

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 4, no.1 & 2, year 2011, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 4, no. 1 & 2, year 2011,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2011 IARIA

International Journal on Advances in Software

Volume 4, Number 1 & 2, 2011

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

Meikel Poess, Oracle, USA
Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Editorial Board

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France
 Sven Apel, University of Passau, Germany
 Kenneth Boness, University of Reading, UK
 Hongyu Pei Breivold, ABB Corporate Research, Sweden
 Georg Buchgeher, SCCH, Austria
 Dumitru Dan Burdescu, University of Craiova, Romania
 Angelo Gargantini, Universita di Bergamo, Italy
 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany
 Jon G. Hall, The Open University - Milton Keynes, UK
 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands
 Hermann Kaindl, TU-Wien, Austria
 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore
 Herwig Mannaert, University of Antwerp, Belgium
 Roy Oberhauser, Aalen University, Germany
 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
 Eric Pardede, La Trobe University, Australia
 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe
 Robert J. Pooley, Heriot-Watt University, UK
 Vladimir Stantchev, Berlin Institute of Technology, Germany
 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan
 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania
 Michael Grottke, University of Erlangen-Nuremberg, Germany
 Josef Noll, UiO/UNIK, Sweden
 Olga Ormandjieva, Concordia University-Montreal, Canada

 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania
 Liviu Panait, Google Inc., USA
 Kenji Saito, Keio University, Japan
 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India
 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France
 Jameleddine Hassine, Cisco Systems, Inc., Canada
 Sascha Opletal, Universitat Stuttgart, Germany
 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
 Meikel Poess, Oracle, USA
 Kurt Rohloff, BBN Technologies, USA
 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France
 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France
 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria
 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany
 Qiming Chen, HP Labs – Palo Alto, USA
 Ela Hunt, University of Strathclyde - Glasgow, UK
 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain
 Chih-Cheng Hung, Southern Polytechnic State University, USA
 Jianhua Ma, Hosei University, Japan
 Milena Radenkovic, University of Nottingham, UK
 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil
 Marius Slavescu, IBM Toronto Lab, Canada
 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA
 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy
 Krzysztof Rogoz, Motorola, USA
 Sergio Soares, Federal University of Pernambuco, Brazil
 Alin Stefanescu, University of Pitesti, Romania

 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore
 Ann Dunkin, Hewlett-Packard, USA
 Tejas R. Gandhi, Virtua Health-Marlton, USA
 Lars Moench, University of Hagen, Germany
 Michael J. North, Argonne National Laboratory, USA
 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden
 Edward Williams, PMC-Dearborn, USA

International Journal on Advances in Software

Volume 4, Numbers 1 & 2, 2011

CONTENTS

Stochastic Greedy Algorithms: A leaning based approach to combinatorial optimization

Viswa Viswanathan, Seton Hall University, USA

Anup Sen, Indian Institute of Management, Calcutta, India

Soumyakanti Chakraborty, XLRI School of Business and Human Relations, India

1 - 11

An Adaptive Multimedia Presentation System

Philip Davies, Bournemouth and Poole College, UK

David Newell, Bournemouth University, UK

Nick Rowe, Bournemouth and Poole College, UK

Suzy Atfield-Cutts, Bournemouth University, UK

12 - 22

A Scalable Solution to Deterministic Per-Flow Resource Booking

Pier Luca Montessoro, University of Udine, Dep. of Electrical, Management and Mechanical

Engineering, Italy

Daniele De Caneva, University of Udine, Dep. of Electrical, Management and Mechanical

Engineering, Italy

23 - 33

An Information Flow Approach for Preventing Race Conditions: Dynamic Protection of

the Linux OS

Jonathan Rouzaud-Cornabas, ENSI de Bourges -- Laboratoire d'Informatique Fondamentale

d'Orléans, France

Patrice Clemente, ENSI de Bourges -- Laboratoire d'Informatique Fondamentale d'Orléans, France

Christian Toinard, ENSI de Bourges -- Laboratoire d'Informatique Fondamentale d'Orléans, France

34 - 45

Experiences with the Automatic Discovery of Violations to the Normalized Systems

Design Theorems

Kris Ven, University of Antwerp, Belgium

Dieter Van Nuffel, University of Antwerp, Belgium

Philip Huysmans, University of Antwerp, Belgium

David Bellens, University of Antwerp, Belgium

Herwig Mannaert, University of Antwerp, Belgium

46 - 60

Metrics for Evaluating Service Designs Based on SoaML

Michael Gebhart, Karlsruhe Institute of Technology (KIT), Germany

Sebastian Abeck, Karlsruhe Institute of Technology (KIT), Germany

61 - 75

Contextual Injection of Quality Measures into Software Engineering Processes

Gregor Grambow, Aalen University, Germany

Roy Oberhauser, Aalen University, Germany

76 - 99

Manfred Reichert, Ulm University, Germany

Compact and Efficient Modeling of GUI, Events and Behavior Using UML and Extended

OCL

Dong Liang, Institute of Computer Science, Freiberg University of Mining and Technology, Germany

Bernd Steinbach, Institute of Computer Science, Freiberg University of Mining and Technology,

Germany

100 - 116

Analysis and Improvement of the Alignment between Business and Information System

for Telecom Services

Jacques Simonin, Institut Télécom / Télécom Bretagne, France

Emmanuel Bertin, Orange Labs, France

Yves Le Traon, Université du Luxembourg, Luxembourg

Jean-Marc Jézéquel, INRIA and Rennes University, France

Noël Crespi, Télécom SudParis, France

117 - 128

Model Validation in a Tool-Based Methodology for System Testing of Service-Oriented

Systems

Michael Felderer, University of Innsbruck, Austria

Joanna Chimiak-Opoka, University of Innsbruck, Austria

Philipp Zech, University of Innsbruck, Austria

Cornelia Haisjackl, University of Innsbruck, Austria

Frank Fiedler, Softmethod GmbH, Germany

Ruth Breu, University of Innsbruck, Austria

129 - 143

Quality-Oriented Design of Services

Michael Gebhart, Karlsruhe Institute of Technology (KIT), Germany

Sebastian Abeck, Karlsruhe Institute of Technology (KIT), Germany

144 - 157

CRUD-DOM: A Model for Bridging the Gap Between the Object-Oriented and the

Relational Paradigms - an Enhanced Performance Assessment Based on a Case Study

Oscar M. Pereira, Instituto de Telecomunicações - University of Aveiro, Portugal

Rui L. Aguiar, Instituto de Telecomunicações - University of Aveiro, Portugal

Maribel Yasmina Santos, Algoritmi Research Center - University of Minho, Portugal

158 - 180

Performance Evaluation of a High Precision Software-based Timestamping Solution for

Network Monitoring

Peter Orosz, University of Debrecen, Hungary

Tamas Skopko, University of Debrecen, Hungary

181 - 188

Building CPU Stubs to Optimize CPU Bound Systems: An Application of Dynamic

Performance Stubs

Peter Trapp, University of Applied Sciences Ingolstadt, Germany

Markus Meyer, University of Applied Sciences Ingolstadt, Germany

189 - 206

Christian Facchi, University of Applied Sciences Ingolstadt, Germany

Helge Janicke, De Montfort University Leicester, United Kingdom

Francois Siewe, De Montfort University Leicester, United Kingdom

Intelligent Look-Ahead Scheduling for Structural Steel Fabrication Projects

Reza Azimi, University of Alberta, Canada

SangHyun Lee, University of Michigan, USA

Simaan AbouRizk, University of Alberta, Canada

207 - 217

Towards Experience Management for Very Small Entities

Vincent Ribaud, Université de Bretagne Occidentale, France

Philippe Saliou, Université de Bretagne Occidentale, France

Claude Y. Laporte, École de technologie supérieure, Canada

218 - 230

Stochastic Greedy Algorithms
A Learning-Based Approach to Combinatorial Optimization

Viswa Viswanathan
Stillman School of Business

Seton Hall University
South Orange, NJ, 07079

viswa.viswanathan@shu.edu

Anup K Sen

Management Information Systems
Indian Institute of Management

Calcutta
D. H. Road, Kolkata 700104, India

sen@iimcal.ac.in

Soumyakanti Chakraborty
Information Systems Area

XLRI School of Business and HR
Jamshedpur, India

soumyakc@xlri.ac.in

Abstract - Research in combinatorial optimization initially
focused on finding optimal solutions to various problems.
Researchers realized the importance of alternative approaches
when faced with large practical problems that took too long to
solve optimally and this led to approaches like simulated
annealing and genetic algorithms which could not guarantee
optimality, but yielded good solutions within a reasonable
amount of computing time. In this paper we report on our
experiments with stochastic greedy algorithms (SGA) –
perturbed versions of standard greedy algorithms. SGA
incorporates the novel idea of learning from optimal solutions,
inspired by data-mining and other learning approaches. SGA
learns some characteristics of optimal solutions and then
applies them while generating its solutions. We report results
based on applying this approach to three different problems –
knapsack, combinatorial auctions and single-machine job
sequencing. Overall, the method consistently produces
solutions significantly closer to optimal than standard greedy
approaches. SGA can be seen in the space of approximate
algorithms as falling between the very quick greedy
approaches and the relatively slower soft computing
approaches like genetic algorithms and simulated annealing.
SGA is easy to understand and implement -- once a greedy
solution approach is known for a problem, it becomes possible
to very quickly rig up a SGA for the problem. SGA has
explored only one aspect of learning from optimal solutions.
We believe that there is a lot of scope for variations on the
theme, and the broad idea of learning from optimal solutions
opens up possibilities for new streams of research.

Keywords- greedy algorithms; stochastic approaches;
approximate solutions; knapsack problem; combinatorial
auctions; single-machine scheduling; machine learning

I. INTRODUCTION
“Greedy” solutions are commonplace in the field of

combinatorial optimization for obtaining very quick
solutions to complex problems. For example, the
unconstrained knapsack problem (UKP) is known to be NP-
complete, but there exists a greedy algorithm with O(N2)
time complexity that yields very good solutions in practice.
In general, greedy algorithms do not guarantee optimal
solutions. In this paper, we elaborate on the idea of stochastic
greedy algorithms first presented in [31].

In general terms, a greedy algorithm tackles a problem in
several steps. At each step, the algorithm chooses the locally
most attractive option with no concern for its effect on global

optimality. Greedy algorithms are usually very simple and
intuitive. In the Traveling Salesperson Problem (TSP) [12],
the problem is to start at a city and visit n-1 other cities and
return to the original city while traversing the minimal
distance. A greedy algorithm for the TSP is straightforward –
at each stage, simply travel to the closest unvisited city and
continue this process till the tour is complete. In the
Transportation Problem (TP) [17], we are given a set of
requirements for goods to be satisfied from stocks available
in various warehouses. The unit transportation cost from
each warehouse to each demand point is also given and the
problem is to satisfy the demands while incurring minimal
cost. Vogel’s Approximation Method [17] is a greedy
algorithm that first finds the warehouse-demand point
combination with the lowest unit transportation cost,
satisfies the demand to the extent possible, and continues in
similar vein till all demands are satisfied (or all supplies are
exhausted).

Greedy algorithms are useful when the time available to
solve a problem is severely limited. In the space of solution
approaches to combinatorial optimization problems, greedy
approaches can be seen as lying at one end of the spectrum
with optimal algorithms lying at the other extreme. In the
middle are approximate algorithms like genetic algorithms
and simulated annealing. As we move from the greedy
algorithms to optimal algorithms, the solution quality
increases with a concomitant increase in the solution time.

In this paper, we elaborate on the results we presented in
[31] on stochastic greedy algorithms (SGA). Whereas
greedy algorithms choose the next step deterministically
based solely on what is locally best, SGA, a variant of
greedy algorithms, selects it stochastically. In other words,
rather than the probability of the best available option being
selected being 1, the algorithm uses a probability distribution
to select the next step. It selects the next step as the nth best
available option with probability p(n). SGA generates many
solutions and returns the best one as the output of the
algorithm.

How do we determine the probability distribution that
specifies p(n)? In seeking quick and good, but not
necessarily optimal, solutions to combinatorial optimization
problems, researchers have thus far hardly adopted the idea
of learning from optimal solutions. We introduce the idea,
and showcase the use of a data-mining inspired approach to
learn from optimal solutions the probability distribution to
use in SGA.

1

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Learning the probability distribution involves solving
many problem instances up front to optimality -- which
imposes a large fixed cost. SGA is thus only good in
situations where this fixed cost can be amortized over many
problem instances. Therefore, SGA only makes sense when
many problem instances have to be solved on an ongoing
basis and the time allowed for solving each instance is small.
This could arise for example, when solving the problem is
part of a larger business process in a real-time transaction
processing system where the on-line user cannot be kept
waiting for too long and yet the response to the user’s
request involves solving a moderately large non-trivial
combinatorial optimization problem. With the proliferation
of complex web-based transactional processing systems, this
scenario is only likely to become increasingly common.

We have experimented extensively with three
combinatorial optimization problems – the Unbounded
Knapsack Problem (UKP), Single Unit Combinatorial
auction (CA) and Single machine sequencing with quadratic
penalties (QPSD) , and obtained very encouraging results.
These problems represent a good range because the greedy
approach is extremely effective for the UKP and very
ineffective for the SQP. The combinatorial auction problem
falls in between.

On the UKP, we have obtained solutions consistently
within 0.02% of the optimal. Our results on the other two
problems are also very encouraging and establish SGA as a
viable alternative in the pool of soft computing approaches.
More research is definitely needed to understand the nuances
and to establish performance parameters more rigorously.
Nevertheless, the results we present prove conclusively the
viability of the approach.

Learning from optimal solutions is a novel, useful and
generic idea that opens up exciting new unions between
statistics and combinatorial optimization. Whereas we have
demonstrated in this paper only a small aspect of learning
from optimal solutions, there is clearly unlimited scope to
exploit this idea in the search for good quick solutions to
combinatorial optimization problems.

In section II we discuss prior work in related areas and
present, in section III a generic domain-independent
description of SGA. In subsequent sections we discuss the
specifics of our application of SGA to the UKP, CA and
QPSD problems and the corresponding empirical findings.
We conclude the paper with a summary and a discussion of
the scope for further work.

II. RELATED WORK
Greedy algorithms [14] represent natural ways of quickly

finding good solutions to combinatorial optimization
problems [19]. In rare cases, [14], greedy approaches can
even guarantee optimal solutions. Greedy algorithms use
deterministic steps in that they select the next course of
action by choosing the locally best option available.
Stochastic algorithms ([10], [11]), on the other hand, use
probabilistic elements to alter the steps of the algorithm.
Blending the two approaches lies at the heart of SGA.
Although researchers have looked at stochastic local search
approaches ([4], [10], [11] and [13]), prior research has not

explored the pros and cons of stochastic perturbations of
known and new greedy approaches.

We use the knapsack problem, single unit combinatorial
auctions and a class of single machine sequencing problems
to demonstrate the utility of SGA. Knapsack problems have
been widely studied in ([16], [21]). The Unbounded
Knapsack Problem (UKP) is known to be NP-hard. Greedy
approaches to knapsack problems have been discussed in
[16]. A new algorithm for finding exact solutions to UKP
can be found in [22].

 Auctions have been in use since antiquity. The
commonest format has been the ascending auction, also
known as the ‘English’ auction. The first major work on
auction theory is that of Vickrey [30] who recommended the
adoption of second price sealed bid auctions (later called
Vickrey auctions). His ideas were extended to combinatorial
auctions by Clarke and Groves ([3],[8]). In their scheme,
bidders submit their valuations of packages, and the seller
solves the revenue maximization problem, known as Winner
Determination Problem (WDP) and allocates the bundles.
Solving WDP with dynamic programming was proposed by
[25]. Two approaches, CASS [5] and CABOB [26] are the
prominent heuristic search techniques to solve large
instances of WDP optimally for the single unit case. Both
these approaches employ Depth-First Branch-and-Bound
(DFBB) but they differ in the formulation of their search
space. Both these algorithms may take a long time for
solving large instances optimally. For the methodical
evaluation and comparison of algorithms for solving WDP,
Kevin Leyton-Brown et al. [15] designed a suite of
distribution families called CATS 2.0
(http://cats.stanford.edu) for generating realistic,
economically motivated combinatorial bids in a number of
broad real world applications. With the proliferation of on-
line auction situations, it is conceivable that there will be an
increasing need to obtain reasonably good solutions quickly
to CA and related problems.

Single machine sequencing problems [20] are generally
known to be NP-hard [23]. The presence of sequence-
dependent setup times makes the sequencing problem with
quadratic penalties ([28], [29]) very difficult to solve [27].
Greedy approaches to the single machine sequencing
problem with quadratic penalties and setup times (QPSD) are
not popular yet. The best exact approach reported thus far
[18] can solve problems that have only up to 22 jobs.
Therefore, providing good solutions to larger instances
serves to extend the envelope for this problem.

Machine learning through neural networks has been
applied to optimization problems [1]. However, machine
learning based on the analysis of optimal solutions to learn
their characteristics and then augmenting the process of
generating solutions with the resultant knowledge has not
been effectively tried before. This paper shows clearly that
the approach has promise.

III. GENERIC DESCRIPTION OF SGA
An instance of an optimization problem [19] is a pair (F,

c) where F is any set, the domain of feasible points and c is
the cost function, a mapping: c: F → R1. The problem is to

2

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

find an f ∈ F for which c(f) ≤ c(y) for all y ∈ F for a
minimization problem (or to find an f ∈F for which c(f) ≥
c(y) for all y∈F for a maximization problem).

When the set F has a finite number of points, the problem
becomes a combinatorial optimization problem. A solution
procedure that guarantees the best f in the above sense is an
exact procedure; other procedures are approximate.

EXAMPLE 1: In the Unbounded Knapsack Problem
(UKP), we are given a knapsack with weight-capacity K, and
N items, with item i having weight wi and value vi, with each
item available in unlimited quantity. The objective is to fill
the knapsack with qi units of the ith item in such a way that
the value of the items in the knapsack is maximized. Here

() }:,,,{
1

21 ∑
=

=

≤=
Ni

i
iiN KwqqqqF (1)

and

() ∑
=

=

=
Ni

i
iiN vqqqqc

1
21 ,,, (2)

EXAMPLE 2: In single unit combinatorial auctions, there
is only one unit of each item. Bidders place bids on the items
or the combination of items they desire, and the auctioneer
determines the winning allocation, i.e. the set of winning
bids. In determining the winning bids the objective is to
select a feasible set of bids such that no item is allocated to
more than one bid (no overlapping items) and revenue is
maximized. Let there be M distinct items and N bids, and let
bid Bi has quoted price vi on a non-empty bundle S ⊆ M of
items. In this case: F = {feasible set of bids with no
overlapping items} and

∑
=

=∈
N

i
iuFxxc

1
):((3)

where ui = vi if bid Bi ∈ x and 0 otherwise.

EXAMPLE 3: In the Single Machine Sequencing with

Quadratic penalties on job completion times and Sequence
Dependent Setup times (QPSD) problem [27], there are N
jobs, Ji , i = 1..N with Ji having processing time ai , penalty
coefficient qi and setup times si,j (being the setup time for Jj
when it is immediately preceded by Ji, and s0,j is the setup
time for Ji when it is the first job in the sequence). The
objective is to find the schedule that minimizes the total cost.
Each feasible schedule is a permutation of 1..N and
therefore, in this case F = {all permutations of 1 ... N} and

∑
=

=
N

i
iitqxc

1

2)(where ti is the completion time for Ji as per

permutation x.
 It is common to view the solution procedure for a

general optimization problem as starting from a given point
in F and then moving step by step towards the final solution
(optimal or otherwise). For combinatorial optimization

problems, a point in the set F is usually determined through a
systematic process of construction involving several stages.
For example:

• In UKP, each member of F represents one feasible
way of filling the knapsack. Constructing one
feasible solution involves selecting items one by one
and determining how many pieces of each to take.
Here, we could see a feasible solution as being
constructed through steps with each step involving
the selection of an item and a quantity such that the
weight added by this item, when combined with the
weights of items already added in prior steps, does
not exceed the capacity of the knapsack..

• In CA, a member of F represents a feasible set of
bids with non-overlapping items. Here, constructing
an element of F can be seen as involving a series of
steps with each step selecting a bid which does not
have any overlapping items with any bid already
selected.

• In QPSD, a member of F is any valid permutation of
jobs, and creating one could be seen as a series of
steps with each step involving the selection of a job
which has not already been selected.

Having laid down the fact that creating a member of F
involves a process of constructions having several steps, it is
now possible to describe abstractly both the greedy approach
and SGA. In the greedy approach, we first identify an
intuitive measure of attractiveness of each possible step. This
measure varies from domain to domain and we will describe
the actual measure used for each problem domain when we
discuss the domain separately in later sections. At each step
in the process of constructing a feasible solution, we choose
the step that seems most attractive according to this intuitive
estimate. Thus, for UKP, we first choose the item that seems
most attractive and take as many units of it as will fit. We
then choose as many units of the next best item as will fit
and take as many units as possible and so on till no more
items will fit. For CA, we first choose the most attractive bid
and then choose the most attractive bid from those that
remain which do not have an overlap with bids already
selected. We go on like this till no more bids are available.
For QPSD, we simply order the jobs by their attractiveness
with the most attractive job as the first. The generic version
of the greedy algorithm is shown below. It is written from
the perspective of a maximization problem and can be easily
modified for a minimization problem.

We use the following notation:

P A combinatorial optimization problem
F The set of feasible solutions to P
ai 1 ≤ i ≤ N, all possible actions which can be used to

construct any feasible solution in F. Each action can be
used at most once in building one element of F

ri A measure of attractiveness of action ai , 1≤ i ≤ N
(higher is better)

ES The set of eligible actions, given that the actions
contained in set S have already been chosen

3

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pi Probability of choosing the ith most attractive action
from ES (this is used only in SGA)

L Number of trials for SGA

Algorithm Greedy {
 S =empty set
 Initialize Es to set of eligible actions
 While Es is not empty {
 From the actions in Es select action ai that

corresponds to the maximum ri
 Add ai to S
 Remove ai and all ineligible actions from ES
 }
 Output the actions in S
}

Figure 1. Algorithm Greedy

In the greedy approach we choose the next step
deterministically as the best available step at that point. In
SGA, we perform this step stochastically, by selecting at
each stage the ith best available step with probability pi .We
generate many solutions in this process and select the best of
these as the output. SGA is driven by a probability
distribution. The details of how the probability distribution is
arrived at are specific to each problem domain and we will
describe those when we look at each problem domain
separately.

Algorithm SGA {
 best_sol = 0
 best_s = empty set
 Repeat the following L times {

 S =empty set
 Initialize Es to set of eligible actions
 While Es is not empty {

 Select a random i using probability distribution
pi

 From the actions in Es select action ai that
corresponds to the ith highest ri

 Add ai to S
 Remove ai and all ineligible actions from ES

 }
 sol = objective function value corresponding to the

actions in S
 If sol > best_sol {
 best_sol = sol
 best_s = S
 }
 }
 Output the actions in best_s
}

Figure 2. Algorithm SGA

IV. SGA APPLICATION TO THE UNBOUNDED
KNAPSACK PROBLEM

The problem statement for UKP appears in section III.
To implement the greedy approach for UKP, we need a
specification of the attractiveness ri’ 1≤ i ≤ N. Intuitively, the
“bang for the buck” ratio of vi /wi looks like a good measure
of the attractiveness of an item and in fact leads to good
greedy solutions.

The greedy approach is to order the items in non-
increasing order of the ratio ii wv / and then to fill the
knapsack with as many units of the first item as can fit, and
then as many units of the next lowest numbered item that
will fit, and so on, till the knapsack is full (that is, the
residual weight capacity is less than the weight of the lightest
item). In doing this, at each stage we are taking the locally
most attractive step, without considering its global effects. It
could turn out, for example, that the greedy approach is
unable to fill the knapsack completely, but that taking one
less unit of one of the items currently in the knapsack would
enable us to fill the knapsack completely, albeit with more
units of a lower valued item, but with a larger total value. It
is for this reason that the greedy solution cannot guarantee
optimality.

In UKP there are N items and therefore a maximum of N
possible actions at each step. In order to implement SGA for
UKP, we need to specify the probability distribution, pi , 1 ≤
i ≤ N which gives the probability with which the ith most
attractive action available is to be chosen. The logic of SGA
is that whereas the greedy approach always picks the most
attractive step available while constructing a solution, SGA
determines this stochastically. Instead of always picking the
most attractive item, we select the next item based on a
probability distribution. Having selected the item to be used,
we next need to decide on how many units of the item should
be picked. It is not necessary to fill the knapsack with the
maximum number of units possible for the chosen item.
Once again we choose this probabilistically. Items are
chosen in this fashion till no more can be added to the
knapsack. This concludes a single trial. Several trials are
performed and the best solution is chosen.

At the stage of selecting the next item, it seems
reasonable to assume that the probability of picking items
with higher attractiveness should be higher because it is
expected that higher the attractiveness, higher is the chance
of striking an optimal solution. Likewise, at the stage of
choosing the quantity for the selected item, the chance of
picking the maximum possible quantity should be highest.

We now describe the procedure we adopted for
introducing stochasticity into the greedy approach for the
knapsack problem. In the standard greedy approach where
the next item to be allocated is chosen strictly according to
the best value-to-weight or ii wv / ratios, and the maximum
possible quantity of the selected item is used. In SGA, we
make both of these choices, namely the choice of item and
the quantity of the chosen item probabilistically.

We derived the probability distribution empirically by
solving many problems to optimality and then learning from
these optimal solutions. The dynamic programming solution

4

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

procedure for optimally solving the knapsack problem
(Gilmore and Gomory [7]) exploits the Bellman Optimality
principle.

As explained in the introduction, we introduce the novel
idea of learning from optimal solution and using the
knowledge thus derived in a stochastic process of generating
solutions. This approach can be seen to be inspired by
“learning” as applied to data mining. We describe the
learning process in detail in the next paragraph. Broadly, the
approach relies on generating optimal solutions to a large
number of instances of UKP. Once we have optimal
solutions to a large number of instances, we seek patterns in
these. In this paper we rely on the large body of optimal
solutions to calculate the probability with which the best
available piece is selected, the probability of the second best
available piece, and so on. We also calculate the probability
of the optimal solution containing the maximum number of
units of the selected piece, 1 less than the maximum and so
on. Once we have these, we can then use these probabilities
to generate a large number of random solutions and choose
the best among them. We based the calculations on optimal
solutions to a total of 500 problem instances with N varying
from 50 to 250. We lumped problems with different values
of N together because we did not find any significant
differences in the probabilities when we calculated them
separately for different values of N.

We now describe the procedure for learning the
probability distributions. Consider a knapsack problem with
capacity 20, and 5 items with weights wi = {8, 3, 10, 5 and
2} in non-increasing order of their value-to-weight ratios (we
ignore the actual values for this discussion). Suppose the
optimal solution xi = {1, 0, 1, 0 1} (one unit each of items 1,
3 and 5). Note that this differs from the greedy solution
which would be {2, 1, 0, 0, 0}. Looking at this optimal
solution, we find that initially when the knapsack is empty,
all of the items are eligible for consideration and the optimal
solution actually used the best available item, namely the
first, although it does not use the maximum quantity possible
– two units would have fitted into the knapsack, but the
optimal solution uses only one unit. At the next stage, the
residual knapsack capacity is 12 (having allocated one unit
of item 1). Even at this stage, the residual capacity is
sufficient for all the remaining items to be eligible for
consideration – it can hold at least one unit of each of them.
However, we see that the optimal solution for the sub-
problem did not choose the best item and instead chose only
the third best item (namely item 3). Only one unit of this
item could fit and hence the maximum allowable number of
units were used. The residual knapsack capacity now is 2 and
the optimal solution now chose the best item available (only
item 5 is eligible for consideration now because only it can
fit) and the maximum allowable quantity, namely 1, was
used.

We did the above analysis for each optimal solution and
calculated the probability of the jth eligible item being
actually chosen, and also noted the probability of the number
of units of the chosen item used in the optimal solution
deviating by an amount d, d = 1, 2, 3, … from the maximum
amount that would fit into the residual capacity.

In this way we calculated the probability jp of the item

with the thj highest ratio being chosen as the next item.
Similarly we also calculated the probability kjq , of the
number of units of the selected item j being less than the
maximum possible number by k units.

Figure 3 shows the algorithm for applying SGA to UKP.

Algorithm SGA_UKP
Re-order the N items such that
 NN wvwvwv /....// 2211 ≥≥≥
best_val 0←

Nkbestk ...,2,1,0 =←
Repeat numtrials times {

capacity K←
curpos 1←
sga_value 0←
while ()Niwcapacity i ..1),(min =≥) {

Randomly select a position j according to the
chosen probability distribution for the
position of the next item relative to curpos

Starting from curpos skip the first j items whose
weights are not greater than capacity. Let k
be the index of the next item whose weight
is not greater than capacity. If this causes a
spillover beyond N, then search backwards
for the first item whose weight is not greater
than capacity

 maxunits)/(kwcapacityfloor←
Randomly select a number m according to the

chosen probability distribution for the
quantity of the next item relative to maxunits

Set ksol the number of units of the thk item in the
solution to max(1, maxunits - m)

curpos 1−←k
capacity kk wsolcapacity *−←
sga_value ik vsolvaluesga *_ +←

}
if (sga_value > best_val)
 best_val = sga_value
 Nksolbest kk ..1, =←

}

Figure 3. Algorithm SGA-UKP

5

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Example of learned probability distribution for position of next

item relative to current item (based on 500 random instances)

Figures 4 and 5 show the probability distributions we
obtained experimentally for jp and jkq respectively. The
first bar on Figure 4 shows for example that almost 80% of
the time the optimal solution chooses the next item as the
one with the highest value-to-weight ratio. The second bar
shows that there is a close to 10% chance that this is the
second best item. Similarly, the first bar in Figure 5 shows
that about 36% of the time the optimal solution will utilize
the maximum number of units of the selected item. The
second bar shows that about 18% of the time, the optimal
solution will use one unit less than the maximum possible
and so on. Given the probability distributions being used,
and an optimal solution, it is easy to calculate the probability
that SGA will generate the given optimal solution.

Figure 5. Example of learned probability distribution for extent of

deviation of quantity used from maximum possible (based on 500 random
instances)

Suppose the probability that SGA will generate an
optimal solution in a single trial is p, then the probability that
it will generate a non-optimal solution in a single trial is (1-
p). If there are L trials, the probability that each trial
generates a non-optimal solution is (1-p)L. Therefore the
probability that at least one of the trials generates an optimal
solution is

()Lp−− 11

As is well known, this number can be surprisingly close
to 1 for even fairly low values of p. This probability estimate
is somewhat lower than then real value, as a problem could
have multiple optimal solutions. Also, it is possible for a
given solution to be generated in more than one way by our
algorithm.

Figure 6. Probability of finding optimal solutions in SGA as number of

trials increses

To demonstrate the probability calculation, we revert to
the example used earlier. Suppose we have a knapsack
problem with capacity 20 and 5 items with weights wi = {8,
3, 10, 5 and 2} in non-increasing order of their value-to-
weight ratios (we ignore the values for this discussion).
Suppose the probability of distribution for item position is
{0.6, 0.3, 0.1}. This means that the best item available was
chosen 60% of the time, the second best 30% of the time and
the third best 10% of the time. Suppose the probability
distribution for the deviation from the maximum is {0.7,
0.25, 0.05}. This means that the maximum number of units
possible would be used 70% of the time, one less than the
maximum would be used 25% of the time and two less than
the maximum would be used 5% of the time.

Suppose the optimal solution xi = {1, 0, 1, 0 1} (one unit
each of items 1, 3 and 5). With these numbers, the
probability of SGA finding the optimal solution in a single
trial is the product of the probability of selecting each of the
actual items chosen and the probabilities of the correct
quantities being chosen. The first element of the optimal
solution is a choice of one unit of the best item. The
probability of this happening is the probability of the first
item being chosen – which is 0.6 times the probability that
the deviation from the maximum number of units being 1
(since 2 units will fit, but only one unit is represented in the
optimal solution) which is 0.25. Calculating in this way we
find the probability as (0.6*0.25)*(0.1*0.7)*(0.6*0.7) =
0.0041. Therefore the probability of generating an optimal
solution in 250 trials will be about 0.63. Since the
computation and the results are similar for other problem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20

Relative item position

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Deviation from maximum units

Pr
ob

ab
ili

ty

`

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200 250 300 350 400 450 500Pr
ob

ab
ili

ty
 o

f o
pt

im
al

Number of SGA trials

p = 0.001 p = 0.002 p = 0.003

p = 0.004 p = 0.005

6

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domains, we have not shown this probability for CA and
QPSD problems.

Table I and II show the results obtained on UKP
instances with varying numbers of items, as well as different
instance types based on [21], where the weights and values
are weakly correlated (easy) and strongly correlated (harder),

TABLE I. AVERAGES OF 100 RUNS FOR UKP USING LEARNED
PROBABILITY DISTRIBUTIONS IN WEAKLY CORRELATED CASE

N Weakly correlated (easy)
Greedy
%dev

SGA_UKP

50 trials 100 trials 200 trials

%dev Prob %dev Prob %dev Prob

50 0.410 0.097 0.321 0.061 0.367 0.012 0.564
100 0.401 0.112 0.243 0.079 0.310 0.013 0.545
150 0.425 0.100 0.266 0.073 0.300 0.015 0.496

200 0.435 0.100 0.263 0.063 0.290 0.018 0.439
250 0.458 0.103 0.277 0.063 0.275 0.019 0.418

TABLE II. AVERAGES OF 100 RUNS FOR UKP USING
LEARNED PROBABILITY DISTRIBUTIONS IN STRONGLY CORRELATED CASE

N Strongly correlated (hard)
Greedy
%dev SGA_UKP

50 trials 100 trials 200 trials

%dev Prob %dev Prob %dev Prob

50 0.430 0.172 0.180 0.110 0.171 0.061 0.256
100 0.490 0.200 0.151 0.146 0.141 0.090 0.251
150 0.521 0.210 0.128 0.171 0.130 0.113 0.183

200 0.541 0.225 0.113 0.183 0.222 0.142 0.121
250 0.580 0.251 0.107 0.175 0.104 0.150 0.100

All the data are based on an average over 100 problem
instances. For each instance, we also calculated the
probability of SGA obtaining the optimal solution, and the
tables show these as well. Across all the figures in Tables I-
II, the deviation from optimal for the greedy solution is, at
the minimum, 2.5 times the SGA deviation and the
maximum is 35 times.

V. APPLICATION TO COMBINATORIAL AUCTIONS
In single unit combinatorial auctions, there is only one

unit of each item. Bidders place bids on the items or the
combination of items they desire, and the auctioneer
determines the winning allocation, i.e. the set of winning
bids. In determining the winning bids the objective is to
select a feasible set of bids such that no item is allocated to
more than one bid (no overlapping items) and revenue is
maximized. The formal description of the problem is given
in section III.

Individual items have no prices associated with them.
Prices are only associated with bids and each bid can be for
many items. Accordingly a useful measure of attractiveness
of a bid is its price per item. Thus suppose a bid has price

200 and is for four different items. The price per item for this
bid is 50. Suppose there is another bid whose price is 80, but
is for just a single item. Then the second bid is in some sense
preferable to the first because its price per item is higher.
Table III below shows an example of CA with 10 items and
5 bids.

TABLE III. SINGLE UNIT COMBINATORIAL AUCTION WITH 10 ITEMS
AND 5 BIDS

Bid no Price Items in bid Attractiveness
1 100 {8, 9, 10} 33.33
2 125 {6, 9, 2, 1} 31.25
3 75 {4, 6} 37.5
4 80 {5, 7, 1} 26.66
5 30 {6} 30

The greedy approach for CA therefore is very

straightforward. Simply pick the most attractive bid first and
then continue to pick the most attractive remaining bid which
has no overlapping items with any bids already chosen. In
the above example, first we would choose bid 3. Then we
can choose bid 1. Now, since items 4, 6, 8, 9 and 10 have
already been chosen, only bid 4 can be chosen because of
item overlap considerations. The greedy solution is 255,
which also happens to be the optimal solution,

For learning the probabilities, we ran CA to optimality
using CASS [5]. We then analyzed the optimal solutions
generated by CASS. For each optimal solution generated by
CASS, we first considered the bids in the optimal solution in
their order of their attractiveness. We then tallied the number
of times the optimal solution picked the best admissible bid,
the second best admissible bid and so on. We calculated the
probability with which CASS chose the most attractive bid at
each stage. Using the above problem as an example, we
would see that the optimal solution selected the best
available bid at each stage. It is important to note that while
analyzing the optimal solutions, we consider only the
admissible bids at any stage. For example, it is possible that
at some stage the optimal solution uses the fifth best bid
overall. However, if at that stage this bid happens to be the
best among the admissible bids at that stage based on
overlaps with bids already selected, then we will consider
that the best bid has been chosen. Suppose we perform this
analysis over a large number of problems and see that the ith
best available bid was chosen ni times across all the problem
instances. Then the probability of SGA choosing the ith best
available bid at any point is (N being the number of bids)

∑
=

= N

i
i

i
i

n

n
p

1

Algorithm SGA_CA {
 best_val = 0;
 best_bids = empty set
 repeat num_trials times {
 selected_bids = empty set
 S = set of all bids
 val = 0;

7

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 while the set S of bids is not empty {
 randomly select i based on the learned

probability distribution pi
 select the ith

 most attractive bid bi from S
 add bi to selected_bids
 remove bi and all bids overlapping with bi from

S
 val = val + pi
 }
 If val > best_val {
 best_val = val
 best_bids = selected_bids
 }
 }
 Output best_sol and best_bids
}

Figure 7. Algorithm SGA_CA

The probability distribution that we gleaned from optimal
solutions is shown in Figure 8.

Figure 8. Example of learned probability distribution for relative position

of next admissible bid (based on 500 random instances with number of
goods varying from 10 to 40 and number of bids between 50 and 200)

The results of running SGA on CA are shown in Table
IV. Each row shows the average of 100 random problem
instances generated using the standard problem suite
generator CATS 2.0 [15]. The results indicate very clearly
that even with 50 trials, SGA is able to drastically improve
on the greedy solution.

We wanted to see if this impressive performance of SGA
was merely the result of the fact that the greedy solution was
quite poor in the problem instances tested. We wanted to
create a situation where the greedy solution is a lot closer to
the optimal solution and then see if SGA can provide
benefits even under this scenario that tests SGA more
rigorously. We hypothesized that if the number of bids in
relation to the number of items is drastically increased, then
the greedy solution is likely to come a lot closer to the
optimal solution on the average. We expected this because
the drastically increased number of bids will make available
many more attractive bids than would have been possible
with fewer bids. Accordingly we generated random problem
instances with a significantly larger number of bids. The
results on running SGA on this set are shown in Table V. As
we expected, the greedy solution was indeed a lot closer to

the optimal. Encouragingly, SGA still managed to improve
significantly upon the greedy solution.

TABLE IV. AVERAGES OF 100 RUNS FOR CA USING LEARNED
PROBABILITY DISTRIBUTIONS IN CASE OF WEAK GREEDY SOLUTIONS

We were curious to see if the probability distributions for
the problems with lower number of bids and those for the
problems with a huge number of bids would be significantly
different. It turned out that they were very stable. The
probability distribution is shown in Figure 9. Thus, while it
might be a good idea to re-learn the probability distributions
when the problem parameters change a lot, this finding
indicates that in a time crunch nothing much would be lost in
using a probability distribution obtained from a set of
problem instances with different characteristics.

VI. APPLICATION TO SINGLE MACHINE SEQUENCING
We also studied the performance of SGA on a very hard
single machine sequencing problem with quadratic penalties
on job completion times and sequence dependent setup times
(QPSD) [27]. This is also described in section III. In QPSD,
there are N jobs , iJ i = 1..N with iJ having processing time

ia , penalty coefficient iq and setup times jis , (being the

setup time for jJ when it is immediately preceded by iJ ,

and js ,0 is the setup time for jJ when it is the first job in
the sequence). We assume that all values are non-negative
integers.

0

0.2

0.4

0.6

1 3 5 7 9 11 13 15 17 19Pr
ob

ab
ili

ty

Relative Position of the Next Admissible Bid

50 Trials 100 Trials 200 Trials 500 Trials
% dev % dev % dev % dev

10 50 19.97 2.39 0.86 0.70 0.29
10 200 11.18 2.28 1.43 0.95 0.29
10 500 6.96 2.01 1.50 1.07 0.49
10 1000 6.75 3.08 2.45 2.14 1.68
12 50 21.50 2.18 1.08 0.41 0.23
12 200 12.58 2.70 1.79 1.09 0.55
12 500 7.34 2.56 1.68 1.19 0.82
12 1000 8.49 4.05 3.50 2.86 2.50
15 50 18.45 2.12 1.22 0.63 0.27
15 200 11.80 2.51 1.83 1.25 0.60
15 500 6.65 2.63 1.95 1.55 1.06
15 1000 9.24 4.82 4.36 3.83 3.25
20 50 27.73 4.08 2.49 1.32 0.46
20 200 15.62 4.56 3.03 2.15 1.46
20 500 10.98 4.54 3.75 3.08 2.43
20 1000 13.38 6.92 6.30 5.58 4.89
26 50 27.07 5.19 4.28 2.85 2.40
26 200 19.09 5.44 4.06 3.15 2.01
26 500 15.25 6.65 5.43 4.54 3.32
26 1000 20.79 11.08 9.98 9.05 8.00
30 50 27.92 6.13 4.59 2.81 1.91
30 200 19.11 6.53 4.85 3.84 2.92
30 500 13.22 5.85 5.16 4.08 3.31
30 1000 19.68 11.39 10.70 9.57 8.81
40 50 31.74 7.71 5.75 3.96 2.67
40 200 20.93 8.99 7.49 5.91 4.61
40 500 15.34 7.65 6.42 5.47 4.68
40 1000 21.18 13.07 12.13 11.28 10.41

SGANo. of
Goods

No. of
 Bids

Greedy
 % dev

8

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Example of learned probability distribution for relative position
of next admissible bid on problems with large nunmber of bids (500 and

1000)

TABLE V. AVERAGES OF 100 RUNS FOR CA USING LEARNED
PROBABILITY DISTRIBUTIONS IN CASE OF STRONG GREEDY SOLUTIONS

Let

 }..1{},..0{,, NjNiase jjiji ∈∈∀+= (4)

be the effective processing time for jJ when it is
immediately preceded by iJ . Let M be a number such that

}..0{,)max(
1

, NieM
N

j
ji ∈> ∑

=

. (5)

The objective is to minimize the total penalty across all
jobs, that is, to minimize the weighted sum of the square of
completion times. When the setup times are sequence-

dependent, the quadratic penalty problem becomes extremely
difficult to solve. Drawing from Balas [2], the problem of
minimizing the total penalty was formulated by [31] as:

∑
=

N

j
jjtqMin

1

2

Subject to:

{ }

)10(}..1{,,},1,0{

)9(}..0{,)max(..0

)8(}..1{,,,

)7(}..1{,,),1(

)6(}..1{,min

,

1
,

,,

,,

,0

Nkjkjx

Niet

NkjkjMxtet
NkjkjxMtet

Njet

kj

N

j
jij

kjjjkk

kjkkjj

jj

∈<∈

∈∈

∈<+≤+

∈<−+≤+

∈≥

∑
=

Constraint 1 addresses the completion time for the first
job in the sequence. Constraints 7 and 8 ensure that for any
pair of jobs j and k, either j precedes k or k precedes j. We
use “j < k” in constraints 7, 8 and 10 to reduce the number of
x-variables by half. As in the case of Traveling Salesman
Problem, such a formulation may not be efficient to solve in
practice using IP solvers.

In [27], it has been shown that the search space for
sequencing problems can be modeled as a tree, or as a graph,
and those algorithms using the graph search space run faster.
For the QPSD problem under the tree formulation, two nodes
with the same set of jobs but in different orders and having
the same last job will generally not have the same cost
because the setup times for the jobs could differ.
Nevertheless, the sub trees below them are identical in terms
of the structure. Algorithms using the tree search space
cannot take advantage of this fact and might wastefully
traverse these identical sub-trees more than once. The graph
search space has far fewer nodes and offers the potential for
faster search. The node count reduction results from the fact
that unlike in the tree search space, there could be multiple
paths from the root node to any given node, and this helps to
avoid replicating the identical sub trees. However, sequence-
dependent setup times complicate traditional graph search
because the identical sub trees may not have the same costs.

The main feature of graph search algorithms like the
graph version of A* [9] is that when these reach the same
node through different paths, they retain the path having the
lowest cost, discarding any other paths from the root to the
node. This approach works fine when the incremental cost
from a given node to a goal node is independent of the path
by which the node was reached. This is the same as the
principle of optimality on which the dynamic programming
formulations [12] are based. However, this does not hold for
sequence-dependent setup times[18]. For example, consider
the following 4 job problem given in Table VI below.

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr
ob

ab
ili

ty

Relative position of next admissible bid

50 Trials 100 Trials 200 Trials 500 Trials
% dev % dev % dev % dev

10 3000 1.27 0.72 0.59 0.44 0.31
10 5000 0.67 0.53 0.43 0.35 0.26
10 8000 0.54 0.38 0.31 0.26 0.18
10 10000 0.37 0.25 0.20 0.16 0.14
12 5000 0.76 0.53 0.46 0.37 0.27
12 8000 0.62 0.47 0.40 0.33 0.23
12 10000 0.31 0.23 0.21 0.19 0.13
15 8000 0.64 0.55 0.50 0.39 0.33
20 10000 1.34 1.10 0.99 0.88 0.78
26 10000 2.15 1.79 1.67 1.59 1.39
26 12000 1.67 1.55 1.47 1.36 1.20
26 15000 1.56 1.36 1.28 1.17 1.01
26 20000 0.91 0.80 0.77 0.70 0.64
30 8000 5.78 3.70 3.44 3.00 2.60
30 10000 3.49 2.76 2.51 2.26 2.03
30 12000 2.31 1.99 1.88 1.77 1.55
30 15000 1.76 1.62 1.53 1.42 1.20
40 4000 6.55 4.61 4.33 3.99 3.63

SGANo. of
Goods

No. of
 Bids

Greedy
 % dev

9

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. 4 JOB QPSD PROBLEM

Job Setup Times Proc.
Times

Penalty
Coeff

 1 2 3 4
1 - 1 1 3 1 2
2 1 - 3 2 4 1
3 5 4 - 10 3 1
4 3 6 9 - 10 1

In this example, it is assumed that the setup time for a job

is zero if it is the first in the sequence. Consider the ordered
sequence of jobs (1, 2, 3) and (2, 1, 3). Under the graph
formulation, a node is represented by the set of completed
jobs without regard to the ordering, except for the last job in
the sequence. Because the set of jobs and the last job in the
two ordered sequences in question are the same, the two are
represented by a single node ()3},2,1{ , where the first two
jobs form an (unordered) set and the last job is shown
separately. The cost when the node is reached through the
sequence 1, 2, 3 is 182 and through the sequence 2, 1, 3 is
188. If a traditional graph search algorithm reaches the node
through the two different paths considered, it would simply
discard the higher cost path 2, 1, 3. However, if we look
below this node, we see that the sequence 1, 2, 3, 4 has a cost
of 1206, which is higher than the cost of the sequence 2, 1, 3,
4 which is 1088. A traditional graph search algorithm thus
runs the risk of missing the optimal solution.

In [18], solutions for QPSD only up to 22-job problems
using a memory constrained graph search algorithm have
been reported. Increasing the memory limit to 512K nodes,
we could solve 30-job problems using PC running Windows
XP. We wanted to study how SGA performs on this hard
problem. For a simpler problem not involving setup times,
Townsend [29] had proposed two sufficient conditions for a
given sequence of jobs to be optimal. The first of these
involves ordering the jobs by non-ascending order of their
pi/ai ratios. Being only one of two sufficient conditions for
optimality, this ordering cannot guarantee optimal solutions
for the simpler problem, but it does provide the basis for very
good greedy solutions for that problem. In the absence of any
other known greedy approaches to QPSD, we chose to adopt
Townsend’s heuristic.

Our SGA application to QPSD orders the jobs as above,
and at each stage, chooses the job with the highest pi/ai ratio.
Since UKP and CA have already established the benefit of
learning from optimal solutions, we wanted to check and see
how a standard discrete probability distribution with the right
shape would perform for SGA. The benefit of doing this is
that the up-front cost of solving many problem instances to
optimality can then be avoided. Accordingly, in our
experiments with QPSD, instead of learning the probability
distribution from the solutions to optimal solutions, we
experimented with both the Geometric and the Binomial
distributions (since they can have the proper shape with
suitably chosen parameters) and found that the Binomial
distribution with a low value for its parameter performed
better. The results are given in Table VII. It shows that the
results for QPSD are good, but not as impressive as for UKP.
It is intuitively clear that SGA can give good results only

when the underlying greedy algorithm is reasonably good.
Results of SGA application to QPSD - based on 100 trials
and averaged over 100 random problem instances for each
value of N.

TABLE VII. RESULTS OF SGA APPLICATION TO QPSD
(BASED ON 100 TRIALS AND AVERAGED OVER 100 RANDOM PROBLEM
INSTANCES FOR EACH VALUE OF N)

N % deviation from optimal

Greedy SGA – Binomial

(p = 0.025)
SGA – Geometric

(p=0.8)
10 7.70 1.67 2.07
12 10.02 2.81 3.48
14 11.13 3.70 4.65
16 11.05 4.01 5.14
18 12.50 4.93 6.20
20 13.91 6.10 7.61
22 14.45 7.11 8.34
24 14.41 7.43 8.93
26 15.64 8.31 9.92
28 15.54 8.53 9.75
30 15.71 9.22 10.56

For QPSD we based the greedy approach on a result
obtained for a far simpler problem, and its performance was
not very good. Nevertheless, we find that SGA is able to
improve upon the solution significantly. We need to
experiment with learned distributions in this domain too.

VII. CONCLUSIONS
We have proposed a new approximate approach called

the Stochastic Greedy Algorithm and presented the results of
its application to the Unbounded Knapsack Problem,
Combinatorial Auctions and a hard Single Machine
Sequencing Problem.

The two major contributions of SGA are
• its combining greedy approaches with stochastic

approaches
• its introduction of the idea of learning from the

characteristics of optimal solutions to incorporate in
a generative approach

In all three domains, SGA provides significant
improvements over the greedy solution. Of the three, the
results for the single machine sequencing problem are
perhaps relatively weak, and one reason for this is that no
good greedy approach is known for the problem as of now.
One important finding is that standard discrete probability
distributions perform quite well and that, if necessary, the
costly step to learn the underlying probability distribution
can be avoided on occasion. Furthermore, our findings seem
to hint that probability distributions are pretty stable and
need not necessarily be re-learned when the problem
characteristics change.

Our results explore the potential for learning patterns
from optimal solutions and applying this learning in the
process of generating solutions. There is obviously much
more scope to extend this “supervised learning” approach for
combinatorial optimization. While analyzing optimal

10

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions to learn characteristics, it is possible to assign
several other descriptors to each decision point. For example,
in the knapsack problem, we could attach the percentage
difference between the best available option and the next
best one as a descriptor. Once the decisions made in the
optimal solution are thus tagged, we effectively have
different probability distributions for different states and
SGA could sample from a more fine-grained and situation-
specific probability distribution. Another approach would be
to study numerous optimal solutions and impute decision
rules and see how solutions based on such rules perform.
Broadly speaking, this learning metaphor can be exploited in
numerous ways and certainly opens up new avenues for
further work.

REFERENCES

[1] A. Cochocki, R. Unbehauen, Neural Networks for Optimization and
Signal Processing, New York: John Wiley, 1993,

[2] Balas, E., 1985. On the facial structure of scheduling polyhedra,
Mathematical Programming, 24, 179-218

[3] E. H. Clarke, "Multipart pricing of public goods," Public Choice (11)
1971, pp 17 - 33.

[4] A. Feldman, G. Provan and A. V. Gemund, Computing minimal
diagnoses by greedy stochastic search, In Proc. AAAI 2008, pp. 911-
918.

[5] Y. Fujishima, K. Leyton-Brown, and Y. Shoham, "Taming the
Computational Complexity of Combinatorial Auctions: Optimal and
Approximate Approaches," in: International Joint Conference on
Artificial Intelligence, Stockholm, 1999, pp. 548 - 553.

[6] E. C. Freuder, R. Dechter, B. Ginsberg, B. Selman. and E. P. K.
Tsang, 1995. Systematic versus stochastic constraint satisfaction. In
Proc. IJCAI 95, volume 2.

[7] P. C. Gilmore and R. E. Gomory, 1966, The theory and computation
of knapsack functions, Operations Research, 14(6), pp 1045-1074

[8] T. Groves, "Incentives in Teams," Econometrica (41) 1973, pp 617 -
631.

[9] P. Hart, N. Nilsson and B. Raphael, 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Trans. Syst.
Science and Cybernetics, SSC4(2):100-107

[10] H. H. Hoos and T. Stutzle, Stochastic Local Search
Foundations and Applications, 2004, Elsevier.

[11] J. Hromkovic, R. Královiç, M. Nunkesser, and P. Widmayer (Eds.),
Stochastic Algorithms: Foundations and Applications, Proceedings of
4th International Symposium, SAGA 2007, Lecture Notes in
Computer Science, Zurich, Switzerland, Sept 13-14, 2007.

[12] D. S. Johnson and L. A. McGeoch, The Traveling Salesman Problem:
A Case Study in Local Optimization, In Local Search in
Combinatorial Optimization, E. H. L. Aarts and J.K. Lenstra (Eds),
John Wiley and Sons Ltd, 215-310, 1997.

[13] K. Kask, and R. Dechter, 1999, Stochastic local search for Bayesian
networks. In Proc. AISTAT’99, 113–122.

[14] J. Kruskal, Greedy algorithm for the minimum spanning tree problem,
Proceedings of the American Mathematical Society, 48-50, 1956.

[15] K. Leyton-Brown, M. Pearson, and Y. Shoham, Y. "Towards a
Universal Test Suite for Combinatorial Auction Algorithms," in:
ACM Conference on Electronic Commerce, 2000a, pp. 66 -76.

[16] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley & Sons, 1990.

[17] M. Mathirajan, and B. Meenakshi, Experimental Analysis of some
Variants of Vogel's Approximation Method, Asia-Pacific Journal of
Operational Research 21(4), 447-462, 2004.

[18] S. A. Mondal and A. K. Sen, 2000. TCBB scheme: Applications to
single machine sequencing problems, Proc AAAI-2000, pp. 792-797.

[19] K. Papadimitriou and K. Steiglitz K. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ,
1982.

[20] M. Pinedo, Scheduling: Theory, Algorithms and Systems. Prentice
Hall. 1995.

[21] D. Pisinger, Algorithms for Knapsack Problems, Ph. D. Thesis,
Department of Computer Science, University of Copenhagen,
Denmark, 1995.

[22] V. Poirriez, N. Yanev and R. Andonov, “A hybrid algorithm for the
unbounded knapsack problem”, Discrete Optimization, volume 6,
2009, pp. 110-124.

[23] A. H. G. Rinooy Kan, Machine Complexity Problems: Classification
Complexity and Computations. Nijhoff, The Hague, 1976.

[24] F. Rossi, P. v. Beek and T. Walsh, Constraint Programming, In
Handbook of Knowledge Representation, Edited by B. Porter, V.
Lifschitz and F. van Harmelen, 2008 , Elsevier B.V.

[25] M. H. Rothkopf, A. Pekec and R. M Harstad. Computationally
Manageable Combinatorial Auctions. Management Science,
44(8):1131 – 1147, 1998.

[26] T. Sandholm, "Algorithm for Optimal Winner Determination in
Combinatorial Auctions," Artificial Intelligence (135) 2002, pp 1 -
54.

[27] A. K. Sen, and A. Bagchi, Graph Search Methods for Non-order-
preserving Evaluation Functions: Applications to Job Sequencing
Problems, Artificial Intelligence, 86(1), 43-73, 1996.

[28] W. Szwarc, M. E. Posner and J. J. Liu, “The single machine
scheduling problem with quadratic penalty function of completion
times”, Management Science. Volume 34, no 2, 1988, pp. 1480-
1488.

[29] W. Townsend, The Single Machine Scheduling Problem with
Quadratic Penalty Function of Completion Times: A Branch-and-
bound Solution, Management Science, 24(5), 530-534, 1978.

[30] W. Vickrey, "Counterspeculation, Auctions, and Competitive Sealed
Tenders," Journal of Finance (16) 1961, pp 8 - 37.

[31] K. V. Viswanathan and A. K. Sen, Greedy by Chance – Stochastic
Greedy Algorithms, Proceedings of the Sixth International
Conference on Autonomic and Autonomous Systems (ICAS 2010),
March 7-13, 2010, Cancun, Mexico, published by IEEE CPS, pp.
182-187.

11

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Adaptive Multimedia Presentation System

Philip Davies
Faculty of Technology

Bournemouth and Poole

College

Bournemouth, UK

pdavies@bpc.ac.uk

David Newell
Software Systems Research

Group

Bournemouth University

Bournemouth, UK

dnewell@bournemouth.ac.uk

Nick Rowe
Faculty of Technology

Bournemouth and Poole

College

Bournemouth, UK

nrowe@bpc.ac.uk

Suzy Atfield-Cutts
Software Systems Research

Group

Bournemouth University

Bournemouth, UK

satfieldcutts@bournemouth.ac.uk

Abstract - Requirements elicitation for a multimedia presentation

system for e-learning led the writers to propose a video

segmentation process that adapts learning materials through

online interventions between the student and tutor. The tutor

tailors audio/visual segments by dynamically inserting new

fragments that provide supplementary updates in response to

questions from students. A survey of advanced adaptive

approaches revealed that processing of manually or automatically

generated metadata would provide better adaptation. Automated

use of metadata requires storage and processing of context

dependent ontology hierarchies that describe the semantics of the

curriculum. Data and semantic models needed to adaptively

process multimedia presentations in real-time are derived. The

design models are implemented using HTML, XML and Flash.

The authors conclude that the use of context-based rules that

process meta-level descriptions of segmented multimedia

components stored according to a bounded ontology can produce

a system that dynamically adapts learning materials.

Keywords – e-learning, adaption, metadata, semantic, ontology.

I. INTRODUCTION

Traditional lectures and seminars are being supplemented or

replaced by multimedia presentation systems. However, this

movement towards on-line learning suffers from a number of

drawbacks, such as reductions in contact with real tutors and

changes to the traditional teaching-learning feedback loop. The

Adaptive Multimedia Presentation System (AMPS) is an

attempt to overcomes some of these drawbacks [1].

A brief survey of prevailing approaches to adaptive multimedia

learning [2],[3],[4] has shown that systems with

personalisation requirements have begun to be designed and

developed. For example, Yang and Yang discuss the

development of SMILAuthor [5] a tool based on the

Synchronised Multimedia Integration Language, SMIL.

SMILAuthor generates SMIL code to spatially place objects on

a presentation panel using a drag-and-drop interface. It claims

benefits over other multimedia authoring tools because the use

of visual representation of a timeline for the placement of

events making generation of SMIL referring to temporal events

much simpler and less error prone than the alternative manual

coding of an SMIL document. Reducing the complexity of the

content creation process helps reduce the incidence of coding

errors. The novel approach introduced by this paper provides

features of the dynamic fragmentation of learning materials,

which the SMILAuthor does not. Fragmentation facilitates the

formation of better multimedia materials because the tutor

supplements materials when responding to online questions

from students. It also provides a future platform for a

multimedia presentation system that is adaptive in real-time.

The future development of HTML 5 may address some of

these shortcomings [5].

Evaluation of an initial prototype provided evidence for the

need to add efficient navigation for student users, so that they

can access relevant learning at any point in the audio/video

segment. This requires user controls and the structure of the

presentation to be manifest to the student in the form of a table

of contents. An evaluation is made to determine how the

student users‟ experience is genuinely improved by using

adaptation, what models are needed theoretically and what are

the best practical tools to generate executable models to

achieve dynamic adaptation - for example, the ontology and

the student/tutor model - what form do the input and output

files need to take, what is the nature of adaptation, to what

extent can the current prototype interface be considered

adaptive and how can the adaptations be evaluated and

improved. The structure of the paper is as follows: Section 2

gives brief requirements specification for the proposed

adaptive multimedia presentation system, Section 3 introduces

the prototype AMPS while Section 4 looks in more detail at the

media segmentation process used within AMPS. Section 5

looks at the adaptive authoring tool and its architecture.

Section 6 discusses the prototype AMPS interface evaluation

findings in a pilot study with degree level students and their

implications. Section 7 discusses the question of automating

AMPS and presents a staged implementation plan. Section 8

looks at the issues surrounding the use of ontology and

develops a particular instance of network ontology and its

application to AMPS. Finally, section 9 is a conclusion and

discussion of future work.

II. REQUIREMENTS FOR INTERFACE DESIGN

An initial use case diagram in Figure 1 shows essential

requirements for the tutor and the student. The tutor requires

the minimum amount of time and effort to input learning

material. Initially, this is limited to producing and uploading

the audio/video segments and being able to put them into an

appropriate order. An adaptive engine within the system could

extract appropriate text and timeline data from these and

12

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distribute this to the display panes of the interface to present

the table of contents and supplementary text.

Adaptive Multimedia

Presentation System

Student Tutor

Add Audio/Video

control audio

video presentation

Ask and upload

questions

access audio video

*

*

*

*

*

*

*

*

Delete audio/video

*

*

Order audio video

segments

*

*

Access table of

contents

Access Support Text

*

*

*

*

Figure 1: Use Case Diagram

The student requires access to the audio/video segments and

some measure of control over their delivery. Being able to

select and re-run segments is important for learning at the

student‟s own pace. To enable this, an intuitive navigation

system is required, which sequences and orders the significant

points in the presentation and displays them in a table of

contents with the associated supporting text. The ability to gain

clarification on points not understood is also an essential

requirement to effective learning. It is intended to fulfil this

requirement with supplemental text and by providing access to

other materials at any point in time during the presentation, as

well as the ability to stop, start and jump to other points on the

presentation timeline.

A proposed prototype system shown in Figure 2 is composed

of five principal parts: the main presentation panel, the table of

contents panel, the supplementary text panel, the questions

panel and submit button, and timeline controls for the running

of the audio/video presentations.

A. Main Presentation Area

This contains the multimedia document which may display any

combination of text, graphic, image, audio and video. It is also

the primary data display area from which all supplemental

information will be retrieved.

B. Table of Contents

The information displayed in the table of contents is

automatically retrieved from the support text pane. This will

require the use of intelligent knowledge storage and retrieval

techniques that can structure, select and display the most useful

learning material. The table of contents is presented in a

hierarchical structure with a breakdown of sections. Each

section title is a link to a position on the timeline, so that it is

possible to jump between places within the same

video/animation, or sequence of them. In later developments,

additional supplementary information may be provided from

the main presentation area using a variety of knowledge

engineering techniques including text-based retrieval, image

retrieval, video retrieval, and audio retrieval to construct a

more adaptable multimedia presentation. Content-based

retrieval techniques vary from one element of multimedia to

another, ranging from keywords for texts, colour and texture

for images and spoken words for audio, for example.

C. Supporting Text

Additional supporting notes will appear in this portion of the

screen. This is intended to be text that assists the user‟s

accessibility of the learning material. It may contain links to

other timelines, e.g. open a new window with a duplicate set of

components and its own timeline. The text displayed here may

be a simple transcription of the audio part of the presentation

displayed in the main area which could be retrieved by voice

recognition techniques but at present are manually produced by

the multimedia author.

Table
of

Contents

Main Presentation

Support
Text

Timeline Controls

Submit

Frequently Asked Questions

Figure 2: A proposed prototype system

Figure 3: Schematic of the prototype system

13

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. FAQ and Submit Button

A facility is needed to answer with questions raised by students

during a class or lecture. This external interaction requires the

tutor to respond to questions put by students using the system.

A proposed solution is to allow the user to invoke a text

dialogue with a tutor triggered by a button.

Figure 4: The submit question dialogue box

Questions are typed into the text area and submitted to the

tutor. From this, an e-mail might be generated, additional

automated data is added including a unique identifier for the

presentation module and a timestamp. The timestamp isolates

the precise time in the timeline when the question was asked,

allowing the tutor to track into the presentation to see the

context of the question.

The user‟s specific question forms the basis of feedback to

alert the tutor of possible clarifications in the presentation that

need additional explanation. The student‟s specific question is

normally answered by the tutor through the creation of new

video segments designed to provide clarification, which is

made available to all students by insertion into the original

presentation. The text question is displayed in a FAQ region

when the presentation timeline reaches the point when it was

asked. The audio/video segment containing the answer can

then be optionally activated by selecting the question, and

pausing the main presentation until the supplementary segment

has been played. As more students view the modules, ask

questions and gain answers, the presentation evolves by

dynamically enhancing the learning resources.

E. Media Time Line with Function Buttons

The system offers temporal interaction that allows students to

move through the presentation using the time bar, offering the

ability to pause a presentation, to select another point in the

timeline and restart the presentation, or by clicking on the table

of contents to move to a different specific area. The current

topic in the table of contents is highlighted in real-time so

students can determine the position within the presentation,

enabling students to manage their study time effectively. This

type of interaction allows students to adjust the delivery of the

presentation to suit their own learning style.

A graphical representation of a time line is provided, similar to

a media player, representing the temporal state of the currently

playing video or animation. A standard set of buttons for

controlling playback will be provided. The total duration of the

video/animation, or set of videos/animations which run in

sequence, determines the maximum duration of the media time

line.

III. THE PROTOTYPE AND ARCHITECURE

The first prototype of AMPS was developed based on the

authors‟ understanding about how students would be expected

to learn. This was felt to be a valuable initial step in

personalisation [7]. The next stage is to develop the

personalisation further through a new level of automated

adaption and work with student end-users to gain their direct

feedback of AMPS.

The prototype system shown in Figure 3 is composed of five

principal parts: the main presentation panel (A), the table of

contents panel (B), the supplementary text panel, (C) for the

running of the audio/video presentations (D) submit button,

and timeline controls and (E) the questions panel.

Figure 5: The AMPS prototype showing an adaptive CISCO™ learning object

The tutor builds the e-learning modules by using the

segmentation architecture, which provides flexible delivery.

The presentation is broken down as required into multiple

segments each corresponding to an individual learning object.

The selection, arrangement and linking of segments will

constitute the delivery of a particular learning obect with a

learning approach. In this way many segments could be played

one after the other to view different aspects of the content. For

example, screen shots within on-line learning materials may be

followed by a video of a practical laboratory example.

IV. MEDIA SEGMENTATION

Re-segmentation of the video into smaller sections with each

section carrying a single learning objective will be a direct

consequence of the new user requirements. Smaller segments

will further allow the personalization of the learning packages

in a highly customized way and lead towards the better

adaptation of AMPS.

14

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, in order to respond to the differing needs of

students, the linking of the media segments will involve more

than just a linear arrangement. The response to student

interaction requires branching capabilities within the

segmentation architecture [8],[9]. Segmentation allows the

selection of material according to learning objectives. Students

may choose to view only those segments they need to see.

Additionally, the system will have the ability to respond to new

students‟ needs not already met, or even envisioned, by

currently available material. Hence the system will record and

insert new media segments as required. For example, in

response to a student‟s question for more information on a

particular topic, the tutor can record a new segment and make

the new segment available to all students.

Figure 6: The timing of presentation segments

Figure 6 shows a main presentation sequence of four media

segments making up a learning object. Questions asked by

students at points in segment 2 and segment 3 have led to the

generation of new segments 5 and 6 by the tutor which link to

the main sequence at the correct points shown in the diagram.

This is equivalent to a multi-level list with a hierarchical

architecture. Each new segment is simply added as a

subsection at the appropriate place in the list which is

constructed in XML. This is rendered by the system to produce

a new table of contents entry and FAQ entry. When either of

these is selected, a new window opens containing the video or

animation explaining the answer to the query. Each term listed

needs to be linked back to a point or points in the video when

the term was used and is marked as a point on the timeline.

Clicking the link moves the current timeline to the associated

video or animation.

B. Media Player Configuration

As a single player is required to play any module,

configuration is required to activate the required resources and

also to give the temporal information needed to activate the

table of contents entries and the FAQs. Figure 8 shows the

original XML file used for configuring the system. The file has

an outer main tag. The children within this are frame rate,

module ID, filename, tocInfo and questions.

The filename tag contains the files to play in sequence in the

main presentation area. In this case a small presentation was

played before the start, ploadv2.swf. This allowed the main

presentation to be preloaded. While this was playing there was

no loading delay for the main presentation.

<?xml version="1.0" encoding="iso-8859-1"?>

<main>

 <framerate>8</framerate>

 <moduleid>V200134234</moduleid>

 <filename>

 <node name="ploadv2.swf"/>

 <node name="art02.swf"/>

 </filename>

 <tocInfo>

 <node label="Introduction" fileset="0" time="0.00" />

 <node label="Simple Oscillation" fileset="0" time="11.50" />

 <node label="Opening MAXScript Code" fileset="0" time="24.75" />

 <node label="Running the MAXScript" fileset="0" time="64.75" />

 <node label="Changing Oscillation Parameters" fileset="0"

time="109.38" />

 <node label="A Simple Oscillation Utility" fileset="0"

time="183.25" />

 ...

 <node label="Creating an Animated Surface" fileset="0"

time="1563.25" />

 <node label="Summary" fileset="0" time="1802.25" />

 </tocInfo>

 <questions>

 <node name="Find out more... " file="art01.swf" frame="88"/>

 <node name="Get a detailed... " file="art05.swf" frame="552"/>

 <node name="See a video of..." file="art06.swf" frame="10416"/>

 <node name="See a video of..." file="art02c.swf" frame="12416"/>

 <node name="How can this..." file="art03.swf" frame="12560"/>

 <node name="How can the oscillation..." file="art04.swf"

frame="12640"/>

 </questions>

</main>

Figure 8 : The XML configuration file

A prototype design architecture satisfying these initial

requirements has undergone implementation and evaluation by

the writers.

V. ADAPTIVE AUTHORING & RETRIEVAL TOOLS

A. Development Stages

A prototype development with staged design and

implementation with increasing levels of adaptation uses two

Virtual Learning Environments (VLE). One VLE is at

Bournemouth and Poole College, using the open source VLE

Moodle. Bournemouth University uses a localised version of

the Blackboard VLE. Both VLEs have been in use for a number

of years at these institutions to support peer assisted learning

[10].

 The development stages are:

1. Presentation player to display learning object content from

VLEs

2. Authoring integration tool with manually entered meta

data to create segmented learning objects

3. Authoring tool with automatic generation of meta data

using adaptation/ontology techniques

<SEGMENT 1>

<SEGMENT 2>

 <SEGMENT 5>

<SEGMENT 3>

 <SEGMENT 6>

<SEGMENT 4>

Figure 7: Multi-level list of media segments with a hierarchical

architecture

15

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4. Authoring tool with adaptive retrieval engine to

automatically create multimedia content for presentations

from generated ontology/metadata

5. Personalised adaptive multimedia presentation system

based on students‟ assessment test results.

B. User Types

The user types we model are student users and academic

tutors.

C. Authoring Tool

The authoring tool is shown in Figure 9. This can be evaluated

by the widespread use of the system by lecturing staff and

students. Success amongst staff will only occur if authoring is

easy and will continue where feedback from students is

widespread and positive. An authoring tool for multimedia

presentations must be easy to use by non-technical teaching

staff for speedy development of content [12].

Parser

Multimedia Document

Text Graphic Image Audio Video

Audio Text

Converter
Text Retrieval

Table of contents

Supporting Text

Ontology Engine

Timeline Marker

TIMELINE CONTROLS

INTERFACE Main Panel

INTERFACE Contents Panel

INTERFACE Supporting text Panel

INTERFACE Timeline Controls
Figure 9: Architecture of an Authoring Tool

VI. INTERFACE EVALUATION FINDINGS

An online survey was used for the evaluation of the AMPS. A

simple online training session teaching students how to

configure a Cisco wireless router, was set up in the AMPS

using the Cisco Packet Tracer [10] network simulation tool

Fifty-five first year undergraduates on the honours level

computing degree at Bournemouth University were recruited

during normal lab classes to undertake the training through the

AMPS.

Three areas of examination were covered by the questions. The

first is the current level of prior knowledge of online learning

environments and the subject area. The second is their

experience of using the AMPS with the focus on finding out

what users are trying to achieve and whether that could be

made easier using new technology. And the third is the level of

knowledge attained through the AMPS. Opportunity was

provided for additional comments the user wished to confide.

In terms of prior knowledge, the majority of students assessed

themselves as have good or excellent knowledge in the

following areas:
Computer Networking 53%

Using Visual Training programmes 60%

Using VLEs 57%

Approximately a third of students (34.5%) had prior

knowledge of the Cisco Packet Tracer programme and none

claimed excellent knowledge.

In the area of interface use, the following features of the AMPS

were rated as the most useful:
The ability to pause and rewind the presentation (83.6%)
The index list on the left of the screen (83.3%)

The ability to click on the index link to move along the video (81.4%)

The video panel in the centre (70.9%)
The time line below the video panel (70.9%).

Ease of use of the same features was rated as follows with

percentages showing responses rated as very easy or easy:
The index list on the left of the screen (83.7%)

The overall interface (83.6%)

The ability to click on the index link to move along the video (81.8%)
The teaching panel in the centre (77.8%)

The time line below the video panel (76.3%)

The content of the teaching package was rated as good or

excellent as follows:
How well explained was the content of the video? (83.3%)

How good was info in the index on the left? (83.4%)
How good was info in the text on the right? (49.1%)

How good was the email response (if used)? (17%) N/A (64.2%)

How good were the FAQs? (15.1%) N/A (49.1%)

Asking students to rate the most important feedback features

gave the following results for very important and quite

important:
Ask a question during the presentation? (68.5%)

See other student‟s questions and their replies? (50%)

Create your own FAQ entries? (38.9%)

We also asked what would be an acceptable response rate time

for feedback enquiries:
10 minutes 34.0%
1 hour 34.0%

4 hours 8.5%

24 hours 19.1%
2-3 Days 2.1%

1 week 2.1%

In the third section, we asked students how much they actually

felt they learned from the experience. The rating for those who

16

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

learned a substantial amount and those who learned quite a lot

are as follows:

Networking (51%), Wireless (52.9%), Packet Tracer (62.2%)

As a result of this survey a number of findings emerged which

have potential impact upon the redesign of the AMPS

interface.

First, concerning the layout of the interface, not all users

realized that there was a right-hand panel as this was just off

the screen for some users. This issue needs to be addressed

either by indicating the panel is off the screen, by

reorganisation of the interface elements, or by automatic

resizing of the application according to the size of the monitor

used to view it. These, and possibly other options, need

exploring, and user testing completed, to select the most

appropriate.

Second, concerning usability, a number of students commented

that the audio segment was too long at 30mins and requested

shorter teaching modules. User testing will determine the ideal

duration of each learning segment. In addition we have to

consider if the acceptable duration of learning segments

changes as the user becomes more familiar with the interface.

Segmenting the video into smaller sections with each section

carrying a single learning objective will be a direct

consequence of the new user requirements.

VII. AN APPROACH TOWARDS AUTOMATING AMPS

A staged approach to the automation of AMPS is planned as a

research programme:

1. The generation of additional video segments interweaved

within the original presentation as a response to student

feedback

2. The automatic generation of the content in the table of

contents pane (B)

3. The automatic generation of the content in the

supplementary text pane (E)

4. The segmentation of the video presentation (A) into

learning objects

5. The presentation of the learning material adapted to the

specific needs of the student and personalized to them.

At present only stage 1 has been realised. Figure 9 shows a

model of a theoretical segmentation architecture containing a

number of functions, including conversion of speech to text, a

parser, the employment of an appropriate ontology engine and

time line coordination to drive the AMPS.

The stages are as follows:

Stage 1: the audio component of the video clip will be parsed

through a voice to text engine to transliterate the voice content

of the presentation into text. This will be fed into the text panel

at the right of the interface. While viewing a multimedia

segment, for example, the audio of the presentation is

separated and passed through a text retrieval engine which uses

voice recognition principles to recover and provide text direct

to the supporting text panel. Text may then be sent to the

ontology engine. It uses a mixture of manual and automatically

generated semantic structures that represent the

conceptualisations meaningful within the context of the

segment contents. The details of operation and application of

ontology engines are current research areas [13] however the

required outcome is the construction of the table of contents in

the form of a hierarchy of terms. In the case of a 3D

visualisation tool, a heading „rendering‟ might be inserted into

the table of contents referring to a combination of multimedia

information available in the presentation system. The timeline

controls links the term „rendering‟ to relevant points in the

multimedia content to mark the position on the timeline. The

link provides a method to access the timeline of the relevant

video segment or animation.

Stage 2: the generated text will be analysed by the ontology

engine to construct the time-linked index. This will search the

generated text for every token in the networking ontology to

create a set of frequency distribution tables. Tables will be

constructed for each token level within the ontology hierarchy.

Level 1 tokens will form the primary analysis and will be

ordered first. Level 2 will be performed within level 1, and so

on. The frequency of level 1 tokens will determine how the

index is structured. Boundaries of discussion will need to be

detected in order to know when the topic has shifted from one

domain to another. The frequency of tokens will be sufficient

to name and label the domains of discussion but they will not

be able to determine the boundaries. This will require a

supplementary ontology dealing with concept boundary

transitions and searches for the tokens that indicate these

transitions.

Stage 3: The index elements will be passed through a timeline

marker to set up the timeline controls. In an effort to further

reduce authoring complexity, in the simplest case, metadata

describing the content of segments could be created and

entered manually by a domain expert at the time of media

segment creation.

Stages 4 and 5 are more complex and will be considered in

more detail in a later paper. However by analysing content

dynamically in response to students needs in real time, the

authoring tool itself would ideally be made capable of creating

ontology information and using metadata. It is anticipated that

the most difficult analysis would be looking for objects in

videos and determining their type and meaning. However, the

sports industry have analysis software for tracking the paths of

moving objects such as balls on pitches and organisations

involved in photography have workable face recognition

systems in cameras already in use.

Beyond stages 4 and 5 we envisage a programme that will

encompass the following considerations:

 The presentation system will be made adaptive

through stages 2-5 and will attempt to approach real-

time implementation.

17

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The scope of the application domain is the special

case of „Digital Networking‟ which will be defined

through an example ontology

 The knowledge represented in the ontology will be in

the form of a class diagram formatted in XML and

processed in an ontology engine constructed for the

purpose

 Inputs and outputs are used through a fully

documented API to control input into the AMPS user

interface and to personalise the learning experience

 There will need to be feedback from the user interface

to the ontology engine; this will be via a fully

documented API.

Future enhancements would add capability to „see‟ the frames

of the video, „see‟ the contents of images, „listen‟ to the audio,

or „read‟ text. The latter is the most feasible, for example by

searching for key words in the text, building a semantic model

of content or an ontology for the problem domain, and using

this to dynamically classify and construct useful content based

on the meaning of available materials.

Another challenging dimension is added when the dynamic

assembly of learning objects, based on content descriptions is

extended to distributed systems. An attempt is being made to

apply knowledge engineering principles such as storage and

retrieval of multimedia objects to the web. Practitioners are

investigating these areas actively. Henze, Dolog, & Nejdl [14]

have reported on the use of a logic description language,

Resource Description Formats, RDF, to guide the formation of

an ontology and metadata for three types of resource – domain

knowledge, user knowledge and observer knowledge. These

are used for personalisation of learning in a future semantic

web, although the production of quality materials in an open

system is problematic.

The theoretical foundations of logic languages and frameworks

such as RDF hold the promise of producing practical tools and

techniques for future adaptive multimedia presentation systems

but they are not fully explored yet. Providing personalised on-

line learning using an ontology engine to create adaptations in

a closed system, let alone an open one such as the Web, is an

active and complex research area [12]. Many writers are

investigating competing methods and techniques to apply

knowledge engineering based approaches to various

application domains. This includes the use of multi-agent

systems [15], neural networks or fuzzy logic filtering [16].

VIII. ONTOLOGIES, ADAPTION ENGINES AND THE API

Developing a Networking Ontology

There are a wide range of available ontology tools and models

which attempt to describe knowledge domains using ontology

capture and manipulation packages, e.g. Protégé Ontology

Editor developed by Stanford California [17],[18].

Investigation into currently available ontology tools and

models led to the decision to build our own prototype ontology

of the digital computer networking knowledge domain so that

it can be tightly customised to our students' particular learning

domain.

However, we have tentatively concluded that these models are

unlikely to contain the level of detail needed for digital

networking [13].We are sceptical about the utility of

constructing and executing, high-level, general-purpose

ontology models in an adaptive multimedia system, especially

if it is to operate in real-time [19]. This has also been supported

by finding in other specialist areas such as the biomedical

domain where formal ontologies can have clear limitations.

Research by Shultz et al. [20] has taken the view that

constructing large ontology models with many classes that

range over wide topic-areas can be meaningful. More

investigation is needed into this question.

Proposals to base real-time adaptation on feedback from

students' responses to dynamically change the selection of

menu links implies much closer integration between the

ontology engine, the student's profile, or students' historical

learned group profile, and the AMPS. Traditionally, two main

components or sub-system types are identified in adaptive

learning systems:

Case 1: Off-line recommender link mining engines, including

web link miners that the tutor assists in generating adaptive

presentations [12]. Output is in the form of candidate web links

or menu items audited by the tutor that attempt to narrow the

selections on offer to the student in the subject domain.

Case 2: Online engines that use pre-processed ontologies and

combine them with individual or multiple student profiles that

has been data mined, for example to find patterns that

represent groups of students with given attainment levels.

Outputs are recommendations for offering learning materials to

these groups of students [12]. Materials presented are deemed

appropriate to the student group as evaluated from outcome

data such as Multiple Choice Question (MPQ) tests.

 In addition to the problems already described, another

drawback of Case 1 is that too many options can be presented

to the tutor and the students. This makes the choices of

learning materials presented to students even more problematic

for a closed system such as ours. This is another reason why

the writers decided to develop a restricted portion of an

ontology of „Digital Computer Networking‟ for use as a proof

of concept model in the AMPS [21].

Figure 10 shows the contents of the Protégé ontology

modelling tool [17]. This ontology was obtained using the

writers‟ knowledge of the chosen „Digital Computer

Networking‟ problem domain. Knowledge of the curriculum in

both academic and industrial certification courses that the

writers have developed over many years of programme design

and teaching of the topic to undergraduate and postgraduates at

Bournemouth University was informally used to develop the

ontology.

The ontology can be extracted from Protégé as an .owl file

using the Manchester OWL Syntax [22], developed by the CO-

18

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ODE project for writing OWL class expressions, or as an XML

file as shown below in Figure 11 and Figure 12. This new

information format is expected to be useful for analytic

computational purposes as an input to the ontology engine.

A drawback of Case 2, making real-time adaptations hard to

realise, is that the two sub-systems in the ontology and student

model processes engine need to be combined and integrated for

adaptations to be achieved in real-time, or in other words,

without tutor assistance. The question therefore arises of how

to model the functionality of these sub-systems and how to

model the API between them to achieve close integration.

Figure 10: Sample Class Hierarchy of Digital Network Ontology Model

The Adaptation Engine and AMPS API

Most adaptive systems contain a form of split architecture

described above, but when considering the drawbacks

mentioned, the writers have divided the future system into two

sub-blocks and begun to develop an API between them. This

allows separation and integration to be achieved

simultaneously, so that the AMPS is able to perform

adaptations closer to real-time.

Following Figure 13, firstly, there is an ontology engine-

controller sub-block. Secondly, there is a user interface sub-

block that uses standard object technology modelling methods

such as model-view-controller notions, and a responsibility

based class/object analysis method has been used to model the

system. Messages can be bi-directional, providing feed-

forward control and the feedback needed to be able to approach

real-time adaptation. Thirdly, it is necessary to couple the

ontology engine tightly to the user interface and to define the

responsibilities of each sub-block. This requires detailed

analysis and database design [23] including:

 Data about the inputs from the XML description of

the ontology description tool that are processed by the

ontology engine

 A diagram of user interface classes to be used to

determine the optimal user interface behaviour

 Commands: these illustrate the input scenarios and

can be described as a storyboard or state transition

diagrams

 Messages: similarly, these explain possible output

scenarios (e.g. menus, text, voice, and timeline)

 List of classes/object with functional requirements

and an API will be modelled

 Choice of possible recommender algorithms [24]

 Implementation of methods

 Determination of evaluation approach will validate

the effectiveness of adaptations.

Figure 13 is a first cut analysis output showing how sub-

systems will collaborate and begins to locate functionality into

sub-systems and conceptualise the API. The following classes

have been included in the OntologyEngine sub–system:

:AdaptiveApp - Maintains abstract internal state of the UIApp

object that normally would have one instance but could be

many, this is so the engine takes control of the AMPS User

Interface.

:ContextDependentMenuGenerator - Tells AdaptiveUIApp

what to display

:OntologyEngine contains an Engine class that itself has a

class structure. This will fundamentally consist of -

:OntologyEngine::Engine - The Engine class is responsible

for the main control that drives the new AMPS system. The

methods needed depend on the XML format (from/to the

Protégé model) and the nature of the selected adaptation

technique. These could be a data mining approach or a neural

network approach. The effectiveness of adaptations will need

to be evaluated to find the optimal choice.

<!--

http://www.semanticweb.org/ontologies/2010/0

/OntologyOfDIgitalNetworking.owl#Device -->

<owl:Class rdf:about="#Device">

<rdfs:subClassOf rdf:resource="#Hardware"/>

</owl:Class>

<SubClassOf>

<Class

URI="&OntologyOfDIgitalNetworking;Device"/>

<Class

URI="&OntologyOfDIgitalNetworking;Hardware"/>

</SubClassOf>

Figure 11: Example fragment of a class from the owl file produced by

Protégé

Figure 12: Example fragment of a class from the XML file produced by

Protégé

19

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OntologyEngine::AdaptiveApp - Maintains the state of the

UIApp to make available to Engine. As explained above, this

class is key and needed inside OntologyEngine to maintain

state common to the engine and the User Interface.

Figure 13: A Collaboration Graph of the AMPS

OntologyEngine::AdaptiveSegment – Describes sections of

multiple components or segmented learning material, e.g.

LEARNING OBJECT segments that can be enabled or

disabled by the OntologyEngine::Engine to achieve adaptation.

Internally to the AMPS system, the OntologyEngine class itself

has a structure that will need more detailed analysis than can

be presented in this paper. Experiments with alternative class

structures will be a critical determinant of feasibility,

performance and usability. Methods and state will need to be

further analysed as a guide to performance.

The design decision was taken to maintain the state of an

AdaptiveUIApp class, which will mirror the AMPS state,

internally to the Ontology Engine, rather than allow the User

Interface to stand and operate alone as is the case with the

current prototype implementation. This innovation will achieve

the integration needed to approach runtime performance.

IX. CONCLUSIONS AND FUTURE WORK

An investigation has been undertaken into the requirements,

underlying techniques and technologies needed for an adaptive

multimedia presentation system. Research issues associated

with this knowledge based approach to personalisation of

learning have been outlined and begun to be explored. A

process for adapting multimedia presentations through adding

new content segments requested by student interaction, e.g.

email, using a tree-branching sequencing system for

multimedia segments has been implemented and evaluated.

Content selection can make use of a form of knowledge based

analysis of semantic contents of multimedia segments,

dynamic generation of ontology information about video

segments is stored, and retrieval proceeds dynamically

according to the use of the semantic data in future forms of

such a system.

Adaptation can take many forms of response to different types

of stimuli. The AMPS is at present only adaptive in responding

with manually produced additional video segments to the

stimulus of student emails. This is considered a low level of

adaption and the programme plans to increase the number of

stimuli which it will automatically respond to. These stimuli

need to include student prior knowledge and student ability

which we call the “student signature” and will be developed

further in another paper.

Feedback from students indicates the learning experience has

been enhanced as evidenced by the results of the online survey

presented above. Evaluation has shown that these adaptations

were liked by students but do not achieve real-time adaptation

in the traditional sense because of time delays. A more

interactive approach to adaptation has been described and the

foundation of an analysis model has been described.

Further Questions and Continuing Research
Summing up, work discussed in this paper has answered some

of the research questions posed at the start of this paper, but

has also indicated further questions and directions for research.

The unanswered questions are:

 What is the usability level of the user interface and

how can this be further improved?

 What further adaptation features are required and how

are they to be evaluated?

 What model is best employed to define the interaction

between the user interface and the adaptation engine?

 What is the full specification of the ontologies that are

required and how is it best captured?

 How should database schemas be constructed for the

AMPS for real-time extension at data and meta

levels?

 How should the ontology engine structure be

modelled and evaluated? Which possible data mining,

or other „smart‟ techniques are considered candidates

for the algorithm or protocol?

 How do we determine the appropriate definition of an

API, possibly by means of an IDL, between the

ontology engine and the AMPS user interface

presentation system?

A carefully derived student and tutor model remains to be

developed more fully to automate real-time adaptations. We

will address these questions in a future paper.

REFERENCES

[1] Cutts, S., Davies, P., Newell, D. and Rowe, N., (2009)

Evaluation of an Adaptive Multimedia Presentation

System (AMPS) with Contextual Supplemental

Support Media Proceedings of the MMEDIA 2010

Conference, Athens, Greece.

20

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] Adams G, Dolan M, Freed G, Hayes S, Hodge E,

Kirby D, Michel T, Singer D (2009) Timed Text (TT)

Authoring Format 1.0 – Distribution Format

Exchange Profile (DFXP). Timed Text Working

Group, W3C. Available at:

http://www.w3.org/TR/2009/CR-ttaf1-dfxp-

20090924/#intro [Accessed on 3 January 2010]

[3] Salton, G. & McGill, M.J. (1993) ‘Introduction to

Modern Information Retrieval’. McGraw-Hill.

[4] Cristea, A.I., Smits, D., De Bra, P., (2005) 'Writing

MOT, Reading AHA! - converting between an

authoring and a delivery system for adaptive

educational hypermedia'. A3EH Workshop, AIED‟05.

http://eprints.dcs.warwick.ac.uk/182/1/5-10-cristea4--

.pdf pg no: 1

[5] Yang, C., & Yang Y. (2003) SMILAuthor: An

Authoring System for SMIL-based Multimedia

Presentations. Multimedia Tools and Applications, 21.

243-260 Kluwer Academic Publishers, Netherlands

http://www.springerlink.com/content/t4853282j835k1

g5/fulltext.pdf pg no: 245

[6] van Kesteren, A (2009) HTML 5 differences from

HTML 4. W3C. Available at:

http://www.w3.org/TR/html5-diff/ [Accessed on 3

January 2010]

[7] Evans, A., Fernandez, M., Vallet, D. and Castells, P.,

(2006) Adaptive Multimedia Access: From User

Needs to Semantic Personalisation.

[8] Jun Yang, Q. L. (2007). „Retrieval of Flash™ Movies

by Semantic Content: Research Issues, Generic

Framework, and Future Directions. Multimedia Tools

and Applications , 31, 1-23.

[9] Ketter, W. Batchu, A., Berosik, G., McCready, D.

(2008) ‘A Semantic Web Architecture for Advocate

Agents to Determine Preferences and Facilitate

Decision Making‟, ACM.

http://delivery.acm.org/10.1145/1410000/1409554/a1

0-

ketter.pdf?ip=194.66.74.22&CFID=26634273&CFT

OKEN=55467158&__acm__=1308058054_9471956

16d66cedefaa36c67a47df46d

[10] Jeary S, Atfield-Cutts S, Phalp K, Mayes H, Bates, N,.

(2010). 'Using IT Support to improve the quality of

Peer Assisted Learning'. 29-31 March Inspire 2010,

London, UK.

http://eprints.bournemouth.ac.uk/13247/1/Inspire2010

.pdf pg no: 8, 10

[11] Cisco (2009) Cisco Packet Tracer, available at:

http://www.cisco.com/web/learning/netacad/course_c

atalog/PacketTracer.html [Accessed 29 January 2010]

[12] Shankar Vembu, M. K. (2006). „Towards Bridging

the Semantic Gap in Multimedia Annotation and

Retrieval‟. 1st International Workshop on Semantic

Web Annotations for Multimedia (SWAMM).

http://74.125.155.132/scholar?q=cache:DN_NGBiPjc

gJ:scholar.google.com/+Towards+Bridging+the+Sem

antic+Gap+in+Multimedia+Annotation+and+Retrieva

l&hl=en&as_sdt=0,5 pg no:8

[13] Frensel, D., van Harmelen, F., Horrocks, I.,

McGuiness, D., Patel-Schneider, P. (2001) ‘OIL: An

Ontology Infrastructure for the Semantic Web‟, IEEE

Intelligent Systems.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=920598 pg no:38

[14] Henze, N., Dolog, P. & Nejdl, W. (2004) ‘Reasoning

and Ontologies for Personalised E-Learning in the

Semantic Web’, Educational Technology & Society,

7(4), 82-97. http://www.ifets.info/journals/7_4/10.pdf

pg no:82

[15] Ketter, W. Batchu, A., Berosik, G., McCready, D.

(2008) ‘A Semantic Web Architecture for Advocate

Agents to Determine Preferences and Facilitate

Decision Making‟, ACM.

http://delivery.acm.org/10.1145/1410000/1409554/a1

0-

ketter.pdf?ip=194.66.74.22&CFID=26634273&CFT

OKEN=55467158&__acm__=1308060281_afa4ea42

9e04c966c30ecc329cdb583d

[16] Teuteberg, F.(2003) „Intelligent Agents for

Documentation Categorisation and Adaptive Filtering

Using a Neural Network Approach and Fuzzy Logic‟

in Knowledge-based Information Retrieval and

Filtering from the Web (Ed. Abramowicz, W.),

Kluwer Academic. 231-250

[17] Protégé (2009) Protégé Ontology Editor, Stanford

University California, USA.

http://protege.stanford.edu/ [Accessed online 28

January 2010]

[18] Stanford Centre for Biomedical Informatics Research,

(2010). Protégé - Ontology Editor and Knowledge

Acquisition System. Stanford, USA, Stanford Center

for Biomedical Informatics Research supported by

grant LM007885 from the United States National

Library of Medicine Available from:

http://protege.stanford.edu [Accessed 29 January

2010].

[19] Frensel, D., van Harmelen, F., Horrocks, I.,

McGuiness, D., Patel-Schneider, P. (2001) ‘OIL: An

Ontology Infrastructure for the Semantic Web‟, IEEE

Intelligent Systems.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=920598

[20] Shultz, S., Stenzhorn, H., Boeker, M., & Smith, B.,

(2009) Strengths and limitations of formal ontologies

in the biomedical domain, RECIIS Electronic Journal

of Communication, and Information and Innovation in

Health, Rio de Janeiro, v.3, n.1, 31-45, Mar., 2009,

21

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

available from:

http://www.reciis.cict.fiocruz.br/index.php/reciis/artic

le/viewFile/241/253 [Accessed online 28 January

2010]

[21] Natalya F. Noy & Deborah L. McGuinness.(2009)

Ontology Development 101: A Guide to Creating

Your First Ontology. Stanford University, Stanford,

CA, 94305 Available at:

http://www.ksl.stanford.edu/people/dlm/papers/ontolo

gy101/ontology101-noy-mcguinness.html [Accessed

online 8 January 2010]

[22] Bio Health Informatics Group at The University of

Manchester Department of Computer Science (2009)

The Manchester OWL Syntax developed by the CO-

ODE project. University of Manchester, UK.

Available at: http://www.co-ode.org/about/ [Accessed

29 January 2010]

[23] Gruber,T. (2009) Encyclopedia of Database Systems,

Ling Liu and M. Tamer Özsu (Eds.), Springer-Verlag,

2009. Available at:

http://tomgruber.org/writing/ontology-definition-

2007.htm [Accessed 8th January, 2010]

[24] Romero, C., Ventura, S., Delgado, J. A., De Bra, P.,

Salton, G. & McGill, M.J. (1993) Personalized Links

Recommendation Based on Data Mining in Adaptive

Educational Hypermedia Systems in ‘Introduction to

Modern Information Retrieval’. McGraw-Hill.

22

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Scalable Solution to Deterministic Per-Flow Resource Booking

Pier Luca Montessoro Daniele De Caneva
Department of Electrical, Management and Mechanical Engineering

University of Udine, 33100 ITALY
{montessoro, decaneva}@uniud.it

Abstract— This paper presents REBOOK, a resource reservation
management algorithm for packet switching network. It provides
deterministic, fast (real-time) dynamic resource allocation and
release; it can be used as an engine supporting different network-
oriented techniques for Quality of Service. Based on a stateful
approach, it handles faults and network errors, and recovers
from route changes and unexpected flows shutdown. The
distributed scheme used to store flows information avoids the
need of searching for entries within the routers’ control memory
when packets are received and guarantees constant complexity.
REBOOK can be implemented in hardware and is compatible
with any packet switching network. In the Internet, it can be
integrated in TCP or used with UDP to make it network friendly.
Moreover, a slightly extended RSVP implementation can be used
as signaling and hosting protocol. A software implementation as
standalone protocol has been developed to prove its effectiveness,
robustness, and performances.

Keywords- Quality of Service; network reliability; fast resource
reservation; transmission rate control.

I. INTRODUCTION
The number of multimedia services on the Internet is

rapidly growing, and the importance of Quality of Service
(QoS) is increasing. A major problem in providing QoS
guarantees in a packet switching network comes from the
difficulty of handling, in routers, the state information
belonging to active flows. In the core of the Internet, the
conventional known techniques simply fail in keeping up-to-
date the huge amount of flows information at a reasonable
cost. This paper proposes a new technique that, involving end
nodes’ applications or edge routers or firewalls, provides
constant-cost access to resource reservation information.

Quite often multimedia applications’ designers prefer UDP
as transport protocol because its efficiency, although those
applications generally require high bandwidth and would
benefit from congestion control mechanisms. Several methods
have been introduced for adding QoS control mechanisms to
packet switching networks, mainly based on adapting the
sender’s transmission rate in accordance with the network
congestion state (see Section II), but typically with such
approaches no QoS guarantees can be made effectively.

The proposed algorithm, that we call REBOOK [1], allows
a control protocol to prevent congestion by reserving
resources in advance. REBOOK is not dependant on TCP/IP

protocols, as it can be used in any other packet switching
network. Obviously, in the following the Internet and the
TCP/IP protocol suite will be used as reference environment
for its description.

REBOOK requires a hosting protocol to carry the
algorithm’s messages. They can be handled by a dedicated
signaling protocol, like RSVP [3] or a new ad hoc protocol, or
it can be embedded in a data transport protocol, like TCP
using the options field.

In REBOOK, the node requested to send QoS-sensitive data
(e.g., the sender of a multimedia stream) is responsible for
resource reservation request, on the bases of the amount and
type of data to be transmitted, application constraints and,
possibly, SLA (Service Level Agreement) parameters. While
the connection is active the amount of granted resources may
be reduced to allow the activation of new flows in an almost-
congested network or may be increased if switching nodes
become less loaded. These events are acknowledged by the
sender that will consequently adapt its transmission rate.
RSVP is receiver-oriented mainly because it is designed to
support singlecast and multicast flows as well. A possible
implementation of REBOOK in RSVP for multicast support
has been designed.

The proposed algorithm does not rely on any special
network feature: it works even if only part of the network is
REBOOK-aware; the resource reservation is effective even if
part of a flow traverses unaware routers. There are no special
requirements to routing, that can be asymmetrical
(transmitting and receiving flows can follow different paths),
except, obviously, its stability: in normal conditions data
packets and control messages must follow the same route for
the duration of the connection.

REBOOK does not rely on special hardware in routers
either. Its status storage scheme allows direct access to table
entries, without any hardware lookup feature, using
conventional memory architecture. This makes its
implementation faster and cheaper than today’s typical
solutions provided by hardware hashing.

Finally, REBOOK does not require any improvement in the
switching fabric. No additional memory for queues and
buffers nor different packet handling. On the contrary, the
router architecture will drive the resource granting phase,
depending on available resources left by previous reservations.

23

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the following, after a summary of related work in Section
II, Section III discusses the scalability of the proposed stateful
approach, whereas Section IV presents the algorithm itself.
Section V and VI analyze implementation issues and
experimental results, respectively. In Section VII, some
conclusions are drawn and the future work is presented.

II. RELATED WORK
Congestion control in IP networks is a challenging issue,

since it represents a critical factor for the robustness of the
Internet [2]. Reservation of resources, admission control and
traffic policing are among the most commonly used open-loop
mechanisms to avoid congestion. On the other hand, closed-
loop mechanisms rely on feedback to detect and prevent
congestion [3].

A. Resource reservation and management
The IntServ architecture is an interesting implementation,

because it uses RSVP [4] to reserve the resources required by
the QoS-sensitive user’s applications. Nevertheless,
experience with real networks has revealed severe scalability
problems of this architecture, due to the amount of routing and
reservation information stored inside the routers.

Furthermore, RSVP implements a soft state model and uses
periodic refresh control messages to manage its states, that
introduces signaling overhead [5].

On the other side, the approach proposed by DiffServ is
based on flow aggregates: it allows an efficient
implementation inside the network. On the other hand, it
conserves a statistical approach to resource provisioning and
thus it does not provide any real service guarantee to any
possible flow [6]. Enhancements to DiffServ may come from
the Bandwidth Broker (BB) [7][8].

Cross-layer congestion control in IP networks has been
addressed by XCP [9] that proposes a protocol-oriented model
that puts the control state in the packets and not in the routers,
with the objective of improving the scalability. Unfortunately,
such schemes are hard to deploy in today’s Internet [10].

Recent studies have also demonstrated that soft-state
approaches coupled with explicit removal substantially
improves the degree of state consistency while introducing
little additional signaling message overhead [11]. This is the
direction followed to design REBOOK.

B. Efficiency and path recovery
Resource reservation in packet networks is widely

recognized as an essential requirement for applications, which
require guaranteed minimum bandwidth, low delay, or both
[12]; several fast resource reservation protocols are thus being
studied and developed.

In order to increase RSVP efficiency, REDO RSVP [4]
proposed a refresh mechanism made per aggregation instead
of per flow, improving RSVP scalability by reducing the
granularity of signaling information.

The YESSIR [13] and the LFS [14] protocols attempt to
avoid complexity of RSVP by limiting its objectives and
fulfilling bandwidth reservation for one-way, unicast flows.

MPLS with Traffic Engineering sets up label-switched
paths (LSPs) along links with available resources: thus,
ensuring that bandwidth is always available for a particular
flow and avoiding congestion both in the steady state and in
failure scenarios. The paradigm is that MPLS can easily
address prioritized and/or guaranteed traffic along an arbitrary
path, which can be independent from the underlying routing
protocol. This would allow enhancing network utilization and
fairness [15][16].

Interesting works on path selection algorithms are shown in
literature [17][18][19], giving also some interesting solutions
to failure recovery and QoS-aware fast rerouting procedures
[19][20]. Nevertheless, the optimal resource allocation on all
links and nodes along a reserved path when a topology change
occurs is a common challenge, which relies on the trade-off
between scalability and overall efficiency in resource
management.

REBOOK is based on a Distributed Linked Data Structure
(DLDS). DLDS are linked data structures that keep pointers to
memory locations or indexes to table entries containing
information stored in the routers that are very likely to be
accessed in the future. When a packet whose handling requires
access to that information is received, the DLDS pointer/index
can be found in the packet itself and lookup procedures can be
avoided. DLDS are distributed data structures since each
pointer/index is not stored within the router it addresses, but in
the end nodes, in the packets, and possibly in adjacent routers.
DLDS are dynamic, since the collection of pointers/indexes is
dynamically built and travels along the routes between the end
nodes. To keep the pointers consistent in a dynamic
environment, where route changes may send packets
containing a pointer/index belonging to a router different by
the one being traversed, a specific integrity check is adopted.
Thanks to DLDS, REBOOK can improve many known
techniques because it provides an efficient way to handle
reservation information within the network nodes regardless
the actual strategy to assign resources to the flows.

III. SCALABILITY
One widely accepted paradigm in networking is that packet

switching is a scalable technique because it does not keep
information for each connection (flow) traversing a node.
Stateful approaches, in which some information are kept up to
date for each connection in every router along the path, are not
generally believed to be scalable enough to handle the
increasing traffic on the Internet.

However, memory is no longer a limitation with today’s
technology. Provided that a tuple describing the status of a
flow should contain network and transport layer addresses,
some fields about the allocated resources and some control
fields, we can roughly estimate a memory occupation of about
50 bytes per active flow, even for 128-bits IPv6 network
addresses. In a conventional 4 GB memory the router could
store information belonging to almost 86 million flows.

The open problem is the excessive computation time needed
to handle the state information. As shown in the following,
REBOOK solves this problem with a distributed status storage

24

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scheme that keeps track of memory addresses in routers and
allows direct access to the stored information, well avoiding
the need of searching data continuously.

IV. THE ALGORITHM
The REBOOK algorithm allows resource booking/release

on a packet network. It is based on several key concepts:
1) a distributed scheme for storing the resource reservation

status
2) each router keeps a very limited amount of information

for each flow requiring resources (as shown above,
REBOOK can handle millions of flows in very high speed
nodes)

3) a distributed scheme for keeping track of memory
addresses (pointers) overcomes the need for searching the
resource allocation tables

4) “keepalive” messages periodically signal the persistence
of each flow along the path; the routers use this signaling
to recover from route changes, uncommitted flow
shutdowns, hosts or nodes faults, loss of REBOOK
messages

5) the order of nodes traversed by a flow is kept in a
distributed form and used to discover route changes.

REBOOK provides a unidirectional resource reservation, in

the sense that to reserve resources in both direction of a flow
two instances of the algorithm should be activated, even
though some setup and shutdown messages can be glued
together. REBOOK, in fact, can be easily integrated in
existing transport or application layer protocols to merge end-
to-end session setup and hop-by-hop resource reservation.

REBOOK works as follows: when a flow requires resource
reservation, the host (or a border router that controls the QoS
parameters for flows accessing the network) sends to the
receiver (host or border router) a reservation request message
that is normally routed along the path. Each node keeps track
of the request and reserves the requested resource or the
amount still available (if less than requested). Reduction in the
allocated resources is written in the resource reservation
request message while it traverses the router. The receiving
end system sends back to the sender a resource reservation
acknowledge notifying the current amount reserved. From that
point on, periodical keepalive messages are sent to confirm the
activity of the flow and to notify the routers along the path the
current amount reserved. If the amount reserved by a router
was subsequently reduced by the next ones along the path,
from keepalive messages it will know how much can be
released. Keepalive messages are also used to notify a booking
reduction request from a overloaded router.

So far, REBOOK appears quite straightforward. The
problem is that in the real world flows can suddenly disappear
(due to host or router faults) or change way (dynamic routing).
It is mandatory the quick identification and release of all the
allocated resources that are no longer used. Even the smallest
fraction of “lost” resources would produce catastrophic effects
when cumulated over the days, months or even years long
routers uptime. This requires continuous update of the

resource allocation tables in routers, a task that so far has been
believed to be too expensive, requiring special hardware
architectures (e.g., Content Addressable Memories, hardware
hash tables) or high computing power. The REBOOK’s
distributed status storage scheme overcomes these limitations
with a pure software solution.

In order to make the resource reservation, the end node
must communicate to the network the minimum amount of
resources needed for the application to work and the
maximum amount that can actually be used. How an
application could know this information? And, more
important, why an end node should not attempt to reserve
much more than what it needs? There are several reasons,
some general and others related to specific environments. The
self-regulation of the end node is not new: the very basic TCP
congestion control drastically reduces the transmission rate
after a packet loss. Nodes share the resources trying not to
overload the network. In the same way a multimedia
application, on the basis of encoding and compression
information, knows the peak transmission rate and the
minimum bandwidth required to play the stream without
interruptions. The reasons because a node should not
overestimate its requirements depend on the environment. The
most obvious case is a controlled environment where nodes
are set-top box or computers with specific accounting and
descrambling hardware for pay-per-view web TV distribution
or similar multimedia services. A more general scenario is
provided by ISPs that implement traffic shaping to limit high-
speed peer-to-peer download; self-reducing bandwidth
requests would avoid generalized slow-down of the user
access and, on heavily loaded networks, connection refusal
due to excessive resource reservation. In the future, speed-
based accounting could become quite common; reducing the
required bandwidth for non-real-time applications could help
reducing access costs.

A. Rebook Messages and Data Structures
Figure 1 represents the REBOOK message fields. In order

to compute the message size, IPv4 address format has been
considered. Please note that for some message types
(“RESET”, for instance), not all the fields are needed, but in
the following we will ignore this possible optimization.

A RESV message is used to start resource booking. The

flow identification field is made of the tuple { source IP,
source PORT, destination IP, destination PORT } and
uniquely identifies a TCP or UDP flow. The resource
reservation request is expressed by the Resource field,
containing the minimum amount of resource needed by the
flow to support the application and the maximum amount of
resource that it can really use. Rcurr is the actual resource
available and reserved along the path; this value is reduced by
the traversed router if the available resource is less than the
maximum required. The remaining fields belong to the direct
table access and fault recovery algorithms, and will be
discussed later.

The reservation request carried by the RESV message is

25

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

acknowledged by a RESV_ACK message, from receiver to
sender. The KPALV type is used to identify the keepalive
messages, from sender to receiver, while UP_RESV,
RL_RESV, PRL_ACK are used to dynamically change the
amount of allocated resources. The RESET message type
signals that a flow’s resource booking is no longer valid due to
an unexpected event along the path.

Each time a new flow requires resource booking, the router
creates a new Resource Allocation Table (RAT) entry. Its
format is fixed, 29-bytes wide (IPv4, 53 bytes in IPv6), as
shown in Figure 2.

The new entry is created from a free list using the List
pointer field. The RAT entry stores the Flow ID field, the
amount of requested and currently allocated resource and the
system time (the Age field), used to identify reservations
hanging due to faults or network errors. The two fields IN and
OUT are router’s implementation-dependent, and can be
substituted by the actual internal information the router needs
to handle the resources release when the flow terminates.

The field Path Position is the key that makes REBOOK
robust at a very minimum cost and will be discussed in next
Section.

The field Rrel allows a partial resource release when the
router needs to free resources to make room for new flows.

B. Resource Reservation Algorithm
Figure 3 represents a simple network in which host A must

reserve a resource along the route to host B.
At the very beginning, host A sends a RESV message to the

receiving host B requesting Rreq resource (8 for instance) and
stating that Rmin (4 in the example) is the minimum acceptable.

The Rcurr field is initialized to Rreq. The packet is travelling
along the first hop, so the Hop Counter field is set to 1. The
total length of the path (Plen) is still unknown and left to 0.

