reality system that can 
support the pediatric surgeon through the visualization of 
anatomical structures of interest during the pre-operative 
planning and the laparoscopic surgical procedure. 

 

REFERENCES 
[1] L. T. De Paolis, M. Pulimeno, and G. Aloisio, “An 

Augmented Reality Application for the Enhancement of 
Surgical Decisions”, The 4th International Conference on 
Advances in Computer-Human Interactions (ACHI 2011), 
February 23-28, 2011, Gosier, Guadeloupe, France, pp. 192-
196. 

[2] L. T. De Paolis and G. Aloisio, “Augmented Reality in 
Minimally Invasive Surgery”, Advances in Biomedical 
Sensing, Measurements, Instrumentation and Systems, 
Lecture Notes in Electrical Engineering, Vol. 55, 
Mukhopadhyay S.C. & Lay-Ekuakille A. (Eds.), Springer 
Publisher, December 2009, ISBN 978-3-642-05166-1; 

[3] R. Azuma, “A Survey of Augmented Reality. Presence: Tele-
operators and Virtual Environments”, 4(6), pp. 355-385, 
1997. 

[4] P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality 
Visual Displays”, IEICE Transactions on Information 
Systems, E77-D(12), 1994, pp. 1321-1329. 

[5] J. B. A. Maintz and M. A. Viergever, “A survey of medical 
image registration”, Medical Image Analysis, vol. 2, 1998, pp. 
1-36. 

[6] F. Sauer, “Image Registration: Enabling Technology for 
Image Guided Surgery and Therapy”, 2005 IEEE Engineering 
in Medicine and Biology, Shanghai, China, 2005. 

[7] M. Feuerstein, S. M. Wildhirt, R. Bauernschmitt, and N. 
Navab, “Automatic Patient Registration for Port Placement in 
Minimally Invasive Endoscopic Surgery”, Medical Image 
Computing and Computer-Assisted Intervention (MICCAI 
2005). Lecture Notes in Computer Science 3750, Springer-
Verlag, Palm Springs, CA, USA, 2005, pp. 287-294. 

[8] T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced 
Medical Displays: A Literature Review of Augmented 
Reality”, IEEE/OSA Journal of Display Technology, Special 
Issue on Medical Displays, 4(4), 2008, pp. 451-467. 

[9] F. Devernay, F. Mourgues, and E. Coste-Manière, “Towards 
Endoscopic Augmented Reality for Robotically Assisted 

Minimally Invasive Cardiac Surgery”, IEEE International 
Workshop on Medical Imaging and Augmented Reality, 
2006, pp. 16-20. 

[10] C. Bichlmeier and N. Navab, “Virtual Window for Improved 
Depth Perception in Medical AR”, International Workshop on 
Augmented Reality environments for Medical Imaging and 
Computer-aided Surgery (AMI-ARCS), Copenhagen, 
Denmark, 2006. 

[11] C. Bichlmeier, F. Wimmer, H. S. Michael, and N. Nassir, 
“Contextual Anatomic Mimesis: Hybrid In-Situ Visualization 
Method for Improving Multi-Sensory Depth Perception in 
Medical Augmented Reality”, Sixth IEEE and ACM 
International Symposium on Mixed and Augmented Reality 
(ISMAR '07), 2007, pp. 129-138. 

[12] E. Samset, D. Schmalstieg, J. Vander Sloten, A. Freudenthal, 
J. Declerck, S. Casciaro, Ø. Rideng, and B. Gersak, 
“Augmented Reality in Surgical Procedures”, SPIE Human 
Vision and Electronic Imaging XIII, (6806):68060K.1-
68060K.12, 2008. 

[13] N. Navab, M. Feuerstein, and C. Bichlmeier, “Laparoscopic 
Virtual Mirror - New Interaction Paradigm for Monitor Based 
Augmented Reality”, IEEE Virtual Reality Conference 2007 
(VR 2007), Charlotte, North Carolina, USA, 2007, pp. 10-14. 

[14] C. Bichlmeier, S. M. Heining, M. Rustaee, and N. Navab, 
“Laparoscopic Virtual Mirror for Understanding Vessel 
Structure: Evaluation Study by Twelve Surgeons”, 6th IEEE 
International Symposium on Mixed and Augmented Reality 
(ISMAR'07), Nara, Japan, 2007. 

[15] D. Kalkofen, E. Mendez, and D. Schmalstieg,” Interactive 
Focus and Context Visualization in Augmented Reality”, 6th 
IEEE International Symposium on Mixed and Augmented 
Reality (ISMAR'07), Nara, Japan, 2007, pp. 191-200. 

[16] L. T. De Paolis, M. Pulimeno, M. Lapresa, A. Perrone, and G. 
Aloisio, “Advanced Visualization System Based on Distance 
Measurement for an Accurate Laparoscopy Surgery”, Joint 
Virtual Reality Conference of EGVE - ICAT - EuroVR, 
Lyon, France, 2009. 

[17] L. Soler, S. Nicolau, J.-B. Fasquel, V. Agnus, A. Charnoz, A. 
Hostettler, J. Moreau, C. Forest, D. Mutter, and J. Marescaux, 
“Virtual Reality and Augmented Reality Applied to 
Laparoscopic and NOTES Procedures”, IEEE 5th 
International Symposium on Biomedical Imaging: from Nano 
to Macro, 2008, pp. 1399-1402. 

[18] W. E. L. Grimson, T. Lozano-Perez, W. M. Wells, G. J. 
Ettinger, S. J. White, and R. Kikinis, "An Automatic 
Registration Method for Frameless Stereotaxy, Image Guided 
Surgery, and Enhanced Reality Visualization", Transactions 
on Medical Imaging, 1996. 

[19] X. Papademetris, K. P. Vives, M. Di Stasio, L. H. Staib, 
M. Neff, S. Flossman, N. Frielinghaus, H. Zaveri, E. J. 
Novotny, H. Blumenfeld, R. T. Constable, H. P. 
Hetherington, R. B. Duckrow, S. S. Spencer, D.D . Spencer, J. 
and S. Duncan, “Development of a research interface for 
image guided intervention: Initial application to epilepsy 
neurosurgery”, International Symposium on Biomedical 
Imaging ISBI, 2006, pp. 490-493. 

[20] E. Bollschweiler, J. Apitzsch, R. Obliers, A. Koerfer, S. P. 
Mönig, R. Metzger, and A. H. Hölscher, “Improving informed 
consent of surgical patients using a multimedia-based 
program? Results of a prospective randomized multicenter 
study of patients before cholecystectomy”, Annals of Surgery, 
August 2008, 248(2), pp. 205-11. 

[21] C. Eggers, R. Obliers, A. Koerfer, W. Thomas, K. Koehle, A. 
H. Hölscher, and E. Bollschweiler, “A multimedia tool for the 
informed consent of patients prior to gastric banding obesity”, 
Silver Spring, November 2007, 15(11), pp. 2866-2873. 

[22] D. Wilhelm, S. Gillen, H. Wirnhier, M. Kranzfelder, A. 
Schneider, A. Schmidt, H. Friess, and H. Feussner, “Extended 



498

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

preoperative patient education using a multimedia DVD-
impact on patients receiving a laparoscopic cholecystectomy: 
a randomised controlled trial”, Langenbeck’s Arch ives of 
Surgery, March 2009, 394(2), pp. 227-33. 

[23] Mimics Medical Imaging Software, Materialise Group. 
Available: http://www.materialise.com/mimics 

[24] 3D Slicer. Available:  http://www.slicer.org 
[25] J. Ahrens, B. Geveci, and C. Law, “ ParaView: an End-User 

Tool for Large Data Visualization”, Visualization Handbook, 
Edited by C.D. Hansen and C.R. Johnson, Elsevier, 2005. 

[26] O. Faha, “Osirix: an Open Source Platform for Advanced 
Multimodality Medical Imaging”, 4th International 
Conference on Information & Communications Technology, 
Cairo, Egypt, 2006, pp. 1-2. 

[27] P. A. Yushkevich, J. Piven, H. Cody, S. Ho, J. C. Gee, and G. 
Gerig, “User-Guided Level Set Segmentation of Anatomical 
Structures with ITK-SNAP”, Insight Journal, Special Issue on 

ISC/NA-MIC/MICCAI Workshop on Open-Source Software, 
Nov 2005. 

[28] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. 
Ganovelli, and G. Ranzuglia, “MeshLab: an Open-Source 
Mesh Processing Tool,” in Proc. Sixth Eurographics Italian 
Chapter Conference, 2008, Salerno, Italy, pp. 129-136. 

[29] NDI Polaris Vicra. Available: http://www.ndigital.com 
[30] E. Larsen, S. Gottschalk, C. L. Ming, and D. Manocha, “Fast 

Proximity Queries with Swept Sphere Volumes”, Technical 
Report TR99-018, Dept. of Computer Science, University of 
North Carolina, 1999. 

[31] A. Tinelli, A. Malvasi, G. Hudelist, O. Istre, and J. Keckstein,  
“Abdominal Access in Gynaecological Laparoscopy: a 
Comparation between Direct Optical and Open Access” 
Journal of Laparoendosc & Advanced Surgical Techniques, 
19(4), 2009, pp. 529-33. 

 
 



499

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

Retrieval of 3D Medical Images via Their Texture Features 
 

Xiaohong Gao, Yu Qian, Martin Loomes, Richard Comley, Balbir Barn, 

Alex Chapman, Janet Rix 

Middlesex University, London, NW4 4BT, UK 

{x.gao, y.qian, m.loomes, r.comley, b.barn, a.chapman, j.rix} 

@mdx.ac.uk 

 

Rui Hui, Zengmin Tian 

General Navy Hospital, 

Beijing, P.R. China 

huirui2002@163.com, 

tianzengmin@vip.sina.com 

 

Abstract -- While content-based image retrieval has been 

researched for more than two decades, retrieving 3D datasets has 

been progressing considerably slower, especially in the application 

to the medical domain. This is in part due to the limitation of 

processing speed while trying to retrieve high-resolution datasets 

in real-time. Another barrier is that most existing methods have 

been developed based on 2D images instead of 3D, leaving a gap to 

be filled. At present, a significant number of exploitations are 

focusing on the extraction of 3D shapes. As it happens, it appears 

that, to a large extent, the remaining information tends to be 

equally important in the task of clinical decision making. With this 

in mind, in this paper, a texture-based online system, MIRAGE, 

has been developed to facilitate CBIR for 3D images. Specifically, 

four texture-based approaches stemming from 2D forms are 

studied extensively through the application to 3D images using a 

collection of MR brain images and are implemented, which include 

3D Local Binary Pattern (LBP), 3D Grey Level Co-occurrence 

Matrices (GLCM), 3D Wavelet Transforms (WT) and 3D Gabor 

Transforms (GT).  Based on the nature of the content, each 

approach has its own advantages and disadvantages. For example, 

in terms of retrieval precision of tumours and processing speed, 

LBP not only achieves precision rate of up to 78% but also can 

perform retrieval in real time with sub-second processing speeds, 

outperforming the others. 

 
Keywords – CBIR; 3D image retrieval; 3D texture extraction; 

MIRAGE system; 3D visualization. 

 

I. INTRODUCTION 

 

Due to the advances of medical imaging techniques, more 

and more images are in three (or higher) dimensional forms, 

allowing a coherent and collective view. Since many of these 

images are comprised of 2D slices, most current databases 

archive and index them in 2D form, especially for the systems 

that are indexed by their content. As a result, a number of 

limitations have arisen with the most significant one being that 

the information extracted from a single 2D slice cannot be 

representative due to the fact that slices are getting thinner and 

thereafter resolutions are getting higher.  

 

On the other hand, at present, content-based retrieval for 

three dimensional (3D) images has been researched primarily to 

meet the demand for 3D pictures available over the internet. In 

this way, the main challenge facing the extraction of features 

from 3D images is that these features have to be invariant of 

viewing angles, i.e., invariant of rotation, in order to achieve 

higher retrieval hit of similar objects, even though sometimes 

they may not be visible from all the viewing angles. For 

example, if a query image is a 3D rabbit with a head facing the 

view, a good retrieval system should bring back relevant objects 

including those showing only its tails as an exact match. In 

other words, even if the view angle is at the back of the object, 

the matched objects can still be found. In addition, in 2D cases, 

the viewing angle is always at 0
o
, being normal to the computer 

screen, by which most existing algorithms can fulfill this 

request. Also, many of the other characteristics of content-based 

image retrieval (CBIR) are shared between 2D and 3D, 

including scaling and translation of regions of interest. This has 

led to the shift of many current studies to focusing on the 

invariance of transformations (including rotation, scaling and 

translation) of objects, which has more to do with shapes.  

 

A. 3D CBIR for Non-medical Images 
 

Since the emerging of the internet in 1990, coupled with the 

advance of computer hardware, vast amounts of textual and 

imagery data are available online, prompting the creation of an 

array of text-based search engines, such as Google and Yahoo, 

in an attempt to filter the relevant data. For image data, 

however, thanks to their embedded information being inside the 

pictures, a text-based approach has its limitations, especially for 

those images that are not properly, if not at all, labelled. 

Consequently, CBIR has been researched both horizontally and 

vertically. As the trend continues, the progress in the last 

century (1994-2000) has been very well documented in [1], 

whereas the state of the art in the last decade (2001-2008) was 

reviewed by [2] with a number of future directions being 

identified. Generally, a CBIR system follows the procedures of 

development as shown next. Firstly, it extracts features of 

images in terms of their global visual information, such as 

colour, texture, and shape. Then, these features are represented 

using mathematical vectors that, in turn, are employed to index 

each image. Finally, when a query image is submitted, the 

system needs to extract these features from the query image and 

to perform the comparison with the feature database that has 

been stored in advance. In this way, the retrieval process of an 

image can be as fast as that in a text-based system since the 

similarity calculation is based on numerical data. 

 

For 3D online images, the majority of approaches concerns 

with the features of shapes as an indexing key. For example, in 

[3], 3D Zernike descriptors have been developed to describe 



500

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

shapes of objects, by taking advantages of polynomial 

representations, on which these descriptors are based, being 

invariant of transformations. To this end, a database has to 

constitute objects differentiated by shapes, such as airplanes, 

chairs, etc.. Similarly, in order to achieve transformation 

invariance, a graph-based shape descriptor is created in [4] in an 

effort to determine the way to calculate a similarity between 3D 

objects. Recently, the retrieval of 3D objects has been attempted 

using impact descriptors [5] attempting to capture the 

surrounding areas of a 3D shape in order to offer a histogram of 

time-space curvature, which are invariant of rotation and  

translation.  Elsewhere, other shape-based 3D models are 

included in [6-9]. Because shape-based approaches only 

describe the surface of a 3D object, they tend to ignore the 

content inside that object. Depth based descriptors therefore 

have been developed as demonstrated in [10], which is however 

in principle, still capture the outliner of a shape at each depth (z-

buffer).  

 

More recently, the approach of scale invariant feature 

transformation, commonly known as SIFT, has attracted 

substantial attention. Originally developed for 2D images [11], 

SIFT has been extended to 3D spaces in an attempt to perform 

action recognition [12] in a video sequence and object 

recognition for an airport security checking [13]. 

 

B. 3D CBIR for Medical Images 

 
Progress on CBIR for 3D images have been reviewed by many 

researchers [14] with several developed systems demonstrated, which 

are summarized in Table 1 and described in details below. 

TABLE 1:  3D CBIR SYSTEMS OF MEDICAL IMAGES 

Name/ Feature Imaging 

Modality 

Domain Reference 

 

QBISM / 

intensity-based 

MRI/PET Brain Arya [15]  

Pre-defined-

semantic-based 

CT Brain Liu [16]  

MIMS / ontology-

based 

All All Chbeir [17]  

Knowledge-based All All Chu [18]  

ILive – modality-

based 

All All 

organs 

Mojsilovic 

[19]  

2D Texture-based MR Heart Glatard [20]  

FICBDS / 

Physiological  

information –

based 

Functional 

PET 

Brain Cai [21]  

3D PET / lesion-

based 

PET Brain Batty [22]  

MIRAGE / 3D 

texture-based 

MR Brain Gao [23], 

Qian[24] 

 

In the system of QBISM, 3D functional brain images are 

queried and visualized [15], by which intensity-based volume 

data are stored for spatial references, whereas Talairach brain 

atlas [25] is employed to construct a region-based retrieval. The 

key to this system is the application of volumetric data type, i.e., 

the Region or Volume being expressed as <x, y, z, value>, in 

the representation of image data, which in some cases, might be 

prone to noise. 

In other cases, the retrieval task of 3D images can work well 

based on feature extraction [16] from 2D slices, whose success 

to a great extent, is dependent on the application fields of the 

created databases.  

On the other hand, semantics based retrieval remains 

acceptable to images of all dimensions as evidenced by [19]. 

The strength of this work therefore lies in the approaches 

employed for categorization of images that bear semantically 

well-defined data sets. This task itself however in most cases 

poses greater challenges than semantic representation itself. 

Nevertheless, semantics based retrieval of medical images 

offers one of the current trends. Likewise, ontology-based [17] 

and knowledge-based approaches [18] can shorten the semantic 

gap to a certain extent between low level features and high level 

semantics, which in turn requires skilful expertise, i.e., in-depth 

knowledge, to interpret images and convert contents into textual 

descriptions. 

For subject-based images that bear centralised 

characteristics, local features can play an important part in 

indexing and retrieving images. For example, the system of 

FICNDS [21] employs physiological kinetic features for 

retrieving images. Similarly, Batty and Gao [22] have employed 

binding potential (BP) values to index functional PET images. 

Although effective, this method is very discipline-defined and 

relies heavily on the additional supply of extra information. For 

example, in FICNDS, to define a tracer kinetic model, plasma 

time activity (PTA) curves should be obtained from a series of 

blood samples, which are not easily available for most of the 

images in a database. Although PTA can still be modeled by the 

application of control regions as applied by Gao et al, a 

sequence of images acquired over a period of time, say 90 

minutes, are still needed, which again is not readily available in 

most of image repositories. Additionally, in essence, the 

establishment of kinetic models stems from the data of 2D 

slices, which may lose information in between slices. For a 

system that warehousing images of variety of domains, more 

general approach appears to be in demand in order to be 

sustainable. 

A texture-based approach for retrieving of 3D+ cardiac 

images has been applied by Glatard [20] with the employment 

of a 2D Gabor filter. While working on 4D (3D + time) heart 

images, their adoption of a Gabor filter is again, in essence, a 

2D form based on regions coupled with an extra parameter 

dedicated to myocardium features. 

For application to medical images, a Volume of Interest 

(VOI) consists of not only boundary shapes, but also inside 

textures representing tissue properties of the VOI. The 

information extracted from these textures equally plays an 

important role in describing the VOI and is important to medical 

doctors at most of the time. Therefore these texture features 

should be taken into consideration in the representation of an 

object as well.  

 

Apparently, it is possible to represent texture in 2D-based 

form, since a 3D dataset constitutes a stack of 2D slices. 



501

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

However, using a slice-by-slice 2D approach suffers from the 

disappointment that some important information inter-laced 

within the volumetric data is missing. Thus, in terms of a 3D 

form of texture, this spatial structural information should be 

extracted from a cube instead of a surface or a square. Towards 

this end, while working on images of 3D brain, Gao et al [23] 

and Qian et al [24] have furthered four texture-based 

approaches into 3D form to the domain of medical image 

retrieval to extracting texture information that is subsequently 

utilized for indexing them in their developed system MIRAGE 

[26].  

 

Specifically, in this study, the approach of Local Binary 

Pattern (LBP) [27] is addressed first because of its 

discriminative power and computational simplicity, and applied 

to a collection of 3D MR brain images for extracting texture 

information that is subsequently utilized for indexing them. 

Three other well-known methods in texture representation are 

also investigated, including Grey Level Co-occurrence Matrices 

(GLCM), Wavelet Transforms (WT) and Gabor Transforms 

(GT). The novelty of this work demonstrates the feasibility of 

3D texture-based approaches for image retrieval while 

maintaining real time operation. This is achieved by the 

introduction of a pre-processing stage of a selection of potential 

VOIs into query datasets; by which, through the use of 

statistically analysis of the bilateral symmetry of a brain MR 

image, a potential VOI of a query can be detected in real time, 

preceding the extraction of 3D texture features and the 

calculation of similarities.  

 

The remaining of the paper is hence structured in the 

following pattern. Section II explains the methods employed in 

the study, which is followed by Section III that shows the 

experimental results. The interface design is detailed in Section 

IV, which is succeeded by Section V providing conclusion and 

discussion. The last two sections give acknowledgment and 

references respectively. 

 

II. METHODOLOGY 

 

The development of a repository requires two main phases, 

which are ingestion and retrieval. In this investigation, at the 

phase of ingestion of the data, the collected data firstly undergo 

a pre-processing stage to normalize them into the same 

resolution before the indexing stage, as shown in the flow chart 

in Figure 1. As illustrated in the diagram, after spatial 

normalization of volumetric brain data into a standard template, 

the data are then divided into 64 non-overlapping equally sized 

blocks, from which, 3D texture features can be extracted to 

create a feature database. On the query side, a pre-processing 

stage is introduced to detect a potential VOI after spatial 

normalization from a query image. As a result, 3D texture 

features from a query can only extracted from these potential 

sub-blocks of VOIs, which, in the retrieval stage, are compared 

with the corresponding features in the feature database to obtain 

retrieval results. Details are elaborated in the following sub-

sections. 

 

 
 

Figure 1. Framework of 3D MR image retrieval. 

