

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 3, no.3 & 4, year 2010, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 3, no. 3 & 4, year 2010,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2010 IARIA

International Journal on Advances in Software

Volume 3, Number 3 & 4, 2010

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

 Meikel Poess, Oracle, USA

 Hermann Kaindl, TU-Wien, Austria

 Herwig Mannaert, University of Antwerp, Belgium

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France

 Sven Apel, University of Passau, Germany

 Kenneth Boness, University of Reading, UK

 Hongyu Pei Breivold, ABB Corporate Research, Sweden

 Georg Buchgeher, SCCH, Austria

 Dumitru Dan Burdescu, University of Craiova, Romania

 Angelo Gargantini, Universita di Bergamo, Italy

 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany

 Jon G. Hall, The Open University - Milton Keynes, UK

 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands

 Hermann Kaindl, TU-Wien, Austria

 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore

 Herwig Mannaert, University of Antwerp, Belgium

 Roy Oberhauser, Aalen University, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Eric Pardede, La Trobe University, Australia

 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe

 Robert J. Pooley, Heriot-Watt University, UK

 Vladimir Stantchev, Berlin Institute of Technology, Germany

 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan

 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

 Michael Grottke, University of Erlangen-Nuremberg, Germany

 Josef Noll, UiO/UNIK, Sweden

 Olga Ormandjieva, Concordia University-Montreal, Canada

 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania

 Liviu Panait, Google Inc., USA

 Kenji Saito, Keio University, Japan

 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India

 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France

 Jameleddine Hassine, Cisco Systems, Inc., Canada

 Sascha Opletal, Universitat Stuttgart, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Meikel Poess, Oracle, USA

 Kurt Rohloff, BBN Technologies, USA

 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France

 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France

 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria

 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

 Qiming Chen, HP Labs – Palo Alto, USA

 Ela Hunt, University of Strathclyde - Glasgow, UK

 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain

 Chih-Cheng Hung, Southern Polytechnic State University, USA

 Jianhua Ma, Hosei University, Japan

 Milena Radenkovic, University of Nottingham, UK

 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil

 Marius Slavescu, IBM Toronto Lab, Canada

 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA

 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy

 Krzysztof Rogoz, Motorola, USA

 Sergio Soares, Federal University of Pernambuco, Brazil

 Alin Stefanescu, University of Pitesti, Romania

 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore

 Ann Dunkin, Hewlett-Packard, USA

 Tejas R. Gandhi, Virtua Health-Marlton, USA

 Lars Moench, University of Hagen, Germany

 Michael J. North, Argonne National Laboratory, USA

 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden

 Edward Williams, PMC-Dearborn, USA

International Journal on Advances in Software

Volume 3, Numbers 3 & 4, 2010

CONTENTS

From Meta-modeling to Automatic Generation of Multimodal Interfaces for Ambient

Computing

José Rouillard, LIFL, France

Jean-Claude Tarby, LIFL, France

Xavier Le Pallec, LIFL, France

Raphaël Marvie, LIFL, France

318 - 332

Dynamic Resource Management in Virtualized Environments through Virtual Server

Relocation

Gaston Keller, The University of Western Ontario, Canada

Hanan Lutfiyya, The University of Western Ontario, Canada

333 - 350

Coordinated Exploration and Goal-Oriented Path Planning using Multiple UAVs

Christoph Rasche, University of Paderborn, germany

Claudius Stern, University of Paderborn, germany

Lisa Kleinjohann, University of Paderborn, germany

Bernd Kleinjohann, University of Paderborn, germany

351 - 370

A Framework for Monitoring and Reconfiguration of Components Using Dynamic

Transformation

djamel belaid, Telecom sudparis, France

imen ben lahmar, Telecom sudparis, France

Hamid Mukhtar, National University of Sciences and Technology, Pakistan

371 - 384

DSCTP Congestion Control Algorithm Based on Dynamic Policies

Jie Chang, Beijing University of Posts and Telecommunications, China

385 - 395

Bioinformatics: From Disparate Web Services to Semantics and Interoperability

Mikael Åsberg, Linköping University, Sweden

Lena Strömbäck, Linköping University, Sweden

396 - 406

Implementing Row Version Verification for Persistence Middleware using SQL Access

Patterns

Fritz Laux, Reutlingen University, Germany

Martti Laiho, Haaga-Helia University of Applied Sciences, Finland

Tim Lessner, University of the West of Scotland, United Kingdom

407 - 423

Efficient Maintenance of all k-Dominant Skyline Query Results for Frequently Updated 424 - 433

Database

Md. Anisuzzaman Siddique, University of Rajshahi, Bangladesh

Yasuhiko Morimoto, Hiroshima University, Japan

Enhancing Availability through Dynamic Monitoring and Management in a Self-Adaptive

SOA Platform

Apostolos Papageorgiou, TU Darmstadt, Germany

Tronje Krop, TU Darmstadt, Germany

Sebastian Ahlfeld, TU Darmstadt, Germany

Stefan Schulte, TU Darmstadt, Germany

Julian Eckert, TU Darmstadt, Germany

Ralf Steinmetz, TU Darmstadt, Germany

434 - 446

Web and Distributed Software Development Risks Management: WeDRisk Approach

Ayad Keshlaf, Newcastle University, UK

Steve Riddle, Newcastle University, UK

447 - 460

Privacy by Flexible Parameterization with Erlang Active Objects

Andreas Fleck, Technische Universitaet Berlin, Germany

Florian Kammueller, Middlesex University, London and TU Berlin, UK

461 - 473

Automatic Tagging of Art Images with Color Harmonies and Contrasts Characteristics in

Art Image Collections

Krassimira Ivanova, Institute of Mathematics and Informatics - BAS, Bulgaria

Peter Stanchev, Kettering University, USA

Koen Vanhoof, Hasselt University, Belgium

474 - 484

From Meta-modeling to Automatic Generation

of Multimodal Interfaces for Ambient Computing

José Rouillard

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France

jose.rouillard@univ-lille1.fr

Jean-Claude Tarby

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex – France

jean-claude.tarby@univ-lille1.fr

Xavier Le Pallec

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France

xavier.le-pallec@univ-lille1.fr

Raphaël Marvie

LIFL Laboratory – University of Lille 1

59655 Villeneuve d’Ascq Cedex - France

raphael.marvie@univ-lille1.fr

Abstract — This paper presents our approach to design

multichannel and multimodal applications as part of ambient

intelligence. Computers are increasingly present in our

environments, whether at work (computers, photocopiers), at

home (video player, hi-fi, microwave), in our cars, etc. They are

more adaptable and context-sensitive (e.g., the car radio that

lowers the volume when the mobile phone rings). Unfortunately,

while they should provide smart services by combining their

skills, they are not yet designed to communicate together. Our

results, mainly based on the use of a software bus and a

workflow, show that different devices (such as Wiimote, multi-

touch screen, telephone, etc.) can be coordinated in order to

activate real things (such as lamp, fan, robot, webcam, etc.). A

smart digital home case study illustrates how using our

approach to design with ease some parts of the ambient

system and to redesign them during runtime.

Keywords — Pervasive computing; ubiquitous computing;

ambient intelligence; multi-channel interaction; multimodality.

I. INTRODUCTION

Ambient computing is one of the most significant recent

advances in Human-Computer Interaction (HCI). Due to the

arising of pervasive and ubiquitous computing, the design of

HCI has to take into account the context of interactions. The

objective is to allow users to interact with a smart system

with low constraints through the use of multiple modalities,

channels, and devices. In the future, with the availability of

new devices and smart objects, ambient computing will

allow the definition of services seamlessly interacting with

both environment and users.

Our current work takes place in this context of ambient

computing. In order to support dynamic unplanned

interactions with the user, services have to adapt themselves

to their mutating environment – resulting from the user

mobility and the variability of her/his context. This requires

(a) the availability of distributed devices such as PDA

(Personal Digital Assistant), laptops, smartphones, robots,

probes, and (b) easing the discovery of these devices.

Currently, development tools that enable us to easily

generate and integrate ambient services are lacking. Each

piece of software is developed on its own, and then

integrated in the system. This introduces additional costs as

well as misconfiguration risks. This paper focuses on the

design of multi-channel interfaces relying on a workflow

engine in order to ease the realization of ambient systems.

This document is an extended version of our previous

paper [1]. It is structured as follows. Section two presents

related works. Section three explains the background and

motivation of this project. Section four gives an overview of

our conceptual approach in order to tackle the emerging

problems encountered. Section five explains in details our

approach from an implementation point of view. Section

six describes a case study around the smart digital home

thematic and presents the benefits of our approach for the

design and generation of multimodal and multichannel

interactive systems. Then, a conclusion gives our roadmap

for future work.

II. RELATED WORK

Computer frameworks and languages have been

proposed specifically to facilitate the development of

multimodal interfaces. In the World Wide Web

Consortium (W3C) MultiModal Interaction (MMI)

framework [2], the interaction manager invokes specific

application functions and accesses information in a

dynamic processing module. The interaction manager

presents the result to the user via one or more output

components. Obviously, the interaction manager of this

framework is very important because it coordinates data

and manages execution flow among various input and

output components. It also responds to inputs from the

input components, updates the interaction state and the

application context, and initiates output to one or more

output components. Developers use several approaches

to implement interaction managers, including:

Traditional programming languages such as C or C++;

318

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Speech Application Language Tags (SALT), which

extends HTML by adding a handful of HTML tags to

support speech recognition, speech synthesis, audio file

replay, and audio capture; XHTML plus Voice (often

referred as “X+V”), in which the VoiceXML 2.0 [3]

voice dialog control language is partitioned into modules

that are embedded into HTML; Formal specification

techniques such as state transition diagrams and Harel

Statecharts [4].

The OpenInterface project [5] is dedicated to

multimodal interaction. In this project, everyday objects

can take part in the interaction in ubiquitous computing

(including an augmented table for instance) and the user

can freely switch from one modality to another

according to her/his context: running in the street, at

home, in front of a big screen in an airport, etc. This

project aims at the design and development of an open

source framework for multimodal interaction: the

OpenInterface framework.

Those kinds of projects are mainly devoted to the

study of multimodal interactions, allowing the usage of

more than one device or modality at the same time in

order to interact with a main system connected to

Internet. Ambient computing increases complexity

because related applications are not supposed to manage

only devices and modalities, but also channels (cf.

Section III.A) in order to allow intelligent and context-

aware communications. Our research activity takes place

in ambient computing area.

III. BACKGROUND

This background section is divided in three parts:

multimodality, user activity, and connection with the

ambient environment.

A. Multimodality

Our work tackles the ability of ambient computing to

permit context-aware interactions between humans and

machines. To do so, we rely on the use of multimodal and

multi-channel interfaces in various fields of application

such as coaching [6], learning, health care diagnosis, or

in-situ marketing. For Frohlich, a channel is defined as an

interface that makes a transformation of energy [7]. From

a user’s point of view, he distinguished voice and

movement channels, and from the system’s point of view

he mentioned audio, visual, and haptic channels.

In the Human–Computer Interaction (HCI) domain, the

notion of channel is not used very often and there are very

few references to multi-channel research with some

exceptions such as the work of [8]: “Often these

modalities require specialized channels to allow access

modalities such as cameras, microphones, and sensors. A

multi-modal multi-channel system faces the challenge of

accepting information from any input method and

delivering information through the appropriate output

methods”.

Using a multi-channel approach allows users to interact

with several channels choosing the most appropriate one

each time in order to exchange with an entity. Such

channels could be, for instance, plain paper, e-mail,

phone, web site. Using a multimodal approach allows

users to employ several modalities in order to interact

with a single system. It can be sequential, like first being

on the phone then on the web, or synergistic [9], like

being on the phone while on the web. This approach

implies some synchronization requirements both for the

interfaces and knowledge bases used during the

interactions.

There are very few tools that support the design and

implementation of interfaces having such characteristics

[10]. One of our goals is to study and propose

infrastructures easing interactions that are both

multimodal and multi-channel in an ambient context. In

our work, we use the Multi-DMC referential proposed in

[11]. It can identify a system based on three criteria:

Device (D), Modal (M) and Channel (C). It has two

positions (Mono or Multi) for each of the three criteria

targeted (DMC). This represents 2
3
 (=8) possibilities,

which are presented on Figure 1 .

Figure 1. The Multi-DMC referential.

For a given system, one tries to indicate the position of

each decisive factor. For example, the system represented

on the bottom right of the figure is a multi-device,

multimodal, and multi-channel system.

319

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Workflow designed with the Studio Common Knowledge.

B. User activity

In this paper, we are targeting ambient systems, which

aim to be user-friendly. Unfortunately, until now such

systems are more difficult to conceive and to implement

than traditional systems because of the heterogeneity of

devices (hardware, software, different locations, etc.).

Given its complexity, an ambient system must observe the

rules of usability: guidance, low workload, concision, etc.

[12]. Therefore, our work is based on concepts identified

by HCI domain such as user’s activity and logic of use.

The design of interactive systems is based on the notion

of tasks and activities, themselves decomposed into sub-

tasks/sub-activities whose arrangement is managed by

temporal or structural sequences. Among all the

approaches used in the design of interactive systems and

using these concepts, some are more used such as task

models [13][14], Petri nets [15], Statecharts [16], and

workflows.

Given all these solutions we have chosen the workflows

[17] because they are adapted for non-experts in order to

explain their rationale for the use of ambient systems.

First, Workflow concepts are as simple as needed to be

understood by usual end-users. Second, related modeling

languages have been generally designed to be readable by

non-(computer)specialists. Finally, they are widespread in

information systems and especially in document

management systems.

C. Connection with the ambient environment

A major question in pervasive and ubiquitous

computing is how to integrate physical objects (screen,

chair, coffee machine, etc.) into multimodal applications

using technologies such as Radio-frequency identification

(RFID), Near field communication (NFC), Barcodes (1D

or 2D as QR codes). This will help the users to

manipulate freely virtual and real objects with commands

like “identify this,” “make a copy of that object, here”,

“move that webcam on the left,” etc. We are using the

notion of workflow in order to indicate to the user the

tasks available at each point of the whole activity flow.

For our work, we are using Common Knowledge [17],

which is a cross-platform business rules engine and

management system that supports the capture,

representation, documentation, maintenance, testing, and

deployment of an organization's business rules and

application logic. Common Knowledge allows the

business logic to be represented in a variety of inter-

operable visual formats, including Rete rules, workflows,

flowcharts, decision tables, decision trees, decision grids,

state maps, and scripts. The engine allows running,

testing, and simulating the system behaviors. It can be

used through many languages (such as Java, Delphi,

VisualBasic, C#, DotNET, etc.) and platforms (Windows,

Linux, UNIX).

Figure 2 presents an example of workflow designed

graphically using the Studio Common Knowledge tool.

It allows following different paths in order to complete a

command such as “switch on fan”, “move camera

down”, “switch off lamp”, etc.

Figure 3 shows standard and advanced operators used

to represent tasks, task choices, split or merge actions,

timers, loops, etc. The result is stored using an XML

format, in a file with an .aex extension. With our work

the resulting system could be used through different

modalities of interaction like graphically, vocally, with

gesture, RFID, barcodes or a combination of those

modalities. Instead of programming applications in an ad

hoc fashion, our approach allows to query dynamically

the workflow and to propose relevant information to the

user while interacting with the system.

The notion of persistence is very important in this context.

Indeed, we consider that a global interaction could be the

result of many sub-interactions between the system and one

or many users. It could also be the result of a sequence of

sub-interactions conducted via different kind of channels

and modalities.

320

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Standard and advanced operators available in

Common Knowledge.

The Common Knowledge software supports this

persistence feature.

IV. OUR APPROACH

In the context of interaction design based on the DMC

referential, we believe, as we explained previously, that

meaningful global actions on the system may be the result

of a series of sub-actions. These sub-actions can be

performed by multiple users cooperating. Several types of

devices can be utilized (PC, Smartphone, mobile phone,

etc.). Several modalities of interaction, such as direct

manipulation (keyboard/mouse), voice, gesture, brain

waves, can be employed both in input and output. Finally,

multiple communication channels can be exploited such

as the telephone or the Internet.

Currently we limit the use to an alternate

multimodality (not synergistic). The triggering of a sub-

action is based on the FIFO (First In, First Out)

principle.

Figure 4 shows our approach based on a software bus.

We used for instance the IVY bus [18] and the Web

Server Event (WSE) bus (see Section V.B.1) in our

experiments, as we will explain later. The “model driven”

part mentioned on the figure is used for modeling the

activities at a higher level, and mapping resulting models

to workflow models, for example. The “engine” part uses

an application that queries the generated workflow during

the interaction via an Application Programming Interface

(API). The “usage” part explains that different kinds of

interaction are possible (web client, graphical user

interface, vocal user interface, etc.). The “development”

part means that the architecture is open in terms of futures

applications, technologies and languages. In our approach,

the transition from one state to another can be modelized

with different tools, such as Petri nets or the usage of

workflows for instance. The model driven approach

allows working on an abstract level, independently from

the chosen technical solution (Petri nets or workflow in

our example).

A. Model driven approach

Figure 5 shows that a workflow (middle of the picture)

is generated from a high-level model (left of the picture)

thanks to a set of model transformation rules. This

workflow model is used in order to describe objects and

actions that can be applied on those objects using one or

more devices in final interfaces (right of the picture).

Our work mainly concerns description of operating and

use of multimodal interactions (MMI). The Activity

concept is the main notion of our approach. We have

experimented a workflow management system (see

Section VI) as a support to define the operating logic of

MMI and its corresponding execution. However, defining

interaction logic may be done at different steps of an

application design and so, according to different points of

view.

With workflow concepts, we may use complex

operators like fork/join, alternatives, variables, composite

tasks, to describe some interactions sequences. Using

these complex operators corresponds to use software and

technical artifacts in order to address functional

requirement(s). It may be relevant to define only the

interactive requirements without dealing with technical

details. The underlying idea is to define a modeling

language dedicated to MMI, which contains a minimal set

of concepts leaving technical aspects aside in order to

easily focus on the interaction concern. With

corresponding model transformation rules, the resulting

MMI models would be mapped to several technical

platforms (other than workflow management system).

Thus, operating subtleties underlying the high-level

models would be fully described within the generated

technical models.

321

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Our approach from meta-modeling to automatic generation of code.

Figure 5. From meta modeling to final interfaces (via a workflow in this case).

This abstraction operation may be repeated in order to

propose a simpler modeling language dedicated to end users

with some technical skills (like persons who install home

automation systems). Finally, we have currently chosen

home automation as application domain of our work.

Our approach would have to be tested with other domains

like healthcare, e-learning or tourism domains. Indeed, we

cannot state that such previous high-level modeling

language will still be adapted. In this perspective, we think

that domain-oriented modeling languages will be useful in

order to better contextualize MMI and to get finer mapping

to technical platforms.

For all these reasons, we decided to adopt a Model-Driven

Engineering approach, particularly the Object Management

Group - Model Driven Architecture (OMG-MDA)

declination (abstract towards concrete). We currently focus

on an abstract meta-model and a mapping to workflow one.

Figure 6 represents what we plan to do and what we have

already done (gray rectangle).

322

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Our Model Driven Engineering

(MDE) approach.

B. Conceptual architecture

From a conceptual point of view, our approach is based on

the concept of message diffusion between the different actors in

our system (an actor can be a user, an application or a device).

When an actor wants to do something (for example the user

wants to switch on a lamp, or the RFID reader will notify that it

has decoded an RFID chip), it sends a message that is then

received by all actors. Then the actors have the freedom to

perform an action based on this message or not, depending on

their needs.

Among the actors, the interpreter of messages has a special

significance. It is the ‘brain’ of the system. Each time it

receives a message, it processes it and tries to combine it with

previously received messages to produce a higher level of

abstraction message. For example, if the RFID reader has

sent the message ‘FAN chip decoded' and the interpreter has

previously received the ‘switch on’ message, then the

interpreter will combine the two for the final message

‘switch on the fan’. This message will then in turn be sent to

other actors. Among them, the application charged to

operate the fan will send the X10 command to switch on the

fan.

1) Communication bus

For the actors, several solutions are possible to

communicate, such as:

• Pushing information, i.e., send messages to actors, such

as broadcasting (sending messages to everyone),

multicasting (sending messages only to certain actors),

and so on.

• Pulling information. In this case, actors must request

information themselves, for example by consulting a

database or by consulting an actor responsible for

managing the overall ambient system, etc.

• Using a distributed approach such as a multi-agent

system.

• Using a centralized approach, such as a communication

bus.

We chose to use a communication bus, whose function is

to receive the messages and distribute them to all connected

actors. This type of solution leaves considerable freedom in

the implementation as we shall see later.

2) Device access layer

A communication bus is a relevant component in order to

develop applications using interactive devices located in a

room among several terminals. Sending a command to/from

a remote device or listening/reacting to its events refers to

marshalling/unmarshalling mechanisms. Its implementation

is time-consuming and decreases code readability.

Figure 7. An example of configuration.

Figure 7 illustrates the device access layer based on the

following example. A web page is loaded on an Android

323

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mobile phone and can switch on a lamp or a fan through

X10. The X10 manager (CM15 module) is connected to a

PC (Windows) where a software adapter translates

particular messages coming from the communication bus in

X10 switch on/off orders. A RFID reader is connected to

another PC: when a RFID tag is laid down on the reader, the

background of previous web page changes to red, and when

the RFID tag is picked up, the background is becomes

green. These RFID reactions are possible thanks to a

software adapter located to the related PC: for each RFID

action, this adapter sends corresponding message on the

communication bus.

We call terminals, the android mobile, X10-PC and

RFID-PC. Web page and software adapters are called

processes. To locate process, we usually mention user-side

(Android mobile), X10-side or RFID-side.

To implement the previous example, we may program all

processes as following. When user-side sends a “switch fan

on” command to X10-side, the related process (i.e., web

page) constructs a specific message and sends it through the

message bus. The X10-side process receives it, detects it as

a X10 order and acts in consequence. When a tag is laid

down from the RFID reader, the related adapter reacts by

constructing a message and sending it. The user-side process

receives the message, detects it as a RFID event and sets the

background to red if it is a lay-down event or to green if it is

a pick-up one.

Constructing, sending, receiving and detecting messages

is a tedious task (long and repetitive) and corresponding

code blurs the whole implementation. For this reason it is

highly recommended to use an additional software layer that

hides messages bus stuff and therefore ease the

implementation of MMI application.

V. OUR APPROACH: IMPLEMENTATION

This implementation section is divided in two parts. The

first is about model driven engineering, and the second

presents the implementation details of our conceptual

architecture.

A. Model Driven Engineering

1) Towards a high-level MMI meta-model

As we previously mentioned in Section IV.A, we have

adopted a model driven approach (MDA) to get a better

separation of concerns (for example, by defining

multimodal interactions in dedicated models) and to address

the problem of platform heterogeneity.

We use ModX [19] as model framework. ModX is a

MOF-tool [20] that we have implemented in 2004. It allows

defining abstract and concrete syntaxes; it means meta-

models and associated visual representations. ModX-users

can create and edit models according to concrete syntaxes.

ModX proposes a Javascript API for model transformations.

We have defined a meta-model to describe multimodal

interactions requirement. We wanted this meta-model very

simple: there is no notion about activity, merge, condition,

etc. The main notion of this meta-model is the sentence. A

sentence is a sequence of interactions and causes an

action/reaction of the ambient system. A term is an

interaction that refers to what a user wants to transmit

(rather than focusing on the device s/he uses). The meta-

model contains 3 concepts (see Figure 8): Start, Term and

Action. Start and Action are ways to define the beginning

and the end of a sentence. Action is also used to indicate the

reaction of the system.

Figure 8. MMI use requirement meta-model.

A Term may be a word or a long expression, and it can be

transmitted through different devices. For example, the

Term ‘Fan’ may be indicated through speech recognition, a

RFID tag, a QR code, etc. A sentence split into N Terms

refers to a sentence with X different interactions.

Figure 9. A sample model of multimodal interactions about

home automation.

324

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This is illustrated by the model in Figure 9 (Terms and

Actions are respectively represented by rounded rectangles

and cinema clap in circles).

The sentence “Switch On Fan” (from the Term sequence

“Switch On” and “Fan”) launches the “switch fan on”

action. This sentence refers to two successive interactions

and so can use a maximum of two different devices. The

same Action is caused by the sentence ‘it is too hot’, which

contains only one Term, so only one interaction that can be

performed with one RFID tag or one QR code for the whole

expression, for instance. Such a definition also means that

“it is too hot” refers to an ‘only-one interaction’: the

previous sentence cannot be constructed by an interaction

for “it is too” and another interaction for “hot”.

2) Model transformation

To map each MMI use requirement model on Common

Knowledge platform, we have defined a set of model

transformation rules, implemented as following:

1. Create a workflow model

2. Create a starting node

3. Create a taskChoice (STC) connected to the
previous starting node.

4. For each term (T) connected to the start
 If T is bound to an action (A)

 Create a EndNode (EN)

 EN.caption = A.name

 Associate it with STC,

 association.caption = T.name

 Else

 Create a taskChoice (TC)

 TC.id = T.id

 Associate it with STC

 association.caption = T.name

5. For each term (TA)
 For each its connected term (T)

 If T is bound to an action (A)

 Create a EndNode (EN)

 EN.caption = A.name

 Associate it with TA

 association.caption = T.name

 Else

 Create a taskChoice (TC),

 TC.id = T.id

 Associate it with TA

 association.caption = T.name

To summarize these rules, a Term corresponds to a link,

i.e., a choice that is done. When a Term is the last of a

sequence (and cause an action), an EndNode is also

created. If the Term points out to other possible choices, a

taskChoice is created instead.

Object Connections provides a C# API for its workflow

engine. It allows creating and editing workflow models. We

have implemented a software adapter of this API for our

communication bus, called WSE (see below). In this way,

the Javascript code (in ModX) corresponding to the

previous model transformation, sends WSE messages in

order to create elements of workflow model.

B. Implementation of our conceptual architecture

1) Communication bus: WSE

The implementation of a communication bus can be done in

several ways, e.g., with the IVY bus as we demonstrated in a

previous paper [1] or a multi-agent system [21]. Unfortunately

IVY does not work through the web, while using the web is

one of our requirements. Therefore we decided to implement

our own communication bus, called WSE (Web Server Event).

WSE is the core of our architecture and the central point of

traffic. All messages, i.e., user interactions but also actions

requested to devices, are carried by WSE (see Figure 11).

WSE is an HTTP-based message bus, like COMET [22].

Such buses are generally dedicated to web pages. Because we

focus on interactive devices whose drivers are generally not

accessible with JavaScript, we also provide an API in Java and

C#. Only a web server supporting PHP scripts, for instance

EasyPHP or WAMP (Windows, Apache, MySQL, PHP) is

required to install WSE. We choose not to create a standalone

WSE server in order to avoid conflict on port 80 with a

possible existing web server. Finally we choose to use PHP

scripts because of the popularity of this language. Thus, WSE

should be installable on most existing / running web servers.

The immediate benefits of this web server-based solution

are:

- Multi-OS: if an operating system can access the web, it

can use WSE. WSE is therefore compatible with

Mac OS, Windows, Android, and Linux.

- Multi-platform: the previous point implies that

WSE is running on computers, smartphones,

tablets, etc.

- Multi-browser: each operating system has

dedicated web browsers. Because we are multi-

platform and multi-OS, we are also multi-browser.

Thus WSE can be used by Internet Explorer,

Firefox, Chrome, Safari, Opera, and so on, as long

as they support JavaScript.

- Multi-network: the web access can be done via

wired connections, Wi-Fi, 3G. WSE can be used by

325

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all these different modes of connection without

restriction. As long as people have access to the web

(port 80 is open), they can use WSE. We are therefore

not blocked by firewalls. We also tested successfully

WSE in our University that offers two different internet

accesses, a network dedicated to the staff (teachers,

researchers, administration) and a network with a proxy

for students.

a) Features of WSE

WSE is multi-languages. Programming a Web application

that uses simultaneously a Wiimote [23], a RFID reader and

X10 adapters requires handling several programming

languages. It can be for instance Java for Wiimote, C# for

mir:ror [24] (RFID reader), Javascript for Web application.

Currently WSE can be managed with C#, Java, JavaScript, and

soon with ActionScript (Flex/Flash) and Python. The only two

constraints for languages are to be able to process JSON

(JavaScript Object Notation) and support HTTP requests,

which can be implemented in any language if necessary.

Installing WSE is very simple. It consists in copying a

directory (“Miny/WSE/PutOnWebServer_Root”) from the ZIP

file available at http://www.lifl.fr/miny, and to place this file in

the root of the web server.

WSE provides basically a mechanism for trace. Traces are

very interesting for an interactive system, e.g., to do debug, to

support the “Undo” command or to analyze user’s activities.

Messages routed by WSE are JSON objects. This implies

that each message must respect a JSON structure, for instance

{"param1":"value1", "param2":"value2", "param3":"value3"}.

The advantage is no message format is required. Thus

messages like {"action":"open"} or {"whatToDo":"open"} are

acceptable. Consequently, each developer can write her/his

own message format dedicated to her/his application. For our

MINY project, we use the following format: {"action":"…",

"actionParams":"…", "object":"…", "objectParams":"…",

"location":"…", "locationParams":"…", "fromWhere":"…",

"fromWhom":"…"}.

b) Using WSE

To use WSE, simply connect to a session or create one, then

send and receive messages. WSE is session-based. All

messages within a session are stored in a file, which is named

as the session (http://server_url/WSE/traces_files/name).

Below is an example in JavaScript and C# for the three steps,

connect, send and receive (equivalent code in Java can be

found on our web site).

i. Connect to a session

To connect to a session, the user only needs to provide the

session name. If the session already exists, WSE connects to it,

otherwise the session is automatically created and the

connection is established.

JavaScript code:

<script LANGUAGE="JavaScript" src="wse.js"/>

…

wse.joinSession("mySession");

C# code:

using Newtonsoft.Json.Linq;

using Wse;

…

private Wse.Bus myWSEBus;

String serverUrl =

"http://xxx.xxx.xxx.xxx/WSE/traceSession.php";

String sessionName = "mySession";

myWSEBus = new Bus(serverUrl, sessionName);

ii. Send a message

To send a message, simply send a JSON object.

JavaScript code:

wse.sendMessage

({"action":"switchOn","object":"lamp"});

C# code:

JObject myMessage = new JObject();

myMessage.Add ({"action":"switchOn", "object":"lamp"});

myWSEBus.SendBusMessage(myMessage);

iii. Receive a message

To receive a message it is necessary to declare a listener for

messages traveling on the bus. Each time a message is

transmitted on the bus, the listener is notified and performs the

associated function (Observer pattern). Then the function can

extract all the needed information for the application.

JavaScript code:

myListener = {};

myListener.newMessageReceive = function

(message)

 { alert("A message has been received: " +

 message);

 };

wse.addListener(myListener);

326

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C# code:

public class MyListener : IListener

{

 public void NewMessageReceive(string source,

JObject jObject)

 {

 MessageBox.Show("A message has been

received: " + jObject.ToString());

 }

}

…

MyListener myListener = new MyListener();

myWSEBus.AddListener(myListener);

2) Device access: Proxy/Stub generator

a) Principles

As explained before, constructing, sending, receiving and

detecting WSE messages is a tedious task. For this reason, we

have developed a code generator that produces a WSE-based

software layer, which handles WSE message operations. With

this layer, a programmer uses a remote device as a local device.

The following Javascript code shows how to switch on a fan

with the devices layer on the example of Section IV.B.2.

manager = new Manager("IJAIS2010");

X10 = manager.getX10("328", "Xavier", "Lamp");

// Param 1 : for the office number 328

// Param 2 : around the desk of xavier

// Param 3 : this X10 adapter is dedicated to a

// lamp

X10.switchOn();

Here is the code related to RFID events (still in Javascript).

rfid = manager.getRFiD("328","all");

// Param 1 : for the office number 328

// Param 2 : for all the office

rfid.layDown = function (stamp) {

 document.body.bgColor = "red";

}

// lay down a RFid tag will set the

// background color of page to red

rfid.pickUp = function (stamp) {

 document.body.bgColor = "green";

}

// pick up a RFid tag will set the

// background color of page to green

b) Generator

The code generator produces userSide.X10 and

userSide.RFiDReader classes to allow developers to

focus on functional/interactive concerns without worrying

about remote access. Production of such a class is done from a

description of actions (called methods) and events of related

devices. The description is JSON formatted and therefore does

not imply to use another language.

Here are the two description files corresponding to X10 and

et RFID reader devices.

{

 name : "X10",

 package : "x10",

 type : "Device",

 constants : {

 object : '"x10"',

 objectParams : null,

 location : null,

 locationParams : null

 },

 methods : {

 switchOn : {},

 switchOff : {}

 }

}

{

 name : "RFiD",

 package : "rfid",

 type : "Device",

 constants : {

 object : '"RFiDReader"',

 location : null,

 locationParams : null

 },

 events : {

 layDown : {

 stamp : String

 },

 pickUp : {

 stamp : String

 }

 }

}

We have defined a generic format inspired from JSON-RPC

[25] in order to homogenize the structure of WSE messages

that will be exchanged though this devices layer.

This format message protocol is the following:

• action: the expected action (e.g., switchOn) or name of

the event (layDown for a RFID reader).

• actionParams: arguments of action or event.

• object: type of device (e.g., X10, RFIDReader).

• objectParams: optional details about the device (for

instance X10 has two objectParams: lamp, fan).

327

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rather than automatic identifiers, we choose to use explicit

identifiers, which indicate where the device is.

• location: indicates where the device is (for example:

‘Office 328’).

• locationParam: details the place in the previous location

(e.g., ‘Desk of Xavier’)

Figure 10 shows a communication between user-side and

device-side. Concerning the user-side, the generator produces a

proxy class for each description file. For each described

method, the proxy (step 2 on Figure 10) contains a

corresponding method that consists in creating a WSE message

and sending it. If the description defines events, an interface is

generated. It contains one method for each event. This interface

is associated to the proxy: add/remove listeners methods are

added to the proxy while a listener consists in an object

implementing the interface. In Javascript, there is no listener

interface. The events correspond to methods of the proxy.

Figure 10. Stub and skeleton on example.

A class Manager is also generated and acts as a factory.

This class is instantiated with a WSE bus as parameter, and

gives access to proxy objects according to

location/identification values (step 1 of Figure 10). If a

programmer wants to add a new type of device in the device

access layer, the code generator can also help her/him by

producing code, a stub class, (step 3 of Figure 10) related to

WSE stuff. This stub class will have to be connected to another

class, a device-WSE adapter (step 4). This one has to interpret

a) WSE actions into actions on devices, b) events from device

into WSE events. The generation principle is the same as for

the user-side but with reversed responsibilities: the skeleton

contains a method for each event that device can emit and an

associated interface which defines a method for each possible

action on the device.

C. Our methodology in a few words

To summarize, here are the major steps to follow to

implement our methodology:

1. Identify the devices and the associated actions to

use.

2. Define a MMI model to specify the possible

interactions that you want to apply through the

device actions (cf. Figure 9).

3. Convert this MMI model into a workflow; this step

is done automatically in our case.

4. Implement a distributed communications and

access to devices. Designers can use the stub/proxy

generators (see above), or even can use the already-

implemented package we propose for RFID,

Androphone, BCI, X10 and IP Camera.

5. Implement the parts that associate interactions to

real actions on devices. For instance lay down a

specific RFID tag should produce the “It is too hot”

interaction.

6. Start the WSE drivers for each device with

providing parameters such as IP address, session

name, location, etc.

7. Start the workflow engine and the code produced

in step 5.

VI. CASE STUDY

This case study section is divided in four parts, which

present, respectively, the domain of smart digital home, the

architecture of the project, the implementation of this case

study and finally, the multimodal aspects of this

implementation.

A. Smart digital home

A smart digital home refers to a living space with devices

that are connected through wired or wireless networks. The

328

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connected devices may be sensors, actors, consumer

electronics, appliances, mobile and PC devices that

cooperate transparently for facilitating living and improving

usability in the home. Since a variety of devices are present

in a smart digital home, convergence and standardization

across all the screens of TVs, PCs, appliances and mobile

devices, and management of multi-channel interactions is

manifestly the key for the success of residential

applications.

In our example, several objects are identified in order to

be driven remotely: a lamp, a fan, a Rovio robot [26], and a

webcam. The possible actions on those objects are the

following: move (up, down, left, right, and home) and switch

(on/off). As we can see on Figure 2, while the interaction takes

place, one of the possible paths of the workflow is followed.

Once the final state is reached, a command is sent to the bus.

B. Architecture

For this smart digital home case study, we are using the

IVY software bus [18] or our WSE bus, indifferently.

With the IVY bus, a publish/subscribe mechanism is

available. Some applications are only subscribers. It

means that they need data to prompt information to the

user (a synthesized speech for example), to activate

appliances (micro-wave oven, washing machine, etc.), or

to generate some piece of VoiceXML [3][27] code that

will be dynamically generated and used at runtime. Some

applications are only sending information to the bus.

Others are using the bus to both receive and send data.

For instance, the Automatic Speech Recognition (ASR)

application usable on a PC needs to receive the different

labels corresponding of the speakable words, and

oppositely, it sends to the bus the result of the speech

recognition engine.

The “Workflow_Engine” application is in charge of the

connection with the persistent workflow that we use for

this project. It exploits a dedicated API to send the

choices of the user to the object connection engine, and to

receive the next elements to be presented to the user.

C. Implementation

Our global project was conceived to manage various kinds of

devices, sensors, effectors and technologies such as keyboard

and mouse, voice over telephone or softphone, QR code, multi-

touch screen, Wiimote, Mirror [24] / Reflet [28] NanoZtag

RFID, motion webcam, X10 protocol, Rovio robot [26], etc.

Our proposition is based on the architecture illustrated in

Figure 11. Three types of elements are present: (1) Interactive

components that are detectors and/or effectors, (2)

Communication bus for message exchange and (3) Workflow

engine. This proposal aims at providing developers the ability

to associate to her/his application a multimodal dimension

concerning its interactive part. Currently, interactions supported

are ruled by only one principle, which is "sentences triggering

actions". A sentence consists in a sequence of words that can be

triggered by any type of modality (voice, QR code,

keyboard/mouse, etc.). To facilitate the writing of such

sentences for an application, we use the Task Choice concept

[17] in order to factorize words. For example, a sentence may

begin by "move" and then be divided into 4 sub-sentences (one

for each concerned device). This avoids writing four complete

sentences.

An example of path may be the following one: the user

activates the button "move" from the Windows application

(first sub-action), presents in front of a webcam a QR code

identifying the robot (second sub-action) and then pronounces

on her/his phone the word "left" (third sub-action). This path is

completed and the action "move the robot on the left" is

triggered.

Once a model is loaded into the workflow engine, it is

executed by the engine that starts with the first task choice.

Each time the engine points to a new task choice, the list of

possible choices is sent to the bus. This is done by a software

agent attached to the workflow engine. Thus, interactive

components can subscribe to this type of message, in order, for

example, to present the list of choices to the user (as graphical

buttons, voice prompt, etc.).

Two other software agents were needed and developed. The

first one notifies the workflow engine that a sub-action was

performed. This type of agent is attached to an interactive

component and translates each relevant interaction into a sub-

action that is sent to the bus. The second agent allows to be

notified that an action is requested (e.g., switch on fan). Such

agent aims to be associated to an interactive component that

will translate actions into actual commands on the component,

using X10 protocol, for instance.

The three software agents previously mentioned have two

roles: to subscribe/transmit on the communication bus and to

establish a protocol for discussion between the workflow

engine and interactive components. This protocol is based on

actions, sub-actions and possible actions. Note that in the

model associated to smart digital home, we defined paths so

user must first specify the command, then identify the device

and finally give a possible parameter for command.

329

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Architecture of our Smart Digital Home project.

The three software agents used the workflow presented in

Figure 2 to describe the objects and actions that can be

applied on those objects using one or more devices.

D. Multimodality

As previously mentioned, our goal is to provide tools in

order to facilitate the design and implementation of

multimodal interfaces for ambient computing. Concerning

vocal interactions, one big challenge is to provide the

designers an easy and robust way to generate code (like

VoiceXML [29] for instance) that can integrate grammars

related to a particular changing context. Dynamic voice

grammars (or entire VoiceXML files) can be generated with

our approach, as we can see in Figure 12.

If the designer decides to add a possible new direction,

s/he can do it graphically, on the workflow, by adding an arc

(called “home” for example), near the up/down/left/right

already available. Then with no addition of code, a new

possible interaction is available through the workflow.

Consequently, one can then pronounce a sentence like

“move camera home”, in order to physically make the

webcam move.

<?xml version="1.0" encoding="UTF-8"?>

<vxml xmlns="http://www.w3.org/2001/vxml"

version="2.0" xml:lang="en-gb">

<form>

<grammar version="1.0" root="GR_VOICE"

mode="voice" tag-format="semantics/1.0">

<rule id="GR_VOICE">

<one-of>

<item>up<tag>out.choice="up";</tag></item>

<item>down<tag>out.choice="down";</tag></item>

<item>left<tag>out.choice="left";</tag></item>

<item>right<tag>out.choice="right";</tag></item>

<item>home<tag>out.choice="home";</tag></item>
</one-of>

</rule>

</grammar>

<field name="choice"><prompt>

Choose among up, down, left, right, home

</prompt>

<filled>

<prompt bargein="false">

The chosen value is: <value expr="choice"/>

</prompt>

</filled>

</field>

</form>

</vxml>

Figure 12. Example of VoiceXML code generated by the

VoiceXML_Maker agent.

330

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For this case study, we have implemented a multi-

device, multimodal, and multi-channel system:

- a Multi-device system because more than one

device can be used during the interaction. In our

experiments we used many PCs, smartphones and

telephones, and a Wii Console.

- a Multi-modal system because more than one

modality can be used during the interaction. In

our examples we used traditional

keyboard/mouse interactions, vocal, gesture and

brain computer interaction (BCI). We also used

QR codes and RFID tags containing data related

to desired actions or objects.

- a Multi-channel system because more than one

channel can be use during the interaction. In our

smart home case study, it was done across

internet and telephone networks.

VII. CONCLUSION AND FUTURE WORK

The goal of this paper was to describe how we can

facilitate the design of multi-channel and multi-modal

interfaces for ambient computing with a model-driven

approach. We used a smart digital home case study to

explain how to design easily an ambient system using a

workflow oriented approach.

Our results show that different devices (such as

Wiimote, multi-touch screen, telephone, etc.) can be

managed in order to activate real or virtual things.

Adding new features (such as appliances, actions,

direction, etc.) to an existent system is also very easy

and only needs a modification of the workflow.

Our work is orientated toward the production of code

generated from model (and meta-model)

transformations, and shows that this model-driven

approach is encouraging and suitable for the ambient

computing domain. With our methodology, a large part

of the scripts and applications programs, traditionally

coded by developers, can be automatically generated by

the ambient system itself.

In the future, this should improve the possibility to

detect new objects, persons or possible behaviors

dynamically and to respond to them as soon as possible

with relevant feature of the ambient system. Thus, it

will be challenging to work on the possibility to manage

simultaneously different natural languages with a

unique model of existing actions.

We will also work on the important point of semantic

aspect of the workflow. This will help users for instance

when they will not use the commands in the right order.

Indeed, a smart system must be able to understand that

“move up robot” is the same command as “move robot

up”. We are also planning to offer the possibility to

dynamically switch from a software bus to another and

to manage virtual representation of tangible things

(fridge, oven, etc.) in order to allow realistic

simulations before real implementation.

VIII. ACKNOWLEDGEMENT

The authors would like to thank ObjectConnections,

Jaxo Sytem and bcWebCam for providing special tools:

Common Knowledge, Cam'A'Bar and bcwebcam.

IX. REFERENCES

[1] Rouillard, J., Tarby, J.C., Le Pallec, X., and Marvie,

R., “Facilitating the Design of Multi-channel

Interfaces for Ambient Computing”, The Third

International Conferences on Advances in Computer-

Human Interactions, ACHI 2010, St. Maarten,

Netherlands Antilles, 2010, pp. 95-100.

[2] W3C Multimodal Interaction Activity (MMI),

Retrieved January 10, 2011, from

http://www.w3.org/2002/mmi/

[3] VoiceXML 2.0., W3C Recommendation (16/03/04),

Retrieved January 10, 2011, from

http://www.w3.org/TR/voicexml20

[4] Harel, D., “Statecharts: a visual formalism for

complex systems”, Science of Computer

Programming, Volume 8, Issue 3, pp. 231-274, 1987.

[5] OpenInterface European project. IST Framework 6

STREP funded by the European, Commission (FP6-

35182). Retrieved January 10, 2011, from

http://www.openinterface.org and http://www.oi-

project.org.

[6] Tarby, J.C. and Rouillard, J., “Assistance, advice and

guidance with digital coaching”, EAM'06 European

Annual Conference on Human Decision-Making and

Manual Control Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 2006,

Valenciennes.

[7] Frohlich, D., “The design space of interfaces,

multimedia systems, Interaction and Applications”,

1
st
 Eurographics workshop, Stockholm, Sweden,

Springer Verlag, p. 53-69, 1991.

[8] Healey, J., Hosn, R., and Maes, S.H, “Adaptive

Content for Device Independent Multi-modal

Browser Applications”, Lecture Notes In Computer

Science; Vol. 2347, Proceedings of the Second

International Conference on Adaptive Hypermedia

331

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and Adaptive Web-Based Systems, pp. 401-405,

ISBN: 3-540-43737-1, 2002.

[9] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May,

J., and Young, R. M., “Four easy pieces for assessing

the usability of multimodal interaction: the CARE

properties”. In INTERACT, pages 115-120.

Chapman & Hall, 1995.

[10] Vanderdonckt, J., Grolaux, D., Van Roy, P.,

Limbourg, Q., Macq, B., and Michel, B., “A Design

Space for Context-Sensitive User Interfaces”, Proc.

of ISCA 14th Int. Conf. on Intelligent and Adaptive

Systems and Software Engineering IASSE’2005

(Toronto, 20-22 July 2005), International Society for

Computers and their Applications, Toronto, 2005, pp.

207-214.

[11] Rouillard, J., “Multimodal and Multichannel issues in

pervasive and ubiquitous computing”, Multimodality

in Mobile Computing and Mobile Devices: Methods

for Adaptable Usability, Idea Group. Inc, Information

Science Reference, ISBN: 978-1-60566-978-6, 409

pages, 2009.

[12] Bastien, Ch. and Scapin, D., “Ergonomic Criteria for

the Evaluation of Human-Computer Interfaces”, J.

M., INRIA Technical report N° 156, 1993.

[13] Bourguin, G., Lewandowski, A., and Tarby J-C.,

“Defining Task Oriented Components, Task Models

and Diagrams for User Interface Design”, 6
th

International Workshop, TAMODIA 2007, Toulouse,

France, November 7-9, 2007, Marco Winckler,

Hilary Johnson, Philippe A. Palanque (Eds.), Lecture

Notes in Computer Science 4849 Springer 2007,

ISBN 978-3-540-77221-7, pp. 170-183

[14] Tarby, J.C., “One Goal, Many Tasks, Many Devices:

From Abstract User Task Specification to User

Interfaces” (Chapter 26). In, Diaper, D. and Stanton,

N. The handbook of Task Analysis for Human-

Computer Interaction. (pp.531-550). Mahwah, New

Jersey: Lawrence Erlbaum Associates, 2004.

[15] Palanque P., Bernhaupt, R., Navarre, D., Ould, M.,

and Winckler, M., “Supporting Usability Evaluation

of Multimodal Man-Machine Interfaces for Space

Ground Segment Applications Using Petri net Based

Formal Specification”. In International Conference

on Space Operations (SpaceOps 2006), Rome, Italy,

18/06/06-22/06/06, American Institute of Aeronautics

and Astronautics (AIAA), 2006.

[16] Horrocks, I., Constructing the User Interface with

Statecharts, Addison-Wesley Professional, 272 pages,

1999.

[17] ObjectConnections, Common Knowledge Studio and

engine, provided by ObjectConnections. Retrieved

January 10, 2011, from

http://www.objectconnections.com

[18] IVY Bus, Retrieved January 10, 2011, from

http://www2.tls.cena.fr/products/ivy/

[19] ModX MOF modeling tool, Retrieved January 10,

2011, from http://edutechwiki.unige.ch/en/ModX

[20] MOF OMG Meta-Object Facility, Retrieved January

10, 2011, from http://www.omg.org/mof/

[21] Kubera, Y., Mathieu, P. and Picault, S., “Everything

can be Agent!”, Proc. of 9
th

 Int. Conf. on

Autonomous Agents and Multiagent Systems

(AAMAS 2010), van der Hoek, Kaminka,

Lespérance, Luck and Sen (eds.), Toronto, Canada,

pp.1547-1548, 2010.

[22] COMET, Retrieved January 10, 2011, from

http://en.wikipedia.org/wiki/Comet_(programming)

[23] Nintendo, Wii game console and Wiimote controller,

Retrieved January 10, 2011, from

http://www.nintendo.fr/

[24] Nabaztag, Mir:ror, Nano:ztag, and Ztamp:s, from

Violet, Retrieved January 10, 2011, from

http://www.violet.net/index_en.html

[25] JSON-RPC: lightweight remote procedure call

protocol, Retrieved January 10, 2011, from

http://json-rpc.org/

[26] WowWee Group Limited, Rovio robot, Retrieved

January 10, 2011, from

http://www.omg.org/mof/http://www.wowwee.com/e

n/support/rovio

[27] VoiceXML 2.1, Recommendation, (19/06/07),

Retrieved January 10, 2011, from

http://www.w3.org/TR/voicexml21/

[28] Ref:let, An open-source alternative to mir:ror from

Violet, under Windows, Retrieved January 10, 2011,

from http://code.google.com/p/reflet-mirror/

[29] VoiceXML 3.0, W3C Working Draft (08/08/2008),

Retrieved January 10, 2011, from

http://www.w3.org/TR/vxml30reqs/

332

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Dynamic Resource Management in Virtualized Environments
through Virtual Server Relocation

Gastón Keller and Hanan Lutfiyya
Department of Computer Science

The University of Western Ontario
London, Canada

{gkeller2,hanan}@csd.uwo.ca

Abstract—Virtualization has become an essential technology
in the data center. Virtualization improves resource utilization
through server consolidation, but it also makes resource man-
agement more complex. Golondrina, an autonomic resource
management system, was built to use virtual server relocation
to handle resource stress situations, that is, situations where
the combined resource needs of the virtual servers hosted in a
physical machine exceed the resource availability. Experimental
evaluation shows that replication offers improvements over
migration, and both mechanisms offer improvements over
taking no action upon detection of a CPU stress situation.
The main contribution of this work is the introduction of
virtual server replication as an alternative to migration and
the experimental comparison of both mechanisms.