The router makes the resource reservation (if enough is
available) and creates a RAT entry. The path position field
(Ppos) is set to the current hop counter received in the RESV
message and the Age field is set to the current system time. If
resource availability is less than requested, the Rcurr field in the
outgoing message is set to the actual value (router R3 at step 3
in the example: Rcurr = 7). Of course, previous routers in the
path do not know yet that part of the reserved resources will
not be used due to subsequent bottleneck: they will release
them as soon as a keepalive message will be received.

Before increasing the hop counter and forwarding the
RESV message to the next hop, a Resource Reservation
Vector (RRV) entry is appended to the message, to save the
index (or the memory address) of the newly created RAT
entry. This index will return to the router in subsequent
keepalive messages and will be used to update the RAT entry
without the need of searching. Of course this approach makes
the RESV messages increase their length from sender to
receiver. This is limited to the RESV messages, only once for
each flow, and the maximum message length for a 128 hops
route (approximately the maximum length in IP, being half the
maximum Time To Live value) would be less than 600 bytes.
Anyhow, an alternative implementation for small fixed size
messages is possible at the cost of a single backward message
for each router traversed by the RESV message. This
implementation is based on an address swapping mechanism.

1 byte

PLEN

Path
Length

N x 3 or 4 bytes1 byte3 x 2 bytes12 bytes1 byte

HOPS
(N, -1 when reset)

Hop Counter /
Reset

Rreq, Rmin,
Rcurr

Resource

[RAT index] 1..N
(RAT: resource
allocation table)

IPs, Ps,
IPd, Pd

source to destination:
RESV, KPALV
UP_RESV, RL_RESV
destination to source:
RESV_ACK, PRL_ACK,
RESET

Resource Reservation
Vector (RRV)

Flow IDType

1 byte

PLEN

Path
Length

N x 3 or 4 bytes1 byte3 x 2 bytes12 bytes1 byte

HOPS
(N, -1 when reset)

Hop Counter /
Reset

Rreq, Rmin,
Rcurr

Resource

[RAT index] 1..N
(RAT: resource
allocation table)

IPs, Ps,
IPd, Pd

source to destination:
RESV, KPALV
UP_RESV, RL_RESV
destination to source:
RESV_ACK, PRL_ACK,
RESET

Resource Reservation
Vector (RRV)

Flow IDType

Figure 1. REBOOK message format.

2 bytes

IN, OUT

Local physical
ports

2 bytes

Rrel

Resource Release
Request

1 byte

PPOS

Path
Position

4 bytes2 bytes3 x 2 bytes12 bytes

Age

Age

Rreq, Rmin,
Rcurr

Resource

list_ptrIPs, Ps,
IPd, Pd

List
pointer

Flow ID

2 bytes

IN, OUT

Local physical
ports

2 bytes

Rrel

Resource Release
Request

1 byte

PPOS

Path
Position

4 bytes2 bytes3 x 2 bytes12 bytes

Age

Age

Rreq, Rmin,
Rcurr

Resource

list_ptrIPs, Ps,
IPd, Pd

List
pointer

Flow ID

Figure 2. Resource Allocation Table format.

26

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When the RESV message is received by host B it is sent

back to host A in the form of a RESV_ACK message. At this
point both hosts know the maximum amount of resource
reserved along the path, the length of the route and the list of
indexes/memory addresses where the status information are
stored in the routers. Host A sends the first keepalive message
and will keep sending them periodically until the flow is
terminated.

C. Errors, faults and route changes
Handling a keepalive message in the routers consists in

three tasks. Thanks to the distributed recording of RAT
indexes, the complexity of keepalive messages handling is
constant regardless the number of active flows.

At first, an integrity check is performed, for security
reasons and to identify errors, faults or route changes. The
current hop counter in the KPALV message is checked, then it
is used to get the RRV entry containing the index or the
memory address of the flow entry in the router’s RAT. The
stored Flow ID and Path Position fields are compared with the
Flow ID and the hop counter in the message. If some changes
or faults occurred along the route, these values no longer
match and a new resource booking reset request is signaled by
setting the Hop Counter field to the reset value (-1) in the
message to be forwarded.

The second task while handling a keepalive message is to
partially release the allocated resources if greater than the
amount reached at the end of the path by the RESV message,
value now stored in the Rcurr field. This is the case of router R1
at time 6 in Figure 3. There is no need for an explicit booking

confirmation to the routers since keepalive messages will
always contain this information. Unnecessary booking will be
released sooner or later even if some keepalive message is
lost. Frequency of keepalive messages must be set according
to the required reaction time to unexpected events.

When a route change happens or a flow unexpectedly dies,
keepalive messages no longer update the Age field in the RAT
entry. Booked resources will be released thanks to a low-
priority process that scans the list of active RAT entries and
removes the expired ones.

D. Dynamic Resource Allocation
Sometimes a router may be required to allocate some

resources, but it might happen that not enough are left.
Nevertheless, it is possible that some flows have been
allocated more resources than the minimum requested. Here
comes the third task when handling keepalive messages: the
dynamic resource reallocation. When needed, some RAT
entries may be marked for resource release by setting the Rrel
field to a value less than Rcurr. When a keepalive message is
processed for those entries, the Rrel value is set in the Rreq field
of the message to be forwarded, so that the receiving host B
will notify the request by sending a partial release message
(PRL_ACK) to the transmitting host A. Host A will reduce the
corresponding activity and will put in subsequent keepalive
messages the new Rcurr value.

Two other message types complete the algorithm:
UP_RESV and RL_RESV. UP_RESV is sent from the
transmitting host to attempt a resource allocation upgrade for a
flow currently active. Their handling is similar to the one for
RESV messages. RL_RESV is used to release the allocated

1) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 8, PLEN = 0, HOPS = 1, RRV = NULL }

2) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 8, PLEN = 0, HOPS = 2, RRV = [ADDRR1] }

3) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 0, HOPS = 3, RRV = [ADDRR1, ADDRR2]}

4) {“RESV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 0, HOPS = 4, RRV = [ADDRR1, ADDRR2 , ADDRR3]}

5) {“RESV_ACK”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 0, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

6) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 1, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

7) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 2, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

8) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 3, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

9) {“KPALV”, FLOWID, Rreq = 8, Rmin = 4, Rcurr = 7, PLEN = 4, HOPS = 4, RRV = [ADDRR1, ADDRR2 , ADDRR3 , ADDRR4]}

A

R1

R2

R3

R4

B

1

6 3
2

7

8

9

5

4

IN,
OUT

Rrel = 8PPOS = 1 Age = T1Rreq = 8
Rmin = 4
Rcurr = 8

FLOWID IN,
OUT

Rrel = 8PPOS = 1 Age = T1Rreq = 8
Rmin = 4
Rcurr = 8

FLOWID

IN,
OUT

Rrel = 8PPOS = 2 Age = T2Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID IN,
OUT

Rrel = 8PPOS = 2 Age = T2Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID

RAT|R1,T=1

IN,
OUT

Rrel = 8PPOS = 1 Age = T6Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID IN,
OUT

Rrel = 8PPOS = 1 Age = T6Rreq = 8
Rmin = 4
Rcurr = 7

FLOWID

RAT|R1,T=6

less resources than requested are available

RAT|R3,T=2

Figure 3. Resource Reservation.

27

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resources under normal circumstances, that is, when the
transmitting host terminates the connection and explicitly
requires the resource release along the path.

E. Multicast
In order to support multicast flows, reservation and

keepalive messages must be replicated at the multicast tree
forks. Slightly different procedures in respect of the ones
described above shall be called when a received REBOOK
message is encapsulated in a network layer packet containing
a multicast destination address. Obviously, the REBOOK
engine must access (or receive) the multicast routing
information, but this happens only during the resource
reservation setup phase, as the output ports and other useful
information will be stored in the Multicast Resource
Allocation Table (MRAT) table. Unlike the RAT, in the
MRAT a multicast flow is represented by a linked list of
entries, each one related to a branch toward the destinations.
Some fields are common to all the linked entries and an
optimized implementation may collapse them into a single
record: Flow Id, Rreq, Rmin, Path Position, Age, IN. The
remaining fields are branch-dependent; in particular, keeping
apart the Rmin information allows each branch to reserve a
different amount of resource without affecting the other
branches. This is useful for multimedia flows featuring
progressive or scalable encoding, provided that the router is
able to forward the multicast packets according to the contents
and to the required speed on each branch. To keep up to date
the MRAT entries, in each router the keepalive messages are
replicated, partially rewritten and sent along each branch.

The easiest way to setup resource reservation in a multicast
environment is making each router at a multicast tree fork act
as both a source (toward the subsequent nodes) and a
destination (toward the preceding nodes) for REBOOK setup
messages. The reservation should be driven by a signaling
protocol, like RSVP [3] (next section will discuss the relations
between REBOOK and RSVP). This way, the reservation
request is receiver-initiated, as usual for multicast services,
and REBOOK may anticipate the pointers collection using a
backward pointers collection. When the first REBOOK packet
sent by the receiver of the data flow reaches the sender, it
contains the pointers referring to the traversed routers in
reverse order. Like in RSVP, the actual reservation starts in
the next step, when resource reservation messages are sent by
the sender of the data flow to the receiver(s).

Dynamic joining and removal of hosts to and from the
multicast services will be handled by the REBOOK agent
active in each router.

V. IMPLEMENTATION ISSUES
Designing a REBOOK implementation integrated in

industry-level routers requires choices depending on
economical and technical constraints coming from hardware
manufacturers and is therefore beyond the purpose of this
paper. However, some general considerations can be drawn.

A. Impact on switching architectures
REBOOK does not require any dedicated hardware

solution, even though it can be partially or fully implemented
in hardware. The REBOOK management engine is required to
handle reservation request/release and keepalive messages
only, whose rate is orders of magnitude slower than the data
traffic. The only mandatory constraint is the presence of an
ingress filter to identify REBOOK messages: they must be
delivered to the management process and are sent back to the
switching fabric for forwarding. Depending on the
architecture, this may require an additional internal buffer.

The switching architecture should not be affected by
REBOOK at all. The REBOOK engine will contain
parameters and rules stating the switch capabilities (port-to-
port bandwidth, buffers length, etc.) and will continuously
keep track of the amount of resources still available, in order
to acknowledge or not the reservation requests. If all the data
traffic was REBOOK compliant, resource would never be
overloaded (e.g., buffer overflow) and no data packet would
be lost, simply because the sender would not be allowed to
transmit (or would be allowed to talk slower). In the more
realistic scenario where only part of the traffic could be
REBOOK compliant, priority tags or Type of Service fields
could be used to identify REBOOK flows; packets belonging
to such flows can be handled by separated queues and buffers
to isolate them from the non-REBOOK traffic and to fulfil the
resource reservation for REBOOK traffic. It is worthwhile to
notice that REBOOK aims at reporting to the sender the
maximum transfer rate allowed along the path to the receiver;
as long as the sender respects this boundary, best-effort routers
provide a QoS-like service.

B. RSVP and other hosting protocols

REBOOK can be implemented as a standalone control
protocol and/or can be integrated in existing protocols, e.g.,
RSVP or TCP.

REBOOK can be used to improve RSVP by efficiently
handling its resource reservation requests and by providing a
deterministic tracking of the amount of reserved and available
resources. As discussed above, the main adjustment required
in respect of the algorithm described in Section IV is that the
pointers collection may start during the RSVP receiver-
initiated reservation request, instead of being activated by the
sender. However, reservation setup and final confirmation of
pre-allocated resource amounts are sender-driven: the sender
knows the data flow bandwidth constraints, and the
reservation messages are always processed in the same
direction, thus working with symmetrical and asymmetrical
routing as well.

To support multicast flows, REBOOK can work within
RSVP provided that in intermediate nodes of the distribution
tree the same RSVP process that merges reservation requests
for multicast flows manage the entries in the MRAT described
in Section IV.

Many multimedia streaming applications use TCP
connections to control UDP data flows. REBOOK can be

28

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integrated in TCP packets thus drastically reducing the need of
additional packets for keepalive messages.

Anyhow, the easiest implementation is designing an ad hoc
protocol around the REBOOK messages. This is the way
followed for the experiments presented in the next section.

C. Deployment
We foresee several, non-exclusive ways to make REBOOK

available at the application layer. The first and the most
obvious one consists in including the REBOOK algorithm
within clients and servers software for QoS-critical
applications. It is quite easy to implement REBOOK as an
add-on for already existing applications and let it negotiate the
bandwidth required for the specific application. REBOOK
could be implemented as a browser plug-in embedded within
web pages of multimedia services. In this trail we are
following the development of a plug-in module for the
widespread multimedia application VLC.

An alternative that reduces the implementation effort is the
deployment of REBOOK-aware agents at the boundary
between each network and the Internet (Figure 4).

data

REBOOK

the Internet

Border device with an
embedded REBOOK agent

data

Figure 4. REBOOK agent at network edge.

Such agents will autonomously negotiate the required
bandwidth with outer REBOOK aware routers on the basis of
the traversed traffic, managing the QoS needs of the whole
network. An agent of this kind could be easily integrated
within firewalls that perform stateful packet inspection (some
examples can be found in the web site of the major producers
[22] [23] [24]). For a stateful firewall already keeping track of
each traversed flow it is straightforward to handle REBOOK
messages. Moreover, agents could be installed within
boundary routers too, especially if they are software routers. A
natural extension of this approach is the integration of
REBOOK agents within border routers and traffic shaping
appliances. In fact, flows that require resource reservation are
typically characterized by an almost constant bit rate and thus
they are easily identifiable and manageable by automatic
resource reservation. This can be applicable even for networks
invested by billions of flows per second thanks to the many
algorithms for elephant flow identification present in literature
[25] [26] [27]. This way the traffic shaping router will became
an integrated bandwidth manager for the network; it is
responsible of classifying flows, automatically issuing
reservation requests only for flows that really need it, assuring
fairness in bandwidth sharing and finally assuring that flows
will not exceed the bandwidth reserved to each of them.

Moreover, it is worthwhile to notice that REBOOK agents
would prevent possible Denial-of-Service attacks based on
REBOOK messages, as no reservation request could be
accepted if coming directly from end nodes.

A key feature of the REBOOK algorithm is that REBOOK-
aware devices and hosts may be deployed progressively.
Obviously, it is impossible to deploy REBOOK or any other
new protocol at the same moment throughout the entire
Internet. Indeed, REBOOK might never be deployed
everywhere. However, since REBOOK does not interfere with
routing, unaware routers are transparently traversed by
REBOOK messages. Only REBOOK-aware nodes handle the
messages as described and guarantee the resource reservation.
Nevertheless, as will be discussed below, REBOOK may
improve network performances even in partially deployed
networks.

Intermediate clouds that do not support REBOOK are not
capable of performing resource reservations, so strict service
guarantee cannot be made. However, if such clouds have
sufficient excess capacity, they can provide acceptable and
useful real-time services. The problem is now shifted to
estimation of the service provided by that cloud. Depending
on the real framework, this problem has different solutions
(Figure 5).

A

B

C

Cloudwith SLA

Cloudwithout SLA

data + REBOOK

data + REBOOK

Capacity and Bandwidth
estimation alg.

Figure 5. REBOOK and SLA support.

In the first case (A-B) the owner of the REBOOK-aware
network uses the cloud to perform tunneling and has some
kind of SLA with the owner of the cloud. The straightforward
solution is to assign to each flow routed through the cloud a
reservation compatible with that SLA. If there is no agreement
between the owners (case A-C), the resource reservation
control may be driven by the end systems (that monitor the
data flow) instead of intermediate systems (that should
communicate the available resource amounts). Non-
REBOOK-aware nodes traversed by a data flow may drop
packets if congested; the packet loss or keepalive messages
missing rate may be monitored by the receiver; when these

29

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

events overcome a predefined threshold, PRL_ACK
REBOOK messages may be generated by the receiver itself in
order to reduce the reserved bandwidth and, therefore, the
maximum sender’s transmission rate. In extremely congested
situations, when entire sequences of keepalive messages are
missing, the reservation (and the flow) may be dropped.
However, more complex strategies can be adopted: REBOOK-
aware routers that communicate through a non-REBOOK
cloud could monitor the state of the route traversing the cloud
by means of one of the many bandwidth or capacity estimation
algorithms (e.g., [28][29][30]) and consequently make an
estimation of the resource amount available for reservation.

Additionally, it is worth noting that even if a complete
Internet coverage is not possible, whole REBOOK-aware
networks are absolutely plausible. In fact, multi-content
providers that supply a wide range of services like IP
television, Internet access and telephony are becoming
popular. These providers usually manage entire networks with
the need for QoS guarantees for their services. Such closed,
single-owner networks could easily deploy REBOOK-aware
devices.

Another situation that is gaining importance nowadays is
the QoS management within overlay-networks. There is an
increasing interest in their use to deliver multimedia content
like video on demand, video telephony and so on. Integrating
REBOOK in them is easier than interfacing a real router since
these architectures are software-based and run on general-
purpose servers.

D. Security
Cooperation between intermediate systems and end systems

requires trust. Just like the TCP congestion-control
mechanism, REBOOK works as soon as all the participating
nodes behave as expected. As described at the beginning of
Section IV, there is no advantage for an unfaithful node that
stores or communicates invalid pointers. However, a security
issue may come from DoS (Denial of Service) attacks, in two
directions: invalid pointers and over-reservation requests.

REBOOK provide an intrinsic robust solution to the invalid
pointers problem. The consistency check prevents the use of
invalid information, but a key feature of REBOOK is that each
pointer is never used by agents other than the router that stored
it in a previous phase of the algorithm: pointers are not
communicated to others, but only stored in a distributed data
structure. Therefore, they can be encrypted and signed with
symmetrical cryptography, without the need of key exchange.

The over-reservation problem may come from tampered
software in end nodes. But the sender-driven reservation
model makes the server and the service provider, and not the
end user, responsible for correct reservation. Moreover,
several possible applications are related to specific highly
controlled environment such as video-on-demand distribution,
where the end nodes are proprietary set-top boxes or web
browsers plug-in. Lastly, nodes and REBOOK applications
may be required to authenticate before starting the reservation,
using some of the existing protocols and data encryption
mechanisms already available.

More detailed studies will be required after the applications
have been designed, but this is beyond the scope of this paper.

E. Software architecture
The REBOOK engine has been fully implemented. For the

experiments, a standalone connectionless UDP-based
signaling protocol has been designed and used to exchange
REBOOK messages.

REBOOK implementation consists in three portable
modules written in C language: router, sender and receiver.
Each module, or a combination of two or all of them, can be
attached to software router kernels, server programs and client
applications. Thanks to several preprocessor directives a
Dynamic Link Library or a linkable object code can be
produced; moreover, a pure C single agent or multiple
instances of C++ classes can be generated, allowing the same
to be included in real routers and in simulators as well.

Figures 6, 7 and 8 show the interactions between the
REBOOK modules and the host and router software.

handle REBOOK message

get currently available resource

notify available resource increase

notify available resource reduction

send rebook message

ROUTER REBOOK ENGINE

Figure 6. Router module software interface.

reservation request

reservation upgrade request

reservation removal request

handle rebook message

notify reservation ACK

notify reduction ACK

notify reset

send rebook message

SENDER REBOOK ENGINE

Figure 7. Sender module software interface.

handle rebook message

send rebook message

RECEIVER REBOOK ENGINE

Figure 8. Receiver module software interface.

30

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. EXPERIMENTAL RESULTS
Several experiments have been designed and run to

demonstrate the REBOOK robustness, performance and
scalability in a real distributed environment. In order to make
the experimental framework as close as possible to real,
complex and possibly overloaded networks, a router emulation
environment has been developed, allowing us to use computer
lab Personal Computers as routers. This way, we could
emulate a network with several routers actually running
asynchronously, where packets can be really dropped and
route changes happen asynchronously as well.

Five kinds of nodes have been developed.
Sender host: it can transmit several UDP flows towards one

or more destinations; for each flow REBOOK control packets
are handled to book resources along the path, and the flow
transmission packet rate is modulated according with the
granted bandwidth.

Receiver host: it receives and handle REBOOK messages as
described in previous sections. Data packets contain a counter
used by the receiver for signaling when packets are lost.

REBOOK-aware router: it is the key module, running the
resource booking procedures. A periodically activated thread

performs the RAT “cleanup” procedure, i.e., removes the
entries expired due to repeated missing keepalive messages.
Each router is assigned a maximum capacity (total number of
packets per second that can be forwarded). If the traffic
exceeds this value in a given time window, packets are
dropped (both data packets and REBOOK messages, of
course).

REBOOK-unaware router: REBOOK has been tested even
in mixed environments where only some routers are
REBOOK-aware. This kind of router treats REBOOK
messages as normal data packets and drops packets exceeding
its capacity.

Routing Control Center: this is the module that sends the
routing tables to the routers. Each routing table update is
acknowledge by the router and becomes immediately
operative. Therefore, during route changes rules can become
temporarily incoherent and packet routing errors are possible.

Figure 9 shows a 7-routers network where 40 data flows are

exchanged between 4 sender-receiver pairs. Before and after
the route change the network capacity is large enough to
accept all the flows at full speed. When the link between
routers 2 and 6 is dropped, flows from senders 1 and 7 start

0

50

100

150

200

250

300

0

2

4

6

8

10

12 T1: route changeT1: route change T2: route changeT2: route change

number of booked flows
per sender node

total packet rate per sender

δ

Rtr1 Rtr2 Rtr3 Rtr4 Rtr5 Rtr6 Rtr7

Snd1

Rcv1

Snd7

Rcv7Rcv3 Rcv5

Snd3 Snd5

Rtr1 Rtr2 Rtr3 Rtr4 Rtr5 Rtr6 Rtr7

Snd1

Rcv1

Snd7

Rcv7Rcv3 Rcv5

Snd3 Snd5

γ

this link is down between T1 and T2

650 650 650 650 650 650 650

ε

10 flows, Rmin=15 Rreq=25

Figure 9. Congestion prevention during route change

31

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

competing for bandwidth in routers 3, 4 and 5. It is interesting
to notice that the flows Snd3-Rcv5 and Snd5-Rcv3 are not
affected by the route change and their booking is maintained
(γ). Instead, flows Snd1-Rcv7 and Snd7-Rcv1 are dropped and
when the senders start sending new reservation requests the
routers signal to the already active senders the need of partial
resource release. As soon as this happens (δ), new flows can
be accepted and the system finds a new stability (ε). When the
link between routers 2 and 6 is restored new reservations are
made for flows Snd1-Rcv7 and Snd7-Rcv1 obtaining
permission to send at full speed again.

Figure 10 shows the result of an experiment that

demonstrates how REBOOK can be useful even in partially
REBOOK-aware networks to limit the packet loss by
controlling the sender’s transmission rate on the basis of the
packet loss rate measured at the receiver side.

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Figure 10. Packets drop control in partially REBOOK-unaware network

In the experiment, one router along the path does not
support REBOOK and, in addition, it is a bottleneck due to
insufficient capacity in respect of the number of active flows.
The REBOOK-unaware router is transparent to REBOOK
messages (the hop counter field in keepalive messages is
updated by REBOOK-aware routers only). Keepalive
messages and data packets are monitored by the receiver;
when the number of lost packets exceeds a given threshold,
the receiver autonomously generates a PR_ACK message to
the sender, just like when a resource release request comes
from a router. The graph of Figure 9 reports the number of
dropped packet in the REBOOK-unaware router. Periodically,
the sender attempts to increase the resource reservation,
REBOOK-aware routers acknowledge the requests, the
REBOOK-unaware router restarts dropping packets and the
receiver asks the sender to reduce the transmission rate again.

Since REBOOK requires control messages in addition to
data packets, a possible issue regards the traffic overhead. The
experiments showed an increase in traffic load less than 1.8%
with neglectable keepalive messages processing time. More
precisely, on the congested network of Figure 9 we measured
an increase of 5% for the seven routers total CPU time in the
REBOOK-enabled run. However, since about 15% of the
packets have been lost during the run without REBOOK, the
average CPU time per delivered packet has been indeed
reduced by 9%.

Routers must periodically remove obsolete entries in the

RAT to free resources belonging to rerouted or dead flows. In
our implementation the RAT is an array whose used and
unused elements are linked in two list. To measure the actual

management cost the RAT has been populated with
10.000.000 entries representing data flows with expiration
times randomly distributed over 100 cleanup process
scheduled activations. On a Pentium 4, 2.80 GHz, 512 MB
RAM computer running Windows XP each cleanup run
required, in average, approximately 100 ms CPU time.

VII. CONCLUSION AND FUTURE WORK
This paper presented an innovative algorithm for robust and

deterministic resource reservation, based on a Distributed
Linked Data Structure that provides direct access to flow
information within the routers. This makes the algoritm
computational cost constant, regardless the number of active
flows.

Several options are available to implement the algorithm.
REBOOK has been fully implemented as a standalone
protocol in a software-based router emulator and has been
extensively tested on heavily loaded networks with
dynamically changing topologies. It demonstrated to be
scalable and robust.

Many research directions can bee foreseen starting from
REBOOK: investigating the integration in existing protocols,
with special focus on multicast-oriented protocols and
applications; REBOOK engine hardware implementation for
high performance routers; REBOOK-aware firewalls, proxy
servers and traffic shaping routers design; fair resource release
request strategy within REBOOK-aware routers; extension to
other fields like High Performance Computing (HPC) and
Wireless Sensor Networks (WSN).

REFERENCES
[1] P. L. Montessoro, D. De Caneva, “A Distributed Algorithm for Efficient

and Scalable Resource Booking Management,” Proceedings of CTRQ
2010 Third International Conference on Communication Theory,
Reliability, and Quality of Service, June 13-19, 2010 - Athens/Glyfada
(Greece), pp. 128-134

[2] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Trans. on Networking, vol. 7, no. 4,
pp. 458-472, August 1999.

[3] Cui-Qing Yang and Alapati V. S. Reddy, “A Taxonomy for Congestion
Control Algorithms in Packet Switching Networks,” IEEE Network
Magazine, Vol. 9, Number 5, July/August 1995.

[4] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, “RSVP: A
new resource ReSerVation Protocol,” IEEE Network, vol. 7, no. 5, pp.
8-18, September 1993.

[5] L. Mathy, D. Hutchison, S. Schmid and G. Coulson, “Improving RSVP
for Better Support of Internet Multimedia Communications,”
Proceedings of ICMS’99, Florence, Italy, June 9-11, 1999. IEEE press,
pp 102-106.

[6] W. Almesberger, S. Giordano, R. Mameli, S. Salsano and F. Salvatore,
“Combining IntServ and DiffServ under Linux,” Public file.

[7] S. Sohail and S. Jha, “The Survey of Bandwidth Broker,” Technical
Report UNSW CSE TR 0206, School of Computer Science and
Engineering, University of New South Wales, Sydney 2052, Australia,
May 2002.

[8] Z. Zhang, Z. Duan and Y. Hou, “On Scalable Design of Bandwidth
Brokers,” IEICE Trans. Communications, Vol. E84-B, No.8 August
2001.

[9] D. Katabi, M. Handley and C. Rohrs, “Congestion Control for High
Bandwidth Delay Product Networks,” SIGCOMM’02. Pittsburgh,
Pennsylvania, USA. August 19-23, 2002.

[10] Yong Xia, L. Subramanian and S. Kalynaraman, “One more bit is
enough,” SIGCOMM’05. Philadelphia, Pennsylvania, USA. August 22-
26, 2005.

32

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] Ping Ji; Zihui Ge, J. Kurose and D. Towsley, “A Comparison of Hard-
State and Soft-State Signaling Protocols,” Networking, IEEE/ACM
Transactions on , vol.15, no.2, pp.281-294, April 2007

[12] F. Kuhns, J. Turner and S. Norden, “Lightweight Flow Setup for
Wirespeed Resource Reservatio,” Proceedings of the Allerton
Conference on Communication, Control and Computing, 2003.

[13] Ping Pan and H. Schulzrinne, “YESSIR: A Simple Reservation
Mechanism for the Internet,” Communication review, vol. 29, no. 2,
April 1999.

[14] F. Kuhns, J. Turner and S. Norden, “Lightweight Flow Setup for
Wirespeed Resource Reservation,” Proceeding of the Allerton
Conference Communication, Control and Computing, 2003.

[15] I. Minei, “MPLS DiffServ-aware Traffic Engineering,” Juniper
Networks, 2004, White Paper

[16] V. Sharma et al., “Framework for Multi-Protocol Label Switching
(MPLS)-based recovery,” RFC 3469, 2003

[17] F. Rafique Dogar, Z. Uzmi and S. Baqai, “CAIP: A Restoration Routing
Architecture for DiffServ Aware MPLS Traffic Engineering,” 5th
Workshop on Design of Reliable Communication Networks
(DRCN), pp 55-60, 2005.

[18] T. Anjali, C. Scoglio, J. de Oliveira, I. Akyildiz and G. Uhl, “Optimal
Policy for LSP Setup in MPLS Networks,” Computer Networks, vol. 39,
no. 2, pp. 165–183, June 2002.

[19] B.A. Movsichoff, C.M. Lagoa and Hao Che, “End-to-End Optimal
Algorithms for Integrated QoS, Traffic Engineering, and Failure
Recovery,” IEEE/ACM Transactions on Networking, vol.15, no.4,
pp.813-823, August 2007

[20] A. Kvalbein, A.F. Hansen, T. Cicic, S. Gjessing and O. Lysne, “Fast IP
Network Recovery Using Multiple Routing Configurations,” INFOCOM
2006. 25th IEEE International Conference on Computer
Communications. Proceedings , vol., no., pp.1-11, April 2006

[21] R.S. Bhatia, M. Kodialam, T.V. Lakshman and S. Sengupta, “Bandwidth
Guaranteed Routing With Fast Restoration Against Link and Node
Failures,” Networking, IEEE/ACM Transactions on , vol.16, no.6,
pp.1321-1330, Dec. 2008

[22] Juniper Networks web site, www.juniper.net, 2010.
[23] Cisco Systems web site, www.cisco.com, 2010.
[24] HP networking products and solutions web site,

http://h17007.www1.hp.com/us/en/, 2010.
[25] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang. „SIFT: a Simple

Algorithm for Trucking Elephant Flows and Taking Advantage of Power
Laws,” Proceedings of the 43rd Allerton Conference on
Communication, Control, and Computing, Urbana-Champain, Illinois,
USA, September 2005

[26] C. Guang, G. Jian, “Online identifying elephant flows through a scalable
non-uniform sampling algorithm”, Proceedings of ICCT 2008. 11th
IEEE International Conference on Communication Technology, 10-12
Nov. 2008.

[27] M. Zadnik, M. Canini, A. W. Moore, D. J. Miller, W. Li, “Tracking
Elephant Flows in Internet Backbone Traffic with an FPGA-based
Cache,” Proceedings of the 19th International Conference on Field
Programmable Logic and Applications, Prague 2009.

[1] [28] V J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, L. Cottrell
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” Proc. Passive and Active Measurement Conference, La Jolla,
CA, Apr. 2003

[29] S. Suthaharan, S. Kumar, “Measuring Available Bandwidth: pathChirp's
Chirp Train Structure Remodeled,” Telecommunication Networks and
Applications Conference, 2008. ATNAC 2008. Australasian, 7-10 Dec.
2008.

[30] R. Prasad, C. Dovrolis, M. Murray, K. Claffy, “Bandwidth estimation:
metrics, measurement techniques, and tools,” Network, IEEE , vol.17,
no.6, pp. 27-35, Nov.-Dec. 2003.

33

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Information Flow Approach for Preventing Race
Conditions: Dynamic Protection of the Linux OS

Jonathan Rouzaud-Cornabas, Patrice Clemente, Christian Toinard
ENSI de Bourges – Laboratoire d’Informatique Fondamentale d’Orléans

88 bd Lahitolle, 18020 Bourges cedex, France
{jonathan.rouzaud-cornabas,patrice.clemente,christian.toinard}

@ensi-bourges.fr

Abstract—In the literature, the notion of Race Condition deals
with the interference between two processes A and B carrying
out three interactions involving a shared object. The second inter-
action of the concurrent process B interleaves with the first and
the third interactions of process A. Preventing Race Conditions
attacks between concurrent processes is still an open problem.
Many limitations remain such as preventing only Race Conditions
on a file system or controlling only direct interactions with the
shared context. That paper covers those various problems. First,
it gives a formal definition of direct and indirect information
flows at the scale of a complete operating system. Second, it
proposes a general formalization of Race Conditions using those
information flows. In contrast with existing formalizations, our
definition is very effective and can be implemented on any
operating system. Third, it provides a Mandatory Access Control
that enables to prevent general Race Conditions at the scale
of a whole Linux operating system. The Race Conditions can
be easily expressed as a Security Properties policy. A honeypot
experimentation provides a large scale evaluation of our dynamic
MAC enforcement. It shows the efficiency to prevent both direct
and indirect Race Conditions. Performances are encouraging us
to follow our approach of a dynamic MAC for enforcing a larger
range of security properties.

Keywords-Computer security; data security; access control;
operating systems.

I. INTRODUCTION

A Race Condition (RC) happens when there is an unpre-
dictable schedule between accesses of two users or processes
to a conflicting resource, having at least one of the two
users/processes modifying the shared resource. Depending on
the scheduling of the accesses, the content of the resource
may be unexpected. Historically, attacks based on RC used
some unpredictable behaviors of OS (e.g., with signals) in
order to modify the behavior of legitimate processes for
example. The time-of-check-to-time-of-use (TOCTTOU) flaw
happens when a process checks the attributes of a file, and
performs operations on it assuming that the attributes have
not changed when actually they have. In the literature, some
authors have proposed formal description of RCs but provide
only partial or no implementation at all. Other work deals
with RCs within parallel programs. Remaining work focuses
on protecting against RCs attacks but only specific ones, e.g.,
TOCTTOU. Many limitations remain, and in practice only a
partial cover of this problem is proposed.

This paper is an extended version of [1]. In this paper we
propose a global approach to deal with RCs at the scale of
a complete computer system, at the operating system level.
We provide a formal modeling of OS, and a definition of
information flows related to any system call available on OS.
That definition enables to formalize general RCs at the scale of
a whole operating system. It considers a general information
flow including both direct information flows and indirect infor-
mation flows. General information flows are more difficult to
prevent since they can involve several processes and resources
using covert channels. A definition of RCs is given, based on
three general information flows between concurrent processes.
This definition is provided using a general framework for
the definition of any security property related to information
flows. A dynamic Mandatory Access Control is proposed to
enforce the required properties of RCs within the Linux kernel.
An experimentation is presented with several honeypot hosts
exposed to the Internet including well known vulnerabilities.
It shows that our MAC approach correctly prevented the RCs
attacks. Finally, a performance study shows the real efficiency
of our implementation.

The paper is organized as follows. Next section details ex-
isting work and motivates the paper. Section III gives a formal
definition of the operating system and information flows. In
Section Section III-D is presented our general definition of
RCs, followed in Section III-E with the description of our
linux kernel module PIGA-DYNAMIC-PROTECT. Section IV
presents experiment results. Lastly, Section V gives perfor-
mance evaluations, before concluding the paper, in Section
V-B.

II. RELATED WORK

In this section, we first present the state of the art of race
condition. Then, we do a scope of the different protection
mechanisms that have been proposed for operating system.
Finally, we explain our motivation.

A. Race Condition

The authors of [2] have proposed an informal definition of
a race condition:

Definition 2.1 (Informal definition of a race condition):
A race condition happens when there is an unpredictable

34

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

schedule between accesses of two subjects X and Y to a
shared resources I , having at least one of the two former
subjects performing a write operation to the shared object
between two accesses of the other subject to the shared
object.
Thus, the state of the system depends on the execution order
and thus is unpredictable.

It exists different types of race condition: on data [3], on
signals [4] and on any shared resources. The more common
case of race condition is the one associated with preliminary
checks done by applications on resources. This race condition
is known as time-of-check-to-time-of-use (TOCTTOU) and has
been defined in [5]. Most of the filesystems are vulnerable to
such attack [6], [7]. Moreover, with the increase of processors’
cores within a single operating system, the detection of (and
protection against) race condition becomes more and more
complex. Indeed, within this scope, the detection becomes a
NP-Complete problem [8].

Four main approaches are used to protect against race
conditions:

• Code analysis: By analyzing the code before compiling
it, it is possible to detect and find parts of code that could
lead to race condition flaws [7], [9], [10], [11];

• Dynamic detection: By auditing system calls that could
be used to build a race condition attack, it is possible to
detect them. The most known approach is the one by Ko
and Redmond [12] that detects race conditions but are
not able to protect against them. Other approaches [13],
[14] have used the same idea;

• Dynamic protection: When the concurrency is detected, it
is possible to kill or suspend the corresponding process or
system call. The authors of [15], [16], [17] have proposed
this kind of approach to protect a system.

• Filesystems: It is possible to build filesystems that take
into account race conditions and concurrency. Two kinds
of such filesystems have been proposed: one using trans-
actional filesystems [18], [19] and one with system calls
designed to deal with concurrency [20], [21].

But, except fully transactional systems, no approach pro-
poses a complete protection against race conditions. Trans-
actional approaches misfit for operating systems. Moreover,
the previous approaches can not express explicitly which race
condition to control and do not deal with all the kinds of race
condition.

B. Operating System Protection

Two main models of protection are currently used in oper-
ating systems. They are used to control the access of the users
on files and others objects based on privileges. The Role Based
Access Control [22] (RBAC) does not change anything in term
of security, it eases the writing of security policies.

The Discretionary Access Control (DAC) is the oldest pro-
tection model. But it is always the main access control model
used in modern operating system (Unix, MS Windows, Mac
OSX, ...). With DAC, the privileges are set by the user who
owns the object. For example, the owner of a file defines the

read, write, execute privileges on its files for the other users on
the system (himself, the ones within his group and the others).
Multiple studies [23], [22], [24] have shown the weakness of
DAC models. Indeed, it is based on the fact that users can set
efficiently the permissions on their files. But any errors can
lead to a security flaw. For example, if the users password
file can be written by any users, anyone with an account on
the operating system can change super-user password and thus
obtain its privileges.

The Mandatory Access Control (MAC) allows to setup a
policy that can not be change by end-users. To monitor the
access between subjects and objects, Anderson [25] has pro-
posed to use a Reference Monitor. This concept is the base of
Mandatory Access Control. It was defined for Bell&LaPadula
approach [26] but is now used to describe any mechanism
that put the management of the security policy outside the
scope of end-users. To ease the writing of security policies for
operating system, it is needed to associate each entity (subject
and object) with a type. This approach of Type Enforcement
has been introduced in [27]. It facilitates the definition and
aggregation of security model. But the drawback of the MAC
approach is the difficulty to define efficient security policies.
Indeed, you need to have an in-depth knowledge of how work
the operating system (and its applications) and the security
objectives that you want to reach. It is the cause of the low
usage of the MAC approach (GRSecurity, SELinux) in modern
operating systems.

Approaches like [28], [29], [30] try to bring the ease of
DAC with the protection of MAC. They state that: “a good
enough and usable policy is better than a very good security
but hard to manage”. But it is dedicated to the protection of
a desktop operating system from network attacks. Moreover,
they can not express security models and the quality of their
protection is questionable as they does not take into account
indirect flows and based their models on DAC permissions.

Others approaches [31], [32] are oriented toward the control
of information flow. The purpose is to isolate users from
each others. In this kind of approach, the security is enforced
by a reference monitor within the system but the policy are
written by the application developers. Indeed, [31] states that
developers are best to know which security is needed by their
applications. Moreover, the protection is done by the operating
system with a reference monitor in the kernel. Thus, even if the
application contains flaws, it respects the security policy. This
model has been extended to GNU/Linux with the Flume [33]
framework. They also proposes a limited language to describe
the information flow control policy. But all those approaches
can not combine flows. Thus, they are limited to describe
simple security models. Moreover, they request to rewrite part
of the applications’ code. The authors of [34] have modelized
Flume to prove that it does not contain covert channels. It
does not prove the expressiveness of their language but the
dependability of their system.

35

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Motivation

First, we have explain the need of a mandatory approach
to avoid the weakness of a discretionary control. But, current
mandatory models do not explicitly take into account transitive
flows and are hard to implement on a real operating system.
Second, the existing protections of operating systems do not
propose a language to express security objectives. Thus, they
can not be used to express a complete formal security policy.
The approaches based on the control of the information flows
are difficult to use and do not propose a language to express
security properties.

Our goal is to ease the definition of any security properties
in order for the operating system to guarantee the requested
properties. In this paper, we focus on race conditions but
others properties have been already defined [35]. The proposed
security property for protecting against race conditions needs
to take into account all kinds of race conditions (filesystems,
signals, any kind of data, etc). This property is formally
expressed. It explicitly defines the subjects that are protected.
Moreover, our language takes into account the dynamicity of
a real operating system i.e. its state can change at anytime.
The dynamicity is very important as we want to be able
to implement our language and our protection on existing
operating systems. The ability to implement our proposal is
important as it is a mean to provide a large scale of real world
experimentations.

III. SYSTEM AND SECURITY PROPERTIES MODELING

In order to formalize the security property that protects
against RC attacks, in terms of activities on the operating
system, let us first define the model of the target system. The
first requirement is to be able to associate a unique security
label (also called security context) to each system resource. A
security context can be a file name or the binary name executed
by a process. Our system fits well for DAC OS (GNU Linux,
Microsoft Windows) or MAC ones such as SELinux whereas
security contexts are special entities controlled by the kernel.

A. System dates, entities and operations

In essence, an operating system is defined by a set of entities
performing operations on other entities. Those entities are
referred here as ‘security contexts’. Acting contexts are called
subject contexts while passive ones are called object contexts.

Formally, an operating system consists of the following
elements:

• A set of system dates D.
Any d ∈ D is a number representing a system date.

• A set of subject security contexts SSC.
Each ssc ∈ SSC characterizes an active entity, i.e.
processes, that can perform actions, i.e. system calls.

• A set of object security contexts OSC.
Each osc ∈ OSC characterizes a passive entity (file,
socket, . . .) on which system calls can be performed.

• A set of all security contexts SC = SSC ∪ OSC, with
SSC ∩ OSC = ∅.

For example, let us consider the apache webserver read-
ing an HTML file. The apache process is identified as a
subject (/usr/bin/apache ∈ SSC in a classical Linux
system or apache_t ∈ SSC in a SELinux environment)
and the file is considered as an object (/var/www ∈
OSC in a classical Linux system or var_www_t ∈ OSC
in a SELinux environment).

• A set of elementary operations EO.
EO denotes all the elementary operations, i.e. system
calls, that can occur on the system (i.e. read_like and
write_like operations).

• A set of interactions : IT : SSC × EO × SC × D ×D.
Each element of IT is thus a 5-uple that formally
represents an interaction on the system. In essence, an
interaction it ∈ IT represents a subject ssc ∈ SSC
invoking an operation eo ∈ EO on a given context
tsc ∈ SC, starting at a system date s and ending at a
system date e.

• A system trace T .
The execution of an operating system can be seen as
a set of invoked interactions. The executed interactions
modify the OS state [17]. When we consider prevention,
we work with an invocation trace. The invocation trace
contains thus all tried interactions, even those which are
finally not allowed to be executed. Thus, each time an
interaction iti occurs on a given system (before being
allowed, in case of prevention system), the corresponding
system trace becomes Ti ← Ti−1 ∪ iti.

B. Information Flows

1) Direct Information Flows: In terms of information flows,
when an interaction occurs (i.e. an elementary operation is
performed), there is one potential consequence: that interaction
can produce an information flow from one security context to
another.

An information flow transfers some information from a se-
curity context sc1 to a security context sc2 using a write_like
operation or to sc1 from sc2 using a read_like operation1.

The formal modeling of the system is then extended with
the following sets:

• A subset of EO of read_like operations REO.
• A subset of EO of write_like operations WEO.
Definition 3.1 (Direct Information Flow): Given a system

trace T , a direct information flow from a subject context
ssc performing a write_like operation to a target context
tsc, starting at a system date s and ending at a system
date e (formally an interaction: (ssc, weo, tsc, s, e), where
ssc ∈ SSC, tsc ∈ SC, weo ∈ WEO, s ∈ D, e ∈ WEO, and
s ≤ e), is denoted by: ssc

T
.[s,e] tsc.

Symmetrically, a direct information flow from a subject
context ssc performing a read_like operation to a target

1To be able to decide if an interaction produces an information flow between
two security contexts, we use a mapping table (not detailed here) that says
for each eo ∈ EO if it can flow information – and in what direction between
the two security contexts – or not.

36

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

i t (write_like)
 1

it (read_like)
 2

direct f low 1

direct f low 2

it ends
 2

it starts
 2

it ends
 1

it starts
 1

sc
1

sc
2

sc
1

sc
2

sc
3

sc
3

indirect f low

t i m e

secur i ty contexts

Interactions Information f lows

Fig. 1. r/w_like interactions and corresponding information flows.

context tsc starting at s and ending at e is denoted by:
tsc

T
.[s,e] ssc.

Notice that we use the following abuses of notation when
respectively s, e or both are not explicitly required:

T
.[_,e],

T
.[s,_],

T
..

2) Indirect Information Flows: As said previously, an infor-
mation flow can occur directly between two security contexts.
But it can also happen in many indirect ways. For example,
there can exist a first flow ssc

T
. osc and then a second flow

osc
T
. tsc. We consider this as an indirect information flow

from ssc to tsc. Transitively, there can theoretically be an
infinite number of intermediary contexts between ssc and tsc.

We propose the following definition of indirect information
flows:

Definition 3.2 (Indirect Information Flow): Given a system
trace T , an indirect information flow from one context sc1 to
another context sck, starting at a system date s1 and ending at
a system date ek, denoted by sc1

T
..[s1,ek] sck (i.e., k is the

number of contexts involved in the indirect flow), is formally
defined by: ∃k ∈ [3..+∞],∀i ∈ [1..k − 2], sci ∈ SC, {si, ei} ∈ D,

(sci
T
.[si,_] sci+1) ∧ (sci+1

T
.[_,ei+1] sci+2)

∧ (si ≤ ei+1)

The Figure 1 shows an example of such an indirect informa-

tion flow where k = 3. The first interaction it1 is a write_like
operation from sc1 to sc2. The second interaction it2, is a
read_like operation of sc3 to sc2. Thus, sc3 gets information
from sc2. So, there is an indirect information flow between
sc1 to sc3 via the shared context sc2.

3) General Information Flows: The two previous defini-
tions lead to a more general definition of information flows. In
essence, there exists an information flow between two security
contexts iff there exists a direct flow or an indirect flow
between those contexts.

Definition 3.3 (General Information Flow): Given a sys-
tem trace T , an information flow from one context sc1 to
another context sck, starting at the system date s1 and ending
at the system date ek, denoted by sc1

T
...[s1,ek] sck, is

e
 2

s
 2

s
 1

lsc osc msc

t i m e

secur i ty contexts
... ...

e
 3

Genera l In format ion
 F low 1

 Genera l In format ion
 Flow 2

 Genera l In format ion
Flow 3

Fig. 2. Example of RC between lsc and msc.

formally defined by:

(sc1
T
.[s1,ek] sck) ∨ (sc1

T
..[s1,ek] sck)

Again, by abuse of notation,
T
...[_,e] ,

T
...[s,_] , and

T
...

is used when s, e or both are not explicitly required.

C. Race Condition

As presented earlier, [2] gave a general definition of RC that
we express here under our formalism in order to be able to
define an enforceable security property to prevent RC attacks.

Definition 3.4 (General Race Condition): A RC happens
when there is an unpredictable schedule between accesses of
two security contexts sc1 and sc2 to a conflicting data context
osc (i.e. a shared security context), having at least one of
the two former contexts (e.g., sc1) performing a write_like
operation to the shared context osc between two accesses of
the other context (e.g., sc2) to the conflicting data context osc.

D. Race Condition Security property

Using the General RC definition above, and in order to
detect or prevent RC based attacks, we propose to define a
general Security Property for the prevention of RC attacks.

Security Property 3.1: A security context lsc is protected
against a RC from another security context msc iff msc can
not transfer information to a shared context osc between two
accesses of lsc to this shared context osc.

Formally: No_Race_Condition(lsc,msc, T)⇔

¬

∃osc ∈ SC ∧(

(lsc
T
...[s1,_] osc) ∨ (osc

T
...[s1,_] lsc)

)
∧

(msc
T
...[s2,e2] osc) ∧(

(lsc
T
...[_,e3] osc) ∨ (osc

T
...[_,e3] lsc)

)
∧(

(s1 ≤ e2) ∧ (s2 ≤ e3)
)

(0)

(1)

(2)

(3)

(4)

In the security property definition above, lsc typically
represents a legitimate security context while msc represents
a potentially malicious (attacker’s) context.

There are many temporal situations covered by this defini-
tion, including partially or totally concurrent situations.

37

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user_d

passwd_d

shadow_t

login_d

root_d

tmp_t

<1140 ,3117>

<1213 ,3279>

<1677 ,1856>

<1812 , 3796>

<1802 ,1817>

<1752 ,1762>

<1825 ,1827>

<1157 ,3128>
<1846 ,1895>

<1907 ,2114>
sshd_d

Subject Context

Object Context

Multiple direct f lows

Fig. 3. IFG for the login RC scenario.

The Figure 2 shows one of those possible schedules. The
first information flow represents an access from a legitimate
context lsc to a shared context osc. It corresponds to the line
#1 of the No_Race_Condition security property. The second
information flow corresponds to line #2 of the property. It
represents a flow from a malicious context msc to osc after
or concurrently to the first flow. The third flow on the Figure
corresponds to the line #3 of the property. It represents the
second access from lsc to osc (partially) after or during the
modification of osc by msc. The line #4 of the property
expresses temporal constraints between the flow, for sequential
or concurrent situations.

E. Enforcing the RC security property

In contrast to [2], this definition, based on information flows,
allows us to provide an effective and efficient algorithm and
related implementation for the protection against RC attacks.

Our solution computes an Information Flow Graph (IFG).
An example of an IFG is given in Figure 3. The IFG manages
the temporal relationships between the security contexts using
one parameter on each edge connecting two security contexts.
This parameter is a couple of system dates of the first and
last occurrences of the represented information flow. Actually,
those are the dates of read_like or write_like interactions.

Thus, an edge on the IFG (e.g., tmp_t I<1802,1817>

login_d) can represent multiples flows (e.g., three flows
tmp_t

T
.[1802,1804] login_d, tmp_t

T
.[1805,1809] login_d

and tmp_t
T
.[1815,1817] login_d) using only two dates (e.g.,

1802 and 1817).
Obviously, using multiple direct flows instead of single

direct flows clearly provides an over-approximation of the
latter ones on the system. But this has the great advantage
of highly reducing the IFG’s size. The number of nodes is
theoretically bounded by n = O(|SC|), whereas the number of
vertexes is theoretically bounded by v = O(|SC|×|SSC|−1).
It thus can fit in memory2.

2E.g., for a Gentoo Linux OS, n < 580 and v < 80000.

Within IFG, the search of an indirect flow between two
security contexts is done by searching for a path between
the two nodes corresponding to the security contexts. We are
using a Breadth First Search (BFS) algorithm that also verifies
causal dependency between each direct flows that compose
the indirect one. The use of a BFS algorithm allows to have
a theoretically bounded complexity of searching indirect flow
due to the nature of IFG.

When we want to compare indirect flows, we need to find all
the occurrence of those flows. Our indirect flow algorithm is
able to enumerate all the flows between two security context.
For example, on the Figure 4, the algorithm enumerates two
flows from sc1 to sc5. Those two flows have different ending
date: 1010 for the first one f3a (#1→ #2→ #4) and 1150
for the second one f3b (#1 → #3 → #5). This ability is
important for the race condition algorithm as we search for
temporal relation between flows. If we have only one of the
two occurrences of the flow, we can miss a race condition. For
example, if we have only f3a that ends at 1010 and we want
to compare it with a flow f2 that start at 1025, the condition
s2 ≤ e3 will be false. But if we have the two flows f3a and
f3b, the condition will be true as start(f2) ≤ end(f3b).

Fig. 4. Search all the occurrences of a flow between sc1 and sc5 in the IFG

Using the IFG and the general information flow algorithm,
we are able to compile the property 3.1 into an algorithm.
The algorithm 1 allows to detect any race condition between
a legal entity lsc and a malicious one msc. This algorithm
uses a function that returns every flows corresponding to three
general flows between lsc and msc. Indeed, we need to verify
the temporal relationships between those flows as described in
the property 3.1 ((s1 ≤ e2) ∧ (s2 ≤ e3)). In the algorithm,
it1 is the current interaction i.e. the interaction that is in the
authorization process. The algorithm 1 is a variation of the
property 3.1 with the third flow between the shared object
osc and the legal security context lsc must be a direct flow.
In practice, it is usually the case. Moreover, this algorithm
goes further than previous approaches as it takes into account
indirect flows in two case out of three. This variation of the
property 3.1 allows to reduce the overall complexity of the
algorithm. Indeed, we only use the indirect flow algorithm
two times instead of three.

F. Protecting an Operating System

This section presents PIGA-DYN-PROTECT i.e. our dy-
namic approach to guarantee the security properties expressed

38

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Global architecture of our protection system

Algorithm 1 Algorithm to detect race condition from lcs to
mcs : No_Race_Condition(lsc,msc, it1, IFG)

Require: lsc,msc, it1, IFG
if op(it1) ∈ WEO or op(it1) ∈ REO then
if low1 = lcs

T
... dest(it1)

if low2 = mcs
T
... dest(it1)

list_flow1 = searchAllPath(if low1, IFG)
list_flow2 = searchAllPath(if low2, IFG)
if list_flow1 6= NULL and list_flow2 6= NULL then

for all flow1 ∈ list_flow1 do
for all flow2 ∈ list_flow2 do

if start(flow1) ≤ end(flow2) then
return FALSE

end if
end for

end for
end if

end if
return TRUE

with our language. PIGA-DYN-PROTECT enforces a policy
that is a set of security properties. Our architecture reuses
SELinux security contexts. SELinux provides a context for
all processes, users and system resources. In contrast with
approaches like [30], [36], [37], [17], [16], we do not re-
quire a unique context for each entity e.g., /tmp/file1 and
/tmp/file2 are grouped in a common label tmp_t. However,
the SELinux policy is not required. Our solution is a satisfying
approach since defining a consistent SELinux policy is a

complex task. On the other hand, [38], [39] show that a
SELinux protection policy can still present around a million
of attack vectors. So, adding a protection against RC over
SELinux security contexts is very efficient.

Figure 5 describes the global architecture of our protection.
This architecture is composed of several components. We
choose to illustrate each component based on the execution of
a system call. In this example, an application calls a function
fread. The library C (libc) provides this function. Then,
the library calls the read system calls to communicate with
the kernel of the operating system. This system call allows
to execute a read in kernel space. Indeed, it is the only
way to perform an input/output access to transfer information
from or to a physical resources like a hard drive. Before
this input/output operation, the kernel checks the discretionary
permissions such as read, write and execution rights. If the
operation is allowed by DAC then it calls the Linux Security
Module (LSM). LSM is used to plug new security modules that
hook system calls. LSM is used to call the SELinux module.
Then, this module applies Type Enforcement on the system
i.e. it sets a context for each entity of the operating system.
PIGA-DYN-Protect is called by SELinux and collects all the
information needed to build the trace of the system calls.
This trace is sent to PIGA-DYN that uses it to build the IFG.
It computes that graph to verify if the current system call
goes against a security property. The decision is returned to
PIGA-DYN-Protect then to SELinux. Finally, LSM receives
the decision and allows or denies the system call.

In practice, for our RC property, the decision is taken at the
last step of an attack attempt i.e. on the third system call. Thus,
our solution prevents efficiently the third flow of a RC attack.

39

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user_d

passwd_d

shadow_t

sshd_d

login_d

tmp_t

<1140 ,3117>

<1213 ,3279>

<1677 ,1856>

<1812(s2) ,3796(e2)>

<1802 ,1809>

<1752(s1) ,1762>

<1157 ,3128>

<1846 ,1895>

3rd (direct) flow of the RC:
denied by PIGA-Dyn-Protect

Subject Context

Object Context

Multiple direct f lows

Single direct f low

[1815(s3),1817(e3)]tmp_t
 T

login_d

Fig. 6. IFG for the real protection against the login RC attack.

Moreover, our solution protects against unknown attacks (e.g.,
0-Day attacks) and various covert channels associated with
indirect flows.

G. Example of prevention of a Race Condition

Let us give an example of the
No_Race_Condition property. The property:
No_Race_Condition(login_u:login_r:login_d,
user_u:user_r:user_d, T) prevents a user process
(user_u:user_r:user_d) to interfere with the login process
(login_u : login_r : login_d) via a RC attack.

The IFG given in Figure 3 describes the so-called ‘login RC’
attack scenario. Thus, the first flow of the considered property
can be seen as the direct flow login_d

T
.[1752,1762] tmp_t.

The second flow is a direct flow user_d
T
.[1812,3796] tmp_t .

The third flow is the direct flow tmp_t
T
.[1802,1817] user_d.

Using this IFG, we are able to block the system call corre-
sponding to the third flow at the kernel level. It thus avoids to
exploit the login’s vulnerability via a RC attack.

IV. REAL WORLD EXPERIMENT

To make real world experimentation of our solution, we
have setup a high-interaction honeypot. It contains services
with exploitable flaws to ease the attacks. A virtual machine
provides the different services. During six month, we exper-
imented many instances of the No_Race_Condition security
property. Let us give the results for two of them. The first
one was the protection against the Login RC attack (already
mentioned) and the second was the protection against the
PhpBB RC attack. Others instances, not presented here, cover
attacks on filesystems, network services and shell scripts.

As any mandatory protection, PIGA-DYN-PROTECT is an
over-approximation of the attacks thus it can generate false

positives. On the other side, the false negatives are due to a
bad definition of the property or an incorrect configuration
of it. Thus, it can be fixed through a new definition for the
property or another configuration of it.

A. The Login attack RC to gain root privilege

To welcome attackers for the first evaluated attack: the
‘Login Race Condition’, we setup SSH servers on three
machines of our honeypot. Those servers accepted attackers
with the automatic creation of accounts when couples of
login/password were tried.

The attack scenario is the following. An attacker (user_d)
connects to the SSH server (ssh_d). Then, the attacker uses
the authentication service (passwd_d) and gains a user session
(user_d) on the machine. He uses his session to execute
the login command (login_d). Then, he exploits the login’s
vulnerability by changing a value stored in the temporary
file (tmp_t). When the login process comes back later to
read the (modified) value, that allows a privilege escalation of
user_d to login_d that has root privileges. The attacker uses
this privilege escalation to modify the shadow passwords file
shadow_t and especially the root password. The attacker then
uses the login command again to open a root session (root_d)
with the new root password. This attack only involves direct
information flows.

Let us consider a system without our protection solu-
tion in order to detail the ‘Login RC’ attack scenario. The
IFG given in Figure 3 corresponds to the violation of a
No_Race_Condition security property. In this figure, the
temporal constraints (line #4) of the No_Race_Condition
security property between user_d and login_d are true:
(1752(s1) < 3796(e2)) ∧ (1812(s2) < 1817(e3)).

Our PIGA-DYN-PROTECT module cancels the last interac-
tion of the third flow in order to avoid the RC success. In the
example, PIGA-DYN-PROTECT denies the execution of the
interaction at system date 1817. Thus PIGA-DYN-PROTECT
cancels the interaction corresponding to the (single) direct
flow tmp_t

T
.[1815,1817] login_d: the third flow violating the

No_RC property does not appear in the real IFG, as shown
in Figure 6.

As shown in the figure 8, we were able to monitor multiple
attacks during the six months experimentation. Moreover,
through SELinux logs analysis [40], we were able to validate
that all the attacks were detected by our solution. With the
protection mode, all the attacks were blocked and no attacker
was able to gain root privilege.

B. PhpBB RC for Remote Shell Execution

We also experimented another kind of RC attacks: the
PhpBB RC attack that can lead to a ‘Remote Shell Execution’.
In order to collect attacks, we build a fake PhpBB forum. We
also advertised about cgi scripts (bash and binary) execution.

For this experiment, the security property
against RC was configured as the following:
No_Race_Condition(apache_u:apache_r:apache_d,
apache_u:apache_r:phpbb_d, T). Compared to the login RC,

40

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user_d

apache_d phpbb_d

cgi_web_t shell_d

http_socket_t

shell_t

phpbb_php_t

etc_shell_config_t

<6307, 11127>

<6356 , 11186>

<6422, 12158>

<6405 , 12107>

<6501 , 9147>
<6679 , 9252>

<7719(s2) , 8834>

<7750 , 7762>

<7738 , 7746>

<113, 7822(e2)>

<234(s1) , 8843(e1)>

<279(s3) , 9001(e3)>

[7719(s2),7822(e2)]phpbb_d
 T

cgi_web_tSubject Context

Object Context

Multiple direct f lows

Single indirect f low

Fig. 7. IFG for the phpBB RC attack scenario.

June July Aug Sept Oct Nov

at
ta

ck
s

0

20

40

60

80

NoPIGA PIGAIDS PIGAIPS

Fig. 8. Number of attacks per month per machine for the login race condition

this attack is a more complex one. The Figure 7 describes
the PhpBB attack scenario. First, the attacker (user_d)
has to connect to the apache server (apache_d) through a
socket (http_socket_t) and accesses to the PhpBB forum
(phpbb_d). Then, the attacker uses the remote execution
exploit in the PhpBB forum to execute a shell (shell_d).
He uses the shell to modify the cgi scripts (cgi_web_t).
In summary, this RC based PhpBB attack involves direct
and indirect information flows. The first flow of the attack
is apache_d

T
.[234,8843] cgi_web_t. The second one is

indeed an indirect flow: phpbb_d
T
..[7719,7822] cgi_web_t

(via shell_d). The third flow is a direct one:
cgi_web_t

T
.[279,9001] apache_d.

In the RC PhpBB attack scenario given in Figure 7, the
temporal relations between flows violate the temporal con-
straints (line #4) of the No_Race_Condition security property
between apache_d and phpbb_d: (234(s1) < 7822(e2)) ∧
(7719(s2) < 9001(e3)).

Again, our PIGA-DYN-PROTECT module denies the last
interaction of the third flow. It thus forbids the execution of
the corresponding interaction at the system date 9001.

As shown in the figure 9, we were able to monitor multiple
attacks during the six months period of our experimentation.
Same as login RC attacks, all the phpBB attacks were detected
and blocked.

V. EFFICIENCY

A. Completeness

To evaluate the correctness of our approach, we configured
our honeypot hosts with PIGA-DYN-PROTECT in both detec-
tion and prevention mode. That way, we could verify that every
detected attack was prevented or not. During the six months of
experiment, we detected 146 instances of the login RC attack
and 574 instances of the PhpBB RC attack. All attacks were
blocked by our protection mechanism.

B. Performances

In order to evaluate the performances of our solution, several
benchmarks are proposed for three different configurations:

• a classical Linux system with DAC and SELinux TE.
• a Linux system with DAC and SELinux TE with PIGA-

DYN in analysis mode for detecting the violation of the
required security properties (PIGA-IDS).

• a Linux system with DAC and SELinux TE with PIGA-
DYN in protection mode for enforcing the required secu-
rity properties (PIGA-IPS).

The hardware configuration was the same, a Pentium-4 3Ghz
with 1Gb of memory.

We use lmbench [41] suite running on these three machines
to measure bandwidth and latency. Lmbench attempts to
measure performance bottlenecks in a wide range of system
applications. These bottlenecks have been identified, isolated

41

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

June July Aug Sept Oct Nov

at
ta

ck
s

0

100

200

300

400

NoPIGA PIGAIDS PIGAIPS

Fig. 9. Number of attacks per month per machine

Operation Description
memory read Measuring time to read x byte word from memory
memory write Measuring time to write x byte word to memory
memory read/write Measuring time to read an write x byte word to memory

TABLE I
MEMORY OPERATIONS FROM LMBENCH

and reproduced in a set of microbenchmarks that measures
the system latency and bandwidth of data movement. First,
we focus on the memory subsystem and measure bandwidth
with various memory operation listed in the table I.

As shown in the Figure 10, the difference between the
three different configurations is small. With data blocks larger
than 512Kb, the three configurations have almost the same
performances. With data blocks smaller than 512Kb, the
overhead due to our security component is unnoticeable. In
the worst case, like memory read/write, the overhead is 5%.
Consequently, we can state that our security component has
little to no influence on data copy to and from the memory.

In a second time, we used lmbench to measure latency in
five different parts of the operating system:

• Process: it creates four different types of process and
evaluates the time it takes 1) to invoke a procedure, fork
a process and close it, 2) fork a process and invoke the
execve system call and 3) fork a process and invoke an
interactive shell.

• Context switching: it measures the context switching time
for a number of processes of a given size (in Kb). The
processes are all connected through a ring of Unix Pipe
where each process reads its input pipe, does some work
and writes in its output pipe i.e. the input pipe of the next
process.

• System call: it measures the time to write one byte to
/dev/null. It permits to evaluate the interaction time with
the system.

• Filesystem: it measures the time to create and delete files
with a size between 0 and 10Kb.

• Network: it measures the time taken to make a HTTP
request (GET/) on a LAN and a WAN HTTP server.

syscall procedure

la
te

nc
y

(n
an

os
ec

on
ds

)

0

1000

2000

3000

4000

5000

NoPIGA PIGAIDS PIGAIPS

Fig. 11. Syscall and Procedure Latency for the three operating systems

Figure 11 displays, on the first set of columns, the latency
(in nanoseconds) to invoke a system call. The operating system
without our solution and with our solution in analysis mode
have the same latency. The overhead due to our solution
in protection mode is minimal (2% on average). Thus, our
solution has little to no influence on the system call latency.
The second set of columns shows the latency when invoking
a function in a program. The three operating systems have the
same latency. Our solution does not change the procedure call
latency. Indeed, the call of a procedure inside a program does
not require to compute any authorization.

Figure 12 displays the average time (in microseconds) to
create and destroy three types of process: first one is just a
creation and a deletion, the second one is a creation then an
execution (execve), the third one is a creation then the invo-
cation of a shell (/bin /sh). The overhead of our two solutions
is high. Indeed, thousands of fork system calls, within few
seconds, create thousands of path searches. The overhead is
about 300% when using our solution in analysis mode and

42

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

memory read (nopiga)

memory write (nopiga)

memory read/write (nopiga)

memory read (pigaids)

memory write (pigaids)

memory read/write (pigaids)

memory read (pigaips)

memory write (pigaips)

memory read/write (pigaips)

Fig. 10. Memory bandwidth performance

fork+exit fork+execve fork+shell

la
te

nc
y

(m
ic

ro
se

co
nd

s)

0

5000

10000

15000

20000

25000

30000

35000

40000

NoPIGA PIGAIDS PIGAIPS

Fig. 12. Fork Latency for the three operating systems

WAN LAN

la
te

nc
y

(m
ill

is
ec

on
ds

)

0

20

40

60

80

100

120

140

160

NoPIGA PIGAIDS PIGAIPS

Fig. 13. Network Latency for the three operating systems

800% in protection mode. This overhead can be reduced by
pre-computing the path on the IFG, such approaches are under
development. However, thousands of forks within a limited
time really is unusual. So, this overhead is not relevant of a
common usage.

As one can see on the Figure 13, the network latency is the
same for the three operating systems. The amount of access
control verifications for a network system call is small since
our solution does not have to do expensive path searches.

Figure 14 shows the average latency when switching from
a process to another one when 2, 4, 8 and 16 processes
communicate together through a ring of Unix pipe. The
overhead in analysis mode is about 4% on average. A context

la
te

nc
y

(m
ic

ro
se

co
nd

s)

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16

nopiga

pigaids

pigaips

Fig. 14. Context Switch Latency for the three operating systems

cr
ea

te
/d

el
et

e
pe

r
se

co
nd

s

0

5000

10000

15000

20000

25000

30000

0Kb 1Kb 4Kb 10Kb

create (nopiga)

delete (nopiga)

create (pigaids)

delete (pigaids)

create (pigaips)

delete (pigaips)

Fig. 15. Filesystem Latency for the three operating systems

switching generates dozens of access control requests. Our
solution is efficient since it computes the dozens of requests
in a very short delay. With our solution in protection mode,
the overhead is less than 6%.

Figure 15 shows the timing of creating and deleting files on
a filesystem (an ext3 filesystem). It shows how many files can
be created in one second with a size of 0, 1, 4 or 10Kb and

43

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

how many files can be deleted in one second with the same
size. The overhead of our two solutions is less than 1%.

This performance analysis shows that our solution (in anal-
ysis or protection mode) is efficient for common usages. The
fork overhead corresponds to an unusual stress of the system.
To cope with such situations, we are looking at different pre-
computing and optimization methods while keeping a stable
memory usage.

Our paper presents a novel approach to protect a complete
operating system against attacks using Race Conditions. It
provides a large state of art showing that this problem still
is opened. Our solution prevents efficiently against both direct
race conditions and indirect ones. A new protection property
is defined to cope with these various race conditions. That
property fits with the enforcement by an operating system
against RCs.

An implementation is proposed for guaranteeing the pro-
posed security property within a Linux system. Our implemen-
tation provides a dedicated MAC approach. For compatibility
reasons, SELinux contexts are reused. However, the SELinux
enforcement is not required and the solution supports ordinary
DAC systems. It requires only security contexts associated to
the different system resources.

Our approach computes the illegal activities dynamically. It
allows to easily define security properties against RCs attacks.

Real examples show the efficiency of our approach for
preventing real attacks using race conditions. A complete
benchmark has been carried out to show the low overhead
of our solution. Improvements are on the way to cope with
unusual stress of the system.

Since our approach allows to formalize a wide range of
security properties, future works will tackle other security
properties dealing with integrity, confidentiality and availabil-
ity.

REFERENCES

[1] J. Rouzaud Cornabas, P. Clemente, and C. Toinard, “An Information
Flow Approach for Preventing Race Conditions: Dynamic Protection of
the Linux OS,” in Fourth International Conference on Emerging Secu-
rity Information, Systems and Technologies SECURWARE’10, (Venise
Italie), pp. 11–16, 07 2010.

[2] R. H. B. Netzer and B. P. Miller, “What are race conditions? some issues
and formalizations,” LOPLAS, vol. 1, no. 1, pp. 74–88, 1992.

[3] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: efficient detection of
data race conditions via adaptive tracking,” SIGOPS Oper. Syst. Rev.,
vol. 39, no. 5, pp. 221–234, 2005.

[4] T. Tahara, K. Gondow, and S. Ohsuga, “Dracula: Detector of data
races in signals handlers,” (Beijing, China), pp. 17–24, IEEE Computer
Society, 2008.

[5] W. S. McPhee, “Operating system integrity in os/vs2,” IBM Syst. J.,
vol. 13, no. 3, pp. 230–252, 1974.

[6] M. Bishop, “Race conditions, files, and security flaws: or, the tortoise
and the hare redux,” Technical Report, vol. 95, sept. 1995.

[7] M. Bishop and M. Dilger, “Checking for race conditions in file accesses,”
Computing Systems, vol. 9, pp. 131–152, 1996.

[8] R. H. Netzer and B. P. Miller, “On the complexity of event ordering for
shared-memory parallel program executions,” in In Proceedings of the
1990 International Conference on Parallel Processing, pp. 93–97, 1990.

[9] H. Chen and D. Wagner, “Mops: an infrastructure for examining security
properties of software,” in CCS ’02: Proceedings of the 9th ACM
conference on Computer and communications security, (New York, NY,
USA), pp. 235–244, ACM, 2002.

[10] B. Chess, “Improving computer security using extended static checking,”
in Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on,
pp. 160 – 173, 2002.

[11] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison, and
J. West, “Model checking an entire linux distribution for security
violations,” in ACSAC ’05: Proceedings of the 21st Annual Computer
Security Applications Conference, (Washington, DC, USA), pp. 13–22,
IEEE Computer Society, 2005.

[12] C. Ko and T. Redmond, “Noninterference and intrusion detection,” in
Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on,
(Oakland, CA, USA), pp. 177–187, 2002.

[13] K.-s. Lhee and S. J. Chapin, “Detection of file-based race conditions,”
International Journal of Information Security, vol. 4, pp. 105–119, 2005.
10.1007/s10207-004-0068-2.

[14] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “Detecting past and
present intrusions through vulnerability-specific predicates,” in SOSP
’05: Proceedings of the twentieth ACM symposium on Operating systems
principles, (New York, NY, USA), pp. 91–104, ACM, 2005.

[15] C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman, “Raceguard:
kernel protection from temporary file race vulnerabilities,” in SSYM’01:
Proceedings of the 10th conference on USENIX Security Symposium,
(Berkeley, CA, USA), pp. 13–13, USENIX Association, 2001.

[16] E. Tsyrklevich and B. Yee, “Dynamic detection and prevention of
race conditions in file accesses,” in SSYM’03: Proceedings of the 12th
conference on USENIX Security Symposium, (Berkeley, CA, USA),
pp. 17–17, USENIX Association, 2003.

[17] P. Uppuluri, U. Joshi, and A. Ray, “Preventing race condition attacks on
file-systems,” in Proceedings of the 2005 ACM symposium on Applied
computing - SAC ’05, (New York, New York, USA), p. 346, ACM Press,
2005.

[18] F. Schmuck and J. Wylie, “Experience with transactions in quicksilver,”
in SOSP ’91: Proceedings of the thirteenth ACM symposium on Oper-
ating systems principles, (New York, NY, USA), pp. 239–253, ACM,
1991.

[19] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok, “Extending acid
semantics to the file system,” Trans. Storage, vol. 3, no. 2, p. 4, 2007.

[20] D. Mazieres and M. Kaashoek, “Secure applications need flexible
operating systems,” in Operating Systems, 1997., The Sixth Workshop
on Hot Topics in, pp. 56 –61, 5-6 1997.

[21] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva, “Portably solving
file tocttou races with hardness amplification,” in FAST’08: Proceedings
of the 6th USENIX Conference on File and Storage Technologies,
(Berkeley, CA, USA), pp. 1–18, USENIX Association, 2008.

[22] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” in
15th National Computer Security Conference, (Baltimore, MD, USA),
pp. 554–563, Oct. 1992.

[23] ITSEC, “Information Technology Security Evaluation Criteria (ITSEC)
v1.2,” technical report, June 1991.

[24] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J.
Turner, and J. F. Farrell, “The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing Environments,” in Pro-
ceedings of the 21st National Information Systems Security Conference,
(Arlington, Virginia, USA), pp. 303–314, Oct. 1998.

[25] J. Anderson, “Computer security threat monitoring and surveillance,”
tech. rep., James P. Anderson Company, Fort Washington, Pennsylvania,
April 1980.

[26] D. E. Bell and L. J. La Padula, “Secure computer systems: Mathemat-
ical foundations and model,” Technical Report M74-244, The MITRE
Corporation, Bedford, MA, May 1973.

[27] T. Fraser and L. Badger, “Ensuring continuity during dynamic security
policy reconfiguration in dte,” pp. 15 –26, may. 1998.

[28] N. Li, Z. Mao, and H. Chen, “Usable mandatory integrity protection for
operating systems,” in SP ’07: Proceedings of the 2007 IEEE Symposium
on Security and Privacy, (Washington, DC, USA), pp. 164–178, IEEE
Computer Society, 2007.

[29] T. Fraser, “LOMAC: Low Water-Mark integrity protection for COTS
environments,” Proceeding 2000 IEEE Symposium on Security and
Privacy. S&P 2000, pp. 230–245, 2000.

[30] Z. Mao, N. Li, H. Chen, and X. Jiang, “Trojan horse resistant discre-
tionary access control,” in SACMAT ’09: Proceedings of the 14th ACM
symposium on Access control models and technologies, (New York, NY,
USA), pp. 237–246, ACM, 2009.

[31] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières, “Labels and event

44

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processes in the asbestos operating system,” ACM Trans. Comput. Syst.,
vol. 25, no. 4, p. 11, 2007.

[32] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in OSDI ’06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation,
(Berkeley, CA, USA), pp. 19–19, USENIX Association, 2006.

[33] P. Efstathopoulos and E. Kohler, “Manageable fine-grained information
flow,” SIGOPS Oper. Syst. Rev., vol. 42, no. 4, pp. 301–313, 2008.

[34] M. Krohn and E. Tromer, “Noninterference for a practical difc-based
operating system,” in SP ’09: Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, (Washington, DC, USA), pp. 61–
76, IEEE Computer Society, 2009.

[35] P. Clemente, J. Rouzaud-Cornabas, and C. Toinard, “From a generic
framework for expressing integrity properties to a dynamic enforcement
for operating systems,” in Transactions on Computational Science XI
(M. Gavrilova, C. Tan, and E. Moreno, eds.), vol. 6480 of Lecture Notes
in Computer Science, pp. 131–161, Springer Berlin / Heidelberg, 2010.

[36] H. Liang and Y. Sun, “Enforcing mandatory integrity protection in
operating system,” in ICCNMC ’01: Proceedings of the 2001 Interna-
tional Conference on Computer Networks and Mobile Computing (IC-
CNMC’01), (Washington, DC, USA), p. 435, IEEE Computer Society,
2001.

[37] N. Li, Z. Mao, and H. Chen, “Usable mandatory integrity protection
for operating systems,” in Security and Privacy, 2007. SP ’07. IEEE
Symposium on, (Oakland, CA, USA), pp. 164–178, May 2007.

[38] J. Briffaut, J.-F. Lalande, and C. Toinard, “A proposal for securing a
large-scale high-interaction honeypot,” in Workshop on Security and
High Performance Computing Systems (R. K. Guha and L. Spalazzi,
eds.), (Cyprus), ECMS, 2008.

[39] M. Blanc, J. Briffaut, J.-F. Lalande, and C. Toinard, “Enforcement of
security properties for dynamic mac policies,” in Third International
Conference on Emerging Security Information, Systems and Technolo-
gies (IARIA, ed.), (Athens/Vouliagmeni, Greece), pp. 114–120, IEEE
Computer Society Press, June 2009.

[40] M. Blanc, P. Clemente, J. Rouzaud-Cornabas, and C. Toinard, “Classifi-
cation of malicious distributed selinux activities,” Journal Of Computers,
vol. 4, pp. 423–432, may 2009.

[41] L. McVoy and C. Staelin, “lmbench: portable tools for performance
analysis,” in ATEC ’96: Proceedings of the 1996 annual conference on
USENIX Annual Technical Conference, (Berkeley, CA, USA), pp. 23–
23, USENIX Association, 1996.

45

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Experiences with the Automatic Discovery of Violations to the Normalized Systems
Design Theorems

Kris Ven, Dieter Van Nuffel, Philip Huysmans, David Bellens, Herwig Mannaert
Department of Management Information Systems

University of Antwerp
Prinsstraat 13

2000 Antwerp, Belgium
{kris.ven,dieter.vannuffel,philip.huysmans,david.bellens,herwig.mannaert}@ua.ac.be

Abstract—Evolvability is an important concern for the design
and development of information systems. The Normalized
Systems theory has recently been proposed and aims to ensure
the high evolvability of information systems. The Normalized
Systems theory is based on the systems theoretic concept
of stability and proposes four design theorems that act as
constraints on the modular structure of software. In this paper,
we explore the feasibility of building a tool that is able to
automatically identify violations to these Normalized Systems
design theorems in the source code of applications. Such a
tool could help developers in identifying limitations to the
evolvability of their applications. We describe how a prototype
of such a tool was developed and report on the evaluation of this
tool consisting of the analysis of the source code of four open
source software applications. Our results demonstrate that it is
feasible to automatically identify violations to the Normalized
Systems design theorems. In addition, the results show that
there is considerable variety in how well the different theorems
are adhered to by various software applications. We also
identified some issues and limitations with the current version
of the tool and discuss how these issues can be addressed in a
future version.

Keywords-normalized systems; modularity; software archi-
tecture; quality

I. INTRODUCTION

Contemporary organizations are operating in increasingly
volatile environments and must be able to respond quickly to
changes in their environment in order to gain a competitive
advantage [2], [3]. Since organizations are becoming increas-
ingly dependent on information technology (IT) to support
their operations, the evolvability of the IT infrastructure
will determine to a large extent how quickly organizations
are able to adapt. It has indeed been shown that IT offers
opportunities to organizations to increase their agility and
flexibility [4]–[6]. Organizations therefore require increasing
levels of evolvability of their information systems. Unfortu-
nately, information systems struggle to provide the requested
levels of evolvability, often due to poorly designed software
architectures [7].

The Normalized Systems theory has recently been pro-
posed by Mannaert and Verelst [8] and aims to address
these evolvability issues. The Normalized Systems theory is

concerned with how information systems can be developed
based on the systems theoretic concept of stability [8]–
[10]. It argues that the main obstacle to evolvability is the
existence of so-called combinatorial effects. Combinatorial
effects occur when the effort to apply a specific change
increases as the system grows [8], [10]. The Normalized
Systems theory eliminates these combinatorial effects by
defining clear design theorems. These Normalized Systems
design theorems act as constraints on the modular structure
of software. Adhering to these theorems results in informa-
tion systems that exhibit stability.

Organizations currently have a large number of in-house
developed information systems in use. These information
systems are likely to contain combinatorial effects that
limit their evolvability. These combinatorial effects exist due
to violations to the Normalized Systems design theorems.
Organizations will therefore be looking towards ways to
identify these combinatorial effects in their code base and
to devise solutions to improve the evolvability of their infor-
mation systems. Manually inspecting the source code may
be a possibility, but is likely to be a very time-consuming
task. The automatic identification of combinatorial effects
therefore seems to be a very interesting alternative. In
this paper, we explore the feasibility of building a tool to
automatically identify violations to the Normalized Systems
design theorems in the source code of applications. Although
our main focus—similar to our previous research [9], [10]—
is on information systems, this tool could be used to perform
an evaluation of any type of software application. In this
paper, we describe the development and evaluation of a
prototype of such a tool. In our previous work, we already
described the evaluation of this prototype using a single
case [1]. Our current work further builds on this research
by analyzing the source code of four open source software
applications.

The rest of this paper is structured as follows. In Sec-
tion II, we describe the previous work related to this study
and focus on providing an introduction to the Normalized
Systems theory. The methodology of our study is described
in Section III. Section IV describes the development of our

46

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tool. The evaluation of the tool is described in Section V.
The results from the evaluation are discussed in Section VI.
Finally, our conclusions are offered in Section VII.

II. PREVIOUS WORK

In this section, we provide an overview of the literature
related to our current study. We start with an introduction
to the topic of software evolvability. Next, we focus on
providing a background on the Normalized Systems theory.

A. Software Evolvability

It is a well-known problem in software engineering that
the structure of software degrades and becomes more com-
plex over time as changes are applied to it. One of the main
challenges with respect to the evolvability of information
systems is Lehman’s Law of Increasing Complexity which
states that: “As an evolving program is continually changed,
its complexity, reflecting deteriorating structure, increases
unless work is done to maintain or reduce it.” [11] This law
implies that over time, the structure of software will become
more complex—thereby requiring increasing effort to add
new functionality to an existing system—unless preventive
measures are taken [11]–[13]. This is clearly an important
concern for information systems development. There is
widespread belief that the software architecture determines
the evolvability of software to a large extent [14]. As a result,
a number of frameworks have appeared in literature that
attempt to evaluate software architectures based on a number
of quality attributes, including evolvability [15], [16]. Some
of the most well-known evaluation methods include the
Architecture Trade-off Analysis Method (ATAM) [17] and
the Software Architecture Analysis Method (SAAM) [18].
Unfortunately, it has been noted that a theoretical foundation
for studying software evolvability and evolution is largely
missing [19]. As a first step towards such a theoretical
foundation, Lehman derived a list of definitions, theorems
and axioms with respect to software evolution based on
a large empirical research project spanning multiple years
[19].

The approaches mentioned above typically define a set
of principles that should ensure the evolvability of software
systems. Unfortunately, some of these principles are defined
rather informally and leave considerable room for interpre-
tation. As a result, these approaches struggle to consistently
achieve evolvability in realistic software development envi-
ronments. This is frequently a consequence of the fact that
it is difficult to reach consensus among practitioners about
how a principle should exactly be applied in practice. For
example, when asked to evaluate alternative designs for a
software system based on a principle such as loose coupling,
practitioners frequently disagree on the best solution. Several
tools exist that calculate a set of metrics of a software
system in order to provide an idea of the evolvability of
the software system. However, such assessments require

a white-box approach. A statement that the software is
more or less evolvable based on such assessments therefore
have a limited meaning. The Normalized Systems theory is
similar to these previous approaches in taking evolvability
as the primary concern for developing software systems.
The main difference with these previous approaches is that
the Normalized Systems theory is based on the systems
theoretic concept of stability and aims to provide clear
principles on software evolvability. Such clear principles
avoid the situation in which developers or software architects
disagree on the exact interpretation of a principle. By stating
that a software system is compliant with the Normalized
Systems theory, a more black box assessment of evolvability
is therefore possible, since this defines to which anticipated
changes the software is stable.

B. Normalized Systems

In this section, we will provide a brief background on
the Normalized Systems theory. However, the aim of this
section is not to fully explain Normalized Systems, or to
elaborate on the theorems and their rationale. Instead, we
further build upon the previous work that is available in this
area. For more details, we refer the reader to our previous
work describing the Normalized Systems theory [8]–[10],
[20]–[22].

The basic assumption of the Normalized Systems ap-
proach is that information systems should be able to evolve
over time and should therefore be designed to accommodate
change. This implies that the software architecture should
not only satisfy the current requirements, but should also
support future requirements. The Normalized Systems ap-
proach uses the systems theoretic concept of stability as
the basis for developing information systems [8]–[10], [20].
In systems theory, stability refers to a system in which a
bounded input function results in bounded output values,
even as t → ∞ (with t representing time). When applied
to information systems, this means that applying a specific
change to the information system should always require
the same effort, irrespective of the size of the information
system or the point in time at which the change is applied.
The Normalized Systems approach further relies on the
assumption of unlimited systems evolution [8]–[10]. This
means that the system becomes ever larger in the sense
that the number of modules become infinite or unbounded
as t → ∞. This may seem an overstated assumption, but
actually, it is quite logical as even the introduction of a single
module or dependency every twenty years corresponds to an
infinite amount for an infinite time period.

Information systems exhibiting stability with respect to
a defined set of changes are called Normalized Systems
[8], [10]. In contrast, when changes do require increasing
effort as the system grows, combinatorial effects are said to
occur [8], [10]. In order to obtain stable information systems,
these combinatorial effects should be eliminated. In order to

47

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

identify and avoid most of these combinatorial effects, a set
of four design theorems was developed [8]–[10], [20]. It is
important to note that it has been formally proven that these
theorems contribute to achieving systems theoretic stability
in software [9]. We will now briefly describe each of these
theorems. More details are beyond the scope of this paper
and can be found in the literature [8]–[10], [20].

The first theorem, separation of concerns, requires that
every change driver or concern is separated from other con-
cerns. This theorem allows for the isolation of the impact of
each change driver. This principle was informally described
by Parnas already in 1972 as what was later called design
for change [23]. This theorem implies that each module can
contain only one submodular task (which is defined as a
change driver), but also that workflows should be separated
from functional submodular tasks. For instance, consider a
function F consisting of task A with a single version and a
second task B with N versions; thus leading to N versions
of function F . The introduction of a mandatory version
upgrade of task A will not only require the creation of the
additional task version of A, but also the insertion of this
new version in the N existing versions of function F . The
number N is clearly dependent on the size of the system,
and thus implies a combinatorial effect.

The second theorem, data version transparency, requires
that data is communicated in version transparent ways
between components. This requires that this data can be
changed (e.g., additional data can be sent between compo-
nents), without having an impact on the components and
their interfaces. For instance, consider a data structure D
that is passed to N versions of a function F . If an update
of the data structure is not version transparent, it will also
demand the adaptation of the code that accesses this data
structure. Therefore, it will require new versions of the N
existing processing functions F . The number N is clearly
dependent on the size of the system, and thus implies
a combinatorial effect. Data version transparency can, for
example, be accomplished by appropriate and systematic
use of web services instead of using binary transfer of
parameters. This also implies that most external APIs cannot
be used directly, since they use an enumeration of primitive
data types in their interface.

The third theorem, action version transparency, requires
that a component can be upgraded without impacting the
calling components. Consider, for instance, a processing
function P that is called by N other processing functions
F . If a version upgrade of the processing function P is
not version transparent, this will cause besides upgrading
P , the adaptation of the code that calls P in the various
functions F . Therefore, it will require new versions of the
N existing processing functions F . The number N is clearly
dependent on the size of the system, and thus implies a
combinatorial effect. Action version transparency can be
accomplished by appropriate and systematic use of, for

example, polymorphism or a facade pattern.
The fourth theorem, separation of states, requires that ac-

tions or steps in a workflow are separated from each other in
time by keeping state after every action or step. For instance,
consider a processing function P that is called by N other
processing functions F . Suppose the calling of the function
P does not exhibit state keeping. The introduction of a new
version of P , possibly with a new error state, would force
the N functions F to handle this error, and would therefore
lead to N distinct code changes. The number N is clearly
dependent on the size of the system, and thus implies a
combinatorial effect. This theorem suggests an asynchronous
and stateful way of calling other components. Synchronous
calls—resulting in pipelines of objects calling other objects
that are typical for object-oriented development—result in
combinatorial effects.

It must be noted that each of these theorems is not
completely new, and even relates to the heuristic knowledge
of developers. However, formulating this knowledge as
theorems that identify these combinatorial effects aids to
build information systems that contain a minimal number of
combinatorial effects. A remarkable aspect of these theorems
is that a violation of each one of these theorems, by any de-
veloper at any moment during development or maintenance,
results in a combinatorial effect. This suggests how difficult
it is to realize software without combinatorial effects [8],
[10].

The design theorems show that software constructs, such
as functions and classes, by themselves offer no mechanisms
to accommodate anticipated changes in a stable manner
[8], [10]. The Normalized Systems approach therefore pro-
poses to encapsulate software constructs in a set of five
higher-level software elements [8], [10]. These elements are
modular structures that adhere to these design theorems, in
order to provide the required stability with respect to the
anticipated changes [8], [10]. From the second and third
theorem it can straightforwardly be deduced that the basic
software constructs, i.e., data and actions, have to be encap-
sulated in their designated construct. As such, a data element
represents an encapsulated data construct with its get- and
set-methods to provide access to its information in a data
version transparent way. So-called cross-cutting concerns,
for instance access control and persistency, should be added
to the element in separate constructs. The second element,
action element, contains a core action representing a single
functional task or change driver. Four different implemen-
tations of an action element can be distinguished: standard
actions, manual actions, bridge actions and external actions
[24]. In a standard action, the actual task is programmed in
the action element and performed by the same information
system. In a manual action, a human act is required to fulfill
the task. The user then has to set the state of the life cycle
data element through a user interface after the completion
of the task. A process step can also require more complex

48

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

behavior. A single task in a workflow can be required to
take care of other aspects which are not the concern of that
particular flow [8], [10]. Therefore, a separate workflow will
be created to handle these concerns. Bridge actions create
these other data elements going through their designated
flow. When an existing, external application is already in use
to perform the required task, the action element would be
implemented as an external action. These actions call other
information systems and set their end state depending on the
external systems’ reported answer. Arguments and parame-
ters of an action element need to be encapsulated as separate
data elements, and cross-cutting concerns such as logging
and remote access should be added as separate constructs.
Based upon the first and fourth theorem, workflow has to
be separated from other action elements [8], [10]. These
action elements must be isolated by intermediate states, and
information systems have to react to states. To enable these
requirements, three additional elements are identified. A
third element is a workflow element containing the sequence
in which a number of action elements should be executed
in order to fulfill a flow. A consequence of the stateful
workflow elements is that state is required for every instance
of use of an action element, and that the state therefore
needs to be linked to or be part of the instance of the data
element serving as argument. A trigger element is a fourth
element that controls the states (both regular and error states)
and checks whether an action element has to be triggered.
Finally, the connector element ensures that external systems
can interact with data elements without allowing an action
element to be called in a stateless way [8], [10].

It is important to note that the basic underlying motivation
of the Normalized Systems theory is to strive towards
establishing an objective and scientific foundation to analyze
the evolvability characteristics of information systems. The
previous studies on this topic can be considered a first initial
step towards turning software engineering into a classical
engineering science that is based on laws and exhibits
predictability [9].

III. METHODOLOGY

Our research has been conducted using the design science
methodology. Our research goal is to develop a tool for
the automatic identification of violations to the Normalized
Systems design theorems in the source code of information
systems. The design science methodology is appropriate
in this case, since design science is primarily aimed at
solving problems by developing and testing artifacts, rather
than explaining them by developing and testing theoretical
hypotheses. The design science research tradition focuses on
tackling ill-structured problems in a systematic way [25].
Peffers et al. consider information systems to be an applied
research discipline, meaning that theory from disciplines
such as economics, computer science and social sciences
are frequently used to solve problems between information

technology and organizations [26]. In this research, we
will use the Normalized Systems theory as the basis to
develop a tool to identify potential issues with respect to
the evolvability of software. Hence, we start from a solid
theoretical foundation to develop a tool that has a large
potential to be used in practice.

March and Smith have developed a classification scheme
to position design science research efforts. This scheme
identifies 4 different research outputs (i.e., construct, model,
method and instantiation) and 4 different research activities
(i.e., build, evaluate, theorize and justify) [27]. Our research
is concerned with the build and evaluate phases of an
instantiation artifact. The instantiation refers in this case
to a tool to identify violations to the Normalized Systems
design theorems. If such a tool could be developed, it would
illustrate the feasibility of the automatic identification of
violations. The importance of building instantiations has
been emphasized by Newell and Simon, by writing: “Each
new program that is built is an experiment. It poses a
question to nature, and its behavior offers clues to the
answer” [28].

Consistent with the design science methodology, an it-
erative approach will be followed in this research [26],
[29], [30]. We started by first defining and motivating the
problem based on the literature on Normalized Systems.
Therefore, the research entry point is objective-centered, and
is concerned with developing a tool to identify violations to
the Normalized Systems design theorems [26]. Based on the
Normalized Systems design theorems, we derived a number
of violations that may occur in Java applications. In this
first iteration, it is not our aim to create an exhaustive list of
potential violations. Hence, we provide a lower bound for
the existence of such violations in information systems. This
constitutes a contribution towards the Normalized Systems
approach, since this provides insight into which concrete
violations to the Normalized Systems design theorems can
be found in practice. Next, we investigate the feasibility of
building a tool that can automatically identify manifestations
of these violations in the source code of information systems.

Finally, we conduct a first evaluation of the tool. Evalua-
tion is considered to be a key element in the design process
[31]. To this end, we evaluate the tool by applying it to a
set of Java applications, interpreting the resulting output and
verifying the violations in the source code. The correctly
identified violations confirm the utility of this tool. This
first version of the tool is an important milestone, as it will
give valuable feedback on the feasibility of the automatic
inspection of the source code with respect to violations to the
Normalized Systems design theorems. Furthermore, we will
use the lessons learned from this first evaluation to improve
the efficiency of our tool. In the following iterations, we will
further develop and refine our tool. Future improvements
include, for example, detecting a larger number of violations
to the Normalized Systems design theorems. These future

49

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

versions will be evaluated using other applications as a test
case. We seek to further evaluate the tool in the future by
applying it to larger and more complex applications.

IV. TOOL DEVELOPMENT

In the build phase of our research, we iteratively de-
veloped a tool prototype for the automatic identification
of violations to the Normalized Systems design theorems.
Before developing the tool, we first needed to determine for
which programming language we wanted to build the tool.
Since each programming language has its own constructs
and syntax, different violations are possible in different
programming languages. Therefore, separate parsers should
be developed for each programming language. We decided
to focus on the Java programming language. This choice
was motivated by a number of reasons. First, Java is a
popular programming language that is used by a large num-
ber of applications, including traditional GUI applications
and web-based applications. Second, Java EE is a popular
framework to build enterprise applications, making it very
relevant in an organizational context. Third, the reference
implementation for Normalized Systems was also built in
the Java EE environment [8], [10].

A graphical overview of the architecture of this tool is
shown in Figure 1. It shows that the tool consists of two main
components—NSTVdoclet and NSTVdetect—that have
to be run in succession. The former component is responsible
for parsing the source code, while the latter component
is responsible for actually analyzing the source code for
manifestations of violations to the Normalized Systems
design theorems. This approach allowed us to decouple the
parsing of the source code and the actual inspection of
the source code, which is consistent with the separation of
concerns theorem.

As shown in Figure 1, the first step of the analysis consists
of processing the Java source code by the NSTVdoclet
component. The NSTVdoclet component is written as a
custom doclet to javadoc. The javadoc tool is part of
the Java 2 SDK. By default, it generates documentation
in HTML format of the API of a Java application. The
javadoc tool is, however, easy to extend by creating cus-
tom doclets that provide output in an alternate format. The
NSTVdoclet component filters the information obtained
by javadoc since not all this information is required
by NSTVdetect. Next, the output is written away in
a temporary database. The information contained in this
database is an internal representation of the source code that
is to a large extent independent on a specific programming
language (e.g., in terms of classes that have methods that
take parameters of a certain type and that possibly throw an
exception). This method has three main advantages. First,
it allows us to reuse the source code parsing algorithm
of javadoc. This avoids having to write a custom Java
source code parser. In addition, the output provided by

javadoc is clearly documented at the API-level, making
it easy to parse and process this information. Second, most
Java applications ship with an ant build file that allows
the automatic compilation of Java source code. In most
cases, this ant build file includes a javadocs target that
generates the API-documentation for the application using
javadoc. If such a build target is available, it is quite easy
to specify in the build file that a custom javadoc doclet
must be used. This ensures that parsing the source code does
not require much effort, on the condition that the standard
javadoc documentation can be generated. In general, it is
sufficient to modify the javadoc task to indicate that a
custom doclet that must be used by specifying the doclet
and docletpath attributes (see also Figure 2).

In the second step of the analysis, the NSTVdetect
component processes the information in this database and
analyzes it to identify manifestations of violations to the
Normalized Systems design theorems. Consistent with the
separation of concerns theorem, the NSTVdetect com-
ponent delegates the responsibility of the actual detection
of these manifestations of violations to an extensible set of
modules. Each module analyzes the internal representation
of the source code for manifestations of a specific violation.
Each module writes its output to a separate report file.

An M−N relationship exists between these violations and
the Normalized Systems design theorems: a single design
theorem can be violated in several ways, while a single
violation can refer to more than one theorem. Our tool
currently supports the detection of manifestations of three
violations that may occur in Java applications. The identi-
fication of these violations is based upon—and consistent
with—previous work [8]–[10]. Although the current list of
violations is not exhaustive, it includes common violations
against the Normalized Systems design theorems and covers
all four design theorems. This list can be further expanded
in the future. As such, the current list represents a lower
bound of the violations to the Normalized Systems design
theorems that exist in Java applications. We will now discuss
these violations and how they are detected by each module
in more detail.

A. Import Multiple Concerns Violation

A first violation occurs when a class combines more than
one concern by using the import statements in Java. Such a
class violates the separation of concerns theorem and there-
fore results in combinatorial effects. Java classes can import
and use functionality from external technology environments
and packages by using the import instruction. This may
introduce dependencies on these external technologies in an
implicit way since each of these technologies can change
independently in the future. Consider a specific concern
that is combined with one or more other concerns in N
different classes. If this concern changes in the future (e.g.,
when it is decided to use an alternative external technology),

50

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Tool Architecture

Original javadoc task for iText:

<javadoc
destdir="${itext.docs}"
author="true" maxmemory="128m"
private="true">

Modified javadoc task for iText:

<javadoc
destdir="${itext.docs}"
author="true" maxmemory="128m"
private="true"
doclet="ua.mis.NSTVdoclet.main.NSTVdoclet"
docletpath="nstvdoclet.jar">

Figure 2. Example of modification of ant build file

then this change has an impact on N different classes.
Since N becomes unbounded over time, the impact of this
change will increase over time as well, thereby resulting in
a combinatorial effect. The separation of concerns design
theorem requires that each change driver or concern is
isolated from other concerns, so that each concern can evolve
independently. This implies that each module should contain
only one change driver [8]–[10]. As a result, a class should
not combine two or more concerns.

The Import Multiple Concerns Violation module deter-
mines which concerns are used by each class based on
the imported libraries (using the import statements in
Java). We consider that the import statements in Java may
provide a rough, but useful indication of which external
technologies are used by a specific class, and therefore
which concerns are addressed in the class. Before running
the analysis, the researcher must define which concerns
are present in the application, as well as which libraries
fall under each concern. Depending on the application, one
concern could, for example, be the use of the Java Swing
packages for the graphical user interface, while a second
concern could be the use of the Java JDBC packages to
support database access. According to the separation of
concerns theorem, both concerns should not be combined
in a single class. This is consistent with the concept of
multi-tier architectures. Another concern could be the use

of another application, such as Cocoon to provide a web-
based user interface. Based on this definition of concerns, it
is determined how many different concerns are combined in
each class. The researcher must define these concerns with
care to ensure that the libraries correspond to the various
concerns in the application as much as possible, in order
to minimize the number of false positives identified by this
module.

B. Primitive in Interface Violation

The second violation occurs when the interface of a
method contains a primitive data type or a class of the type
java.lang.String. Such a method violates both the
data version transparency and action version transparency
theorem and therefore results in combinatorial effects. Con-
sider a method that is called by N other methods in the
application and that contains one or more primitive data
types or the java.lang.String class in its interface.
If the functionality of this method is extended in the future,
this extra functionality may require additional information to
be sent to the method. However, the data that is sent to this
method is not data version transparent. Since primitive data
types or the java.lang.String class can only contain
single values, it is not possible to send additional information
without having an impact on this data structure. The method
is not action version transparent either since the interface of
the method will need to change to accept this additional
information. It is therefore not possible to upgrade to a new
version of the method without having an impact on the rest
of the system. Hence, if additional data is needed by this
method, this will have an impact on the N methods that
call this method. In each of these N methods, the additional
data needs to be initialized and the method call has to be
adapted according to the modified interface of the method.
Since N becomes unbounded over time, the impact of this
change will increase over time as well, thereby resulting in
a combinatorial effect. To resolve this issue, it is better to
encapsulate the method parameters in a dedicated object with
a default constructor. This constructor assigns neutral values
to each of the parameters, which can be overwritten by
calling the appropriate set methods. Future changes would

51

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then have no effect on methods calling the method [8]–[10].
We further illustrate this principle with a practical exam-

ple. Consider a method that allows the user to search for
a specific string in a set of files and that takes a single
parameter of the type java.lang.String that specifies
the text to search for. Next, assume that the developers want
to extend the search functionality in the future by allowing
users to make use of regular expressions. In other words,
the method should support searching based on normal text
as well as regular expressions. In that case, the interface of
the method should be extended with a boolean variable
to indicate whether the string is a regular expression. This
will, however, affect all other methods calling the search
method. The data is not data version transparent since its
structure does not allow to send additional data without any
additional changes to the system. In addition, the method
is not action version transparent since the interface of the
method will change, and it is not possible to upgrade to
a new version of the method without having an impact on
the rest of the system. One could argue that overloading
could be used in this case, by having one method with
as interface (java.lang.String) and another method
with as interface (java.lang.String, boolean).
However, this solution also has limitations with respect to
evolvability since this approach is only feasible when the
unique interface of the method can be guaranteed. If the
same method would be extended with the functionality to
make the search case-sensitive or not, another method with
as interface (java.lang.String, boolean) would
need to be added. However, this is impossible, since a
method with this signature has already been defined. To
resolve this issue, it is better to encapsulate the search
parameters in a new class SearchConfiguration that
can be extended with additional fields as new functionality
is added to the search method. The default constructor
of the SearchConfiguration object should assign a
neutral value to newly added parameters (e.g., to indicate
that a search string is not a regular expression). By calling
the appropriate set method, the default settings can be
overwritten. Future changes would then have no effect on
methods calling the search method. This solution would
be compliant with the data and action version transparency
theorems.

The Primitive in Interface Violation module therefore
inspects the interface of each non-private method and deter-
mines whether the interface includes one or more primitive
data types or the java.lang.String class.

C. Custom Exception Violation

The third violation occurs when a method throws a
custom exception (i.e., an exception that is not part of the
default Java environment). The Java programming language
provides the exception mechanism to handle errors that
occur during the execution of a method. If an exception is

thrown by a method, the calling method must process this
error, either by catching and handling the error internally,
or by throwing the exception further upward the stack. This
constitutes a violation to the separation of states theorem and
therefore results in combinatorial effects. Consider a method
that is called by N different methods in the application. If
the developer working on this method decides to introduce
a new error state by having the method to throw a new
exception, then this has an impact on the N methods that call
this method, since they are forced by the Java environment
to either catch or throw this exception further upward the
stack. Hence, the error handling takes place in N different
places. Since N becomes unbounded over time, the impact
of this change will increase over time, thereby resulting in a
combinatorial effect. Instead, the error state should be stored
and error handling should be performed by a separate and
dedicated module [8]–[10].

The Custom Exception Violation module therefore
determines how many custom exceptions are thrown
by all methods. We consider the use of standard
Java exceptions (e.g., java.lang.Exception and
java.io.IOException) to be acceptable, since they are
related to the background technology being used. Even in
this case, the use of these exceptions should be kept to a
minimum. The use of custom exceptions should be avoided
since such errors should be handled in a stateful way.

V. CASE STUDY

We now discuss the evaluation phase of the design
research process. In order to evaluate our tool, we ana-
lyzed the source code of a number of Java applications.
These applications needed to satisfy three criteria. First,
we focused on Java applications that are distributed under
an open source license since this provides us with free
access to the source code of these application. Second, the
applications should represent a moderate development effort.
Applications should not be too small to be disregarded as
a toy example, but should also not be too large and too
complex to complicate the evaluation of our tool. Third, we
preferred to select applications that are quite popular and
widely adopted to use applications that are used in real-life
settings, rather than laboratory applications.

Based on these criteria, we selected four applications: (1)
Apache Lucene, a fully-fledged text search engine; (2) jEdit,
a programmers’ text editor that supports a large number of
programming languages; (3) JabRef, a bibliography refer-
ence manager that is used to edit BibTeX files; and (4) iText,
a library that can be used by applications to facilitate the
creation and manipulation of PDF documents. Details on
the source code of these four open source software products
can be found in Table I.

It must be noted that these four programs represent rather
simple applications since they are written from scratch in
Java, use a limited number of external libraries, and are

52

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
DETAILS OF SELECTED OPEN SOURCE SOFTWARE PRODUCTS

Name Version Classes Methods LOC
Apache Lucene 3.0.0 367 2,744 81,290
jEdit 4.3.1 477 1,980 163,015
JabRef 2.5 980 5,988 98,982
iText 5.0.5 583 5,663 140,883

not based on advanced frameworks. As a result, they do
not exhibit the complexity of contemporary information
systems, on which the Normalized Systems theory focuses.
However, our aim in this paper is on exploring the feasibility
of building a tool that is able to automatically identify
violations to these Normalized Systems design theorems
in the source code of applications. Our previous research
has shown that even small applications are likely to contain
several violations to the Normalized Systems theorems [1].
Therefore, applying our tool to analyze a complex informa-
tion system is likely to result in a very large set of violations.
Interpreting these results would complicate the evaluation of
our tool. As a result, the four applications selected above are
suitable for our purpose.

It is important to note that we do not want to make any
claims with respect to the quality of the four applications in
our case study. Instead, we want to perform an evaluation
of our tool and its ability to automatically identify mani-
festations of violations to the Normalized Systems design
theorems.

A. Import Multiple Concerns Violations

As mentioned in Section IV-A, we must first specify
which concerns are present in a given application before
running the analysis with NSTVdetect. To this end, we
developed a shell script to extract a list of the unique package
names that were imported by all classes of a given applica-
tion from the temporary database created by NSTVdoclet.
The task of the researcher is then to group these import
statements in a set of concerns. The concerns that were
identified for each of the four applications in our case
study—as well as the packages that relate to each concern—
are displayed in Table II. In this analysis, all packages
belonging to the application itself were not considered to
be a separate concern. In the case of jEdit, for example,
all packages belonging to the org.gjt.sp.jedit.*
package were considered part of the application itself, and
not a separate concern.

A summary of the output from the Import Multiple Con-
cerns Violations module is shown in Table III. According
to the separation of concerns theorem, a class should not
address more than one concern. The results from our analysis
show a relatively low to moderate number of manifestations
of this violation. The percentage of classes that are compliant
with the separation of concerns theorem is (in decreasing
order) 98.9% (363 out of 367 classes) for Lucene, 85.6%

(499 out of 583 classes) for iText, 82.8% (395 out of 477
classes) for jEdit, and 63.9% (626 out of 980 classes) for
JabRef. Lucene therefore performs very well, although it
must be noted that only three concerns were identified for
this application. JabRef has the highest number of violations
with 36.1% of its classes, but also has the largest number of
concerns. It therefore appears that there may be a relation-
ship between the number of concerns that are identified for
an application and the number of violations to the separation
of concerns theorem. Overall, we can conclude that the
separation of concerns theorem is rather to very well adhered
to in all four applications.

A more detailed analysis showed that in those classes in
which more than two concerns are combined, the Java IO
concern is frequently combined with other concerns, such as
Java Swing (e.g., JabRef and jEdit) or Java Net (JabRef and
iText). Although most of these concerns are related to the
default Java SDK API, it does create dependencies on differ-
ent packages within the API. This data also suggests that file
system functions (Java IO and Java Net) are combined with
user interface functions (Java Swing). This may neglect the
concept of multi-tiers and would therefore require attention
in a further screening of the source code.

B. Primitive in Interface Violation

A summary of the output of the Primitive in Interface
module is shown in Table IV. It can be seen that the
percentage of methods that do not contain any manifestations
of this violation and that do not contain any primitive data
types or the java.lang.String class in their interface is
(in decreasing order) 69.6% (4170 out of 5988) for JabRef,
61.7% (1693 out of 2744) for Lucene, 57.1% (1130 out of
1980) for jEdit, and 55.6% (3146 out of 5663) for iText.
However, these percentages were calculated by including
those methods that do not take any parameters and therefore
require no input. If we exclude those methods from our
analysis, the percentage of valid methods is 46.7% (1592
out of 3410) for JabRef, 36.0% (591 out of 1642) for
Lucene, 31.8% (1172 out of 3689) for iText, and 30.6%
(374 out of 1224) for jEdit. As could be expected, this
lowers the proportion of valid methods considerably. Since
these numbers are rather small, it can be concluded that the
data and action version transparency theorems are not well
adhered to in all four products.