A.  Spatial Normalization 

 

By nature, data are collected from different sources, leading 

to the fact that brain images vary in both shape and size. In 

order to make inter-brains comparable, it is necessary to 

transform the dataset of each individual brain into a standard 

brain template. In this regard, the software of Statistical 

Parametric Mapping (SPM5) [28] is employed to spatially 

normalize a brain image into a template of either MNI T1 or T2 

[29] depending on whether an image is acquired by an MR 

scanner of either T1 or T2 type. In this way, all the images in 

the database are of the same size with 15718969 voxels. 

 

B. Extraction of Volumetric Textures 
 

In order to describe local features from different parts of a 

brain, a 3D volumetric brain is divided into 64 non-overlapping 

equally sized blocks, giving 4 blocks along each of x, y, z axes 

respectively, as shown in Figure 1. Texture features are then 

extracted using 3D LBP to create a feature database, upon 

which image searching and retrieval are performed.  

 

C. 3D Local Binary Pattern  

 

The Local Binary Pattern (LBP) operator is derived from a 

general definition of texture in a local neighborhood (e.g., 8  8 

pixels). In a 2D form, for each pixel in an image, a binary code 

is produced by thresholding its value with the value of a centre 

pixel. A histogram is then generated to calculate the occurrences 

of different binary patterns. To extend this approach to 3D 

images, similarly to [30], a 3D dynamic texture is recognized by 

concatenating three histograms obtained from the LBP on three 

orthogonal planes. When applied to our normalized brain 

images, they are in the plane of Left-Right (LR), Anterior-

Posterior (AP), and Superior-Inferior (SI) respectively, as 

depicted in Figure 2. 

 



502

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

 
 

Figure 2.An example of three orthogonal planes in a 3D brain. 

 These three orthogonal planes intersect in a centre voxel. 

By selecting 8 neighbours as a local neighbourhood with the 

radius length being one voxel, fifty-nine uniformed LBP codes 

are subsequently extracted from the planes of SI, LR and AP 

respectively, again as illustrated in Figure 2, producing a 59 bin 

histogram for each plane by accumulating 59 binary patterns. 

Finally, the three histograms are concatenated to generate a 3D 

texture representation, giving the size of a feature vector being 

177 ( =593) elements. 

 
D. Lesion Detection  

 

The initial goal of the development of this 3D CBIR system 

is to search images with lesions of similar location, size or 

shape (all the collections of images are with lesions). Although 

a feature database has been implemented in advance, the 

processing of a query has to be conducted in real time. In other 

words, after a query is submitted to the system, 3D texture 

features should be extracted from its 64 sub-volumetric spaces 

together with the calculation of similarity distances. To this end, 

while maintaining the overall performance of retrieval, the 

detection of candidate lesions from sub blocks is carried out 

first to highlight the abnormalities, such as tumours, with an 

intension to speed up the retrieval process. 

 

To do this, the characteristics of bilateral symmetry of a 

brain along its mid-plane (parallel to SI direction as shown in 

Figure 2) remain assumed. Similarly to [31], by comparing the 

left half with the right counterpart of a hemisphere along this 

middle symmetry plane, the abnormality can be envisaged to be 

singled out. Since a normalized brain image has been divided 

into 64 blocks, statistical features (e.g., mean, standard 

deviation, etc.) of each sub-block together with its mirror block 

are then calculated and compared to establish potentially 

abnormal sub-blocks. 

 

 
 

Figure 3.Potential VOI selection 

As demonstrated in Figure 3, a normalized brain is divided 

into left (L) and right (R) parts by a sagittal plane, leading to 32 

sub-blocks each, within which a grey level histogram is 

obtained. The Bhattacharya Coefficient (BC) [32] is thereafter 

computed between two normalized histograms 
LH and RH

, 

which are obtained from two mirror symmetric sub-blocks as 

defined in Eq. (1). 

 

  
i

RLRL iHiHHHBC )(*)(,           (1)
 

The more similar 
LH and RH are, the closer to 1 the BC 

value is. On the other hand, less similar histograms tend to have 

smaller BC values. In total, 32 BC values are calculated from 32 

paired mirrored symmetric sub-blocks that are plotted at the 

bottom of Figure 3. The horizontal axis points to the index 

numbers of sub-block pairs, whereas the vertical axis represents 

the corresponding BC values. Also shown in the figure are the 

BC values presenting the top normal sub-block pair marked 

with a black ‘x’, whereas the bottom abnormal sub-block pair 

marked with a red cross. Therefore, the mean value of the BC 

range works as a threshold to be applied to detect the potentially 

abnormal sub-block, i.e., where BC < Threshold. 

 

After the affirmation of a lesioned VOI from a query is 

established, 3D texture features are extracted exclusively from 

this VOI of the query, and are later compared with the features 

from similar blocks of those images in the feature database in an 

attempt to search images with similar lesions in terms of 

textures.  

 

E. Similarity Measurement 

 

To measure the degree of similarity between two images Q 

and I, a distance function should usually be in place calculating 

the distance between features of the two images. For a 3D LBP, 

the histogram intersection is applied to measure features of 

histograms and is given in Eq. (2), 

 
   

i

ii IQIQD ,min,

                  (2)
 

where i represents each bin in a histogram. The more similar 

they are between a query (Q) and an image (I), the bigger the 

value of the D is. Therefore, the retrieved results are ranked in 

descending order based on the value of D.  

 

III. EXPERIMENTAL RESULTS 

 

A. Data Collection 

 

In this study, the database contains over 100 3D MR brain 

images with lesions (e.g., tumour, biopsy) and detailed 

diagnosis. Each dataset has a resolution in a range between 256 

 256  22 mm
3
 and 256  256  44 mm

3
, and is in DICOM 

(Digital Imaging and Communications in Medicine) format with 

16 bit grey-level resolution. 

 

B. Results on Detection of Lesions 

 



503

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

Since the location of a lesion region plays an important part 

in retrieving relevant datasets, the evaluation on the detection of 

lesion positions is carried out first. In Table 2, the first row is 

the labelling number of the location of a VOI assigned by the 

authors for the convenience of calculations, e.g., ‘1’ refers to the 

abnormal part in the front top left part of the brain. The second 

row is the total number of images containing VOIs in the same 

positions in the database, whilst the number of correctly 

detected images by the approach of lesion detection as 

explained in Section II.D is given on the third row. Therefore, 

the overall performance in terms of VOI locations is calculated 

as the number of detected positive VOIs divided by the total 

positive VOIs and  is 91.3% (=168/184). 

 
TABLE 2  VOI DETECTION RATE 

 

VOI 

Location 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 
 

Total 

Number 

of images  

 
24 

 
46 

 
18 

 
38 

 
24 

 
12 

 
14 

 
8 

 

184 

Correctly 

detected 

images 

 

24 

 

42 

 

16 

 

34 

 

24 

 

8 

 

12 

 

8 
 

168 

Correct 

Detection 

Rate (%) 

         

91.3 

 

C. Comparison with the Other Texture-based Approaches 

 

The other three methods widely employed in texture 

representations are also exploited in this investigation by the 

extension to 3D, including Grey Level Co-occurrence Matrices 

(GLCM), Wavelet Transforms (WT), Gabor Transforms (GT), 

which are summarized next. 

In 3D form, GLCM [33, 34] are defined as three 

dimensional matrices of a joint probability of occurrence of a 

pair of grey values separated by a displacement d = (dx, dy, dz).   

 
 

Figure 4.Thirteen directions in 3D GLCM. 

For example, four distances with 1, 2, 4, and 8 voxels 

respectively and thirteen directions, as depicted in Figure 4, 

which are chosen in this study, will produce 52 (=413) 

displacement vectors, and thereafter 52 co-occurrence matrices. 

As a result, four Haralick texture features [35], being energy, 

entropy, contrast and homogeneity, are computed from each 

matrix, generating a feature vector of 208 components (=4 

(measures)  52 (matrices)). 

 

On the other hand, the 3D WT provides a spatial and 

frequency representation of a volumetric image, which can be 

achieved by applying both high-pass (H) and low-pass (L) 

filters along all three dimensions. This is then followed by a 2 to 

1 sub-sampling of each output volumetric image [36], giving 

rise to eight wavelet coefficients sub-bands (one low frequency 

sub-band and seven high frequency sub-bands) at each scale, as 

schematically presented in Figure 5(a). The process is 

subsequently repeated in the lowest frequency sub-band (LLL1), 

generating a 3D wavelet transform of two scales as shown in 

Figure 5(b).                     

 

 
Figure 5.One scale and two scales of 3D WT. 

       In this investigation, 2 scales of 3D WT, as shown in Figure 

5(b) are chosen. The measurement of mean  and standard 

deviation   are then extracted for each sub-band. So that there 

are 30 features, i.e., 2 (scales) *7 (sub-bands in each scale) *2 

(measures) +2 (measures in the lowest resolution) =30, derived 

from a Wavelet transform of 2 scales, yielding the dimension of 

a vector being 30.  
 

With respect to Gabor Transforms, in order to extend GT 

into three dimension, a set of 3D Gabor filters are generated 

similar to [37, 38] to detect spatial orientations and scale 

tunable edges and lines (bar), which can be formulated as Eq. 

(3).  
 

                

                                                 
   (3)

 
where  zyxg ,,

^

 is a 3D Gaussian function, together with 

radial centre frequency F and orientation parameters ( and ), 

determining a Gabor filter in three dimensions. 

 

       In this study, the following parameters are defined, 

including four centre frequencies with F = {0.0442, 0.0625, 

0.0884, 0.125} circle/voxel respectively, six orientation angles, 

i.e..,  000000 150,120,90,60,30,0  
and six values of , 

i.e.,  000000 150,120,90,60,30,0 , which leads to the 

number of 144 (= 4*6*6) Gabor filters that are employed to 

extract texture features. Given a 3D volumetric texture

 zyxf ,, , its 3D Gabor transform iGT  is defined by  

 

   iiii FzyxgzyxfGT  ,,,,,*,,
 

144...3,2,1i                           (4)
 

The mean  and standard deviation  of GT coefficients are 

then calculated which act as a representation of texture features 

from 144 Gabor transforms respectively. Therefore a feature 

vector includes 288 elements (= 4 (scales) *36 (orientations) *2 

(measures)).  

 

To calculate similarity distances from these three methods, a 

normalized Euclidean distance is employed to compare two 3D 

patterns in a feature space, as defined by Eq. (5). 

 



504

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

 
2

,  






 


i i

ii IQ
IQD


           (5)

 

where i refers to the standard deviation of a set of 

representative features over the entire database and is therefore 

utilized to normalize each individual feature component. The 

retrieved 3D images are ranked in an ascending order of feature 

distances.  

In summary, the above three 3D texture approaches together 

with LBP are applied to extract texture features from each sub-

volumetric block. Furthermore, the dimension of a feature 

vector for a 3D brain remains to be the size of local features 

multiplied by 64, the number of the blocks each volumetric 

image is divided into, yielding 13312, 1920, 9216 and 11328 

components for the approaches of 3D GLCM, 3D WT, 3D GT 

and 3D LBP respectively.  

Subsequently, the performance of image retrieval is 

evaluated based on the measures of Precision (P) and Recall 

(R).  Precision is defined as the fraction of retrieved images 

relevant to a query whilst recall is the fraction of relevant 

images retrieved. Precision and recall values are usually 

presented together in a Precision-Recall (P-R) graph that 

demonstrates the retrieval performance at each point in the 

ranking. In a P-R graph, the horizontal axis refers to a recall 

whereas the vertical axis shows the corresponding precision at 

each of the usual recall points, i.e., 10%, 20%,…,100% or 0.1, 

0.2, …, 1. A single value, usually, the Mean Average Precision 

(MAP) value is employed to assess the overall performance for 

all queries and is calculated as 

 





M

i

iAP
M 1

1
(MAP)Precision  AverageMean 

      (6) 

where M  is the total number of the queries, iAP  is the average 

precision for the i
th 

query that is formulated as Eq. (6), 

 





rN

j

j

r

P
N 1

1
(AP)Precision  Average  

       (7)                    

where rN  is the total number of relevant images in a dataset for 

a query, jp  is the precision when retrieving the j
th

 relevant 

image. 

 

Figures 6 and 7 depict the average Precision Recall Graph 

for ten queries across the whole datasets with Figure 6 showing 

the results without a pre-processing stage of VOI selection 

whilst Figure 7 with the pre-processing stage. 

 

 
 
Figure 6. Average precision recall graph for ten queries without VOI selection. 

 

 
 

Figure 7. Average precision recall graph for ten queries with VOI selection. 

 

Overall, the mean average precision (MAP) at 0.5 recall rate 

for ten queries cross the whole database by using the approaches 

of 3D GLCM, 3D WT, 3D GT and 3D LBP are shown in the 

following table. 

 
TABLE 3 VALUE OF MEAN AVERAGE PRECISION 

 
Methods Without VOI selection  With VOI selection 

3D GLCM 0.677 0.690 

3D WT 0.731 0.749 

3D GT 0.714 0.691 

3D LBP 0.774 0.786 

 

Comparing the value of MAP with and without potential 

VOI selection, the methods of 3D GLCM, 3D WT and 3D LBP 

with potential VOI selection show a slightly improved 

performance with bigger MAPs.  

Figure 8 visualizes the retrieved results by using the four 

approaches with a pre-processing stage of VOI selection. The 

query image with a tumour in the middle is displayed in 3D 

fashion and 3 slices appearing in 3 orthogonal planes on the top 

row, i.e., in axial, sagittal, and coronal directions. The retrieval 

results are visualized by using an open source software 3D 

Slicer [39]. 

 

 



505

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

 
 

Figure 8. Retrieved results in top 5 ranking from  
3D GLCM (row 1), 3D WT(row 2), 3D GT (row 3), and 3D LBP (row 4). 

 

D. Query Time 
 

It is understandable that retrieving images in 3D form might 

not be performed in real time, one of the drawbacks in the 

development of CBIR systems for images of higher dimensions. 

Table 4 demonstrates the average querying time, amounting to 

the period spent on both feature extraction and retrieval. The 

second column is the averaged querying time without a pre-

processing stage while the third column is with VOI selection, 

i.e., with a pre-processing stage. All methods are programmed 

in software of Matlab R2009a running with an Intel P8600 

1.58GHz CPU and 3.45GByte RAM.  

 
TABLE 4 QUERY TIME 

 

Methods Without VOI selection  With VOI selection 

3D GLCM 43.37s 10.96s 

3D WT 4.46s 1.22s 

3D GT 38.79m 10.77m 

3D LBP 0.74s 0.21s 

 

As can be seen in Table 4, the query time with VOI selection 

offers 4 times faster operation than that without. In particular, 

the query time for 3D GT takes much longer than for the other 

methods spending 38 minutes, due to the employment of 144 

times of 3D convolutions for each block, whereas the query 

time for the other methods are completed in the space of few 

seconds. The table also illustrates that the 3D LBP approach 

outperforms the other three with sub-second retrieval time and 

the highest precision rate of 78%, as given in Table 3. However, 

this conclusion is very much content-based. In this case, the 

retrieval performance is based on the retrieval of images with 

similar lesion positions. Further studies are in need to explore 

whether any other contents, such as tumour shape, might be in 

favour of any of the other methods. All in all, all these four 

methods are implemented in the developed CBIR system that is 

addressed below. 

 

IV. INTERFACE DESIGN 

 

        An online CBIR system, MIRAGE, acronym for 

Middlesex medical Image Repository with CBIR ArchivinG 

Environment, for both 2D and 3D images has been developed 

and is online at [26]. Figure 9 demonstrates the interface of the 

system, whist Figure 10 illustrates the flowchart of the 

architecture of interface. It consists of three modules with 

components of image classification, 2D image retrieval and 3D 

image retrieval respectively.  

 

In Figure 9, the top picture displays a random selection of 

ten images from the collection of ‘dateset_3’ chosen from the 

dropdown menu of Collection Category, which can be achieved 

by simply pressing the ‘Random’ button. The last button on this 

figure gives the choice of the number of images to be displayed, 

which can be up to 140. Obviously more images will take 

longer to show up. Upon these shown images, users can pick 

one or more as query image or images by changing the status of 

each one from ‘neutral’ to ‘rel’ that refers to relevant, or ‘non-

rel’ to eliminate the like of that image. By clicking the ‘Query’ 

button, the screen will show the retrieved images that are 

similar to the chosen query image or images. 

 

 

 
 



506

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

 
 

 
 

Figure 9. The interface of MIRAGE. Top: 2D images; Middle: 3D images; 
Bottom: retrieved results for 3D query. 

 

The novelty of this work is the implementation of retrieval 

for 3D images which are demonstrated in the middle and bottom 

figures of Figure 9. The middle picture illustrates the 

implementation of the four aforementioned algorithms that can 

be applied to the retrieval process. There are four ways to view 

each 3D dataset. Among the 5 columns in the figure, on the 

second left (the leftmost column lists the name of the data), 3D 

data are shown in 2D form. By clicking the ‘-‘ or ‘+’ button at 

the bottom, users can view the 3D brain images slice by slice 

from the top of the head to the neck. In order to refer each slice 

to the 3D brain, the three columns on the right hand side 

showcase the mapping from 2D to 3D in the direction of back-

front (coronal, column 3), left-right (sagittal, column 4), and 

top-bottom (axial, column 5). Similar to the 2D form of the top 

figure, a query image can be selected by ticking the image name 

and then pressing the ‘Query’ button. The retrieved images are 

then given as demonstrated in the bottom figure of Figure 9. 

Again, with the consideration of speed, only 5 datasets are 

shown at each time. 

 
Figure 10. The framework for MIRAGE. 

 

     Built on the open source GNU Image Finding Tool (GIFT 

[40]), the online database is based on the Query-by-Example 

(QBE) paradigm coupled with a facility of user-relevance 

feedback whereby retrieved images most closely resemble a 

query image in appearance (i.e., the content that an image is 

carrying).  

 

For 2D images, two algorithms have been implemented for 

indexing image collections, which are IDF (Inverse Document 

Frequency) and Separate Normalisation. The IDF is a classical 

method and is based on counting the number of documents in 

the collection being searched, which contain (or are indexed by) 

the terms in question [41], and has been applied in text retrieval 

systems, giving rise to the efficiency when employed in an 

image system.  Conversely, feature normalisation refers to the 

compensation of scale disparity between the feature components 

that are defined in different domains.  

On the client side, a web page based interface is given. 

Whilst the client-server communication is achieved using the 

XML-based Multimedia Retrieval Markup Language (MRML). 

All client-server communication, including queries from the 

client or results returned by the server, is realized through 

message passing. Consequently, the client can be implemented 

in any programming language. The current MIRAGE client is 

implemented using PHP (Personal Home Programming) 

language to generate dynamic web pages for the client web 

browser.  

 



507

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

     With respect to 3D interface, Figure 11 schematically 

illustrates a flowchart of the development. 

 

 
 

Figure 11. Framework of 3D brain retrieval system. 

 

As illustrated in Figure 11, the visualization of 3D images relies 

on a Client-Sever architecture with MySQL communication 

protocol.   

In order to display 3D brain as a whole instead of a pile of 

2D slices, the skull of a brain is generated first from 3D volume 

data by using the method of iso-surface extraction, which is 

then followed by setting the step forward or backward with end-

caps in three directions (i.e., X, Y, Z) respectively to show the 

inside structure of a brain from bottom to top, back to front and 

left to right, as schematically illustrated in Figure 12.  All 

processing procedures including the step of images of 3D inter-

section (to be controlled by ‘-‘ and ‘+’ buttons in Figure 9) and 

the extraction of texture features from aforementioned four 

approaches can be performed offline in advance.  In this way, 

the created 3D inter-sections of brains with its original 3D brain 

image are then stored in the image database in a server, whilst 

texture features are stored in a feature database.   

 

 
 

Figure 12 Creation of iso-surface and inter-sections of 3D volume data. 
 

On the client side, interface relies on HTML, which is 

dynamically generated by means of hypertext preprocessor and 

therefore can be displayed in any internet browser. As shown in 

Figure 9, the user can view not only the original 3D brain image 

shown in first column of each row but also its cutaway in three 

different directions on the basis of slice by slice.   

 

V. CONCLUSION 

 

This paper is an extended version of [24], which introduces an 

online image retrieval system, MIRAGE, with a facility of 

CBIR for 3D images. Four texture based approaches that draw 

on the techniques of Local Binary Pattern, Grey Level Co-

occurrence Matrices, Wavelet Transforms and Gabor 

Transforms have been exploited through the extension into 3D 

format, to retrieve lesioned MR brain images in this system. The 

results are very encouraging showing that not only higher 

precision rates can be achieved, but also that can it be done in 

real time. In comparison with each other, LPB outperforms the 

other three to a great extent whereas the 3D wavelet approach 

also performs well with similar retrieval accuracy, although 

slightly under-performed in terms of time. In terms of 

processing speed, it appears the pre-processing stage of 

detection of potential VOIs is essential to highlight lesions, the 

regions of interest that retrieved images should contain.  

Because of the time required in the establishment of a 

feature database in 3D form, i.e., normalization, feature 

extraction, etc., in particular by using the approach of 3D GT 

(up to several minutes are needed for each brain), only ~100 

datasets are included in this study. The very next step is to 

process more datasets. In addition, although the precision rate of 

78% is very promising, a better rate may be possible by the 

combination of a few of these texture descriptors, while 

maintaining the short processing time. Comparison with shape 

based approaches is also in the pipeline, with the aim of 

developing CBIR systems for higher dimensional datasets. 

 

ACKNOWLEDGMENT 

 

This research is financially funded by UK JISC. Their 

support is gratefully acknowledged.  