Keywords-virtualization; resource management; migration;
replication; autonomic computing

I. INTRODUCTION

A data center is defined as a collection of computing
resources shared by multiple applications concurrently in
return for payment by the application providers, on a per-
usage basis, to the data center provider [2]. To guarantee that
an application will always be able to cope with all demand
levels the application is statically allocated enough resources
so that peak demand is satisfied. The unit of allocation is
typically a physical server. This often results in resources
being underutilized.

One approach to increasing resource utilization is server
consolidation, which consists of hosting multiple application
servers in one physical server. This approach is possible
through virtualization. Virtualization refers to an abstract
layer between the operating system and the hardware. The
layer provides an interface to the actual hardware that allows
for the support of a number of virtual machines. In a data
center a virtual machine would have a server application
installed on it. We will use the term virtual server to refer
to a virtual machine that runs an application server.

Virtualization reduces the unit of resource allocation to
fractions of a physical server. This potentially benefits data
centers by allowing several applications to make use of the
same physical server. If the virtual servers are placed on
a physical server based on peak demand, then the physical
server can still be highly underutilized. On the other hand, if

the virtual servers are placed on a physical server based on
the average demand, then this may result in virtual servers
competing for the same resources when demand increases.
The reason is that demand for an application may increase
such that it needs computing resources currently being used
by other applications on the same physical server.

The time-varying demand that application servers may ex-
perience in a data center [3] suggests that resource allocation
should be done dynamically. Dynamic resource management
requires monitoring mechanisms and dynamic resource re-
allocation mechanisms. Golondrina, an autonomic resource
management system, was developed with resource utiliza-
tion sensors for monitoring and virtual server relocation
mechanisms. Two examples of the latter are migration and
replication.

Migration consists of transferring a running virtual server
from one physical server to another. Replication entails the
creation of a replica of a virtual server on another physical
server. Requests for the virtual server are balanced between
the two instances. This should reduce the computing re-
sources needed by a single physical server by distributing
requests to two different virtual server instances hosted in
two different physical servers. A replica in this work is not
an actual copy of the virtual server running at the time, but
an instantiation of an image of the virtual server.

The primary focus of this work is to study the use of
virtual server relocation to deal with resource stress situa-
tions, that is, situations where the combined resource needs
of the virtual servers hosted in a physical server exceed the
resource availability. One reason for this study arises from
a challenge in dynamic resource management where it is
often difficult to determine the appropriate action in response
to a resource stress situation. The goal of our study is to
determine effective strategies in the use of different virtual
server relocations for effective management of computing
resources.

The rest of this paper is organized as follows: Section
II provides background on the virtualization software used,
Section III describes the resource management system, Sec-
tion IV presents the experiments, Section V discusses the
experimental results, Section VI describes related work, and

333

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section VII provides a conclusion.

II. BACKGROUND

This work uses OpenVZ which provides operating
system-level virtualization [4], [5]. OpenVZ is essentially
a Linux kernel modified to run multiple, isolated containers
(i.e., virtual user-space environments) on a single physical
server or hardware node. OpenVZ supports the execution of
multiple containers. The containers are isolated program ex-
ecution environments, which appear as stand-alone servers to
users. Each container has its own set of processes including
the init process, file system, users (including root), applica-
tions, memory, network interfaces with IP addresses, routing
tables, and firewall rules. Information on resource utilization
for the hardware node and each container can be retrieved
by reading the accounting files in the proc filesystem. The
host system runs inside a privileged container.

OpenVZ provides container checkpointing, which is the
ability to suspend an executing container, save its state to
a file and restart it again later. Container live migration is
a natural extension of checkpointing. This process consists
of two phases. First, the container’s file system is copied to
the target machine while the container is still running. In
the second phase, the container is checkpointed, its state file
is transferred to the target machine and a second copy of
the container’s file system is started. This second copy is
incremental, in the sense that it only affects those files that
were modified after the first copy. When the second copy
finishes, the container is restored from the state file at the
target machine. All the network connections are migrated
with the container, so the user perceives no downtime, but
does perceive a delay in processing.

OpenVZ does not provide container replication, but it can
be implemented. The first step is to stop the container that is
to be replicated. The second step is to copy the container’s
file system and configuration file to the target machine.
(Once the file system is copied, the original container can
be restarted.) The third step is to modify the replica’s
configuration file with its own information (identifier, IP
address, etc). After this last step, the replica can be started.
Our current implementation of the replication process avoids
stopping the container to replicate by using a stored image
of it.

III. MANAGEMENT SYSTEM

Golondrina was conceived as a multi-resource manage-
ment system for data centers. This first prototype, however,
works with the CPU as its only managed resource. For that
reason, we will use the term CPU stress situation instead of
the more general term resource stress situation, as defined
in Section I. Similar procedure will be followed with related
terms.

Figure 1. Golondrina’s architecture

Golondrina consists of three primary management entities:
Client, Manager and Gate (see Figure 1) which are described
in this section.

A. Client

Each hardware node has a Client instance that runs in
the priviledged container. The Client requires access to the
operating system’s configuration and accounting files, and
the OpenVZ management tools. The Client instance provides
the following functionality:

1) The periodic collection of CPU utilization statistics
from the containers and the hardware node. This
is done by reading the hardware node’s operating
system’s accounting files through the proc file system.
These statistics are sent to the Manager;

2) Support for migration and replication of contain-
ers. This is done upon a request from the Man-
ager. Migration is provided by one of the OpenVZ
Management tools. However, since OpenVZ does not
provide a replication feature, the Client has to follow
a sequence of steps to trigger a replication. For the
container to be replicated requires the following:

a) An identifier is generated for the replica;
b) An image of the container is retrieved from

a central repository and placed on the target
hardware node;

c) The appropriate configuration files on the hard-
ware node are edited.

B. Manager

Upon receiving the CPU utilization statistics sent by the
Client, the Manager stores the statistics. The data model
used assumes that the hardware node is an aggregation of
containers. The attributes of the hardware node and contain-
ers represent CPU utilization metrics. This information is
analyzed (III-B1) to execute CPU stress checks (III-B2) and
relocation searches (III-B3).

334

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Analyzing CPU Utilization Statistics: The CPU uti-
lization statistics sent by the Clients are used to create a
CPU utilization profile over time. A mathematical model
uses the CPU utilization statistics collected at time ti for
predicting the CPU utilization of a container or hardware
node at time ti+1.

The mathematical model used is the Auto-regressive
Model of Order 1 AR(1) [6], which relies on the last obser-
vation in the sequence of observations and two parameters:
µ, the mean of the values in the sequence, and θ, which
accounts for the variations of the values in the sequence.

Given a sliding window of CPU utilization statistics W =
[ux, ..., ut] with maximum size w and where x = max(0, t−
w + 1). The parameters µ and θ at time t are calculated as
follows:

µt =

t∑
i=x

ui

t− x+ 1
(1)

θt =

t−1∑
i=x

(ui − µt) ∗ (ui+1 − µt)

max(1,

t−1∑
i=x

(ui − µt)
2)

(2)

Having the values ut, µt and θt, it is possible to predict
the CPU utilization at time t+ 1:

ût+1 = µt + θt ∗ (ut − µt) (3)

The profiling process uses a historical policy to calculate
the container’s profiled CPU utilization. This value has to
satisfy a given percentile of the container’s CPU needs
registered in the last window of time W = [ux, ..., ut], in
addition to the container’s current CPU needs. The process
sorts in increasing order the collected statistics in W and
takes the value corresponding to the 90th percentile. The
profiled CPU utilization at time t+1 is the maximum of the
90th percentile and the container’s predicted CPU utilization
plus an additional ∆:

ūt+1 = max(90thpercentile, ût+1 + ∆) (4)

2) CPU Stress Detection Mechanism: The Manager ex-
ecutes a CPU stress check on every hardware node that is
not currently involved in a relocation. The hardware nodes
already involved in relocations (be it as source or target)
are likely to change their CPU utilization soon, so they are
deemed unstable until all current relocations are completed.

The CPU stress check consists of two steps. First, it ver-
ifies whether the predicted CPU utilization of the hardware
node exceeds the CPU utilization threshold. Then, if the
latter is true, it checks whether k out of the previous n CPU
stress checks also exceeded the threshold, in which case

the hardware node is considered to be under a CPU stress
situation.

(ût+1 > threshold) ∧ (

n∑
i=1

(ûi > threshold) ≥ k) (5)

3) Relocation Search: The problem of finding a sequence
of relocations is complex. As it is noted in [7], the problem is
similar to the NP-hard problem N-dimensional bin packing,
but with the additional restriction that the bins are loaded
right from the beginning. For this reason, the relocation
search uses a greedy strategy to solve the problem.

After the CPU stress check round is completed the hard-
ware nodes are classified as stressed or non-stressed hard-
ware nodes. If both sets are non-empty, then the Manager
searches for a sequence of relocations to solve the CPU
stress situations. This decision making process consists of
determining which containers hosted in stressed hardware
nodes will be relocated and which non-stressed hardware
nodes will serve as a target for those relocations. The input to
the algorithm (shown in Algorithm 1) includes information
about stressed hardware nodes (denoted by SH) and non-
stressed nodes (denoted by NSH). SH and NSH are assumed
to be sorted in descending order of CPU load and ascending
order of CPU load respectively. A container is chosen to be
relocated (line 3). Currently the implementation starts with
the containers using the most CPU cycles. The next step (line
4) is to determine a target hardware node that the container is
either replicated or migrated to. The migration or replication
is then carried out (line 5).

1: for i = 0 to SH.length() do
2: while SH[i] is stressed do
3: CT = pickMostHeavilyLoadedCT(SH[i]);
4: targetHN = pickMostLightlyLoadedHN(NSH);
5: ExecuteAction(CT,targetHN);
6: end while
7: end for

Algorithm 1: Relocation search

Essentially the policy encapsulated by the algorithm is
that for each stressed hardware node the containers using the
most CPU cycles should be the first ones to be considered for
relocation. Targets of relocation should be as lightly loaded
as possible. A check of a potential target hardware node
is done to determine if the potential target hardware node
is able to accommodate the container to be relocated. For
replication, an additional check is done to determine if the
target hardware node already has a copy of the container to
be replicated.

C. Gate

The Gate component runs in a non-virtualized physical
server, which is used as the gate of the cluster (i.e., all

335

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service requests come through this physical server). Its
responsibility is to update the load balancer’s configuration
after a replication occurs.

IV. EXPERIMENTS

The objective of the experiments was to study how the
system reacted to CPU stress situations using the container
relocation mechanisms.

In order to cause CPU stress situations, load had to be gen-
erated for the containers. For this purpose, HTTP requests
were sent to web servers running inside the containers. The
HTTP requests involved dynamic content so as to increase
CPU utilization. With every request, a PHP file was executed
to process a two MBytes text file [8], counting the number
of words in the file. The execution returned a HTML file
with the result of the process. The web servers were Apache
[9] instances and the HTTP requests were generated using
httperf [10] (running on physical servers in the cluster that
were not part of the managed system).

The frequency with which requests were sent determined
the weight of the generated load. The weight of the load
was the percentage of CPU cycles required from one CPU
core to handle that load. For example, sending 1 request per
second (1 req/sec) resulted in a CPU core being used at 70%
capacity.

The metrics used to evaluate the system included lost
requests and response time of the web servers. The requests
were classified into three categories: lost, failed and success-
ful. Lost requests were those not processed before a client
timeout (client-timo). Failed requests were those where the
server refused a connection (connrefused), sent a RESET
(connreset) or replied with a Server Error 5xx status code
(reply-status-5xx). A web server’s effectiveness was defined
as the ratio of the number of successful requests to the total
generated requests.

The web servers’ response time was measured as the
average (avg) duration of the established connections (when
sending a request, a connection is established between the
client and the server, and once the reply is received, the
connection is terminated), measured in milliseconds.

The infrastructure on which Golondrina ran consisted of a
cluster where one physical server was the gate of the cluster,
another physical server was a manager server and the rest
of the physical servers were OpenVZ hardware nodes. Each
physical server was an Intel Pentium D 3.40GHz (dual-core)
with two GBytes of RAM. The containers were built with
the default resource allocation provided by OpenVZ.

A. Experiments Design and Configurations

Three different experiments were designed to evaluate
Golondrina. Each experiment used the same number of
hardware nodes, but the number of containers and the weight
of the loads varied.

Each experiment was run three times. For the first run,
Golondrina was configured to monitor the CPU utilization
and check for CPU stress situations. The relocation mecha-
nisms were disabled. This run provided a baseline, enabling
observations on how the environment performed without
Golondrina taking corrective actions.

In the second and third runs, Golondrina was configured
to use replications and migrations, respectively. The results
of these runs were compared with each other and against
the baseline.

Golondrina’s CPU stress detection mechanism was con-
figured in all cases with a CPU utilization threshold of 0.75.
Given that the physical servers possessed two cores, the
threshold was equivalent to 150% CPU capacity. (The total
CPU capacity of a physical server with x cores is equal to
x∗100%. In this case, the total CPU capacity of the hardware
nodes was 200%.) The mechanism was also configured to
trigger CPU stress checks every 10 seconds (same frequency
with which the monitoring mechanisms were configured).

The HTTP requests sent to the web servers had an
associated timeout of 10 seconds and the time span between
the start of two different loads during an experiment was 60
seconds.

1) Experiment 1: The managed system consists of two
hardware nodes, bravo02 and bravo03, and two containers,
A and B, hosted in bravo02. At a given point in time,
container A receives a load of around 70% (450 requests at
a rate of 1 req/sec). After 60 seconds, container B receives
a load of around 105% (450 requests at a rate of 1.5
req/sec). At this point in time, the hardware node bravo02
experiences a load of around 175%, which exceeds the CPU
utilization threshold of 150%. Thus, bravo02 is under a CPU
stress situation.

In this scenario, no request should be lost since the
CPU needs of both containers can be satisfied. However,
Golondrina will determine that bravo02 is under a CPU
stress situation and will try to address this situation through a
relocation. Golondrina should try first to relocate to bravo03
the container with the highest load, that is, B.

2) Experiment 2: The second experiment is similar to the
previous one with the exception that both containers receive
a load of around 105% (450 requests at a rate of 1.5 req/sec)
each. Consequently, the hardware node bravo02 becomes
CPU stressed with a load of 200% (total CPU capacity).

In this scenario, the web servers running in A and B
will lose requests, due to the lack of spare CPU cycles to
allocate to the containers. Golondrina will detect the CPU
stress situation experienced by bravo02 and will respond
by triggering a relocation for the container with the highest
load (in this case, both containers are candidates). Two
replications or one migrations should be enough to terminate
the CPU stress situation.

3) Experiment 3: In this experiment, the managed system
consists of two hardware nodes, bravo02 and bravo03, and

336

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

four containers, A, B, C and D, hosted in bravo02. One after
another, with a 60-second separation in time, the containers
receive a load of around 51% (300 requests at a rate of 0.72
req/sec). Thus, bravo02 experiences a CPU stress situation
with a load of 200%.

In this scenario, the web servers hosted in the four
containers will lose requests. Golondrina will detect the CPU
stress situation and will search for relocations in order to
dissipate it. Three replications or two migrations should be
enough to terminate the CPU stress situation.

B. Results

This subsection presents the results of the experiments
described in Subsection IV-A.

1) Experiment 1: In the first run of the experiment,
Golondrina was monitoring the CPU utilization of the
hardware node and containers, but no action was taken in
response to CPU stress situations. Figure 2 shows the CPU
utilization of containers A and B, and the CPU utilization
and predicted CPU utilization (as explained in Subsection
III-B1) of the hardware node bravo02.

The first time the CPU utilization of bravo02 went over
the 150% threshold was at t = 11. Golondrina’s CPU stress
detection mechanism signaled the problem at t = 15. Since
no action was taken, the CPU stress situation persisted and
was signaled every single time until t = 39 (included).

Since there were enough CPU cycles to satisfy the demand
of the containers, no request was lost or failed.

The web server one.com, hosted in A, had an average
connection time of 701.9 milliseconds. The web server
two.com, hosted in B, had an average connection time of
904.5 milliseconds.

In the second run of the experiment, Golondrina was to
search for feasible replications if a CPU stress situation was
detected. Figure 3 shows the CPU utilization of containers A
and B, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 4 shows the CPU
utilization of the replicas A’ and B’, and the CPU utilization
and predicted CPU utilization of bravo03.

The first CPU stress situation in bravo02 was signaled at
t = 15. At that time, Golondrina determined that container
B had to be replicated in bravo03. By t = 16 the replica
B’ had been created and the load balancer at the gate of
the cluster was updated. At t = 17, B’ had CPU load, but
then it did not process any request for three consecutive
periods. As a consequence of container B’ not receiving any
load, the CPU stress situation persisted in bravo02 and a
second CPU stress situation was signaled at t = 19. This
time container A was replicated in bravo03. It could be said
then that the creation of container A’ took place due to an
improper balancing of the load for the web server two.com,
hosted in B and B’.

At t = 17 and t = 22 it can be seen in Figure 3 and
Figure 4 that the curves sloped down. During the periods

Table I
EXPERIMENT 1 - PERCENTAGE OF SUCCESSFUL REQUESTS

Web Servers’ Effectiveness

Servers Run 1 Run 2 Run 3

one.com 100% 99.11% 100%

two.com 100% 98.44% 100%

(16, 17) and (21, 22) the load balancer was being updated,
that required it to be restarted. As a consequence, some
connections were refused or reset, and hence there was a
slight decrease in the reported load.

The web server one.com, hosted in A and A’, had 4
failed requests out of 450 (connrefused 3 connreset 1), which
resulted in an effectiveness of 99.11%. The web server
two.com, hosted in B and B’, had 7 failed requests out
of 450 (connrefused 5 connreset 2), which resulted in an
effectiveness of 98.44%.

The web server one.com had an average connection time
of 749.1 milliseconds. The web server two.com had an
average connection time of 853.0 milliseconds.

In the third run of the experiment, Golondrina was to
look for migrations upon detection of a CPU stress situation.
Figure 5 shows the CPU utilization of containers A and B,
and the CPU utilization and predicted CPU utilization of the
hardware node bravo02. Figure 6 shows the CPU utilization
of B, and the CPU utilization and predicted CPU utilization
of bravo03.

A CPU stress situation was signaled at t = 15 in bravo02.
Golondrina determined that container B was to be migrated
to bravo03. At that point, the CPU utilization of both
hardware nodes increased, due to the start of the migration
process. Since there were spare CPU cycles in both hardware
nodes, the containers saw their CPU needs unaffected.

In the period (26, 27), the migration process was com-
pleted, but it was not until t = 28 that a CPU utilization
report from container B was sent to the Manager component
(running in the manager server) by the Client component
running in bravo03. That report showed a peak of around
140% in CPU utilization, which could be attributed to the
hosted web server processing the requests that could not
be handled during the suspension period of the migration
process.

None of the web servers hosted in A and B had lost
or failed requests. That means that the web servers had an
effectiveness of 100%.

The web server one.com, hosted in A, had an average
connection time of 715.2 milliseconds. The web server
two.com, hosted in B, had an average connection time of
991.1 milliseconds.

From the web servers’ effectiveness results (Table I), it
could be concluded that the replication mechanism is not a
convenient tool since requests were lost. However, that loss

337

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Experiment 1 - No Action

Figure 3. Experiment 1 - Replication, bravo02

338

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Experiment 1 - Replication, bravo03

Figure 5. Experiment 1 - Migration, bravo02

339

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Experiment 1 - Migration, bravo03

Table II
EXPERIMENT 1 - WEB SERVERS’ AVERAGE CONNECTION TIME IN

MILLISECONDS

Web Servers’ Response Time

Servers Run 1 Run 2 Run 3

one.com 701.9 749.1 715.2

two.com 904.5 853.0 991.1

can be traced back to the load balancer’s need for a restart
when updating its configuration after a replication.

The comparison of the web servers’ response time does
not offer conclusive results (Table II).

In conclusion, when a hardware node experiences a CPU
stress situation, but the CPU is not exhausted, no requests
are lost. Thus, no action is necessary from the management
system. However, migration and replication cause no (se-
rious) performance degradation, so they could be used as
preventive actions in case the load was expected to increase.

2) Experiment 2: In the first run of the experiment,
Golondrina was monitoring the CPU utilization of the
hardware node and containers, but no action was taken in
response to CPU stress situations. Figure 7 shows the CPU
utilization of containers A and B, and the CPU utilization
and predicted CPU utilization (as explained in Subsection
III-B1) of the hardware node bravo02.

The first time the CPU utilization of bravo02 went over
the 150% threshold was at t = 11. Golondrina’s CPU stress

detection mechanism signaled the problem at t = 14. Since
no action was taken, the CPU stress situation persisted and
was signaled every single time until t = 38 (included).

Starting at t = 11 the CPU was equally shared between
the two containers, using almost 100% each. However, the
number of CPU cycles allocated to each container was not
enough for the hosted web servers to process all requests.
The web server one.com, hosted in A, had 101 lost requests
out of 450 (client-timo 101), resulting in an effectiveness
of 77.55%. The web server two.com, hosted in B, had 169
lost requests out of 450 (client-timo 169), resulting in an
effectiveness of 62.44%.

It can be seen in Figure 7 that during the interval
[36, 38] container B almost doubled its CPU utilization,
taking advantage of container A not requesting CPU cycles.
This behaviour could be attributed to web server two.com
processing all the requests that it had not been able to satisfy
before due to a lack of CPU cycles.

The web server one.com had an average connection time
of 2816.3 milliseconds. The web server two.com had an
average connection time of 3371.6 milliseconds.

In the second run of the experiment, Golondrina was to
search for feasible replications if a CPU stress situation was
detected. Figure 8 shows the CPU utilization of containers A
and B, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 9 shows the CPU
utilization of the replicas A’ and B’, and the CPU utilization
and predicted CPU utilization of bravo03.

340

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Experiment 2 - No Action

Figure 8. Experiment 2 - Replication, bravo02

341

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Experiment 2 - Replication, bravo03

The first CPU stress situation in bravo02 was signaled at
t = 14. Golondrina determined that both containers had to
be replicated in bravo03. By t = 16 the replicas B’ and A’
had been created and the load balancer at the gate of the
cluster was updated. The load balancer was first updated
(and restarted) for B’ in the period (15, 16) and updated
again in the period (16, 17) for A’. During those two periods,
it can be seen in Figure 8 that the CPU utilization of A and
B decreased, due to connections that were refused or reset.

At t = 17, containers A’ and B’ had a low CPU utilization
and remained with minimal CPU utilization until t = 20 (in-
cluded). During those periods, the requests were handled by
A and B. In consequence, the CPU stress situation continued
in bravo02 and was signaled at t = 18, 19, 20, 21, 22. At
every one of those five points in time, Golondrina could not
find suitable replications since A and B had already been
replicated in bravo03 and the system does not allow two
replicas of the same container to reside in the same hardware
node.

The web server one.com, hosted in A and A’, had 21
failed requests (connrefused 4 connreset 17) and 35 lost
requests (client-timo 35) out of 450, which resulted in an
effectiveness of 87.55%. The web server two.com, hosted in
B and B’, had 25 failed requests (connrefused 4 connreset
21) and 29 lost requests (client-timo 29) out of 450, which
resulted in an effectiveness of 88%.

The web server one.com had an average connection time
of 1408.1 milliseconds. The web server two.com had an

average connection time of 1781.4 milliseconds.
In the third run of the experiment, Golondrina was to

look for migrations upon detection of a CPU stress situation.
Figure 10 shows the CPU utilization of containers A and
B, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 11 shows the CPU
utilization of A, and the CPU utilization and predicted CPU
utilization of bravo03.

A CPU stress situation was signaled at t = 14 in bravo02.
Golondrina determined that container A was to be migrated
to bravo03. The migration process was started, increasing
the CPU utilization in bravo03. The CPU in bravo02 was
already exhausted, so the migration process competed for the
CPU with the containers. A and B saw a reduction in their
CPU allocation in the interval (14, 20] until the migration
process ended in the period (20, 21).

In the period [21, 22], container B increased its CPU uti-
lization around 180%, and in the period [24, 25] A increased
its CPU utilization around 195%. The behaviour of both
containers could be attributed to the hosted web servers
processing the requests that could not be handled during
the migration process.

The web server one.com, hosted in A, had 10 failed
requests (reply-status-5xx 10) and 89 lost requests (client-
timo 89) out of 450, which resulted in an effectiveness of
78%. The web server two.com, hosted in B, had 70 lost
requests (client-timo 70) out of 450, which resulted in an
effectiveness of 84.44%.

342

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Experiment 2 - Migration, bravo02

Figure 11. Experiment 2 - Migration, bravo03

343

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III
EXPERIMENT 2 - PERCENTAGE OF SUCCESSFUL REQUESTS

Web Servers’ Effectiveness

Servers Run 1 Run 2 Run 3

one.com 77.55% 87.55% 78%

two.com 62.44% 88% 84.44%

Table IV
EXPERIMENT 2 - WEB SERVERS’ AVERAGE CONNECTION TIME IN

MILLISECONDS

Web Servers’ Response Time

Servers Run 1 Run 2 Run 3

one.com 2816.3 1408.1 1723.6

two.com 3371.6 1781.4 1661.6

The web server one.com had an average connection time
of 1723.6 milliseconds. The web server two.com had an
average connection time of 1661.6 milliseconds.

From the web servers’ effectiveness results (Table III), it
can be concluded that migration offers an improvement over
taking no action upon detection of a CPU stress situation.
However, the migration mechanism does not achieve as
much benefit as the replication mechanism does.

The comparison of the web servers’ response time (Table
IV) shows that both relocation mechanisms help in reduc-
ing the average connection time. However, the comparison
between the second and third runs does not offer conclusive
results.

In conclusion, when a hardware node experiences a CPU
stress situation and the CPU is exhausted, some requests
will not be satisfied. Both relocation mechanisms offer a
convenient solution, since they help to reduce the losses.
However, the migration process competes with the contain-
ers for CPU cycles in the CPU stressed hardware node,
hence diminishing the benefit the migration mechanism
could provide.

3) Experiment 3: In the first run of the experiment,
Golondrina was monitoring the CPU utilization of the
hardware node and containers, but no action was taken
in response to CPU stress situations. Figure 12 shows the
CPU utilization of containers A, B, C and D, and the CPU
utilization and predicted CPU utilization (as explained in
Subsection III-B1) of the hardware node bravo02.

The first time the CPU utilization of bravo02 went over
the 150% threshold was at t = 17. Golondrina’s CPU stress
detection mechanism signaled the problem at t = 22. Since
no action was taken, the CPU stress situation persisted and
was signaled every single time until t = 51 (included).

Starting at t = 23 the CPU was equally shared between
the four containers, using almost 50% each. However, the
number of CPU cycles allocated to each container was not
enough for the hosted web servers to process all requests.

The web server one.com, hosted in A, had 36 lost requests
out of 300 (client-timo 36), resulting in an effectiveness
of 88%. The web server two.com, hosted in B, had 24
lost requests out of 300 (client-timo 24), resulting in an
effectiveness of 92%. The web server three.com, hosted in
C, had 39 lost requests out of 300 (client-timo 39), resulting
in an effectiveness of 87%. The web server four.com, hosted
in D, had 6 lost requests out of 300 (client-timo 6), resulting
in an effectiveness of 98%.

It can be seen in Figure 12 that at t = 47, when A saw
a decrease in its CPU utilization, the remaining containers
had a peak in their CPU utilization. This behaviour could
be attributed to the hosted web server processing all the
requests that could not be satisfied before due to a lack of
CPU cycles.

The web server one.com had an average connection time
of 2916.9 milliseconds. The web server two.com had an
average connection time of 2462.3 milliseconds. The web
server three.com had an average connection time of 2537.6
milliseconds. The web server four.com had an average
connection time of 2268.5 milliseconds.

In the second run of the experiment, Golondrina was to
search for feasible replications if a CPU stress situation was
detected. Figure 13 shows the CPU utilization of containers
A, B, C and D, and the CPU utilization and predicted CPU
utilization of the hardware node bravo02. Figure 14 shows
the CPU utilization of the replicas A’, B’, C’ and D’, and the
CPU utilization and predicted CPU utilization of bravo03.

The first CPU stress situation in bravo02 was signaled at
t = 23. Golondrina determined that containers A, B and C
had to be replicated in bravo03. By t = 27 the replicas A’,
B’ and C’ had been created and the load balancer at the gate
of the cluster was updated. The load balancer was updated
(and restarted) three times (one for each replication) in the
period (27, 28). During that period and the following one, it
can be seen in Figure 13 that the CPU utilization of A, B,
C and D decreased, due to connections that were refused or
reset.

At t = 28, containers A’, B’ and C’ had a low CPU
utilization and remained with minimal CPU utilization until
t = 31 (included). During those periods, the requests were
handled by A, B and C. In consequence, an additional CPU
stress situation was signaled in bravo02 at t = 30. Golon-
drina determined that D had to be replicated in bravo03,
indicating also that the action would not be enough to
dissipate the CPU stress situation in bravo02.

The web server one.com, hosted in A and A’, had 7 failed
requests (connrefused 4 connreset 3) and 2 lost requests
(client-timo 2) out of 300, which resulted in an effectiveness
of 97%. The web server two.com, hosted in B and B’,
had 6 failed requests (connrefused 5 connreset 1) and 5
lost requests (client-timo 5) out of 300, which resulted in
an effectiveness of 96.33%. The web server three.com,
hosted in C and C’, had 10 failed requests (connrefused

344

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Experiment 3 - No Action

Figure 13. Experiment 3 - Replication, bravo02

345

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Experiment 3 - Replication, bravo03

5 connreset 5) and 1 lost requests (client-timo 1) out of
300, which resulted in an effectiveness of 96.33%. The web
server four.com, hosted in D and D’, had 9 failed requests
(connrefused 5 connreset 4) and 2 lost requests (client-timo
2) out of 300, which resulted in an effectiveness of 96.33%.

The web server one.com had an average connection time
of 1151.3 milliseconds. The web server two.com had an
average connection time of 1130.8 milliseconds. The web
server three.com had an average connection time of 1281.0
milliseconds. The web server four.com had an average
connection time of 1275.9 milliseconds.

In the third run of the experiment, Golondrina was to
look for migrations upon detection of a CPU stress situation.
Figure 15 shows the CPU utilization of containers A, B, C
and D, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 16 shows the CPU
utilization of A and B, and the CPU utilization and predicted
CPU utilization of bravo03.

A CPU stress situation was signaled at t = 24 in bravo02.
Golondrina determined that container A was to be migrated
to bravo03. The migration process was started, increasing
the CPU utilization in bravo03. The CPU in bravo02 was
already exhausted, so the migration process competed for
the CPU with the containers. The four containers saw a
reduction in their CPU allocation in the interval [26, 28] until
the migration process ended in the period (28, 29).

At t = 29, A had a peak of around 170% in CPU utiliza-
tion. Taking advantage of the CPU availability, containers B,

C and D increased their CPU utilization during the interval
[29, 33], what caused a second CPU stress situation to be
signaled at t = 30. At that time, Golondrina decided to
migrate B to bravo03. The migration process ended in the
period (35, 36) and B reached a peak of around 85% in CPU
utilization after being migrated.

A final CPU stress situation was signaled at t = 37
with the CPU utilization of bravo02 being 150.48% and
becoming 100.5% at the following point in time. Golondrina
found no solution to the situation.

The web servers one.com and two.com, hosted in A and
B respectively, had 18 lost requests out of 300 (client-timo
18), which resulted in an effectiveness of 94%. The web
server three.com, hosted in C, had 14 lost requests out of
300 (client-timo 14), which resulted in an effectiveness of
95.33%. The web server four.com, hosted in D, had 19 lost
requests out of 300 (client-timo 19), which resulted in an
effectiveness of 93.66%.

The web server one.com had an average connection time
of 1051.0 milliseconds. The web server two.com had an
average connection time of 1412.8 milliseconds. The web
server three.com had an average connection time of 1343.0
milliseconds. The web server four.com had an average
connection time of 1248.8 milliseconds.

As in the second experiment, it can be concluded that
container migration offered an improvement over taking no
action upon detection of a CPU stress situation. Once more,
the benefits offered by the replication mechanism exceeded

346

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Experiment 3 - Migration, bravo02

Figure 16. Experiment 3 - Migration, bravo03

347

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
EXPERIMENT 3 - PERCENTAGE OF SUCCESSFUL REQUESTS

Web Servers’ Effectiveness

Servers Run 1 Run 2 Run 3

one.com 88% 97% 94%

two.com 92% 96.33% 94%

three.com 87% 96.33% 95.33%

four.com 98% 96.33% 93.66%

Table VI
EXPERIMENT 3 - WEB SERVERS’ AVERAGE CONNECTION TIME IN

MILLISECONDS

Web Servers’ Response Time

Servers Run 1 Run 2 Run 3

one.com 2916.9 1151.3 1051.0

two.com 2462.3 1130.8 1412.8

three.com 2537.6 1281.0 1343.0

four.com 2268.5 1275.9 1248.8

the benefits obtained through migration.

V. DISCUSSION

The experiments presented in Section IV show that both
relocation mechanisms offer an improvement over taking no
action upon detection of a CPU stress situation. Even if there
are spare CPU cycles to allocate in the stressed hardware
node, the mechanisms do not have a negative impact, which
supports the use of the relocation mechanisms as preventive
actions in case the resource utilization were to continue
increasing in the stressed hardware node.

The replication mechanism offers a better improvement
over the migration mechanism. One exception is the scenario
where enough spare CPU cycles are available at the stressed
hardware node for the migration process to use. In that
scenario, the hosted containers see no performance degrada-
tion during the migration process, and hence the migration
mechanism provides the same benefits as the replication
mechanism. This suggests the creation of a policy that can
be briefly described as follows: Replication is preferred over
migration when the CPU utilization is high. If the CPU
utilization is relatively low, then the migration mechanism is
preferred. An algorithm that implements this policy is shown
in Algorithm 2.

This policy may result in more replicas being created than
there are actually needed, but that can be dealt with by later
terminating any of the replicas.

As explained in Section III, this first prototype of Golond-
rina only manages CPU. Therefore, the prototype is limited
in its relocation search feature (Subsection III-B3). A hard-
ware node is classified as non-stressed based only on its CPU
utilization. However, the hardware node could be stressed
with respect to other resources (such as memory or network

1: for i = 0 to SH.length() do
2: while SH[i] is stressed do
3: CT = pickMostHeavilyLoadedCT(SH[i]);
4: targetHN = pickMostLightlyLoadedHN(NSH);
5: if SH[i].CPULoad > t then
6: ExecuteReplication(CT, targetHN);
7: else
8: ExecuteMigration(CT, targetHN);
9: end if

10: end while
11: end for

Algorithm 2: Relocation policy

bandwidth). The current version of the relocation search
does not address this issue and thus a container that makes
use of the stressed resource may be relocated to the hardware
node, which intensifies the hardware node’s resource stress
situation. Future work will address this limitation.

Another interesting outcome of the experiments is the
difference between the number of relocations expected in
each experiment (as described in Subsection IV-A) and the
number of relocations actually triggered by Golondrina to
deal with the CPU stress situations.

The first experiment resulted in two replications being
triggered when only one should have been enough. The CPU
stress situation that resulted in the second replication was
caused by an improper balancing of the load for the web
server two.com, hosted in B and B’, during the first four
periods after the creation of B’.

In the second experiment, no unexpected relocation took
place. However, multiple CPU stress situations were signaled
during the second run of the experiment. The reason why
no additional replications were triggered resides on the
managed system consisting only of two hardware nodes and
Golondrina being restricted by the policy of not allowing
two replicas of the same container to reside in the same
hardware node. Had more hardware nodes been available
or that policy not existed, Golondrina would have triggered
additional replications. Once more, the CPU stress situations
were originated on an improper working of the load balancer.

The third experiment resulted in one additional replication
being triggered due to the issue with the load balancer.
In addition, a third CPU stress situation was unexpectedly
signaled in the third run of the experiment. Be it noted,
however, that that third CPU stress situation was more of a
false alarm given that the CPU utilization of the hardware
node was drastically decreasing in the period when the CPU
stress situation was signaled.

If the managed system had consisted of more than two
hardware nodes, Golondrina would have triggered more re-
locations during the second and third experiments. Have ad-
ditional relocations happened, the web servers’ effectiveness
could have been improved, but with the cost of an overall

348

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lower CPU utilization at cluster-level. This may suggest that
Golondrina should give a greater grace period to a stressed
hardware node where actions have been taken to restore its
stability before checking it again for CPU stress situations.
This may suggest as well that the CPU stress detection
mechanism should take into account CPU utilization trends
(increasing or decreasing) instead of absolute measures of
CPU utilization only.

VI. RELATED WORK

Virtualization has become an essential technology in the
data center. First, because it enables server consolidation,
which may result in lowering costs for building and running
data centers. Second, because it creates a very dynamic
environment where virtual servers can be resized and relo-
cated on-demand, and new virtual servers can be promptly
instantiated. However, this introduces new challenges, which
are being addressed by the research community.

Wood et al. studied two approaches to virtual server
monitoring: black-box and grey-box [11]. Black-box mon-
itoring consisted of collecting statistics from the virtual
servers without directly contacting them. Grey-box monitor-
ing required running an additional software module inside
each virtual server to collect operating system statistics
and process application logs. The authors concluded that
the grey-box approach enabled the system to make bet-
ter informed decisions. Still, Golondrina only implements
black-box monitoring, since grey-box monitoring could be
considered an invasive mechanism that clients might find
undesirable.

Zhao and Figueiredo studied the virtual server migration
process to be able to predict its performance [12]. After sev-
eral experiments, they concluded that the migration process’
time and performance could be predicted for a number of
virtual servers based on measurements from a single virtual
server. Kochut and Beaty worked on an analytical model to
estimate the improvement in response time achieved through
a virtual server migration [13]. Given the current system load
and the virtual servers’ expected resource demand, the model
could help determine whether a migration should be started
and which virtual servers to migrate. These studies are
important for the development of decision-making support
mechanisms that could be used by management entities such
as Golondrina’s Manager.

Gmach et al. evaluated resource reallocation policies that
a node controller could use to periodically do resource
reallocation among virtual servers hosted in a physical server
[14]. Their study showed that work conserving policies were
more effective than non-work conserving policies and that
dynamically adjusting workloads’ priority resulted in better
compliance with Service Level Objectives. These results
would be useful if we were to incorporate hardware node-
level resource reallocation to Golondrina.

Zhu et al. developed an automated resource management
system composed of three controllers that worked at dif-
ferent hierarchical levels and intervals in time [15]. Node
controllers would reallocate resources among the workloads
hosted in the physical server they were responsible for,
pod controllers (a pod was a set of nodes) would migrate
workloads between physical servers in their pod, and pod
set controllers would migrate workloads between pods. The
controllers implemented different analytic techniques, such
as control theory, bin packing, and trace-based analysis. The
integrated work of these controllers offered great results
in terms of resource utilization and Quality of Service.
Golondrina’s Manager component fulfills a similar role to
that of the pod controller. However, Golondrina’s Manager
executes both migrations and replications, whereas the pod
controller only executes migrations.

Kumar et al. addressed the lack of coordination between
management systems in data centers [16]. They proposed
a framework that loosely coupled platform management
and virtualization management, and enabled coordinated
management actions to be taken. They concluded from their
experiments that coordinated management resulted in energy
savings, greater stability, and better Quality of Service being
provided.

Munasinghe and Anderson worked on developing a data
center architecture (hardware and software configuration)
that could provide guaranteed Quality of Service to its
clients [17]. They developed two mechanisms to do resource
scaling: horizontal scaling (virtual server replication), and
vertical scaling (resource allocation adjustments and vir-
tual server migration). Their approach to resource scaling
was similar to the one implemented in Golondrina. Their
prototype at the moment, however, could not do horizontal
scaling.

VII. CONCLUSION AND FUTURE WORK

This work is one of the very few (if any at all) that pro-
poses a resource management system for operating system-
level virtualized environments. In addition, this is the first
study that uses replication as an alternative to migration
and compares both mechanisms. Others have proposed to
do replication, but have not done it [11]. Others have
implemented replication, but not migration [17].

There are many ways in which Golondrina could be
extended. One of them is implementing a mechanism to
monitor the activity of replicas and stop those that become
unnecessary (see Section V). Another extension is to imple-
ment a CPU under-stress detection mechanism, which would
detect and suspend lightly loaded hardware nodes.

Adding memory and network as managed resources is
obviously a very attractive extension. A second prototype
of Golondrina has already been developed featuring a mem-
ory stress detection mechanism and a simple heuristic for
adjusting memory allocations [18].

349

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Currently, we are studying the interaction between the
CPU and memory subsystems and the management strate-
gies that can be implemented to solve different combinations
of resource stress situations.

ACKNOWLEDGMENTS

We would like to thank the National Sciences and En-
gineering Research Council (NSERC) of Canada for their
support.

REFERENCES

[1] G. Keller and H. Lutfiyya, “Replication and migration as
resource management mechanisms for virtualized environ-
ments,” in ICAS ’10: Proceedings of the 2010 Sixth Inter-
national Conference on Autonomic and Autonomous Systems.
Washington, DC, USA: IEEE Computer Society, 2010, pp.
137–143.

[2] A. McCloskey, B. P. Simmons, and H. Lutfiyya, “Policy-based
dynamic provisioning in data centers based on slas, business
rules and business objectives,” in IEEE/IFIP Network
and Operations Management Symposium (NOMS 2008),
Salvador, Bahia, Brazil, Apr. 2008. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4575243

[3] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive control of virtualized
resources in utility computing environments,” in EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007. New York, NY,
USA: ACM, 2007, pp. 289–302.

[4] (2010, Aug.) Openvz project. [Online]. Available:
http://openvz.org/

[5] K. Kolyshkin. (2005) Virtualization in linux. openvz-
intro.pdf. Documentation on OpenVZ. [Online]. Available:
http://download.openvz.org/doc/OpenVZ-Users-Guide.pdf

[6] G. Box, G. M. Jenkins, and G. Reinsel, Time Series Analysis:
Forecasting And Control, 3rd ed. Prentice Hall, Feb. 1994.

[7] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson, “Au-
tonomic virtual machine placement in the data center,” HP
Laboratories, Palo Alto, CA, USA, Tech. Rep. HPL-2007-
189, Dec. 2007.

[8] (2010, Aug.) Don quijote by miguel de cervantes
saavedra - project gutenberg. [Online]. Available:
http://www.gutenberg.org/etext/2000

[9] (2010, Aug.) The apache http server project. [Online].
Available: http://httpd.apache.org/

[10] (2010, Aug.) Httperf site. HP Labs. [Online]. Available:
http://www.hpl.hp.com/research/linux/httperf/

[11] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-box and gray-box strategies for virtual machine migra-
tion,” in Proceedings of the Fourth Symposium on Networked
Systems Design and Implementation (NSDI’07), Cambridge,
MA, USA, Apr. 2007, pp. 229–242. [Online]. Available:
http://www.usenix.org/events/nsdi07/tech/wood.html

[12] M. Zhao and R. J. Figueiredo, “Experimental study of vir-
tual machine migration in support of reservation of cluster
resources,” in VTDC ’07: Proceedings of the 3rd interna-
tional workshop on Virtualization technology in distributed
computing. New York, NY, USA: ACM, 2007, pp. 1–8.

[13] A. Kochut and K. Beaty, “On Strategies for Dynamic Re-
source Management in Virtualized Server Environments,” in
MASCOTS ’07: Proceedings of the 2007 15th International
Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 193–200.

[14] D. Gmach, J. Rolia, and L. Cherkasova, “Satisfying ser-
vice level objectices in a self-managing resource pool,” in
SASO ’09: Proceedings of the 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
243–253.

[15] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia,
S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner,
T. Christian, and L. Cherkasova, “1000 islands: Integrated
capacity and workload management for the next generation
data center,” in Proceedings of the 2008 International
Conference on Autonomic Computing (ICAC’08), Chicago,
IL, USA, Jun. 2008, pp. 172–181. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=4550838

[16] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and
K. Schwan, “vmanage: loosely coupled platform and virtu-
alization management in data centers,” in ICAC ’09: Pro-
ceedings of the 6th international conference on Autonomic
computing. New York, NY, USA: ACM, 2009, pp. 127–
136.

[17] G. Munasinghe and P. Anderson, “Flexiscale
- next generation data centre management,” in
UKUUG Spring Conference, 2008. [Online]. Available:
http://homepages.inf.ed.ac.uk/dcspaul/publications/ukuug2008.pdf

[18] A. Pokluda, G. Keller, and H. Lutfiyya, “Managing dy-
namic memory allocations in a cloud through golondrina,”
in Proceedings of the 4th International DMTF Academic Al-
liance Workshop on Systems and Virtualization Management
(SVM’10), Oct. 2010, (Accepted to appear).

350

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Coordinated Exploration and Goal-Oriented Path Planning using Multiple UAVs

Christoph Rasche, Claudius Stern, Lisa Kleinjohann, and Bernd Kleinjohann
Faculty of Computer Science, Electrical Engineering and Mathematics

Department of Computer Science
University of Paderborn

Paderborn, Germany
crasche@c-lab.de, claudis@c-lab.de, lisa@c-lab.de, bernd@c-lab.de

Abstract—Successful rescue operations after big accidents
or natural disasters require a fast and efficient overview of
the overall situation. Using aircrafts is an efficient method to
achieve such an overview in relatively short time. With recent
advances, unmanned aerial vehicles (UAVs) are more and more
a viable choice under such circumstances.

With the number of employed UAVs, the problem of coordi-
nation arises as well as proper task allocation among possibly
heterogeneous UAVs. Coordination has to be done so that
redundant exploration and collision of UAVs with each other
are avoided.

This paper presents a hybrid approach for UAV coordination
that covers the exploration of unknown terrains as well as goal-
oriented coordination and simultaneous task allocation. The
approach combines the simplicity of the gradient method with
informed A∗ search and supports prioritized task assignment.
It is based on the potential field theory using harmonic
functions. Only one single configuration space for representing
all relevant information, regarding the terrain and the UAVs
is used. The system is suited for highly dynamic environments
requiring frequent path recalculations.

Keywords-Path Planning, Multiple UAVs, Exploration, Coor-
dination, Potential Field Theory, Harmonic Functions

I. INTRODUCTION

Over the last years, unmanned aerial vehicles (UAVs)
received increasing attention in rescue operations. They can
be used to explore terrains and are able to relieve humans
from dangerous and risky tasks.

Through the use of cameras, it is for instance possible
to detect victims or dangerous situations like fire nearby
explosives. Such information can be used to coordinate the
assistants at the accident site.

Another task, which can be solved is to take measure-
ments in the air, e. g., after a volcanic eruption without
risking the life of pilots.

A major task in rescue operations is the exploration of
the disaster area. This is important to get an overview of the
surroundings and to locate victims. It is necessary to obtain
such an overview as fast as possible to start effective rescue
operations and–in some cases–to avoid an escalation of the
situation, e. g., when explosives are detected near a fire.

Exploratory navigation includes determining all obstacles
and goals in a given environment. UAVs travel from their
initial positions to one or more different goal positions, while

avoiding obstacles and recognizing landmarks and objects.
Therefore, the UAVs have to memorize the explored space
to plan efficient paths to unknown territory.

In rescue scenarios often places can be identified by the
staff where victims are very likely to be found. These areas
will be explored first. To take this into account it is possible
to mark areas as given goal areas.

The main challenge is to design a system, which covers
all the following aspects: autonomous exploration, flying to
given targets, and the coordination of multiple UAVs. So, the
system to be designed has to manage exploratory navigation
as well as goal-oriented planning. Also a task allocation
amongst the UAVs is needed.

Another point is that the system has to be efficient. In
medical emergencies often every second counts. A system,
which needs a long time span to plan paths gives away
important time for lifesaving. This means that every calcu-
lation, necessary for path planning, should be done without
any noticeable delay.

In this paper, an approach combining exploratory navi-
gation, goal-oriented path planning and simultaneous task
allocation is presented. It gives a more detailed view of
the work presented at the ICAS 2010 [1]. The presented
approach is based on artificial potential fields (Section II-D).
Path generation then utilizes an informed search algorithm in
combination with a gradient method (Section VI). To obtain
the desired efficiency, several methods (Section V-C), like a
quadtree and an activation window, are used to reduce the
calculation costs for path planning. The system ensures a
complete exploration of unknown regions and scales well in
relation to the number of operating UAVs.

The presented system has two modes of operation, which
change automatically during runtime, dependent on the
existence or absence of goals: goal-oriented and non-goal-
oriented mode.