C. Custom Exception Violation

A summary of the output of the Custom Exception
Violation module is shown in Table V. As already men-
tioned in Section IV-C, we considered the use of stan-
dard Java exceptions to be acceptable, since they repre-
sent the background technology being used. This means
that methods throwing java.lang.Exception and
java.io.IOException exceptions were not considered
a violation. The results show that the percentage of methods

53

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
LIST OF CONCERNS IDENTIFIED IN THE SELECTED APPLICATIONS

Application Concern Description
Lucene Java IO java.io.*

Java Net java.net.*
Java Security java.security.*

jEdit Java Swing java.awt.*, javax.swing.*
Java Beans java.beans.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java Security java.security.*
Java XML org.xml.sax.*
Microstar com.microstar.*

JabRef Java Swing java.awt.*, javax.swing.*
Java Beans java.beans.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java SQL java.sql.*
Java XML javax.xml.*, org.w3c.dom.*, org.xml.sax.*
Java Plugin org.java.plugin.*
antlr antlr.*, org.antlr.*
glazedlists ca.odell.glazedlists.*
jgoodies com.jgoodies.*
ritopt gnu.dtools.ritopt.*
microba com.michaelbaranov.microba.*
jempbox org.jempbox.*
pdfbox org.pdfbox.*

iText Java Swing java.awt.*, javax.swing.*
Java IO java.io.*, java.nio.*
Java Net java.net.*
Java Security java.security.*
Bouncy Castle org.bouncycastle.*
dom4j org.dom4j.*, org.w3c.dom.*, org.xml.sax.*

Table III
IMPORT MULTIPLE CONCERNS VIOLATIONS

Number of
Application Concerns Classes Percentage
Lucene 0 110 30.0%

1 253 68.9%
2 4 1.1%

Total: 367 100.0%
jEdit 0 174 36.5%

1 221 46.3%
2 59 12.4%
3 12 2.5%
4 11 2.3%

Total: 477 100.0%
JabRef 0 306 31.2%

1 320 32.7%
2 228 23.3%
3 86 8.8%
4 34 3.5%
5 6 0.6%

Total: 980 100.0%
iText 0 273 46.8%

1 226 38.8%
2 74 12.7%
3 7 1.2%
4 3 0.5%

Total: 583 100.0%

that do not throw any custom exceptions is (in decreasing
order) 97.3% (5828 out of 5988) for JabRef, 95.4% (5401
out of 5663) for iText, 94.8% (2600 out of 2744) for Lucene,

and 92.1% (1823 out of 1980) for jEdit. Interestingly, if
we only consider those methods that throw at least one
exception, it shows that the percentage of valid methods is
81.2% (621 out of 765) for Lucene, 69.5% (364 out of 524)
for JabRef, 61.2% (414 out of 676) for iText, and 32.9% (77
out of 234) for jEdit. As could be expected, this lowers the
percentage of valid methods. This decrease is most notable
for jEdit which appears to make quite extensive use of
custom exceptions. Overall, a rather mixed image therefore
emerges with respect to the adherence to the separation of
states theorem.

VI. DISCUSSION

Although the tool to automatically detect violations to the
Normalized Systems design theorems is still a prototype,
our evaluation has shown that there is much potential for
such automated analysis. Compared to our original study [1],
we evaluated our tool by analyzing the source code of four
applications, instead of a single application. This provides
more trust in the fact that the tool can be applied to a large
set of software programs. Our evaluation has also shown
that our NSTVdoclet tool can be easily integrated with
javadoc, and offers sufficient information for identifying
manifestations of violations to the Normalized Systems
design theorems. Much information about the structure of
software can already be derived from the API information
obtained by javadoc. Focusing on the API-level has

54

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table IV
PRIMITIVE IN INTERFACE VIOLATIONS

All methods Methods with parameters
Violationsa Method Method

Application per Method Count Percentage Count Percentage
Lucene 0 1693 61.7% 591 36.0%

1 719 26.2% 719 43.8%
2 167 6.1% 167 10.2%
3 103 3.8% 103 6.3%
4 39 1.4% 39 2.4%
5 12 0.4% 12 0.7%
6 3 0.1% 3 0.2%
7 7 0.3% 7 0.4%
8 1 0.0% 1 0.1%

Total: 2744 100.0% 1642 100.0%
jEdit 0 1130 57.1% 374 30.6%

1 535 27.0% 535 43.7%
2 187 9.4% 187 15.3%
3 60 3.0% 60 4.9%
4 50 2.5% 50 4.1%
5 9 0.5% 9 0.7%
6 7 0.4% 7 0.6%
7 2 0.1% 2 0.2%

Total: 1980 100.0% 1224 100.0%
JabRef 0 4170 69.6% 1592 46.7%

1 1334 22.3% 1334 39.1%
2 294 4.9% 294 8.6%
3 132 2.2% 132 3.9%
4 34 0.6% 34 1.0%
5 18 0.3% 18 0.5%
6 6 0.1% 6 0.2%

Total: 5988 100.0% 3410 100.0%
iText 0 3146 55.6% 1172 31.8%

1 1622 28.6% 1622 44.0%
2 452 8.0% 452 12.3%
3 157 2.8% 157 4.3%
4 150 2.6% 150 4.1%
5 52 0.9% 52 1.4%
6 56 1.0% 56 1.5%
7 14 0.2% 14 0.4%
8 11 0.2% 11 0.3%
9 3 0.1% 3 0.1%

Total: 5663 100.0% 3689 100.0%
a Number of primitive and java.lang.String data types used in

interface

several advantages. First, the Normalized Systems approach
is concerned with the modular structure of software. Hence,
inspecting the structure of classes and the interface of
methods is consistent with this view. Second, the API-level
represents a medium-level view on the modular structure of
software. The package level can considered to be too high-
level, as much information is abstracted away on this level.
Conversely, considering the actual source code level may be
too low-level.

By applying our tool to four different open source soft-
ware applications, we were also able to determine how these
applications differ in their adherence to the Normalized
Systems design theorems. The results show that there is
considerable variety in how well the different theorems are
adhered to. Our data showed that the separation of concerns
theorem—a well-accepted principle by practitioners—was
rather well to very well adhered to by all four applications.

The data and action version transparency theorems were,
however, not well adhered to by the four applications since
many methods made use of primitive data types in their in-
terface. A rather mixed view was present with the separation
of states theorem, where some applications made relatively
little use of custom exceptions (e.g., Lucene), while other
applications made rather intensive use of them (e.g., jEdit).
Such violations are not fatal, but identify potential sources
for combinatorial effects that limit the evolvability of the
software. Given some limitations of the tool, we do not
intend our results to be an assessment of the evolvability of
the four applications. Instead, the aforementioned analysis
was meant to be an evaluation of the tool.

The identification of violations by our tool was based on
the Normalized Systems theory. The Normalized Systems
theory states that in order to guarantee evolvability, all com-
binatorial effects must be eliminated from the source code of

55

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
CUSTOM EXCEPTION VIOLATIONS

All methods Methods with exceptions
Violationsa Method Method

Application per Method Count Percentage Count Percentage
Lucene 0 2600 94.8% 621 81.2%

1 134 4.9% 134 17.5%
2 5 0.2% 5 0.7%
3 5 0.2% 5 0.7%

Total: 2744 100.0% 765 100.0%
jEdit 0 1823 92.1% 77 32.9%

1 154 7.8% 154 65.8%
2 3 0.2% 3 1.3%

Total: 1980 100.0% 234 100.0%
JabRef 0 5828 97.3% 364 69.5%

1 124 2.1% 124 23.7%
2 16 0.3% 16 3.1%
3 20 0.3% 20 3.8%

Total: 5988 100.0% 524 100.0%
iText 0 5401 95.4% 414 61.2%

1 248 4.4% 248 36.7%
2 13 0.2% 13 1.9%
3 1 0.0% 1 0.1%

Total: 5663 100.0% 676 100.0%
a Number of custom exceptions thrown

applications. To realize this, the Normalized Systems theory
posits four theorems that must be adhered to. The violations
detected by our tool are based on these four theorems. As a
result, the violations identified by our tool represent potential
issues with respect to the evolvability of the application. The
seriousness of these violations depends on the changes that
will be applied to the software in the future. If a violation
is present in a certain part of the application that will not
change in the future, then the violation will have no impact
on the evolvability of the software. For instance, when an
interface of a method contains a primitive data type, but the
interface will remain constant over time, then this violation
does not impact the evolvability of the software. However,
when the interface does change, it will require a modification
in all parts of the software that call this method. In that case,
a combinatorial effect is present that impacts the evolvability
of the software. For a detailed discussion of the impact of
a violation to the Normalized Systems theory, we refer the
reader to earlier work [9], [10].

Given the considerable amount—and nature—of viola-
tions to the Normalized Systems theory identified in our
case study, it seems likely that it would require much work
to resolve these issues. Given the limited availability of
resources, it is very unlikely that resolving all violations
is feasible. Instead, developers could use the output of
this tool to identify parts in the application that require
specific attention. They could then attempt to normalize
specific parts of the application, so that these parts in
themselves become stable for the future. Within each part,
however, combinatorial effects would still be allowed and
not all violations would be addressed. These results therefore
provide further empirical support for the statement that

building information systems without combinatorial effects
is extremely difficult, and that constructs of traditional
programming languages offer no protection against violating
the Normalized Systems theorems [10]. It seems unlikely
that it is feasible to fully normalize an existing application
given the limitations in time and budget available in practice.
However, the Normalized Systems approach further provides
a set of five software elements that are proven to be free
of combinatorial effects and that can be used a building
blocks for new applications [8], [10]. With those elements,
it is possible to build applications that are largely free of
combinatorial effects. As illustrated in previous work, a set
of seven complex real-life applications have been developed
in the process of refining the Normalized Systems theory
[10]. In addition, independent applications that are compliant
with the Normalized Systems theory are currently being
built by several external organizations in Belgium and The
Netherlands.

A. Lessons Learned
Based on the case study, several lessons can be learned

about the feasibility of automatically detecting violations
to the Normalized Systems design theorems. These lessons
may be useful for future versions of the tool.

First, by separating the parsing of the source code by
NSTVdoclet and the analysis by the NSTVdetect tool
in two components, it may be relatively easy to add sup-
port for additional programming languages in the future.
Evidently, other programming languages would require a
different implementation of the NSTVdoclet component
to parse the source code. The output of this component is
currently largely language-independent: information about
the source code is stored in terms of classes, methods,

56

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and parameters. These concepts apply to all object-oriented
programming languages. The only concept that is not sup-
ported by all object-oriented programming languages is the
Java exception. Hence, the database format should provide
the possibility to support language-specific extensions. The
NSTVdetect tool can be extended with additional modules
that provide support for other programming languages. Some
existing modules, such as the Primitive in Interface Violation
module also applies for programming languages such as
C++ or C#. Other modules may only apply to a specific
set of programming languages. In that case, each module
must specify to which programming language(s) it applies,
so that the NSTVdetect component can decide whether
the module should be invoked when performing a specific
analysis.

Second, the output obtained by the tool provides us with
feedback on the current implementation of the modules
that test for manifestations of violations to the Normalized
Systems design theorems. Concerning the Import Multiple
Concerns Violation module, we have observed that appli-
cations frequently combined the Java Swing concern with
the Java IO and/or Java Net concerns. This may suggest
that input/output instructions are combined with the user
interface. However, a closer inspection of the source code
showed that this was a false positive. For example, in order
to provide icons in toolbars in the user interface, Java
Swing provides the ImageIcon class. It is common to
initialize a new object of this class by using the constructor
taking a java.net.URL object as parameter. This, for
example, allows the icon file to be part of the jar file that
contains the application. This explicitly couples the Java
Swing and Java Net concerns. To avoid this, one of the other
constructors provided by the ImageIcon class should be
used instead, for example, by sending the raw image data
as a byte array. Similar violations may occur when objects
of the class java.io.File are passed as a parameter
to a method. In future research, we may try to find ways
to automatically identify and report such instances to avoid
manual inspection.

The output also allows us to consider whether the use of
import statements is a good basis to identify concerns in an
application. On the one hand, we believe this is indeed a
quick and convenient way to identify the primary concerns
that are present in an application. The Normalized Systems
theory states that the use of an external technology always
implies a different concern that should be separated [10].
Since external technologies must be made available in Java
application through the import statement, this provides
a good way to identify concerns. On the other hand, this
method may neglect the internal structure of the application
to some extent (when different concerns are present within
the application itself), and it also leaves some room for de-
ciding on which concerns are present within the application.
This may result in false positives or false negatives in the

detection process. It may therefore be worthwhile to consider
other methods for identifying concerns within an application.

Concerning the Primitive in Interface Violation module,
we identified a large number of methods that include one or
more primitives in their interface. It appears that a manual
inspection is required to investigate whether it is worthwhile
to resolve these issues by making the data and methods
version transparent. In case the interface can be expected to
remain stable, it may not be worth the effort to encapsulate
the parameters in their own dedicated object. Neverthe-
less, developers should remain aware that not addressing
this issue can mean that additional methods may call this
method in the future, thereby leading to an increase in
combinatorial effects. It is theoretically possible that some
of the methods that include primitive data types have a
corresponding wrapper method that is version transparent
and that should be called instead of the underlying method.
In other words, it is possible that the source code includes
both a version non-transparent method and an additional
version transparent method. Our tool is currently not able to
detect such instances. However, given the large number of
manifestations of this violation found in all four applications,
it can be expected that this is not done very often. Moreover,
any non-version transparent public method can be called
by additional methods in the future, thereby leading to an
increase in combinatorial effects.

With respect to the Custom Exception Violation module,
we can easily identify those methods that throw a custom ex-
ception. Further investigation of the source code of the four
applications with respect to this issue showed that in several
cases the calling method did not do anything when a method
throws an exception, except for logging the error. However,
since this external method throws an exception, the class
that contains the calling method must import the package
containing the exception. For example, if an external method
throws the java.io.IOException, it must be imported
by the class containing the calling method. Interestingly,
this may further contribute to the Import Multiple Concerns
Violation, if that class also imports other concerns. We have
indeed noticed that several user interface classes import
the java.io.IOException class since they must be
able to react to exceptions thrown by methods of other
classes. Although we considered the use of the default Java
exceptions to be acceptable, the same reasoning applies to
custom exceptions or exceptions from external technologies.
This further emphasizes the M−N relationship between the
design theorems and violations (see Section IV).

B. Limitations

Since this tool is still a prototype, we acknowledge several
limitations with respect to our findings.

A first important limitation is that the tool currently
provides a lower bound of manifestations of violations to the
Normalized Systems design theorems. The results therefore

57

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provide a first-cut and rough assessment of violations to
the Normalized Systems design theorems at the API-level.
This assessment can increase sensibilisation about—and give
a first impression of—the code quality of an application
with respect to evolvability. Currently, we have distin-
guished between three violations against the Normalized
Systems design theorems in Java applications. Each module
of NSTVdetect checks for manifestations of a specific
violation. All modules share a common interface and receive
an internal representation of the source code as input. The
tool can be extended in the future with new modules that
check for additional violations to the Normalized Systems
design theorems in order to detect a larger number of
violations to the Normalized Systems design theorems.

A second limitation is that there is a risk for the existence
of false positives reported by the tool. Although our experi-
ences suggest that it is feasible to automatically detect sev-
eral violations to the Normalized Systems design theorems,
it still remains necessary to perform a manual inspection of
the source code afterwards. This manual inspection provides
more insight into the seriousness of the issues identified
in the analysis. This is especially the case for the import
multiple concerns violation since the choice of how libraries
are grouped into concerns is to some extent arbitrary. For
example, the Java API can considered to be rather stable.
Hence, importing packages from several parts of the Java
API may not constitute a very large risk with respect
to combinatorial effects. A manual inspection is therefore
required to investigate whether some issues reported by the
tool are false positives. Notwithstanding the fact that some
manual work is still required, our tool significantly reduces
the effort compared to manually inspecting the code base
for violations. In addition, the tool can quickly highlight
potentially problematic parts in the source code that should
be analyzed manually with priority.

A third limitation is that the definition of which concerns
are present in the application is still to some extent arbitrary,
since the researcher must first define which concerns are
present in the application based on the import statements
that are used in the application. This approach first rises the
question as to whether the use of a library is an appropriate
indication of a concern. A concern is considered to be a
separate change driver or, in other words, a technology that
can change independently from the background technology.
The use of an external library represents the use of an
external technology and therefore always represents a differ-
ent change driver or concern. Although there may be other
concerns that do not correspond to the use of a library, our
tool is therefore able to provide at least a lower bound of the
concerns present in a given application. A second question
with respect to this approach is whether all concerns are
correctly identified. In this case study, we probably did not
select the best concerns to evaluate the evolvability of the
four applications. For example, since Java is the background

technology, it would make sense not to identify Java as
a separate concern. In the case study, we only considered
the java.lang.* and java.util.* packages to be
part of the background technology in order to identify a
larger number of concerns that would allow us to better
evaluate our tool. In case the tool would be used to assess
the evolvability of a software product, it would make sense
to only identify external technologies as a separate concern.
In addition, we have assumed that all packages related to
the application itself are part of the background technology.
For example, in the case of JabRef, all packages below
net.sf.jabref.* were ignored when creating the list
of concerns. Depending on the application being assessed,
it may be interesting to further distinguish between multiple
concerns in the application itself, to allow different parts of
the application to evolve independently.

A final issue concerns the question of how far software
developers should go in adhering to the Normalized Sys-
tems theorems. We are aware that some of these theorems,
their implications, and the violations identified by this
tool may seem rather radical at first sight. As mentioned
in Section II-B, the Normalized Systems theory uses the
assumption of unlimited systems evolution [8]–[10]. This
means that the code base of the application will continue
to increase over time. The aim of the Normalized Systems
design theorems is to eliminate all combinatorial effects.
Since combinatorial effects are very easily introduced into
the source code, very strict and clear design theorems are
required to eliminate them [8]–[10]. In this respect, the Nor-
malized Systems theory encourages software developers to
strive towards applying these theorems to the greatest extent
possible [9], [10]. In practice, some trade-off is likely to take
place to judge whether the additional effort of containing
combinatorial effects is warranted by the likelihood that
a future change would manifest itself. For example, it is
possible that it is reasonable to use primitive data types
in the interface of some methods that are not exposed to
outside applications and that can be expected not to require
additional data in the future (i.e., to have a stable interface).
Similarly, the use of custom exceptions may be appropriate
in cases when the method is unlikely to be called by other
parts of the application. However, such decisions should be
carefully considered. Developers should also be aware that
not adhering to the Normalized Systems design theorems
may have a negative impact on the future evolvability of
the software. In order to fully comply with the Normalized
Systems design theorems, at least all the violations identified
in the source code should be addressed.

Notwithstanding these limitations, we feel that this tool
can be very useful to investigate the quality of an application
at the API-level with respect to evolvability using the
Normalized Systems design theorems.

58

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. CONCLUSION AND FUTURE WORK

In this paper, we have explored the feasibility to au-
tomatically identify violations to the Normalized Systems
design theorems. To this end, we developed a prototype of
a tool that is able to detect violations in Java applications
at the API-level. A case study was performed to evaluate
the tool by analyzing the source code of four open source
Java applications. A first contribution of our study is that we
have shown that it is indeed possible to detect violations to
the Normalized Systems design theorems in an automated
manner. A manual inspection should, however, still provide
more insight into the seriousness of the issues identified in
the analysis and to identify any possible false positives. A
second contribution is that we have performed an analysis
of the source code of four software applications. The results
showed that the tool can be applied to a range of software
applications and that there is considerable variety in how
well the different theorems are adhered to by various soft-
ware applications. Our results show that all four applications
adhere rather well to the separation of concerns theorem.
However, we identified a larger number of violations to
the data and action version transparency theorems. With
respect to the separation of states theorem, a rather mixed
picture emerged. It can therefore be expected that the output
of this tool will be useful to assess the current design of
applications and to identify potential limitations to their
evolvability. However, given the current limitations of our
tool, we do not want to make any claims with respect
to the quality of the four applications in our case study.
Instead, this case study provided valuable feedback that will
be used to further improve our tool. A third contribution is
that we have distinguished between three violations to the
Normalized Systems design theorems that may occur in Java
applications. Although this list is not exhaustive, our results
already show that quite a large number of manifestations
of these violations can be found in the source code of
Java applications. One of the limitations of our tool is that
it currently provides a lower bound for the existence of
violations, and is not able to detect all possible violations to
the Normalized Systems design theorems.

In future research, we intend to further develop this tool to
improve its ability to automatically detect violations to the
Normalized Systems design theorems. Our current research
efforts focus on two different topics.

First, we are are extending our list of violations to identify
a larger proportion of violations to the Normalized Systems
design theorems. Instead of the top-down approach used in
this paper (i.e., by starting from the Normalized Systems
design theorems and deriving which violations could be
found in the source code of applications), we are currently
using a bottom-up approach. This approach consists of re-
viewing the source code of a number of open source software
applications with the aim of identifying fragments of the

source code that represent manifestations of violations to one
or more of the Normalized Systems design theorems. Based
on these observations, different violations will be identified.
This approach therefore has an empirical foundation, instead
of the theoretical approach followed in this paper. For each
new violation, an additional module can be added to the
NSTVdetect tool.

Second, we are further developing the architecture under-
lying our tool. One focus area is the intermediate format
of the database that is used to save the structure of the
source code. We are currently investigating if a suitable
ontology exists that can be used to store this information
in a language-independent format, while still allowing for
language-specific features to be added. This would facilitate
the support of different programming languages by the tool.
Another area is to evaluate whether the information obtained
by javadoc is sufficient to identify the new violations that
are being discovered in our work on the previous topic.

As the tool further evolves, we will also apply our tool
to evaluate more complex information systems that incorpo-
rate various frameworks (e.g., software component models,
user-interface frameworks, and communication frameworks).
This would allow us to assess how many violations to the
Normalized Systems theory are detected in typical informa-
tion systems, compared to the rather simple projects included
in our case study.

This work should greatly facilitate the automatic identi-
fication of combinatorial effects in large-scale, real-life in-
formation systems. This tool could be used by organizations
to analyze their information systems for the manifestation
of violations to the Normalized Systems design theorems.
Based on the output of this tool, organizations can take
measures to improve the evolvability of their information
systems.

REFERENCES

[1] K. Ven, D. Van Nuffel, D. Bellens, and P. Huysmans, “The
automatic discovery of violations to the normalized systems
design theorems: A feasibility study,” in Proceedings of
the 5th International Conference on Software Engineering
Advances (ICSEA 2010), August 22–27, 2010, Nice, France,
J. G. Hall, H. K. Kaindl, L. Lavazza, G. Buchgeher, and O. T.
Takaki, Eds. Los Alamitos, CA: IEEE Computer Society,
2010, pp. 38–43.

[2] D. J. Teece, G. Pisano, and A. Shuen, “Dynamic capabilities
and strategic management,” Strategic Management Journal,
vol. 18, no. 7, pp. 509–533, 1997.

[3] K. M. Eisenhardt and J. A. Martin, “Dynamic capabilities:
What are they?” Strategic Management Journal, vol. 21, no.
10/11, pp. 1105–1121, 2000.

[4] S. Neumann and L. Fink, “Gaining agility through IT per-
sonnel capabilities: The mediating role of IT infrastructure
capabilities,” Journal of the Association for Information Sys-
tems, vol. 8, no. 8, pp. 440–462, 2007.

59

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] V. Sambamurthy, A. Bharadwaj, and V. Grover, “Shaping
agility through digital options: Reconceptualizing the role of
information technology in contemporary firms,” MIS Quar-
terly, vol. 27, no. 2, pp. 237–263, jun 2003.

[6] L. Fink and S. Neumann, “Exploring the perceived business
value of the flexibility enabled by information technology
infrastructure,” Information & Management, vol. 46, no. 2,
pp. 90–99, mar 2009.

[7] J. L. Zhao, M. Tanniru, and L.-J. Zhang, “Services computing
as the foundation of enterprise agility: Overview of recent
advances and introduction to the special issue,” Information
Systems Frontiers, vol. 9, no. 1, pp. 1–8, 2007.

[8] H. Mannaert and J. Verelst, Normalized Systems—Re-creating
Information Technology Based on Laws for Software Evolv-
ability. Kermt, Belgium: Koppa, 2009.

[9] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, in press. DOI: 10.1016/j.scico.2010.11.009.

[10] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, in press. DOI: 10.1002/spe.1051.

[11] M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–
1076, Sept. 1980.

[12] L. Belady and M. M. Lehman, “A model of large program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 225–
252, 1976.

[13] M. Lehman and J. Ramil, “Rules and tools for software
evolution planning and management,” Annals of Software
Engineering, vol. 11, pp. 15–44, 2001.

[14] D. Garlan and D. E. Perry, “Introduction to the special issue
on software architecture,” IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 269–274, 1995.

[15] R. Bahsoon and W. Emmerich, “Evaluating software architec-
tures: Development, stability, and evolution,” in Proceedings
of ACS/IEEE International Conference on Computer Systems
and Applications, 2003.

[16] M. Ali Babar, L. Zhu, and R. Jeffery, “A framework for
classifying and comparing software architecture evaluation,”
in Proceedings Australian Software Engineering Conference
(ASWEC), 2004, pp. 309–318.

[17] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere, “The architecture tradeoff analysis method,”
in Proceedings of the Fourth IEEE International Conference
on Engineering Complex Computer Systems (ICECCS’98),
1998.

[18] R. Kazman, G. Abowd, L. Bass, and M. Webb, “SAAM:
A method for analyzing the properties of software architec-
tures,” in Proceedings of the 16th International Conference
on Software Engineering, 1994, pp. 81–90.

[19] M. M. Lehman, “Approach to a theory of software process
and software evolution: Position paper,” in FEAST 2000
Workshop, Imperial College, London, July 10–12, 2000, 2000.

[20] H. Mannaert, J. Verelst, and K. Ven, “Exploring the concept
of systems theoretic stability as a starting point for a unified
theory on software engineering,” in Proceedings of the Third
International Conference on Software Engineering Advances
(ICSEA 2008), Sliema, Malta, October 26-31, 2008, H. Man-
naert, T. Ohta, C. Dini, and R. Pellerin, Eds. Los Alamitos,
CA: IEEE CS Press, 2008, pp. 360–366.

[21] ——, “Exploring concepts for deterministic software engi-
neering: Service interfaces, pattern expansion, and stability,”
in International Conference on Software Engineering Ad-
vances, Cap Esterel, France, Aug. 25–31, 2007.

[22] ——, “Towards rules and laws for software factories and
evolvability: A case-driven approach,” in International Con-
ference on Software Engineering Advances, Tahiti, French
Polynesia, Nov. 1–2, 2006.

[23] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM, vol. 15,
no. 12, pp. 1053–1058, 1972.

[24] D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst,
“Towards a deterministic business process modelling method
based on normalized systems theory,” International Journal
on Advances in Software, vol. 3, no. 1/2, pp. 54–69, 2010.

[25] J. Holmström, M. Ketokivi, and A.-P. Hameri, “Bridging
practice and theory: A design science approach,” Decision
Sciences, vol. 40, no. 1, pp. 65–87, February 2009.

[26] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatter-
jee, “A design science research methodology for information
systems research,” Journal of Management Information Sys-
tems, vol. 24, no. 3, pp. 45–77, 2007.

[27] S. T. March and G. F. Smith, “Design and natural science
research on information technology,” Decision Support Sys-
tems, vol. 15, no. 4, pp. 251–266, 1995.

[28] A. Newell and H. Simon, Human Problem Solving. Engle-
wood Cliffs, NJ: Prentice-Hall, 1972.

[29] H. A. Simon, The Sciences of the Artificial, 3rd ed. Cam-
bridge, Massachusetts: MIT Press, 1996.

[30] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
science in information systems research,” MIS Quarterly,
vol. 28, no. 1, pp. 75–105, 2004.

[31] A. Hevner and S. Chatterjee, Design Research in Informa-
tion Systems: Theory and Practice, ser. Integrated Series in
Information Systems. Springer, 2010, vol. 22.

60

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Metrics for Evaluating Service Designs Based on SoaML

Michael Gebhart, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | abeck} @kit.edu

Abstract—In the context of service-oriented architectures,
quality attributes, such as loose coupling and autonomy, have
been identified that services should fulfill. In order to influence
services with regard to these quality attributes, an evaluation is
necessary at an early development stage, i.e. during design
time. Existing work mostly focuses on a textual description of
desired quality attributes, formalizes metrics that require more
information than available during design time, or bases on a
theoretical model that hampers the practical applicability. In
this article, quality indicators for a unique categorization, loose
coupling, discoverability and autonomy are identified. For
each quality indicator formalized metrics are provided which
enable their measurement and application on service
candidates and service designs based on the Service oriented
architecture Modeling Language as standardized language for
modeling service-oriented architectures. To illustrate the
metrics and to verify their validity, service candidates and
service designs of a campus guide system as developed at the
Karlsruhe Institute of Technology are evaluated.

Keywords-service design; soaml; evaluation; metric; quality
attribute; quality indicator

I. INTRODUCTION

With the shift to service-oriented architectures, goals
concerning the information technology (IT) of companies,
such as an increased flexibility, are expected to be attained.
In order to support this attainment, quality attributes have
been identified, services within a service-oriented
architecture as building-blocks [28] should fulfill.
Widespread quality attributes are loose coupling, unique
categorization, discoverability, and autonomy [3, 6, 8, 11,
15, 28].

Since the design of services heavily influences the
services and thus their quality attributes, it is necessary to
perform the design phase with care. The quality attributes of
services have to be determined during design time and based
on this evaluation the service designs have to be revised if
necessary. For this purpose, the quality attributes have to be
described in a way that the IT architect can comprehensibly
apply them on service designs. This requires a formalization
of the quality attributes and additionally an involvement of a
standardized language for service designs that can be used in
real-world projects. The Service oriented architecture
Modeling Language (SoaML) [20] has evolved as
increasingly accepted and employed language to model
service-oriented architectures, respectively their elements.

Thus, we claim quality attributes being measureable on
service designs based on SoaML or comparable languages.
This enables their application without additional
interpretation or transformation effort.

In existing work either a textual description of quality
attributes or the formalization of metrics that measure certain
aspects is focused. Textual descriptions are introduced by Erl
[3], Reussner et al. [6], Josuttis [7], Engels et al. [8], Cohen
[10], and Maier et al. [11, 12, 13]. They introduce a
comprehensive set of quality attributes that should be
considered when developing services. However, due to the
textual descriptions, an application of these quality attributes
is hampered and requires a prior interpretation. Each of the
described quality attributes covers a lot of different aspects.
Some of these aspects are already relevant during design
time and others are only of interest in subsequent phases,
such as the implementation phase. The IT architect has to
analyze the quality attributes and identify relevant and
measurable quality indicators first. Then he has to interpret
them so that they can be applied on a modeled service
design. Other work, as introduced by Perepletchikov et al.
[14, 15, 16], Humm et al. [9], Rud et al. [17], Hirzilla et al.
[18], and Choi et al. [19] focus on the formalization of
metrics. Some of these formalizations base on theoretical
models. This hampers the application on service designs that
have been modeled using a standardized and widespread
modeling language, such as SoaML, for a prior mapping of
the different concepts is required. Additionally, the metrics
are mostly abstractly and conceptually described which
requires a prior interpretation again. For example concepts,
such as “number of clients”, are used and the IT architect has
to interpret if services or operations are meant and if
duplicates should be counted or not. This interpretation may
result in mistakes and consequently wrong evaluations.
Finally, the metrics are often not related to widespread
quality attributes that support the attainment of goals
concerning the IT. Metrics that are not related to these
widespread quality attributes are not motivated.

In this article, we derive quality indicators for the quality
attributes unique categorization, loose coupling,
discoverability, and autonomy. These quality attributes were
chosen for they contain a representative set of aspects that
can be measured during design time as shown in [1]. The
quality indicators are derived directly from common and
widespread descriptions of quality attributes in order to
preserve the relation of the quality indicators to quality

61

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attributes and thus motivate their measurement. Additionally,
each quality indicator is formalized in form of metrics using
the notation as introduced by Perepletchikov [13] in order to
enable a comprehensible measurement. The formalization is
adjusted to the elements of service candidates or service
designs and their elements in SoaML. This allows a direct
application of the quality indicators and their formalizations
without any interpretation effort and thus reduces potential
interpretation mistakes.

To illustrate the metrics and their validity, they are
exemplarily applied on service candidates and service
designs for a service-oriented system that guides students
across the campus of the Karlsruhe Institute of Technology
(KIT) called KITCampusGuide. This system has its origin in
the NEST system, a service-oriented surveillance system
developed at the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation [37, 38, 39]. As
requirement, the services of the KITCampusGuide are
expected to fulfill the quality attributes unique
categorization, loose coupling, discoverability, and
autonomy. The service candidates as preliminary services
and the final service designs are modeled using SoaML.

The article is organized as follows: In Section 2, the
fundamentals in the context of modeling service candidates
and service designs using SoaML and the evaluation of
services are presented. Section 3 introduces the derived
quality indicators and their formalizations. The quality
indicators are exemplarily applied on service candidates and
service designs of the service-oriented KITCampusGuide.
Section 4 concludes the article and introduces suggestions
for future research.

II. FUNDAMENTALS

This article focuses on the evaluation of service designs.
This requires a prior understanding of the concept of a
service design that is introduced in the following section.
Afterwards existing work in the context of evaluating
services is analyzed with regard to their application on
service designs. Finally, the existing work is discussed which
constitutes the motivation for this article.

A. Modeling Service Designs

In order to analyze existing work with regard to their
applicability for evaluating service designs, in the following,
the service design artifact and its elements in SoaML are
introduced. According to Erl [4, 5] and the Rational Unified
Process (RUP) [24] for Service-Oriented Modeling and
Architecture (SOMA) [21, 22, 23], the design process
consists of two phases, the identification phase and the
specification phase.

1) Identification Phase: The first phase, the
identification phase, focuses on the determination of so-
called service candidates [25]. They represent preliminary
services as an abstract group of capabilities the service
provides. A service candidate includes operation candidates
as capabilities of the service candidate and preliminary
operations. Additionally, the dependencies between service
candidates are modeled. They describe that an operation
candidate within a certain service candidate requires an

operation candidate of another service candidate. In SoaML,
service candidates are modeled using the Capability element
in form of a stereotyped UML class. The operation
candidates are added as UML operations. Dependencies can
be modeled with usage dependencies in UML. The
application of the Capability elements for service candidates
is also confirmed by IBM. Within RUP SOMA, IBM uses
its proprietary UML profile for modeling service candidates,
the UML 2.0 profile for software services [33]. However, in
newest work [34] they demonstrate the modeling of service
candidates on the basis of SoaML which correlates with our
understanding. The following Figure illustrates a set of
service candidates and their dependencies.

Figure 1. Modeling service candidates

2) Specification Phase: During the second phase, the
specification phase, for each of the service candidates that
constitute the basis for the implementation phase detailed
service designs are created [26]. According to Erl [4, 27]
and IBM [21, 22], a service design consists of a specified
service interface that describes the service and a
specification of the service component that fulfills the
functionality. Latter includes the provided and required
services and the internal logic in form of an orchestration of
required services.

For modeling a service interface in SoaML the
ServiceInterface element is provided that can be modeled
using a stereotyped UML class. It includes a description
about participating roles as UML Parts, realizes a UML
interface that contains the provided operations, and uses
another UML interface that includes operations a service
consumer has to provide in order to receive callbacks.
Additionally, the interaction protocol can be specified that
describes the order of operations for gaining a valid result.
The interaction protocol can be described using a UML
Activity that is added as OwnedBehavior. Within this
Activity, for each participating role a Partition is added
containing the operations of the according UML interfaces.
Figure 2 shows a service interface in SoaML. According to
this service interface, the described service provides one
operation called operation1. The service consumer has to
provide one operation callbackOperation1 in order to receive
a callback. The interacting roles are referred to as provider
and consumer. The interaction protocol determines that for a
valid result first the operation1 has to be called that is
provided by the service. Afterwards, the callbackOperation1
of the service consumer is called by the service provider.

«Capability»
Service Candidate 1

+ Operation Candidate 1()
+ Operation Candidate 2()

«use»«use»

«Capability»
Service Candidate 2

+ Operation Candidate 3()
+ Operation Candidate 4()

«Capability»
Service Candidate 3

+ Operation Candidate 5()
+ Operation Candidate 6()

62

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Modeling a service interface

Since each of the operations within the interfaces include
messages being exchanged, a specification of these messages
is necessary. For this purpose, the MessageType element is
provided by SoaML that extends the UML data Type. It
represents a document-centric message and can contain other
data types. The following figure shows an excerpt of the
message types required within the service interface above.

Figure 3. Modeling message types

The service component as part of the service design
describes the component that fulfills the functionality of a
service. For this purpose in SoaML the Participant element
exists. It describes an organization, system, or software
component. The service component is modeled using a
stereotyped UML component. For each provided service, a
ServicePoint is added to the service component that is typed
by the describing ServiceInterface. Similarly, for each
required service, a RequestPoint is specified that is also
typed by the according ServiceInterface. The following
figure illustrates a service component in SoaML.

Figure 4. Modeling a service component

 The internal logic is modeled using one UML Activity
for each operation that is performed by the service
component. The Activity is added as OwnedBehavior and
named after this operation. It contains one UML Partition for
each ServicePoint and RequestPoint. If an operation of a
required service is called, a CallOperationAction is added to
the according Partition. For receiving callbacks an
AcceptEvent is used. If the service component performs
functionality by itself, i.e. functionality that is not provided
by an external service, an OpaqueAction is added to the
Partition that represents the ServicePoint.

B. Evaluating Services

According to Boehm [29] and McCall et al. [30], within
the Factor Criteria Metrics (FCM) quality model, the
software quality as factor can be broken down into several
criteria that can be further be described by metrics. When
considering the flexibility, maintainability etc. as factor, the
quality attributes considered within this article, such as loose
coupling, can be thought of as criteria. Since the criteria are
not measurable, they have to be further refined into metrics
that equal quality indicators as introduced by the
International Organization for Standardization (ISO) [31].
Thus, in order to evaluate service designs with regard to
quality attributes that have been identified as criteria for
services of high quality, quality indicators have to be
determined and formalized as metrics. Within existing work
either a description of quality attributes or metrics that
enable the measurement of quality indicators are focused.

1) Description of Quality Attributes: In [3, 4], Erl
introduces a comprehensive set of design principles and
design patterns for services that can be thought of as quality
attributes. The design principles are described in detail,
however only textual information is provided. Quality
indicators that enable an evaluation of service designs with
regard to quality attributes are not introduced. Only some

«ServiceInterface»

ServiceName

«interface»

ProvidedOperations

+ operation1(: Operation1Request) : Operation1Response

consumer :
«interface» RequiredOperations

provider :
«interface» ProvidedOperations

+

Interaction Protocol

: provider : consumer

operation1

«use»

«interface»

RequiredOperations

+ callbackOperation1(: CallbackOperation1Request) :
CallbackOperation1Response

callbackOperation1

«MessageType»

Operation1Request

«dataType»

DataType1

+ attribute1 : String
+ attribute2 : String

«MessageType»

Operation1Response

+ success : Boolean

*

«dataType»

DataType2

+ attribute3 : String
+ attribute4 : String

*

«Participant»
ServiceComponent«ServicePoint»

serviceName :
ServiceName

«RequestPoint»
serviceName2 :
ServiceName2

«RequestPoint»
serviceName3 :
ServiceName3+

operation1

: serviceName : serviceName2 : serviceName3

internal operation

operation2

operation3

callbackOperation1

callbackOperation2

63

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

so-called service characteristics are described that represent
the impact of the design principles. However, these service
characteristics are mostly not directly measurable and an
explanation how to evaluate service designs with regard to
these service characteristics is missing. Also some of these
characteristics can only be evaluated if implementation
details and deployment information are available.

For the Rational Unified Process for Service Oriented
Modeling and Architecture (RUP SOMA), IBM lists quality
attributes that have to be considered [21, 22, 23]. However,
the quality attributes are only listed and considered as
important, but a detailed description about these attributes
and how to measure them is not provided likewise.

Engels et al. describe in [8] a method to design an
application landscape and focus on the development process.
Necessary steps to derive services from a prior analyzed
business are explained and during the design phase several
quality attributes are named. Also in this case, the quality
attributes are only described textually. Quality indicators or
metrics are not included. Similarly, Reussner et al. [6],
Josuttis [7] and Maiers et al. [11, 12, 13] introduce quality
attributes for services within service-oriented architectures.
Also in this work, the textual description is focused and
quality indicators or metrics are missing.

2) Formalized Metrics: Other work focuses on the
formalization of metrics to evaluate services. Perepletchikov
et al. [14, 15, 16] introduce metrics to measure cohesion and
coupling of services. The metrics base on an extension of
the generic software model of Briand [32]. Rud et al. [17]
show metrics for measuring the granularity of services and
Hirzialla et al. [18] focus on the flexibility. Choi et al. [19]
measure the reusability of services. All this work has in
common that it is not mainly meant for evaluating service
designs as introduced in the section before. In some cases
information about the implementation of the service or its
deployment is required. The metrics that concentrate on the
design of services and the information available during this
time base on own notations and own understandings about
how to design a service. For using the metrics on a common
and standardized language, such as SoaML, first the used
concepts within the metrics have to be transferred into
representations within the formalized service designs. For
this, a prior interpretation of the metric and a detailed
understanding about the used concepts is necessary in order
to correctly apply the metric. Additionally, some of the
introduced metrics are not related to common and
widespread quality attributes which hampers their incentive.
to measure them.

C. Discussion

As illustrated above, SoaML provides all necessary
elements to model service designs. However, SoaML does
not provide any information about how to design services
with certain quality attributes. On the other side, work in the
context of quality attributes and formalized metrics is mostly
not directly applicable due to the fact that the textual
descriptions are too abstract. Furthermore, the formalized
metrics are often not related to widespread quality attributes
and they use concepts and understandings of service designs

that have to be mapped onto elements of concrete languages
first. This step requires an interpretation of the metrics and
may include interpretation mistakes. Thus, in this article the
quality attributes and their textual descriptions are used for
deriving quality indicators and formalized metrics that can be
applied on a formalized service design based on SoaML. The
metrics are described by means of a similar notation as
introduced by Perepletchikov et al. [14]. Due to the direct
derivation of quality indicators from quality attributes and
the usage of SoaML, the motivation why to measure them is
given and a direct application without any interpretation
effort is enabled.

III. METRICS FOR EVALUATING SERVICE DESIGNS BASED

ON SOAML

In order to evaluate service designs based on SoaML,
quality indicators have to be identified that give the IT
architect hints about the current value of the quality
attributes. In this article, the four quality attributes of a
unique categorization, loose coupling, discoverability, and
autonomy are considered. These quality attributes mostly
require information that is available during design time
compared to quality attributes, such as statelessness and
idempotence, which require additional information [1].

To illustrate the quality indicators, in this article the
human-centered environmental observation domain is
considered. This domain refers to the network-enabled
surveillance and tracking system as introduced by the
Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation [38, 39]. Currently, at the Karlsruhe
Institute of Technology (KIT) the KITCampusGuide, a
system to provide a guide for students, lecturers and guest, is
developed. A person can ask for another person or a room on
the campus of the university using mobile devices, such as a
mobile phone, and the KITCampusGuide calculates the
route. The following figure shows the KITCampusGuide in
action. A requirement for the KITCampusGuide is to create
services for this scenario that fulfill the quality attributes of a
unique categorization, loose coupling, autonomy and
discoverability as introduced in [2]. This is why this scenario
is chosen to illustrate the quality indicators and their
formalizations.

Figure 5. KITCampusGuide in action

Mobile Phone

Michael GebhartTarget Go!

64

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since some of the quality indicators require knowledge
about the functional terms used within this scenario, the
domain is modeled using an ontology based on the Web
Ontology Language (OWL) [35]. As modeling tool Protégé
[42] is applied. For illustrating the ontology we choose a
notation that is similar to the OntoGraf in Protégé. Each
concept is depicted by a rectangle and the relations between
these concepts are represented by lines between these
rectangles. In order to provide the name of the concepts and
relations in various languages, the translations are added as
labels. A suffix specifies the language, such as “@de” for
German. The following figure shows an excerpt of the
domain model for the human-centered environmental
observation.

Figure 6. Excerpt of the domain model

 For identifying quality indicators, the descriptions of the
quality attributes are analyzed and aspects that can be
measured within a service design are extracted. Each of these
aspects represents a quality indicator. Afterwards, for each
quality indicator a formalized metric is created. This
formalization uses elements of a service design which
enables its direct applicability. To interpret the value of the
metric correctly, a scale is assigned. An exemplarily
application of the metric on a service design of our scenario
helps to illustrate the metric and verifies its validity.

A. Unique Categorization

Erl [3], Cohen [10], Engels et al. [8], and Maier et al.
[12] introduce approaches for a unique categorization. The
categorization has its origin in splitting different and
bundling similar kinds of functionality. Thus, the unique
categorization corresponds to the concept of cohesion [3].
Common categories are entity services that are responsible
for managing business entities, task services that provide
mostly process-specific functionality beyond the scope of
one business entity, and utility services for cross-cutting

technical functionality. This categorization can be broken
down into different aspects that represent quality indicators.

1) Division of Business-Related and Technical
Functionality: According to Reussner et al. [6],
functionality that changes in different time intervals, such as
business-related and technical functionality, should be split
into several modules, in this case services because this
increases their maintainability. Business-related
functionality refers to the logic of the business domain,
whilst technical functionality includes cross-cutting
technical functionality, as for instance functionality of
logging systems or security systems. The division of these
different kinds of functionality categorizes services into
entity and task services on the one side and utility services
on the other side.

On the basis of service candidates the division can be
verified by means of the contained operation candidates.
Appropriate knowledge about the purpose of these operation
candidates assumed, the following metric can be formalized.

ሻܿݏሺܨܶܤܦ ൌ 	
ห	ܨܤ൫ܱܥሺܿݏሻ൯	ห
|	ሻܿݏሺܥܱ	|

In case of service designs, instead of the operation candidates
the operations of the realized interface are considered.

ሻݏሺܨܶܤܦ ൌ 	
ቚ	ܨܤ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ	ቚ

The metrics are only valid if there exists any operation
candidate respectively operation. Within the metrics, the
following variables and functions are used.

TABLE I. VARIABLES AND FUNCTIONS USED FOR DBTF

Element Description

DBTF Division of Business-related and Technical Functionality

sc service candidate: the considered service candidate

s service: the considered service that is provided or
required, represented by an ServicePoint or RequestPoint
in SoaML

BF(oc)

Business Functionality: operation candidates providing
business-related functionality out of the set of operation
candidates oc

BF(o) Business Functionality: operations providing business-
related functionality out of the set of operations o

OC(sc) Operation Candidates: operation candidates of the
service candidate sc

SI(s) Service Interface: service interface of the service s. In
SoaML it is the type of the ServicePoint or RequestPoint
s.

RI(si) Realized Interfaces: realized interfaces of the service
interface si

O(i) Operations: operations within the interface i

| oc | Number of operation candidates oc

| o | Number of operations o

Target
(Ziel@de)

Coordinates
(Koordinaten@de)

Map Excerpt
(Kartenausschnitt@de)

Map
(Karte@de)

Route with Map
(Route inklusive Karte@de)

Route
(Route@en)

Person
(Person@de)

Employee
(Mitarbeiter@de)

Student
(Studierender@de)

Room
(Raum@de)

Position
(Position@de)

Current Position
(Aktuelle Position@de)

has
(hat@de)

begins top
left at

(beginnt oben
links bei@de)

consists of
(besteht aus@de)

consists of
(besteht aus@de)

has
(hat@de)

has
(hat@de)

refers to
(bezieht sich auf@de)

ends bottom
right at

(endet unten
rechts bei@de)

subclass

65

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thus, the metrics return values from 0 to 1, which have

an order. Accordingly, the results are interpreted within the
ordinal scale. The following table shows the interpretation of
values for DBTF.

TABLE II. INTERPRETATION OF VALUES FOR DBTF

Value Interpretation

0 Only technical functionality is provided

Between 0
and 1

Both business-related and technical functionality is
provided

1 Only business-related functionality is provided

According to this table, for DBTF a value of 0 or 1 is

desired because these values represent a division of business-
related and technical functionality. A value between 0 and 1
should be avoided. The following figure depicts one service
candidate and one interface realized by a service interface.
The former includes both operation candidates with
business-related and technical functionality. The latter
includes only business-related functionality. Thus, the design
of the service candidate should be revised, whilst the design
of the interface follows the criteria for a service that can be
uniquely categorized. This circumstance is also confirmed by
the metric DBTF. For the service candidate a value of 0.5
and for the service interface a value of 1 is returned.

Figure 7. Example for division of business-related and technical

functionality

2) Division of Agnostic and Non-agnostic Functionality:
In order to increase the reusability of services, agnostic
functionality that is agnostic should be divided from non-
agnostic functionality [3]. Agnostic functionality is highly
reusable and not process-specific, whilst non-agnostic
functionality is less reusable and mostly process-specific. A
usage of non-agonstic functionility in several processes is
not expected. The division of this functionality results in the
distinction of agnostic services, such as entity services, and
non-agnostic services, such as task services.

Similarly to the division of business-related and technical
functionality, on the basis of service candidates the division
of agnostic and non-agnostic functionality can be evaluated
by considering the operation candidates. Equivalently to

DBTF, the following metric measures the ratio of operation
candidates providing agnostic functionality to all operation
candidates.

ሻܿݏሺܨܰܣܦ ൌ 	
ห	ܨܣ൫ܱܥሺܿݏሻ൯	ห
|	ሻܿݏሺܥܱ	|

If service designs are supposed to be evaluated, instead of
the operation candidates the operations of the realized
interface are used within the metric.

ሻݏሺܨܰܣܦ ൌ 	
ቚ	ܨܣ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ	ቚ

The metrics are only valid if there is at least one

operation candidate respectively one operation provided.
Variables and functions that are used additionally to those
introduced for DBTF are listed below.

TABLE III. VARIABLES AND FUNCTIONS USED FOR DANF

Element Description

DANF Division of Agnostic and Non-agnostic Functionality

AF(oc)

Agnostic Functionality: operation candidates providing
agnostic functionality out of the set of operation
candidates oc

AF(o) Agnostic Functionality: operations providing agnostic
functionality out of the set of operations o

The metrics return values from 0 to 1. Also in this case,
the results are interpreted within the ordinal scale.

TABLE IV. INTERPRETATION OF VALUES FOR DANF

Value Interpretation

0 Only non-agnostic functionality is provided

Between 0
and 1

Both agnostic and non-agnostic functionality is provided

1 Only agnostic functionality is provided

In order to increase the unique categorization, a value of

0 or 1 is desired. The following figure shows a service
candidate with both agnostic and non-agnostic operation
candidates. In order to increase the reusability, these
operation candidates should be divided. This is also
confirmed by the value 0.5 that is returned for DANF.

Figure 8. Example for division of agnostic and non-agnostic functionality

3) Data Superiority: If a service manages a certain
business entity, this service should be explicitly managing
this entity. For example, if a service is responsible for
creating, deleting or changing a business entity, no other
service should provide similar functionality. This concept is

«Capability»
Personnel Administration

+ Get Employee‘s Room()
+ Start Enterprise Service Bus Logging() Technical

Business-Related

«ServiceInterface»

CampusGuide

«interface»
CampusGuide

+ getRouteWithMap(: GetRouteWithMapRequest) :
GetRouteWithMapResponse

+ startNavigation(: StartNavigationRequest) :
StartNavigationResponse

Business-Related

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position() Non-Agnostic

Agnostic

66

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

called data superiority [8]. According to Erl [3] and Cohen
[10], a service that fulfills the data superiority corresponds
to an entity service.

On the basis of service candidates, the business entities
managed by the contained operation candidates have to be
assumed and compared with the business entities managed
by operation candidates of other services. Optimally, there
should be no overlap.

ሻܿݏሺܵܦ 	ൌ 1 െ	
ห	ܧܤܯ൫ܱܥሺܿݏሻ൯ ∩ ሻ൯หܿݏ	\ௌܮܮܣሺܥ൫ܱܧܤܯ

ห	ܧܤܯ൫ܱܥሺܿݏሻ൯	ห

On the basis of service designs the metric can be formalized
as follows.

ሻݏሺܵܦ 	ൌ 1 െ	

ተተ
ܧܤܯ	 ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ ∩

ܧܤܯ ቆܱ ൬ܴܫ ቀܵܫ൫ሺܮܮܣௌ\	ݏሻ൯ቁ൰ቇ
ተተ

ቚ	ܧܤܯ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቚ

TABLE V. VARIABLES AND FUNCTIONS USED FOR DS

Element Description

DS Data Superiority

M1 \ M2 Elements of set M1 without elements of set M2 or the
element M2

ALLSC All existing service candidates

ALLS All existing services

MBE(oc) Managed Business Entities: business entities that are
managed by operation candidates oc

MBE(o) Managed Business Entities: business entities that are
managed by operations o

The metrics require that at least one business entity is
managed by the service candidate respectively service. The
metrics return values from 0 to 1. Based on the ordinal scale
the results can be interpreted as follows.

TABLE VI. INTERPRETATION OF VALUES FOR DS

Value Interpretation

Less than 1 No data superiority regarding the managed business
entities

1 Data superiority regarding the managed business entities

For the metrics a value of 1 is desired. The following

figure shows three service candidates that manage business
entities. Assumed that there exist no other service candidates,
for the service candidate Personal Management the value of
DS is 1 because it manages explicitly the business entity
Employee. For the service candidates Facility Management
and Room, the value of DS is 0, for both manage the same
business entities. In order to increase DS, the IT architect
should consider a merger of these service candidates.

Figure 9. Example for data superiority and common business entity usage

4) Common Business Entity Usage: Additionally, the
provided operations should use common business entities
[PR+07] for ensuring that, for instance, an entity service
focuses on one business entity only. This means that the
business entities that are used as input parameters within
operation candidates respectively operations should either
be identical or should be dependent. A business entity
depends from another business entity if it cannot exist for its
own. This concept is comparable to the composition within
UML [43].

On the basis of service candidates the common business
entity usage can be evaluated using the operation candidates
and their propably used business entities. First, all used
business entities of the operation candidates and the within
one operation candidate mostly often used business entities
are determined. From these two sets of business entities the
biggest set of common, i.e. depending business entities is
created. Afterwards, the operation candidates that use these
business entitites are identified and related to all operation
candidates.

ሻܿݏሺܷܧܤܥ 	ൌ 	

ቮ	ܱܧܤܷܥቌܱܥሺܿݏሻ, ܲܯܥ ቆ
,ሻ൯ܿݏሺܥ൫ܱܧܤܷܱܯ

ሻ൯ܿݏሺܥ൫ܱܧܤܷ
ቇቍ	ቮ

|ሻܿݏሺܥܱ	|	

On service designs, the operations within the realized

interface instead of operation candidates are used.

ሻݏሺܷܧܤܥ ൌ 	

ተ

ተ
ܧܤܷܱ	

ۉ

ۈۈ
ۇ

ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ ,

൮ܲܯܥ
ܧܤܷܱܯ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ ,

ܧܤܷ	 ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰
൲

ی

ۋۋ
ۊ
	
ተ

ተ

	ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ	ቚ

The metrics require that there exists at least one operation

candidate respectively one operation. Within these metrics,
the following additional variables and functions are used.

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position()

«Capability»
Personnel Administration

+ Get Employee‘s Room()

Business Entity „Room“

Business Entity „Employee“

Business Entity „Room“

«Capability»
Room

+ Update Room()

67

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. VARIABLES AND FUNCTIONS USED FOR CBEU

Element Description

CBEU Common Business Entity Usage

CMP(be1, be2) Composition: biggest set of business entities out of
be2 that depend on business entitites be1

UBE(oc) Used Business Entities: business entities that are
used within operation candidates oc as input

UBE(o) Used Business Entities: business entities that are
used within operations o as input

MOUBE(oc) Mostly Often Used Business Entities: business
entities that are mostly often used within one
operation candidate out of operation candidates oc

MOUBE(o) Mostly Often Used Business Entities: business
entities that are mostly often used within one
operation out of operations o

OCUBE(oc, be) Operation Candidates Using Business Entities:
operation candidates out of operation candidates oc
that only use business entities out of be

OUBE(o, be) Operations Using Business Entities: operations out
of operations o that only use business entities out of
be

The metrics return results from 0 to 1. The interpretation
is listed below based on the ordinal scale.

TABLE VIII. INTERPRETATION OF VALUES FOR CBEU

Value Interpretation

Less than 1 There exist operation candidates respectively operations
that use non-common business entitites

1 All operation candidates respectively operations use
common business entitites

For CBEU a value of 1 is desired because this value

represents the case that all operation candidates or operations
use common business entities. Applied on Figure 9, the
service candidate Facility Management contains one
operation candidate that uses the Room entity and one
operation candidate that uses the Person entity as input.
Since a room can exist without a person and vice versa, the
metric returns a value of 0.5. A merge of the service
candidate Room with the service candidate Facility
Management as already proposed to improve the data
superiority quality indicator would increase the value for
CBEU. An optimal value could be achieved if the two
contained operation candidates would be divided into two
different service candidates.

B. Discoverability

Since reusability of existing functionality is one major
aspect when establishing a service-oriented architecture,
services are required to be discoverable. The discoverability
is already positively influenced by a unique categorization.
However, there are other aspects, such as naming
conventions, which have to be considered. These aspects
constitute quality indicators that influence the
discoverability.

1) Functional Naming: The first quality indicator
focuses on the functional naming of the created artifacts.
According to Josuttis [7], in order to understand the
functionality a service provides, the description of a service
has to follow functional terms that have been determined for
the considered domain. This means that the elements of a
service, such as its interface, the roles, and the operations,
have to be named after functional terms as they are
determined within a domain model. Thus, the functional
naming of a service can be further broken down into a
functional naming of its externally visible artifacts, i.e. of
the service interface, the roles, the operations, the
parameters and the data types.

Since the service candidates are mainly meant to describe
the architecture, i.e. the services and their dependencies in an
abstract manner, the naming of artifacts constitutes a quality
indicator only of interest on the basis of service designs.
Thus, the following metrics for evaluating the functional
naming are only measurable on service designs. The metrics
determine the ratio of functionally named artifacts compared
to all artifacts. For evaluating the functional naming of the
service interface, the following metric can be formalized:

ሻݏሺܫܵܰܨ 	ൌ 	
ห	ܰܨ൫ܵܫሺݏሻ൯	ห
|ሻݏሺܫܵ	|

The metrics for evaluating the functional naming of roles,

operations, parameters, and data types can be formalized
equivalently.

ሻݏሺܴܰܨ 	ൌ 	
ቚ	ܰܨ ቀܴ൫ܵܫሺݏሻ൯ቁ	ቚ

ቚ	ܴ ቀܵܫሺݏሻቁ	ቚ

ሻݏሺܱܰܨ 	ൌ 	
ቚ	ܰܨ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቚ

ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ	ቚ

ሻݏሺܲܰܨ 	ൌ 	
ቤ	ܰܨ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇቤ

ቚ	ܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

ሻݏሺܶܦܰܨ 	ൌ 	

อ	ܰܨ ൭ܶܦ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ൱อ

ቤ	ܶܦ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ	ቤ

TABLE IX. VARIABLES AND FUNCTIONS USED FOR FNSI, FNR, FNO,
FNP, AND FNDT

Element Description

FNSI Functional Naming of Service Interface

FNR Functional Naming of Roles

FNO Functional Naming of Operations

FNP Functional Naming of Parameters

68

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FNDT Functional Naming of Data Types

FN(me) Functional Naming: set of functionally named elements
out of the set of modelling elements me

P(o) Parameters: parameters of the operations o and in case of
messages the contained parameters

DT(p) Data Types: used data types (recursively continued) of
parameters p

R(si) Roles: roles of service interface si

Each of the metrics is only valid if there is at least one
role, one operation, one parameter, respectively one data
type specified within the considered service design.
Otherwise, the metric cannot be applied. As result, values
from 0 to 1 are returned. The interpretation based on the
ordinal scale is shown below.

TABLE X. INTERPRETATION OF VALUES FOR FNSI, FNR, FNO, FNP,
AND FNDT

Value Interpretation

Less than 1 There are elements that are not functionally named

1 All elements are functionally named

For the metrics FNSI, FNR, FNO, FNP, and FNDT, a

value of 1 is desired. For example, based on the domain
model as depicted in Figure 6, the FNO for the
CampusGuide in Figure 7 is 0.5, for the term navigation is
not part of the domain model. The IT architect has to decide
if the term is functional and was accidently not added to the
domain model. In this case the domain model should be
revised. Otherwise the name of the operation should be
changed. Thus, this metric does not only evaluate service
designs. It also helps IT architect to validate the prior created
domain model.

2) Naming Convention Compliance: The second quality
indicator for the discoverability addresses the compliance
with naming conventions. According to Maier et al. [13],
the compliance with naming conventions increases the
discoverability of a service. Typical naming conventions are
the usage of the english language, verbs possibly followed
by nouns for the names of operations, and upper case letters
at the beginning of the name of service interfaces and data
types. These naming conventions are necessary to create
consistently named artifacts.

Similarly to the functional naming, this quality indicator
is only of interest for service designs. The quality indicator
can be further broken down into a naming convention
compliance of the service interface, the roles, the operations,
the parameters, and the data types. The metrics are similarly
formalized to the metrics for the functional naming and
determine the ratio of artifacts named regarding naming
conventions to all artifacts. The metrics are only defined if
the particular artifacts, i.e. the service interface, the roles,
provided operations, used parameters, and data types are
specified. Otherwise the metrics cannot be applied on the
considered service design.

ሻݏሺܫܵܥܥܰ 	ൌ 	
ห	ܰܥܥ൫ܵܫሺݏሻ൯	ห

|ሻݏሺܫܵ	|

ሻݏሺܴܥܥܰ 	ൌ 	
ቚ	ܰܥܥ ቀܴ൫ܵܫሺݏሻ൯ቁ	ቚ	

ቚ	ܴ ቀܵܫሺݏሻቁ	ቚ

ሻݏሺܱܥܥܰ 	ൌ 	
ቚ	ܰܥܥ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቚ

ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ	ቚ

ሻݏሺܲܥܥܰ 	ൌ 	
ቤ	ܰܥܥ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇቤ

ቚ	ܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

ሻݏሺܶܦܥܥܰ 	ൌ 	

อ	ܰܥܥ ൭ܶܦ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ൱อ

ቤ	ܶܦ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ	ቤ

TABLE XI. VARIABLES AND FUNCTIONS USED FOR NCCSI, NCCR,
NCCO, NCCP, AND NCCDT

Element Description

NCCSI Naming Convention Compliance of Service Interface

NCCR Naming Convention Compliance of Roles

NCCO Naming Convention Compliance of Operations

NCCP Naming Convention Compliance of Parameters

NCCDT Naming Convention Compliance of Data Types

NCC(me) Naming Convention Compliance: set of elements out of
the set of modelling elements me that follow specified
naming conventions

The metrics return values from 0 to 1, interpreted on the
basis of the ordinal scale.

TABLE XII. INTERPRETATION OF VALUES FOR NCCSI, NCCR, NCCO,
NCCP, AND NCCDT

Value Interpretation

Less than 1 There are elements that do not follow naming
conventions

1 All elements follow naming conventions

The following figure depicts an interface realized by a

service interface and the evaluation regarding naming
conventions. According to this figure and the available
information, the NCCSI is 0, NCCR is 0.5, NCCO is 0.5,
NCCP is 0.75, and NCCDT is 0. Thus, the IT architect
should revise the service designs and especially the names of
the artifacts in order to increase the discoverability of the
resulting service.

69

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Example for naming convention compliance

3) Information Content: The service interface describes
a service from an external point of view for potential service
consumers. According to Erl [3], the extent of this
information influences the discoverability of a service.

Transferred to SoaML, a service interface should contain
as much information as possible. This means that the service
interface, the contained roles, the realized interface, the used
interface and the interaction protocol should be formalized.
As metric the extent of the information content can be
described as follows:

ሻݏሺܥܫ 	ൌ 	

ሻ൯ݏሺܫ൫ܵܺܧ ܺܧ ቀܴܫ൫ܵܫሺݏሻ൯ቁ ܺܧ ቀܷܫ൫ܵܫሺݏሻ൯ቁ

ܺܧ ቀܴ൫ܵܫሺݏሻ൯ቁ ܺܧ ቀܲܫ൫ܵܫሺݏሻ൯ቁ

5

TABLE XIII. VARIABLES AND FUNCTIONS USED FOR IC

Element Description

IC Information Content

EX(e) Exists: returns 1 if the element e exists, else 0

IP(si) Interaction Protocol: interaction protocol of the service
interface si

UI(si) Used Interfaces: used interface provided by the service
consumer

As result, values from 0 to 1 are returned. The
interpretation based on the ordinal scale is shown in the
following table. For IC a value of 1 is desired for this value
represents the case that all possible information is available
within the service design.

TABLE XIV. INTERPRETATION OF VALUES FOR IC

Value Interpretation

Less than 1 Within the service design not all possible information is
available

1 All possible information is available

For example, the information content, thus the metric IC

for the service interface depicted in Figure 10 is 0.8. The
value of IC can be increased and maximized by adding the
interaction protocol to the service interface.

C. Loose Coupling

The loose coupling focuses on the reduction of
dependencies between services within a service-oriented
architecture and represents one of the most widespread
aspects. A loose coupling promotes the scalability, fault
tolerance, flexibility, and maintainability of the architecture
[6, 7, 8, 16, 20]. Once a service requires another service to
fulfill its functionality, a certain kind of coupling exists.
However, in order to decrease the coupling, the following
aspects can be considered that represent quality indicators for
a loose coupling.

1) Asynchronity: According to Josuttis [7] and Maier et
al. [11], long-running operations should be performed
asynchronously. This means that the service consumer is
being informed when the service provider has performed the
called operation. This decouples the service consumer from
the service provider during the execution of the operation.

In SoaML the communication mode is determined during
the specification phase, i.e. this quality indicator can be
evaluated on the basis of service designs. Within the
interaction protocol, the IT architect can decide whether to
provide an operation synchronously or asynchronously. For
this purpose the attribute “IsSychronous” of the
CallOperationActions within the Activity that represents the
interaction protocol can either be set true or false. Thus, to
determine this quality indicator the rate of long-running
operations that are also asynchronous has to be measured.

ሻݏሺܥܻܰܵܣ 		ൌ 		
ቚ	ܱܵܣ ቀܲܫ൫ܵܫሺݏሻ൯ቁ ∩ ܱܴܮ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

ቚ	ܱܴܮ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

TABLE XV. VARIABLES AND FUNCTIONS USED FOR ASYNC

Element Description

ASYNC Asynchronity

ASO(ip) Asynchronous Operations: asynchronous operations
within the interaction protocol ip

LRO(o) Long Running Operations: long-running operations out
of the set of operations o

The metric is only valid if there is at least one long-
running operation. The following table shows the
interpretation of the values based on the ordinal scale. The
metric returns values from 0 to 1.

«ServiceInterface»

Raum

«interface»

Room

+ create(: CreateRequest) : CreateResponseMessage
+ Update(: UpdateRequest) : UpdateResponse

Consumer :
«interface» RoomRequester

provider :
«interface» Room

«use»

«interface»

RoomRequester

«MessageType»

CreateRequest

«dataType»

ROOM

+ number : Integer
+ building : String
+ name : String

«MessageType»

UpdateResponse

+ success : Boolean

«MessageType»

UpdateRequest

«MessageType»

CreateResponseMessage

+ success : Boolean

Service Interfaces
are Named in
English

Names of
Operations Start
with Lower Case
Letter

No „Message“ at
the end of a
Message

Names of Roles
Start with Lower
Case Letter

Names of Data
Types Start with
Upper Case
Letter Followed
by Lower Case
Letters

70

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XVI. INTERPRETATION OF VALUES FOR ASYNC

Value Interpretation

Less than 1 There are long-running operations that are not provided
asynchronously

1 All long-running operations are provided asynchronously

The following figure shows the interaction protocol for

the service interface depicted in Figure 10. Assumed that the
Update operation is a long-running operation, ASYNC
returns 0 as Update is not provided asynchronously.

Figure 11. Example for asynchronity

2) Common Data Types Complexity: The usage of
common data types across several services increases the
coupling between them. If a service provider aspires to
change the data types used by provided services, all other
services that require this service have to be adapted too.
Thus, Josuttis [7] advises to only use common data types if
they are simple data types, such as String or Integer.
Otherwise, the services should use own data types and the
infrastructure should handle the transformation.

For this purpose, in SoaML the service designs have to
be considered. The used parameters within the operations of
a certain service and the contained data types should not be
identical to the data types used by other services. A typical
way to avoid this issue is to create identical data types,
however within different UML packages for each created
service. The following metric measures the ratio of common
and simple data types to all used data types. For an optimal
value, either there is no common data type or all commonly
used data types are simple. The metric is only valid if the
required artifacts, such as operations and data types, exist
within the service design.

ሻݏሺܥܶܦܥ 	ൌ 			

ተ
ተܵܶܦ

ۉ

ۈ
ۇ

ቆܲܶܦ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ ∩

ܶܦ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺܮܮܣ௦	\	ݏሻ൯ቁ൰ቇ
ی

ۋ
ۊ
ተ
ተ

ቤ	ܶܦ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇቤ

TABLE XVII. VARIABLES AND FUNCTIONS USED FOR CDTC

Element Description

CDTC Common Data Types Complexity

SDT(p) Simple Data Types: simple data types within the
parameters pt

The metric CDTC returns values from 0 to 1. The
interpretation based on the ordinal scale is shown in the
following table.

TABLE XVIII. INTERPRETATION OF VALUES FOR CDTC

Value Interpretation

0 There are no common data types used

Between 0
and 1

There are common and complex data types used

1 The commonly used data types are simple

The optimal value is represented by 0 or 1. A value

between 0 and 1 should be avoided.
3) Abstraction: To decrease the coupling between

service consumer and service provider, a service consumer
should be able to use provided functionality without
knowledge about the internal behavior of the service
provider. This enables the invocation of functionality
without knowledge about the implementation and an easier
replacement of the implementation or the service provider.
According to Erl [3], Josuttis [7] and Maier et al. [11], the
operations should be designed in an abstract manner and
should hide internal details. Thus, the quality indicator can
be broken down into two quality indicators: First, the
operations provided by the service should be abstract, i.e.
the name and their purpose should be abstract. Additionally,
the used parameter should be abstract, i.e. implementation
details should not be exchanged when invoking an
operation.

Thus, in SoaML the first quality indicator focuses on the
operation of the interface that is realized by the service
interface. The abstract operations are related to all provided
operations. The second quality indicator regards the
parameters that are used within the operations. The metric
measures the ratio of abstract parameters to all parameters.

ሻݏሺܱܣ 	ൌ 			
ቚ	ܣ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰	ቚ

ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁቚ

ሻݏሺܲܣ 		ൌ 				
ቤ	ܣ ቆܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇቤ

ቚܲ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቚ
	

Interaction Protocol

: provider : consumer

create

Update

IsSynchronous = True

IsSynchronous = True

71

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIX. VARIABLES AND FUNCTIONS USED FOR AO AND AP

Element Description

AO Abstraction of Operations

AP Abstraction of Parameters

A(o) Abstract: set out of operations o that are abstract

A(p) Abstract: set out of parameters p that are abstract

For AO and AP values from 0 to 1 are returned that can
be interpreted on the basis of the ordinal scale as follows.

TABLE XX. INTERPRETATION OF VALUES FOR AO AND AP

Value Interpretation

Less than 0 There exist operations respectively parameters that are
not abstract

1 All operations respectively parameters are abstract

According to the table above, a value of 1 is desired for
both metrics because this represents that all operations
respectively parameters are abstract which promotes the
loose coupling. The following figure shows an interface that
is realized by a service interface. One of the provided
operations is not abstract, thus the value for AO is 0.5. The
value of AP is 0.4 for five parameters are specified and only
two of them are abstract.

Figure 12. Example for abstraction

4) Compensation: According to Josuttis [7] and Engels
et al. [8], in order to undo operations of a service that
perform state-changing functionality, appropriate
compensation operations should be provided. This enables
the application of this service within transaction contexts,
which requires an undo even if other services are the reason
for a failure.

This quality indicator can already be measured on the
basis of service candidates. For every operation candidate
that represents a state-changing operation, an appropriate
compensating operation candidate should exist. The metric
first determines operation candidates that are not mainly
compensating and change a state. Afterwards, out of this set
the operation candidates are identified for those a
compensating operation candidate exists. This set is related
to the set of all non-compensating and state-changing
operation candidates.

ሻܿݏሺܨܥ 		ൌ 			
ቚܲܨܥ ൬ܵܥ ቀܰܥ൫ܱܥሺܿݏሻ൯ቁ൰ቚ

ቚ	ܵܥ ቀܰܥ൫ܱܥሺܿݏሻ൯ቁ	ቚ		
	

On the basis of service designs, instead of operation

candidates the operations within the realized interface are
considered.

ሻݏሺܨܥ 	ൌ 			

อܲܨܥ ൭ܵܥ ቆܰܥ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ൱อ	

ቤ	ܵܥ ቆܰܥ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ൰ቇ	ቤ

TABLE XXI. VARIABLES AND FUNCTIONS USED FOR CF

Element Description

CF Compensating Functionality

NC(oc)
Non-Compensating: non-compensating operation
candidates out of the set of operation candidates oc

NC(o)
Non-Compensating: non-compensating operations out of
the set of operations o

SC(oc)
State Changing: operation candidates out of the set of
operation candidates oc that provide state-changing
functionality

SC(o)
State Changing: operations out of the set of operations o
that provide a state-changing functionality

CFP(oc)
Compensating Functionality Provided: operation
candidates out of the set of operation candidates oc a
compensating operation candidate exists for

CFP(o)
Compensating Functionality Provided: operations out of
the set of operations o a compensating operation exists
for

The metric CF returns values from 0 to 1. The
interpretation on the basis of the ordinal scale is shown
below.

TABLE XXII. INTERPRETATION OF VALUES FOR CF

Value Interpretation

Less than 0 There exist state-changing operation candidates
respectively operations without compensating operations
candidates respectively operations

1 For all operation candidates respectively operations that
provide state-changing functionality a compensating
operation candidate respectively operation exists

«ServiceInterface»

Employee

«interface»
Employee

+ getRoom(: GetRoomRequest) : GetRoomResponse
+ startProtocolOfESB(: StartProtocolOfESBRequest) :

StartProtocolOfESBResponse Not Abstract

Not Abstract

«MessageType»

GetRoomRequest

«dataType»

Employee

+ lastname : String
+ firstname : String
+ dbName : String

«MessageType»

StartProtocolOf
ESBResponse

+ success : Boolean

«MessageType»

GetRoomResponse

«dataType»

Room

+ number : Integer
+ building : String
+ name : String

«MessageType»

StartProtocolOf
ESBRequest

+ esbUsername : String
+ esbPassword: String

Not Abstract

72

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For the service interface depicted in Figure 10 the value
of CF is 0.5 because for Update there exists a compensating
operation, the Update operation itself. However, for the
create operation there is no compensating operation. In order
to increase the value of CF and thus the loose coupling, a
delete operation should be added that enables the deletion of
a prior created room.

D. Autonomy

The autonomy of a service addresses its independence
from other services [3, 7]. For increasing the autonomy of a
service dependencies to other services have to be reduced.
For the autonomy the following quality indicators can be
identified.

1) Service Dependency: According to Erl [3], the direct
dependencies to other services should be decreased. If a
service depends from other services also its reliability,
performance and predictability is influenced by these
services.

In SoaML the direct dependencies can be evaluated on
the basis of the usage dependencies between service
candidates and the RequestPoints within service components.
Both represent the dependencies of a service to other
services in order to fulfill its functionality.

ሻܿݏሺܦܵ ൌ |	ܴܵሺܿݏሻ|

ሻݏሺܦܵ ൌ ห	ܴܵ൫ܵܶܥሺݏሻ൯	ห

TABLE XXIII. VARIABLES AND FUNCTIONS USED FOR SD

Element Description

SD Service Dependency

RS(sc) Required Services: service candidates the service
candidate sc depends on

SCT(s) Service Component: service component of the service s

RS(sct) Required Services: services the service component sct
depends on

SD returns values from 0 to unlimited. The interpretation
is based on the absolute scale.

TABLE XXIV. INTERPRETATION OF VALUES FOR SD

Value Interpretation

0 the service candidate or the functionality fulfilling
service component depends on no other service candidate
respectively service

n (n > 0) the service candidate or service component requires n
other services to fulfill its functionality

For a maximal autonomy the value of SD should be 0.

However, especially in the context of service-oriented
architectures the reuse of existing functionality should be
considered, which decreases the autonomy. Additionally, for
improving other quality attributes, such as the unique
categorization, the autonomy often has to be reduced too.

The following figure shows a service component that
provides the service CampusGuide. Due to the five
RequestPoints, the metric SD for CampusGuide returns 5.0.

Figure 13. Example for service dependency

2) Functionality Overlap: According to Erl [3], a clear
specification of the functional boundary of a service
increases its autonomy. This means that the functionality of
a service should not overlap with functionality of other
services. Background of this requirement is that an overlap
often results in dependencies between these services. In
order to use functionality of a certain service, due to the
overlap, also the functionality of the other services is
necessary. Thus, the service with overlapping functionality
can only be used together with other services. For avoiding
functionality overlaps, services should be normalized [4].

The functionality overlap can be determined both on
service candidates and service designs. For evaluating a
service candidate its operation candidates have to be
compared with the operation candidates of other service
candidates. Afterwards, the set of operation candidates that
provide redundant functionality are related to all provided
operation candidates.

«Participant»
Campus
Guide

Component«ServicePoint»
campusGuide:
CampusGuide

«RequestPoint»
employee:
Employee

«RequestPoint»
room:
Room

«RequestPoint»
positionDetermination:
PositionDetermination

«RequestPoint»
routeDetermination:
RouteDetermination

«RequestPoint»
map:
Map

+

: campus
Guide

: employee

getRoom

getRouteWithMap

: room

get
Coordinates

: position
Determination

determine
Position

: route
Determination

determine
Route

: map

Determine
Map Excerpt

get
Map

Merge Map
and Route

73

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ሻܿݏሺܱܨ ൌ
ห	ܴܨ൫ܱܥሺܿݏሻ, 	ห	ሻ൯ܿݏ	\௦ܮܮܣሺܥܱ

|	ሻܿݏሺܥܱ	|

On the basis of service designs, the functionality overlap

is determined by means of the operations within the realized
interface.

ሻݏሺܱܨ ൌ
ቚ	ܴܨ ൬ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ , ܱ ቀܴܫ൫ܵܫሺܮܮܣ	௦	\	ݏሻ൯ቁ൰	ቚ

ቚ	ܱ ቀܴܫ൫ܵܫሺݏሻ൯ቁ	ቚ

TABLE XXV. VARIABLES AND FUNCTIONS USED FOR FO

Element Description

FO Functionality Overlap

RF(oc1,
oc2)

Redundant Functionality: operation candidates out of the
set of operation candidates oc1 with redundant
functionality to the operation candidates oc2

RF(o1, o2) Redundant Functionality: operations out of the set of
operations o1 with redundant functionality to the
operations o2

The metrics return values from 0 to 1. The following

table shows the interpretation of the values based on the
ordinal scale.

TABLE XXVI. INTERPRETATION OF VALUES FOR FO

Value Interpretation

0 The operation candidates respectively operations of the
considered service candidate or service do not provide
functionality that overlaps with functionality of other
service candidates or services

Between 0
and 1

The operation candidates respectively operations of the
considered service candidate or service provide
functionality that overlaps with functionality of other
service candidates or services

1 The operation candidates respectively operations of the
considered service candidate or service provide only
functionality that overlaps with functionality of other
service candidates or services

Based on the service candidates depicted in Figure 9, the

following figure shows a service candidate with functionality
overlap. The metric returns 0.5, for half of the provided
operation candidates overlap with functionality provided by
the Facility Management service candidate.

Figure 14. Example for functionality overlap

IV. CONCLUSION AND OUTLOOK

In this article we presented metrics for evaluating service
designs based on SoaML. The approach uses the textual
descriptions for quality attributes as introduced in existing
work and analyses these quality attributes with regard to

quality indicators, which are measureable on service
candidates as preliminary services and fully specified service
designs. The concept of a service design was derived from
existing development processes. For each of the quality
indicators formalizations were given that reuse the concepts
of service candidates and service designs and their
specification in SoaML. This enables the application of the
formalization and thus the determination of the quality
indicators on modeled service designs without additional
interpretation effort.

The identification of quality indicators and their
formalizations help IT architects to comprehensibly evaluate
service designs with regard to common and widespread
quality attributes. In this article the quality attributes of a
unique categorization, loose coupling, discoverability, and
autonomy were considered. Other quality attributes and
potential quality indicators were informally introduced in [1].
The usage of SoaML as language to model service
candidates and service designs enables the integration of the
metrics into existing development tools. SoaML represents
an emerging standard for modeling service-oriented
architectures. Its availability as XMI [45] enables the usage
in any UML-capable development tool.

To illustrate the metrics, service candidates and service
designs of a service-oriented campus guide system as it is
developed at the Karlsruhe Institute of Technology (KIT),
called KITCampusGuide, have been introduced. Well-
chosen excerpts of service candidates and service designs for
this scenario were used to apply the metrics and thus to show
their validity. The metrics were applied in practice to design
services for the KITCampusGuide with a unique
categorization, loose coupling, discoverability, and
autonomy. Currently, the metrics also applied for the domain
campus management in order to create a catalog of services
for universities and their administrative processes according
to the Bologna Process [36] with same quality attributes. In
this context especially the compliance with naming
conventions and the usage of a common domain model for a
functional naming are of interest. Additionally, the metrics
are applied at the Personalized Environmental Service
Configuration and Delivery Orchestration (PESCaDO)
project [40, 41], a project co-funded by the European
Commission. Also in this case, service designs are supposed
to be created that verifiably fulfill the four introduced quality
attributes.

Additionally to the identification and formalization of
metrics, we work on integrating the metrics into
development tools in order to further support the IT architect
during the design phase. A more detailed formalization based
on the Object Constraint Language (OCL) [44], as already
demonstrated in [1], enables the embedding of well-chosen
metrics into UML tools and thus an automatic evaluation of
service designs. For this purpose, additional semantic
information may be necessary. Hence, we are also working
on a determination and formalization of this additional
information. Furthermore, we work on an integration of the
metrics into existing development processes. The metrics are
supposed to support the IT architect in creating service
designs with certain quality attributes by identifying service

«Capability»
Student Administration

+ Request Campus Map()
+ Determine Person‘s Current Position() Functionality Overlap

74

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designs flaws [2]. If service design flaws could be
determined, appropriate action alternatives that may result in
improved service designs are provided to the IT architect.
These action alternatives help the IT architect to revise the
service designs with regard to certain quality attributes.

REFERENCES
[1] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,

“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[2] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[3] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[4] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[5] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[6] R. Reussner, W. Hasselbring, Handbuch der Software-Architektur,
dpunkt.verlag, 2006. ISBN 978-3898643726.

[7] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[8] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[9] B. Humm, O. Juwig, “Eine normalform für services”, GI Informatik
2006, Dresden, Germany, October 2006, pp. 99-110.

[10] S. Cohen, “Ontology and taxonomy of services in a service-oriented
architecture”, Microsoft Architecture Journal, 2007.

[11] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, T. Winterberg,
„Lose kopplung – warum das loslassen verbindet“, SOA-Spezial,
Software & Support Verlag, 2009.

[12] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, T. Winterberg,
„Die soa-service-kategorienmatrix“, SOA-Spezial, Software &
Support Verlag, 2009.

[13] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, T. Winterberg,
„Was macht einen guten public service aus?“, SOA-Spezial, Software
& Support Verlag, 2009.

[14] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Cohesion metrics for predicting maintainability of service-oriented
software”, Seventh International Conference on Quality Software
(QSIC 2007), 2007.

[16] M. Perepletchikov, C. Ryan, K. Frampton, Z. Tari, “Coupling metrics
for predicting maintainability in service-Oriented design”, Australian
Software Engineering Conference (ASWEC 2007), 2007.

[17] D. Rud, S. Mencke, A. Schmietendorf, R. R. Dumke,
„Granularitätsmetriken für serviceorientierte architekturen, MetriKon,
2007.

[18] M. Hirzalla, J. Cleland-Huang, A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[19] S. W. Choi, S.D. Kimi, “A quality model for evaluating reusability of
services in soa”, 10th IEEE Conference on E-Commerce Technology
and the Fifth Conference on Enterprise Computing, E-Commerce and
E-Services, 2008.

[20] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[21] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: January 04, 2011]

[22] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[23] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: January 04, 2011]

[24] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[25] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[26] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[27] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[28] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[29] B. Boehm, Characteristics of Software Quality, Elsevier Science Ltd,
1978. ISBN 978-0444851055.

[30] J. McCall, P. Richards, and G. Walters, “Factors in software quality –
volume 1”, 1977.

[31] ISO/IEC, “ISO/IEC 9126-1:2001 software engineering: product
quality – quality model”, 2001.

[32] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software-
engineering measurement”, IEEE Transactions on Software
Engineering, Vol. 22, No. 1, 1996.

[33] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: January 04, 2011]

[34] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]

[35] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[36] European Commission, “The bologna process - towards the european
higher education area”, http://ec.europa.eu/education/higher-
education/doc1290_en.htm, 2010. [accessed: January 04, 2011]

[37] M. Gebhart, J. Moßgraber, T. Usländer, and S. Abeck, „SoaML-
basierter entwurf eines dienstorientierten beobachtungssystems“, GI
Informatik 2010, Leipzig, Germany, October 2010, pp. 360-367.

[38] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J.
Moßgraber, and F. Reinert, “N.E.S.T. – network enabled surveillance
and tracking”, Future Security 3rd Security Research Conference
Karlsruhe, 2008.

[39] J. Moßgraber, F. Reinert, and H. Vagts, “An architecture for a task-
oriented surveillance system”, 2009.

[40] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[41] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[42] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[43] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[44] OMG, “Object constraint language (OCL)”, Version 2.2, 2010.
[45] OMG, “XML metadata interchange (XMI) specification”, Version

2.0, 2003.

75

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Contextual Injection of Quality Measures into Software Engineering Processes

Gregor Grambow and Roy Oberhauser
Computer Science Dept.

Aalen University, Germany
{gregor.grambow, roy.oberhauser}@htw-aalen.de

Manfred Reichert
Institute for Databases and Information Systems

Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract—Despite improvements in software engineering
processes and tools, concrete preventative and analytical
software quality assurance activities are still typically
manually triggered and determined, resulting in missed or
untimely quality opportunities and increased project overhead.
Quality goals, when defined, lack holistic environmental
support for automated performance measurement and
governance that is tightly integrated in the low-level
operational software engineering processes. This results in
higher quality risks and cost risks. Based on adaptive process
management, an approach is presented that injects
situationally-determined quality measure proposals into the
concrete workflows of software engineers, using contextual
semantic knowledge and multi-agent quality goal tracking and
decision-making. Our evaluation shows the feasibility of the
approach for automatically providing timely quality measure
guidance to software engineers without disrupting their
current activities. This supports process governance while
reducing quality risks and costs during software development
projects.

Keywords-software quality assurance; process-centered
software engineering; adaptive process management; semantic
technology; agents; Goal-Question-Metric technique

I. INTRODUCTION
This article extends our previous work in [1], which

described aspects of an approach for automated integration
of software quality management and software engineering
process management. Today IT-supported business process
management (BPM) enjoys wide industrial adoption [2] and
can support improved product quality by ensuring that
quality-supporting processes are executed [3]. Process
repetition and predictability lowers the recovery risk for
necessary investments in process modeling, process
management system support, and enterprise application
integration [5]. Interestingly, BPM is also increasingly being
used for product development [4].

In the software engineering (SE) domain, numerous
obstacles inhibit automated SE process management (SEPM)
at the operational level. These include the contextual
dependency of the low-level activities (e.g., coding,
debugging, testing), the high degree of change to the
involved artifacts (e.g., source code files, test
documentations), the informational and environmental
dependencies (e.g., coordination, requirements, reports,
tools), the uniqueness of each developer’s concrete personal

process (e.g., junior vs. senior engineers, information needs),
activity coordination with the overall team process, the
contextual and project influences on the processes (e.g.,
schedule, resource availability), and software quality
assurance (SQA) dependencies (e.g., quality plan, reactive
quality measures, metric dependencies).

Historically software development projects have also
faced difficulties in meeting budget, schedule, functionality,
and quality targets [6][7][8]. A more recent study in 2002 by
the National Institute of Standards and Technology (NIST)
found that most delivered software products are still stricken
by bugs and defects [9]. While some of these difficulties
might be ascribed to a misaligned planning environment in
certain organizations [10], the project pressures and resulting
issues will likely linger due to global competition and other
influences [11]. Other difficulties can be attributed to SE’s
adolescence as a discipline and certain unique product
properties that affect the SE development process, such as
software’s complexity, conformity, changeability, and
invisibility [6]. Additionally, the extent (too little or too
much) and timeliness of SQA significantly impacts overall
project costs [12], making effective and efficient SQA vital.
Yet it remains laborious to manage and apply the appropriate
low-level SQA measures (actions) in a timely fashion during
SE process enactment. In order to achieve software quality
goals, these must be defined and concretely and
contemporaneously measured [13]; yet this is often
challenging for various SE organizations [14]. Especially
small and medium sized companies often struggle to achieve
high quality levels. This often results from the increased
complexity of their growing organizational structures, the
lack of process maturity and capabilities, and the lack of
dedicated quality management personnel.

A. Problem Statement
While SE process models foster development efficiency

[15], they are often defined rather abstractly and thus fail to
provide low-level guidance for the activities actually
executed at the operational level. Furthermore, processes are
often defined rigidly beforehand. However, during their
execution, reality often diverges from the planned process
[16].

Automated guidance for combining SQA with SEPM is
not yet prevalent. Challenges in software development
projects are presented at both the product and process levels
based on the nature of software artifacts and manually driven
processes. Product intangibility hinders effective retrieval of

76

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

timely information about its product quality status.
Additionally, the combination of abstract process definitions
and intertwined, contextually information-dependent lower-
level workflows make targeted process guidance for
developers irrelevant, complex, or financially infeasible.
Thus, artifact issues often cannot be detected promptly and,
even if they are, the contemporary integration of quality
measures into the workflow is not possible. At times, quality
measures come into focus and are applied close to release,
or, when the project is behind schedule, they may be
jettisoned altogether; however, it is generally acknowledged
that their application in earlier development stages saves
time as well as money [12][17]. The proper application of
quality measures is also problematic, since their
effectiveness and efficiency depend on many factors, such as
the applicability of the measure, the project timing, worker
competency, and correct fulfillment [12]. For clarity,
measure in this article is meant in the sense of a specific
action intended to produce some effect - reactive actions are
thus countermeasures.

To illustrate the problem as well as the proposed
solutions, this paper uses a series of simplified practical
scenarios dealing with a fictional company (called ‘the
Company’).

Example 1 (Abstract Process): The Company uses a SE
process model for software development, the V-Model XT
[18]. This process features detailed descriptions of activities,
roles, milestones, and artifacts. Its application is based on
the use of various documents with no automated governance
or support. In the Company, activities for developers are
planned and scheduled on a very coarse-grained level,
leaving the coordination of what is to be done to the
developers and manager. Therefore, the SE process does not
really “touch” the developers, and their actual activities are
difficult to trace. The quality of the source code is not
monitored continuously and static code analysis tools are
only used sparsely by the developers. Deterioration of the
source code quality goes undetected and quality measures
are only taken at the end of projects when there is time left
or when concrete bugs exist.

B. Contribution
Automated support for and governance of the

coordinated integration of SQA in SEPM offers promising
perspectives for addressing shortcomings in current SQA
approaches. In the following, the terms process and
workflow will be used extensively, and are delimited here
against each other in alignment with existing definitions
provided by the Workflow Management Coalition [19] and
Gartner Research [20].

Definition: Business Process Management deals with the
explicit identification, implementation, and governance of
processes as well as their improvement and documentation.
This incorporates different issues such as organizational or
business aspects, or the strategic alignment of the activities.
Workflow Management, in turn, deals with the automation of
business processes. Hence, a workflow is the technical
implementation of a business process or a part of it.

In our previous work, we introduced the CoSEEEK
framework [21], which utilizes various technologies to
provide automated, context-aware assistance for SEPM. In
[22] and [23], we provided a solution to dynamically
generate workflows according to the properties of various
situations to support dynamic workflows extraneous to the
SE process. We are currently also working on the integration
of this dynamic generation with workflows belonging to the
SE process and covering situations where pre-planned
workflows are too rigid. In [24], we introduced an SE
workflow language that provides extended modeling
capabilities for SE workflows and improves the connection
between abstractly defined processes and concretely
executed activities. Finally, in [1] and [25], which provide
the basis for this article, we described aspects of our overall
approach for integrating SQM and SEPM. In particular, this
paper provides a more comprehensive description of this
approach with further extensions, in particular elucidating
the following areas:

- automatic detection and management of source code

related problems in a SE project,
- automatic assignment of quality measures to detected

quality problems,
- automatic strategic prioritization and alignment of

quality measures to project quality goals,
- tailoring of measure (action) proposals to the situation,

and
- automatic integration of quality measures in the

software engineer’s workflow.

The remainder of this paper is organized as follows:
Section II presents background information needed for the
understanding of this paper and elicits fundamental
requirements for our solution approach. Section III describes
our solution approach. Section IV discusses realization
aspects and Section V evaluates our solution. Finally,
Section VI discusses related work and Section VII concludes
the paper.

II. REQUIREMENTS
Requirements have been elicited based on various

sources we found in literature. The identified requirements
cover different areas to enable comprehensive system
support for integrating SQA and SEPM.

Context-awareness. To enable automated decisions on

quality measure assignments, any system support should be
aware of its environment and the context of the current
situation.

Requirement R:Ctx1 (Context integration): To be aware
of problems in the SE project, the system must have a facility
to integrate information on SE process or product problems
from various sources (e.g., external tools measuring the state
of the source code, bug tracking systems).

Requirement R:Ctx2 (Quality opportunity awareness):
To enable automated integration of quality measures at run-
time, the system must be aware of quality opportunities,
meaning time points when a user can cope with a quality

77

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

measure. This requires knowledge about the users' schedule,
meaning the abstract activities that have been scheduled and
estimated for the user.

Process management: To enable the automated

integration of quality measures, the system must be able to
govern the SE process automatically. To foster this in SE,
facilities must be in place to enable the system to match the
workflow specification belonging to the process (or parts of
it) with other facts representing the current situation. That
way, contextual information can be used for SE process
support.

Requirement R:Sepm1 (Vertical workflow connection): It
should be possible to define flexible connections between
different workflows (meaning the vertical connections
between sub-workflows and their super-workflows). In
traditional process management, a simple connection
between sub- and super-workflow is possible. If an activity
of a super-workflow refers to a sub-workflow, it will be only
finished at run-time after completing the corresponding sub-
workflow instance. However, in practice, more complex
connections may be required as illustrated in Figure 1 and
confirmed by processes from other domains like the
automotive industry [26] and enterprise resource planning
[27]. In this example (Figure 1), activities are grouped by
work packages. In the planning phase, for example, the
packages and their corresponding activities are planned. This
means that the activity of planning a package depends on the
completion of the planning of the contained activities. The
same applies for the processing of a package. That way there
are multiple connections between the super and the sub-
workflow, and the completion of a certain activity does not
necessarily depend on the completion of a whole sub-
workflow, but on the completion of one or multiple activities
in one or multiple other workflows.

Figure 1. Sub-workflow Connections.

Requirement R:Sepm2 (Task Granularities): For the
automated detection of quality opportunities, an explicit
connection between abstract assignments, which have been
planned and scheduled, and the related concretely executed
activities is desirable. Traditional BPM features human tasks
only with one single granularity. In fact, human tasks exist
on different levels of abstraction that are often related to each
other (see also [28][29]). Process management lacks
sufficient support for this - just modeling tasks on different
levels of abstraction does not adequately match reality since
tasks usually have different properties. An example of those
tasks is shown in Figure 2.

Example 2 (Task Granularities): Task 1 is an abstract
assignment, which was planned and estimated from the
business side. That task implies Tasks 2 and 3, which are
concretely planned and executed by the developer. Those
tasks, in turn, also imply tasks on a more concrete level like
Tasks 4, 5 and 6, which may have special connections to the
environment, as they require, for example, certain tools.

Figure 2. Task Granularities.

Requirement R:Sepm3 (Workflow adaptation): The
concrete workflows should be adaptable. In particular, their
specification should support automated adaptations during
run-time to enable the system to automatically and
dynamically insert quality activities into workflows where
required and favorable.

Quality Measure Selection. The selection of appropriate

quality measures during SE process execution constitutes
another challenge. Various factors must be taken into
account for effectiveness and efficiency.

Requirement R:Qmsel1 (Quality measure selection):
Applied quality measures should be automatically chosen
during run-time in alignment to project goals in order to
match the defined strategy of the project.

Requirement R:Qmsel2 (Proactive measures): Quality
measures should not only rely on detected problems, but also
consider common quality enhancement. Thus, proactive and
reactive measures should be available.

Requirement R:Qmsel3 (Situational measure tailoring):
Context-sensitive tailoring of proposed measures is desirable
considering different factors of the actual situation, e.g.,
properties of the applying person and application time point.

Requirement R:Qmsel4 (Measure assessment): The
selection of measures should be aware of their effectiveness
to optimally match with specific environments or situations
in different companies. Therefore, continuous monitoring of
the quality of the source code is essential to detect potential
impacts of applied measures on the overall quality. In
particular, a relation between the application of SQA
measures and the evolution of source code quality should be
established to assess the effectiveness of the measures.

III. SOLUTION APPROACH
Considering the aforementioned requirements, the concepts
behind our solution approach are now described in detail. To
automatically integrate quality measures into the SE process,
our approach consists of a process (referred to here as a
procedure to avoid confusion with SEPM) in conjunction
with the architecture of the Context-aware Software

78

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Engineering Environment Event-driven frameworK
(CoSEEEK) [21].

A. Solution Procedure
Our solution procedure involves three fundamental

phases: a detection phase, a processing phase, and a post-
processing phase as shown in Figure 3. These phases as well
as their different steps will be explained in the following
subsections.

Figure 3. Conceptual Procedure.

The Detection Phase continuously enables an awareness
of the current project situation to meet the requirements
relating to context-awareness (cf. Section II.B). For
integrating quality measures, two factors are of particular
interest: the presence of problems (cf. Requirement R:Ctx1) -
recognized via the ‘Problem Detection’ - and the availability
of opportunities for quality measures in the users’ schedule
(cf. Requirement R:Ctx2) - recognized via ‘Quality
Opportunity Detection’. To enable such detection in an
automated fashion, the SE process specification must be
extended (cf. Requirement R:Sepm2). The applied
extensions will be described in Section III.C.

The Processing Phase deals with the selection and
proposal of the quality measures and involves four steps.
Utilizing the GQM technique [30], quality measures
(actions) are initially proposed in alignment with project
goals to satisfy Requirement R:Qmsel1. This phase also adds
proactive measures to the measure proposal process (cf.
Requirement R:Qmsel2). To prepare these measures for their
automated application, ‘Measure Tailoring’ incorporates
information about the applying persons and the possible
points in the users' schedule in which to apply the measure

(cf. Requirement R:Qmsel3). This leads to a selection of
appropriate points (so called Q-Slots) and to an automated
integration of the quality measures into the concrete
workflow of the chosen person. The application of measures
can be also done automatically utilizing extensions made to
the SE process specifications (cf. Requirement R:Sepm3).
These enable the system to be aware of matching extension
points (e.g., in the workflows). These are illustrated in Figure
4 by a small abstract workflow containing the activities ‘A1’
to ‘A5’. ‘A2’ and ‘A4’ have an associated extension point,
meaning that an automated insertion of a new activity is
possible subsequent to these activities.

Figure 4. Extension Points.

Finally, to be able to track the quality of the project
continuously, in the Post-Processing Phase (cf. Figure 3) a
‘Measure Assessment’ is performed via a quality trend
analysis. This analysis supports an awareness and automatic
assessment of the potential utility of the applied measures,
fostering quality (cf. Requirement R:Qmsel4).

Since each project is unique, the applicability and
effectiveness of measures can vary with respect to different
projects. Therefore, the system executes an assessment phase
to rate the applied measures and to incorporate their impact
in the given project.

B. Conceptual Architecture
CoSEEEK provides the necessary infrastructure for

realizing the solution procedure presented in the previous
sub-section. Its conceptual architecture is shown in Figure 5.

Figure 5. CoSEEEK Conceptual Architecture.

SE Tools is a placeholder for all tools used in a SE
project of which CoSEEEK is aware, such as source control
systems or IDEs. Artifacts are those things produced in a SE
project using the SE Tools. This includes source code
artifacts, documents, and models.

Awareness of changes to the state of tools as well as
artifacts is supported by the Event Extraction module. It
utilizes sensors that are typically integrated into the tools or
otherwise monitor the tools. These sensors generate events in
in response to various situations (e.g., 'switch to debug

79

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

perspective' in an IDE). The Data Storage module
encapsulates the storage mechanisms for events and shared
data. Communication is event-based and loosely coupled to
support integration and exchangeability of different modules.

The events generated and collected in the Event
Extraction module are basic and low-level. The Event
Processing module utilizes complex event processing (CEP)
[31] to process these events, providing high-level events with
enriched semantic value. The Rules Processing module uses
rule-based computing to analyze tool data such as static
analysis reports or metrics, and it triggers follow-up actions
as necessary (e.g., quality measures for violated metrics).
These triggered measures are subsequently filtered by the
AGQM (Automated Goal Question Metric) module, which
automates and extends the GQM approach via multi-agent
computing to analyze the project quality state in alignment
with strategic project goals and to propose appropriate
proactive and reactive quality measures.

The Process Management module applies dynamic and
adaptive process management technology to govern the
activities of the involved project participants. This enables
the system to match workflows to real project situations
(instead of rigidly prescribing certain activities and their
orders) and thus provides real situational guidance. This
becomes possible by utilizing the cumulated knowledge
contained in the Context Management module. In that
module, high-level information of all project areas is
collected, as, for example, the skills of users or information
about the quality state of the project. Using semantic
technology, this information can be used to reason about the
project state and contextual influences (causes and effects)
and thus provide automated decisions and workflow
adaptations such as the automated and dynamic integration
of quality measure activities during SE process execution.

C. Context-aware Business Process Management
To support a high degree of automated and context-aware

assistance, a tight coupling of the Context Management and
the Process Management module is required, which will be
referred to as Context-aware Process Management (CPM).
This addresses many of the shortcomings of traditional BPM
(as listed in Requirements R:Sepm1 to R:Sepm3) and
facilitates the comprehensive utilization of the awareness
capabilities in CoSEEEK. Fundamentally, process
management concepts are enhanced with semantic
information. This additional information is stored in the
Context Management module, while the workflows are
managed by the Process Management module. Since Context
Management unifies all project knowledge, it can be also
used as a management layer around the Process
Management module, facilitating context-based process
management. Thus, all process-related actions are addressed
by the Context Management module, which, in turn,
manages the actions of the Process Management module.
Figure 6 illustrates these extensions to process management.

The Process Management module governs the workflows
and their activities. These two concepts are mirrored in the
Context Management module: the activity by the Work Unit
and the workflow by the Work Unit Container. Thus, process

management is separated into two areas that we call vertical
and horizontal process management. Horizontal process
management denotes the governing of the different activities
of one workflow (also denoted as process orchestration)
utilizing well-established workflow patterns like AND,
SPLIT, or LOOP. This is done within the Process
Management module. Vertical process management, in turn,
deals with the management of the dependencies between
different workflows on different levels of abstraction. Since
process management only offers one kind of connection (an
activity depends on a sub-workflow) here, this is handled by
the Context Management module. This allows for the
flexible definition of dependencies. The completion of a
Work Unit can depend upon one or multiple Work Unit
Containers or on one or multiple Work Units contained in
other Work Unit Containers. A mixture of both is possible as
well.

Figure 6. Context-aware Business Process Management.

Work Units are connected to three other concepts,
enabling advanced task management (cf. Requirement
R:Sepm1). The Assignment is used as a coarse-grained top-
level task, which is also estimated and scheduled from the
business side in a project, exemplified in Figure 2 as
"Develop feature X". The Assignment Activity then describes
the tasks that are necessary to accomplish the Assignment,
e.g., "Design Solution" or "Write Developer Tests" (cf.
Figure 2). The most fine-grained level is described by atomic
tasks like "Check out" or "Build Code".

Combining the Context Management and the Process
Management modules enables the automatic adaptation of
running workflows based on the current context. This has
been used to automatically build workflows for issues
extraneous to SE process models, like bug fixing or
refactoring as described in [22].

80

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Quality Opportunity Detection
To enable the automated detection of quality

opportunities, an awareness of the activities that have been
planned and scheduled becomes necessary. These are
captured by the Assignment, which has certain properties to
capture estimated durations. These assignments can be
created, estimated, and scheduled in CoSEEEK or imported
from other tools. This is illustrated by Figure 7.

Figure 7. Quality Opportunity Detection.

The figure shows a simple example schedule containing
the Assignments ‘As1’ – ‘As4’ that are estimated to take
three days each. The scheduled Assignments are then taken
for execution. The figure illustrates the connection of the
Assignment ‘As1’ to four Assignment Activities for
execution, which are ‘Aa1’ – ‘Aa4’. Optionally, the schedule
can be imported from an external tool. That way, the
activities can be estimated and scheduled from the business
side, e.g., utilizing a process management tool like
microTOOL in-Step [32], and then be automatically used for
execution in CoSEEEK.

In our approach, two triggers for a quality opportunity
are implemented. The first one is early assignment
completion. If a user finishes an assignment earlier than
necessary, a quality measure can be assigned to him without
delaying forthcoming activities. The second trigger is the
quality overhead factor. It enables the a-priori specification
of a certain percentage of the project workload that should be
reserved for quality activities. If the user has not yet reached
that amount during process execution, a quality measure may
be applied. This can be combined with a quality function
indicating how much time for quality should be spent in
which project phase. Since it has been shown that it can be
beneficial to adjust the work allocation for quality based on
the stage of a project [12][17], this can improve both the
effectiveness and efficiency of the quality efforts taken.

Example 3 (Quality Opportunity Detection): To
illustrate how automated quality opportunity detection could
work, Figure 8 shows a simple schedule of the Company.
This example, which demonstrates early assignment
completion, assumes that the Company has already adapted
the planning to create more fine-grained assignments not
taking weeks but days. The schedule comprises four users
having five assignments each. Each of these assignments, in
turn, is estimated to take three days. Every user in this
example finishes early on one Assignment, triggering the
creation of a Q-Slot filling the hole in the schedule.

Figure 8. Schedule with Q-Slots.

The concrete detection of the quality opportunities is
done each time an assignment completes. This can be
detected automatically by connecting the Assignments to the
users’ Atomic Tasks (cf. Section III.C). Atomic Tasks, in turn,
are connected to the development environment via the sensor
infrastructure provided by CoSEEEK, generating an
awareness of their status. When all Atomic Tasks of an
Assignment Activity are completed, the Assignment Activity
completes as well. The same applies to the Assignments in
relation to the Assignment Activities. This process is further
described in [25].

E. Problem Detection
Problem detection makes use of the environmental

awareness of CoSEEEK to identify potential problems, e.g.,
in the source code. In this context, external data from tools
needs to be integrated. This information is utilized for
calculating various metrics that can be customized to
measure the quality state of the SE project. Metrics directly
indicating problems in the source code are obtained from
static code analysis tools like PMD [33] and FindBugs [34],
while certain testing problems can be detected with test
coverage tools [35] such as Cobertura [36] or EMMA [37].

However, not only code-related product-level problems
threaten quality, but process-related factors should also be
assessed to ensure quality. These assessments include
functional testing, profiling, and load testing. Since
CoSEEEK is aware of the execution of respective activities,
it can ascertain their absence. Thus, process metrics can also
include these facts. Facts available to CoSEEEK can be
incorporated in metrics, which enables quality awareness
through the presence of measurable, quantifiable
information. To reduce the associated configuration effort, a
set of pre-configured default metrics will be included with
the system.

After detecting any problem, measures (actions) can be
used to counter them. The Rules Processing module is
utilized for triggering the automatic proposal of a measure
when the threshold for a particular metric has been violated.
Metric or violation reports are received and analyzed, and a
list of the violated metrics including assigned quality
measures is created by the module.

Example 4 (Source Code Monitoring): Company policy
includes a nightly built process on a build server that invokes
static code analysis tools to enable continuous measurement.
Thus, a deterioration of the source code quality can be
detected by metrics such as its cyclomatic complexity. If
complexity exceeds a threshold, the code becomes difficult to
maintain and test, and there is a higher probability of
introducing defects.

81

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Measure proposal
At this point in the procedure, problems as well as Q-

Slots have been detected and an initial assignment of quality
measures to metric violations has been done. The generation
of a Q-Slot then triggers a measure selection and proposal
process. The latter is coordinated by the Context
Management module. First, the Context Management
module triggers the AGQM module to prioritize the measures
strategically in alignment to the quality goals of the SE
project. Thereafter, the measures are tailored to the current
situation.

The process of prioritizing measures is very dynamic due
to different goals, presence of various metrics and violations
and different project situations. Therefore, the AGQM
module features a multi agent system (MAS) to prioritize
measures in alignment to the project goals to be able to
accommodate these various factors. The process is based on
an extension to the GQM technique [30]. GQM consists of a
hierarchical structure that starts with the definition of certain
project goals. During configuration, for each goal various
questions are defined. These answers should provide
indicators for the level of goal fulfillment. Each question can
be associated with certain metrics, establishing a connection
from the abstract project goals to concrete facts in the
project. The following example shows the application of the
GQM technique.

Example 5 (GQM Plan): As part of a GQM plan, a goal
‘Maintainability’ could be defined relating to the
maintainability of the produced source code. For this goal,
one question could be ‘How understandable is the code?’
For this question, in turn, different metrics could apply. One
example is the metric ‘Comment Ratio’.

1) GQM Extensions
This subsection shows the basic concept on which the

agents rely. Two main requirements have to be satisfied to
facilitate automatic support for GQM execution. First, a
GQM plan must exist that defines the relations between
goals, questions, and metrics. Second, the metrics have to be
integrated in the system, enabling the automatic extraction of
corresponding values and thus the automatic receipt of
possible deviation information.