 

REFERENCES 

 

[1] Smeulders A.W., Worring M., Santini S., Gupta A., and Jain 

R., Content-based image retrieval at the end of the early years. 

IEEE Trans. Pattern Anal. Mach. Intell 2000, 22 (12): 1349–

1380. 

[2] Datta R., Joshi D., Li J., and Wang J.,  Image retrieval: ideas, 

influences, and trends of the new age, ACM Computing 

Surveys, 2008, 40(2),  pp.5-1:60. 

[3] Novotni M. and Klein R., 3D Zernike Descriptors for 

Content Based Shape Retrieval, Proceedings of the 8th ACM 

Symposium on Solid Modelling and Applications, Seattle, 

Washington, USA, 2003, pp. 216-225. 

[4] Bustos B. Keim D., Saupe D., and Schreck T., Content-based 

3D Object Retrieval, IEEE Transactions on Computer 

Graphics and Applications,  2007, 27( 4), pp.22-27. 

[5] Mademlis A., Darasb P., Tzovarasb D., and Strintzis M.G., 

3D Object Retrieval Using the 3D Shape Impact Descriptor, 

Journal of Pattern Recognition, 2009, 42 (11), pp.2447-2459 

. 



508

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

[6] Cao L., Liu J., and Tang X., 3D Object Retrieval Using 2D 

Line Drawing and Graph Based Relevance Feedback, 

Proceedings of the 14th Annual ACM International 

Conference on Multimedia, Santa Barbara, CA, USA, 2006, 

pp. 105 – 108. 

[7] Ichida H., Itoh Y., Kitamura,Y., and Kishino F., Interactive 

Retrieval of 3D Shape Models Using Physical Objects, 

Proceedings of the 12th Annual ACM International 

Conference on Multimedia, New York, NY, USA, 2004, pp. 

692 – 699. 

[8] Gong B., Xu C., Liu J., and Tang X., Boosting 3D Object 

Retrieval by Object Flexibility, Proceedings of the 7th ACM 

International Conference on Multimedia, Beijing, China, 

2009, pp. 525-528. 

[9] Bustos B., Keim D., Saupe D., and Schreck T., Content-

Based 3D Object Retrieval, IEEE Computer graphics and 

Applications, 2007, 27(4), pp. 22-27. 

[10] Vajramushti N., Kakadiaris I.A., Theoharis T., and 

Papaioannou G., Efficient 3D Object Retrieval Using Depth 

Images, Proceedings of the 6th ACM SIGMM International 

Workshop on Multimedia Information Retrieval, New York, 

NY, USA, 2004,  pp. 189 – 196. 

[11] Lowe D. G., Distinctive Image Features from Scale-Invariant 

Keypoints, International Journal of Computer Vision, 2004, 

60( 2), pp. 91-110.  

[12] Scovanner P., Ali S., and Shah M., A 3-Dimensional SIFT 

Descriptor and Its Application to Action Recognition. ACM 

Conference on Multimedia, 2007, pp. 357-360.  

[13]  Flitton G., Breckon T., and Megherbi N., Object 

Recognition using 3D SIFT in Complex CT Volumes, British 

Machine Vision Conference (BMVC), 2010,  pp.1-12. 

[14]  Gao X. W.,  Qian Y., and Hui R., The state of the art of 

medical imaging technology: from creation to archive and 

back, The Open Medical Informatics Journal, 2011, 5 

(Suppl 1), pp.73-85. 

[15] Arya M., Cody W., Faloutsos C., Richardson J., and Toya J.,  

QBISM: Extending a DBMS to Support 3D Medical Images, 

Proceedings of the Tenth International Conference on Data 

Engineering, 1994, pp.314-325. 

[16] Liu Y. and Dellaert F., A classification based similarity 

metric for 3D image retrieval, Computer Vision and Pattern 

Recognition, IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (CVPR'98), 1998, 

pp.800-805. 

[17] Chbeir R., Amghar Y., and Flory A., MIMS: a Prototype for 

medical image retrieval, In RIAOCID, 2000, pp.846-861. 

[18] Chu W., Hsu C., Cardenas A., and Taira R., Knowledge-

based image retrieval with spatial and temporal constructs, 

IEEE Transactions on Knowledge and Data Engineering, 

1998, 10(6), pp. 872–888. 

[19] Mojsilovic A. and Gomes J., Semantic based categorization, 

browsing and retrieval in medical image databases, 

Proceedings of image Processing, 2002,  pp.III:145-148. 

[20] Glatard T., Montagnat J., and Mgnn I.E., Texture based 

medical image indexing and retrieval: application to cardiac 

imaging, Proceedings of the 6th ACM SIGMM international 

workshop on Multimedia information retrieval, 2004, 

pp.135-142. 

[21] Cai W. and Feng D., Content-based Retrieval of dynamic 

PET functional images, IEEE Transactions on Information 

Technology in Biomedicine 2000, 4(2), pp.152-158. 

[22]  Batty S., Fryer T., Clark J., Turkheimer F., and Gao X.W., 

Extraction of Physiological Information from 3D PET Brain 

Images, VIIP'2002 (Visualization, Imaging and Image 

Processing) 2002, pp. 401-405. 

[23] Gao, X.W., Qian Y., Loomes M., Comley R., Barn B., 

Chapman A., and Rix J., Texture-based 3D image retrieval 

for medical applications, IADIS e-Health2010, Germany, 

2010, pp 29-31. 

[24] Qian Y., Gao X., Loomes M., Comley R., Barn B., Hui R., 

and Tian Z., Content-based retrieval of 3D medical images, 

The Third International Conference on eHealth, 

Telemedicine, and Social Medicine, eTELEMED 2011, 

France, IARIA, XPS Press, 2011, pp.7-12. 

[25] Talairach J. and Tournoux P, Co-planar stereotactic atlas of 

the human brain, Thieme, Stuttgart, 1988. 

[26] http://image.mdx.ac.uk/vin/demo.php. Retrieved on 

26/1/2012. 

[27] Unay D., Ekin A, and Jasinschi R.S., Medical Image Search 

and Retrieval using Local Patterns and Kit Feature Points, 

Proceedings of the International Conference on Image 

Processing, San Diego, California, USA, 2008, pp. 997-

1000. 

[28] http://www.fil.ion.ucl.ac.uk/spm/. Retrieved  on 26/1/2012. 

[29] Montreal Neurological Institute, http://www.mni.mcgill.ca/. 

Retrieved on 26/1/2012. 

[30] Zhao G. and Pietikainen M., Dynamic Texture Recognition 

Using Local Binary Patterns with an Application to Facial 

Expressions, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 2007, 9 (6) , pp. 915-928. 

[31] Gao, X.W., Batty, S., Clark, J., Fryer, T., and Blandford, A., 

Extraction of Sagittal Symmetry Planes from PET Images, 

Proceedings of the IASTED International Conference on 

Visualization, Imaging, and Image Processing (VIIP'2001), 

2001, pp. 428-433. 

[32] Bhattachary A., On a Measure of Divergence between Two 

Statistical Populations Defined by Their Probability 

Distribution, Bulletin of the Calcutta Mathematical Society. 

1943, 35, pp. 99-109. 

[33] Kovalev V.A., Kruggel F., Gertz F.J., and Cramon D. Y., 

Three-Dimension Texture Analysis of MRI Brain Datasets, 

IEEE Transactions on Medical Imaging, 2001, 20 (5), pp. 

424-433. 

[34] Philips C., Li D., Raicu D., and Furst J., Directional 

Invariance of Co-occurrence Matrices within the Liver, 

Proceedings of IEEE International Conference on 

Biocomputation, Bioinformatics, and Biomedical 

Technologies, Bucharest, Romania, 2008,  pp.29-34. 



509

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

[35] Haralick R.M., Shanmugam K., and Dinstein I., Textural 

Features for Image Classification, IEEE Transactions on 

Systems, Man, and Cybernetics, 1973, 3 (6), pp.610-621. 

[36] Mallat S. G., A Theory for Multiresolution Signal 

Decomposition: the Wavelet Representation, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

1989, 11 (7), pp. 674-693. 

[37] Feng M. and Reed T.R., Motion Estimation in the 3-D Gabor 

Domain, IEEE Transactions on Image Processing, 2007, 16 

(8), pp.2038-2047. 

[38] Wang Y. and Chua C., Face Recognition from 2D and 3D 

Images Using 3D Gabor Filters, Journal of Image and Vision 

Computing, 2005, 23 (11), pp. 1018-1028. 

[39] www.slicer.org. Retrieved on 26/1/2012. 

[40] http://www.gnu.org/software/gift/. Retrieved on 6/1/2012. 

[41] Robertson S., Understanding Inverse Document Frequency: 

On theoretical arguments for IDF, Journal of Documentation, 

2004, 60 (5), pp.503–520. 

 



510

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ontology Structure, Reasoning Approach and Querying Mechanism in a Semantic-

Enabled Efficient and Scalable Retrieval of Experts

Witold Abramowicz, Elżbieta Bukowska, Monika Kaczmarek, Monika Starzecka 

Department of Information Systems, Faculty of Informatics and Electronic Commerce, Poznan University of Economics, 

Poznań, Poland 

{w.abramowicz; e.bukowska; m.kaczmarek; m.starzecka}@kie.ue.poznan.pl

Abstract—Efficient utilization of knowledge became a key to 

the success of an organization. The need to identify experts 

within or outside an organization has been for a long time 

inspiration for various initiatives undertaken by academia 

and industry. The eXtraSpec system developed in Poland is 

an example of such initiatives. In order to realize its tasks, 

the eXtraSpec system needs not only to be able to acquire 

and extract information from various sources, but also 

requires an appropriate representation of information, 

supporting reasoning over person’s characteristics. The 

considered mechanism should allow for a precise 

identification of required data, but simultaneously, be 

efficient and scalable. The main goal of this paper, is to 

present the ontology structure, reasoning approach as well 

as querying mechanism applied in the eXtraSpec project, 

and discuss the underlying motivation, which led to the 

development of a semantic-based mechanism to retrieve 

experts in its current state.  

Keywords - Expert finding system; knowledge representation; 

expert characteristic, reasoning, querying 

I. INTRODUCTION 

An efficient acquisition and utilisation of knowledge is 
considered to be a key element contributing to a success of 
an organization operating in the competitive settings of the 
knowledge-based economy [49]. The organizations need 
not only to know the skills and expertise of their 
employees, but also need to be able to conduct an 
appropriate recruitment process. More and more often 
organizations, in order to locate expertise they require, 
take advantage of various Internet portals, including social 
portals, as well as other artefacts available on the Internet 
[50]. As the data and information on various experts 
available on WWW is very dispersed and of distributed 
nature, a need appears to support the processes of human 
resources management using the IT-based solutions e.g., 
information extraction and retrieval systems, especially 
expert retrieval systems. 

Within an information retrieval (IR) process, a single 
query is executed on a set of documents in order to 
identify the relevant ones [2]. In general, a typical retrieval 
system encompasses three main components:  

• a module responsible for collecting data 
(documents) and creating their easily processable 
representation in the form of an index;  

• an interface allowing formulating queries reflecting 
the current information needs of a user and usually 
consisting of a set of keywords and finally,  

• a mechanism matching a query to created indexes 
in order to identify the relevant documents. 

All three elements affect the quality of the retrieval 
process, i.e., values of precision and recall metrics.  

The traditional expert retrieval systems, being a subset 
of information retrieval systems focusing on identification 
of required experts, face the same problems as traditional 
IR systems. The mentioned problems are caused by usage 
of different keywords and different levels of abstraction by 
users when formulating queries on the same topic, or by 
using different words and phrases in the description of a 
phenomenon based on which indexes are created. In order 
to address these issues, very often semantics is applied, so 
as in response to a user query, a retrieval system returns 
documents, which do not contain words included in the 
query, but are still relevant to the user’s information needs.  

There are many research and commercial initiatives 
aiming at the development of retrieval systems in general 
and expert retrieval systems in particular, supported by 
semantics. They are to provide interested parties with 
detailed information on people’s experience and skills. 
One of such initiatives is the Polish project eXtraSpec 
[23]. Its main goal is to combine company’s internal 
electronic documents and information sources available on 
the Internet in order to provide an effective method of 
searching experts with competencies in the given field.  

The main process in the eXtraSpec system flows as 
follows: the system acquires data from dedicated sources 
(on the Web or from the inside of the company) and saves 
it as an extracted profile (PE), whose structure is based on 
the European Curriculum Vitae Standard [38]. In the next 
step, data in PE is normalized. As a result of the 
normalization process, the normalized profile is generated 
(PN). Finally, PN are analysed and aggregated to the form 
of aggregated profile (PA) (i.e., one person is described by 
one and only one PA) serving as a source of information 
on experts. Based on the information provided by the 
aggregated profiles, the eXtraSpec system is to support 
three main scenarios:  

• finding experts with desired characteristic, 

• defining teams of experts, and  

• verifying data on a person in question.  
In order to support the above mentioned flow as well 

as three scenarios identified, the eXtraSpec system needs 
not only to be able to acquire and extract information from 
various sources, but also requires an appropriate 
representation of information that would support reasoning 
over person’s characteristics. In addition, the reasoning 



511

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and querying mechanism should on the one hand, precisely 
identify required data, and, on the other, be efficient and 
scalable.  

The main goal of this paper, being an extended version 
of [1], is to present more in depth the ontology structure, 
reasoning approach as well as querying mechanism 
applied in the eXtraSpec project, and discuss the 
underlying motivation, which led to the development of a 
semantic-based mechanism to retrieve experts in its 
current state.  

In order to fulfill the mentioned goals, the paper is 
structured as follows. First, the related work in the area of 
expert’s retrieval and using semantics to describe experts 
is discussed. Then, the description of the identified 
querying strategies constituting requirements for the 
defined solution follows. Next, the ontology developed for 
the needs of the eXtraSpec project to support retrieval of 
experts is presented. Then, the short description of the 
considered scenarios regarding the application of the 
reasoning infrastructure, as well as the description of the 
selected one, follows. Finally, the system architecture as 
well as implementation details of the reasoning 
mechanisms are given. The paper concludes with final 
remarks.  

II. RELATED WORK  

The need to find expertise within an organization has 
been for a long time inspiration for initiatives aiming at the 
development of a class of search engines, being a subset of 
information retrieval systems, called expert finders or 
expert retrieval systems [3].  

There are several aspects connected with the expert 
finding task, for instance, following McDonald and 
Ackerman [4], those may be:  

• expertise identification aiming at answering a 
question - who is an expert on a given topic?, and 

•  expertise selection aiming at answering a question 
- what does X know?  

Within our research, we focus on the first aspect i.e., 
identifying a relevant person given a concrete need.  

First systems focusing on the expertise identification 
task relied on a database like structure containing a 
description of experts’ skills (e.g., [5]). However, such 
systems faced many problems, e.g.:  

• how to ensure precise results given a generic 
description of expertise and simultaneously fine-
grained and specific queries [6], or 

• how to guarantee the accuracy and validity of 
stored information given the static nature of a 
database and volatile nature of person’s 
characteristics.  

To address these and similar problems other systems 
were proposed focusing on automated discovery of up-to-
date information from specific sources such as e.g., e-mail 
communication [7]. In addition, instead of focusing only 
on specific document types, systems that index and mine 
published intranet documents [8] or analyse social 
networks [45], were proposed. An example may be the 

Spree project [9] aiming at providing automatic expert 
finding facility, able to answer a given question. The 
system automatically builds qualification profiles from 
documents and uses communities and the social software 
in order to provide efficient searching capabilities.  

In addition, currently the Web itself offers many other 
possibilities to find information on experts, as there are a 
number of contact management portals or social portals, 
where users can search for experts, potential employees or 
publish their curricula in order to be found by future 
employers (e.g., [25][26][27]).  

When it comes to the algorithms applied to assess 
whether a given person is suitable to carry our a given 
task, at first, standard information retrieval techniques to 
locate an expert on a given topic were applied [10][11]. 
Usually, expertise of a person was represented in a form of 
a term vector and a query result was represented as a list of 
relevant persons.  

If matching a query to a document relies on a simple 
mechanism checking whether a document contains the 
given keywords, then the well-known IR problems occur:  

• low precision of returned results (there is a word, 
but not in this context);  

• low value of recall (relevant documents described 
using a different set of keywords, are not 
identified);  

• a large number of documents returned by the 
system (especially in a response to a general query) 
the processing of which is impossible (e.g., due to 
the time constraints).  

Therefore, a few years ago, the Enterprise Track at the 
Text Retrieval Conference (TREC) was started in order to 
study the expert-finding topic. It resulted in further 
advancements of the expert finding techniques and 
application of numerous methods, such as probabilistic 
techniques or language analysis techniques to improve the 
quality of finding systems (e.g., [12][13][14][15]).  

As the Semantic Web technology [42] is getting more 
and more popular [43], it is not surprising that it has been 
used to enrich descriptions within expert finding systems. 
The introduction of semantics into search systems may 
take two forms:  

• the use of semantics in order to analyze indexed 
documents or queries (query expansion [44]),  

• operating on semantically described resources with 
use of reasoners (e.g., operating on contents of 
RDF (Resource Description Framework [46]) files 
and ontologies represented in e.g., the OWL (Web 
Ontology language [47])). 

Within the expert finding systems both approaches 
have been applied, as well as a number of various 
ontologies used to represent competencies and skills were 
developed.  

For instance, the goal of a Single European 
Employment Market-Place (SEEMP) [16] was to provide 
interoperable architecture for e-Employment services. The 
mentioned project used an ontology in order to provide a 
semantic description of job offers and people’s CV. The 



512

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

main ontology developed within this project is called 
Reference Ontology and it consists of thirteen sub-
ontologies: Competence, Compensation, Driving License, 
Economic Activity, Education, Geography, Job Offer, Job 
Seeker, Labour Regulatory, Language, Occupation, Skill 
and Time. The Reference Ontology has been built based 
on the commonly used standards, e.g., ISO 4217

 
[28], 

ISCO-88 COM [29], ONET [30] or DAML ontology [31]. 
In turn, in [17] authors describe requirements and a 

process of ontology creation for the needs of human 
resources management. They developed an ontology that 
is used in two projects: a meta-search engine for searching 
jobs on job portals [18] and by a university competence 
management system [19]. The ontology was created in the 
OWL formalism. It consists of sub-ontologies for 
competencies, occupations and learning objects. 

Another example is the ExpertFinder system [20] being 
a framework for reuse of already existing vocabularies in 
order to apply them in semantically supported systems. It 
provides terms and best practices for describing web 
pages, persons, institutions, events, areas of expertise, 
relations between persons, educational aspects etc. 
ExpertFinder uses such vocabularies as: FOAF (Friend of 
a Friend) [32], SIOC [33], vCard [34]

 
or Dublin Core [35]. 

In addition, numerous ontologies, taxonomies and 
classifications have been created in the human resources 
management area, e.g., taxonomies for job descriptions 
such as e.g., the Standard Occupational Classification 
(SOC) [36] of the Unites States Federal statistical agencies 
or taxonomy of skills developed within the KOWIEN 
project [21]. 

The problem tackled within this paper is related to the 
semantic-based expert finding. The eXtraSpec system 
acquires information from outside and assumes that one 
can build a profile of a person based on the gathered 
information. It is important for the users of an expert 
finding system that the system operates on a large set of 
experts. More experts imply bigger topic coverage and 
increased probability of a question being answered. 
However, it simultaneously causes problems connected to 
the heterogeneity of information as well as low values of 
both precision and recall of the system. The application of 
semantics may help to normalize the gathered data and 
ensure an appropriate level of precision and recall, 
however, it generates problems with scalability and 
efficiency of the designed mechanisms that need to be 
addressed.  

When it comes to the ontology, the eXtraSpec system 
differs from other projects under a few aspects: 

• it is not limited only to hierarchical relations;  

• it has been developed for the Polish language and 
relates to Polish standards;  

• it has been built in accordance to the Simple 
Knowledge Organization System (SKOS) [37] 
standard. 

Applying semantics undoubtedly offers a way to 
handle the precision, recall, and helps to normalize data, 
however, the application of semantics impacts the 
performance as well as scalability of the system. 

Therefore, a design decision needed to be taken regarding 
the way the semantics should be applied in order to ensure 
the required quality of the system. In the next section, we 
present the considered querying strategies, developed 
ontology, reasoning scenarios and the underlying 
motivation. 

III. QUERYING STRATEGIES 

In order to identify the requirements towards the 
persons’ characteristics, scope of information needed to be 
covered by ontologies, as well as the querying and 
reasoning mechanism developed within the eXtraSpec 
system, first, exemplary searching strategies a user looking 
for experts may be interested in were considered. The 
strategies have been specified based on the conducted 
studies of the literature and interviews with employers 
conducting recruitment processes. The six most common 
searching goals are as follows: 

1. To find an expert with some experience at a 
position/role of interest. 

2. To find an expert having some specific language 
skills on a desired level. 

3. To find an expert having some desired 
competencies. 

4. To find students who graduated recently/will 
graduate soon in a given domain of interest.  

5. To find a person having expertise in a specific 
domain.  

6. To find a person with specific education 
background, competencies, fulfilled roles, etc. Although 
the enumerated goals (1-5) sometimes are used separately, 
usually though, they constitute building blocks of more 
complex scenarios within which they are freely combined 
using various logical operators.  

As already mentioned, the above querying goals 
imposed some requirements on the information on experts 
that should be available, and in consequence, also 
ontologies that needed to be developed for the project’s 
needs, as well as the reasoning and querying mechanism. 
Tables 1-3 summarize the requirements on the scope of 
information required to describe an expert, on querying 
and reasoning mechanism, as well as on the ontology 
itself.  