Every single UAV has an individual configuration (Sec-
tion IV-B), amongst others containing its task list. In goal-
oriented mode a UAV has one or more prioritized tasks
(goals). In non-goal-oriented mode exploration of the com-
plete territory will be done. The approach is cost-efficient be-
cause of the combination of the advantages of goal-oriented
path planning with the simplicity of gradient methods for

351

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exploration. UAVs without a given goal always move to the
nearest unexplored region to optimize exploration. Local as
well as global information is used to coordinate multiple
UAVs and to generate consistent trajectories. Areas, which
probably contain important information can be explored first.

To even support exploration in goal-oriented mode, there
is an adjustable tradeoff for the maximum allowed deviation
from the shortest path to explore unknown regions (Sec-
tion V-A). In many cases, gathering new information is also
important and a small detour is worth a slight increase of
flight time.

The paper is organized as follows. In Section II we show
the basics of our approach and some differences to other
research. Section III gives an overview of the system we
developed. Section IV shows our configuration space, which
is used as world model. In Section V we explain how we
calculate the potential field using harmonic functions. In
Section VI we show the path planning algorithms using
the potential field to calculate smooth paths that guarantee
obstacle avoidance and always lead to the goal if a path
exist. In Section VII we show several results for exploratory
navigation including the calculation costs. Finally, Section
VIII gives a conclusion and a perspective of future work.

II. RELATED WORK

This section describes related work in the fields of ex-
ploration, path planning, and task allocation. Afterwards,
the theoretical background for the methods used in our
approach is introduced. We start with the basic problem of
path planning, which leads to the concept of a configuration
space C, and show an overview of the used approaches,
based on C.

Today the potential field theory [2] is used in several re-
search areas, e. g., when autonomous robots have to explore
terrains [3], [4], [5] or in game theory for path planning of
units in strategy games [6]. Several different potential field
techniques exist for the different applications.

Exploration of unknown terrain is one of the most im-
portant tasks of UAVs. Sawhney et al. [7] presented an
exploration system for multiple robots and UAVs in 2D and
3D environments. Their work is focused on an asynchronous
exploration strategy in unknown terrains. Asynchronous
means that in contrast to synchronous allocation only UAVs,
which have stopped are considered for the next exploration
of unknown terrain.

Their main goal is to find several paths, which completely
explore the terrain, such that the time needed for exploration
is reduced as much as possible and the height of the path
over any point is constrained to lie beneath an exposure
surface. For this purpose they subdivide the terrain using
an occupancy grid and plan their paths based on this data
structure. In simulations they showed that their approach
explores the terrain faster than a synchronous one.

Another part of UAV navigation is goal-oriented path
planning. Jung et al. [8] showed a hierarchical path planning
approach, including a control algorithm for one single UAV.
The UAV had to accomplish the mission objective with
limited computational resources. This was to reach a goal
destination, while avoiding obstacles.

They start path planning using the A∗-algorithm as an
informed search algorithm. Afterwards, a path smoothing
takes place and the calculated path is followed by an auto
pilot.

Like our approach, theirs is based on a multiresolution
decomposition of the environment for path planning too,
such that a coarser resolution is used far away from the
agent, whereas fine resolution is used in the vicinity of the
UAV.

For task allocation a scheduling was introduced. To in-
crease the efficiency of their approach a real-time kernel
was used. They demonstrated that the UAV with its limited
resources managed the mission objective by using a real-
time kernel.

Nikolos et al. [9] showed a goal-oriented approach based
on evolutionary algorithms, which is capable to navigate
through explored and unexplored terrain to a given goal.
They distinguish two problems:
• UAV navigation using an offline planner, considering a

known 3D environment
• UAV navigation using an online planner, considering a

completely unknown 3D environment
In this context offline planning means that a complete path
from the initial position of the UAV to the goal position is
calculated in advance, whereas in online planning a nearly
optimal path will be generated to an intermediate position
within the sensors’ range. During flight time this is repeated,
until the goal position is reached.

They considered the path planning problem within an
evolutionary algorithm context, in which B-Spline curves are
used to represent the path line. The evolutionary algorithm
models the coordinates of the UAV’s control points as
artificial chromosome genes.

They used the potential field theory combined with a
grid-based cell decomposition method as underlying system
on which path planning is done. Their results show that
it is possible to find feasible paths efficiently by using
evolutionary algorithms. This solution could be reached cost-
efficiently since only a few iterations were needed to find a
feasible solution. The most costly part was to optimize the
solution.

All these approaches consider either goal-oriented or non-
goal-oriented path planning. In this work we present a
combined approach that considers three aspects: exploratory
navigation, goal-oriented path planning and simultaneous
task allocation. Our approach works in completely unknown
environments as well as in (partially) known environments.
Paths are always computed offline, which means that our

352

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach calculate paths to given goals or to unexplored
areas a priori and the UAVs follow them. If obstacles appear,
which lie in the trajectory of any UAV, a recalculation is
triggered.

For example in [7] no task allocation is done and the
UAVs are considered to be homogeneous (at least in terms
of exploration capability). In contrast, the UAVs in this work
are considered to be heterogeneous and, in particular, some
tasks can be solved only by a matching UAV. Additionally,
in this work exploration of some areas is needed repeatedly
as data can become obsolescent over time.

In contrast to most path planning approaches, which focus
on the optimization of the path length or where the tests
always end after one single exploration of the terrain, we try
to lower the time for exploration of a terrain. In our work
in some circumstances detours are allowed or even desired
(Section V-A). The cases where detours are allowed are in
goal-oriented mode. Taking a detour to explore some new
terrain leads to an information gain, which can be important.
To avoid paths where the detours increase the time needed
to reach given goals too much the maximum length of the
detours can be defined a priori (Section V-A). Additionally,
as information can become obsolescent, explored terrain
becomes unexplored again after some time.

A. Path planning basics

Path planning is a wide area of research. A lot of
approaches to plan paths are described in the literature.
But most approaches are based on a few basic methods.
Most commonly used are the following three methods or a
combination of them:

1) Roadmap method
2) Cell decomposition
3) Potential field theory
The roadmap method’s basic idea is to create a roadmap,

which reflects the connectivity of the free space. If such a
roadmap exists, path planning is simple. Only the initial and
the goal configuration must be connected to the roadmap.
A feasible path is found by simply following the path in
the roadmap, if both configurations can be connected to it.
Otherwise, no feasible path exists. Kazemi et al. [10], e. g.,
combined the roadmap method with cell decomposition.

We combine cell decomposition with the potential field
theory. For this a subdivision of the whole terrain into several
subareas is done using a quadtree. Afterwards, each area gets
a so-called potential value φ. Based on these values path
planning can be done. A detailed description of this process
is given in the further sections.

All methods are used to solve the basic problem to plan
paths, which can be described as follows:

Let A be a UAV. It moves in a Euclidean space W ,
represented as RN (in our case N = 3). Additionally,
B1, · · · ,Br|Bi ⊂ W, (i = 1, · · · , r) are fixed objects
distributed in W . Every single Bi is an obstacle. Assume

that the geometry and the position of A is known. The Bi
can be known but they don’t have to be. Further we assume
that A is not restricted in its movement through kinematic
constraints. This leads to the following problem:

Given an initial position and direction plus a goal position
and direction of A in W , calculate a path τ consisting of a
consecutive sequence of positions and directions of A under
avoidance of contact with any Bi. The path has to start at
the initial position and must end at the goal position. Return
an error, if such a path does not exist.

All path planning problems have in common that a path
from the initial configuration to the goal configuration must
be found. This leads to the concept of the configuration space
[11].

B. Configuration space

The configuration space C ⊂ Rn, with n describing the
dimension of C is used to represent the UAV A within a
terrain W . A configuration q ∈ C is a tuple q1, · · · , qn. The
n independent variables can, e. g., represent the position,
the role and tasks of a UAV. A comes with a specific
role and tasks, which have to be fulfilled. In our work
A is represented as a point p ∈ W . The point p is also
the position of A in W . So, UAV A has a configuration
qA ∈ C that consists of all relevant properties of A, e. g., the
current position p and its direction. Following the definition
of Barraquand et al. [11] one can consider a geometrical
application, which maps any configuration q to the point p
in the terrain. This map

X : C → W,
q 7→ p = X(q)

is called the forward kinematic map. C is the union of all
possible configurations q.

A Cartesian coordinate system FW is embedded in C. In
our work a configuration of A is the specification of the
position and direction of A in consideration of FW , plus
its role, fuel level, maximum and favorite height and its
tasks. The position of the UAV in W is called pA. Due to
consistency C is discretized like the real space using cell
decomposition.

1) Occupied space: The workspace of A contains a finite
number of obstacles Bi, i = 1, · · · , r. Obstacles can, e. g.,
be skyscrapers, mountains or other UAVs, which lie in the
trajectory of the UAV. Each obstacle Bi is in CBi ⊂ C of
those configurations in which the UAV would take a position
inside an obstacle Bi. This means:

CBi = {q ∈ C|X(q) ∈ Bi},∀i = 1, · · · , r.

Configurations including these positions are forbidden as
they lead to damage of the UAVs.

353

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Free space: Due to the existence of obstacles the
UAVs are not able to take every position in C. With the
definition of CBi it is possible to calculate the allowed
configurations of the UAVs. This subset of configurations
in which the UAVs do not take positions within an obstacle
is called free space. This means:

Cfree = C \
r⋃

i=1

CBi.

Every configuration q ∈ Cfree is called a free configuration.
Using this modeling a collision-free path from a start confi-
guration qstart to a goal configuration qgoal is a consecutive
map τ : [0, 1]→ Cfree with τ0 = qstart and τ1 = qgoal .

C. Cell decomposition

The main idea of cell decomposition is the subdivision
of C into disjoint areas, called cells or leaves. An important
part is the connectivity graph G. It captures the structure of
C. Each subarea is represented through a leaf. A distinction
between exact and approximative approaches is made. We
use an approximative approach due to cost reductions when
dynamic changes take place.

The subdivision is made through the introduction of an
internal data structure. This structure has to contain all
relevant data, like positions and dimensions of the subareas,
positions of obstacles and so on.

One of the most commonly used approaches are grids.
They subdivide W into a number of equally sized subareas.
One disadvantage of this approach is that it does not
take into account neighboring areas with equal properties,
e. g., several neighboring areas, which are occupied space.
Neighbors of a current area are all areas, which have one or
more border points in common with the current one. For cost
reduction it is more efficient to combine such neighboring
areas to one big area, so that only one big area has to be
taken into account for calculations.

Therefore we use a quadtree for the subdivision of W .
The quadtree divides the complete space into four subspaces
of equal size. These subspaces are recursively divided into
four subspaces. Subdivision stops when the enclosed space
of a leaf is of homogeneous type or a pre-defined maximum
breakdown is reached. Homogeneous means that the space
consists of only one type, e. g., occupied space. If the given
breakdown is reached and the space is not homogeneous, an
approximation is done: Every leaf which includes occupied
space will be marked as occupied space. Otherwise, if the
space includes different types of Cfree , it is marked with
that type of space, which constitutes the largest part of the
leaf. After subdivision, the complete terrain is represented
through the leaves of the quadtree, i. e., the union of all
leaves represents W .

One disadvantage of a simple quadtree in contrast to
a grid is, that finding neighbor leaves is more costly. It
takes logarithmic time instead of constant time when using

a grid. This becomes more important as neighbor finding
is one of the operations needed most. It is necessary for
potential calculations (Section V-B) and for finding paths
(Section VI).

To take this into account, we extended the quadtree to
a linear quadtree [12]. For transforming a quadtree into a
linear quadtree each node of the tree gets a unique code
and its level is saved. With this information it is possible
to find neighboring nodes with constant time complexity on
average.

The approach of cell decomposition is combined with the
potential field theory in such a way, that a so-called potential
value φ is assigned to each leaf of the quadtree.

D. Artificial potential fields for motion planning

The idea of using artificial potential fields for motion
planning was introduced in 1985 by Khatib [2]. Using
this technique a manipulator moves in a field of artificial
forces. The idea is that paths can be obtained through linear
superpositions of these fictitious forces or their potentials
φ, which affect the UAV. The positions to be reached are
modeled as attractive poles and obstacles are modeled as
repulsive poles for the UAVs. So, a field of forces that affects
the complete terrain has to be realized. This can be done
using potential values. Therefore, the terrain is divided into
sub-terrains, which get potential values. The difference of
the potentials of two neighboring areas can be used to model
forces. Two types of forces based on two types of potentials
exist:
• Attractive forces, which represent goals and pull the

UAVs towards them.
• Repulsive forces, which represent obstacles and push

the UAVs away from them.
For a proper modeling of potential fields these attractive
forces must fulfill two requirements:

1) they have to affect the whole configuration space and
2) they must always lead to the goal.
Figure 1 shows an example for an attractive potential.

The goal to be reached is in the middle of the potential field
shown in Figure 1 and all surrounding potential values are
higher. So, following the descent gradient will always lead
to the goal.

Suppose that the first condition is not fulfilled. Then there
would exist areas in which no forces act. If the UAV started
in such an area, it would never move. Another problem
occurs if a UAV flies into such an area. In that case the
UAV would usually stop flying. Reaching the goal is not
possible then.

The second condition is crucial for reaching the goal,
too. If there exist forces, which do not lead to the goal, it
would be possible that the UAV selects a trajectory, which
makes it impossible to reach the goal. Several possibilities
to guarantee forces as demanded exist. One possibility is to

354

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. An example for an attractive potential.

adjust the potentials like a cone. The determining value can,
e. g., depend on the Euclidean distance to the goal, as it is
shown in Figure 1.

Repulsive forces have to fulfill two requirements, too:
1) they have to affect only a specified surrounding area

of the obstacle and
2) they must always lead away from the obstacle.
Figure 2 shows an example for a repulsive potential. The

obstacle is in the middle of the potential field shown in
Figure 2 and all surrounding potential values are less than
that of the obstacle. So, following the descent gradient will
always lead away from the obstacle.

Figure 2. An example for a repulsive potential

The first condition is needed to ensure that obstacles do
not affect the complete configuration space. An effect on the
complete configuration space can affect the trajectories of
the UAVs in such a way that they take unnecessary detours.
The second condition ensures that UAVs will not be pulled
toward obstacles, which would lead to crashes.

To ensure the two conditions repulsive potentials can be
based, e. g., on the Euler’s number, as it is shown in Figure 2.

In such a field of forces a path follows the descent
gradient within the potential field. It keeps a UAV away
from obstacles and pulls it towards the goal.

However, there are some problems when using such
potential fields, especially in case of complex and highly
dynamic environments. The basic movement in such a field
is often done using a gradient method. In this case a UAV
is pulled toward the goal. However, obstacles lying around
the UAVs trajectory may cause the occurrence of so-called
local minima. These minima are one of the most important
problems.

A local minimum occurs if a single potential value is less
than all surrounding potential values. In that case the driving
force vanishes and the UAV gets trapped. Several methods to
avoid and to get out of these minima exist. We use harmonic
functions [13] for calculating one global artificial potential
field. This avoids the generation of local minima.

E. Harmonic Functions

Using harmonic functions for potential value calculation
was done first by Connolly and Burns [13] in 1990. One of
the advantages of these functions is that one can prove that
local minima can be avoided. Additionally, consistent and
collision-free paths can be calculated. Harmonic functions
satisfy Laplace’s equation in n dimensions:

∇2φ =

n∑
i=1

∂2φ

∂x2i
= 0.

Namely, φ must be two-times differentiable and the second
partial derivatives of the potential φ must be zero. Addi-
tionally, φ must be strictly increasing, e. g., dependent on
the distance to the goal. The value of φ is given on a
closed domain Ω in the configuration space C (Section IV)
and satisfies the min-max principle1 and the uniqueness
principle2 [14], [15]. The min-max principle means that the
potential function has its maximum and minimum values at
its boundary points (in our case obstacles and goals). So the
min-max principle can guarantee that no local minimum can
have a potential value less than that of a global minimum and
no saddle point can have a greater potential value than an
obstacle. The uniqueness principle means that no two areas
have the same potential value. This guarantees the absence
of flat regions.

Connoly [16] showed that it is possible to generate paths
without spurious minima. Combining harmonic functions
with Dirichlet’s boundary conditions leads to a value-
restricted configuration space, which is important for cal-
culations with discrete arithmetic. To respect Dirichlet’s

1A harmonic function f(x, y) defined on a closed domain Ω takes its
minimum and maximum values on the boundary.

2If f(x, y) and g(x, y) are harmonic functions defined on Ω such that
f(x, y) = g(x, y) for every bound point, then f(x, y) = g(x, y),∀x, y

355

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

boundary conditions we bound goal areas with the potential
value 0 and occupied areas with the value 1.

Every harmonic function defined on a compact region
Ω = ∂Ω ∪ Ω satisfies three properties [13]:

1) Every harmonic function is analytic.
2) Select a point qd to be a goal point with the constraint

that φ(qd) = 0. Set all obstacle boundary points p
to some constant φ(p) = c. All harmonic functions
satisfy the min-max principle, so φ is polar. That
means that qd will be the point at which φ attains
its minimum value at Ω and all streamlines lead to qd.

3) If c is set to 1, φ will be admissible in our sense. This
is a simple normalization.

Additionally, harmonic functions have several valuable prop-
erties [13]:

• Completeness up to discretization error
• Fast surface normal computation
• Ability to exhibit different modes of behavior (grazing

vs. avoidance)
• Robust control in the presence of unanticipated obsta-

cles and errors
• Lack of spurious local minima
• Linear superpositioning
• Robustness with respect to geometrical uncertainty
• Continuity and smoothness of configuration space tra-

jectories

Completeness in terms of path planning is given if one can
guarantee that a path from each initial position to each goal
position will be found if such a path exists. It is possible
that a coarse discretization disables the finding of a path
as shown in Figure 3, where the grey area represents an
obstacle. Each leaf, which contains a part of the obstacle
is treated as occupied space to ensure collision avoidance.
Using a fine discretization as shown in Figure 3(a) makes a
path planning from the start to the goal position possible. In
Figure 3(b) the coarse discretization makes it impossible to
find a route around the obstacle. This discretization errors
cannot be compensated by harmonic functions.

Originally, harmonic functions were used for path plan-
ning only with a fixed map and one single known goal.
But one can show that they also are well suited to dynamic
environments with multiple UAVs and goals.

One problem of harmonic functions is their superposi-
tioning. As Connolly mentioned [13], there is no guarantee
that in complex or dynamic environments obstacles are
avoided when superpositioning is used. The potential values
in the neighborhood of an obstacle depend not only on that
obstacle’s potential, but also on every other obstacle’s or
possible goals’ potentials. If the configuration or the strength
changes, the path of a UAV can get infinitely close to the
obstacle. The only structure that can be safely modeled as
obstacle this way is a point itself, which cannot get affected.

Figure 3. The figure shows two different discretizations of some terrain,
including a grey area, which symbolize an obstacle. While in Figure a) a
path from the start position to the goal position can be found, using the
discretization in Figure b) it is not possible to plan a path from the start to
the goal position.

III. OVERVIEW OF THE APPROACH

This section gives a basic overview of our approach. For
financial reasons the approach was implemented first as a
simulation environment. The detailed description is given in
the following sections.

In our work the presented path planning approach is
considered to be a centralized one, in terms of using one
global configuration space C to model the world in which the
UAVs act. Path planning itself can be done in a centralized
manner using a control station or in a decentralized way by
the single UAVs.

On the one hand, UAVs have to explore unexplored parts
of the terrain, while objects and landmarks must be recog-
nized. Their position and size has to be noticed. Additionally,
the UAVs must keep track of regions already visited to plan
efficient paths to still unexplored regions of the territory.
On the other hand, UAVs have to find collision-free paths
from their initial positions to given goal positions. In both
cases they act autonomously without any human interaction
(except insertion and deletion of goals).

According to [17], it is possible to divide path planning
into three general categories:

1) global path planning: A complete path from the posi-
tion of the UAV to the goal will be computed.

2) local path planning: Several paths which lead towards
the goal are planned and compared with each other.

3) reactive path planning: Only the next step is computed
dependent on the current situation.

This work presents an approach combining global and reac-
tive path planning for exploratory navigation. Additionally,
the global approach is used to find paths to designated goal
positions.

To ensure an efficient goal-oriented path planning using
multiple UAVs, a coordination of the UAVs is indispensable.
The coordination is done using a task allocation system. To
ensure this, each UAV has a so-called role (Section IV-B)
and schedules the given goals, based on this role.

356

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To explore the terrain and to gain information about
it, each UAV has one or two cameras. Different types of
cameras, like infrared cameras, are used.

The simulation system currently used to evaluate our
approach consists of two types of components, representing
a single control station and the UAVs, respectively. Both
make use of the same path planning library. The library
contains the gradient method as well as the A∗-algorithm and
a neighbor finding algorithm. Figure 4 shows an overview
of the system.

Figure 4. Overview of the designed system.

A. Control station

A control station was realized to represent the confi-
guration space C, which holds the data needed for path
planning, including the properties of each UAV and the
terrain, like positions of known obstacles, explored and
unexplored space, position of the single UAVs, etc.

To distinguish between Cfree and CBi a subdivision of
the terrain is needed. We use a quadtree, which is one of
the most commonly used data structures to subdivide 2D
terrains. By extending the quadtree to a linear quadtree
we are able to find neighbors and to update the structure
dynamically in constant time. Dynamic changing of the
quadtree is needed to respect changes of the terrain due to
exploration and aging of the information about subareas. The
quadtree was designed in such a way that the union of the
areas represented by all its leaves is the complete terrain.

Based on this subdivision it is possible to use the potential
field theory for path planning. Therefore, each leaf gets
a potential value, dependent on its distance to goals and
obstacles.

The potential values φ are used to calculate paths, combin-
ing them with a gradient method for exploratory navigation
and the A∗-algorithm for goal-oriented path planning. For
path planning only 2 dimensions are used. With respect to
the different camera types of the UAVs, which have different
properties, the third dimension, the height of the UAVs over
ground is calculated by themselves.

The control station comes with a visualization of the ter-
rain and the UAVs. For this purpose a 3D environment was
implemented. It shows the positions of the single UAVs and
is able to display their configurations. To display the terrain
heightmaps are used. A heightmap is a monochrome picture
where the value of each pixel represents the height of a
single area of the terrain. The advantage of using heightmaps
is that new terrains can be created easily. Additionally, the
visualization allows an interaction between the user and the
system. It is possible to set up new goals or obstacles and
to delete them dynamically during simulation.

B. UAV

The UAVs were implemented as an external program.
They consist of the UAV configuration qA and schedule
given goals, based on their role. Additionally, they are able
to plan paths, based on a copy of C, they can ask for. Hence,
path planning can be decentralized through the UAVs or
centralized, as a UAV can ask the control station to plan a
path from the UAV position to each goal position.

The UAVs communicate with the control station using
TCP/IP. They send their configuration periodically to the
control station and can ask for path planning, a copy of the
configuration space and additional information.

In our model, a UAV is unable to fly backwards, so it
must be able to plan its motion, based on its direction and
the goal direction. The movement calculation of a UAV for
flying along the calculated path is done by itself.

Additionally, the UAVs have to calculate their height over
the terrain. Each UAV has a favorite height with respect to
its cameras. The resulting height over ground depends on a
UAVs favorite height, the height of the terrain it is currently
over and the height of the terrain it reaches next, as it is
known so far. Considering also the height of the next terrain
leads to a smoother flight when flying over terrains with
huge height differences, if for instance steep faces lie in the
trajectory of a UAV.

C. Pathplanning library

We developed a library, which can be used by the control
station and the UAVs to calculate a path. This ensures that
both a centralized path planning by the control station and
a decentralized path planning by the single UAVs can be
done. Using a library avoids a redundant implementation of
the algorithms in the control station and the UAV. Therefore,
the library implements the gradient method for exploratory
navigation and the A∗-algorithm for goal oriented path
planning. Additionally, the neighbor finding algorithm is
implemented, as it is needed to calculate paths.

IV. CONSTRUCTION OF THE CONFIGURATION SPACE

This section gives a more detailed description of the
configuration space. We start with the cell decomposition

357

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach. Afterwards, we present the configuration of a
UAV, which is necessary for path planning.

In order to represent the complete scenario, the configu-
ration space has to contain the coordinates and identities
of all UAVs, goals, obstacles, known and unknown areas.
This section, therefore, describes how the complete area is
discretized into leaves using a quadtree. Afterwards, it is
presented how additional information regarding the UAVs,
like fuel level or individual tasks, are represented. Finally,
the section discusses how the recalculation complexity of C
can be decreased to a level at which online calculation is
feasible.

A. Quadtree

As mentioned before, the configuration space is divided
by a quadtree and each UAV is represented as a point
in C. The subdivision is done in several steps. First C is
divided into free space Cfree and occupied space CBi. When
representing the UAV as a point in C the dimensions of the
UAVs are not considered. However, to ensure a collision-
free path it is necessary to consider their dimensions. This
is done using obstacle growing, whereby the occupied space
is expanded by the dimensions of the UAVs in all three
dimensions.

Finally, the resulting Cfree is subdivided into unknown,
unexplored, explored and goal space. These space types are
represented through different leaf types. This subdivision
changes dynamically during runtime.

Note the distinction between unknown and unexplored
space. Unknown space represents areas with no information
about the terrain height. Unexplored space represents areas
without up-to-date information. Hence, during a rescue
mission the age of some data is of crucial importance. If the
exploration time of a region exceeds a pre-defined threshold,
the according region becomes unexplored again, but it can
never become unknown again.

The resulting nodes store several properties as shown in
Table I.

Property Description
boundaries Points to specify the position and the dimensions of

the node.
space type The type of space of the node, e. g., Cfree or CBi.
location code A unique code, used for neighbor finding with con-

stant time complexity on average.
level The level of the node (depending on the tree-depth

of the node).
potential value The potential value on which path planning is based.
exploration
time

Time point at which the node was explored last time.

Table I
PROPERTIES OF THE QUADTREE NODES

To specify the positions of UAVs and obstacles, a Carte-
sian coordinate system FW was embedded into the configu-

ration space C. Hence, each UAV has an associated position
and direction within the coordinate system.

The position and dimensions of each node are based
on FW , too. Each node is specified through 2 points in
space spanning a rectangular region. When extending the
quadtree to a linear quadtree a unique code and its level
must be saved. In rescue scenarios up-to-date information
is necessary. The exploration time is the point in time the
node was explored. If the difference between the current
time and the exploration time is above a given threshold,
the node becomes unexplored again.

B. UAV configuration

Each UAV A has a configuration qA within C. It is
represented as a 9-tuple (q1, . . . , q9) as shown in Table II.

Tuplenumber Description
q1 X - position in space
q2 Y - position in space
q3 Z - position in space
q4 flight direction
q5 favorite height
q6 maximum altitude
q7 role
q8 task list
q9 fuel level

Table II
UAV CONFIGURATION (qA)

The position of a UAV in C is described by three entries
and must be unique, because if two UAVs had the same
position in C, they would have crashed. For path planning
only two entries are used (q1, q2). The height of the UAVs
(q3) is neglected as the UAVs can have different favorite
heights over ground. Of course the height is important to
avoid collisions. It is also important for the cameras of
the UAVs. The area the UAVs can explore at one moment
depends on the flare angle of their cameras and the height
of the UAVs above the terrain.

We distinguish two different height types. The favorite
height (q5) is the height above the underlying terrain a
UAV wants to reach. The maximum altitude (q6) describes
the height of the UAV above sea level. In the following
simulations (Section VII) sea level is modeled as the zero
point of the program. The height of a UAV (q3) is always
the height above sea level.

The maximum altitude is used to partition the terrain into
Cfree and CBi. Each part of the terrain, which is higher than
the maximum altitude, is CBi, the remaining terrain is Cfree .

The configuration of a UAV contains the flight direction
(q4). This direction can also be used to provide a preferred
direction in which the UAV will fly first while exploring
the terrain. The modeled UAVs can turn on the spot so the
direction is not too important for motion planning. Previous
tests showed that in this case the use of a preferred direction
does not lead to better results concerning the exploration rate

358

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or speed. Hence, there is no favorite direction for the UAVs
in the resulting system. Two UAVs cannot take the same
position at the same time so the entries q1, q2 and q3 are
used to distinguish the single UAVs.

The task list includes all given goals. The types of goals
specified so far are shown in Table III. A single task always
contains one known goal. It can be UAV-specific or non-
UAV-specific, e. g., refueling would be a UAV-specific task,
whereas monitoring of areas would be a non-UAV-specific
one. Goals can be points, which the UAV has to explore
or areas, which have to be monitored with high priority.
Each goal is associated with one task. When the fuel level
reaches a given threshold, the UAV sets up a new task with
a fuel station as goal and highest priority. This task will be
executed before all other tasks to avoid damage.

Every UAV also has a role, which is used to realize a
scheduling of all given tasks. In this work three roles are
defined:

1) explorer: An explorer UAV is used mainly for terrain
exploration. Goal-oriented path planning will be done
only to avoid starvation.

2) seeker: A seeker UAV is used mainly to reach given
goal points. As long as goals exist goal-oriented path
planning will be done and exploration takes place only
if no specific goals exist.

3) surveillant: A surveillant UAV is used mainly for
goal-oriented path planning, too. The difference to the
seeker UAV is that it monitors areas rather then flying
to given goal points.

C. Decentralized task allocation for multiple UAVs

A role is associated with a specific priority scheme. Each
task gets a priority P ∈ {0, 1, · · · , 9}. The higher P is
the more important the task is. Depending on the role,
the task list will be sorted according to the different task
priorities. Explorer UAVs first explore the terrain and target
specific goals with less priority. Seeker UAVs favor goal
points over areas and exploration. Surveillant UAVs favor
goal areas over points and exploration. The priority schemes
of the seeker and the surveillant roles initialize tasks like
goal points or goal areas with high priority to favor these
tasks over exploration. Table III shows the implemented
scheduling scheme.

Goal Explorer Seeker Surveillant
Monitor areas 2 2 3
Exploration 3 0 0
Fly to goal point 1 3 2
Refueling 9 9 9
Landing 8 8 8

Table III
INITIAL PRIORITIES OF TASKS

The higher the priority the more important the task
becomes. If several tasks have equal priority, the processing

order of these tasks depends on the position of the cor-
responding goals. Tasks with goals closer to the UAV are
executed first. This ensures fast completion of the tasks and
additionally, they are scheduled in such a way that tasks
with less distance to each other than to other tasks but equal
priority will be processed consecutively.

We distinguish two types of tasks. High priority tasks
(P > 4) and low priority tasks (P ≤ 4). High priority tasks
are tasks, which must be processed as fast as possible as
not-processing them will lead to damage of the UAV.

However, this static role assignment does not avoid star-
vation. That means that if, e. g., only surveillant UAVs are in
use and new tasks to monitor goal areas appear faster than
the old ones can be finished, flying to goal points would
never be executed. To avoid such a behavior the priorities
of low priority tasks increase during time. To ensure that
these tasks never preempt high priority tasks the increasing
stops if P = 4, which is higher than every initial priority of
low priority tasks.

Scheduling of tasks, assignment and increasing of the
priorities and creation of UAV specific tasks is always done
in a decentralized manner by the UAVs.

V. CALCULATING THE POTENTIAL FIELD FOR PATH
PLANNING

In this section we describe how the potential values are
calculated. This is a two-step procedure. We start calculating
a first approximation. Afterwards, we successively enhance
the results of the first approximation until we get potential
values, which are feasible for path planning. Our approach
for potential field calculation has the disadvantage of being
quite costly. Hence, to lower the calculation costs in such a
way that we can make every calculation without noticeable
delay we use several cost reduction techniques, which are
described at the end of the section.

We assume that the control station, responsible for coor-
dinating the UAVs, provides a single configuration space C,
which is used as a representation of the complete scenario.
C is based on a quadtree (Section IV-A), whereby the leaves
carry descriptive information, like a potential value. The
quadtree subdivides the terrain in such a way that the union
of the leaves represents the complete terrain. Each leaf of
the quadtree gets one single potential value. Based on these
values, the UAVs decide which leaves they use to find a
trajectory to their designated goal position.

Additionally, C includes all UAVs with their configura-
tions (Section IV-B), every goal and obstacle.

The intention is to maintain only one harmonic function,
which describes the entire potential field, concerning mul-
tiple goals as well as multiple UAVs, avoiding the negative
effects of linear superpositioning of harmonic functions
described in [13].

Therefore we model the potential field as a discrete
Dirichlet problem for harmonic functions, which always has

359

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a solution and we try to solve it using a relaxation technique.
As a relaxation technique to transform the potential field
update under Dirichlet boundary conditions the Gauss-Seidel
method [18] is used.

To make use of the advantages of harmonic functions,
in particular the absence of local minima, the potential
values of the configuration space have to fulfill several
requirements, e. g., potential values must strictly increase
with the distance to the goals, the second partial derivatives
have to vanish and so on. To take into account all these
restrictions, the calculation process is modeled as an opti-
mization problem to solve the discrete Dirichlet problem.

A. First Approximation

We distinguish two types of potential values φ. Bound
and unbound values. Bound values are fixed values for goal
and obstacle areas, which are set before the calculation starts
and they will not be changed during the calculation. These
values are the boundaries. Thereby we are able to ensure
that obstacles have maximum and goals minimum values as
harmonic functions satisfy the min-max principle. We use a
potential value range from 0 to 1. Obstacles are bound with
1 and goals with 0.

Every other leaf u(x, y) of the quadtree gets a so-called
unbound potential value φ(x, y), which is greater than 0
and less than 1. These values are calculated for each leaf
that is neither obstacle nor goal space. Therefore, we use
the following equation. It depends on the distances to the
nearest goal area, in sense of Euclidean distance.

φ(x, y) = ξ · log (τ (x, y))

log(d)
. (1)

Here τ(x, y) represents the Euclidean distance from the
point (x, y) ∈ C to the nearest target point. The logarithm of
the diagonal d of the complete terrain is used to normalize
the values between 0 and 1. φ(x, y) satisfies Laplace’s
equation.

For goal-oriented mode it is possible to trade off shortest
path calculation and gathering additional information by
taking a detour over unexplored regions. To take this into
account the ξ-Value was introduced. The value is between
0 and 1 and is set by the user. The lower the value of ξ
is, the more attractive unexplored terrain becomes for the
path planner. In case of non-goal-oriented path planning
(exploratory navigation) ξ is set to 1.

As mentioned, Equation 1 is used to calculate a first
approximation for every unbound potential in the environ-
ment. It is only a first approximation because not every
bound value was respected. This leads to a linear system
of equations.

B. Update equation

The first approximation does not consider obstacle areas.
But that is necessary to ensure collision avoidance and to

guarantee that the potential values are represented through a
single harmonic function with its advantages, like reducing
the number of local minima. To take this into account the
first approximation of the unbound values given by Equation
1 is successively enhanced using a relaxation method. In our
work the Gauss-Seidel algorithm is used for relaxation.

Numerical solutions for Laplace’s equations can be found
through finite differentiation methods. This is possible as the
value of a harmonic function at each point is the arithmetic
mean of the values of its surrounding points [15]. We use
the neighbors of the following four of the existing eight
neighbor directions to update the potential value of a leaf
u(xi, yj):

1) u(xi+1, yj),
2) u(xi−1, yj),
3) u(xi, yj+1),
4) u(xi, yj−1).

If we had only equally sized nodes, e. g., when using a
grid with equal sized cells, we could calculate the potentials
φ(xi, yj) using the following function:

φ(xi, yj) = 1
4 [φ(xi+1, yj) + φ(xi−1, yj)

+ φ(xi, yj+1) + φ(xi, yj−1)].

However, when using a quadtree to partition C as in our
approach, the dimensions of the part of the terrain each
leaf represents have to be considered. Another point is
that through the use of a quadtree a leaf can have several
neighbors per direction. In that case we make an approxi-
mation and use the mean distance and the mean potential
value of the neighbor nodes. We take into account the
following distances from the current leaf u(xi, yj) to its used
neighbors:

τright: distance from u(xi, yj) to u(xi+1, yj),
τleft: distance from u(xi, yj) to u(xi−1, yj),
τup: distance from u(xi, yj) to u(xi, yj+1),

τdown: distance from u(xi, yj) to u(xi, yj−1).

This leads to the following update equation, which is
based on [19]:

φ(xi, yj) =
τupτdown

[
τrightφ(xi+1, yj) + τleftφ(xi−1, yj)

]
τupτdown (τright + τleft) + τrightτleft (τup + τdown)

+
τrightτleft [τupφ(xi, yj+1) + τdownφ(xi, yj−1)]

τupτdown (τright + τleft) + τrightτleft (τup + τdown)
. (2)

Neighboring leaves are all leaves, which have a border
in common. Hence, possibly different leaf sizes are also
taken into account. The potential value of the current leaf
is represented through φ(xi, yj), the potential of the left
neighbor through φ(xi−1, yj) and so on.

This modeling leads to a system where the UAVs are
driven away from obstacles and led to the goals. Figure 5
shows a sample potential field, calculated using this op-
timization method. For better visualization the calculated

360

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

potential field was mapped to a grid in Figure 5. Here the
UAV is in the left upper corner, the goal to be reached is
in the lower right corner. The higher parts of the terrain
represent occupied space, whereas the lower ones are free
space. The UAV will now follow the descent gradient, which
always leads it to the neighboring space with the lowest
potential value, until the goal is reached.

Figure 5. A sample potential field

To reach a given error rate with respect to a perfect
harmonic function of ε ≤ 10−p when using M leaves
for calculation, O(pM) iterations are needed. Intuitively,
choosing a quadtree instead of a grid lowers the calculation
costs. However, for large terrains, together with the demand
for detailed resolution, this method is still very costly.
Several methods reducing these costs are presented in the
following section.

C. Cost reduction

The methods presented in the previous sections ensure
complete exploration, reaching of given goals and task
allocation. These methods are rather complex, especially
the recalculation of C. A first approach for cost reduction
was an intelligent implementation (Section V-D). When
calculating the first approximation a pointer array is created,
which holds the leaves to be updated with pointers to their
corresponding neighbors. So, iterative loops through this
array are used for the update equation, instead of recursively
cycling through the quadtree with all nodes. Saving pointers
to the neighbors avoids redundant neighbor finding as the
quadtree does not change during potential calculations.

However, without any cost reduction techniques the meth-
ods still do not well suit embedded systems. Another part for
cost reduction is to make recalculations of C event based. So,
recalculation will be done only for the following reasons:

• Insertion of new targets or obstacles
• Deletion of targets or obstacles
• Path-planning request after exploration

After a UAV changed the configuration space through ex-
ploration it requests a new path. In that case the central
control station recalculates the potential values of the global
configuration space. Obviously, even this leads to frequent
recalculations of C. In addition, the calculation load depends

directly on the number of active UAVs. Therefore, the
recalculation step must be performed efficiently.

The update equation is used mainly to lower the number
of local minima. A complete calculation of the configuration
space means in our case that no local minima are left. The
lowering of the number of local minima is advantageous
since trajectories are calculated in such a way that they lead
to minima, even if they are only local minima. For the UAVs
this results in a detour or in the worst case the UAVs get
trapped in a local minimum. Leaving a local minimum is
costly as it has to be detected and a safe path out of the
minimum has to be calculated.

The costs to calculate the configuration space are directly
related to the number of nodes to be updated. Hence, a
quadtree was used instead of a grid, which is very common
for representing a terrain when using potential fields. To
reduce the costs for neighbor finding in the tree–which is
necessary for the update equation and the path planning
methods–the tree was extended to a linear quadtree. To
transform a tree into a linear quadtree a unique code and the
level of a node is saved for each leaf. An algorithm, which
finds neighbors with constant time complexity on average
was implemented. This is a further improved version of [20]
with the focus on reducing tree editing costs. With only
one configuration space for all UAVs, it is crucial to have
a data structure, which can be modified easily–usually this
is done several times per second. The modification must be
done much more frequently than the potential calculations
to respect changes in the terrain, like newly recognized
obstacles. In contrast to [20] no additional information about
the level difference to the neighbors is stored in the nodes.
This significantly increases the editing speed.

Even with this cost reductions, a complete calculation of
the configuration space is expensive. Prestes et al. showed
[4] that a complete absence of local minima is not necessary
for feasible path planning. They used a constant iteration
depth to reduce the costs. Based on their results we estab-
lished break conditions that also allow a dynamic number
of leaves. The iterative calculation stops if:

• the potential values remain unchanged,
• the number of local minima is less than 0.5% of the

number of updated leaves,
• the iteration depth is greater than or equal to 10% of

the number of updated leaves.

The last condition guarantees the termination of the update
method. Tests showed that these break conditions lead to an
appropriate tradeoff between number of local minima and
calculation costs.

Furthermore, leaves with potential values greater than or
equal to 0.999 are not considered as local minima. Tests
showed that such values usually occur in the neighborhood
of newly explored obstacles. Usually such potential values
are greater than the potential value of areas, which the UAVs

361

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

take. This leads to a significant reduction of the calculation
costs.

If a UAV gets trapped in a local minimum, the A∗-
algorithm is used to leave it. Therefore, the A∗ searches
through the quadtree to find an unexplored area. It takes the
first area found and sets it as the next target. Afterwards, a
goal-oriented path planning to this area will be done.

For further cost reduction in non-goal-oriented mode,
an activation window was established. First all nodes are
inactive. After the exploration of an area the newly explored
leaves are marked as active. After a given time, leaves can
be marked as unexplored again and are no longer active. The
first approximation and the following updates will be done
only for active leaves.

D. Implementation details

The implementation of the calculation algorithm consists
of three main methods. The first method, which is shown as
pseudo-code in Listing 1, is used to start the first approx-
imation and to ensure an iterative accomplishment of the
update equation until the break conditions are reached. As
our first approximation is based on goal distances we have
to set up goals even in exploratory navigation. Therefore, we
calculate the nearest unexplored or unknown space for each
UAV and set this spaces as next targets to be reached. This
is done in the method SetNearestUnexploredAsNextGoal.
While processing the loop for the update equation we check
the number of local minima each cycle. Therefor the method
CheckNumberMinima is called, which checks for each node
to be updated if there exists at least one neighbor node
with a lower potential value. If one of the break conditions
introduced in Section V-C is fulfilled the while loop, which
calls the update equation, stops.

CalculatePotentialField()
{
if(exploratory_navigation)

SetNearestUnexploredAsNextGoal()

leaf_number = 0
FirstApproximation(Rootnode)

max_minima = update_list.length() * 0.005
number_minima = max_minima + 1
max_depth = update_list.length() * 0.1
iteration_depth = 0
value_change = 1

while(number_minima > max_minima &&
iteration_depth <= max_depth &&
value_change)

{
iteration_depth++
value_change = UpdateEquation()
number_minima = CheckNumberMinima()

}

}

Listing 1. Pseudo-code of the main function for potential field calculations.

FirstApproximation(Treenode)
{
if(Treenode not leaf)
{
for(i = 0; i < 4; i++)

FirstApproximation(Treenode.child(i))
return

}

if(Treenode.space == Target)
{

Treenode.potential = 0
return

}

if(Treenode.space == Obstacle)
{

Treenode.potential = 1
return

}

if((Treenode.space == Unexplored ||
Treenode.space == Unknown) &&
exploratory_navigation)

{
Treenode.potential = 0
return

}

update_list[leaf_number] = Treenode
update_list[leaf_number].potential = log(

target_distance)/log(terrain_diagonal)

if(Treenode.space == Unexplored ||
Treenode.space == Unknown)

update_list[leaf_number].potential *= xi

SaveNeighborNodes()

for each(direction)
{

distance[direction] = SumDirections()
distance[direction] /=
num_neighbors[direction]

}

update_list[leaf_number].udr = distance[up]*
distance[down]*distance[right]

update_list[leaf_number].udl = distance[up]*
distance[down]*distance[left]

update_list[leaf_number].rlu = distance[right]*
distance[left]*distance[up]

update_list[leaf_number].rld = distance[right]*
distance[left]*distance[down]

update_list[leaf_number].direction =
update_list[leaf_number].udr

+ update_list[leaf_number].udl
+ update_list[leaf_number].rlu
+ update_list[leaf_number].rld

leaf_number++
}

Listing 2. Pseudo-code of the function to calculate the first approximation

The method used to calculate the first approximation
(Listing 2) has several additional requirements. We move
recursively through the complete tree but only the leaves
are considered. First, we check if a node consists of target
space, occupied space or in exploration mode unexplored

362

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

space or unknown space. If so, we bound the potential value
of the leaf with the corresponding value. If not, we need to
calculate an unbound value for the leaf. In that case we use
the first approximation equation from Section V-A.

We profit from the fact that there are no quadtree changes
during the calculations. We use this property in several ways.
As it makes no sense to move through the complete quadtree
in each update iteration we first set up a list, where we save
pointers to the leaves to be updated later, called update list.
As there are no tree changes also the neighbors of the leaves
do not change. That makes it possible to calculate them once
and save pointers to the neighbor nodes using a method
called SaveNeighborNodes. It is possible for a node to have
multiple neighbors in some directions. In that case we use
an approximation for the following update equation as we
only save the mean distance to the neighbor nodes in each
direction. Finally, we calculate all relevant distances needed
for the update equation once and save them, too.

UpdateEquation()
{
value_change = 0
for(i = 0; i < update_list.length(); i++)
{

old_potential = update_list[i].potential

for each(direction)
{

potential[direction] = SumPotentials()
potential[direction] /=

update_list[i].num_neighbors[direction]
}

new_potential = update_list[i].udr *
potential[right]

new_potential += update_list[i].udl *
potential[left]

new_potential += update_list[i].rlu *
potential[up]

new_potential += update_list[i].rld *
potential[down]

update_list[i].potential = new_potential /
update_list[i].distances

value_change+= |old_potential - new_potential|
}

return value_change
}

Listing 3. Pseudo-code of the function to calculate the update equation

As we made several calculations, needed for the update
equation, which is shown in Listing 3, once after calculating
the first approximation, the implemented update equation
itself is not as complex as it seems to be in Section V-B.
We now can use the update list to access the nodes to be
updated directly. In case we have several neighbor nodes
in one direction we made an approximation in such a way
that we use the mean potential value of the neighbors for
calculation. After that we just have to multiply the resulting
potential values with the relevant distances from Equation 2,

sum them, and divide the result through the given complete
distance value. Finally, we calculate the difference between
the old and the new potential value to check if the potential
values change or if a break condition is fulfilled.

VI. PATH PLANNING APPROACH

In this section we present our approach for path plan-
ning. We distinguish between reactive path planning for
exploratory navigation and global goal-oriented path plan-
ning. Additionally, in case of goal-oriented path planning a
coordination method is introduced.

In contrast to the calculation of potential values φ, the
path planner consider all leaves in all eight directions of the
current leaf.

A. Planning paths for single UAVs

Based on the potential field stored in the configuration
space C as described in the previous section, discrete path
planning is possible. Here two different approaches are
utilized:

1) Gradient based path planning for exploratory naviga-
tion (non-goal-oriented)

2) The A∗-algorithm for goal-oriented path planning
Since the UAVs are considered to be heterogeneous, e. g., in
terms of camera or other equipment, each UAV must be able
to reach every point of the terrain. Therefore, it is impossible
to assign subareas of the terrain to a single UAV.

In goal-oriented mode sometimes an additional explo-
ration should be done, even if it leads to detours. The
length of the detours can be limited. Therefore, two ξ-values
are used. One is used during the potential field calculation
(Section V-A), the other by the A∗-algorithm. Depending on
the priority of the goal, the algorithm uses Equations 3 or 4
to calculate the costs (the selection is explained below).

f = fpre + φ(pnew) · ξ +
τgoal
2d

. (3)

f = fpre + τpre + τgoal . (4)

The costs to fly to the current leaf are f . The current
leaf is the leaf, which is currently considered by the path
planner. The costs for the start leaf are set to 0. The less
f is, the more attractive the leaf becomes for the path
planner. Furthermore, fpre describes the costs to reach the
predecessor. The potential value of the current node is
φ(pnew) and for unexplored regions ξ|0 < ξ ≤ 1 is used
to lower the costs even more, dependent on the role of the
UAV (ξ = 1 for explored regions).

Additionally, the algorithm uses two distances for the
calculation: an estimated distance from the current leaf to the
goal leaf, τgoal , and the actual distance from the predecessor
to the current leaf, τpre .

Equation 3 is used, if the goals are of low priority (P ≤
4). In this case the costs depend mostly on the potential
values and unexplored regions become more attractive. The

363

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

complete diagonal of the terrain d is used to normalize the
distance values to values between 0 and 1. Dividing by the
double diagonal lowers the values even more, which makes
the potential values more important for path planning.

Equation 4 is used, if the goals are of high priority (P >
4). In this case it is necessary to reach the goal as soon as
possible. The equation achieves this by setting the costs in
such a way that the shortest path will be computed.

B. Goal-oriented coordination of multiple UAVs

It is possible that multiple UAVs set the same goal as the
next task to process. This behavior should not be completely
avoided as a UAV, which sets the goal later than others, may
be closer to it, which reduces the time to reach it. After a
UAV reached the goal the others are informed that the goal
was reached and they remove it from their lists.

However, if multiple UAVs, which are close to each other,
select nearly simultaneously the same goal as next goal, this
behavior is not efficient. In this case these UAVs would
calculate nearly the same paths. Parallel exploration would
neither yield considerable information gain, nor would the
goal be reached significantly earlier. To avoid this undesired
behavior an error handling was implemented. For the han-
dling distUAV denotes the distance between a subsequent
UAVi and the position of the UAV1, which did the first
calculation for this goal at time T1. Additionally, distG1

represents the distance of UAV1 to the goal at T1. tt denotes
the minimum time UAV1 needs to reach the goal. If a UAV
calculates a path to the goal position G1 at time T1 and
another UAV calculates a path to G1 at time Ti as well, the
error handling starts. This handling avoids the calculation of
nearly equal paths. It takes into account the points in time
T1 and Ti as well as the distances distUAVi and distG1 in
the following way:(

Ti − T1 <
tt
2

)
∧
(
distUAV

2
< distG1

)
.