Some extensions to the GQM technique became
necessary to support automation. Different abstractions of
key performance indicators (KPIs) were introduced to enable
the automatic calculation of goal deviations. Furthermore,
metrics are encapsulated in KPIs to enable consolidation and
simplified deviation calculation. Since multiple metrics may
be utilized for a single question in GQM, a QKPI (Question
KPI) was created for consolidation of the metric values at the
question level. Similarly, multiple questions may apply to a
single goal, thus a GKPI (Goal KPI) is used for goal
deviation calculations. For each of the KPIs, formulas
specify how metrics are combined. To support automated
multiple goal attainment, each defined goal was assigned one
agent responsible for monitoring and fulfillment of that goal.

The calculation of the different KPIs is conducted by the
Context Management module as part of the quality trend

analysis described in Section I. Figure 9 shows the relation
between the different conceptual elements.

Figure 9. Extended GQM Structure

To prescribe appropriate countermeasures for (potential)
quality deterioration, measures were categorized as follows:
reactive (or analytical) measures, which are directly
associated with concrete metrics or violations, and proactive
(or preventative) measures, which hereby are categorized as
supporting certain quality goals at an abstract level and may
not be readily associated with a concrete problem. Proactive
measures are assigned to GKPIs and can be triggered either
when a GKPI deviation occurs (a supportive role) or in the
absence of reactive measures. This differentiation is
pragmatic since reactive measures can be based on concrete
existing problems and can thus be more fine-grained,
whereas proactive measures support a goal in general.

2) AGQM Process
At the beginning of a project or a phase or iteration, a

quality manager assigns points to each goal (implying its
importance) and chooses a bidding strategy for the agent
managing that goal. These points are used by agents for
negotiating proposed measures. The AGQM process invokes
a proactive as well as reactive selection mechanism that
results in a measure proposal.

Quality goals can be conflicting, and determining the
appropriate balance is project-specific. Thus, a competitive
bidding process among agents is chosen for enabling
proactive measures, whereas a cooperative voting process is
applied for enabling reactive measures. The competitive
bidding allows agents with greater importance to definitively
have opportunities to support their goal with measures, in
contrast to voting where agent majorities might win. That
way, a group of lower-priority goal agents does not hinder a
higher priority goal from ever asserting influence. The
bidding strategies enable agents to win opportunities earlier
or later in an iteration cycle.

The reactive voting process is cooperative since a
potentially large number of concrete reactive measures based
on metric violations become possible for a limited number of
quality opportunity slots (Q-slots), and those measures that
will have the greatest overall quality impact across all goals
are favored. The agents cooperatively vote on the measures
list received from the Rule Processing module. Via the
structure shown in Figure 9, each agent determines for each
measure whether a measure belongs to a metric being related
to the agent’s goal. The points of an agent are then

82

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distributed (currently uniformly) across all measures
associated to its goal. A prioritized list of reactive measures
is output, while the ultimate choice will be applied by
Context Management based on the situation.

The proactive section of the AGQM module utilizes
metrics for calculating the different KPIs, QKPIs, and
GKPIs. If there are any deviations at the goal level of an
agent (GKPI), it may participate in the bidding session (this
favors those goals known to be at risk). Each agent bids and
the highest bid wins, elevating its proactive measure set to a
proposal. In this process, not just the points differentiate
between the goals, but also the strategy chosen by the agents.
The strategies influence how an agent increases or decreases
its bids after winning or losing for the next bidding process.
Choosing a defensive strategy for an agent will increase the
likelihood that a proposal of its associated measures will
occur in later phases of the iteration. This behavior occurs
because in early sessions the agents with more aggressive
strategies will place much higher bids. The defensive agent
can then place winning bids later when the aggressive agents
run out of points.

To define an appropriate proportion between proactive
and reactive measures, a proactive-to-reactive ratio can be
defined. This determines how often reactive vs. proactive
measure sets are provided by the AGQM module. Section V
will evaluate a concrete scenario utilizing this approach. If
no metrics and thus no reactive measures are yet available,
then no question or goal deviation is detectable since there is
no basis for their calculation. In this case, all agents
participate in proactive bidding so that any Q-Slots can be
used for proactive measures.

G. Measure Tailoring
The AGQM module has created a list of prioritized

measures according to project goals. However, the final
selected measure should depend on environmental factors for
the most effective and efficient measure application. These
include properties of the measure itself, properties of the
applying person, and properties of the current situation.

The properties of the measure are defined in the Context
Management module and include, for example, the type of
the measure or the applicable number of users involved (e.g.,
a code review involves multiple persons). One property of
the person that can be of interest is the skill level. The
properties of the current situation are modeled based on the
concepts of the Q-Slot and the Extension Point. The
Extension Point, as part of the semantic enhancements to the
process, is a pre-specified point in the process where the
integration of a quality measure is feasible, as illustrated in
Figure 4. That involves an abstraction level and applicable
measure type since, for example, at the end of a project
phase other measures might be applicable compared to a
time point after directly implementing new functionality. The
Q-Slot captures a time category indicating how much time is
left for a quality measure. Via these properties, a measure
fitting to the current situation can be chosen. This process is
further explained in [25].

H. Measure Application
To enable a high degree of automated guidance, the user

is not only informed about the measure to be applied, but the
measure is also directly integrated into the users’ workflow
(not necessarily visible to the user, but tracked by the
system). Both semantic enhancements to process
management and the capabilities of the adaptive process
management system, which enables the dynamic change of
running workflow instances, are used. Details can be found
in [25].

Example 6 (Measure Selection): To enable automated
support for quality measures, the Company introduced the
facilities for automated problem and quality opportunity
detection. A GQM plan was created with maintainability and
reliability as well as the creation of new functionality as
goals. If developers now finish early on Assignments, the
system can automatically assign them quality measures that
fit the project goals and are appropriate to the personal
situation. As example for this, consider refactoring of
complex code. This measure was triggered as problems in
the source code were detected, for example by applying the
cyclomatic complexity metric. The measure was prioritized
as high since it was judged as important and applicable to
both the maintainability and reliability goals of the project.
Finally, the system can choose the matching person for the
measure based on properties like the skills of the person,
their familiarity with that code section, or the amount of time
they can spend in accomplishing a measure vs. the expected
time needed for the measure.

I. Quality Trend Analysis
The continuous monitoring of the quality of the source

code is essential to be able to detect any impact of applied
quality measures. Therefore, the list of quality measures
from the Rule Processing module is utilized by the Context
Management module. The list not only contains proposed
measures, but also the metric belonging to each measure and
the value of the metric. To enable automated evaluation of
quality trends in conjunction with the GQM technique,
different levels of key performance indicators (KPIs) were
introduced as depicted in Figure 9.

KPIs are composite metrics unifying the values of other
metrics or KPIs to enhance their expressiveness and
significance. Each KPI is based on a formula that prescribes
how the values of the encapsulated metrics are used to
compute the KPI value. KPIs are utilized not only for quality
trend analysis on different levels of abstraction, but also for
automated goal deviation monitoring with respect to the
GQM technique. Therefore, three levels of KPIs were
introduced: on the most concrete level, the KPI unifies one
or more metrics for clarity since different metrics may be
utilized by the system. The QKPI represents a Question of
the GQM technique as a value to facilitate automated
deviation calculation, which is automatically computed from
attributed KPIs and base metrics. The same applies for the
GKPI, which unifies the values of the questions belonging to
one project goal.

Compared to our initial approach described in [1] and
[25], the calculation of the KPIs has been refined and moved

83

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to the Context Management module. Therefore, the KPI
structure and the various calculated KPI values are stored in
the ontology for better information processing and access.
The values can then be incorporated in reasoning procedures
and the data can be easily provided to other external
applications.

The calculations are now done in a uniform way for all
KPIs, applying a weighted average of all values a KPI
aggregates as depicted in Formula (1), where Mi are the
concrete values that are aggregated and Wi are the attributed
weights of the n metrics or KPIs being aggregated. All
received metric values are normalized to a range from 0 to 1.

∑

∑
=

=

=

== ni

i
i

ni

i
ii

W

MW
KPI

1

1
 (1)

J. Measure Assessment
Regarding different companies with different people,

tools, and processes, applied measures may show different
degrees of effectiveness. To reflect that and to improve
future measure proposals, a so-called measure utility is
introduced to indicate the usefulness of the applied measure.
That property is neutrally initialized and updated after each
application of the measure. The delta of the KPI related to
the measure right after its application is compared to the
value prior. Since some measures may not have an
immediate effect, multiple future deltas can be taken into
account. This process is further described in [25].

Example 7 (Measure Assessment): The special
refactoring proposed in Example 6 can now be automatically
assessed for the Company since it has applied continuous
quality measurement. If the refactoring is successful and the
complexity of the code is reduced, this is indicated by a
subsequent measurement showing a lower value for the
cyclomatic complexity metric. This value will then also affect
the value of a KPI related to the maintainability goal defined
by the Company. The KPI value, in turn, will affect the utility
value of the proposed refactoring measure, which will, if
successfully applied, have a higher probability of selection
by Context Management in the future.

IV. REALIZATION
This section provides implementation details for the

components described in Section III and reflects their current
implementation status.

A. Architecture
The technical architecture is depicted in Figure 10,

whereby the modules are deployed as web services. To
support loose coupling of the deployed services in
CoSEEEK, event-driven computing and space-based
computing are leveraged for service interaction [21]. The
communication with the tuple space is technically realized
using the web service framework Apache CXF.

For SE Tools and Artifacts, the actual instances are
dependent on the SE environment and the current

configuration. In the context of this paper, SE Tools includes
static analysis tools like PMD, version control tools like
Subversion, and IDEs (Integrated Development
Environments) like Eclipse. Other relevant tools are, for
example, external project management tools from which
processes can be imported, like microTOOL inStep [32].

The primary Artifacts relevant to the scenario presented
in this paper are source or test code files that are processed
using these tools.

The Event Extraction module utilizes the Hackystat
framework [38]. This framework provides a rich set of
sensors that can be integrated into various SE tools. The
sensors enable the Event Extraction module to automatically
generate events in different situations, as, e.g., checking in a
source code file in Subversion or switching to the debug
perspective in Eclipse.

Most of the extracted events are rather atomic and thus
combined by the Event Processing module to provide more
semantic value. This is done utilizing Esper [39] for CEP.
Esper provides a facility to define patterns that govern how
certain events are combined to derive other higher-level
events, which are then again written to the Data Storage
module as all other events.

The Data Storage module, in turn, is realized via an
implementation of the tuple space paradigm [40] on top of
the XML database eXist [41] for shared XML data, whereas
the Hackystat SensorBase is used for high volume event
data. The specific CoSEEEK tuple space implementation
that uses eXist consists of multiple so-called collections that
structure the stored information. Examples include 'Context
Management' as well as 'Process Management'. Each
CoSEEEK module can write tuple events in these collections
or subscribe to be automatically informed about new events
in a certain collection.

The Rules Processing module automatically processes
static rules to assign certain quality measures to certain
violated metrics utilizing JBoss Drools [42].

The AGQM module, which is in charge of strategic
quality measure prioritization, employs a multi-agent system
(MAS) with different behavior agents. It is implemented
utilizing the FIPA- compliant [43] Jade framework [44].

The Context Management module employs semantic
technology to enable high-level utilization of all project
knowledge. Technology advantages include enhanced
interoperability between different applications, extending
reuse possibilities, and the option for advanced content
consistency checking [45]. It also provides a vocabulary for
the modeled entities including taxonomies and logical
statements about the entities. Ontologies also provide the
capability of reasoning about the contained data and inferring
new facts. As an ontology language, OWL-DL (Web
Ontology Language Description Logic) [46] is used due to
its proliferation and standardization. For simple RDF [47]
based queries to the ontology, SPARQL [48] is used.
Operations that are more complex are executed using the
reasoner Pellet [49]. Programmatic access via DAO objects
to the ontology is provided by the Jena framework [50].
Thus, different semantic concepts can be created and
manipulated as needed.

84

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. CoSEEEK Technical Architecture

The Process Management module builds upon the
AristaFlow BPM Suite [51][52]. AristaFlow provides
process management technology that is notable with respect
to the flexible support of adaptive and dynamic workflows.
New workflow templates can be composed out of existing
application services in a plug-&-play like fashion, and then
serve as schema for the robust and flexible execution of
related workflow instances. In particular, during run-time,
selected workflow instances can be dynamically and
individually adapted in a correct and secure way; e.g., to deal
with exceptional situations or evolving business needs [53].
Examples of workflow instance changes supported by
AristaFlow include the dynamic insertion, deletion, or
movement of single workflow activities or entire workflow
fragments respectively (for a discussion of the adaptation
patterns supported by AristaFlow, see [54]). For integrating
these change functions and other AristaFlow services (e.g.,
for managing user work lists or for defining workflow
templates) with domain- or application-specific process-
aware information systems as in our case, the AristaFlow
Open Application Program Interface (Open API) can be
utilized [55][56]. For example, for dynamically inserting
activities at the workflow instance level, the application
developer can make use of the following system functions
provided by the AristaFlow Open API:

• Querying the activity repository for available activity
templates,

• Marking those activities of the workflow instance
after which the selected activity shall be inserted
(i.e., after completing these activities the newly
added one shall be enabled),

• Retrieving the set of activities selectable as “end”
activities for this insertion,

• Marking the activity (or set of activities) which shall
serve as end activity (activities),

• Performing (tentatively) the insertion based on this
information,

• Checking the AristaFlow report on detected errors
(e.g., missing values for input parameters), and

• Making the instance change persistent.

Note that dynamic workflow instance changes can be

conducted at a high level of abstraction. In particular, all
complexity relating to dynamic workflow instance changes
(e.g., correct transformations of the workflow schema,
correct mapping of activity parameters, state adaptations) are
hidden to a large degree from end users and application
developers respectively [57]. Furthermore, AristaFlow
provides techniques for learning from past experiences and
workflow instance adaptations, respectively, and for
evolving workflow schemes accordingly [58][59][60].

B. Context-aware Business Process Management
As mentioned in Section III, CPM (Context-aware

Process Management) is enabled by correspondingly
modeling the workflows in the ontology. Figure 11 illustrates
this with the 'Develop Solution Increment' workflow of the
OpenUP process [61].

In traditional process management, as mentioned in
Requirement R:Sepm2, some aspects of task management
have not been sufficiently covered. On the one hand, coarse-
grained user assignments that have been planned for the
current iteration or phase are not explicitly included since
they are too abstract. In CoSEEEK, this is done explicitly in
the Context Management module, as illustrated in Figure 11,
by the Assignment 'Develop Feature X'. The latter is
connected to the Work Unit Container that, in turn, contains
all Work Units representing the activities of the workflow. If
human tasks shall be executed via those activities, they are
implicit parts of these activities.

In CPM, modeling it is done more explicitly. Work Units
representing activities are only used for workflow
governance. If they shall imply human activities, they have
to be connected to Assignment Activities. The latter are also
connected to the Assignment, making the connection of the
abstract assignment to the concretely executed activities
more explicit. However, activities like 'Implement Solution',
in turn, consist of a number of smaller tasks. These tasks are
also explicitly modeled in CPM. Figure 11 shows the Atomic
Tasks related to the 'Implement Solution' Assignment
Activity. These tasks can be automatically detected by the
sensors of CoSEEEK’s Event Extraction module. Thus, it is
possible that the system is automatically aware of the
completion of an activity through the detected completion of
all related tasks and thus can automatically finish that
activity and propose the next one. This relieves the user from
the burden of always explicitly informing the system about
activity completion. The same applies to the Assignment,
which can be automatically finished by the completion of all
related Assignment Activities.

85

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Concepts in Process Management and in the Ontology.

The enrichment of process management concepts via the
ontology further enables the aforementioned extended
vertical relations between workflows and the clear separation
between horizontal and vertical process management (cf.
Section III.C). The separation into two areas governed by
two different modules was chosen despite the high
coordination effort it imposes. The main reasons for this are
as follows: mirroring process management components in
the ontology not only enables extended vertical process
management, but also allows for a tighter integration of the
processes in the projects using different task levels for
humans and CoSEEEK’s environmental awareness
capabilities. Since the decision on whether or not a Work
Unit and the respective node can be completed is done in the
Context Management module, the vertical dependencies are
integrated into that procedure as well. Thus, multiple
dependencies are all managed at one point, fostering
contextual integration of process management and
dependency extensibility. A Work Unit cannot complete, for
instance, if related user activities are not completed or if the
Work Unit depends on activities by other users or teams. An
example of new dependencies that can be easily integrated is
that an artifact has to be in a certain state or that an external
tool has signaled a certain event. The horizontal governing of
a process structure stays with process management because
this is a non-trivial task and mature process management
systems such as AristaFlow (cf. Section IV.A) support many
correctness checks and guarantees on process execution. The
extensions to vertical process management made by CPM
are detailed in the following. There exist three possible

connections, all of which can occur multiple times and can
be mixed:
- Depends-on-Work Unit Container: This is the classical

connection between an activity and a contained sub-
workflow. When the Work Unit is activated, the Sub
Work Unit Container is started and the Work Unit must
not complete until the Sub Work Unit Container is
completed. This connection is illustrated in Figure 6 by
the Work Unit ‘B4’ that depends on the Work Unit
Container containing the Work Units ‘C1’ – ‘C4’.

- Depends-on-Work Unit: In this connection, the
completion of the current Work Unit does not depend
on a Work Unit Container, but on the completion of
another Work Unit. When the depending Work Unit is
activated and the Work Unit Container containing the
Work Unit on which the current Work Unit depends has
not been running yet, it is started. This connection is
illustrated by the Work Units ‘A3’ and ‘B4’ in Figure 6.

- Initiates-Work Unit Container: This connection is
asynchronous. The Work Unit does not depend on
anything, but when it becomes activated, the connected
Work Unit Container is started.

C. Procedure
This section gives a short outline about the temporal

coordination of different modules. The whole procedure can
be decomposed into three processes partly dependent on
each other:

- When a report from an analysis tool is received, the
tool-specific format is first transformed into a

86

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

unified one. Thereafter, the report is processed by
the Rule Processing module with triggered
measures output to Data Storage whereby any
subscribers are notified. They retrieve and use the
data, in this case the reactive section of the AGQM
module and the KPI calculation of the Context
Management module.

- When a user finishes an activity, the Q-Slot
detection is started within the Context Management
module. If a Q-Slot is available, the AGQM module
is triggered by the Context Management module to
generate an ordered list of proposed measures. This
list is used by the tailoring process in Context
Management to select a measure that is then
integrated into a workflow by the Process
Management module.

- At certain configured time points, the Context
Management module is triggered to do an
assessment of the applied measures. This relies on
the applied measures and the calculated KPIs.

D. Problem Detection
Problem detection relies on the receipt of information

about CoSEEEK’s environment. This is indicated by events
in the CoSEEEK infrastructure. For reports of external tools,
these events include the location of the reports. Other facts
like the execution of load or functional tests may only be
indicated by events and are continuously monitored. When
reports are received, the Rule Processing module is
triggered. To be able to automatically evaluate metrics and to
assign appropriate measures if thresholds are exceeded, the
module must be aware of the metrics, the measures, the
thresholds, and the tool used to measure the metrics. Thus,
we developed a GUI to more easily define the involved items
as depicted in Figure 12.

Figure 12. Rules GUI.

The rules produced by this GUI have the structure
defined in Listing 1 and allow for the definition of rule
priorities. The latter are used if, for example, two rules with
different thresholds have been defined for the same metric
and only one should be executed if both are triggered. The
rules are then exported, transformed into the DRL format
utilized by JBoss Drools, and loaded by the Rules Processing
service. Any new reports then utilize the new rule set.

Listing 1: Rule example
<rule
 ID="12"
 Tool="PMD"
 Metric="MET:UnnecessaryConstructor"
 Trigger=">=1"
 Measure="M:R:PeerReview"
 Prioritized="2"
/>

Rule processing produces unified XML reports

containing all metrics whose thresholds have been violated
and their associated triggered quality measures.

E. Measure Proposal
The output of a new unified report triggers the Context

Management module to start the measure selection. For the
prioritization of the measures, the AGQM module is
triggered. This subsection gives some details about the
agents utilized in the AGQM module.

The agent structure is defined as depicted in Figure 13.
The AGQM agent is responsible for managing the agent
module. It instantiates the other agents and determines
whether a reactive or proactive measure will be proposed.
For each defined goal, one goal agent is instantiated. In the
proactive section, the goal agents communicate with the so-
called session agent to realize the bidding process. The
session agent takes the role of the “buyer” and thus selects
the proactive measure from the goal agent with the highest
bid. Each goal agent places bids according to its strategy. For
the initial implementation, basic strategies were used. The
three strategies ‘offensive’, ‘balanced’, and ‘defensive’
influence the starting bid of the agents as well as win-or-lose
adaptation based on the last session. The strategy pattern
allows these algorithms to vary. If insufficient points are left
for the intended bid, the agent bids all points he has left. If an
agent has no points left, it cannot place bids anymore until all
agents have no points left, whereupon all points are reset to
their initial value. Each agent has a list of proactive measures
it could offer. Goals that are known to be at risk due to GKPI
deviation are elevated to participation status in the bidding. If
no report containing GKPI violations is received, all agents
participate.

Figure 13. Agent Structure.

The reactive section is realized via the vote agent. Each
time a report is received, the vote agent creates a weighted
list of reactive measures using the report. To elicit the weight
of each measure, the vote agent communicates with the goal
agents. For each measure, a goal agent evaluates whether
that measure is associated to its goal via the aforementioned

87

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connection of measures, metrics, KPIs, and goals. In each
voting process, a goal agent distributes all of its assigned
points (initially allocated at the beginning of the iteration)
uniformly across all measures in the current report that are
associated to its goal. If multiple agents vote on one measure,
the points are aggregated. If no report has been received yet,
the voting process cannot be conducted. In that case, a
proactive session is substituted.

That way the AGQM module creates a new ordered list of
measures that mirror the predefined importance of the
project’s quality goals.

F. Measure Application
This part of the process was discussed in our initial

approach [25]. However, due to technical issues, it has been
extended and refined and this subsection presents how the
integration of new quality measure activities into the user’s
workflow is accomplished. Therefore, new items have to be
inserted both on the Context Management side and the
Process Management side. This is done at first in the Context
Management module. A quality measure is inserted as a new
Assignment comprising certain AssignmentActivities and a
separate WorkUnitContainer with WorkUnits and potential
new ExtensionPoints. These are created from pre-specified
template concepts that are connected to the
MeasureTemplate (that is mentioned in Figure 17). To be
able to insert the quality measure at the specified point, a
new WorkUnit is created and inserted there, which is then
connected to the newly created WorkUnitContainer
belonging to the quality measure. This is illustrated in Figure
14.

Figure 14. Measure Integration.

However, the insertion itself has to be also done within
process management and therefore takes place later. In order
to adapt a running workflow instance in AristaFlow, it has to
be suspended from execution to apply the adaptations. This
cannot be done if an activity in the instance is still active.
However, at the time the quality measure integration is
triggered, the activity that caused the Q-Slot generation is
still active. Therefore, suspension is delayed until the activity
is completed. This procedure is shown in Figure 15.

After the new individuals (WorkUnits, etc.) in the
ontology have been created, a so-called DeferredAction is

created and assigned to the ExtensionPoint where the
measure should be integrated. That action will be
automatically executed when the WorkUnit related to the
ExtensionPoint is finished and will integrate the Activity
containing the measure (named ‘Q’ in Figure 14) in the
workflow instance. After that, a ‘soft suspend’ event is sent
to Process Management, causing AristaFlow to do a soft
suspend on the respective workflow instance. Thus, the
instance will be automatically suspended right after the
currently running activity is finished. This happens when the
related Work Unit finishes via a ‘signal Activity’ event. This,
in turn, causes the final integration of the quality measure
activity in Process Management and is mirrored in Context
Management.

 Figure 15. Measure Integration Procedure.

The order of the activities in the integration procedure
was chosen in a way that the current activity is still running
while the measure integration process starts. This was done
to allow the insertion of a quality measure directly after
every activity even if this is the activity the user currently
processes that caused the creation of a Q-Slot. The soft
suspend immediately suspends the workflow instance after
activity completion and therefore no other activity is started.
Then, the quality measure activity can be integrated and
executed as the next activity if appropriate.

G. Quality Trend Analysis
The quality trend analysis is conducted in the Context

Management module and the values are stored in the
ontology. The concepts are illustrated in Figure 16.

Both Metric and KPI are united under the concept of the
QualityIndicator. All concepts are separated into a template
for the definition and a form containing a concrete value.
When a ViolationList containing multiple Metrics is
received, it is determined which KPI can be calculated via
the KPITemplate and the MetricTemplate. For the computed
values, new KPIs are then created.

To be able to do a uniform calculation, all received
metric values are normalized to values between 0 and 1
where 1 is the best possible value and 0 is the worst possible
one. Therefore, as part of the MetricTemplate, there is a
defined maximum saved. The actual value is divided through
this maximum to derive a value between 0 and 1. It also

88

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defines a limit for the value, e.g., if a maximum of 15 has
been defined as maximum for cyclomatic complexity, this
would be the worst possible value. If the actual values had
exceeded this limit, then 15 would be taken instead. There is
also a property called negative, which indicates whether high
values are negative (bad) or positive (good) indicators.

Figure 16. Quality Trend Analysis.

If a metric value is not available, the calculation will be
done without that value. For some metrics, the absence of a
value is also a negative indicator and thus a standard value
can be defined in the MetricTemplate. If, for example, a
metric had indicated the degree of functional testing
compliance (a measure for the outcome of functional
testing), its absence would indicate that no functional testing
has been done yet. Since that fact should not be overlooked,
a standard value can be defined.

It is also possible to integrate values from external tools
as KPIs. If this is the case, a property 'external' can be used
to indicate this. The KPI calculation is a weighted average
and therefore each KPITemplate stores the weight used for
that KPI.

H. Measure Assessment
In this part of the process, the calculated values of the

KPIs are utilized for recalculating the measure utility factor.
This is done using the changes (deltas) of the KPI values. For
now, up to ten such deltas starting from the time of the
measure application can be used. The concepts in the
ontology realizing this are depicted in Figure 17.

Figure 17. Measure Assessment.

More details on this calculation are provided in [25].
Compared to our initial approach, the ontology structure has

been refined featuring the separation into template concepts
and concrete ones for all involved concepts. Thus, they
conform to the overall structure, implying a strict separation
of the definition of certain items and their concrete values.
That way, additional plausibility checks are also possible like
the check whether a measure is permitted for a certain metric
violation.

I. Modeling Effort
The presented approach implies modeling workflows and

a myriad of extensions to them in the ontology. This leads to
a relatively high modeling effort. That effort can
nevertheless be limited: When the modeling is done utilizing
the SE workflow language we developed in [24], both the
concepts for the Process Management and the Context
Management modules are automatically generated. If
workflows are already in place in a workflow management
system, the basic concepts in the ontology (Work Units and
Work Unit Container) can be automatically generated and
then be annotated manually. This could also limit the effort
required for migrating to CoSEEEK in a company. If a
supported workflow management system is in place there,
only the annotations (e.g., Extension Points) have to be
added manually. CoSEEEK will also include predefined
metric sets and associated measures, standard SE processes,
and GQM plans to facilitate the introduction of the system.
That way small and medium sized companies could easily
benefit from the higher level of automation CoSEEEK
provides.

V. EVALUATION
A scenario was constructed and technical measurements

taken to evaluate the overall feasibility of the approach.

A. Scenario
Due to the large number of configuration factors

involved and the breadth and depth of the approach we
developed, a controlled scenario-based evaluation that
combines real results with synthetic facts was chosen for
initial feasibility testing. As input for code analysis, the
org.eclipse.osee.framework.database package of the open
source Eclipse Open System Engineering Environment was
used.

1) Process
As a software development process, OpenUP [61] was

chosen, a simplified free derivative of the Unified Process
[62]. This process constitutes an iterative process featuring
four project phases. In the Inception phase the scope of the
project is defined, the use cases are outlined, risks are
identified, and candidate architectures are selected. The
Elaboration phase serves for capturing a healthy majority of
system requirements and for addressing known risk factors.
In addition, the system architecture is established and
validated. In the Construction phase the system features are
built based on the selected architecture. In the Transition
phase, the system is deployed to the users. Each phase
contains a number of iterations to complete its goals. Figure
18 shows how the OpenUP process can be used in the given
scenario.

89

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. OpenUP Process with Configured Extension Points

Since the Construction phase is the largest phase in the
project comprising most development activities, it was the
focus of our evaluation. Figure 18 shows the other phases in
a compressed way. The focus here is on the developers'
activities, thus the 'Develop Solution Increment' workflow is
shown in detail in the figure. Overall, 54 ExtensionPoints
(XPs) have been defined for the workflows as depicted in the
figure. The ones that are relevant for the developers'
activities in a Construction iteration are XP8 at the end of the
iteration, XP21 for measures to be applied between two
assignments, and XP45 and XP46 for measures directly
relating to coding or testing regarding certain artifacts.

2) GQM Plan
For the test scenario, a GQM plan was created to enable

the AGQM agent processes shown in Table I. Four goals
have been chosen: maintainability, reliability, performance,
and functionality. This is just a simplified example of what is
possible and can be incorporated and tailored by a quality
manager.

The different metrics and KPIs that are part of the plan
are illustrated in Appendix A. To measure the reliability of
the code, different kinds of metrics have been chosen. On the
one hand, well-known source code metrics like McCabe's
cyclomatic complexity [63] or Nejmeh's npath complexity
[64] have been used. On the other hand, metric suites were
integrated, namely Chidamber and Kemerer's metrics suite
[65] as well as the QMOOD metrics suite [66]. According to
a study conducted in [67], these are good predictors for fault
proneness and thus for reliability. Another factor that could
affect the reliability of source code is whether it is covered
by unit tests. This metric can be provided by tools like
Cobertura [36] or EMMA [37] (see [35] for a comparison).
Since, via sensors, it is possible to detect the execution of
various tools for various activities, other factors can be used
as metrics as well. An example for this is the degree of load
testing that can also be an indicator of (the lack of) code
reliability confidence.

For maintainability, a set of source code metrics have
been selected and grouped to a question concerning the
understandability of the code. To enhance the prediction
quality of the goal, KPI external approaches have also been
integrated: the maintainability index (MI) [68][69][70] is a
formula proven to be a good predictor of maintainability and
can be provided by the tool jhawk [71]. Maintainability can

be also affected by certain problems in the source code called
code smells. These can be detected via the DECOR approach
[72], which is taken into account as well.

TABLE I. EXAMPLE GQM PLAN.

GKPI QKPI KPI Metric
GKPI:REL QKPI:CK MET:WMC

 MET:DIT
 MET:NOC
 MET:CBO
 MET:RFC
 MET:LCOM
 QKPI:QMOOD MET:ANA
 MET:CAM
 MET:CIS
 MET:DAM
 MET:DCC
 MET:MOA
 MET:MFA
 MET:NOM
 QKPI:COMP MET:CYC
 MET:NPA
 QKPI:DD MET:DD
 QKPI:CC MET:CC
 QKPI:DLT MET:DLT

GKPI:MAINT QKPI:UND MET:CR
 KPI:CSV MET:TMM
 MET:UEM
 MET:UEC
 MET:ECB
 MET:TMF
 QKPI:CC MET:CC
 QKPI:CSD MET:DECOR
 QKPI:MI MET:JHAWK

GKPI:FUNC QKPI:UCC MET:UCC
 QKPI:FTCF MET:FTCF

GKPI:PERF QKPI:CTAF MET:CTAF
 QKPI:PRAF MET:PRAF
 QKPI:PTCF MET:PTCF

The implementation of all desired functionality is

covered by the functionality goal. Thus, two metrics have
been chosen to measure that. The use case coverage indicates
how much of the desired functionality is implemented. The
functional testing compliance factor, in turn, indicates how

90

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

many of the functional tests were passed. If no functional
testing has been performed yet, the value of the functional
testing compliance factor will be 0 in the worst case.

The performance goal comprises a metric called the
performance testing compliance factor, which is similar to
the functional testing compliance factor, but deals with
performance tests. The other two metrics are related to the
code optimization activities of code tuning and profiling.

3) Concrete situation
The scenario is targeted for a construction iteration of the

OpenUP process that takes two weeks implying ten
workdays. Ten developers are assumed to be part of the team
and each developer has ten 'Develop Solution Increment'
assignments, which are assumed to take one day each. Each
night reports from code analysis tools are received as part of
the nightly build process. As static analysis tool, PMD [33] is
used; Appendix B shows the results of a report concerning
the selected OSEE module. These results also include the
threshold for each metric defined via the Rule module. For
the concrete iteration, the focus is improving the quality of
the source code, especially maintainability, since the
functionality metrics are not violated, meaning the desired
functionality is largely implemented. Therefore, the goal
agents have been defined as depicted in Table II.

TABLE II. GOAL AGENT CONFIGURATION.

Agent Points Strategy

MAINT 100 Offensive

REL 80 Balanced

PERF 80 Balanced

FUNC 60 Defensive

For this scenario, the three strategies used for the agents

have been defined as shown in Table III. As stated in Section
III.F, they comprise three values: a start bid indicating how
many of the distributed points an agent uses for its first bid
and raise / reduce values indicating how the agent raises
(reduces) its bid in case of loss (win).

TABLE III. AGENT STRATEGIES.

Strategy Start bid Raise Reduce

Offensive 35% 20% 10%

Balanced 30% 15% 13%

Defensive 25% 10% 20%

Each time a Q-Slot occurs, the AGQM module is

triggered to output an ordered list of proposed quality
measures. For the current scenario, a 50:50 ratio between
proactive and reactive measures was defined. Table IV
shows the first ten proposed quality measures generated for a
Q-Slot. Proactive measures are identified by the prefix
“M:P:” and the assigned goal, reactive measures by “M:R:”.
The related metric whose threshold was violated for reactive
measures is also shown.

TABLE IV. PROPOSED QUALITY MEASURES FROM AGQM

Slot Quality Measure Related Metric ID

1 M:P:MAINT:Analyze Reuse
Possibilities m1

2 M:R::Increase Code Coverage MET:CC m2
3 M:R.Refactor Code MET:ECB m3

4 M:P:MAINT:Review Style Guidelines m4

5 M:P:REL:Analyze Error Handling
Implementation m5

6 M:R:MAINT:Refactor Code MET:TMM m6
7 M:P:PERF:Do Profiling m7
8 M:P:MAINT:Analyze Modularity m8

9 M:R:PERF:Do Performance Testing MET:PTCF m9
10 M:R:Refactor Code MET:CYC m10

To determine the impact of the strategies in conjunction

with the distribution of points in the proactive section, Table
V shows the agents’ bids for the slots, in which proactive
measures were proposed. The numbers in parenthesis
indicate the bid an agent would have placed according to its
strategy when insufficient points were available.

TABLE V. AGENTS BIDS.

Slot Winner FUNC REL MAINT PERF

1 MAINT 35 24 24 15

4 MAINT 31 28 28 17

5 REL 28 32 32 19

7 PERF 34 28 37 21

8 MAINT 34(41) 32 32 23

The results correlate with the expected arrangement of

the proposed measures, where maintainability measures
should be favored most, followed by reliability and
performance measures.

For simplicity, in the current scenario, only early activity
completion is assumed to have no defined quality overhead
factor. Thus, the creation of Q-Slots only relies on execution
time deviations of the assignments. These execution time
deviations are shown in Table VI. Positive values indicate
that an activity took less time than estimated, negative values
indicate longer actual execution times, and grey boxes
indicate Assignments after which the measure proposal
process is started for the respective developer. For this
scenario, it was assumed that a quality measure is possible if
at least two hours are available.

With these values, five Q-Slots are possible in the
iteration under consideration for the developers dev1, dev3,
dev5, dev9, and dev10. For each Q-Slot, a measure from the
list provided by the AGQM module has been selected,
proposed, and assessed after application. The chosen
measures, the applying developer, and the chosen
ExtensionPoints are shown in Table VII. The measure utility
has been initialized to ‘1’ for all measures in the scenario.
The table also shows the relating KPI used for assessment
and the newly calculated ‘measure utility’ for the applied

91

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

measures. The calculations of the proactive measures have
not been included here because in that limited scenario the
GKPIs could not reflect an impact of the proactive measures.
For a scenario with more details on measure tailoring and
measure assessment, we refer to [25].

TABLE VI. EXECUTION TIME DEVIATIONS.

Developer Assignment
 1 2 3 4 5 6 7 8 9 10

dev1 1 0 2 0 0 -1 1 1 1 1
dev2 0 1 -1 -1 0 1 0 1 1 1
dev3 1 0 -1 0 1 2 0 0 0 0
dev4 0 1 0 0 -2 2 0 -1 -1 -1
dev5 1 -1 1 0 2 0 0 0 0 0
dev6 -4 1 1 1 0 0 0 -1 -1 -1
dev7 1 0 0 0 -1 -2 1 1 1 1
dev8 0 1 0 1 0 1 0 1 0 0
dev9 0 1 0 0 0 0 2 0 0 0
dev10 1 0 -1 0 0 1 2 0 0 0

TABLE VII. APPLIED MEASURES.

Measure Developer Extension
Point KPI Measure

Utility
m1 dev1 21 GKPI:MAINT 1
m2 dev3 21 QKPI:CC 1.17
m3 dev5 21 KPI:CSV 1.17
m5 dev9 8 GKPI:REL 1
m9 dev10 21 QKPI:PTCF 1.29

While the scenario is not detailed and broad enough to

ensure the applicability for the majority of SE real-world use
cases, it shows the feasibility and potential of the approach
towards addressing automated GQM and SQM. Future work
will include trials of this approach with our industry project
partners where empirical results can be evaluated.

B. Performance Measurements
For evaluating the technology and realization choices,

performance measurements were conducted. Two different
hardware configurations were utilized since the performance
testing was performed by different developers on their own
hardware (notebooks). Configuration A consisted of a
computer with an AMD Turion II Dual-Core Mobile M500
2.2 GHz processor and 4 GB RAM. The software used was
Windows 7 64-bit, Java Runtime Environment 1.6.0_16,
Scala 2.7.7 final, Drools 5.1.0, Apache Ant 1.8.0, Apache
CXF 2.2.4, and eXist 1.4.0. Configuration B consisted of one
computer with an Intel Core i7 Q820 1.73 GHz processor
and 6GB RAM. The software used was Windows 7 64-bit,
the Java Runtime Environment 1.5.0_20, Apache CXF
2.2.4., eXist 1.2.6 (rev. 9165) and Jade 3.7. The tests were
executed in a virtual machine (VMware Player 3.0.1 build-
227600) assigned two processor cores and 4GB RAM.

All performance measurements were conducted five
times consecutively, taking the average of the last three
measurements. The first measurement series deals with the
rule module and uses Configuration A and the second series

covers the AGQM module and uses Configuration B. Other
parts of the concept have been measured in [25].

1) Rules processing
Since the largest, most diverse, and regularly occurring

amount of data to be analyzed by CoSEEEK are likely to be
tool reports, and since the number of thresholds and quality
measures needed to manage these can grow correspondingly,
the scalability and performance of the Rules Processing was
measured.

For the rule sets, both the loading latency and the
execution time were measured for different numbers of rule
sets as depicted in Table VIII. The XML report contained
4000 items generated to violate all of the rule sets that were
defined for the test.

TABLE VIII. RULE PROCESSING PERFORMANCE.

Number of
rules

Loading latency
(sec)

Execution time
(sec)

250 3.2 1.5
500 6.6 3.1
750 9.5 4.4

1000 13.0 5.8
1250 13.7 7.5
1500 16.3 8.6
1750 25.8 12.1

For scalability, the measurements show an almost linear

increase of computation time. The loading performance is
acceptable given that changes in rules, where reloading is
necessary, should not be as frequent as rule execution. Since
typical SE low-level activities are usually multiple minutes
long, the execution time for the worst case measured (12
seconds) is still tolerable, making the approach suitable for
the practical use in SE environments. Note that the rule
engine would typically be run on a server and not on a
notebook.

2) AGQM
For the AGQM module, two measurements were

conducted to determine the impact of the number of goals
(agents) and measures. First, the reactive measure list
creation latency based on voting was measured. Second, the
whole measure proposal process for a Q-Slot was measured.

The latency for vote list creation with varying numbers of
measures and goals is depicted in Table IX. The results show
that the number of measures has a greater impact on the
latency than any increase in the number of goal agents voting
(when measurement inaccuracies regarding the smaller
values are disregarded).

TABLE IX. AVERAGE VOTE LIST CREATION LATENCY (MS) VS.
GOALS AND MEASURES.

Measures 50 100 500 1000
5 Goals 111 194 273 924
10 Goals 113 160 815 1927
15 Goals 110 263 787 2090
50 Goals 92 317 842 2453

100 Goals 91 342 864 3003

92

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A second measurement considered the measure proposal
latency for a slot. It was assumed that for every goal exactly
one proactive measure was defined, thus only the number of
goals was of interest. All agents were given an offensive
strategy and 100 points. For reactive measures, the measure
list for voting was already prepared, from which only the
first position was retrieved for simplification. The results are
shown in Table X.

TABLE X. AVERAGE MEASURE PROPOSAL LATENCY (MS) VS.
GOALS.

 5 Goals 10 Goals 15 Goals 50 Goals 100 Goals
Proactive 47 51 45 65 3211
Reactive 40 325 338 492 665

The reactive part shows the overhead of increasing

agents for retrieving the top measure from the vote list. The
proactive part remains constant for low goal numbers and
then reaches an inflection point with a large number of goal
agents. One possible explanation is extended bidding and
thrashing with thread-based agents - this should be further
investigated.

In summary, the performance of the current
implementation appears to be sufficient for use in SEEs
when the number of goals and measures used are within
expected limitations. Performance could become an issue in
large teams or projects or when large numbers of reactive
measures are triggered. One way to address this would be to
tune the Rules Processing Module to limit the number of
reactive measures for which voting takes place. As to goal
scalability, a large number of goals and goal agents would
also imply a high degree of configuration overhead for a
quality manager, thus likely naturally limiting the number of
goals. Should nevertheless a large number of goals be
desirable, distributing the agents could be considered.

VI. RELATED WORK
This section provides related work concerning our

approach. It is structured into subsections covering the
different topics of GQM support, contextual integration, and
automated process adaptation.

A. GQM support
The combination of GQM with agents has been used for

providing automated support for GQM plan creation
[73][74][75] and for the computation of values for questions
and goals [76][77]. In [75], a goal-driven use case method is
utilized to elicit requirements. A set of agents assists the user
in identifying goals and questions that are then used by
another agent to obtain metrics. The collection of the
measurement data and the creation of the measurement plan
are then executed by two other agents. The ISMS (Intelligent
Software Measurement System) [73][74] follows a similar
approach using different groups of agents for user assistance
and determination of different parts of the GQM plan. In
[76][77], agents are used in the requirements process of the
SW-CMM (Software Capability Maturity Model) model.

The focus is the measurement and analysis of software
processes using agents and fuzzy logic.

The approach presented in [78] aims at automated user
assistance in GQM plan creation and execution but does not
utilize agent technology. A tool was developed which allows
creating GQM plans that use predefined forms as well as
verifying the structural consistency of the plan and the reuse
of its components. Furthermore, the tool supports data
interpretation and analysis through aggregation of collected
data. This approach is extended in [79], which integrates
GQM more tightly with a development process to support
GQM plan creation by an explicit process model.

For better integrating the GQM technique into the project
flow via automation, different approaches were considered.
[80] aims at integrating measurement programs as well as
data collection into explicit process models, while [81]
provides an object- oriented process model whose target is
measurement. [82] proposes the usage of process models for
creating GQM plans. Finally, the tool Prometheus [83] links
executive plans with process models.

An approach extending the GQM technique is presented
in [84]. It adds concepts such as entities, attributes, and units.
cGQM [85] proposes the use of the Hackystat framework for
GQM, applying continuous measurement with short
feedback loops.

Other applications of agent technology include its
utilization for automatic information retrieval [86], process
monitoring [87], and collaboration support [88].

As opposed to the aforementioned approaches,
CoSEEEK’s AGQM process integrates its techniques into
live software engineering environments, actively injecting
SQM countermeasure proposals as guidance for developers.
Agent technology is used differently in that the aim is neither
user assistance in GQM plan creation nor assistance in
interpreting measurement results. It is rather the fully
automatic monitoring of goal fulfillment and the automatic
assignment of quality measures for different types of quality
deviations.

B. Contextual Integration of Process Management
Adapting application services to contextual changes is a

major research area in areas like pervasive computing. A
number of context-aware frameworks have been suggested to
facilitate the implementation of application services that can
somehow adapt their behavior to changing context.
Frameworks like Context Management [89], CASS [90],
SOCAM [91], and CORTEX [92] provide support for
gathering and processing context data similar to our
approach. However, they leave the reaction to context
changes to the application or use hard-to-maintain rule-based
approaches for dealing with respective changes.

Only few approaches like inContext [93] combine
workflows with context-awareness as described in this paper.
Regarding inContext, contextual information plays a central
role similar to our approach; inContext strongly focuses on
the teamwork domain, while our approach delivers a more
generic technology enabling the development of context-
aware, adaptive workflows.

93

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The semantic annotation of process specifications to
enable some method of contextual integration for the latter
was addressed by various approaches. The focus of COBRA
[94] is business process analysis. It presents a core ontology
for business process analysis to provide better and easier
analysis of processes to comply with standards or laws like
the Sarbanes-Oxley act. A semantic business process
repository is presented in [95]. It fosters automation of the
business process lifecycle. It features capabilities for
checking in and out as well as locking and options for simple
querying and complex reasoning.

The approach presented in [96] aims at facilitating
process models across various model representations and
languages. This is achieved by multiple levels of semantic
annotations: a meta-model annotation, a model content
annotation, and a model profile annotation as well as a
process template modeling language. [97] provides a concept
for machine-readable process models to achieve better
integration and automation. It utilizes a combination of Petri
Nets and an ontology, whereas direct mappings of Petri Net
concepts in the ontology are established. The approach
described in [98] proposes an effective method for managing
and evaluating business processes. This is realized via the
combination of semantic and agent technology to monitor
business processes. In contrast to the framework presented in
this paper, these approaches do not consider the active
intervention of a system in the execution of workflows.
CoSEEEK exploits semantic annotation of the processes to a
greater extent, using them to do context-based process
adaptations.

C. Automated Process Adaptation
In the field of business process management, there exist

several approaches supporting automated and dynamic
adaptations of workflows during run-time [99]. As in our
approach, their aim is to reduce error-prone and costly
manual workflow adaptations during run-time and thus to
relieve users from this task. As opposed to the presented
work, the focus of these approaches is on automated
exception handling. For this, the process-aware information
system must be able to automatically detect exceptional
situations, derive the dynamic change necessary to handle
them, identify the workflows to be adapted, correctly apply
the dynamic change to these workflows, and notify
respective users. Existing approaches can be classified
according to the basic method used for automatic exception
detection and workflow adaptation:

Rule-based approaches. ECA-based (Event-Condition-
Action) models are suggested for automatically detecting
exceptional situations and determining the actions (i.e.,
workflow adaptations) required to handle them. In many
ECA approaches, however, adaptations are restricted to
currently enabled and running activities (e.g., to abort, redo,
or skip activity execution) [100]. In contrast, AgentWork
[101] further enables automated adaptations of the yet not
entered regions of a running workflow (e.g., to add or delete
activities). Basic to this is a temporal ECA rule model that
allows specifying process adaptations at an abstract level and
independent from a particular process model. When an ECA

rule fires during run-time, temporal estimates are made to
determine which parts of a running process instance are
affected by the identified exception. These parts are then
adapted immediately (predictive change) or, if this is not
possible due to temporal uncertainty, at the time they are
entered (reactive change).

Goal-based approaches formalize process goals (e.g.,
process outputs) and automatically derive the process model
(i.e., the activities to be performed and their execution order)
based on which these goals can be achieved. Further, if an
exception (e.g., an activity failure) occurs during run-time
that violates the formal goals, the process instance model is
adapted accordingly. In ACT [102] for example, certain
workflow adaptations (e.g., replacing a failed activity by an
alternative one) are automatically performed if an activity
failure leads to a goal violation. EPOS [103] rewrites
software engineering workflows when process goals
themselves change. Both approaches apply planning
techniques to automatically derive and repair workflows in
such cases. However, current planning methods do not cover
all relevant process scenarios like our approach since
important aspects (e.g., treatment of loops, appropriate
handling of data flow) are not adequately considered.

Product-driven approaches interpret complex data
structures representing a product in order to derive related
workflow structures. Corepro, for example, allows product
engineers to define complex data structures and to semi-
automatically derive workflow structures from them [104].
The latter comprise the concrete workflows for engineering a
particular product component (i.e., part) as well as the
required synchronization between them. In particular, ad-hoc
changes of a product structure are automatically compiled
into respective adaptations of the workflow structure (on
condition that certain correctness constraints are met).
Corepro uses object life cycles and their dependencies in
order to represent product components and their relations.
DYNAMITE, in turn, uses graph grammars and graph
reduction rules for defining the way in which a software
engineering workflow may evolve over time [105].
Automatic adaptations are performed depending on the
outcomes of previous activity executions (e.g., a design of a
software module). Recently, more generic approaches
aiming at a tighter integration or process and data have
emerged (see [106][107] for an overview). These are
particularly interesting for enabling artifact-based processes
as in SE. For example, PHILharmonicFlows enables object-
aware processes, which consider object behavior (i.e., the
behavior of single objects and artifacts respectively) as well
as object interactions (i.e., the coordinated processing of a
collection of objects) [27]. Consequently, object-aware
processes are based on two levels of granularity. In
particular, data-driven process execution is enabled as well
as integrated access to processes and data [108].

VII. CONCLUSION
SQA should be aligned to the SE process being used, and

be relevant and applicable at the operation level. The manual
combination of SQA with SEPM requires constant vigilance
and associated labor in order to avoid missing quality

94

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

opportunities, to continuously monitor quality goal states,
and to adapt measure and measure utility to new quality
situations. The application of BPM in SE environments has
been sparse due, among other factors, to a lack of contextual
adaptability.

Automated quality guidance support could assist
developers by providing SQA triggering that is based on
current and factual data, continuously monitoring quality
goal states and trends, and selecting and tailoring measure
selection to that being most appropriate in the current
situation. A set of requirements regarding context-awareness,
process management, and quality measure selection was
established in Section II.

Since the quality data and its analysis is not foreknown
for reactive measures, and since there are limited time and
resources for proactive measures, an automated selection of
activity-based quality measures is beneficial. CoSEEEK’s
context-aware approach situationally adapts SE processes
and ensures that quality opportunities are leveraged with the
most appropriate measures for the current project quality
risks. These are inserted into the appropriate point in the
developer’s workflow while taking developer properties such
as competencies or available time into account. Quality risks
can thus be mitigated and automation support can reduce
inefficiencies.

Metric data from various tools can be integrated,
thresholds can be continuously monitored, and appropriate
measures can be triggered when the thresholds are exceeded.
An automated awareness of schedule and early activity
completion allows quality opportunities to be leveraged, and
an overall quality overhead factor (could vary based on
project phase) shall not to be exceeded. Process specification
is extended to support flexible connections and dependencies
between activities, enabling better context-based adaptations.
GQM was extended for concrete metric-based automation
support by agents. To deal with the expected plethora of
reactive measures in projects, cooperative voting is used for
reactive measure selection. For proactive measures, goals at
risk bid against each other to allow importance and strategy
to determine the point in time when proactive measures
supporting their goals are proposed.

Measure selection is automatically tailored using a
holistic project context comprising information about the
project, tools, people, and their current situation. Measures
are seamlessly integrated into running workflows using
adaptive process management and semantic technology.
Measure assessment adjusts the future use of measures based
on their effectiveness, enabling the system to adjust and
improve its SQA measure proposals.

A scenario-based evaluation exemplified the approach
and showed its feasibility towards addressing automated
GQM and SQM. Performance measurements indicated that
the realization choices showed no significant scalability or
performance issues.

Future work will assess the effectiveness of the approach
via case studies in industrial settings. Concrete case studies
at two companies have already been started and are expected
to yield results soon. Work is also required to address the
appropriate planning, determination, placement, and

frequency of Q-slots in these industrial settings. More
complex agent strategies, in addition to systematic detection
of human expertise situations, will also be researched.

ACKNOWLEDGMENTS
The authors wish to acknowledge Andreas Kleiner,

Stefan Lorenz, and Muhammer Tüfekci for their assistance
with the implementation and evaluation. This work was
sponsored by BMBF (Federal Ministry of Education and
Research) of the Federal Republic of Germany under
Contract No. 17N4809.

REFERENCES
[1] Grambow, G. and Oberhauser, R.: Towards Automated Context-

Aware Selection of Software Quality Measures, Proc. of the 5th Int’l
Conf. on Software Engineering Advances (ICSEA’10). IEEE
Computer Society Press, 2010.

[2] Reijers, H.A. and van der Aalst, W.M.P.: The Effectiveness
of Workflow Management Systems: Predictions and Lessons
Learned. Int’l Journal of Information Management, 56(5), pp. 457-
471, 2005.

[3] Heravizadeh, M.: Quality-aware Business Process Management. PhD
thesis, Queensland University of Technology, Australia, 2009.

[4] Vollmer, K.: The EA View: BPM Has Become Mainstream, Forrester
Research, 2008

[5] Mutschler, B., Reichert, M., and Bumiller, J.: Unleashing the
Effectiveness of Process-oriented Information Systems: Problem
Analysis, Critical Success Factors and Implications. IEEE
Transactions on Systems, Man, and Cybernetics, 38(3), pp. 280-291,
2008.

[6] Brooks, F.P.: No Silver Bullet: Essence and Accidents of Software
Engineering, Information Processing, 1986

[7] Glass, R.L.: Software Runaways: Monumental Software Disasters.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[8] Naur, P. and Randell, B.: Software engineering: Report of a
conference sponsored by the NATO Science Committee. Garmisch,
Germany, Scientific Affairs Division, NATO, 1968..

[9] Jones C.: Get Software Quality Right. In: Dr Dobb's Journal, June 28,
2010

[10] Eveleens, J.K. and Verhoef, C.: Quantifying IT forecast quality. Sci.
Comput. Program. 74(11-12), pp. 934-88, 2009.

[11] Yourdon, E.: Death March, 2nd edition, Pearson Education, 2003
[12] Abdel-Hamid, T.: The economics of software quality assurance: a

simulation-based case study, MIS Quarterly, 12(3), pp. 395-411,
1988.

[13] Kan, S.H.: Metrics and Models in Software Quality Engineering,
Addison-Wesley, 2002

[14] Soini, J., Tenhunen, V., and Tukiainen, M.: Current Practices of
Measuring Quality in Finnish Software Engineering Industry, In
Richardson, I., Runeson, P., and Messnarz, R. (Eds.): Software
Process Improvement, pp. 100-110, Springer, 2006.

[15] Gibson, D., Goldenson, D., and Kost, K.: Performance Results of
CMMI-Based Process Improvement, Technical Report, CMU/SEI-
2006-TR-004, Carnegie Mellon Software Engineering Institute, 2006

[16] McConnell, S.: Nine Deadly Sins of Project Planning, IEEE
Software 18(5), pp. 5-7, 2001

[17] Slaughter, S.A., Harter, D.E., and Krishnan, M.S.: Evaluating the cost
of software quality, Communications of the ACM, 41(8), pp. 67-73,
1998.

[18] Rausch, A., Bartelt, C., Ternité, T., and Kuhrmann, M.: The V-
Modell XT Applied - Model-Driven and Document-Centric
Development, Proc. 3rd World Congress for Software Quality, Vol.
III, Online Supplement, pp. 131-138, 2005.

95

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] WfMC. 1993. Workflow management coalition. http:// www.
wfmc.org/

[20] Hill, J.B., Pezzini, M., and Natis, Y.V.: Findings: Confusion remains
regarding BPM terminologies. Report No. G00155817, Gartner
Research, 2008.

[21] Oberhauser, R.: Leveraging Semantic Web Computing for Context-
Aware Software Engineering Environments, In: "Semantic Web, In-
Tech, 2010.

[22] Grambow, G., Oberhauser, R., and Reichert, M.: Semantic Workflow
Adaption in Support of Workflow Diversity, Proc. 4th Int’l Conf. on
Advances in Semantic Processing (SEMAPRO’10), Florence, 2010,
pp. 158-165

[23] Grambow, G., Oberhauser, R., and Reichert, M.: Semantically-Driven
Workflow Generation using Declarative Modeling for Processes in
Software Engineering, Proc. of the 4th Int’l Workshop on
Evolutionary Business Processes, IEEE Computer Society Press
(accepted for publication).

[24] Grambow, G., Oberhauser, R., and Reichert, M.: Towards a Software
Engineering Workflow Language, Proc. 10th IASTED Conference on
Software Engineering, Innsbruck, Austria, 2011.

[25] Grambow, G., Oberhauser, R., and Reichert, M.: Employing
Semantically Driven Adaptation for Amalgamating Software Quality
Assurance with Process Management, Proc 2nd Int’l Conf. on
Adaptive and Self-adaptive Systems and Applications
(ADAPTIVE’10), Lisbon, pp. 58-67, 2010.

[26] Müller, D., Herbst, J., Hammori, M., and Reichert, M.: IT Support for
Release Management Processes in the Automotive Industry. Proc. 4th
Int'l Conf. on Business Process Management (BPM'06), Vienna,
Austria, pp. 368-377, 2006

[27] Künzle, V. and Reichert, M.: PHILharmonicFlows: towards a
framework for object-aware process management. Journal of
Software Maintenance and Evolution: Research and Practice, 23(4),
pp. 205-244, Wiley, 2011

[28] Künzle, V. and Reichert, M.: Integrating Users in Object-aware
Process Management Systems: Issues and Challenges. Proc. BPM'09
Workshops, 5th Int’l Workshop on Business Process Design
(BPD'09), Ulm, Germany, pp. 29-41, LNBIP 43(1), 2009.

[29] Sadiq, S., Orlowska, M., Sadiq, W., and Schulz, K.: When workows
will not deliver: The case of contradicting work practice. In: Proc.
BIS'05. (2005)

[30] Basili, V., Caldiera, G., and Rombach, H.D.: Goal Question Metric
Approach, Encycl. of Software Engineering, John Wiley & Sons, pp.
528-532, 1994

[31] Luckham, D.C.: ‘The power of events: an introduction to complex
event processing in distributed enterprise systems’ Addison-Wesley,
2001)

[32] microTOOL in-Step: http://www.microtool.de/instep/en/index.asp
[Jan .2011]

[33] Copeland, T.: PMD Applied, Centennial Books, 2005
[34] Ayewah, N,, Hovemeyer, D., Morgenthaler, J. D., Penix, J., and

Pugh, W.: Experiences using static analysis to find bugs, IEEE
Software, 25(5), pp. 22-29, 2008.

[35] Yang, Q., Li, J.J., and Weiss, D.: A survey of coverage based testing
tools, Proc. Intl. Workshop on Automation of Software Testing
(AST’06), pp. 99–103. ACM Press, 2006.

[36] Cobertura http://www.cobertura.sourceforge.net [Jan 2011]
[37] EMMA http://www.emma.sourceforge.net [Jan 2011]
[38] Johnson, P. M.: Requirement and Design Trade-offs in Hackystat: An

In-Process Software Engineering Measurement and Analysis System,
Proc. of the 1st Int’l Symposium on Empirical Software Engineering
and Measurement, IEEE Computer Society, pp. 81-90, 2007.

[39] Esper: http://esper.codehaus.org/ [Jan 2011]
[40] Gelernter, D.: Generative communication in Linda, ACM

Transactions on Programming Languages and Systems, 7(1):80-112,
1985.

[41] Meier, W.: eXist: An Open Source Native XML Database, Web,
Web-Services, and Database Systems, Springer, ,pp. 169-183, 2009.

[42] Browne, P.: JBoss Drools Business Rules. Packt P. Browne. JBoss
Drools Business Rules. Packt Publishing, 2009.

[43] O'Brien, P.D. and Nicol, R.C.: FIPA — Towards a Standard for
Software Agents, BT Technology Journal, 16 (3):51-59, 1998.

[44] Bellifemine, F., Poggi, A., and Rimassa, G.: JADE - A FIPA-
compliant Agent Framework, Proc. 4th Int’l Conf. and Exhibition on
the Practical Application of Intelligent Agents and Multi-Agents.
London, 1999.

[45] Gasevic, D., Djuric, D., and Devedzic, V.: Model driven Architecture
and Ontology Development, Springer, 2006.

[46] World Wide Web Consortium: OWL Web Ontology Language
Semantics and Abstract Syntax, 2004

[47] World Wide Web Consortium: Resource Description Framework
(RDF) Concepts and Abstract Syntax, 2004

[48] Prud’hommeaux, E. and Seaborne, A.: ‘SPARQL Query Language
for RDF, W3C WD 4, 2006.

[49] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y.: Pellet:
A Practical OWL-DL Reasoner. Journal of Web Semantics 5(2), pp.
51-53, 2006

[50] McBride, B.: Jena: a semantic web toolkit, Internet Computing, 2002
[51] Dadam, P. and Reichert, M.: The ADEPT Project: A Decade of

Research and Development for Robust and Flexible Process Support -
Challenges and Achievements. Computer Science - Research and
Development, Springer. 23(2), pp. 81-97, 2009.

[52] Reichert, M. et al: Enabling Poka-Yoke Workflows with the
AristaFlow BPM Suite. Proc. BPM'09 Demonstration Track, Ulm,
Germany, 2009.

[53] Reichert, M., Rinderle-Ma, S., and Dadam, P.: Flexibility in Process-
aware Information Systems. LNCS Transactions on Petri Nets and
Other Models of Concurrency (ToPNoC), Special Issue on
Concurrency in Process-aware Information Systems. LNCS 5460, pp.
115-135, 2009

[54] Weber, B., Reichert, M., and Rinderle-Ma, S.: Change Patterns and
Change Support Features - Enhancing Flexibility in Process-Aware
Information Systems. Data and Knowledge Engineering, Elsevier,
66(3), pp. 438-466, 2008

[55] Lanz, A., Kreher, U., Reichert, M., and Dadam, P.; Enabling Process
Support for Advanced Applications with the AristaFlow BPM Suite.
Proc. of the Business Process Management 2010 Demonstration
Track, September 2010, Hoboken, New Jersey, USA.

[56] Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U.,
and Goeser, K.: Architecural Principles and Components of Adaptive
Process Management Technology. In: PRIMIUM - Process
Innovation for Enterprise Software. Lecture Notes in Informatics ,
Vol. P-151, pp. 81-97, 2009.

[57] Reichert, M. and Dadam, P.: ADEPTflex - Supporting Dynamic
Changes of Workflows Without Losing Control. Journal of Intelligent
Information Systems, Special Issue on Workflow Management
Systems, 10(2), pp. 93-129, 1998

[58] Li, C. and Reichert, M. and Wombacher, A.: Mining Business
Process Variants: Challenges, Scenarios, Algorithms. Data &
Knowledge Engineering, 70(5), pp. 409-434, Elsevier, 2011.

[59] Günther, C.W. and Rinderle-Ma, S. and Reichert, M. and van der
Aalst, W.M.P. and Recker, J.: Using Process Mining to Learn from
Process Changes in Evolutionary Systems. Int'l Journal of Business
Process Integration and Management, Special Issue on Business
Process Flexibility, 3(1), pp. 61-78, 2008.

[60] Weber, B. and Reichert, M. and Wild, W. and Rinderle-Ma, S.:
Providing Integrated Life Cycle Support in Process-Aware
Information Systems. Int'l Journal of Cooperative Information
Systems, 18(1), pp. 115-165, World Scientific Publ, 2009.

[61] OpenUp http://epf.eclipse.org/wikis/openup/ [November 2010]
[62] Scott, K.: The Unified Process Explained, Addison-Wesley Longman

Publishing Co., Inc., 2002

96

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[63] T. J. McCabe: A complexity measure, IEEE Trans. Software Eng.
2(4), pp. 308-320, 1976.

[64] Nejmeh, B.A.: NPATH: A measure of execution path complexity and
its applications. Comm. of the ACM, 31(2):188-200, 1988.

[65] Chidamber, S.R. and Kemerer, C.F.: A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, 20 (6),
pp. 476-493, 1994.

[66] Bansiya, J. and Davis, C.: A Hierarchical model for object-oriented
design quality assessment, IEEE Transactions on Software
Engineering, 28(1), pp. 4–17, 2002.

[67] Olague, H.M., Etzkorn, L.H., Gholston, S., and Quattlebaum, S.:
Empirical Validation of Three Software Metrics Suites to Predict
Fault-Proneness of Object-Oriented Classes Developed Using Highly
Iterative or Agile Software Development Processes, IEEE
Transactions Software Engineering., 33(6), pp. 402-419, 2007.

[68] Oman, P.W., Hagemeister, J., and Ash, D.: A Definition and
Taxonomy for Software Maintainability, Technical Report #91-08-
TR, Software Engineering Test Laboratory, University of Idaho,
Moscow, ID, 1991.

[69] Coleman, D.: Assessing Maintainability, Proc. of the Software
Engineering Productivity Conference 1992, Hewlett-Packard, Palo
Alto, CA, pp. 525-532, 1992.

[70] Coleman, D., Ash, D., Lowther, B., and Oman, P.W.: Using Metrics
to Evaluate Software System Maintainability, IEEE Computer, 27(8),
pp. 44-49, 1994.

[71] JHawk http://www.virtualmachinery.com/jhawkprod.htm [November
2010]

[72] Moha, N., Gueheneuc, Y.G., Duchien, L., and Meur, A.F.: DECOR:
A method for the specification and detection of code and design
smells, IEEE Transactions on Software Engineering, 36(1), pp.:20-36,
2010.

[73] Chen, T., Homayoun Far, B., and Wang, Y.: Development of an
Intelligent Agent-Based GQM Software Measurement System, Proc.
12th Asian Test Symposium (ATS), pp. 188-197, 2003.

[74] Junling Huang, Far, B.H.: Intelligent software measurement system
(ISMS), Canadian Conf. on Electrical and Computer Engineering, pp.
1033–1036, 2005.

[75] FanJiang, Y.-Y and Wu, C.-H.: Towards a Multi-agents Architecture
for GQM Measurement System, Proc. 9th Int’l Conf. on Hybrid
Intelligent Systems, pp. 277-280, 2009.

[76] Seyyedi, M.A., Teshnehlab, M., and Shams, F.: Measuring software
processes performance based on the fuzzy multi agent measurements,
Proc. Intl Conf. on Information Technology: Coding and Computing -
Volume II. ITCC. IEEE Computer Society, Washington, DC, pp.
410-415, 2005.

[77] Seyyedi, M.A., Shams, F., and Teshnehlab, M.: A New Method For
Measuring Software Processes Within Software Capability Maturity
Model Based On the Fuzzy Multi-Agent Measurements, Proc. World
Academy Of Science, Engineering and Technology Vol. 4, pp. 257-
262, 2005.

[78] Lavazza, L.: Providing automated support for the GQM measurement
process, IEEE Software, 17(3), pp.:56-62, 2000.

[79] Lavazza, L. and Barresi, G.: Automated support for process-aware
definition and execution of measurement plans, Proc. 27th Int’l Conf.
on Software Engineering, pp. 234 – 243, 2005.

[80] Lott C.M. and Rombach H.D.: Measurement-based guidance of
software projects using explicit project plans, Information and
Software Technology 35(6-7), pp. 407-419, 1993.

[81] Morisio M.: Measurement Processes are Software Too, Journal of
Systems and Software 49(1), pp. 17-31, 1999.

[82] Broeckers A., Differding C., and Threin G.: The Role of Software
Process Modeling in Planning Industrial Measurement Programs,
Proc. Int. Metrics Symposium, Berlin 1996.

[83] Visaggio, G.: Process Improvement Through Data Reuse, IEEE
Software 11(4), pp. 76-85, 1994.

[84] De Panfilis, S., Kitchenham B., and Morfuni N.: Experiences
introducing a measurement program, Information and Software
Technology 39(11), pp. 745-754, 1997.

[85] Lofi C.: cGQM - Ein zielorientierter Ansatz für kontinuierliche,
automatisierte Messzyklen, Proc. 4th National Conf. on Software
Measurement and Metrics (DASMA MetriKon 2005), 2005.

[86] Pelletier, S.-J., Pierre, S., and Hoang, H.H.: Modeling a Multi-Agent
System for Retrieving Information from Distributed Sources, Journal
of Computing and Information Technology, 11(1), pp. 15-39, 2003.

[87] Wang, M., Wang, H., and Xu, D.: The design of intelligent workflow
monitoring with agent technology, Knowledge-Based Systems, 18(6),
pp. 257-266, 2005.

[88] Tan, W., Chen, R., Shen, W., Zhao, J., and Hao, Q.: An Agent-Based
Collaborative Enterprise Modeling Environment Supporting
Enterprise Process Evolution, Computer Supported Cooperative
Work in Design III, pp. 217-226, 2007

[89] Korpipipää P. et al.: Managing context information in mobile devices.
IEEE Pervasive Computing 2(3), pp.42-51, 2003

[90] Fahy, P. and Clarke, S.: CASS – a middleware for mobile context-
aware applications. Proc. Workshop on Context-awareness (held in
connection with MobiSys’04), 2004.

[91] Gu, T., Pung, H.K., and Zhang, D.Q.: A middleware for building
context-aware mobile services. Proc. IEEE Vehicular Technology
Conference (VTC), Milan, Italy, pp. 2656 – 2660, 2004.

[92] Biegel, G. and Cahill, V.: A framework for developing mobile,
context-aware applications. Proc. 2nd IEEE Conference on Pervasive
Computing and Communication, pp. 361 - 365 , 2004

[93] Dorn C., Dustdar S.: Sharing Hierarchical Context for Mobile Web
services. Distributed and Parallel Databases 21(1), pp. 85-111, 2007.

[94] Pedrinaci, C., Domingue, J., and Alves de Medeiros, A.: A Core
Ontology for Business Process Analysis, LNCS 5021, pp. 49-64,
2008.

[95] Ma, Z., Wetzstein, B., Anicic, D., Heymans, S., and Leymann, F.:
Semantic Business Process Repository, Proc. Workshop on Semantic
Business Process and Product Lifecycle Management, pp. 92–100,
2007

[96] Lin, Y. and Strasunskas, D.: Ontology-based Semantic Annotation of
Process Templates for Reuse, Proc.10th Int’l Workshop on Exploring
Modeling Methods for Systems Analysis and Design (EMMSAD'05),
2005.

[97] Koschmider, A. and Oberweis, A.: Ontology based Business Process
Description, Proc. CAiSE´05 Workshops, pp. 321-333, 2005.

[98] Thomas, M., Redmond, R., Yoon, V., and Singh, R.: A Semantic
Approach to Monitor Business Process Performance,
Communications of the ACM 48(12), pp. 55-59, 2005

[99] Weber, B. and Sadiq, S. and Reichert, M:. Beyond Rigidity -
Dynamic Process Lifecycle Support: A Survey on Dynamic Changes
in Process-aware Information Systems. Computer Science - Research
and Development, 23(2), pp. 47-65, Springer, 2009.

[100] Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G.: Specification and
implementation of exceptions in workflow management systems.
ACM TODS, 24(3), pp. 405–451, 1999.

[101] Müller, R., Greiner, U., and Rahm, E.: AGENTWORK: A workflow
system supporting rule–based workflow adaptation. Data &
Knowledge Engineering, 51(2), pp. 223–256, 2004.

[102] Beckstein, C. and Klausner, J.: A planning framework for workflow
management. Proc. Workshop Intelligent Workflow and Process
Management. Stockholm, 1999.

[103] Liu, C. and Conradi, R.: Automatic replanning of task networks for
process model evolution. Proc. European Software Engineering
Conference, pp. 434–450. Garmisch, Germany, 1993.

[104] Müller, D., Reichert, M., and Herbst, J.: A new paradigm for the
enactment and dynamic adaptation of data-driven process structures.
Proc. CAiSE’08, pp. 48–63, 2008

97

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[105] Heimann, P., Joeris, G., Krapp, C., and Westfechtel, B.:
DYNAMITE: Dynamic task nets for software process management.
Proc. Int’l Conf. Software Engineering (ICSE’06), pp. 331–341, 1996

[106] Künzle, V. and Weber, B. and Reichert, M.: Object-aware Business
Processes: Fundamental Requirements and their Support in Existing
Approaches. Int’l Journal of Information System Modeling and
Design (IJISMD), 2(2), pp. 19-46, IGI Global, 2011.

[107] Künzle, V. and Reichert, M.: Striving for Object-aware Process
Support: How Existing Approaches Fit Together In: Proc. 1st Int’l
Symposium on Data-driven Process Discovery and Analysis,
Campione d'Italia, 2011 (accepted for publication).

[108] Künzle, V. and Reichert, M.: A Modeling Paradigm for Integrating
Processes and Data at the Micro Level. In: Proc. 12th Int'l Working
Conference on Business Process Modeling, Development and Support
(BPMDS'11), London, June 2011, LNBIP 81, pp. 201-215, 2011

98

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX A: LIST OF UTILIZED METRICS
GKPI:REL:Reliability

GKPI:MAINT:Maintainablity
GKPI:FUNC:Functionality
GKPI:PERF:Performance

QKPI:CK:ChidamberAndKemerer
QKPI:QMOOD:QmoodMetricsSuite

QKPI:COMP:Complexity
QKPI:DD:DefectDensity
QKPI:CC:CodeCoverage

QKPI:DLT:DegreeOfLoadTesting
QKPI:UND:Understandability
QKPI:CSD:CodeSmellDensity
QKPI:MI:MaintainablitiyIndex
QKPI:UCC:UseCaseCovrage

QKPI:FTCF:FunctionalTestingComplienaceFactor
QKPI:CTAF:CodeTuningActivityFactor

QKPI:PAF:ProfilingActivityFactor
QKPI:PTCF:PerformanceTestComplianceFactor

KPI:CSV:CodingStyleViolations
MET:WMC: Weighted Methods per Class

MET:DIT: Depth of Inheritance Tree
MET:NOC: Number of Childeren

MET:CBO: Coupling between Objects
MET:RFC: Response for Class

MET:LCOM: Lack of Cohesion in Methods
MET:ANA:AvgNumberOfAncestors
MET:CAM:CohesionAmongMethods

MET:CIS:ClassInterfaceSize
MET:DAM:DataAccessMetric

MET:DCC:DirectClassCoupling
MET:MOA:MeasureOfAggregation

MET:MFA:MeasureOfFunctionalAbstraction
MET:NOM:NumberOfMethods

MET:CYC: CyclomaticComplexity
MET:NPC:NPathComplexity

MET:DD: DefectDensity
MET:CC: CodeCoverage

MET:DLT: DegreeOfLoadTesting
MET:CR:CommentRatio

MET:TMM:TooManyMethods
MET:UEM:UncommentedEmptyMethod

MET:UEC:UncommentedEmptyConstructor
MET:ECB:EmptyCatchBlock
MET:TMF:TooManyFields

MET:UCC:UCC:UseCaseCovrage
MET:FTCF:FunctionalTestingComplienaceFactor

MET:CTAF:CodeTuningActivityFactor
MET:PAF:ProfilingActivityFactor

MET:PTCF:PerformanceTestComplianceFactor

APPENDIX B: PMD RESULTS

Metric Value Violation
Threshold

MET:AccClGen 1 5
MET:AvoidDeeplyNestedIfStmts 2 5

MET:AvoidInstanceof
ChecksInCatchClause 1 5

MET:AvoidReassigningParameters 1 5
MET:AvoidSynchronized

AtMethodLevel 2 5

MET:ClassWithOnlyPrivate
ConstructorsShouldBeFinal 4 10

MET:CloseResource 1 5
MET:CollapsibleIfStatements 1 20

MET:CompareObjectsWithEquals 1 5
MET:ConfusingTernary 6 20

MET:CyclomaticComplexity 4 2
MET:EmptyCatchBlock 2 1

MET:EmptyMethodInAbstract
ClassShouldBeAbstract 2 5

MET:ExcessiveImports 1 5
MET:ExcessivePublicCount 1 5

MET:LooseCoupling 4 20
MET:NPathComplexity 1 5

MET:OverrideBothEquals
AndHashcode 1 5

MET:PositionLiterals
FirstInComparisons 1 5

MET:SimplifyBooleanExpressions 2 5
MET:SingularField 1 5
MET:StaticMethods 1 5
MET:SwitchStmts

ShouldHaveDefault 1 5

MET:TooManyFields 1 5
MET:TooManyMethods 4 3

MET:Uncommented
EmptyConstructor 5 5

MET:UncommentedEmptyMethod 5 5
MET:UnconditionalIfStatement 1 5

MET:UseCollectionIsEmpty 2 5
MET:UseLocaleWith

CaseConversions 2 5

99

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Compact and Efficient Modeling of GUI, Events and Behavior
Using UML and Extended OCL

Dong Liang, Bernd Steinbach
Institute of Computer Science

Freiberg University of Mining and Technology
Freiberg, Germany

email: liang@mailserver.tu-freiberg.de, steinb@informatik.tu-freiberg.de

Abstract—The model driven architecture (MDA) allows to
move the software development form the time consuming and
error-prone level of writing program code to the next higher
level of modeling. The MDA requires tools for modeling,
transformation of models, and code generation. In the past,
we have developed such tools successfully. Using these tools we
recognized serious problems preparing concise, uniform, and
complete models using the unified modeling language (UML).
In detail these problems concern first the specification and
parameterization of GUI elements, second the event handling,
and third the modeling of the required behavior. In this
paper we show efficient solutions for these problems using the
object constraint language (OCL) together with the UML for
modeling. While the parameterization of GUI elements can be
solved with the OCL directly, the last two problems were solved
by an extension of the OCL into an executable OCL, which we
call XOCL. We show the benefits of all three new approaches
by means of an example of a complete platform independent
model (PIM).

Keywords-OCL extension, action language, event handling,
platform independent model, class diagram

I. INTRODUCTION

Traditionally, developing software means writing code
in one of the programming languages. Recently, a novel
approach called MDA (Model Driven Architecture) [6],
which is proposed by OMG (Object Management Group),
has evoked more and more attentions in software devel-
opment. Instead of writing code directly, MDA suggests
that software developers model their software products in a
platform independent way. Such a software model is called
Platform Independent Model (PIM). Then an MDA-tool
is used to transform the PIM into one or more Platform
Specific Models (PSM). The PSMs have involved detailed
information for implementation. Hence, code generation
from a PSM is straightforward. In order to realize model
transformation, two different strategies are feasible. One of
them defines the model transformation process in a high
level specification language. The QVT (Query, View and
Transformation) language [7][8] supported by OMG is the
de facto standard for this strategy. The QVT allows to define
a transformation in an imperative approach. Then a QVT
compiler generates an implementation (e.g., in Java) of this
transformation specified in the QVT source file as a model

compiler, which is dedicated to this transformation. The
other strategy is to develop the model compiler itself as
an all-purpose model transformation framework as well as
to provide all necessary information about the underlying
target platform the PSM based on, in the form of Target
Platform Models (TPM). To prove the second strategy, the
model compiler MOCCA (Model Compiler for reConfig-
urable Architecture) [9][10] was developed in our institute.
According to the actual state of MOCCA, a PIM can be
transformed into C++ code, Java code for software design, as
well as C++/VHDL code for software hardware co-design.

For the both strategies, one issue is still challenging. That
is, how to create a PIM concisely, uniformly and completely.
In this paper, we assume that all the PIMs are modeled using
the Unified Modeling Language (UML) [5] and the Object
Constraint Language (OCL) [4]. Based on our experiences
with MOCCA, three sub-issues concerning creating PIMs
are found.

1) Modeling GUI-layout of a GUI-based application and
parameterize all the GUI elements in standard UML
is a serious problem, because the model must contain
the structural composition of GUI as well as all
the geometrical and visual information of the GUI
elements. There is no UML diagram type appropriate
for both of these aspects.

2) Modeling event handling for GUI-based application in
standard UML is time-consuming, because almost all
programming languages have their own GUI libraries
and the underlying event models and their details blow
up the UML-model in an unnecessary manner.

3) Modeling behaviors in PIM concisely is very difficult,
because on the one hand there is no standard universal
action language based on the UML Action Semantics
[5]; on the other hand, specifying behaviors using one
of the UML behavioral diagrams can result in a model
more complex than the target codes themselves.

In order to solve these problems, developing new mod-
eling approaches based on UML and OCL are the main
aims of this paper. In Section II, a new approach will be
introduced that uses UML Class Diagram and OCL-init-

100

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expressions to model and to parameterize GUI elements. In
Section III, the OCL is extended by the ability to register
event handlers for an event source. This approach helps to
create real PIMs for MDA-technology. In Section IV, the
OCL is upgraded from a pure declarative language without
side effects into an action language, which can be used to
specify all kinds of operations in a concise and platform
independent manner. In Section V we summarize these three
new approaches in an example of a complete PIM.

II. OCL-INIT-EXPRESSIONS – OUR NEW APPROACH TO
PARAMETERIZE GUI ELEMENTS

In GUI-based application the user interacts usually with a
window containing different kinds of GUI elements, which
are typically menu items, icons, buttons, input fields etc.
According to different platforms, these GUI elements may
also be called GUI components or GUI controls. A GUI
element usually represents a certain graphical entity that
can be displayed on the screen. So they typically have
parameters, which concern displaying them on the screen
correctly. Such parameters are position, size, background-
and foreground-color etc. Most modern object-oriented pro-
gramming languages implement common GUI elements as
classes and their important properties as attributes of the
corresponding classes. They are deployed in libraries and
can be used in certain languages. Hence, the programmers
can use them directly. Figure 1 shows such a GUI-based
application implemented in both Java and C#. Both im-
plementations are similar in appearance, because for each
GUI element involved in Java implementation, there is a C#
counterpart. This analysis gives us a heuristic to model GUI
in a platform independent manner. Since there are so many
common points among GUI elements on different platforms,
we can abstract a platform independent GUI tool-kit with
most common GUI elements and their important properties
for the general usage to develop a PIM for an application.

In fact, MOCCA supports this principle inherently. A
Design Platform Model (DPM) [9][10] contains the most
basic design types for primitive data types, IO facilities
etc., has been used to establish PIMs. Such a GUI toolkit
is just another extension of MOCCA DPM, which is still
being developed. The class diagram in Figure 2 models
the GUI elements of the application in Figure 1 in a
completely platform independent manner. The types with
prefix DP, which means Design Platform, are the common
GUI elements involved in the GUI toolkit of MOCCA DPM.
For example, the design type DPWindow can be considered
as a common abstraction of both JFrame in Java and Form in
C#. The properties defined in DPWindow, such as length and
height, are used to model GUI elements exactly. The tool
used to create this model is our own CASE Tool called UML
2 Designer. However, modeling in this way shows neither
the composition structure nor the visualization of the GUI

(a) Java Implementation

(b) C# Implementation

Figure 1. A GUI-based application implemented in Java and C#

elements on the screen. The missing information has to be
involved in the design model in a reasonable way.

Implementing GUI-layout as source code using a modern
object-oriented programming languages is as complicated
as modeling it in a design model. The powerful modern
IDEs usually solve this problem by integrating an additional
software component, which supports visual manipulation of
GUI-elements. For C# the Form Editor of Visual Studio IDE
can be used for this purpose, whereas the Swing GUI Builder
integrated into the NetBeans IDE is the counterpart for Java.
Both of them support programmers in a similar way. For a
class implementing the GUI-layout of an application, e.g.,
the derived class of the Form base class in C#, there is a
design view associated with it. The programmer chooses the
required GUI elements from a Toolbox, which contains all
the supported GUI elements in this context, positions them
on the form, and edits them visually. Figure 3 shows how
to use the Form Editor to edit the GUI elements of the
application in Figure 1 (b) in a manner explained above.

After editing the GUI elements, all the geometrical and
visual information are stored in the Property Window, which
is visible on the right side of Figure 3. The Visual Studio
generates C# codes automatically, which reflect the visual
manipulation of the GUI elements done in the design view.
These generated program statements are displayed in the C#
source code view. Figure 4 shows the generated C# codes
initializing the first button in Figure 1 (b).

101

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Platform independent model for the main window of the
application in Figure 1

It is easy to understand that the Swing GUI Builder
generates Java codes to reflect the visual manipulation of the
Swing components. It is clear that both scenarios mentioned
above are platform specific. Based on the considerations
above, we suggest a solution to model the GUI-layout in the
phase of establishing the PIM of a GUI-based application,
which can be summarized as follows:
• A platform independent GUI toolkit is required that

contains common GUI elements and their properties
as the building blocks of a PIM. As explained, the
prototype of this GUI toolkit has been created for our
MOCCA DPM and can be used directly in our CASE
Tool UML 2 Designer.

• The logical structure of an application window con-
taining various GUI elements can be modeled in UML
class diagram, as shown in Figure 2.

• The GUI-layout of an application window can be visu-
ally manipulated in a view associated to the UML class,
which models the logical structure of an application
window. This additional view is an add-on software
component of the UML 2 Designer, whose prototype
has been developed in a bachelor thesis and its upgrade
version will be developed in another bachelor thesis.
We call this software component the Smart GUI Editor.
Figure 5 shows its usage. It is easy to understand that
the Smart GUI Editor shares the same principles as the
Form Editor and Swing GUI Builder.

Figure 3. The Form Editor of Visual Studio 2008 used to edit the GUI
elements of the application in Figure 1 (b)

Figure 4. C# code generated by Visual Studio Form Editor

• In contrast to the Form Editor in Visual Studio, which
can produce C# code to reflect the visual manipulation,
a platform independent manner is required for our
Smart GUI Editor, which can be transformed easily into
target code in the later phase of model transformation.
As solution, we suggest using OCL-init-expressions to
represent the information generated by our Smart GUI
Editor.

As explained in [3], the OCL-init-expressions can be
used to give the initial values of attributes or association
ends of a class at the moment that an instance of this
class is created. Hence, the original OCL-init-expressions
are usually attached to the properties of a class as their
context. In this paper, the syntax of the original OCL-init-
expressions have been slightly extended such that all the au-
tomatically generated OCL-init-expressions are attached to

102

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. The Smart GUI Editor used to visually manipulate the GUI
elements modeled in UML class diagram

the class directly, which is in our application a GUI window.
According to our code-generation strategy, for initializing
the properties of the GUI window itself, the Smart GUI
Editor will generate an OCL-init-expression concatenating
all the properties using OCL and operator. For each GUI-
element contained in this window, the Smart GUI Editor will
generate an additional OCL-init-expression specifying all its
properties, again, connecting them by OCL and operator.
The window instance can be retrieved by the OCL keyword
self. Hence, the OCL-init-expressions in Listing 1 can be
generated and attached to the class EventHandlingCom-
parisonWindow as constraints. These OCL-init-expressions
initialize the structural composition and geometrical infor-
mation of the application window and its contained GUI
elements m MainPanel, which is a split panel, as well as
the button m Button 1. Other used GUI elements can be
parameterized in the same way.

1 i n i t : s e l f . l e n g t h = 480
2 and s e l f . h e i g h t = 629
3 and s e l f . t i t l e = ’ Main Window ’
4

5 i n i t : s e l f . m MainPanel . s p l i t = t r u e
6 and s e l f . m MainPanel . h o r i z o n t a l = f a l s e
7 and s e l f . m MainPanel . owner = s e l f
8

9 i n i t : s e l f . m Button 1 . posX = 35
10 and s e l f . m Button 1 . poxY = 15
11 and s e l f . m Button 1 . l e n g t h = 93
12 and s e l f . m Button 1 . h e i g h t = 31
13 and s e l f . m Button 1 . t e x t = ’ B u t to n One ’
14 and s e l f . m Button 1 . owner = s e l f . m But tonPane l

Listing 1. OCL–init–expressions to parameterize GUI elements

One more question must be answered. How does the GUI-
layout modeled in a PIM as suggested above make sense
for the final GUI-layout mapped on a specific hardware
platform? In order to answer this question, we should make

a difference between the GUI-layout and GUI-look-and-
feel. For example, the both applications in Figure 1 do
have the same GUI-layout but slightly different look-and-
feels due to the underlying implementation platforms, say,
Java-Swing and C#-FCL. Hence, modeling GUI-layout as
suggested in this paper concentrates on the logical structure
of an application window. That means which GUI-elements
belong to which window, or to which panel etc. On the other
hand, geometrical information can be modeled in a device
independent coordinate system, which can be transformed
onto concrete platform in the phase of model transformation
by providing the model mapper with additional information
about the underlying implementation platform.

III. OCL-EVENT-EXPRESSION – OUR NEW APPROACH
TO MODEL EVENT HANDLING

Another important issue related to model GUI-based ap-
plication in PIM is to model event handling [1]. It is difficult
to deal with this modeling issue by using standard UML and
OCL.

At first view, it seems to be possible to use the OCL isSent
operator (denoted byˆ) to model the coupling of events to
their handling methods. However, the isSent operator can
only be used in the post condition [3] of an event sending
method, e.g., fireActionPerformed() operation of the class
JButton in Java. It is needlessly for application modelers to
specify post conditions of this type of operations, because
it does not belong to the application model, but to the used
GUI library. Hence, the isSent operator is not appropriate to
connect events of GUI elements to their handling methods.
To model the coupling of events to their handling methods
using class diagrams in a traditional way is a serious
problem, too. This will be illustrated by examples.

(a) Java Implementation (b) C# Implementation

Figure 6. A simple GUI-based application implemented in Java and C#

A very simple GUI-application, which has been imple-
mented in both Java and C#, is shown in Figure 6. There
is a single button in the main window of the application.
When this button is pressed, a message box will be launched
to confirm this operation. The same behavior occurs by
pressing the closing symbol of the main window. Even for a
simple application like this, the corresponding PSMs in Java
and C# are not the same. Figure 7 shows both models.

103

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Java and C# models for the application of Figure 6

At first glance, these UML-models are similar to each
other, because for each class and interface involved in the
Java model, a counterpart can be found in the C# model.
Only the number and types of the ”lines” between these
elements are different. These differences are caused by
the requirements of the languages. In Java, interfaces are
used to connect events with their handler [12] while in C#
delegates are used, which are in fact type safe callbacks
based on function pointer [13]. The concept delegate is not
supported by standard UML directly, so a stereotype must
be defined in order to allow marking a class as delegate.
In order to model the semantics of function pointers, two
additional dependencies are used between the delegates and
their pointed methods. The analysis of these UML models
achieves an important conclusion: the most complexities
were brought into these models by modeling event handling
in a too detailed manner.

Taking into account the increased complexity of real GUI
elements, modeling in such a way reduces the readability of
class diagrams dramatically. The PSM for the Java imple-
mentation of the application in Figure 1 is shown in Figure
8. Due to poor readability, the corresponding C# PSM with
increased complexity is not included in this paper. The Java

PSM explores another remarkable drawback of traditional
modeling of the event handling in class diagrams, which is:
only the three classes with colored background belong to the
classes to develop; the other classes with white background
are GUI-related library types.

Due to these findings, a novel approach of modeling event
handling in much simpler manner must be found. In this new
approach, the tedious details explored in the PSMs must be
hidden to the application modeler. The class diagram should
contain as few library types as possible.

In order to find a unified and tight model for event-
handling, a thorough understanding of the underlying event
handling mechanisms is required. An event enables an object
of a class (or a class itself) to publish changes of its state.
Other objects and classes can then react to this change.
This mechanism is usually called Publishing – Subscription
model. Despite different implementations of this model in
concrete programming languages, the entire event handling
process can be divided into four parts [14]:

• Static publishing requires, that some kinds of events can
be specified as members of their source. For example,
events such as Window Closing, Button Click must be
specified in GUI elements representing an application

104

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. The PSM for the Java implementation of Figure 1

window or a button, respectively. This part is only
important for customized events. The most significant
GUI events have been defined by GUI developers.

• Dynamic publishing allows the transmission of the
events. In both Java and C# this part is realized by a
method, which triggers the execution of one or several
dedicated event handling methods. Similar to static
publishing, this part has been again implemented by
GUI library designers.

• Static subscription requires the implementation of all
event-handling methods. In fact, exactly this part spec-

ifies what must be performed when an event occurs.
This part has to be modeled by application modeler.
Along with dynamic publishing, this part belongs to
behavioral specification of an application model and
should be modeled compactly using some kind of high
level action language, which will be addressed in next
section.

• Dynamic subscription is done by establishing the
connection between the event-source and the event-
handling method. Such a process is often called regis-
tration of event handlers. Based on the analysis above,

105

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modeling this part makes the class diagrams complex
and heterogeneous, because various listener interfaces
are used in Java to connect events with their handling
methods loosely while C# delegates set up these con-
nections directly. The new approach discussed in this
section is designed to simplify exactly this part of the
entire event handling process.

In order to develop a unified model for event-handler reg-
istration, a thorough comparison between Java and C# event
models is completed to extract the similarities from them and
to recognize the differences between them. The conclusion
of this comparison can be summarized as follows:

1) In Java, the signature of an event-handling method is
completely specified in one of the listener interfaces
while C# EventHandler delegate (and its subtypes)
determines only the parameter list and the type of the
return value of possible event-handling methods.

2) In Java, the individual event cannot be referenced as a
member of its source separately whereas C# supports
it by using event key word to define each event as a
separate member of its source object.

3) In both Java and C#, when an event occurs, certain ad-
ditional information can be passed to the correspond-
ing event-handling method. Subtypes of EventObject
are used in Java to represent such information whereas
there are EventArgs and its subtypes as counterparts
in C#.

4) In Java, each invocation of one of the addXXListener()
methods on an event-source can connect a group
of related events with their corresponding handling
methods implicitly, whereas the ”+=” operator of C#
connects one single event with its handling method,
explicitly.

Based on the comparisons above, the C# manner is
more flexible and clearer in terms of expressiveness and it
provides us a heuristic to develop a way, in which dynamic
subscription in event-handling can be modeled uniformly
for different platforms. All the essential elements involved
in the dynamic subscription are:
• the event-source object, which are usually the GUI

elements of a window or the window itself,
• different types of event of an event-source,
• event-handling methods, which are implemented in

event-handler classes, and
• a connection operator that allows to set up the connec-

tion of an event to its event-handling method.
As solution to the problems mentioned above we suggest

extending the OCL by a new expression, which is labeled by
the keyword event. In such an OCL-event-expression the new
registration operator ”∼” is used to establish the connection
between an event on the left hand side and an event-handling
method on the right hand side of this operator. We defined
that the new OCL-event-expression in the above form has

the type OclVoid and consequently no value.
Listing 2 shows the concrete syntax of the OCL-event-

expression. Its abstract syntax is shown in Figure 9. An
instance of OCLEventExp associates with two instances of
the abstract syntax type OCLFeatureCallExp representing
the event and its handling method respectively. The extended
OCL abstract syntax will be discussed in next section more
detailed.

1 <EventExpCS> : : = ’ even t ’ ’ : ’
2 <OCLFeatureCallExpCS >’˜’<OCLFeatureCallExpCS>

Listing 2. Grammar rule deriving OCL–event–expression

Figure 9. The abstract syntax of the OCL-event-expression

The class diagram in Figure 10 models the C# implemen-
tation in Figure 1. Compared with the Java PSM in Figure
8, this C# PSM is much simpler. Because the association
ends to GUI elements have been modeled as normal prop-
erties, most the cumbersome ”lines” could be removed. The
connections between the events and event-handling methods
are modeled in a tight and well understandable manner using
our new suggested OCL-event-expressions.

For example, to specify the method control Click() as
the handling method for the Click event of both the button
m Button 1 and the button m Button 2 in the derived Form
class, two expressions

event:
self.m Button 1.Click∼m EventHandler.control Click

event:
self.m Button 2.Click∼m EventHandler.control Click

can be written in the context EventHandlingComparison-
Form.

As part of our new approach the OCL-event-expression
allows to model dynamic subscription especially for GUI
elements in class diagrams. Figure 10 shows that OCL-
event-expressions lead to a very compact C# PSM.

The modified Java PSM is shown in Figure 11. Compared
to the Java PSM in Figure 8, this model is both very compact
and similar to the C# PSM in Figure 10. The two extended
OCL expressions mean that the event-handling methods
button 1 actionPerformed() and button 1 mouseClicked()
are connected to their corresponding events of the button

106

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. C# PSM using suggested OCL-event-expressions to model event-handler registration

Figure 11. The modified Java PSM with our new approach

m Button 1. Modeling in this way breaks the constraints in
the Java event model in the following way.

• The event-handling methods can be declared as flexibly
as in C#. Specifically, their names do not need to be
pre-coded. Hence, it is not required any more that the
event handler class implements the relevant listener
interfaces. This is the solution for point one in the
comparison given above.

• As solution of point two, an approach has to be found
to identify a single event on an event source. An
intuitive candidate may be a Java event object, e.g.,

WindowEvent, MouseEvent etc., but they are similar
to their corresponding listener interfaces, which group
several related events together. It requires an extra effort
to select a single event of such a event-collection. As
result of our detailed analysis, we found that it is
possible to adopt the method name defined in the event
listeners to identify a single event. If an event-source
can register several event listeners, the method names
in this set of listeners classify the events exactly.

Because the Java event-handling framework specifies that
event-handling methods must connect to events via methods

107

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

named addXXListener(), only methods registered in this way
can be used in the dynamic publishing phase of event han-
dling. In order to overcome this restriction of connecting the
event-handler with the event, a Java anonymous class [12]
can be created as a bridge between the fixed method-name
of a Java event-handling method and the free chosen name
of the event-handler in the UML-model. Both expressions in
Figure 11 can be transformed into the Java code as shown
in Figure 12 either automatically by a model compiler or
manually by Java programmer. For that, it is necessary to
choose a correct listener interface or adapter class to declare
the anonymous class. This is possible because the event-
handling methods used to identify events have been declared
or implemented in each listener interface or adapter class
clearly. The matching between them is unambiguous.

Figure 12. Java Code corresponding to the OCL-event-expressions of
Figure 11

Although the names of GUI elements, event objects and
even the concrete event-handling methods are different, the
underlying PSMs are similar to each other both logically
and visually. Even more, the reduced PSMs share the same
logical structure with the PIM in Figure 2. Hence, we can
extend the common GUI elements involved in the MOCCA
DPM with common events. Then the OCL-event-expressions
can be used the same way as OCL-init-expressions to
parameterize GUI elements in order to model the registration
of events to their handling methods platform independently.

IV. A SMALL SET OF ADDITIONAL OCL EXPRESSIONS
– OUR NEW APPROACH TO SPECIFY THE BEHAVIOR OF

PLATFORM INDEPENDENT MODELS

Generally speaking, there are two possibilities to model
behaviors platform independently. One of them is to use
UML behavioral diagrams, e.g., state chart, activity dia-
gram or sequence diagram. The other one means speci-
fying behaviors in high level action language. Based on
our experiences with MOCCA, in some circumstances, the
behaviors modeled by, e.g., activity diagrams become more
complex than the target code itself. So we suggest modeling

behaviors using an action language. The actual situation
seems a bit awkward, since the OMG has only specified the
Action Semantics [5] without one standard surface language.
Instead of defining a brand new OMG action-semantics-
compliant action language, we find that the widely spread
Object Constraint Language (OCL) seems closely to be a
good action language due to the following reasons:

• OCL is a standard part of the UML 2 Specification. It
has been widely used and proven its value.

• OCL covers large part of the entire Action Semantics
of UML. Only the semantics involving changing the
states in the model are missing. Such missing semantics
can be easily added to the standard OCL with new
syntax constructs. We introduce the required small set
of additional OCL Expressions in this section.

• The OCL collection types and their predefined op-
erations are powerful in terms of expressiveness and
concise in terms of syntax. Together with OCL-body
expression, very complex query operations in PIM can
be specified both concisely and exactly.

Before we get into the technical issues, an example
will be used to show the advantage of specifying complex
query operations in OCL. Figure 13 shows a piece of
class diagram modeling a payback management system. The
query operation selectPartnersHaveNoPointsInServ() of the
class Payback gathers all the program partners, which do not
provide services awarding points to the customers. Listing
3 shows the OCL expression specifying the complex logic
mentioned above, while Listing 4 shows its corresponding
Java implementation. Evidently, the standard OCL expres-
sion can be used to specify complex querying operation both
exactly and compactly. This is what needed in the modeling
phase.

1 body : s e l f . m Par tne r s−>s e l e c t (p : P r o g r a m P a r t n e r |
2 p . m D e l i v e r e d S e r v i c e s −> f o r A l l (s : S e r v i c e |
3 n o t s . m P o i n t s I n))

Listing 3. Specifying complex querying operation in OCL

1 A r r a y L i s t<P r o g r a m P a r t n e r> s e l e c t R e s u l t =
2 new A r r a y L i s t<P r o g r a m P a r t n e r >() ;
3 I t e r a t o r <P r o g r a m P a r t n e r> i t r 0 =
4 t h i s . m P a r t n e r s . i t e r a t o r () ;
5 w h i l e (i t r 0 . hasNext ()){
6 P r o g r a m P a r t n e r p= i t r 0 . n e x t () ;
7 b o o l e a n f o r A l l R e s u l t = t r u e ;
8 I t e r a t o r <S e r v i c e> i t r 1 = p . g e t D e l i v e r e d S e r v i c e s () .

i t e r a t o r () ;
9 w h i l e (i t r 1 . hasNext ()){

10 S e r v i c e s= i t r 1 . n e x t () ;
11 f o r A l l R e s u l t = f o r A l l R e s u l t && ! s . i s P o i n t s I n () ;
12 }
13 i f (f o r A l l R e s u l t)
14 s e l e c t R e s u l t . add (p) ;
15 }
16 r e t u r n s e l e c t R e s u l t ;

Listing 4. Java implementation of the OCL expression in Listing 3

108

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. A part of the PIM modeling the business objects of a payback management system

UML supports modeling behaviors in arbitrary action
languages inherently. Figure 14 (a) illustrates this support
in UML meta-model. Every operation associates with its
implementation represented by the abstract meta-class Be-
havior, which can be an activity, an interaction or an opaque
behavior concretely. The opaque behavior is a behavior,
whose semantics is determined by its body string, while the
body can be specified in any kind of action language. Hence
the opaque behavior can be used to carry (extended) OCL
expressions at the time of modeling behaviors in PIM. This
principle has been implemented in our UML 2 Designer.
The opaque behavior containing OCL expression is created
as a subordinate element of the operation, whose behavior
has been specified by this expression.

As yet, the benefits of using standard OCL expression and
its concrete usage in a tool have been illustrated. Towards
upgrading OCL to a real action language, the next task is to
select the important missing action semantics, add them to
the standard OCL by defining new syntax constructs and
extending the corresponding abstract syntax. We call the

extended OCL XOCL, X means executable. Based on the
achievement in [2] and the explanation in [5] as well as
our research, the following actions, whose semantics are
predefined in [5], are involved in the XOCL.

• AddStructuralFeatureValueAction,
• RemoveStructuralFeatureValueAction, and
• ClearStructuralFeatureValueAction:

These actions are important to update the state of an
object, e.g., to assign the attributes of a class with new
values. The syntax construct supporting them is specified
by the grammar rule in Listing 5.

1 <Proper tyAss ignExpCS> : : = ’ s e l f ’ ’ . ’ ID ’ : = ’ <OCLExpCS>

Listing 5. Grammar rule deriving a property assignment expression

The notations of GOLD Parsing System [11] are used
in this paper, because the GOLD Parsing System is used
to implement an XOCL compiler for these extensions. Ac-
cording to GOLD, non-terminals are delimited by the angle

109

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) UML meta-model of behavior (b) Supporting of opaque behavior in our own CASE tool - UML 2 Designer

Figure 14. Behavior as a meta-class in UML and its implementation in UML 2 Designer

brackets and terminals are delimited by single quotes or
not delimited at all. As suggested in [4], each non-terminal
has one synthesized attribute that holds the instance of the
XOCL Abstract Syntax returned by the rule. For this rule,
an instance of type PropertyAssignExp will be created with
all information needed. Figure 15 shows all the types of
XOCL Abstract Syntax. This inheritance hierarchy contains
also the standard part of OCL Abstract Syntax, which is
slightly different with the one specified in [4], in order to
make the implementation efficiently.
• AddVariableValueAction,
• RemoveVariableValueAction, and
• ClearVariableValueAction:
These actions are used to assign and update local vari-

ables. The syntax construct supporting them is specified by
the grammar rule in Listing 6. This rule returns an instance
of the type LocalVarAssignExp. In fact, this rule can be in-
volved in the rule of Listing 5. We make difference between
them in order to keep type checking more efficiently, due to
partition of symbol table into two parts.

1 <LocalVarAssignExpCS> : : = ID ’ : = ’ <OCLExpCS>

Listing 6. Grammar rule deriving a local variable assignment expression

• CreateObjectAction:
This action is used to create an instance of a class defined

in UML model. Listing 7 shows its concrete syntax. An
instance of the abstract syntax type CreateObjectExp will
be created by this rule.

1 <CreateObjec tExpCS> : : = ’new ’
2 <OCLFullNameExpCS> ’ (’ <OCLArgumentsCS> ’) ’

Listing 7. Grammar rule deriving a create object expression

• DestroyObjectAcion:
At the time of creating a PIM, the application logic cannot

trust in the garbage collection system of the later target
platform. So the feature of modeling destructing an object
explicitly is provided by this action. Similar to other actions,
Listing 8 shows its concrete syntax while DestroyObjectExp
represents the abstract syntax.

1 <DestroyObjectExpCS> : : = ’ d e l e t e ’ ID

Listing 8. Grammar rule deriving a destroy object expression

• ReplyAction:
The most imperative languages support this action with

return keyword. We use the same keyword in XOCL. An
instance of ReplyExp will be created to represent this action
in abstract syntax.

1 <ReplyExpCS> : : = ’ r e t u r n ’ ID

Listing 9. Grammar rule deriving a reply expression

In order to make XOCL a complete action language, three
elementary control flows, namely, sequential execution, con-
ditional execution and iterative execution must be supported.
In UML Action Semantics [5] they are represented by the
meta-class SequenceNode, ConditionalNode and LoopNode.
In OCL the conditional execution has been represented by
OCL-if-expression; iterative execution has been hidden in
the semantics of different loop operations, which are not
appropriate for all the situations where the iteration seman-
tics are needed; the explicit sequential execution are not
supported at all. The extended syntax constructs supporting
the elementary flow control semantics are added to the
XOCL as follows:

110

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. The inheritance relationships of XOCL abstract syntax

1 <BlockExpCS> : : = ’ begin ’ <I m p e r a t i v e E x p L i s t> ’ end ’
2 | ’ beg in ’ ’ end ’
3

4 <I m p e r a t i v e E x p L i s t> : : = <I m p e r a t i v e E x p L i s t>
5 <Impe ra t i veExp>
6 | <Impe ra t i veExp>
7

8 <Impe ra t i veExp> : : = <WhileExpCS>
9 | <IfExpCS>

10 | <OCLVarDeclarationExpCS> ’ ; ’
11 | <Proper tyAss ignExpCS> ’ ; ’
12 | <LocalVarAssignExpCS> ’ ; ’
13 | <DestroyObjectExpCS> ’ ; ’
14 | <ReplyExpCS> ’ ; ’
15 | ’ c a l l ’ <OCLFeatureCallExpCS > ’; ’

Listing 10. Grammar rules representing XOCL code block

• Sequential Execution is represented in XOCL by a
block consisting other XOCL-expressions between the
begin and end keywords. It can also be empty. List-
ing 10 shows all the grammar rules related to derive
XOCL-block-expression. The alternatives in the body

of the production for non-terminal ImperativeExp are
the possible expressions, which can be used in an
XOCL code block. The upper part of Figure 15 illus-
trates the corresponding abstract syntax of the concrete
syntax in Listing 10. An instance of the abstract syntax
type BlockExp serves as a container of other XOCL
expressions. This can be recognized by the composition
pattern in the class diagram of Figure 15.

1 <IfExpCS> : : = ’ i f ’ <OCLExpCS> ’ then ’ <BockExpCS> ’ e n d i f
’

2 | ’ i f ’ <OCLExpCS> ’ then ’ <BockExpCS> ’ e l s e ’
<BlockExpCS> ’ e n d i f ’

3 | ’ i f ’ <OCLExpCS> ’ then ’ <OCLExpCS> ’ e l s e ’
<OCLExpCS> ’ e n d i f ’

Listing 11. Grammar rules deriving XOCL conditional execution

• Conditional Execution can be specified in XOCL using
if -expression. Listing 11 shows its syntax. The third

111

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

alternative represents the standard OCL-if-expression,
the other two allow block expression to be used as body
of an XOCL-if-expression. In abstract syntax, IfExp
represents what is returned by these rules.

• Iterative Execution is represented by while-expression.
Listing 12 shows its concrete syntax. The type While-
Exp is used in the compilation to represent the abstract
syntax of iterative execution.

1 <WhileExpCS> : : = ’ whi le ’ <OCLExpCS> <BlockExpCS> ’
endwhi le ’

Listing 12. Grammar rule deriving XOCL iterative execution

The CallOperationAction has been involved in OCL.
However, as explained in [3], only the query operations can
be called in the normal OCL expressions. In XOCL non-
query operations can also be called within an XOCL code
block. The last alternative in the body of the production
for the non-terminal ImperativeExp in Listing 10 makes
difference between calling non-query operation in XOCL
and calling query operations in original OCL by using a new
keyword call. The non-query operation call is represented
in the abstract syntax by the type NonQueryOpCallExp that
functions as a wrapper of OCLFeatureCallExp.

Figure 15 illustrates the important inheritance relation-
ships between the abstract syntax types. There are also
important associations between these types as well as be-
tween them and the UML meta-classes. Instead of listing all
the class diagrams modeling these relationships, an abstract
syntax tree (AST) generated by our XOCL compiler after
parsing the XOCL expression in Listing 3 will be used to
illustrate both the associations between the types involved
in the XOCL abstract syntax and the working principle of
our XOCL compiler. Figure 16 shows this abstract syntax
tree in the form of a UML Object Diagram. The both sub-
trees rooting in a OCLLoopExp represent the OCL select()
and forAll() operation. At the runtime both instances of
OCLLoopExp hold the information to identify the individual
OCL loop operation. The OCLFeatureCallExp owns gen-
erally two branches; the one on the left-hand side is the
caller while the other one is the callee. The callee usually
uses the type information carried by the caller for type
checking and code generation. Each object in yellow color
represents a model element defined in the UML model.
At the time of constructing an AST, each token, which
may represent a model element, is type-checked against
the symbol table, which is created based on the underlying
UML model. If it is found, the corresponding model element
will be associated with the AST node representing the
actual token. For example, the AST node representing the
token m Partners has been linked with the association end
m Partners defined in the class diagram shown in Figure
13.