TABLE 1 QUERYING STRATEGIES AND RESULTING REQUIREMENTS ON 

THE SCOPE OF INFORMATION 

Scenario No. Requirements on the scope of information 

1. To find an expert 

with some 

experience on a 
position of interest. 

An expert description MUST include 

information on positions and jobs undertaken 

so far as well as their duration. 

2 To find an expert 

having some specific 
language skills on a 

desired level. 

An expert description MUST provide 

information on: known languages, obtained 
certificates and a level of language skills. 

3 To find an expert 

having some 
competencies. 

An expert description MUST include 

information on soft and tangible 
competencies of a person. 



513

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Scenario No. Requirements on the scope of information 

4 To find students 
who graduated 

recently or will 

graduate soon in a 
given domain. 

An expert description MUST include 
information on educational background of a 

person, especially: educational organization, 

date of graduation and educational result. 

5 To find a person 

having expertise in a 

specific domain. 

An expert description MUST include 

information on organizations a person 

worked for. 
Please note that the information on the 

domains the organizations operate in should 

be provided by ontology (see Table 3) 

6 To find a person 

with specific 

education, 
competencies, jobs, 
etc. 

Features of interests for this scenario include 

all previously mentioned. 

TABLE 2 QUERYING STRATEGIES AND RESULTING REQUIREMENTS ON 

REASONING AND QUERYING MECHANISM 

Scenario No. Requirements on reasoning and querying 

mechanism 

1. To find an expert 
with some 

experience on a 

position of interest. 

The querying and reasoning mechanism 
MUST be able to integrate experience 

history (e.g., add the length of duration from 

different places, but gained on the same or 
similar position) and then reason on a 

position's hierarchy (i.e., taking into account 
narrower or broader concepts). 

2 To find an expert 

having some specific 

language skills on a 
desired level. 

If the information is not explicitly given, the 

querying and reasoning mechanism 

SHOULD be able to associate different 
certificates with languages and proficiency 

levels. 

3 To find an expert 
having some 
competencies. 

The querying and reasoning mechanism 
SHOULD be able to operate not only on 
implicitly given competencies, but also 

reason on jobs and then on connected 
competencies. Thus, the querying and 

reasoning mechanism SHOULD tackle also 

other relations than is-a. 

4 To find students 
who graduated 

recently/will 

graduate in a given 
domain. 

The querying and reasoning mechanism 
MUST be able to reason on the hierarchy of 

educational organizations, on dates and 

results. 

5 To find a person 

having expertise in a 
specific domain. 

The querying and reasoning mechanism 

SHOULD be able to associate organizations 
with domains they operate in. 

6 To find a person 

with specific 
education, 
competencies, jobs, 

etc. 

The querying and reasoning mechanism 

MUST be able to combine results from 
various querying strategies using different 
logical operators. 

TABLE 3 QUERYING STRATEGIES AND RESULTING REQUIREMENTS ON 

ONTOLOGY 

Scenario No. Requirements on ontology 

1. To find an expert 
with some 

experience on a 

position of interest. 

The ontology MUST represent a is-a 
hierarchy of different positions and jobs 

allowing for their categorization and 

reasoning on their hierarchical relations. 

2 To find an expert 

having some specific 

language skills on a 
desired level. 

The ontology MUSTt represent languages 

certificates (is-a hierarchy) together with 

information on the language and the 
proficiency level, mapped to one scale. 

Scenario No. Requirements on ontology 

3 To find an expert 
having some 

competencies 

The ontology MUST represent skills and 
competencies and their hierarchical 

dependencies as well as some additional 

relations as appropriate. 

4 To find students 
who graduated 

recently/will 

graduate in a given 
domain 

The ontology MUST provide a hierarchy of 
educational organizations allowing for their 

categorization and reasoning on their 

hierarchical dependencies.  

5 To find a person 

having expertise in a 
specific domain 

The ontology SHOULD provide information 

on organizations allowing for their 
categorization (is-a relation) as well as 

provide information on the domains they 

operate in. 

6 To find a person 
with specific 

education, 

competencies, jobs, 
etc. 

Requirements on ontologies are the same as 
in scenarios 1-5. 

The next section presents the developed ontology 
meeting the above enumerated requirements.  

IV. ONTOLOGIES IN THE EXTRASPEC PROJECT 

A. Requirements 

The ontology developed for the system, as already 
mentioned in the previous section, needed to support the 
defined requirements resulting from the identified 
strategies. However, also some additional requirements, 
resulting from the already presented system flow, have 
been identified.  

The eXtraSpec system acquires automatically data 
from dedicated sources, both company external and 
internal ones. The extracted content is saved as an 
extracted profile (PE), which is an XML file compliant 
with the defined structure of an expert profile based on the 
European Curriculum Vitae Standard [38]. Therefore, it 
consists of a number of attributes, such as e.g., education 
level, position, skill, that are assigned to different profile's 
categories such as e.g., personal data, educational history, 
professional experience. Vocabulary in the extracted 
content is then processed and normalized using the 
developed ontology. The result of the normalization 
process is a normalized profile (PN). An important 
assumption is: one standardized profile describes one 
person, but one person may be described by a number of 
standardized profiles (e.g., information on a given person 
at different points of time or information acquired from 
different sources). Thus, normalized profiles are analysed 
and then aggregated, in order to create an aggregated 
profile (PA) of a person. Finally, the reasoning mechanism 
is fed with the created aggregated profiles and answers 
user queries on experts. Thus, the additional requirements 
the ontology should address are as follows: 

1. The ontology MUST enable semantic annotation of 
all elements of aggregated profile. 

2. The ontology MUST support the normalization 
process of extracted profiles.  

The creation of ontology for the needs of the 
eXtraSpec project was preceded by thorough analysis of 



514

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the requirements resulting from the scenarios supported by 
the system as well as those mentioned above. In addition, 
the consequences of applying various formalisms and data 
models for the ontology modelling, and its further 
application, were investigated. In consequence, three 
assumptions were formulated:  

• only few relations will be needed and thus, 
represented,  

• developed ontologies should be easy to translate 
into other formalisms,  

• the expressiveness of used ontology language is 
important, however, the efficiency of the reasoning 
mechanism is also crucial.  

B. Formalism 

As the result of the conducted analysis of different 
formalisms and data models, the decision was taken to 
apply the OWL language as the underlying formalism and 
the Simple Knowledge Organization System (SKOS) [37] 
model as a data model. The criteria that influenced our 
choice were as follows:  

• relatively easy translation into other formalisms; 

• simplicity of representation;  

• expressiveness of used ontology language;  

• efficiency of the reasoning mechanism.  
Many knowledge representations, such as thesauri, 

taxonomies and classifications, share some structure 
elements and are used in similar applications. SKOS 
gathers most of those similarities and explicitly enables 
data and technology exchange between different 
applications. The SKOS data model enables low cost 
migration that allows making a connection between 
existing SKOS and the Semantic Web. Ontologies 
developed in accordance to the SKOS model can be 
expressed in any known ontology language.  

Because of the strong software support and a wide 
usage of OWL, we decided to use that formalism within 
our work.  

C.  Model 

The basic element of the eXtraSpec system is an 
already mentioned profile of an expert. Each expert is 
described with series of information, for example: name 
and family name, history of education, career history, 
hobby, skills, and obtained certificates. For the needs of 
the project, a data structure to hold all that information was 
designed. To make the reasoning possible, a domain 
knowledge for each of those attributes is needed. The 
domain knowledge is represented by the ontology. Ten 
attributes from the profile of an expert were selected to be 
a ‘dictionary reference’, i.e., the attributes, whose values 
are references to instances from the ontology. Those 
attributes are:  

• educational organization – name of organization 
awarding a particular level of education or 
educational title; 

• certifying organization – name of an organization 
that issued the particular certificate; 

• client, employer and role – those three attributes are 
used to describe the history of employment. A 
single step in the employment history is described 
as a business relation. Each relation consists of 
three basic elements: client (i.e., an employer) and a 
role (i.e., profession) that an expert fulfilled in this 
relation;  

• scope of education – the domain of education (for 
example: IT, construction, transportation); 

• topic of education – for a higher education 
description, it will be a name of the specialization, 
for trainings or courses etc. – their topic; 

• result of education – the obtained title; 

• skill – an ability to perform an activity or job well, 
especially because someone has practiced it; 

• name of a certificate;  

• degree of a skill. 

Performed analysis of the requirements imposed on the 

ontology for the needs of reasoning, concluded with the 

definition of a set of relations that should be defined. 

They are as follows: 

• hasSuperiorLevel - representing hierarchical 
relations between concepts,  

• isEquivalent – representing the substitution 
between concetps,  

• isLocatedIn – representing various geographical 
dependencies, 

• isLocatedInCity – representing geographical 
dependencies, 

• isLocatedInVoivodeship – representing 
geographical dependencies, 

• provesSkillDegree – connecting skills and 
certificates, 

• worksInLineOfBusiness - representing 
dependencies between organizations and lines of 
business, 

• isPartOf – representing a composition of elements, 
for example: ability of using MSWord is a part of 
ability of using MSOffice (however, knowing 
MSWord does not imply that a person knows the 
entire MSOffice suit). 

Additionally, various built-in SKOS relations have 
been used, namely: 

• broader, 

• hasTopConcept, 

• inScheme, 

• narrower, 

• topConceptOf. 
The SKOS model, while providing simplicity and easy 

translation into many different formalisms, imposes some 
restrictions. The most important one is the lack of support 
for some features and facilities provided by the OWL 
language. An overall idea of an ontology stack apart of 
concepts and data properties, assumed definition of some 
object properties. The designed ontology needed to be 
coherent with the SKOS model specification, processable 
by the used SKOS API and still represent all above 



515

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mentioned areas and relations. To meet all those 
assumptions, the designed data structure is one SKOS 
ontology with eight concept schemas for each area of 
interest: Organizations (for organizational organizations, 
certifying organizations, Employer and Client), SkillName, 
SkillDegree, Certificate, Role, EducationScope, 
EducationTopic, EducationResult as well as 
complementary schemas for Cities and Voivodeship, 
Languages and Line of Business.   

In the process of profile normalization the values from 
the extracted profile are linked to the concepts from the 
ontology. It is possible that the normalization mechanism 
will not be able to find the extracted value within the 
ontology. In this case, we assume that the extracted value 
should not be discarded; instead, it should be added to the 
appropriate Concept Schema. Therefore, every Concept 
Schema has a top concept TMP. Possible candidates for 
new concepts are added as a subConceptOf TMP, and later 
can be resolved by an expert. In this way, we make it 
possible to extend the ontology with new concepts found 
in the Internet or other sources describing expert’s profiles.   

D. Sources of information 

While building the ontology for the needs of the 
eXtraSpec system, a wide range of taxonomies and 
classifications has been analyzed in order to indentify the 
best practices and solutions. As the eXtraSpec system is a 
solution designed for the Polish language, so is also the 
developed ontology. In order to develop particular Concept 
Schemas information from series of sources was 
incorporated. Table 4 shows the exemplary sources used to 
create the ontology structure as well as instances of 
numerous concepts.  

TABLE 4 SOURCES OF INFORMATION 

Concept schema Sources of information 

Organizations The branch with Educational 

Organizations currently includes all 
Polish academic organizations, according 

to the official list published by the Polish 

Ministry of Science and Higher Education 
[39]. Additionally, a branch with 

employer organizations has been prepared 

based on the publicly available Internet 
sources.   

Role As this concept schema includes the 

classification of legally named 
professions in Poland, the source in this 

case was the official Polish Classification 
of Occupations [40] published by the 
Polish Ministry of Labor and Social 

Policy. 

EducationScope The data to create this Concept Schema 

was obtained from a number of Polish 
online job portals. The list of topical areas 

of education was slightly different in 

every portal. The final list of concepts in 
EducationScope Concept Schema is a 

combination of all of them. 

Concept schema Sources of information 

EducationTopic Currently this concept schema includes a 
list of specializations that a student may 

graduate in at Polish Higher Education 

Organizations based on the official 
register published by the Polish Ministry 

of Science and Higher Education. 

EducationResult This concept schema includes scientific 

titles, occupational tittles and academic 
degrees that may be obtained in Poland 

based on the appropriate ordinances of the 

Polish Ministry of Science and Higher 
Education. 

CertificateName On-going analysis focuses on language 

certificates possible to be obtained by 
Polish citizens. 

SkillName This concept schema was based on series 

of skill classifications provided by Polish 

job portals, as well as international 
scientific publications from the area of 

human resources management and IT 

solutions for human resources 
management area. 

SkillDergee  On-going analysis focuses on solutions 

used in the mentioned job portals. 

City In this case the list of Polish cities was 
used. 

Language In this case a list of languages a good 
command of which can be proved by a 
certificate was utilised. 

LineOfBusiness In this case a list of lines of business that 

are used by job portals was prepared. 

Voivodeship In this case a list of Polish Voivodeships 
was used. 

V. QUERYING AND REASONING MECHANISM  

One of the most important functionalities of the 
eXtraSpec system is the identification of persons having 
the desired expertise. The application of the Semantic Web 
technologies in order to ensure the appropriate quality of 
returned results implies application of a reasoning 
mechanism to answer user queries.  

In order to support the querying and reasoning 
scenarios, the eXtraSpec system needs not only an 
appropriate representation of information supporting 
reasoning over person's characteristics (as described within 
the previous section), but also the querying and reasoning 
mechanism itself supporting on the one hand, precise 
identification of required data, and on the other hand, 
being efficient and scalable.  

A. Approaches to semantic-enabled reasoning  

Given the above criteria (precision and recall on the 
one hand, and efficiency and scalability on the other), 
three possible approaches were considered.  

The first approach involves using the fully-fledged 
semantics by expressing all expert profiles as instances of 
an ontology, formulating queries using the defined 
ontology, and then, executing a query using the reasoning 
mechanism. This approach involves the need to load all 
ontologies into the reasoning engine and representing all 
individual profiles as ontology instances. The performed 
experiments showed that querying the reasoning 
infrastructure, even while using only a small set of 



516

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

gathered profiles, is a resource (large memory 
consumption) and time consuming task (up to a few 
minutes). Therefore, although having a high precision and 
recall, it has poor performance and scalability.  

The second approach relies on the query expansion 
using an ontology, i.e., adding keywords to the query by 
using an ontology to narrow or broaden the meaning of the 
original query. It allows getting answers faster than the 
previous approach, however, it could not take into account 
additional relations expressed in the ontology, and 
therefore, did not always allow for an increased precision. 
In addition, each user query needs to be normalized and 
then expanded using the ontology, therefore, the 
application of a reasoner was necessary. The experiments 
showed that it affected the values of the system 
performance and scalability.  

The third approach called pre-reasoning involves two 
independent processes:  

• creation of enriched profiles (indexes), to which 
additional information reasoned from the ontology 
is added and saved within the repository as 
syntactic data;  

• formulating a query with the help of the appropriate 
GUI using the defined ontology serving as a 
controlled vocabulary. Then, the query is executed 
directly on a set of profiles using the traditional 
mechanisms of IR. There is no need to use the 
reasoning engine while executing a query.  

This approach allows circumventing the drawbacks 
associated with the first approach, shifting the burden of an 
operation on the stage of indexing using ontologies.  

Our experiments proved that applying the fully-fledged 
semantics is a precise, but neither efficient nor scalable 
solution. The query expansion provides an increased 
precision of the results (in comparison to the traditional IR 
mechanisms) and has better scalability and efficiency than 
the fully-fledged semantics, however, does not allow to 
take full advantage of the developed ontologies and 
existing relations between concepts. Only application of 
the third considered approach allows taking advantage of 
the mature IR mechanisms while increasing the accuracy 
and completeness of the returned results by: introducing a 
preliminary stage called pre-reasoning in order to create 
enriched indexes and the minimum use of the reasoning 
engine during the search.  

B. Querying and reasoning component – architecture 

The eXtraSpec system consists of a number of modules 
specialized for different tasks. Its architecture is described 
in [23], in this paper we focus on the REA component 
(REAsoning) presented in Figure 1.  

REA consists of an indexing mechanism (indexer), a 
searching mechanism (searcher), a composition 
mechanism (composer) and a reasoning engine with a set 
of ontologies loaded.  

The selected approach requires the support of two 
independent processes: 

• First, creating indexes of profiles - optimized for 
search, i.e., structured so as to enable a very fast 

search based on criteria pre-set by a user. The 
aggregated profile is analysed, divided into 
relevant sections, and then enriched with 
additional information using the ontology (pre-
reasoning). Any modification of the ontology 
forces the need to change indexes.   

• The second process that needs to be supported is 
defining the query matching mechanism on the 
enriched indexes - this process is initiated by the 
task of a user formulating queries using a 
graphical interface that is also discussed later 
within this section. An employer, constructing a 
query points to interesting criteria and values they 
should meet. In the background, the desired 
values of various features from the lists and 
combo boxes, point to specific elements from the 
ontology [48]. 

 

 
Figure 1. REA Overview 

 

C. Profile structure 

To realize the information retrieval side of the 
mechanism, the open-source java library Lucene [41], 
supported by the Apache Software Foundation, was 
selected. Instead of searching text documents directly, 
Lucene searches the previously prepared index. This 
speeds up the searching process and makes it more 
efficient. An index consists of at least one document. A 
document is a basic unit that is indexed and searchable, 
and represents text files, HTML code or database tables. A 
single document consists of fields. Each field has a unique 



517

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

name (used as a key) and a value. The result of the search 
process is a list of all relevant documents. 

Fields in the Lucene documents cannot be grouped 
together nor stored as hierarchical structures. However, 
within an aggregated profile (PA), which is a base profile 
for searching, some hierarchies and groups might be 
found. Since an explicit mapping from PA to the Lucene 
document is not possible, during the indexing process 
profiles are divided into a number of separate documents 
as also shown in Figure 2.  

 
 

 
Figure 2. Data model overview 

 
Each person is represented by exactly one Personal 

Data document and a number of corresponding documents 
that represent different groups of information. Each 
document contains an additional field with the profile ID 
that enables binding documents with the expert’s main 
profile. Thus, for each listed category from PA, the 
separate Lucene document is created, e.g.., for one 
obtained certificate, one document is created. The 
mentioned documents are as follows: 

• personal data (e.g., first name, last name, phone 
number, address), 

• history of education, 

• certificates, 

• skills, 

• publications, 

• mentions, 

• history of employment, 

• organisations, 

• hobby. 
Concurrently with the indexing process, pre-reasoning 

takes place, in order to enhance the profile with the 
implied facts. The documents contain fields generated 
directly from PA (marked with +) as well as additional 
fields (marked with #). Moreover, fields such as e.g., role, 

skillName, catOfEduOrganization contain not only the 
concept from PA but also a hierarchy of its super-concepts 
from the ontology. Super-concepts are indexed as 
additional values for the given document field: these 
values are saved as next array elements and it is assumed 
that the higher array index number, the smaller weight the 
concept has. The assigned weight affects the ranking 
procedure. 

As already mentioned, if the returned super-concepts 
do not correspond with the PA elements conceptually, 
additional fields are added to the document being indexed. 
For example, PA element ‘address’ might be divided into 
data that is more detailed, i.e., zip code, city, street, etc. 
Based on the zip code it is possible to specify the county 
and the province, and search for experts using the spatial 
criteria. Since PA does not contain such elements, we add 
fields to the personal data document during the indexing 
process.  

D. Query structure 

Lucene provides a very flexible but simple query 
structure. Therefore, in the eXtraSpec system it had to be 
extended in order to correspond to the defined 
requirements that result from the querying scenarios. They 
are as follows: 

1. The querying and reasoning mechanism MUST 
allow building queries in a structured way (i.e., feature: 
desired value). 

2.  The querying and reasoning mechanism MUST 
support definition of desired values of attributes in a way 
suitable to the type of data stored within the given feature 
(i.e., text fields using wild-cards, date fields - after of 
before certain dates; numbers - less than..). 

3.  The querying and reasoning mechanism MUST 
allow to join a subset of selected criteria within the same 
category into one complex requirement (e.g., category: 
education; {education level: university AND finished date: 
after 2010 year}) using different logical operators. 

4. The querying and reasoning mechanism MUST 
allow formulating a set of complex requirements within 
one category with different logical operators. 

5. The querying and reasoning mechanism MUST 
allow joining complex requirements formulated in various 
profile categories into one criteria with different logical 
operators. 

The logical operators between different sets of criteria 
and criteria themselves include such operators as: must, 
should, must not. 

In order to answer more sophisticated queries 
encompassing several criteria from various documents, 
users' queries are executed on the index using a set of 
QueryObjects for different categories. Those QueryObjects 
are in turn sets of QueryObjects within the given category, 
each consisting of a set of QueryObject’s structures 
consisting of a query string and a query operator. A query 
string is a Lucene compliant phrase that includes the field 
name and the relative value. A query operator is a logical 
operator: MUST, SHOULD, MUST_NOT, that defines 



518

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

whether the specified criteria should be included or 
excluded from the result set.  

The performed tests have shown that the defined query 
object fulfils the formulated requirements. 

The application of semantics in the form of a pre-
reasoning phase allowed achieving precise results, 
simultaneously allowing taking advantage of the matured 
IR mechanisms guaranteeing scalability and good 
performance of the system. Such a structure of the query 
together with the set of defined methods allow to address 
the scenarios defined above, however, makes formulating 
queries more complicated for users. Thus, a challenge of 
designing a user-friendly interface has appeared. The 
developed interface is shortly described in the next 
subsection. 