If the formula becomes true, a subsequent UAV i sets the
priority for this goal to 0 and moves it to the end of its
scheduling list. Hence, even if the UAV, which has set the
goal first is not able to reach it, no starvation of that goal
would occur.

A more simple way would be to avoid multiple path
planning to a single goal. But a goal should be processed
as soon as possible and as already mentioned, the first UAV,
which makes a path planning, is not necessarily that one,
which can reach the goal first. Goals with equal priority
are sorted in an ascending order with respect to the UAV’s
distance to the goals, such that the possible detour to start
flying to a goal, which is reached by another UAV first
should be not quite as long.

The information about the used terrain can be obtained
in two ways. One way is to get the data through third party
applications like satellite images. Additionally, the UAVs

have on-board cameras for the exploration of unknown areas
and to update the information available so far.

VII. RESULTS

For financial reasons the approach was implemented first
as a simulation environment and several tests were done
to check the costs for calculation and to check if it is
able to fulfill all given requirements. The implementation
consists of a control station, which models the world and
visualizes it in 3D. It was implemented in C++ using
OpenGL. Additionally, UAVs were simulated, which connect
to the simulation environment using TCP/IP.

In this section we present several tests of the designed
system. The focus of our tests was the exploration of terrains.
Goal-oriented path planning with parallel exploration was
neglected as those tests are presented in [21]. We mainly
focus on the time needed to explore given terrains using
different numbers of UAVs and the costs for the potential
field calculations.

The used terrains were partitioned into Cfree and CBi in
such a way that the UAVs were able to reach the complete
free space.

The following tests were done to demonstrate that the
system assures a complete exploration of a given terrain.
Even by using only a single configuration space the use of
multiple UAVs leads to faster exploration rates. Additionally,
by using the cost reduction methods introduced in the
previous section all calculations can be done online. For
testing, a 3D simulation was created, which represents the
terrain with the corresponding configuration space and the
UAVs. The simulations were run on a desktop PC with a
dual core 2.6 GHz CPU.

The tests include the calculation costs for C. The time
needed to calculate the configuration space during the
different tests is shown in Figure 8(c), Figure 9(c) and
Figure 10(c). Each calculation contains the following tasks:
• Assignment of the next terrains to be explored
• Bind goal space and occupied space
• Calculation of the distances to the next goal space
• Calculation of the first approximation
• Determining all neighbors of the relevant leaves
• Update of the potential values
• Check for break conditions

A. Used terrains

The tests were executed on two fictive maps represented as
heightmaps (monochrome pictures, see Section III-A) with
simulated UAVs. For exploratory navigation the following
input parameter are relevant:
• Dimensions of the terrain
• Speed of the UAV
• Maximum altitude
• Size of the heightmap in pixels
• Maximum depth of the quadtree

364

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Distribution of Cfree and CBi

• Number of UAVs

The first terrain (Figure 6) was represented through a
heightmap with a resolution of 256 × 256 pixels. The
underlying quadtree had a maximum resolution of 2 × 2
pixels per leaf, which led to a tree depth of 7. A terrain
of 1000 m × 1000 m × 160 m was simulated. The UAVs
had a maximum altitude of 140 m. So, everything above
140 m was treated as occupied space. In our test scenarios C
was partitioned into Cfree (72%) and CBi (28%). The UAVs
flew with a speed of 60 km/h and had a favorite height of
40 m over ground. To explore the terrain, the UAVs used a
camera with a flare angle of 90◦. When using such a camera
the UAVs were able to explore 5026.55 m2 at one moment
when they had reached their favorite height.

Figure 6. The first test terrain. The black areas are occupied space, the
remaining areas are free space.

The second terrain (Figure 7) was represented through
a heightmap with the same resolution. The underlying
quadtree had a maximum resolution of 2×2 pixels per leaf.
A terrain of 1000 m×1000 m×200 m was simulated. The
UAVs had a maximum altitude of 120 m. So, everything
above 120 m was treated as occupied space. In our test
scenarios C was partitioned into Cfree (65%) and CBi (35%).
The UAVs flew with a speed of 60 km/h and had a favorite
height of 20 m over ground. To explore the terrain the UAVs
used a camera with a flare angle of 90◦. When using such a
camera the UAVs were able to explore 1256.64 m2 at one
moment when they had reached their favorite height.

The environment is able to consider the time points at
which an area was explored. This ensures that areas, which
were explored a given time ago become unexplored again
to check whether they hold new information. During the
following tests this behavior was disabled and areas explored
once never became unexplored again.

Figure 7. The second test terrain. The black areas are occupied space, the
remaining areas are free space.

B. Test results: first heightmap

Several tests are presented in this paper. The first test
series consists of exploring the terrain. The exploration was
done by 1, 3, 6 and 9 UAVs. The partitioning of the terrain
was unknown at the beginning. The UAVs had to recognize
the occupied space through their cameras. For all tests the
exploration was non-goal-oriented. Therefore, no areas had
to be explored with high priority and the exploration con-
tinued as long as unexplored terrain reachable by the UAVs
existed. Mostly, the gradient method was used to reduce the
costs for path planning. Additionally, the A∗-algorithm was
used whenever UAVs got trapped in local minima, which
occurred very rarely due to the use of harmonic functions
for potential field calculation (Section V-A). Figure 8 depicts
the results of the first test series.

Figure 8(a) shows the percentage of explored terrain
covered relative to the exploration duration. In every test
the complete terrain was explored. By using three UAVs
instead of one only half the time for the exploration was
needed. Increasing the number of UAVs always leads to a
lower time needed for exploration. But tripling the number
of UAVs again to nine did not reduce the exploration time by
half again, because the more UAVs were used the more often
they constrained each other and collisions had to be avoided.
This needs time in which the UAVs are not available for
exploration. Another point is that the less unexplored terrain
is left the more UAVs start to fly to the same terrain to
explore it.

Additionally, the figure shows that until an exploration
rate of 70% was reached there are only a few time spans in
which the UAVs did not explore large areas of the terrain.
This lack-of-exploration behavior occurred after the UAVs
explored a large terrain and had missed a few small areas or
when the next unexplored area was far away from the UAVs.

365

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

ex
p
lo

re
d
 t

er
ra

in
 (

%
)

time (min)

1 UAV
3 UAVs
6 UAVs
9 UAVs

(a) Percentage terrain covered

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

n
u
m

b
er

 o
f

ex
p
lo

re
d
 l

ea
v
es

time (min)

1 UAV
3 UAVs
6 UAVs
9 UAVs

(b) Number of utilized leaves for the calculations of C

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

c
a
lc

u
la

ti
o
n
 t

im
e
 (

m
s)

time (min)

1 UAV
3 UAVs
6 UAVs
9 UAVs

(c) Calculation times for single calculations of C

Figure 8. Test result for the first test series

This shows that there is some room for further improvement
for faster exploration.

Figure 8(b) shows the number of explored leaves related
to the exploration duration. These leaves are those, which
have to be updated. It shows that a maximum of about
1200 leaves had to be updated. The number of used leaves
increased very fast at the beginning and decreased after a
while because the the quadtree’s recombining. As shown in
the figure the maximum number of leaves remains nearly
the same, independent of the number of used UAVs.

Figure 8(c) depicts the costs for the single calculations
of the complete configuration space. The costs rise with

the exploration rate because of the activation window. The
more areas are explored, the more leaves are active and
have to be considered for the calculations. But besides this,
the costs are relatively constant except for a few spikes.
They increase with the number of UAVs, which makes the
environment more complex and leads to higher costs. For
instance, recalculation is done every time a UAV requests
a new path for exploration. So, more UAVs lead to more
recalculations, which also increases the complete calculation
costs. But the costs are in most cases below 20 ms, which
allows online calculations.

A second test series was done for the first heightmap (see
Figure 6). Six tests were made to check whether if it makes
a difference if the terrain is known or not at the beginning.
Additionally, it was checked if it makes a difference if all
UAVs start from the same position or from different ones.

For the tests the following six scenarios were created:
1) Test 1: 1 UAV in known terrain.
2) Test 2: 3 UAVs in known terrain and all started from

the same position.
3) Test 3: 3 UAVs in known terrain with three different

start positions.
4) Test 4: 1 UAV in unknown terrain.
5) Test 5: 3 UAVs in unknown terrain and all started from

the same position.
6) Test 6: 3 UAVs in unknown terrain with three different

start positions.
Table IV gives an overview of the results. The following

values were determined:
• test: The number of the test with the properties de-

scribed above.
• test duration: The duration it took to explore the terrain.
• iteration depth ∅: The average number of iterations for

the calculation of the configuration space.
• number calculations: The number of recalculations of

the configuration space.
• costs complete: The complete time needed to make all

recalculations of the configuration space.
• costs ∅: The average time a recalculation of the confi-

guration space took.
• diff ∅: The average time between two recalculations of

the configuration space.
As expected, the tests with unknown terrain (tests 4 - 6)

needed more frequent recalculations of C. A recalculation
was done each time new occupied space was detected, what
never would happen in known terrains as the occupied space
is known at the beginning.

By the use of the break conditions and the introduction of
an activation window (Section V-C), a single calculation of
the configuration space took relatively little time. Except in
the second test case the costs were on average less than
5 ms and this result shows that the calculations can be
done before each path planning without causing a noticeable

366

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

test test iteration number costs costs diff
duration depth calcula- complete ∅ ∅

(min.) ∅ tions (ms) (ms) (s)
1 33.75 6.27 92 437 4.75 22.01
2 17.08 7.49 146 861 5.90 7.02
3 19.16 8.14 142 615 4.33 8.10
4 29.33 9.63 302 1337 4.43 5.83
5 13.83 7.99 303 1508 4.98 2.74
6 16.50 8.95 345 1672 4.85 2.87

Table IV
RESULTS OF THE SINGLE TEST CASES FOR THE SECOND TEST SERIES

ON THE FIRST TERRAIN.

delay. The higher costs in test case two are the result of
several repeatedly computed local minima, which needed
many iterations of the update equation to vanish. Because
of the higher number of explored nodes at the end of the
exploration, the single iterations took a relatively long time.

Since a recalculation of the configuration space takes
place only before a new path for exploratory navigation
is planned, the frequency of recalculating the configuration
space was lowered. The first test case needed the fewest
number of recalculations. In this test a recalculation was
done on average every 22.01 seconds. In the worst case
every 2.74 seconds (in test case five) such a recalculation
took place.

The results show that the disadvantage of harmonic
functions–the high calculation costs–compared to other
methods for potential field calculation, which often use
linear superpositioning, were reversed.

In Figure 9 the test results for the first heightmap are
depicted. Figure 9(a) shows the exploration rate compared
to the simulation time, which starts at 0 and is measured
in real-time. Figure 9(b) shows the number of nodes, which
are needed to calculate the configuration space at the single
time points. This number has direct influence on the single
calculation costs, which are shown in Figure 9(c).

One can see that the exploration was made relatively
steady over time, especially during the tests with three
UAVs. It made no big difference if all UAVs started from
the same position or from three different start positions. The
use of three UAVs made an advantage up to an exploration
rate of 99% concerning the exploration speed, compared
to the use of one single UAV. After a simulation time of,
e. g., 7 minutes in the first test case, one single UAV had
explored 39.65% of the terrain. When three UAVs made
the exploration using the same start parameters they had
explored 80.13% in test case two, respectively 81.39% of
the terrain in test case three, in the same time span.

In test cases one and four, where only one UAV was used,
it explored the terrain with a steady exploration rate until an
exploration level greater than 85% was reached. After that,
the exploration rate decreased dependent on time due to the
fact that the UAV had to fly over explored terrains to reach
the residual unexplored areas.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

ex
p
lo

re
d
 t

er
ra

in
 (

%
)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(a) Percentage terrain covered (first heightmap)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

n
u
m

b
er

 o
f

ex
p
lo

re
d
 l

ea
v
es

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(b) Number of utilized leaves for the calculations of C (first heightmap)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

ca
lc

u
la

ti
o
n
 t

im
e

(m
s)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(c) Calculation times for single calculations of C (first heightmap)

Figure 9. Test result for the first heightmap

In test case four such a steady exploration rate was not
reached permanently. During these tests the UAV had to
fly over explored terrains to reach the residual unexplored
areas when only a relatively small portion of the terrain
was explored. This behavior was observed only for a certain
time span. After that, the exploration rate was steady again.
Apart from that, a complete exploration of the free space
was reached in each test.

Figure 9(c) depicts the costs to calculate the configuration
space. One can see again, that the costs rise with the
exploration rate of the terrain. This is due to the use of
the activation window, which activates more leaves to be

367

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

considered for the calculation of C. This behavior can also
be seen in Figure 9(b), which depicts the number of utilized
leaves for the single calculations. As mentioned before, the
behavior that explored terrains can become unexplored again
was disabled. Therefore, the number of active nodes only
decrease when they are combined.

The calculation costs for C are, apart from a few spikes,
consistent. The only serious anomaly was in the sixth test
with 19 ms. This anomaly was caused by several local mi-
nima, which needed several iterations to vanish. Except for
this spike all other recalculations were between ≤ 1 ms and
10 ms. This shows that no noticeable delay of the exploration
occurred, due to the calculations of the configuration space.
Combined with the gradient method, which ensures that a
route can be started after eight comparisons, this ensures fast
path planning.

C. Test results: second heightmap

The six tests from the second test series were repeated on
a second terrain (Figure 7) to ensure that they hold for other
terrains as well. They are divided in the same six single tests
as for the first heightmap.

Table V gives an overview of the results. The values that
were determined are the same as for the first heightmap.

test test iteration number costs costs diff
duration depth calcula- complete ∅ ∅

(min.) ∅ tions (ms) (ms) (s)
1 35.50 7.18 113 334 2.96 18.85
2 19.50 8.12 155 624 4.03 7.55
3 21.16 10.91 160 659 4.12 7.94
4 22.00 12.61 146 646 4.42 9.04
5 7.75 9.40 141 710 5.04 3.30
6 6.66 5.25 150 625 4.17 2.67

Table V
RESULTS OF THE SINGLE TEST CASES FOR THE SECOND TERRAIN.

The results are mostly the same as those we achieved
on the first heightmap. Also, using this heightmap the time
for calculating the configuration space does not cause any
noticeable delay for path planning. On average the time was
below 5 ms except for the fifth test. In the fifth test they
were with an average of 5.04 ms not considerably higher.

It should be noted, that when using three UAVs instead
of one single UAV in unknown terrain, the exploration time
was only one-third. This is not due to the fact that the single
UAV had to fly much more often over explored terrain than
in other tests. But the reason for this is that a high steady
exploration rate was reached using three UAVs all the time
(see Figure 10(a)).

When using this terrain, the frequency of recalculations
of the configuration space was relatively low. It was similar
to the first heightmap in such a way that the fewest recalcu-
lations were made in the first test case where only one UAV
was used. A recalculation was done on average every 18.85
seconds. The most frequent recalculations were done in the

sixth test case, where every 2.67 seconds a recalculation
took place.

Figure 10 shows the results of the test cases for the second
heightmap graphically. Figure 10(a) depicts the exploration
over time, Figure 10(b) depicts the number of utilized
leaves, which are relevant for the duration to calculate the
configuration space. Finally, Figure 10(c) shows the duration
of the single calculations of the configuration space.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

ex
p
lo

re
d
 t

er
ra

in
 (

%
)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(a) Percentage terrain covered (second heightmap)

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

n
u
m

b
er

 o
f

ex
p
lo

re
d
 l

ea
v
es

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(b) Number of utilized leaves for the calculations of C (second heightmap)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

ca
lc

u
la

ti
o
n
 t

im
e

(m
s)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(c) Calculation times for single calculations of C (second heightmap)

Figure 10. Results for the second heightmap

Figure 10(a) shows the exploration rates of the terrain for
the six test cases dependent on simulation time. It is shown
that similar to the first heightmap, when using three UAVs, a
steady exploration rate was reached in unknown terrain even

368

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

during the complete exploration. In the test cases with known
terrain the exploration rate decreased when an exploration
level of nearly 80% was reached. The worst rate, which
led to the longest time needed to explore the complete free
space, was in test one, when using only one UAV in known
terrain. Similarly to the tests done on the first heightmap,
in every test a complete exploration of the free space was
reached.

Figure 10(c) shows the costs to calculate the configuration
space for the six test cases. It is shown that the calculation
costs were relatively equal, except for the fifth test case with
three UAVs in unknown terrain, where several spikes appear.
In this test scenario the last calculation of the configuration
space was the most costly one (22 ms). But even this is
an acceptable value regarding a recalculation every few
seconds.

When considering the results one can conclude that the
disadvantage of calculating a potential field based on har-
monic functions, the high calculation costs, vanished. This
was due to the use of convergence criteria (Section V-C), the
use of a quadtree (Section IV-A) to reduce the number of
utilized leaves instead of using a grid and the introduction of
an activation window (Section V-C). Hence, the advantages
of harmonic functions can be exploited without suffering
from their disadvantage. Always achieving an exploration
rate of 100% of the reachable terrain shows that our path
planning approach leads to good results even in complex
and dynamic terrains.

The frequency of the recalculations of the configuration
space shows that the system is a cheap one in respect of the
calculation costs. This made it possible to use the designed
approach in embedded systems with limited hardware.

Additionally, it was shown that the explored area in-
creased with a steady rate in most cases and the UAVs had
to fly relatively rare through explored terrain to reach un-
explored terrain. In the cases where this behavior occurred,
the exploration rate decreased. So, this is one issue to be
solved, to decrease the time needed to explore terrains.

VIII. CONCLUSION AND FUTURE WORK

The motivation for this paper was to design an efficient
path planning system, which can be used to coordinate multi-
ple UAVs to explore different disaster areas. The requirement
was to create an efficient and robust system to coordinate
multiple UAVs, including path planning, exploratory naviga-
tion and simultaneous task allocation, using only one global
configuration space.

A hybrid approach for UAV coordination and efficient
exploration of disaster areas was presented. It uses arti-
ficial potential fields, combined with an informed search
algorithm, and a role system. Additional methods like a
quadtree, an activation window, and break conditions were
used to find a tradeoff between the number of local minima
and computational costs. Until an exploration level of more

than 70% was reached, a nearly steady exploration rate
was achieved. Three UAVs need only half of the time for
exploration in comparison to the time one single UAV needs.

The costs to compute the configuration space were de-
creased such that an online calculation without any no-
ticeable delay was possible. This is important for highly
dynamic environments, where the calculation has to be
faster than the changes of the configuration space, in order
to calculate efficient paths. In combination with the total
exploration of the terrain, this leads to a robust and efficient
system.

Future work is to lower the exploration time even more
when using multiple UAVs. This can be done by more active
coordination methods, e. g., explicit communication between
the UAVs. Another focus of future work is to achieve greater
autonomy. For this purpose an interaction of the UAVs with
each other will be implemented to replace the central control
station. This should be done in such a way, that using more
UAVs leads to faster exploration of the complete terrain.

Another part of future work is to advance the potential
field to n dimensions by including values like exploration
times of the leaves and UAV properties into the single
potentials. The next step is to extend the potential field to the
third dimension of the terrain. Using a 3D potential field will
allow the UAVs to move inside of buildings and fly, e. g.,
below bridges without any additional calculations.

An interesting point of investigation would be to decen-
tralize the field such that each UAV calculates only that part
of it, which is relevant for the UAV. In that case properties
like fuel level could be included into the potential field
to ensure that a UAV flies only to regions of the terrain
from which it can fly back with its remaining fuel. Such a
modeling of the potential field should reduce the number of
methods, which are necessary to control a real UAV.

One step of our research project is to apply the approach
to real UAVs. The achieved cost reduction enables the
system to be implemented even on embedded systems.
Of course, physical properties of real UAVs have to be
considered even more. Additionally, sensor errors and the
UAV behavior, e. g., in strong crosswind may lead to further
need for adaptations when using real UAVs.

When applying the approach to physical UAVs we also
need to consider non-holonomic constrains. This will lead
to much smoother paths as the UAVs do not have to stop
for course changes.

It is planned to extend the skills of the UAVs by intro-
ducing an inter-UAV communication, which makes decen-
tralized coordination possible. This leads to the possibility
that methods for formation flights can be realized. Several
methods for this may be evaluated, e. g., the use of consen-
sus finding [22] in communication graphs or adapting the
potential field to hold information for building a formation,
e. g., by using bifurcating potentials [23].

369

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work was conducted in the BMBF funded project
SOGRO3.

REFERENCES

[1] C. Rasche, C. Stern, W. Richert, L. Kleinjohann, and
B. Kleinjohann, “Combining autonomous exploration, goal-
oriented coordination and task allocation in multi-uav scenar-
ios,” ICAS, The Sixth International Conference on Autonomic
and Autonomous Systems, March 2010.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” IJRR, vol. 5, no. 1, pp. 90–98, 1986.

[3] E. Prestes, M. E. Paulo, M. Trevisan, and M. A. P. Idiart,
“Exploration technique using potential fields calculated from
relaxation methods,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 4, pp. 2012–2017, 2001.

[4] E. Prestes, P. M. Engel, M. Trevisan, and M. A. P. Idiart,
“Exploration method using harmonic functions,” Robotics and
Autonomous Systems, vol. 40, no. 1, pp. 25–42, 2002.

[5] M. Trevisan, M. A. P. Idiart, E. Prestes, and P. M. En-
gel, “Exploratory navigation based on dynamical boundary
value problems,” Journal of Intelligent and Robotic Systems,
vol. 45, no. 2, pp. 101–114, February 2006.

[6] J. Hagelbäck and S. J. Johansson, “Using multi-agent po-
tential fields in real-time strategy games,” in AAMAS ’08:
Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2008, pp. 631–638.

[7] R. Sawhney, K. Madhava, and K. Srinathan, “On fast ex-
ploration in 2d and 3d terrains with multiple robots,” in
AAMAS. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems, 2009, pp. 73–80.

[8] D. Jung, J. Ratti, and P. Tsiotras, “Real-time implementation
and validation of a new hierarchical path planning scheme
of UAVs via hardware-in-the-loop simulation,” Journal of
Intelligent and Robotic Systems, vol. 54, no. 1-3, pp. 163–
181, March 2009.

[9] I. Nikolos, K. Valavanis, N. Tsourveloudis, and A. Kostaras,
“Evolutionary algorithm based offline/online path planner for
uav navigation,” IEEE SMC, vol. 33, no. 6, pp. 898–912, Dec.
2003.

[10] M. Kazemi, M. Mehrandezh, and K. Gupta, “An incremental
harmonic function-based probabilistic roadmap approach to
robot path planning,” Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation, April 2005.

[11] J. Barraquand, B. Langlois, and J. C. Latombe, “Numerical
potential field techniques for robot path planning,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 22, no. 2,
pp. 224–241, Mrz/April 1992.

3“Sofortrettung bei Großunfall mit Massenanfall von Verletzten”, sup-
ported by the Bundesministerium für Bildung und Forschung (BMBF)
13N10164.

[12] K. Aizawa, K. Motomura, S. Kimura, R. Kadowaki, and
J. Fan, “Constant time neighbor finding in quadtrees: An
experimental result,” 3rd International Symposium on Com-
munications, Control and Signal Processing, 2008. ISCCSP
2008., pp. 505–510, March 2008.

[13] C. Connolly, J. Burns, and R. Weiss, “Path planning using
laplace’s equation,” IEEE ICRA, vol. 3, pp. 2102–2106, Mai
1990.

[14] J. S. Zelek, “A framework for mobile robot concurrent
path planning and execution in incomplete and uncertain
environments,” in Proceedings of the AIPS-98 Workshop on
Integrating Planning, Scheduling and Execution in Dynamic
and Uncertain Environments, 1998.

[15] P. G. Doyle and J. L. Snell, “Random walks and electric
networks,” 2000. [Online]. Available: http://www.citebase.
org/abstract?id=oai:arXiv.org:math/0001057

[16] C. Connolly, “Applications of harmonic functions to robotics,”
in IEEE ISIC, Aug 1992, pp. 498–502.

[17] D. Beck, A. Ferrein, and G. Lakemeyer, “Landmark-based
representations for navigating holonomic soccer robots,” in
RoboCup 2008: Robot Soccer World Cup XII, ser. Lecture
Notes in Computer Science, vol. 5399. Springer Berlin /
Heidelberg, 2009, pp. 25–36.

[18] E. C. Zachmanoglou and D. W. Thoe, Eds., Introduction
to Partial Differential Equations with Applications. Dover
Publications, Inc., 1986.

[19] J. S. Zelek, “A framework for mobile robot concurrent path
planning and execution in incomplete and uncertain environ-
ments,” in AIPS, 1998.

[20] K. Aizawa, K. Motomura, S. Kimura, R. Kadowaki, and
J. Fan, “Constant time neighbor finding in quadtrees: An
experimental result,” in Communications, Control and Signal
Processing, 2008. ISCCSP 2008. 3rd International Sympo-
sium on, March 2008, pp. 505–510.

[21] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann,
“Role-based path planning and task allocation with explo-
ration tradeoff for uavs,” ICARCV, 11th International Confer-
ence on Control, Automation, Robotics and Vision, December
2010.

[22] W. Ren, W. R. Beard, and T. W. McLain, “Coordination
variables and consensus building in multiple vehicle
systems,” in Cooperative Control, ser. Lecture Notes in
Control and Information Sciences, vol. 309. Springer
Berlin / Heidelberg, 2004, pp. 439–442. [Online]. Available:
http://www.springerlink.com/content/m2gpyjh0mkq4uapc/

[23] D. J. Bennet and C. R. McInnes, “Distributed control
of multi-robot systems using bifurcating potential fields,”
Robotics and Autonomous Systems, vol. 58, no. 3, pp.
256 – 264, 2010, towards Autonomous Robotic Systems
2009: Intelligent, Autonomous Robotics in the UK. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6V16-4XT3HPP-2/2/4338e40c022f12a0582b3655f7a51152

370

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Framework for Monitoring and Reconfiguration
of Components Using Dynamic Transformation

Djamel Belaı̈d∗, Imen Ben Lahmar∗, and Hamid Muktar†
∗Institut Telecom; Telecom SudParis, CNRS UMR SAMOVAR, Evry, France

Email: {djamel.belaid, imen.ben lahmar}@it-sudparis.eu
†National University of Sciences and Technology (NUST), Islamabad, Pakistan

Email: hamid.mukhtar@seecs.edu.pk

Abstract—Distributed applications can be created using
component-based software development. Such applications are
defined as an assembly of components requiring services from
and providing services to each other. The existing component
models provide a description of functional and non-functional
requirements of an application. However, this capability is to be
determined at the design time of the application. Once deployed,
the application cannot be modified to respond to the changing
context.

In order to allow creation of such applications that can be
transformed dynamically to respond to changing environments,
in this article we propose a framework that allows monitoring and
dynamic reconfiguration of different components. These compo-
nents may be functional components of the user application or
other components of the environment on which an application
depends. The components of environment may represent the
underlying environment (i.e., hardware and network entities)
and are presented in our framework in the same way as
the application components. A component can monitor other
components in order to be aware of their changes. Moreover, the
components can also be monitored and reconfigured remotely. If
a component is not monitorable or reconfigurable by default, we
propose a procedure that transforms it to respond to components
requests.

Keywords-Framework, component model, monitoring, recon-
figuration, UPnP, transformation

I. INTRODUCTION

With the emergence of wireless technologies and ubiq-
uity of hand held wireless devices, application development
for the pervasive environments is gaining more and more
attention. In such environments, computing is pushed away
from the traditional desktop to small hand-held and networked
computing devices that are present everywhere we go. As
such, Service-Oriented Architecture (SOA) has emerged as a
computing paradigm that changed the traditional way of how
applications are designed, implemented and consumed in a
pervasive computing environment.

One particular approach for developing SOA-based appli-
cations is to use component-based application development.
Using this approach, an application is defined as a composition
of re-usable software components, which implement the busi-
ness logic of the application domain collectively by providing
and requiring services to/from one another. The components
required by an application are assembled at the time of
application development. Thus, at the time of application
deployment, all the components have been defined statically.

However, when considering the broad range of comput-
ing devices in pervasive environments (smartphones, PDAs,
tablets, laptops, etc.) – with different capabilities and limi-
tations - this approach may not work. Moreover, pervasive
environments are highly dynamic due the mobility of users and
devices. Thus, an important aspect of pervasive applications is
that their realization is very much dependent on their execution
context. Due to variability of the environment, modelling the
application behaviour needs to satisfy not only the functional
requirements in an effective way, but in order to provide better
quality of service (QoS) for user satisfaction, it should also
consider the current state of the environment in which the
application is executing. In addition, the application should
also adapt itself according to changing context.

Existing component models like PCOM [1] [18], Fractal
[4], OSGi [17] and SCA [5] propose application development
using component assembly. In these models, a component of-
fers its capabilities through provided interfaces and consumes
functionalities offered by other components through required
interfaces. Along with offered and required interfaces, a com-
ponent may define one or more properties. These properties
can also be modified so that a component can be reconfigured
dynamically at runtime.

Due to the heterogeneity of the environment, modelling
the application behaviour needs to consider the current state
of the environment in which the application is executing
in addition to its functional requirements. However, most
of the existing component models leave such issues to the
underlying middleware, which provides a uniform Application
Programming Interface (API) or a framework for this purpose
[1] [18]. This means that the programmers and the designers
have to rely on the functionality of the underlying middleware
and such aspects need to be considered during application
development life-cycle. All of the reconfiguration aspects,
such as determination of reconfigurable properties, have to be
decided at development time. Once an application has been
developed, and deployed, its composition becomes fixed. A
property that was not set to be reconfigurable or monitorable
during development remains so and changes need to be made
at source code level to make it reconfigurable or monitorable
dynamically.

In order to explain these limitations, let’s consider an
application that provides the functionality of sending large

371

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

files from one device to another using a communication link
that exists between them. Files are transferred via a WiFi
connection and as the size of a typical file is large (e.g., 1 GB
each), each file is transferred in several compressed chunks
(e.g., 256 KB) to allow quick transfer. On the receiving side,
once a device receives a compressed chunk, it decompresses it
before merging it with other chunks to reconstruct the whole
transferred file.

Due to variability of the WiFi signal strength, the application
needs to continuously monitor the network signal to decide
the chunk size to be used for sending the file. In case of high
signal strength, data can be sent at higher rates and larger
chunk size can be used; however, in case of weak signal
strength, a smaller chunk size may be applied for a quick
transfer. Moreover, to decide the degree of compression, the
application needs to monitor the remaining battery powers of
the sender and receiver devices. If the battery power of any
of the devices is low, it uses lower degree of compression
to conserve the battery power required for the compression
and/or the decompression. However, if the remaining battery
power is sufficiently high for both devices, higher degree
of compression can be used for a better throughput over
the network. As it can be seen, the decompression degree
depends on the used degree of compression. Thus, the use
of a lower/higher compression degree for a given file chunk
at the sender’s side implies that the decompression degree is
to be maintained the same on the receiving side. Therefore,
whenever the compression ratio changes, the decompression
degree should be reconfigured for an efficient transfer of files
over the network.

We deduce a few important points from the file sender
application. First, the behaviour of the application is dependent
on certain properties which are not part of the File Sender
application, namely, remaining battery power and network
signal strength. Both of them correspond to externally required
properties: they do not form the core logic of the application,
however, the desired Quality-of-Service (QoS) provided by the
application greatly depends on their values. Thus, a mech-
anism is needed to consider such required properties in the
application design without altering the application logic and
architecture. Second, the monitoring can be notifications from
the provider side or observations from the client side. Third,
the reconfiguration of components’ properties is dependent
on changes of properties of other components. Thus, we
require a mechanism that is able to reconfigure dynamically
the properties of components whenever there is a need. Finally,
since these properties may belong to components found locally
or remotely, we need a uniform strategy for accessing local or
remote properties to be monitored or reconfigured.

As discussed previously, the above mentioned requirements
are not considered by the existing component models. There-
fore, in our previous work [2], we have proposed a component
model that 1) considers explicitly the required properties of an
application in addition to the functional behaviour; 2) allows
the monitoring ; and 3) if a property is not monitorable by
default, we provide transformation mechanism to render it

monitorable.
In this article, we propose the following contributions, some

of which extend our previous work [2]. As an extension, first,
we present a remote monitoring approach allowing compo-
nents to monitor their remote required properties. Second, we
extend our proposed component model to allow components to
reconfigure their local and remote required properties. Third,
we present some transformation processes for components to
render their properties monitorable or reconfigurable whenever
there is a need by a third-party.

The remaining article is structured as follows. In Section
II, we first describe our proposed component model and the
component assembly, then, in section III, we explain the
monitoring and reconfiguration concepts and how components
can be transformed to make them monitorable or reconfig-
urable locally as well as remotely. Section IV describes how
components can be declared and how the transformation can
be achieved followed by the implementation details in section
V. In Section VI we provide an overview of existing related
approaches as well as their limitations. Finally, Section VII
concludes the article with an overview of our future work.

II. OUR APPROACH

In this section, we outline the different concepts involved
in our approach. We begin by introducing our component
model and component assembly. We then describe the need
for component transformation and how they are accompanied
by integrating adaptive logic into the application to make it
adaptive to the changing context.

A. The Component Model

Fig. 1. Component model describing required properties

In an object-oriented paradigm, an object provides its ser-
vices through a well-known interface, which specifies the
functionality offered by the object. In the relatively newer
component-oriented paradigm, components may specify, in
addition to their provided interfaces, their dependencies on
the offered properties of other components using required
interfaces. As defined by Szyperski et al. [20] ”A software
component is a unit of decomposition with contractually
specified interfaces and explicit context dependencies only.”
Thus, a component not only exposes its services but it also
specifies its dependencies. Most of the existing component
models [1][4][17][5] allow specification of their dependencies
for business services external to the component. However, they
do not allow specification of their dependency for external
properties. The ability to specify dependency for external
properties has two important implications. First, it results

372

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. File Sender Application

in specification at relatively fine granularity thus helping
the architects and designers in fine tuning the component’s
requirements. Second, this fine tuning helps in elaborating the
contract between two components because the properties can
be enriched with additional attributes that constrain the nature
of the contract through appropriate policies. To achieve this
objective, in one of our previous works [2], we have proposed
a component model that allows expressing this dependency
explicitly in terms of required properties, which are provided
by other components.

Figure 1 shows main characteristics of a component that
provides a service through an interface and requires a service
from other components through a reference. The component
also exposes a property through which it can be configured.
In addition, the component also specifies its dependency on a
certain property. This required property, which appears at the
bottom of the component, will be satisfied if we can link this
component with another component that offers the requested
property, thus, solving the dependency.

We use components to represent not only software entities
that make up an application, but also to represent hardware
and network entities present in the execution environment. For
example, a component may represent the screen of a device,
a WiFi card, or even user preferences.

B. Component Assembly

Components can be combined together in an assembly
of components to build complex applications. For example,
figure 2 shows how the File Sender application described in
the introductory section can be represented by an assembly of
components distributed across two devices: two of them on
the sender device (A) and two others on the receiving device
(B).

On the sender side (device A) the File Splitter component
splits a given file into chunks for an efficient transmission. The
appropriate size of the file chunk is determined by the network
signal strength. If the signal strength is high, data can be sent
at higher rates and larger file chunks (e.g., 1 GB each) will
be created. However, if the signal is weak, smaller chunks
(e.g., 256 KB) will be created to allow quick transfer. Once
a file chunk is created, it is passed to the File Compressor
component for compression before sending it to the receiver
device. This is done using the service provided by the File
Compressor component. The File Compressor component uses

an adaptive compression algorithm whose compression ratio
depends upon the remaining battery powers of the sending and
receiving device. If the remaining battery power of each device
is above a certain threshold (e.g., 20 percent), higher degree of
compression is used. However, if the remaining battery power
of any of the devices is below the specified threshold, lower
degree of compression is used by doing quick compression of
each chunk thereby conserving the battery power.

On the receiving side (device B), a File Decompressor
component is used to decompress the received compressed
chunk. The component has a decompression degree property
whose value should be the same as the value used for com-
pression by the File Compressor component. Thus, any change
of the compression degree must imply the same change of the
decompression degree in the File Decompressor component.
Once the received chunk is decompressed, a File Merger
component combines it with the other decompressed chunks
to recreate the transferred file.

C. Component Transformation

Figure 2 shows the File Sender application as defined
by the architect. As can be seen, it represents only the
functional components of the application and does not show
the components external to the application — battery and
WiFi — which are required by the functional components for
providing the necessary QoS desired by the user. Assume that
this application was developed for fixed environments, e.g. a
desktop PC connected to a wired network with fixed QoS, in
which the application would not need to be adapted.

Our objective is that given such an application, which was
not conceived for dynamic environments with changing QoS,
we would like to transform it in order to adapt its functionality
according to the changing QoS. This transformation can be
of two types. If we are interested in knowing the changes
in the properties of a component, we need to transform the
component to make it monitorable. On the other hand, if we
are interested in modifying the properties of a component due
to external notifications, we need to make it reconfigurable.
Furthermore, a transformation may apply to a component
available on the device locally resulting in local transformation
or it may apply to some component in remote device, in which
case it is known as remote transformation.

In our previous work [2], we proposed a monitoring mech-
anism to permit an application — based on our component

373

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. Monitoring and Reconfiguration of required properties of the File Sender Application

model — to be adapted. However, the approach was limited
to monitoring in the local scope. In our present work, we go
a step further to address the remote monitoring as well as the
local and remote reconfiguration of the components.

Corresponding to our scenario, our application needs to
monitor the components of environment: battery and WiFi.
Assuming that these components are not monitorable by
default, we need to make them monitorable by transformation.
Similarly, the functional components of the application need
to be reconfigured every time the QoS provided by these non-
functional components changes. The File Splitter component
needs to be reconfigured for its chunk size property whenever
the WiFi signal strength changes. The compression degree of
the File Compressor component should also be reconfigured
whenever the battery level crosses its threshold. Corresponding
to File Compressor component, the File Decompressor com-
ponent must also be reconfigured with the same degree of
decompression as that used for compression.

Since the components are not reconfigurable by default, i.e.,
when they were defined initially during application assembly,
we need to transform them to make them reconfigurable. In
the next section, we describe how these transformations can
be used along with some adaptation policies to render an
application adaptable.

D. Adaptation Logic

Transformation allows a component to be monitorable or re-
configurable. However, only transforming an application does
not help in making the application adaptive. For example, in
our example application, only by making the WiFi component
monitorable and the File Splitter component reconfigurable
will not make the application to take adaptation decisions. In-
stead, we need some adaptive logics that will make appropriate
adaptation decisions based on certain rules for adaptation. This
adaptation logic has to be defined by the architect at design
time to make the application adaptable. It is encapsulated in an

adaptation policy component which is a functional component
and defined following our component model. The adaptation
policy components express through their required properties
their need to monitor and/or to reconfigure local as well as
remote properties offered by components of the adaptable
application.

III. MONITORING AND RECONFIGURATION FRAMEWORK

To make our example application adaptable, we transform
its components to make them monitorable or reconfigurable
and integrate an adaptation policy component that defines
the policy to be used for adaptation. The transformed File
Sender application is shown in figure 3. Two Adaptation
Policy components have been used to manage the adaptation
of the application to respond to adaptation due to the change
of the context. The context is defined by the properties of
the WiFi and the Battery components and the adaptation is
made on the properties of the File Splitter, File Compressor
and File Decompressor components. These adaptation policy
components express their need to monitor and to reconfigure
local and remote properties of other components through their
required properties.

On device A, the adaptation policy component expresses
through its required properties its need to monitor the signal
strength property of the WiFi component, the level property
of the local Battery component and the level property of the
remote Battery. Depending on changes in the values of these
properties, the Adaptation Policy component also expresses its
need to reconfigure the chunk size property of the File Splitter
component and the compression degree property of the File
Compressor component.

On device B, another adaptation policy component is used
to monitor remotely the compression degree property changes
of the File Compressor and to reconfigure the decompression
degree property of the File Decompressor component accord-
ingly.

374

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public interface GenericProxy {
Property[] getProperties();
Object getPropertyValue(String propertyName);
void setPropertyValue(String propertyName,

Object propertyValue);
Object invoke(String methodName, Object[] params);}

Fig. 4. Description of the Generic Proxy interface

If the offered properties of components are not defined as
monitorable or reconfigurable resources, we need to transform
them to respond to the requests of the adaptation policy
components. A transformation is applied dynamically at run-
time and is carried out by some predefined components of
our framework. For different types of transformation, the
framework has defined different components. In the next
subsections, we introduce them and we detail the main features
of the monitoring and the reconfiguration mechanisms and
their transformation processes.

A. Generic Proxy Service

The Generic Proxy Service, provided by our framework, can
be applied to any component of an application that we want
to introspect before any transformation.

We have defined a general purpose interface GenericProxy
that provides four generic methods. These methods are de-
scribed in figure 4. Each implementation of this interface
is associated with a component for which the first method
getProperties() returns the list of the properties of the compo-
nent, the getPropertyValue() returns the value of a property,
the setPropertyValue() changes the value of a property and
the invoke() method invokes a given method on the associated
component and returns the result.

We provide two implementations of the GenericProxy inter-
face (see section V). The first one, LGenericProxy component
is for implementation of a local proxy. That is, when associated
with a local component it translates its method calls into
calls of the associated component. The second one, RGener-
icProxy component is a remote implementation. That is, when
associated with a remote component it forwards the calls of
its methods to calls of the associated remote component, over
the network.

B. Local Reconfiguration

In parametric adaptation, a component is able to reconfigure
the properties of another component. In this context, reconfig-
uring the required properties of a component is defined as the
reconfiguration of the offered properties of another component.
For this purpose, we extend our component model [2], in
order to allow components to specify their need to reconfigure
some of their required properties. For example, in figure 5(a),
a component A specifies a required property, offered by the
component B, that it needs to reconfigure.

A given property of component can be reconfigured by
calling its associated setter method. However, the component

that wishes to reconfigure a property of another component
does not know a priori the type of this component. To complete
the reconfiguration of any component from only the name
and type of a property, the reconfigurator component uses an
appropriate interface that provides the method setProperty-
Value(propertyName, propertyValue) to change the value
of a property.

However, the component to be reconfigured may not define
its properties as reconfigurable resources despite the request.
So we need to transform the component to make its proper-
ties reconfigurable by offering an appropriate reconfiguration
interface. This can be done dynamically by our framework
by encapsulating the component with the predefined LGener-
icProxy component as defined above. The two components
are combined together in a single composite that offers
the services of the original component as well that of the
LGenericProxy component. The component can be then re-
configured using the setPropertyValue() method provided by
the LGenericProxy component. The framework then replaces
the original component with the newly created composite in
the application. Figure 5(c) shows the transformation of the
component B to render its property reconfigurable by the
component A.

C. Local Monitoring

In [2], we have presented a monitoring approach to allow a
component to be aware of required properties changes. Moni-
toring process consists in informing the interested component
about the changes of required properties or notifying it on a
regular way or for each variation. We have considered two
types of monitoring: monitoring by polling and monitoring by
subscription.

Polling is the simpler way of monitoring, as it allows the
observer to request the current state of a property whenever
there is a need. However, subscription allows an observing
component to be notified about changes of monitored proper-
ties.

1) Monitoring by Polling: A component may express its
need to monitor by polling a required property provided by
another component (figure 5(b)). The monitoring by polling of
a property can be made by calling its getter method. However,
the component that wishes to monitor a property of another
component does not know a priori the type of this component.
To complete the monitoring of any component from only
the name and type of a property, the interested component
often uses an appropriate interface that provides the method
getPropertyValue(propertyName) to request the current state
of a property.

However, the component to monitor may not define its
offered properties as monitorable by polling resources despite
the request. So, we need to transform the component to make
its properties to be monitorable by offering an appropriate
interface of monitoring. This can be done dynamically by
our Framework at runtime in the same way as the trans-
formation process for the reconfiguration since it uses the
same LGenericProxy component that provides the needed

375

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Specification of reconfiguration (b) Specification of monitoring by polling

(c) Transformation (d) Representation

Fig. 5. Monitoring by polling and reconfiguration

interface. In figure 5(c), we show the transformation of the
component B to render its property monitorable by polling
by the component A. Figure 5(d) is a symbol, we used to
represent the transformation for monitoring by polling as well
as reconfiguration.

2) Monitoring by Subscription: There are two modes of
monitoring by subscription: 1) subscription on change which
specifies that the subscribed component is notified every time
the value of the property changes; 2) subscription on interval
which specifies that the subscribed component is to be notified
after a specified time interval. For notification on change, a
component must precise the starting time and the duration of
notifications. For notification on interval it must specify the
notification interval value. It may also precise the starting time
and the duration of notifications. The component A must also
implement a notification callback through which it will receive
appropriate notification messages.

Figure 6(a) shows how component A specifies its need
to monitor a required property offered by a component B
by subscription on change. Figure 7(a) shows monitoring by
subscription on interval. Figures 6(c) and 7(c) shows the
symbols we used for denoting subscription on change and
subscription on interval, respectively.

For the monitoring with notification mode on interval,
as shown in the figure 7(b), each time the MonitoringBy-
Subscription component have to notify the subscriber (the
component A), it gets (or monitor by polling) the value of the
required property of the component B via the LGenericProxy
component.

When the notification mode is on change for a required
property of B (figure 6(b)), the MonitoringBySubscription
component offers a (callback) service of notification PCNo-
tification to the component B so that it can be notified of
the changes of a required property and in turn inform all

the subscribers of this change. To allow the component B to
notify the MonitoringBySubscription for the change of its
properties, our framework adds the needed instructions in the
byte-code of the component B at runtime.

D. Remote Monitoring and Reconfiguration

To adapt a distributed application in a pervasive environ-
ment, some components may be interested in monitoring or
reconfiguring properties of other components remotely. For
this purpose, components in our framework can specify their
need about remote reconfiguration or remote monitoring of
some of their required properties.

For example, figure 8 shows how component A specifies
its need to monitor by subscription a property offered by a
remote component B. For the two modes of notification, the
component B (the server) must offer a remote subscription
service over the network to the component A (the client)
and in turn, the component A must subscribe to the remote
component B specifying its need. When a change of the
property happens, a notification from the component B to
A is sent over the network. As for the local case, to pro-
vide a remote reconfiguration and monitoring by polling the
component B must offer a GenericProxy service and should
also be reachable over the network. We note that for the
remote purposes there are two transformations: server-side
(component B) and client-side (component A).

1) Server-side transformation: The framework first encap-
sulates the component B in a composite (figure 9(a)) such
as defined for the transformations for the monitoring by
subscriptions. Then it adds a new component (the RServer
component) that integrates the network communication aspects
like remote call and event processing. The RServer component
has two references: one for the subscription service offered the
MonitoringBySubscription component and one for the Gener-

376

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Specification (b) Transformation (c) Representation

Fig. 6. Monitoring by subscription with notification mode on change

(a) Specification (b) Transformation (c) Representation

Fig. 7. Monitoring by subscription with notification mode on interval

icProxy service provided by the LGenericProxy component.
The first reference is used to subscribe and the second one
is used for the reconfiguration and monitoring by polling on
behalf of the client component A. We note that the newly
defined composite provides the GenericProxy service and
the PCSubscription service in addition to the services of
the component B. Thereby it can be used, reconfigured and
monitored locally as well as remotely. Figure 9(b) is a symbol
denoting the server-side transformation.

2) Client-side transformation: If the component B was on
the same device as the component A, we would have used the
same composite defined for the monitoring by subscription
and connect A to its subscription interface. Since this is
not the case, our framework creates the same kind of that
composite (figure 10(a)) with the ServerProxy component
in place of the component B and for the implementation
of the interface GenericProxy we use the RGenericProxy
described in section III-A. The ServerProxy component is a
byte-code generated component by our framework at runtime
(see section V). Its implementation of the service B consists
on forwarding the calls to the RGenericProxy component
which in turn make the call over the network to the server
side. Figure 10(b) is a symbol, we used to represent the
transformation in the client-side.

Fig. 8. Specification of remote monitoring

E. Putting it all together

Referring back to figure 3, we assume that signal strength,
the compression degree and the local and remote battery levels
are not defined as monitorable properties. So we need to trans-
form WiFi, File Compressor and the two Battery components
to render their properties monitorable by the Adaptation Policy
components.

Figure 11 shows the creation of new composites in response
of the monitoring request of the Adaptation Policy compo-
nents. The transformation of the WiFi component corresponds
to the creation of a composite as shown in figure 6(c), while
the local Battery component is transformed following the
figure 7(c).

The Battery component on device B is remotely observed

377

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Transformation (b) Representation

Fig. 9. Remote monitoring and reconfiguration: server side

(a) Transformation (b) Representation

Fig. 10. Remote monitoring and reconfiguration: client side

by the Adaptation Policy component of device A. For this
purpose, we require two transformations: a server-side (Battery
component) and a client-side (Adaptation Policy component)
transformation. The transformation of the Battery component
is done following figure 9(b), and a new composite rep-
resenting the remote Battery component is created in the
device A following figure 10(b) to allow the Adaptation Policy
component to observe the battery level changes.

Similarly, the File Compressor component (server side) is
transformed following the figure 9(b) to allow the Adaptation
policy component of device B (client side) to subscribe to the
changes of the compression degree property.

For the reconfiguration needs of the Adaptation Policy
components, our framework transforms the File splitter and
the File Decompressor components following the figure 5(d).
The File Compressor component is already transformed into
a composite that offers a generic proxy service for reconfigu-
ration.

IV. ARCHITECTURAL DESCRIPTION

The description of an application can be done with the help
of an Architecture Description Language (ADL). Instead of
inventing a new ADL, we prefer to use one of the existing
description languages. In this regard, Service Component

Architecture (SCA) [5] provides a rich ADL that details most
of the aspects that we are looking for. One of the main
features of this component model is that it is independent of
particular technology, protocol, and implementation. It consists
of a set of services, which are assembled together to create
solutions that serve a particular business need. These services
correspond to offered services and required ones called ref-
erences. Along with services and references, a component
can also define one or more properties. We use SCA for
its extensibility to overcome the missing elements related to
required properties, monitoring and reconfiguration aspects.