Since the abstract syntax tree stores all the type informa-
tion that an XOCL expression involves, code generators for
different platforms traverse each node in an AST, generate
implementation codes on target platform by consulting the
information modeled in the corresponding TPM. The con-
struction of an AST for an XOCL expression happens in the
phase of Model Validation, while code generation is done in
Model Transformation. For example, after traversal the AST
depicted in Figure 16, a Java Code Generator will emit the
Java code shown in Listing 4 for the XOCL expression in
Listing 3.

To conclude this section, we will use the extended lan-
guage constructs of XOCL to specify another complex
querying operation getPartnerHasMostPointsOutServ() of
the class Payback in Figure 13. This operation gives back the
program partner, who provides the most services that award
points to their customers. Listing 13 shows the specification
of this operation in XOCL. The new features of the XOCL
allow software modelers to design their own implementation
logics with the help of the existent OCL features on a higher
abstraction level. The way of using XOCL is more or less
similar to pseudo code used by mathematicians.

1 b e g i n
2 r e s u l t P a r t n e r : P r o g r a m P a r t n e r = s e l f . m P a r t n e r s . f i r s t () ;
3 numberOfPo in t sOu tSe rv : I n t e g e r = r e s u l t P a r t n e r .

m D e l i v e r e d S e r v i c e s−>s e l e c t (s : S e r v i c e | s .
m I s P o i n t s I n = f a l s e)−>s i z e () ;

4 i n d e x : I n t e g e r = 2 ;
5

6 w h i l e index<=s e l f . m P a r t n e r s . s i z e ()
7 b e g i n
8 num : I n t e g e r = s e l f . m P a r n t e r s . a t (i n d e x) .

m D e l i v e r e d S e r v i c e s−>s e l e c t (s : S e r v i c e | s .
m I s P o i n t s I n = f a l s e)−>s i z e () ;

9 i f num > numberOfPo in t sOu tSe rv t h e n
10 b e g i n
11 numberOfPo in t sOu tSe rv := num ;
12 r e s u l t P a r t n e r := s e l f . m P a r n t e r s . a t (i n d e x) ;
13 end
14 e n d i f
15 i n d e x := i n d e x +1;
16 end
17 e n d w h i l e
18 r e t u r n r e s u l t P a r t n e r ;
19 end

Listing 13. XOCL expression specifying an operation

There is one more issue, which must be clarified before
ending this section. Originally, the OCL was developed
as a declarative language without side effect, which was
primarily used in the UML models to specify constraints.
After extending OCL into XOCL, the ”purely declarative”
characteristic is gone. Is this a problem? The answer is no.
Firstly, the original OCL was completely contained in our
XOCL as a subset. That means the OCL expressions can be
used as usual to specify constraints as well as query opera-
tions. Secondly, the extended imperative language constructs
are only required to specify non-query operations, which are
excluded by the OCL. Finally, our language extensions are

112

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. The abstract syntax tree of the XOCL expression in Listing 3

based on the OCL style, making its usage relatively easy.
An alternative to the slightly extended OCL into XOCL

will be an extensive action language (AL), which must
be defined from the scratch and must repeat many of
the powerful data types and operations, which are already
defined in OCL. In this unfavorable scenario three languages
(UML + OCL + AL) are required to specify a complete
model so that one main issue of models namely simplicity
is not achieved.

V. EXAMPLE OF A COMPLETE PIM
As an important experimental result to show the benefits,

the platform independent model (PIM) of the GUI-based
application of Figure 1 has been created using all three new
approaches discussed in this paper. As Figure 1 illustrates,
this application reacts to the events by means of logging
them in the text area below the both buttons.

In the PIM created in this section, we concentrate on
illustrating principles. Hence, only the click-events of the
both buttons will be logged. The application will react to the
closing-event of the main application window and the click-
event of the menu item called Exit by means of disposing the
held system resources explicitly. Figure 17 shows the class
diagram of our example PIM. After manipulating the GUI
elements in Smart GUI Editor, the OCL-init-expressions that

parameterize them can be generated automatically and saved
in a constraint attached to the class EventHandlingCompar-
isonWindow. Listing 14 shows these generated OCL-init-
expressions.

To register the important GUI-events to their correspond-
ing handling methods, our OCL-event-expressions can be
used. Listing 15 shows four examples. The other important
events can be registered in the same manner. The abstract
event-objects, such as click, closing have been modeled as
properties of the corresponding GUI types in the MOCCA
DPM.

The OCL-event-expressions must be used in the same
constraint, which contains the OCL-init-expressions. After
model transformation, all these (extended) OCL-expressions
will be transformed into target language code and saved into
the body of a special method called initializeGUICompo-
nents(), which will be automatically generated and added to
the class representing EventHandlingComparisonWindow on
the target platform.

To model behaviors, or in other words, to specify the
implementation of methods the XOCL-expressions are used
as the body of an opaque behavior, which belongs to
the method to be specified. To specify the implementa-
tion logic of the handling method for the event Clos-

113

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Platform independent model of the application of Figure 1

ing of the class EventHandlingComparisonWindow, XOCL-
destroy-expression in Listing 16 is a good choice.

In model transformation, the semantics of destroying an
application window will be translated into the target lan-
guage constructs, e.g., dispose() together with System.exit(0)
in Java. Listing 17 shows the same logic as Listing 16, be-
cause if the menu item exit is clicked, the entire application
will be finished.

Listing 18 specifies the event handling method but-
ton 1 Click(). The platform independent semantics of the
condition in if -expression can be understood as a test against
null pointer in Java.

Listing 19 specifies the similar event handling method
button 2 Click().

The XOCL-property-assignment-expressions in Listing 20
initialize the event handler as well as the logger string in the
constructor of the class EventHandlingComparisonWindow.
The identifier handler in Listing 20 is the formal parameter
of the constructor.

In model transformation they are translated into target
language constructs with the same semantics and addition-
ally, the generated initializeGUIComponents() method will
be appended in the transformed constructor to initialize the
GUI elements as well as to register GUI events to their
handling methods.

In Listing 21 the XOCL-create-expressions have been
used to construct the necessary instances. Instead of using
main method directly, we call such a unique method start-
up method. Because no matter what it is called in PIM, the
start-up method, which is identified by the stereotype main
will be always transformed into the corresponding language
construct on target platform.

As a review to the content discussed in Section IV, it
should be understood that all the XOCL-expressions will be

parsed into the abstract syntax trees like what is represented
in Figure 16 in the phase model validation. These XOCL
ASTs will be processed by consulting the corresponding
TPM in the phase model translation to generate language
construct on the target platform.

1 i n i t : s e l f . posX = 100 and s e l f . posY=100 and
2 s e l f . l e n g t h = 500 and s e l f . h e i g h t = 800 and
3 s e l f . t i t l e = ’ Main Window ’
4

5 i n i t : s e l f . m MenuBar . owner = s e l f
6

7 i n i t : s e l f . m Fi le . t e x t = ’ F i l e ’ and
8 s e l f . m Fi le . owner = s e l f . m MenuBar
9

10 i n i t : s e l f . m Exit . t e x t = ’ Ex i t ’ and
11 s e l f . m Exit . owner = s e l f . m Fi le
12

13 i n i t : s e l f . m MainPanel . s p l i t = t r u e and
14 s e l f . m MainPanel . h o r i z o n t a l = f a l s e and
15 s e l f . m MainPanel . owner = s e l f
16

17 i n i t : s e l f . m But tonPane l . s p l i t = f a l s e and
18 s e l f . m But tonPane l . owner = s e l f . m MainPanel
19

20 i n i t : s e l f . m Button 1 . posX = 35 and
21 s e l f . m Button 1 . posY = 15 and
22 s e l f . m Button 1 . l e n g t h = 93 and
23 s e l f . m Button 1 . h e i g h t = 31 and
24 s e l f . m Button 1 . t e x t = ’ Bu t to n One ’ and
25 s e l f . m Button 1 . owner = s e l f . m But tonPane l
26

27 i n i t : s e l f . m Button 2 . posX = 285 and
28 s e l f . m Button 2 . posY = 15 and
29 s e l f . m Button 2 . l e n g t h = 93 and
30 s e l f . m Button 2 . h e i g h t = 31 and
31 s e l f . m Button 2 . t e x t = ’ Bu t to n Two’ and
32 s e l f . m Button 2 . owner = s e l f . m But tonPane l
33

34 i n i t : s e l f . m LoggerPanel . s p l i t = f a l s e and
35 s e l f . m LoggerPanel . owner = s e l f . m MainPanel
36

37 i n i t : s e l f . m Logger . m u l t i L i n e s = t r u e and
38 s e l f . m Logger . owner = s e l f . m LoggerPanel

Listing 14. OCL–init–expressions parameterizing GUI elements in
Class EventHandlingComparisonWindow

114

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 e v e n t : s e l f . c l o s i n g ˜ s e l f . m Handler . mainWindow Closing
2 e v e n t : s e l f . m Exit . c l i c k ˜ s e l f . m Handler .

menuEx i t C l i ck
3 e v e n t : s e l f . m Button 1 . c l i c k ˜ s e l f . m Handler .

b u t t o n 1 C l i c k
4 e v e n t : s e l f . m Button 2 . c l i c k ˜ s e l f . m Handler .

b u t t o n 2 C l i c k

Listing 15. OCL–event–expressions registering events of the GUI
elements in Class EventHandlingComparisonWindow to their handling
methods

1 b e g i n
2 d e l e t e s e l f . m MainWindow ;
3 end

Listing 16. XOCL–expression specifying the event handling method
mainWindow Closing()

1 b e g i n
2 d e l e t e s e l f . m MainWindow ;
3 end

Listing 17. XOCL–expression specifying the event handling method
menuExit Click()

1 b e g i n
2 i f n o t s e l f . m MainWindow . o c l I s U n d e f i n e d () t h e n
3 b e g i n
4 c a l l s e l f . m MainWindow . s e t L o g g e r I n f o (’ Bu t ton 1 was

c l i c k e d ! ’) ;
5 end
6 e n d i f
7 end

Listing 18. XOCL–expression specifying the event handling method
button 1 Click()

1 b e g i n
2 i f n o t s e l f . m MainWindow . o c l I s U n d e f i n e d () t h e n
3 b e g i n
4 c a l l s e l f . m MainWindow . s e t L o g g e r I n f o (’ Bu t ton 2 was

c l i c k e d ! ’) ;
5 end
6 e n d i f
7 end

Listing 19. XOCL–expression specifying the event handling method
button 2 Click()

1 b e g i n
2 s e l f . m Handler := h a n d l e r ;
3 s e l f . m LoggerInfo := ’ Logging t h e u s e r a c t i o n s . . . ’ ;
4 end

Listing 20. XOCL–expressions specifying the constructor of the class
EventHandlingComparisonWindow

1 b e g i n
2 h a n d l e r : Even tHand l ingCompar i sonHand le r = new

Even tHand l ingCompar i sonHand le r () ;
3 window : EventHandl ingComparisonWindow = new

EventHandlingComparisonWindow (h a n d l e r) ;
4 h a n d l e r . m MainWindow := window ;
5 end

Listing 21. XOCL–expressions specifying the start–up method of the
entire application

VI. CONCLUSION

The UML is a powerful language for preparing models
of object oriented software. Such models can be used as
documentation of existing software for their maintenance,
and as source of new software to develop. In order to create
precise models the OCL is used to specify the UML meta-
model, and can be used for design models with the UML
commonly.

The aim of the MDA technology is the generation of
program code for a certain platform based on a complete
UML/OCL model. In order to gain benefit from this inno-
vative technology, it is necessary to create the basic platform
independent model (PIM) concisely, uniformly, completely,
and especially with low effort. Preparing such UML/OCL -
PIMs we recognized three serious problems. In this paper
we emphasize these problems and suggest efficient solutions,
which base on UML and OCL.

1) How it is possible to describe both structural compo-
sitions and visual parameters of GUI elements?
We suggest to use a normal UML-class of a win-
dow, to model the GUI elements as their attributes,
and to specify the parameter values in OCL-init-
expressions attached to their class-context. These
OCL-init-expressions can be generated from a Smart
GUI Editor based on the visual information.

2) How it is possible to model the connection between
an event source and an event handler in a platform
independent manner?
We suggest a simple OCL extension. This single new
OCL-event-expression allows to model the registration
of handling methods to event sources in a more
compact, well understandable, and uniform manner
independent from the implementation platform. This
new approach simplifies the class diagrams strongly
without loss completeness. The application of our
new OCL-event-expression leads to strong benefit in
models of many GUI elements.

3) How it is possible to model the behavior in PIM both
concisely, exactly, and compactly?
We suggest a restricted extension of the OCL. The
expressive, declarative OCL is upgraded into an imper-
ative action language, which we called XOCL. With
XOCL, complex query operations can be specified
as usual while non-query operation with complex
control flows can also be specified using the extended
language constructs.

Using our three new approaches it is possible to cre-
ate platform independent models efficiently, concisely, uni-
formly and completely.

REFERENCES

[1] D. Liang and B. Steinbach, A new General Approach to
Model Event Handling, ICSEA 2010, pp.14-19, 2010 Fifth

115

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Conference on Software Engineering Advances,
2010.

[2] K. Jiang, L. Zhang, and S. Miyake, Using OCL in Executable
UML, MoDELS 2007.

[3] J. Warmer and A. Kleppe, The Object Constraint Language,
Getting Your Models Ready For MDA, Addison-Wesley &
Pearson Education, Boston, MA, USA, 2003.

[4] OMG: Object Constraint Language Specification 2.0, 2006.
http://www.omg.org/spec/OCL/2.0/

[5] OMG: UML 2.4 Superstructure Specification, 2011.
http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF/

[6] J. Warmer, A. Kleppe, and W. Bast, MDA Explained: The
Model Driven Architecture: Practice and Promise, Addison-
Wesley, 2003.

[7] OMG: Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification, 2008.
http://www.omg.org/spec/QVT/1.0/PDF/

[8] S. Nolte, QVT Operational Mappings, Springer, 2009.

[9] D. Fröhlich, Object-Oriented Development for Reconfiguralbe
Architectures, Dissertation of Dr. Fröhlich, TU Freiberg,
Germany, available July 2011.
http://www.qucosa.de/fileadmin/data/qucosa/documents/2209
/InformatikFrXXhlichDominik80246.pdf

[10] B. Steinbach, D. Fröhlich, and T. Beierlein, Hardware/Soft-
ware Codesign of Reconfigurable Architectures Using UML,
UML for SOC Design, chapter 5, Springer, 2005.

[11] GOLD Parsing System Online Documentation, available July
2011.
http://www.devincook.com/goldparser/index.htm

[12] C.S. Horstmann and G. Cornell, Core Java, 8th ed. Prentice
Hall, 2008.

[13] A. Troelsen, Pro C# 2008 and the .Net 3.5 Platform, 4th ed.
Apress, 2007.

[14] H. Keller and S. Krüger, ABAP Objects, 2nd ed. Galileo
Press, 2007.

116

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Analysis and Improvement of the Alignment between
Business and Information System for Telecom Services

Jacques Simonin1, Emmanuel Bertin2, Yves Le Traon3, Jean-Marc Jézéquel4, Noël Crespi5
1 Institut Télécom, Télécom Bretagne, Lab-STICC UMR CNRS 3192, UEB, Technopole Brest-Iroise, 29238 Brest, France

2 Orange Labs, 42 rue des Coutures, 14066 Caen, France
3 Université du Luxembourg, 6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg, Luxembourg

4 INRIA and Rennes University, Campus Universitaire de Beaulieu, 35042 Rennes, France
5 Institut Télécom, Télécom SudParis, 9 Rue Charles Fourier, 91011 Evry, France

jacques.simonin@telecom-bretagne.eu, emmanuel.bertin@orange-ftgroup.com, yves.letraon@uni.lu, jezequel@irisa.fr,
noel.crespi@it-sudparis.eu

Abstract - The main aim of Enterprise Architecture (EA) is to
master the development and the evolutions of Information
Systems (IS). The EA process consists of designing the IS
target architecture from several views, according to the
company strategy. The business view represents the target
organization of the particular company. The functional view
focuses on the target functional architecture of that company’s
IS. In this paper, we propose a new formal solution to analyze
and to improve the consistency between the target functional
view and the target business view of telecom services. This
solution is based on the definition of a strategic alignment of
the target functional view with the target business view.
Alignment is validated with a real case study implemented and
deployed at Orange--France Telecom on their messaging
service. An alignment measure completing this analysis
provides an estimation of the gap between a target functional
view and a target business view.

Keywords - information system, enterprise architecture,
business view, functional view, alignment, measure, function
typing.

I. INTRODUCTION

A. Context and Motivation

Enterprise Architecture (EA) aims to simplify the
Information Systems (IS) of a company, and to reduce the
cost of IS development and evolution. This simplification of
IS should be driven by the strategy of the company. For
telecommunication service providers, the strategy mainly
consists of providing new services (designed by marketing to
fit user's needs) that rely as much as possible on existing
infrastructures [1].

EA frameworks (such as that of Zachman [2]) define
various points of view (business, system, technology, etc.) in
order to take into account all the aspects of these strategic
objectives. This paper relies on the four classic EA views (as
defined in [3]): the business view defining ‘why’, the
functional view defining ‘what’, the technical view defining
‘with what’, and the applicative view defining ‘how’. The
relationships between the functional view, the technical

view, and the applicative view are deduced from the iterative
development cycle, which relies on the Unified Process (UP)
[4]. The business view should be an input for both the
functional and the technical views.

This paper is focused on the strategic alignment of a
company’s functional view with its business view. A good
alignment highlights the consistency within the organization
of the company and its IS [5] and indicates that the business
strategy and the IS strategy are synchronized.

The target business architecture and the target functional
architecture must both fulfil the strategy of a company.
However, the strategy guiding the business organization
(business view) and that of the IS functions (functional view)
are different and are not defined by the same people.
Business and functional views evolve independently,
following the business and the marketing evolutions.
Moreover, the evolution of a company’s organization is
seldom synchronous with the evolution of its IS.

We therefore propose an innovative formal approach that
allows a functional Enterprise Architecture to analyze the
misalignment between the target functional architecture and
the target business architecture. We also propose a metric for
this alignment. The objective is to define an assessment in
order to improve the alignment between the functional view
and the business view.

B. Outline

This paper is organized as follows. Section II depicts the
state of the art and Section III introduces the EA process and
defines what is meant by the alignment of the functional
view with the business view. Section IV describes the
alignment measure of the functional view with that of the
business view. The example in Section III and in Section IV
is based on an Orange messaging service. Section V
describes a solution to improve the alignment measure of the
functional view in comparison with the business view, by
typing functions according to business processes. Section VI
depicts the first experimentation of the alignment measure at
the Orange laboratories.

117

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK

In practice, most telecommunication companies directly
map their business view with their IS applicative, aiming for
an alignment between their core business and their IS. A
company may decide that a given email platform (for
example, Microsoft Exchange server) will manage the entire
service business process of communicating by email. For
telecom services, this method has one major shortcoming: it
implies a tight coupling between the business view and the
applicative view. The business analysis is then distorted by
applicative considerations. For example, the messaging
business may evolve so that it is driven by the evolutions of
the selected platform, and no longer by the company
strategy. The specification of a target business architecture
that differs from the current applicative view may become
virtually impossible.

In the literature, the alignment problem involving EA is
mainly considered to be between the business view of a
company and its IS [6]. Alignment may also be considered
between the business view of a company and its objectives,
as in the Business Motivation Model [7], or between an
analysis model and a design model of the functional view of
a telecom service [8]. The parameters related to the quality
of the alignment are specific for each company [9]. For this
type of alignment, heuristics may be defined to provide
warnings in case of misalignment [5]. A measurement
method would allow the evaluation of architectures in
business terms (cost, benefit, risk). However, the measures
relevant to business terms do not take IS concepts into
account.

One significant contribution of this paper is a method to
take into account the effects of a company’s strategy on its
functional view. The alignment perspective between the
business and functional views is shown in Figure 1.

Figure 1. Alignment perspective between the target business view
deduced from a business strategy and the IS target functional view deduced

from an IS strategy [6].

The functional view choice is justified because an IS
functional view is easier to align with than a business view.
Functional, meaning comprehensible and practical, is indeed
helpful to match business description. Moreover, the IS
applicative view is largely the facet that implements the
functional view. Alignment of the applicative view with the
business view is thus dependent on the alignment of the
functional view with the business view.

Moreover, many object-oriented measures exist outside
the scope of EA. To estimate model alignment, coupling
measures [10] are the most appropriate means, since
relationships between models are the main characteristics of
the solution proposed in this paper.

III. ALIGNMENT OF THE FUNCTIONAL VIEW WITH THE

BUSINESS V IEW DEFINITION

We focus here on the alignment--or the misalignment of
the functional view with the business view. As
demonstrated in the previous section, this topic has not been
studied in much detail.

A. Alignment Definition Home Domain Analogy

Let us introduce the alignment definition with a “home
domain” analogy. In a “home domain”, the house customer
is responsible for the “home processes” of a home domain
business view. One is the Have a meal at home process and
its activities Cooking at home and Eating at home. The house
occupant defines that Eating at home comes after Cooking at
home. “Home IS” is designed by house architects, who
define models of homes based on the home domain
functional view. House architects design models of homes
from “home functions”. Three components composed of
“home functions” and their dependencies support the Have a
meal at home process. The so-restricted “Home IS” is
represented by a home model in a Unified Modelling
Language (UML) [11] component diagram given in Figure 2.
Figure 2 illustrates three dependencies between “home
functions”: Have breakfast on Cook at home, Have diner on
Cook at home and Have lunch on Cook at home.

Figure 2. “Home domain” analogy with “Home IS”, which owns two
functional components: Eating management and Cooking management.

Alignment of the functional view with the business view
is easily illustrated with this “home domain”:

• Have breakfast, Have diner, Have lunch are “home
functions” aligned with an Eating at home “home
activity”;

• Cook at home and Get food are “home functions”
aligned with a Cooking at home “home activity”,

IS
STRATEGY

BUSINESS
STRATEGY

TARGET
BUSINESS

VIEW

TARGET
FUNCTIONAL

VIEW

118

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Have breakfast on Cook at home, Have diner on
Cook at home and Have lunch on Cook at home are
dependencies between “home functions” aligned
with Cook at home, and come before any Eating at
home activity succession.

With this home analogy, we can highlight that there is a
reversal between the dependency and the succession
relationships. The eating-on-cooking dependency means that
cooking must come before eating.

B. EA and Target Architecture

The EA process has two main goals:
• to depict existing IT architecture, in order to describe

what functions are implemented on each IT system,
how each IT system is deployed and which process
is supported by each IT system; and

• to design several target architecture views to
separate the concerns of the various stakeholders in
the enterprise.

Even if the company strategy is constant during the
design of all the target architectures of these views, the
required skills are different: on one side, the company’s core
business experts elaborate the business view; on the other
side, enterprising functional architects design the functional
view. This independency is particularly significant for the
evolution of each view because their lifecycles are different.
A complete synchronization of a company’s organization
evolutions and IS evolutions is very difficult to achieve for a

large company. This is especially true for telecom service
operators whose markets and technologies are very dynamic.

A company usually elaborates its target business
architecture following a process analysis, which provides for
descriptions of the business processes that belong to the core
business of a company. The business view has the activity
as its main concept, which is a part of a business process and
which is under the responsibility of an organizational role.
Concepts are modelled with UML [11]. A UML activity
diagram can be used to capture a procedure designed in the
target business architecture. Within Orange--France
Telecom, the usage of telecom services is specified with
approximately 10 roles and several tens of activities.

For illustration, let us consider a messaging service,
limited to the message receipt. When a new requirement
appears in the telecom operator strategy, such as the need to
protect children from inappropriate electronic messages, the
access control must evolve. In this example, the operator
chooses to implement its strategy by creating a new Child
protection provider role. Furthermore, the Messaging service
provider role will depend on the new Child protection
provider role in the new target organizational infrastructure.
So, to achieve the messaging receipt activity, the Messaging
service provider role needs the intervention of the Child
protection provider role.

The procedure deduced from the messaging service
process is therefore easily captured using an activity diagram
such as the one in Figure 3.

Figure 3. Sample activity diagram of the messaging service..

The IS target functional architecture contains functional
elements implemented by IS systems. Functional
architectures design the target functional architecture
according to the company strategy. The main concept of the
functional view meta-model holds that the function defines
the functional component. Functional view concepts such as
"Functional component" and "Dependency between
functional components" are also close to UML concepts. The
target functional view may be represented by a component
diagram. The target functional view of our messaging

illustration is represented by the component diagram in
Figure 4.

119

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Sample target functional architecture of the messaging service.

C. Alignment of the Functional View with the Business
View Definition

Alignment criteria are required to define the alignment
between models. Our innovative criterion is based on the
associations between concepts of the business view and of
the functional view. Enterprise Architecture chooses
business view concepts consistent with functional view
concepts, while taking the alignment definition into account.
The consistency between these concepts is known as the
alignment value between a business model and a functional
model.

We have considered two relevant types of possible
associations:

• associations between business data manipulated by
business activities and functional data manipulated
by functions; and

• associations between business activities and
functions.

An approach based on the first type (business data and
functional data) can be viewed as static because it does not
take into account the evolution of the states of data.

We have therefore chosen an innovative approach by
considering the second type (business activities and
functions). We have qualified this approach as dynamic,
because it relies on the UML dynamic diagrams (activity
diagram, sequence diagram) that show the live comportment
of a system.

The idea of a dynamic approach (as opposed to an
approach based on data) is to base the alignment on service
usage scenarios instead of basing it on data models. For
development methods in relation to the entity relationship
model [12], the methodological complexity is a consequence
of the simultaneous modelling of data and treatments. To

resolve this complexity, our approach is based on the
dynamic perspective because it allows functional reusability,
a useful improvement. This reusability involves service
components called enablers, as defined by the OMA (Open
Mobile Alliance) [13]. Moreover, the alignment between
business data and functional data can be deduced from the
alignment between business activities and functions, as
business data are produced by business activities and
functional data by functions.

The business view, as illustrated in Figure 3, instantiates
dynamic concepts. A procedure is indeed described by an
activity sequence instead of a business data model.
Concerning the functional view, the design of an interaction
sequence carrying out a telecom service usage scenario does
precede the data modelling. This chaining is feasible because
each data is produced or used by a function during a
scenario. With this dynamic approach, a dependency
between functional components corresponds to an interaction
between two functional component instances. The
equivalence between an interaction sequence and a telecom
service usage scenario denotes the dynamic aspect of this
approach (see Figure 5).

A "request" type dependency of the functional view is
therefore an information request. A functional dependency
has a "resource" type if it represents an answer to an
information request.

The association completing the alignment criterion is
between a succession relationship of two business activities
and a dependency between functions. We define the
following links:

• Succession relationships are between two business
activities if the end of one precedes the beginning of
the other in a UML activity diagram capturing a
business process (for example, in Figure 3, the
succession relationship is the one from the business
activity Message receipt to the business activity
Message filtering);

• Dependency between two functions occurs
o if they are associated to two interactions

between functional components, which
have either the "request" type or the
"resource" type,

o and if the end of one of these interactions
precedes the beginning of the other
interaction in a UML sequence diagram

(an example in Figure 5 is the dependency between
the function Filter a message from the message
sender on the function Create message filtering
rule).

The alignment of the functional view with the business view
can thus be defined from these alignment criteria:

• a function is aligned with the business view
o if the function has a common meaning

with at least one activity of the business
view,

o and if each business activity aligned with
the function has at least one succession
relationship with another business activity
aligned with the function ; and

120

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• a dependency between two functions F1 and F2,
such as F1 depends on F2, is aligned with the
business view

o if there is at least one business activity A1
aligned with F1,

o if there is at least one business activity A2
aligned with F2, and

o if A1 follows A2 in an activity diagram
(succession relationship).

The alignment definitions are illustrated in Figure 3 for the
business activity and the activity succession relationship
concepts, in Figure 4 for the function concept, and in Figure
5 for the function dependency concept:

• Receive a message function is aligned with
o Message receipt business activity;

• Filter a message from the message sender and Filter
a message from the message object functions are
aligned with

o Message filtering business activity; and
• the dependency relationship from Filter a message

from the message sender function on Receive a
message function is aligned with

o the succession relationship from the
Message receipt business activity to the
Message filtering business activity.

In Figure 5, the Create message filtering rule function and
the dependency relationship of the Filter a message from the
message sender function on the Create message filtering rule
function are not aligned with the business view. No business
activity in Figure 3 has a meaning in common with Create
message filtering rule function.

Figure 5. Functional view sequence of messaging service example.

IV. ALIGNMENT MEASURE OF THE FUNCTIONAL VIEW

WITH THE BUSINESS V IEW

Axiomatization allows the intuitive properties of the
alignment of a functional view to be specified in comparison
to a business view description [14]. We propose an
alignment measure according to these axioms.

A. Alignment Measure Home Domain Analogy

Alignment measure could be illustrated with a “home
domain” analogy. We assume in this section that “home
function” Get food is offered by the Cooking management
component. This “home function” is added to our “Home IS”
designed in Section III. Figure 6 represents our new “Home
IS” with a UML component diagram.

Figure 6. New “Home IS”, which owns a new “home function”: Get food.

This new “home function” Get food is not aligned with
the “home activity” of Eating at home process because no
activity of “Home processes” restricted to Have a meal at
home shares a sense with food management, which is the
closest repository management activity. We can say that the
alignment of the new “Home IS” with “Home process” is
worse than the alignment of the “Home IS” designed in
Section III with “Home process”.

121

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Alignment of the Functional View with the Business
View Axiomatization

An axiom is an expected and understandable property of
an alignment measurement that has also a meaning in the
mathematical model. The following BFA axioms define this
intuitive behaviour. Axioms are parameterized by functional
view concepts affected by the alignment.

BFA1 – Function addition. The alignment resulting
from the addition of a function in the functional view is
either:

• worse than or identical to the previous
alignment if the function has no business
meaning in common with at least one activity of
the business view,

• better than the previous alignment if the
function has a business meaning in common
with at least one activity of the business view.

 BFA2 – Function dependency addition. The alignment
resulting from the addition of a dependency between
functions in the functional view is either:

• worse than or identical to the previous
alignment if there is no business activity time
succession of the business view that is aligned
with the function dependency,

• better than the previous alignment if there is at
least one business activity time succession of
the business view that is aligned with the
function dependency.

BFA3 – Function deletion. The alignment resulting
from the deletion of a function in the functional view is
either:

• worse than the previous alignment if the
function shares a common business meaning
with at least one activity of the business view,

• better than or identical to the previous alignment
if the function has no common business
meaning with even one activity of the business
view.

BFA4 – Function dependency deletion. The alignment
resulting from the deletion of a dependency between
functions in the functional view is either:

• worse than the previous alignment if there is at
least one business activity time succession of
the business view that is aligned with the
function dependency,

• better than or identical to the previous alignment
if there is no business activity time succession
of the business view aligned with the function
dependency.

C. Alignment of the Functional View with the Business
View Measure

An alignment measure depends on the alignment
concepts defined in Section III. The number of relationships
captured in a diagram is a well-known parameter for data
model estimation [15]. The dependencies from the target
functional view are the parameters of a proposed alignment
measure, named BFAM , of the functional view with the

business view. These dependencies, which are or are not
aligned with the business view, enable estimation of the
alignment of the functional view with the business view.

() () { }()
()

() { }()
()

 −

∗

 −=

FVdN

FVnadNFVdN

FVfN

FVnafNFVfN
FVBFAM

_

__

_

__

 (1)

where, for a functional view FV:

• N_f(FV) is the number of functions,
• N_{naf}(FV) is the number of functions that are

not aligned with business activities,
• N_d(FV) is the number of dependencies

between functions,
• N_{nad}(FV) is the number of dependencies

between functions that are not aligned with a
business activity time succession of the business
view.

The BFAM value is a real number which value is
between 0 (no function and no dependency relationship
between functions are aligned with the business view) and 1
for a perfect alignment (all functions and all dependency
relationships between functions are aligned with the business
view).

BFAM measures complies with axioms BFA1, BFA2,
BFA3, BFA4 (see Section IV) of the alignment of the
functional view with the business view.

The compliance for the BFA1 axiom is detailed as
follows:

• Let F a function added to the functional view FV,
{ }()
{ }() { } { }()

{ }()
{ }() { } { }()

{ }()
()
()

{ }() { }{ }()
()

() { }()
()

 −

∗

+
+

−
+
+

=

∪
∪−∪

∗

∪
∪−∪

=∪

FVdN

FVnadNFVdN

FVfN

FnafNFVnafN

FVfN

FVfN

FFVdN

FFVnadNFFVdN

FFVfN

FFVnafNFFVfN

FFVBFAM

_

__

1_

__

1_

1_

_

__

_
__

because the number of dependency relationships
between functions is unchanged. And then

122

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

{ }() ()
{ }() { } { }()

()
{ }()

()
() { }()

()
{ }()

()
{ }() { }{ }()

()
() { }()

()

 −

+
+

−

=

 −

 −

−

+
+−

=−∪⇒

FVdN

FVnadNFVdN

FVfN

FnafNFVnafN

FVfN

FVnafN

FVdN

FVnadNFVdN

FVfN

FVnafN

FVfN

FnafNFVnafN

FVBFAMFFVBFAM

_

__

*

1_

__

_

_

_

__

*

_

_
1

1_

__
1

o If F has no common meaning with at least
one business activity, then

{ } { }() 1_ =FnafN

{ }() ()
{ }()

()
{ }()

()
() { }()

()

 −

+
+−

=−∪⇒

FVdN

FVnadNFVdN

FVfN

FVnafN

FVfN

FVnafN

FVBFAMFFVBFAM

_
__

*
1_

1_

_

_

 and so,

{ }()
()

{ }()
()

{ }() ()
() ()()

{ }() ()FVBFAMFFVBFAM

FVfNFVfN

FVfNFVnafN

FVfN

FVnafN

FVfN

FVnafN

≤∪⇒

≤
+∗

−

=
+

+−

0
1__

__

1_
1_

_
_

because the number of misaligned
functions is lower than or identical to the
complete number of functions.
The BFAM measure is identical to the
previous alignment measure when

() { }()FVnafNFVfN __ =

i.e., when no function of the functional
view FV is aligned with the business
view.

o If F has a common meaning with at least
one activity of the business view, then

{ }{ }() 0_ =FnafN

{ }() ()
{ }()

()
{ }()

()
() { }()

()

 −

+
−

=−∪⇒

FVdN

FVnadNFVdN

FVfN

FVnafN

FVfN

FVnafN

FVBFAMFFVBFAM

_
__

*
1_

_
_

_

and so,

{ }()
()

{ }()
()

{ }()
() ()()

{ }() ()FVBFAMFFVBFAM

FVfNFVfN

FVnafN

FVfN

FVnafN

FVfN

FVnafN

≥∪⇒

≥
+∗

=
+

−

0
1__

_

1_
_

_
_

The BFAM measure is identical to the
previous alignment measure

when { }() 0_ =FVnafN , i.e., when all

functions of the functional view are
aligned with the business view.

• The proof is similar for the BFA2, BFA3 and BFA4
axioms.

 The alignment measure BFAM may be the stop
criterion of an iterative development process. A higher
estimation of the alignment implies a better consistency
between the target business and target functional views.

V. IMPROVING THE ALIGNMENT OF THE FUNCTIONAL

VIEW WITH THE BUSINESS VIEW

Aligning the functional view with the business view is
one of the most complex activities of EA, since it consists of
integrating in an abstract view the very concrete strategy of
the enterprise. To help perform this alignment, we propose to
type functions with respect to duration of its instance
compared to business process of the enterprise.

A. Alignment Improvement Home Domain Analogy

A first alignment improvement of “Home IS”, designed
in Section IV with “Home processes” could be deduced from
updating the “Home processes”. For example, a new Taking
out food from the freezer activity could be added to Have a
meal at home “Home process”. Taking out food from the
freezer should come before Cooking at home because the
second activity needs the result of the first. Alignment
between the Get food “Home function” and the Taking out
food from the freezer activity indeed improves the alignment
of “Home IS” compared to “Home processes”. A second
improvement of this alignment takes into consideration the
functional dependency of Cook at home on Get food, which
could be aligned with an activity succession of the Taking
out food from the freezer activity, which in turn comes
before the Cooking at home activity. Function dependency
aligned with this succession is represented inside a UML
component diagram in Figure 7.

123

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. New “Home IS”, which owns a new “home function
dependency: Cook at home on Get food.

A new dependency of Cook at home on Get food allows
an alignment with the activity succession (Taking out food
from the freezer activity comes before Cooking at home
activity).

Alignment improvement is the result of functional
dependency design, which is consistent with activity
succession. In the following section, we propose rules,
named BFRs, that provide for alignment improvement from
functional views in comparison with business views.

B. Typing of functions in relation to the Business View

The principle of typing functions comes from the
architectural layer concept from the OSI model (Open
Systems Interconnect) [16]. Typing each element allows to
locate it on a specific layer. This principle is applied to the
design of functions and of functions’ dependencies.

A function owns types, which distinguishes it from the
business activities aligned with it. The following types are
consistent with a networking system [17]:

• Command, if this function is aligned with a
business activity, then it has a life duration
depending on the instances of business processes
containing it (for example, Give a
telecommunication service order function is
aligned with a business activity, which has a life
duration depending on the Order capture process
(defined in [18])),

• Data, if this function is aligned with a business
activity, then it has life duration that is independent
of the instances of business processes containing it
(for example, Have access to telecommunication
service catalogue function is aligned with business
activity, which has a life duration independent of

the Order capture or Billing processes containing
catalogue management activity).

Let F be the set of functions and T be the set of function
types, then a type t of function f is the power set of T:

()

{ }()DataCommandPttf

TPFt

,;

:

⊂
→

a

 (2)

So, a function can be of type {command, data} if it is

aligned with two activities, such as life duration depending
on the processes containing it and life duration independent
of the processes containing it.

The functional architecture represented in Figure 4 shows
four functions:

• Create message filtering rule function, which is of
both Command and Data types. An alignment
improvement would identify business activities that
share a sense in common with this rule creation
function. Two activities must be inserted in the
messaging telecom service use process: Filtering
rule creation and Filtering rule consultation. On
the one hand, Filtering rule creation activity has a
life duration, which depends on the use process,
while Filtering rule consultation does not depend
on it. We may indeed consult a filtering rule, while
other messaging telecom service use process
instances do not;

• Filter a message from the message sender and
Filter a message from the message object functions
own Command type. Their life duration depends on
messaging telecom service process instances; and

• Receive a message function owns Command type
for the same reason.

From definition (2), the typing can be expressed as:

() { }
() { }
() { }
() { }Commandt

Commandt

Commandt

DataCommandt

=
=
=

=

message a Receive

object message thefrom message aFilter

sender message thefrom message aFilter

,rule filtering message Create

In our messaging telecom service, the Create message
filtering rule function has both Command and Data types. To
improve alignment with the business view, function typing
should associate each function to only one type (Command
or Data). These functions, Create message filtering rule and
Consult message filtering rule, are illustrated in a UML
sequence diagram in Figure 8.

124

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Functional view sequence of messaging service with a multi-typed function splitting example.

We propose then the first two rules, BFR1 and BFR2,
for improved alignment with the business view:

BFR1 – Multi-typed function splitting . Multi-type
functions must be split in sub-functions so that each sub-
function is only of one type.

BFR1 improves alignment because activities are under
the responsibility of specific roles. Activities with life
durations dependent on processes are indeed under the
responsibility of the enterprise’s front-office, and activities
with life durations independent of processes are mainly
under the responsibility of an enterprise’s back-office.

On one hand, the Filtering rule creation activity is under
the responsibility of the Child protection provider, which is a
telecom service back-office role. On the other hand, Filtering
rule consultation, Filter a message from the message sender
and Filter a message from the message object are activities
under the responsibility of the Messaging service provider
role, which is a telecom service front-office role.

Type pattern [19] may complete function typing, defining
relationships between mono-typed functions. This pattern
must be consistent with type definitions in relation to the
business view. Pattern motivation enables alignment
improvement of the functional view with the business view.
A pattern may, for example, be associated with types as
defined in (2). The UML class diagram in Figure 9 illustrates
that a Command function depends on the Data function. An
activity, which has life duration dependent on the instance of
a business process, comes before an activity that has life
duration independent of the instances of business processes.

Figure 9. Type pattern applied to {Command, Data} function typing.

The motivation for this pattern is that each process
provides one end-result for its “process customer” mapping
with at least one activity, whose life duration depends on the
instance of this process [20]. This activity may then need the

end results of activities that have life durations independent
of the instance of this business process. For example, in
order process, order activity comes after a product reference
consultation activity.

We can complete this type pattern with the following
rules:

• Command function could depend on a Data
function;

• Command function could depend on another
Command function;

• Data function could depend on another Data
function; and

• Data function never depends on Command
function.

BFR2 – Multi-typed function sub-functions model.
Sub-functions deduced from one multi-type function must
satisfy a type pattern.

Considering the t function defined in (2), the type pattern
motivated in Figure 9 is applied to sub-functions in Figure
10.

Figure 10. Type pattern applied to sub-functions typed by {Command,
Data}

Alignment of the functional view with the business view
may be improved because of type pattern consistency in
relation to business view design.

C. Typing of Functional Component Dependency in
relation to the Business View

Type pattern consistency with the business view may
also be applied to function dependency.

BFR3 – Mono-typed functions model. A dependency
between two mono-typed functions must respect type pattern
for dependency existence and dependency orientation.

125

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To decide the orientation of this dependency, let us note
that each process has to be supported first by a command-
typed function.

Messaging dynamic illustrations in Figures 5, 8 and 11
all show that message receipt process is supported by Filter a
message from message sender, which is a Command typed
function. A dependency of the Consult message filtering rule

on the Create message filtering rule is designed in the
messaging sequence diagram. This dependency does not
satisfy BFR3 because the Consult message filtering rule is a
Data typed function and the Create message filtering rule is
a Command typed function. The business interpretation of
this dependency is that one activity of message rule
consulting is not useful in message rule creation.

Figure 11. Functional view sequence of messaging service with mono-typed functions dependency example.

This dependency can, moreover, be analyzed at the data
production level and with a data access security point of
view. A command-typed function’s need for a data-typed
function to enable a process to be achieved is illustrated by
the dependency of data characterizing the reception of an
email, such as its reception date, toward data characterizing a
filtering rule. This data dependency provides the opportunity
to secure data produced by data-typed function. It is then
possible to realize a data-typed function with high security
requirements (in the present example: access control
depending on the data and on the role of the user:
administrator or developer of the mail service), but the
realization of the command-typed block is associated with
weaker security requirements (in the example: user
authentication in the mail service).

VI. CASE STUDY

The alignment measure of the functional view with the
business view is a tool for functional architects to compare
the business alignment of various functional domains
(messaging, IPTV, telephony, etc.) and so to prioritize their
actions and improve the alignment. Such action can be
guided by an assessment of the alignment. A case study with
telecom messaging functions was conducted within the
Orange Labs. This domain contains 8 functional
components, 12 functions, and 16 function dependencies
between functional components for six scenarios. The
associated business view contains three activities and two
activity time successions.

The alignment measure, BFAM, of the messaging
domain functional view with the business view of telecom
service usage is estimated (see formula (1)):

()
8

7
Messaging =BFAM

Let us illustrate with a simple case how to improve the

alignment. The assessment for messaging is the following:
the alignment of the functional view of the Messaging
domain with the business process of message sending would
be perfect (i.e., with a measure estimated as 1) if the
dependency relationship

• from the Transmit a message function defining
Message exchange functional component

• on the Store a message function defining
Message storage functional component

could be reversed (see Figure 12).

126

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Messaging domain problem.

To maintain the aligned dependency from Send a
message on Store a message, this reversal should require the
Message exchange functional component to be split as
follows into a:

• Message sending functional component defined
by the Send a message function, and a

• Message transmission functional component
defined by the Transmit a message function.

From definition (2), typing can be expressed as:
() { }
() { }
() { }Commandt

Datat

Commandt

=
=

=

message a Store

message aTransmit

message a Send

Message transmission is indeed a network function
within the telecommunication services IS. This function has
a life duration independent of the instances of
telecommunication service processes. Moreover, Send a
message and Store a message are dependent on the
telecommunication service process because the
telecommunication service user has an access to data
provided by these two functions (message sending date and
message storage date, for example).

A dependency relationship of the Message transmission
functional component on the Message storage results from
the previous target functional architecture.

One dependency relationship represented in Figure 13 is
consistent with the type pattern in Figure 9:

• a dependency relationship of the Message
storage functional component on Message
transmission, which improves the alignment.

Another dependency relationship represented in Figure
13 is consistent with the type pattern in Figure 10:

• a dependency relationship of the Message
sending functional component on Message
transmission, deduced from the Message
exchange splitting.

Figure 13. Messaging domain solution.

Using type patterns thus provides a perfect alignment:
() 1Messaging=BFAM (see (1)).

Functional architects may use this assessment as a tool to
improve the business alignment, by checking if the suggested
modifications conform to the enterprise strategy.

VII. CONCLUSION

The modelling process described in this paper enables a
representation of the alignment of an IS functional view with
the business view of the IS company. The alignment
definition is consistent with the meta-modelling used to
instantiated both the business and the functional models. An
alignment measure is proposed, which provides estimation of
the synchronization of a company’s strategic integration of
business and functional views.

Finally, a good alignment of the target functional view
with the business target view induces a good alignment of
the applicative view, which in turn implements the target
functional view with the target business view. We illustrate
this applicative alignment in Figure 14 with our “home
domain”. An applicative view that implements the functional
view is represented in Figure 7.

Figure 14. “Home IS” applicative view implementing the Eat at home
“Home process”.

Functional dependency is implemented in the applicative
view by only one call from the “Home bus”. Function
dependency implementation is deployed on the doors
between rooms. “Home bus” traffic is thereby lowered. This

Kitchen Dining room Food repository

Eat at home

2

1

3
Have diner

Cook at home Get food

127

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

property, deduced from the alignment improvement of the
functional view in compared to the business view, may be
significant in Service Oriented Architecture (SOA) [21]
design.

The applicative view may contain several hundred
applications, which can hardly be directly mapped with the
company business processes. In our approach, the target
functional view is used as a link between the business and
applicative views. This indirect mapping allows an efficient
tool to govern IT evolution according to company strategy.

REFERENCES
[1] J. Simonin, E. Bertin, Y. Le Traon, J.-M Jézéquel, and N. Crespi,

“Business and Information System Alignment: a Formal Solution for
Telecom Services,” International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, 2010.

[2] J.A. Zachman, “A Framework for Information Systems Architecture,”
IBM Systems Journal 26, no. 3, 1987, pp. 276–292.

[3] C. Longépé, “The Enterprise Architecture IT project – The
Urbanisation paradigm,” Kogan Page, 2003.

[4] I. Jacobson, G. Booch, and J. Rumbaugh, “The Unified Software
Development Process,” Addison-Wesley, 1999.

[5] C.M. Pereira and P. Sousa, “Getting into the Misalignment between
Businesss and Information Systems,” 10th European Conference on
Information Technology Evaluation, Madrid, Spain, 2003.

[6] J.C. Henderson and N. Venkatraman, “Strategic Alignment:
Leveraging Information Technology for Transforming
Organizations,” IBM Systems Journal, vol. 32, no. 1, 1993, pp. 4–16.

[7] The Business Rules Group, “The Business Motivation Model,”
http://www.businessrulesgroup.org/bmm.shtml, 2007.

[8] J. Simonin, Y. Le Traon, and J.-M.Jézéquel, “An Enterprise
Architecture Alignment measure for Telecom Service development,”
11th IEEE International Enterprise Distributed Object Computing
Conference, Annapolis, Maryland U.S.A., 2007.

[9] J.N. Luftman, R. Papp, and T. Brier, “Enablers and Inhibitors of
Buisness-IT Alignment,” Communications of the Association for
Information Systems, vol. 1, article 11, 1999.

[10] S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, 1994, pp. 476–493.

[11] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language – User Guide,” Addison – Wesley, 1999.

[12] P.P.S. Chen, “The entity relationship model - Towards a unified view
of data,” ACM Transactions on Database Systems, vol. 1, no. 1, 1976,
pp. 9–36.

[13] Open Mobile Alliance, “OMA Service Environment,” OMA-Service-
Environment-V1_0_2-20050803-A, 2005.

[14] M.J. Shepperd and D. Ince, “Derivation and Validation of Software
Metrics,” Oxford University Press, 1993.

[15] S.G. MacDonell, M.J. Shepperd, and P.J. Sallis, “Metrics for
Database Systems: An Empirical Study,” Software Metrics
Symposium, 1997, pp. 99–107.

[16] H. Zimmermann, “OSI Reference Model – The ISO Model of
Architecture for Open Systems Interconnection,” IEEE Transactions
on Communications COM-28, no. 4, 1980.

[17] M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of controller
area network,” Computing & Control Engineering Journal, vol. 10,
n°3, 1999, pp. 113–120.

[18] TM Forum, “enhanced Telecom Operations Map,”
http://www.tmforum.org/browse.aspx?catID=1648

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns –
Elements of Reusable Objetc-Oriented Software,” Addison Wesley,
1995.

[20] M. Hammer, J. Champy, “Reengineering the Corporation: a
Manifesto for Business Revolution,” Harper – Collins, 1993.

[21] R.T.Burlton, “Business Process Management – Profiting from
Process,” Sams Publishing, 2001.

128

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Model Validation in a Tool–Based Methodology for
System Testing of Service–Oriented Systems

Michael Felderer∗, Joanna Chimiak–Opoka∗, Philipp Zech∗, Cornelia Haisjackl∗, Frank Fiedler†, Ruth Breu∗
∗Institute of Computer Science

University of Innsbruck
Innsbruck, Austria

Email: {michael.felderer, joanna.opoka, philipp.zech, cornelia.haisjackl, ruth.breu}@uibk.ac.at
†Softmethod GmbH
Munich, Germany

Email: frank.fiedler@softmethod.de

Abstract—In this article we present a novel model–driven
system testing methodology for service–centric systems called
Telling TestStories, its tool implementation and the underlying
model validation mechanism. Telling TestStories is based on
tightly integrated but separated platform–independent require-
ments, system and test models. The test models integrate test
data tables and encourage domain experts to design tests. This
process is supported by consistency, completeness, and coverage
checks in and between the requirements, system and test models
which guarantees a high quality of the models. Telling TestStories
is capable of test–driven development on the model level and pro-
vides full traceability between all system and testing artifacts. The
testing process of the Telling TestStories methodology comprises
model development, model validation and system validation. The
model development and the system validation are managed by
the Telling TestStories tool and the model validation is managed
by the SQUAM tool. All process steps, the underlying artifacts
and the tools for implementing the process steps are presented
by an industrial case study.

Keywords-Model–Driven Testing; System Testing; Model Val-
idation; Testing Methodology; Testing Tools; Service–Oriented
Architecture;

I. INTRODUCTION

The number and complexity of service–oriented systems for
implementing flexible inter–organizational IT based business
processes is steadily increasing. Basically, a service–oriented
system consists of a set of independent peers offering services
that provide and require operations [1]. Orchestration and
choreography technologies allow the flexible composition of
services to workflows [2], [3]. Arising application scenarios
have demonstrated the power of service–oriented systems.
These range from the exchange of health related data among
stakeholders in health care, over new business models
like SAAS (Software as a Service) to the cross-linking of
traffic participants. Elaborated standards, technologies and
frameworks for realizing service–oriented systems have been
developed, but system testing tools and methodologies have
been neglected so far.

System testing of service–oriented systems, i.e., validating
the system’s compliance with the specified requirements, has
to consider specific issues that limit the testability of such

systems including the integration of various component and
communication technologies, the dynamic adaptation and
integration of services, the lack of service control, the lack of
observability of service code and structure, the cost of testing,
and the importance of service level agreements (SLA) [4].

Model–driven testing approaches [5], i.e., the derivation of
executable test code from test models by analogy to Model
Driven Architecture (MDA) [6], are particularly suitable for
system testing of service–oriented systems because they can
be adapted easily to changing requirements, they support
static model validation to improve the quality of the tests,
they provide an abstract technology and implementation
independent view on tests, and they allow the modeling
and testing of service level agreements. The latter allows
for defining test models in a very early phase of system
development even before or simultaneous with system
modeling supporting test–driven development on the model
level.

In this article, we present a tool–based methodology to
model–driven system testing of service–oriented systems
called Telling TestStories (TTS) and its integrated model
validation mechanism. The methodology is explained by an
industrial case study from the telecommunication domain.

TTS is based on separated but interrelated requirements,
system, and test models. All requirements in the requirements
model are traceable to system and test model artifacts. The
test model invokes operations provided by system services.

The quality of manually designed models and therefore
the quality of the overall test results in our methodology
can significantly be improved by model validation which is
therefore a core component of TTS.

Model validation is an activity where the model is statically
analyzed against a set of consistency and completeness criteria
and metrics. Consistency criteria assure that a model is non–
contradictory, and completeness criteria assure that a model
element contains all essential information. We define intra–

129

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model validation checks, e.g., that each test contains at least
one assertion, and inter–model validation checks, e.g., that
each requirement is traceable to at least one test. Additionally,
we consider coverage checks, i.e., inter–model completeness
checks where one model is the test model, e.g., that each
system service is invoked in at least one test. Although our
validation rules check the conformance of models and model
elements, we do not use the term verification in our respect
to avoid confusion with formal verification based on a proof
system.

Besides the advantages of model–driven testing and model
validation, our approach supports test–driven development
on the model level, the definition and execution of tests in
a tabular form as in the Framework for Integrated Testing
(FIT) [7], guarantees traceability between all types of
modeling and system artifacts, and is suitable for testing SLA
which we consider as non–functional properties. We also
show how our testing approach supports traceability between
requirements, system and test models, and the system under
test (SUT).

This article substantially extends the tool–based
methodology for model–driven system testing of service–
oriented systems presented in [8] where the model
development and the system validation in TTS have
been considered. Herein, we complete the work of [8] by
also considering the model validation in TTS. We define
consistency and completeness/coverage metrics and criteria
in and between the requirements, system and test model. We
also explain how the model validation has been implemented
in the framework for Systematic Quality Assessment of
Models (SQUAM).

The article is structured as follows. We first present the basic
concepts of the TTS methodology by defining the underlying
artifacts, the testing process and the metamodel of the model
artifacts (see Section II). We then explain the model develop-
ment, the model validation, and the system validation by a case
study and its tool integration (see Section III) and describe the
architecture of the TTS and SQUAM tool–implementations
(see Section IV). Afterwards we provide related work (see
Section V), and finally we draw conclusions and discuss future
work (see Section VI).

II. BASIC CONCEPTS OF THE METHODOLOGY

A testing methodology defines a testing process and the
underlying artifacts such as the defined models, the generated
code, and the running systems.

In this section, we provide an overview of the TTS artifacts,
the testing process and the metamodel of the model artifacts
which is the basis for model validation.

A. Artifacts of TTS

Fig. 1 shows the artifacts and dependencies within the
TTS framework. In the TTS framework we can distinguish

three formalization levels with informal artifacts (at the top),
model artifacts (in the middle), and implementation artifacts
(at the bottom). Informal artifacts are depicted by clouds,
formal models by graphs, code by transparent blocks and
running systems by filled blocks. Due to formalization at the
two lower levels we can conduct automatic transformations
and validations. Formalized dependencies between artifacts
are depicted by solid lines, whereas informal dependencies
are depicted by dashed lines. In the following paragraphs, we
explain the artifacts and dependencies of the TTS framework.

System Under Test
Test Code

Requirements Model

System Model

Test System

Validation,Coverage,Transformation

Test Controller

Adapter

Informal Requirements

Informal Artefact

Formal Model

Code

Running System

Code Generation

Traceability

Validation

Traceability

Validation

Testing

Test Model

Fig. 1. Overview of the TTS Artifacts

1) Informal level: There is only one type of artifact on
this level, namely the Informal Requirements, i.e., written
or non–written capabilities and properties of the system. This
artifact is not discussed in detail because it is not in the main
focus of our testing methodology and as an informal one can
not be automatically validated.

2) Model level: There are three models on this level:
requirements, system and test model. The models are formally
related through different dependencies related to: traceability,
validation, coverage, and transformation.

Requirements Model. The requirements model contains
the requirements for system development and testing. Its
structured part consists of a requirements hierarchy. The
requirements are based on informal requirements depicted as
cloud. The requirements model provides a way to integrate
textual descriptions of requirements which are needed for
communication with non–technicians into a modeling tool.

System Model. The system model describes the system
structure and system behavior in a platform independent
way. Its static structure is based on the notions of services,

130

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

components and types. Each service operation call is assigned
to use cases, actors correspond to components providing
and requiring services, and domain types correspond to
types. We assume that each service in the system model
has a one–to–one correspondence to an executable service
in the running system to guarantee traceability. Therefore
the requirements, the service operations and the executable
services are traceable.

Test Model. The test model defines the test data and the test
scenarios as so called test stories. Test stories are controlled
sequences of service operation invocations exemplifying the
interaction of components. Test stories may be generic in the
sense that they do not contain concrete objects but variables
which refer to test objects provided in tables. Test stories
can also contain setup procedures, tear down procedures and
contain assertions for test result evaluation. The notion of
a test story is principally independent of its representation.
We have used UML sequence diagrams in previous case
studies [9] and use activity diagrams in this article. Test
stories include references to a table of test data including
values for all free parameters of the test story. Each line in
this table defines test data for one test case. We use the terms
’test story’ and ’test’ interchangeably in this article depending
on the context. If we address the more abstract view, we use
the term ’test’. If we address the more application–oriented
and process–oriented view, we use the term ’test story’.

Traceability. For model maintenance, transformations and
validations traceability between different model elements is
required. In the TTS framework traceability between elements
on the model level is guaranteed by links between model
elements, and between the model level and the implementation
level by adapters for each service. The adapters link service
calls in the model to executable services. Therefore every
service invocation is traceable to a requirement.

Transformation. In the TTS framework we consider
model–to–model transformations to obtain a (partial) test
model from the system model. In such a system–driven
development approach, test behavior and test data can be
extracted from the graph of a global or local workflow.

Validation. Models designed manually require tool
supported validation. Our approach is suitable for test–driven
modeling because the test model is used to validate the
system. In the context of TTS, we consider two properties:
consistency and completeness/coverage.

Consistency checks assure that there is no conflicting in-
formation in models. Consistency of a model enables error–
free transformation from the model to another model or to
the source code. For manually designed (parts of) models
consistency within and between them should be automatically
checked. In TTS we have implemented consistency criteria for
all three models and between pairs of them.

Completeness checks assure that one artifact is complete,
i.e., contains all essential information. Similarly like for
consistency, we can consider completeness within one model
(for elements and their properties) and between models.
Completeness of the system model is crucial for the TTS
framework and determines whether transformations from the
system model to the test model can be applied. If the system
model is complete, then behavioral parts of the test model
can be generated by model transformations.

Coverage can be considered as a variant of inter–model
completeness where one model is the test model. This aspect
is very important in context of testing and is used to check
to what extend the test model covers the requirements and
system model and implicitly the system. We adopted a series
of coverage criteria from testing [10] and model–driven
testing [11] to fit into the TTS framework.

3) Implementation level: At this level the test code
generated from the test model is executed by the test
controller against the system under test. The executable
services of the system under test are invoked by adapters.

Code Generation. The test code is generated automatically
by a model–to–text transformation from the test model as
explained in [12]. For each test in the test model, a test code
file is generated.

Test Code. The test code language is Java. Adapters which
bind abstract service calls in the test code to running services
of the system under test make the test code executable.

Adapters. The adapters are needed to access service
operations provided and required by components of the
system under test. For a service implemented as web service,
an adapter can be generated from its WSDL description.
Adapters for each service are the link for traceability between
the executable system, the test model and the requirements.
Adapters make it possible to derive executable tests even
before the system implementation has been finished which
supports test–driven development.

Test Controller. The test controller executes the test
code and accesses the system services via adapters. Our
implementation of the test controller executes test code
in Java but other JVM–based programming or scripting
languages are also executable without much implementation
effort.

Test System. The test controller, the adapter and the test
code constitute the test system.

Testing. The evaluation of the service–centric system by
observing its execution [10] is called testing. Services are
invoked in the test code executed by the test controller via
adapters.

131

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

System Under Test. The system under test is a service–
oriented system, i.e., offering services that provide and
require interfaces. It may contain special interfaces for testing
purposes.

The informal requirements can be considered as external
input to the TTS framework, and the system under test is the
target of the application of TTS. This is shown by two dashed
arrows in Fig. 1. The first dashed arrow goes from the informal
requirements to the TTS requirements model, and the second
dashed arrow goes from the test controller and adapters to the
system under test. Both, the informal requirements and the
system under test, are out of the scope of this article.

B. Testing Process

The process consists of a design, validation, execution, and
evaluation phase and is processed in an iterative way. Initially,
the process is triggered by requirements for which services and
tests have to be defined. The process is depicted in Fig. 2.

Test Execution

TestModel

TestRequirements

Test
Design

DatapoolTests

TestCode

Test Selection and Test Code Generation

SystemModel

System
Design

Services

SUT

System Implementation

TestReport Test Analysis

Validation
Coverage

Transformation

Testlog

Requirements Model

Adapter
Implementation/

Generation

Adapter

Requirements
Definition

Fig. 2. Model–driven Testing Process

The first step is the definition of requirements. Based on
the requirements, the system model containing services and
the test model containing tests are designed. The test design
additionally includes the data pool definition and the definition
of test requirements. The system model and the test model,
including the tests, the data pool and the test requirements, can
be validated for consistency and completeness and checked for
coverage. In a system–driven approach tests can be generated
from the system model by model–to–model transformations,
and in a test–driven approach tests can be integrated in the
system model. This validity checks allow for an iterative
improvement of the system and test quality. In principle, the
testing process can also be considered as test model–driven
development process. Our methodology does not consider
the system development itself but is based on traceable ser-
vices offered by the system under test. As soon as adapters
which may be – depending on the technology – generated

(semi–)automatically or implemented manually are available
for the system services, the process of test selection and test
code generation, i.e., model–to–text transformation can take
place. In the tool implementation, adapters for web services
can be generated automatically based on a WSDL descrip-
tion, adapters for RMI access can only be generated semi–
automatically. The generated test code is then automatically
compiled and executed by a test controller which logs all
occurring events into a test log. The test evaluation is done
offline by a test analysis tool which generates test reports
and annotations to those elements of the system and test
model influencing the test result. Test reports and test logs are
implementation artifacts that are not important for the overall
process but for the practical evaluation. Therefore test reports
and test logs have not been considered in the previous section.

In [13] we have introduced the term test story for our way
how to define tests by analogy to the agile term user story
defining a manageable requirement together with acceptance
tests.

The separation of the test behavior and the test data has
been influenced by the column fixture of the Framework for
Integrated Test (FIT) [7] which allows the test designer to
focus directly on the domain because tests are expressed in a
very easy–to–write and easy–to–understand tabular form also
suited for data–driven testing.

The manual activities in the TTS testing process and the
test execution are conducted by specific roles. In Fig. 3 these
roles and their activities are shown.

Test
Execution

Requirements
Definition

System
Design

Test
Design

Adapter
Implementation Software Architect

System Analyst

Domain Expert
Customer

Developer

Fig. 3. Roles in the TTS Process

A Domain Expert or Customer, which are represented by
one role in Fig. 3, are responsible for the test design and
the requirements definition. Additionally, domain experts or
customers may initiate the test execution and all related auto-
matic activities (validation, test code generation, test analysis).
Domain experts and customers are responsible for the same
activities but have different views on testing, i.e., domain
experts represent the internal view conducting system tests and
customers represent the external view conducting acceptance
tests.

A System Analyst is partially responsible for the test design,
the requirements definition, and the system design. Addition-
ally, the system analyst may also initiate the test execution
and all related activities. The system analyst is especially
responsible for the definition of non–functional requirements,
e.g., for security or performance and corresponding tests.

132

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Software Architect is partially responsible for the system
design and the adapter implementation. The software architect
defines interfaces and component technologies in coordination
with the system analyst and the developer.

A Developer implements adapters if they have to be devel-
oped manually.

C. Metamodel

In this section we define a metamodel for the requirements
model, the system model, and the test model of TTS. The
consistency, completeness, and coverage checks defined in
Section III-B are based on this metamodel. The metamodel is
shown in Fig. 4.

The package Requirements Model defines
the element Requirement which is supertype
of the types FunctionalRequirement and
NonFunctionalRequirement. The type
NonFunctionalRequirement may have further
subtypes for specific types of non–functional requirements,
e.g., security or performance. The requirements itself can
be of an arbitrary level of granularity ranging from abstract
goals to concrete performance requirements. Requirements
are modeled explicitly on the metamodel level to define
traceability between requirements and other model elements
such as tests. The requirements model is very generic but it
can easily be extended for specific purposes.

The package System Model defines Service elements
which provide and require Interface elements and are
composed of basic services. Each interface consists of
Operation elements which refer to Type elements for
input and output parameters. Types may be primitive types,
enumeration types or reference types. Operations may also
have a precondition (pre constraint) and a postcondition
(post constraint). Each service has a reference to Actor
elements. It is also possible to identify services with a service
operation (if there is only one) and to identify them with
service calls. Services can be therefore be considered as
executable use cases. Services may have LocalProcess
elements that have a central control implemented by a
workflow management system defining its internal behavior.
Different services may be integrated into a GlobalProcess
without central control. Orchestrations can be modeled as
local processes, and choreographies as global processes.

The package Test Model defines all elements needed for
system testing of service–centric systems. A TestSequence
consists of SequenceElement blocks, that integrate a
Teststory, its DataList, and an Arbitration. A
Teststory consists of the following elements:

• Assertion elements for defining expressions for com-
puting verdicts,

• Call elements, i.e. Servicecall elements for invok-
ing operations on services, or Trigger elements for
operations that are called by a service,

• ParallelTask elements for the parallel execution of
behavior, or

• Decision elements for defining alternatives.
Testsstory elements are completely recursive and, in

principle, there is no limit to the number of levels to which
tests can be nested. However, in practice nesting depths greater
than three are not applied and it is even not clear what use
nesting depths greater than two or three would be.

A DataList contains Data elements that may be gen-
erated by a DataSelection function. A Testsequence
has several TestRun elements assigning Verdict values
to assertions. The verdict can have the values pass, fail,
inconclusive, or error. Pass indicates that the SUT behaves
correctly for the specific test case. Fail indicates that the
test case has violated. Inconclusive is used where the test
neither passes nor fails. An error verdict indicates exceptions
within the test system itself. In the model itself only a pass
or a fail can be specified. Inconclusive or error are assigned
automatically. This definition of verdicts originates from the
OSI Conformance Testing Methodology and Framework [14].

Assertions are boolean expressions that define criteria for
computing pass, fail or inconclusive verdicts. Assertions can
access all variables in the actual evaluation context.

The system model and the test model are created manually
or are partially generated from each other. If the system
model and the test model are created manually, their quality
is validated by consistency, completeness and coverage rules.
Alternatively, if the system model is complete then test sce-
narios, test data and oracles can be generated. If the test model
is complete, then behavioral fragments of the system model
can be generated.

An Arbitration element defines a criterion on the set
of the verdicts of a test run to determine whether a sequence
of tests assigned to a SequenceElement has been executed
successfully or not.

In the case of a test, a data list defines a test table, i.e., a
list of lists. Data selection functions for example randomly
generate integers within a specific range. This function is
then denoted by genInt(a,b) and generates a random
integer between the integers a and b.

The TTS metamodel has been implemented as a UML
profile. For all metamodel elements despite data–specific el-
ements that are implemented in tables, stereotypes of the
same name have been introduced and assigned to UML
metaclasses, e.g., a Service in our metamodel is as-
signed to the UML metaclass Class, a Requirement
is assigned to Class, a Testsequence is assigned to
an Activity, a SequenceElement is assigned to an
Action, a Teststory is assigned to an Activity, and
a Servicecall is assigned to an Action.

III. TOOL–BASED CASE STUDY

In this section we present a tool–based case study for our
testing methodology. We consider the the model development

133

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Requirements Model

Requirement

FunctionalRequirement NonFunctionalRequirement

Test Model

Assertion

TestRequirement

Teststory TestElement

DataList

Call

Verdict

Status

TestRun

Servicecall

Trigger
DataSelectionData

Arbitration Coverage

System Model

GlobalProcess

ActorService

Type

Interface

Operation

LocalProcess

Constraint

ParallelTask

Decision

*

*

*

*
*

*

0..1

*

1

*

1 1

*

1 *

1

1

*

* *

1
*

*

*

*1

*

*

*

*

1

*

pre 10..1

post 10..1

*

* *

*

*

requires
*

1
provides

*

1

Fig. 4. Requirements, System and Test Metamodel of TTS

phase (see Section III-A), the model validation phase (see
Section III-B), and finally the system validation phase (see
Section III-C) of the TTS testing process.

A. Model Development

We have applied our testing tool on several case studies,
including an industrial one. In this section, we explain our
methodology and its tool implementation by a Telephony
Connector case study.

The Telephony Connector is an application in the area of
Computer Telephony Integration (CTI) and parts of it have
already been tested with unit tests. But the whole application
can currently only be tested by manual tests. TTS provides
model–driven testing support for the telephony connector
which is more efficient concerning the testing time and the
error detection rate.

In this section, we explain how we have tested the
telephony connector case study with our framework and
which conclusions can be drawn. As first step, we have
developed the requirements, the static parts of the system
model and the test model with our tool.

The requirements are modeled as class diagram where high
level requirements are aggregated by low level functional and
non–functional requirements. This representation is analogous
to requirements diagrams of SysML [15] and guarantees that
requirements are integrated into the model which simplifies
the implementation of traceability.

The requirements for routing a call are depicted in Fig. 5.

Fig. 5. Requirements to the Callmanager Application

We have modeled a requirement for routing a call
(Req_1) and its parts, including non–functional performance
requirements to hangup a call within 1000ms (Req_1.1.1)
and to send the route signal within 1000ms (Req_1.2.1).

In the system model types are represented as class diagrams,
and services as classes with their providing and requiring
interfaces. In Fig. 6 the interfaces provided by the service

134

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VehicleService and TelephonyConnectorService are depicted.
Required contracts for the operations depicted in the inter-
faces, are modeled in terms of pre– and postconditions. Yet
these contracts may only be defined over the scope of input
parameters to service invocations, as currently SUT specific
program variables reside in another runtime and hence are
outside the accessibility of TTS.

Fig. 6. Extract of the Services of the Callmanager Application

Local and global processes are modeled as behavior
diagrams, i.e., state machines, activity diagrams or sequence
diagrams. In our experiments we have mainly modeled global
workflows by activity diagrams, and local workflows by
activity diagrams and state machines.

Tests are modeled as activity diagrams or sequence dia-
grams. Test sequences or high level test suites are modeled as
activity diagrams. In Fig. 7 a test is depicted.

Fig. 7. Test story for the Callmanager Application

In the upper part of the test depicted in Fig. 7, the test
RouteCall for routing a call is depicted. After the car service
(Vsim) initiated a call, the Callmanager routes the call and
terminates the call. The results of these calls are triggered
on the test controller. Intermediate assertions check whether

the result provided by the trigger equals to the expected one.
Each test may have test data which is defined for the test
story RouteCall in the table RouteCall.test depicted in the
lower part of Fig. 7. The test stories and their corresponding
data files are executed as test sequence elements depicted in
Fig. 10 which defines an additional arbitration to define a
global verdict specifying when all tests of a story have passed.

B. Model Validation

As mentioned in Section II-A model validation comprises
checks for consistency and completeness or coverage. The val-
idation is static, i.e., it is based on rules defined on metamodel
elements without program execution. Due to the dynamic eval-
uation of test models provided by early test execution, static
validation provides the most efficient and effective validation
result: dynamic validation is provided by early test execution,
and the modeling effort and computational complexity for
static analysis is not as high as for verification techniques
like model checking and constraint solving. The focus on
static analysis is also supported by empirical research because
in [16] it is shown that incompleteness and inconsistencies
in UML models are already detected with OCL–based static
analysis and that formal methods such as model checking or
constraint solving are not required.

First each model is validated as a separate artifact (intra–
model aspects) and then in relation to other models (inter–
model aspects). In total we have 3 single models (require-
ments, system and test model) and 3 pairs of models (Table I).
The inter–model relationship between the requirements, sys-
tem and test model is implemented by tagged values or asso-
ciations. For instance, the relationship between a requirement
(in the requirements model) and a test (in the test model)
is implemented by a tagged value of the requirement and
the test model element referencing each other. In Fig. 5 the
requirement Req_1 is associated to the test RouteCall.

As mentioned before in TTS we investigate three types
of validation rules: consistency, completeness, and coverage
rules.

Consistency checks assure that there is no conflicting
information in models. Consistency of a model enables
error–free transformation from the model to another model
or to the source code.

Completeness checks assure that one artifact is complete,
i.e., contains all essential information. Completeness of
the system model is crucial for the TTS framework and
determines whether transformations from the system model
to the test model can be applied.

Coverage can be considered as a variant of inter–model
completeness where one model is the test model. This aspect
is very important in context of testing and is used to check
to what extend the test model covers the system model and
implicitly the system. We adopted a series of coverage criteria
from testing [10] and model–driven testing [11] to fit into TTS.

135

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Additionally, we distinguish between criteria and metrics.
Criteria provide only a boolean result: true if a model fulfills
a given criterion, false otherwise. They provide a warning
mechanism implemented, i.e., the severity levels information,
warning, and error, to inform modelers about an incorrectness
in a model. Metrics have a numeric result. Typically they
provide information to what extend a corresponding criterion
is fulfilled, thus they are fractions ranging from 0 to 100%.
They can be used for the evaluation of models in a similar way
as for the evaluation of source code in [17]. Metrics are well
suited for summarizing particular aspects of models and for
detecting outliers in large models. They scale up and aggregate
many details of models.

To address particular quality criteria we start from informal
descriptions to obtain metrics at the final stage. First we define
a criteria in natural language. We adapt it to the context of the
TTS metamodel. Next, we express it either as a constraint
over a model or as a boolean query. Finally, we construct a
numeric metric for it. As a formalization language we apply
the Object Constraint Language (OCL) [18]. Table I provides
and overview of specified criteria and metrics as a proof of
concept. Before we give more details about example criteria
and metrics, we will describe their development process.

TABLE I
OVERVIEW OF VALIDATION ASPECTS

consistency completeness/coverage
type models metrics criteria metrics criteria

in
tr

a Requirements ×
√ √ √

co
m

pl
et

.

System ×
√ √ √

Test ×
√ √ √

in
te

r Req–Syst ×
√ √ √

Req–Test ×
√ √ √

co
v.

Syst–Test ×
√ √ √

To specify criteria and metrics we follow the model analysis
and OCL library development process (Fig. 8). The upper
swimlane corresponds to the manual model analysis, the lower
swimlane to the library development process. First, a common
requirement for model analysis and library development is
specified. A quality aspect is selected, e.g., a completeness
criterion defining that each requirement should have a unique
name. For this aspect OCL definitions and queries are specified
in the development step. The next step is quality assessment,
where the results of the manual and automatic analysis are
cross–checked. For the selected aspect, manual inspection is
used to determine the result of this aspect for the model. Si-
multaneously, appropriate queries are evaluated on the model.
If the results of the model inspection and the query evaluation
differ, the reason has to be determined and either the OCL
definition specification or manual inspection needs to be
repeated. The manual inspection of the model is conducted as
long as correctness of a query achieves a defined confidence
level. Afterwards the query can be used for automatic model
analysis.

If the results are equal, the last step, i.e., quality assurance,
can be executed. The aim of this step is to assure semantic

correctness of OCL expressions in the future development of
the library. For this purpose OCL unit tests [19] are specified
and evaluated regularly. In the test evaluation step, OCL unit
tests with corresponding OCL test models are required. The
OCL test model is an instance of the requirements, system
and test metamodel. Note that the OCL test model is not the
same as a test model in TTS but a model instance of the
considered metamodel for the OCL expression under test. This
instance is used as test data for OCL unit tests to assess the
desired semantics of definitions. OCL unit tests are similar to
JUnit [20] tests applied to assess the semantic correctness of
source code.

In Fig. 9 we show the size of the OCL project developed
for the TTS approach. We specified 83 definitions used in
43 queries and split into 13 libraries. The number of OCL
expressions is higher than the total number of the criteria (26)
and metrics (10) as it was necessary to define helper methods.
The helper expressions can be used in the specification of
further criteria/metrics and make their development less time
consuming. To assure correctness of OCL expressions we
wrote 57 OCL unit tests [19] and evaluated them over one
test model.

Fig. 9. OCL Project Statistics

In the next paragraphs we show the OCL formalization of
selected consistency, completeness and coverage rules.

a) Consistency: We have defined several consistency
criteria to assure that there is no conflicting information in
the models.

The criterion isServiceUnique in Listing 1 guarantees
the uniqueness of service definitions in a system model.

The criterion checks for a specific service whether
its name identifier is unique. An additional query
allServicesUnique checks whether all services in
the system model are unique.

The criterion isAssertionConsistent in Listing 2
guarantees the consistency of an assertion.

If the definition of pass equals the definition of fail
then the definition is inconsistent because it is not
possible to compute a meaningful verdict. The definition

136

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 8. The model analysis and library development process (from [21]).

c o n t e x t TTS : : S e r v i c e
def i s S e r v i c e U n i q u e :

i s S e r v i c e U n i q u e () : Boolean =
TTS : : S e r v i c e . a l l I n s t a n c e s ()
−>s e l e c t (r | r . b a s e C l a s s . name= b a s e C l a s s . name)
−>s i z e () = 1

c o n t e x t Model
def a l l S e r v i c e s U n i q u e :

a l l S e r v i c e s U n i q u e () : Boolean =
TTS : : S e r v i c e . a l l I n s t a n c e s () .

i s S e r v i c e U n i q u e ()−> f o r A l l (s | s = t rue)

Listing 1. OCL definition for unique service

c o n t e x t TTS : : A s s e r t i o n
def i s A s s e r t i o n C o n s i s t e n t :

i s A s s e r t i o n C o n s i s t e n t () : Boolean =
not (p a s s = f a i l)

c o n t e x t Model
def a l l A s s e r t i o n s C o n s i s t e n t :

a l l A s s e r t i o n s C o n s i s t e n t () : Boolean =
TTS : : A s s e r t i o n . a l l I n s t a n c e s () .

i s A s s e r t i o n C o n s i s t e n t ()−> f o r A l l (a | a = t rue)

Listing 2. OCL definition for consistent assertion

allAssertionsConsistent checks the criterion
isAssertionConsistent for all assertions in a specific
model.

b) Completeness: We have defined several completeness
criteria which guarantee that artifacts contain all essential
information. In our respect the completeness of test models is
very important because otherwise no meaningful test code can
be generated. In Listing 3 a criterion to check the completeness
of a test story is defined.

A test story is complete if it has at least one assertion
to compute a verdict and a service call to interact with the
system. The definition hasAssertion checks whether
a test story has at least one assertion and the definition

c o n t e x t TTS : : T e s t s t o r y
def h a s A s s e r t i o n :

h a s A s s e r t i o n () : Boolean =
b a s e A c t i v i t y . a l lOwnedElements ()−> s e l e c t (o |

o . p r o f i l e I s T y p e O f (’ A s s e r t i o n ’))−> s i z e () > 0

c o n t e x t TTS : : T e s t s t o r y
def h a s S e r v i c e c a l l :

h a s S e r v i c e c a l l () : Boolean =
b a s e A c t i v i t y . a l lOwnedElements ()
−>s e l e c t (o | o . p r o f i l e I s T y p e O f (’ S e r v i c e c a l l ’))
−>s i z e () > 0

c o n t e x t TTS : : T e s t s t o r y
def i s T e s t s t o r y C o m p l e t e :

i s T e s t s t o r y C o m p l e t e () : Boolean =
h a s A s s e r t i o n () and h a s S e r v i c e c a l l ()

Listing 3. OCL for completeness of test stories

hasServicecall checks whether a test story has at least
one service call. Finally, the definition isTestComplete
checks whether a test story has at least one assertion
and one service call by invoking hasAssertion and
hasServicecall.

c) Coverage: We have developed several coverage
criteria and metrics based on the coverage criteria from
testing [10] and model–driven testing [11]. In the next
paragraphs we demonstrate how coverage criteria and metrics
are implemented in our approach.

As first example we consider the all requirements coverage
(ARC) defined in [11]. In our context this represents the
coverage between the requirement and the test model. In [11]
ARC says only that all requirements are covered. It is refined
in the context of the TTS metamodel to each requirement has
a test story. “Requirement” in this regard is a model element
that applies the TTS::Requirement stereotype and “has a
test story” means that it has either an action, or an activity
defined, i.e., at least one tagged value referring to a test story
is set. This informal definition results in the OCL definitions

137

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

c o n t e x t TTS : : Requ i remen t
def h a s T e s t S t o r y :

h a s T e s t S t o r y () : Boolean =
(not s e l f . a c t i o n . o c l I s U n d e f i n e d ()) or
(not s e l f . a c t i v i t y . o c l I s U n d e f i n e d ()) or
(not s e l f . c l a s s . o c l I s U n d e f i n e d ())

c o n t e x t Model
def a l l R e q u i r e m e n t s C o v e r a g e :

a l l R e q u i r e m e n t s C o v e r a g e () : Boolean =
TTS : : Requ i remen t . a l l I n s t a n c e s ()

. h a s T e s t S t o r y ()−> f o r A l l (e | e = t rue)

Listing 4. OCL definitions for ARC

p u b l i c q u e r i e s
c o n t e x t Model

query q R e q u i r e m e n t C o v e r a g e M e t r i c :
s e v e r i t y 2
l e t r e s u l t : I n t e g e r =

r e q u i r e m e n t s W i t h T e s t S t o r i e s ()−> s i z e ()
message r e s u l t + ’ from ’

+ TTS : : Requ i remen t . a l l I n s t a n c e s ()−> s i z e ()
+ ’ r e q u i r e m e n t s have a t e s t s t o r y . (’
+ (r e s u l t / (TTS : : Requ i remen t . a l l I n s t a n c e s ()
−>s i z e () . max (1)) ∗ 1 0 0) . round ()
+ ’%) ’

endmessage
endquer ie s

Listing 5. OCL Metrics for ARC

presented in Listing 4.
In the listing both definitions return a value of the

type Boolean which provides decision support but is
not very informative. To gain more information from the
model we have defined informative queries that com-
pute a metric and are based on definitions. The query
qRequirementCoverageMetric in Listing 5 extracts
the total number of requirements and the number of all
requirements which have a test story assigned. The num-
ber of all tested requirements is computed by the query
requirementsWithTests which is based on the query
hasTestStory defined in Listing 4. The metrics then
computes the ratio between the total number of requirements
and the number of tested requirements. It informs to which
degree the coverage criterion is satisfied. From the metric we
obtain a value between 0 and 1. Alternatively, the ratio can
be expressed as percentage.

For the callmanager example model (see Fig. 5) we obtained
the following result: 6 from 6 requirements have a
test story.(100%). A coverage metrics assigns a num-
ber to a coverage criterion measuring the degree of coverage.
The coverage metrics qRequirementCoverageMetric
in Listing 5 measures the requirements coverage by the ratio of
requirements with an assigned test story to the overall number
of requirements.

Another important coverage criterion is the all services
coverage criterion (ASC) which means that from every service

def i s S e r v i c e I n v o k e d B y C a l l :
i s S e r v i c e I n v o k e d B y C a l l () : Boolean =

s e l f . p r o v i d e s −> e x i s t s (i
| i . g e t A l l O p e r a t i o n s ()
−> e x i s t s (o
| TTS : : S e r v i c e c a l l . a l l I n s t a n c e s ()
−> c o l l e c t (s | s . o p e r a t i o n)
−> i n c l u d e s (o)

)
)

def i s S e r v i c e I n v o k e d B y T r i g g e r :
/∗ t h e same as i s S e r v i c e I n v o k e d B y C a l l

b u t w i t h TTS : : T r i g g e r . a l l I n s t a n c e s () ∗ /

def i s S e r v i c e I n v o k e d :
i s S e r v i c e I n v o k e d () : Boolean =

s e l f . i s S e r v i c e I n v o k e d B y C a l l () or
s e l f . i s S e r v i c e I n v o k e d B y T r i g g e r ()

c o n t e x t Model
def a l l S e r v i c e s C o v e r a g e :

a l l S e r v i c e s C o v e r a g e () : Boolean =
TTS : : S e r v i c e . a l l I n s t a n c e s ()
. i s S e r v i c e I n v o k e d ()−> f o r A l l (e | e = t rue)

Listing 6. OCL Definitions for ASC

at least one operation is invoked in at least one test story. This
coverage criterion is defined between the system and the test
model. This informal definition results in the OCL definitions
shown in Listing 6.

For additional information we have defined a metrics
based on the definition allServicesCoverage which
computes the number of services covered by a set of
tests. The metrics prints the number and the ratio of
all covered services. For the callmanager example model
(see Fig. 6) we obtained the following result: 3 from
3 services have a test story regarding All
Services Coverage.(100%).

C. System Validation

After the test model quality has been validated, the test
execution phase starts. Based on RMI adapters, which have
been provided by the system developer, test code in Java has
been generated from the test model and afterward executed
by the test controller. The evaluation of test run be assigning
verdicts is based on the explicitly defined assertions, the
implicitly defined preconditions and postconditions of the
service calls, and errors originated in the test environment.
Details on these components are explained in the next section.

Finally, the test results are evaluated. In Fig. 10 the evalu-
ation result is depicted by coloring test cases in the test data
table, by coloring test sequence elements, and by annotating
test sequence elements.

The evaluation is based on arbitrations which define criteria
for a sequence of test results in an OCL–like language defined
in [22].

TTS allowed us to perform system wide tests on the
application. In a first step, the system model was developed,

138

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 10. Test Result of a Test Run

needed for the modeling of the various test cases in a next
step. After generating the test code and preparing the test data,
finally the tests had been executed against the SUT.

Among the lessons learned during this case study, the three
most important are:

1) providing complex test data in a proper way to the
testing framework,

2) the communication with asynchronous message ex-
change patterns, and

3) developing an assertion language capable of iterating
complex object structures for test evaluation.

IV. TOOL IMPLEMENTATION

Our methodology is tool–driven and based on Telling Test-
Stories providing the modeling and testing environment (pre-
sented in Section IV-A) and SQUAM providing the validation
environment (presented in Section IV-B).

A. TTS

In this section, we describe the TTS tool implementation
that has been applied on the case study in the previous section
and developed in an industrial cooperation within the Telling
TestStories project [23]

Designed as a set of Eclipse [24] plug-ins, the tool consists
of various components setting up the whole environment, to
keep a high level of modularity. The architecture of the TTS
tool is shown in Fig. 11.

The main components correspond to the activities of our
testing methodology depicted in Fig. 2 and are as follows:

The Modeling Environment is used for designing
the requirements model, the system model and the test
model. It processes the workflow activities Requirements
Definition, System Model Design, Test Model
Design, and Data Pool Definition.

SUTRepository

Testlog

Model

Testdata

TestReport

ModelValidator

TestGenerator

ModelingEnvironment

TestController

TestEvaluator

ServiceAdapter

Fig. 11. Components of the TTS Tool

The Model Evaluator is based on the SQUAM framework
(Section IV-B) and uses OCL as constraint language. It pro-
cesses the workflow activity Validation, Coverage,
Transformation.

The Test Code Generator generates executable Java code
from the test model. It processes the workflow activity Test
Code Generation.

The Service Adapters are used by the test controller to
invoke services on the system under test (SUT). They can
be created manually or generated automatically depending on
the service technology. Adapters correspond to the workflow
activity Adapter Implementation/Generation.

The Test Controller executes the tests against the SUT. It
processes the workflow activity Test Execution.

The Test Evaluator generates test reports and visualizes
test results within the models. It corresponds to the workflow
activity Test Analysis.

In its modularity, the tool is only bound to the Eclipse
framework. The various components can be exchanged
by more custom triggered extensions as the tool follows
established practices (test data modeling in XML, test case
modeling in XMI). In the following, the components will be
outlined in more detail.

1) Modeling Environment: The requirements, system and
test models are denoted as UML models and stored in the XMI
format. Our language is defined via an UML profile imple-
menting the metamodel of Section II-C. Therefore stereotypes
are used to label model elements and tagged values are used to
define additional attributes. The modeling of requirements and
the system model is then straightforward with our customized
editor.

The modeling of tests is more complicated because test
data has to be considered. In a first step, test stories are
described using activity diagrams containing control flow
elements, service invocations and assertions. Not only test
stories, but also test sequences are described using a UML
activity diagram, yet contained in another package of the test
model. Valid test models which can be checked via the model

139

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

p u b l i c i n t e r f a c e I A d a p t e r {
p u b l i c O b j e c t

i n vo ke (S t r i n g se rv i cename , O b j e c t . . . a rgumen t s) ;
}

Listing 7. Service Adapter Interface

evaluator are the input for the test code generator.
After describing a test, the tool allows for generating test

data tables for each test case as a second step of the test
modeling process. These test tables follow the approach of
the FIT framework [7], which allows for assigning concrete
test data (in our case concrete object IDs) to every input
parameter and free variable of assertions occurring in a test
story. The various test data objects referred in the test tables
are provided from a data context, holding instances of the
concrete data objects needed for system testing. By making
use of the Inversion of Control (IoC) container of the Spring
Framework [25], TTS allows for modeling complex data
objects and not only primitive types.

Hence, these test data tables allow for describing and
modeling the execution flow of test cases in a very fine
grained and deterministic way, by manually manipulating the
object contents. Additionally, it is possible to trace down the
erroneous execution of test cases to the test data level by
making use of the IoC’s user-defined object IDs.

2) Model Evaluator: The model evaluator is based on the
SQUAM framework, which is presented in Section IV-B.

3) Service Adapters: The communication of the test con-
troller with the SUT is encapsulated inside generated or
manually implemented adapters, tailored to the concrete SUT.
By encapsulating service invocations and data mapping, the
modeling of test stories and the generation of test code is eased
(see sections IV-A1 and IV-A4) because it can be abstracted
from technical details.

Currently the tool supports the automatic generation of
adapters for services providing a proper WSDL description
of their operation interfaces. The WSDL description itself can
be generated from a proper system model.

In Listing 7 the root interface for every adapter is denoted.
A tailored adapter only has to implement one single method
invoke to be ready–for–use in the tool environment during
the testing process. It support the manual or automatic
development of an adapter for different technologies such as
web services, RMI or CORBA as much as possible.

4) Test Code Generation: The test code generation consti-
tutes one of the core components of the tool environment. The
code generator is implemented based on oAW [26] which is
a framework for domain modeling and model driven devel-
opment, allowing to realize model–to–text transformations as
needed in our case.

The test code generator enables to generate executable Java

code out of the modeled test stories (activity diagrams). In
its implementation the generator visits the contained model
elements of each distinct activity diagram in the order of
the modeled execution flow and produces equivalent source
code (in our case Java). The generated test code is composed
of predefined code templates, called and evaluated during
the visitation of the various model elements. For pre– and
postconditions aspects in the notation of AspectJ [27] are
generated to be evaluated as aspects on service calls during
the test execution.

The above mentioned evaluation of the code templates
focuses on the processing of the applied stereotypes (see
section IV-A1) defined as a part of the tool environment. As
already mentioned earlier, those stereotypes define element
specific tagged values, containing the required information
for proper test case generation. To assure that the test model
meets the requirements posed by the test code generator,
prior to test code generation, the test model is checked for
consistency as explained in section IV-A2. The consistency
rules assure that on the one hand side, the test model only
calls services defined by the SUT and uses data types
processable by the SUT. On the other side, those OCL rules
are used to check, that the test model is valid, in a sense, that
the tagged values of the test specific stereotypes are set.

5) Test Controller: The test controller processes the test
code which is executed with concrete test data and logged
afterwards. Additionally, the engine also provides a commu-
nication interface to the SUT to realize asynchronous service
communication, i.e., the execution of a workflow in the SUT
whose completion is indicated by a callback method onto the
invoking client.

Considered from an architectural point of view, the test
controller itself again consists out of various components:
Data Management Provides the test data objects referenced
in the various test data tables (see section IV-A1). Again, the
IoC container of Spring is used to provide the test data objects
to the test engine. Inside this container the objects are retrieved
by their unique object ID used in the test data tables.

Event Handling This component is used by the whole tool
environment to process events thrown during test execution,
i.e., a VerdictEvent to indicate the evaluation of an assertion
during test execution. Additionally, this component generates
tables as in the FIT framework [7], illustrating the successful
or erroneous execution of a set of test data.

Assertion Evaluation Inferring the outcome of a test run is
provided by this component. Yet, as in contradiction to JUnit
and the like, Telling TestStories allows complex test data to
be used, and hence, also this component allows for iterating
through complex object structures for test evaluation.

Timing Dealing with asynchronous services requires en-
suring that timeouts are met for service responses. This is
encapsulated inside this component by ensuring that responses
to specific service invocations receive the test controller within
a pre–specified duration. Responses are assigned to corre-
sponding service invocations by their method signatures.

140

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

c o n t e x t Model query c h e c k I s V a l i d T e s t M o d e l :
l e t r e s u l t : Boolean =

i f Package . a l l I n s t a n c e s ()−>
any (o | o . p r o f i l e I s T y p e O f (’ T e s t ’)) . o c l I s U n d e f i n e d ()

then f a l s e
e l s e

Package . a l l I n s t a n c e s ()−>
any (o | o . p r o f i l e I s T y p e O f (’ T e s t ’)) . i s V a l i d T e s t M o d e l ()

e n d i f
message r e s u l t endmessage

Listing 8. OCL Query for Testmodel Validity

In the execution phase, the test controller passes through
three states. In an initial state, the test workflow is parsed
and according to its contents, test tasks are generated
encapsulating the modeled test cases. After completion of
creating the tasks the engine enters its second, main state in
which the tests are executed against the SUT. In a third and
final state, the engine generates the above mentioned result
table containing the test outcomes, after all events have been
processed.

6) Test Evaluator: The test evaluator is responsible for
evaluating the results of a test run. As in the FIT framework,
our test evaluator colors test case lines in test tables green,
red or yellow depending on the test result. If a failure can be
assigned to a specific model element, our tool is able to color
it in the activity diagram. We have also integrated high–level
test reporting based on BIRT [28] which generates different
types of graphical test summary reports.

B. SQUAM

In this section, we describe the SQUAM tool implementa-
tion that has been used for the model evaluation within the
TTS framework. SQUAM (Systematic QUality Assessment
of Models) is an integrated framework for UML/OCL–based
model development and OCL–based quality analysis.

It provides support for consistency and coverage checks
in OCL, and supports the definition and generation of high–
quality system and test models. Coverage checks guarantee
that the test models are complete with respect to the system
model and the requirements model. Additionally, coverage
checks are useful exit criteria for test generation. Consistency
checks guarantee model validity which is a prerequisite for
test code generation. Therefore the test code generator uses
the model evaluator to check test model validity prior to test
code generation. In Listing 8 a sample top–level query for
assuring test model validity is denoted.

The SQUAM tool has a plug–in architecture incorporating
in–house developed and existing open source solutions. There
are two editions of SQUAM, a community and a professional
edition. The community edition is integrated into the TTS
framework, whereas the professional one provides features
that can be used to obtain an integrated and user–friendly
OCL development process for criteria and metrics within the

TTS framework. Below we describe the part of the SQUAM
framework integrated into the TTS framework.

Fig. 12. Architecture of the SQUAM Community Edition Tool

The community edition is the core of the framework. It
provides the basic features for writing and editing OCL expres-
sions supporting definitions, (running) queries, (running) unit
tests and their documentation (OCLDoc). It consists of several
plug–ins (see Fig. 12): 3 in–house plug–ins: core, general
library, and OCL evaluator and 2 third plug–ins: Eclipse OCL
evaluator and Antlr.

The core (ocl.editor.community.core) forms the backbone
of the SQUAM application. It contains the basic functionality
like two–step parsing of libraries: using Antrl (org.antlr) for
pre–parsing our OCL extensions and the OCL evaluator
(ocl.evaluator) with Eclipse OCL evaluator (org.eclipse.ocl)
for parsing standard OCL. Moreover, the core provides basic
features for editing OCL expressions (like syntax highlight-
ing, code completion or code formatting), managing UM-
L/ECORE/XML models (and meta–models) and UML profiles
(loading, removing and creation of qualified names).

The general library (library.general) defines an abstract
OCL library as an Eclipse extension point to access OCL
definitions and queries. The basic principle of the general
library is to give third party plug–ins the ability to retrieve
all definitions and queries for further processing.

There are two integration points of the SQUAM framework
into the TTS framework, one for the evaluation of interactive
checks and one for the evaluation of automatic checks. For the
interactive checks, the validation view from the core is used,
and for the automatic checks, the OCL evaluator is used.

V. RELATED WORK

In this section we present tool–based testing frameworks,
model validation techniques, and coverage criteria related to
TTS.

A. Tool–based Testing Frameworks

Model–based testing approaches always have a methodolog-
ical and a tool aspect [11]. There are already some industrial

141

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tools available [29]. TDE/UML [30], a tool suite for test
generation from UML behavioral models, is related to our
approach but focuses on GUI–based systems whereas TTS
focuses on service–centric systems.

FIT/Fitnesse [7] is the most prominent framework which
supports system test–driven development of applications al-
lowing the tabular specification, observation and execution
of test cases by system analysts. Our framework is due
to the tabular specification of test data based on the ideas
of FIT/Fitnesse but integrates it with model–based testing
techniques.

Although test sheets [31] define a fully tabular approach,
support for model–driven testing is missing there.

In [32] a model–driven system testing approach and a
tool implementation that enables test engineers to graphically
design complex test cases based on METAFrame Technolo-
gies’ Application Building Center [33] has been defined. The
approach is similar to TTS but not based on UML and its
generic profiling mechanism.

The PLASTIC framework [34] provides a collection of
tools for online and offline testing both functional and non–
functional properties of service–oriented applications. Some
of the tools are model–based but the tools are not integrated
and do not follow a model–driven testing approach as in the
TTS tool implementation.

B. Model Validation

Validating consistency of UML models has received greater
attention by researchers in recent years [35], but completeness
has also been addressed [16]. Even the interplay between
consistency and completeness has been investigated [36].

Only a small number of approaches such as [37] consider
consistency and completeness of test models, i.e., behavioral
descriptions of operations. But consistency and completeness
between requirements, system and test models as in TTS is
not considered.

C. Coverage Criteria

Comprehensive collections of coverage criteria are defined
in [11] and [10]. In [10] a coverage–driven approach to
software testing is discussed. There are four different types
of testing and corresponding coverage criteria distinguished,
i.e. graph coverage, logical expression coverage, input space
partitioning, and syntax–based coverage. In our integrated
approach, we use artifacts of our metamodel as sources for
test coverage. Behaviors provide graphs, decisions provide
logical expressions and types or services provide partitions of
the input space. We do not have explicit grammar definitions
and therefore syntax–based coverage is not relevant in our
approach.

A collection of structural UML–based coverage criteria for
class diagrams, sequence diagrams, communication diagrams,
state machines, activity diagrams and use case diagrams is
provided in [38]. It includes coverage criteria for state ma-
chines and activity diagrams from [39] where test generation
from UML specifications is discussed. Our approach provides

specific model–based coverage criteria for service–centric sys-
tems supporting the manual or automatic test definition.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we have outlined the model–driven and
tabular system testing methodology Telling TestStories and its
tool implementation. TTS is based on traceable requirements,
system, and test models which are validated even before
test code is generated and executed. The TTS tool used for
model development and system validation, plus the SQUAM
tool used for model validation are explained by a case study
from the telecommunication domain. The TTS tool and the
SQUAM tool consist of a set of Eclipse plug–ins [24] and
are integrated to implement the TTS methodology.

Prior to the use of TTS the system test design has
been done ad–hoc in an unsystematic way mainly by testers
themselves. TTS allows for designing tests in an effective way
because its intuitive graphical and tabular notation supports
the design of tests that can be validated by consistency,
completeness and coverage checks. The TTS methodology
naturally integrates domain experts and customers into the
process of formal and executable test design. The integration
of domain experts and customers may be helpful to reveal
specific test scenarios that would not have been detected
otherwise. TTS is also efficient because the tests can be
defined on an abstract visual level with tool support. After
the initial effort of system model design the advantages of
TTS can be applied. Our implementation of the methodology
has shown that the checks provide additional support for the
validation of the requirements, system, and test model, but
also raises the failure detection rate due to the higher test
quality. In the model of the callmanager case study we found
inconsistencies and incompletenesses that have been detected
with our criteria and removed afterwards. With our validation
checks the effectiveness and efficiency of the approach has
been improved because the quality of test models is higher
and failures are detected earlier. The coverage criteria and
metrics provide useful information to all stakeholders whether
additional tests have to be defined manually or not. Our
validation checks are defined statically on the metamodel and
do not support the dynamic simulation of a model. But due
to our experience this is replaced by early test execution in
iterative software testing and therefore not a severe restriction
compared to dynamic approaches like model–checking which
need additional modeling effort and more knowledge in
formal modeling. Additionally, the information provided
in this process supports the system engineers who are not
experts in test design when defining tests.

Based on research results and user feedback we have
planned further extensions to our methodology, the tool, and
its application.

In the case study at hand functional and performance re-
quirements are considered. But TTS will also be applied to test
other non–functional requirements, e.g., security requirements.

142

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We have already tested positive security requirements with
TTS [40], but testing negative security requirements with TTS
has not been considered yet. So far coverage criteria in TTS
only check the quality of the test model as adequacy criteria
but are not applied for the generation of test cases as selection
criteria. Our OCL–based coverage criteria can be applied to
integrate selective test generation into the TTS methodology.

The TTS tool is already quite mature and on its way
to a practically usable open–source tool for model–driven
system testing of service–centric systems [41]. For this step the
usability of the tool and the interoperability to integrate TTS
with other testing tools has to be improved. For instance, the
usability of modeling tests can be improved by an additional
textual representation of test models which is synchronized
with the graphical representation, to support fast text–based
editing of test models. TTS is suitable for arbitrary service–
centric systems and therefore many application domains are
arising. Applications to an industrial service–centric system
from the health care domain and to the upcoming paradigm
of cloud computing which can also be considered as a specific
service–centric system are planned.

ACKNOWLEDGEMENTS

This work was largely performed as part of the project
MATE under support of the FWF (project number P17380), as
part of the project QE LaB – Living Models for Open Systems
under support of the FFG (project number FFG 822740), and
as part of the SecureChange project under support of the EU
(project number ICT-FET-231101).

REFERENCES

[1] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, “A Method for Engineering a True Service-
Oriented Architecture,” 2008, ICEIS 2008.

[2] OASIS Standard, “Web Services Business Process Execution Lan-
guage Version 2.0 - OASIS Standard,” 2007, http://docs.oasis-
open.org/wsbpel/2.0/.

[3] W3C, “Web Services Choreography Description Language Version 1.0,”
2005, http://www.w3.org/TR/ws-cdl-10/.

[4] G. Canfora and M. D. Penta, “Service-oriented architectures testing: A
survey,” in ISSSE, ser. Lecture Notes in Computer Science, A. D. Lucia
and F. Ferrucci, Eds., vol. 5413. Springer, 2008.

[5] P. Baker, P. Ru Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and
C. E. Williams, Model-Driven Testing - Using the UML Testing Profile.
Springer, 2007.

[6] OMG, MDA Guide Version 1.0.1, www.omg.org/docs/omg/03-06-01.pdf
[accessed: June 30, 2011].

[7] R. Mugridge and W. Cunningham, Fit for Developing Software: Frame-
work for Integrated Tests. Prentice Hall, 2005.

[8] M. Felderer, P. Zech, F. Fiedler, and R. Breu, “A Tool-based method-
ology for System Testing of Service-oriented systems,” in The Second
International Conference on Advances in System Testing and Validation
Lifecycle (VALID 2010), 2010, pp. 108–113.

[9] M. Felderer, B. Agreiter, R. Breu, and A. Armenteros, “Security Testing
By Telling TestStories,” 2010, Modellierung 2010.

[10] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge,
UK: Cambridge University Press, 2008.

[11] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[12] M. Felderer, F. Fiedler, P. Zech, and R. Breu, “Flexible Test Code
Generation for Service Oriented Systems,” 2009, QSIC’2009.

[13] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and F. Schupp,
“Concepts for Model–Based Requirements Testing of Service Oriented
Systems,” 2009, IASTED SE’2009.

[14] ISO/IEC, Information technology – open systems interconnection –
conformance testing methodology and framework, 1994, international
ISO/IEC multi–part standard No. 9646.

[15] OMG, OMG Systems Modeling Language, 2007,
http://www.omg.org/docs/formal/2008-11-01.pdf.

[16] Lange, C. F. J. and Chaudron, M. R. V. , “An empirical assessment of
completeness in UML designs,” in In Proc. of the 8th International Con-
ference on Empirical Assessment in Software Engineering (EASE‘04),
2004.

[17] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in
Practice. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[18] OMG, Object Constraint Language Version 2.0, 2006,
http://www.omg.org/docs/formal/06-05-01.pdf [accessed: June 30,
2011].

[19] J. Chimiak-Opoka, “OCLLib, OCLUnit, OCLDoc: Pragmatic Exten-
sions for the Object Constraint Language,” in Model Driven Engineering
Languages and Systems, 12th International Conference, MODELS 2009,
Denver, Colorado, USA, October 4-9, 2009, Proceedings. LNCS 5795,
A. Schuerr and B. Selic, Eds. Springer, 2009, pp. 665–669.

[20] Object Mentor, “Junit,” 09 2009, http://www.junit.org/.
[21] J. Chimiak-Opoka, B. Agreiter, and R. Breu, “Bringing Models into

Practice: Design and Usage of UML Profiles and OCL Queries in a
showcase,” in Proc. of the 16th Int. Conf. on Information and Software
Technologies,IT’2010, 2010, pp. 265–273.

[22] J. Chimiak-Opoka, S. Loew, M. Felderer, R. Breu, F. Fiedler, F. Schupp,
and M. Breu, “Generic Arbitrations for Test Reporting,” 2009, IASTED
SE’2009.

[23] “Telling TestStories,” http://teststories.info [accessed: June 30, 2011].
[24] “Eclipse,” http://www.eclipse.org/ [accessed: June 30, 2011].
[25] “Spring,” http://www.springsource.org/ [accessed: June 30, 2011].
[26] “oAW,” http://www.openarchitectureware.org/ [accessed: June 30,

2011].
[27] “AspectJ,” http://www.eclipse.org/aspectj/ [accessed: June 30, 2011].
[28] “BIRT,” http://www.eclipse.org/birt/ [accessed: June 30, 2011].
[29] H. Götz, M. Nickolaus, T. Roßner, and K. Salomon, iX Studie Modell-

basiertes Testen. Heise Zeitschriften Verlag, 2009.
[30] J. Hartmann, M. Vieira, H. Foster, and A. Ruder, “A UML–based

approach to system testing,” ISSE, vol. 1, no. 1, 2005.
[31] C. Atkinson, D. Brenner, G. Falcone, and M. Juhasz, “Specifying High-

Assurance Services,” Computer, vol. 41, 2008.
[32] T. Margaria and B. Steffen, “Lightweight coarse-grained coordination:

a scalable system-level approach,” STTT, vol. 5, no. 2-3, 2004.
[33] B. Steffen and T. Margaria, “Metaframe in practice: Design of intelli-

gent network services,” in Correct System Design, Recent Insight and
Advances. London, UK: Springer-Verlag, 1999, pp. 390–415.

[34] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini, “The plastic
framework and tools for testing service-oriented applications,” in ISSSE,
ser. Lecture Notes in Computer Science, A. D. Lucia and F. Ferrucci,
Eds., vol. 5413. Springer, 2008, pp. 106–139.

[35] M. Elaasar and L. Briand, “An Overview of UML Consistency Manage-
ment,” Department of Systems and Computer Engineering, University
of Ottawa, Tech. Rep. SCE-04-18, 2004.

[36] D. Zowghi and V. Gervasi, “On the interplay between consistency,
completeness, and correctness in requirements evolution,” Information
and Software Technology, vol. 45, no. 14, pp. 993 – 1009, 2003.

[37] Amit Paradkar and Tim Klinger, “Automated Consistency and Complete-
ness Checking of Testing Models for Interactive Systems,” Computer
Software and Applications Conference, Annual International, vol. 1, pp.
342–348, 2004.

[38] J. McQuillan and J. Power, “A Survey of UML-Based Coverage Criteria
for Software Testing,” National University of Ireland, Maynooth, Tech.
Rep., 2005.

[39] A. J. Offutt and A. Abdurazik, “Generating Tests from UML Specifica-
tions,” in UML, R. B. France and B. Rumpe, Eds. Springer, 1999, pp.
416–429.

[40] M. Felderer, B. Agreiter, and R. Breu, “Security Testing by Telling
TestStories,” in Modellierung 2010, 2010.

[41] M. Felderer and P. Zech, “Telling teststories – a tool for tabular and
model-driven system testing,” Testing Experience, vol. 12, 2010.

[42] A. D. Lucia and F. Ferrucci, Eds., Software Engineering, International
Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial
Lectures, ser. Lecture Notes in Computer Science, vol. 5413. Springer,
2009.

143

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality-Oriented Design of Services

Michael Gebhart, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | abeck} @kit.edu

Abstract—With the shift to a service-oriented architecture,
goals concerning the IT of an organization, such as an
increased flexibility and maintainability, are expected to be
attained. For this purpose, the building blocks of the service-
oriented architecture, the services, have to be designed that
certain quality attributes, such as loose coupling or autonomy,
are fulfilled. Existing design processes for services name these
quality attributes and consider them as important. However,
they do not explain their usage within a design process in order
to create services that verifiably fulfill these quality attributes.
This article shows an enhancement of existing design processes
that on the one hand comprehensibly describes how to derive
service designs from artifacts of the business analysis and on
the other hand integrates quality attributes in order to enable a
verifiably quality-oriented design of services. The approach is
applied to design services for a system at the Karlsruhe
Institute of Technology that guides students across the campus
of the university.

Keywords-service design; design process; quality attribute;
design decision; soaml

I. INTRODUCTION

Today, several companies structure their information
technology (IT) service-oriented, where functionality is
encapsulated and provided in form of services. The shift to a
service-oriented architecture is mostly associated with the
achievement of goals concerning the IT, such as an increased
flexibility and maintainability [3, 4, 24].

To support the achievement of these goals, quality
attributes could be identified, a service within a service-
oriented architecture should fulfill. Wide-spread attributes
are a unique categorization, loose coupling, autonomy and
discoverability of a service. After the analysis of the
business, the services are designed before they are
implemented. Thus, during the so-called service design
phase, the IT architect has to design the services in a way
that the implementation results in services that fulfill these
quality attributes. The service design phase consists of two
sub phases: the identification and specification phase [5].
Within the identification phase, service candidates as
preliminary services and their dependencies are identified [3,
5]. Service candidates consist of operation candidates that
represent preliminary operations. They constitute the
structural basis for the following specification phase. During
this phase, the service designs for each service are modeled.
They describe the service interfaces for accessing the

provided functionality and the service components that
perform the functionality.