E. GUI 

The front-end to the eXtraSpec system should enable 
users to build complex queries describing characteristics of 
desired experts. During the analysis phase the main 
requirements for the system interface have been defined, 
namely [48]: 

1. The interface MUST enable a user to specify 
constraints on expert's attributes and select 
whether the value of an attribute is required, 
desired (but not required) or not allowed. 

2. The interface SHOULD enable grouping of 
constraints e.g., it should be possible to specify a 
graduated school and graduation date as one 
criterion. 

3. The interface SHOULD provide a possibility to 
build queries which include complementary and 
alternative constraints. 

4. The interface SHOULD enable providing some of 
criteria values typed-in as free text (with 
wildcards) and some of them to be selected from 
the eXtraSpec system knowledge base. 

5. The interface SHOULD be loosely coupled with 
the system. 

6. The interface SHOULD be understandable and 
easy to use. 

The conceptual model of the interface is determined by 
the scheme of querying the experts finding system and the 
structure of the aggregated profile. The search criteria are 
divided into the following categories: personal data, 
education, professional experience, foreign languages, 
courses, certificates, additional skills, organization 
membership and interests. 

 
Figure 3. The eXtraSpec GUI (1) 

 
Categories consist of groups of fields. Desired values 

of these fields are specified in the interface by criteria 
values, and field groups by criteria groups. Each criterion 
has a label and a value typed by the user, selected from list 
or from values tree loaded from the ontology. 

As a result eXtraSpec system front-end is a dynamic 
web user interface with cross-browser compatibility. 

 

 
Figure 4. The eXtraSpec system GUI (2) 

 
The developed interface has been successfully evaluated.  
See [48] for more details.  

VI. CONCLUSIONS  

The main goal of the eXtraSpec project is to develop a 
system supporting analysis of company documents and 
selected Internet sources for the needs of searching for 



519

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experts from a given field or with specific competencies. 
The provided system focuses on processing texts written in 
the Polish language. The obtained information is stored in 
the system in the form of experts’ profiles and may be 
consolidated when needed. The system aims to offer a user 
friendly interface to perform queries that allow to find 
persons with specific characteristics. Realisation of this 
goal requires interconnection between the developed 
interface and underlying ontologies. Within this paper, we 
have discussed the concept and considered scenarios 
regarding the implementation of the querying and 
reasoning mechanism for the needs of the eXtraSpec 
system. We argue that by introducing the pre-reasoning 
phase, the application of semantics may be used to achieve 
precise results when searching for experts and at the same 
time, ensure the proper performance and scalability.  

The set of developed ontologies discussed within this 
paper was designed specially for the Polish language, 
however, the main structure and model as well as defined 
relations may be reused also for other languages. The 
ontology in question is still under development, however, 
in the current state of affairs the reasoning about 
competencies in order to complete the expert profile with 
additional data on education, work experience is 
successfully performed by the REA component described 
within this paper. Our current work focuses on the 
implementation of the second scenario supported by the 
eXtraSpec system i.e., composition of teams of experts 
using the developed ontology. 

ACKNOWLEDGMENT 

The work published in this article was supported by the 
project titled: “Advanced data extraction methods for the 
needs of expert search” financed under the Innovative 
Economy Framework and partially supported by European 
Union in the European Regional Development Fund 
programme (contract no. UDA-POIG.01.03.01-30-150/08-
01). 

REFERENCES 

[1] Abramowicz, W., Bukowska, E., Kaczmarek, M., 
Starzecka, M. “Semantic-enabled Efficient and Scalable 
Retrieval of Experts”, Proceedings of Third International 
Conference on Information, Process, and Knowledge 
Management (eKNOW), 2011 

[2] van Rijsbergen, C. J.; “Information Retrieval and 
Information Reasoning”. Computer Science Today 
1995,pages 549-559  

[3] Yimam, D.; “Expert finding systems for organizations: 
Domain analysis and the demoir approach” in: ECSCW 
999 Workshop: Beyond KNowledge Management: 
Managing Expertise, pages 276–283, New York, NY, USA, 
1996. ACM Press 

[4] McDonald, D. W. and Ackerman, M. S.; “Expertise 
recommender: a flexible recommendation system and 
architecture” in: CSCW ’00: Proceedings of the 2000 ACM 
conference on Computer supported cooperative work, 
pages 231–240. ACM Press, 2000. 

[5] Yimam-Seid, D. and Kobsa, A. “Expert finding systems for 
organizations: Problem and domain analysis and the demoir 

approach”. Journal of Organizational Computing and 
Electronic Commerce, 13(1):1–24, 2003 

[6] Kautz, H., Selman, B., and Milewski, A.; “Agent amplified 
communication” in: Proceedings of the Thirteenth National 
Conference on Artificial Intelligence (AAAI-96), pages 3–
9, 1996 

[7] Campbell, C. S., Maglio, P. P.,  Cozzi, A., and Dom, B.; 
“Expertise identification using email communications” in: 
CIKM ’03: Proceedings of the twelfth international 
conference on Information and knowledge management, 
pages 528–531. ACM Press, 2003 

[8] Hawking, D.; “Challenges in enterprise search” in: 
Proceedings Fifteenth Australasian Database Conference, 
2004 

[9] Metze, F., Bauckhage, Ch., and Alpcan, T., “The "Spree" 
Expert Finding System“ in: Proceedings of the First IEEE 
International Conference on Semantic Computing (ICSC 
2007), September 17-19, 2007, Irvine, California, USA 

[10] Ackerman, M.S., Wulf, V. and Pipek, V.; “Sharing 
Expertise: Beyond Knowledge Man-agement”; MIT press, 
(2002). 

[11] Krulwich, B. and Burkey, C.; “ContactFinder agent: 
answering bulletin board questions with referrals” in: 
Proceedings of the National Conference on Artificial 
Intelligence, pages 10-15, 1996 

[12] Balog, K., Azzopardi L. and De. Rijke, M.; “Formal 
models for expert finding in enterprise corpora” in: 
Proceedings of the ACM SIGIR, pages. 43-50, 2006. 

[13] Fang, H. and Zhai, C.; “Probabilistic models for expert 
finding” in: Proceedingsof the ECIR, pages 418-430, 2007 

[14] Petkova, D. and Croft, W.; “Hierarchical language models 
for expert finding in enterprise corpora” in: Proceedings of 
the 18th IEEE International Conference on Tools with 
Artificial Intel-ligence, pages 599-608, 2006 

[15] Serdyukov, P. and Hiemstra, D.; “Modeling documents as 
mixtures of persons for expert finding” in: Proceedings of 
the ECIR, pages 309-320, 2008. 

[16] Gómez-Pérez, A., Ramírez, J., and Villazón-Terrazas, B., 
“An Ontology for Modelling Human Resources 
Management Based on Standards”  in: B. Apolloni et al. 
(Eds.): KES 2007/WIRN 2007, Part I, LNAI 4692, pp. 
534–541, 2007 

[17] Dorn, J., Naz, T., and Pichlmair, M., “Ontology 
Development for Human Resource Management” in: 
"Proceedings of 4rd International Conference on 
Knowledge Management", Ch. Stary, F. Barachini, and S. 
Hawamdeh (Hrg.); Series on Information&Knowledge 
Management, 6 (2007), ISBN: 978-981-277-058-5; S. 109 - 
120. 

[18] Dorn, J. and Naz, T.; “Meta-search in Human Resource 
Development”, in: Proceedings of 4th Int. Conference on 
Knowledge Systems, Bangkok, Thailand, 2007 

[19] Dorn, J. and Pichlmair, M.; “A Competence Management 
System for Universities”, in: European Conference on 
Information Systems, St. Gallen, 2007 

[20] Aleman-Meza, B., Bojars, U., Boley, H., Breslin, J.G., 
Mochol, M., Nixon, L.JB., Polleres, A., and Zhdanova, 
A.V.,  “Combining RDF Vocabularies for Expert Finding” 

[21] Dittmann, L.;“Towards Ontology-based Skill Management, 
Projektbericht zum Verbundprojekt KOWIEN”, Universität 
Duisburg-Essen, 2003. 

[22] Abramowicz, W.,  Wieloch, K.; “Raport podsumowujący 
wyniki prac przeprowadzonych w ramach zadań Z1.1, Z1.2 
oraz Z2.1”, Technical report of the eXtraSpec project, 
Department of Information Systems, Poznan University of 
Economics, 2009 



520

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] Abramowicz, W., Kaczmarek, T., Stolarski, P., Węcel, K., 
and Wieloch, K.; “Architektura systemu wyszukiwania 
ekspertów eXtraSpec”, in: Proceedings of “Technologie 
Wiedzy w Zarządzaniu Publicznym”, Hucisko, 19-21 
September 2010 

[24] http://extraspec.kie.ue.poznan.pl/, last access date: 
20.01.2012 

[25] http://www.bizwiz.com, last access date: 20.01.2012 

[26] http://www.xing.com, last access date: 20.01.2012 

[27] http://linkedin.com. last access date: 20.01.2012 

[28] http://www.iso.org/iso/en/prods-
services/popstds/currencycodeslist.html, last access date: 
20.01.2012 

[29] http://ec.europa.eu/eurostat/ramon/index.cfm?TargetUrl=D
SP_PUB_WELC, last access date: 20.01.2012 

[30] http://online.onetcenter.org/, last access date: 20.01.2012 

[31] http://cs.yale.edu/homes/dvm/daml/time-page.html, last 
access date: 20.01.2012 

[32] http://www.foaf-project.org/, last access date: 20.01.2012 

[33] http://sioc-project.org/, last access date: 20.01.2012 

[34] http://www.imc.org/pdi/, last access date: 20.01.2012 

[35] http://dublincore.org/, last access date: 20.01.2012 

[36] http://www.bls.gov/soc, last access date: 20.01.2012 

[37] http://www.w3.org/TR/swbp-skos-core-spec, last access 
date: 20.01.2012 

[38] http://www.europa-pages.com/jobs/europass.html, last 
access date: 20.01.2012 

[39] http://www.nauka.gov.pl/szkolnictwo-wyzsze/system-
szkolnictwa-wyzszego/uczelnie/, last access date: 
20.01.2012 

[40] http://www.praca.gov.pl/pages/klasyfikacja_zawodow2.php
, last access date: 20.01.2012 

[41] http://lucene.apache.org, last access date: 20.01.2012 

[42] Berners-Lee, T., Hendler, J. & Lassila, O., “The semantic 
web”, Scientific American, May, 2001, pages 35-43. 

[43] Shadbolt, N.; Berners-Lee, T.; Hall, W., “The Semantic 
Web Revisited”, IEEE Intelligent Systems Journal, Vol. 21, 
no. 3, 2006 page. 96-101. 

[44] Navigli, R., Velardi, P. “An Analysis of Ontology-based 
Query Expansion Strategies”, Proceedings of Workshop on 
Adaptive Text Extraction and Mining at the 14th European 
Conference on Machine Learning, Cavtat-Dubrovnik, 
Croatia, 2003, pp. 42–49 

[45] Michalski, R., Palus, S., Kazienko, P., “Matching 
Organizational Structure and Social Network Extracted 
from Email Communication”, Lecture Notes in Business 
Information Processing, 2011, Volume 87, Part 6, Part 6, 
197-206 

[46] http://www.w3.org/RDF/, last access date: 20.01.2012 

[47] http://www.w3.org/TR/2004/REC-owl-features-20040210/, 
last access date: 20.01.2012 

[48] Abramowicz, W., Bukowska. E., Dzikowski, J., 
Filipowska, A., Kaczmarek, M., “Web Interface for 
Semantically Enabled Experts Finding System”, in: ICEIS 
2011, Proceedings of the 13th International Conference on 
Enterprise Information Systems , Beijing, SciTePress – 
Science and Technology Publications, 2011. pp. 291-296, 
ISBN 978-989-8425-56-0 

[49] Distribution, G., & Lundvall, B. A. “The Knoweldge-based 
Economy”, Development (96), 115.,OECD, 1996. 
http://www.oecd.org/dataoecd/51/8/1913021.pdf, last 
access date:20.01.2012.  

[50] Chasins, Jeff. “Social media, recruiting, and job boards: 
which way are we going?” ere.net. 14 Sept. 2010. Ere 

Media, Inc. 22 December 2010, 
http://community.ere.net/blogs/job-board-
doctor/2010/09/social-media-recruiting-and-job-boards-
whichway-are-we-going, last access date: 20.01.2012 



521

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Block Matching Motion Estimation with Variable Search Window Size 
Ionuţ Pirnog and Claudia Cristina Oprea 

Telecommunications Department 
“Politehnica” University of Bucharest 

313, Splaiul Independentei, Sector 6, 060042 
Bucharest, Romania  

ionut@comm.pub.ro, cristina@comm.pub.ro 
 
 

Abstract— Block matching algorithms for motion estimation 
were developed in order to obtain reasonable motion 
estimation efficiency with minimum computational cost. 
Although the gain in the computational complexity is 
significant these algorithms have less precision in estimation 
than the basic block matching motion estimation algorithm, 
i.e., the Full Search algorithm. The proposed motion estimation 
method can be used with any of the existing block matching 
algorithms and brings an increase of estimation precision with 
small increase of the global computational cost. This 
improvement is achieved by choosing the search window size 
depending of the ration between the frame size and the motion 
area size. 

Keywords – motion estimation, block matching, variable 
search window 

I.  INTRODUCTION 

Motion information is very useful in the video 
compression process [2] since the development of video 
content retrieval applications [3]. In the video compression 
systems, the motion vectors are used for the representation of 
a video frame based on the previous frames. In the content 
retrieval systems, the video content can be found based on 
the video motion properties expressed by motion descriptors 
[4]. The extraction of motion vectors from a video frame 
based on the previous frame is known as motion estimation. 
There are many motion estimation methods, e.g., parametric 
methods, stochastic methods. The simplest and most used 
motion estimation method is the one based on block 
matching. The block matching algorithms split the current 
video frame into blocks and for each block a motion vector is 
extracted by finding the best matching block in the previous 
frame. The best matching block is found using a cost 
function that measures the similarity between two blocks. 
Since the best block is usually in the vicinity of the position 
of the current block, but in the previous frame, the search for 
the best matching block is not performed in the entire frame 
but in an area called the search window. The dimension of 
the search window defines the computational cost of the 
algorithm but also the precision of the estimation. The best 
block matching algorithms use a fixed dimension for the 
search window and show good results [5].  

In this paper we present i) a group of fast block matching 
algorithms for motion estimation, ii) the importance of the 
search windows size in the precision of the estimation, iii) 
the algorithms that show increase in precision, and iv) a 
method for selecting the search windows dimensions in order 

to obtain the best estimation precision without an increase of 
computational cost. The fast block matching algorithms gain 
a significant decrease of the computational cost by selecting 
only a small set of blocks in the search windows. The current 
block, or the reference block, is compared only to these 
blocks and the best matching block is selected from this set. 
This means less comparisons, so small computational cost, 
but also the possibility that the best block is not found 
between the block in the search set. The main difference 
between the existing block matching algorithms is the search 
pattern, i.e., the method for selecting the blocks in the search 
set. We can classify these algorithms into two categories: 
fixed number of steps and variable number of steps. The 
ones in the first category have fixed number of steps and the 
estimation precision does not depend on the search window 
dimensions. The ones in the second category usually start 
with a search step, i.e., half the search window parameter, so 
the precision of the estimation depends on the search 
window size. The method proposed in this paper uses a 
variable size search window in order to obtain better motion 
estimation with no increase in the overall computational cost. 
The selection of the search window size is done in relation to 
the ratio between the frame size and the motion area size. 

The rest of the paper is organized as follows. In Section 
II, we briefly describe the block matching motion estimation 
method; then, we present four of the best fast block 
algorithms, one with fixed number of steps and three with 
variable number of steps. In Section III, we present the 
proposed search windows’ dimensions selection method. The 
comparative experimental results of the presented algorithms 
for different window sizes are shown in Section IV. Finally, 
the conclusions are provided in Section V. 

II. BLOCK MATCHING MOTION ESTIMATION 

Motion information is the most significant information of 
videos. A video can be regarded as a group of successive 
frames or images that together convey a specific message. 
Therefore, extracting features of videos can be accomplished 
using existing methods for extracting image features. There 
is a very important feature of the video that does not exist for 
images, namely the motion. 

The concept of motion refers to the variation in time of 
the spatial position and applies to existing objects or the 
entire frame, in the case of camera motion. In the first case 
the background is not changing position and only the objects 
in the video have a variation of position over time. In the 
second case the whole frame changes over time due to the 
camera motion.  



522

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 
Figure 1.  Schematic representation of block matching motion estimation. 

There is also the case in which there is both camera 
motion and moving objects. Extracting video motion 
information is called motion estimation. This operation is 
done by comparing two by two successive video frames 
using different methods. 

Motion estimation is used in the processes of video 
compression/decompression. In the compression phase the 
motion is estimated by comparing the current frame with the 
previous frame. Then, using the motion information and the 
previous frame, a motion compensated image of the current 
frame is build and the difference between the current frame 
and the motion compensated frame is computed. Also, 
instead of compressing the current frame, the motion 
information and the error frame is compressed. In this way 
higher rates of compression are achieved. 

There are two classes of motion estimation methods: 
• Motion flow estimation: for each pixel of the frame a 

motion vector is determined. The advantages of the 
methods in this class are high accuracy and high 
resolution of estimation. The main disadvantage is 
the computational complexity. 

• Motion estimation based on blocks of pixels, known 
as block matching motion estimation. The basic idea 
of block matching algorithms is dividing the current 
frame is a matrix of non-overlapping macro blocks 
and determining motion vectors for each block of 
video frame (Figure 1). 

The main advantage of the methods of the second class is 
that the size of pixel blocks can be chosen depending on the 
particular application. So for applications requiring high 
precision of motion vector estimation the size of the pixel 
blocks can be smaller and the computational complexity will 
increase, while for applications where speed is more 
important than the accuracy the blocks of pixels can be 
larger. If the size of the blocks is chosen 1x1 we obtain the 
motion flow estimation. 

After the splitting of the frame into pixel blocks the 
motion of each block is estimated as follows: the block in the 
current frame is compared to all overlapping blocks in the 
search window. The search window is an area in the previous 
frame obtained by selecting the corresponding block, the 
block with the same spatial position as the current block, and 
adding   pixels in each direction. The parameter is called the 
search window parameter. Its value determines the 
estimation precision and the computational complexity. 
Higher value implies higher chances of correct estimation 
and high number of blocks in the search window.  

Determining the best block is made based on a cost 
function. For each block in the current frame a set of cost 
function values is determined by comparing it to all 
overlapping block in the search window. The block with the 
minimum cost is the best matching block. The most used 
cost functions are the Mean Absolute Difference (MAD) and 
the Mean Squared Error (MSE) given by (1) and (2), 
respectively: 

 

 
1 1

2
0 0

1 N N

ij ij
i j

MAD C P
N

− −

= =

= −∑∑ , (1) 

 ( )
21 1

2
0 0

1 N N

ij ij
i j

MSE C P
N

− −

= =
= −∑∑ , (2) 

where N  is the block size, ijC  are the pixels values of the 

block in the current frame, and ijP  are the pixels values of 

the block in the previous frame. 
 



523

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 2.  Example of blocks selected at every step for the New Three Step Search algorithm. 

After the best matching block is determined the motion 
vector is computed as the difference between the spatial 
position of the current block and the spatial position of the 
best block. The resulting motion vector has two components 
for each direction, horizontal and vertical. 

Based on the motion vectors of all blocks from the 
current frame and blocks in the previous frame the motion 
compensated frame is computed. The estimation precision or 
accuracy is determined using the Peak Signal to Noise Ratio 
(PSNR) between the current frame and the motion 
compensated frame, i.e., 

 
2

10lg
Vpp

PSNR
MSE

 
=  

 
, (3) 

where Vpp  is the peak to peak value of the original data and 
MSE  is the mean square error between the original data and 
the motion compensated data. 

A. Full Search Algorithm 

The first block matching motion estimation algorithm is 
called the Full Search (FS) algorithm, where all the 
overlapping blocks in the search window are used for 
determining the best matching block. Although this 
algorithm is the best in terms of prediction quality and 
simplicity, it is also the most inefficient in terms of 
arithmetic complexity. To assess the computational 
complexity of the FS algorithm we needed to determine the 
number of blocks in the search window compared with each 
reference block. For example, for 16x16 blocks and a search 
parameter we have 225 blocks in the search window. 

To reduce the computational complexity new algorithms 
were developed with a higher quality complexity ratio. These 
algorithms are called suboptimal because they offer lower 
prediction quality than the algorithm above and are also 
called fast algorithms because they have lower 
computational complexity. These algorithms use only a set 
of blocks from the search window to determine the best 
matching block. 

There are two classes of fast algorithms: 
• Search Window Independent algorithms; 
• Search Window Dependent algorithms. 
 

B. Search Window Independent Algorithms 

In order to properly classify the fast block matching 
algorithms it is important to explain the way these algorithms 
function and to identify the parameters that determine the 
affiliation of a certain algorithm to one of the classes defined 
earlier. 

All of the fast block matching algorithms have an initial 
step in which a block from the current frame is compared to 
the correspondent block in the previous frame and a number 
of blocks at a distance S  from the correspondent block. The 
number of blocks and their position is chosen different for 
every algorithm. The distance is defined in terms of number 
of pixels. 

The algorithms in the first class start with an initial 
distance 4S =  and after one step the distance is halved. The 
algorithms stop when the distance reaches 1. 

For this category of algorithms the size of the search 
window is 7 pixels in each direction, meaning that if we have 
block of dimension N N×  then the size of the search 
window will be ( ) ( )7 7N N+ × + . We recall that the search 

window parameter is denoted with p . The value 7p =  is 
chosen so that the algorithms go through all their steps 
without reaching a block outside the search window limits. 