In our previous work [2], we have extended the standard
SCA description by adding the @requiredProperty at-
tribute to express explicitly the dependency of components
to the offered properties of other components. This attribute
specifies the resource whose property will be monitored or
reconfigured.

Moreover, we have also specified the resource type of
each component or property. For a component, the resource
type corresponds to the classification of the component in one
of the predefined categories, such as software, hardware, and
network, etc. Some of these categories have been defined pre-
viously as extension of the Composite Capability/Preference
Profile (CC/PP) [14] by the authors [16]. For a property,

378

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11. Transformation of the File Sender Application

1<composite name="FileSender">
2 <service name="FileSenderService" promote="FileSplitter/FileSenderService"/>
3
4 <component name="AdaptationPolicy" resource="Software.Component">
5 <service name="PCNotification">
6 <interface.java interface="eu.tsp.iaria-example.PCNotificationInterface"/>
7 </service>
8 <requiredProperty resource="Hardware.Battery" remotable="true" monitoring="ByPolling">
9 <property name="BatteryLevel"/>
10 </requiredProperty>
11 <requiredProperty resource="network.WiFi" monitoring="BySubscription" notificationMode="ON_CHANGE">
12 <property name="SignalStrength"/>
13 </requiredProperty>
14 <requiredProperty resource="Software.FileSplitter" reconfiguration="true">
15 <property name="chunckSize"/>
16 </requiredProperty>
17
18 </component>
19 <component name="FileSplitter" resource="Software.Component">
20
21 </component>
22 </composite>

Fig. 12. Description of the File Sender Application using our extended SCA ADL

the resource type specifies the component to which this
property belongs. The separation between property name and
the associated resource type is significant as it allows the
transformation of a given component into a monitorable or
reconfigurable component for only the specified properties.

Figure 12 shows the description of the File Sender
application. As it can be seen (lines 11-13), a
@monitoring annotation is used to specify the subscription
requirement for SingalStrength property. Moreover, a
@notificationMode annotation is used to specify the
monitoring by subscription mode. The Adaptation Policy
component requires the monitoring of the SingalStrength
property of the WiFi component, belonging to the network
category, by subscription with notification mode on change .

In addition to the monitoring feature, the required property

allows components to specify their configuration requirements.
For this goal, we have extended the @requiredProperty
attribute to express explicitly the configuration requirements.
The extension consists of a new @reconfiguration an-
notation that specifies if the property of resource would
be reconfigured or not. For example, the AdaptationPolicy
component requires the reconfiguration of the chunckSize
property offered by the File Splitter component (lines 14-16).

To handle remote components by monitoring or configuring
their offered properties, we used the @remotable annotation
of SCA specification [5] to specify if the required property is
remotable or not. The @remotable annotation has boolean
value; if it is true, it implies that the requested resource is
remotable else it is a local resource. For example, the Battery
component (lines 8-10) provided by device B, is remotely

379

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1<composite name="FileSender">
2 <service name="FileSenderService" promote="FileSplitter/FileSenderService"/>
3
4 <component name="AdaptationPolicy">
5 <service name="PCNotification">
6 <interface.java interface="eu.tsp.iaria-example.PCNotificationInterface"/>
7 </service>
8 <reference name="PCSubscriptionService" target="WiFiComposite"/>
9 <reference name="PCSubscriptionService" target="BatteryComposite"/>
10 <reference name="PCSubscriptionService" target="UPnPClientComposite"/>
11 <reference name="GenericProxyService" target="FileSplitterComposite"/>
12 <reference name="GenericProxyService" target="FileCompressorComposite"/>
13 </component>
14 <component name=FileSplitterComposite>
15 <service name="FileSenderService">
16 <interface.java interface="eu.tsp.iaria-example.FileSenderInterface"/>
17 </service>
18 <implementation.sca name="FileSplitterComposite"/>
19 </component>
20</composite>

Fig. 13. Transformation of the Adaptation Policy component

1<composite name=FileSplitterComposite>
2 <service name="FileSenderService" promote="FileSplitter/FileSenderService" />
3 <service name="GenericProxy" promote="LGenericProxy/GenericProxy" />
4 <reference name="FileCompressorService" promote="FileCompressor/FileCompressorService" />
5 <reference name="FileReceiverService" promote="FileSplitter/FileReceiverService"/>
6 <component name="FileSplitter" resource="Software.Component">
7 <service name="FileSenderService">
8 <interface.java interface="eu.tsp.iaria-example.FileSplitterInterface"/>
9 </service>
10 <implementation class="eu.tsp.iaria-example.impl.FileSplitterImpl"/>
11 <reference name="FileCompressorService" target="FileCompressorComposite/FileCompressorService" />
12 <reference name="FileReceiverService" target="FileMerger/FileReceiverService" />
13 </component>
14 <component name="LGenericProxy" resource="Software.Component">
15 <service name="GenericProxy">
16 <interface.java interface="eu.tsp.iaria-example.GenericProxy"/>
17 </service>
18 <implementation class="eu.tsp.iaria-example.impl.LGenericProxy"/>
19 <reference name="FileSplitterService" target="FileSplitter/FileSenderService"/>
20 </component>
21</composite>

Fig. 14. Transformation of the File Splitter component

monitorable by polling by the Adaptation Policy component.

Figure 13 shows the transformation of our extended SCA
description of the File Sender application into standard SCA
description. As it can be seen, the required properties of the
Adaptation Policy component are transformed into references
to the created composites (lines 8-12).

In figure 14, we show the transformation of the File Splitter
component to a new composite to render its property recon-
figurable by the Adaptation Policy component. The created
composite exposes in addition to the FileSender service of
the File Splitter component, a GenericProxy service that is
provided by a Local Generic proxy component allowing the
reconfiguration of the chunckSize property.

V. IMPLEMENTATION

In order to validate our approach, we have implemented a
prototype of our approach in Java. The prototype implements
our framework as services that offers the various transforma-
tion mechanisms to the applications.

For dynamic transformation we required code level manip-
ulation for which we used the open source software JAVA
programming ASSISTant (Javassist) library [13]. Javassist is
a class library for editing byte codes in Java; it enables Java
programs to define a new class at runtime and to modify a
class file when the Java Virtual Machine (JVM) loads it. The
implementation of the LGenericProxy component implements
the GenericProxy interface (figure 4). It is based on the Java
reflection API. As defined in the java API specification [12],

380

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the java API java.lang.reflect provides classes and interfaces
for obtaining reflective information about classes and objects.
Reflection allows programmatic access to information about
the fields, methods and constructors of loaded classes, and the
use reflected fields, methods, and constructors to operate on
their underlying counterparts on objects.

For remote communication, we have used the Universal
Plug and Play (UPnP) [21] technology. A UPnP network
consists of UPnP devices that act as servers to UPnP control
points, the clients. The control point can search for devices
and invoke actions on them. The RServer component, as
shown in figure 9 (a), integrates the network communication
aspects like remote method call and event processing on behalf
of the server component it represents and is implemented
as a UPnP device. For that purpose, it uses the services
(interfaces) of the server component, generates a UPnP device
and services (actions and stateVariables) descriptions and starts
the device to be detected (by the UPnP control points) over
the network. When it receives from control points a call as
a UPnP action, it translates it as a call to the appropriate
method of the LGenericProxy component which in turn calls
the associated method of the server. When it is notified, by the
MonitoringBySubscription component, for a change of one
of the server properties it modifies the related state variable
and then the device sends an event over the network with
the new value of the property so the control points that has
subscribed to that change receives this notification.

The ServerProxy component, in figure 10 (a), is used in
place of a server when this last is on another device. Thanks
to the javasist API, it is Java generated implementation of the
services (interfaces) of the server. The calls to its methods
are forwarded to the appropriate method of the component,
implementing the GenericProxy interface, it references.

The RGenericProxy in figure 10 (a), is implemented as
an UPnP control point. When it starts, it searches for a UPnP
device with the same type of RServer component and subscribe
to the UPnP events related to the change of the variables
state of this server component. Each time it receives a state
variable change event it notifies the MonitoringBySubscription
component that in turn notifies the interested subscribers
(e.g. ServerProxy component). The RGenericProxy also im-
plements the GenericProxy interface. Each call to a method
of this interface is transformed as an UPnP action call to the
device server (i.e. RServer component).

Finally, to allow a component to notify the Monitoring-
BySubscription for the change of its properties, the open-
source Javassist is used, at runtime, to inject the notification
code in the property setter of the byte-code of the component
implementation (class).

VI. RELATED WORK

The monitoring and reconfiguration issues have been ex-
tensively studied in different contexts, notably in the area of
software components that has become an accepted standard
for building complex applications. In this section, we detail
some of the existing related approaches as well as their

limitations. But let’s first give an overview of some component
models that become an accepted standard for building complex
applications.

The OSGi component model [17] enables components to
hide their implementations from other components while com-
municating through services that are shared between compo-
nents. It allows specification of properties when registering
components in the service registry. This ensures searching
and binding of components having specific properties. An
advantage is that these properties cover a wide range of
characteristics such as context, quality of service, and other
non-functional aspects. However, the major drawback is that
the specification of properties is done at the code level; so
properties are tied to the functional code.

Another relevant component model is SCA [5], which
provides a programming model for building applications and
systems based on a Service Oriented Architecture. More
recently, there has been SCA extension for event process-
ing [6]. It is based on the publish/subscribe model, which
allows components to produce and consume events through
channels. These events may be sent to notify a consumer
about changes occurring on the producer’s side, without the
consumers having knowledge of the producer’s functionality.
Currently, the SCA specifications of existing runtimes do not
provide any transformation mechanism to render a property
nor monitorable neither reconfigurable.

The PCOM component model [1][18] allows specification
of distributed applications made up of components. Compo-
nents reside within a component container that contains listen-
ers allowing application programmers to be notified whenever
a parameter or a communication changes or new components
are discovered. Each component explicitly specifies its depen-
dencies in a contract, which defines the functionality offered
by the component, i.e., its offer, and its requirements with
respect to local resources and other components. To model the
required properties, the syntactical description can be enriched
with properties of typed name-value pairs for offers and typed
name-value-comparator triples for requirements. Using this
description, the system can automatically determine whether
an offer can satisfy a requirement.
In a recent work [10], the PCOM container was extended by
two services; assembler and application manager, to separate
the task of calculating the configuration from the application
execution. The application manager is responsible for manag-
ing the life cycle of application and also the selection of the
configuration algorithm. However, the assembler is responsible
for calculating a valid configuration. Clearly, using a fully
distributed assembler, for instance, requires the availability of
an instance of this assembler on each device.

One of the limiting factors of PCOM resource description is
that resources are not standardized: there is no formal way of
resource description and the different types of resources can
not be distinguished from one other. Another problem is that
the non-functional aspects of an application are also treated in
the programming API. This means the component developer
has to take care of the non-functional aspects (monitoring,

381

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

binding, and unbinding of the components) at the code level.
Moreover, PCOM does not support the remote monitoring of
components’ parameters, since each container is reponsible of
the monitoring of the hosted components.

In [3], Beugnard et al propose a process that makes func-
tional aspects of components independent from observational
ones. This separation of concerns allows the advantage of
changing observations without modifying the core part of
components. They have also defined a set of predefined
components dedicated to observation that can be attached to
any functional component. Both the functional and observation
components are defined declaratively and then using a kind
of weaver they can be integrated to result in context-aware
components.

While their approach is quite general, we can identify
two limitations compared to our proposed approach. First,
instead of defining a few dedicated observation components,
we propose that any of the components in our system can be
transformed into observation component by adding to it the
capabilities of observation. Second, since this transformation
is done dynamically, we can selectively specify the properties
of a component that we want to make observable.

As a monitoring and a reconfiguration middleware, we cite
MADAM (Mobility and ADaption enAbling Middleware) [8],
which is a middleware for runtime adaptation with: context
management, adaptation management and configuration man-
agement. Their objective is to adapt the application at runtime
in response to context changes. For this purpose, the mid-
dleware provides a Context Manager to monitor context when
this latter changes. It is responsible for context reasoning, such
as aggregation, derivation, and prediction in order to provide
the Adaptation Manager component with relevant context
information when context changes occur. The Configurator
middleware component is responsible for reconfiguring an
application by deleting or replacing component instances,
instantiating components, transferring states, etc.

However, MADAM middleware does not support the re-
mote monitoring and the remote reconfiguration and it is
limited to the local scope. Moreover, it does not support the
transformation of components to render them monitorable or
reconfigurable resources.

In the same context, we cite the AwareWare middleware that
tends to facilitate the development of applications to be more
adaptive in such a heterogeneous environment [22] [23]. The
AwareWare middleware consists of Awareness measurement
tools that are used to measure and to collect awareness
data. The awareness manager organizes these tools and pro-
vides system independent query and notification interfaces for
adaptive applications. They consider two basic methods, pull
and push, for querying distributed awareness information. An
adaptation decision module and adaptation policy language are
used to reconfigure applications. The adaptation policy defines
rules to determine how the application changes its behaviours,
by changing the applications component inter-connections and
tuning parameters.

However, the reconfiguration is limited to the hosted compo-

nents and it does not cover the remote components. Moreover,
AwareWare middleware does not support the transformation
of components to monitorable of reconfigurable resources.
However, our framework is able to transform the components
into monitorable or reconfigurable resources to reply to the
components’ request.

In another recent related work [7], a reconfiguration mid-
dleware handles the reconfiguration of applications in het-
eregenous environment. Towards this objective, Corradi et al
propose to partition the middleware logic into two reconfigu-
ration layers that basically feature an application logic layer
and a non-functional layer on top of a very minimal kernel
layer. Each reconfiguration layer features a monitoring engine
whose aim is to keep track of current status of elements of the
(monitored) layer above. A reconfiguration enactment engine
concretely executes the reconfiguration actions determined by
policies.

Compared to our approach, the major drawback of the
reconfiguration middleware that does not support the remote
monitoring and the remote reconfiguration of applications.
Further, the proposed middleware does not consider the trans-
formation of components to monitorable or reconfigurable
resources despite the components’ request.

The approaches in [9] and [11] focus on the adaptation
of system behaviour at runtime. They consists of reusable
infrastructure corresponding to probes, and resource discovery
components to support respectively, monitoring of properties
changes, and quering for new resources. An adaptation engine
is used to carry out the necessary reconfiguration by using
some adaptation operators and adaptation strategies.

However, the reconfiguration of components does not cover
the remote components and it is limited to the local scope.
Moreover, they do not support the transformation of com-
ponents to render them monitorable or reconfigurable by
other components. However, in our approach, we propose to
model explicitly these features through required properties of
components, and even these latter are not defined by default
as monitorable or reconfigurable resources, our framework is
able to transform them to reply to components request.

In [15], Melisson et al propose pervasive binding to provide
support for service discovery in SCA-based applications. This
binding is called UPnP binding since it is based on UPnP
protocol [21]. Towards this objective, they propose to integrate
UPnP into FRASCATI platform (a SOA platform for the SCA
standard)[19] to support the remote call of a service that is
advertised via the UPnP protocol. The FRASCATI platform
was modified to supply spontaneous communications between
SCA components using UPnP bindings.
However, in our approach, the SCA composite is transformed
by adding UPnP components allowing its remote monitoring
and its remote reconfiguration using the existing open-source
SCA runtimes (e.g. Newton, Tuscani, etc.). Moreover, their
approach is limited on the remote call and it does not take
into account neither the remote monitoring nor the remote re-
configuration. However, in our present work, we rely on UPnP
protocol to manipulate remote components by monitoring their

382

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

changes and reconfiguring their properties in addition to the
remote call.

Project Monitoring Reconfiguration
Local Remote Local Remote

Madam Middleware [8]
√ √

Rainbow Middleware [9]
√ √

AwareWare Middleware [22] [23]
√ √ √

Reconfiguration Middleware [7]
√ √

PCOM Component Model [1][10]
√ √ √

SLCA Component Model [11]
√ √

Our Framework
√ √ √ √

TABLE I
EXAMPLES OF MONITORING AND RECONFIGURATION APPROACHES

In table I, we summarize the most important features related
to some of the cited middlewares and component models. We
compare them regarding the monitoring level, i.e., if it is exe-
cuted locally or remotely, and the similarly the reconfiguration
level. As it can be seen, most of the given approaches focus on
the local monitoring and/or local reconfiguration mechanisms.
There are limited approaches that consider remote monitoring
and/or remote reconfiguration. And even if they exist, their
presented mechanisms are not defined in appropriate way.
Moreover, in our knowledge, none of the cited middleware
supports the transformation of components to render them
monitorable or reconfigurable resources.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed an approach for monitoring
and dynamic reconfiguration of component-based applications.
The flexibility offered by our approach is that any software,
hardware, or network component that one wants to monitor
or reconfigure, but that does not offer these capabilities in-
herently, can be transformed to offer these functionalities —
given that they are representable by a software component.
These aspects are treated independently of the functional code
and, hence, do not make the situation more complex for the
designers and developers.

For this purpose, we proposed a generic component model
that allows unified specification of hardware, software, and
network components. In our component model, a component
specifies its provided and required services, and its properties,
but in addition, it also specifies the required properties that are
to be monitored or reconfigured. If the required properties are
not monitorable or reconfigurable by default, transformation
processes are done dynamically by our framework to reply to
the component request. Some Java implementation details of
the prototype were provided in the article.

We are integrating our prototype into an SCA runtime. This
will allow us to test the feasibility of our approach in real-
world scenarios.

VIII. ACKNOWLEDGMENTS

This work is partially supported by French ANR through
Seamless (SEamless and Adaptive Services over MultipLe
AccEsS NetworkS) project number 07TCOM018.

REFERENCES

[1] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel.
PCOM - A Component System for Pervasive Computing. In Proceedings
of the Second IEEE International Conference on Pervasive Computing
and Communications, PERCOM ’04, pages 67–76, Orlando, Florida,
USA, 2004.

[2] Imen Ben Lahmar, Hamid Mukhtar, and Djamel Belaı̈d. Monitoring of
non-functional requirements using dynamic transformation of compo-
nents. In Proceedings of the 6th International Conference on Networking
and Services, ICNS’10, pages 61–66, Cancun, Mexico, 2010.

[3] Antoine Beugnard, Sophie Chabridon, Denis Conan, Chantal Taconet,
Fabien Dagnat, and Eveline Kaboré. Towards context-aware compo-
nents. In Proceedings of the first international workshop on Context-
aware software technology and applications, CASTA ’09, pages 1–4,
Amsterdam, Netherlands, 2009.

[4] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support
in java: Experiences with auto-adaptive and reconfigurable systems.
Software Practice and Experience (SP&E), 36:1257–1284, 2006.

[5] Open SOA Collaboration. SCA Assembly Model Specification V1.00.
http://www.osoa.org/, 2007.

[6] Open SOA Collaboration. SCA Assembly Extensions for Event Pro-
cessing and Pub/Sub V1.00. http://www.osoa.org/, 2009.

[7] Antonio Corradi, Enrico Lodolo, Stefano Monti, and Samuele Pasini.
Dynamic reconfiguration of middleware for ubiquitous computing. In
Proceedings of the 3rd international workshop on Adaptive and depend-
able mobile ubiquitous systems, ADAMUS’09, pages 7–12, London,
United Kingdom, 2009.

[8] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen,
Ketil Lund, and Eli Gjorven. Using architecture models for runtime
adaptability. IEEE Software, 23:62–70, March 2006.

[9] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl,
and Peter Steenkiste. Rainbow: Architecture-based self-adaptation with
reusable infrastructure. IEEE Computer, 37:46–54, October 2004.

[10] Marcus Handte, Klaus Herrmann, Gregor Schiele, and Christian Becker.
Supporting pluggable configuration algorithms in pcom. In Proceedings
of the Fifth IEEE International Conference on Pervasive Computing
and Communications Workshops, PERCOMW’07, pages 472–476, NY,
USA, 2007.

[11] Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, and
Michel Riveill. SLCA, composite services for ubiquitous computing.
In Proceedings of the International Conference on Mobile Technology,
Applications, and Systems, Mobility’08, pages 11:1–11:8, Yilan, Taiwan,
2008.

[12] Java 2 Platform API Specification. http://download-
llnw.oracle.com/javase/1.4.2/docs/api/java/lang/reflect/package-
summary.html.

[13] JAVA programming Assistant. http://www.csg.is.titech.ac.jp/ chiba/javassist/.
[14] Cédric Kiss. Composite capability/preference profiles (cc/pp): Struc-

ture and vocabularies 2.0. w3c working draft 30 april 2007.
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430/, 2007.

[15] Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
Supporting Pervasive and Social Communications with FraSCAti. In 3rd
DisCoTec Workshop on Context-aware Adaptation Mechanisms for Per-
vasive and Ubiquitous Services, CAMPUS’10, Amsterdam, Netherlands,
2010.

[16] Hamid Mukhtar, Djamel Belaı̈d, and Guy Bernard. A policy-based
approach for resource specification in small devices. In Proceedings of
the second International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, pages 239–244, Valencia, Spain,
2008.

[17] OSGI. Open services gateway initiative. http://www.osgi.org, 1999.
[18] Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel. A frame-

work for adapting the distribution of automatic application configuration.
In Proceedings of the 5th international conference on Pervasive services,
ICPS’08, pages 163–172, Sorrento, Italy, 2008.

[19] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet,
Valerio Schiavoni, and Jean-Bernard Stefani. Reconfigurable SCA appli-
cations with the frascati platform. In Proceedings of IEEE International
Conference on Services Computing, SCC’09, pages 268–275, Bangalore,
India, 2009.

383

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley/ACM Press, Boston, MA, USA, 2nd
edition, 2002.

[21] UPnP Forum. UPnP Device Architecture 1.1. http://www.upnp.org,
2008.

[22] Qinag Wang and Liang Cheng. Awareware: an adaptation middleware
for heterogeneous environments. In IEEE International Conference on
Communications, Paris, France, 2004.

[23] Qinag Wang and Liang Cheng. A flexible awareness measurement and
management architecture for adaptive applications. In IEEE Global
Telecommunications Conference, GLOBECOM’04, Dallas, Texas, USA,
2004.

384

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DSCTP Congestion Control Algorithm Based on Dynamic Policies

Jie Chang, Wen’an Zhou, Junde Song, Feng Yu, Zhiqi Lin
Beijing University of Posts and Telecommunications, China

cjbupt@gmail.com, zhouwa@bupt.edu.cn, jdsong@bupt.edu.cn, yfbupt@gmail.com, linzhiqi07@gmail.com

Abstract—This paper introduces DSCTP (Dynamic Stream

Control Transmission Protocol), a sender-side, transport-layer

protocol that modifies the standard Stream Control

Transmission Protocol (SCTP) protocol. Although SCTP

provides support for multi-homing，the basic reason for such

a provision was to improve reliability of associations,

simultaneous transfer of new data to multiple paths is

currently not allowed in SCTP. DSCTP adopts SCTP’s multi-

homing feature to distribute data across multiple end-to-end

paths in a multi-homed SCTP association. DSCTP aims at

exploiting congestion control algorithm of Transmission

Control Protocol (TCP) and SCTP. Through the use of

dynamic policy management framework, DSCTP switches the

transmission onto the alternate path using DSCTP’s flexible

path management capabilities. We can gain significant

throughput improvement if simultaneously transfer new data

across multiple paths to the receiver. In this article，these

techniques include transmission start, flow control, network

monitoring, generation of policies, routing switching, and

congestion recovery. Extensive simulations under different

scenarios highlight the superiority of the proposed solution

with respect to TCP and the standard SCTP implementation.

Keywords-DSCTP; dynamic policy management framework;

SCTP; congestion control

I. INTRODUCTION

Computer networks have experienced an explosive
growth over the past few years and with that growth have
come severe congestion problems [17]. In recent years, the
portfolio has been surging as the network used widely.
Especially in recent years, the development of IP telephone
(VoIP) and Internet Protocol Television (IPTV), transferring
voice, video and multimedia information in the Internet
becomes inevitable. The core problem is the transmission of
multimedia data services and real-time communications, and
how to provide a certain quality of services for these services.
From the protocol of the transport layer, the traditional
transport protocols, TCP provides both reliable data transfer
and strict order-of-transmission delivery of data. Some
applications need reliable transmit without sequence
maintenance, while others would be satisfied with partial
ordering of the data. In both of these cases, the head-of-line
blocking offered by TCP causes unnecessary delay [10].
User Datagram Protocol (UDP) lacks reliable guarantee
mechanism for the transmission, and because it has no
congestion control mechanism, so the unfair competition for
bandwidth can causes network congestion even collapse [1].
In recent years, SCTP protocol was proposed by IETF, called
as a modified TCP protocol, which has both advantages of
TCP and UDP. Congestion control is one of the basic

functions of SCTP. For some applications, it may be likely
that adequate resources will be allocated to SCTP traffic to
ensure prompt delivery of time-critical data -- thus, it would
appear to be unlikely, during normal operations, that
transmissions encounter severe congestion conditions.
However, SCTP must operate under adverse operational
conditions, which can develop upon partial network failures
or unexpected traffic surges. In such situations, SCTP must
follow correct congestion control steps to recover from
congestion quickly in order to get data delivered as soon as
possible. In the absence of network congestion, these
preventive congestion control algorithms should show no
impact on the protocol performance [11]. Due to the
bottlenecks of the current network equipment handling
capability, service needs a lot of data transfer currently, so it
often results in the status of network congestion. Although
conditions can be alleviated by improving hardware, due to
the limit of the development of hardware manufacturing
technology and economic costs, frequent replacement of
hardware is usually unrealistic and not a long-term plan.
Therefore, only from the perspective of improving network
congestion control to improve the network condition is
feasible.

Congestion control is a method used for monitoring the
process of regulating the total amount of data entering the
network so as to keep traffic levels at an acceptable value.
This is done in order to avoid the telecommunication
network reaching what is termed: congestive collapse.
Congestion control mostly applies to packet-switching
network. A wide variety of approaches have been proposed,
however the ―objective is to maintain the number of packets
within the network below the level at which performance
falls off dramatically‖ [16].

Congestion control is usually focused on the design of
transport layer protocol, like TCP. However, whether TCP or
SCTP are not have desired performance. It is necessary to
provide a new transmission protocol to meet the needs of
real-time data for streaming media. The remaining sections
of paper are aimed to apply dynamic policies into SCTP
protocol. With a comprehensive analysis of the
characteristics of the traditional congestion control
mechanism and to fully exploit the own characteristics of
SCTP, and based on the idea of dynamic policy management,
a modified SCTP protocol – DSCTP was proposed. DSCTP
is not a new protocol, only to increase the dynamic SCTP
congestion controls mechanisms, so that it can always be
adjusted in data transmission according to the network
environment. Section II overviews several ideas and
mechanisms used by SCTP; some are compared with TCP
and UDP to highlight similarities and differences. Section III

385

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

formulates the characteristics and the defect of SCTP
congestion control mechanism. Section IV formulates a
refined dynamic policy management framework based on
Ponder model. In Section V, the framework is applied into
SCTP and describing dynamic congestion control algorithm
of DSCTP. In Section VI, simulation results show DSCTP
dynamic congestion control protocol can not only reduce the
risk of overall network congestion occurs, but also improve
the overall efficiency of the network.

II. OVERVIEW OF SCTP

In this section, we provide an overview of the protocols

that we are using in this paper: SCTP [14]. SCTP is defined

in RFC2960 [14] with changes and additions included in the

Specification Errata [15].

A SCTP versus TCP and UDP

Today most applications use either TCP [10] or UDP [1].

Applications that need a reliable in-order delivery of the

bytes sent by its peer uses TCP, whereas ones that can

tolerate a certain degree of loss prefer UDP, primarily

because UDP provides speedier delivery of packets. Most

applications prefer TCP over UDP and applications use TCP

including file transfer applications, electronic mail and the

worldwide web. UDP is used by streaming audio/video

applications for which timely delivery is more important

than reliability. SCTP was recently adopted by IETF, and is

a reliable transport protocol that operates on top of a

connectionless packet based network such as IP. It was

originally designed to be a general purpose transport

protocol for message oriented applications, as is needed for

the transportation of signaling data. SCTP is a transport

layer protocol and its services are at the same layer as TCP

and UDP. Instead of the three phase connection setup for

TCP and best effort to delivery for UDP, the initialization of

an association is completed after the exchange of four

messages. Another important difference between SCTP and

TCP is the support for multi-homed nodes in SCTP, i.e.

nodes which can be reached using more than one IP

addresses [13]. So if the routing is configured in such a way

that these IP addresses are accessible through different paths,

multi-homing gives SCTP a certain network level fault

tolerance.

A1

A2

An

B1

B2

Bn

ISP

ISP

ISP

ISP

ISP

ISP

Host A Host B

Figure 1. Example Multi-homed Topology

Unlike TCP and UDP, SCTP supports multi-homing at

the transport layer to provide redundancy at the path level,

thus increasing association survivability in the case of a

network path failure [8]. An SCTP endpoint may bind to

multiple IP addresses during association initialization. As

the Figure 1 shows, we can contrast SCTP with TCP to

further explain SCTP’s multi-homing feature. There are
2n

distinct TCP connections are possible between Hosts A and

B:
1 1(,)A B ,

1 2(,)A B ,
1 3(,)A B ,…,

1(,)nA B ,

2 1(,)A B ,…, 2(,)nA B ,…,
1(,)nA B ,…, (,)n nA B .SCTP

congestion control algorithms are based on RFC 2581 [12],

and include Selective Acknowledgement (SACK)-based

mechanisms for better performance. Similar to TCP, SCTP

uses three control variables: a receiver’s advertised window

(RWND), a sender’s congestion window (CWND), and a

sender’s slow start threshold (SSTHRESH).

At association startup, a primary path is defined for each

SCTP endpoint, and is used for normal sending of SCTP

packets. The idea of SCTP load balancing is to use only

primary path to transfer. Because the congestion control

mechanism of SCTP is similar to TCP, apply congestion

control mechanism to load sharing, there would be

unnecessary fast retransmit problems.

A single SCTP association (session), is able to use

alternatively anyone of the available IP-addresses without

disrupting an ongoing session. However, this feature is

currently used by SCTP only as a backup mechanism that

helps recovering from link failures. SCTP maintains the

status of each remote IP address by sending Heartbeat

messages and it is thus able to detect a specific link failure

and switch to another IP address. Another novel feature is

that SCTP decouples reliable delivery from message

ordering by introducing the idea of streams. The stream is

an abstraction that allows applications to preserve in order

delivery within a stream but unordered delivery across

streams. This feature avoids HOL blocking at the receiver in

case multiple independent data streams exist in the same

SCTP session. Congestion control was defined similar to

TCP, primarily for achieving TCP friendliness [14].

B SCTP Reseach Activities

SCTP is standardized in the IETF first in the Signaling

Transport Work Group (SIGTRAN WG) and since 2001 it

has found a new home in the transport Area Work Group

(TSV WG). The Protocol Engineering Laboratory (PEL)

directed by Professor Paul Amer at the University of

Delaware is dedicated to the research, development, and

improvement of new and existing computer network

protocols. PEL researchers are investigating innovative

transport protocol alternatives to TCP and UDP (such as

SCTP) emphasizing these alternatives within army networks

to provide efficient communications under mobile, ad-hoc

network conditions [9]. The ongoing development of

alternative transport protocols (e.g., SCTP) which provide

several benefits over traditional transport protocols such as

386

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TCP and UDP, especially in supporting army and/or

multimedia applications. Current focus is on transport layer

multi-homing and multi-streaming.

III. SCTP CONGESTION CONTROL

A Compare of Network congestion and congestion

control

Before SCTP congestion control mechanisms are

discussed, we must first clear and definite two concepts:

network congestion and congestion control.

When an excessive number of packets reach a certain part

of the communication network, there is no time for this part

of network to deal with all the data, resulting in decreasing

the network performance, and even lead to a suspend of the

network communication services, which produce the

network congestion. Congestion control has no exact

definition, its purpose is to use some means of avoiding the

network congestion situation, while in case of congestion

the state can resume as soon as possible.

The reason may be due to limited storage space as node

cannot cache all the receiving packets and the packet loss or

due to data units arrive at the number far exceeds of node's

processing capacity and cause delay, and the fundamental

reason is that network data traffic flow and node processing

speed.

B Congestion Control in TCP

TCP and UDP are the most common IP network transport

layer protocol, TCP has its own congestion control

mechanism, while UDP has not, although some scholars in

recent years have been studying how to add UDP congestion

control mechanism, but this is not in the discussion areas.

In general, TCP congestion control mechanism can be

divided into open-loop control and closed-loop control of

two kinds. Open-loop control focus on prevention, hopes to

avoid congestion by perfect design, closed-loop control is

solution-focused, trying to relieve and control after the

congestion occurs. Therefore, TCP congestion control

algorithm designed mainly from two aspects, the basic TCP

congestion control algorithms will include: slow start,

congestion avoidance, fast retransmit and fast recovery [12].

1) Slow start and congestion avoidance: TCP

congestion control requires two main parameters,

Congestion Window (CWND) and Slow-Start Threshold

(SSTHRESH). Sender sends window SWND = min

(CWND, RWND), RWND is the receiver window and it

usually has little impact on the send window. Therefore

CWND directly determine the size of the send window, and

the size of send window directly determine the size of the

send packet. CWND = 1 when data sent initially, when each

sent data packet is successfully confirmed, CWND will be

increased by 1. If all the data packets in the send window

have been identified, CWND will be double. The growth

process of the congestion window is called slow start; in

fact, in the slow start phase, CWND in the ideal case is

exponential growth. However, CWND cannot be unlimited

growth, we must set a threshold SSTHRESH for it, if

CWND> = SSTHRESH, CWND can be increased by 1 only

when all the data packets in the send window have been

confirmed. This time is called the congestion avoidance

phase, CWND increases linearly.

TCP will set a retransmission timeout RTO when a data

packet is sent, when the round-trip time RTT exceeds

RTO’s setting time, it means that this packet is lost, and has

to retransmit this packet, which is called network congestion.

At this point, the network come into congestion recovery

phase, TCP congestion control algorithm shall do the

following:

Set CWND = min (4*MTU, max (2*MTU, 4380byte))

[14] [15];

SSTHRESH = RWND;

Set SSTHRESH = max (CWND/2, 4*MTU);

Re-enter slow start phase

2) Fast retransmit and fast recovery: As waiting for the

RTO will make the network transmission efficiency

decreased, fast retransmit mechanism would like to find a

way to search for an alternative way of congestion discovery.

Whenever an endpoint receives a SACK that indicates that

some TSNs are missing, it should wait for two further miss

indications (via subsequent SACKs for a total of three

missing reports) on the same TSNs before taking action

with regard to Fast Retransmit. And then enter the

congestion recovery phase, during this period the system

shall do the following:

Set SSTHRESH = max (CWND/2, 4*MTU);

Set CWND = max (CWND/2, 4*MTU) +3;

Enter the congestion avoidance phase directly;

This is the basic algorithm of fast recovery. During the

period of congestion recovery phase, using fast recovery to

replace slow start is known as TCP congestion control

algorithm.

C SCTP Congestion Control Mechanism

SCTP protocol is called a modified TCP protocol, which

has the characteristics of both TCP and UDP. SCTP is

connection-oriented in nature, but the SCTP association is a

broader concept than the TCP connection. The term

"stream" is used in SCTP to refer to a sequence of user

messages that are to be delivered to the upper-layer protocol

in order with respect to other messages within the same

stream. This is in contrast to its usage in TCP, where it

refers to a sequence of bytes. TCP guarantees in-sequence

delivery of data to its upper-layer protocol within a single

TCP session. This means that when TCP notices a gap in

the received sequence number, it waits until the gap is filled

before delivering the data that was received with sequence

numbers higher than that of the missing data. On the other

hand, SCTP can deliver data to its upper-layer protocol even

if there is a gap in TSN if the Stream Sequence Numbers are

in sequence for a particular stream (i.e., the missing DATA

387

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

chunks are for a different stream) or if unordered delivery is

indicated. Although this does not affect CWND, it might

affect RWND calculation. The biggest difference between

SCTP and TCP, however, is multi-homing.

Because the multi-homing nature, the unique nature of

SCTP, its congestion control mechanism is different from

TCP. Once the congestion happened on the link, the

transmitter will choose another IP address with the same

host to continue the transmission. As SCTP provide the

connection oriented service, and the connection for each IP

address has already established, there is no need to setup a

new connection. In this way the overhead of setting up and

releasing the connections can be minimized to a large extent.

In traditional way of STCP, the slow start and the

congestion avoidance phases are still needed by the link,

however, because of using SACK in SCTP to confirm, the

transmitter only need to retransmit packets which have not

be confirmed when the link enter the fast recovery phase

after the congestion happened. SACK changes the

acknowledge mechanism of TCP, TCP only confirm packets

that all ready received, while SACK would send the

acknowledgment which contain the disordered information

to the receiver, by doing this the transmitter will minimize

blindness of the retransmission.

D The Defect of the Traditional Congestion Control

Mechanism

The traditional method of congestion control emphasis on

closed-loop control, but open-loop control has not much

achievement. When dealing with congestion control, both of

TCP and SCTP take the way of ―congestion discovery‖—a

kind of mechanism for congestion control. Although SCTP

reduces the blindness of retransmission by using the SACK

confirmation method, it can still not get rid of hysteresis due

to passive wait for the congestion. The method of

congestion control is too simple, the initial start is so slow

and some other problems are all have defects. Besides, TCP

and current SCTP use only one destination address at any

given time to transmit new data. SCTP restricts sending new

data, which can act as probes for information (such as

available bandwidth, loss rate, and RTT) to only one

primary destination. Consequently, an SCTP sender has

minimal information about other paths to a receiver [7].

In order to improve these deficiencies, this paper presents

a SCTP-based congestion control algorithm. The protocol

which uses of this new congestion control algorithm is

called dynamic SCTP (DSCTP). DSCTP fully exploits

SCTP feature, also it is flexible, proactive and accurate to

carry on the congestion control. More importantly, it can

adjust its congestion control policies according to network

conditions before the congestion happen. DSCTP is not a

new protocol, it only improves SCTP congestion control

mechanism, and the basic idea comes from the dynamic

policy management. DSCTP uses multiple destinations

simultaneously, CWND growth in DSCTP demands

tracking the latest TSN received in order per destination,

information not coded directly in a SACK. On the other

hand, a DSCTP sender maintains more accurate information

about all paths, since new data are being sent to all

destinations concurrently. This information allows a DSCTP

sender to better decide where to retransmit.

IV. DYNAMIC POLICY MANAGEMENT

Policy is a set of rules for the management and control

of network resources. The essence of policy based network

control is to view network as a finite state machine, the node

within the network is assigned a specific state according

policy rule [2].

Traditionally static policy is generated by the PMT [3]

through the administrator, while the dynamic policies are

generated based on the parameters which are collected by

the network, feedback mechanisms and policy algorithms.

Networks are controlled by dynamic policies, which

fluctuate accompanied by the changing environmental

message, feedback from contributing factors, so that

dynamic policies are self-adjust and can reflect the real

network environment.

Policy repository should be maintained from instant to

instant; policies are added, deleted or modified upon the

alteration of network environment. Real-time network

management can be achieved automatically without

intervention of human network operators. This is a big

virtue of dynamic policy management process. Dynamic

policy management makes full use of network resources,

upgrade efficiency and guarantee regular service provision.

Dynamic policy management framework is based on

IETF policy management framework [4] and PONDER

policy framework. The framework clearly describes how the

dynamic policy management network works. In Fig. 1, the

following module is shown:

PMT (Policy Management Tool): It provides a visual

management interface, the policy administrator through PMT

to add, modify and delete policies.

PB (Policy Base): It stores policy.

PEP (Policy Enforcement Point): Execution of specified actions,

for example: to request policy, to update policy, to delete

policy.

DPS (Dynamic Policy Scheduler): Centralized management

and scheduling of policy.

DPIP (Dynamic Policy Information Point): It collects

environmental information continually and uses this

information to update policy.

DFQB (Forecast Query Builder): It predicts environmental

information and assists DPIP to create new dynamic policies.

DPC (Dynamic Policy Cache): The policy pre-distributed

by PDP is stored in the policy cache.

DPS (Dynamic Policy Self-management): It detects

conflicts between policies.

PEP (Policy Enforcement Point): It executes of specified

actions.

388

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PDP (Policy Decision Point): It is composed of trigger

detection and handling, rule location and applicability analysis,

network and resource-specific rule validation and device

adaptation functions.

Figure 2. Dynamic Policy Management Framework [5]

PMT dynamically stores policy objects to PB through

DPS and maintains PB. When it is necessary, PMT passes

policy objects to PDP. PDP can obtain the corresponding

policy object from PB according to the policy request

submitted by PEP. DPIP continuously collects

environmental information, with the assistance of DFQB, in

order to adapt to the ever-changing network environment.

Then the collected information is passed to PDP to produce

new dynamic policies. DPC is used to store policies which

are issued in advance by PDP to the DPC. Finally DPS

detects policy conflicts, then, it will place policies in PB if

no conflict is detected. And then DPB will pass the

corresponding dynamic policy rules to PEP. DPS takes a

centralized management and scheduling upon policies,

taking advantage of the idea of scheduling algorithm. The

conventional policy storage is putting policies directly into

PB. When request for policies arrives, PDP will search for

the suitable policies by doing comparison one policy by one

policy. It is such a difficult procedure when it comes to

large-scale PB, consuming a long time to search out one

policy. On contrary, DPS can centralized manage and

schedule policies so that it can decrease the conflicts and

increase the efficiency [6].

V. DYNAMIC ALGORITHM DESCRIPTION

DSCTP uses dynamic congestion control algorithm
which describes the congestion control mechanism in detail
in respect of transmission start, flow control, network
monitoring, generation of policies, routing switching, and

congestion recovery. First, we appoint sender as A , receiver

as B , A and B jointly appoint a number of IP address

 1 2, ,..., nA A A 1 2, ,..., nB B B . If the service X is

intended to send data from A to B , we assume that host

1A is selected as the sending host.

A Transport Start Phase

Compared with the traditional SCTP, the major

improvements of DSCTP are listed in the following

aspects ：

 When 1A is intend to send data, firstly, select a host

iB randomly.

 If 1A had never sent data to iB , 1A sends a request

REQ to PDP, and REQ includes the current service

type X as well as the environmental parameters

1,..., nPARAM PARAM collected from the DPIP;

If 1A has ever sent data to iB , 1A sends a request

REQ to PDP, and REQ includes the previous value

of CWND and SSTHRESH in addition to the

current service type X and the environmental

parameters collected from the DPIP.

 PDP receives REQ, and if 1A is the first time send

data to iB , PDP sends a query request to PB to

query the matching policies. If PDP finds the

appropriate policies in PB, then PB returns PDP a

policy packet which includes the value of CWND

and SSTRESH currently should be set. If 1A is not

the first time to send data to iB , firstly, PDP

queries the policies in the DPC, and if the types of

service are the same, then DPC returns the policies

to the PDP; else, PDP queries the policies in the

DPB, if the match is found, then DPB returns the

policies to PDP; otherwise, PDP queries the policies

in the PB, if find the appropriate policies, then PB

returns it to PDP. The final policies PDP obtains

should be assertion whether it is suitable for 1A

send data to iB .

 If PDP can obtain the return policies, it will further

modify the policies according to its own special

rules, and return the final result to 1A ; if PDP

cannot obtain the return the policies, then PDP will

return 1A a policies in accordance with the default

rule.

 If 1A is the first time to send data to iB , 1A will set

its own CWND and SSTRESH according to the

policies received. If 1A is not the first time to send

data to iB , and return the assertion of policies is

TRUE, that means 1A can send data to the current

iB , and send data according to the value of CWND

and SSTRESH before; otherwise, 1A selects other

389

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IP address to resend to PDP and repeats the process

before.

B Congestion Avoidance Phase

In the control of sending quantity of packets, DSCTP

also uses TCP and SCTP mechanism. In other words, use

CWND and SSTHRESH control of numbers of packets.

CWND and SSTHRESH in a similar way with slow start

and congestion control. The only difference is CWND not

start with 1. Whenever CWND is less than SSTHRESH, an

SCTP endpoint must use slow-start algorithm to increase

CWND only if the current congestion window is being fully

utilized. When CWND is less than or equal to SSTHRESH,

Only when all of packets are confirmed can CWND be

increased; otherwise, CWND must not be increased.

C Network Monitoring Phase

Detection of network conditions is a core operation of

dynamic adaptive network. A has to constantly monitor the

link status of each iB . It should need to take appropriate

actions or continue to complete sending segment of packet

or continue to send packet after switching IP address when

certain link of iB is found of congestion. Detailed process

is described as follows:

 The request of determining the status of connection

should be sent from A to PDP, which includes of

its CWND and SSTHRESH.

 The value of M should be calculated according to

certain rules of CWND, SSTHRESH,

environmental parameters of DPIP and forecast

parameters of DFQB. M is a number from 0 to 10,

which indicates the level of the current status of

connection. The greater the value of M indicates

that the worse the status of connection should be,

and then the less appropriate the data should be sent.

 PDP should get the value of M, then according to

the current type of service and other special rules

which determine the level of the current link status.

In addition, PDP should write the new policies into

DPB. The new policies should include the current

environment parameters, such as the value of

CWND and SSTHRESH and the level of current

links. The meaning of the generation of policies

should be that the level of link environment is

LEVEL in the current environment when all the

environmental parameters do not exceed the current

value, CWND and SSTHRESH also do not exceed

the current value.

 Write the current generation of policies into DPC

and replace the original policies. The latest policies

should be saved in DPC forever. If the next is the

same type of service, check whether the matching

policies of DPC first, because the policies of DPC is

closest to the current network status.

 PDP should return a result to 1A according to the

calculated M and its own special rules whether the

current link for sending data.

D Dynamic Policy Generation Phase

We explain the dynamic generation of policies. PDP can

obtain the corresponding policy object from PB according to

the policy request submitted by PEP. Then collect

environmental information by DPIP and dynamically

determine threshold M.

1) Add Global Load Map: In order to elevate efficiency

in the bi-driven algorithm [18], an entity called Global Map

(GM) is added to the receiver, indicating the each host’s

instantaneous load value of the system, such as server load,

server busy factor, number of active connections, server

hardware and so on. The load value is calculated in accord

with the pre-defined rules, taking into weighting factors

such as the number of pending requests, request types, host

processing capacities etc. The algorithm should be executed

as follows. New requests should be assigned to light-load

nodes according to pre-defined rules. Meanwhile, all host

load values are polled; when one idle host is detected, an

uncompleted task in high load value host will be assigned to

idle host.

2) Dynamically Determine Threshold M: Dynamic

scheduling algorithm use dynamic policy management

framework to determinate the threshold M dynamically.

DPIP collects performance parameters of every host. When

new request comes, the load balancer makes a request to

PDP and then should contain operations described as

follows:

 The value of each parameter will be mapped to a

value between 0 and 10, then according to the

importance of each parameter of the system

calculate the weighted average value, this is the

value of the current system performance:

' min
10

max min

A

A A

v
v

where min A

is the minimum value of parameter,

maxA
 is the maximum value, v is the current value

and
'v is the standard value.

1 2(, ,...)nF f f f

where if is the weighted average value and

'

if v . is the weight value expressing the

importance of parameter. F is the standardization

of vector.

 According to F , it would be easy to find w in PB,

which is pre-defined.

 According to the vector of in DFQB, M value

would be calculated:

 , ,
*

t i tA
m

390

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 ,t i
m represents the performance value of host i at

the time t ,
 represents mapping function of

attribute .
 ,t

 is the weight value of attribute

 at the time t .

 , 1 , , 1, , 1, ,1

n

t i t i t i t i t i t i t ii
m m m m

 ,t i
 represents the parameter that effects the

system of host i at the time t .

 1 , , 1,
1

n

t t t i t i t i
i

m m

where
t is the threshold of the system. As it can

be different in the effect to the whole system when

the performance of each host changes, we have to

get a average value as the threshold for this system.

E Routing Switch Phase

When A receives policies to change routing, the link

appears in a congestion situation, then the routing must be

switched.

On the one hand the transmitter should continue to send

data to the original address, but on the other hand the

process above described should be carried out again when it

is in the sending process of a data segment, Once it selected

an appropriate IP address kB , then it should immediately

stop sending data to iB and resend all packets to confirm of

the current send window, it also need to send a notification

along the original link. The passed node should clear the

cache of packets from 1A after it received notice. Then it

will send the remaining data of this data segment to kB .

From A to iB , CWND and SSTHRESH should not be

changed and should be retained.

F Congestion Recovery Phase

The dynamic policy generation is based on the forecast

and it is characterized by bias. When the congestion occurs,

the congestion recovery mechanism of DSCTP is relatively

simple and it only waits for enough time to recovery, then

send the packet according to the algorithm of DSCTP. It

will not affect network communications even when the

waiting time is long enough because there are several

routings to choose for SCTP, so the sending endpoint can

wait for a long time before sending packet when there has

congestion. In addition, after congestion, all nodes on the

congested link will clear part of the buffer after receiving

instructions. Therefore it can be assumed that it makes the

link A to link Bi return to normal after the waiting time.

Then the data can be sent by the algorithm of DSCTP.

Before congestion occurs DPB should write the policies into

PB (It should be the same as the tactics stored in DPC) and

set the network status into poor. As this policy was

originally wrong, so this policy should be removed from the

DPB and DPC. This is the process of dynamic error

correction.