Existing design processes in the context of service-
oriented architectures, as introduced by Erl [3], Engels et al.
[4], the Rational Unified Process [19] for Service-Oriented
Modeling Architecture (RUP SOMA) [5, 6, 7], and the
Service Oriented Architecture Framework (SOAF) [8], focus
on the steps that are necessary to design services at a high
level of abstraction. They even name an excerpt of quality
attributes and consider them as important. However, they do
not describe how the design of the services has to be
performed in order to verifiably fulfill the quality attributes.
Additionally, the design processes are mostly only described
abstractly, so that a detailed description about how to derive
service designs based on a standardized modeling language
from artifacts of the business analysis is missing. Other
work, as introduced by Erl [9, 22], Engels et al. [4], Reussner
et al. [10], Josuttis [11], Maier et al. [12, 13], Perepletchikov
et al. [14, 15], Hirzalla et al. [16], Choi et al. [17] and
SoaML [18], focuses on quality attributes a service should
fulfill. However, the authors of this work do not address how
these quality attributes can be used within a design process in
order to create services with these quality attributes.

This article introduces an enhancement for design
processes as they are introduced in existing work in order to
verifiably design services with certain quality attributes. For
this purpose, the derivation of service designs from artifacts
of the business analysis is described in detail. Additionally,
an iterative analysis and revision phase is added
subsequently to the identification and specification of
services for ensuring the fulfillment of certain quality
attributes. During the analysis phase, the quality attributes of
the current service designs are evaluated by measuring
quality indicators that represent the quality attribute and give
hints about their current value. Afterwards, if the quality
attributes do not correspond to the desired values, the
revision phase is performed. This phase consists of two
steps. First, the design flaws within the current service
designs are identified as they give the IT architect hints about
the model elements within a service design that should be
revised. Afterwards, action alternatives are derived and
presented to the IT architect. They represent design decisions
the IT architect should consider in order to create revised and
improved service designs.

To illustrate our approach, services of a service-oriented
system that guides students across the campus of the

144

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Karlsruhe Institute of Technology (KIT) are designed. This
system has its origin in a service-oriented surveillance
system developed at the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation [33, 34] we
already designed services for [1, 2, 32]. The services are
designed with respect to loose coupling, autonomy, unique
categorization, and discoverability as desired quality
attributes. The service designs are modeled using the
Service-oriented architecture Modeling Language (SoaML)
[18] as standardized UML profile [38] and metamodel for
describing and formalizing service-oriented architectures.
Though SoaML is a very new UML profile and metamodel
and still under development, it is becoming increasingly
accepted and employed.

The article is organized as follows: Section 2 presents the
fundamentals in the context of design processes, quality
attributes, and modeling service designs. In Section 3, the
entire approach for a quality-oriented design of services is
introduced and exemplarily applied for designing services of
the service-oriented KITCampusGuide. Section 4 concludes
the article and offers suggestions for future research.

II. FUNDAMENTALS

A quality-oriented design of services consists of three
essential parts that have to fit together: First, the design
process as framework for the entire quality-oriented design
has to be specified. The design process describes the
necessary phases within the design process and specifies the
derivation of elements created during the business analysis
into elements of the service design phase and transformations
within the design phase. Additionally, the design process
describes when and how to consider quality attributes to
guarantee the fulfillment of quality requirements. The
availability of measureable quality attributes constitutes the
second part of a quality-oriented design of services. The
quality attributes, such as loose coupling and autonomy,
have to be described in a way that the IT architect can
verifiably measure them. The modeling of service designs
represents the third and final part of a quality-oriented
design. The created service designs have to be modeled, i.e.
formalized, that it is possible to evaluate them with respect to
quality attributes and derive implementation artifacts as
starting point for the implementation phase. Existing work
mostly focuses on one of these three aspects.

A. Design Processes

In [3], Erl introduces the service-oriented analysis and
design phases that describe the steps necessary to design
services. According to Erl, first, service candidates, the
included operation candidates, and dependencies between
these service candidates are identified. Afterwards, for each
service candidate an entire service design can be created that
specifies the service in detail. Even though the identification
and specification is described, the comprehensible
transformation of artifacts that have been created during the
business analysis phase into service candidates and
afterwards into service designs is missing. Also quality
attributes, such as loose coupling, are considered as
important but explained textually only. Information how to

evaluate a formalized service design regarding these quality
attributes in order to create service designs with verifiable
quality attributes is not provided. The service candidates and
service designs are also described using an own informal
notation. There is no formal language used.

In [4] Engels et al. describe a method to derive services
from prior described business services. For each business
service a service within the service-oriented architecture is
created. But also in this case, some quality attributes are only
mentioned as important and not explained in a way that they
could be measured on a formalized service design.
Additionally, the design process does not explain how to use
the quality attributes to gain services with certain quality
attributes. Engels et al. also do not use a formal language to
model created services. The services are mostly described
textual.

The Rational Unified Process for Service Oriented
Modeling and Architecture (RUP SOMA) as introduced by
IBM [5, 6, 7] provides a detailed description about how to
derive preliminary service candidates from prior modeled
business processes and how to transfer these candidates into
final service designs. However, also in this case quality
attributes are only mentioned and not further considered. For
modeling service candidates and service designs the
proprietary UML profile for software services is applied
[25]. But in current work [26], there is also a usage of the
standardized SoaML introduced.

In [8], the Service Oriented Architecture Framework
(SOAF) is introduced. This framework describes steps that
result in services with the prescribed quality attribute
business it alignment. The process does not consider own
preferences. Information about how to transfer artifacts
created during the business analysis phase into artifacts of
the service design phase is missing and for modeling service
designs an own notation is used.

B. Measureable Quality Attributes

Other work focuses on the description of quality
attributes and their measurement. Erl presents in [9, 22]
design principles and patterns for services. These principles
and patterns are explained in detail, but the concrete
measurement on formalized service designs is not explained.
Also the integration into an entire design process is missing.

Similarly, Engels et al. [4], Reussner et al. [10], Josuttis
[11], Maier et al. [12, 13], Perepletchikov et al. [14, 15],
Hirzalla et al. [16], Choi et al. [17] and SoaML [18]
introduce important and partially even measurable quality
attributes. But also in this case, the description of them is
addressed. How to use these quality attributes in order to
create quality-oriented service designs is not further
explained. In [2] we presented the evaluation of service
designs based on SoaML. This work already helps IT
architects to evaluate service designs according to the
informal description of quality attributes as described in
existing work. In [1] we introduced how this measurement
can be used for supporting design decisions within a design
process in order to create improved service designs.

145

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Modeling Service Designs

According to Erl [3, 9, 22, 23] and IBM [5, 6, 7], the
design process consists of two phases, the identification and
the specification of services. During the identification phase,
service candidates as preliminary services are identified. In a
next step, final service designs are specified. Thus, to support
the design process with a formal modeling language, the
modeling of service candidates and service designs is
necessary. Erl does not use any formal language whereas
IBM uses an own proprietary UML profile for software
services [25]. In the meanwhile, SoaML [18] has emerged as
a standardized UML profile for modeling services within a
service-oriented architecture. However, the SoaML standard
does not explain how to use this modeling language within a
design process and how to evaluate service designs that have
been created using this language. SoaML supports several
elements of service-oriented architectures. In the following,
we introduce the modeling elements that are of interest in
this article for modeling service candidates and service
designs.

1) Modeling Abstract Capabilities: In SoaML a
Capability element exists that represents a collection of
capabilities. These capabilities describe the functionality a
service provides. The Capability element is a stereotyped
UML class, whilst the capabilities inside are modeled using
operations. Additionally, dependencies between these
Capability elements can be specified. They are modeled by
means of usage dependencies and represent that a group of
capabilities requires other capabilities to be performed. The
following figure shows three Capability elements and their
dependencies.

2) Modeling Service Designs: According to Erl [3, 23],

Engels et al. [4], and IBM [6], a service design includes the
design of a service interface and of a service component.
The service interface describes the service and the service
component realizes its functionality. To model a service
interface, in SoaML the ServiceInterface element exists in
form of a stereotyped UML class. A ServiceInterface
describes the operations the service provides for potential
service consumers. This is specified by a UML interface
that is realized by the ServiceInterface. Additionally, it
includes a specification of operations a service consumer
has to provide for example in order to receive callbacks. For
that purpose a second interface has to be created that is used

by the ServiceInterface. A ServiceInterface also allows the
description of participating roles in form of UML parts and
of an interaction protocol. Latter can be specified by an
UML Activity that is added as OwnedBehavior to the
ServiceInterface. An exemplary service interface is shown
in the following figure. This service interface describes that
one operation is provided and one operation is required to
be provided by the service consumer in order to receive
callbacks. The interaction protocol specifies the order of
operation calls for gaining a valid result.

When calling one of the provided or required operations,

messages are exchanged. These messages are described by
MessageType elements that extend the UML dateTypes. A
MessageType represents a document-centric message and
can contain several dataTypes. In context of specifying
service designs, also these messages have to be described. In
the following, an example for a message is depicted.

«Capability»
Group1

+ Capability1()
+ Capability2()

«use»«use»

«Capability»
Group2

+ Capability3()
+ Capability4()

«Capability»
Group3

+ Capability5()
+ Capability6()

Figure 1. Modeling abstract capabilities

«ServiceInterface»

ServiceName

«interface»

ProvidedOperations

+ operation1(: Operation1Request) : Operation1Response

consumer :
«interface» RequiredOperations

provider :
«interface» ProvidedOperations

+

Interaction Protocol

: provider : consumer

operation1

«use»

«interface»

RequiredOperations

+ callbackOperation1(: CallbackOperation1Request) :
CallbackOperation1Response

callbackOperation1

Figure 2. Modeling a service interface

«MessageType»

Operation1Request

«dataType»

DataType1

+ attribute1 : String
+ attribute2 : String

«MessageType»

Operation1Response

+ success : Boolean

*

«dataType»

DataType2

+ attribute3 : String
+ attribute4 : String

*

Figure 3. Modeling message types

146

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, for each service design the service component
has to be specified that realizes the provided functionality.
For service components, SoaML includes the Participant
element that represents an organization, system, or software
component. For modeling a Participant in UML, the UML
component can be extended by an according stereotype. For
each provided service a ServicePoint is added and typed by
the describing ServiceInterface. If the service component
requires other services to fulfill its functionality,
RequestPoints can be added to the service component. They
specify required services and are also typed by the describing
ServiceInterface element. To model the internal behavior of
the service component, for each provided operation an
OwnedBehavior in form of an UML Activity can be added.
For each ServicePoint and RequestPoint a UML Partition is
added that is typed by this ServicePoint or RequestPoint and
for each operation of a service a CallOperationAction is
assigned to the according Partition. An AcceptEvent
describes that the service component waits for a callback
operation being invoked. For internal functionality that is not
performed by required services an OpaqueAction is added to
the Partition that represents the ServicePoint. An exemplary
service component is depicted in Figure 3. The service
component provides one service and requires two services.

D. Discussion

The analysis of the existing work shows that each work
focuses mainly on one aspect. Work focusing on design
processes describes the necessary steps within the process.
The concrete derivation of service candidates and final
service designs with a concrete modeling language is not
addressed. Also quality attributes are only considered as
important but it is not obvious how to measure them and how
to use this knowledge to create quality-oriented service
designs.

Other work focuses on exactly these quality attributes
and shows metrics that enable their measurement. But in this
case, it is not obvious how to measure the quality attributes
on a standardized modeling language, such as SoaML. The
textual descriptions have to be interpreted and the formalized
metrics require information that is mostly not part of service
designs. Finally, the quality attributes are not integrated into
an entire design process. Thus, there exist only detailed
descriptions of quality attributes but their usage to create
service designs with certain quality attributes is missing.

Modeling languages for service designs, such as the
UML profile for software services and SoaML, focus on
modeling elements and do not provide any information about
how to use this language within an entire design process.
Only IBM gives some hints about how to derive artifacts
from prior modeled business processes [6, 25, 26]. But how
to use this language to model service designs with certain
quality attributes and how to evaluate a modeled service
design regarding these attributes is not explained.

Our quality-oriented service design approach combines
these different approaches. We use the design processes as
described in existing work and add additional phases for
ensuring certain quality attributes. During these phases, our
approach to evaluate service candidates and services designs
based on SoaML [2] is applied. Afterwards, the service
candidates and service designs are revised in order to
improve chosen quality attributes [1]. Additionally, we add
detailed information about how to derive service candidates
in SoaML from modeled artifacts of the business analysis
phase and how to transfer service candidates into service
designs also based on SoaML. As result, a guideline is
provided that enables the IT architect to comprehensibly
create service designs with certain quality attributes.

III. QUALITY-ORIENTED DESIGN OF SERVICES

The design process of this article enhances design
processes discussed in Section 2 by details about how to
derive service candidates from artifacts of the business
analysis phase and service designs from service candidates.
Furthermore, subsequent phases for ensuring the fulfillment
of quality attributes are added.

«Participant»
ServiceComponent«ServicePoint»

serviceName :
ServiceName

«RequestPoint»
serviceName2 :
ServiceName2

«RequestPoint»
serviceName3 :
ServiceName3+

operation1

: serviceName : serviceName2 : serviceName3

internal operation

operation2

operation3

callbackOperation1

callbackOperation2

Figure 4. Modeling a service component

Existing
Services

Business Analysis

Analysis and
Revision

Service
Candidate

Service
Candidate

Service
Candidate

Service
Candidate

Existing Service

1

2

SpecificationIdentification

Analysis and
Revision

Service Design
Provided

Service Interface

Service Component

Required
Service

Interface

Required
Service

Interface

Business Process
Business
Use Case

Domain Model

Service

Service

Figure 5. Design process

147

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The design process requires a prior analysis of the
business. This means that a domain model, business use
cases and business processes are created. These artifacts are
then transferred into preliminary service candidates as part of
the identification phase. Afterwards, these service candidates
are analyzed in regard to quality attributes. If the current
attributes do not correspond to the preferred values, a
subsequent revision is performed. During the specification
phase, first, the service candidates are transferred into
preliminary service designs. Also in this phase, afterwards,
the service designs are analyzed in regard to quality
attributes and if required revised. As result, service designs
are created that fulfill certain quality attributes. Since the
created artifacts of the business analysis phase constitute the
basis for the design process, they are explained in the
following.

A. Scenario

To illustrate the artifacts of the business analysis and the
subsequent design process, in this article the human-centered
environmental observation domain referring to the network-
enabled surveillance and tracking system as introduced by
the Fraunhofer Institute of Optronics, System Technologies
and Image Exploitation [33, 34] is treated. In this context the
KITCampusGuide, a project at the Karlsruhe Institute of
Technology (KIT) to provide a guide for students, lecturers
and guest, is chosen as scenario. A person can ask for a
person or a room on the campus of the university and the
KITCampusGuide calculates the route. The following figure
illustrates the scenario in action.

The goal is, to create service designs for this scenario that

fulfill the quality attributes of an unique categorization, loose
coupling, autonomy and discoverability as introduced in [2].

B. Business Analysis

During the business analysis phase, the following threw
artifacts are created: The domain model captures all relevant
concepts of the domain and their relations. It determines the
relevant terms when designing the business processes and
also unifies the terminology of the services. The business use

cases describe the external visible business services that are
expected to be supported by IT. The business processes
describe the processes behind the business use cases, thus
describes their implementation.

For modeling the domain, an ontology can be used. In
this case, the ontology is created using the Web Ontology
Language (OWL) [30] by means of Protégé [37]. As
illustration, we choose a notation similar to the OntoGraf in
Protégé. For each concept a rectangle is depicted and the
relations between these concepts are represented by lines
between them. If a concept or relation is available in various
languages, this information can be added as labels. Each
label can have a suffix specifying the language of the label,
such as “@de” for German. An excerpt of the domain model
for the human-centered environmental observation is
depicted in Figure 7.

The business use cases can be seen as entry points for the

service design phase. They describe the externally visible
business services [4] that are supposed to be supported by IT
[6]. As notation, the UML profile for business services can
be applied [20, 27, 28]. The use case describes that a student
requests a route from his current position to a room or an
employee. Additionally to the route, the map that covers the
route is returned.

Mobile Phone

Michael GebhartTarget Go!

Figure 6. KITCampusGuide in action

Target
(Ziel@de)

Coordinates
(Koordinaten@de)

Map Excerpt
(Kartenausschnitt@de)

Map
(Karte@de)

Route with Map
(Route inklusive Karte@de)

Route
(Route@en)

Person
(Person@de)

Employee
(Mitarbeiter@de)

Student
(Studierender@de)

Room
(Raum@de)

Position
(Position@de)

Current Position
(Aktuelle Position@de)

has
(hat@de)

begins top
left at

(beginnt oben
links bei@de)

consists of
(besteht aus@de)

consists of
(besteht aus@de)

has
(hat@de)

has
(hat@de)

refers to
(bezieht sich auf@de)

ends bottom
right at

(endet unten
rechts bei@de)

subclass

Figure 7. Excerpt of the domain model

Get Route
with Map

Student

Figure 8. Considered business use case

148

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since each business use case or business service is realized
by a business process [4, 6], the underlying business process
has to be modeled. For this purpose the business process
model and notation (BPMN) [29] can be used. The business
process that realizes the considered business use case is
depicted in Figure 9.

C. Service Design

The service design phase starts with the identification of
service candidates. According to Figure 5, the identification
includes two steps: First, preliminary service candidates are
derived from artifacts of the business analysis phase.
Afterwards, these service candidates are analyzed regarding
quality attributes and if necessary they are revised in order to
improve the quality attributes. To derive the service
candidates, the business processes are considered. For our
scenario the business process as shown in Figure 9 is used to
derive service candidates.

For each pool representing an organizational unit a new

service candidate is created and for each message flow
between the pools, an operation candidate is added. Since a
service candidate represents a group of abstract capabilities,
the Capability element of SoaML corresponds with the
understanding of service candidates and thus can be used for
modeling service candidates and their dependencies.
Figure 10 shows the derived service candidates for our
scenario.

To evaluate these service candidates regarding a unique
categorization, loose coupling, autonomy and
discoverability, the evaluable quality indicators as introduced
in [2] are used and extended. For service candidates only a
subset of the quality indicators is evaluable. The following
table shows the quality indicators for each service candidate.
A “+” represents that the quality indicator is optimal and a
“-”describes that there is need for improvement. If a quality
indicator is not evaluable, a “0” is set.

TABLE I. EVALUATION OF SERVICE CANDIDATES

Quality Indicator SA PA FM ESP

Unique Categorization

Division of Business-Related and
Technical Functionality

+ + + +

Division of Agnostic and non-Agnostic
Functionality

+ + - +

Data Superiority 0 + + +

Usage of Common Business Entities + + - -

Loose Coupling

Compensation 0 0 0 0

Autonomy

Dependencies - + + +

Overlapping Functionality + + + +

S
tu

d
en

t
S

tu
d

en
t

A
d

m
in

is
tr

a
tio

n

Personnel Administration

Facility Management

External Service Provider

Enter Target
Get Route
with Map

Show Route
with Map

Get Route
with Map

Is Target Room
or Employee?

Get
Employee’s

Room

Get
Coordinates of

the Room

Employee

Room Determine
Person’s

Current Position

Determine Route between
Current Position and

Coordinates of the Room

Determine
Map Excerpt

Get Map
Merge Map
and Route

Return Route
with Map

Employee Room

Target Route with Map

Room Coordinates

Person Position

Current Position and Coordinates of the Room Route Map Excerpt Map

Figure 9. Business process to get a route with a map

«Capability»
Student Administration

+ Get Route with Map()

«Capability»
Personnel Administration

+ Get Employee‘s Room()

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position()

«Capability»
External Service Provider

+ Determine Route between Current
Position and Coordinates of the Room()

+ Get Map()

«use» «use»

«use»

Figure 10. Derived service candidates

149

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since the service candidates only provide business-
related functionality, the quality indicator to divide business-
related and technical functionality is optimal for all service
candidates. The division of agnostic and non-agnostic
functionality can be improved for the Facility Management
service candidate. Whilst the functionality to get coordinates
of a room is very agnostic functionality, the determination of
person’s current position is very process specific and will not
be used in many further scenarios. Since all service
candidates are explicitly responsible for the management of
used business entities, they fulfill the requirement for data
superiority. Since the Student Administration does not
manage any business entity, the data superiority is not
evaluable for this service candidate. The operations of the
Facility Management and of the External Service Provider
do not use common business entities. The former uses the
business entities room and person and both business entities
can exist for their own. In case of the External Service
Provider also different and independent business entities are
used by the operations. Since there are no state-changing
operations performed by any service candidate, there is no
compensating functionality required. The Student
Administration depends on other service candidates, thus the
dependency quality indicator is not optimal. Since every
service candidate is explicitly responsible for a functional
scope, there is no functional overlap.

In a next step, the IT architect has to revise the service
candidates, in order to improve their quality attributes. For
that purpose, in a first step, design flaws in form of weak
points have to be identified. They represent parts of the
service candidate model that are responsible for a specific
non-fulfilled quality attribute. Since each quality indicator
refers to one main artifact within service candidates, this
information can be used to identify the weak points. The
following table lists the quality indicators and the model
elements that represent the responsible part and thus the
weak point.

TABLE II. WEAK POINTS IN SERVICE CANDIDATES

Quality Indicator Weak Point

Division of
Business-Related
and Technical
Functionality

If at least the half of the operation candidates
provide business-related functionality, then the
operation candidates that provide technical
functionality represent the weak point, else the
operation candidates that provide business-
related functionality.

Division of Agnostic
and non-Agnostic
Functionality

If at least the half of the operation candidates
provide agnostic-related functionality, then the
operation candidates that provide non-agnostic
functionality represent the weak point, else the
operation candidates that provide agnostic
functionality.

Data Superiority

The operation candidates of other service
candidates that manage business entities that are
also managed by own operations represent the
weak point.

Usage of Common
Business Entities

First, the biggest set of used and depending
business entities is determined. The operation
candidates that use business entitites that are
not part of this set represent the weak point.

Compensation

The operation candidates that provide state-
changing functionality and do not have a
compensating operation candidate represent the
weak point.

Dependencies
The operation candidates that require other
service candidates represent the weak point.

Overlapping
Functionality

The operation candidates with overlapping
functionality to operation candidates of other
service candidates represent the weak point.

The table above helps the IT architect to analyze the

derived service candidates and to identify weak points that
should be revised. Thus, for the Facility Management
service candidate the operation candidate for determining
person’s current position represents a weak point, thus a
design flaw, as shown in Figure 11.

In a next step, the IT architect has to decide, how to

revise this service candidate in order to fix the weak point.
To support his decision, possible design decisions are
analyzed and associated with the prior identified weak point.
The quality indicators base on elements of service candidates
or service designs that can represent weak points. Design
decisions on the other hand influence these elements. This
enables the association of design decisions with quality
indicators. This association can be used to identify design
decisions that affect certain quality indicators and can such
be considered in order to improve weak points. The
following figure shows the approach.

Possible design decisions can be taken from existing

work that describes how to design services. Afterwards,
these design decisions have to be adapted for a revision of
service designs. For example, Erl describes in [3] that it is
necessary to decide the operation candidates within a service
candidate. Thus, a revision design decision is whether to
move an operation candidate into another service candidate
or not. For service candidates there are no further design
decisions. During the specification phase there will be some
more. The design decision whether to move an operation
candidate can be further refined. The decision tree for our
scenario including the various concrete action alternatives
(AA) is shown below.

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position()

Operation Candidate
Represents Design Flaw

Figure 11. Identified design flaw

Weak Point

Element of
Service Candidate or

Service Design

Quality IndicatorDesign Decision

Influences Bases on

12

3

Figure 12. Approach for design decision identification

150

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is important to notice that only possible concrete action

alternatives can be considered that result in valid service
designs. This means that for example the deletion of an
operation candidate is not considered for this decision results
in service designs that do not fulfill the business
requirements. This restriction enables the convincing
evaluation of different action alternatives.

Afterwards, each of the different action alternatives can
be evaluated with regard to the quality attributes. This means
that the service candidates are evaluated for each action
alternatives. The following table shows this evaluation for
each service candidate and the action alternatives two to five.
For each quality indicator and action alternative, it is
displayed whether it improves (), gets worse () or does
not change () compared to the action alternative one that
has been evaluated in Table 1. For the optional service
candidate Facility Management 2, the new value is shown
for there is no existing value that could be compared.

TABLE III. EVALUATION OF ACTION ALTERNATIVES

Quality Indicator SA PA FM FM2 ESP

 Division of Business-Related
 and Technical Functionality

AA2 +

AA3 n.a.

AA4 n.a.

AA5 n.a.

 Division of Agnostic and non-
 Agnostic Functionality

AA2 +

AA3 n.a.

AA4 n.a.

AA5 n.a.

 Data Superiority

AA2 0 0

AA3 0 n.a.

AA4 0 n.a.

AA5 0 n.a.

 Usage of Common Business
 Entities

AA2 +

AA3 n.a.

AA4 n.a.

AA5 n.a.

 Compensation

AA2 0 0 0 0 0

AA3 0 0 0 n.a. 0

AA4 0 0 0 n.a. 0

AA5 0 0 0 n.a. 0

 Dependencies

AA2 +

AA3 n.a.

AA4 n.a.

AA5 n.a.

 Overlapping Functionality

AA2 0 0 0 0 0

AA3 0 0 0 n.a. 0

AA4 0 0 0 n.a. 0

AA5 0 0 0 n.a. 0

According to this table, action alternative two and four

are the most improving ones. Now, the IT architect has to
decide how to weight the quality indicators. In our case we
decide that dependencies are less harmful. Thus, the IT
architect chooses action alternative two. For the other weak
points this procedure is repeated adequately. As result,
service candidates are created that fulfill the four quality
attributes best. The service candidates are displayed in the
following figure.

Subsequently to the identification phase, the specification

follows. During this phase, first, preliminary service designs
are derived and afterwards, they are revised if necessary. To
derive the service designs, each service candidate is
transferred into one ServiceInterface with one realized
interface containing the provided operations and one
interface containing required operations for receiving
callbacks. The operation candidates are directly added as
operations within the realized interface and if there is an end
event within the corresponding business process that calls an
operation, this operation call is added within the interface
containing the required operations. Figure 15 shows the
derived service interface for the service candidate Student
Administration.

Move Operation
Candidate
„Determine Person‘s
Current Position“?

Do not Move

Move into new
ServiceCandidate
„Facility Management 2“

Move into Existing
Service Candidate

Move into
„Student
Administration“

Move into
„Personnel
Administration“

Move into
„External
Service Provider“

AA1

AA2

AA3

AA4

AA5

Figure 13. Action alternatives

«Capability»
Student Administration

+ Get Route with Map()

«Capability»
Personnel Administration

+ Get Employee‘s Room()

«Capability»
Facility Management

+ Get Coordinates of the Room()

«Capability»
External Service Provider

+ Determine Route between Current
Position and Coordinates of the Room()

«use» «use»

«use»

«Capability»
External Service Provider 2

+ Get Map()

«Capability»
Facility Management 2

+ Determine Person‘s Current Position()

«use»

«use»

Figure 14. Revised service candidates

151

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For each operation adequate message types are created. They
are named according to the operation with the suffix Request
or Response. For the concepts exchanged as messages within
the business process data types are generated and assigned to
the respective message type. The interaction protocol of the
service interface can be derived by the exchanged messages
of the business process. All these artifacts are kept within a
package named after the service interface. During this step
already some information, such as potential naming
conventions, can be considered. For example white spaces in
the names of the service interface and the operations can be
removed if this is a convention. Another convention could be
the translation into another language. For example, if the
business has been analyzed in German and it is convention to
use English for service design artifacts, the artifacts can be
translated according to the domain model and its labels
containing the names of the concepts in various languages.

Additionally to the service interface, a service component
is generated. The service component contains one
ServicePoint typed by the derived ServiceInterface. If the
service candidate where the service component was derived
from requires other service candidates, appropriate
RequestPoints are added. The following figure shows the
service component for the Student Administration service
candidate. The service component provides one service and
thus includes one ServicePoint. To realize its functionality, ir
requires five other services that are added as RequestPoints.
Both the ServicePoint and the RequestPoints are named and
typed by the ServiceInterface that describes the service. The
internal behavior of the service component equals the
business process, thus it is not further depicted.

This systematic derivation is performed for all service

candidates. Afterwards, the analysis and revision phase
follows, similar to analysis and revision within the
identification phase. During the specification phase, further
quality indicators can be considered that were not of interest
during the identification phase. The quality indicators are
again taken from our previous work [2]. The service design
for the Student Administration is evaluated in the following
table.

TABLE IV. EVALUATION OF SERVICE DESIGNS

Quality Indicator SA PA FM FM2 ESP ESP2

Unique Categorization

Division of Business-
Related and Technical
Functionality

+ + + + + +

Division of Agnostic and
non-Agnostic
Functionality

+ + + + + +

Data Superiority 0 + + 0 + +

Usage of Common
Business Entities

+ + + + + +

Discoverability

Functional Naming of the
Service Interface

+ + + + + +

Functional Naming of the
Roles

+ + + + + +

Functional Naming of the
Operations

+ + + + + +

Functional Naming of the
Parameters

+ + + + + +

Functional Naming of the
Data Types

+ + + + + +

Naming Convention
Compliance regarding the
Service Interface

- - - - - -

Naming Convention
Compliance regarding the
Roles

+ + + + + +

Naming Convention
Compliance regarding the
Operations

- - - - - -

«ServiceInterface»

StudentAdministration

studentAdministrationRequester:
«interface» StudentAdministrationRequester

studentAdministration:
«interface» StudentAdministration

+

StudentAdministration

: studentAdministration : studentAdministrationRequester

GetRouteWithMap

«interface»
StudentAdministration

+ GetRouteWithMap(: GetRouteWithMapRequest) : GetRouteWithMapResponse

«interface»
StudentAdministrationRequester

«use»

«MessageType»

GetRouteWithMapRequest
«dataType»

Target

«MessageType»

GetRouteWithMapResponse
«dataType»

RouteWithMap

Figure 15. Derived service interface

«Participant»
Student

Administration
Component«ServicePoint»

studentAdministration:
StudentAdministration

«RequestPoint»
personnelAdministration:
PersonnelAdministration

«RequestPoint»
facilityManagement:
FacilityManagement

«RequestPoint»
facilityManagement2:
FacilityManagement2

«RequestPoint»
externalServiceProvider:
ExternalServiceProvider

«RequestPoint»
externalServiceProvider2:
ExternalServiceProvider2

Figure 16. Derived service component

152

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Naming Convention
Compliance regarding the
Parameters

+ + + + + +

Naming Convention
Compliance regarding the
Data Types

+ + + + + +

Information Extent + + + + + +

Loose Coupling

Compensation 0 0 0 0 0 0

Asynchronity + + + + + +

Complexity of Common
Data Types

+ + + + + +

Operation Abstraction + + + + + +

Data Type Abstraction + + + + + +

Autonomy

Dependencies - + + + + +

Overlapping Functionality + + + + + +

According to this table, most of the quality indicators are

already optimal due to the fact that the service designs were
derived from already revised service candidates. Since the
artifacts were generated from the service candidates that
came from the business processes, also the naming of the
artifacts already follows functional terms. Also most of the
naming conventions have already been considered during the
transfer of service candidates into service designs. Only the
operations still do not follow our naming conventions. They
should begin with a lowercased letter. This information
could be considered during the derivation of the service
designs too. But we consciously disregarded this convention
in order to illustrate that the naming of the artifacts is an
important aspect for the discoverability and even though
some naming conventions have been already considered
during the derivation of the service designs it should be
reviewed and evaluated afterwards. Another example of
naming conventions that cannot be fully regarded in an
automatic transformation is the language of the artifacts. If
the business has been analyzed in another language, such as
German, the service candidates and the derived service
designs are also in German. If the naming convention for the
design artifacts is English, a translation is necessary. The
domain model can contain several languages, so some
information can already be used for an automatic
transformation. However, mostly there is manual effort
required for possibly not all concepts within the domain
model are described in several languages. The quality
indicators help to remind the IT architect that naming
conventions, such as the correct language, have to be
considered. The naming of the service interfaces is also not
optimal. The reason is that a service interface should be
named after what it is doing and numerations, such External
Service Provider 2, should be avoided. A common naming
convention for services that manage a certain business entity
is to name this service interface after the managed business
entity. For example, if the service manages the business
entity room, a room service should be provided. Since all

service designs contain all necessary information, the
information extent is optimal. The asynchronity is optimal
too, for there are no long-running operations that should be
provided asynchronous. The complexity of common data
types requires that all common data types are simple data
types only. Since for each service design an own package has
been generated, the complex data types are in separated
packages and the service designs do not share any complex
data types. On the one hand this requires a transformation of
data types even if they are named equal, but on the other
hand this supports the loose coupling. Since the operations
hide the implementation and do not show any
implementation details and the data types are only business-
driven and not technical, the abstraction is also optimally
fulfilled. The table shows that due to the systemic derivation
of service designs from already revised and business-driven
service candidates a lot of quality indicators are already
optimally fulfilled. But the sum of quality indicators helps
the IT architect to ensure that he has not forgotten any
important aspect.

To revise the service designs, again the design flaws have
to be identified and afterwards action alternatives have to be
presented. The following table shows the weak points for the
quality indicators considered during the specification of the
service designs. At this, also the weak points that have been
used during the identification phase are presented again,
however they are adapted for the modeling elements within
service designs instead of service candidates.

TABLE V. WEAK POINTS IN SERVICE DESIGNS

Quality Indicator Weak Point

Division of
Business-Related
and Technical
Functionality

If at least the half of the operations provide
business-related functionality, then the
operations within the realized interface of the
service interface that provide technical
functionality represent the weak point, else the
operations that provide business-related
functionality.

Division of Agnostic
and non-Agnostic
Functionality

If at least the half of the operations provide
agnostic-related functionality, then the
operations within the realized interface of the
service interface that provide non-agnostic
functionality represent the weak point, else the
operations that provide agnostic functionality.

Data Superiority

The operations within the realized interface of
other service interfaces that manage business
entities that are also managed by own
operations represent the weak point.

Usage of Common
Business Entities

First, the biggest set of used and depending
business entities is determined. The operations
within the realized interface of the service
interface that use business entitites that are not
part of this set represent the weak point.

Functional Naming
of the Service
Interface

The name attribute of the service interface
represents the weak point.

Functional Naming
of the Roles

The name attribute of the not functionally
named roles represents the weak point.

Functional Naming
of the Operations

The name attribute of the not functionally
named operations represents the weak point.

153

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Functional Naming
of the Parameters

The name attribute of the not functionally
named parameters represents the weak point.

Functional Naming
of the Data Types

The name attribute of the not functionally
named data types represents the weak point.

Naming Convention
Compliance
Regarding the
Service Interface

The name attribute of the service interface
represents the weak point.

Naming Convention
Compliance
Regarding the Roles

The name attribute of the not functionally
named roles represents the weak point.

Naming Convention
Compliance
Regarding the
Operations

The name attribute of the not functionally
named operations represents the weak point.

Naming Convention
Compliance
Regarding the
Parameters

The name attribute of the not functionally
named parameters represents the weak point.

Naming Convention
Compliance
Regarding the Data
Types

The name attribute of the not functionally
named data types represents the weak point.

Information Extent The service interface represents the weak point.

Compensation

Operations within the realized interface of the
service interface that provide state-changing
functionality and do not have a compensating
operation represents the weak point.

Asynchronity

The communication modes of the
CallOperationActions within the interaction
protocol that correspond to operations with
long-running functionality and are not
asynchronous yet represent the weak point.

Complexity of
Common Data
Types

The data types that are complex and commonly
used represent the weak point.

Operation
Abstraction

The operations that are not abstract represent
the weak point.

Data Type
Abstraction

The data types that are not abstract represent the
weak point.

Dependencies
The Operations within the realized interface of
the service interface that require operations of
other services represent the weak point.

Overlapping
Functionality

The Operations within the realized interface of
the service interface with overlapping
functionality to operations of other services
represent the weak point.

According to this table, within our scenario, especially

the name attributes of the different artifacts are marked as
design flaws for they are responsible for the insufficient
naming. In order to remove these weak points, action
alternatives have to be identified in form of design decisions
that are applicable during a revision and enable the
improvement of the derived service designs. For service
designs the following design decisions can be identified.
They are again derived from existing design processes [3, 4,
5, 6, 7] and adapted for a revision of existing service designs.

TABLE VI. DESIGN DECISIONS DURING THE SPECIFICATION PHASE

Design Decision Description

Moving an
Operation

Similar to the design decision during the
identification phase, the IT architect has to
decide whether or not to move an operation
from one interface that is realized by a service
interface into an interface realized by another
service interface.

Renaming a Service
Interface

Especially for influencing the discoverability,
the IT architect can rename a service interface,
i.e. the name attribute is changed. In this case,
concrete action alternatives cannot be identified
for the set of possible renamings is unlimited.

Renaming a Role
Similarly to the decision before, this design
decision influences the name attribute of a role
within a service interface.

Renaming an
Operation

Whilst the naming of operation candidates was
not of interest, the naming of the operations
directly influences the discoverability. This
design decision changes the name attribute of
an operation.

Renaming a
Parameter

This design decision changes the name attribute
of a parameter that is used within an operation.

Renaming a Data
Type

The IT architect has to decide, whether or not to
rename a data type in order to increase the
understanding and thus the discoverability.

Changing the
Communication
Mode of an
Operation

The communication mode of an operation
within an interaction protocol determines,
whether the operation can be called
asynchronously or not. The IT architect can
change this communication mode subsequently.

Changing a Data
Type

The data types represent information that can be
used within parameters of operations. These
data types can be changed.

Changing Parameter
Types of an
Operation

The parameter types of an operation represent
the information that is exchanged between a
service consumer and a service provider when a
certain operation is called. The IT architect can
change this amount and kind of information.

In our scenario, especially the renaming of the operations
and of the service interfaces are identified as action
alternatives for they affect the name attributes of these
artifacts that have been identified as weak points. Finally, the
revised service designs can be created. Additionally, during
the revision, further details of the data types can be added,
such as detailed attributes. The following figure shows the
revised service interface for the student administration and
an excerpt of the used data types. The used KML data type
represents the Keyhole Markup Language (KML) [43] that
has been developed by Google for Google Earth. In the
meanwhile, KML is a wide-spread markup language for
geological data that has been standardized by the Open
Geospatial Consortium (OGC). The other service designs are
analyzed and revised equivalently. Also in these cases,
mostly the names of the artifacts are changed and details are
added to the data types for the service designs were derived
from already revised service candidates.

154

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The resulting service component for the Student
Administration, now named Campus Guide, is shown below.
The ServicePoints and RequestPoints have been renamed
after the newly named service interfaces. The internal
behavior, described as UML Activity, includes one partition
for each ServicePoint and RequestPoint. Each partition that
represents a RequestPoint contains CallOperationActions for
the operations provided by this external service. Also in this
case, the newly named operation names are used. Within the
partition that represents the ServicePoint, two
OpaqueActions are included. They represent internal
behavior that is performed by the service component itself
and is not called by external services. Since the
OpaqueActions were not part of the revision, they are still
named after the activities within the business process. The IT
architect has to decide whether to rename these
OpaqueActions. However, since they were not identified as
weak points, their naming does not influence one of the
considered quality attributes. Thus, a renaming would only
increase the consistency within the design artifacts.

D. Recursive Continuation

Till now, the design process focused on the interaction
between various pools. In a next step, the activities within a
pool are considered in order to increase the flexibility of the
service components and their implementation. This means
that the created service components are further decomposed
into internal service components by recursive continuing the
design process. This enables that functionality within the
service components can be easily provided for external
consumers or can easily be replaced by functionality that is
provided by external service providers.

For this purpose, instead of the invoked activities and
interaction between pools, the activities within one pool are
considered and with these activities the design process is
performed equivalently. First all activities within one pool
are collected within one service candidate that can be named
after the pool with the suffix Internal. Afterwards, the service
candidate is revised according to the quality attributes and
their quality indicators as described above. For our scenario,
the following figure shows the derived and revised internal
service candidates.

«ServiceInterface»

CampusGuide

campusGuideRequester:
«interface» CampusGuideRequester

campusGuide:
«interface» CampusGuide

+

CampusGuide

: campusGuide : campusGuideRequester

getRouteWithMap

«interface»
CampusGuide

+ getRouteWithMap(: GetRouteWithMapRequest) : GetRouteWithMapResponse

«interface»
CampusGuideRequester

«use»

«MessageType»

GetRouteWithMapRequest
«dataType»
Target

«dataType»
Employee

+ id : Integer

«dataType»
Room

+ id : Integer

«dataType»
Person

+ firstName : String
+ lastName : String

«MessageType»

GetRouteWithMapResponse

«dataType»
Route

«dataType»
Map

+ image : base64Binary

«dataType»
Kml

+ content : String

«dataType»
RouteWithMap

+ image : base64Binary

Figure 17. Revised service interface

«Participant»
Campus
Guide

Component«ServicePoint»
campusGuide:
CampusGuide

«RequestPoint»
employee:
Employee

«RequestPoint»
room:
Room

«RequestPoint»
positionDetermination:
PositionDetermination

«RequestPoint»
routeDetermination:
RouteDetermination

«RequestPoint»
map:
Map

+

: campus
Guide

: employee

getRoom

getRouteWithMap

: room

get
Coordinates

: position
Determination

determine
Position

: route
Determination

determine
Route

: map

Determine
Map Excerpt

get
Map

Merge Map
and Route

Figure 18. Revised service component

155

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Afterwards, for each internal service candidate a service

design is created and revised. The resulting service
components are assigned to the superior service component.
Since within a business process internal and external
functionality is composed, a composition component is
added to the superior service component. Within SoaML
these internal service components are connected using the
ServiceChannel element. A ServiceChannel can either be a
delegation of an external ServicePoint to an internal
ServicePoint respectively an internal RequestPoint to an
external RequestPoint, or an assembly of two internal service
components by connecting one ServicePoint with one
RequestPoint. The revised service component for the Student
Administration with its internal service component is
depicted in Figure 20. Since there is no further
decomposition necessary, the design process ends with this
recursive continuation. As result, service designs are created
that support the business requirements and fulfill certain
quality attributes.

IV. CONCLUSION AND OUTLOOK

In this article, we presented an approach for a quality-
oriented design of services. The approach enhances existing
design processes with a detailed description about how to
transfer artifacts of the business analysis phase into service
candidates and how to transfer these service candidates into
service designs. Additionally, an iterative analysis and
revision phase ensures the fulfillment of certain quality
attributes. Due to the subsequent analysis and revision, our
approach can be used in combination with other design
processes and allows also the revision of already existing
service designs. Due to the subsequent recursive continuation
of the design process, one of the frequent questions when to
use pools and when to use lanes when modeling business
processes with BPMN is also solved. The recursive
continuation results in the same service designs regardless of
whether pools or lanes have been used. The service designs
support the business requirements and fulfill a desired set of
quality attributes.

The detailed description of transformations of artifacts
enables the IT architect to comprehensibly derive service
designs from prior created artifacts of the business analysis.
Additionally, instead of only naming important quality
attributes, the design process also helps to ensure their
fulfillment. The usage of SoaML as language to model
service candidates and service designs enables the
integration of our approach into existing tool chains. SoaML
represents an emerging standard for modeling service-
oriented architectures. Its availability as XMI [42] enables
the usage in any UML-capable development tools, although
some vendors already provide built-in SoaML support.

To illustrate our approach, services of a service-oriented
campus guide system as it is developed at the Karlsruhe
Institute of Technology (KIT), the KITCampusGuide, have
been designed. The services for this scenario could be
derived comprehensibly and fulfill verifiably the quality
attributes of a unique categorization, loose coupling,
discoverability and autonomy. The system has its origin in
the Network Enabled Surveillance and Tracking (NEST)
system, developed at the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation [21, 22].
Currently, the approach is also applied for the domain
campus management in order to create a catalog of services
for universities and their administrative processes. These
services follow national and international specifications that
came up with the Bologna Process [31]. Additionally, the
approach is applied at the Personalized Environmental
Service Configuration and Delivery Orchestration
(PESCaDO) project [35, 36], a project co-funded by the
European Commission, in order to design the required
services with verifiably fulfilled quality attributes.

In parallel to this article, we work on a formalization of
the quality attributes and their quality indicators. Our goal is
to improve our guidelines for IT architects so that the quality
indicators can be measured exactly, either manually or
partially even automatically. The automatically evaluable
quality indicators are then formalized using the Object
Constraint Language (OCL) [39] in order to enable

«Capability»
Student Administration Internal

+ Determine Map Excerpt()
+ Merge Map and Route()

«Capability»
Student Administration Internal

+ Determine Map Excerpt()

«Capability»
Student Administration Internal 2

+ Merge Map and Route()
Figure 19. Internal service candidates

«Participant»
CampusGuideComponent

«ServicePoint»
campusGuide:
CampusGuide

«RequestPoint»
employee:
Employee

«RequestPoint»
room:
Room

«RequestPoint»
positionDetermination :
PositionDetermination

«RequestPoint»
routeDetermination:
RouteDetermination

«RequestPoint»
map :
Map

medc:
«Participant» MapExcerpt

Determination
Component

mrmc:
«Participant» MapRoute

MergerComponent

cgcc:
«Participant»

CampusGuide
Composition
Component

Figure 20. Internal service candidates

156

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integration into existing development tools and thus realize a
tool support for the quality-oriented design of services.
Finally, we work on derivation rules to transfer design
attributes into implementation artifacts [21] using
technologies, such as the Service Component Architecture
(SCA) [40] and the Business Process Execution Language
(BPEL) [41]. While in both cases, already a lot of good work
has been published, verification and if necessary an
adaptation for SoaML and the semantic of service designs is
required. This enables the integration of the quality-oriented
design process into an entire development process.

REFERENCES
[1] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service

design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[2] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[3] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[4] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[5] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: January 04, 2011]

[6] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[7] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: January 04, 2011]

[8] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.

[9] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[10] R. Reussner and W. Hasselbring, Handbuch der Software-
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.

[11] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[12] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

[13] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Was macht einen guten public service aus?“, SOA-
Spezial, Software & Support Verlag, 2009.

[14] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[16] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[17] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[18] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[19] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[20] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[21] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[22] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[23] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[24] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[25] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: January 04, 2011]

[26] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]

[27] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: January 04, 2011]

[28] J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: January 04, 2011]

[29] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[30] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[31] European Commission, “The bologna process - towards the european
higher education area”, http://ec.europa.eu/education/higher-
education/doc1290_en.htm, 2010. [accessed: January 04, 2011]

[32] M. Gebhart, J. Moßgraber, T. Usländer, and S. Abeck, „SoaML-
basierter entwurf eines dienstorientierten beobachtungssystems“, GI
Informatik 2010, Leipzig, Germany, October 2010, pp. 360-367.

[33] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J.
Moßgraber, and F. Reinert, “N.E.S.T. – network enabled surveillance
and tracking”, Future Security 3rd Security Research Conference
Karlsruhe, 2008.

[34] J. Moßgraber, F. Reinert, and H. Vagts, “An architecture for a task-
oriented surveillance system”, 2009.

[35] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[36] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[37] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[38] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[39] OMG, “Object constraint language (OCL)”, Version 2.2, 2010.
[40] Open SOA (OSOA), “Service component architecture (SCA), sca

assembly model V1.00”, http://osoa.org/download/attachments/35/
SCA_AssemblyModel_V100.pdf, 2009. [accessed: January 04, 2011]

[41] OASIS, “Web services business process execution language
(WSBPEL)”, Version 2.0, 2007.

[42] OMG, “XML metadata interchange (XMI) specification”, Version
2.0, 2003.

[43] OGC, “Keyhole markup language (KML)”,
http://www.opengeospatial.org/standards/kml/, Version 2.2, 2008.
[accessed: January 04, 2011]

157

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CRUD-DOM:

A Model for Bridging the Gap Between the Object-Oriented and the Relational Paradigms -

an Enhanced Performance Assessment Based on a Case Study

Oscar M. Pereira
1
, Rui L. Aguiar

2

 Instituto de Telecomunicações

University of Aveiro

Aveiro, Portugal

{omp
1
,ruilaa

2
}@ua.pt

Maribel Yasmina Santos

Algoritmi Research Center

University of Minho

Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract—the development of database applications comprises

three different tiers: application tier, database tier and finally

the middle tier also known as the data access layer. The

development of each tier per-se entails many challenges. Very

often the most difficult challenges to be addressed derive from

non-functional requirements, as productivity, usability,

performance, reliability, high-availability and transparency.

This paper is focused on defining and presenting a model for

the data access layer aimed to integrate object-oriented

application tiers and relational database tiers. The model

addresses situations on which users need to explicitly write

down complex static Create, Read, Update and Delete (CRUD)

expressions and simultaneously get advantages regarding some

non-functional requirements. The model, known as CRUD

Data Object Model (CRUD-DOM), tackles the following non-

functional requirements: performance, usability and

productivity. The main contributions of this paper are

threefold: 1) to present the CRUD-DOM model; 2) to carry out

an enhanced performance assessment based on a case study; 3)

to present a tool, called CRUD Manager (CRUD-M), which

provides automatic code generation with complementary

support for software test and maintenance. The main outcome

of this paper is the evidence that the pair CRUD-DOM and

CRUD-M effectively addresses productivity, performance and

usability requirements in the aforementioned context.

Keywords - CRUDDO; CRUD-DOM; database; impedance

mismatch;, high-performance computing; measurement; middle

tier.

I. INTRODUCTION

In order to bridge the gap between the object-oriented
and the relational paradigms, a model, known as CRUD-
DOM, has been already presented [1]. This paper is an
extended version of [1].

In spite of their individual successes, object-oriented and
relational paradigms are simply too different to bridge
seamlessly, leading to difficulties informally known as
impedance mismatch [2]. The diverse foundations of the
object-oriented and the relational paradigms are a major
hindrance for their integration, being an open challenge for
more than 45 years [3]. The challenge derives from the
multiplicity of aspects that need to be bridged across both
paradigms: imperative languages versus declarative
languages; compilation and execution performance versus

search performance; classes, algorithms and data structures
versus relations and indexes; transactions versus threads;
null pointers versus null for the absence of value [3], and
finally, inheritance versus specialization. The impedance
mismatch thus presents several challenges for developers of
database applications, where often both paradigms are found.
These challenges are especially noticeable in environments
where production code is under strict development deadlines,
and where (timely) code development efficiency is a major
concern. In order to cope with the impedance mismatch
issue, several solutions have emerged, such as language
extensions (SQLJ [4], LINQ [5]), call level interfaces [6]
(JDBC [7], ODBC [8] ADO.NET [9]), object/relational
mappings (O/RM) (Hibernate [10], TopLink [11], LINQ [5])
and persistence frameworks (JDO [12], JPA [13]). Language
extensions may provide static syntax and type checking but
always rely on proprietary standards. Call level interfaces,
despite their performance, provide no static syntax or static
checking. O/RM have the advantage of treating data as
objects but do not take the advantage of the database engine
performance and further rely on proprietary standards.
Persistent frameworks have the same drawbacks as O/RM.
Despite their individual advantages, these solutions have not
been developed to effectively address situations where users
need to write complex static CRUD (Create, Read, Update,
Delete) expressions. Table I presents an example of a not
very simple CRUD expression that is not easily supported by
any current solution. The increasing of the query complexity
increases the weaknesses of current solutions.

TABLE I. A CRUD EXPRESSION

Select pt.pt_id, pt.pt_fName, pt.pt_lName
 From pt_pilot pt,cc_circuit cc,cf_classif cf
 Where pt.pt_id=cf.cfPt_id and cf.cf_date=cc.cc_date and
 cf.cf_position not between 1 and 3
 Group by pt.pt_id, pt.pt_fName, pt.pt_lName
 Having count(cf.cf_position) = (Select count(*) From Cc_circuit …)
 Union
 Select top 5 distinct(….
 from …
 ….
 Order by …

Not easily supported means that current solutions push

users to deal with additional issues, as a decay of

158

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance, the usage of proprietary language extensions,
the usage of proprietary mapping techniques, the absence of
support to edit and dynamically test CRUD expressions and
some SQL features not easily supported or even not
supported at all.

A. Performance, Usability and Productivity

CRUD-DOM addresses mainly three non-functional
requirements: performance, usability and productivity. In this
section we introduce their basic concepts and also justify and
emphasize the relevance of each one.

Performance
Performance is a non-functional software requirement

that, among other issues, evaluates how well a system or a
component copes with a set of requirements namely for
timeless [14]. In this context, two dimensions may be
considered: responsiveness and scalability. Responsiveness
evaluates conformance with response time requirements
evaluating the amount of time to accomplish a task or the
number of tasks that can be accomplished in a given period
of time. Scalability evaluates the capacity of a system to
handle growing demand of power computation while
keeping its responsiveness. In this paper we are focused on
responsiveness. Scalability will be addressed in future works.

Performance is a pervasive outcome of software systems
[15]. Everything affects it, as software design, programming
paradigms, programming languages, compilers, operating
systems, communication networks, hardware and third party
software. As a pervasive quality, performance opens many
opportunities to research contributions. Very often, it is one
of the most challenging non-functional software
requirements in database applications. System architects and
system designers are called to decide upon many and
difficult options. Each option has an impact on the overall
performance. As an example, the middle tier may be built
around distinct technologies and solutions, as previously
mentioned, being CLI one of them. Despite CLI drawbacks,
they cannot be discarded as an important and valid option
whenever performance and SQL expressiveness are
considered key issues [3]. CLI provide mechanisms to
encode Create, Read, Update and Delete (CRUD)
expressions inside strings, easily incorporating the power and
the expressiveness of SQL. Thus, power and expressiveness
are crucial advantages of CLI but this comes with
unavoidable and important drawbacks (see detailed
discussion in section III).

Usability
Usability is another non-functional software requirement

in Software Engineering. It is linked to the software quality
design [16]. Several definitions may be found for the
usability concept [17-22]. We may accept the definition of
Jacob Nielson [17], which is focused on concepts as
Learnability, Efficiency, Memorability, Errorless-pronability
and Satisfaction. The application of usability in this work is
twofold. The first one is related to the development process
of the data access layer. It is addressed by the CRUD-M,
which must provide a GUI with improved usability. The

second one is related to the usage of the data access layer.
The access data layer should provide an improved usability
to developers of the application tier.

Productivity
In this work, productivity comprises the factors that may

influence costs during the three phases of the software
application life-cycle: development, test and maintenance of
access layers.

The development phase usually unlocks financial and
material resources, and also motivates the involved human
resources. On the contrary, the test and maintenance phases
are usually neglected and therefore we will pay some
additional attention to them.

The costs associated with software testing are very high
and may exceed 30% of the total cost of a project [23]. Two
of the most relevant sources for such a high cost comprise
the attitude assumed by the development team [24] and also
by the absence of an adequate infrastructure dedicated to
software testing. In the U.S. in 2002 it was estimated a cost
between $22 and $59.1 billion [25]. In opposite to what is
commonly accepted, rather than an act of testing, the
software testing should be seen as an overall strategy to be
included in the entire life-cycle of a software system: “the
act of designing tests is one of the best bug preventers
known”, Beizer in [26].

Software maintenance is well known for its very high
costs and delays in its implementation. Despite being the
aspect that consumes more resources during the product life-
cycle [27], it has usually been neglected. Software
maintenance is an inevitable activity resulting from requests
for assistance derived from its usage and from its aging.
Software maintenance is associated with different sources
but it is generally classified into 4 categories, each one with
different weights [28]: adaptive - 25% (changes in the
environment where software works); perfective – 50%
(adaption to new requirements); corrective – 21% (error
correction); preventive – 4% (prevention of future errors).
These values, although presented in 1980, still continue to be
accepted and cited in several publications [27-29]. Some
sources of software maintenance may not be easily
controlled by the development team, as are the adaptive and
perfective sources. But the other two, mainly the corrective
one, have their basis and origin in flaws occurred during the
development and test of the product.

B. Motivation

The motivation for this work is anchored in the fact that
none of the available current solutions and technologies
address effectively and simultaneously all the following
features:

 Hand-written CRUD expressions - business logic in
database applications very often rely on SQL statements
that have to be hand-written. This may be derived from
the fact that CRUD expressions are too complex and/or
CRUD expressions cannot be inferred from any other
data model.

159

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Decoupled data access layer - in order to completely
decouple the three tiers of database applications, the
data access layer should be developed as a separate
component. This will ensure not only the decouple at its
usage level (application level) but also at its
development level (organizational/responsibility level).

 Technological independency - technological
independency assures that: solutions may run on any
environment; users are not compelled to learn new
technologies.

 Productivity - productivity should be maximized by
exempting users from writing any source code; source
code should be automatically generated and tested.
Maintenance activities should require minimum user
effort.

 Usability: usability should always be presented as a key
concern in all aspects: development of the data access
layer and also the usage of the data access layer.

 Performance: the performance of the data access layer
must always be the main concern.

This work aims to provide a solution that copes with the

aforementioned features. For such, we developed a model,
known as CRUD Data Object Model (CRUD-DOM) where
each CRUD expression is wrapped into a type-safe and type-
state object-oriented component, known as CRUD Data
Object (CRUD-DO). Furthermore, we developed a tool
addressing automatic CRUD-DO generation having as only
input the standard SQL statements written by users. This tool
is known as CRUD Manager (CRUD-M).

Throughout this paper, by default - unless explicitly

referred, all examples are based on Java, SQL Server 2008
and JDBC (CLI) for SQL Server (sqljdbc4). Code snippets
may not execute properly since we will only show the
relevant code for the points under discussion. For
conciseness, Figure 1 presents a partial view of a database
schema, which will be used throughout the examples of this
paper.

Figure 1. Partial view of the database schema

This paper is organized as follows. Section II presents
related work. Section III highlights the impedance mismatch
problem. Section IV describes our proposed model (CRUD-
DOM), while section V presents the automatic code
generation tool (CRUD-M). Section VI presents performance
assessment and finally, Section VII presents the final
conclusion.

II. RELATED WORK

This section presents the different approaches for the
integration of object-oriented and relational paradigms. As a
well-known problem in industry, multiple techniques and
solutions have been released to address the impedance
mismatch problem. For some solutions we will present a real
case but always dealing with a very simple query.

Embedded SQL [30] is a method for writing SQL

statements in-line with regular source code of the host
language inside source files. The SQL statements provide the
database interface while the host language provides the
remaining support needed for the application to execute.
The files are then pre-processed (pre-compiled) in order to
check the correctness of the SQL statements namely against
the database schema, host language data type and SQL data
type checking, and finally syntax checking of the SQL
constructions. SQLJ [4] is an example of an Embedded SQL
standard, which provides language extensions for embedding
SQL statements in regular Java source files. Some SQLJ
disadvantages, which are common to most Embedded SQL
technologies: 1) SQLJ relies on an extra standard; 2) SQLJ
does not decouple SQL statements from regular source code;
3) SQLJ is not suited for client-server environments; 4)
SQLJ does not provide a clean object-oriented interface to
the assisted application; 5) SQLJ does not provide assistance
regarding the maintenance of SQL statements; 6) SQLJ
requires a JVM (Java Virtual Machine) built in the database;
7) In practice, embedded SQL has never been widely
adopted by end users. Table II shows an example using
SQLJ. Examples of other languages that support embedded
SQL are: C, C++, COBOL and Fortran.

TABLE II. SQLJ EXAMPLE

// Java
void getStudent(int id) throws SQLException {
 String firstName = null;
 String lastName = null;
 #sql {
 Select Std_firstName, Std_lastName
 INTO: firstName, lastName
 From Std_Student
 Where Std_id = :id
 }
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

Despite the aforementioned general disadvantages, some

embedded SQL features may be considered as advantages
such as: it is based on single development environment with
a strong interconnection between the two paradigms; unlike
other solutions, embedded SQL does not need to be executed

160

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to check the correctness of the SQL syntax. This task is
executed by the pre-compiler.

Object-relational mapping [31, 32] is a programming

technique aiming at enforcing relational data models to be
closely aligned with the object-oriented paradigm. The
relational to object-oriented translation is driven by an
explicit mapping (generally in XML) or by schema
annotations (inside the source code file). Much of the
enforcement is on behalf of getting an object-oriented logic
access layer coping with the impedance mismatch [2] issue.
Every relational concept must, somehow, have its
corresponding concept(s) in the object-oriented paradigm.
Very often, mainly in legacy databases, the translation is not
straightforward, leading to complex translations, as the case
of the relationship and specialization concepts. In these
cases, besides the aforementioned hindrance, the relational
model lacks essential conceptual information obliging
oneself to an extra effort on defining relationship direction,
cardinality, etc. Nevertheless, O/RM techniques have been
quite successful, either as commercial products (e.g., Oracle
TopLink [11], ADO.NET Entity Framework [33], LINQ [5])
or as open source projects (e.g., Hibernate [10]). Albeit this
achieved success, well known O/RM drawbacks are
unavoidable: 1) each O/RM programming technique relies
on proprietary standards introducing new mapping schemas
and new SQL-equivalent manipulation languages; 2) O/RM
entails an additional effort to map the relational model into
the object-oriented model; 3) performance and
expressiveness are the two main O/RM penalties; 4) complex
CRUD expressions may be supported but they must be hand
written and users have no support for their editing and
testing. Table III shows a Hibernate example with HQL and
Table IV shows an example with Hibernate without HQL
(both in Java). Table V shows an example with LINQ in C#.
For conciseness, the mapping schema and mapping classes
are not explicitly presented.

TABLE III. HIBERNATE EXAMPLE WITH HQL

// Java
void getStudent(int id) {
 Session s=HibernateUtil.getSessionFactory().getCurrentSession();
 List list=s.createQuery(“from Std_Student”).
 setInteger(“Std_id”, id);
 Student std=(Student) list.get(0);
 firstName=std.Std_firstName();
 lastName=std.Std_lastName();
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

TABLE IV. HIBERNATE EXAMPLE WITHOUT HQL

// Java
void getStudent(int id) {
 Session s=HibernateUtil.getSessionFactory().getCurrentSession();
 Student std=(Student) s.load(Student.class,id);
 firstName=std.Std_firstName();
 lastName=std.Std_lastName();
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

TABLE V. LINQ EXAMPLE

// C#
void getStudent(int id) {
 Student std=from s in db.StdStudent where Std_id=id select s;
 firstName=std.Std_firstname;
 lastName=std.Std_lastname;
 Console.WriteLine(“Student‟s name: “ + firstName + “ “ + lastName);
}

Despite the aforementioned disadvantages, O/RM

techniques are very powerful whenever the middle tier
implementation relies on a direct object-oriented perspective
of the relational model. In this particular context O/RM tools
relieve programmers from most of the translation work
between the two paradigms. CRUD-DOM is not tailored to
tackle these situations. Its target is focused on middle tiers
based on more complex CRUD expressions. Anyway,
CRUD-M may be extended in other to provide an additional
feature to automatically create the source code to execute the
4 basic SQL statements in each table: Select one row (by
primary key), Insert one row, Update one row (by primary
key) and Delete one row (by primary key).

Safe Query Objects [34] combine object-relational

mapping with object-oriented languages to specify queries
using strongly-typed objects and methods. They rely on Java
Data Objects to provide strongly-typed objects and also to
provide data persistence. Safe Query Objects are a promising
technique to express queries but share most of the
aforementioned drawbacks of O/RM, namely regarding
performance and SQL expressiveness.

SQL DOM [35] generates a Dynamic Link Library

containing classes that are strongly-typed to a database
schema. These classes are used to construct dynamic SQL
statements without manipulating any strings. As Safe Query
Objects, SQL DOM does not take the full advantage of SQL
expressiveness and also exhibits very poor results regarding
performance.

Static Checking of Dynamically Generated Queries [36]

presents a solution based on static string analysis of Java
programs to find out where SQL statements are being
constructed. The main idea is to find out all possible
combinations of distinct SQL statements and then analyze
them regarding their syntax and their type mismatch errors.
This approach does not affect system performance but
exhibits some drawbacks as: 1) all source code is hand
written from string concatenation till JDBC execution
context; 2) it does not provide any object-oriented view of
the SQL statement execution context.

ADO.NET [9, 37] is part of the base class library

included in the Microsoft .Net Framework. It is a set of
classes that expose data access services to .NET
programmers. The DataSet is the key component
implementing a disconnected memory-resident
representation of the data source. Some of the most
important features are: it is aimed at integrating several and
distinct data sources (XML, relational, etc.); it supports

161

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

several related tables, constraints and relationships between
them. The representation of the data source may be as
complex as necessary. Therefore, ADO.NET is tailored to
meet distinct requirements from those here announced. Table
VI depicts the code for an ADO.NET example written in C#.

TABLE VI. ADO.NET EXAMPLE

// C#
void getStudent(int id) {
 string sql=”select * from Std_student where Sd_id=” + id;
 SqlDataAdapter da=new SqlDataAdapter();
 da.SelectCommand=new SqlCommand(sql,conn);
 DataTable dt=DataTable();
 da.Fill(dt);
 DataRow dr=dt.Rows[0];
 string firstName=dr[“Std_firstName”];
 string lastName=dr[“Std_lastName”];
 Console.WriteLine(“Student‟s name: “ + firstName + “ “ + lastName);
}

Call Level Interfaces (CLI) [6], as JDBC [7] and ODBC [8]
are practically an unavoidable option whenever performance
and SQL expressiveness are simultaneously considered key
issues. CLI provide mechanisms to encode Create, Read,
Update and Delete SQL expressions inside strings, easily
incorporating the performance and expressiveness of SQL.
Thus, performance and expressiveness are crucial advantages
of CLI but this comes with unavoidable and important
drawbacks, namely there is no easy way to link CRUD
expressions and the applications they assist; the act of edit
CRUD expressions is tricky and error-prone; CRUD
expressions are awkward regarding their maintenance and
CRUD expressions are vulnerable to SQL injection attacks.
In order to overcome the drawbacks of these techniques, we
aim to explore CLI, namely through JDBC. These drawbacks
and other issues will be thoroughly addressed in the next
section. Table VII shows an example using JDBC.

TABLE VII. JDBC EXAMPLE

// Java
void getStudent(Connection,conn, int id) throws SQLException {
 sql=”select * “ +
 “from Std_student “ +
 “where std_student=” + id + “);”;
 st=conn.createStatement();
 rs=st.executeQuery(sql);
 firstName=rs.getString(“Std_firstName”);
 lastName=rs.getString(“Std_lastName”);
 System.out.println(“Student‟s name: “ + firstName + “ “ + lastName);
}

III. IMPEDANCE MISMATCH: COMMON JDBC

DRAWBACKS

JDBC is a common tool for integrating relational
databases with Java programming language. JDBC is also a
representative of the typical challenges of CLI. As such, we
will explore JDBC as a target tool. Thus, this section aims to
emphasize common drawbacks regarding the utilization of
JDBC focusing mainly on the ResultSet interface. The
drawbacks may be split into four categories: 1) the process

for editing SQL statements; 2) the process for retrieving data
from returned relations; 3) the process of updating databases
through CONCUR_UPDATABLE ResultSets; 4) protocols of
ResultSet interface regarding its usability. Figure 2 presents a
simple example, which comprises some of the drawbacks
related to categories 1), 2) and 3). This example is used in
the following paragraphs to describe JDBC drawbacks:

a) There is no easy way to link CRUD expressions and their
results to the application they assist. CLI provide services to
ease the integration of object-oriented applications and
relational databases but relevant issues are not overcome
as string concatenation (Figure 2: lines 22-24) and
conversion between relational and object-oriented paradigms
(Figure 2: lines 27, 28, 30).

Figure 2. Some JDBC drawbacks

b) Editing CRUD expressions and access to their results is
tricky and error-prone. CRUD expressions are constructed
by concatenating strings and access to their results is
achieved by reading attribute by attribute in a row by row
basis. Some of the most usual errors are: a) concatenation
errors - missing space between lines (Figure 2, lines 22, 23)
and missing space before “and” (Figure 2: line 23); b) type
mismatch error - argument startYear and column
Crs_startYear (Figure 2: lines 20, 24); c) retrieving data -
misspelled column name (Figure 2: line 28);

c) Errors cannot be checked for correctness at compile time,
addressed in [36]. None of the previous errors can be caught
at compile time demanding great accuracy while editing the
source code in order to prevent additional time on testing,
debugging and future maintenance.

d) CRUD expressions are awkward regarding their
maintenance, addressed in [38]. CRUD expressions
(construction and execution) comprise many different
entities grouped in three classes: SQL syntax, CLI services
and database schema. While SQL syntax and CLI services
can be considered stable, database schema is a dynamic
entity. Database schema may change for many reasons, as
initial error on conceptual model or the emerging of new
requirements, which usually happens several times during
the development process and even also after application

162

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

deployment. Any simple change in the database schema may
involve a huge work on updating the strings that encode the
affected SQL statements.

e) CRUD expressions are vulnerable to SQL injection
attacks, addressed in [39]. This issue is not addressed in the
current version of CRUD-DOM.

f) ResultSet usability, ResultSet interface has dozens of
states, dealing with different combinations of ResultSet
instantiations, directions, accesses, updates, etc. The
developer is before a huge task to become aware of how to
use the ResultSet interface. ResultSet interface comprises
several distinct protocols not organized in interfaces,
conveying the idea that everything is possible in anytime.
ResultSet interface is composed by more than 200 methods
and 10 attributes. Figure 3 presents a partial view of the
ResultSet interface. Each ResultSet state has its own usage
protocol gathering a subgroup of all methods of the
ResultSet interface. Figure 4 depicts the most relevant
protocols for this work: Read, Update, Insert and Delete
actions. While Read and Delete protocols do not comprise a
start and an end instruction, Update and Insert protocols
always have a start instruction (implicitly for Update and
explicitly for Insert) and an end instruction. Besides the
starting and the ending instructions, the main issue for
Update and Insert protocols is that the cursor cannot be
moved from the current selected row while the protocol is
being executed. If the cursor is moved from the selected row
while the protocol is being executed, the protocol will be
aborted and previous changes are discarded from the in-
memory of the ResultSet. In order to overcome some of
these difficulties we will present an approach where each
protocol is executed through a dedicated interface improving
this way ResultSet usability.

+next() : bool

+previous() : bool

+first() : bool

+last() : bool

+beforeFirst()

+afterLast()

+isFirst() : bool

+isLast() : bool

+isBeforeFirst() : bool

+isBeforeLast()

+absolute(in position : int) : bool

+relative(in offset : int) : bool

+getInt(in column : string) : int

+getString(in column : string) : string

+updateInt(in column : string, in value : int)

+updateString(in column : string, in value : string)

+updateRow()

+insertRow()

+deleteRow()

+cancelRowUpdates()

+moveToInsertRow()

+moveToCurrentRow()

+rowUpdated() : bool

+rowDeleted() : bool

+rowInserted() : bool

+wasNull() : bool

«interface»

ResultSet

Figure 3. Partial view of the ResultSet interface

Some of the aforementioned drawbacks have already
been individually addressed as previously cited. In this paper

we will present a simple, integrated and unified alternative to
overcome all the aforementioned drawbacks, except for the
SQL injection attack. The alternative comprises both the
CRUD-DOM and the CRUD-M.

Figure 4. Read, Update, Insert and Delete protocols

IV. CRUD-DOM

CRUD-DOM is our abstract model aimed at bridging the
gap between relational databases and object-oriented
applications. The CRUD-DOM goals are manifold, which
were described in section I.B Motivation. Before we delve
into the CRUD-DOM issue, we will present a concise
overview of Statement/ResultSet interfaces and CRUD
expressions.

A. Statement and ResultSet

The Statement interface [40] is used to execute SQL
statements and to return the possible results they produce
(only for Select statements). The returned results are
managed by the ResultSet interface [41]. Loosely speaking,
ResultSet interface provides two orthogonal functionalities:
scrollability and updatability. Scrollability defines the ability
to scroll over the rows retrieved from the database. There are
two options: forward only – in this case cursors may only
move forward one row at a time; scrollable – cursors may
move in any direction and jump several rows at a time.
Updatability defines the capacity to change the in-memory
data managed by the ResultSet interface and therefore the
content of the host database. There are two main
possibilities: read only – the content of the ResultSet is read
only and, therefore, no changes are allowed; updatable –
changes may be performed over the in-memory data, as
Insert, Update and Delete. These functionalities are defined
at instantiation time of the parent Statement or
PreparedStatement [42] object. The combination of these

163

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

two functionalities influences the performance of many
actions that are executed. This analysis will be carried out in
section VI.

B. CRUD Expressions

CRUD expressions are the basic entities from which
CRUD-DOM specification must evolve. Therefore, before
proceeding with the CRUD-DOM specification, it is
advisable to briefly survey CRUD expressions in order to be
aware of the JDBC context in which they are used. CRUD
expressions comprise the four basic SQL statements for
accessing information in databases: Select, Insert, Update
and Delete. While Insert, Update and Delete statements are
used to alter the state of databases, Select statements allow
the implementation of several views of the database. Hence,
CRUD expressions may be grouped into two categories:
“query CRUD expressions” (Q-CRUD) whenever involving
a Select statement; and “execute CRUD expressions” (E-
CRUD) whenever involving an Insert, Update or Delete
statement. The corresponding CRUD-DOs share some
source code but relevant differences must be emphasized.
The most relevant difference is that Q-CRUD expressions
return one or more relations from the database therefore
requiring specific processing, as seen in Figure 2 (lines 26-
28). Additionally, in some circumstances and also for certain
Q-CRUD expressions it is possible to instantiate updatable
ResultSets. Updatable ResultSets provide embedded
protocols to update, to delete and to insert data in databases.
Figure 2 (lines 30-32) concisely presents a case for the
update situation. Other examples are presented in Figure 4
for Update, Insert and Delete actions. Thus, two types of
CRUD expressions may be defined. Q-CRUD expressions
executed on updatable ResultSet are named as Active Q-
CRUD expressions (AQ-CRUD). Q-CRUD expressions
executed on non-updatable ResultSet are named as Passive
Q-CRUD expressions (PQ-CRUD).

C. CRUD-DOM Objectives

As previously mentioned CRUD-DOM addresses three
main objectives: high performance, high usability and high
productivity. In this section we will describe the most
relevant features to be included and that are dependent on
CRUD-DOM architecture: performance and usability (access
layer usability). The remaining features as usability (CRUD
Manager usability) and productivity depend on CRUD
Manager.

Performance
To comply with the performance objective, the following

features were established:

 Pool of CRUD-DOs: CRUD-DOs rely on statically
crated CRUD expressions. CRUD-DOs exist inside
the access layer and are supposed to be reused over
and over again. Therefore, a pool of CRUD-DOs
should minimize CRUD-DO instantiation time.

 Prepared statements: for the reasons pointed in the
previous feature (reuse of CRUD-DOs), it is
advisable to use prepared statements

(PreparedStatement [42]) instead of Statements
(Statement [40]).

Usability
To comply with the usability, the following features were

established:

 Type-state [43] oriented interfaces: For each main
ResultSet protocol (Read, Update, Insert and Delete)
CRUD-DOM makes available a type-state oriented
interface.

 Semantic interfaces: all interfaces defined by
CRUD-DOM aimed to deal with query parameters
and attributes of the returned relations are always
semantically oriented. This means that the names of
their methods and their arguments are always
derived from the associate queries.

 Factory: from users‟ perspective, all CRUD-DOs are
created and managed through a factory.

D. CRUD-DOM Details

We will present CRUD-DOM architecture by
enumerating and describing the fundamental features for
each type of CRUD expression: E-CRUD, PQ-CRUD and
AQ-CRUD. Afterwards, we will present class diagrams for
each type of CRUD expression. For all presented examples
we assume that:

 “CruddoName” is the name for all types of CRUD
expressions used as examples.

 Q-CRUD expression is “select co1A, colB from table
where colA>param” where colA is integer and colB
is String.

 E-CRUD is any delete, update or insert SQL
statement with one parameter (param) of type
integer.

All CRUD-DOs share the following features:

 Every CRUD-DO has a unique name.

 Every CRUD-DO is built around one class, known
as the invocation class, and among other things, the
class is responsible for the execution of the CRUD
expression.

 The name of the invocation class is the same as the
one given to the CRUD-DO.

 The invocation class has only one constructor with
no arguments. Its visibility is protected.

 The invocation class has one method with the
following signature void config(Connection conn).
This method is responsible for setting the connection
to be used during the query execution.

 The invocation class has one method named execute,
which is responsible for the execution of the CRUD
expression. This method returns no value and has as
many arguments as the number of the CRUD
expression parameters. The name, type and order of
the arguments depend on the name, type and order of
CRUD expression parameters. For our example,
execute has one parameter named as param and its
type is int.

164

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

All CRUD-DOs derived from E-CRUD expressions

share the following feature:

 The invocation class has a method with the
following signature: int getAffectedRows(); this
method returns the number of rows affected by the
execution of the E-CRUD expression.

 Figure 5 presents the class diagram for the E-CRUD

expression example.

#CruddoName()

#config(in conn : Connection)

+execute(in param : int)

+getAffectedRows() : int

CruddoName

E_CRUD

Figure 5. Class diagram for E-CRUD expressions

All CRUD-DOs derived from Q-CRUD expressions

share the following feature:

 The invocation class must implement all the
scrollable methods in accordance to its instantiation
criterion.

 If the ResultSet is scrollable, provide a method with
the following signature: int getRowCount(); this
method returns the number of rows retrieved by the
Select statement;

 Q-CRUD expressions have no concrete instances.
They are super types for PQ-CRUD and AQ-CRUD
expressions.

All CRUD-DOs derived from PQ-CRUD expressions

share the following features:

 Extend features of Q-CRUD expressions;

 The invocation class has one method with the
following signature: CruddoName_readTuple
beginRead();

 CruddoName_readTuple class, known as the access
class, implements one method, generally known as
access method, for each attribute of the returned
relation. Each access method has the following
signature javaDataType gAttributeName() where
JavaDataType is the correspondent java data type
for SQL data type and the method‟s name is built by
concatenating the name of the attribute (first letter
converted to uppercase) with the prefix g.

Figure 6 presents the class diagram for the PQ-CRUD

example.

 All CRUD-DOs derived from AQ-CRUD expressions

share the following features:

 Extend features of Q-CRUD expressions;

 The invocation class may provide any subset of the
following four features: readable, updatable,
insertable and deletable; whenever provided, the
readable feature may also be included in the
remaining features to improve their usability;

 If CRUD-DO is readable it implements one method
with the following signature:
CruddoName_readTuple beginRead();

 If CRUD-DO is updatable it implements one
method with the following signature:
CruddoName_updateTuple beginUpdate();

 If CRUD-DO is insertable it implements one method
with the following signature:
CruddoName_insertTuple beginInsert();

 If CRUD-DO is deletable it implements one method
with the following signature: void delete();

 CruddoName_readTuple class: previously explained
for PQ-CRUD;

 CruddoName_updateTuple and
CruddoName_insertTuple classes provide
functionalities easily perceived from
CruddoName_readTuple class: access methods have
s as prefix instead of g;.

 The delete method, deletes the current row from the
ResultSet.

#CruddoName()

#config(in conn : Connection)

+execute(in param : int)

+moveNext() : bool

+beginRead() : CruddoName_readTuple

CruddoName

+movePrevious() : bool

+moveAbsolute(in position : int) : bool

+moveRelative(in offset : int) : bool

+moveFirst() : bool

+moveLast() : bool

+moveBeforeFirst() : bool

+moveAfterLast() : bool

Scroll

Only if ResultSet

is scrollable

PQ_CRUD

Figure 6. Class diagram for PQ-CRUD expressions

Figure 7, Figure 8, Figure 9 and Figure 10 present the
class diagrams for AQ-CRUD expressions.

Class diagrams have been presented for each type of

CRUD expression. To completely understand the class

diagrams it is necessary to have an understanding of how the

ResultSet interface is implemented. Original ResultSet

method names have been renamed and some new ones have

been included. Renamed methods are easily identified: next-

>moveNext, previous->movePrevious, etc. Only a subgroup

of all methods has been presented in order to avoid

overcrowding the class diagrams.

There is a factory responsible for creating the correct

instances and also for managing the pool of CRUD-DO

165

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instances. Figure 11 depicts the factory source code for
managing CruddoName. After their utilization, CRUD-DOs
may be released for future reutilization (Figure 11, line 25)
maintaining this way an active pool of CRUD-DOs. Before
creating a new instance, the factory checks if there is any
instance available inside the pool (Figure 11, line 31).

#CruddoName()

#config(in conn : Connection)

+execute(in param : int)

+moveNext() : bool

+beginRead() : CruddoName_readTuple

+beginUpdate() : CruddoName_updateTuple

+beginInsert() : CruddoName_insertTuple

+delete()

CruddoName

+movePrevious() : bool

+moveAbsolute(in position : int) : bool

+moveRelative(in offset : int) : bool

+moveFirst() : bool

+moveLast() : bool

+moveBeforeFirst() : bool

+moveAfterLast() : bool

Scroll
Only if ResultSet

is scrollable

AQ-CRUD

beginRead only

 exists if readable

beginUpdate only

 exists if updatable

beginInsert only

 exists if insertable

delete only

 exists if deletable

Figure 7. Class diagram for AQ-CRUD expressions

+gColA() : int

+gColB() : string

CruddoName_readTuple

Figure 8. Readable class diagram for Q-CRUD expressions

+sColA(in value : int)

+sColB(in value : string)

+insert()

+cancelInsert()

CruddoName_insertTuple

only if readable

+gColA() : int

+gColB() : string

CruddoName_readTuple

Figure 9. Insertable class diagram for AQ-CRUD expressions

+sColA(in value : int)

+sColB(in value : string)

+update()

+cancelUpdate()

CruddoName_updateTuple

only if readable

+gColA() : int

+gColB() : string

CruddoName_readTuple

Figure 10. Updatable class diagram for AQ-CRUD expressions

Figure 11. Factory: pool management

V. CRUD MANAGER

CRUD-M addresses productivity objectives (automatic code
generation, semi-automatic test and also maintenance) and
usability objectives. No special programming skills should
be required to use CRUD-M and learning time should be
minimal. CRUD-M usage is centered in a GUI component
presented in Figure 12. Figure 12 shows a concrete example
for an AQ-CRUD expression, called Courses, which was
created as readable, updatable and insertable but not
deletable. Figure 13 shows the usage of CRUD-DO Courses
from the application tier point of view. As one can see, the
integration is seamless regarding impedance mismatch.
Additionally, an approach for the implementation of
ResultSet as a typestate [44] component is provided
improving this way CRUD-DO usability. This may be
verified, as an example, by the definition of the
Courses_readTuple interface (Figure 13, lines 68, 69), which
provides a coherent protocol for retrieving data from the
ResultSet.

CRUD-M encompasses five main blocks as depicted in
Figure 14. User launches CRUD-M and defines which
database is going to be used. Then, “Schema Reader” reads
the schema of the database. From now on, users may edit
and/or maintain CRUD expressions. “CRUD Editor”
provides a context where CRUD expressions may be edited.
“CRUD Execution Unit” may help “CRUD Editor” in some
specific tasks as defining SQL parameters and executing
statements against the database. After executing successfully
an SQL statement against the database, users are allowed to
create CRUD-DO, which will be accomplished by “CRUD-
DO Generator”. “CRUD Maintenance” parses CRUD-DO
and retrieves the underlying CRUD expression to be reedited
by “CRUD Editor”. A more detailed description for each
bock follows:

Schema Reader: this component reads the schema of the
database, which is mainly used to automatically suggest the
Java data types for the parameters of CRUD expressions.

CRUD Editor: CRUD Editor is a text editor where CRUD
expressions may be written from scratch. Parameters defined
in runtime must be identified through a unique name
preceded by a „@‟ character. These names will be used for

166

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. CRUD-M GUI

Figure 13. Courses from the application point of view

the arguments of the execute method of the invocation
classes. In our example we have defined two parameters:
dptId and startYear.

CRUD Execution Unit: CRUD Execution Unit is responsible
for three tasks: 1) providing, whenever necessary, input data
components for SQL parameters. Each input component is
identified by the name of the associated parameter and has a
default Java Data Type derived from the database schema.
Users may select another Java Data Type becoming
responsible for their decision; 2) executing the edited CRUD
expression against the database proving this way an expedite
and integrated tool for evaluating the correctness of CRUD
expressions and also for testing the outcome of CRUD
expressions. Developers are relieved to write source code to
test and debug their CRUD expressions; 3) formatting a table
in runtime to present the content of returned relations,

 Schema Reader

CRUD Execution Unit

C

R

U

D

E

d

i

t

o

r

Database

CRUD-DO Generator

CRUD MaintenanceP

o

o

l

Figure 14. Block diagram of the CRUD-M

whenever the underlying CRUD is a Q-CRUD expression.
This visualization allows developers to have an immediate
visual feedback about the retuned data and easily evaluate
the outcome of Q-CRUD expressions execution. In our
example, the returned relation has 4 rows and 5 attributes.

CRUD-DO Generator: CRUD-DO Generator creates

automatically all the necessary source code for the

underlying CRUD expressions. For all types of CRUD

expressions, users must input some additional information,

as: CRUD-DO‟s name, package‟s name, type of CRUD

expression, pool directory for CRUD-DOs, etc. Some

additional information is required if the CRUD expression is

167

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of type AQ-CRUD, as which of the following functionalities

should be implemented: readable, insertable, updatable and

deletable.

CRUD Maintenance: this component keeps track of all
existing CRUD-DOs in the pool directory. Any CRUD-DO
in the pool directory may be selected for editing or to be
deleted. If it is selected for editing, the underlying CRUD
expression is retrieved from the invocation class and
presented in the CRUD editor. From now on, the CRUD
expression may be retested or reedited to update the current
CRUD-DO or even to create a new one.

VI. PERFORMANCE ASSESSMENT

As mentioned in section I, two dimensions may be
considered for performance: responsiveness and scalability.
Hereafter, performance should be understood as the
responsiveness dimension. The first version of CRUD-DOM
was presented in [1]. CRUD-DOM performance was
evaluated by measuring the responsiveness for a particular
situation: a fixed block of code (one for each protocol) was
repeatedly executed for a specific number of times. In this
new approach, we will get a more dynamic view about how
CRUD-DOM and JDBC behave. This will be achieved by
stressing them under several conditions. Details are
explained in the next sub-sections.

A. The valuation testbed

All measurements share the same platform: PC - Dell
Latitude E5500; CPU - Intel Duo Core P8600 @2.40GHz;
RAM - 4.00 GB; OS - Windows Vista Enterprise Service
Pack 2 (32bits); Java SE 6; JDBC(sqljdbc4) and SQL Server
2008 version 10.0.1600.22. In order to promote an ideal
environment the following actions were taken: the running
threads were given the highest priority and all non-essential
processes/services were canceled. Transactions were not
used and auto-Commit was used in all connections.

A new database was created in conformance with the
schema presented in Figure 1. In order to avoid some
overhead added by SQL Server, some default properties
were changed as, Auto Update Statistics = false and
Recovery Model=Simple.

The performance assessment addresses two goals: the
first one, known as standard JDBC assessment (S-JDBC), is
to understand the behavior of the standard Statement and
ResultSet interfaces; the second one, based on a component
relying on CRUD-DOM (C-CRUD), aims to assess C-
CRUD and compare it with S-JDBC. S-JDBC and C-CRUD
are from now on generally known as entities and formally
represented by the letter E.

Part of the results of both assessments is influenced by
the Microsoft TDS protocol and also by the implemented
mechanisms on both sides (JDBC and SQL Server) to
support it. Some key notes are provided to help on the
understanding of the collected results:

 selected data through forward-only and read-only
ResulSets are always transferred to the client side in

a single batch. Sql Server does not implement any
mechanism to supervise or control client behavior.
On the other side, for other types of ResultSets, Sql
Server transfers data in blocks and keeps track of
clients‟ operations. This is achieved by a cursor and
a dataset that keeps all the selected data and also
keeps track on which row clients are pointing to.
This means that it is expected that forward-only and
read-only ResultSets should get better performance
results than the other types of ResultSets.

 forward-only ResultSets require a simpler
mechanism to scroll over the selected data. This
means that JDBC and Sql Server have optimized
algorithms and therefore improved performance for
forward-only ResultSets.

 Read-only ResultSets do not create, explicitly, any
concurrency constraint on the database and,
therefore, their implementations are more effective
on both sides.

 Scrollable and updatable ResultSets are expected to
have the worst performance. They are the sum the
most complex implementations of TDS: not
forward-only and nor read-only.

The size of blocks to be retrieved from the Sql Server

may be controlled by setting the block fetch size. Thus, in
order to impose a similar environment to all the collected
measures, the fetch size has been set to guaranty that all rows
are retrieved from Sql Server in a single block.

Sql Server supports more ResultSet types than those
defined in the standard JDBC. A more detailed description
about Microsoft implementation of JDBC may be found here
[45].

In [1], the context in which the assessment took place
was characterized by: 1) the type of Statement {Forward-
only Read-only (FR), Forward-only Updatable (FU),
Scrollable Read-only (SR) and Scrollable Updatable (SU)};
2) the type of operation {Read (R), Update (U), Insert (I) and
Delete (D)} and finally 3) by defining a normalized metric
based on the number of cycles that was possible to compute
in a second. In spite of its simplicity and validity, we have
adopted a new strategy that provides a better evaluation for
both entities.

The environment in which the assessment here presented

took place is characterized by: CRUD expression, scenarios,
contexts, units and data. These items are explained in the
next paragraphs.

CRUD expressions: All measurements derive from the AQ-
CRUD expression “Select * from Std_student”.

Scenarios (S): Four scenarios were defined for each
operation to be evaluated: Read (Sre), Update (Sup, Scu), Insert
(Sin, Sci) and Delete (Sde). The Sre consists in select a certain
number of tuples from the database and then read all
attributes of all tuples. The update scenario comprises two
variants: a) Sup consists in selecting a certain number of

168

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tuples from the database and then update all attributes
(except the primary key – Std_id) of all tuples without
committing the changes to the database; b) Scu consists in
selecting a certain number of tuples from the database and
then update all attributes (except the primary key – Std_id)
of all tuples and commit the changes to the database. The
insert scenario comprises two variants: a) the Sin consists in
selecting zero rows from the database and then insert all
attributes of a certain number of rows into the ResultSet
without committing them to the database; b) the Sci consists
in selecting zero rows from the database and then insert all
attributes of a certain number of rows into the ResultSet
committing them to the database. The Sde scenario consists in
select a certain number of tuples from the database and then
to delete all tuples one by one. Table VIII concisely
describes all scenarios. These scenarios are only one
possibility among an infinity of others. Thus, it was decided
to only assess S-JDBC in these scenarios because the most
relevant assessment is carried out for the individual units
(see Units).

TABLE VIII. FORMAL DESCRIPTION OF ALL SCENARIOS

S Description

Sre

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select all (n) tuples from the table Std_Student
For each tuple
 Read all attributes
Stop clock

Sup

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select all(n) tuples from the table Std_Student
For each tuple
 Update all attributes except the pk // without committing them
Stop clock

Scu

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select all(n) tuples from the table Std_Student
For each tuple
 Update all attributes except the pk
 Commit changes
Stop clock

Sin

Delete all tuples from the table Std_Student
Start clock
Select all (zero) tuples from the table Std_Student
While insert more tuples
 Insert all attributes // without committing them
Stop clock

Sci

Delete all tuples from the table Std_Student
Start clock
Select all (zero) tuples from the table Std_Student
While insert more tuples
 Insert all attributes
 Commit new tuple
Stop clock

Sde

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Start clock
Select n tuples from the table Std_Student
For each tuple
 Delete tuple
Stop clock

Unit (U): A unit is a task whose execution time is relevant to
understand the behavior of any of the four scenarios. The
following units were defined: time to execute the select
statement (Use), time to read all returned tuples (Ure), time to
update all returned tuples but not to commit them to the
database (Uup), time to insert tuples into the ResultSet but not
to commit them (Uin), time to update tuples and commit them
to the database (Uuc), time to insert tuples and commit them
to the database (Uic) and finally time to delete tuples from the
database (Ude). Table IX concisely describes all units. Each
scenario may be seen as an aggregation of individual units.

Now let‟s present the composition for each scenario in
terms of units: Sre=Use+Ure, Sup=Use+Uup, Scu=Use+Uuc
Sin=Use+Uin, Sci=Use+Uic and Sde=Use+Ude.

TABLE IX. FORMAL DESCRIPTION OF ALL UNITS

C Description

Use

Delete all tuples from the table Std_Student
Insert n into the database table Std_Student
Start clock
Select all (n) tuples from the table Std_Student
Stop clock

Ure

Delete all tuples from the table Std_Student
Insert n into the table Std_Student
Select all (n) tuples from the table Std_Student
Start clock
For each tuple
 Read all attributes
Stop clock

Uup

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Select all(n) tuples from the table Std_Student
Start clock
For each tuple
 Update all attributes without commit (except the pk)
Stop clock

Ucu

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Select all(n) tuples from the table Std_Student
Start clock
For each tuple
 Update all attributes (except the pk)
 Commit changes
Stop clock

Uin

Delete all tuples from the table Std_Student
Select all (zero) tuples from the table Std_Student
Start clock
While insert more tuples
 Insert all attributes without commit
Stop clock

Uci

Delete all tuples from the table Std_Student
Select all (zero) tuples from the table Std_Student
Start clock
While insert more tuples
 Insert all attributes
 Commit new tuple
Stop clock

Ude

Delete all tuples from the table Std_Student
Insert n tuples into the table Std_Student
Select all (n) tuples from the table Std_Student
Start clock
For each tuple
 Delete tuple
Stop clock

169

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context (C): Four contexts were defined for the Statement
interface: forward-only and read-only (Cfr), forward-only and
updatable (Cfu), scrollable and read-only (Csr) and finally
scrollable and updatable (Csu). All contexts were used to
explicitly assess S-JDBC. C-CRUD was only assessed in the
Csu. The justification for this option is that S-JDBC and C-
CRUD architectures do not depend on the running context.
The collected differences between S-JDBC and C-CRUD in
one context should be equivalent in all the other contexts.
This means that if for Csu the difference between C-CRUD
and S-JDBC is Δt then it will remain Δt for the other
contexts. Therefore, the behavior of C-CRUD for the
remaining contexts may be inferred from the behavior of S-
JDBC in those contexts and from the collected differences
between S-JDBC and C-CRUD in Csu. This assertion has
been confirmed by several collected measurements in the
other remaining contexts. Table X describes all contexts.

TABLE X. DESCRIPTION OF ALL CONTEXTS

C Description
Cfr Forward-only and read-only

Cfu Forward-only and updatable

Csr Scrollable and read-only

Csu Scrollable and updatable

Data: In order to promote a dynamic view about the
behavior of each entity, it was decided not to measure the
number of cycles that is possible to be computed in a second
but to measure the required time to execute each
scenario/unit for a set of numbers of rows. The chosen set of
numbers of rows is: 5, 10, 15, 25, 50, 75, 100, 150, 250, 350
and 500 rows. This approach gives a dynamic perspective
about the behaviors of all entities and is applied to all
scenarios, contexts and units. A simple formalization of both
entities may be expressed as:

 S(α,η) (1)

 U(α,η) (2)

Table XI describes each symbol of equations (1) and (2).

TABLE XI. MEANING OF EQUATIONS (1) AND (2)

 Description Domain

S Any subset of all
scenarios. All
scenarios is
represented by Sall.

S{Sall,Sre,Sup,Scu, Sin,Sci,Sde}

U Any subset of all
units (valid for the
defined scenario and
context). All units is
represented by Uall.

U{Uall,Use,Usc,Ure,Uup,Ucu,Uin,
 Uci,Ude}

α Any subset of all
contexts. All contexts
are represented by call.

α{call,cfr,cfu,csr,csu}

η Any subset of the set
of rows. All set is
represented by nall.

η{nall,n5,n10,n15,n25,n50,n75,
 n100,n150,n250,n350,n500}.

Example, Sde(cfu,su,nall) means: scenario delete, contexts
forward-only updatable and scrollable updatable and the
complete set of rows.

A slot is defined as the minimum granularity for which it
is necessary to collected measures. Examples: Sre(cfr,n5),
Sre(cfr,nl0) and Uup(cfu,su,n250). The distribution and the total
number of different slots are presented in Table XII. The
number of slots for S-JDBC for all scenarios is computed by
multiplying the number of scenarios by the number of
contexts by the number of sets of rows. The other values
follow the same reasoning to be computed. The total number
of slots for both entities is 649.

TABLE XII. NUMBER OF SLOTS

 S-JDBC C-CRUD Total
Scenarios 6x4x11=264 0 264

Units 7x4x11=308 7x1x11=77 385

Total 572 77 649

The measures used in all the following graphics for each

slot were computed, as:

 At least 500 raw measures were collected.

 The 25 best raw measures were discarded.

 Measure=average of the 50 best remaining raw
measures.

Thus, at least 649x500=324,500 raw measures were

collected for this current assessment.

B. S- JDBC assessment

S-JDBC assessment comprises both the units and the
scenarios. The assessment of units allows us to analyze and
isolate the impact of each context by unit. The assessment of
scenarios also allows us to analyze the impact by context but
the simulation in closer to real situations because the starting
point is always triggered by a select statement. Just to
remind, AQ-CRUD expressions always comprise a Select
statement.

S-JDBC assessment is carried out without any special
architecture, avoiding this way any additional overhead. This
will be confirmed in the following paragraphs.

1) Assessment of units
In section IV.A it was mentioned that each context

(combination of functionalities) may influence the
performance of each operation. In this section we will
analyze the impact of the chosen contexts in each unit.

Figure 15, Figure 18, Figure 21, Figure 23, Figure 25,
Figure 27 and Figure 30 depict the source code for each unit.
Each unit is individually controlled in order to collect
accurate measures for its execution time. These figures show
that: the source code is exempt of any architecture and the
source code is in line with the general description of all units,
see Table IX. These units have some modifications when
compared to the equivalent ones presented in [1] derived
from the changes introduced in the current test-bed.

170

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16, Figure 17, Figure 19, Figure 20, Figure 22,
Figure 24, Figure 26, Figure 28, Figure 29, Figure 31 and
Figure 32 show the performance of all units. The column
bars represent the required time to execute the unit (Tsj) and
the associated vertical axis is the left one. The dashed lines
represent the required mean time to process one row (Rsj)
and the associated vertical axis is the right one. Rsj is
computed dividing Tsj by η.

Use – Select unit
Figure 15 depicts the main source code for the

Use(call,nall). This unit is focused on measuring the required
time to select each set of number of rows.

Figure 15 . S-JDBC: source code for the Use(call,nall).

Figure 16 presents the general behavior of the

Use(call,nall). The dashed lines are very close conveying the
need for a more detailed graphic. Figure 17 presents a more
detailed view of Figure 16 emphasizing the behavior of each
context.

Figure 16. S-JDBC: behavior of Use(call,nall)

From Figure 16 and Figure 17 we may conclude that:

 Tsj of Cfr,fu is weakly dependent on η.

 Tsj of Csr,su increases with η.

 Rsj decreases for all contexts when η increases; as
an example, for Csu, Tsj varies from 77μs till 5.2μs.

 Cfu, Cfr, Csr and Csu are ordered from the best to the
worst Rsj score.

Figure 17. S-JDBC: detail of Use(call,nall).

Main point: scrollable ResultSets should be avoided
whenever possible, mainly when the number of rows is
above 100.

Ure – Read unit
Figure 18 depicts the main source code for the

Ure(call,nall). This unit is focused on measuring the required
time to read all rows returned by the select statement.

Figure 19 presents the general behavior of the
Ure(call,nall). The dashed lines for Cfu,sr,su are very close
conveying the need for a more detailed graphic. Figure 20
presents a more detailed view of Figure 19 emphasizing the
behavior of the 4 contexts.

Figure 18. S-JDBC: source code for the Ure(call,nall).

Figure 19. S-JDBC: behavior of Ure(call,nall).

Figure 20. S-JDBC: detail of Ure(call,nall).

From Figure 19 and Figure 20 we may conclude that:

 Tsj of Call increase with η; the Cfr is the most
independent one.

 Rsj decreases for Cfu,sr,su when η increases; as an
example, for Csu the ratio varies from 135μs till

171

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

26μs. Cfr is independent of η revealing a constant
performance.

 Cfr has by far the best scores for all η; Cfu,sr,su present
similar scores for all η.

Main point: Cfr is always the best option.

Uup – update unit without commit
Figure 21 depicts the main source code for the

Uup(cfu,su,nall). This unit is focused on measuring the required
time to update all rows returned by the select statement but
without committing those changes to the database.

Figure 21. S-JDBC: source code for the Uup(cfu,su,nall).

Figure 22 presents the general behavior of the

Uup(cfu,su,nall). The dashed lines for Cfu,su are overlapped
showing that the behaviors are the same for both contexts.

Figure 22. S-JDBC: behavior of Uup(cfu,su,nall).

From Figure 22 we may conclude that:

 Tsj of Cfu,su increases with η;

 The behavior is the same for both contexts.

 Rsj decreases for Cfu,su when η increases; it ranges
from 127μs till 18μs.

 For η>50, Rsj tends to be constant

Main point: there is no difference between Cfu and Csu.

Ucu – update unit with commit
Figure 23 depicts the main source code for the

Ucu(cfu,su,nall). This unit is focused on measuring the required
time to update all rows returned by the select statement and
also for committing those changes to the database.

Figure 23. S-JDBC: source code for the Ucu(cfu,su,nall).

Figure 24 presents the general behavior of the Ucu(cfu,su,nall).
The dashed lines for Cfu,su are overlapped when η>=10,
showing that the behaviors are practically the same for both
contexts.

Figure 24. S-JDBC: behavior of Ucu(cfu,su,nall).

From Figure 24 we may conclude that:

 Tsj of Cfu,su increases with η;

 For η>=10, the behavior is the same for both
contexts.

 Rsj decreases for Cfu,su when η increases; it ranges
from about 3,000μs till 600μs.

 For η>=50, Tsj tends to be constant.

From Figure 22 and Figure 24 we conclude that

committing the changes to the database causes a significant
increase in Tsj and Rsj in about 25 times for all η. This means
that any improvement in CRUD-DOM will very probably
convey a minor effect in Cfu,su.

Main point: for η>=10, there is no difference between Cfu

and Csu.

Uin – insert unit without commit
Figure 25 depicts the main source code for the

Uin(cfu,su,nall). This unit is focused on measuring the required
time to insert η tuples into the ResultSet but without
committing them to the database.

Figure 26 presents the general behavior of the
Uin(cfu,su,nall). The dashed lines for Cfu,su are always
overlapped showing that the behaviors are the same for both
contexts.

172

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 25. S-JDBC: source code for the Uin(cfu,su,nall).

From Figure 26 we may conclude that:

 Tsj of Cfu,su increases with η.

 The behavior is the same for both contexts.

 Rsj decreases for Cfu,su when η increases; it ranges
from 128μs till 19μs.

 For η >=50, Tsj tends to be constant.

Main point: there is no difference between Cfu and Csu.

Figure 26. S-JDBC: behavior of Uin(cfu,su,nall).

Uci – insert unit with commit
Figure 27 depicts the main source code for the

Uci(cfu,su,nall). This unit is focused on measuring the required
time to insert η into the ResultSet and to commit them to the
database.

Figure 27. S-JDBC: source code for the Uci(cfu,su,nall).

Figure 28 presents the general behavior of the

Uci(cfu,su,nall). The dashed lines for Cfu,su are very close
conveying the need for a more detailed graphic. Figure 29
presents a more detailed view of Figure 28 emphasizing the
differences between the behaviors of the 2 contexts.

Figure 28. S-JDBC: behavior of Uci(cfu,su,nall).

Figure 29. S-JDBC: detail of Uci(cfu,su,nall).

From Figure 28 and Figure 29 we may conclude that:

 Tsj of Cfu,su increases with η.

 The behavior is very similar to both contexts.

 Rsj is weakly dependent on η for values of η >=75.

 Cfu gets better scores for all η.

From Figure 28 and Figure 29 we conclude that

committing the new tuples to the database causes an increase
in Tsj that ranges from 8 times for η =5 till 25 times for
N=500.

Main point: scrollable ResultSets should always be

avoided whenever possible.

Ude – delete unit
Figure 30 depicts the main source code for the

Ude(cfu,su,nall). This unit is focused on measuring the required
time to delete all tuples returned by the select statement.

Figure 30. S-JDBC: source code for the Ude(cfu,su,nall).

Figure 31 presents the general behavior of the

Ude(cfu,su,nall). The dashed lines for Cfu,su are very close
conveying the need for a more detailed graphic. Figure 32
presents a more detailed view of Figure 31 emphasizing the
differences between the behaviors of the 2 contexts. From
Figure 31 and Figure 32 we may conclude that:

 Tsj of Cfu,su increase with η.

173

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The behavior is very similar to both contexts.

 For η>=50, Rsj tends be independent from η.

 Cfu gets better scores for all η.

Main point: if possible, scrollable ResultSets should

always be avoided mainly when the number of rows is low.

Figure 31. S-JDBC: behavior of Ude(cfu,su,nall).

Figure 32. S-JDBC: detail of Ude(cfu,su,nall).

Summary
Despite some particularities, as a summary of all units,

we may say that:

 Cfr,fu have better scores than Csr,su.

 Most of the times, Csr have better scores than Csu.

 Tsj increases with η except for Cfr,fu in Use.

 Rsj decays when η increases except for Cfr in Ure.

 Rsj decays rapidly from η=5 till η=50 or η>75.

 Rsj tends to be constant for η>=50 or η>=75

The collected measures come in line with the knowledge

about the TDS protocol [46] and its implementation on the
client side and on the server side. Scrollable and updatable
ResultSets always use a cursor and a dataset inside the Sql
Server. The cursor management and the selected row in the
client side are always synchronized leading this way a
decrease in the overall performance. This characteristic will
also have impact in the next assessment.

2) Assessment of scenarios
In spite of being an important issue, the scenarios have

been introduced only to simulate situations closer to a
hypothetical situation. Therefore, we only briefly present
some results for the assessment of the six scenarios. Figure
33, Figure 34, Figure 35, Figure 36, Figure 37 and Figure 38
present the individual behavior for each scenario.

Figure 33. S-JDBC: behavior of Sre(call,nall)

The main idea to be emphasized is that the global

behavior of each scenario follows the global behavior of the
correspondent unit. The measures for each η and each
context are now increased by adding the correspondent
collected value for Use. The weight of Use is almost
unnoticeable for Scu,ci,de. This derives from the fact that these
contexts have very high Tsj. Anyway, the weight of Use is not

Figure 34. S-JDBC: behavior of Sup(cfu,su,nall)

Figure 35. S-JDBC: behavior of Scu(cfu,su,nall)

Figure 36. S-JDBC: behavior of Sin(cfu,su,nall)

174

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 37. S-JDBC: behavior of Sci(cfu,su,nall)

Figure 38. S-JDBC: behavior of Sde(cfu,su,nall)

Figure 39. S-JDBC: weight of each unit in the Sre(cfu,nall)

Figure 40. S-JDBC: weight of each unit in the Sci(cfu,nall)

constant neither for each context nor for each η. Two
examples for Cfu are shown in Figure 39 and Figure 40. In
these graphics each column represents the relative weight of
each unit for the total measured value. They show the
relative weight of each unit in the Sre(cfu,nall) and Sci(cfu,nall),
respectively. As expected, Use has a higher weight in Sre than
in Sci for all η.

C. C-CRUD assessment

C-CRUD assessment, as mentioned before, will only
comprise units. Scenarios will not be addressed because the
defined scenarios are only one among infinity of
possibilities. Moreover, each scenario conveys a similar
behavior as the correspondent main units (others than Ure) as
has been shown for S-JDBC.

C-CRUD assessment will be presented through graphics
that show the differences between S-JDBC and C-CRUD. In
all graphics, the bars represent the time required to execute a
unit (Tcc) and the dashed lines represent the % of the
difference between S-JDBC and C-CRUD (Vcc) = (C-
CRUD)-(S-JDBC)/(C-JDBC). The axis for the bars is the left
one and the axis for the dashed lines is the right one.

The main source code for the implementation of C-
CRUD basically differs from the depicted code for S-JDBC
on the usage of the type-state interfaces. The main structure
is equal on both entities. Anyway, we will always present the
source code in order to provide a better context for the
understanding of how each unit was assessed. The CRUD-
DO‟s name is Student.

Use – select unit
Figure 41 depicts the main source code for the

Use(call,nall). No differences were detected between S-JDBC
and C-CRUD and therefore there is no need to present the
correspondent graphic. Use(call,nall) behavior for S-JDBC is
presented in Figure 16 and Figure 17.

Figure 41. C-CRUD: source code for the Use(call,nall).

Ure – read unit
Figure 42 depicts the main source code for the

Ure(call,nall). Figure 43 presents the general behavior of the
Ure(call,nall).

Figure 42. C-CRUD: source code for the Ure(call,nall).

 From this figure we may conclude that:

 Vcc decreases for all contexts when η increases; Cfr is
the most independent one.

175

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The variation of Vcc along η is very similar to all
contexts

 The behavior of Cfr has the largest difference to S-
JDBC. This derives from the fact that Ure(Cfr) in S-
JDBC has by far the best scores leading to the
situation where any C-CRUD overhead implies a
stronger impact.

 Cfu,sr.su have very similar differences to S-JDBC.

 Vcc for Cfr range from about 2.9% till 2.6%

 Vcc for the other contexts range from about 2.6% till
2.15%

Figure 43. C-CRUD: behavior of Ure(call,nall).

Uup – update unit without commit
Figure 44 depicts the main source code for the

Uup(cfu,su,nall). Figure 45 presents the general behavior of the
Uup(cfu,su,nall).

Figure 44. C-CRUD: source code for the Uup(cfu,su,nall).

Figure 45. C-CRUD: behavior of Uup(cfu,su,nall).

From this figure we may conclude that:

 Vcc decreases for all contexts when η increases.

 Csu has the largest difference to S-JDBC but they
converge from η=5 till overlap for η>350.

 For Csu, Vcc ranges from about 3.2% till 2.8%.

 For Cfu, Vcc ranges from about 3,1% till 2.8%

Ucu – update unit with commit
Figure 46 depicts the source code for the Ucu(cfu,su,nall).

Figure 47 presents the general behavior of the Ucu(cfu,su,nall).
From this figure we may conclude that:

 The maximum variation of Vcc is 0.01% in each
context.

 Vcc for Csu is always higher than for Cfu.