The window independent algorithms have two important 
properties: 

• The maximum number of verified blocks is known. 
• The precision of estimation is independent of the 

search window dimensions, so that if the motion has 
a high amplitude the increase of the search window 
dimensions will have no effect on the estimation. 

The most efficient fast block matching algorithm in this 
category is the New Three Step Search (NTSS) algorithm. It 
has good precision of estimation and low computational 
complexity. It does not fall into the category of interest for 
the proposed method but for comparison reasons we present 
it in the following. 

C. New Three Step Search Algorithm 

The NTSS algorithm compares the block in the current 
frame to the center block, eight blocks at distance 4S =  and 
eight blocks at a distance 1S =  on the horizontal and vertical 
axes, in the previous frame [6].  



524

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 3.  Example of blocks selected at every step for the Two Dimensional Logarithmic Search algorithm. 

The best block from these initial 17 blocks is determined 
based on the cost function values. Depending on the 
positions of the best block we have three situations: 

1) If the best block is the one in the centre of the search 
window, then the algorithm stops. 

2) If the best block is one of the blocks located at a 
distance 1S =  , then its neighbors are compared with the 
current block and the best block is determined as the block 
with the minimum cost function value. 

3) If the best block is one of the blocks located at a 
distance 4S = , then the block is set as the new center, the 
distance is halved and all eight blocks at distance S  are 
verified. The algorithm stops when the distance is one. 

To decrease the number of blocks compared and to 
eliminate the re-evaluation of some blocks, the neighbors 
selected in the second case (when the best block is one of 
the blocks located at distance 1S = ) depend on the position 
of the best block as shown in Figure 2. 

D. Search Window Dependent Algorithms 

As compared to the algorithms in the first class the 
algorithm in this class start with an initial search distance   
equal to half the search window parameter p . The selection 
of the blocks that are used for computing the cost values 
depends on the algorithm.  

It is obvious that compared to the first class the 
algorithms in the second class have a maximum number of 
verified blocks that depends on the search window 
dimensions. Also, if the search window size increases the 
precision of estimation will increase in the case with high 
amplitude motion. 

In the following, we present the most important 
algorithms in this class. 

E. Two Dimensional Logarithmic Search Algorithm 

Two Dimensional Logarithmic Search (TDLS) algorithm 
selects at every step the center block and four blocks at a 
distance S  on the horizontal and vertical axes. The initial 
distance is chosen as half the search window parameter 

7p = . If the search parameter is an odd number then S  is 

chosen as the rounded value of 2p . 
After the selection of the initial distance, the block from 

the current frame is compared to the center block, i.e., the 
corresponding block in the previous frame, and the four 
blocks at distance S  on the horizontal and vertical axes. The 
comparison is done by computing the cost functions. The 
block that gives the lowest cost function is selected for the 
next step. 

If the block selected at the first step is the center block 
then the search distance S  is halved, else the selected block 
is set as the new center and the first step is repeated. 

When the search distance becomes equal to one the 
center block and all its neighbors are compared to the block 
in the current frame and the best matching block is selected 
as the block with the minimum cost function value.  

F. Orthogonal Search Algorithm 

The Orthogonal Search (OS) algorithm is a combination 
of the TDLS algorithm and the Three Step Search (TSS) 
algorithm. The TSS algorithm is the first fast block matching 
algorithm and is independent of the search window 
dimensions, so it belongs to the first class of algorithms. The 
similarity between OS and TSS algorithms is the number of 
steps. 

The initial search distance is chosen as half the search 
window parameter. The OS algorithm has the following 3 
steps:  

1) The block from the current frame is compared to the 
center block and the two blocks at distance S  on the 
horizontal axis. The block with the minimum cost function 
value is set as the new center. 

2) The center block and the two blocks at distance S  on 
the vertical axis are verified, and the new center is selected 
as the block with the lowes cost. 

3) If the distance parameter S  is bigger than one then 
the distance is halved and steps 1 and 2 are repeated. Else, 
the last center block is the best matching block. 



525

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G. Adaptive Rood Pattern Search Algorithm 

The Adaptive Rood Pattern Search (ARPS) algorithm 
uses the motion information of the neighboring block in the 
left. This is helpful if the current block and its neighbor on 
the left belong to the same object in the frame; in this case, 
their motion is similar [7]. The steps of the ARPS algorithm 
are: 

1) The block from the current frame is compared to the 
center block, four blocks at distance S  on the horizontal 
and vertical axes, and the block indicated by the motion 
vector of the neighbor block in the left. The initial search 
distance S  is selected as the maximum between the 
absolute values of the neighboring motion vector. 

2) The block with the minimum cost function value is 
set as the new center. The search distance is set to 1 and the 
centre block together with its four axis neighbors are 
evaluated. 

3) If the block with the minimum cost is in the centre, 
then the algorithm stops; consequently, this is the best 
block. Else, step 2 is repeated. 

III.  PROPOSED SEARCH WINDOW SELECTION 

The proposed method is based on the simulation results 
that showed, as the theory stated, that by increasing the size 
of the search window the precision of estimation increases. 
The increase of the search window dimensions has an 
unwanted effect, i.e., an increase of the number of verified 
blocks.  

To highlight these observations we present in Table I the 
PSNR between the current frame and the motion 
compensated frame for all, of the above presented, fast block 
matching algorithms. Also, in Table II we present the total 
number of blocks verified. The simulations were done for 
different search window dimensions, 8x8 pixel blocks and 
the computer generated video sequence “Motion.” 

From Table I it can be observed that for the search 
window dependent algorithms the estimation precision 
increases with the increase of the search window. 

In Table II it can be seen that along with the increase of 
the PSNR there is also on increase of the number of verified 
blocks. 

Based on the results presented in both tables we make 
two observations: 

1) First of all, for the search window dependent 
algoritms the estimation precision parameter for larger 
search windows exceeds both the FS algoritm and the 
NTSS.  

2) Second, although for all the search window 
dependent algoritms the number of verified blocks 
increases, the computational complexity remains 
significantly smaller than for the FS algoritms, and in some 
cases, like ARPS, even smaller than for the NTSS 
algorithm. 

 
 
 

TABLE I.  PSNR VALUES FOR DIFFERENT WINDOW SIZES  

Search Window Parameter 
Algorithm  

p=7 p=15 p=31 p=63 

 
FS 

 
30.78 

 
- 

 
- 

 
- 

 
NTSS 

 
30.49 

 
30.49 

 
30.49 

 
30.49 

 
TDLS 

 
29.3 

 
32.49 

 
33.8 

 
34.69 

 
OS 

 
28.88 

 
31.54 

 
32.18 

 
33.45 

 
ARPS 

 
29.47 

 
31.8 

 
32.73 

 
33.21 

 

TABLE II.  OVEROALL NUMBER  OF VERIFIED BLOCKS FOR 
DIFFERENT WINDOW SIZES  

Search Window Parameter 
Algorithm  

p=7 p=15 p=31 p=63 

 
FS 

 
921600 

 
- 

 
- 

 
- 

 
NTSS 

 
79898 

 
79898 

 
79898 

 
79898 

 
TDLS 

 
74349 

 
93676 

 
111607 

 
128330 

 
OS 

 
53248 

 
69632 

 
85988 

 
102300 

 
ARPS 

 
28548 

 
30038 

 
30462 

 
30642 

 
There is also one disadvantage in increasing the search 

window. For sequences with low motion amplitude there is 
small or even zero increase in the estimation precision but 
the increase of the number of verified blocks remains. So the 
primary concern is determining a way of obtaining the best 
estimation precision with the lowest computational cost. 

The goal of proposed method is the optimum search 
window size selection. This is done in three simple steps: 

1) Motion area detection.  
2) Search window parameter computation. 
3) Motion estimation. 
The detection of the area where motion exists is done by 

simple difference between the current frame and the previous 
frame and two morphological operations to eliminate the 
misdetection of motion due to variations of pixel intensity. 

The search window parameter is computed based on the 
ratio between the entire frame and the motion area, as: 

 12 1rp += − , (4) 

 x y

x y

A A
r

F F

 ×
=  

×  
, (5) 

where [ ]⋅  is the round operator, xA  and yA  are the motion 

area dimension, xF  and yF  are the frame dimensions, and 

p  is the search window parameter. The parameter p  is 



526

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

chosen as a power of 2, minus one, so that when computing 
the search parameter S  (as half the search window 
dimension) it will be also a power of 2. 

By selecting the search window size this way we obtain 
the best PSNR with the lowest computational complexity. 
This means that if the ratio r  is high the PSNR will be 
higher without increasing to much the computational 
complexity. If the ratio is close to one the window size will 
be low, with 7p = , the usual value for the window size 
independent fast block matching algorithms. 

Also by applying the motion estimation algorithms only 
to the area where motion exists there will be a significant 
decrease of the computational complexity with small loss of 
estimation precision. 

IV. SIMULATION RESULTS 

In this section we present the comparative results of the 
presented fast block matching algorithms for fixed search 
window size and variable search window size selected with 
the proposed method. 

The fast block matching algorithms presented in section 
II were implemented using Matlab and we used a set of 
video sequences containing monochrome videos and color 
videos of different sizes, some of the videos artificially 
generated and some from the real life. All the videos were 
obtained from test sequences databases commonly used for 
motion estimation. 

We present the results for the test sequence “Motion:” a 
computer generated monochrome sequence with 10 frames, 
512x512 pixels and high amplitude motion.  

In concordance with step 3 of the proposed search 
window selection method presented in Section III, in this 
section the comparative results are split into two distinct 
scenarios: one to compare the results for the estimation when 
the improved method is applied to the entire frame, i.e., 
Variable Search Window – Full Frame (VSW-FF), and one 
to compare the results for the estimation when the improved 
method is applied only to the area where motion is detected, 
i.e., Variable Search Window – Motion Area (VSW-MA). 
The results for the two scenarios are compared to the results 
of the original segmentation method with fixed search 
window dimensions, i.e., Fixed Search Window (FSW). 

For the first scenario, after the detection of the area with 
motion and the selection of the search window dimension, 
the algorithms are applied only to the area where motion is 
present. In this case, if the ratio between the entire frame and 
the area with motion is one then the PSNR will be slightly 
smaller than the one obtained with the initial motion 
estimation method but the overall number of blocks verified 
decreases. If the search window is bigger then the PSNR 
increases if the motion has high amplitude and or decreases 
if the motion has low amplitude. The decrease of the PSNR 
is due to the small intensity differences of the pixels from the 
areas of the frame where the algorithms are not applied. 

Also, along with the decrease of the PSNR we obtain a 
decrease of the overall number of blocks verified. For this 
reason it is important to see the comparative result of the 
PSNR and Nb ratio. 

For the second scenario the modified motion estimation 
method uses the selection of the search window dimension 
by detecting the area where motion is present. If the ratio 
between the entire frame and the area with motion is high 
then the search window size is bigger, according to equation 
(4). In this case, the precision of estimation will increase and 
also the overall number of verified blocks will increase. 

To compare the results we present the PSNR between the 
current frame and the motion compensated frame of the 
initial motion estimation method using the FS, NTSS, TDLS, 
OS, and ARPS block matching algorithms, and of the 
proposed estimation method with variable search window 
size. We also present the overall number of blocks verified 
all the algorithms in the two situations.  

For the first scenario, VSW-MA, and the computer 
generated sequence “Motion” we observe the following: 

• First of all, as expected the NTSS algorithm results 
are independent of the search window size so the 
PSNR between the current frame and the motion 
compensated frame decreases for the proposed 
method. This happens because the algorithm is 
applied only to the motion area and due to small 
changes in the frames that are not determined by 
motion. The overall number of blocks verified 
decreases for the same reason above. 

• For the other three algorithms if we compare the 
results presented in Figure 4, for the fixed size 
search window and for the variable size search 
window and motion area, we observe that there are 
two situations depending of the existence of camera 
motion or the occlusion of objects. 

• In the first case, for frames 2-7 and 9, there is no 
camera motion and no occlusion. We see from 
Figure 4a-c that the PSNR between the current frame 
and the motion compensated frame obtained from 
the previous frame and the motion vectors increases 
for all of the search window dependent algorithms, 
TDLS, OS, and ARPS. 

• From Figure 4d we observe that the highest increase 
in PSNR is obtained for the TDLS algorithm and 
that the precision of estimation for TDLS and ARPS 
exceeds the results of the FS algorithm. For the OS 
algorithm, although there is an increase of the 
PSNR, for some frames the precision of the motion 
estimation is lower that the one of the FS algorithm. 
In terms of PSNR between the current frame and the 
motion compensated frame we can conclude that the 
best results are obtained by the TDLS algorithm. 

• Regarding the computational complexity, evaluated 
through the overall number of blocks verified, we 
observe from Figure 5a that for frames 1-7 and 9 
there is a decrease in computational complexity 
because all the algorithms are applied only to the 
area where the motion is detected. For a better 
observation of the results regarding the 
computational complexity we have not represented 
the results for the FS algorithm, results that are 
constant for all the frames and are equal to 510 . 



527

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• In Figure 5b is represented the computational 
complexity for the three search window dependent 
algorithms. We can observe that the TDLS 
algorithm, that has the highest PSNR, has also the 
highest number of verified blocks. The OS and 
ARPS algorithms have lower computational 
complexity. In terms of the overall number of 
verified blocks we can conclude that both OS and 
ARPS algorithms have good results. 

• So in the first discussed case, for the frames without 
camera motion, we can conclude that all of the three 
algorithms show good results with increase of the 
PSNR and a decrease of the overall number of 
verified blocks and that the windows parameter 
selection method has good results. 

• In the second case, for frame 1, the existence of 
occlusion leads to smaller PSNR even if the search 
window increases. For frame 8 the existence of 
camera motion leads to the detection of a motion 
area almost equal to the entire frame. In this case the 
ratio between the motion area and the entire frame is 
close to 1 and the search window parameter is set to 

7p = . In this case there is no increase in the PSNR 
for none of the algorithms and a small decrease in 
computational complexity due to the fact that the 
detected motion area is smaller than the entire frame. 

• In this case the TDLS and ARPS algorithms have 
similar results in terms of PSNR but the ARPS 
algorithm has lower computational complexity. 

As a conclusion for this scenario of the proposed motion 
estimation method we can state that:  

• The computational complexity, evaluated through 
the overall number of blocks verified, decreases. 

• The estimation precision, evaluated through the 
PSNR, increases in case of large amplitude motion 
or decreases slightly in case of small amplitude 
motion. 

In the second scenario, i.e., VSW-FF, the results are 
presented in Figures 6 and 7. Based on these results we make 
the following observations: 

• The NTSS algorithm has the same results for the 
proposed method as the initial method both in terms 
of PSNR and number of blocks verified. This was 
expected because the NTSS algorithm is 
independent of the search window.  

• All of the three search window dependent algorithms 
show an increase in PSNR, Figure 6a-c, and also an 
increase in the overall number of verified blocks, 
Figure 7a. From the same figures we observe that for 
the proposed method in the case of the TDLS and 
ARPS algorithms the PSNR is higher than the PSNR 
for the FS algorithm. Also, even if the number of 
verified blocks increases is significant smaller that 
the number of verified blocks for the FS algorithm. 

• From Figure 6d we observe that in terms of PSNR 
between the current frame and the motion 
compensated frame the algorithm with the best 

results is the TDLS algorithm, followed by ARPS 
and OS.  

• From Figure 7b it can be seen that in terms of the 
overall number of verified blocks the ARPS 
algorithm has the best results, followed by OS and 
TDLS.  

In conclusion, for the variable search window parameter 
method applied to the entire frame, the results show that all 
of the algorithms have an increase of PSNR, when there is 
no camera motion and the motion area is at least two times 
smaller than the entire frame. If there is camera motion then 
the value for the search window parameter will be equal to 
the value for the original method and the results the same. 

For applications that require high precision of estimation 
and no constraints in computational complexity the proposed 
method can be applied to the entire frame. For applications 
that require low computational complexity the method can 
be applied only to the area where motion is detected with 
little loss or significant gain in PSNR. 

In Tables III and IV, we represented the mean value of 
the PSNR and the total number of verified blocks, for the 
video sequence “Motion,” for the initial motion estimation 
method with fixed search window parameter and the two 
variations of the proposed variable search window method. 

TABLE III.  MEAN PSNR VALUES FOR SEQUENCE “MOTION”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 

 
31.34 - - 

 
NTSS 31.06 30,67 31.06 

 
TDLS 30.05 32,59 32.69 

 
OS 29.74 31,24 31.39 

 
ARPS 30.32 31,84 31.96 

TABLE IV.  OVEROALL NUMBER  OF VERIFIED BLOCKS FOR 
SEQUENCE “M OTION”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 921600 - - 

 
NTSS 87817 27399 87817 

 
TDLS 79923 31154 100573 

 
OS 53248 19363 69629 

 
ARPS 34547 16851 35256 

 
 
The second set of results is for the video sequence 

“Hall Monitor,” a real life color video sequence with 
144x176 pixels. In Tables V and VI, we presented the 
results for the original motion estimation method with fixed 
search window and the two variations of the proposed 



528

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

method. Based on these results we can make the following 
observations: 

• In the first case, when the variable search window 
method is applied to the area where motion is 
detected, the PSNR between the current frame and 
the motion compensated frame decreases for all the 
presented algorithms but also the overall number of 
verified blocks decreases.  

• In the second case, when the variable search window 
method is applied to the entire frame, the PSNR also 
decreases for all of the algorithm and the overall 
number of verified blocks increases. 

• The results can be explained by the existence of low 
amplitude motion, this means that a good precision 
can be obtained using a small search window, and by 
the existence of illumination variations, which lead 
to an increase of the MSE and a decrease of PSNR.  

 

TABLE V.  MEAN PSNR VALUES FOR SEQUENCE “HALL MONITOR”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 

 
31.01 - - 

 
NTSS 30.82 29.89 30.82 

 
TDLS 30.25 29.35 30.11 

 
OS 29.88 28.99 29.66 

 
ARPS 29.85 28.01 28.64 

TABLE VI.  OVEROALL NUMBER  OF VERIFIED BLOCKS FOR 
SEQUENCE “HALL MONITOR”   

Search Window Dimension Type 
Algorithm  

FSW VSW – MA VSW – FF 

 
FS 89100 - - 

 
NTSS 8403 2804 8403 

 
TDLS 7424 3031 9642 

 
OS 5148 2177 7084 

 
ARPS 2956 951 2628 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have evaluated the importance of the 
search window dimensions for fast block matching 
algorithms for motion estimation and a method for selecting 
the search window parameter depending of the area where 
motion is detected. 

By evaluating twelve fast block matching algorithms for 
motion estimation, with different block sizes and search 
window dimensions, we concluded in [1] that the existing 
fast block matching algorithms can be split into two 
categories: fixed number of steps and thus independent of the 

search window dimensions, and variable number of steps and 
thus dependent on the search window dimensions. The 
results presented in [1] showed that for increased search 
windows some of the algorithms in the second category 
show an increase of the PSNR between the current frame and 
the motion compensated frame obtained from the previous 
frame and the estimated motion vectors.  

We presented four fast block matching algorithms for 
motion estimation, one with fixed number of steps, and thus 
independent of the search window dimensions, and three 
with variable number of steps that depend of the search 
window dimensions. As shown in Tables I and II for the 
three algorithms with variable number of steps by increasing 
the search window parameter we obtain an increase of the 
motion estimation precision but also an increase of the 
computational complexity. 

The basic idea behind the method proposed in this paper 
is to select the search window dimensions in such a manner 
that lead to good precision of estimation and low 
computational complexity. 

The proposed motion estimation method uses a variable 
search window dimension depending on the detection of the 
area where motion is present. The detection of motion is 
done by simple differencing between the current frame and 
the previous frame and two morphological operations. The 
search window parameter, that defines how many pixels the 
search window is extended around the current block, is 
computed according to the ratio between the size of the 
entire frame and the size of the area with motion, as shown 
in equations 4 and 5.  

We have evaluated the proposed method in two cases: 
when the algorithms are applied only to the area where 
motion is present and when the algorithms are applied to the 
entire frame. The first set of simulation results were obtained 
for a computer generated video sequence with high 
amplitude motion. 

In the first case we observed that, although for some 
frames a small decrease of the PSNR may occur, the mean 
PSNR for the entire sequence increases and the overall 
number of verified blocks decrease significantly. The 
simulation results show that some algorithms have better 
results in estimation precisions, the TDLS algorithm, while 
others show a more significant decrease in computational 
complexity, the ARPS algorithm. Depending of the 
application we can use one or another. 

In the second case we observed that the PSNR increases 
for all the frames, when the search window parameter 
increases, but also the overall number of verified blocks 
increases. Similar to the result in the first case, the TDLS 
algorithm shows higher increase in PSNR compared to the 
OS and the ARPS algorithms, and the ARPS algorithm 
shows lower increase of computational complexity compared 
to the TDLS and the OS algorithms. A very important 
observation is that all of the three window size dependent 
algorithms obtain better precision of estimation that the first 
block matching motion estimation algorithm, the FS 
algorithm, and with significant lower computational 
complexity. 



529

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The algorithms using the proposed search window 
selection method we were also applied to real life video test 
sequences. The simulation for these test sequences also 
included the two variations described above. 

From this case of our simulation results we drew the 
following conclusion: 

• The search window parameter chosen by detection 
of the motion area leads to two situation.  

• First, when the sequences contain camera motion of 
significant illumination variations, the value of the 
search parameter is low and equal to the value 
recommended for the fast block matching 
algorithms. In this case there the results are the ones 
from which we started. 