G Algorithm Analysis

Compared with the traditional SCTP, the major

improvements of DSCTP are listed in the following

aspects ：

 There are more than one transport addresses in the

active state that can be used as a destination address

to reach that endpoint, so they can share the network

load. The traditional SCTP usually uses the same

destination address until being instructed by the

upper layer to do, otherwise SCTP may change to

an alternate destination in the event an address is

marked inactive [11]. However, DSCTP can send

data to multiple IP address simultaneously, and no

matter data is sent to any one IP address, all of

which can be correct confirmation, thus this can

greatly enhance the flexibility and the overall

processing capabilities of the network.

 According to multiple network parameters, DSCTP

can implement the congestion control. The

traditional congestion control in SCTP only

concerned with some congestion control parameters,

such as Congestion Window (CWND), Slow Start

Threshold (SSTHRESH), Round-trip Time (RTT)

and so on. The monitor of congestion appears very

rough. However, DSCTP not only concern the

above parameters, but also implement congestion

control by environmental parameters. In fact, many

environmental parameters can be an indicator to

some degree: such as the processor payload of the

receiver, the size of the cache, the total number of

streams on the current transmission link, the total

number of router on the link and the CPU used in

the router and so on. All of these parameters may

indicate a certain level of congestion.

 DSCTP monitor the network status ， and also

feedback information to predict the status of link.

To avoid network congestion, CWND should be

incremented by 1*MTU per RTT if the sender has

CWND or more bytes of data outstanding for the

corresponding transport address. Or passive

monitoring the congestion status and then rapid

recovery from congestion state through SACK. To

predict the possibility of congestion in DSCTP. As

potential congestion, if they predict potential

congestion, they should take appropriate action to

ensure congestion avoidance immediately.

 Like TCP and SCTP, a DSCTP endpoint uses the

following three control variables to regulate its

transmission rate, such as RWND, CWND and

SSTHRESH. SCTP and DSCTP also require one

additional control variable, partial_bytes_acked,

which is used during congestion avoidance phase to

facilitate CWND adjustment. Beginning data

391

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transmission into a network with unknown

conditions or after a sufficiently long idle period

requires SCTP to probe the network to determine

the available capacity. Through the phases of the

slow start and the congestion avoidance, to make

the network best transport efficiency, but some

urgent high-speed data services have to experience

this slow process. DSCTP maintains these modes of

the slow start and congestion avoidance, but the

value of the initial congestion window is not equal

to 1 and after recovery from congestion, according

to the state of the sending endpoint and the current

network environment, the values of CWND and

SSTHRESH are not fixed and by all of these

environment parameters to define.

 All network activities in DSCTP are in the guidance

of dynamic policies. Based on the service

characteristics, the requirements of the network and

so on, the network administrators create enough

permanent policies in advance, which are widely

used in the vast majority situations of the network.

And also through the feedback mechanism and

prediction mechanism to create temporary policies,

which are effective for a given period of time

because they collect the current network

environment parameters. These policies can either

be replaced by new dynamic policies, or be deleted

by themselves at the end of the life period.

H Deficiency of DSCTP

 DSCTP cannot avoid congestion. In fact, any kind

of congestion control mechanism could not

completely avoid any congestion. It can only try to

reduce congestion. At the same time, it can ensure

implementations of fast-retransmit and fast-recovery

as fast as possible. The essence of DSCTP is to see

the receiving endpoint as a cluster system, by

adding dynamic scheduling algorithms to make the

network load more balancing. By this way it can

increase the processing capacity of the receiving

endpoint, it can also reduce the load of the single

host. The ultimate goal is to avoid congestion

phases. However, when the network load is big

enough, DSCTP cannot avoid this situation.

 DSCTP cannot pay much attention to congestion

recovery. As the above mentioned, DSCTP mainly

focused on how to avoid congestion, but to the

question of how to recovery from congestion, it

only obtains the values of CWND and SSTHRESH,

it does not provide other effective solutions. This is

largely based on DSCTP is multi-homed, for

DSCTP, it can has multiple links at the same time, if

one of the link has not send data for a long time, it

would not have too much influence on the network.

So if the link has some problem, it should be wait

enough time for the network recovery, not pay

much attention on how to fast-recovery from

congestion.

 All endpoints in DSCTP must reserve some

resources to tackle additional communication

information all the time, such as environmental

parameters report and delivery, policy request and

policy delivery and so on. This extra cost will

definitely reduce the efficiency of the transport

network, especially when the network load is huge,

it will make the network environment more terrible.

However, resource reservation algorithm in DSCTP

is different from the traditional resource reservation

algorithm. It does not need all the resources for

transferring data in network, just keep small part of

the resources to handle control events. If this

method can greatly reduce the probability of

congestion is also worth it because congestion in the

transport network will lead to low-level efficiency.

VI. SIMULATION TEST

In order to verify the dynamic algorithm for the

congestion control is more efficient than the traditional

congestion control algorithm, not only can greatly reduce

congestion occurred, but also can improve the efficiency of

the network transmission. The system testing must be

performed using VS2008 simulation for two kinds of

algorithms of congestion control by comparing two

mechanisms of sending the same quantity of packets, from

congestion numbers (CN) and experimental time (ET). EV

is used to simulate values of network conditions.

A Experimental condition:

To simplify the protocol we should make some

hypothesis:

 Only concerned with receiving buffer occupancy,

hops from source to destination and round-trip time

three environment variables, and ignored other

environment variables.

 The service of sending data in the network belongs

to the same type.

 Using one-to-many communication mode, which is

a source point correspond to multiple destination

points. The sending endpoint send data to any one

of the receiving endpoint and get the confirmation

are all represented the success of sending data.

 In the real network, it often occurs that too large

data traffic can cause congestion in any subnet.

Adding a variable EV in this experiment to simulate.

EV is a value from 0 to 1, when EV is close to 1, the

network load is in a high situation, but when EV is

close to 0, the load of network is in a low situation.

In short, we can see EV as the ratio of all of data in

the network and carrying capacity of network, so it

can reflect the current network load conditions.

Because there are none of perfect network protocols

based on dynamic congestion control algorithm, considering

392

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of fairness, not to choose the existing SCTP as a

experimental subject and construct two experimental objects

based on TCP protocol.

Object 1: SCTP simulation:

 One source endpoint can establish TCP connections

with 10 destination endpoints;

 Each connection has its own parameters of

congestion control;

 From initial status, the source endpoint only chooses

one destination endpoint and sends data to it;

 The source endpoint always remains sending data to

the same destination endpoint;

 The sending endpoint uses a slow start and

congestion avoidance to regulate the congestion

window;

 Using SACK to confirm;

 Once the source endpoint has congestion with the

current destination endpoint. The sender has to

choose another destination endpoint to send packet,

and send congestion window at a fixed value.

Object 2: DSCTP simulation:

 One source endpoint can establish connections with

10 destination endpoints;

 Each connection has its own parameters of

congestion control;

 The sending endpoint can sends data to any host at

any time;

 The sending endpoint can process data and

environmental information at the same time;

 The sending endpoint based on environmental

information to predict the status of the network;

 According to the predicted value the sending

endpoint choose to continue to send data to the

current host, or choose to send data to other hosts;

 If you need a switch, the sending endpoint

retransmit all data in the send window to a new

destination endpoint, and notify the original host to

clear receiver’s buffers and use of the size of the

original send window to set a new send window.

In fact, the essence of simulation is to contrast two

experimental subjects. CN and ET correspond with the

changes of EV.

B Test Results:

Assume that transmit 100000 packets, each size of

packet is 1500 byte (the maximum size of Ethernet), the

sum size is 150 MB. Using of two kinds of congestion

control mechanisms. From the below we can see that the

value of CN and ET (s). As shown in the below, we can

divide EV into three parts: first EV is from 0 to 40, and then

EV is from 40 to 90, the last EV is from 90 to 100. The

value of EV is from 0 to 100, when the value of EV is equal

to 0, network is in an idle status; when the value of EV is

equal to 100, network is in a fully congestion status; we

only test the value of EV from 10 to 95 because the value of

EV is lower than 10, the network basically has no data

traffic. But if the value of EV is higher than 95, the network

is in a state of paralysis. The value of ET is the time interval

from the first packet transmitted to the last packet, which

expresses the efficiency of the transport network. The

smaller the ET, the higher transmit efficiency is. The value

of CN is the times of congestion which expresses the ability

of controlling network congestion. The smaller the CN, the

higher congestion capability is. SCCA expresses static

congestion control algorithm and DCCA expresses dynamic

congestion control algorithm.

Table I and Table II list the required EV of 10, 20, 30,

40, 50, 60, 70, 80, 90, 93, 95 respectively, under SCCA and

DCCA. What Table I contains is CN. From Table I we can

see that CN of SCCA is from 0.2 to 24.2, while CN of

DCCA is from 0 to 4.2. Based on Table I, draw a two-

dimensional graph of Fig. 3. What Table II contains is ET.

From Table II we can see that ET of SCCA is from 41.1 to

2505.4, while CN of DCCA is from 50.7 to 2641.7. Based

on Table II, draw a two-dimensional graph of Fig. 4.

TABLE I. COMPARE CN OF DCCA WITH SCCA

Figure 3. Compare CN of DCCA with SCCA

From Table I and Fig. 3 we can see that the value of CN

in the SCCA and the value of CN in the DCCA are nearly

equal to 0 when the value of EV is lower than 20. When the

value of EV is higher than 95, the increase of CN will

increase drastically eventually converge towards endless.

From this we can see that DCCA is always better than

SCCA.

Table I and Table II list the required EV of 10, 20, 30,

40, 50, 60, 70, 80, 90, 93, 95 respectively, under SCCA and

DCCA. What the table contains is CN. From Table I we can

see that CN of SCCA is from 0.2 to 24.2, while CN of

DCCA is from 0 to 4.2. Based on Table I, draw a two-

dimensional graph of Fig. 3.

393

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. COMPARE ET OF DCCA WITH SCCA

Figure 4. Compare ET of DCCA with SCCA

From Table II and Fig. 4 we can see that the values of

ET in the DCCA and in the SCCA have two cross points,

one is EV=40 and the other is EV less than 90. This is

because DCCA use the dynamic congestion control

mechanisms to reduce the probability of congestion occurs

and improve the overall efficiency of transport network.

At the point of EV is equal to 40, two curves of ET

gradually begin to coincide. This is because in a network

with high load situation, no way can be taken to avoid

network congestion occurs. The network was in a state of

paralysis.

We can see that ET of DCCA is lower than ET of

DCCA when the value of EV from 40 to 90. Because

DCCA uses the dynamic congestion control mechanisms to

reduce congestion occurs and also improves the network

transmission.

When the value of EV is higher than 90, the increase of

ET will increase drastically eventually converge towards

endless. Because there is no way to avoid network

congestion occurs when they are in a heavy-load conditions.

From this we can see that DCCA is always better than

SCCA.

C Result Analyzing

From the above results can draw the following

conclusions, according to Table I, Table II, Fig. 3 and Fig. 4:

In the good network conditions, transport efficiency of

dynamic congestion control policy is a little below the

traditional congestion control policy. Considering the

network was in an unoccupied state, so that the performance

of internet would not cause too much influence. Because

there is hardly any task in the transmit link in the light-load

conditions, there is no significant difference between DCCA

and SCCA.

In the normal-load conditions, using dynamic

congestion control algorithm could reduce the probability of

congestion occurs and improve the network transmission. In

the heavy-load conditions, using dynamic congestion

control algorithm and traditional congestion control

algorithm could not change the network congestion situation.

Thus, the dynamic congestion control algorithm does

help to reduce the network congestion occurs, and also help

to enhance overall efficiency of the transport network.

VII. SUMMARY AND CONCLUSION

The main idea of this paper is applying the dynamic

policy management framework to SCTP. Congestion

control is a method used for monitoring the process of

regulating the total amount of data entering the network so

as to keep traffic levels at an acceptable value. The

traditional SCTP initial start is so slow and SCTP use only

one destination address at any given time to transmit new

data. Therefore, the new algorithm design uses dynamic

congestion control algorithm which describes the congestion

control mechanism in detail in respect of transmission start,

flow control, network monitoring, generation of policies,

routing switching, and congestion recovery. Detection of

network conditions is a core operation of dynamic adaptive

network. The actions such as dynamically determining the

value of the threshold and dynamically transferring tasks are

practically based on the principle of prediction and feedback.

However, merely using prediction and feedback is not

enough to complete dynamic scheduling. What is more

important is to integrate the dynamic policy management

framework. Developed on the basis of conventional static

policy management framework, this dynamic framework

has the characteristics of self-government, which allows the

whole algorithm to keep working without the involvement

of the administrator. In this way, the policy scheduling can

guarantee that it will keep up with the rhythm of change on

the system, thereby, significantly enhancing the transferring

efficiency.

ACKNOWLEDGMENT

The project of the research on hierarchy and protocol of
dynamic control and management for packet service oriented
Heterogeneous / Converged Network is supported by
Ministry of Technology and Science of People’s Republic of
China under Grant No.2007AA01Z204 and Sino-Swedish
collaboration research program under Grant No.
2008DFA11950.

REFERENCES

[1] Postel J., ―User Datagram Protocol‖. RFC 768, IETF, Aug. 1980.

[2] http://www.rfc-editor.org/rfc/rfc3060.txt. [accessed: January 20, 2011]

[3] http://tools.ietf.org/html/draft-ietf-policy-arch-00. [accessed: January
20, 2011]

[4] http://www.rfc-editor.org/rfc/rfc3318.txt. [accessed: January 20, 2011]

[5] Dulay N., Lupu E., Sloman M., and Damianou N., ―A Policy
Deployment Model for the Ponder Language‖, An extended version

394

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of paper in Proc. IEEE/IFIP International Symposium on Integrated
Network Management(IM’ 2001), Seattle, May 2001, IEEE Press.

[6] Liu X. J., Liu Y. H., Wei D., and Liu H. Y., ―Dynamic Policy Based
Network Management Scheme in Mobile Environment‖, 2008
International Symposium on Computer Science and Computational
Technology.

[7] Iyengar J. R., Amer P. D. and Stewart R., ―Concurrent multipath
transfer using SCTP multihoming over independent end-to-end paths‖,
Proc. IEEE/ACM Transactions on Networking, Vol. 14(5), pp. 951-
964, Oct 2006.

[8] Fracchia R., Casetti C., Chiasserini C. F. and Meo M., ―WiSE: Best-
Path Selection in Wireless Multihoming Environments‖ Proc. IEEE
Transactions on Mobile Computing, Vol. 6(10), pp. 1130-1141,
Oct. 2007.

[9] http://pel.cis.udel.edu/. [accessed: January 20, 2011]

[10] Postel J., ―Transmission Control Protocol‖. RFC 793, IETF, Sept.
1981.

[11] http://www.rfc-editor.org/rfc/rfc4960.txt. [accessed: January 20, 2011]

[12] Allman M., Paxson V., and Stevens W., ―TCP Congestion Control‖.
RFC 2581, IETF, Apr. 1999.

[13] Humaira K., Brad P. and Alan W., ―SCTP versus TCP for MPI‖, Proc.
Thirteenth International Symposium on Temporal Representation and
Reasoning, TIME 2006.

[14] Stewart R., Xie Q., Morneault K., Sharp C., Schwarzbauer H., Taylor
T., Rytina I., Kalla M., Zhang L., and Paxson V., ―Stream Control
Transmission Protocol,‖ RFC 2960, Oct. 2000.

[15] Stewart R., Arias-Rodriguez I., Poon K., Caro A., and Tuexen
M.,―Stream Control Transmission Protocol specification errata and
issues,‖draft-ietf-tsvwg-sctpimpguide-16.txt, Apr. 2006.

[16] http://en.wikiversity.org/wiki/What_is_Congestion_control%3F.
[accessed: January 20, 2011]

[17] Jacobson V.,―Congestion Avoidance and Control‖. Proc. Computer
Communication Review, Vol. 25(1), pp. 157-173, Jan. 1995.

[18] Eager D. L., Lazowska E. D. , and Zahorjan J., ‖A
Comparison of Receiver-Initiated and Sender-Initiated
Adaptive Load Sharing‖, Performance Evaluation,Elsevier,
Amsterdam, Holland, Vol. 6. pp. 53-68,1986.

395

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Bioinformatics: From Disparate Web Services to
Semantics and Interoperability

Mikael Åsberg, Lena Strömbäck
Department of Computer and Information Science

Linköpings Universitet
Linköping, Sweden

Email: m.asberg.watch@gmail.com, lena.stromback@liu.se

Abstract—In the field of bioinformatics, there exists a large
number of web service providers and many competing stan-
dards regarding how data should be represented and inter-
faced. However, these web services are often hard to use for
a non-programmer and it can be especially hard to understand
how different services can be used together to create scientific
workflows. In this paper we have performed a literature study
to identify problems involved in developing interoperable web
services for the bioinformatics community and steps taken by
other projects to address them. We have also conducted a case
study by developing our own bioinformatic web service to further
investigate these problems. Based on our case study we have
identified a number of design issues important to consider when
designing web services. The paper is concluded by discussing
current approaches aimed at making web services easier to use
and by presenting our own proposal of an easy-to-use solution
for integrating information from web services.

Keywords-bioinformatics; XML; web services; interoperability;
semantics

I. INTRODUCTION

In our previous work [1] we studied the interoperability of
web services within the bioinformatics community. This article
extends the work by providing a more comprehensive literature
review, more details on our work, and a first description of our
current work in the field.

In the field of bioinformatics, there has been an explosion
of data over the past years. For example, in the Molecular
Biology Database Collection: 2008 update [2], 1078 databases
are listed, 110 more than in the previous update [3], which
itself also contained 110 more databases than the update
before that. These databases are being maintained and hosted
by a large number of autonomous service providers. Many
of them are only concerned with a single database and its
tools. Regarding how data should be represented and formatted
and how its corresponding tools and algorithms should be
interfaced, there exists a large number of standards [4] [5].
As an example, P. Lord et al. say in [6] that ”there are at least
20 different formats for representing DNA sequences, most
of which have no formal specification”. Many standards and
specifications evolved in an ad-hoc fashion and there is no
wide-spread agreement on when a particular standard should
be used.

Remotely accessing the resources maintained by the service
providers can often be done in more than one way. Many

service providers have constructed www-based interfaces to
their resources, meant to be used by humans. The user does not
have to use any specialized software or use a specific platform
to access the resource, a common web browser is sufficient.
As an alternative to browser-based interfaces, many service
providers in the bioinformatics community offer programmatic
access by using web services [7]. A web service is any
service available over the Internet using XML as its messaging
system, and it is independent of platform and programming
language. The web services we specifically mean here are
those falling under the category of RPC (remote procedure
call) web services, being parts of Internet API:s. Such web
services allow for programmatic and batch access. An example
web service method from the bioinformatics community is
get genes by enzyme, which is part of the web service API
that allows access to KEGG (Kyoto Encyclopedia of Genes
and Genomes) [8]. This particular method takes an organism
and an enzyme ID in string form and returns its corresponding
genes. Another example is EBI Soaplab Web Services for
EMBOSS programs [9], which is a large set of web services
providing web access to many EMBOSS programs.

Given the nature of biology, a bioinformatician often has to
use multiple service providers to conduct his or her research.
By combining several resources and processes, local or re-
mote, bioinformaticians can create scientific workflows [10].
There exists a number of different tools for creating scientific
workflows, for example Taverna [11] [12] [13] and VisTrails
[14] [15]. These tools allow the user to create a data pipeline,
a workflow, using a number of different resources. Taverna
caters specifically to bioinformaticians while VisTrails was
originally targeted at visualization. An alternative to flexible
workflow systems like Taverna and VisTrails are specialized
bioinformatic grids [16] that tie remote and local resources
together in a client to provide a unified view. Such grids can
often be successful on a small scale, but development costs
and network restrictions prevented them from becoming the
de-facto standard for integration of bioinformatic services [16].

However, the task of creating bioinformatics workflows
can be very difficult because of the fact that there are so
many service providers and there is little consensus about
data formatting and interfacing. Thus, bioinformaticians face
a massive interoperability problem. A browser-based form is
a convenient way to work if one just wants to do a few

396

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

stand-alone look-ups in a given database, but when one needs
to perform many look-ups and queries on several disparate
resources it becomes unfeasible. This is true not just because
of the fact that these web-based interfaces may be poor at
supporting programmatic and batch access, but also of the
intricate data reformatting that may be involved in using the
output from one resource as input to another. Web services, by
themselves, do not solve the interoperability problem. They are
simply a way to access remote resources programmatically. A
problem facing users is to determine how different sets of web
services can be used together to create the desired workflows.

In this paper we have performed a literature study to
give an overview of other projects that have been introduced
to enhance semantic interoperability and discoverability for
bioinformatic web services. Section II discusses the problem
with designing interoperable web services and Section III
discusses semantic frameworks that have been introduced in
bioinformatics community to alleviate the problem of lacking
interoperability. In Section IV we discuss scientific workflow
systems that are becoming a more and more popular way of
interacting with multiple bioinformatic resource providers to
form workflows. This way of working has many benefits, but
introduces new problems that need to be considered. Section
V discusses our case study, where we developed our own
web service to get a hands-on experience of the problems
involved with web service design. The case study was also
aimed at designing a web service capable of performing data
integration on the fly. Section VI summarizes the problems
and design issues we encountered. In Section VII we end the
paper by discussing other approaches to interoperability and
also present our continued work, BioSpider.

II. DESIGNING INTEROPERABLE WEB SERVICES

Our main issue is how to design web services for the
bioinformatics community that are interoperable with other
services. We focus on technologies used in this community.

SOAP-based web services are sometimes called XML-based
web services. Everything that is passed between the users of
a web service and the web service itself is in XML form.
This means that input parameters and output data for a given
web service method are also serialized in XML. In order for
clients to use a particular web service, they need a description,
the WSDL, to learn about, which methods are available, what
parameters those methods require and what kind of data is
returned.

As an example, let us create a web service of the Java
method (showing its signature only) String getXItem(String
id). It accepts a single string and returns a single string value.
In Figure 1 we see what the created data types for our example
method looks like in the WSDL description.

The WSDL description shows that for our example method,
two complex schema types have been declared, one for the
input parameter and one for the result. However, these types
are simply wrappers around the XML Schema primitive type
xs:string. Herein lies the interoperability problem, because
these types have no semantics attached to them. We do not

<xs:complexType name="getXItem">
<xs:sequence>

<xs:element minOccurs="0"
name="arg0" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="getXItemResponse">

<xs:sequence>
<xs:element minOccurs="0"

name="return" type="xs:string"/>
</xs:sequence>

</xs:complexType>

Fig. 1. Type Declarations in WSDL-file

know the semantic meaning of the input and output data, only
their syntactic meaning!

When programming in a strongly-typed language like Java
or C# and one needs to have semantics for syntactically simple
types (like strings or integers), the common practice is to
introduce new classes or hierarchies of classes. By doing
that, we can enforce semantic rules at compile time and
prevent, for example, scenarios where users are passing strings
that represent journal abstracts to methods expecting database
identifiers in string form. However, this will not work in a web
service context, because, in order to achieve interoperability
between different programming languages and platforms, the
types used in the host language must have corresponding XML
Schema types like integers or strings.

The WSDL description for a web service can be seen as the
grammar of that particular web service. Thus, all providers
have their own grammars, albeit specified using the same
XML language constructs. In order to achieve true semantic
interoperability we need a common grammar, a common
stock of reference. Within the bioinformatics community, a
number of different semantic frameworks have been proposed
to provide a common grammar, for use as a common stock of
reference regarding data types, naming, operations etcetera.

Another thing to consider is that not all parameters for
a given web service method may hold the same merit.
Some parameters constitute the fundamental data needed by
the service. These are the important parameters. But many
methods also accept additional parameters, whose purpose is
simply to tweak the behavior of the service. When looking
for semantically suitable web services, a bioinformatician is
not interested in these kinds of parameters as they would only
serve to complicate the task at this point [6].

A problem with the web services themselves can also be that
a given method is semantically simple and has a limited and
well-defined purpose. This programming paradigm is mostly
considered a good thing, but if the building blocks of a
workflow become too fine-grained it will be difficult to create
more advanced workflows without requiring a lot of ”glue” in
the form of data formatting or even programming. However,
it may be the case that possible interoperability between two
web services is easier to establish if their parameters are
fundamentally simple and well-defined. This leads to the main
point of this article: how to design web services with clear

397

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

semantics that can be easily used in bioinformatic workflows.
In the following section we will give a presentation of

some of the more notable semantic frameworks that have been
introduced to provide a single grammar to describe a host of
autonomous service providers.

III. SEMANTIC FRAMEWORKS IN BIOINFORMATICS

Several projects have attempted to address the above prob-
lems and here we give a brief overview of the three most
important in the field of bioinformatics today: BioMoby [17],
myGrid [18], and the more recent BioCatalogue [19] [20].
These projects tackle not only the problem of helping users
to determine how services from different providers can work
together to form workflows, but also assist in the discovery of
relevant services.

A. BioMoby

The BioMoby project was initiated in 2001 and has a main
branch, MOBY-Services (MOBY-S) and a sub-branch known
as SSWAP (Simple Semantic Web Architecture and Protocol).
However, according to the BioMoby web page [21] these two
branches are to be merged in the future.

In the MOBY Services branch three ontologies provide se-
mantic discoverability and interoperability along with strictly
enforced naming rules, and we present them briefly below:

• Service ontology - this ontology contains operational
classifications used to label web service methods. There
is a root type called Service and a tree of sub-types, such
as alignment or rendering. The purpose of this ontology
is to assist in the discovery of web service methods that
are useful or interesting for a given task or problem.

• Namespace ontology - this ontology can be seen as a flat
list of different namespaces that can be used to semanti-
cally describe data that is consumed and/or produced by
a web service method. It also enforces a method for how
to name identifiers. A problem in the bioinformatics field
is that identifiers have not been named in a consistent
and reliable way. The namespace ontology derives in-
formation from Cross-Reference Abbreviations List from
the Gene Ontology consortium [22] and defines distinct
naming rules that are used dependably and reliably. For
example, Antirrhium majus (Snapdragon) gene names live
in the DragonDB gene namespace.

• Object ontology - this ontology is similar to the service
ontology in the sense that it can be viewed as a tree. The
root node is called Object and between all nodes and its
children there exists an IS-A relationship, e.g., an Aligned-
Sequence is an Object and an AlignedDNASequence is
an AlignedSequence. Two nodes, in different parts of the
tree, can also have a HAS-A relationship (either one-
to-one or one-to-many), e.g., the type Annotation is a
direct child of Object and it has two Integers, but is itself
not an Integer. An instance of an object that is returned
from a web service method is serialized into XML and
contained in an envelope (that is also XML). Envelopes
can contain cross-references that are supplied by the data

Fig. 2. Fraction of BioMoby object ontology

provider and they describe related pieces of information.
Since cross-references are valid objects by themselves
they may be used directly, without additional formatting
or computation to discover services from other providers
that operate on them [23]. In Figure 2 we can see a small
fraction of this ontology.

The BioMoby team runs Moby Central, which is a web
service registry where all service definitions can be found,
expressed in the ontologies described above. When a new
actor wants to participate in the BioMoby project they register
their objects, namespaces, and service classifications in the
registry. This implies something that is very important and
fundamental to BioMoby: the ontologies described above are
end-user extendable.

SSWAP stands for Simple Semantic Web Architecture Pro-
tocol and was previously called Semantic-MOBY or simply
S-MOBY. The approach taken by this sub-branch differs
from the one taken by the MOBY-Services project. Instead
of maintaining three user-extendable ontologies centrally, it
defines a minimal messaging structure and relies on the wealth
of the available third party ontologies, such as OBO [24], to
define meaning, syntax and interoperability between services.
In [17] the authors say that ”SSWAP has shown exciting early
success in achieving interoperability between a small number
of participating providers. It remains to be seen, however, if
the complexity of reasoning over an open-world system, and/or
the potential dilution of compatibility between resources due
to an increasing number of ontological possibilities, will
interfere with the desired goal of straight-forward, maximum
interoperability between bioinformatics Web resources”.

B. myGrid

The myGrid project is a part of the UK government’s e-
Science program and it seeks to enable bioinformaticians to
discover and chain together disparate bioinformatics services
to create workflows, in silico experiments. For describing
a bioinformatics domain and the properties of its services
there exists a domain ontology that is stored centrally and
maintained and generated by an expert. Semantic descriptions
of services are made using a lightweight RDF data model
using terms from the domain ontology. These descriptions are
extendible by users. The project makes a distinction between
domain services and shim services. Domain services are the
centerpieces, those that perform scientific functions. The archi-

398

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tecture should not automatically select those for the scientist,
because there could be alternatives that only the scientist doing
the experiment should select among. Shim services, on the
other hand, does not have a scientific function per se, but are
only used as glue to connect two domain services that are
not directly compatible. The architecture should automatically
insert available shim services where they are needed without
the scientist having to intervene. The Taverna software can
interact with myGrid-based sources, and also with BioMoby-
ones through a plugin [25].

C. BioCatalogue

The BioCatalogue project [19] [20] was launched in June
2009 and is a joint venture between EMBL-EBI and the
myGrid project. It aims to assist web resource users within
the Life Sciences community to find relevant services for
their research and assist in determining how different services
can operate together. Another goal is to act as a registry for
suppliers of services, which will allow any given supplier to
increase the size of its user base.

The project tries to tackle the problem of services becoming
stale, disappearing, or changing by monitoring both their
actual availabilty and their supposed function. To put it another
way, the four main issues listed on their homepage (http:
//www.biocatalogue.org/) effectively point out the objectives
of the project:

• “Web Services are hard to find.”
• “Web Services are poorly described”
• “My Web Services are not visible”
• “Web Services are volatile”

By finding solutions to the problems listed above, the BioCata-
logue project aims to become the central hub for web services
in the Life Sciences community. It doesn’t aim to become a
supplier of scientific web services themselves, only to bring
the vast variety of already existing ones under one umbrella
to the benefit of the community.

The BioCatalogue project has noted that finding an interest-
ing web service is only part of the problem. It’s not enough
just to have a central registry of services where suppliers can
register their service. Often the documentation for a service
is mediocre or outdated and comes with few or no examples,
making the service hard to use. Some services also require
certain operations to happen in sequence to be able to produce
a meaningful result, and this fact is not always clear from the
get-go.

To minimize this problem of understanding a given web
service, the BioCatalogue project employs rich annotations
for all registered services. The annotations for a given service
are not derived from a single source (e.g., the supplier of the
service). Instead it’s comprised of information from several
parties: the supplier of the service, a domain expert curator
employed full-time who has sub-curators to assist him or her,
the user base itself, and usage patterns that are automatically
collected. Together, these entities evolve the annotations for a
given service over time to make it better and more consistent.
The role of the curator is to oversee the process to ensure that

guidelines are followed in order to avoid annotations to be
given in an inconsistent manner. Annotations for services can
be divided into four main categories:

• Functional - these annotations describe the purpose of
the service, what kind of operations it can perform and
what data it will operate on and produce. This category
is further divided into sub-categories, pin-pointing the
task of the service more explicitly, e.g., alignment or text
mining. Example input data and other usage scenarios
often accompany these annotations in order to help users.

• Operational - these annotations detail any particular con-
siderations that must be taken into account in order
to successfully use the service. As noted above, some
services require operations to happen in sequence (i.e.,
the individual methods of the service cannot be seen as
separate islands) in order to produce a sensible result.
Such things are annotated in this category.

• Profile - here automatically collected data and other
comments by users regarding the service are maintained.

• Provenance - contains information about the supplier of
the service and an audit trail detailing any changes to
service over time are kept here.

BioCatalogue can be accessed through a web portal [20], but
an API is also provided to allow programmatic access. A user
using the web portal can look for services by searching for
scientific function, data types, provider, country etcetera. If
the user is unsure about the type of some data he or she has,
BioCatalogue can analyze an excerpt of it to determine its
type. Regarding data, input and output data are tagged with
ontological terms from the myGrid project and if the users
know that information it’s straightforward to find services that
fit perfectly semantically. All services from the myGrid project
have been imported into BioCatalogue and work is currently
underway to merge with other big repositories like BioMoby.

IV. SCIENTIFIC WORKFLOW SYSTEMS

The main aim of this paper is to study interoperability of
web services, i.e., how web services can be designed to be
easily used together to solve an information integration task.
From a technical point of view there are several ways to
combine web services into more complex tasks, however, one
approach in common use within the bioinformatics community
is scientific workflows. Scientific workflow and workflow-
based systems [11] [12] [13] [14] [15] [26] [27] [28] have
emerged as an alternative to ad-hoc approaches for document-
ing computational experiments and designing complex pro-
cesses. They provide a simple programming model whereby
a sequence of tasks (or modules) is composed by connecting
the outputs of one task to the inputs of another. Workflows
can thus be viewed as graphs, where nodes represent modules
and edges capture the flow of data between the processes.

The actual features and representation of a scientific work-
flow differ between the systems, due to varied needs from
application areas and users. There is ongoing work to create
one common model for provenance, e.g., the Open Provenance
Model [29] and a mediation approach [30]. However, currently

399

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. Sample workflow illustrating iteration in Taverna

systems tend to work in their own internal format albeit it is
becoming common to provide conversion to other formats. In
practice this means that a web service can be more or less easy
to use within the scientific workflow framework dependent on
its design and the available features for the chosen tool.

In this work we have chosen to work with two different
workflow systems, VisTrails [14] [15] and Taverna [11] [12]
[13]. VisTrails is a workflow system that supports exploratory
computation tasks. It has a graphical user interface that is used
for the composition and execution of workflows. Data and
workflow provenance is uniformly captured to ensure repro-
ducibility of results by others. Workflows can be composed
by program libraries (Python) or by external web services.
VisTrails has been used in the fields of biology and earth
science. Taverna is designed specifically for bioinformatics
applications. As VisTrails, Taverna has a graphical user in-
terface for creating and executing workflows. Workflows are
composed by making use of external services such as web
services, BioMart, BioMoby and SoapLab services.

There are several differences between VisTrails and Tav-
erna in terms of how they represent provenance and what
functionality they offer. However, for this work the most
important difference is how they represent iteration, which is
a common task in bioinformatics. Taverna offers a straight-
forward solution. Figure 3 shows an example of a Taverna
workflow. Whenever a module returns a list of results the
next module is iteratively applied on all results in the list. In
this case getSpecies returns a list of all species in the model
and getUniProtReferences is applied on every species in the
list. VisTrails does not offer this feature, instead they offer a
number of control flow modules. This includes control flow
modules such as conditions and a map module for iteration.
By using the map module we can apply the next module
on all results in a list. The resulting VisTrails workflow
corresponding to the Taverna version is shown in Figure 4.

Fig. 4. Sample workflow illustrating iteration in VisTrails

V. CASE STUDY

To further explore the design issues encountered when
designing bioinformatic web services, we have performed a
case study where we implemented our own service. The main
objectives of the service were that it should be easy to use,
it should help with data integration, and the semantics should
be possible to model in frameworks such as MOBY-Services.
Regarding data integration, we wanted to investigate ways
of following links between different data sources using a
single service. Right now, our service links three databases
together: the (curated) BioModels Database [31], the UniProt
Knowledgebase (UniprotKB) [32], and the RCSB Protein Data
Bank (PDB) [33]. The service is not intrinsically bound to just
these three databases forever, but could be expanded to work
on others.

A. Design of the web services

The web service is written in Java [34] using the Eclipse
Web Tools Platform [35], but it is platform neutral in the
sense that it can be used from any WSDL-enabled language
and platform without any additional dependencies. Using the
SBML library [36], the service loads SBML models from
the BioModels database, and the loading of a model can be
seen as an entry point to the web service. From this model
the user can extract UniProt references that can be found
in the annotations for some species in the BioModels data.
The UniProt references are used, by the server, to obtain the
corresponding UniProtKB XML-files and, from those PDB-
references can sometimes be extracted. A PDB file is returned
to the caller who can use it for visualization. The service
can be seen as having several stateful subsets: when you ask
questions about BioModels or its species you need a BioModel
or species ID, but when you obtain a UniProt reference then
that becomes the key you use and likewise the PDB reference

400

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

getSBMLModel(biomodelFileName) : BioModel ID
getSpecies(modelID) : Species IDs
getNthSpecies(modelID, n) : Species ID
getNumberOfSpecies(modelID) : Number of Species
getSpeciesSBMLID(speciesID) : Species SBML ID
getSpeciesSBMLName(speciesID) : Species SBML name
getUniProtReferences(speciesID) : UniProt references
getPDBReferences(uniprotID) : PDB references
getPDB(pdbReference) : PDB file

Fig. 5. Web Service Method Listing

Fig. 6. Type ontology for our web service

becomes the identifying token that is used for the PDB part of
the service. In figure 5 we see a listing of the core methods.

Figure 3, from the previus section, is an example of a Tav-
erna workflow utilizing the web service. It’s a straightforward
workflow that loads a BioModel. From the BioModel a list of
ID:s to its species is obtained and for each species any UniProt
references are determined. The method getUniProtReferences
that is called only takes a single species ID so Taverna
automatically iterates over our list of species ID:s and calls
the method once for each. The resulting output is a list
of lists that shows how species are annotated with UniProt
references. In Figure 4, the previous section also showed
the same workflow modeled using the VisTrails system. The
VisTrails variant of the workflow is a bit more complicated
than its Taverna counterpart. This is due to the fact that
iteration is not automatic in VisTrails, but modeled in the
workflow itself, using special control flow modules like map.

BioModel-files and UniProtKB-files are never passed ver-
batim between the client and the server, instead ID:s are used
to identify a particular file. The only large data object that is
passed is the output of the getPDB-method that represents the
PDB itself. The server stores the latest release of the curated
biomodels in a database and it will fetch UniProtKB-files and
PDB-files when they are needed from their respective resource
providers. Any downloaded files are cached for performance
reasons.

All input and output parameters to the methods that make up
the web service are simple types like strings or integers. Since
all types used can be modeled using XML Schema primitives
we are not tied to a particular platform. It also means that our
interface is fit for modeling in MOBY-Services. A question
that arises when modeling an interface in MOBY-Services is
if one should use namespaces or types for new items. We have
chosen to define new types. Figure 6 shows how the types can
be realized for our service. For UniProt and PDB references
there are already existing namespaces defined that can be used.
See also the descriptions of input and output parameters in
Figure 5.

Determining the proper level of granularity of your inter-

Fig. 7. Fetching name, id, and references for a given species

faces is hard. If it’s too fine-grained, you could end up with an
explosion in the number of methods that might require glue
to perform complex tasks. If you design a service where the
methods are complex and operate on complex data structures
the service will tend to be tied to a very limited set of tasks and
it might require the user to perform data-reformatting tasks,
especially if he or she wants to use other services as part of
his or her workflow. In our implementation the goal was to
design a service that ties together several different databases
by following links in the data while at the same time having
a simple interface to allow for interoperability and to severely
limit the need for the user to reformat data. If the primary
goal of the service was to obtain PDB data then a much more
compact interface could have been made, where the meth-
ods getSpecies, getUniProtReferences, and getPDBReferences
could have been replaced with a method that given a BioModel
ID returns a list of PDB:s. Such a method would be very easy
to use for that particular task, but it could not be used in some
other context.

B. Using the web services

The design of the web services is important for its ease of
use and the possibility to combine the services into extended
functionality. In this section we will exemplify and discuss
two of the major design choices that we considered in our
case study. These were to design a service that ties together
several different databases by following links in the data and
providing a simple interface to allow for interoperability and
to severely limit the need for the user to reformat data. This
is demonstrated by the two examles in Figure 4 and 7.

Here we use the services to find references to information
in the UniProt database, but by combining them in another
way the user can select other information about each species.

If the primary goal of the service was to obtain PDB data
then a much more compact interface could have been made,
where the methods getSpecies, getUniProtReferences, and
getPDBReferences could have been replaced with a method
that given a BioModel ID returns a list of PDB:s. Such a

401

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 8. Find PDB references in VisTrails

method would be very easy to use for that particular task, but
it would not have allowed the variation demonstrated by the
previous example.

As shown by pervious examples, in bioinformatics, it is
common to have lists of data as the result of some operation
that one might want to pass to another operation. Even though
both Taverna and VisTrails have facilities for creating iterative
control flows it still remains a complex task. As an example,
we can study the workflow where the user loads a BioModel,
obtains an ID for each of its species and for each species
determines any UniProtreferences. So far, this is the same
example as before, but what if we want to follow the UniProt
links to find any PDB references? The more straightforward
solution is shown in Figure 8.

Here we reformat the list of UniProt references and find a
set of PDBreferences for each of them. The drawback with
this solution is that the connection between each species and
the resulting PDBreference is lost. Maintining them requires
building complex datastructures during the iteration. In Figure
9 we show an alternative solution in VisTrails. For iteration,
the workflow utilizes a combination of VisTrails features for
parameter exploration and control flow modules like maps.

This implementation prints the desired results of the work-
flow. In Figure 10, we see the output of the workflow from
VisTrails when we are using BioModel BIOMD0000000003.
Three short Python scripts are used for printing results and
for data type conversion. A main objective when constructing
this workflow was to preserve information regarding links,
i.e., we want to know exactly how species are annotated with
UniProt references and how UniProt references links with PDB
references. This goal has been fulfilled. A careful study of the
output reveals that only the species with index one has UniProt
references and gives findPDBReferences something to work

Fig. 9. Find PDB references using parameter exploration and iteration

on. Since map returns a list of lists we can tell how UniProt
references are connected to PDB references. In this case they
both point to the same PDB file.

VI. DESIGN ISSUES

In this section we summarize our experiments identifying
the important design issues to consider when designing web
services for bioinformaticians. The goal is to allow bioinfor-
maticians to create complex workflows using multiple service
providers that are easily located and those workflows should
require a minimum amount of glue in the form locally-
performed programming. We have divided these issues into
the following categories (in no particular order): semantics,
chainability, granularity, data representation, and data passing.

A. Semantics

When creating workflows, bioinformaticians need to be able
to automatically discover services that perform some scientific
function or find services that either produce or consume data
in some given format. The key to enabling this automatic
discovery is semantics and here is where frameworks such as
MOBY-Services or myGrid come into the picture. Registering
your service in frameworks such as MOBY-Services or myGrid
will allow users to automatically find it when it fits at the
semantic level and not just at the syntactic level.

Species 0 UniProt refs: []
Species 0 PDB refs: []
Species 1 UniProt refs: [’P24033’, ’P35567’]
Species 1 PDB refs: [[’1P2A’], [’1P2A’]]
Species 2 UniProt refs: []
Species 2 PDB refs: []

Fig. 10. Find PDB references workflow in VisTrails - output

402

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Chainability

Chainability is closely related to semantics, because we
need semantics to be able to attain it. Chainability means the
ability to automatically list consumers for a given type of data,
consumers that fit semantically. Sometimes a service cannot
work on your data directly but may be able to work on some
subset of the data or requires re-formatting of the data. This
requires so called shim services that perform extraction or
formatting on some existing data to make it usable by another
service, but have no scientific domain function by themselves.
Shim services are important to discover automatically. One
step towards realizing semantically correct chainability has
been made through frameworks such as BioMoby and myGrid
where the semantics of the function of a web service and of
its input and output data is specified. However, the framework
must also be clever enough to suggest shim services automat-
ically. Say a user has some piece of data in a given format
and wants to perform some scientific function on it. The data
might need to be reformatted before the methods performing a
scientific function can operate on it. The reformatting is done
by shim services, and those should be discovered automatically
by the framework even though they themselves do not perform
the scientific function the user was searching for per se. In
[37], D. Koop et al. presents a method of suggesting suitable
services by using predictions.

C. Granularity

Should we make stateless or stateful web services? How
fine-grained should they be? Very fine-grained methods could
be seen as following the programming paradigm of divide-and-
conquer. A large problem is broken down to a large number
of very small, restricted, and well-defined mini-problems. In a
procedural context one could then image writing a procedure
(a function, a method) for each mini-problem and this would
allow for modularity, ease of testing, re-usability, and ease
of documentation. It might not always be the best way when
catering to non-programmers because it becomes a complex
task of putting all the pieces together in a workflow if there
are lots of them. However, if the building blocks in the toolbox
are all fundamentally simple, this might lead to a lot of glue in
workflows in the form of shim services or programming. On
the other hand, if the function of a service is fundamentally
simple, it will be easier to describe its semantics. This allows
for interoperability. A complex web service where too much
functionality has been shoe-horned into a few methods will be
very hard to use outside the particular purpose it was designed
for. This kind of web service would be hard to use as a tool
in a toolbox.

Another issue to take into account is whether the service
should operate on lists or single items. Operating on lists
can be tempting for performance reasons due to overhead
associated with web service calls. However, the output from
such methods will become more complex and it may be
difficult or impossible to tell how results are connected to input
data. The capabilities of workflow tools regarding support of

iterative control flows would influence the design of the web
service.

D. Data representation

One very important issue when designing a web service
operating on complex data is the data format, such as the
SBML model. The choice of representation is important when
passing complex objects as arguments between web services,
but also to enable an understanding of the semantics of
the services. In our case we have chosen to use available
XML standards for bioinformatics [4] [5], such as SBML and
UniPROT. This is a benefit, as it makes the functionality of the
service transparent to anyone familiar with the standard, e.g.,
in our case the naming and the functionality of the SBML
services have a direct relationship to the entities defined by
SBML.

Another aspect is that data representation for web services
is closely related to data formats available for export on the
web. Therefore it is natural to reuse the work already invested
in this area instead of inventing new representations. Our case
study shows that using available data formats works well. In
addition we avoid unnecessary conversions of data by using
formats where data is already available.

E. Data passing

When using web services we want to avoid passing large
amounts of data back and forth when we do not need to. If
the data is not generated by the client and is available in the
public domain and it is the responsibility of the web service to
manipulate or study this data in order to compute some result
that is to be returned to the caller, then that data should stay on
the web service server as much as possible. The clients should
only see the results they are interested in. In our example
implementation we found that using IDs worked well as links
to pieces of data.

VII. OTHER APPROACHES

In the previous sections we have discussed interoperability
issues regarding bioinformatic web services, we followed with
a look at some semantic frameworks that have been introduced
to tackle those issues. We also presented a detailed case study
where we identified and discussed design issues related to the
construction of web services.

In this section we will present three other approaches that
aim to make web services easier to use for bioinformaticians.
First we present TogoWS [38] [39], which is a web service and
data-integration proxy for a number of service providers. We
follow that with a presentation of SeaHawk [40], that serves
as a front-end to the BioMoby framework presented earlier.
The section is concluded with a presentation of our future
work, the BioSpider, which in short can be described as plugin-
based framework for modelling disparate, but yet connected
bioinformatic web resources.

403

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. TogoWS

The TogoWS project [38] [39] sprung out from ideas
seeded and problems recognised at the BioHackathons in
2008 and 2009. In these BioHackathons it was concluded
that interoperability was a major problem in bioinformatics,
not only because of data representation but also because
technical decisions made by some certain service providers,
forcing clients to use a particular programming language or
environment. It was also noted that there are projects aimed
at tackling this problem, such as BioMoby, but that many
providers have not made their services compatible with these
frameworks due to the hefty investment in server-side work
required, making these proposed solutions not completed.

Due to the amount of data reformatting required to be able
to use data from one service provider with another provider,
a large number of third-party, client side libraries have been
developed. There are libraries for different programming lan-
guages aimed at different tasks and these include the set of
libraries (BioPerl, BioPython, BioRuby, BioJava) provided by
the Open Bioinformatics Foundation [41]. However, the team
behind TogoWS decided that their service should itself provide
the data reformatting features offered by these libraries. This
would relieve the user of the burden of having to install these
libraries and write code to interface with them.

The team behind the TogoWS project decided to build
a web service frontend for different suppliers, acting as a
proxy between them and the users. Several major service
providers were included under this umbrella. Operations were
divided into two main categories: data retrieval and analysis.
It was decided that using a REST-based API was best for
data retrieval because then a uniform URI-scheme for the
participating databases could be devised. For analysis oper-
ations, it was decided that SOAP was the best option because
here results returned and parameters can be very complex and
running time can be substantial, making REST a less than
ideal choice. In the first phase, a unified SOAP-based interface
was developed for several service providers located in Japan,
and certain technical limitations found in some services were
worked-around.

By developing a front-end that is itself a web service too,
the clients can continue to use whichever tools they like to
call these services and instead of waiting for service providers
to agree on interoperability issues, the TogoWS project makes
it happen for them.

B. SeaHawk

SeaHawk [40] is a front-end for BioMoby (more specifi-
cally, MOBY Services), written in Java, and developed at the
University of Calgary (Canada). The people behind the project
reviewed numerous other front-ends available for MOBY-S,
categorised them, and evaluated what their respective strengths
and weakness were, in order to build, as they see it, a better
client. A major problem they identified with other front-ends
is how they deal with actual data. MOBY-S employs several
ontologies to deal with service specification, naming, data type
hierarchies and relationships etcetera and all communication

payload is wrapped in XML structures called Moby Envelopes.
Many of the other front-ends either required the user to have
extensive knowledge of the layout of those ontologies or
were very limited in their expressiveness (in order to reduce
complexity).

These findings inspired the idea of developing a front-
end that was data-centric, the bioinformatician using the tool
should focus on his or her actual data and not worry about
implementation details. Since ontological terms do have to be
specified in order to operate within MOBY-S, the SeaHawk
client generates the required Moby Envelopes under the hood
for the user. Data can be anything from service output,
formatted HTML, rich-text files, text files in certain biologicial
formats, or subsets and through its interface SeaHawk offers
many ways to access the data.

While making it easier for novice programmers to work
with the tool and focus on the data, the focus is also on using
the system in a workflow manner and SeaHawk was recently
enhanced to be able to generate Taverna workflows from its
operations [42].

C. BioSpider

Our ongoing work to address the above problems is a tool
that goes under the name of BioSpider. It’s inspired by one
of the core research ideas that we investigated in this paper:
having a web service perform on-the-fly data integration on a
few databases we knew had references to each other in one
way or another.