 Vcc ranges from 0.01% till 0.03%. The low impact of
C-CRUD derives from the relative very low
overhead introduced by C-CRUD. The commit
operation is very slow weakening this way the
relative weight of C-CRUD overhead.

Figure 46. C-CRUD: source code for the Ucu(cfu,su,nall).

Figure 47. C-CRUD: behavior of the Ucu(cfu,su,nall).

Uin – insert unit without commit
Figure 48 depicts the main source code for the

Uin(cfu,su,nall). The method insert() is an empty method
avoiding this way committing new tuples to the database.

Figure 49 presents the general behavior of the

Uin(cfu,su,nall). From this figure we may conclude that:

 Vcc decreases for all contexts when η increases.

 Csu has the largest difference to S-JDBC but its
difference to Cfu is minimal and converges to zero
for η=500.

 For Csu, Vcc ranges from about 3.2% till <2.8%

 For Cfu, Vcc ranges from about 3,18% till <2.8%

176

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 48. C-CRUD: source code for the Uin(cfu,su,nall

Figure 49. C-CRUD: behavior of the Uin(cfu,su,nall).

Uci – insert unit with commit
Figure 50 depicts the main source code for the

Uci(cfu,su,nall). In opposite to Uin(cfu,su,nall) the method insert()
commits new tuples to the database.

Figure 50. C-CRUD: source code for the Uci(cfu,su,nall).

Figure 51. C-CRUD: behavior of Uci(cfu,su,nall).

Figure 51 presents the general behavior of the
Uci(cfu,su,nall). From this figure we may conclude that:

 The maximum variation of Vcc along η for each
context is at most 0.01%.

 Vcc for Csu is about twice the value of Cfu. Anyway,
the involved absolute values are very small.

 Vcc ranges from 0.01% till 0.03%. The low impact of
C-CRUD derives from the relative very low
overhead introduced by C-CRUD. The commit
operation is very slow weakening this way the
relative weight of C-CRUD overhead.

Ude – Unit delete
Figure 52 depicts the main source code for Ude(cfu,su,nall).

Figure 52. C-CRUD: source code for the Ude(cfu,su,nall).

Figure 53. C-CRUD: behavior of Ude(cfu,su,nall).

Figure 53 presents the general behavior of the

Ude(cfu,su,nall). From this figure we may conclude that Vcc is
so small for both contexts that it is not possible to represent
them in the graphic. This derives from the fact that the delete
operation is too slow and also from the fact that S-JDBC and
C-CRUD implementations are very similar.

Summary
Despite some particularities, as a summary of all units,

we may say that:

 Between units, the weight of Vcc decreases when η
increases.

 For slower units (Ucu,ci,de) the C-CRUD overhead is
lower than 0.03%.

 For faster units (Ure,up,in) the C-CRUD overhead
ranges from 3.2% till 2.4%.

VII. CONCLUSION

The solution here presented proved to be effective for
bridging the gap between the object oriented and the
relational paradigms in the context where programmers have
no alternative but write the required CRUD expressions to
implement the middle tier. This may occur in situations

177

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where CRUD expressions cannot be derived from any data
model and mainly in applications where CRUD expressions
are complex or very complex. The span of its effectiveness
relies on two main dimensions: the model itself and the
CRUD-M.

The model itself: CRUD-DOM addresses the following
issues:

 CRUD-DOM encapsulates CRUD expressions of
any complexity and exposes an object-oriented
interface to the assisted application translating this
way the row/table oriented paradigm into the object-
oriented paradigm; the encapsulation hides all the
complexity for the communication between the two
paradigms tackling this way the impedance
mismatch issue for the present context, which is
focused on static customized CRUD expressions;

 interfaces are strongly-typed and type-state oriented
providing this way an improved usability and
productivity;

 it is amenable to the development addressing
automatic code generation improving this way
programmers productivity;

 CRUD-DOM totally relies on JDBC and copes with
requirements as SQL expressiveness and system
performance;

 it does not rely on any complementary or proprietary
technology; the version here presented is based on
Java but CRUD-DOM may be implemented in any
other object-oriented programming language;

 it promotes the development of intermediate access
layers this way decoupling applications and
databases tiers and, therefore, leveraging this way
the separation of concerns.

CRUD-M: CRUD-M addresses the following issues:

 from user defined SQL statements CRUD-M
automatically creates all the necessary source code
to implement the correspondent CRUDDOs,
promoting this way programmers productivity;

 CRUD-M provides the programmers an automatic
mechanism to test SQL statements promoting this
way their productivity;

 CRUD-M allows programmers to easily update
existing CRUDDO promoting this way their
productivity.

So, the collaboration and interdependence between CRUD-
DOM and CRUD-M is a key issue to achieve the three
announced goals: 1) programmers‟ productivity – less time
to develop, test and maintain middle tiers; 2) middle tier
performance is kept at a level very similar to the standard
JDBC API and, 3) usability is significantly improved when
compared with the standard JDBC.

Regarding CRUD-DOM performance, despite the limited
range of tests, the obtained results show that in most

database applications the induced overhead may be
considered as perfectly acceptable. Anyway, for very
demanding database applications some additional attention
should be given to CRUD-DOM, mainly for faster units, in
order to minimize its overhead. Improving the performance
of the slower units is beyond the programmer‟s scope. Most
of the time is spent on updating the state of the database.
Thus, it is expected, for these slower units, that any
improvement in the source code should have a negligible
impact on performance.

The automatic source code development tool, CRUD-M,

designed as proof of concept, proved to be an efficient tool
addressing all features of CRUD-DOM in an integrated way.
Programmers are only required to input customized SQL
statements of any complexity. CRUD-M relieves
programmers from writing and testing any source code
addressing this way the productivity requirement.
Additionally, it provides an interactive GUI where
programmers are guided step by step, since the editing of
CRUD expressions till the creation of CRUD-DO addressing
this way the usability requirement.

Some small differences in the final results between this

assessment and [1] derives from the fact that the
environments in which they took place are slightly different.
Anyway, the fundamental conclusions and the collected
results are basically identical. CRUD-DOM induces an
overhead that for most of the database applications may be
considered as not significant. Anyway, some more attention
is needed to minimize the CRUD-DOM overhead in order to
address very demanding database applications.

A new version of CRUD-DOM is being prepared. This

new version will support several mechanisms of concurrency
promoting this way CRUD-DOM performance in new
directions. Additional new features will be also included in
order to support current JDBC features. Among them:

 to provide support for the execution of SQL
statements in batch mode;

 to provide support to execute stored procedures;

 to provide support to allow programmers to choose
at runtime between statements and
preparedStatements;

It is expected that CRUD-DOM and CRUD-M may be

used in database applications where the middle tier is not a
direct object-oriented perspective of relational models as
happens with O/RM tools. CRUD-DOM and CRUD-M
impact may be significant in database applications where
CRUD expressions are very complex. Without the support of
CRUD-DOM and CRUD-M, complex CRUD expressions
are not easy to write, test, maintain and wrapped in a
structure identical to CRUD-DOM.

REFERENCES

[1] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, "CRUD-DOM:
A Model for Bridging the Gap Between the Object-Oriented

178

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the Relational Paradigms," in ICSEA 2010 - International
Conference on Software Engineering and Applications, Nice,
France, 2010, pp. 114-122.

[2] M. David, "Representing database programs as objects," in
Advances in Database Programming Languages, F. Bancilhon
and P. Buneman, Eds., ed N.Y.: ACM, 1990, pp. 377-386.

[3] ODBMS.ORG. (2011 May). Integrating programming
languages and databases: what is the problem? Available:
http://www.odbms.org/experts.aspx#article10

[4] Part 1: SQL Routines using the Java (TM) Programming
Language, 1999.

[5] Microsoft Corporation. (2011 May). The LINQ Project.
Available: http://msdn2.microsoft.com/en-
us/netframework/aa904594.aspx

[6] ISO. (2011 May). ISO/IEC 9075-3:2003. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134

[7] Oracle. (2011 May). JDBC Overview. Available:
http://www.oracle.com/technetwork/java/overview-
141217.html

[8] Microsoft. (2011 May). Microsoft Open Database
Connectivity. Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx

[9] Microsoft Corporation. (2011 May). Overview of ADO.NET.
Available: http://msdn.microsoft.com/en-
us/library/h43ks021(VS.71).aspx

[10] B. Christian and K. Gavin, Hibernate in Action: Manning
Publications Co., 2004.

[11] Oracle. (2011 May). Oracle TopLink. Available:
http://www.oracle.com/technetwork/middleware/toplink/overv
iew/index.html

[12] Oracle. (2011 May). Java Data Objects (JDO). Available:
http://www.oracle.com/technetwork/java/index-jsp-
135919.html

[13] D. Yang, Java Persistence with JPA: Outskirts Press, 2010.

[14] C. U. Smith and L. G. Williams, Performance Solutions: a
Practical Guide to Creating Responsive, Scalable Software,
1st ed.: Addison Wesley, 2001.

[15] M. Woodside, G. Franks, and D. C. Petriu, "The Future of
Software Performance Engineering," presented at the FOSE
'07- Future of Software Engineering, Minneapolis,MN,USA,
2007.

[16] IEEE, SWEBOK, 2004 ed. Los Alamitos,CA: IEEE Computer
Society.

[17] J. Nielson, Usability Engineering. San Francisco, CA: Morgan
Kaufman, 1993.

[18] D. G. John and L. Clayton, "Designing for Usability: Key
Principles and What Designers Think," Communications of the
ACM, vol. 28, pp. 300-311, 1985.

[19] ISO 9241-11: Ergonomic Requirements for Office Work With
Visual Display Terminals, fdew, 1998.

[20] ISO 13407: Human-Centered Design Processes for Interactive
Systems, 1999.

[21] ISO/IEC 9126-1: Software Engineering - Product Quality,
2001.

[22] ISO/TR 16982: Usability Methods Supporting Human
Centered Design, 2002.

[23] M. J. Suárez-Cabal and J. Tuya, "Using an SQL coverage
measurement for testing database applications," presented at
the FSE'04 - ACM SIGSOFT 12th International Symposium
on Foundations of Software Engineering, Newport Beach-CA-
USA, 2004.

[24] E. Vincent, "Is ISSTA research relevant to industrial users?
panel - ISSTA 2002: empowering the developer to be a tester
too!," ACM SIGSOFT Software Engineering Notes, vol. 27,
pp. 203-204, 2002.

[25] G. Tassey, "The economic impacts of inadequate infrastructure
for software testing," ed: National Institute of Standards and
Technology, 2002, pp. Planning Report 02-3.

[26] A. Bertolino, "Software Testing Research: Achievements,
Challenges, Dreams," presented at the FOSE '07- Future of
Software Engineering, Minneapolis,MN,USA, 2007.

[27] Y. Singh and B. Goel, "A step towards software preventive
maintenance," ACM SIGSOFT Software Engineering Notes,
vol. 32, 2007.

[28] B. P. Lientz and E. B. Swanson, Software Maintenance
Management: A Study of the Maintenance of Computer
Application Software in 487 Data Processing Organizations.
Reading,MA: Addison Wesley, 1980.

[29] K. H. Bennett and V. T. Rajlich, "Software maintenance and
evolution: a roadmap," presented at the FOSE'00 - Future of
Software Engineering, Limerick,Ireland, 2000.

[30] J. W. Moore, "The ANSI binding of SQL to ADA," Ada
Letters, vol. XI, pp. 47-61, 1991.

[31] W. Keller, "Mapping Objects to Tables - A Pattern Language,"
in European Conference on Pattern Languages of
Programming Conference (EuroPLoP), Irsse, Germany, 1997.

[32] R. Lammel and E. Meijer, "Mappings Make data Processing
Go 'Round: An Inter-paradigmatic Mapping Tutorial," in
Generative and Transformation Techniques in Software
Engineering, Braga, Portugal, 2006.

[33] C. Pablo, M. Sergey, and A. Atul, "ADO.NET entity
framework: raising the level of abstraction in data
programming," in ACM SIGMOD International Conference on
Management of Data, Beijing,China, 2007, pp. 1070-1072.

[34] R. C. William and R. Siddhartha, "Safe query objects:
statically typed objects as remotely executable queries," in
27th International Conference on Software Engineering, St.
Louis, MO, USA, 2005, pp. 97-106.

[35] A. M. Russell and H. K. Ingolf, "SQL DOM: compile time
checking of dynamic SQL statements," in 27th International
Conference on Software Engineering, St. Louis, MO, USA,
2005, pp. 88-96.

[36] W. Gary, G. Carl, S. Zhendong, and D. Premkumar, "Static
checking of dynamically generated queries in database
applications," ACM Transansactions on Software Eng.
Methodology, vol. 16, p. 14, 2007.

[37] Microsoft Corporation. (2011 May). ADO.NET. Available:
http://msdn.microsoft.com/en-us/library/aa286484.aspx

[38] M. Andy, E. Wolfgang, and S. R. David, "Impact analysis of
database schema changes," in 30th International Conference
on Software Engineering, Leipzig, Germany, 2008, pp. 451-
460.

[39] B. Gregory, W. W. Bruce, and A. G. S. Paolo, "Using parse
tree validation to prevent SQL injection attacks," in 5th
International Workshop on Software Engineering and
Middleware, Lisbon, Portugal, 2005.

[40] Oracle. (2011 May). Interface Statement. Available:
http://download.oracle.com/javase/6/docs/api/java/sql/Stateme
nt.html

[41] Oracle. (2011 May). Interface ResultSet. Available:
http://download.oracle.com/javase/6/docs/api/java/sql/ResultS
et.html

[42] Oracle. (2011 May). Interface PreparedStatement. Available:
http://download.oracle.com/javase/6/docs/api/java/sql/Prepare
dStatement.html

[43] R. E. Strom and S. Yemini, "Typestate: A programming
language concept for enhancing software reliability," IEEE
Transactions on Software Engineering, vol. 12, pp. 157-171,
1986.

179

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[44] R. E. Strom and S. Yemini, "Typestate: A programming
language concept for enhancing software reliability," IEEE
Trans. Softw. Eng., vol. 12, pp. 157-171, 1986.

[45] Microsoft. (2011 May). SQL Server JDBC Driver 2.0
Documentation. Available: http://technet.microsoft.com/en-
us/library/ff928320(SQL.10).aspx

[46] Microsoft. (2011 May). [MS-TDS]: Tabular Data Stream
Protocol Specification. Available:
http://msdn.microsoft.com/en-
us/library/dd304523(v=prot.13).aspx

180

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Performance Evaluation of a High Precision Software-based Timestamping Solution

for Network Monitoring

Peter Orosz, Tamas Skopko

Faculty of Informatics

University of Debrecen

Debrecen, Hungary

e-mail: oroszp@unideb.hu, skopkot@unideb.hu

Abstract — Widely used network measurement applications,

such as tcpdump and Wireshark, use the same common

libpcap packet capture library. Libpcap assigns a 10
-6

 second

precision timestamp to all processed frames. Higher physical

bandwidth implies shorter inter-arrival times between

consecutive frames. Accordingly timestamp resolution must be

proportional to the link speed. The latest version 1.1.x of

libpcap provides 10
-6

 second native resolution, however pcap

format supports a larger 2 x 32-bit timestamp value for each

stored packet. On Gigabit Ethernet or faster networks, a

timestamp resolution that works in the microsecond domain

may not enable us to precisely reproduce the time-domain

relation between consecutive frames. Therefore overall

analysis of the data transmission could lead to a false result.

For packet capturing with libpcap, it is assumed that the

timestamp represents the time moment when a frame reaches

the kernel’s input packet queue. In an idealized case generated

timestamps are always converging and suitably close to the

real arrival or transmission time of each frame so as to

conserve the original inter-arrival time values. The timestamp

resolution of network measurement applications must be

increased according to the requirements of advanced high

speed data networks. In our paper, we are going to show and

evaluate an alternative libpcap-based solution that features

nanosecond precision timestamping.

Keywords-libpcap; timestamp resolution; inter-arrival time;

Linux kernel; high speed network.

I. INTRODUCTION

This paper is the extended version of our previous work
[1] that focuses on a software solution based on the libpcap
packet capture library and high resolution kernel-based
timestamp generation. On Linux machines the libpcap
library retrieves timestamps of captured frames from the
kernel through some special kernel functions. Independently
from one other, several impact factors could directly bias the
generation of timestamps [2].

Some timestamp-related terms that will be used in the
rest of this paper should be introduced here:

 Timestamp size (TSS): bit length of the timestamp

 Timestamp precision (TSP): sub-second resolution

 Timestamping time (TST): time required to generate
a timestamp value

High resolution timestamping of data packets on high

speed networks is a challenging issue [3], which is even
more critical on a software-based packet capture

environment such as libpcap [4]. Libpcap relies on the
operating system kernel to provide the arrival or transmission
time moment of the processed data packets. Since
timestamping is performed in the kernel space, several
hardware and software factors impact the overall precision
and accuracy of the generated timestamps. Furthermore, data
structures in libpcap are designed for 32-bit TSS.

The precision requirement of TSP depends on:

 Link speed

 The minimum of packet inter-arrival times within a
data stream

The following factors affect TST:

 Hardware architecture

 NIC driver design

 OS kernel (enqueing/dequeuing, handlers)

 Clock sources

 Libpcap

Let us suppose that two uniform sequences of minimum-
sized and maximum-sized Ethernet frames are transmitted
over Gigabit and Ten Gigabit Ethernet links at the theoretical
maximum rate. Table 1 and Table 2 show the PHY (physical
layer) level timing parameters of the Gigabit and Ten Gigabit
Ethernet standards.

TABLE I. GIGABIT ETHERNET TIME PARAMETERS

Timing parameters

1 GbE

Smallest Ethernet frame

length: 72 Bytes

Largest Ethernet frame

length: 1526 Bytes

Bit time 1 ns 1 ns

Inter-frame gap 96 ns = 96 x bit time 96 ns = 96 x bit time

Δt between
timestamps of two
consecutive frames

576 ns + 96 ns = 672 ns
12,208ns + 96ns =
12,304ns

Theoretical precision
of NTP sync

≥1 msec ≥1 msec

Required time sync
precision

≤600 ns (theoretical
minimum)

≤12 µs (theoretical
maximum)

Maximum number of
frames per second

1,488,096 81,274

181

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. TEN GIGABIT ETHERNET TIME PARAMETERS

Timing parameters

10 GbE

Smallest Ethernet frame

length: 72 Bytes

Largest Ethernet frame

length: 1526 Bytes

Bit time .1 ns .1 ns

Inter-frame gap 9.6 ns = 96 x bit time 9.6 ns = 96 x bit time

Δt between
timestamps of two
consecutive frames

57.6 ns + 9.6 ns = 67.2 ns
1,220.8 ns + 9.6 ns =
1,230 ns

Theoretical precision
of NTP sync

≥1 msec ≥1 msec

Required time sync
precision

≤60.0 ns (theoretical
minimum)

≤1.2 µs (theoretical
maximum)

Maximum number of
frames per second

14,880,960 812,740

We assume that the indicated frame sizes include 8 bytes

preamble, 6 bytes destination MAC address, 6 bytes Source
MAC address, 2 bytes MAC Type/length, 4 bytes CRC and
the payload (46-1500 bytes). The inter-frame gap is 12 bytes
according to the Ethernet specification. Based on these
values the minimum of packet inter-arrival time can be
determined that is 672 ns for Gigabit Ethernet and 67.2 ns for
Ten Gigabit Ethernet respectively.

IP Packet Delay Variation (IPDV) is an IETF RFC 3393

proposal [5][6]:

(1)

Delay per hop:

(2)

End-to-end delay:

(3)

We assume that (3) has a Gamma distribution function [7]:

(4)

A 64-Byte packet sequence has been generated according to

(4) at a 1 Gbps transmission rate (Fig. 1).

■ Δt at µs resolution ■ Δt at ns resolution

Figure 1. Gamma distributed PDV of 64-Byte frames at 1Gbps

transmission rate

It can easily be shown that microsecond time resolution
could be insufficient to describe the time domain relation
(1)(2) between packet arrivals on Gbit/s or a higher speed
network path [8].

II. RELATED WORK

In the last couple of years several research projects have
realized the problem of the inefficient time resolution of
packet timestamps [9][10][11]; most of their proposals and
solutions resulted in hardware-based packet timestamping.
For higher performance some of them integrated the entire
capturing process into a dedicated hardware device
[9][11][12][13]. However, none of them was focused on
extending the resolution of software-based packet
timestamping.

III. PROBLEM DEFINITION

A. NIC driver architecture

The NIC driver connects the physical layer and the
internal packet structures of the operating system. A
sophisticated network driver design combines interrupt and
polling operation modes using the kernel feature NAPI (New
API) [14]: at lower traffic it uses interrupts, while at higher
loads it switches to polling mode [15].

Interrupt mode: When a frame arrives at the NIC, it

generates an interrupt that calls a specific handler registered
by the driver. The handler places the frame into the input
packet queue and the kernel processes it thereafter. The
handler is given priority over the kernel‟s processing code as
long as frames are arriving at a higher rate (due to a high
network load) than the kernel can handle them. High traffic
results in a high number of interrupts that could consume
hardware resources.

Some NIC drivers can support the passing of multiple

frames within an interrupt.

0 20 40 60 80 100 120

0.000000000

0.000000500

0.000001000

0.000001500

0.000002000

0.000002500

TTT d=dd 12

n

=i
i

HT d=d
1

)(
);;(

/
1

k

e
xkxf

k

x
k

0 where θk,x,

qptH dddd

hops ofnumber n...

hopper ...delay d

delay end-to-...endd

where

H

T

delay queuing ...d

delay processing ...d

delayion transmiss...d

hopper delay ...d

where

q

p

t

H

ndestinatio tosource from ipdv-way-one-P- type...d

T at timesent packet a ofdelay ...d

T at timesent packet a ofdelay ...d

where

ΔT

2T2

1T1

182

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Polling mode: The kernel queries the driver about
the arrival of new frames with a specific frequency.
Resource consumption of this method is optimal at
high network load.

 Timer-driven interrupts: The NIC asynchronously
notifies the kernel about frame reception. The
handler processes the frame, which has arrived since
the last interrupt.

Since timestamping of the incoming packets is performed

by the queue handler, the timestamp value does not
necessarily depend on the operation mode of the NIC driver.
Nevertheless, in order to determine the dependency of the
timestamp value on the operation mode further analysis is
required.

B. The OS kernel

We must define the exact code point over the data path
from the NIC to the kernel input queue where timestamping
is performed. The Linux kernel puts timestamps onto each
frame when they are enqueued to the input packet queue.
This is the point where the kernel processes the frame (Fig.
1).

Since libpcap relies on kernel timestamps, we had to
observe the latest Linux kernel functions, which could
acquire 10-9 TSP from a high frequency and very accurate
clock source.

Figure 2. Sk_buff structure of the linux kernel

C. Clock sources

The Linux kernel supports multiple clock sources. Their
availability depends on the underlying hardware architecture.

1) ACPI (Advanced Configuration and Power Interface)

Power Management Timer

This clock, known as the RTC (Real Time Clock), is usually

integrated into the south bridge of the motherboard. Its

3.579545 MHz clock frequency limits its precision to the

microsecond domain.

2) HPET (High Precision Event Timer)

This is available on most of today‟s PC architectures. HPET

is a high precision clock source due to its very low jitter,

which is within the nanosecond domain. However its clock

frequency is about 10 MHz, which is not an appropriate for

high resolution timestamping.

3) Jiffies
These are based on timer interrupt and are referred to as

the kernel heartbeats. Jiffy frequency can be specified at

compile time. Under recent 2.6.x Linux kernels it is set to

1/250 Hz (4 ms resolution) or its maximum 1/1000 Hz (1

ms) by default, which is far from the requirements of proper

timestamping. There are plans to remove this timing method
and move to tickless systems because of power saving

considerations.

4) TSC (Time Stamp Counter)
A 64-bit CPU register that is present on all x86

processors since the Intel Pentium. It counts the number of
ticks since boot or reset. The time stamp counter is an
excellent high-resolution, low-overhead way of providing
timestamps. The novel constant TSC feature ensures that the
duration of each clock tick is uniform and supports the use of
the TSC as a wall clock timer even if the processor core
changes frequency. “This is the architectural behaviour
moving forward for all Intel processors.” [16]

Constant TSC operates at the CPU's clock speed from

which the 10-9 second TSP can be easily derived.

D. Libpcap

The last stage of transmission just before getting to the
capture application is the libpcap. Timestamp information
received by the libpcap depends on the factors discussed in
the previous sub-sections. The Linux-specific part of the
libpcap is contained in the pcap-linux.c source file. The
library captures the packets with the pcap_read_packet()
function. Timestamping is handled either by the
SIOCGSTAMP IOCTL call or by the TPACKETv2
structure.

IV. IMPLEMENTATION OF HIGH RESOLUTION

TIMESTAMPING

Our goal was to reveal and test all of the kernel functions
and features that will be essential parts of our project to
modify libpcap to a nanosecond-capable capture library. In
this section, related source code snippets are presented in
such a way that the beginning of deleted and inserted source
code lines are marked with the „-‟ and „+‟ signs respectively.

A. Implementation

It is feasible to reach nanosecond TSP resolution purely
on software-based tapping:

 The tstamp member of sk_buff structure is capable of
nanosecond resolution

 The Linux kernel function ktime_get_real() to query
the system clock is in nanosecond resolution

 This function is adequate to fill up nanosecond
tstamp fields in sk_buff

 Accordingly user-space applications (such as
libpcap-based ones) could display and process 10-9
second resolution timestamps

183

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The Linux kernel supports TSC as a clock source

 For efficient time synchronization dedicated LAN
interfaces and a PTP timing protocol could be used
within a low latency wired environment

The input queue handler within the 2.6 kernel puts a 64-

bit timestamp onto each frame that is enqueued to the
input_packet_queue. The Linux kernel API features the
ktime_get_real() function that enables us to query
nanosecond resolution timestamps from the kernel.

For nanosecond time resolution we assume that the

kernel‟s clock source is a constant TSC that operates at
≥1GHz frequency.

The latest Linux kernels (v2.6.27+) introduce the
SIOCGSTAMPNS call that returns with the nanosecond
precision timestamp of the last incoming packet.

Through this IOCTL call, we indirectly get to the
sock_get_timestampns() function inside kernel‟s sock.c. This
function relies on the ktime_get_real() for timestamp
generation and uses the ktime_to_timespec() to convert it to
tv_nsec format, which is a nanosecond capable time variable
within the timespec data structure.

Our first modification is replacing the SIOCGSTAMP

IOCTL call with the more recent SIOCGSTAMPNS one:

Libpcap alternatively uses the tpacket_hdr structure to query
packet description header information.

We would like to emphasize the limitation of this
structure: content of the tp_usec element is always a
microsecond precision sub-second time value (TSP). Latest
linux kernels (2.6.27+) now feature the enhanced tpacket_v2
structure:

The novel tpacket_v2 is able to store nanosecond

precision TSP as well as some VLAN information. We
managed to maintain and adapt the benefits of tpacket_v2
structure within the packet capturing process. Our next
modification is to retain the nanosecond information
provided by the tpacket_v2 structure:

include/linux/sk_buff.h:

struct sk_buff {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
struct sock *sk;
ktime_t tstamp;
struct net_device *dev;
}

include/linux/ktime.h:

ktime_t
union ktime {
 s64 tv64;
#if BITS_PER_LONG != 64 &&
!defined(CONFIG_KTIME_SCALAR)
 struct {
ifdef __BIG_ENDIAN
 s32 sec, nsec;
else
 s32 nsec, sec;
endif
 } tv;
#endif
};

typedef union ktime ktime_t;

pcap-linux.c, in function pcap_read_packet():

- if (ioctl(handle->fd, SIOCGSTAMP,

&pcap_header.ts) == -1) {
- snprintf(handle->errbuf,

PCAP_ERRBUF_SIZE, "SIOCGSTAMP: %s",
pcap_strerror(errno));

+ if (ioctl(handle->fd, SIOCGSTAMPNS,
&pcap_header.ts) == -1) {

+ snprintf(handle->errbuf,
PCAP_ERRBUF_SIZE, "SIOCGSTAMPNS:
%s", pcap_strerror(errno));

 return -1;
 }

struct tpacket_hdr
{
 unsigned long tp_status;
 unsigned int tp_len;
 unsigned int tp_snaplen;
 unsigned short tp_mac;
 unsigned short tp_net;
 unsigned int tp_sec;
 unsigned int tp_usec;
};

struct tpacket2_hdr
{
 __u32 tp_status;
 __u32 tp_len;
 __u32 tp_snaplen;
 __u16 tp_mac;
 __u16 tp_net;
 __u32 tp_sec;
 __u32 tp_nsec;
 __u16 tp_vlan_tci;
};

184

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using the default capture buffer size of libpcap (which is

2 Mbytes) disk I/O performance could lead to a serious
number of packet drops at a high transmission rate.
Unfortunately libpcap does not feature any option for
adjusting capture buffer. In order to prepare libpcap for high
speed packet procession, its capture buffer had to be
increased. We made a series of measurements at 1 Gbps
transmission rate so as to determine the optimal size of this
buffer for capturing without packet loss. These
measurements resulted in a capture buffer of 128 Mbytes,
which is an empirical value. The last modification made to
libpcap is to increase the default buffer size:

With this modification we enhanced the well-known

libpcap (v1.1.x) library so as to be able to put nanosecond
precision timestamps onto captured packets without packet
loss. This feature relies on some novel features of the latest
linux kernels that we effectively integrated into the libpcap
library via our modifications. We made libpcap ready to
operate with nanosecond precision timestamps; however its
effective TST greatly depends on the performance of the
underlying hardware.

At this point it is important to note that the nanosecond
resolution is largely theoretical. On a dedicated server-class
machine with 2 x Intel Xeon dual-core 3GHz (Woodcrest
5160) CPUs and 8GB of RAM, we managed to get a TST of
approx. 75 ns. Hence, we would like to emphasize that
effective TST and its variance greatly depends on the
hardware performance of the host computer, its current
system load, various critical kernel parameters and the time
data conversion overhead. Even so, in our result TST is close
to the time precision requirement of packet capturing on 10
Gbps Ethernet since the inter-arrival time of minimum-sized
consecutive frames is about 61ns.

System dependency and variance of TST are rooted in
the software-based nature of the solution. Accordingly, an
extensive series of comparative tests against hardware-based
solutions is required for its validation (see Section IV for
details).

B. Application

With the nanosecond capable libpcap, a wide range of
network data traces can be captured and stored for
subsequent analysis. Accordingly, we have made further
developments to make the commonly used tcpdump and
Wireshark capable of easily processing, displaying and
storing these high precision timestamps in the quasi-standard
pcap file format (Figs. 3, 4).

Figure 3. Output screen for microsecond timestamp resolution with the

standard libpcap and Wireshark

Figure 4. Output screen for nanosecond timestamp resolution with the

enhanced libpcap and Wireshark

pcap-linux.c, in function pcap_read_linux_mmap():

 case TPACKET_V2:
 tp_len = h.h2->tp_len;
 tp_mac = h.h2->tp_mac;
 tp_snaplen = h.h2->tp_snaplen;
 tp_sec = h.h2->tp_sec;
- tp_usec = h.h2->tp_nsec / 1000;
+ tp_usec = h.h2->tp_nsec;
 break;

pcap-linux.c, in function activate_mmap():

 if (handle->opt.buffer_size == 0) {
- /* by default request 2M for the ring buffer

*/
- handle->opt.buffer_size = 2*1024*1024;
+ /* request 128M for the ring buffer */
+ handle->opt.buffer_size =

128*1024*1024;
 }

185

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While tcpdump is not, Wireshark 1.2.x is indeed ready to
process pcap trace files that feature nanosecond precision
packet timestamps [17]. We had to apply a specific magic
number (0xa1b23c4d) that registered for the nanosecond
pcap format. Using this number, Wireshark could be made
capable of identifying and capturing pcap files with
alternative attributes and structures.

The magic number of 0xa1b23c4d stands for a

subversion of pcap that includes nanosecond precision
timestamps for each packet.

The default time precision of the Wireshark GUI must be

set to a nanosecond:

For comparison, two screenshots present the timestamp

resolution enhancement. Microsecond scale TSP is the
default time resolution for libpcap and Wireshark (Fig. 3),
while our modified version is capable of capturing nanoscale
TSP as displayed in the “Time” column (Fig. 4).

V. PRECISION EVALUATION OF THE SOFTWARE

TIMESTAMPING

A. The timestamp generation process within the kernel

Timestamp put onto each packet must be adequately
accurate. Hence, it is essential to investigate the process of
its generation and to minimize CPU consumption of its sub-
processes. Received packets are enqueued by the kernel in
the CPU‟s incoming packet queue. Packet enqueuing is
performed within interrupt context while software
timestamps are generated by the getnstimeofday() and
ns_to_timespec() functions (Fig. 5).

For representing time domain relation of the successive

packets in 10-9 second resolution, TST also has to be kept in
this time domain. The minimum of this overhead can be
predicted by measuring the execution times for
getnstimeofday() and ns_to_timespec(). For this
measurement we applied a clock source with the lowest and
the most uniform overhead, called TSC. The CPU instruction
used to read the TSC register value is RDTSC [18] since its
execution time takes constant or shows a very low variation
on most systems. Time consumption for the aforementioned
functions are measured by inserting TSC checkpoints into

the kernel code. The read TSC values are corrected with its
overhead on the current system as well as taking the system
CPU clock frequency in account.

Figure 5. The sub-processes of software-based timestamp generation

The minimum overhead of TST for common CPU
frequencies can be derived from mean results of a
measurement series made on various hardware architectures
(Fig. 6). For a CPU of 3 GHz only some 10 ns is the
estimated minimum value of TST. Real execution times
show some variation since several processes must share the
hardware resources, in this case the CPU itself. In the
extreme timestamp generation instructions are preceded or
interrupted by the execution of other processes' instructions,
which the kernel scheduler decides upon.

Figure 6. Timestamping overhead on different CPU speed

B. Timestamping performance of the common kernel clock

sources

In order to compare timestamping capabilities of the
mostly available clock sources, we set up a Gigabit Ethernet
test network. A dedicated FPGA (Field-programmable Gate
Array) packet generator had been set up and a continuous
sequence of 72-Byte packets has been generated and
captured. Since the PCI-based Netfpga-1G board [19] was
applied as GbE NIC the inter-frame gap was adjusted to
1472 bytes due to the data transfer limitation of the PCI bus
and the Netfpga device driver. Also note that its driver does
not support NAPI, more packets per interrupt mode or other
performance enhancing technologies. The inter-arrival times
and packet losses were recorded for every clock source.
Beside the software timestamp derived from the kernel clock
source an additional 8 ns resolution hardware timestamp was
inserted by the NetFPGA (Fig. 7).

In the pcapio.c source file, in function
libpcap_write_file_header():

-file_hdr.magic = PCAP_MAGIC;
+file_hdr.magic = PCAP_NSEC_MAGIC;

In the gtk/recent.c source file:
- recent.gui_time_precision = TS_PREC_AUTO;
+ recent.gui_time_precision

=TS_PREC_FIXED_NSEC;

186

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Precision evaluation of the timestamping

On Figure 7, one dot represents a successfully received
and timestamped packet where the timestamp value is
relative to the arrival of the previous packet.

For this dual timestamping operation mode, we modified
the Linux kernel as well as the libpcap library to be able to
store both timestamps side by side. Since our FPGA-based
packet generator injects a 32-bit serial number into each
packet, losses were easy to detect.

In this case beside that the inter-arrival times show large
variation using the ACPI-PM and HPET clock sources,
serious packet drops were present due to the high overhead
of accessing these clock sources.. ACPI-PM based
timestamps show the highest overhead. The three nearly
solid lines of HPET show that TST variance is lower than
that of ACPI-PM. Since the packet sending rate was constant
a higher inter-arrival time value indicates a higher execution
overhead.

Figure 8. TST performance comparison (TSC and hardware

timestamping)

Based on the hardware timestamps we can assume that
the time values derived from TSC show a more realistic

representation of the inter-arrival times. Moreover, it features
the lowest TST overhead among the supported kernel clock
sources.

Accordingly, it is reasonable to compare the variance of

inter-arrival times gained from the TSC and the NetFPGA
(Fig. 8). It is important to note that hardware timestamps
show inter-arrival times of the packets in the MAC layer in
contrast to the software based timestamps that represent the
time moment of enqueuing the received packet.

Nevertheless, there is an obvious difference between the

hardware and software timestamps in absolute time since
their generation occurs at different points of the data path.
They are not related very closely but the comparison shows
that the relative inter-arrival times derived from TSC can be
fairly close to the hardware-based values. However, even
with TSC the TST variation of software timestamps has a
significant extent since the execution of the generator
functions is triggered by the kernel‟s scheduler subsystem
(Fig. 8). Software timestamps are generated by kernel space
functions, thus it is easy to see that kernels with pre-emption
enabled are not eligible for high precision timestamping and
high performance packet capturing.

C. Timestamp generation using TSC

To generate a timestamp based on TSC its value has to be
converted, since the register value read by RDTSC is not
represented in natural time but in the CPU frequency. Linux
kernel has the cyclecounter/timecounter/timecompare
framework. It makes possible to use independent cycle
counter running on an arbitrary frequency to convert it to
natural time. The cyclecounter structure has to be initialized
by storing the counter's current value (in this case the register
value of TSC) and letting it know its ticking frequency.
Since there is no floating point support in the kernel, this
frequency conversion is described by a mask, a shift and a
mult member. Mask describes the size of the counter (64 bit
for TSC). Shift is fixed at 22 (based on an algorithm in
arch/mips/kernel/time.c from the Linux kernel) and
clocksource_khz2mult() helps to convert CPU frequency
into a multiplier. Then the timecounter has to be fixed to a
base time (using ktime_get_real() and another clock source
such as HPET) and to be stored the counter's current cycle
counter value.

Timecounter_cyc2time() function is applied to convert
counter value to natural time and timecompare_update() to
update offset since last conversion, furthermore to handle
possible counter turnaround. Downside is that the usage of
these function calls adds significant processing overhead.

Nevertheless, TSC is actually the most adequate clock
among the commonly available Linux kernel clock sources.
On high performance and carefully tuned systems, its
precision is sufficient for generating timestamps in the
nanosecond time domain for certain traffic patterns, however
for intensive traffic (high packet rate) hardware-based
solution has to be applied.

187

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As a future project, a post-processing of TSC data could
be implemented to get the potential benefits of offloading
register data conversion to time of day format.

VI. CONCLUSION

Version 1.1.1 of libpcap provides a 10-6 second native
resolution, however pcap format supports a larger 2 x 32-bit
timestamp value for each stored packet. On Gigabit Ethernet
and faster networks, a timestamp resolution that works in the
microsecond domain may not enable the precise
reproduction of the time-domain relation between
consecutive frames. Therefore overall analysis of the data
transmission could lead to a false result.

For packet capturing with libpcap, it is assumed that
timestamping is performed when a frame is enqueued to the
kernel‟s input packet queue. Accordingly libpcap must
retrieve timestamps from the kernel.

In this paper, we showed our alternative libpcap-based
network monitoring solution for Linux systems, which
features nanosecond resolution timestamping. Our primary
goal was to test and evaluate all of the clock sources and
kernel functions and features that are essential parts of our
project to turn libpcap into a nanosecond-capable capture
library. With the presented modifications and additions to the
original codes, we managed to maintain and adapt the
benefits of tpacket_v2 structure within the entire packet
capturing process, which resulted in our enhanced libpcap
solution. In Section V, the precision of the applied software-
based timestamping was analyzed and evaluated. We showed
that the variation of the TST derived from two factors: the
retrieval overhead of the applied clock source and the
kernel‟s scheduler that commands the execution of running
processes.

ACKNOWLEDGMENT

The work is supported by the TÁMOP 4.2.1./B-
09/1/KONV-2010-0007 project. The project is implemented
through the New Hungary Development Plan, co-financed
by the European Social Fund and the European Regional
Development Fund.

REFERENCES

[1] Peter Orosz and Tamas Skopko, “Software-based Packet
Capturing with High Precision Timestamping for Linux,”
August 22-27, 2010, 5th International Conference on Systems
and Networks Communications, Nice, France

[2] Peter Orosz and Tamas Skopko, Timestamp-resolution
problem of traffic capturing on high speed networks, January
28-30, 2010, ICAI international conference, Eger, Hungary

[3] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick
McKeown, “Monitoring very high speed links,” Proceedings
of the 1st ACM SIGCOMM Workshop on Internet
Measurement, November 01-02, 2001, San Francisco,
California, USA

[4] Libpcap, a common open source packet capture library for
Unix/Linux systems. [Online]. Available:
http://www.tcpdump.org/, 29/07/2011

[5] IETF RFC2679, A one-way delay metric for IPPM. [Online].
Available: http://www.ietf.org/rfc/rfc2679.txt, 29/07/2011

[6] IETF 3393, IP Packet Delay Variation Metric for IPPM.
[Online]. Available: http://www.ietf.org/rfc/rfc3393.txt,
29/07/2011

[7] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H.
Uijterwal, and P. Van Mieghem, “Analysis of End-to-end
Delay Measurements in Internet,” submitted to PAM 2002

[8] Jörg Micheel, Stephen Donnelly, and Ian Graham, “Precision
timestamping of network packets,” Proceedings of the 1st
ACM SIGCOMM Workshop on Internet Measurement,
November 01-02, 2001, San Francisco, California, USA

[9] The DAG project. [Online]. Available:
http://www.endace.com, 29/07/2011

[10] Attila Pásztor and Darryl Veitch, “PC based precision timing
without GPS,” Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of
computer systems, June 15-19, 2002, Marina Del Rey,
California, USA

[11] Cace TurboCap network interface card. [Online]. Available:
http://www.cacetech.com/products/turbocap.html, 29/07/2011

[12] Nethawk iPro traffic analysis appliance. [Online]. Available:
https://www.nethawk.fi/products/nethawk_ipsolutions/ipro/,
29/07/2011

[13] Cascade Shark Appliance. [Online]. Available:
http://www.riverbed.com/us/products/cascade/cascade_shark_
appliance.php, 29/07/2011

[14] Linux NAPI device driver packet processing framework.
[Online]. Available:
http://www.linuxfoundation.org/collaborate/workgroups/netw
orking/napi, 29/07/2011

[15] Christian Benvenuti, Understanding Linux Network Internals,
O‟Reilly, 2006

[16] TSC, Intel 64 and IA-32 Architectures Software Developer‟s
Manual. [Online]. Available:
http://developer.intel.com/Assets/PDF/manual/253667.pdf,
29/07/2011

[17] Wireshark Network Protocol Analyser. [Online]. Available:
http://www.wireshark.org/, 29/07/2011

[18] Performance monitoring with the RDTSC instruction,
[Online]. Available:
http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf,
29/07/2011

[19] NetFPGA project. [Online]. Available:
http://www.netfpga.org/, 13/01/2011

188

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Building CPU Stubs to Optimize CPU Bound Systems: An Application of Dynamic
Performance Stubs

Peter Trapp, Markus Meyer, Christian Facchi
Institute of Applied Research

University of Applied Sciences
Ingolstadt, Germany

{trapp, meyerma, facchi}@haw-ingolstadt.de

Helge Janicke, François Siewe
Software Technology Research Laboratory

De Montfort University
Leicester, United Kingdom
{heljanic, fsiewe}@dmu.ac.uk

Abstract—Dynamic performance stubs provide a framework
for the simulation of the performance behavior of software
modules and functions. Hence, they can be used as an exten-
sion to software performance engineering methodologies. The
methodology of dynamic performance stubs can be used for a
gain oriented performance improvement. It is also possible to
identify “hidden” bottlenecks and to prioritize optimization
possibilities. Nowadays, the processing power of CPUs is
mainly increased by adding more cores to the architecture.
To have benefits from this, new software is mostly designed
for parallel processing, especially, in large software projects.
As software performance optimizations can be difficult in
these environments, new methodologies have to be defined.
This paper evaluates a possibility to simulate the functional
behavior of software algorithms by the use of the simulated
software functionality. These can be used by the dynamic
performance stub framework, e.g., to build a CPU stub, to
replace the algorithm. Thus, it describes a methodology as well
as an implementation and evaluates both in an industrial case
study. Moreover, it presents an extension to the CPU stubs by
applying these stubs to simulate multi-threaded applications.
The extension is evaluated by a case study as well. We
show show that the functionality of software algorithms can
be replaced by software simulation functions. This stubbing
approach can be used to create dynamic performance stubs,
such as CPU stubs. Additionally, we show that the concept of
CPU stubs can be applied to multi-threaded applications.

Keywords-software performance optimization; CPU bound sys-
tems; simulated software functionality; stubs; multi-core; multi-
threaded

I. INTRODUCTION

CPU stubs [1], which are a subset of dynamic perfor-
mance stubs (DPS) have been introduced in [2]. They can
be used for “hidden bottleneck” detection, and a cost-benefit
analysis can be performed by demonstrating the level of
optimization potential. This leads to more gain-oriented
performance optimizations. These benefits are not addressed
in other software performance engineering methods (see [3]–
[7]). DPS extend these methods by simulating various levels
of system load. Hence, the problem of a missing cost-benefit
analysis can be bypassed. The DPS can be used within the
software development cycle of large software systems, e.g.,
in telecommunication systems.

Many system architectures achieve higher throughput by
using multiple cores. Hence, the application has to be able to
do parallel processing to fully utilize the available capacity
of the system. As multi-threaded and parallel processes
are difficult to optimize, new methodologies in the area of
software performance engineering have to be defined. The
methodology of DPS can be used to optimize CPU bound
processes by using CPU stubs.

A. Dynamic Performance Stubs

The idea behind DPS is a combination of performance
improvements [3]–[7] in already existing modules or func-
tions and the stubbing mechanism from software testing [8],
[9]. The performance behavior of the component under study
(CUS) will be determined and replaced by a DPS. This stub
can be used to simulate different performance behaviors,
which can be parameterized. Typically, the CUS is the part
of the software under test (SUT) that has been identified as
a potential performance bottleneck. The optimization expert
can use DPS to analyze the performance of the SUT. This
procedure relates to stubbing a single (“local”) software unit,
and a local stub has to be built. The DPS can also be used
to change the behavior of the complete system. A software
module has to be created, which interacts “globally” in the
sense of influencing the whole system instead of a single
software component. This stub will be called a “global stub”.

system

software
component
(SUT)

bottleneck
(CUS)

dynamic perfor
mance stub (local)

performance simu
lation functions

(PSF)

simulated
software

functionality (SSF)

performance measure
ment functions (PMF)

calibration
functions (CF)

dynamic perfor
mance stub (global)

Figure 1. Interactions of “Dynamic Performance Stubs”

189

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 sketches the design and the interaction between
a real system on the left and the DPS on the right side.
The unfilled arrowhead indicates a replacement. Filled ar-
rowheads describe the extension of a unit by this feature
and the dashed block provides an additional functionality to
the DPS and will not really replace a software unit. In the
context of DPS, the system under test (SUT) is a software
module or function, which includes a software performance
bottleneck.

The framework of the DPS consists of the following parts,
which is presented in Figure 1:

• Simulated Software Functionality
The simulated software functionality (SSF) is used
to simulate the functional behavior of a CUS or a
software performance bottleneck. This can be achieved
by generating valid output values for dedicated in-
put values without executing the original functionality.
Another possibility is to simulate different states of
objects inside of the CUS. Hence, the application can
be executed without the original functionality as it is
realized by the SSF.

• Performance Simulation Functions
Performance simulation functions (PSF) provide the
ability to simulate the performance behavior of the
replaced CUS. They are divided into four categories,
as also in [3], [10]:

– CPU
– Memory
– I/O
– Network

As an example, the CPU PSF can be used to simulate
the processing behavior of the application and hence,
the CPU utilization of the process.

• Performance Measurement Functions (PMF)
To provide a basic set of evaluation possibilities the
performance measurement functions can be used. They
are mainly glue/wrapper functions for the measurement
functions already provided by the system.

• Calibration Functions (CF)
In order to provide trustworthy results, the stubs have
to be adjusted to a dedicated system. This can be done
using the calibration functions.

For more detailed information on DPS, the reader is
referred to [2].

CPU Stubs: CPU stubs, as a special subset of DPS, can
be used to handle CPU bound processes. These processes are
highly utilizing the CPU so that the CPU is the bottleneck.
Therefore, a general approach to parameterize the runtime
behavior and CPU usage has been achieved and a possible
implementation has been presented in [11]. Additionally, an
extension to multi-core and parallel processing applications
has been done in [1].

Memory Stubs: Memory stubs are separated into cache
memory- and main memory stubs.

• Cache Memory Stubs can be used to simulate the
data cache access behavior of software modules or
functions to improve suspected memory bottlenecks.
The algorithm, a validation as well as an evaluation by
means of a proof of concept for cache memory stubs
have been published in [12].

• Main memory stubs simulate the stack and heap be-
havior of software modules or functions. They are an
extension of the DPS framework to simulate the main
memory behavior to achieve a cost-benefit oriented
optimization. They are defined in [13].

B. Content of the Paper

In Section II, the problem of simulating the results of
software algorithms is addressed, by describing a novel
approach to the simulation of software functionality using
stubs. Starting with evaluating requirements concerning the
simulation functions, a methodology is presented. Addition-
ally, the concept of a possible implementation is depicted.
Both, the methodology as well as the implementation are
evaluated in an industrial case study to optimize a network
component of a long term evolution (LTE) telecommunica-
tion system. This section extents and completes the approach
of CPU stubs as published in [1].

In Section III, the paper shows an introduction to the CPU
stubs as presented in [1]. Here, the CPU PSF are presented
and a methodology for using CPU stubs to optimize CPU
bound systems in multi-core or parallel processing environ-
ments is given. The introduction as well as the methodology
depicts the concept of CPU stubs and have been published
in [1].

In Section IV, the CPU stubs are extended to simulate
the performance behavior of multi-threaded applications.
This extension is realized by defining objectives and by
presenting a novel approach for multi-threaded CPU PSF.
Additionally, the approach is validated by a case study.

Finally, related work for the DPS and for the SSF is
provided in Section V.

II. SIMULATED SOFTWARE FUNCTIONALITY

The SSF allows the replacement of an existing software
module or function by a stub, in order to do software per-
formance improvement studies. In the context of this paper,
the SSF is used to replace a software bottleneck (CUS)
with a DPS being able to simulate different performance
scenarios to estimate the benefit of potential performance
optimizations.

In the following, the requirements to the SSF and the
methodology is presented. A implementation of the SSF is
given. This section is concluded by an industrial case study.

190

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Requirements

In order to be able to replace a bottleneck with a DPS,
it is necessary to recreate the functionality of the software
module or function. Hence, the following requirements can
be defined and subdivided into: requirements on the system,
which have to be satisfied by the SUT and requirements on
the SSF, i.e., how the SSF has to behave:

1) Basic Requirements on the system:
a) Deterministic CUS Behavior

The software module or function has to have a
deterministic functional behavior. Any execution
of the function with the same input values re-
turns the same output values, e.g., deterministic
output values depending on the input values. The
performance behavior of the function has to be
deterministic, too.

b) Reproducible test execution
The used test environment and test scenarios
have to deliver reproducible results. This is a
common requirement to any test environment.

c) Automated test case execution
It is preferable if the test cases can be executed
automatically. This property significantly reduces
the effort for repeated executions of the tests.
Additionally, reproducible test scenarios can also
be used for performance measurements.

2) Requirements on the SSF:
a) Automatic generation of the serialization speci-

fication
The serialization specification is a description,
which provides the procedural method to seri-
alize the data types used in the SSF library.
This serialization specification shall be generated
automatically, because it removes additional ef-
fort for the user of the SSF and decreases the
amount of possible errors, e.g., writing a wrong
serialization specification. Hence, a serialization
functionality shall be provided as well as an
almost automatically serialization specification
shall be generated. These can be used to auto-
matically store the C++ objects.

b) Record and restore C++ data structures
It has to be possible to record and restore C++
data structures. Especially, it has to be possible
to record and restore classes including non-public
members, structures and lists. Moreover, the SSF
has to be able to work with “NULL”-pointers,
e.g., the “NULL”-pointers shall be stored in the
trace file and restored during the stubs execution.

c) Simulate the functional behavior
The SSF shall be able to restore the functionality
of the CUS. Moreover, it has to be able to restore
all recorded C++ data structures into the memory

of the SUT. Additionally, it shall be able to create
objects if they are not available in the system.

d) Simulate the functional behavior with appropri-
ate performance
The SSF has to be able to restore the functional-
ity in negligible time, which is at least faster than
the execution of the original software function.
This is necessary to reduce the runtime overhead
during the execution. Hence, the performance
parameters can be easily adjusted using the PSF.
This requirement mainly applies if the SSF is
used in the context of DPS performance mea-
surements. In this case, the requirement has to
be fulfilled.

Especially, the requirements to the system (Requirements
1a and 1b) as well as the Requirements 2b and 2c are
important. Not reaching them renders the SSF unusable.
Requirement 2d is mainly important in the context of DPS
as this requirement enables the performance adjustments,
which are necessary for the DPS’ approaches. This re-
quirement may not be that important if the SSF approach
is used in different scenarios. The Requirement 2a can
only be fulfilled partly as stated in Section II-C1. The
Requirement 1c is only suggested as it can significantly
remove the overhead for applying the DPS framework in
the performance evaluation study.

Moreover, there are some requirements to the C++ com-
piler [14]. The compiler shall be deterministic, e.g., the
compiler has to produce an identical memory layout of
two isomorphic classes. Whereas, this can not be strictly
guaranteed, it is very unlikely that a non-deterministic C++
compiler is standard-compliant [14]. The “g++” of the gnu
compiler collection (GCC) [15], which is used for the
evaluation in this paper, fulfills the requirements.

In the next subsection, the methodology for using the SSF
is presented.

B. Methodology

The DPS methodology, identifies potential performance
bottlenecks that are replaced by stubs to facilitate gain-
oriented performance improvements. The functionality of the
potential bottleneck (CUS) is recorded using the libSSF (see
Section II-C). The system’s behavior with respect to the CUS
is analyzed by replaying the functionality using the SSF with
varying performance measures.

An overview is presented in Figure 2. It describes the
overall process to replace the bottleneck by a DPS. There are
three different parts, which have to be done. First, a header
file is generated, which includes the serialization specifica-
tion. Second, the functional behavior of the bottleneck has
to be recorded and stored in a trace file. Finally, the trace
file can be used to simulate the functional behavior of the
bottleneck. The steps as provided in this methodology are
presented as circles including the step number.

191

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GCC-XML

ssfheadgen

Source
Code

Serialization
Specification

Serialization
Description

Generate Header File

1

2

3

Source
Code

Serialization
Specification

libSSF

Trace
File

Record Functional Behavior

4

Source
Code

5

Restore Functional Behavior

Serialization
Specification

libSSF

Trace
File

Functional
Application
with SSF

6

Figure 2. Overview of the Simulated Software Functionality

The methodology for the SSF approach consists of the
following steps:

1) Identify Serialization Objects:
The SSF is able to store and restore different states
of the traced objects. Thus, it can be used to simulate
the results of several algorithms. In some cases, it is
necessary to use parts of the original functionality to
improve the simulation results. Here, the content of
the object may be stored and restored before and after
executing the original software functions.

2) Create Serialization Description:
In this step, the serialization description of the iden-
tified objects has to be created. This is simply done
using the “GCC-XML” tool set [16].

3) Create Serialization Specification:
The serialization specification is created. It contains
a description to serialize and de-serialize the objects
which will be stubbed. The serialization objects (see
Step 1) and their description (see Step 2) are processed
by the ssfheadgen tool, which is a part of the libSSF
library, to generate a C++ header file that contains the
serialization specification. This specification has been
created automatically for many basic data types, as
explained in Section II-C1, but, can also be easily ex-
tended by the developer to support object serialization.
This header file will be included into the CUS in the
next step.

4) Record the state of the objects:
In this step, the CUS is adjusted to store the results
of the algorithm using the libSSF. Furthermore, the
test cases that utilize the functionality, which will be
stubbed (see Step 1), have to be executed and the state
of the results have to be recorded into a trace file.

5) Create Functional Software Behavior:
The original functionality, which is a part of the CUS,
is replaced by the SSF. This is detailed in Section II-C.

6) Test the instrumented CUS:
As the stub has been created in Step 5, the function-
ality of the stub has to be validated. The instrumented
CUS is validated against the previously recorded be-
havior of the CUS that contained the original function-

ality. As there is the potential of introducing functional
errors during the instrumentation, the instrumented
CUS is re-validated against the previously recorded
execution trace. If the validation passes, the stubs can
be used to do the performance study with the DPS
framework.

This section has shown how a stub can be created using
the SSF. The following section presents a possible imple-
mentation called libSSF.

C. Implementation

The implementation of the SSF is done in a library called
libSSF. The library can be included into any C++ source
code and allows for the storage of the content of C++ data
structures into a binary trace file. Moreover, the libSSF can
also be used to read from the trace file to reconstruct the
C++ data structures. Thus, the functional behavior of the
CUS is also recreated. For this reason, the source code of
the application will be parsed using the “GCC-XML” tool
set [16], which generates an XML description of a C++
program from GCC’s internal representation. Based upon
this serialization description, libSSF generates an internal
representation of the objects that will be stubbed. The
following functionalities are provided by the libSSF. These
are the general steps (see Figure 2):

1) Generate Header File
This file includes the serialization specification.

2) Record Functional Behavior
This functionality will be used to store the results of
the software functionality of the CUS.

3) Restore Functional Behavior
This functionality will be used to simulate the software
functionality of the CUS.

Following, the listed items are described in more detail.
1) Generate Header File (Serialization Specification):

A tool provided by the libSSF, called “ssfheadgen”, parses
the XML description of the “GCC-XML” tool. It extracts
the type information and generates a C++-header file, which
includes the internal representation of the objects that will
be replaced by the SSF.

This header file can be included into the C++ source code
of the CUS and contains the serialization specification of
the objects. Beside for the basic data structures, e.g., basic
data types or fixed size arrays, which have to be serialized
and de-serialized, the developer has to adjust the header file
to his needs. This has to be done manually as it is not
always possible to determine the size of data associated with
a pointer value.

Whenever possible, the header file already contains com-
ments and suggestions to assist the developer in serializing
the object, e.g., for pointers or arrays1. Moreover, the header
file includes the original names, as used in the CUS source

1In these cases a “stop criterion” has to be specified by the developer.

192

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1t empla te <> void S t u b f a c t o r y : : s e r i a l i z e T y p e (c l a s s a r r a y c l a s s * s s f S a v e O b j) {
2void * p r t = s s f S a v e O b j ;
3s t r u c t s s f S a v e a r r a y c l a s s * s s f O b j e c t = (s s f S a v e a r r a y c l a s s *) p t r ;
4t h i s−>s e r i a l i z e A r r a y (s s f O b j e c t−>ac i , numberOfElements) ;
5}

Listing 1. Example: Serialization of a Fixed Sized Integer Array inside of a C++ class

code, of the replaced objects, so that the developer can reuse
these names for convenience.

Listing 1 shows an example of the serialization of an array
of integers (“ac i”). The array is a private member of a class
(“struct array class”). This snippet is used to deserialize as
well as to serialize the data values of the object.

The “serializeType”-function from Line 1 will be called
indirectly inside of the CUS. The provided parameter spec-
ifies a C++ class which shall be serialized and stored. In
Line 2, a type cast of the object pointer to a void pointer is
done. This is necessary for being able to furthermore cast
the pointer to a “struct”, which reflects the C++ class. In this
case, the private or protected members of the provided class
(“ssfSaveObj”) can be accessed and, hence, stored. This is
done in Line 4, where, the private member, which is a fixed
size array in this example, will be copied into the trace file.

This example shows that private and protected members
can be serialized. Other serialization functions are available
to support the developer.

2) Record Functional Behavior (Binary Format): The
C++-header file, which has been generated by “ssfheadgen”,
is included into the CUS. And, the software tests, which
have been done to identify the serialization objects, have to
be repeated. Now, the information of the objects are stored
in a trace file. This recording of the data structures is done
using the function “saveStateOfParam”, which is included
into the CUS. This function is provided by the libSSF. The
declaration of the function can be seen in Listing 2.

t empla te <c l a s s TYPE> void s a v e S t a t e O f P a r a m (
c o n s t char *name , c o n s t char * type , TYPE
* d a t a V a r) ;

Listing 2. Stores a Data Structure e.g. class

The following three parameters have to be passed to the
“saveStateOfParam”-function call:

1) “const char *name”: This is the name used to store
the object in the trace file, e.g., “conn”.

2) “const char *type”: This refers to the type and name
of the object to be stored, e.g., “class Connection”.

3) “TYPE *dataVar”: This is a pointer to the data which
will be stored, e.g., the value of the conn variable.

The three given examples in the list above can be inter-
preted as: Store the value of the conn variable, which has an
object type “class Connection” into the trace file using the

name “conn”. The function uses the parameters and stores
the data structure as well as additional information into a
binary trace file. The structure of a trace file entry is given
and described below:

• Test Run
This is an internal reference counter starting from zero.
The “test run” number can be used to summarize
different stored variables into a combined run, e.g., if
the value of a variable has to be stored before and
after some modification within a single execution of
the function.

• Size of Object Name (Byte)
The size of the object name is given in bytes including
a “NULL”-termination character.

• Name of the Object
The name of the object which has been stored. It is
usually the same name as the name of the object within
the original source code and can be used for referencing
the stored data.

• Size of the Object Type Name (Byte)
The size of the object type name is given in bytes
including a “NULL”-termination character.

• Name of the Object Type
The name of the object type, e.g., “class Connection”,
which means the data entry refers to a C++ class named
“Connection”. Here, object type refers to any C++ data
structure and can also be a basic data type such as an
integer.

• Additional Information
The “additional information” (addInfo), which is a field
of 8 bits, is used to determine whether a fully initialized
object has been stored or if a “NULL”-pointer has been
passed. This information is stored in the first bit flag.
The remaining bits of this field are unused. Hence, the
first bit of “additional information” field is set to “0”
if an initialized data structure has been stored. In this
case, the following two additional data fields are stored
in the trace file for this test run:

– Size of the Stored Data (Byte)
This is the size of the serialized data in bytes.

– Stored Data
These are the values of the data structure. The data
have been serialized in advance and are succes-
sively ordered in the trace file.

The information is stored in a binary format for performance

193

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reasons. A decoded as well as semicolon separated example
trace entry is given in Listing 3.

In this case, an object “conn” of the “class Connection”
type has been stored. The values of the serialized private
members are: “1”, “2”, “1” and “302845744”.

1 ; 5 ; conn ; 17 ; c l a s s C o n n e c t i o n ; 0 ;
14 ; 1 ; 2 ; 1 ; 302845744 ;

Listing 3. Example: Decoded and semicolon separated trace file entry

The libSSF provides an option to generate a trace file
decoder for a dedicated trace file. This has been implemented
to provide human-readable traces to the developer.

3) Restore Functional Behavior (Deserialization): The
recorded values have to be recreated into the memory of the
used C++ data structure. Hence, it is necessary to overwrite
the values already stored in the memory of the object. To
do this, three different cases have to be considered:

1) The object as well as trace data are available.
In this case, the existing attributes of the object have
to be overwritten as the object is already available in
the system.

2) The object does not exist but data are available.
The object has to be created and initialized using the
values of the trace file. Moreover, the pointer to the
object has to be returned to the system. This is possible
as the delivered memory pointer has to be “NULL”. In
this case, no memory is associated with the original
object. As there is no reference available, dangling
pointers can not occur.

3) The object does not exist and no data are available.
This case happens if an initialized object is not nec-
essary, e.g., if the return value of a search algorithm
does not find the item. I.e., the CUS returns a “NULL”
value. In this case, the object pointer passed to the
“loadStateOfParam”-function of the libSSF (see List-
ing 4) has to be “NULL”. Here, no memory will be
allocated.

A fourth case is that an initialized object has been passed
to the libSSF but no data are associated within this test run.
In this case, a “NULL” pointer would have been returned by
the libSSF, which will overwrite the original pointer value of
the object. This is not allowed as it would cause a memory
leak. Additionally, it is not possible to delete the associated
object data as this could lead to a double free error. Hence,
the developer has to care about this particular case, e.g.,
deleting the object and setting its pointer value to “NULL”
before the “restore” is function called.

The restore functionality of the libSSF is implemented by
the “loadStateOfParam”-function call. This function will be
used to replace the software functionality of the CUS. The
declaration of the function is given in Listing 4.

The parameters passed to the libSSF are as follows:

t empla te <c l a s s TYPE> TYPE* l o a d S t a t e O f P a r a m (
s t r i n g da taVar , TYPE * d s t) ;

Listing 4. Restore Functionality of the libSSF

• “string dataVar”: This is the name of the object, which
will be deserialized. Here, the same name as specified
as the first parameter of Listing 2 is used, e.g., if “conn”
is passed to the “loadStateOfParam”-function, the with
conn associated data will be returned.

• “TYPE *dst”: This is a pointer to an object which
will be overwritten by the values read from the trace
file. Hence, it is implemented as a template any type
of the object can be deserialized and restored by the
libSSF, e.g., the “class Connection” with an instance
name “conn” can be used.

In the case that an object has to be created within the
libSSF, the pointer value of the newly allocated memory
will be returned to the CUS. Here, the original value of the
pointer will be overwritten so that the allocated memory can
be deleted inside of the original software.

The provided methodology and implementation will be
applied to a real world example which is presented in the
following section.

D. Case Study

The DPS framework has been used to optimize several
algorithms of a long term evolution (LTE [17]) telecommu-
nication system.

This section describes the application of the methodol-
ogy and the newly developed SSF within a performance
improvement study. The main contribution of this case study
is to show that the software functionality of the CUS can be
replaced by the SSF. This includes the following steps:

• The serialization specification is generated.
• The software functionality of the CUS can be recorded.
• The software functionality of the CUS can be replaced

by the SSF. In this case, the SUT shall be fully
functional for this particular test scenarios.

Last but not least, the case study provides performance
measurements to validate that the libSSF can be used in the
context of the DPS framework that will be used to evaluate
software performance optimization potentials.

1) Test Environment: The measurements have been done
in a test environment. The used platform is based on an Intel
Xeon CPU, which is an IA-64 architecture and includes OS
and memory.

The application has been built using the available build
system of the company. This uses the “g++” of “GCC”
(Version 3.4.3) for host test environment evaluations. The
“-Os” compiler option has been used, which is basically a
“-O2” but without optimization flags that increases the code
size.

194

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As the presented measurements have been done in a test
environment, the results can only be used for validation
purposes of the SSF but do not reflect the performance of
the telecommunication system.

The requirements to the software and test environment,
as specified in Section II-A, for using DPS are fully met.
These are, in particular, a deterministic CUS as well as an
automatic and reproducible test case execution environment.

2) Application of the Methodology: The SUT has a “Con-
nectionContainer” class which stores several connections of
the type “class Connection”. The function “get(connID)”
returns the connection specified by the connection identi-
fication (“connID”) which is an object of the “Connection”
class. Moreover, it returns “NULL” if the connection does
not exist in the “ConnectionContainer”. The connection class
has four private members as can be seen in Listing 5.

1 c l a s s C o n n e c t i o n
2 {
3 . . .
4 p r i v a t e :
5 TL3Connec t ionId m c o n n e c t i o n I d ;
6 u16 m st reamId ;
7 TUeContext Id m c o n t e x t I d ;
8 TAaSysComSicad m uecAddress ;
9 . . .

10 }

Listing 5. Excerpt of the Class “Connection”

Step 1: The “get(connID)” function has been identified
as bottleneck and, hence, the “Connection” class has been
chosen for serialization.

Steps 2 & 3: In the next step, the members of the
“Connection” class are serialized using the “GCC-XML”
tool set (Step 2). An example serialization output of the
ssfheadgen (Step 3) is shown in Listing 6.

1 name= ‘m c o n n e c t i o n I d ’ i d = 4096
2 t y p e = 1501
3 −> name= ‘ TL3Connect ionId ’ i d = 1501
4 t y p e = 1532
5 −> name= ‘ u32 ’ i d = 1532
6 t y p e = 73
7 −> name= ‘ u n s i g n e d i n t ’ i d = 73
8 t y p e =

Listing 6. Example of Serialized Class Member

Here, only the first member “m connectionId” is pre-
sented. The “GCC-XML” combined with the ssfheadgen tool
identified the “m connectionId” over four serialization steps
as an unsigned integer.

As of Step 3, the serialization specification is written into
a C++ header file. The first part of the file contains the
serialized object, which is presented in Listing 7. As can be
seen, the “Connection” class, which has been converted into

a data structure, consists of four “private” members, which
are integers.

1s t r u c t s s f S a v e C o n n e c t i o n {
2unsigned i n t m c o n n e c t i o n I d ;
3s h o r t unsigned i n t m streamId ;
4unsigned i n t m c o n t e x t I d ;
5unsigned i n t m uecAddress ;
6} ;

Listing 7. Serialized “Connection” Object

The second part, which is the serialization code, is also
included into the file. An extract is shown in Listing 8 for
this case study.

1t empla te <> void S t u b f a c t o r y : : s e r i a l i z e T y p e (
c l a s s C o n n e c t i o n * s s f S a v e O b j) {

2void * p t r = s s f S a v e O b j ;
3s t r u c t s s f S a v e C o n n e c t i o n * s s f O b j e c t = (

s t r u c t s s f S a v e C o n n e c t i o n *) p t r ;
4t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>

m c o n n e c t i o n I d) ;
5t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>m streamId) ;
6t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>m c o n t e x t I d)

;
7t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>m uecAddress

) ;
8}

Listing 8. Serialization Specification of the “Connection” Object

Here, the “serializeType”-function in Line 1 is able to
serialize a object of the “Connection” class. It calls internally
several different “serialize”-functions (Lines 4 - 7), which
overload the function from Line 1. The “serialize”-functions
from Lines 4 - 7 call internally a “serializeAtom”-function,
which is able to store and restore basic data types. The values
of the variables are stored in their associated members of the
data structure (see Listing 7). The “type casts” in Lines 2
and 3 are necessary to access the private members of the
“Connection” class (see Section II-C1).

Step 4: Now as the setup has been finished, the
measurements have to be repeated to store the software
functionality of the CUS. The chosen test case is a functional
test case which evaluates different use case scenarios. We
only studied a small subset of the test case for the libSSF.
In our context the test case includes 40 times calling
the stubbed functionality (“get(connID)”-function). The test
case includes the following use cases: “create new object”,
“reuse existing object” and “delete and create new object”.
A decoded excerpt of the recorded trace file is shown in
Listing 9. Lines 4-7 of the listing show the recorded values
of the private members of the “Connection” class for the
second test run.

Steps 5 & 6: In the last two steps, the stub has to be
created using the restore functionality. Moreover, the proper

195

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 t e s t r u n : 0 ; s i zeObjec tName : 5 ; objectName : conn ;
s i z e O b j e c t T y p e : 17 ; o b j e c t T y p e : c l a s s

C o n n e c t i o n ; a d d I n f o : 1 ;
2 t e s t r u n : 1 ; s i zeObjec tName : 5 ; objectName : conn ;

s i z e O b j e c t T y p e : 17 ; o b j e c t T y p e : c l a s s
C o n n e c t i o n ; a d d I n f o : 0 ;

3 s i z e O f D a t a : 14 ;
4 m c o n n e c t i o n I d : 1 ;
5 m s t r e a m I d : 2 ;
6 m c o n t e x t I d : 1 ;
7 m uecAddres s : 302845744 ;

Listing 9. Excerpt of a Decoded Trace File

working of the stub has to be validated.
The functionality, which will be replaced by the stub,

is removed from the CUS and replaced by the restore
functionality of the libSSF in order to simulate the original
functionality. Now, the test case, as used in Step 4, is exe-
cuted and the results are validated. In the test environment
the test case passed. In this case study, the libSSF was able
to simulate the functional behavior of the CUS.

3) Performance Measurements: The concept of the SSF
will be used within the DPS framework to simulate different
performance behaviors of a software bottleneck. Hence, the
time to restore the functional behavior of the CUS is critical.

A case study using the DPS for optimizing CPU bound
processes has been presented in [18]. The focus was to
optimize a CPU bottleneck. The case study in this section
uses the measurement results of [18], but, interprets the
results from a different point of view.

Here, the differences between the execution time of the
CUS and the execution time for the SSF have been evaluated.
In the case study of [18], a previous version of the libSSF
has been used. However, the results of [18] can still be used
for this evaluation as only smaller changes have been done.

The same test environment and software functionality,
as described in [18] has been used. A description of the
environment and software functionality can also be found
in Section II-D1. The chosen test case started with a single
database entry and ramped up to searching 400 database
entries. Each test case has been done five times and a statis-
tical evaluation was performed by evaluating the minimum,
average, maximum and the squared coefficient of variation
(SCV, see [19]). The time values have been recorded in
cycles using the time stamp counter (TSC, see [20]), which
has been read by inline assembler.

In Figure 3, the time behavior for searching an entry in
the database (y-axis) depending on the amount of database
entries (x-axis) is presented. The lower line (diamond) shows
the results for restoring the functional behavior of the search
algorithm by using the libSSF. The upper line (circle) depicts
the original behavior of the CUS.

The new evaluation pointed out the average time for
restoring the functional behavior of the “get(connID)” func-

CUS

SSF

T
im
e
 i
n
 M
ic
r
o
 S
e
c
o
n
d
s

0

100

200

300

400

500

600

700

Number of Connections

0 100 200 300 400

Figure 3. Compare the Times Between Original and Stubbed Software
Functionality

tion is 11 µs2, which is approximately 30800 cycles. The
SCV is 0.0135. This factor indicates that it takes approxi-
mately always 11 µs without significant variations to simu-
late the functionality independent of the amount of database
entries.

In contrast, the original functionality to identify the con-
nection identification number (“connID”) took a minimum
of 22µs if only a single entry was in the database and about
675µs if 400 entries have to be searched. The measured re-
sults show an exponential increase in time for an increasing
database size.

As can be seen, the SSF was even in the worst case
as twice as fast. Due to this, the identification of the
software optimization potential and the improvement of the
bottleneck’s time behavior were easily realized. Moreover,
the methodology of using CPU stubs has been applied to
the SUT in [18], successfully.

E. Discussion

The SSF can be used to store and recreate the functional
behavior of software modules or functions of C++ appli-
cations. This implemented by the possibility to store and
restore the values of C++ data types, e.g., data structures
or classes including their private and protected members.
Moreover, it is possible to use the SSF with applications
which use many different programming techniques, such
as virtual or abstract classes, inheritance or polymorphism.
The functionality is implemented by a library called libSSF
which can be included into the C++ source of the applica-
tion.

Advantages: Using the libSSF has several advantages
for the developer. The main topics are:

• Store and Restore the Software Functionality
The libSSF can be used to record and restore the states
of traced objects. Hence, it can be used to simulate

2The first message has been ignored to avoid side-effects that only occur
for the first message (“first message effect”).

196

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software functionalities and algorithms, e.g., search-,
sorting-, or calculation algorithms. Moreover, existing
objects can be modified to the needs of the developer.

• Mainly Automatic Header Generation
The header, which is generated by the ssfheadgen tool,
can be easily included into the source code of the CUS.
Here, only some small modifications have to be done.
Moreover, the ssfheadgen tool provides suggestions to
support the developer by this task. This enables the
developer to easily trace and evaluate the content of
C++ data types.

• Reuse Object Names
Data types can be stored into and read from the trace
file reusing the same names as in the original source
code. This significantly reduces the complexity to use
the libSSF within the CUS.

• Using Data Types Multiple Times
The same variables can be recorded multiple times,
even within one single execution of the CUS. More-
over, several different data types can be combined into
dedicated runs as well as many different runs can be
combined. This provides high flexibility for clustering
different runs and data types for a better abstract view
on the stubbed components.

• Readable Values of the Objects
The libSSF provides the possibility to decode the binary
trace files into human readable trace files. Hence, the
values of recorded data types can be used for evaluating
the outcome of algorithms and, hence, as additional
debugging possibility.

• Only Small Adjustments to the System
To simulate the software functionality, only smaller
adjustments to the CUS have to be done. For recording,
only the library has to be included as well as the
necessary function calls have to be added. For restor-
ing, additionally, the original functionality has to be
removed, e.g., by uncommenting.
Restrictions: As often, there is a trade off between

time and memory usage. If the library is used to restore
the functionality of the software it will read the whole trace
file into the memory during the initialization. Hence, it uses
a lot of memory. Moreover, if a data type has been often
recorded, each traced value is preloaded into the memory,
e.g., if an integer has been stored ten times the libSSF will
allocate ten times the size of the integer. This behavior has
been chosen as the main focus is on the execution time of the
restore functionality. It can be changed with some smaller
modifications to the library to only load the data when they
are needed. This leads to a longer execution time, of course.

Summary: As can be seen, the methodology of the
SSF as well as their implementation, realized by the libSSF,
can be used to record and restore the software functionality.
Moreover, the time measurements of the libSSF have shown
that it can be used in the context of the DPS framework.

This is an important contribution to the gain-oriented
performance improvement framework DPS, as it allows to
gauge the system-wide impact of a potential improvement
before investing in the actual optimization of the algorithms
that underly the functionality that has been simulated by the
DPS. This informs decision making as to what bottlenecks
should be prioritized and to what degree their optimization
has a system wide impact.

The requirements on the system, which are 1a, 1b and 1c,
as well as to the SSF (2b, 2c and 2d) as stated in Section II-A
have been fulfilled with the libSSF. Finally, the Requirement
2a has been fully fulfilled in this particular case study, but,
this can not be applied in a general way as explained in
Section II-C1. However, this does not lower the contribution
as the libSSF supports the possibility to manually adjust the
serialization functions. And, hence, provides a broad range
for applying the SSF to software systems.

III. CPU STUBS

This section introduces CPU stubs. They can be used to
simulate the CPU performance behavior of a bottleneck.
First, the CPU PSF are described. Afterwards, a method-
ology to apply the CPU stubs to multi-core and parallel
processing is presented.

A. CPU Performance Simulation Functions

The CPU PSF consist of two simulation elements: system
influencing- and system non-influencing CPU PSF:

• System influencing
This functionality simulates the process execution while
the process is running. Regarding the process states
[21], this can be seen as “Running”. In this case, the
CPU has to execute instructions. An implementation
can be done by executing a busy loop [11], which
executes the NOP instruction.

• System non-influencing
This functionality simulates the behavior of a process
that has been delayed for any reason, e.g., because of a
scheduling event or a waiting for I/O. This functionality
can be seen as “Blocked” or “Ready” regarding the
process states [21] and is simulated by delaying the
execution of the process, e.g., using a sleep function
call.

By using the system influencing and system non-influencing
CPU PSF any state, regarding the CPU, of a process can be
rebuilt.

B. Methodology

In this section, we revisit the methodology of using
CPU stubs for simulating the execution states running and
blocked/ready (see [21]) of individual processes that was
presented in [1], [11] and show how these can be used in
combination with the SSF that was presented in Section II.

197

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the preceding section, we described a methodology
and an implementation of simulating the software function-
ality of a CUS in order to determine the potential gain
of optimization. Not all bottlenecks can be analyzed this
way. With the parallelization of processing tasks by modern
architectures and operating systems, concurrency issues and
analysis of individual CPU usage becomes increasingly
important. For this reason, we adapt our previous approach
for the simulation of CPU behavior to a multi-core setting
and show how the use of CPU stubs can complement the
analysis of CUS using SSF with respect to concurrency.

1) Determination of the CPU bottleneck
The SUT has to be defined and a suspected bottleneck
(CUS) has to be identified, which is done by common
software performance engineering (SPE) [22], [23],
e.g., profiling or tracing. Now, several performance
indicators have to be determined:

• tCUS : Time spent in the bottleneck (CUS).
• tSUT : Time spent in the software module or

function (SUT) from which the CUS is a part.
• tCUS

busy : Time spent in the CUS using the CPU. It
includes the user-mode time as well as the system-
mode time, see [21].

• tCUS
waiting: Time spent in the CUS waiting to be

scheduled, see also: process state “Ready” in [21].
• tCUS

blocked: Time spent in the CUS waiting for an
event, see also: process state “Blocked” in [21].

The measured values have to be deterministic within
several performance test runs.

2) Validate CPU Bottleneck
Here, a simple validation of the chosen CUS will be
done. The system influencing CPU PSF is inserted in
front of the CUS and the performance measurements
will be repeated increasing the time spent in the PSF
(tPSF). The measured time of the SUT mainly follows
one of the diagrams given in Figure 4.
In Figure 4a the increase of the system influencing
CPU PSF leads to an arithmetically increasing amount
of time spent in the SUT. Therefore, the CUS seems
to be a CPU bottleneck. Hence, the next step can
processed.
In the other case, Figure 4b shows that an increase
in the execution time of the CUS does not increase
the time spent in the SUT for tPSF < tlimit. This
points out that the CUS is no bottleneck for the system.
Another potential CPU bottleneck has to be identified
(Step 1).
This step can be done to remove overhead as it
excludes the CUS from being mistaken as a CPU
bottleneck easily. This step is optional.

3) Study the Bottleneck Performance Behavior
The value tCUS

blocked, as determined in Step 1, will be
used to evaluate the CPU utilization of the CUS.

A value of tCUS
blocked = 0 means that there are no waiting

periods triggered by the CUS while executing. So, the
process will not be interrupted by the CPU except
there are external events, e.g., scheduling. In this case,
the methodology can be used as provided.
A value of tCUS

blocked > 0 means that the process
switches to the “Blocked” state. Here, the trace files
recorded in Step 1 have to be studied further, in order
to identify successive working and waiting periods of
the process. The following steps of this methodology
have to be done for every working period starting
from the biggest to the smallest working period. The
waiting period will be simulated with the system non-
influencing CPU PSF. The simulated waiting time will
normally be constant, if no further reduction caused by
optimizations of this time period can be expected.

4) Flat CPU Stub - Evaluate the Optimization Poten-
tial
Now, a flat CPU stub will be used to determine the
optimization potential. A flat CPU stub is a DPS,
which only simulates the functional behavior of the
CUS using the SSF. Hence, it only introduces small
overhead in the system and can be used to simulate the
ideal time behavior of the CUS. This can be used to
analyze the maximum performance gain of the SUT as
it is not the same as tCUS = 0, especially in multi-core
or parallel processing environments. As the final result
often depends on several in parallel working threads
or processes. Therefore, the following values have to
be measured:

• tSTUB
flat : Time spent in the flat CPU stub.

• tSUT
flat : Time spent in the SUT including the flat

CPU stub.

An indicator of the possible optimization amount can
be evaluated by calculating:

• tCUS
reduced = tCUS − tSTUB

flat

• tSUT
reduced = tSUT − tSUT

flat

tCUS
reduced is the time, which has been reduced in the

CUS. The tSUT
reduced value describes the total possible

optimization gain. If the CUS is executed more than
once in sequence, the maximum number of iterations
per CPU (iter) has to be evaluated. Hence, tCUS

reduced ∗
iter and tSUT

reduced has to be compared. It is possible to
use the factor iter because the same CUS is executed,
so each iteration takes the same amount of time. The
values tCUS and tSUT are taken from Step 1. Now, the
calculated values can be compared and the following
cases can be evaluated:

• tCUS
reduced = tSUT

reduced: This means that the SUT
directly depends on the CUS. Hence, there are no
system dependencies, i.e., “hidden bottlenecks”.
Additionally, no “over optimization”, as described

198

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

t
SUT
original

tSUT

tPSF

(a) CUS seems to be a bottleneck

t
SUT
original

tSUT

tPSF

tlimit

(b) CUS is no bottleneck

Figure 4. Validate CUS as a Bottleneck

in [24], can be done. The more time optimized in
the CUS the better it is. In this case, the next
step of this methodology is Step 7, i.e, optimize
as much as possible. However, in case of an
expected hardware bottleneck, Step 5 can be done.
This behavior is typically for batch or procedural
processing in single core environments.

• tCUS
reduced > tSUT

reduced: In this case, the possible opti-
mization amount is less than the time spent in the
CUS. Thus, there are system dependencies, which
have to be studied further and we can move on to
the next step. This behavior can mainly be seen
in multi-core and parallel processing systems. As
there might be parallel threads or processes, which
additionally delays the execution after the actual
bottleneck has been reduced. This is particularly
the case if a change over in the critical path has
happened (see [25]).

The case tCUS
reduced < tSUT

reduced does not has to be
considered. This would mean that the speed up of
the execution time in the SUT is more than has been
reduced in the CUS. Hence, the execution time of
tSUT − tCUS would has been decreased, but, the
software within this part of the SUT has not been
changed.
As it is only an indicator, the time tSUT

reduced delivers
no information about the amount of optimization,
which has to be done in the CUS, especially for
tCUS
reduced > tSUT

reduced.

5) Idle CPU Stub - Evaluate System Dependencies
Here, the flat CPU stub will be extended using the
system non-influencing CPU PSF. This is called an
idle CPU stub. The total simulated time is the to-
tal processing time of the CUS (tCUS

busy). Hence, the
following equation holds tCUS

busy = tSTUB
idle . Where,

tSTUB
idle is the time spent in the idle CPU stub. Now,

the performance measurements will be redone and the
tSUT
idle value, which is the total execution time of the

SUT including the idle CPU stub, shall be recorded.
Dependencies between an idle CPU stub and the
system can be evaluated using the values: tSUT

idle and
tSUT . Thus, the total execution time of the original
SUT will be compared to the execution time of the
SUT using the idle CPU stub. The following cases
can be separated:

• tSUT
idle = tSUT :

This means that the total execution time of the
SUT has not changed due to the usage of the idle
CPU stub. Whereas, the idle CPU stub only uses
the CPU at the very first beginning and than hands
the CPU over to the system. However, the total
execution time of the SUT has not been changed.
Hence, the conclusion that no other process is
blocked by the CPU can be done. Therefore,
adding CPUs to the system does not provide a sig-
nificant performance improvement. Nevertheless,
as of Step 2, the CUS is the bottleneck.

• tSUT
idle < tSUT :

Here, the total execution time of the SUT de-
creases by using an idle CPU stub. Therefore,
further processes are at least partially available in
the “Ready” queue. In this case, these processes
can be executed earlier. Therefore, the total execu-
tion time decreases. An optimization of the CUS
as well as an additional CPU decreases the total
execution time.

The case that tSUT
idle > tSUT does not have to be

considered as it means that reducing the amount of
instructions would lead to a longer execution time.
This is not possible in typical CPU bound systems.
This step evaluates dependencies between running
processes in the system and the CUS. Moreover,
information about the influence of adding CPUs to the

199

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system can be achieved. However, the measurements
do not provide any information whether a faster CPU
will increase the total execution time. Albeit expected
that a faster CPU will increase the total execution
time. As the process is CPU bound, the amount of
instructions determines the total execution time. Using
a faster CPU means that each cycles and, hence, an
instruction, is executed faster.

6) Busy CPU Stub - Cost Estimation
The flat CPU stub will be extended with the system
influencing CPU PSF. Now, the performance mea-
surements will be repeated and the time spent in the
system influencing CPU PSF (tPSF) will be varied
from zero to the total execution time of the CUS
(tCUS
busy). Typically, the time spent in the PSF will be

increased by 10% of the total execution time for each
iteration. This can also be redone if a particalur time
slice, e.g., between 20% and 30%, identified a change
over in the critical path as explained in this step. The
following values have to be measured:

• tSTUB
busy : Time spent in the busy CPU stub.

• tSUT
busy : Time spent in the SUT including the busy

CPU stub.

Using these results, two different types of bottlenecks
can be distinguished:

• Total Bottleneck:
In this case, the measured values of the execution
time from the SUT is linearly increasing. Thus,
an optimization of the CUS will always result
in an improvement of the execution speed and,
therefore, decrease the latency. This result should
have been already achieved in Step 4.

• Limited Bottleneck:
If the processing of the SUT depends on other
functions respectively on their results, the graph
might look similarly as given in Figure 5. The
graph is split in two parts. In the first part,
tPSF ≤ tlimit, the time of the SUT is constant
at a minimum value (tSUT

min). Within this area,
the chosen CUS is no bottleneck to the system
as an increasing in the amount of processing
(tPSF) does not lead to an increased execution
time (tSUT). At tlimit the behavior of the CUS
chances to a CPU bottleneck. As can be seen in
the figure, the time spent in the SUT increases
along the time spent in the system influencing
CPU PSF (tPSF). This evaluation shows that an
optimization of the bottleneck can only decrease
the latency in the SUT to a given value (tSUT

min).

This information can be used to identify “hidden”
bottlenecks, e.g., a “hidden” bottleneck appears at
tlimit of Figure 5. This limit is basically the maximum,

t
SUT

t
SUT
min

tSUT

tPSF

tlimit
t
STUB
busy

Figure 5. Limited Bottleneck

which can be achieved by an optimization of the CUS.
Hence, it can be compared to a changeover in the
critical path (see [25]). Additionally, the information
can be used for a cost-benefit analysis. Thus, a gain-
oriented improvement can be done.

7) Optimization of the Software
Now, the software module or function has to be
optimized. Hence, the results from the cost-benefit
analysis can be used for a software improvement re-
lated to the optimum between cost and effort. Finally,
the performance of the software component has to be
measured again. A new bottleneck has to be identified
(first step) if the results show that the performance
targets are not achieved yet.

A CPU bound process can be optimized by using the
described methodology. This is especially true for multi-
core systems and multi-threaded applications where the
bottleneck is single-threaded. Here, a changeover in the
critical path after an optimization can be identified before
doing the optimization itself.

C. Summary

In this section, we have presented the gain-oriented
performance optimization methodology that can be used
to optimize CPU bound bottlenecks. Increasingly, single-
threaded systems are parallelized and software functions that
constitute bottlenecks in the system use multiple threads that
can be executed over a number of CPUs.

The following section provides an extension of the CPU
stubs to simulate the performance behavior of multi-threaded
bottlenecks.

IV. MULTI-THREADED CPU PSF

As shown, using CPU stubs provide many possibilities
to simulate the performance behavior of a system. The
combination of SSF (see Section II) and PSF (see Section
III) enable the execution of several performance simulations
in order to determine the system’s performance gain that can
be achieved by its optimization.

To rebuild the system’s functional behavior, the SSF was
introduced in Section II. It is possible to generate the

200

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

required functionality half-automated. However, the amount
of work that has to be done in order to be able to execute
the desired simulations can still be rather high. In some
cases, e.g., the generation of files, it can be more difficult to
rebuild the functional behavior of a small piece of code than
of larger software modules. In the “file” example above, it
would be easier to use the created file as a whole within the
SSF.

To be able to do this, the performance behavior of more
complex software modules has to be rebuilt by the CPU
PSF. For that the CPU PSF are extended to simulate the
performance behavior of components under study that are
even multi-threaded in this section.

A. Objectives

This section presents the main reasons for simulating a
system’s multi-threaded performance behavior using CPU
PSF:

• In some cases, it is necessary to rebuild the performance
behavior for more complex and even multi-threaded
software modules. As shown above, the construction of
the simulated software functions can be quite difficult
for small functions. For that the possibility to simulate
multi-threaded modules within the system and, thus,
simplify and fasten the use of CPU stubs can extend
the CPU stubs’ field of application.

• In addition to that the methodology presented in III-B
should be used in complex environments where the
identification of performance bottlenecks can really be
difficult. Here, CPU stubs can show their benefits when
investigating the impact of a multi-threaded component
onto the system’s performance.

As presented, it is necessary to extend the available
CPU stubs from [1] to be able to simulate the detailed
performance behavior of more complex software modules,
e.g., modules, which are multi-threaded. This extension is
described in the following subsections. Next, the approach
is evaluated.

B. Approach

To rebuild the performance behavior of complex, multi-
threaded software modules, a defined interface is introduced
to enable code generation. The data structured this way
can be used to generate code that can be executed for
the simulation. This interface uses four different actions to
describe the behavior of a multi-threaded application. They
can be separated into actions that are “specific for the CPU
stub’s performance simulation” and into actions that “model
the creation and termination of threads” within the system.

• Describe the threads’ performance behavior
– RUN The RUN action is used to describe situations

where CPU is used by the thread. This action is
initialized by the keyword ’run’ and followed by

a number presenting the duration of this action in
microseconds.

– SLEEP This action is used to simulate the time
while the thread does not use the CPU. This occurs
when the process is blocked due to system calls
or user interaction. The keyword for the SLEEP
action is ’sleep’ that is also followed by the time
in microseconds.
The blocked time, caused in the thread by waiting
for another thread to terminate, e.g., waiting for a
JOIN, is not simulated using the SLEEP action.
If the addressed thread is still running and did
not terminate until the call of the JOIN action,
the calling thread is automatically blocked by the
system. As this is the desired behavior for the
simulation, it will not be simulated with a SLEEP
action.
Moreover, the blocked times are sometimes very
short, e.g., a few microseconds. Thus, they can
not be simulated accurate enough. Therefore, these
short blocked time slices are not modeled via
SLEEP actions but included into the RUN actions.

• Describe the threads’ creation and interaction
– CREATE In order to simulate multi-threaded soft-

ware modules, it is necessary to create new threads.
This is done by using the CREATE action. Its
structure is ’create NUMBER’, where NUMBER
is used to identify the thread that has to be created.
This is needed to be able to start the correct PSF
for this thread.

– JOIN To synchronize the created threads, the JOIN
action is introduced. It consists of the keyword
’join’ and the NUMBER representing the thread
that has to be joined. As described in the SLEEP
action, a call of JOIN blocks the calling thread
until the addressed thread terminates. For that
reason, a call of the JOIN action can result in an
amount of time where the thread is blocked, even
if this is not specially modeled within the interface.

For each of the threads that are rebuilt, an own file to
describe its performance behavior has to be build in our
environment. For that the code generation will produce one
PSF for each thread. Those reference each other by using
CREATE and JOIN actions.

The next section presents one appropriate implementation
of the multi-threaded CPU PSF. Measurements are applied
to obtain the data needed for the described interface.

C. Implementation

In order to rebuild the original performance behavior of a
multi-threaded CUS and, therefore, to provide the data for
the previously described interface, some measurements have
to be done, to gather the needed amounts of execution time

201

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the information about the splitting and joining threads
within the CUS.

1) Measurements: The Linux Trace Toolkit (LTTng) [26]
is applied to collect all the information by using the available
kernel markers. Based on scheduling events, the processes’
execution time can be calculated. The markers for process
creation and termination are used to determine the various
threads that are spawned during the execution of the CUS
and their respective timestamps.

2) Performance Simulation Actions: The PSF for the
RUN and SLEEP actions are build as shown in [11]. The
RUN action is generated as a system influencing CPU PSF,
whereas, the SLEEP action is simulated by a system non-
influencing CPU PSF. With the evaluation of the LTTng
traces, the combination of busy and idle times can be
simulated according to the original behavior.

3) Thread Behavior Actions: The actions CREATE and
JOIN are used to describe the behavior of the threads that
are simulated. In this approach, this is done by using POSIX
threads [27]. When creating a new thread, its corresponding
PSF is started. As described in the interface’s structure, the
JOIN action is used to synchronize the threads. This enables
the CPU stubs to recreate the same thread behavior as the
original software component does.

With the shown possibility to describe the performance
behavior of a multi-threaded CUS, a case study can be
performed to evaluate the approach’s usability and the fact
that multi-threaded performance behaviors can be rebuilt by
CPU PSF.

D. Case Study

In this case study, the presented approach to rebuild
complex performance behaviors of multi-threaded appli-
cations using CPU stubs should be validated. For that a
compiling process of the GNU compiler (GCC version 4.6.0)
is simulated.

1) Test Execution: The application runs on an Arch Linux
operating system (kernel version 2.6.30.9) patched with the
LTTng framework (version 0.160). The hardware is based
on an Intel Centrino Core 2 Duo CPU with 2.26 GHz and
has 4GB RAM. The calibration of the CPU PSF has been
realized as described in [11].

The test case chosen in this case study is the compile
process to create a binary file using the GNU compiler (GCC
version 4.6.0). In order to perform this case study a C-file
containing an implementation of a quicksort algorithm is
compiled. The compiled program is only of small size and
does not have any further influence on this case study. This
test case has been chosen as the GCC uses several threads
depending on each other to compile the application.

2) Execution: This case study is performed in four major
steps; record the data, generate the performance behavior,
simulate the performance behavior and validation. These
steps describe the process of creating the CPU PSF. The PSF

can be used within the methodology, as shown in Section
III-B, to simulate the performance behavior. E.g., the CPU
PSF of a single thread can easily be adjusted to create an
idle CPU stubs, which is Step 5 in the methodology for
using CPU stubs.

1) Record the Data
As a first step, the original performance data of the
GCC call is recorded using the LTTng framework.
This step corresponds to Step 1 of the methodology
shown in Section III-B.
Figure 6a shows the original performance behavior
of the used GCC call. The x-axis presents the time
in seconds. To get comparable results, the begin of
the execution is set to t0 = 0. The y-axis depicts the
PID and the PPID of the created threads. The drawn
bars present the performance behaviors of the single
threads. When the CPU is used by the thread, the bar
is gray, whereas, a white bar is used for the times
where the threads are blocked or waiting for I/O. The
other bars (black and colored) present other events that
occurred during the execution of the system, such as
paging and scheduling. As described in Section IV-B
the time slices of those events are too short to be
simulated accurate enough and, thus, are included into
the RUN action.
Regarding the PPID of each thread, Figure 6a also
shows the threads’ respective child threads and the
order they are built. It can be seen that the thread
with the PID 11986 (called Thread 11986) creates the
Threads 12004, 12735 and 12855. Thread 12855 itself
creates Thread 12857 before it joins back to its parent
(Thread 11986).

2) Generate the Performance Behavior
The data measured via LTTng has been transformed
to fit to the described structure. As shown in Figure
6a the different process states are identified and rebuilt
by performance behavior actions. The gray bars build
RUN actions, whereas, the white bars are rebuilt by
SLEEP actions. Additionally, the events that occurred
when creating and synchronizing the threads are de-
scribed by CREATE and JOIN actions.
Listing 10 shows an excerpt of the interface’s structure
for the first created thread (Thread 11986) (see Figure
6a). Line 1 shows a call of the SLEEP action, which
consumes 12780 microseconds. In Line 2 a call of
the RUN action is carried out. The creation of threads
is realized by CREATE actions as shown in Line
3. By the call of the JOIN action, e.g., in Line
7, the execution of the simulation blocks until the
corresponding thread joined back. In this example, the
numbers used for the creation and synchronization of
the threads are the PID of the original threads. Beside
the fact that this could be any number, it has been

202

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PID;PPID

time [s]

11986;7329

12004;11986

12735;11986

12855;11986

12857;12855

t0=0 1 2 3 4 5 6 7

(a) Original Performance Behavior

PID;PPID

time [s]

11011;7448

11032;11011

11761;11011

11867;11011

11868;11867

t0=0 1 2 3 4 5 6 7

(b) Simulated Performance Behavior

Figure 6. Comparison of Original and Simulated Performance Behaviors of the GNU complier (GCC version 4.6.0)

chosen to be the PID of the thread for a simplified
debugging in more complex environments.

1 s l e e p 12780
2 run 54
3 c r e a t e 12004
4 run 3
5 s l e e p 11911
6 run 27
7 j o i n 12004
8 run 74
9 s l e e p 9495

10 . . .

Listing 10. Transformed Measured Data Used to Generate Simulation
Code

For each of the five threads that run during the
execution of the test, the code is generated as a
combination of system influencing CPU PSF, system
non-influencing CPU PSF and POSIX threads. Those
pieces of code can be combined and used as the
performance simulation code.

3) Simulate and Validate the Performance Behavior
of the CPU stub
After the CPU PSF have been built, the simulation
is executed. To be able to compare the results, the
measurements within the simulation were also done
using the LTTng framework.
Figure 6b shows the simulated performance behavior
of the system recorded by the LTTng framework. The
x-axis presents the time in seconds and the y-axis
depicts the PID and PPID of the executed threads.

As in Figure 6a, the gray bars present the busy times
and the white lines are used for the blocked times.
In Figure 6b, it can be seen that the scheduling events
(black and colored) are still triggered and thus are also
recorded while the simulation is running. But events
for paging that occurred during the original execution
do not appear within the simulation. This is due to the
PSF, as the CPU stubs shall only consume the CPU
and shall not influence further elements of the system,
e.g., the memory. Hence, it is the desired behavior that
no page faults occur.

4) Validation
Figure 6 shows the comparison of the original (Figure
6a) and the simulated (Figure 6b) performance behav-
ior of the GCC call. The evaluation of both graphs
depicts that the performance of the GNU compiler
call was rebuilt almost exact by the simulation. The
running and blocked states of the single threads can
be simulated accurately. The blocked times that occur
during this simulation are a combination of the used
SLEEP actions and the blocked time that occured due
to the JOIN actions.
Minor inaccuracies of the simulation originate from
the page faults that are not rebuilt by the simulation
and the non-deterministic occurrence of the scheduling
events. However, the performance behavior of the
threads fits the values measured within the original
execution of the system with high accuracy.

This simulation demonstrates that the CPU stubs can also be
used to simulate the performance behavior of big software
modules that may even be multi-threaded. This approach

203

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can also lead to a simplified construction of the software
functionality if the rebuild of a complex functional behavior
is easier compared to the one of small modules, e.g., when
generating whole files, as done by using the GNU compiler.

E. Summary

In this section, it has been shown that it is possible to
rebuild the performance behavior of complex and multi-
threaded software modules. An interface that can be used
to describe the performance behavior of the system is intro-
duced. Using this interface also simplifies the generation of
code to simulate different performance optimization levels
within the system by changing the performance parameters
of the running and waiting times within the input data.
Furthermore, the interface can be used in the previously
described methodology and can lead to a faster and easier
usage of CPU stubs. This uniform interface also increases
the portability of DPS as it can be easily extended by
code generators for further programming languages. Being
able to recreate a complex performance behavior offers
more possibilities when trying to detect the threads whose
performance is critical for the system’s performance.

The following section discusses the related work in the
various areas that are affected by this paper.

V. RELATED WORK

There are three major areas, which have to be considered
for related work: DPS, CPU stubs and SSF.

Dynamic Performance Stubs: There are two different
research scopes in simulation of the performance behavior.
In [28] it is explained how performance of inner loops
can be modeled at the instruction level and which effect
they have on the memory/cache performance. Although the
possibility of modeling software modules exists, the high
degree of granularity of this approach reduces the usability
for stubbing whole software functions/modules.

In [29] the usage of smart stubs for software analysis of
functions and modules which are partly not available yet is
described. Hence, the stubs simulate the budget regarding
storage and time resources, which have been estimated,
for the to-be-implemented software parts. Also, mainly a
management point of view for the non-existing software will
be taken.

The DPS in our approach will be used for stubbing already
implemented and measured software parts in order to find
the bounds of the performance improvement within that
part. This procedure helps to identify the real gain of the
performance improvement without really improving it and,
additionally, shows the next bottleneck. So the cost-benefit
analysis for improvement activities can be achieved in a
more realistic way, because a proper simulated result is
better than a simple estimation.

CPU stubs: The CPU executes the instructions of the
applications. The scheduler exists to decide which process
the CPU has to execute next (see [21], [30], [31]). It
maintains several queues about the states of all processes:
running, ready or blocked. If no process is either in the
running or ready state the idle process is executed by the
CPU.

From a process perspective, the process can be either ex-
ecuted by the CPU or is suspended. CPU stubs are targeting
to simulate the time (CPU) behavior of a bottleneck. Hence,
CPU stubs have to be able to switch the state. As only the
scheduler decides whether a process is in the running or
ready state, it is not possible to enforce a process to be in
the running state in non-real time systems acting from user
space side. Only the possibility to increase the chance to
be scheduled soon into the running state exists, e.g., using
priorities.

Hence, the CPU stubs have to simulate the remaining
states “running” and “ready/blocked”. The running state can
be realized by a “do-nothing loop” and a state change can
be initiated by delaying the process execution, e.g., using a
sleep function.

In [32], [33] a problem with simulating a dedicated
amount of time with do-nothing loops is described. De-
spite the problems seen, there are big differences in the
approaches. The procedure is targeting the area of bulk-
synchronous parallel jobs, which are realized as do-nothing
loops. The focus is to optimally utilize each of the included
processors. So the processes always try to run, ignoring
the amount of time needed for the operating system per
processor. As soon as the operating system has something
to do, the userspace application will be scheduled out and
the total execution time will be delayed.

Our system influencing CPU PSF, however, will be cali-
brated in an otherwise idle system with enough time for the
OS. As experimentally proved in [11], in our environment
the execution time of a process can be simulated with
a do-nothing loop, predictably in contrast to [32], [33].
Additionally, because of the fact that such a loop has a
defined number of instructions these loops can be used to
simulate the time behavior of processes.

Simulated Software Functionality: A key functionality
of the DPS is to record and to recreate functional behavior
using the SSF. The recording requires the serialization of
internal data-structures into a format from which they can
be recovered at a later point. This functionality has been
predominantly implemented in distributed systems where
objects and code are marshaled for exchange between peers.

Most closely related to our serialization approach is the
work in [14], [34] in which a “MPI Serializer” has been
introduced. The target of this project is the efficiently and
automated marshaling of C++ data structures. The tool
generates automatically marshaling and unmarshaling code
for the message passing interface (MPI), which is often used

204

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as communication interface in high performance computing
(HPC). The “MPI Serializer” is is based on the C++ serial-
ization possibility of the “GCC-XML” project [16], which
uses the gcc abstract semantic graph (ASG) scheme [35] to
determine the serialization specification.

To some extent, our approach is similar to [14], [34]
as both projects needs to serialize C++ data structures.
However, it differs in many details. E.g., it has been decided
to store and restore the functional behavior of software
modules, which will be replaced by a stub. This can be
used to remove a software bottleneck. In contrast, the focus
in [14], [34] is to provide marshaling code for the message
parsing interface.

However, both projects are based on the abstract semantic
graph scheme provided by the “GCC-XML” project.

In [36], a lightweight fact extractor is presented. It uti-
lizes XML tools, i.e., XPATH and XSLT, to extract static
information from the C++ source code files. The approach
is to transfer the source code into “srcML”, which is a XML
representation of the file. The fact extractor is mainly used
to parse and search the source code. This technique is often
used for reverse engineering, maintenance, testing or even
in general development of software systems. This approach
is based on “CPPX” [37], which is an open source C++ fact
extractor. The fact base, which is generated by “CPPX”,
can be used as input for software development tools, such
as integrated development environments (IDE). It enhances
these tools’ functionalities, for example by source code
visualization, object recovery, restructuring and refactoring.

As in [14], [34], the approach of [36] highly differs from
our approach, as it is not supposed to store and recreate
the functional behavior of software modules. [36] mainly
delivers a XML presentation of the extracted facts of the
source code.

VI. CONCLUSION AND FUTURE WORK

This paper evaluates our novel approach to the replay of
functional behavior of software algorithms by the SSF. This
functionality is used by CPU stubs, which are a subset of
the DPS framework. These CPU stubs consist of the CPU
PSF, which have been extended to simulate multi-threaded
applications.

In order to achieve these results, two distinct functionali-
ties have been combined: SSF and CPU PSF.

It has been shown that the functionality of software can be
replaced by the SSF almost automatically. A methodology to
use this functionality is given and a possible implementation
is provided. This is concluded by an industrial case study.

Moreover, CPU stubs can be used to simulate the per-
formance behavior of complex software modules. This can
simplify the creation of software simulation functions and
can be used to determine the impact of multi-threaded
components onto the system’s performance. The usability

of the introduced interface, to describe the multi-threaded
performance behavior, has been shown in a case study.

The following aspects concerning the SSF and CPU stubs
will be addressed in the future work:

• SSF
– Evaluate the memory influence of the libSSF and

identify improvement possibilities to reduce this
overhead.

– The libSSF will be extended to easily trace more
different data structures. Especially, it should be
improved to stub “STL lists”and “STL vectors”.

– By now, the libSSF is based on some workarounds.
Further possibilities to access private and protected
members of classes will be evaluated, e.g., by using
friend classes. Moreover, a redesign will be done.

• CPU Stubs
– Consideration of further events within the inter-

face, to rebuild the communication behavior of the
threads more accurate.

– Definition and evaluation of a methodology on the
creation of multi-threaded CPU PSF.

Additionally, the methodology of CPU stubs will be
evaluated by complex and multi-threaded case studies.

We have shown that CPU stubs can be used to simulate
the functional as well as performance behavior of a CUS.
This can be used to evaluate performance optimization
potential depending on the system. Hence, it is possible to
identify “hidden” bottlenecks as well as further improvement
possibilities. Moreover, a gain-oriented performance analysis
can be achieved.

ACKNOWLEDGMENT

This research was supported by a long term evolution
system developing company. The authors would like to thank
the LTE group for the excellent support and contributions
to this research project. For careful reading and providing
valuable comments on draft versions of this paper we would
like to thank Sebastian Röglinger and the reviewers.

REFERENCES

[1] P. Trapp, M. Meyer, and C. Facchi, “Using CPU Stubs
to Optimize Parallel Processing Tasks: An Application of
Dynamic Performance Stubs,” in ICSEA ’10: Proceedings
of the International Conference on Software Engineering
Advances. IEEE Computer Society, 2010.

[2] P. Trapp and C. Facchi, “Performance Improvement Using
Dynamic Performance Stubs,” Fachhochschule Ingolstadt,
Tech. Rep. 14, Aug. 2007.

[3] R. Jain, The art of computer systems performance analysis.
Wiley and sons, Inc., 1991.

[4] P. J. Fortier and H. E. Michel, Computer Systems Performance
Evaluation and Prediction. Burlington: Digital Press, 2003,
vol. 1.

205

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] D. J. Lilja, Measuring Computer Performance: A Practioner’s
Guide. New York: Cambridge University Press, 2000.

[6] N. H. Gunther, The Practical Performance Analyst.
McGraw-Hill Education, 1998.

[7] J. J. Marciniak, Encyclopedia of Software Engineering,
2nd ed. John Wiley & Sons Inc, 2002.

[8] A. Bertolino and E. Marchetti, Software Engineering: The
Development Process - A Brief Essay on Software Testing,
3rd ed. John Wiley & Sons, Inc., 2005, vol. 1, ch. 7, pp.
393–411.

[9] I. Sommerville, Software Engineering, 6th ed. Pearson
Studium, 2001.

[10] J. Hughes, “Performance Engineering throughout the System
Life Cycle,” SES Inc., Tech. Rep., 1998.

[11] P. Trapp and C. Facchi, “How to Handle CPU Bound Systems:
A Specialization of Dynamic Performance Stubs to CPU
Stubs,” in CMG ’08: International Conference Proceedings,
2008, pp. 343 – 353.