• Second, when there is no camera motion, the 
illumination variations are low enough and the 
objects in motion occupy an area much smaller than 
the entire frame, the search window parameter value 
is higher than the one in the first case.  

• In this case, for the first scenario, when the 
algorithms are applied to the entire frame, the results 
for the real life test sequences show a small decrease 
in estimation precision and an increase in 
computational complexity. This is explainable by the 
existence of low amplitude motion that means no 
increase in estimation precision when the search 
window parameter increases, by the fact that in the 
areas without motion there are changes in pixel 
values due to illumination, changes that can be 
compensated by motion estimation with a low search 
parameter, and also by the search pattern used by the 
algorithms. The computational complexity increases 
because in the areas without motion many blocks are 
verified even if is not necessary.  

• For the second scenario, when the algorithms are 
applied only to the motion area, the estimation 
precision decreases slightly but the computational 
complexity decreases significantly. The decrease in 
estimation precision is explainable by the 
illumination variations in the areas not used, 
variations that can compensated by motion 
estimation with a low search window parameter. The 
decrease in computational complexity is high and it 
is a very important aspect that can be exploited. 

• As an overall conclusion of the presented method we 
can definitely say that the proposed search window 
parameter method show good results in estimation 
precision when the test sequences contain objects 
with high amplitude motion and also good results in 
computational complexity for the second scenario 
presented. 

For future work we consider the idea of using the motion 
area detection for selecting the search window parameter 
value, by applying the algorithms with the selected 
parameter value only to the motion area and by applying the 
algorithms with the lowest parameter value for the areas 
without motion. Also we consider evaluating the results for 
the proposed method and the presented algorithms for 
different block dimensions. 

ACKNOWLEDGMENT 

This work was supported by the UEFISCDI Romania 
under the Grant PN-II-RU-TE no. 7/05.08.2010. 

REFERENCES 
[1] I. Pirnog, C. Anghel, A. A. Enescu, and C. Paleologu, 

“Evaluation of Fast Algorithms for Motion Estimation,” 
AICT 2011, The Seventh Advanced International Conference 
on Telecommunications, pp. 107-111, Mar. 2011. 

[2] Z. Chen, “Efficient Block Matching Algorithm for Motion 
Estimation,” International Journal of Signal Processing, 
5(2):133-137, 2009. 

[3] ISO/MPEG N4358, “Text of ISO/IEC Final Draft 
International Standard 15938-3 Information Technology - 
Multimedia Content Description Interface - Part 3 Visual,” 
MPEG Video Group, Sydney, July 2001. 

[4] A. Barjatya, “Block Matching Algorithms For Motion 
Estimation,” Final Project Paper, 2004. 

[5] Y. C. Lin and S. C. Tai, “Fast Full-Search Block-Matching 
Algorithm for Motion-Compensated Video Compression,” 
IEEE Transactions on Communications, 45(5):527-531, 1997. 

[6] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step Search 
Algorithm for Block Motion Estimation,” IEEE Trans. 
Circuits and Systems for Video Technology, vol 4., no. 4, pp. 
438-442, Aug. 1994. 

[7] S. Jamkar, S. Belhe, S. Dravid, and M. S. Sutaone, “A 
comparison of block-matching search algorithms in motion 
estimation,” Proceedings of the 15th International Conference 
on Computer Communication, pp. 730 – 739, Mumbai, India, 
2002. 

 
 

 
 
 
 



530

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
 a) b) 

 
 c) d) 

Figure 4.  Comparative simulation results for video sequence “Motion” for 8x8 pixel blocks with fixed and variable search window 
size and motion area. a) Two-Dimensional Logarithmic Search. b) Orthogonal Search. c) Adaptive Rood Pattern Search. d) 

Comparative results of the three algorithms with variable search window size. 

 
Figure 5.  Overall number of verified blocks for block matching motion estimation for the video sequence “Motion” with 8x8 pixel              
blocks.  a) Comparative results for fixed and variable search window size. b) Comparative results for the three algorithms in the case 

of variable search window size. 



531

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
 a) b) 

 
 c) d) 

Figure 6.  Comparative simulation results for video sequence “Motion” for 8x8 pixel blocks with fixed and variable search window 
size and full frame. a) Two-Dimensional Logarithmic Search. b) Orthogonal Search. c) Adaptive Rood Pattern Search. d) Comparative 

results of the three algorithms with variable search window size. 

 
Figure 7.  Overall number of verified blocks for block matching motion estimation for the video sequence “Motion” with 8x8 pixel 

blocks and full frame. a) Comparative results for fixed and variable search window size. b) Comparative results for the three 
algorithms in the case of variable search window size. 



532

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automated Categorisation of E-Journals 

by Synonym Analysis of n-grams 

 

Richard Hussey, Shirley Williams, Richard Mitchell 

School of Systems Engineering 

University of Reading 

Reading, United Kingdom 

{r.j.hussey, shirley.williams, r.j.mitchell}@reading.ac.uk 

 

 
Abstract—Automatic keyword or keyphrase extraction is 

concerned with assigning keyphrases to documents based on 

words from within the document.  Previous studies have shown 

that in a significant number of cases author-supplied keywords 

are not appropriate for the document to which they are 

attached.  This can either be because they represent what the 

author believes a paper is about not what it actually is, or 

because they include keyphrases which are more classificatory 

than explanatory e.g., “University of Poppleton” instead of 

“Knowledge Discovery in Databases”.  Thus, there is a need for 

a system that can generate an appropriate and diverse range of 

keyphrases that reflect the document.  This paper proposes two 

possible solutions that examine the synonyms of words and 

phrases in the document to find the underlying themes, and 

presents these as appropriate keyphrases.  Using three 

different freely available thesauri, the work undertaken 

examines two different methods of producing keywords and 

compares the outcomes across multiple strands in the timeline.  

The primary method explores taking n-grams of the source 

document phrases, and examining the synonyms of these, while 

the secondary considers grouping outputs by their synonyms.  

The experiments undertaken show the primary method 

produces good results and that the secondary method produces 

both good results and potential for future work.  In addition, 

the different qualities of the thesauri are examined and it is 

concluded that the more entries in a thesaurus, the better it is 

likely to perform.  The age of the thesaurus or the size of each 

entry does not correlate to performance. 

Keywords- Automatic Tagging; Document Classification; 

Keyphrases; Keyword Extraction; Single Document; Synonyms; 

Thesaurus 

I.  INTRODUCTION 

Keywords are words used to identify a topic, theme, or 
subject of a document, or to classify a document.  They are 
used by authors of academic papers to outline the topics of 
the paper (such as papers about “metaphor” or “leadership”), 
by libraries to allow people to locate books (such as all 
books on “Stalin” or “romance”), and other similar uses.  
The keywords for a document indicate the major areas of 
interest within it. 

A keyphrase is typically a short phrase of one to five 
words, which fulfils a similar purpose, but with broader 
scope for encapsulating a concept.  While it may be 
considered the authors' contention, it is inferred that a short 

phrase of a few linked words contains more meaning than a 
single word alone, e.g., the phrase “natural language 
processing” is more useful than just the word “language”. 

Previous work by Hussey et al. [1] showed that using a 
thesaurus to group similar words into keyphrases produced 
useful results.  The experiments run used the 1911 edition of 
Roget’s Thesaurus [2] as the basis of the work.  This paper 
sets out to expand upon that work by examining the results in 
relation to results generated by chance and, by using a 
number of different thesauri, to generate the keyphrase 
groupings, to compare the results of the different systems, 
and the different thesauri. 

Frank et al. [3] discuss two different ways of approaching 
the problem of linking keyphrases to a document.  The first, 
keyphrase assignment, uses a fixed list of keyphrases and 
attempts to select keyphrases that match the themes of the 
document.  The computational problem for this approach is 
then to determine a mapping between documents and 
keyphrases using already classified documents as learning 
aids.  The second approach, keyphrase extraction, assumes 
there is no restricted list and instead attempts to use phrases 
from the document (or ones constructed via a reference 
document). 

Previous research [4][5] has shown that for any given 
group of documents with keyphrases, there are a small 
number which are frequently used (examples include 
“shopping” or “politics” [5]) and a large number with low 
frequency (examples include “insomnia due to quail wailing” 
or “streetball china” [5]).  The latter set is too idiosyncratic 
for widespread use; generally, even reuse by the same author 
is unlikely.  Therefore, part of the issue of both keyphrase 
assignment and extraction is locating the small number of 
useful keyphrases to apply to the documents. 

The work described here is concerned with keyphrase 
extraction and, as such, this paper covers the background 
research into keyword/keyphrase generation, outlines a 
proposed solution to the problem, and compares the 
performance of manually assigning keyphrases.  The main 
aim is to take an arbitrary document (in isolation from a 
corpus) and analyse the synonyms of word-level n-grams to 
extract automatically a set of useful and valid keywords, 
which reflect the themes of that document.  The words of the 
document are analysed as a series of n-grams, which are 
compared to entries in a thesaurus to find their synonyms 
and these are ranked by frequency to determine the candidate 



533

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

keywords.  The secondary aim is to look at a method of 
grouping the theme outputs into clusters, so that the results 
do not just show the most common theme swamping out any 
others. 

The rest of the paper comprises the background and state-
of-the-art (Section II), the implementation (Section III) and 
results gained (Section IV), a discussion (Section V), and 
conclusions and suggestions for future work (Section VI). 

II. BACKGROUND 

A review of literature in the area of automatic keyword 
generation has shown that existing work in these areas 
focuses on either cross analysing a corpus of multiple 
documents for conclusions or extrapolating training data 
from manual summaries for test documents. 

While manual summaries generally require multiple 
documents to train upon, they do not need to compare each 
component of the corpus to all other components.  Instead, 
they try to extrapolate the patterns between the pairs of 
documents and manual summaries in the training set. 

The following two sections look at firstly the manual 
summaries and single document approaches, and then the 
multiple document methods. 

A. Single Documents 

Single document approaches make use of manual 
summaries or keyphrases to achieve their results.  Tuning via 
manual summaries attempts to replicate the process by which 
a human can identify the themes of a document and reduce 
the text down to a summary/selection of keyphrases.  The 
general approach taken involves a collection of documents 
(with associated human summaries) and a given method is 
applied to draw relationships between the document and the 
summary.  From this, new documents (generally a test 
corpus that also contains human summaries) are subject to 
the derived relationships to see if the summaries produced by 
the system are useful and usable. 

For creating summaries, Goldstein et al. [6] set out a 
system based upon assessing every sentence of the document 
and calculating a ranking for its inclusion in a summary.  
They made use of corpora of documents for which assessor-
ranked summary sentences already existed, and attempted to 
train the system using weighted scores for linguistic and 
statistical features to produce similar or identical sentences. 

A different approach is taken by the Stochastic Keyword 
Generator [7], a proposed system for classifying help desk 
problems with short summaries (see Figure 1).  Submitted e-
mails varied in their description of the problem and often 
contained duplicated or redundant data.  Therefore, their 
system attempts to create a summary similar to those 
manually created by the help desk staff: concise, precise, 
consistent, and with uniform expressions.  It uses a corpus of 
e-mails with manual summaries, and ranks source words for 
inclusion based on the probability that they will occur based 
on the probability from its training data.  This allows for 
words that are not explicitly in the text to appear in the 
summary (see Figure 2). 

For producing keyphrases, Barker and Cornacchia [8] 
propose a system that takes into account not only the 
frequency of a “noun phrase” but also the head noun.  For 
example, tracking “the Canadian Space Agency” should also 
track counts of “the Space Agency” or “the Agency”. 

Wermter and Hahn [9] examine a method of ranking 
candidate keyphrases using the limited paradigmatic 
modifiability (LPM) of each phrase as a guide to locating 
phrases with low frequency but high interest to the 
document.  This works on the principle that a given multi-
word term is a number of slots that can be filled with others 
words instead.  For example, “t cell response” contains three 
slots that are filled, respectively, by “t”, “cell”, and 
“response”.  Another phrase that could fit might be “white 
cell response” or “the emergency response”.  The probability 
there are no phrases that could fill the gaps (for any given 
combination of the original words and gaps) determines how 

Figure 2.  An example of SKG [7] 

When getting emails I get a notice that an email 

has been received but when I try to view the 

message it is blank. I have also tried to run the 

repair program off the install disk but that it did 

not take care of the problem. 

(a) 

Receive emails; some emails have no subject and 

message body 

(b) 

Figure 1.  An example of a) a text and b) its summary [7] 



534

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

important the original phrase is, regardless of its actual 
frequency. 

B. Multiple Documents 

Multiple document approaches take a corpus and attempt 
to analyse relationships between the component elements to 
create methods for dealing with unseen elements.  Most of 
these approaches are based on examining parts of an 
individual document in the corpus and then examining how 
that differs across the other documents. 

“TagAssist'” [4] makes use of a continually updated 
corpus of blog posts (supplied by [5]) and author-supplied 
tags to suggest tags for new blog posts.  The system 
compares the author's tags and content of blog posts to work 
out the relationships that prompt the former to be chosen to 
represent the latter.  Their baseline system works on a simple 
frequency count for determining output.  Evaluated by ten 
human judges (unaware of which system produced each 
tags), the results showed that the original tags were the most 
appropriate (48.85%) with TagAssist coming in second 
(42.10%), and the baseline system last (30.05%). 

The C-Value [10] is presented as a method for ranking 
“term words”, taking into account phrase length and 
frequency of its occurrence as a sub-string of another phrase.  
It makes use of a linguistic filter, expressed as a regular 
expression, to ensure that only particular strings can be 
considered as candidate terms.  Three filters were tested: 

• Filter 1 – Noun 
+ 

Noun 

• Filter 2 – (Adjective | Noun) 
+ 

Noun 

• Filter 3 – ((Adjective | Noun) 
+ 

| ((Adjective | Noun) 
* 
(Noun Preposition)

? 
) (Adjective | Noun)

* 
) Noun 

The more permissive filters, which accepted more 
grammatical structures, were found to perform more poorly, 
though all filters performed better than the baseline. 

The C-Value is extended by the NC-Value [10], which 
adds a context weight to the calculation to determine which 
words surrounding the term are important. 

The SNC-Value [11] (or TRUCKS) extends the NC-Value 
work, combining it with [12], to use contextual information 
surrounding the text to improve further the weightings used 
in the NC-Value. 

Extra data may be used to gain more information on the 
relationships between the components, often gained from 
reference documents.  Joshi and Motwani [13] make use of a 
thesaurus to obtain extra meaning from keywords. Their 
program, “TermsNet”, can observe keywords in their original 
context in attempt to link keywords though a framework of 
linked terms, with directional relevance.  This allows them to 
discover the “non-obvious” but related terms.  For example, 
the term ‘eurail’ strongly suggests ‘Europe’ and ‘railways’, 
but neither suggest ‘eurail’ with the same strength.  This 
means that ‘eurail’ is a non-obvious but highly relevant 
search keyword for both ‘Europe’ and ‘railway’. 

Scott and Matwin [14] use the WordNet lexical database 
[15] to find the hyponyms and feed this information to the 
Ripper machine learning system.  The authors tested it 
against the DigiTrad folk song database [16], the Reuters-
21578 news corpus [17], and a selection of USENET 
articles.  They concluded that the system works better on 

documents written with “extended or unusual vocabulary” or 
which were authored collaboratively between several people. 

Wei et al. [18] demonstrate such a system that uses 
WordNet to generate keywords for song lyrics.  Their 
approach clusters the words of a song using WordNet's data 
to link words across the song.  Keywords are then found at 
the centres of these links. 

C. Background Conclusions 

In conclusion, the literature review determined that work 
such as [13] or [14] used similar methods to the ones 
outlined in this paper.  However, there are some key 
differences. 

Joshi and Motwani [13] used a system of weighted links, 
which can differ in value from one side to another (in some 
cases being uni-directional as the weight ‘removes’ the link 
by setting it to a value of zero).  This would differ from the 
proposed system, as the thesaurus does not contain the 
lexical knowledge to weight the links and a link from one 
synonym group to another is reciprocated in kind. 

In [14], hyponyms were used, rather than synonyms.  
Hyponyms are words or phrases that share a type-of 
relationship, e.g. scarlet and vermilion are hyponyms of red, 
which is in turn a hyponym of colour.  The proposed system 
would instead use synonyms: different words with almost 
identical or similar meetings. 

III. IMPLEMENTATION 

The basis of the work presented here is the examination 
of a document with reference to its synonyms and therefore 
the main bulk of the coding of the system related to this and 
the associated thesaurus file.  Three input thesauri were used 
for analysis of the corpora, and these were Roget's 
“Thesaurus of English Words and Phrases” [16], Miller’s 
“WordNet” [14], and Grady Ward’s “Moby Thesaurus” [19]. 

The system was tested on a number of papers taken from 
a collection of online e-journals, Academics Conferences 
International (ACI) [20].  There were five e-journals in this 
collection, each on a different topic, and they were analysed 
separately.  The topics were Business Research Methods 
(EJBRM), E-Government (EJEG), E-Learning (EJEL), 
Information Systems Evaluation (EJISE), and Knowledge 
Management (EJKM). 

For each of the methods described below the thesaurus 
was loaded into the program and stored as a list of linked 
pairs of data, consisting of a unique Key (base word in the 
thesaurus) and an associated Value (its synonyms).  The keys  
and values ranged from unigram word entries up to 7-gram 
phrases. 

The project was split into a number of studies, and all the 
results were compared to a set of results generated by 
chance.  The studies undertaken were the chance study, the 
unigram system, the n-gram study, and the clustering study.  
The following sections outline these approaches.  The results 
are presented in Section IV. 



535

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

A. Chance Study 

For the chance study, the words from the source 
document were split into a list of individual words.  From 
this list, a start point was chosen at random and a number of 
contiguous words were strung together to form a keyphrase.  
After each word was added, there was a chance that no 
further words would be added and this chance increased after 
each word so that it was more likely to produce shorter 
keyphrases than longer.  The maximum length of the 
keyphrase was set at n = 7.  The algorithm used was: 

• Randomly select a word in the source document to 
act as a starting point. 

• After each word is added, generate a random number 
less than or equal to n.  If this number is greater than 
the number of words already in the phrase, add 
another word. 

• Repeat until r keyphrases have been produced (in 
this study, r was chosen to be 5).  

This algorithm is shown in Figure 3. 

B. Unigram Systemc 

The Unigram system was designed to act as a baseline 
for the experiments.  The source text was split into a list of 
unigrams, and a count of the number of times each appeared 
in the source document occurred.  The unigrams were then 
stemmed (to remove plurals, derivations, etc.) using the 
Porter Stemming Algorithm [21], and added to the list with 
combined frequencies from each of the unigrams that 
reduced to that stem.  The resultant corpus of unigrams and 
stems was then compared to the entries in the thesaurus.  
Only the highest frequency keyword was output from the 
unigram system. 

• For each n-gram in the thesaurus, compare the n-
gram to the associated synonyms. 

• For each synonym that matches, add the word to a 
list, and increase its frequency value by the value of 
the n-gram. 

• Sort the list by frequency and output the top r ranked 
items (in this study, r was chosen to be 1). 

C. The n-gram study 

Following the results of the unigram study, the 
experiment was extended to examine the effects of multi-
gram words on the output of the system.  This allowed the 
system to output keyphrases as opposed to just the singular 
keywords of the unigram study. 

For the n-gram study, the words from the source 
document were split into a number of n-gram lists, from 
unigrams up to 7-grams.  For all of the lists the entries 
overlapped so that all combinations of words from the text 
were included.  E.g., if the source text were “The quick fox 
jumped” then the bigrams would be “The quick”, “quick 
fox”, and “fox jumped” and the trigrams would be “The 
quick fox”, and “quick fox jumped”.  For each document, the 
results of each of the n-grams were combined and considered 
together to determine the overall output. 

• For each n-gram in the thesaurus, compare the n-
gram to the associated synonyms. 

• For each synonym that matches, add the word to a 
list, and increase its frequency value by the value of 
the n-gram. 

• Sort the list by frequency and output the top r ranked 
items (in this study, r was chosen to be 5). 

This algorithm is shown in Figure 4. 

D. The clustering study 

Examining the results of the n-gram study (as discussed 
in Section V below) revealed that only the highest frequency 
“group” or cluster of synonyms was being matched, and as 
such the clustering algorithm attempts to extend the n-gram 
algorithm to group the keyphrases into “clusters”.  It 
achieves this by finding the keyphrases that are of a similar 
theme and returning a single keyphrase for that group. 

For example, the word “recovery” can mean either 
“acquisition” or “taking” [2].  The base system therefore 
could return multiple versions of the same concept as 
keyphrases.  By clustering the results, the attempt was to 
prevent a single, “popular”, concept dominating and allow 
the other themes to be represented.  The method for this was: 

• For each n-gram in the thesaurus, compare the n-
gram to the associated synonyms  

• For each synonym that matches, add the word to a 
list, and increase its frequency value by the value of 
the n-gram divided by the number of associated 
synonyms 

• Then, for each Key entry in the thesaurus check to 
see if the frequency is equal to the highest frequency 
value in the found in the preceding step. 

• For each synonym entry associated with the Key, 
add the synonym to a second list of words and 
increase its value by one. 

• Sort the second list by frequency and output the top r 
ranked items (in this study, r was chosen to be 5). 

This algorithm is shown in Figure 5. 



536

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Add next 

word in 

document 

to 

keyphrase 

Generate 

random 

number r 

<= n 

 

Source 

Document 

Select a 

starting 

word 

randomly 

 

Chance 

keywords Repeat until 

number of 

keyphrases 

generated 

Is r >= number 

of words in the 

current 

keyphrase? 