In BioSpider, we do not focus on a particular technology
like web services, but the emphasis is on the data itself. As
we have discussed in this article, there are several autonomous
providers of data (along with tools corresponding to that
data) in the bioinformatics community. Even though there
is an abundant number of data and service providers in
the bioinformatics community, the actual data in databases
themselves are not self-contained but full of references to other
databases. These references represent important information
for bioinformaticians performing their research, but the sheer
intricacy and massiveness makes it very diffult for them to
get a bird’s eye view of how different data sets and entries are
connected.

This is where BioSpider comes in. BioSpider is at its core a
framework, a model for creating a single graph, representing
data from disparate sources that have references to each
other in some way. This graph is in effect the result of data
integration operations performed between two connected sets
of data.

The framework also comes with a rule-set for displaying
this graph in a graphical user interface. It’s through this user
interface the user sees a unified view of the data, and he or
she can follow links in the data to more sources, or apply
actions on different data items (nodes) in the graph. These
actions include visiting web pages, invoking web services or
even running third-party tools. Figure 11 shows an example
of the what the graph can look like for the user.

404

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11. Graph of connected data sources as visualized by BioSpider

In technical terms, BioSpider is written in Java. It consists
of a set of classes that make up the core framework where
connections between data items and actions that are available
are specified. We have separated the actual framework from
the data to allow the rule-set used by the framework to be
extendible by users. One extension is the introduction of
support for a completely new database, i.e., completely new
functionality, or it can be an extension of the functionality of
an already known data source. Another possible extension is
additional actions that can be performed on data items or new
references to other sources that can be exploited.

Our goal with the framework is to avoid hard-coded connec-
tions to any given data set and just provide a set of rules for
describing data sets, actions that can be performed on items
in the data and connections to other sources. The framework
should be expressive to be able to capture all kinds of different
data and actions but still be easy to extend.

We forsee two kinds of users. The first user is the normal
user, using the framework as an ordinary desktop application to
explore data in a unified way and perform actions on the data.
The second user is a power user who will extend the rule set,
making the tool even more powerful. These extensions should
be easy to feed back to the community, or to the authors of
the framework. Recently, we evaulated the extensibility of the

framework and the results were encouraging.
In the future, we envision being able to in one way or

another incorporate or utilize work done by other projects,
like the BioCatalogue project, to further extend and improve
our framework for the benefit of the user.

VIII. CONCLUSION

In this article we performed a literature and case study to
examine the situation for bioinformaticians with a need for
creating complex workflows using multiple service providers.
They face severe interoperability problems because it can be
very difficult to discover appropriate services and determine
how they can be used in conjunction. When designing web
services for the bioinformatics community we have identified
several issues that need to be addressed to achieve a high
discoverability and interoperability. The individual web service
methods should be fundamentally simple so the semantics is
easy to describe and the method should operate on data that
is semantically well defined. This will allow the service to
be registered in frameworks such as BioMoby and myGrid.
Registration of services will assist users in discovering the
service and decide how it can be used with other services.

REFERENCES

[1] M. Åsberg and L. Strömbäck, “Interoperable and easy-to-use web
services for the bioinformatics community - a case study,” in The Second
International Conference on Advances in Databases, Knowledge, and
Data Applications DBKDA 2010, 2010.

[2] M. Y. Galperin, “The molecular biology database collection: 2008
update,” Nucleic Acids Research, vol. 36, 2008.

[3] ——, “The molecular biology database collection: 2007 update,” Nucleic
Acids Research, vol. 35, 2007.

[4] L. Strömbäck, D. Hall, and P. Lambrix, “A review of standards for data
exchange within systems biology,” Proteomics, vol. 7, no. 6, pp. 857–
867, 2007.

[5] L. Strömbäck, V. Jakoniene, H. Tan, and P. Lambrix, “Representing,
storing and accessing molecular interaction data: a review of models and
tools,” Briefings in Bioinformatics, vol. 7, no. 4, pp. 331–338, 2006.

[6] P. W. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler,
D. Hull, C. A. Goble, and L. Stein, “Applying semantic web services
to bioinformatics: Experiences gained, lessons learnt,” International
Semantic Web Conference, pp. 350–364, 2004.

[7] E. Germani, Web Services Essentials. O’Reilly, 2002.
[8] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, “The

KEGG resource for deciphering the genome,” Nucleic Acids Research,
vol. 32, 2004.

[9] M. Senger, P. Rice, and T. Oinn, “Soaplab - a unified sesame door to
analysis tools,” in UK e-Science- All Hands Meeting 2003, 2003.

[10] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
Kepler system,” Concurrency and Computation: Practice & Experience,
vol. 18, no. 10, pp. 1039–1065, 2006.

[11] The Taverna Team, “Taverna - open source and domain independent
workflow management system,” Accessed january 16th 2011. [Online].
Available: http://www.taverna.org.uk/

[12] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services.” Nucleic Acids Research, 2006.

[13] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Taverna: lessons in
creating a workflow environment for the life sciences,” Concurrency
and Computation: Practice and Experience, 2006.

[14] The VisTrails Team, “VisTrailsWiki,” Accessed january 16th 2011.
[Online]. Available: http://vistrails.org/

405

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[15] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo, “Vistrails: Enabling interactive multiple-view
visualizations,” In Proceedings of IEEE Visualization, 2005.

[16] P. B. T. Nerrincx and J. A. M. Leunissen, “Evolution of web services in
bioinformatics,” Briefings in Bioinformatics, vol. 6, no. 2, pp. 178–188,
2005.

[17] The BioMoby Consortium, “Interoperability with Moby 1.0-it’s better
than sharing your tootbrush!” Briefings in Bioinformatics, vol. 9, no. 3,
pp. 220–231, 2009.

[18] K. Wolstencroft, P. Alper, D. Hull, C. Wroe, P. Lord, R. Stevens, and
C. Goble, “The myGrid ontology: bioinformatics service discovery,”
International Journal of Bioinformatics Resesearch and Applications,
vol. 3, no. 3, pp. 303–325, 2007.

[19] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos,
K. Wolstencroft, S. Aleksejevs, R. Stevens, S. Pettifer, R. Lopez, and
C. A. Goble, “BioCatalogue: a universal catalogue of web services for
the life sciences,” Nucleic Acids Research, 2010.

[20] The BioCatalogue Project, “BioCatalogue.org - Home,” Accessed
january 16th 2011. [Online]. Available: http://www.biocatalogue.org

[21] The BioMoby Consortium, “BioMoby Semantic MOBY,” Accessed
january 16th 2011. [Online]. Available: http://biomoby.open-bio.org/
index.php/semantic-moby/

[22] The Gene Ontology Consortium, “GO database abbreviations,” Accessed
january 16th 2011. [Online]. Available: http://geneontology.org/cgi-bin/
xrefs.cgi

[23] M. Wilkinson, D. Gessler, A. Farmer, and S. L, “The BioMOBY project
explores open-source, simple, extensible, protocols for enabling biolog-
ical database interoperability,” Proceeding of the Virtual Conference on
Genomic and Bioinformatics, vol. 3, pp. 16–26, 2003.

[24] Object Management Group, “Life sciences analysis engine
specification,” Accessed january 16th 2011. [Online]. Available:
http://www.omg.org/technology/documents/formal/lsae.htm

[25] E. Kawas, M. Senger, and M. D. Wilkinson, “BioMoby extensions
to the taverna workflow management and enactment software,” BMC
Bioinformatics, 2006.

[26] Information Sciences Institute, “Pegasus:home,” Accessed january 16th
2011. [Online]. Available: http://pegasus.isi.edu

[27] The Kepler Project, “The Kepler project - Kepler,” Accessed january
16th 2011. [Online]. Available: http://kepler-project.org

[28] The Swift Project, “Swift,” Accessed january 16th 2011. [Online].
Available: http://www.ci.uchicago.edu/swift

[29] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers, and
P. Paulson, “The open provenance model,” 2008. [Online]. Available:
http://eprints.ecs.soton.ac.uk/14979/1/opm.pdf

[30] T. Ellkvist, D. Koop, J. Freire, C. Silva, and L. Strömbäck, “Using
mediation to achieve provenance interoperability,” in IEEE Workshop
on Scientific Workflows, 2009.

[31] EMBL-EBI, “BioModels database,” Accessed january 16th 2011.
[Online]. Available: http://www.ebi.ac.uk/biomodels-main/

[32] UniProt Consortium, “UniProtKB,” Accessed january 16th 2011.
[Online]. Available: http://www.uniprot.org/help/uniprotkb

[33] RCSB, “RCSB protein data bank,” Accessed january 16th 2011.
[Online]. Available: http://www.rcsb.org/pdb/home/home.do

[34] Oracle Corporation, “Oracle technology network for java developers,”
Accessed january 16th 2011. [Online]. Available: http://www.oracle.
com/technetwork/java/index.html/

[35] The Eclipse Foundation, “Web tools platform (WTP) project,” Accessed
january 16th 2011. [Online]. Available: http://www.eclipse.org/webtools/

[36] B. J. Bornstein, S. M. Keating, A. Jouraku, and H. M., “Libsbml: An
api library for sbml.” Bioinformatics, 2008.

[37] D. Koop, C. E. Scheidegger, S. P. Callahan, J. Friere, and C. T. Silva,
“Viscomplete: Automating suggestions for visualization pipelines,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1691–1698, 2008.

[38] T. Katayama, M. Nakao, and T. Takagi, “TogoWS: integrated SOAP
and REST APIs for interoperable bioinformatic web services,” Nucleic
Acids Research, 2010.

[39] Database Center for Life Science, “TogoWS,” Accessed january 16th
2011. [Online]. Available: http://togows.dbcls.jp/

[40] P. M. Gordon and C. W. Sensen, “Seahawk: moving beyond HTML in
web-based bioinformatics analysis,” BMC Bioinformatics, 2007.

[41] The Open Bioinformatics Foundation, “Open bioinformatics
foundation,” Accessed january 16th 2011. [Online]. Available:
http://www.open-bio.org/

[42] P. M. Gordon, K. Barker, and C. W. Sensen, “Helping biologists
effectively build workflows, without programming,” in Proceedings of
the 7th International Conference on Data Integration in the Life Sciences
- DILS 2010, 2010.

406

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Implementing Row Version Verification for Persistence Middleware using SQL
Access Patterns

Fritz Laux
Fakultät Informatik

Reutlingen University
D-72762 Reutlingen, Germany

fritz.laux@reutlingen-university.de

Martti Laiho
Dpt. of Business Information Technology

Haaga-Helia University of Applied Sciences
FI-00520 Helsinki, Finland
martti.laiho@haaga-helia.fi

Tim Lessner
School of Computing

University of the West of Scotland
Paisley PA1 2BE, UK
tim.lessner@uws.ac.uk

Abstract—Modern web-based applications are often built as
multi-tier architecture using persistence middleware. Middle-
ware technology providers recommend the use of Optimistic
Concurrency Control (OCC) mechanism to avoid the risk
of blocked resources. However, most vendors of relational
database management systems implement only locking schemes
for concurrency control. As a consequence a kind of OCC has
to be implemented at client or middleware side. The aim of
this paper is to recommend Row Version Verification (RVV) as
a mean to realize an OCC at the middleware level. To help the
developers with the implementation of RVV we propose to use
SQL access patterns. For performance reasons the middleware
uses buffers (cache) of its own to avoid network traffic and to
reduce disk I/O. This caching, however, complicates the use of
RVV because the data in the middleware cache may be stale
(outdated). We investigate various data access technologies,
including the Java Persistence API and Microsoft’s LINQ
technologies in combination with commercial database systems
for their ability to use the RVV programming discipline.
The use of persistence middleware that tries to relieve the
programmer from the low level transaction programming turns
out to even complicate the situation in some cases.

The contribution of this paper are patterns and guidelines
for an implementation of OCC at the middleware layer using
RVV. Our approach prevents from inconsistencies, reduces
locking to a minimum, considers a couple of mainstream tech-
nologies, and copes with the effects of concurrency protocols,
data access technologies, and caching mechanisms.

Keywords-persistence middleware, caching, data access pat-
tern, row version verification.

I. INTRODUCTION

Databases provide reliable data storage services, but es-
pecially for business critical applications the use of these
services requires that applications will obey the concurrency
control protocol of the underlying Database Management
System (DBMS).

In this paper we look at the application development
from the Online Transaction Processing (OLTP) point of
view, and especially on the modern mainstream commercial
DBMS used by industry , namely DB2, Oracle, and SQL
Server, with ISO SQL standard as the common denomina-
tor. The ideas described here are extensions of the work
first presented in [1]. A cornerstone of data management

is the proper transaction processing, and a generally ac-
cepted requirement for reliable flat SQL transactions is the
ACID transaction model defined by Haerder and Reuter
[2]. The acronym ACID stems from the initials of the four
well known transaction properties: Atomicity, Consistency,
Isolation, and Durability. However, the original definition
for Isolation ”Events within a transaction must be hidden
from other transactions running concurrently” cannot be
fulfilled by the mainstream commercial DBMS systems.
They only provide a concurrency control (CC) mechanism
that, according to the isolation level settings, prevents a
transaction itself from seeing changes made by concurrent
transactions, and protects the transaction’s updates against
overwrites from other transactions during its execution time.
The implemented isolation levels follow roughly the defini-
tions in the ISO SQL standard, but with semantics of the
used CC mechanism.

A typical CC mechanism used to ensure the isolation
of concurrent SQL transactions in mainstream DBMS, for
example DB2 and SQL Server, is some variant of multi-
granular Locking Scheme Concurrency Control (which we
call shortly LSCC, whereas in literature the more general
term pessimistic concurrency control is often used). LSCC
systems use exclusive locks to protect writes until the end
of a transaction, and shared locks protect read operations
against concurrent modifications of the data. The term
multi-granular refers to a mechanism of applying locks, for
example, at row level or table level, and compatibility issues
of these locking levels are solved using special intent locks.
The isolation level declared for the transaction fine-tunes the
duration of the shared locks. Locking may block concurrent
transactions, and may lead to deadlocks as a kind of concur-
rency conflict, in which the victim transaction is chosen by
the DBMS according to internal rules among the competing
transactions. Another typical CC mechanism is some variant
of Multi-Versioning Concurrency Control (MVCC), which
is used for example by Oracle and a specially configured
SQL Server database. In addition, Oracle also uses locking
at table level and provides the possibility of programmatic
row level locking by the SELECT .. FOR UPDATE variant

407

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the SQL select statement.
The MVCC mechanism always allows reading of com-

mitted data items without blocking. In case of concurrency
competition between transactions, the first writer transac-
tion wins and conflicting updates or write operations are
prevented by raising serialization exceptions.

The third available concurrency control mechanism is
server-side optimistic concurrency control (OCC), as pre-
sented by Kung and Robinson [3], in which transactions
only read contents from the database while all changes are
first written in the private workspace of the transaction, and
finally at transaction commit phase - after successful valida-
tion - the changes will be synchronized into the database
as an atomic action. In case of concurrency competition
between transactions the first transaction to COMMIT is the
winner and others will get a serialization exception, however,
after requesting the COMMIT only. Currently server-side
OCC has not yet been implemented in any commercial
mainstream DBMS systems. The only implementation of
which we know is the Pyrrho DBMS [4] and VoltDB
[5], [6]. Both products focus on transaction processing in
the Cloud and apply OCC to overcome the drawbacks of
locking that significantly reduces the concurrency, hence,
the response time and scalability crucial for Cloud storage
services. Please note, however, that scalability is a general
requirement and not limited to Cloud storage services. One
reason, why OCC might be more appealing for the Cloud,
is the basic assumption of OCC that conflicts are rare and
especially applications that are built on top of the cloud are
not primarily OLTP applications with a high concurrency on
the same record.

With the advent of multi-tier web applications, or
more precisely, decentralized and loosely coupled transac-
tional systems, client-side OCC has gained new attention.
Providers of enterprise architecture frameworks (like Java
Enterprise Edition (JEE)) and persistence middleware (like
object relational mappers, e.g., Hibernate) propose to use
optimistic concurrency control to avoid the risk of blocked
resources and orphan locks. Developers face now the sit-
uation that they have to implement a kind of optimistic
concurrency control over the existing concurrency control
provided by the DBMS. But shifting the burden to the
middleware or application is a tricky task [1]. First, there is
a need to distinguish between business/user transaction and
SQL transaction. Second, we have to deal with transactional
legacy applications that bypass the middleware.

Definition: (SQL transaction) A SQL transaction is
defined as finite sequence of SQL statements that
obey the ACID properties.

This definition is equivalent to the general transaction def-
inition from Härder and Reuter [2], but restricted to SQL
databases. SQL transactions are supported by relational
DBMS.

Figure 1. Example UML diagram for a business/user transaction

Definition: (Business/user transaction) A business/user
transaction is an unit of work that holds the ACID
properties. The unit of work is defined by the busi-
ness (application) as an aggregate of applications,
each one executing at least one SQL transaction.

Ideally business/user transactions should be supported by
a transaction coordinator, that ensures the overall ACID
outcome. But the result is not necessarily based on Herbrand
semantic. Depending on the business rules there might be
more than one successful outcome (e.g. an alternative result)
or compensation transactions could be involved. As example,
think of a complex business transaction like booking a
holiday arrangement that involves multiple, non-integrated
applications, e.g. flight booking, hotel reservation, car rental
contract, or siteseeing tour (see Figure 1). If flight and hotel
bookings succeed and car rental fails, but the siteseeing
tour is possible, this could be considered as an alternative
successful business transaction. However, a car rental with-
out flight or hotel booking should be forbidden. Each of
the applications that is part of a business/user transaction
comes with its own SQL transactions that might be already
committed before another application happens to fail, hence,
a compensation for already committed SQL transactions is
needed. In this paper the only aggregate used for RVV is a
sequence of SQL transactions.

In general, the design of a multi-tier architecture requires
to split a business/user transaction into a sequence of SQL
transactions for several reasons:

• The business transaction needs to access more than one
DBMS

• Access to a database is executed under different ses-
sions because of session pooling

• The business transaction uses legacy systems not de-
signed to support distributed transactions.

This leads to a situation where the DBMS is unaware of the
complete business/user transaction because different sessions
and different transactions form the actual transaction. On
the one hand, the splitting avoids automatic locking for a
possibly unpredictable time, on the other hand, it requires
additional mechanisms to ensure the global consistency of

408

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the business/user transaction.
But, if concurrent business transactions are splitted into

multiple SQL transactions these may interfere without the
possibility for any help by the DBMS. For instance a lost
update could arise due to interleaved execution. Therefore,
the applications, the middleware, and the DBMS need to
co-operate somehow.

The implementation of a concurrency control mechanism
in every application is inefficient and depends on the skills
of the programmer. Therefore it is preferable to implement
the concurrency control protocol in the middleware for
the benefit of all applications using this middleware. The
implementation of a concurrency control protocol providing
full serializability is often to restrictive and derogates perfor-
mance. A good compromise is the Row Version Verification
(RVV) discipline that avoids the lost update problem from
the business transaction’s view.

The contribution of this paper is how to apply the data
access patterns of [11] to different middleware technologies.
The novel parts are techniques how to reliably implement
RVV discipline for complex business transactions as defined
above.

A. Structure of the Paper

In the next Section we motivate the RVV and describe its
mechanism. After the related work, Section IV introduces
the blind overwriting in the business context and compares
it to the generally known lost update problem, which is
typically covered in database literature. Section V presents
three SQL patterns, which serve as guideline for the imple-
mentations of RVV. Section VI starts with the presentation
of a typical use case including SQL statements for its setup
on a relational database. Each of the following Sections,
VII (JDBC, .NET), VIII (Hibernate, JPA), IX (MS LINQ),
and X (JDO) present implementations of RVV using the data
access patterns presented in Section V. Section XI concludes
the paper with a comparison between these technologies.

II. THE ROW VERSION VERIFICATION (RVV)
DISCIPLINE

The lost update is a typical phenomenon in multi-user
file-based systems without proper concurrency control, i.e.,
a record x updated by some process A will be over-
written by some other concurrent process B like in the
following problematic canonical schedule [7, pp. 62 - 63]:
rA(x), rB(x), wA(x), wB(x), where rT (x) and wT (x) de-
note read and write operations of transaction T on data item
x .

With a sufficient isolation level a DBMS would not allow
for a lost update and if a LSCC is used x would be locked
for the transaction’s duration and other transactions are
prevented from accessing x. But, if we decide to follow the
recommendation of the middleware vendors or the writers of
JEE tutorials to use OCC, the DBMS should be configured

not to use transactions to avoid locking or to use auto-
commit such that every data access statement results in
a transaction with locks held as short as possible. With
this configuration the DBMS would be unable to prevent
the lost update problem within the business transaction’s
view as it appears only as a blind write to the DBMS. A
blind write is defined as overwriting an existing data item
with a new value that is independent from the old value.
RVV, however, as a concurrency control mechanism at the
Middleware layer, on top of the DBMS, prevents from the
lost update phenomenon.

RVV depends on a technical row version column that
needs to be added to every SQL table. Its value is in-
cremented whenever any data in the row is changed. A
verification of the row version enables to detect if any
concurrent transaction has modified the data meanwhile. If
this happened, the validation fails and the transaction has to
abort. If the row version is still the same, then the transaction
may write the new data. In pseudo-code the mechanism
looks like this:

(t1) Read(x, versionX)
// Input data
// Process x
old versionX := versionX

(t2) if (old versionX = Read(versionX))
(t2) then
(t2) Write(x, versionX+1)
(t2) else
(t2) // Report serialization conflict
(t2) end if
In the time period between t1 and t2 other concurrent

transactions may access and modify data element x. The if-
then-else block is a critical section that must be executed in
an uninterruptable manner.

If the row version is cached by the middleware this could
lead to stale data. Therefore, it is necessary to circumvent
the middleware cache for the row version in order to apply
RVV.

RVV is better known under the misleading and ambiguous
name optimistic locking (see [7, pp. 365 - 367], [8], [9], [10])
even if there is no explicit locking involved.

The motivation to use RVV results from the practice
that for example web applications usually split a business
transaction into several SQL transactions as previously
explained for multi-tier transactional applications. In this
case the database concurrency mechanism cannot ensure
transactional properties for the business transaction, but
RVV helps to avoid at least the blind overwriting. Consider a
typical concurrency scenario with two users that try to book
the same flight online. First, a list of flights is displayed
(Phase 2, in Figure 2), second, a certain flight is chosen
(Phase 4), and third, the flight is booked (Phase 6). When a
second user books the same seat and commits before the first
user proceeds to Phase 6 then the first user would overwrite

409

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the reservation of the second user. This could be avoided by
re-reading the seats in Phase 6 and compare it with Phase 4
before storing the new number.

We consider the RVV discipline as a critical reliability cri-
terion in web based transactional application development.
The proper way for applications to meet the RVV discipline
is to strictly follow the SQL data access patterns presented
in Laux and Laiho [11], which will be recapped in Section
V. The patterns describe how to implement the RVV pro-
tocol for different database programming interfaces. These
patterns essentially ensure that the row version is checked
before overwriting a data value. The patterns describe how
to deal with different concurrency schemes of the underlying
DBMS and how to exploit triggers to support RVV from the
database side.

In the present paper these data access patterns are applied
to the already mentioned generic use case (Figure 2) and
code samples show implementations for various technolo-
gies.

III. RELATED WORK

Concurrency control is a cornerstone of transaction pro-
cessing, it has been extensively studied for decades. Namely
Gray and Reuter [9] studied locking schemes, whereas Badal
[12], Kung and Robinson [3] developed optimistic methods
for concurrency control (OCC). OCC distinguishes three
phases (see Figure 3) within a transaction:

• read phase
• validation phase
• write phase
The first phase includes user input and thinking time. It

may last for an unpredictable period. The following phases
are without any user interaction. Validation and write phases
are therefore very short in the range of milliseconds. The last
two phases are critical in the sense that exclusive access is
required. Failing to do so could result in inconsistent data,
e.g lost update.

Unland [13] presents OCC algorithms without critical
section. He specifically focuses on a OCC solution that
solves the starvation problem, increasing the chance for long
living and read only transactions to survive. Using these
algorithms would allow relaxed locking but involve checking
the read set against all concurrent transactions. Even if a
full OCC of this type would be implemented at the middle-
ware layer, it could only control applications that use this
middleware service. Therefore this algorithms can be ruled
out for our approach. Although, OCC mechanisms have
been studied already 30 years ago, hardly any commercial
DBMS implements algorithms of this type (see Bernstein
and Newcomer [14] or Gray and Reuter [9]) except for
Multi-Version Concurrency Control (MVCC).

A higher concurrency for query intensive transactions
provides MVCC as described by Stearns and Rosenkrantz
[15] and Bernstein and Goldman [16]. Comparing locking

with MVCC it can be said that a database system with
locking holds a single truth of every data item, and if it
is locked by others, one needs to wait until the lock is
released, whereas a MVCC systems holds a history of the
truth. On read committed isolation level it is always possible
to read the latest committed truth without waiting, and on
serializable isolation level (also called snapshot in some
systems), the data that will be read is the latest committed
truth at the beginning of the transaction.

In case of MVCC, the middleware has to make sure
that caching is not invalidating the multi-versioning system.
This problem is discussed by Seifert and Scholl [17] who
counteract with a hybrid of invalidation and propagation
message. In Web applications the risk of improperly ter-
minating transactions is extremely high (users simply ”click
away”). In such cases snapshot data or locks in the case of
a locking protocol are held until (hopefully) some timeout
elapses. This can severely degrade performance.

With the dissemination of middleware, OCC has been rec-
ommended by IT-vendors ([18], [19], [20]) for transactional
e-business and m-commerce applications but only little effort
has been spent on the realisation using commercial SQL
databases. Adya et al [21] recommend to use the system
clock as blocking-free protocol for global serialization in
distributed database systems. However this approach has to
fail if the resolution is not fine enough to produce unique
timestamps as we have shown for Oracle [22].

Nock ([8, pp. 395-404] describes an optimistic lock pattern
based on version information. He points out that this access
pattern does not use locking (despite of its misleading name)
and therefore avoids orphan locks. His pattern does not
address caching. Akbar-Husain [19] believes that demark-
ing the method that checks the version with the required
transaction attribute will be sufficient to avoid lost updates.
He does not consider that only a strong enough isolation
level like REPEATABLE READ or SERIALIZABLE will
achieve the desired results.

During decades of development in relational database
technologies the programming paradigms in data access
technologies have constantly changed. The two mainstream
schools in object oriented programming today are the Java
[23] and the Microsoft .NET framework [24] camps, both
provide call-level APIs and Object-Relational Mappings
(ORM) of their own. The problems of using RVV with the
older version of Enterprise Java Beans 2.0 are discussed in
[25].

We follow in this paper the object persistence abstractions
of Hoffer, Prescott, and Topi [26, Chapter 16] and implement
the RVV discipline at the middleware level applying the SQL
access patterns described in Section V.

410

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Business transaction with SQL transactions (phases 2, 4, 6, 7) and isolation levels of a sample use case

IV. BLIND OVERWRITING PROBLEM IN THE
APPLICATION CONTEXT

Let us first consider the following problematic scenario
of two concurrent processes A and B, each running a SQL
transaction that is updating the balance of the same account,
as shown in Table I. In this scenario step 4 of process A is
empty.

The withdrawal of 200 emade by the transaction of
process B will be overwritten by process A; in other words
the update made by B in step 5 will be lost in step 7 when
the transaction of A overwrites the updated value by value
900 ewhich is based on stale data, i.e., an outdated value
of the balance, from step 3. If the transactions of A and B
are serialized properly, the correct balance value after these
transactions would be 700 e , but there is nothing that the
DBMS could do to protect the update of step 5, assumed
an isolation level of READ COMMITTED which is the
default isolation level for most relational DBMS because
of performance reasons. In READ COMMITTED isolation
level the shared locks provided for the SELECT statement
are released immediately after the completion of the state-
ment and therefore it is possible for process B to obtain
a lock and update the balance. So, READ COMMITTED
does not protect any data read by a transaction of getting
outdated right after reading the value. Locking Scheme Con-
currency Control (LSCC) could prevent conflicting access to

Table I
A BLIND OVERWRITING SCENARIO USING SELECT-UPDATE IN

TRANSACTION A

step process A [T1, T2] balance process B
1 SET TRANSACTION

ISOLATION LEVEL
READ COMMITTED

2 1000e
3 SELECT BALANCE

INTO :BALANCE
FROM ACCOUNTS
WHERE ACCTID = :ID;

4 [COMMIT WORK;]
5 NEWBALANCE = UPDATE ACCOUNTS

BALANCE - 100 SET BALANCE =
BALANCE - 200
WHERE ACCTID = :ID;

6 800e COMMIT;
7 UPDATE ACCOUNTS

SET BALANCE =
:NEWBALANCE
WHERE ACCTID = :ID;

8 COMMIT; 900e

data, but not at READ COMMITTED isolation level. The
proper isolation level on LSCC systems to prevent a lost
update of process B should be REPEATABLE READ or
SERIALIZABLE, which would protect the balance value
read in the transaction of process A from getting outdated

411

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

during the transaction by holding shared locks on these
rows up to the end of the transaction. As result the shared
locks of Process A would block process B from a too early
update. The isolation service of the DBMS guarantees that
the transaction will either get the requested isolation level,
or, in case of a serialization conflict, the transaction will
be rejected by the DBMS. The means used for this service
and the transactional outcome for the very same application
code can be different when using different DBMS systems,
and even in using different table structures. The LSCC
may wait with granting a lock request until the possible
conflict disappears. Usually a transaction rejected due to a
serialization conflict should be retried by the application, but
we discuss this later in Section VI.

In the second scenario of Table I, process A splits its
transaction into two transactions. The first transaction, let it
call T1, consists of steps 1 to 4, including the COMMIT
WORK at step 4. After some user interaction and the
calculation in step 5, another transaction T2 continues with
steps 7 and 8. In this case, no isolation level can help, but
transaction T2 will make a blind write based on stale data
from step 3. But, meanwhile the balance value was updated
by transaction TB of process B in step 5.

From the database perspective, the 3 transactions have
been serialized correctly in the order: (T1, TB , and T2).
However, the problem is that there is no transaction bound-
ary around T1 and T2; they are treated separately by the
transaction manager. Hence, it is absolutely correct for TB

to interleave with T1 and T2. From a business or user point
of view, especially the user that runs 1 and T2, this is a
semantically wrong behavior. Hence, as soon as a transaction
is split into several sessions (e.g., due to connection pooling)
or different SQL transactions, a transaction manager at
the middleware layer is required that prevents from blind
overwrites and provides one transactional context for T1 and
T2. RVV provides such a context in a transparent way and
the row verification ensures only consistent writes.

V. SQL ACCESS PATTERNS FOR AVOIDING BLIND
OVERWRITING

The blind write of the update transaction T2 of steps 7 - 8
of Table I, which results in the loss of transaction TB , could
have been avoided by any of the following practices. The
proposed access patterns assure that either before or during
the write phase (step 7), a validation takes place and data
will only be updated after a successful validation (see Figure
3). We present the patterns in the canonical form given by
Coplien [27] that appears to be more compact than the one
used by Gamma et al [28]:

A. Access Pattern: Sensitive UPDATE

Problem: How to prevent a blind overwrite in case of
concurrent updates?

Figure 3. Context of the OCC Access Patterns

Context: Concurrent transaction processing in distributed
systems has to deal with temporary disconnected
situations, or sequences of SQL transactions be-
longing to one business transaction and neverthe-
less ensure correct results.

Forces:
• Using locks (LSCC) to prevent other transactions from

changing values can block data items for unpredictable
time in case of communication failure or in case of long
user thinking time.

• Multiversion concurrency control (MVCC) or OCC do
not block data access, but lead to abort conflicting
transactions, except for the first one that updates the
data.

• OCC is not supported by the mainstream commercial
SQL databases, hence we cannot directly rely on the
CC mechanism provided by the DBMS.

Solution: There is no risk of blind overwriting if T2 in step
7 uses the form of the update which is sensitive to
the current value, like B uses in step 5 as follows:

UPDATE Accounts
SET balance = balance - 100
WHERE acctId = :id;

Consequences: Please note, the update of the balance is
based on a value unseen by the application. There-
fore, the user will not be aware of the changed
balance and this access pattern does not provide
repeatable read isolation. If the user needs to know
about the changed situation the access pattern ”Re-
SELECT .. UPDATE” could be used (see Subsec-
tion V-C) or a SELECT command could be used
after the UPDATE.

B. Access Pattern: Conditional UPDATE

Problem: How to prevent a blind overwriting and provide
repeatable-read for a business transaction in case
of concurrent updates without using locking?

Context: The ”Sensitive UPDATE” pattern in concurrent
read situations may result in non-repeatable phe-
nomenon.

Forces: Same as for ”Sensitive UPDATE” plus:

412

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The data value on which the update is based, as read
and displayed to the user, may no longer be the same
(non-repeatable read phenomenon).

Solution: After transaction T1 first has read the original
row version data in step 3, transaction T2 verifies in
step 7, using an additional comparison expression
in the WHERE clause of the UPDATE command,
that the current row version in the database is still
the same as it was when the process previously
accessed the account row. For example,

UPDATE Accounts
SET balance = :newBalance
WHERE acctId = :id AND
(rowVersion = :old rowVersion);

The comparison expression can be a single com-
parison predicate like in the example above where
rowVersion is a column (or a pseudo-column pro-
vided by the DBMS) reflecting any changes made
in the contents of the row and :old rowVersion is
a host variable containing the value of the column
when the process previously read the contents of
the row. In the case that more than one column is
involved in the comparison, the expression can be
built of version comparisons for all columns used.
The comparison will be based on the 3-value logic
of SQL.

Consequences: Since this access pattern does not explic-
itly read data, there is no need to set the isolation
level. The result of the concurrency control ser-
vices is the same for locking scheme concurrency
control (LSCC) and multiversion concurrency con-
trol (MVCC) based database systems. The result
of the update depends on the row version verify-
ing predicate, and the application code needs to
evaluate the return code to find out the number of
updated rows to verify the result.

C. Access Pattern: Re-SELECT .. UPDATE

Problem: How to provide a repeatable-read isolation for a
business transaction in case of concurrent updates?
How to inform the user when the read set has
changed and take an alternative decision?

Context: In case the result of the ”Conditional UPDATE”
pattern can not be directly communicated to the
user. For example, when an application is using
the database via middleware services (see Section
VIII).

Forces: Same as for ”Conditional UPDATE” plus:
• In the time between the re-SELECT and the UPDATE

statement, the data read may be updated again by con-
current transactions. This serialisation conflict would
force the transaction to rollback.

Solution: This is a variant of the ”conditional UPDATE”

pattern in which transaction T2 first reads the cur-
rent row version data from the database into some
host variable current rowVersion which allows the
application to inform the user of the changed
situation and take an alternative decision:

SELECT rowVersion
INTO :current rowVersion
FROM Accounts
WHERE acctId = :id;
if (current rowVersion = old rowVersion)
then

UPDATE Accounts
SET balance = :newBalance
WHERE acctId = :id;

else
// inform the user if desired
// and/or take an alternative decision

end if
To avoid any concurrency problems in this phase, it
is necessary to make sure that no other transaction
can change the row between the SELECT and
the UPDATE. For this purpose, we need to apply
a strong enough isolation level (REPEATABLE
READ, SNAPSHOT, or SERIALIZABLE) or ex-
plicit row-level locking, such as Oracle’s FOR
UPDATE clause in the SELECT command.

Consequences: Since isolation level implementations of
LSCC and MVCC based DBMS are different, the
result of concurrency services can be different:
in LSCC based systems the first writer of a row
or the first reader using REPEATABLE READ or
SERIALIZABLE isolation level will usually win,
whereas in MVCC based systems the first writer
wins the concurrency competition. On server side
OCC the first one to commit wins, and in the event
of LSCC deadlocks the victim (the transaction that
is aborted) is determined by internal rules of the
DBMS.

VI. A BASIC USE CASE EXAMPLE

In the following scenario we will distinguish SQL trans-
actions from business transactions (also called user trans-
action) as defined in Section I. An SQL transaction is
known to the DBMS. It starts explicitly with a BEGIN
TRANSACTION statement or implicitly with the first SQL
statement after the last transaction. The SQL transaction
terminates either with COMMIT or ROLLBACK. A business
transaction in our case consists of a finite sequence of
SQL transaction that are treated as a logical unit of work.
The involved database system is unaware of this logical
unit. Therefore, the databases can not support the atomicity
of a business transaction. If the business transaction maps
one-to-one to an SQL transaction as in legacy applications
the DBMS can fully support the transactional properties.

413

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In modern, web-based transactional applications a business
transaction consists of multiple SQL transactions. This is
not only because multiple database systems are involved,
there is a technical reason too. Application servers use
connection pooling, so even if only one database system
is used, different SQL statements may belong to different
connections and consequently to different transactions.

We see that the concurrency scope of an application needs
to be extended to cover sequences of SQL transactions (or
more generally server-side transactions), implementing some
business transaction. Figure 2 presents a typical business
transaction in 6 phases containing three SQL transactions
(list, select, and edit/book) like the flight booking mentioned
before plus an optional compensation phase. The ideal iso-
lation levels listed for each SQL transaction depends on the
concurrency control provided by the DBMS. For example,
the default concurrency control mechanism on SQL Server
is locking (LSCC), but it can alternatively be configured
to use ”snapshot” isolation (MVCC). With RVV we refer
to the sequence of inter-related SQL transactions (phases 4
and 6 in the Figure 2), which may belong to the same SQL
connection, but typically in a Web application could belong
to different connections as explained above. In this case the
locks from Phase 4 cannot be held until Phase 6.

To make sure that no concurrent transaction has changed
the contents of the row fetched in Phase 4, we need to verify
that the content in the database is still the same when trying
to update the row/object in Phase 6. Otherwise, the update
will cause a blind write that overwrites the result from other
competing transactions, thus loosing data from the database.

If the DBMS reports a concurrency conflict in Phase 6 (the
write/update phase), the application may retry the statement
because some conflicts are of transient nature. Temporary
conflicts that disappear after the conflicting transactions
have terminated could result either from an active deadlock
prevention, from transactions terminated with ROLLBACK,
or from released locks. A RVV validation that fails is
unrepeatable as the version value is never decremented.

A committed transaction cannot be rolled back, but some
systems provide a compensation transaction that reverses the
effects of a previously successful transaction. This is like
cancelling an order or contract that in fact results in a new
order or contract that reverses the previous one.

For setting up the scenario on the SQL Server, the
following Transact-SQL commands could be used:

CREATE TABLE rvv.VersionTest(

id INT NOT NULL PRIMARY KEY (id),

s VARCHAR(20), -- a sample data column

rv ROWVERSION -- pseudo-column reflecting updates

) ;

GO

CREATE VIEW rvv.RvTestList (id,s)) -- for Phase 2

AS SELECT id,s FROM rvv.VersionTest ;

GO

CREATE VIEW rvv.RvTest (id,s,rv) --for phases 4 and 6

AS SELECT id,s,CAST(rv AS BIGINT) AS rv

FROM rvv.VersionTest WITH (UPDLOCK) ;

GO

INSERT INTO rvv.RvTest (id,s) VALUES (1,’some text’);

INSERT INTO rvv.RvTest (id,s) VALUES (2,’some text’);

For technical details of the above script the reader is
referred to the SQL Server online documentation [29].

VII. BASELINE RVV IMPLEMENTATIONS USING
CALL-LEVEL API

The first open database call-level interface and de facto
standard for accessing almost any DBMS is the ODBC
API specification which has strongly influenced the data
access technologies since 1992. The current specification
is almost the same as the SQL/CLI standard of ISO SQL.
Many class libraries have been implemented as wrappers
of ODBC and many data access tools can be configured
to access databases using ODBC. Based on pretty much
the same idea, Sun has introduced the JDBC interface for
Java applications accessing databases which has become an
industry standard in the Java world. Using the previously
defined SQL views for accessing table VersionTest and
applying the RVV discipline, the following sample Java
code for Phase 6 (the update phase) of Figure 2 reveals
the necessary technical details:

// *** Phase 6 - UPDATE (Transaction) ***

con.setAutoCommit(false);

// Pattern B update - no need to set isolation level

string sqlCommand = "UPDATE rvv.RvTest " +

"SET s = ? " +

"WHERE id = ? AND rv = ? ";

pstmt = con.prepareStatement(sqlCommand);

pstmt.setString(1, newS);

pstmt.setLong(2, id);

pstmt.setLong(3, oldRv);

int updated = pstmt.executeUpdate();

if (updated != 1) {

throw new Exception("Conflicting row version in the

database! ");

}

pstmt.close();

// Update succeeded -> The application needs to know

the new value of RV

sqlCommand = "SELECT rv FROM rvv.RvTest WHERE id =

?";

pstmt = con.prepareStatement(sqlCommand);

pstmt.setLong(1, id);

ResultSet rs = pstmt.executeQuery();

newRv = rs.getLong(1);

rs.close();

pstmt.close();

414

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

con.commit();

In the above, as in all following examples, it is assumed that
the version attribute rv will be maintained by the database
itself, e.g., by a row level trigger or some pseudo-column
mechanism as described in the following Subsection VII-A.
If the database has no such capability, every application
itself has to take care of incrementing the version on every
update. If legacy applications do not follow this convention
of incrementing the version, they are subject to lose their
transactions.

Every 4-5 years Microsoft has introduced a new data
access technology after ODBC, and in the beginning of this
millennium ADO.NET built on various already existing data
providers. Compared to Microsoft’s ADO it is a new data
access design close to JDBC, but simplified and extended.
Instead of providing a universal interface to all kind of data
sources it consists of a family of data models which can
be generic like OleDb or native providers like SqlClient for
SQLServer or OracleClient for Oracle. Each of these im-
plement their own object classes. Without providing details
about this rich technology we just show below the Phase 6 of
Figure ?? from our baseline implementation of RVV using
C# language and the native .NET Data Provider (SqlClient)
[30] to access SQL Server 2008:

SqlCommand cmd = cn.CreateCommand(); //connection

creates new command object

// Phase 6 - update transaction

txn = cn.BeginTransaction();

cmd.Transaction = txn; // bind cmd to transaction

// Pattern B update including reread of rv using

OUTPUT clause of T-SQL:

cmd.CommandText = "UPDATE rvv.RvTest " +

"SET s = @s OUTPUT INSERTED.rv " +

"WHERE id = @id AND rv = @oldRv ";

cmd.Parameters.Clear();

cmd.Parameters.Add("@s", SqlDbType.Char, 20).Value =

newS;

cmd.Parameters.Add("@id", SqlDbType.Int, 5).Value =

id;

cmd.Parameters.Add("@oldRv", SqlDbType.BigInt,

12).Value = oldRv; // retrieved in step 4

long newRv = 0L;

try { newRv = (long) cmd.ExecuteScalar();

txn.Commit();

}

catch (Exception e) {

throw new Exception("Conflicting row version in

database "+ e.Message);

}

cmd.Dispose();

The above code-snippet shows how to bind the SQL
command cmd to the controlling transaction object txn.

The SQL Server provides an elegant solution for reading
the current row version rv at the end of the SQL UPDATE
command. Using the OUTPUT clause the Transact-SQL
UPDATE command retrieves the new value when the SQL
UPDATE is executed with the call to ExecuteScalar().

A. Server-side version management

There are multiple options for verifying the row version.
These include the comparison of the original contents of all
or some relevant subset of column values of the row, a check-
sum of these, some technical pseudo-column maintained by
the DBMS, or an additional technical SQL column. In the
latter case it is the question how the values of this column
are reliably maintained.

A general solution for row version management is to
include a technical row version column rv in each table
as defined in the following example:

CREATE TABLE Accounts (

acctId INTEGER NOT NULL PRIMARY KEY,

balance DECIMAL(11,2) NOT NULL,

rv BIGINT DEFAULT 0); -- row version

and using a row-level trigger to increase the value of column
rv on any row automatically every time the row is updated.
The row-level UPDATE trigger is defined in SQL language
as follows:

CREATE TRIGGER TRG_VersionStamper

NO CASCADE BEFORE UPDATE ON Accounts

REFERENCING NEW AS new_row OLD AS old_row

FOR EACH ROW

IF (old_row.rv = 9223372036854775807) THEN

SET new_row.rv = -9223372036854775808;

ELSE

SET new_row.rv = old_row.rv + 1;

END IF;

We call the use of a trigger or a DBMS maintained technical
pseudo-column as server-side stamping which no application
can bypass, as opposed to client-side stamping using the SET
clause within the UPDATE command - a discipline that all
applications should follow in this case. Row-level triggers
are affordable, although they lead to lower performance and
hence to approximately 2% higher execution time on Oracle
and DB2 [22, p. 28], whereas SQL Server does not even
support row-level triggers.

Timestamps are typically mentioned in database literature
as a means of differentiating any updates of a row. However,
our tests [22] show that, for example, on a 32bit Windows
workstation using a single processor Oracle 11g can generate
up to 115 updates having the very same timestamp. Almost
the same problem applies to DATETIME of SQL Server
2008 and TIMESTAMP of DB2 LUW 9, with exception of
the new ROW CHANGE TIMESTAMP option in DB2 9.5

415

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which generates unique timestamp values for every update
of the same row using the technical TIMESTAMP column.

The native TIMESTAMP data type of SQL Server is not
a timestamp but a technical column which can be used
to monitor the order of all row updates inside a database.
We prefer to use its synonym name ROWVERSION. This
provides the most effective server-side stamping method in
SQL Server, although, as a side-effect it generates an extra
U-lock which will result in a deadlock in the example at step
6 of Figure 2. The remedy for this deadlock is to use the
table hint UPDLOCK which will block new U-lock requests
and prevents the transactions from running into a deadlock.

In version 10 and later versions, Oracle provides a new
pseudo-column, the Oracle Row System Change Number
(ORA ROWSCN) for rows in every table created with the
ROWDEPENDENCIES option [31]. This will show the
transaction’s System Change Number (SCN) of the last
committed transaction which has updated the row. This
provides the most effective server-side stamping method for
RVV in Oracle databases, although as a harmful side-effect,
the row-locking turns its value to NULL for the duration of
the writing transaction.

VIII. RVV IMPLEMENTATIONS USING ORM
MIDDLEWARE

Data access patterns solving the impedance mismatch
between relational databases and object-oriented program-
ming are called Object-Relational Mappers (ORM) [8]. One
widely known ORM technology is the Container Managed
Persistence (CMP) pattern of the Java Persistence API (JPA)
as part of the Java Enterprise Beans 3.0 (EJB3). The JPA
specification assumes the use of ”optimistic locking” [20].

The JPA stimulated the market for sophisticated persis-
tence managers providing object-relational mappings, such
as TopLink [32] and Hibernate [33]. Figure 4 shows our
interpretation of the alternatives of the current Hibernate
framework which implements the JPA but also allows full
control over Hibernate’s Core down to the JDBC code level,
which we actually need for our RVV implementation when
using Hibernate. In terms of RVV we are mainly interested
in the object persistence services of ORM frameworks. As
examples for these services Hibernate Core and Hibernate
JPA providers are tested for their ability to implement RVV.

A. RVV implementation using Hibernate Core

Hibernate provides an optimistic concurrency mechanism
called ”optimistic locking” (described in the Hibernate Ref-
erence Documentation [34]) based on version control. This
service can be configured programmatically and may be
overwritten by XML-based configuration files.

For instance, the programming paradigm for persistent
classes can chose any of the following options

• version checking by the application, e.g., RVV valida-
tion

Figure 4. Hibernate architecture

• automatic version checking by an entity manager
• automatic version checking of detached objects by an

entity manager
Automatic version checking takes place for every instance
of the class during the transaction’s COMMIT phase based
on a technical version column when the attribute setting
is optimistic-lock="version". As alternative, Hi-
bernate provides a validation based on a set of columns
when setting the attribute to optimistic-lock="all"
which will compare the contents of all columns, or by
optimistic-lock="dirty" which will compare only
the contents of columns which have been changed by the
transaction.

The single technical column for version validation can be
defined by the XML element <version> of the Hibernate
object-relational mapping declaration in an entity’s cfg.xml
file as follows:

<class name=”rvvtest” table=”RVTest” ...
optimistic-lock=”version”>

<id name=”id” column=”ID” />
<version column=”RV” generated=”always” ../>

</class>

where the attribute value generated=”always” means that
the value of the technical column is generated by the
DBMS on insert and update, whereas the attribute gener-
ated=”never” means that Hibernate will generate the value
during synchronizing the contents with the database. The
drawback of the validation based on Hibernate’s generated
technical column is that it is not reliable in case the data
gets updated by some other software.

Another configurable behaviour of the data access is the
SQL Isolation Level, which unfortunately cannot be changed
for a single transaction. But exactly this capability is needed
for Phase 6 of our example scenario. The original Hibernate
engine, called Hibernate Core, provides a native interface
providing the needed low level capability. Hibernate Core

416

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services allow direct JDBC access to the data sources.
Switching to the JDBC level involves the creation of a new
connection on JDBC level and a subsequent method call
to set the isolation level. See comments 1) and 2) in the
example Java code of Phase 6.

Hibernate, like Toplink, tries to optimize data access
performance using its own cache, that makes row version
verification difficult. One must bypass the cache when
fetching the current row version from the data source.
Switching to the JDBC level allows to reload the RVV entity
including the row version which bypasses Hibernate’s cache
mechanism. This is done in the example Java code using the
refresh(re2) method on session level.

The use case scenario (see Figure 2) needs at least
isolation level REPEATABLE READ in Phase 6. This is
available in DB2 and SQL Server, but not in Oracle, which
for our purposes can only provide the snapshot isolation,
calling it SERIALIZABLE. We see this as a challenge and
want to prove that ORA ROWSCN can be used as row
version field managed at server-side without Hibernate’s
optimistic locking services. It should be pointed out that the
maintenance of the ORA ROWSCN is done by the DBMS
and cannot be bypassed by any application (including those
not using Hibernate).