[12] P. Trapp, C. Facchi, and S. Bittl, “The Concept of Memory
Stubs as a Specialization of Dynamic Performance Stubs to
Simulate Memory Access Behavior,” in CMG ’09: Interna-
tional Conference Proceedings. Computer Measurement
Group, 2009.

[13] P. Trapp and C. Facchi, “Main Memory Stubs to Simulate
Heap and Stack Memory Behavior,” in CMG ’10: Interna-
tional Conference Proceedings. Computer Measurement
Group, 2010.

[14] W. Tansey and E. Tilevich, “Efficient automated marshaling
of C++ data structures for MPI applications,” in Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, apr. 2008, pp. 1–12.

[15] “GCC, the GNU Compiler Collection,” online: http://gcc.gnu.
org/, June 2011, [July 5, 2007].

[16] GCC-XML, “GCC-XML, the XML output extension to
GCC!” online: http://www.gccxml.org/, 2010, [July 5, 2011].

[17] F. Khan, LTE for 4G Mobile Broadband: Air Interface Tech-
nologies and Performance, 1st ed. Cambridge University
Press, 2009.

[18] P. Trapp, C. Facchi, and M. Meyer, “Echtzeitverhalten durch
die Verwendung von CPU Stubs: Eine Erweiterung von
Dynamic Performance Stubs,” in Workshop “Echtzeit 2009
- Software-intensive verteilte Echtzeitsysteme”, Informatik
Aktuell. Springer Verlag, 2009, pp. 119–128.

[19] R. Srinivasan and O. Lubeck, “MonteSim: A Monte Carlo
Performance Model for In-order Microarchitectures,” ACM
SIGARCH Computer Architectur News, vol. 33, no. 5, pp.
75–80, Dec. 2005.

[20] Y. Etsion and D. Feitelson, “Time Stamp Counters Library -
Measurements with Nano Seconds Resolution,” The Hebrew
University of Jerusalem, Tech. Rep. 2000-36, 2000.

[21] A. S. Tanenbaum, Modern Operating Systems, 2nd ed.
Prentice-Hall, Inc., 2001.

[22] C. U. Smith, “Formal Methods for Performance Evaluation,”
in Introduction to Software Performance Engineering: Ori-
gins and Outstanding Problems, 2007, pp. 395 – 428.

[23] C. U. Smith and L. G. Williams, “Best Practices for Software
Performance Engineering,” in Int. CMG Conference, 2003,
pp. 83–92.

[24] S. McConnell, Code Complete: A Practical Handbook of
Software Construction, 2nd ed. Redmond, WA, USA:
Microsoft Press, 2004.

[25] S. Chapman, “Finding the Critical Path - A Simple Ap-
proach,” in CMG ’09: International Conference Proceedings.
Computer Measurement Group, 2009.

[26] “Linux Trace Toolkit Next Generation,” online: http://www.
lttng.org, 2011, [July 5, 2011].

[27] “The Open Group Base Specifications Issue 6 IEEE
Std 1003.1,” online: http://pubs.opengroup.org/onlinepubs/
009695399/basedefs/pthread.h.html, 2004, [July 5, 2011].

[28] G. Marin and J. Mellor-Crummey, “Application Insight
Through Performance Modeling,” in 26th IEEE International
Performance Computing and Communications Conference
(IPCCC’07), New Orleans, Apr. 2007.

[29] D. J. Reifer, “The Smart Stub as a Software Management
Tool,” SIGSOFT Softw. Eng. Notes, vol. 1, no. 2, 1976.

[30] D. P. Bovet and M. Cesati, Understanding the LINUX KER-
NEL, 3rd ed. O’Reilly, 2005.

[31] A. Fugmann, “Scheduling Algorithms for Linux,” Master’s
thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, 2002.

[32] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick,
“System Noise, OS Clock Ticks, and Fine-Grained Parallel
Applications,” in ICS ’05: Proceedings of the 19th annual
international conference on Supercomputing. New York,
NY, USA: ACM Press, 2005, pp. 303–312.

[33] D. Tsafrir, “The Context-Switch Overhead Inflicted by Hard-
ware Interrupts (and the Enigma of Do-Nothing Loops),” in
ExpCS ’07: Proceedings of the 2007 workshop on Experi-
mental computer science. New York, NY, USA: ACM Press,
2007, p. 4.

[34] W. Tansey, “Automated Adaptive Software Maintenance: A
Methodology and Its Applications,” Master’s thesis, Virginia
Tech, May 2008.

[35] N. A. Kraft, B. A. Malloy, and J. F. Power, “A tool chain
for reverse engineering c++ applications,” Sci. Comput. Pro-
gram., vol. 69, no. 1-3, pp. 3–13, 2007.

[36] M. Collard, H. Kagdi, and J. Maletic, “An XML-based
Lightweight C++ Fact Extractor,” in Program Comprehen-
sion, 2003. 11th IEEE International Workshop on, May 2003,
pp. 134 – 143.

[37] CPPX, “CPPX - Open Source C++ Fact Extractor,” online:
http://www.swag.uwaterloo.ca/cppx, july 5, 2011.

206

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Intelligent Look-Ahead Scheduling for Structural Steel Fabrication Projects

Reza Azimi
Dept. of Civil & Environmental

Engineering

University of Alberta

Edmonton, Canada

razimi@ualberta.ca

SangHyun Lee
Dept. of Civil & Environmental

Engineering

University of Michigan

Ann Arbor, USA

shdpm@umich.edu

Simaan M. AbouRizk
Dept. of Civil & Environmental

Engineering

University of Alberta

Edmonton, Canada

abourizk@ualberta.ca

Abstract— Look-ahead Scheduling can be a difficult task,

especially for non-repetitive, irregular work packages and

activities such as occur in structural steel fabrication, where a

variety of equipment, material and skilled work is required to

manufacture unique steel pieces. Although punctual look-

ahead scheduling based on the most recent system analysis and

project data can significantly improve productivity and project

control, this technique has not been extensively used in the

construction industry. This paper presents an intelligent and

integrated simulation-based framework in which real-time as-

built data are captured and along with intelligently generated

as-planned data are fed into the simulation model for look-

ahead scheduling. A distributed simulation system based on

the High Level Architecture is proposed to enhance the

performance of the system. The ability of the proposed system

to incorporate real-time actual data along with different

scenarios that represent the dynamic work environment and

external factors opens new doors to improve the accuracy of

look-ahead scheduling in the construction industry. To exhibit

the feasibility of the proposed framework, a prototype system

is developed and deployed in a steel fabrication company.

Keywords: Construction Simulation; High Level Architecture

(HLA); project monitoring and control; real-time data capture,

Artificial Neural Networks.

I. INTRODUCTION

This paper amplifies the work originally presented in [1].
Currently, industrial steel structures are popular for
constructing a variety of buildings, from heavy industrial
buildings and petrochemical refineries to sheds, shelters, and
roofs. Reduced construction times, efficiency, and cost-
effectiveness can be considered as the major benefits of
using industrial steel elements. Detailing, procurement, steel
fabrication, shipment, and site erection are the five major
phases in a typical industrial steel construction project [2].
Steel fabrication, one of the complex phases, refers to the
production of steel pieces through a series of operations,
including detailing, fitting, welding, and surface processing
in a confined environment called a fabrication shop [3, 4].
Better control over quality, effective labor utilization, and
reduction of waste are some advantages of manufacturing
steel elements in a fabrication shop. Material handling and
inspection activities occur frequently during the fabrication
process. There are a large variety of steel pieces produced, in
terms of both dimensions and processing requirements. Steel
fabrication activities require an assortment of equipment,

material and labor disciplines in order to produce steel
pieces.

The complexity and variety of products, and the large
number of potential resources, activities, interactions,
constraints and uncertainties, make the planning and control
of ongoing and forthcoming steel fabrication projects a
complicated task. Project planning involves several
activities, including master scheduling and short-term or
look-ahead scheduling, which are two key elements in
successful delivery of the projects. Master scheduling refers
to the overall view of the projects and general fabrication
strategies. Such scheduling may be used for several reasons:
forecasting demand, long-term coordination (e.g., regarding
material requirements and staffing level) and rough
budgeting. However, master scheduling suffers from a lack
of information about actual durations and cannot be properly
detailed far into the future. Conversely, a look-ahead
schedule is a detailed plan for work packages to be
completed in a relatively short time frame. Look-ahead
scheduling helps project managers focus on the work
packages that should be done at some time in the future and
the corrective actions in the present that will lead to finishing
those work packages on time, within budget and to a
specified quality. These detailed schedules should be
developed and updated in a timely manner based on the
actual project performance data and the conditions in the
construction environment, to precisely represent the tasks
that have been done and the tasks that remain [5]. Such a
detailed schedule is a solid foundation in terms of
performance analysis and taking effective corrective actions.

This paper proposes a steel fabrication shop modeling
approach for efficient look-ahead scheduling of steel
fabrication projects in the Construction Synthetic
Environment (COSYE) based on the High Level
Architecture (HLA) infrastructure. In this approach, real-
time, high-quality actual project data are captured and fed
into a simulation model along with the uncertainties and the
factors influencing the productivity of the fabrication shop.
In this way, reliable updated look-ahead schedules are
generated by the simulation model and “guesstimates” are
rarely needed. Current practice and research carried out
regarding look-ahead scheduling is discussed, and the
conceptual framework of the integrated real-time simulation-
based scheduling system is then described. The feasibility of
the proposed framework is demonstrated by developing a
prototype system that was used for a case study in a steel

207

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fabrication shop. The advantages and limitations of the
proposed system are also discussed in this paper.

II. BACKGROUND AND LITERATURE REVIEW

The basis of Look-ahead Scheduling (LAS) is similar to
regular scheduling. Usually, activities or work packages are
regular and predictable. When that is not the case, work
packages need to be appropriately classified and work
packages that are considered similar may differ in terms of
process duration and required resources. Similar to regular
scheduling, standard data should be generated using time
studies or expert judgment. Once these standards are
established, work packages can be scheduled, allowing
foremen and project managers to forecast and control
projects over comparatively short time intervals. LAS
usually refers to a foreman’s schedule, settled and tracked by
foremen on a short-term basis. The foremen determine which
work packages would be processed by their crew during the
next few days, and the project managers monitor the
accuracy of the schedule. This monitoring leads to
identifying factors that affect the production rate. Once these
factors are identified, the project managers can address the
implicit causes and routinely enhance the accuracy of the
LAS. LAS helps improve productivity by eliminating or
reducing time spent that is not adding value to projects. It
also helps ensure all the required resources and material are
ready for ongoing projects at any time needed. Since LAS
sets realistic and obtainable goals for a short time span, as a
psychological effect, the workers tend to get the work done
as soon as possible.

Smith [6] argues that LAS has been successfully
implemented in different domains such as material handling,
quality assurance, manufacturing, maintenance, engineering,
and assembly operations. LAS has been largely used for
mass production systems where immediate follow-up and
corrective actions are a must in the case of deviations [7]. As
an example, combined with pairwise comparison LAS was
utilized for scheduling random operations in job-shops [8]

In spite of the fact that very little information on LAS is
provided in the literature, effective LAS are crucial to the
successful completion of construction projects [5].
Daneshgari and Moore [9] state that on average up to 70% of
construction job schedules experience changes. They
observed four projects over a four-month period, ranked the
impact of the unscheduled activities on the lost productivity
and concluded that implementation of LAS is a great tool to
improve the productivity. Similarly, Hadavi and Krizek [10]
concluded that short-term scheduling results in higher
productivity compared to long-term scheduling. Studying
decision support systems in manufacturing operations and
determining the types of data required to plan and control
effectively, Schmahl [11] concluded that LAS can be used to
support continuous improvement efforts in production
operations. Scheduling problems could be solved for either
the next hour or the next few weeks by LAS [12]. Guidelines
regarding developing work packages for effective utilization
of LAS as well as the situations where LAS is more likely to
succeed have been discussed by Ramireza-Valdivia et al. [7].

Finally, emphasizing the key role of LAS in enhancing
production control, Ballard [13] proposed strategies for
improving LAS.

In construction, many operations are repetitive and
involve uncertainty and resource constraints. This motivated
researchers to deploy discrete-event simulation for LAS
problems [14]. Simulation is a mathematical-logical model
representing a real-world evolving system. Users can use the
simulation model to analyze and forecast the performance of
a system considering different scenarios. Actual data
captured from ongoing projects along with the uncertainties
of the construction environment can be fed into the
simulation model to “tune it up” for generating better results
[15, 16]. A proper updating process for simulation input
modeling based on high quality data is necessary to achieve
simulation accuracy. The emergence of new technologies has
enhanced data acquisition systems by providing automated
high-quality real-time data. For example, Radio Frequency
Identification (RFID) has been used to track real-time
locations of steel pieces in a steel fabrication shop [2] and
monitor steel works in high-rise buildings [17]. The same
data acquisition system based on RFID technology
developed by the authors [2] is also used in the prototype
system of this research to closely supervise the operations
that lead to obtaining the benefits of LAS.

Current studies focus on real-time data acquisition and
improving simulation input modeling, which involves
finding statistical distributions of the model input
parameters, such as the durations of different activities [14].
For instance, Song et al. [14] used Global Positioning
System (GPS) technology to capture required data, such as
truck hauling time, and update a simulation input model for
LAS of asphalt hauling and paving projects. These
simulation systems commonly have two characteristics: first,
they usually model repetitive operations, and second, the
final output of these operations is one or (rarely) a few
limited products. This paper deals with simulating a steel
fabrication shop, in which the operations are repetitive while
each product (i.e., steel piece) is typically unique. This
uniqueness means the time required for processing each steel
piece varies. Estimating processing duration is dependent on
productivity; the degree of precision depends on the nature
of the work and is influenced by several factors. The
relationship between these factors and the processing
duration/productivity cannot be demonstrated in an accurate
and clear manner, increasing the difficulty of estimating the
steel piece processing activity durations which are used for
updating the simulation input model. A well-structured
Artificial Neural Network (ANN) model, which has an
optimal structure regarding layers and nodes, is capable of
learning from data sets and reliably approximates any
complicated relationships between dependent and
independent variables [18]. ANN models can also handle
moderate amounts of noise, which is common in the
historical data, and can generate knowledge from defective
or noisy data [19]. ANNs have been widely used for
modeling productivity in construction; for example, concrete
construction productivity [20], formwork production rates
[21] and pipe spool fabrication productivity [22]. ANNs have

208

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also been exploited in this research to intelligently generate
process durations for each steel piece to be manufactured,
considering influencing factors. A framework is proposed to
integrate a real-time actual data collection system for steel
fabrication projects with an intelligent input data generation
system and with simulation models, which utilizes the as-
built data for updating input models and improving the
simulation results for LAS.

III. LOOK-AHEAD SCHEDULING USING SIMULATION

TECHNIQUE

In steel fabrication projects, LAS involves a number of
uncertain factors and constraints. No project can be started
earlier than a given date due to the limitations regarding the
availability of required material, space and equipment. Each
project should be delivered by a certain date depending on
client demand and the conditions of the erection site. The
scheduler should also take into account the limits on other
resources such as skilled workers, cranes and active stations
in the steel fabrication shop.

A typical steel fabrication project may contain a few
hundred steel pieces, which makes using traditional
techniques such as the Critical Path Method (CPM) a time-
consuming and tedious exercise. Moreover, in the case of
any deviation from the baseline or changes in resource
availability, adjusting the schedule would be very difficult.
Computer simulation is a powerful technique to efficiently
react to system changes and generate updated schedules.
Simulation is used here as the underlying technique to model
the fabrication shop and resources and activities required to

process steel pieces. To be effective, the simulation model
should be updated based on the most recent system changes.
Then, the impacts of these changes need to be observed by
the model for modifying the LAS. To address this, this paper
presents an intelligent and integrated simulation system
based on the framework previously developed by the authors
for automated and integrated project monitoring and control
[2]. Several components of the framework established using
the HLA infrastructure have been modified and the whole
system is enhanced by adding intelligence for reliable look-
ahead scheduling purposes. An as-planned database, as-built
data acquisition, discrete event simulation, a steel fabrication
process knowledge base, a calendar, and an intelligent
adjuster are the major components of the proposed system
(Fig. 1). HLA provides a reliable infrastructure for efficient
integration of all the components of the LAS system.
Interoperability, reusability, flexibility, and system speedup
[2] are some advantages of utilizing HLA as the backbone
for the proposed LAS system.

To have an effective LAS system, the following steps
must be taken. First, the process of the steel fabrication
should be well investigated and a simulation model based on
that is established. For each project a baseline schedule is
defined by a scheduler. During the execution course of the
project, real-time data is collected from the fabrication shop
and utilized to update the simulation model so that it reflects
the dynamic nature of the project environment. Once the
initial state of the simulation model is set, it can be used for
experimenting with different scenarios and an updated LAS
can be generated based on the simulation results.

Figure 1. Integrated LAS system- a modified version of the model originally proposed by the authors[2]

209

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A brief review of the steel fabrication process as well as
the components of the proposed system is presented in the
following sections to provide the reader with an overview of
the research topic.

A. Steel Fabrication Process

A typical steel project consists of a number of steel
pieces, such as beams, columns, or trusses, with different
dimensions and specifications. Fabrication of steel pieces
starts with the detailing area. In this area, the components of
a steel piece are cut and/or punched according to the
engineering design. Cut components are transferred to the
fitting area to be fitted. Fitters bring the components together
using tack welds to form the steel piece. Once inspected, the
fitted piece is sent to the welding area where the welders
weld the piece according to the provided specifications.
Another inspection happens once the welding is done. If
required, the piece is sent to the painting area, otherwise the
piece is ready to be shipped to the erection site (Fig. 2).

Each area in the fabrication shop is composed of several
stations which makes it possible to have several pieces
processed in each area simultaneously. Steel pieces are
transferred by rail carts or cranes depending on the situation.
If a piece must be processed in a working area but there are
not enough resources available to process that piece, it is
piled in a certain storage area and waits until the required
resources are available.

Figure 2. Steel fabrication process

Rework will be necessary if a piece is rejected by an

inspector.

B. Components of the Proposed System

The backbone of the proposed system is the High Level
Architecture (HLA) which has been discussed in more detail
in the next section (i.e., System Implementation).

Some components of the proposed system such as
Discrete Event Simulation, the calendar, and real-time data
capturing have already been developed and detailed
information about these components can be found in [2]. A

brief explanation of those components is also provided
below.

B1. Real-Time Data Capturing
As in [2], Radio Frequency Identification (RFID)

technology has also been used in this research to collect real-
time data. RFID tags are put on steel pieces and the locations
of the tagged pieces are tracked using portable RFID tag
readers. The location tracking also captures the time a piece
enters each area and the time it leaves that area. These data
are then interpreted to provide project performance data,
project progress, and activity duration in the steel fabrication
process knowledge base component. Inter-process
communication between the tag readers and the as-built
database occurs via Transmission Control Protocol over
Internet Protocol (TCP/IP).

B2. Steel Fabrication Process Knowledge Base
The real-time data acquisition system generates raw data.

Useful performance data, such as man-hours spent on fitting
or welding each piece, project percent complete, production
rate and so on need to be extracted from these raw data to be
used for updating LAS. Interpretation of these raw data can
be automated by correlating the location of a steel piece with
fabrication events and activities based on the experts’
knowledge regarding the process of fabrication. A
comparison between the location of a steel piece and pre-
defined areas discloses meaningful information about the
fabrication operation. For example, the entrance of the steel
piece into the fitting area is recorded as a start-fitting event
and exiting the fitting area is considered as an event called
end-fitting. Once done, it is time to extract activity
information from the event data. Generally speaking, each
activity is begun by an event and is finished by another
event. So, for the previous example, the duration of fitting
activity for each steel piece can be calculated considering the
start- and end-fitting events. To be effective, the gained
knowledge should be managed properly in terms of capture,
arrangement and retrieval of knowledge. To enforce that,
knowledge bases are frequently used by the practitioners and
researchers. As an example a process knowledge base for
asphalt hauling is developed in [14]. A sample hierarchical
structure of the required knowledge for structural steel
fabrication data interpretation is presented in Table I.

TABLE I. SAMPLE ELEMENTS OF THE STEEL FABRICATION PROCESS

KNOWLEDGE BASE

Area Action Event Activity

Fitting Area Enter Start fitting Fitting steel piece

Fitting Area Leave End fitting

Welding Area Enter Start welding
Welding steel piece

Welding Area Leave End welding

… … ….

Different techniques can also be used to calculate other

performance data. For example, the progress of each piece is
determined by translating piece location to percent complete
using the rule of credit based on expert knowledge [2]. For
instance, the experts may consider piece fitting as 40%

Waiting (storage area)

Inspection

Inspection

Shipment

Painting Area

Storage Area

Storage Area
Fitting Area

Welding Area

Cutting Area

210

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

progress in the fabrication phase. Project percent complete
can thus be calculated by summing up the weight of each
piece times its progress, all divided by the weight of the
project.

B3. Discrete Event Simulation
This component is a modified and improved version of

the discrete event simulation (DES) model of steel
fabrication shops developed earlier [2]. Modeling the
fabrication shop and prediction of the behavior of the
fabrication shop is not based on mathematical models and
analytical solutions. Discrete event simulation was utilized
for this purpose due to the fact that simple closed form
analytical solutions are not available for the modeling steel
fabrication process. However, the DES federate has the
capability to incorporate any available mathematical or
analytical solutions.

To be effective, the DES component of the proposed
LAS system should be updated in a timely manner to reflect
changes in the fabrication shop’s environment. The proposed
DES is a self-adjustive component that exploits the captured
actual real-time data to update its input models. The initial
state of the simulation model is set based on the most recent
data. The actual data can also be used to generate updated
distributions that are substituted with the earlier input model.
The intelligent adjuster is a component that takes care of this
responsibility. It automates the input-model update
procedure with no slow and error-prone human involvement.

Scheduling is performed in DES model based on the
earliest-due-date (EDD) dispatching rule, such that the
project with the earliest due date is selected and processed
first. The scheduling engine of the DES model enables
automated project schedule updates to be generated and
stored in an MS Access database. The DES model is also
capable of performing earned value analysis, and cost and
schedule performance indices can be calculated for all the
steel pieces.

B4. Intelligent Adjuster
Updating input models can be carried out by external

prediction models [23]. The proposed intelligent adjuster is
an autonomous Artificial Neural Network (ANN) component
that is trained with the actual data available in the
aforementioned steel fabrication process knowledge base to
generate updated distributions, e.g., regarding duration of
different activities required to process each piece of steel for
the simulation input model. While it is difficult and
sometimes not feasible for estimators to consider in their
estimations all the influencing factors for a huge number of
steel pieces with different dimensions and specifications,
artificial intelligence has the capability to overcome this
issue and forecast and update the distributions to be used in
the steel fabrication simulation model. In this way, the
accuracy of the simulation model is enhanced by explicitly
modeling uncertainty variables and their impacts on the
performance of the fabrication shop and ongoing projects.

B5. Calendar
Schedules are highly influenced by day shift hours, night

shift hours, overtime hours, and holidays. The user defines
these parameters within the calendar federate which sets
related initial values for the DES model [2].

IV. SYSTEM IMPLEMENTATION

A) Infrastructure

A prototype system has been developed for look-ahead
scheduling of steel fabrication projects. The proposed system
implements the Construction Synthetic Environment
(COSYE) software environment [24], an HLA-based
simulation environment developed at the University of
Alberta. HLA is a reliable infrastructure for integrating
different components of a simulation model, called federates,
into a single distributed simulation model, referred to as a
federation [25]. HLA promotes interoperability between
simulations and aids the reuse of models in different
domains, which leads to reduced time, cost and efforts to
create a synthetic environment for a new purpose [25].
Development of simulation models of different construction
applications significantly benefits from these features of
HLA because these simulation models usually share a
number of common components [2]. HLA can be
characterized by three main components [26]: HLA rules, the
HLA interface specification, and the Object Model Template
(OMT). The OMT provides a common framework for data
exchange between different federates. The run-time
infrastructure (RTI) is a piece of software that complies with
the HLA specifications and provides services such as
synchronization, communication, and data exchange between
federates.

COSYE is composed of an RTI, an environment that is
optimized for development of federations in different
construction domains, and a suite of generic modeling
elements. During run time, COSYE provides necessary
communication, information exchange, and data sharing
protocols using an RTI that assures synchronization,
coordination and consistency between different federates.

In this prototype system, the primary project LAS
(baseline) is prepared by a scheduler and is stored in a MS
Access database. Captured real-time actual data are also
stored in a MS Access database. The base model of the DES
component (federate) was developed within the
Simphony.NET simulation environment [27] for modeling
steel fabrication operations. Figure 3 depicts the interface for
the DES federate [28].

B) Factors affecting the intelligent adjuster’s forecasting

The process knowledge base, demonstrated in Table 1, is
used to extract fabrication activity information from the
actual data and feed the intelligent adjuster component.

Fitting and welding operations are the critical operations
in the structural steel fabrication and usually take more than
80% of the available resources on average. In the proposed
system the intelligent adjuster is composed of two Artificial

211

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The DES federate [28]

Neural Network (ANN) models and predicts the steel fitting
and welding productivity/durations based on the complexity
of each steel element and other influencing factors.
Influencing factors can be divided into two major categories:
the steel piece itself and the fabrication shop environment.
Song et al. [29] proposed four piece-oriented influencing
factors, such as number of fittings, number of cutouts, piece
length, piece weight, and two influencing factors regarding
the fabrication shop environment for the fitting operation,
such as worker rank and work shift. There are two concerns
regarding the proposed piece oriented factors. Firstly,
although it is clear for beams and columns, piece length is a
vague concept for other steel pieces such as frames and
stairs. As an example, for a square steel frame, one person
may consider the side length as the piece length while
another person may use the diagonal of the square as the
piece length. Piece dimension is an important factor because
piece movement and piece flipping in each operation are
highly affected by this property of steel pieces. However,
piece weight commonly has a close and positive correlation
with piece dimension (i.e., the bigger the piece, the greater
its weight). This means that by considering piece weight as
an influencing factor the piece dimensions are implicitly
addressed. Secondly, the number of fittings and cutouts are
two influencing factors in the fitting operation but not
necessarily for the welding operation. Two different
approaches can be taken considering the influencing factors.
One approach is to define the factors for each specific
operation, while the other approach is to define general
influencing factors that can be used for different operations
in steel fabrication. Within this research the second approach
has been taken because of its universality and usage in the
whole fabrication process. Therefore, the influencing factors
considered in this research that are related to the

characteristics of the steel piece include piece complexity –
replacing the number of fittings and cutouts – and piece
weight; the ones that are related to the shop environment are
the rank of the workers and the working shift in which the
pieces are manufactured.

Having said that, the inputs of the intelligent adjuster are
the weight of the steel element (piece/assembly), the shift in
which it has been fabricated, the rank of the worker who has
processed that steel element (the higher the rank the more
experienced the worker) and piece complexity. Piece
complexity is represented by a parameter called “complexity
factor.” “Complexity factor” refers to the number of the
components in each steel piece. For instance, the steel beam
shown in figure 4a is composed of an I shaped beam and 5
stiffeners. Thus, there are 6 components forming that steel
piece which results in a complexity factor equal to 6.

Steel pieces differ, sometimes significantly, regarding

their complexity factors. In other words, while some steel

pieces are fairly simple (e.g. Fig. 4a), some pieces can be

considerably more complicated (e.g., Fig. 4b). The

complexity factor can also be calculated for each division

with the same concept, i.e., total number of steel

components divided by the number of steel pieces forming

the division. A template was also developed to

automatically capture complexity factors and weight of steel

pieces from 3D models (Fig. 5) of steel projects. These 3D

models use Building Information Modeling (BIM) which is

a common way to construct a building virtually before

building it in the real world, bringing the structures from

concept to reality [30]. Automatically capturing information

from 3D models with minimum human involvement

guarantees high-quality data with great speed for data

analysis purposes.

212

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a) Two side views of a steel beam with 5 stiffeners.

b) A steel frame consisting of tapered beams and columns with a large

complexity factor.

Figure 4. Sample of structural steel pieces with different complexities

A sample of data captured automatically from a 3D model by
the developed template is represented in Table II.

The intensity of complexity is an indicator that
determines how complicated a steel element is (i.e., piece
complexity) and has a direct relationship with the complexity
factor. It is one of the input variables utilized for training the
intelligent adjuster and is defined as in Table III.

TABLE II. SAMPLE OF DATA CAPTURED BY THE DEVELOPED

TEMPLATE FROM 3D MODELS

Piece ID C.F.* I.C.** Weight(kg)

50A1 12 4 582

50A2 17 5 555

50A5 10 3 529

50A7 17 5 539

50A4 10 3 529

50A8 17 5 542

50A6 11 3 519

50A15 19 5 293

50A16 9 3 280

50A20 9 3 132

50A18 7 2 137

* Complexity Factor

**Intensity of Complexity

TABLE III. DEFINITION OF THE INTENSITY OF COMPLEXITY

I.C. Definition Explanation

1 Not complicated 1 ≤ C.F. < 4

2 moderately complicated 4 ≤ C.F. < 8

3 complicated 8 ≤ C.F. < 12

4 very complicated 12 ≤ C.F. < 16

5 extremely complicated 16 ≤ C.F.

C) Training the intelligent adjuster

The intelligent adjuster uses two back-propagation
networks, each with 4 input nodes, one hidden layer, and one
output node at the output layer.

Figure 5. Developed template for capturing complexity factor from 3D models

213

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The number of hidden neurons for the networks is
calculated with the following equation [31]:

Hn=0.5×(I+O) + P (1)

Where:
Hn: Number of hidden neurons
I: Number of inputs
O: Number of outputs
P: Number of patterns

“Neuroshell 2” [31] was used to train the networks. 114

fitting data points and 61 welding data points were captured
by the real-time RFID data capturing system during a two-
week time/case study used for training and validating the
ANN models. For the fitting operation, 92 data points were
randomly selected for training and 22 data points were used
for testing. The learning rate and momentum of the fitting
ANN model were set to 0.1. The initial weight of the links
within the ANN model was set to 0.3 and numeric range of
the linear scaling function used for the input layer was [-1,1].
For the welding operation, the number of training and testing
data points were 49 and 12 respectively and the initial
settings for learning rate, momentum etc. were similar to the
settings of the fitting ANN model. The labor-driven nature of
the steel fabrication process may lead to variance in
productivity or activity duration even for similar steel pieces
processed with laborers with the same rank and in the same
shift. In this research one assumption is that such a variance
is trivial; if that is not the case some techniques such as data
filtration or using averages of the data can help
in compensating for variances in the data. Sample actual data
regarding welding operation that were used for training the
intelligent adjuster are presented in Table IV.

TABLE IV. HISTORICAL DATA USED FOR TRAINING THE INTELLIGENT

ADJUSTER

Weight

(kg)

Shift

(Day:1-Night:2)
Rank I.C.

Duration

(Minutes)

519 1 2 3 109

87 1 1 4 163

122 1 2 2 55

919 1 1 5 197

549 2 2 3 160

111 1 1 3 90

973 2 2 4 218

1250 1 3 4 121

… … … … …

The training results regarding duration of fitting and

welding operations (in minutes) are summarized in Table V.
There are several factors that may affect the maximum
absolute error in terms of duration prediction presented in
Table V. For instance, once a fitted or welded piece is
rejected by an inspector, it requires rework, and the activity
duration is extended and is greater than a situation in which
rework is not required. Missing components of a steel piece
or unclear or impractical drawings are other examples that
extend the normal fitting/welding durations. With that said,

and considering the wide duration ranges in fitting and
welding data sets (i.e., from 10 to 290 minutes for the fitting
data set and from 20 to 352 minutes for the welding data set),
the trained networks are considered proportionately accurate
in forecasting the fitting and welding durations with an
acceptable margin of error.

TABLE V. INTELLIGENT ADJUSTER TRAINING RESULTS

Item Fitting Welding

Patterns processed: 114 61

R2: 0.89 0.87

Mean absolute error: 13.46 26.14

Min. absolute error: 0.02 0.11

Max. absolute error: 73.20 53.00

Correlation coefficient r: 0.95 0.94

Two indicators, including R Squared (R

2
) and the

correlation coefficient (r), usually used for interpreting the
neural network models, are also presented in Table V. As
indicated in Table V, the R

2
 values for the fitting and

welding operations are 0.89 and 0.87 respectively.
According to the network training results presented in Table
V, the correlation coefficients for the fitting and welding
operations are 0.95 and 0.94 respectively, which implies a
strong positive relationship between the model outputs and
the actual outputs for theses operations.

Figure 6 shows the trained network predictions against
the actual welding duration values for the welding data
points.

Figure 6. Actual vs. forecasted welding duration for data points

The trained ANN models were compiled as VB.NET code
and used for developing the intelligent adjuster federate. This
federate is capable of generating the distributions and other
scheduling variables, such as productivity rate, based on the
attributes (e.g. weight, complexity intensity, etc.) of each
steel piece. An example of the generated scheduling
variables is shown in Figure 7. This figure is a snapshot of an
interface developed to provide managers with an intuitive
report on the forecasted trend of productivity rates for fitting
and welding activities within a 3-day time interval ending at

0

50

100

150

200

250

300

350

400

1 6 11 16 21 26 31 36 41 46 51 56 61

Pattern

W
e
ld

in
g

 D
u

ra
ti
o

n
 (

m
in

.)

Actual

Network

214

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the date selected by the user. Such information can be a
heads-up for impending deviations from desired values. The
generated distributions then will be fed into the DES federate
to improve its results. If required, the user can modify the
influencing factors and experiment with different scenarios
with the simulation model to find the best corrective actions
to converge on the project goals.

V. CASE STUDY

A case study, the construction of an administrative office,
was carried out to verify the feasibility and accuracy of the
implemented simulation-based LAS system for steel
fabrication projects. Because of the size of the building, the
whole project is divided into 57 “divisions.” Each division
itself includes several hundred steel pieces, including beams,
columns, stairs and frames. The baseline schedules for all the
divisions were prepared by the scheduler and stored in the
baseline database. The data acquisition system was set up in
the fabrication shop. The major elements of the data
acquisition system are RFID tags, a tag reader, and a router
connected to a computer. Data capturing began with the
launching of the project in the shop (Fig. 8). The DES
federate models four activities – cutting, fitting, welding, and
painting. The resources required for this model include
active stations (which correlate with the number of
operators) in different areas, cranes and rail carts, inspectors,
and storage areas.

Usually, several divisions are processed at the same time
in a fabrication shop and certain stations in each area are

assigned to each division. The data capturing was carried out
for all the steel elements that were being processed in the
fabrication shop. In this way, scheduling information for the
project level as well as the performance information (such as
production rate at different areas) at the shop level was
determined.

The actual data collected during the case study were used
to examine the accuracy of the simulation model. However,
during the case study several outstanding discrepancies were
captured. First, some fitting and welding stations shut down
due to the fact that a number of fitters and welders were laid
off during the case study. Second, the actual process time in
each station was longer than expected in many cases. Third,
the production rate predicted by the simulation model was
significantly greater than what happened in reality. These
discrepancies detract from the utility of the LAS and mean
that the simulation model needs to be properly modified and
updated in some aspects to address these deviations.

Updating the simulation model is easy with regard to
changing available resources (e.g., the number of active
stations), but with variables such as process time and
production rate, it is less straightforward. Variances in the
process time and production rate can be caused by faults in
estimation, external factors that were not considered in the
simulation model, or both. While the faults in process time
estimation are usually covered by the actual data,
considering the effects of the external factors in the
simulation model is a difficult task. For example, during the
course of the case study, a number of workers received

Figure 7. Fitting and Welding production forecasted by the intelligent adjuster component for the fabrication shop.

215

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Collecting actual data using RFID technology

termination notices due to the recession conditions. After
being informed that their employment will cease by the next
month, the productivity of these workers was far lower than
what was estimated. The arrival of a new project with a
higher priority that had not been considered in the master
plan was another issue that meaningfully affected the
available resources (e.g., raw material), shop performance
and LAS for ongoing projects during this case study. A
thorough tracking of the variances regarding schedules and
budget (i.e., assigned man-hours) resulted in determining
seven major factors causing variances in the studied
fabrication shop (Fig. 9). Once these factors are tracked, they
need to be addressed to improve the performance of the
ongoing projects and the fabrication shop itself. Project
managers and foremen try to make improvements in
different areas that cause deviations and variances over the
course of the fabrication, but it is still a major concern for
them to have reliable LAS for different projects which take
into account current situation in the fabrication shop. This is
the benefit of the LAS system which has been developed,
which enables users to have updated LAS automatically
generated based on the most recent actual data. An updated
LAS is a sound foundation for decision making and system
analysis. Sample results of the simulation model, based on
30 simulation runs, regarding LAS based on the actual data
are shown in Table VI. The simulation results in Table VI
represent four divisions including 321 steel pieces that
originally were planned to be fabricated in the specified time
interval (i.e., from January 18 – 27, 2010). Scheduled start
and finish dates come from the project

Figure 9. Major factors causing cost/schedule variance in the case study

baseline defined by a shop manager and two foremen, each

with more than 15 years of experience. The calculated start

and finish dates are the simulation output, generated based

on the current shop conditions and the activity duration

distributions forecasted by the intelligent adjuster for the

pieces planned to be manufactured within the stipulated

period of time. A comparison between the actual finish dates

and the estimated finish dates generated by the people

involved in scheduling, and what the developed intelligent

system generated, results in determining estimation errors.

Estimation error analysis reveals that the intelligent system

could generate more reliable managerial information and

LAS. As an example, for division 52A, human error

regarding the finish date was 11 days, while the intelligent

system had an error of 4 days. The average absolute

estimation errors for the 4 divisions shown in Table VI was 9

days in the case of human judgment, while the intelligent

system’s estimation had an absolute error of 1.75 days on

average. This may be attributable to the fact that the

intelligent system generates schedules based on the recent

conditions of the dynamic environment of the fabrication

shop, perceived influencing factors and their combined

interactions, while human beings are seldom able to consider

all of these parameters in scheduling. It should be noted that

a shortage of actual historical data that could be used for

training the intelligent adjuster limited the accuracy of the

developed system. Even though the performance of the

developed LAS system is quite promising, having more

actual historical data can enhance the intelligent adjuster

forecasts and subsequently improve the accuracy of the

simulation results.

TABLE VI. SAMPLE RESULTS OF THE SIMULATION FEDERATE

Division

ID

No. of Scheduled Scheduled Calculated Calculated Actual Error in Estimating Finish Date (days)

pieces Start Date Finish date Start date Finish Date Finish Date Human Estimator Intelligent LAS system

52A 64 18/01/2010 22/01/2010 18/01/2010 29/01/2010 1/2/2010 11 4

51A 34 19/01/2010 25/01/2010 19/01/2010 29/01/2010 29/01/2010 4 0

5A 103 19/01/2010 27/01/2010 20/01/2010 4/2/2010 5/2/2010 9 1

50A 120 21/01/2010 27/01/2010 25/01/2010 10/2/2010 8/2/2010 12 -2

VarianceMaterial

Manpower

Rework

Change in

priorities Unclear or

impractical

drawings

Unrealistic

estimation

Inspection

delays

216

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CONCLUSION

Look-ahead scheduling of steel fabrication projects that
considers projects’ constraints as well as the fabrication
shop’s constraints is very complicated. This paper
implements an intelligent and integrated simulation-based
LAS framework for an actual case study in a steel fabrication
shop. The system that was developed utilizes RFID
technology to capture as-built data. As-built data along with
the as-planned data are fed into the system; raw actual data
are translated to meaningful data, and an intelligent
component generates/forecasts essential scheduling variables
based on the actual and historical data for each steel piece,
considering several piece-oriented and environmental
influencing factors, and updates the simulation model to
allow it to produce reliable look-ahead schedules. The
proposed system is expanded by employing High Level
Architecture (HLA). In this way, the model is split into
several components that are linked together in a well-
structured format.

Unlike traditional scheduling methods that are static and
time-consuming to update, the capability of the proposed
system to dynamically and intelligently incorporate the most
recent project data and changes in the fabrication shop
environment can improve the accuracy of LAS and reduce
input modeling burdens on end users.

REFERENCES

[1] Azimi, R., Lee, S., and AbouRizk, S.M., “Integrated simulation-based
Look-Ahead Scheduling for steel fabrication projects”, The Second
International Conference on Advances in System Simulation (SIMUL
2010), Nice, France, 2010, pp. 129-133.

[2] Azimi, R., Lee, S., AbouRizk, S., Alvanchi, A., “A framework for
automated and integrated project monitoring and control system for
steel fabrication projects,” Automation in Construction, 2011, 20(1),
pp. 88-97.

[3] Azimi, R., Lee, S., and AbouRizk, S.M., “Automated project control
system for steel projects,” Joint International Conference on
Construction Engineering and Management and Construction Project
Management (ICCEM-ICCPM), Jeju, Korea, 2009, pp. 479-486.

[4] Azimi, R., Lee, S., & AbouRizk, S. M., “Resource performance
indicators in controlling industrial steel projects”, ASCE Construction
Research Congress, May 2010, Banff, Canada, pp. 21-30.

[5] Hinze, J. W., Construction planning and scheduling, 3rd ed., Pearson,
NJ., 2008.

[6] Smith M., Manufacturing Controls: How the Manager Can Improve
Profitability, Wiley, Chichester, 1981.

[7] Ramírez-Valdivia M.T., Christian P.H., Frederick P., Aksoy B., and
Zimmers Jr. E.W., “Development of a software tool to improve
performance of packaging operations through short interval
scheduling,” Packaging Technology and Science, 2003, 16(5):pp.
179-89.

[8] Golenko-Ginzburg, D., Gonik, A., “Using look ahead techniques in
job-shop scheduling with random operations,” International Journal
of Production Economics, 1997, 50 (1), pp. 13-22.

[9] Daneshgari P. and Moore H., “The secret to short-interval
scheduling,” Electrical Construction and Maintenance, 2009, 108(2).

[10] Hadavi, A., and Krizek, R.J., “Short-Term Goal Setting for
Construction,” Journal of Construction Engineering and Management,
1993, 119 (3), pp. 622-630.

[11] Schmahl, K.E., “Variation in success of implementation of a decision
support/finite scheduling system,” Production and Inventory
Management Journal, 1996, 37(1):28-35.

[12] Zweben M. and Fox M., Intelligent Scheduling. Morgan Kaufmann:
Bethlehem, PA, 1994.

[13] Ballard, H.G., “Lookahead planning: the missing link in production
control,” Technical Report No. 97-3, in Proceedings of the 5th
Annual Conference of the International Group for Lean Construction,
Griffith University, Gold Coast, Australia, 1997, pp. 13–25.

[14] Song L., Cooper C., and Lee S., “Real-time simulation for look-ahead
scheduling of heavy construction projects,” Construction Research
Congress, 2009, pp. 1318-1327.

[15] Chung, T.H., Mohamed, Y., and AbouRizk, S.M., “Bayesian
updating application into simulation in the North Edmonton sanitary
trunk tunnel project,” Journal of Construction Engineering and
Management, 2006, 132(8), pp. 882–894.

[16] Lu, M., Dai, F., and Chen, W., “Real-time decision support for
planning concrete plant operations enabled by integrating vehicle
tracking technology, simulation, and optimization,” Canadian J. of
Civil Eng., 2007, 34(8), pp. 912–922.

[17] Chin, S., Yoon, S., Choi, C., and Cho, C., “RFID+4D CAD for
progress management of structural steel works in high-rise
buildings,” Journal of Computing in Civil Engineering, 2008, 22 (2):
pp. 74-89.

[18] Bishop, C. M., Neural networks for pattern recognition, Oxford
University Press, New York, NY., 1995.

[19] Swingler, K., Applying neural networks: a practical guide, Morgan
Kaufmann Publishers, Inc., San Francisco, CA., 1996.

[20] Sonmez R., and Rowings J.E., “Construction labor productivity
modeling with neural networks,” Journal of Construction Engineering
and Management, 1998, 124(6), pp. 498-504.

[21] AbouRizk, S., Knowles, P., Hermann, U. R.,. “Estimating labor
production rates for industrial construction activities,” Journal of
Construction Engineering and Management, 2001, 127(6), pp. 502-
11.

[22] Lu, M., Abourizk, S., Hermann, U. H., “Estimating labor productivity
using probability inference neural network,” Journal of Computing in
Civil Engineering, 2000, 14(4):241-8.

[23] AbouRizk, S.M., and Sawhney, A., “Subjective and interactive
duration estimation,” Canadian Journal of Civil Engineering, 1993,
20(3), 457–470.

[24] AbouRizk S.M. and Hague S., “An overview of the COSYE
environment for construction simulation,” Proceedings of the winter
simulation conference; Austin, Texas, USA, 2009.

[25] Kuhl, F., Weatherly, R., and Dahmann, J., Creating computer
simulation systems: An introduction to the high level architecture,
Prentice Hall, NJ, USA, 2000.

[26] The Institute of Electrical and Electronics Engineers, Inc., IEEE 1516
for Modeling and Simulation (M&S) High Level Architecture (HLA)
–Framework and Rules, IEEE Standard, 2000.

[27] AbouRizk, S.M. and Hajjar, D., “A framework for applying
simulation in construction,” Canadian Journal of Civil Engineering,
1998, 25 (3), pp. 604-617.

[28] Alvanchi A., Azimi R., Lee S. and AbouRizk S. “Virtual model of
structural steel construction using COSYE Framework.”
10thInternational Conference on Construction Applications of Virtual
Reality 2010, Sendai, Miyagi, Japan, 2010, pp. 283-290.

[29] Song, L., AL-Battaineh, H., and AbouRizk, S. M., “Modeling
uncertainty with an integrated construction simulation
system.” Canadian Journal of Civil Engineering., 2005, Vol. 32(3),
533-542.

[30] Brown, J.L., “Wisconsin bets on BIM,” Civil Engineering, 2009,
79(9), pp. 40-42.

[31] <http://www.wardsystems.com/manuals/neuroshell2>, Accessed on
12/20/2010.

217

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Experience Management for Very Small Entities

Vincent Ribaud, Philippe Saliou

Département d‟Informatique

Université de Bretagne Occidentale, UEB

20 avenue Le Gorgeu, CS 93837

29238 Brest Cedex, France

{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Claude Y. Laporte

Département de génie logiciel et des TI

École de technologie supérieure

1100 rue Notre-Dame Ouest

Montréal (Québec), Canada, H3C 1K3

Claude Y. Laporte@etsmtl.ca

Abstract—The ISO/IEC 29110 standard: Lifecycle profiles for

Very Small Entities, provides several Process Reference

Models applicable to the vast majority of very small entities

(defined by the ISO as “an entity (enterprise, organization,

department or project) having up to 25 people”) which do not

develop critical software and share typical situational factors.

An ISO/IEC 29110 pilot project has been established between

the Software Engineering group at Brest University and a 14-

employee company with the aim of establishing an engineering

discipline for a new Web-based project. As the project

proceeded, it became apparent that setting up the ISO/IEC

29110 standard has to be performed in two steps: 1) provide

self-training materials to the VSE employees on this new

standard; and 2) support good practices with a simple

Experience Management system which is compatible with the

ISO/IEC 29110 standard. This paper reports the lessons

learned about training from the pilot project, and addresses

the research issues associated with the Experience

Management system.

Keywords: software engineering processes, experience

management, very small entities, ISO standards.

I. INTRODUCTION

This paper is an extended and enhanced version of a
paper presented at the ICSEA 2010 conference [1].

Very Small Entities (VSEs) are recognized as extremely
important to the software economy, producing stand-alone or
integrated software components for large software systems.
While the use of Software Engineering standards may
promote recognized and valuable engineering practices,
these standards were not designed with the needs and
expertise of VSEs in mind, and do not fit the characteristics
of VSEs. They are consequently difficult to apply in these
settings [2]. The term „Very Small Entity‟ (VSE) was
defined by ISO/IEC JTC1/SC7 Working Group 24 (WG24)
as “an entity (enterprise, organization, department or
project) having up to 25 people.” This definition has
subsequently been adopted by the ISO in their response to
the specific needs of VSEs: the ISO/IEC 29110 standard,
Lifecycle profiles for Very Small Entities [3]. The standard
defines a group of Standardized Profiles. Profiles are subsets
of appropriate elements of standards which are relevant to
the VSE context; for example, processes and products of the
main software engineering standards. The ISO/IEC 29110-4-
1 Basic Profile [4] applies specifically to a VSE involved in
the development of a single software application by a single

project team with no special risk involved and no particular
situational factors at play.

This paper reports some of the conclusions reached as a
result of a pilot project the authors conducted with a 14-
person VSE that builds and sells counting systems for
tracking visits to public and private sites. Only 3 of the
employees are software developers, however, and so the
VSE asked for assistance with software processes – mainly
managing requirements and establishing a disciplined test
process. ISO/IEC 29110 was naturally chosen as the
reference framework, and the aim of the pilot project was to
set up, within the VSE, the part of the Basic Profile related to
requirements.

A VSE claiming compliance with the ISO/IEC 29110-4-
1 Basic Profile will implement and use all the profile
elements, as identified in Clause 7 of the profile specification
[3]. The profile elements concerning requirements are:
Project Plan Execution (PM.2), and Project Assessment and
Control (PM.3), producing the Change Request work
product; and Software Requirements Analysis (SI.2),
producing a work product Change Request and Requirement
Specification.

These profile elements state what has to be done, but
provide very little guidance on how to do it. For the latter,
Deployment Packages (DP) are expected to be particularly
helpful. A DP is a set of artifacts developed to facilitate the
implementation of a set of practices of the ISO/IEC 29110
standard. We introduced the ISO/IEC 29110 materials
related to requirements to the VSE, and began to coach a
novice engineer on the use of these materials for managing
requirements. As the pilot project proceeded, it became
apparent that the ISO 29110 set of documents (including
DPs) was not up to the task of sustaining this VSE in its
engineering activities. We maintain in this paper that
implementing standardized software engineering activities in
a VSE requires specific operational materials and
mechanisms. What we are proposing is to provide VSE
employees with a Self-Training Package intended to help the
engineer carry out these activities.

Because software engineers in a VSE use SE processes
and produce SE products continuously in different projects,
we expected that an Experience Management (EM) system
tailored for a VSE would provide a way to relate and
integrate those project experiences and be a significant help.
We also maintain in this paper that an EM system for a VSE
should be constructed on a framework suitable for that entity,

218

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but derived from a standardized Process Reference Model
(presented in part in Section III.C) taken from the ISO/IEC
29110 Basic Profile [4].

EM solutions to organizing knowledge can be supported
by experience factories (EF) [5]. “EM includes methods,
techniques, and tools for identifying, collecting,
documenting, packaging, storing, generalizing, reusing,
adapting, and evaluating experience; and for the
development, improvement, and execution of all knowledge-
related processes” [6]. EF is defined as “an infrastructure
designed to support experience management” and “supports
the collection, preprocessing, and dissemination of
experiences” [6]. This paper outlines a simple knowledge
management system intended to gather, link, and reuse
knowledge about SE activities. Requirement Analysis and its
associated work products will be used as an example.

Professional competency management focuses on the
development of a professional attitude and skills. These
components are usually addressed in a „practicum‟ or in
„clinical work‟, and the concept of reflection, inspired by D.
Schön‟s work [7], is central to this competency development.
The knowledge management system was designed based on
two main guiding principles: the extraction of knowledge of

existing SE standards providing the system with a
bootstrap, and the building of new knowledge by the

software engineers themselves a process required to
maintain accurate and „living‟ knowledge.

The next section provides an overview of the ISO/IEC
29110 standard, EM and EF, and related work. The standard
is discussed in section III, and a case study introduced
focused on requirement analysis and test activities. In section
IV, we present our work on EM for a VSE and discuss some
facts related to the case study. We conclude the paper by
briefly presenting a few perspectives.

II. REQUIREMENTS AND RELATED WORK

In this section, we present the ISO/IEC 29110 initiative,
discuss about the Experience Factory, report on Argyris and
Schön‟s theories of action, and overview D. Schön‟s
reflection-on-action work. Related work is also discussed.

A. SE Standards for Very Small Entities

1) ISO terminology
A Base Standard is an approved International Standard or

ITU-T Recommendation [8]. An International Standardized
Profile (ISP) is a harmonized document on which there is
international agreement, and which describes one or more
profiles [8]. A Profile is a base standard or set of base
standards and/or ISs, including, where applicable, the
selected classes, conforming subsets, options, and parameters
of those base standards, or ISPs, required to accomplish a
particular function [8]. A Technical Report (TR) is
developed like a standard, but its purpose is simply to
provide technical information, rather than requirements on
implementation. Also, TRs are available free of charge.

2) ISO initiative
SE standards and methods often neglect the needs and

problems of small and medium-sized enterprises (SMEs),

which constitute a major part of the software industry. In
2005, the ISO recognized the needs and problems of VSEs
and established a Working Group (WG24) mandated to
develop a set of standards and technical reports suitable for
these entities. The resulting ISO/IEC 29110 standard
constitutes a set of guidelines for use by VSEs. Those
guidelines are based on subsets of appropriate elements of
standards, referred to as VSE profiles [3], relevant to the
VSE context; for example, processes and outcomes of
ISO/IEC 12207 [9], and products of ISO/IEC 15289 [10].

The Generic Profile Group targets VSEs that do not
develop critical software and that share typical situational
factors. It is composed of 4 profiles: Entry, Basic,
Intermediate, and Advanced. As mentioned in the
introduction, the Basic Profile [4] applies to VSEs involved
in the development of a single software application by a
single project team with no special risk involved or
situational factors at play. By design, it excludes many of the
ISO/IEC 12207 processes.

The standard is composed of five parts. As specified in
[3], Part 1 targets VSEs, assessors, standards producers, tool
vendors, and methodology vendors. Part 3 targets assessors
and VSEs, and Parts 2 and 4 target standards producers, tool
vendors, and methodology vendors. Parts 2 and 4 are not
intended for VSEs. Part 5 targets VSEs. If a new profile is
needed, only Parts 4 and 5 can be developed without
impacting existing documents, and they would become Part
4-x and Part 5-x-y respectively, through the ISO/IEC
standardization process.

The simplest path for a VSE is to start with Part 5-1-2:
Management and engineering guide: Generic profile group:
Basic profile. Using the Guide, a VSE can benefit in the
following ways [11]:

 An agreed set of project requirements and expected
products is delivered to the customer;

 A disciplined management process, which provides
project visibility and proposes corrective actions for
project problems and deviations, is performed;

 A systematic software implementation process,
which satisfies customer needs and ensures quality
products, is followed.

3) Deployment Packages
Once ISO/IEC TR 29110-5-1-2 has been downloaded, at

no cost, from the ISO website, a VSE may consider that the
help provided in it is insufficient to guide the
implementation. Deployment Packages (DPs), by contrast,
can be expected to provide significant help, a DP being
defined as “a set of artifacts developed to facilitate the
implementation of a set of practices, of the selected
framework, in a VSE” [12]. The elements of a typical DP are:
process description (activities, inputs, outputs, and roles), a
guide, a template, a checklist, an example, presentation
material, references and mapping to standards and models,
and a list of tools [12]. The mapping is given only as
information to show that a DP has explicit links to standards,
such as ISO/IEC 12207, or to models, such as the CMMI®.
So, by deploying and implementing the package, a VSE can
visualize the concrete steps required to achieve or
demonstrate coverage. Packages are designed so that a VSE

219

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can implement their content without having to implement the
complete framework at the same time.

4) Pilot projects
Pilot projects are an important means for reducing risks

and learning more about the organizational and technical
issues associated with the deployment of SE practices. A
successful pilot project is also an effective means for
encouraging the adoption of new practices by members of a
VSE [12]. DPs are intended to apply the ISO/IEC 29110
standard in a VSE. Tailoring software processes to a VSE
constitutes a kind of process improvement. A pilot project
may also be an initial implementation of a DP, which
provides WG24 with feedback from the improvement
proposals before the DP is adopted as a standard.

B. Experience Management

1) Knowldege and Experience
The main asset of a software company is its intellectual

capital, and knowledge management (KM) aims to capitalize
on that capital. Schneider has explained how knowledge can
be encoded in different representations and stored in
ontologies, and that the instances of an ontology make up a
knowledge base which can be searched and used for
reference purposes [13, p. 135]. Business issues of KM are
related to decreasing time and cost while increasing quality,
and to making better decisions [14]. But KM implementation
requires investment, and is probably out of reach for a VSE.
Experiences constitute a subset of knowledge, and the reuse
of experiences is a variant of KM. Experience management
(EM) is a lightweight KM approach, a possible
implementation of which is presented in the next section.

2) Experience Factory
EM is aimed at improving project performance by

leveraging experiences from previous projects. In order to
achieve experience reuse, Basili et al. [15] have proposed an
organizational framework that separates project-specific
activities from reuse packaging activities, with process
models to support each activity.

Plan

Project

Execute

Project

Support

Project

Analyze

Project

Data, Models and

Lessons Learned Package

Experience

Experience

BaseTailored Knowldege

Consulting

Decision support,

Suggestions

Project & Context

Characteristics

Project

Organization
Experience Factory

Figure 1. Experience factory (adapted from Ras et al. [6]).

The framework, represented in Figure 1, defines two
separate organizations: a project organization, intended to
deliver the system required by the customer, and an
Experience Factory (EF), the role of which is to monitor and
analyze project developments, to develop and package
experience for reuse in the form of knowledge, processes,
tools, and products, and to supply them to the project
organization upon request [15]. “The EF employs several

methods to package the experience, including designing
measures of various software process and product
characteristics and then build[ing] models of these
characteristics that describe their behavior in different
contexts” [16, p. 30]. A dedicated sub organization is
required for learning, packaging, and storing experience.

Separating the project from the experience organization,
physically or logically, may relieve project teams of the tasks
required by EM, but is not, in our opinion, applicable in
VSEs, or even in software SMEs (up to 250 employees). We
agree with [17] that software SMEs need a more lightweight
means of creating these knowledge bases with minimal
overhead. Wiki-based repositories are often used as
knowledge repositories, because the wiki concept easily
integrates users into the knowledge-sharing process in SMEs
[18]. Lightweight tools are useful, but knowledge transfer
processes have to be built because the goal of EF is to build
knowledge by learning from experience. We draft a learning
theory in the next section.

C. Argyris and Schön’s Theories

1) Theory of Action
According to Argyris and Schön, people design and

guide their behavior by using theories of action. They
suggest that there are two kinds of theory of action: a theory
consistent with what people say, and a theory consistent with
what people do. “Espoused theories of action are the
theories that people report are governing their actions.
Theories-in-use are the theories of action that actually
govern their actions” [19, p. 7].

Argyris and Schön used three constructions to explain
theories-in-use (see Figure 2 for a more comprehensive
explanation). Governing variables are values that a person is
trying to keep within a preferred range (e.g. a manageable
workload). Action strategies are strategies used to maintain
the governing variables within the accepted limits (e.g.
refusal to accept extra work). These strategies will have
consequences which are either intended (e.g. the amount of
work does not increase too much) or unintended (e.g. the
amount of work is decreasing too drastically).

When there is a mismatch between intended
consequences and outcomes, the situation has to be
corrected. Argyris states: “An organization may be said to
learn to the extent that it identifies and corrects errors” [19,
p. 4]. They suggest that the first response to this mismatch is
to select another action strategy that will still satisfy the
governing variables (e.g. accept extra work, but delay
providing the result). Such a process of changing the action
strategy only, and not the governing variables themselves is
called single-loop learning. Another possibility is to examine
and modify the governing variables (e.g. accept too great a
workload in order to reach a new position). In this case, both
the governing variables and the action strategy have to be
modified, and this is called double-loop learning.

Argyris and Schön argue that, although espoused theories
vary widely, theories-in-use do not. They labeled the most
prevalent theory-in-use „Model I‟. “Model I theories-in-use
are theories of top-down, unilateral control of others for the
actors to win, not to lose, and to control the environment in

220

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which they exist to be effective” [19, p. 7]. They argue that,
with such a theory-in-use, problem solving works for issues
that do not require that the underlying assumptions of Model
I be questioned (single-loop learning). Model II theories-in-
use make it possible for people “to have problem-solving
skills that question the governing values of their theory-in-
use” [19, p. 7] (double-loop learning).

Models of theory-in-use
Model I and Model II theories-in-use consider three elements: (1)

governing variables, which are values that actors seek to maintain [1], each
of which can be thought of as a continuum with a preferred range (e.g. not
too concerned, but not too indifferent either); (2) action strategies, which are
sequences of moves and plans adopted by actors in particular situations to
satisfy governing variables [1] to keep those variables within the preferred
range (e.g. undertaking physical exercise to reduce stress); and (3) the
consequences that follow as a result of action, which can be intended – those
that the actor believes will satisfy the governing variables (e.g. feeling better
after engaging in a sport), or unintended, both types designed to be
dependent on the theories-in-use of the recipients, as well as those of the
actors.

Single and double-loop learning
When the consequences of an action strategy are what the actor wanted,

then that person‟s theory-in-use is confirmed. If there is a mismatch between
intention and outcome, the consequences are unintended. Argyris defines
learning as the detection and correction of error. The first response to error is
to search for another action strategy. “Single-loop learning occurs when
errors are corrected without altering the underlying governing variables”
[2, p. 206]. An alternative is to question the governing variables themselves,
to subject them to critical scrutiny (e.g. to openly investigate the anxiety,
rather than trying to suppress it). “Double-loop learning occurs when errors
are corrected by changing the governing variables and then the actions” [2,
p. 206]. Argyris and Schön argue that many people espouse double-loop
learning, but are unaware of it, much less able to produce it.

Model I and Model II
Briefly, Model I is composed of four governing variables: (1) achieve

the purpose as defined by the actor; (2) win, not lose; (3) suppress negative
feelings; and (4) emphasize rationality [1]. The primary behavioral strategies
are to control the relevant environment and tasks unilaterally, and to protect
oneself and others unilaterally. Thus, the most widely used action strategy is
unilateral control over others. Characteristic ways of implementing this
strategy are: to make non illustrated attributions and evaluations (e.g. “Your
work is poor.”); to advocate courses of action in ways that discourage
inquiry (e.g. “Surprise me, but don‟t take risks.”); and to treat one‟s own
views as obviously correct, leaving potentially embarrassing facts unstated
[1]. The consequences are likely to be defensiveness, misunderstanding, and
self-fulfilling processes [2]. Model I leads to low-level learning, and double-
loop learning tends not to occur. Argyris and Schön aim to move people
from a Model I theory-in-use to a Model II theory-in-use that fosters double-
loop learning.

The governing variables of Model II include: (1) valid information; (2)
free and informed choice; and (3) commitment: vigilant monitoring of the
implementation choice to detect and correct errors [2]. The behavioral
strategies involve sharing control with those who have the competence to do
so and who participate in designing or implementing the action [1]. As in
Model I, prominent behaviors are advocated, evaluated, and attributed.
Unlike Model I behaviors, Model II behaviors stem from action strategies
where attributions and evaluations are illustrated with observable data, and
the surfacing of conflicting views is encouraged so that they can be publicly
tested. The consequences include minimally defensive interpersonal and
group relationships, great freedom of choice, and a high level of risk-taking.
Defensive routines are minimized and genuine learning is facilitated [1, 2].

References
[1] C. Argyris, R. Putnam, and D. McLain Smith, “Action Science:

Concepts, Methods, and Skills for Research and Intervention,” San
Francisco: Jossey-Bass, 1985, pp. 4, 80.

[2] C. Argyris, “Double-Loop Learning, Teaching and Research,”
Learning & Education, vol. 1 (2), Dec. 2002, pp. 206-219

Figure 2. Theory of Action, according to Chris Argyris and Donald

Schön.

2) The reflective practitioner
Schön‟s “reflective practitioner” perspective [7, p. 20]

guides creative professionals to reflect about their creations
during (reflection-in-action) and after (reflection-on-action),
thereby completing the creative process. A specialist is a
professional practitioner who is used to dealing with certain
types of situations again and again. Practitioners build up a
collection of ideas, examples, situations, and actions which
Schön calls a “repertoire”. “A practitioner’s repertoire
includes the whole of his experience insofar as it is
accessible to him for understanding and action” [7, p. 138].

A practitioner develops a repertoire of expectations,
images, and techniques. As long as her/his practice continues
to present the same types of cases, s/he becomes less and less
susceptible to surprise [5, p. 60]. But, when a new situation
is stimulating enough, the reflective practitioner is surprised.
Schön argues that these experienced professionals deal with
the „messiness‟ of practice not only by consulting the
research knowledge base, but by engaging in what he calls
“reflection-in-action” [20], which is sometimes described as
„thinking on our feet‟.

In many EF implementations, effort is put into analyzing
and packaging experiences from raw experiences. But
further effort is required to change the way that the whole
organization performs its work. “An organization adopting
the EF approach must believe that exploiting prior
experience is the best way to solve problems and ensure that
the development process incorporates seeking and using this
experience” [16, p. 30]. A parallel can be drawn between an
organization using an EF and a reflective practitioner. Raw
and packaged experiences play the role of the practitioner‟s
repertoire. As long as his/her practice remains stable, the
practitioner relies on her/his tacit knowing-in-action, which
is built on previous experiences directly. An organization
building new knowledge while analyzing and packaging raw
experiences is similar to Schön‟s reflection-on-action.
“Practitioners do reflect on their knowing-in-practice […],
they think back on a project they have undertaken […], and
they explore the understandings they have brought to their
handling of the case. They may do this in a mood of ideal
speculation, or in a deliberate effort to prepare themselves
for future cases” [7, p. 61]. An organization using the EF
assumes that the EF and the Project Organization are
integrated. “The activities by which the Experience Factory
extracts experience and then provides it to projects are well
integrated into the activities by which the Project
Organization performs its function” [16, p. 31]. It assumes
that the Project Organization makes no special effort to reuse
packaged experiences.

But a practitioner may also reflect on a practice while
s/he is performing it (Schön‟s reflection-in-action). In this
case, the possible objects of this reflection are varied. “He
may reflect on the tacit norms and appreciations which
underlie a judgment, or on the strategies and theories
implicit in a pattern of behavior. He may reflect […] on the
way in which he has framed the problem he is trying to
solve” [7, p. 62]. Of course, anyone can encounter a situation
where a rule drawn from previous experience cannot be
applied, in which case he/she has to be engaged in what

221

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Schön calls a “practitioner‟s reflective conversation” with
the materials related to the situation. Occasions will also
arise when none of the packaged experiences will help the
Project Organization using EF. Although Schön did not
explicitly establish links between the reflection concepts and
the nature of organizational learning presented in Figure 2,
we consider reflection-in-action as a kind of double-loop
learning, and we assume that developing a reflective practice
will favor that type of learning.

D. Application to Very Small Projects

The set of ISO/IEC 29110 documents establishes what
has to be done in a software project, and will be presented in
section III.A. Little help is provided to explain the procedure,
however, although pilot projects are carried out expressly
intended to put this standard into practice which can be
considered as an experience packaging activity. Section III.B
and section III.C provide an insightful presentation of a pilot
project on requirements.

The main deliverables of a completed SME project are
stored by the project manager in an Experience Repository,
according to a fixed storage scheme. At best, the Experience
Repository of a VSE contains only raw experiences. Data,
models, and deliverables collected on previous projects are
stored as is, without any structure. The initial benefit for a
VSE of using the ISO/IEC 29110 standard is that a common
Process Reference Model (PRM) will be shared between
projects, as the structure of the PRM may help to structure
the Experience Repository. Since the most common
knowledge pattern transfer is the copy-paste model, a shared
structure will favor reuse of raw experiences. Section IV.A
presents an Experience Repository for raw data, and section
IV.B.1 presents the copy-paste activities that are using it.

We believe that there can be a considerable gap between
the structure of an engineer‟s repertoire (and hence the
project organization that he or she may use) and the structure
of the EF. Extracted knowledge facilitates experience reuse
and learning. In Figure 1, adapted from [6], arrows from left
(Project Organization) to right (Experience Factory) indicate
knowledge extraction. Knowledge transfer is a double-loop
learning activity. Lessons learned from the pilot project
indicate that it is a difficult issue for engineers to cope with,
especially novice engineers. Our challenge was to find a way
to encourage reflection-in-action and develop double-loop
learning. Sections IV.3.2 and IV.3.3 present the practical
solution that we provided to the VSE.

Ras et al. [21] address this problem with an approach
called „learning space generation‟, which enriches
experience packages with additional information from
specifications provided either by the instructor or by the
student. The learning space is presented by means of Wiki
pages within a specialized Wiki based on the Software
Organization Platform (SOP). Our approach does the
opposite. Rather than providing engineers with access to the
experience packages, we essentially provide task description
exemplars and product exemplars created in small projects.

III. A STANDARDIZED PROCESS PROFILE FOR VSES

In this section, we present the context of the pilot project,
the expectations of the VSE, and the application of the
ISO/IEC 29110 standard to this project.

A. Implementation of Standardized Processes

At the core of the ISO/IEC 29110 standard is a
Management and engineering guide (ISO/IEC 29110-5) [11],
which focuses on Project Management and Software
Implementation, and an Assessment Guide (ISO/IEC TR
29110-3) [22]. ISO/IEC 29110-5 provides a practical guide
to the ISO/IEC 29110-4-1 standard [4], identified as a Basic
Profile of the Generic profile group. For instance, the starting
point for ISO/IEC 29110 use for requirements is the SI.2
Software Requirements Analysis activity, its list of tasks
(SI.2.1 to SI.2.7), and the associated roles.

Deployment Packages (DP) provide VSEs with
assistance in adopting standards through a DP Repository
http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html.
For instance, DP Software Requirement Analysis [23]
simplifies task decomposition and provides a step-by-step
method for each task.

B. Pilot Project

1) Requirements
Fenton et al. state in [24]: “For 25 years, software

researchers have proposed improving software development
and maintenance with new practices whose effectiveness is
rarely, if ever, backed up by hard evidence.” They suggest
several ways to address this problem, in particular careful
design and measurement experiments, such as pilot projects.

2) Context of the VSE
A VSE with a staff of 14 (3 of them software engineers)

requested the help of our SE group in the spring of 2009. The
VSE designs, builds, develops, and sells counting systems
designed to collect and analyze data on visits to public or
private sites. Initially intended for counting pedestrians, this
VSE‟s products now cover bikes, horses, and cars. Counting
systems are based on stand-alone counter boxes (including
sensors, a power supply, data storage, and data exchange)
and a software chain capable of collecting, analyzing,
presenting, and reporting counting data. In the previous
software chain, the set of data was downloaded from
counters by infrared link or GSM, stored on personal
computers, and then transmitted via a file transfer utility.

3) The new software project
Because of its clients‟ requirements and the products

supplied by the competition, the VSE began a complete
reconstruction of its software chain in order to transform it
into a Web-based system, called Eco-Visio, intended to host
the data of fleets of counting systems for each client, and
capable of processing statistics and generating analytical
reports on counting. At the end of June 2009, the VSE hired
a graduate of Brest University, who had done his final
internship at the VSE. At the same time, we visited the VSE
and initiated a pilot project with the intention of transferring
a part of the ISO/IEC 29110 standard to the specific context
of the VSE. Project stakeholders decided to focus on two SE

222

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

activities: 1) the establishment of a practical technique for
gathering and managing requirements; and 2) improvement
of the system‟s reliability with a disciplined test process.

The new software project, completed at the end of March
2010, was released as the first version of the new Eco-Visio
Web-based system.

C. Basic Profile

1) Basic Profile processes
The Generic Profile Group [4] is a collection of four

profiles (Entry, Basic Intermediate, Advanced), providing a
progressive approach to satisfying the needs of a vast
majority of VSEs that do not develop critical software and
share characteristic situational features. The Basic Profile
applies to a VSE that is involved in software development of
a single application by a single project team involving no
special risk or situational factors. The objective of the project
is to fulfill an external or internal contract. The internal
contract between the project team and their client need not be
explicit.

The Basic Profile is made up of two processes: Project
Management (PM) and Software Implementation (SI). A
process is defined as “a set of interrelated or interacting
activities which transforms inputs into outputs” [9]. Table I
provides the process/activity breakdown, and presents tasks
related to requirements and tests (which are the focus of the
pilot project cited above).

TABLE I. BASIC PROFILE PROCESS BREAKDOWN

Process Activities
Pilot project-related

tasks

PM
Project

Management

PM.1 Project Planning

PM.2 Project Plan Execution
PM.3 Project Assessment and

Control

PM.4 Project Closure

PM.1.1

PM.1.13, PM.1.14
PM.2.2 and

PM.2.4

PM.3.5

SI

Software

Implementation

SI.1 SW Implementation

Initiation

SI.2 SW Requirements
Analysis

SI.3 SW Architectural and

Detailed Design
SI.4 SW Construction

SI.5 SW Integration and Tests

SI.6 Product Delivery

-

SI.2.2, SI.2.3, SI.2.4

SI.3.5, SI.3.6

SI.4.4

SI.5.4

-

ISO/IEC TR 29110-5-1-2 [11] is intended to guide the

Basic Profile implementation of PM and SI processes
described in ISO/IEC 29110-4-1 [4]. These processes
integrate practices based on the selection of ISO/IEC 12207
SW life cycle processes and ISO/IEC 15289 information
product (documentation) standards elements. DPs will
facilitate the implementation of these processes.

2) Basic Profile products
Clause 9 of ISO/IEC 29110-4-1 [4] establishes the

normative list of Basic Profile work product and deliverable
specifications. There are 23 work products, which can be the
input, output, or internal products of processes, activities, or
tasks.

3) Process assessment

ISO TR 29110-3 [22] is an Assessment Guide applicable
to all VSE profiles. It is compatible with ISO/IEC 15504-2
and ISO/IEC 15504-3. The assessment has two purposes: 1)
to evaluate process capability based on a two-dimensional
assessment model (from the ISO/IEC 15504:2006 standard
[25]); and 2) to determine whether or not an organization
achieves the targeted VSE Profile based on the process
capabilities evaluated [22]. A VSE-specific Process
Assessment Model (PAM) can be derived by selecting only a
set of assessment indicators from ISO/IEC 15504-5: “an
Exemplar PAM” We selected the assessment indicators
relevant to the corresponding process outcomes, as defined
in ISO/IEC 29110-4-1.

4) Performing the ISO/IEC 29110 Requirements

Analysis
ISO/IEC 29110-4-1 provides a set of cohesive tasks for

each activity. Also established here are the VSE needs and
suggested competencies. For instance, it sets out the SI.O2
objective: “Software requirements are defined, analyzed for
correctness and testability, approved by the Customer,
baselined and communicated. Changes to them are
evaluated for cost, schedule and technical impact previously
to be processed” [4, p. 8].

ISO/IEC TR 29110-5-1-2 details the tasks to be
performed for each PM and SI process activity: role,
description of the task, and input and output products. For
instance, it defines tasks SI.2.1 to SI.2.7, detailed in Table II,
and their associated output products: Requirements
Specification, Verification Results, Change Request,
Validation Results, and Software User Documentation.

The Software Requirements Analysis DP [23] simplifies
task decomposition: requirement identification, requirement
refinement and analysis, requirement verification and
validation, and requirement change management. A step-by-
step method is described for each of these four tasks. The DP
also provides a Software Requirement Specification
template. Training materials and an Excel-based traceability
tool can be downloaded from the publicly accessible WG24
website.

The pilot project was intended to provide coaching for
the implementation of the Software Requirements Analysis
DP. One VSE novice engineer studied the DP and was given
a short training course, using the training material associated
with this DP. Despite all this helpful material, the VSE
engineer was not able to start the Software Requirements
Analysis activity, suffering from „blank page‟ syndrome. The
authors could not provide strong support to the VSE, and we
have had to reorientate the pilot project.

5) Problem analysis
Based on feedback that the novice engineer was not able

to perform the SI.2 Software Requirements Analysis activity,
the authors set about to analyze the problem.

As we stated in section III.B, action theory studies what
an actor does in a given situation in order to achieve
objectives. Argyris and Schön [26] made a distinction
between espoused theories, which are those that an
individual claims to follow, and theories-in-use, which are
those that can be inferred from action. Espoused theory and

223

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

theory-in-use may be contradictory, and the agent may or
may not be aware of any inconsistency. By definition,
however, the agent is aware of espoused theory, and
theories-in-use can be made explicit by reflection-on-action
[27].

Software companies use SE and software quality
standards as the foundation of their quality assurance process
and quality management system. Since these companies
claim to follow and respect standards, we may think that
these standards constitute a part of the espoused theories of
software engineers, especially Process Assessment and
Process Reference Models. In the software field, we observe

that a software engineer may have a work behavior her/his

theories-in-use which often runs counter to the
organizations‟ processes, practices, and procedures that
she/he is supposed to follow and talk about, i.e. espoused
theories.

What happened to that young engineer? Through the
standard documentation and DPs, he received a great deal of
information on espoused theory. However, as his repertoire
of experience (and VSE Experience Repository) was all but
empty, he could not act in accordance with any theory-in-
use.

An Experience Repository may act as a product and
project memory. It records footprints of the organization‟s
theories-in-use and provides support for learning from past
experience. Thus, managing experience in a repository may
provide VSE engineers with a simple form of knowledge
management. But, as we will see in the next section, an
Experience Repository requires additional processes in order
to support knowledge transfer.

IV. EXPERIENCE MANAGEMENT FOR THE VSE

Chan and Chao present a research survey conducted
among 68 SMEs which have implemented Knowledge
Management (KM) initiatives [28]. SMEs are significantly
bigger than the targeted VSEs, but the lessons learned in this
survey also apply to VSEs. Effective KM is influenced by
two types of KM capability: infrastructure and process,
which have to be deployed. This section presents a simple
Content Management System-based infrastructure to manage
experience and some activities that may be part of EM
processes.

A. An Experience Repository

1) Related work
A significant part of EM in a software company should

be about software documentation reuse (code reuse is outside
the scope of this paper). So, the primary inputs of our system
are documentation deliverables: plans, requirements, design
specifications, data schemas, test cases, and so forth.
Publishing and content management systems (CMS) are
generally used as the basis for a documentation management
infrastructure. But several authors have criticized the rigidity
of the editorial control required by a CMS [29] and the need
to balance structure/constraint and flexibility [30]. Some
promote the use of Wikis and RDFs (Resource Description
Frameworks) to resolve these issues [31].

Wikis are probably a suitable tool for facilitating
collaborative design and development, and may be viewed as
part of the project repository (see Figure 1), but requirements
for an EM infrastructure are different. Rech et al. identified
several challenges related to knowledge transfer and
management processes for SMEs in the software sector:
recording, reusing, locating, and sharing information [18].
The authors evaluated a small software enterprise and a
micro software enterprise with reuse policies in place. They
point out that the engineers have little confidence in
knowledge transfer, because only a few reusable documents
have been created. They also note that the workflow for
reusing knowledge is slow and typically demotivating,
because multiple sources have to be searched manually and
documents belonging together weren‟t grouped together or
linked [18]. As we will see in the next section, a CMS-based
system with a simple and fixed structure may resolve most of
these issues.

2) Experience Repository infrastructure
According to Peter Senge [32], what he calls “personal

mastery models” and “mental models” are two of the five
disciplines that distinguish a learning organization from
more traditional organizations. The questions to be answered
are: how do experts learn compared to novice practitioners,
and how do their mental models differ? “People with a high
level of personal mastery live in a continual learning mode”
[32, p. 142]. Mental models are “deeply ingrained
assumptions, generalizations, or even pictures and images
that influence how we understand the world and how we take
action” [32, p. 8]. They are similar to Schön‟s professional‟s
repertoire. “From a cognitive point of view, there is a
quantitative difference between expert and novice knowledge
bases and also a qualitative difference, e.g. the way in which
knowledge is organized. Novices lack background knowledge
and are not able to connect their experience to their
knowledge base. The organization of knowledge at the
experience provider’s and at the experience consumer’s
makes the transfer of knowledge between different levels of
expertise extremely difficult” [33]. Part of the problem can be
avoided if experts and novices share a common repertoire
structure. We use the ISO/IEC 29110 Basic Profile Process
Breakdown (see Table I) as the shared structure of the
Experience Repository. We discuss later how learning
processes should be developed in order to support
knowledge transfer.

 Managing an Experience Repository for a small project
can be greatly facilitated if the structure is kept as simple as
possible, which means we should also avoid amassing too
many artifacts. Our proposal is that, whenever a project is
completed, the project closure activity create its own space in
the CMS and use the Process/Activity decomposition of
ISO/IEC 29110-4-1 [4, Clause 7] as the structure for that
space. Then, only the main deliverables of the project, as
defined in ISO/IEC TR 29110-5-1-2 [11, Clause 4], will be
stored, and in the right place in the structure.

Table II shows the structure and content of the
Experience Repository for some representative activities of
each process. To further illustrate our work, we added the
activity-related tasks. The left-hand column provides links to

224

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the ISO/IEC 12207 activities profiled in the parts of ISO/IEC
29110 mentioned. We added (in italics) a proposal
(published in [34]) for the management of deliverables
related to support activities.

The infrastructure is not intended to be a project
repository (the left part of Figure 1) hosting project
deliverables in different versions. The infrastructure forms
part of an Experience Repository intended to record the final
state of the project and to provide further projects with
exemplars of deliverables. The Alfresco content platform
(http://www.alfresco.com/products/wcm) is used as a Web

TABLE II. STRUCTURE AND CONTENT OF THE EXPERIENCE

REPOSITORY

12207 Activity Tasks Output products

 Project Management Process

6.3.1.3.3,

6.3.2.3.1,
6.3.2.3.2

PM.2

Project Plan
Execution

 PM.2.1 Review

Project Plan

 PM.2.2 Change
request analysis

 PM.2.3 External

revision meeting

 PM.2.4 Internal

revision meeting

Project Plan

Change Request
Meeting Record

…

 Software Implementation Process

6.4.1.3.1,
6.4.1.3.2,

6.4.1.3.3,

6.4.1.3.4,
6.4.1.3.5,

7.1.2.3.1

SI.2

SW Require-

ments
Analysis

 SI.2.2 Document

requirements

 SI.2.3 and 2.4 V & V
requirements

Requirements
Specifications

V&V Results

7.1.3.3.1,
7.1.4.3.1

SI.3
SW

architectural

and detailed
design

 SI.3.3 Document

software design

 SI.3.4 Software

design verification

Software Design

Traceability Record

Verification Results

…

Management and Implementation Support Process

6.2.1.3.1,

6.2.1.3.3

Method and

tool support

 Process
establishment

 Process

improvement

 Tool support

Process implementation

recommendations
Tool usage guide

content management suite, mainly for providing an upload-
download system organized into a hierarchy of space, with
the possibility of a fine-grained control of users‟ rights over
spaces. As mentioned above, the space hierarchy structure is,
for each project, the Process/Activity decomposition of
ISO/IEC 29110-4-1 [4]. Each space hosts a variety of work
products of ISO/IEC TR 29110-5-1-2 [11]. Examples of
these products are given in Table II, column 4.

B. KM Support Processes

According to [35], knowledge can be created through
dedicated acquisition, conversion, application, and protection
of knowledge assets. In the survey of 68 SMEs by Chan and
Chao [28], most of the respondents stated that they encounter
knowledge capture problems related to time, place, and
people. But Conradi maintains that the hard part is not the

“upward externalizing direction”, but the “downward,
internalizing flow” [36]. The problems that arise are very
similar to those encountered in software engineering reuse.
The literature agrees that understanding is a high cost factor
for reuse. Dusink and Van Katwijk state: “Essential for a
higher degree of reuse is the reusing engineer’s
understanding of the reusable artifacts, the process, and the
actions to be taken” [37]. Ras states that general reuse
education and technology training are the two principal
solutions proposed to enhance reuse with respect to
understanding [33].

The standard method for transferring knowledge from
experts to novices is the copy-paste model, and the VSE
asked for a similar pattern, which is for the Experience
Repository to work based on this model, and for us to seed
the Experience Repository by providing them with suitable
examples, such as a Software Requirements Specification,
that they can reproduce as closely as possible. The VSE
asked for immediate working solutions and did not want to
invest in understanding the experiences stored. However, we
decided to provide the VSE with two levels of Experience
Management Process: a copy-paste level, which is presented
in this section, and a continuous understanding level, as
discussed in section IV.C.

1) Copy-paste activities

TABLE III. SI.2 SOFTWARE REQUIREMENTS ANALYSIS -- TASKS AND

ROLES. THE ASTERISK MEANS „IF APPROPRIATE‟.

Task List Role

SI.2.1 Assign tasks to the Work Team members in

accordance with their role, based on the current Project
Plan.

Technical

Leader,
Work Team

SI.2.2 Document or update the Requirements

Specification.

ANalyst,

CUStomer

SI.2.3 Verify the Requirements Specification. AN

SI.2.4 Validate the Requirements Specification CUS, AN

SI.2.5 Document the preliminary version of the Software

User Documentation or update the present manual.*

AN

SI.2.6 Verify the Software User Documentation AN

SI.2.7 Incorporate the Requirements Specification, and
Software User Documentation* to the Software

Configuration in the baseline.

TL

The copy-paste process is designed to be as simple as

possible. Clauses 4.2.8 and 4.3.8 of ISO/IEC TR 29110-5-1-
2 [11] propose task decomposition of the PM and SI
processes for each activity (Table III presents the
decomposition for SI.2 Software Requirements Analysis),
together with inputs and outputs of each task. So, we can
establish the workflow for each of the 23 work products (cf.
§III.C.2). For instance, Figure 2 presents the workflow of
Work Product 11, Requirements Specification.

SI.2.2 SI.2.3
Requirement

Specification

Requirement

Specification

[Verified]

SI.2.4

Requirement

Specification

[Validated]

SI.2.7

Requirement

Specification

[Baselined]

Figure 3. WP11 Requirements Specification workflow

It may happen that a work product workflow spans
several activities of the same process, such as WP17
Software User Documentation, which covers SI.2 to SI.5,

225

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and even PM and SI processes, such as WP8 Project Plan,
which covers PM.1 to SI.6.

The VSE needs a simple model to locate, store, and
retrieve work products, according to the Process Reference
Model used. Our proposal is to locate a work product inside
the CMS space associated with the last activity that outputs
the final version of this work product. So, WP11
Requirements Specification will be located in the „SI.2 SW
Requirements Analysis‟ space, WP17 Software User
Documentation will be located in the „SI.5 SW Integration
and Tests‟ space, and WP8 Project Plan will be located in
the „SI.6 Product Delivery‟ space.

Project X

Contact : Y

PM

Project Management

SI

Software Implementation
IM

Infrastructure Management

SI.2.1

SW Implementation

Initiation

SI.2.2

SW Requirements

Analysis

SI.2.3

SW Architectural and

Detailed Design

SI.2.4

Software

Construction

SI.2.5

SW Integration

and Tests

SI.2.6

Product

Delivery

WP11

Requirement Specification

WP2

Change Request

WP5

Meeting Record
Figure 4. Structure and content of a project in the Experience Repository.

 The task of storing work products in an Experience
Repository space associated with the project will be allocated
to the PM.4 Project Closure activity, which is the
responsibility of the Project Manager (PM) role. With this
simple copy-paste EM process, the PM role stores artifacts,
and (ideally) every VSE employee can access and copy the
artifacts of his/her choice. An extract from the structure and
content of a project space is given in Figure 4.

2) Learning software engineering processes
A common assumption in software process improvement

is that “the quality of a software product is largely governed
by the quality of the process used to develop and maintain it”
[38, p. 8]. Based on this assumption, Conradi states: “This
often means that relevant work practices (processes) must be
systematically documented as formal routines, often as
standard process models. These routines must then be
communicated to the developers, customized and adopted by
them and later revised based on experience and overall
strategies” [39, p. 268].

The ISO/IEC 29110 standard provides a Process
Reference Model and DPs aimed at guiding the
implementation of this model. We were not confident in the
ability of novice engineers to understand the work practices
and associated DPs documented in the ISO/IEC 29110
standard. So, we scheduled a training week on ISO/IEC
29110 Software Requirements Analysis in December 2009.
Ten novice engineers (including the VSE engineer) attended
the session, which comprised a course on requirements and a
case study using the Software Requirement Analysis DP
[23]. This DP is summarized in Figure 5.

Task 1. Requirements identification. The objective is
to clearly define the scope of the project and identify key
requirements of the system. Steps are: (i) Collect information
about the application domain; (ii) Identify project scope; (iii)
Identify and capture requirements; (iv) Structure and
prioritize requirements.

Task 2. Requirements refinement and analysis. The
objective is to detail and analyze all the requirements
identified. Steps are: (i) Detail requirements; (ii) Produce a
prototype.

Task 3. Requirements verification & validation. The
objective is to verify requirements and obtain validation from
the customer or his representative. Steps are: (i) Clarify
fuzzy requirements (verification); (ii) Review SRS (Software
Requirements Specification); and (iii) Validate requirements.

Task 4. Requirements change management. The
objective is to manage requirements change in line with a
process agreed upon with the customer. Steps are: (i) Track
changes to requirements; (ii) Analyze the impact of changes;
(iii) Identify changes that are beyond the project scope; (iv)
and Prioritize changes.

Figure 5. Step-by-step path proposed by the DP Requirement Analysis.

The session began with an introductory lecture on
requirements, but trainees were quickly plunged into action
with the preparation of a peer review on a requirements
analysis guide. This guide was issued by a major ISO 9001
software company (at which both authors had been
employed for about 10 years). The SW Requirements
Specification (SRS) Document was issued by the DOD-
STD-2167A software development standards [40]. This
guide is intended to facilitate the writing of the SRS. Peer
review of this guide provided trainees with their initial
exposure to standardized requirements management.

During the second phase of the session, trainees had to
contribute to writing a similar guide, based only on the
ISO/IEC 29110 standard. The authors provided trainees with
a preliminary version of the guide, written in a top-down
manner, starting with the ISO/IEC 12207 standard processes
devoted to requirements (6.4.1 Stakeholder Requirements
Definition, 7.1.2 SW Requirements Analysis) and finishing
with the ISO/IEC 29110 Basic Profile SI.2 Software
Requirements Analysis activity. Trainees had to incorporate
both the Software Requirement Analysis DP and its step-by-
step approach into the guide.

Finally, trainees had to apply the enhanced guide to a
„real‟ SRS and update this SRS to comply with the guide
requirements. That SRS is for eCompas – an existing system
developed by the second author and former graduate
students.

C. Understanding Experience

1) Learning from experience
Despite the path traced in the standard during the training

session), some young engineers (and this is true of the VSE
engineer in particular) reported being unable to find their
way through managing the requirements.

226

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As mentioned above, the ISO/IEC 29110 standard
attempts to document the best practices as formal routines.
Several authors have studied the gap between the
rationalistic, linear model of software engineering and the
reality for most small software organizations. Conradi and
Dyba carried out a study in the context of a national software
process improvement program in Norway for SMEs to assess
the attitude to formalized knowledge and experience sources.
They found that “developers are rather skeptical at using
written routines, while quality and technical managers are
taking this for granted” [39]. Dyba [41] states that “a
specific challenge involves balancing the refinement of the
existing skill base with the experimentation of new ideas to
find alternatives that improve on old ideas.” But our
hypothesis is more straightforward: for many novice
engineers, the copy-paste model is not sufficient as a
knowledge transfer pattern, because they have no previous
experience to help them understand the formalized
knowledge. The training session provided novice engineers
with products resulting from past experience and with the
assistance of teachers. We built the content session using a
normative curriculum of a professional school, as attributed
to Edgar Schein in [42]: “First teach them the relevant basic
science, then teach them the relevant applied science, then
give them a practicum in which to practice applying that
science to the problems of everyday life.” The normative
curriculum reflects an objectivist view of professional
education, often portrayed as the opposite of a constructivist
view. “Objectivist conceptions of learning assume that
knowledge can be transferred from teachers or transmitted
by technologies and acquired by learners. […]
Constructivist conceptions of learning, on the other hand,
assume that knowledge is individually constructed and
socially co constructed by learners based on their
interpretations of experiences in the world” [43, p. 217]. We
do not oppose the notions of objectivism and constructivism.
Rather, we believe that they offer different points of view
which may be combined to favor learning. An important step
in the learning cycle is the activity of reflection. If we
provide learners with details of past experience acquired by
other people, we have to find a way to help learners reflect
on that experience. By reflecting on the experience acquired
(by her/himself or others), learners integrate the lessons
learned from that experience into their own knowledge
structures.

2) Reflection-on-action and reflection-in-action
To meet the challenges of their work, practitioners rely

on their repertoire of experience, along with a certain
ingenuity acquired during that practice, rather than on
knowledge-oriented curricula or formulae learned during
their basic education. D. Schön describes this repertoire as
follows: “The practitioner has built up a repertoire of ideas,
examples, situations and actions. […] When a practitioner
makes sense of a situation he perceives to be unique, he sees
it as something already present in his repertoire. To see this
site as that one is not to subsume the first under a familiar
category or rule. It is […] to see the unfamiliar, unique
situation as both similar to and different from the familiar
one, without at first being able to say similar or different

with respect to what. The familiar situation functions as a
precedent, or a metaphor, or […] an exemplar for the
unfamiliar one” [7, p. 138].

In order to help VSE employees understand the VSE
Experience Repository, and consequently add to their own
repertoire, we have designed practices that may help
software engineers become „reflective‟ practitioners. These
practices are generally borrowed from two streams:

industrial process improvement and product assessment
and Schön‟s theory of reflection-on-action and reflection-in-
action. For instance, bootstrapping an engineer‟s repertoire
for a given activity in SE (e.g. requirements analysis or
design) may require an approach based on tailoring an
activity before the activity itself is performed. This approach
has been presented through the specific case of the design in
[44].

Such an approach is generally implemented in two steps:
1) tailoring the activity to acquire a minimal structure of the
repertoire through a deductive approach (by writing a guide,
for instance); and 2) initializing the repertoire through an
inductive approach, with the use of retroengineering, for
instance. This approach is a pragmatic answer to the lack of
support and training that may be experienced in small
projects, where the main effort is concentrated on project
management and software development tasks.

3) Self-Training Packages
As reflective practices are performed by the learners

themselves, very few interactions with a coach are required.
The next step is related to organizing the self-learning
process. Our proposal is to organize the engineer‟s training
path through small units of work, called „self-training tasks‟.
The description of the task is designed as a theater scene: the
scene is the reference context where action takes place; it
aims to maintain unity of place, time, and action, and is a site
where a situation can occur and where people perform
actions (and learn). It also serves as a location for action
scenarios, for role distribution, and for mobilizing resources
and means. The various components of a scene, along with
their linkages, are depicted on a self-training report card. The
card structure is standardized:

 Related ISO/IEC 29110 Process/Activity
This reference (for instance, SI/SI.2 SW Requirements
Analysis) provides a smooth link to ISO/IEC 29110, and
through the profile to ISO/IEC 12207 and ISO/IEC 15504.

 Role
The role (for instance, Analyst) is a brief reference to
ISO/IEC 29110.

 Task title and objectives
These are similar to Process Title, Process Purpose, and
Process Outcomes, as defined in ISO/IEC 12207.

 Step-by-step guide
This is a comprehensive description of the work to be done,
intended to be a practical guide to completing the task.

 Resources
This is the set of required resources. It may include the
hosting of technical support (such as Oracle Metalink) that a
technology transfer center is able to afford when the cost is
out of reach for a VSE.

227

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Output products
These are generally a methodological survey, a tool usage
guide, or an installation manual.

The set of self-training activities that a VSE engineer
should perform is incorporated into a Training Package (TP)
(analogous to the ISO/IEC 29110 Deployment Package, or
DP). Developing the concept of the TP is outside the scope
of this paper, but suffice to say that a TP is primarily
intended to provide self-training on SE activities, with the
supplementary goal of initiating and developing a strategy of
capitalizing on this knowledge and transferring it to VSE
employees.

4) Empirical evaluation
The VSE engineer in question was provided with two

TPs on Requirements at the end of 2009. The first was
intended to provide the engineer with a basic maturity level
on ISO/IEC 29110 Requirements Management (through the
study of an SI.2 activity and a review of a „real‟ WP11
Requirements Specification), and the second involved
performing a Requirements Analysis on a „real‟ case. The
first package was made up of 3 training scenes and the
second of a single one. Each TP was calibrated to a week of
self-training. The VSE engineer worked through both
packages in January 2010.

Favoring reflection-in-action through TPs is, in our
opinion, a kind of software improvement. Although no
measurements can be easily defined and performed to
confirm this, there is empirical evidence of it in the form of
„customer‟ satisfaction.

The VSE engineer reported that he was now ready to
apply the SI.2 SW Requirements Analysis to the Eco-Visio
project. As the specifications were established by a
subcontractor, he merely reviewed the existing Requirements
Specification and rewrote parts of it in order to verify
conformity with the template provided in the DP, Software
Requirement Analysis [23]. Once updated, the WP11
Requirement Specification [Validated] served as an input to
SI.5, SW Integration and Tests. The system has been
deployed since the end of March 2010, and load testing and
application optimization should soon be completed. Defects
will then have to be corrected through a short cycle of SI
activities.

As an empirical measure of satisfaction with the
approach, the VSE asked for a similar approach for SI.5 SW
Integration and Tests. In particular, the VSE wanted
assistance in establishing a disciplined Change Request
Process. This TP is under construction, and we plan to begin
with the Software Testing DP [45] as a basis for the whole
TP. Probably because tests occur in many SE activities, this
DP is organized in a manner that spans PM and SI tasks,
which raises many new questions.

D. Towards a sustainable model for a VSE

1) Packaging experiences
For a VSE, the investment in Knowledge Management

may appear to take too much time before benefits appear.
Obviously, it will take time before a critical mass of
experiences will be available in the Experience Repository.
Schneider and Schwinn report several problems they faced to

in order to achieve a suitable repository, the Experience
Base, at DaimlerChrysler. They pointed out the importance
of “thinking [of] an Experience Base as something that
needs to be seeded in order to grow” [46].

Experience management assumes that all relevant
experience can be collected and packaged for reuse. Rus and
Lindwall have established that there is a difference between
explicit and tacit knowledge. “Explicit knowledge
corresponds to the information and skills that employees can
easily communicate and document, such as processes,
templates, and data” [14]. Packaging raw experiences in the
Experience Factory produces explicit knowledge. “Tacit
knowledge is personal knowledge that employees gain
through experience; this can be hard to express and is
largely influenced by their beliefs, perspectives, and values”
[14]. Relying on tacit rather explicit knowledge is the
prevailing model in a VSE because it does not require the
documentation of knowledge or the packaging of
experiences. Komi-Sirviö et al. analyzed the case of a
company that failed in several attempts to improve
knowledge reuse. The company was looking for a new
solution that should have a minimal impact on the software
development organization. “This new approach consisted of
a knowledge-capturing project and customer projects. The
former gathered knowledge from relevant sources and
packaged and provided it to a customer project for reuse on
demand” [47]. The knowledge-capturing project is similar to
the analysis organization in the Experience Factory
framework, but it does this for the customers‟ project needs.

2) Packaging experiences in a VSE
The previous section suggests that packaging experiences

should be performed outside the software development
organization. As reported in section IV.C, we used the pilot
project to solve an immediate need of the VSE: a disciplined
management of requirements. Because the VSE was aware
of their weakness in requirements management, they agreed
to invest enough time and effort to change their working
process for this point. But packaging the required materials
was performed by the authors rather than the VSE.

Our proposal for an EM system for a VSE is a simplified
approach of the EF infrastructure presented in Figure 1.

The simplified EF is made up of two separate parts: an
Experience Repository, and a Training Package Repository.
The Experience Repository contains raw experiences; as
stated in sections IV.A.2 and IV.B.1, the project manager has
to store the main deliverables of the completed project
according to a fixed storage scheme. The use of the
Experience Repository relies only on the copy-paste
knowledge transfer pattern. No help in understanding the raw
experiences is provided. When a project is experiencing
difficulties in completing a software engineering activity and
no useful materials can be found in the Experience
Repository, an external task force has to build a Training
Package on the given activity and store it in the Training
Package Repository. Then, VSE employees may perform
self-training using this Training Package. VSE employees
may store feedback in the repository in order to improve the
process. Self-training tasks are designed to develop reflective
thinking. They are based on past experiences, either from the

228

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VSE or from elsewhere. Self-training packages are not
intended to explain the packaged experiences for reuse; the
main goal is rather to initialize the engineer‟s repertoire
regarding the problematic software engineering activity.
Once the self-training package has been completed, the
hypothesis is made that the engineer will be able to return to
his/her practice and interact with the problematic situation in
such a way that it will lead to his/her success. Decisions,
support, and suggestions are built up by the engineer
her/himself rather than provided by the packaged
experiences. Figure 6 shows all the Infrastructure and
Process issues that we have addressed in this section.

PM - Process

Management

SI – Software

Implementation

Work products
Work

products

Decision support,

Suggestions

Project Repository

Training

Results

Training

Packages

Training Package

Repository

Experience Repository

Figure 6. Overview of the EM Infrastructure and Process.

V. CONCLUSION AND FUTURE WORK

We have proposed a simple Experience Management
system for a VSE that is compatible with the emerging
ISO/IEC 29110 standard. Two hypotheses are posed: (1) the
EM infrastructure is kept as simple as possible with the use
of a CMS structured with the decomposition of the PM and
SI processes; and (2) EM requires dedicated processes that
can be taken from D. Schön‟s reflection-on-action work. The
needs of a VSE and the solutions that we have provided are
reported as a case study.

Further work is required to consider how the concept of
the Training Package could complement that of the
Deployment Package.

REFERENCES

[1] V. Ribaud, P. Saliou, and C. Y. Laporte, “Experience Management
for Very Small Entities: Improving the Copy-paste Model,” in
Proc. Fifth International Conference on Software Engineering
Advances, New York :IEEE Press, 2010, pp. 311-318.

[2] C. Y. Laporte, “The Development of International Standards for
Very Small Entities: Historical Perspectives, Achievements and
Way Forward,” Joint International Council on Systems
Engineering (INCOSE) / Concordia Institute for Information
Systems Engineering (CIISE) Distinguished Seminar, 2010.

[3] ISO/IEC TR 29110-1:2011, Software Engineering -- Lifecycle
profiles for Very Small Entities (VSEs) -- Part 1: Overview,
Geneva: International Organization for Standardization (ISO),
2011.

[4] ISO/IEC 29110-4-1:2011, Software engineering -- Lifecycle
profiles for Very Small Entities (VSEs) - Part 4-1: Profile
specifications: Generic Profile group, Geneva: International
Organization for Standardization (ISO), 2011, available at:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail
.htm?csnumber=51154 (last accessed June 1)

[5] V. Basili, G. Caldiera, and D. Rombach, “Experience Factory,” in
Encyclopedia of SE, vol. 1, Hoboken:Wiley, 2002, pp. 476-96.

[6] E. Ras, R. Carbon., D. Decker, and J. Rech. “Experience
Management Wikis for Reflective Practice in Software Capstone
Projects,” IEEE Transactions on Education, vol. 50 (4), Nov. 2007,
pp. 312-320.

[7] D. Schön, The Reflective Practitioner, New York: Basic Books,
1983.

[8] ISO/IEC TR 10000-1:1998, Information technology -- Framework
and taxonomy of International Standardized Profiles -- Part 1:
General principles and documentation framework, Geneva:
International Organization for Standardization (ISO), 1998.

[9] ISO/IEC 12207:2008, Information technology -- Software life
cycle processes, Geneva: International Organization for
Standardization (ISO), 2008.

[10] ISO/IEC 15289:2006, Systems and Software Engineering --
Content of systems and software life cycle process information
products (Documentation), Geneva: International Organization for
Standardization (ISO), 2006.

[11] ISO/IEC TR 29110-5-1-2:2011, Software Engineering -- Lifecycle
profiles for Very Small Entities (VSEs) -- Part 5-1-2: Management
and engineering guide: Generic profile group: Basic profile,
Geneva: International Organization for Standardization (ISO),
2011, available at:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_I
SO_IEC_29110-5-1-2_2011.zip (last accessed June 1)

[12] C. Y. Laporte, Contributions to SE and the Development and
Deployment of International SE Standards for Very Small Entities,
PhD thesis, Université de Bretagne Occidentale, Brest, 2009,
available at: http://tel.archives-ouvertes.fr/tel-00483255/fr/ (last
accessed May 25).

[13] K. Schneider, Experiences and Knowledge Management in
Software Engineering, Berlin Heidelberg:Springer-Verlag, 2009.

[14] I. Rus and M. Lindvall, “Knowledge Management in Software
Engineering,” IEEE Software, vol. 19 (3) , May-June, 2002, pp.
26-38.

[15] V. Basili, G. Caldiera, and G. Cantone, “A Reference Architecture
for the Component Factory,” ACM Transactions on SE and
Methodology, vol. 1 (1), January 1992, pp. 53-80.

[16] V. Basili and C. Seaman, “The Experience Factory Organization,”
IEEE Software, vol. 19 (3) , May-June, 2002, pp. 30-31.

[17] T. Chau and F. Maurer, “A Case Study of a Wiki-based Experience
Repository at a Medium-sized Software Company,” Proc. ACM K-
CAP‟05, ACM Press, 2005, pp. 185-186.

[18] J. Rech, C. Bogner, and V. Haas, “Using Wikis to Tackle Reuse in
Software Projects,” IEEE Software, vol. 24 (6), November-
December, 2007, pp. 99-104.

[19] C. Argyris, “Organizational learning and management information
systems,” ACM SIGMIS Database, vol. 13 (2-3), Winter-Spring
1982, pp. 3-11, ISSN:0095-0033.

[20] D. Schön, Educating the Reflective Practitioner: Toward a New
Design for Teaching and Learning in the Professions, San
Francisco: Jossey-Bass, 1987.

[21] E. Ras and J. Rech, “Using Wikis to support the Net Generation in
improving knowledge acquisition in capstone projects,” Journal of
Systems and Software, vol. 82, April 2009, pp. 553-562.

229

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] ISO/IEC TR 29110-3:2011, Software Engineering -- Lifecycle
profiles for Very Small Entities (VSEs) -- Part 3: Assessment
guide, Geneva: International Organization for Standardization
(ISO), 2011.

[23] S. Alexandre and C. Y. Laporte, “Software Requirement
Analysis,”
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-
Software%20Requirements%20Analysis-V1_2.doc, Montréal,
2011 (last accessed May 25).

[24] N. Fenton, S.L. Pfleeger, and R.L.Glass, “Science and substance:
A challenge to software engineers,” IEEE Software, vol. 11 (4),
July 1994, pp. 86-95.

[25] ISO/IEC 15504:2004, Information technology -- Process
assessment, Geneva: International Organization for
Standardization (ISO), 2004.

[26] C. Argyris and D. Schön, Organizational learning: A theory of
action perspective, Reading: Addison Wesley, 1978.

[27] C. Argyris, R. Putnam, and D. McLain Smith, Action Science,
Concepts, methods, and skills for research and intervention, San
Francisco: Jossey-Bass, 1985.

[28] I. Chan and C. Chao, “Knowledge management in small and
medium-sized enterprises,” Communications of the ACM, vol. 51
(4), April 2008, pp. 83-88.

[29] J. M. García Alonso, J. J. Berrocal Olmeda, and J. M. Murillo
Rodríguez, “Documentation Center Simplifying the
Documentation of Software Projects,” Proc. Wiki4SE Workshop
4th International Symposium on Wikis, Porto, 2008.

[30] J. W. Maxwell, “Using Wiki as a Multi-Mode Publishing
Platform,” Proc. 25th annual ACM international conference on
Design of Communication, ACM, New York, 2001, pp. 196-200.

[31] A. Rauschmayer, “Next-Generation Wikis: What Users Expect;
How RDF Helps,” Third Semantic Wiki Workshop. at ESWC,
Redaktion Sun SITE, Aachen, 2009, poster.

[32] P. M. Senge, The Fifth Discipline. The art and practice of the
learning organization, London: Random House, 1990.

[33] E. Ras, “Learning Spaces: Automatic Context-Aware Enrichment
of Software Engineeering Experience,” PhD Thesis in
Experimental Software Engineering no. 29, Stuttgart:Fraunhofer
Verlag, 2009.

[34] V. Ribaud, P. Saliou, R. V. O‟Connor, and C. Y. Laporte
“Software Engineering Support Activities for Very Small Entities,”
Proc. 17th International Conference on European Systems &
Software Process Improvement and Innovation (EuroSPI 2010),
Springer-Verlag, September 2010.

[35] A. H. Gold, A. Malhotra, and A. H. Segars, “Knowledge
Management: An Organizational Capabilities Perspective,” Journal
of Management of Information Systems, vol. 18 (1), May 2001,
pp. 185-214.

[36] R. Conradi, “From software experience databases to learning
organizations,” Proc. 11th Int‟l Conf. on Software Engineering and
Knowledge Engineering (SEKE‟99), 1999, Knowledge System
Institute, pp. 204-206.

[37] L. Dusink and J. van Katwij, “Reuse dimensions,” Proc.
Symposium on Software reusability (SSR '95), ACM Press, 1995,
pp. 137-149.

[38] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis, The
Capability Maturity Model for Software: Guidelines for Improving
the Software Process, SEI Series in Software Engineering,
Addison-Wesley, 1995, 640 p.

[39] R. Conradi and T. Dyba, “An empirical study on the utility of
formal routines to transfer knowledge and experience,” SIGSOFT
Softw. Eng. Notes 26(5), 2001, pp. 268-276.

[40] Department of Defense, Defense System Software Development,
DOD-STD-2167A, 29 February, 1998.

[41] T. Dyba, “Improvisation in small software organizations,” IEEE
Software, 17(5), 2000, pp. 82-87.

[42] D. Schön, “Educating the Reflective Practioner” in Meeting of the
American Educational Research Association,
http://resources.educ.queensu.ca/ar/schon87.htm, 1987, (last
accessed January 25).

[43] D. Jonassen, “Designing Constructivist Learning Environments,”
in Instructional Design Theories and Models: A New Paradigm of
Instructional Theory, Mahwah (New Jersey):Lawrence Eribaum
Associates, 1999, pp. 215-240.

[44] P. Saliou and V. Ribaud, “Bootstrapping an empty repertoire of
experience: The design case,” Proc. 1st Workshop on Human
Aspects of SE (OOPSLA 2009), ACM, October 2009.

[45] L. Gómez Arenas, “Deployment Package Software Testing,”
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-Software
Basic Profile Testing-CL00.doc, Montréal, 2010 (last accessed
May 25).

[46] K. Schneider and T. Schwinn, “Maturing Experience Base
Concepts at DaimlerChrysler,” Software Process Improvement and
Practice, vol. 6, 2001, pp. 85-96.

[47] S. Komi-Sirvio, A. Mantyniemi, and V. Seppanen, “Toward a
practical solution for capturing knowledge for software projects,”
IEEE Software, 19(3), May/June 2002, pp.60-62.

230

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS,
CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