Yes 

No 

Figure 3.  Chance algorithm 

 

Source 

Document 

 

Identify 

duplicate 

words 

Remove stop 

words and 

stem 

unigrams 

 

 

Thesaurus 

Create word/ 

synonyms 

tuples 

(WST) 

 

n-gram 

keywords 

 

Rank in 

frequency 

order 

 

Increment WST 

count 

Figure 4.  n-gram algorithm 



537

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

IV. RESULTS 

The results of these four studies are shown below.  For 
each of the e-journals used, the authors of each paper in the 
journal had supplied an accompanying list of keyphrases 
summarising the content of that paper.  These were therefore 
leveraged to provide a method of automatically evaluating 
the results of the work presented here. 

For every paper, a match was recorded if at least one 
author-supplied keyphrase was a substring of, a superstring 
of, or exactly equal to a system-supplied keyword.  This 
naïve text-matching approach would match the word “know” 
with both the words “know” and “knowledge”. 

For all of the tables the following explanations of each 
column apply.  The ‘Journal’ column lists the five e-journals 
from ACI [20], and the ‘Papers’ column lists the number of 
papers in that corpus.  The number ‘Matched’ is the number 
of papers in that journal that recorded a match, and 
‘Percentage’ is the percentage number of papers in that 
journal that were considered a match.  Where it appears, 
‘Increase’ is the numerical value by which the percentage 
match has increased over the results of the chance study – 
i.e. if the match percentage was 5% in the chance study and 
11% in n-gram study that would be an increase of 6. 

A. Chance Study 

The chance results showed almost no keyphrases being 
produced that matched the authors.  The results can be seen 
in Table I. 

TABLE I.  CHANCE RESULTS 

Journal Papers Matched Percentage 

EJBRM 72 0 0.00% 
EJEG 101 2 1.98% 
EJEL 112 0 0.00% 
EJISE 91 1 1.11% 
EJKM 110 5 4.81% 

Average   1.58% 

B. Baseline System 

Table II, Table III, and Table IV show the baseline 
results for the study.  The increase measures the performance 
compared to the results from Table I.  The average 
percentage correct was 5.80%, an increase of 4.22 over the 
chance results from Table I. 

 

Source 

Document 

 

Identify 

duplicate 

words 

Remove stop 

words and 

stem 

unigrams 

 

 

Thesaurus 

Create word/ 

synonyms 

tuples 

(WST) 

 

n-gram 

keywords 

 

Rank in 

frequency 

order 

 

Increment WST 

count 

 

Increment WST 

count 

 

Rank in 

frequency 

order 

 

Clustering 

keywords 

Figure 5.  Clustering algorithm 



538

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

TABLE II.  BASE LINE ROGET RESULTS 

Journal Papers Matched Percentage Increase 

EJBRM 72 4 5.56% 5.56 
EJEG 101 3 2.97% 0.99 
EJEL 112 18 16.07% 16.07 
EJISE 91 7 7.69% 6.58 
EJKM 110 19 17.27% 12.46 

Average   9.91% 8.33 

TABLE III.  BASE LINE WORDNET RESULTS 

Journal Papers Matched Percentage Increase 

EJBRM 72 0 0.00% 0.00 
EJEG 101 3 2.97% 0.99 
EJEL 112 0 0.00% 0.00 
EJISE 91 1 1.11% 0.00 
EJKM 110 6 5.77% 0.64 

Average   1.90% 0.32 

TABLE IV.  BASE LINE MOBY RESULTS 

Journal Papers Matched Percentage Increase 

EJBRM 72 5 6.94% 6.94 
EJEG 101 4 3.96% 1.98 
EJEL 112 3 2.68% 2.68 
EJISE 91 9 9.89% 8.78 
EJKM 110 5 4.55% -0.26 

Average   5.60% 4.02 

C. The n-gram study 

The n-gram results showed a small improvement over the 
baseline, as can be seen in Table V, Table VI, and Table VII.  
The increase measures the performance compared to the 
results from Table I.  The average percentage correct was 
23.59%, an increase of 22.01 over the chance results from 
Table I. 

TABLE V.  RESULTS OF ROGET N-GRAM STUDY 

Journal Papers Matched Percentage Increase 

EJBRM 72 16 24.62% 24.62 
EJEG 101 21 20.79% 18.81 
EJEL 112 54 49.54% 19.54 
EJISE 91 27 30.00% 28.89 
EJKM 110 70 67.31% 62.50 

Average   38.45% 30.87 

TABLE VI.  RESULTS OF WORDNET N-GRAM STUDY 

Journal Papers Matched Percentage Increase 

EJBRM 72 9 13.85% 13.85 
EJEG 101 17 16.83% 14.85 
EJEL 112 12 11.01% 11.01 
EJISE 91 8 8.89% 7.78 
EJKM 110 15 14.42% 9.61 

Average   13.00% 11.42 

 

TABLE VII.  RESULTS OF MOBY N-GRAM STUDY 

Journal Papers Matched Percentage Increase 

EJBRM 72 17 23.61% 23.61 
EJEG 101 18 17.82% 15.84 
EJEL 112 18 16.07% 16.07 
EJISE 91 19 20.88% 19.77 
EJKM 110 20 18.18% 13.37 

Average   19.31% 17.73 

D. The clustering study 

The clustering results show a reasonable improvement 
over the n-gram results and a significant increase over the 
chance results, as can be seen in Table VIII, Table IX, and 
Table X.  The increase measures the performance compared 
to the results from Table I.  The average percentage correct 
was 45.75%, an increase of 44.17 over the chance results 
from Table I. 

TABLE VIII.  RESULTS OF ROGET CLUSTERING STUDY 

Journal Papers Matched Percentage Increase 

EJBRM 72 31 43.06% 43.06 
EJEG 101 73 72.28% 70.30 
EJEL 112 77 68.75% 68.75 
EJISE 91 46 50.55% 49.44 
EJKM 110 94 85.45% 80.64 

Average   64.02% 62.44 

TABLE IX.  RESULTS OF WORDNET CLUSTERING STUDY 

Journal Papers Matched Percentage Increase 

EJBRM 72 41 63.08% 63.08 
EJEG 101 69 68.32% 66.34 
EJEL 112 37 33.94% 33.94 
EJISE 91 38 42.22% 41.11 
EJKM 110 57 54.81% 50.00 

Average   52.47% 50.89 

TABLE X.  RESULTS OF MOBY CLUSTERING STUDY 

Journal Papers Matched Percentage Increase 

EJBRM 72 16 22.22% 22.22 
EJEG 101 21 20.79% 18.81 
EJEL 112 20 17.86% 17.86 
EJISE 91 20 21.98% 20.87 
EJKM 110 23 20.91% 16.10 

Average   20.75% 19.17 



539

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

V. DISCUSSION 

The results show that using n-grams on their own 
produces a significant improvement over both chance and 
the baseline study (an average over the three thesauri of 
23.59%).  This shows that this method of using a thesaurus 
to group words into their conceptual clusters has potential to 
produce useful outputs. 

However, the results did not vary when the number of n-
grams was changed (ranging between 1 and 7) but the 
number of outputs r was maintained (this section was only 
tested on for the WordNet thesaurus).  A possible 
explanation for this would be only the highest frequency 
group of synonyms is being matched by the author 
keywords. 

Therefore, the algorithm was extended to include the 
clustering algorithm, which in turn produced a further, and 
significant, improvement (an average of 45.75% across the 
three thesauri).  The results are shown in Figure 6 grouped 
by study, and clearly show that each addition to the study 
improved on the average result, and that in all studies the 
Roget thesaurus outperformed the rest.  This is confirmed by 
Figure 7, which shows the same results grouped instead by 
thesaurus. 

In addition to the issues found in the n-gram study further 
improvement on the results seems to be unlikely due to 
issues with the mechanism for confirming a match – author 

keywords.  Some of the keywords submitted by the authors 
of the papers in the corpus may be tags instead of keywords.  
These can display meta-data that can often be irrelevant to 
the understanding of the document.  An example seen in the 
corpus was the keyword “University of Birmingham” 
because the author of that paper worked there.  This is valid 
as a tag but as a keyword, as it does not indicate a topic or a 
theme to which the document holds (other than in a rare case 
where the paper is about the University of Birmingham).  
This therefore lowers the chances of keyphrases being 
matched as the comparison data is filled with `noise'. 

The synonyms are currently analysed context-free, and 
thus for a word with multiple meanings (e.g., “recovery” can 
mean “acquisition”, “improvement”, or “restoration” [2]) 
every occurrence of that word is treated the same.  This 
means that a document equally about “improvement” and 
“restoration” could end up with the theme of “recovery” 
which (while a correct assumption) may not give the right 
meaning. 

A. Thesauri outcomes 

The results from the various studies all show that on 
average the Roget’s Thesaurus outperforms WordNet, which 
in turn outperforms Moby’s Thesaurus. 

Appendix A contains a sample entry from each thesaurus 
for the word “question” (as an example).  As can be seen, the 
Roget entry is the shortest and the Moby entry the longest 
and most comprehensive.  As a thesaurus, Roget has 55,000 
entries, Moby has 30,000, and WordNet has 5,000. 

Graph of comparsions of studies and thesauri

0

10

20

30

40

50

60

70

Base Study n-gram Study Cluster Study

Study

P
e

rc
e

n
ta

g
e

 M
a

tc
h

Roget WordNet Moby

Figure 6.  Graph of Studies/Percentage 



540

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Moby and WordNet thesaurus entries are both newer 
(less than fifteen years old) than their counterpart Roget is, 
and consequently contain modern phrases such as “sixty-four 
dollar question” (see Appendix A).  Yet, in spite of this, they 
perform worse than the one hundred year old thesaurus. 

McHale [22] compares WordNet and Roget for 
measuring semantic similarity, and concludes that due to the 
combined relative uniformity of the hierarchy in Roget and 
the broader allowed set of semantic relationships, that it 
seems better at capturing “the popular similarity of isolated 
word pairs”.  This potentially allows it to find more words 
around a single concept, compared to the other thesauri 
studied, which work in smaller concept-circles. 

VI. CONCLUSION AND FURTHER WORK 

The approach to synonym analysis developed in this 
paper shows good results for the test corpora used and 
potential for future study.  Further study is required to 
compare the system to ones developed in similar areas, but 
this should provide a solid framework for taking the project 
forward. 

The results, as mentioned in Section 0, show that the 
number of n-grams used does not affect the outcome of the 
system – all that matters is using the synonyms.  This does 
not, however, mean that the keywords produced may not be 
more useful to the user, as they could be different enough not 
to match the success criteria but still relevant. 

The results themselves were evaluated against the 
keywords submitted by the authors of the papers.  TagAssist 

[4] showed that in 54.15% of cases, author keywords were 
judged as being inappropriate for the work with which they 
were associated.  Therefore, when interpreting the results 
(which averaged around 60% matches) it should be 
remembered that they are produced by matching the output 
against the author keywords, which may be less than perfect 
for the task.  A new method of evaluating the results is 
therefore required. 

Another area of further work is to conduct more 
experiments to determine what differences there are between 
the thesauri, and what impacts the differences have on the 
results.  When compared, results from Roget’s thesaurus 
produced better results than WordNet and Moby, but it is not 
clear at this stage why that is it the case.  It is possible, for 
example, that each of the thesauri is suited to a certain 
subject corpora (e.g., a medical corpus vs. a computer 
science corpus).  Therefore, more experiments will need to 
be run with different corpora to ascertain if this is the case, or 
if the Roget’s thesaurus is simply better suited to this 
application than the other two. 

In addition, given the difference in size of each thesaurus 
a further area of study would be to attempt to make a single 
thesaurus that only contains the words found in all three and 
to see how well that thesaurus compares to the existing 
results.  In a similar vein to this, another study would be to 
combine all three thesauri into a single but larger thesaurus 
and compare that to the existing results as well as to the 
version with reduced entries. 

Graph of comparsions of studies and thesauri

0

10

20

30

40

50

60

70

Roget WordNet Moby

Study

P
e

rc
e

n
ta

g
e

 M
a

tc
h

Base Study n-gram Study Cluster Study

Figure 7.  Graph of Thesauri/Percentage 



541

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

APPENDIX A 

This appendix includes the entries from the three thesauri 
for the word “question”. 

A. Roget entry for “question” 

Question 

• inquiry, irreligion, unbelief doubt 
Taken from [2] 

B. WordNet entry for “question” 

Question 

• inquiry, query, interrogation, interrogate 
Taken from [15] 

C. Moby entry for “question” 

Question 

• Chinese puzzle, Parthian shot, Pyrrhonism, 
absurd, address, affirmation, agonize over, 
allegation, answer, apostrophe, apprehension, 
approach, ask, ask a question, ask about, ask 
questions, assertion, assuredly, at issue, 
averment, awake a doubt, baffling problem, 
basis, be at sea, be curious, be diffident, be 
doubtful, be dubious, be sceptical, be uncertain, 
beat about, bill, blind bargain, bone of 
contention, borderline case, brain twister, bring 
into question, burden, burn with curiosity, 
calendar, call in question, case, catechism, 
catechize, certainly, challenge, chance, chapter, 
clause, comment, communicate with, 
companion bills amendment, concern, 
confusion, contact, contest, contingency, 
correspond, crack, cross-interrogatory, cross-
question, crossword puzzle, crux, debatable, 
debating point, declaration, definitely, demand, 
demurral, demurrer, dictum, difficulty, 
diffidence, dig around for, dig up, dispute, 
distrust, distrustfulness, double contingency, 
doubt, doubtful, doubtfulness, doubtlessly, 
dragnet clause, dubiety, dubiousness, enacting 
clause, enigma, enigmatic question, enquiry, 
escalator clause, essence, establish connection, 
examine, exclamation, expression, feel unsure, 
feeler, focus of attention, focus of interest, 
gamble, gape, gawk, get to, gist, greet with 
scepticism, greeting, grill, grope, guess, half 
believe, half-belief, harbour suspicions, have 
reservations, head, heading, hold-up bill, 
impossible, in doubt, in question, inconceivable, 
indubitably, inquire, inquire of, inquiry, 
insupportable, interjection, interpolate, 
interrogate, interrogation, interrogative, 
interrogatory, interview, issue, jigsaw puzzle, 
joker, knot, knotty point, leader, leading 
question, leeriness, living issue, main point, 
maintain connection, make advances, make 
contact with, make inquiry, make overtures, 

make up to, matter, matter in hand, meat, 
mention, mind-boggler, misdoubt, misgive, 
misgiving, mistrust, mistrustfulness, moot point, 
motif, motion, motive, mystery, nose around 
for, nose out, note, nut, nut to crack, objection, 
observation, omnibus bill, open question, peer, 
perplexed question, perplexity, phrase, piece of 
guesswork, point, point at issue, point in 
question, poser, position, preposterous, 
privileged question, problem, pronouncement, 
propose a question, proposition, propound a 
question, protest, proviso, pump, put queries, 
puzzle, puzzle over, puzzlement, puzzler, query, 
question, question at issue, question mark, 
questionable, questioning, quiz, quodlibet, raise, 
raise a question, reach, reflection, relate to, 
remark, remonstrance, remonstration, reply to, 
require an answer, respond to, rider, ridiculous, 
rubber, rubberneck, rubric, saving clause, say, 
saying, scruple, scrupulousness, seek, self-
doubt, sentence, shadow of doubt, sight-unseen 
transaction, sixty-four dollar question, 
scepticalness, scepticism, smell a rat, sound out, 
stare, statement, sticker, stumper, subject, 
subject matter, subject of thought, subjoinder, 
substance, suspect, suspicion, suspiciousness, 
test, text, theme, thought, thrash about, throw 
doubt upon, topic, toss-up, total scepticism, 
touch and go, tough proposition, treat with 
reserve, trial balloon, uncertainty, undecided 
issue, under consideration, undoubtedly, 
unthinkable, utterance, vexed question, wager, 
want to know, wariness, why, wonder, wonder 
about, wonder whether, word, worm out of 

Taken from [19] 
 

ACKNOWLEDGMENT 

The authors would like to thank the School of Systems 
Engineering for the studentship, which enabled this project, 
and the contributions from the reviewers to this paper. 

 

REFERENCES 

[1] R. Hussey, S. Williams, and R. Mitchell.  2011.  “Keyphrase 
Extraction by Synonym Analysis of n-grams for E-Journal 
Classification”, eKNOW, Proceedings of The Third 
International Conference on Information, Process, and 
Knowledge Management, pp. 83-86.  Gosier, 
Guadeloupe/France.  
http://www.thinkmind.org/index.php?view=article&articleid=
eknow_2011_4_30_60053 [Last accessed: 23 January 2012] 

[2] P.M. Roget.  1911.  “Roget’s Thesaurus of English Words and 
Phrases (Index)”.  http://www.gutenberg.org/etext/10681 
[Last accessed: 23 January 2012] 

[3] E. Frank, G.W. Paynter, I.H. Witten, C. Gutwin, and C.G. 
Nevill-Manning.  1999.  “Domain-Specific Keyphrase 
Extraction”, Proceedings 16th International Joint Conference 
on Artificial Intelligence, pp. 668–673.  San Francisco, CA 
Morgan Kaufmann Publishers. 



542

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] S.C. Sood, S.H. Owsley, K.J. Hammond, and L. Birnbaum.  
2007.  “TagAssist: Automatic Tag Suggestion for Blog 
Posts”.  Northwestern University.  Evanston, IL, USA.  
http://www.icwsm.org/papers/2--Sood-Owsley-Hammond-
Birnbaum.pdf [Last accessed: 23 January 2012] 

[5] Technorati.  2006.  “Technorati”.  http://www.technorati.com 
[Last accessed: 23 January 2012] 

[6] J. Goldstein, M. Kantrowtiz, V. Mittal, and J. Carbonell.  
1999.  “Summarising Text Documents: Sentence Selection 
and Evaluation Metrics”, ACM, pp. 121–128.  Language 
Technologies Institute, Carnegie Mellon University, 
Pittsburgh, USA. 

[7] C. Li, J. Wen, and H. Li.  2003.  “Text Classification Using 
Stochastic Keyword Generation”, Twentieth International 
Conference on Machine Learning (ICML), pp  464–471.  
Washington DC.  
https://www.aaai.org/Papers/ICML/2003/ICML03-062.pdf 
[Last accessed: 23 January 2012] 

[8] K. Barker and N. Cornacchia.  2000.  “Using Noun Phrase 
Heads to Extract Document Keyphrases”, AI ’00: Proceedings 
of the 13th Biennial Conference of the Canadian Society on 
Computational Studies of Intelligence.  pp. 40–52).  London. 

[9] J. Wermter and U. Hahn.  2005.  “Paradigmatic Modifiability 
Statistics for the Extraction of Complex Multi- Word Terms”.  
Proceedings of Human Language Technology Conference and 
Conference on Empirical Methods in Natural Language 
Processing (HLT/EMNLP) pp. 843–850.  Vancouver 
Association for Computational Linguistics. 

[10] K. Frantziy, S. Ananiadou, and H. Mimaz.  2000.  “Automatic 
Recognition of Multi-Word Terms: the C-value/NC-value 
Method”, International Journal on Digital Libraries , 3 (2), pp. 
117-132. 

[11] D. Maynard and S. Ananiadou.  2000.  “TRUCKS: a model 
for automatic multi-word term recognition”.  Journal of 
Natural Language Processing, 8 (1), pp. 101-125. 

[12] D. Maynard and S. Ananiadou.  1999.  “Term extraction using 
a similarity-based approach”.  Recent Advances in 
Computational Terminology, pp. 261–278. 

[13] A. Joshi and R. Motwani.  2006.  “Keyword Generation for 
Search Engine Advertising”, IEEE International Conference 
on Data Mining, pp. 490–496. 

[14] S. Scott and S. Matwin.  1998.  “Text Classification Using 
WordNet Hypernyms”, Proceedings of the Association for 
Computational Linguistics, pp. 38–44. 

[15] G.A. Miller, C. Fellbaum, R. Tengi, P. Wakefield, and H. 
Langone.  2005.  “WordNet”.  Princeton University.  
http://WordNet.princeton.edu [Last accessed: 23 January 
2012] 

[16] D. Greenhaus.  2002.  “DigiTrad - Digital Tradition Folk 
Song Server”.  http://www.mudcat.org/download.cfm [Last 
accessed: 23 January 2012] 

[17] Reuters.  1987.  “Reuters-21578 Text Categorisation 
Collection”.  
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.ht
ml [Last accessed: 23 January 2012] 

[18] B. Wei, C. Zhang, and M. Ogihara.  2007.  “Keyword 
Generation for Lyrics”, Austrian Computer Society (OCG).  
Comp.  Sci.  Dept., U.  Rochester, USA.  
http://ismir2007.ismir.net/proceedings/ISMIR2007_p121_wei
.pdf [Last accessed: 23 January 2012] 

[19] G. Ward.  2000.  “Moby Project - Thesaurus”.  
http://icon.shef.ac.uk/Moby/mthes.html [Last accessed: 11 
July 2011] 

[20] Academics Conferences International.  2009.  “ACI E-
Journals”.  http://academic-conferences.org/ejournals.htm 
[Last accessed: 23 January 2012] 

[21] M.F. Porter.  1980.  “An algorithm for suffix stripping”, 
Program, 14(3) pp. 130–137. 

[22] M.L. McHale.  1998.  “A Comparison  of WordNet and 
Roget's Taxonomy for  Measuring  Semantic Similarity”,.  
http://acl.ldc.upenn.edu/W/W98/W98-0716.pdf [Last 
accessed: 23 January 2012] 

 

 

 



www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS,
CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601