Hibernate requires a class definition with member vari-
ables matching the table columns of our view RVTEST.
Objects of this class act as a wrapper for rows retrieved from
or written to the view. The following XML-file defines the
mapping between the RvvEntity class and the RVTest table
for our scenario:

...
<hibernate-mapping>
<class name=”rvvtest.RvvEntity” table=”RVTEST”>
<id name=”id” column=”ID”/>
<property name=”s” column=”S” update=”true”/>
<property name=”rv” column=”RV” update=”false”/>

</class>
</hibernate-mapping>

Since the column RV is actually the ORA ROWSCN
pseudo column, we don’t allow Hibernate to update it. The
code portion of the critical Phase 6 shows that special
tuning is needed to make Hibernate Core work correctly
with Oracle (numbers refer to the comments in the code):

1) The default isolation level of READ COMMITTED
suits in other phases of our use case, but it would
lead to ”blind overwriting” of concurrent transactions
during Phase 6. Hibernate does not offer the possibility
to change the isolation level dynamically, so we need
to switch first to the level of JDBC services.

2) REPEATABLE READ would be the proper isolation
level for Phase 6, but Oracle requires SERIALIZ-
ABLE, and Hibernate’s Oracle dialect adapter does
not transform REPEATABLE READ into SERIAL-

Figure 5. JPA persistence management

IZABLE, so to keep the code portable we stick to
SERIALIZABLE.

3) The save() method used to store the modified entity
back to the database allows no conditional update, i.e.,
only SQL Pattern C is applicable.
// Phase 6 - "model"

try {

tx = session.beginTransaction();

Connection conn = session.connection(); // 1) switch

to JDBC

conn.setTransactionIsolation(

conn.TRANSACTION_SERIALIZABLE); // 2)

RvvEntity re2 = (RvvEntity)

session.load(RvvEntity.class, id);

session.refresh(re2);

Long newRv = (Long)re2.getRv();

if (oldRv.equals(newRv)) { // 3) Pattern C

re2.setS(s);

session.save(re2); // 3)

/* Programmed breakpoint for concurrency testing:

*/

tx.commit();

} else

throw new Exception("StaleObjectState \n" +

"oldRv=" + oldRv + " newRv=" + newRv);

System.out.println("persisted S = " + re2.getS() +

"\n oldRv=" + oldRv + " newRv=" + newRv);

}

catch (Exception ex) {

System.out.println("Exception: " + ex);

}

B. RVV implementation using Hibernate JPA

Hibernate provides now its Java Persistence API (JPA)
implementation (EntityManager and Annotations) as a wrap-
per of Hibernate Core. Figure 5 presents methods of JPA for
managing the persistence of an object.

417

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Object properties can be changed only for loaded objects.
This means that only Pattern C (re-SELECT..UPDATE) up-
dates are possible in ORM frameworks. The caching service
of ORM middleware improves performance by buffering
objects, but RVV requires the current row version from the
database and therefore needs to bypass the cache. ORM
frameworks provide automatic ”optimistic locking” services
based on a timestamp or version column, but according
to the JPA specification these are maintained by the ORM
middleware itself (persistence provider) at client-side, so any
other software can bypass the version maintenance. There-
fore, the only generally reliable version control mechanism
is the server-side stamping.

The following Java code sample from our RVV Paper [22]
shows how to avoid stale data from Hibernate’s cache. To
set the isolation level via JDBC we first need to switch to
Hibernate’s core level as in the previous example. This is
done from the underlying session object at the JDBC level.
The session object creates a new connection, the connection
conn begins a new transaction and sets the isolation level to
SERIALIZABLE. Then, the object is reloaded and the actual
newRv is read. The used Pattern C requires REPEATABLE
READ to ensure that the row version will not change
during validation and execution of the update. But, for
portability reasons we choose the stronger isolation level
SERIALIZABLE.

// Phase 6 - "model"

em.clear(); //1) clear EntityManager’s cache for RVV

try { Session session = (Session)em.getDelegate();

// JPA => Hibernate Core

Connection conn = session.connection(); // => JDBC

Transaction tx6 = session.beginTransaction();

conn.setTransactionIsolation(

conn.TRANSACTION_SERIALIZABLE); // Pattern C

RvvEntity re2 = em.find(RvvEntity.class, id);

// reload the object

Long newRv = (Long)re2.getRv(); // read current

row version

if (oldRv.equals(newRv)) { // verifying the

version re2.setS(s); // update of properties

em.persist(re2); // Pattern C RVV update

tx6.commit();

}

else

throw new Exception("StaleObjectState: oldRv=" +

oldRv + " newRv=" + newRv);

}

catch (Exception ex) {

System.out.println("P 6, catched exception: " +

ex);

}

Apart from different method names, Hibernate API and
JPA provide approximately the same abstraction level and

in both cases it is necessary to use JDBC level access to
ensure the appropriate control over the SQL isolation level.
To circumvent Hibernate’s cache we need to either refresh
the object with the session refresh() method (Hibernate
API) or clear the entity manager’s cache with the clear()
method (Hibernate JPA).

IX. RVV IMPLEMENTATION USING LINQ TO SQL

Microsoft’s answer to the ORM frameworks is Language
Integrated Query (LINQ) for the .NET Framework 3.5. The
class libraries of LINQ can be integrated as part of any .NET
language providing developer ”IntelliSense” support during
coding time and error checking already at compile-time [35].
So called ”standard query operators” of LINQ can be applied
to different mappings using LINQ providers, such as LINQ
to XML, LINQ to Datasets, LINQ to Objects, and LINQ to
SQL. In the following C# code sample the object myRow is
loaded from the database in Phase 4 and string newS contains
a new value entered in Phase 5. In Phase 6 our use case
enters the update phase, first the string newS is assigned
to myRow’s member variable S and then the changes are
submitted to the DataContext dc. The DataContext object
holds the open connection to the database in order to finally
synchronize the object myRow’s data. The shaded part of
the code is just a programmed break allowing concurrent
processing for concurrency tests:

// Phase 4 - data access

var myRow = (from r in myTable

where r.ID == id

select r).First();

// Phase 5 - User interface

Console.WriteLine("Found the row ");

Console.WriteLine("ID={0}, S={1}, RV={2}",

myRow.ID, myRow.S, myRow.Rv);

long oldRv = myRow.Rv;

Console.Write("Enter new value for column S: ");

string newS = Console.ReadLine();

// Phase 6

TransactionOptions txOpt = new TransactionOptions();

txOpt.IsolationLevel =

System.Transactions.IsolationLevel.RepeatableRead;

using (TransactionScope txs = new TransactionScope

(TransactionScopeOption.Required, txOpt)) {

try { myRow.S = newS;

// To allow time for concurrent update tests ...

Console.Write("Press ENTER to continue ..");

Console.ReadLine();

dc.SubmitChanges(ConflictMode.FailOnFirstConflict);

txs.Complete();

}

catch (ChangeConflictException e) {

Console.WriteLine("ChangeConflictException: " +

e.Message);

}

418

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

catch (Exception e) {

Console.WriteLine("SubmitChanges error: " +

e.Message + ", Source: " + e.Source +

", InnerException: " + e.InnerException);

}

}

The code shows the use of TransactionScope, the new
transaction programming paradigm of .NET Framework
which does not depend on LINQ. Setting the isolation level
is actually not necessary for the transaction since it uses
Pattern B (Conditional UPDATE), but we want to show that
it can be set programmatically. The test also shows that no
stale data was used in spite of LINQ caching.

At run-time, the data access statements of LINQ to SQL
are translated into native SQL code which can be traced.
The following sample test run trace shows that row version
verification is automatic based on Pattern B (Conditional
UPDATE) and LINQ automatically tries to refresh the
updated row version content:

Press ENTER to continue ..

Before pressing the ENTER key the contents of column S in row 1 is updated

in a concurrent Transact-SQL session.

UPDATE [rvv].[RvTestU]

SET [S] = @p3

WHERE ([ID] = @p0) AND ([S] = @p1) AND ([RV] = @p2)

SELECT [t1].[RV]

FROM [rvv].[RvTestU] AS [t1]

WHERE ((@@ROWCOUNT) > 0) AND ([t1].[ID] = @p4)

-- @p0: Input Int (Size = 0; Prec = 0; Scale = 0) [1]

-- @p1: Input NVarChar (Size = 9; Prec = 0; Scale =

0) [TestValue]

-- @p2: Input BigInt (Size = 0; Prec = 0; Scale = 0)

[32001]

-- @p3: Input NVarChar (Size = 7; Prec = 0; Scale =

0) [testing]

-- @p4: Input Int (Size = 0; Prec = 0; Scale = 0) [1]

-- Context: SqlProvider(Sql2005) Model:

AttributedMetaModel Build: 3.5.21022.8

ChangeConflictException: Row not found or changed.

The SQL UPDATE statement validates the row version with
the ([RV] = @p2) predicate. This is exactly our Pattern
B. The following SELECT statements reads the new row
version and ensures that the row count is greater than 0
((@@ROWCOUNT) > 0). In case of a version conflict no
row is updated and a ChangeConflictException is
returned. There is no need to implement any RVV pattern
on the application level as LINQ to SQL applies this pattern
automatically.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM ”jdo.dtd”>
<jdo>

<package name=”model”>
<class name=”RvvEntity”>
<extension vendor-name=”FastObjects” key=”index”

value=”IdIndex”>
<extension vendor-name=”FastObjects”

key=”member”
value=”id”/>

</extension>
</class>

</package>
</jdo>

Figure 6. Example XML file defines persistence capable class RvvEntity

X. RVV IMPLEMENTATION USING JDO OBJECT
DATABASE

Java Data Objects (JDO) is a vendor neutral programming
interface that enables the persistent storage of Java objects
developed in 2001. Meanwhile the JDO specification and
reference implementation is maintained by the JDO Apache
project under the Java community process and released its
version 3 in April 2010. JDO has strongly influenced the
definition of the Java Persistence API (JPA).

The programming model provides a transparent, easy to
use object persistence for standard Java objects including
transactional support. For this reason, vendors of object
oriented databases quickly adopted JDO as programming
interface. However, it is possible to implement the JDO API
for any persistent data storage (called datastore by the JDO
specification), in particular for relational database systems.
In contrast to ORM software there is no need to define
any transformation to tables. The programmer only needs
to specify in an XML file the classes that he wants to make
persistence capable and optionally - as an vendor extension -
the attributes that should have indexed access (as in example
Figure 6). This definition will be later used by the class
enhancer to make ordinary Java classes persistence capable
and the actual mapping - if applicable - is hidden from the
programmer.

While in JDO version 1 the mapping was undefined,
version 2 allowed different mappings to relational databases.
If one starts with the class definition the relational schema
can be generated from the optional XML-mapping file.

The JDO Specification 2.2 [36, pp 44-46] distinguishes
three types of identity:

• Application identity - based on attribute values, man-
aged by the application, and enforced by the database,

• Datastore identity - based on a system generated iden-
tity and managed by the database,

• Nondurable identity - the Java object identity, managed

419

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. JDO persistence capable object states

by the Java virtual machine.
Only the datastore identity is a persistent identity in the
object oriented sense. The representation of the identity
is via the JDO object identity that is returned as a
copy by method getObjectId(Object po). JDO defines two
types of transaction management, the Datastore Transaction
Management (DTM) and optimistic transaction manage-
ment (OTM). DTM ensures transactional properties simi-
lar to SQL transactions even if connections to the datas-
tore are dynamically handled by the ConnectionManager.
In the case of OTM, persistent objects modified within
or outside a transaction are not transactional until dur-
ing commit. At commit time a short transactional datas-
tore context is established in which all modifications are
flushed to the datastore if validation is successful. If an
JDOOptimisticVerificationException is raised,
the transaction fails and in memory modifications are rolled
back (the original state is restored). The tested implemen-
tation FastObjects J1 does not support the OTM and raised
an JDOUnsupportedOptionException.

The programming model of JDO version 1 distinguishes
between transient and persistent objects. The persistent ob-
jects may be in one of five states:

• persistent new - new object prepared to be committed
to the datastore

• hollow - object in the datastore
• persistent clean - (partial) object loaded into application
• persistent dirty - (partial) object loaded and modified

in application
• persistent deleted - persistent object deleted

The possible states and transitions for transactional objects
are shown in Figure 7. Typically an object is created in the
application by the Java constructor new. The resulting object
is Transient. If the object’s class is persistence capable,
calling makePersitent() changes its state to Persistent
new. If the object is committed to the datastore its state
is Hollow. After reading some fields of an object from the

datastore it reaches the state Persistent clean. Modifying any
attribute value makes the object Persistent dirty until it is
committed back to the datastore or the values are discarded
by the rollback() method. In both cases the resulting
state is Hollow again. A persistent object may be deleted at
any time by calling deletePersistent(). The deletion
is made durable by calling commit() or cancelled by
rollback().

In JDO version 2, nontransactional and detached opera-
tions were added that are not orthogonal to the above states.
This leads to an explosion of states and different life cycles
for JDO objects (see JDO 2.2 Specification [36, pp. 50 -
68].

JDO recognizes four isolation levels with identical names
as the SQL isolation levels plus the snapshot isolation level.
It is unclear if these isolation levels have the same semantics
as the isolation levels for relational databases. The tested
FastObjects J1 does not support this JDO 2.0 options, but
uses strict two-phase-locking that ensures REPEATABLE
READ, the isolation level needed for the RVV testing.

The class definition of RvvEntity should be stored in
the object database as well in order to provide the class
definition to all applications. The version attribute rv will
only be incremented by the setter methods of the other
attributes. It is important that all attributes are private and
that the rv attribute has no setter method. So the only way
to access an attribute is via its getter and setter methods. The
setter methods ensure that any modification to the object’s
state, i.e., changing any attribute value, will result in a new
row version. The setter method for each attribute should be
modified in the following way:

package model;

public class RvvEntity {

private int id;

private String s;

private long rv;

public RvvEntity() {// default constructor

} //needed for persistence capable classes

public RvvEntity(int id, String s) {

this.id = id;

this.s=s;

this.rv = 0;

}

public void setS(String s) {

this.s = s;

this.rv++;

}

}

As in the previous Hibernate examples, only loaded objects
can be modified. Therefore, only Pattern C is applicable as
the following listing of Phase 4 and 6 shows.

PersistenceManager pm;

...

420

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public void doRVV() throws ExampleException {

RvvEntity p, p2RVV;

Object p2oid;

Extent e;

Iterator<?> i;

// Phase 4 of use case

pm.currentTransaction().begin();

e = pm.getExtent(RvvEntity.class, true);

i = com.poet.jdo.Extents.iterator(e, "IdIndex");

// find object with id = 1

boolean found = com.poet.jdo.Extents.findKey(i,

1);

// search for the first key match

if (found == true && i.hasNext())

p = (RvvEntity) i.next();

else {

System.out.println("RvvEntity #1 not found");

return;

}

p2oid = pm.getObjectId(p); //1)

long oldRvv = p.getRv(); //2)

pm.currentTransaction().commit();

// Phase 6 of use case

pm.currentTransaction().begin();

pm.currentTransaction().setIsolationLevel(

TransactionIsolationLevel.repeatable-read);

System.out.println("pm: Phase 6 started");

p2RVV =

(RvvEntity) pm.getObjectById(p2oid, true); //3)

if (p2RVV.getRv() == oldRvv){ //4) Pattern C

p.setS(" pm(Phase 6): NEW TEXT");

try {

pm.currentTransaction().commit();

System.out.println("pm: Phase 6 committed!");

}

catch (javax.jdo.JDOException x) {

pm.currentTransaction().rollback();

System.out.println("Could not commit! Reason:

"

+ x.getMessage());

}

} else {

System.out.println("pm: RVV serialisation

conflict!");

pm.currentTransaction().rollback();

}

}

In Phase 4 the RvvEntity #1 is retrieved from the database
by its id number. From the programming model the index
search could possibly retrieve more than one object with
id = 1. It is the responsibility of the application to ensure

uniqueness. Later, when the object is loaded, the method
getObjectId() retrieves its persistent datastore object
id (line with comment 1). This object id is later used in
Phase 6 to reload the object by its object id (see line with
comment 3). The row version from Phase 4 is saved in
variable oldRvv (comment 2) and used in Phase 6 for RVV
(comment 4).

Phase 6 relies on isolation level REPEATABLE READ,
but the tested version of FastObjects does not support
isolation level setting. From the exception messages we
concluded that any read access was protected by a shared
lock until the end of the transaction and conflicting implicit
lock requests (e.g., by a setter method) resulted in an
exception with message:

write lock for object with id (0:0-1030#0, 1001)
on behalf of transaction <unnamed> on database
FastObjects://LOCAL/MyRvv base.j1 not granted

The apparent use of strict two-phase-locking provided re-
liable isolation for a successful application of the RVV
using Pattern C. During Phase 4, no competing transaction
could modify the loaded object. Between phases 4 and 6
a concurrent transaction may successfully update objects
loaded during Phase 4 but in Phase 6 the changes are
discovered and the transaction under test had to abort.
During Phase 6 the transaction under test was protected by
read locks against any changes from the re-read (line with
comment 3) until the end of the transaction.

XI. CONCLUSION

Table II presents a comparison of the Call-level APIs
and ORM Frameworks with RVV practice in mind. It lists
the access patterns that can be used in conjunction with
different technologies and it depicts the level of control
and its limitations. Major findings are the differences when
applying the access patterns of Laux and Laiho [11] for
different middleware technologies with regard to isolation
levels, transaction control, caching, and performance over-
head. While we are writing this paper LINQ to SQL is
still in its beta phase and it was rather slow in our tests.
However, we are impressed about the built-in ”optimistic
concurrency control” as Microsoft calls it. Microsoft has the
advantage of experiences from the competing technologies.
Attributes of LINQ are more orthogonal than the numerous
JPA annotations and its object caching did not produce side-
effects in concurrency control making LINQ easier to use
and manage. It also utilizes server-side version stamping.
With the advanced features of the framework - as it proves
to do things right - this is a most promising software
development extension in the .NET Framework. The native
DBMS for LINQ is currently SQL Server, but since IBM
and Oracle have already shipped its own ADO.NET data
providers, their support for this technology can be expected.

421

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
COMPARISON OF CLI APIS AND ORM FRAMEWORKS

CLI APIs ORM Frameworks
Java
Hibernate

ODBC Web Service JDO
JDBC APIs TopLink .NET
ADO.NET JPA LINQ

Access Pattern A yes yes no no
Access Pattern B yes yes no yes
Access Pattern C yes yes yes no

DBMS http: low
Performance overhead low appl.serv: high high high (beta)
Obj. orient. Programming labor-intensive yes yes
Persistence SQL SQL middleware service middleware service
Use of native SQL detailed detailed limited limited
– isolation full control full control default full control
– local transaction full control full control TM 1) full control
– global transaction (ADO.NET) difficult TM 1) implicit 2)
2nd level caching yes
Optimistic Locking RVV RVV configurable built-in
Version stamping (default) client-side server-side

1) using Transaction Manager (TM), 2) using TransactionScope

As an advantage of ORM Frameworks Hoffer et al [26]
lists ”Developers do not need detailed understanding of the
DBMS or the database schema”. We don’t share this view.
Even if we use these higher abstraction frameworks we
need to verify that we understand the low level data access
operations so that our applications are transaction safe. For
example it was necessary to circumvent middleware caches
where possible or when using disconnected data sets we
had to explicitly reread the row version from the database
in repeatable read isolation (access Pattern C). The version
stamping of the ”optimistic locking” should not be handled
at client or middleware side, but on the server side instead
to avoid that applications can bypass the RVV mechanism.

The JDO programming interface shielded much of the
mapping complexity and the implementation tested used
straight forward strict two-phase-locking. So the behaviour
was similar to SQL databases with locking scheme. Future
tests with products supporting optimistic transaction control
and disconnected (called detached by JDO) operations will
show if these models can improve performance or facilitate
programming.

Some comparisons in Table II are still speculative instead
of hard facts. In this respect Table II can be considered as
suggestions for further studies.

ACKNOWLEDGEMENTS

This paper is the result of collaborative work undertaken
along the lines of the DBTechNet Consortium. The authors
participate in DBTech EXT, a project partially funded by the
EU LLP Transversal Programme (Project Number: 143371-
LLP-1-2008-1-FI-KA3-KA3MP)

REFERENCES

[1] M. Laiho and F. Laux; ”Implementing Optimistic Concur-
rency Control for Persistence Middleware using Row Ver-
sion Verification,” in Second International Conference on
Advances in Databases Knowledge and Data Applications
(DBKDA 2010), April 11-16, 2010, Les Menuires, France,
pp. 45 - 50

[2] T. Härder and A. Reuter, ”Principles of Transaction-Oriented
Database Recovery,” ACM Computing Surveys, pp. 287 - 317,
Vol. 15, No. 4, December 1983

[3] H. T. Kung and J. T. Robinson; ”On Optimistic Methods
for Concurrency Control,” In ACM Transactions on Database
Systems (TODS) 6(2), pp. 213 - 226, 1981

[4] M. Crowe; (2011, Jan.), The Pyrrho Database Management
System, University of the West of Scotland, [Online], Avail-
able: http://www.pyrrhodb.com

[5] VoltDB, Inc. (2011, Jan.), VoltDB Home Page, [Online],
Available: http://voltdb.com/

[6] VoltDB, LLC (ed.) (2011, Jan.), VoltDB Technical
Overview, [Online], Available: http://www.voltdb.com/

pdf/VoltDBTechnicalOverviewWhitePaper.pdf

[7] G. Weikum and G. Vossen, Transactional Information Sys-
tems, Morgan Kaufmann Publishers, 2002

[8] C. Nock; Data Access Patterns, Addison-Wesley, 2004

[9] J. Gray and A. Reuter; Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993

[10] U. Halici and A. Dogac; ”An Optimistic Locking Technique
for Concurrency Control in Distributed Databases,” IEEE
Transactions on Software Engineering, Vol 17, pp. 712 - 724,
1991

422

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] F. Laux and M. Laiho; ”SQL Access Patterns for Optimistic
Concurrency Control,” in Future Computing, Service Com-
putation, Cognitive, Adaptive, Content, Patterns (COMPUTA-
TIONWORLD ’09), November 15-20, 2009 - Athens/Glyfada,
Greece, pp. 254 - 258

[12] D. Z. Badal; ”Correctness of Concurrency Control and Im-
plications in Distributed Databases,” in Proc. COMPSAC79,
Chicago, 1979, pp. 588 - 593

[13] R. Unland, U. Prädel, and G. Schlageter; ”Ideas on Optimistic
Concurrency Control I: On the Integration of Timestamps into
Optimistic Concurrency Control Methods and A New Solu-
tion for the Starvation Problem in Optimistic Concurrency
Control,” In Informatik Fachbericht; FernUniversität Hagen,
Nr. 26. 1982

[14] Ph. Bernstein and E. Newcomer; Principles of Transaction
Processing, Morgan Kaufmann, 1997

[15] R. E. Stearns and D. J. Rosenkrantz; Distributed Database
Concurrency Controls Using Before-Values,” in Proceedings
ACM SIGMOD International Conference on Management of
Data, 1981, pp. 74 - 83,

[16] P. A. Bernstein and N. Goodman; ”Multiversion Concurrency
Control – Theory and Algorithms,” ACM Transactions on
Database Systems 8, pp. 465 - 483, 1983.

[17] A. Seifert and M. H. Scholl; ”A Multi-version Cache Re-
placement and Prefetching Policy for Hybrid Data Delivery
Environments,” in Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002, pp. 850 - 861

[18] M. Heß; (2010, Oct), Lange Gespräche mit
Hibernate, [Online], Available: http://www.ordix.de/
ORDIXNews/2 2007/Java J2EE JEE/
hibernate long conversation.html

[19] Y. Akbar-Husain, (2010, Oct.), Optimistic Locking pattern
for EJBs, [Online], Available: http://www.javaworld.com/jw-
07-2001/jw-0713-optimism.html

[20] L. DeMichiel and M. Keith, JSR 220: Enterprise
JavaBeansTM, Version 3.0, Java Persistence API, Final
Release, 8 May, 2006, Sun Microsystems, Inc., Santa Clara,
California, USA,

[21] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari; ”Efficient
Optimistic Concurrency Control Using Loosely Synchronized
Clocks,” ACM SIGMOD Record, Volume 24 , Issue 2 (May
1995), pp 23 - 34, ISSN: 0163-5808

[22] M. Laiho and F. Laux; (2011, Jan.), On Row Ver-
sion Verifying (RVV) Data Access Discipline for avoid-
ing Blind Overwriting of Data, [Online], Available:
http://www.DBTechNet.org/papers/RVV Paper.pdf

[23] E. Jendrock, J. Ball, D. Carson, I. Evans, S. Fordin, and
K. Haase; (2010, Oct.), The Java EE 5 Tutorial, [Online],
Available: http://download.oracle.com/javaee/5/tutorial/doc/

[24] N.N.; (2010, Oct.), .NET Framework 3.5, msdn .NET
Framework Developer Center, [Online], Available:
http://msdn.microsoft.com/ en-us/library/w0x726c2.aspx

[25] M. Laiho and F. Laux; ”Data Access using RVV Disci-
pline and Persistence Middleware,” in The Conference for
International Synergy in Energy, Environment, Tourism and
Contribution of Information Technology in Science, Economy,
Society and Education (eRA-3), 2008, Aegina/Greece, pp. 189
- 198

[26] J. A. Hoffer, M. B. Prescott, and H. Topi; Modern Database
Management, 9th ed., Pearson Prentice-Hall, 2009

[27] J. O. Coplien, ”A Generative Development-Process Pattern
Language,” in J.O. Coplien and D.C. Schmidt (eds.), Pattern
Languages of Program Design, Addison-Wesley, 1995

[28] E Gamma, R Helm, R Johnson, and J Vlissides; Design
Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994

[29] N.N.; (2010, Oct.), SQL Server Books Online, msdn
SQL Server Developer Center, [Online], Available:
http://msdn.microsoft.com/en-gb/library/ms130214.aspx

[30] N.N.; (2010, Oct.), SQL Server and ADO.NET, msdn
Visual Studio Developer Center, [Online], Available:
http://msdn.microsoft.com/en-us/library/kb9s9ks0.aspx

[31] Diana Lorentz and Mary Beth Roeser; (2011, Jan.),
Oracle SQL Language Reference Manual, 11g
Release 2 (11.1), October 2009, [Online], Available:
http://download.oracle.com/docs/cds/E11882 01.zip

[32] Oracle; TopLink Developers Guide 10g (10.1.3.1.0), B28218-
01, September 2006

[33] C. Bauer and G. King; Java Persistence with Hibernate,
Manning, 2007

[34] Gavin King, Christian Bauer, Max Rydahl
Andersen, Emmanuel Bernard, and Steve Ebersole;
(2010, Oct.), Hibernate Reverence Documenta-
tion, Version 3.5.1-Final, [Online], Available:
http://docs.jboss.org/hibernate/stable/core/reference/en/pdf/
hibernate reference.pdf

[35] S. Klein; Professional LINQ, Wiley Publishing, 2008

[36] Craig Russell; (2010, Oct.), Java Data Objects 2.2, JSR
243, 10 October 2008, Sun Microsystems, Inc., [Online],
Available: http://db.apache.org/jdo/releases/release-2.2.cgi

423

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Efficient Maintenance of all k-Dominant Skyline Query Results for Frequently
Updated Database

Md. Anisuzzaman Siddique∗
University of Rajshahi

Rajshahi-6205, Bangladesh
Email: anis cst@yahoo.com

Yasuhiko Morimoto
Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: morimoto@mis.hiroshima-u.ac.jp

Abstract—Skyline queries are useful to multi-criteria deci-
sion making as they represent the set of all solutions that
the user can safely take without fear that something better
is out there. It can act as a filter to discard sub-optimal
objects. However, a major drawback of skylines is that, in
datasets with many dimensions, the number of skyline objects
becomes large and no longer offer any interesting insights.
To solve the problem, k-dominant skyline queries have been
introduced, which can reduce the number of retrieved objects
by relaxing the definition of the dominance. Though it can
reduce the number of retrieved objects, the k-dominant skyline
objects are difficult to maintain if the database is updated.
This paper addresses the problem of maintaining k-dominant
skyline objects for frequently updated database. We propose
an algorithm for maintaining k-dominant skyline objects. An
extensive performance evaluation using both real and synthetic
datasets demonstrated that our method is efficient and scalable.

Keywords-Skyline, k-Dominant Skyline, Database Update.

I. INTRODUCTION

Abundance of data has been both a boon and a curse, as
it has become increasingly difficult to process data in order
to isolate useful and relevant information. In order to com-
pensate, the research community has invested considerable
effort into developing tools that facilitate the exploration
of a data space. One such successful tool is the skyline
query. The set of skyline objects presents a scale-free choice
of data objects worthy for further considerations in many
application contexts. Figure 1 shows a typical example of
skyline. The table in the figure is a list of hotels, each of
which contains two numerical attributes: distance to beach
and price, for online booking. A tourist chooses a hotel from
the list according to her/his preference. In this situation,
her/his choice usually comes from the hotels in skyline, i.e.,
any of h1, h3, h4 (see Figure 1(b)). Many approaches have
been proposed for the efficient computation of skylines in
the literature [2], [3], [5], [6], [8], [9], [10], [12].

The skyline query can greatly help user to narrow down
the search range. It is always assumed that all the attributes

*This work was done when the author was in Hiroshima University.

are involved in the skyline queries, that is, the dominating
relationship is evaluated based on every dimensions of the
dataset. However, a major drawback of skylines is that,
in datasets with many dimensions, the number of skyline
objects becomes large and no longer offer any interesting
insights. The reason is that as the number of dimensions
increases, for any object O1, it is more likely there exists
another object O2 where O1 and O2 are better than each
other over different subsets of dimensions. If our tourist,
cared not just about price and distance to beach, but also
about the distance to airport, distance to downtown, rank,
and internet charge then most hotels may have to be included
in the skyline answer since for each hotel there may be no
one hotel that beats it on all criteria.

To deal with this dimensionality curse, one possibility is
to reduce the number of dimensions considered. However,
which dimensions to retain is not easy to determine, and
requires intimate knowledge of the application domain. To
reduce the number of dimensions without any intimate
knowledge of the application domain, Chan, et al. con-
sidered k-dominant skyline query [4]. They relaxed the
definition of “dominated” so that an object is more likely to
be dominated by another. Given an n-dimensional database,
an object Oi is said to k-dominates another object Oj (i ̸= j)
if there are k (k ≤ n) dimensions in which Oi is better
than or equal to Oj . A k-dominant skyline object is an
object that is not k-dominated by any other objects. Note
that conventional skyline objects are n-dominant objects.

A. Motivating Example

Assume we have a symbolic dataset containing six at-
tributes (D1, ..., D6) as listed in Table I. Without loss
of generality, we assume smaller value is better in each
dimension. Conventional skyline query for this database
returns five objects: O2, O3, O5, O6, and O7. On the other,
if we apply the k-dominant skyline query for this dataset it
can control the selectivity by changing k. For example, if
k = 5, the 5-dominant skyline query returns two objects:
O5 and O7. Objects O1, O2, O3, O4, and O6 are not in 5-

424

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Skyline example

Table I
SYMBOLIC DATASET

Obj. D1 D2 D3 D4 D5 D6

O1 7 3 5 4 4 3
O2 3 4 4 5 1 3
O3 4 3 2 3 5 4
O4 5 3 5 4 1 2
O5 1 4 1 1 3 4
O6 5 3 4 5 1 5
O7 1 2 5 3 1 2

dominant skyline because they are 5-dominated by O7. The
4-dominant skyline query returns only one object, O7 and
the 3-dominant skyline query returns empty.

Though the k-dominant skyline query can control selec-
tivity, but unfortunately, there exist no efficient methods that
can handle k-dominant skyline queries under continuous
updates. Therefore, we consider continuous queries, that is,
queries that are executed when there are some changes in
the dataset that affects their result. Continuous k-dominant
skyline queries are very useful, since they allow users to
monitor the dataset and get informed about new interesting
objects. However, the maintenance of k-dominant skyline
for an update is much more difficult due to the well-known
intransitivity of the k-dominance relation. Assume that “A”
k-dominates “B” and “B” k-dominates “C”. However, “A”
does not always k-dominates “C”. Moreover, “C” may k-
dominate “A”. Because of the intransitivity property, we
have to compare each object against every other object
to check the k-dominance. To illustrate this problem con-
sider the 5-dominant example again. In the dataset, objects
O5, O7 are in 5-dominant skyline. If we insert a new object
Onew = (6, 4, 4, 2, 2, 3) into the dataset, we can compare
Onew with the 5-dominant skyline objects (i.e., {O5, O7})
to maintain the 5-dominant skyline and after comparisons
we may find that Onew is in the 5-dominant skyline. But
it is not true, because Onew is 5-dominated by O2. Like
this example, for each insertion in the dataset, we have to
perform domination check of each new object against all

k-dominant as well as non-k-dominant skyline objects. This
procedure is cost effective and we have to reduce the cost
in order to handle frequent updates in a large dataset.

If an update is a deletion, we have to recompute the
entire k-dominant skyline from the scratch. Because some
objects that are not in the current k-dominant skyline objects
may be “promoted” as k-dominant skyline objects by a
deletion. Suppose, if we delete object O2, this deletion will
“promote” Onew as a 5-dominant skyline object. Again,
if we want to revise or update the attributes values of
an object. Then similar to deletion operation, we have to
recompute the entire k-dominant skyline from the scratch.
After this type of modification, three cases can be happened:
some k-dominant skyline objects may be “removed”, some
objects that are not in the current k-dominant skyline objects
may be “promoted” as k-dominant skyline objects, and
both may be occurred at a time. For example, if we select
object O7 for update and revise the values of D1 and D5

from 1 to 6, then the 5-dominant skyline result updated as
{O5, O4, O7, O2}. The focus of this paper is on developing
an efficient algorithm for continuous k-dominant skyline
objects.

This paper is the journal version of our paper [1]. The
main contributions of this paper are as follows:

• We propose an algorithm to compute k-dominant sky-
line objects for all k at a time.

• We addresses the problem of continuous k-dominant
skyline objects of frequently updated database.

• We develop algorithms for continuous k-dominant sky-
line objects.

• We conduct the extensive performance evaluation using
both real and synthetic datasets and compare our method
with the adaptive version of Two-Scan Algorithm (TSA)
technique [4], which is currently considered the most effi-
cient k-dominant skyline method. Our evaluation shows that
the proposed method is significantly faster than the adaptive
version of TSA technique.

The remaining sections of this paper are organized as
follows: Section II presents the notions and properties of
k-dominant skyline computation, we provide detailed exam-
ples and analysis of proposed k-dominant skyline computa-
tion and maintenance methods in Section III, Section IV
discusses related work, we experimentally evaluate our
algorithm in Section V by comparing with other existing
algorithms under a variety of settings, finally, Section VI
concludes the paper.

425

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. PROBLEM DEFINITION

Assume there is an n-dimensional database DB and D1,
D2, · · ·, Dn be the n attributes of DB. Let O1, O2, · · ·, Or

be r objects (tuples) of DB. We use Oi.Ds to denote the
s-th dimension value of Oi. An object Oi ∈ DB is said to
dominate another object Oj ∈ DB, denoted as Oi ≺ Oj , if
(1) for every s ∈ {1, · · · , n}: Oi.Ds ≤ Oj .Ds; and (2) for
at least one t ∈ {1, · · · , n}: Oi.Dt < Oj .Dt. The skyline
of DB is a set of objects Skyn(DB) ⊆ DB which are not
dominated by any other objects. Skyline query for Table I
dataset returns five objects: O2, O3, O5, O6, and O7. Objects
O1 and O4 are not in skyline because they are dominated
by O7.

In the remaining sections, we first define the k-dominance
relationship using above notation, then introduce k-dominant
skyline based on the definition of the k-dominance relation-
ship.

A. k-dominance Relationship

An object Oi is said to dominate another object Oj , which
we denote as Oi ≺ Oj , if Oi.Ds ≤ Oj .Ds for all dimensions
Ds (s = 1, · · · , n) and Oi.Dt < Oj .Dt for at least one
dimension Dt (1 ≤ t ≤ n). We call such Oi as dominant
object and such Oj as dominated object between Oi and Oj .

By contrast, an object Oi is said to k-dominate another
object Oj , denoted as Oi ≺k Oj , if (1) Oi.Ds ≤ Oj .Ds in
k dimensions among n dimensions and (2) Oi.Dt < Oj .Dt

in one dimension among the k dimensions. We call such Oi

as k-dominant object and such Oj as k-dominated object
between Oi and Oj .

An object Oi is said to have δ-domination power if there
are δ dimensions in which Oi is better than or equal to all
other objects of DB.

B. k-dominant Skyline

An object Oi ∈ DB is said to be a skyline object of DB
if Oi is not dominated by any other object in DB. Similarly,
an object Oi ∈ DB is said to be a k-dominant skyline object
of DB if Oi is not k-dominated by any other object in DB.
We denote a set of all k-dominant skyline objects in DB as
Skyk(DB).

Theorem 1: Any object in Skyk−1(DB) must be an
object in Skyk(DB) for any k such that 1 < k ≤ n.
Any object that is not in Skyk(DB) cannot be an object
in Skyk−1(DB) for any k such that 1 < k ≤ n.

Proof: Based on the definition, a (k−1)-dominant skyline
object Oi is not (k − 1)-dominated by any other objects in
DB. It implies that Oi is not k-dominated by any other
objects. Therefore, we can say that Oi is a k-dominant
skyline object. Similarly, if an object Oj is k-dominated by
another object, it must be (k − 1)-dominated by the object.

Therefore, any k-dominated object cannot be a (k − 1)-
dominant skyline object. ♢

The conventional skyline is the k-dominant skyline where
k = n. If we decrease k, more objects tend to be k-
dominated by other objects. As a result, we can reduce
the number of k-dominant skyline objects. Using above
properties, we can compute Skyk−1(DB) from Skyk(DB)
efficiently. For example, O1 and O4 of Table I are not in
Sky6(DB) because they are 6-dominated by O7. Therefore,
they cannot be a candidate of k-dominant skyline object
for k < 6. We can prune such non-skyline objects for
further procedure of the k-dominant query. If we consider
5-dominant query, then O2, O3, and O6 are 5-dominated
objects. Therefore, we can prune all of those five objects in
4-dominant query computation. Thus, by decreasing k, more
dominated objects can be pruned away.

Theorem 2: Every object that belongs to the k-dominant
skyline also belongs to the skyline, i.e., Skyk(DB) ⊆
Skyn(DB).

Proof: Immediate from theorem 1. ♢

III. k-DOMINANT SKYLINE COMPUTATION AND
MAINTENANCE

In this section, we present our algorithm for computing
k-dominant skyline objects and how to maintain the result
when update occurs. We illustrate how to compute k-
dominant skyline for all k at a time in section III-A. Next
in section III-B, we present three types of maintenance
solution. They are insertion, deletion, and update operation.

A. Algorithm for k-dominant Skyline

Chan, et al. sort the whole objects with a monotonic
scoring function sum in their One-Scan Algorithm (OSA),
algorithm for k-dominant query [4]. By using the ordered
objects, we can eliminate some of non-skyline objects
easily. However, this ordered objects is not effective for
k-dominant query computation, especially, when values of
each attribute is not normalized. For example, assume Oi =
(1, 2, 3, 3, 3, 2) and Oj = (7, 1, 3, 2, 3, 1) are two objects in
6-dimensional space. Although sum of Oi’s values is smaller
than that of Oj’s, Oi does not 5-dominant of Oj . Instead,
Oi is 5-dominated by Oj .

In order to prune unnecessary objects efficiently in the
k-dominant skyline computation, we compute domination
power of each object. Algorithm 1 represents the domination
power calculation procedure. We sort objects in descending
order by domination power. If more than one objects have
the same domination power then sort those objects in ascend-
ing order of the sum value. This order reflects how likely to
k-dominate other objects.

426

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1: Compute Domination Power, DP
01. for each object Oi(i = 1 · · · r) do
02. Oi.DP := 0 (initialize DP for each object)
03. for each attribute Ds(s = 1 · · · n) do
04. minValue := O1.Ds

05. for each object Oi(i = 2 · · · r) do
06. if (Oi.Ds < minValue) then
07. minValue := Oi.Ds

08. for each object Oi(i = 1 · · · r) do
09. if (minValue == Oi.Ds) then
10. Oi.DP := Oi.DP + 1 (Increment DP)
11. Sort dataset, DB, in descending order by DP and Sum

Table II is the sorted object sequence of Table I, in which
the column “DP” is the domination power and the column
“Sum” is the sum of all values. In the sequence, object
O7 has the highest domination power 4. Note that object
O7 dominates all objects lie below it in four attributes,
D1, D2, D5, and D6.

After computing the sorted object sequence, we compute
dominated counter (DC) and dominant index (IDX) by
using the algorithm 2. The dominated counter (DC) indi-
cates the maximum number of dominated dimensions by
another object in DB. The dominant index (IDX) is the
strongest dominator. That means IDX keeps the record of
the corresponding strongest dominator for each object.

For example, O7 is 3-dominated by O5 and there exist
no other object which can 4-dominate O7. In the algorithm
(8-13), we count the number of dominated dimensions for
each pair of objects. In the algorithm, we denote the i-th
object in the sorted sequence as Oi. During the procedure,
we keep the max value and its dominator object in DC and
IDX for each object.

The column DC and IDX of Table II shows the result
of the procedure. Skyk(DB) is a set of objects whose DC
is less than k. According to the dominated counter, we can
see that Sky6(DB) = {O7, O5, O2, O6, O3}, Sky5(DB) =
{O7, O5}, and Sky4(DB) = {O7}. Since there is no object
whose DC value is less than 3, thus Sky3(DB) = {∅}.

B. k-dominant Skyline Maintenance

In this section, we discuss the maintenance problem of
Skyk(DB) after an update is occurred in DB. In the
maintenance phase, we keep a vector that contains the min-
imal value for each dimension, which we call the minimal
vector. The minimal vector of Table II is {1, 2, 1, 1, 1, 2}. We
also keep an inverted index of the dominant index column
(IDX). Table III is the inverted index of Table II. We use
a multi-hash data structure for the records in the inverted
index so that we can look up efficiently.

Lemma 1: Assume O1.Ds ≤ O2.Ds for all dimensions
Ds (s = 1, · · · , n) for O1, O2 ∈ DB. If O1 is not deleted

Algorithm 2: Compute DC and IDX
01. for each object Oi (i := 1 · · · r)
02. Oi.DC := 0 (initialize DC)
03. for each i := 1 · · · r
04. if Oi.DC == n then
05. skip the i-th and continue
06. for each j := i+1 · · · r
07. if Oj .DC == n then
08. skip the j-th and continue
09. ki := 0; kj := 0
10. for each attribute Ds(s := 1 · · ·n)
11. if Oi.Ds ≤ Oj .Ds then
12. kj ++
13. if Oj .Ds ≤ Oi.Ds then
14. ki ++
15. if kj > Oi.DC then
16. Oi.DC := kj and Oi.IDX := Oj

17. if ki > Oj .DC then
18. Oj .DC := ki and Oj .IDX := Oi

Table II
ORDERED DOMINATION TABLE

Obj. D1 D2 D3 D4 D5 D6 DP Sum DC IDX
O7 1 2 5 3 1 2 4 14 3 O5

O5 1 4 1 1 3 4 3 14 4 O7

O4 5 3 5 4 1 2 2 20 6 O7

O2 3 4 4 5 1 3 1 20 5 O7

O6 5 3 4 5 1 5 1 23 5 O7

O3 4 3 2 3 5 4 0 21 5 O7

O1 7 3 5 4 4 3 0 26 6 O7

Algorithm 3: Insertion Procedure
01. OI .DC := 0 (initialize DC for inserted object OI)
02. for each i := 1 · · · r
03. if Oi.DC == n then
04. skip the i-th and continue
05. ki := 0; kI := 0
06. for each attribute Ds(s := 1 · · ·n)
07. if Oi.Ds ≤ OI .Ds then
08. kI ++
09. if OI .Ds ≤ Oi.Ds then
10. ki ++
11. if ki > Oi.DC then
12. OI .DC := ki and OI .IDX := Oi

(update inverted index)
13. if OI .DC == n then
14. break loop
15. if kI > Oi.DC then
16. Oi.DC := kI and Oi.IDX := OI

(update inverted index)

427

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III
INVERTED INDEX

Obj. dominated
O5 O7

O7 O5, O4, O2, O6, O3, O1

from DB,O2 will never be in the k-dominant skyline of
DB.

Proof: Since O2 is n-dominated by O1, it will also k-
dominated by O1 because (k ≤ n). Therefore, while O2 is
in the DB, there will be at least one object, namely O1, that
k-dominate it and consequently cannot become a k-dominant
skyline. ♢

The lemma implies that only Skyn(DB) objects are
relevant for the k-dominant skyline maintenance task, since
according to theorem 1 other objects can never become part
of Skyk(DB). Because, they are already n-dominated by
Skyn(DB) objects.

Insertion

Assume OI is inserted into DB. We maintain Skyk(DB)
by using algorithm 3. In the algorithm, we examine the
dominated counter (DC) by scanning the sorted object
sequence. If the DC value of an object is updated, we
also update the inverted index. According to theorem 2,
any data object added to k-dominant skyline during the
execution of the algorithm is guaranteed to be a skyline
object. Thus, during the update procedure, if OI is n-
dominated by another object, then we can stop the procedure
immediately.

After updating DC and IDX , we insert OI in the sorted
object sequence. We use a skip list data structure for the
sequence so that we can insert efficiently.

Assume we insert O8 = (6, 6, 6, 6, 6, 6) in the running
example. By comparing with the first object O7, we can find
that O8 is 6 dominated by O7. Therefore, we immediately
complete the update of DC and IDX . Then, we insert O8

into the last position of the sorted sequence. Next, we insert
O9 = (3, 4, 4, 2, 2, 3). O9 is not 6 dominated by any object
and we can find that the strongest dominator of O9 is O2.
Then, DC and IDX are updated as in Table IV (left) after
inserting O9. Next, we insert O10 = (2, 2, 3, 1, 2, 3). O10 is
not 6 dominated by any object and the strongest dominator
of O10 is O7. Moreover, O10 becomes the strongest domina-
tor of O9. Then, DC and IDX are updated as in Table IV
(right) after inserting O10.

Deletion

Assume OD is deleted from DB. We check the inverted
index to examine whether there is OD’s record in the index.

Note that in Table III “Obj.” column in each record is the
strongest dominator for objects in the “dominated” column.

Table IV
ORDERED DOMINATION TABLE AFTER INSERTIONS

Obj. DP Sum DC IDX Obj. DP Sum DC IDX
O7 4 14 3 O5 O7 4 14 3 O5

O5 3 14 4 O7 O5 3 14 4 O7

O4 2 20 6 O7 O10 2 13 4 O7

O2 1 20 5 O7 O4 2 20 6 O7

O6 1 23 5 O7 O2 1 20 5 O7

O9 0 18 5 O2 O6 1 23 5 O7

O3 0 21 5 O7 O9 0 18 6 O10

O1 0 26 6 O7 O3 0 21 5 O7

O8 0 36 6 O7 O1 0 26 6 O7

O8 0 36 6 O7

Algorithm 4: Deletion Procedure
1. for each OD do
2. if OD /∈ IDX
3. no change in Dominant Counter
4. break loop
5. else
6. for each affected objects do
7. Compute DC and IDX by using algorithm 2

Therefore, if there is no OD’s record in the inverted index,
we do not have to change the dominated counter (DC) for
other objects. Otherwise, we initialize DC for each object
in the OD’s index record. Then, we perform the pairwise
comparison like in algorithm 2. In this case, we do not have
to examine DC for objects that are not in the OD’s index
record and therefore it is not costly.

Consider the running example again. Assume we delete
O10. We examine DC of O9 by scanning Table IV (right).
The updated result is Table IV (left).

Update

In this section, we propose maintenance solution for
update operation. Although one can handle update operation
with consecutive deletion and insertion. However, single
update operation is usually faster than consecutive delete
and insert operation. Assume OU is updated from DB.
Then, same as delete, we have to check the inverted index to
examine whether there is OU ’s record in the index. If there is
no OU ’s record in the inverted index, then we need one scan
to revise the dominated counter (DC) for updated object as
well as all other data objects. Otherwise, we initialize DC
for each object from scratch. However, in this situation we
argue that compare with non-IDX objects, the number of
IDX objects is very few and therefore update operation also
not very costly.

Consider the Table II and select a non-IDX object such
as O3 for update. Assume we update D5 value of this object
from 5 to 1. Then after dominance checking with other
objects we find that O3 becomes the strongest dominator
of object O6. This update procedure is shown in Table V
(left). Again from Table II if we select an IDX object such
as O7. In this case, we update the values of D1 and D5

428

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
ORDERED DOMINATION TABLE AFTER UPDATES

Obj. DP Sum DC IDX Obj. DP Sum DC IDX
O7 4 14 3 O5 O5 3 14 3 O4

O5 3 14 4 O7 O4 2 20 4 O7

O4 2 20 6 O7 O7 2 24 4 O5

O3 1 17 5 O7 O2 1 20 4 O5

O2 1 20 5 O7 O6 1 23 5 O4

O6 1 23 6 O3 O3 0 21 5 O5

O1 0 26 6 O7 O1 0 26 6 O4

from 1 to 6. The revised result after this update is shown in
Table V (right).

IV. RELATED WORK

Our work is motivated by previous studies of skyline
query processing as well as k-dominant skyline query pro-
cessing, which are reviewed in this section. Section IV-A and
IV-B, respectively discuss about the related work on skyline
query processing and k-dominant skyline query processing.

A. Skyline Query Processing

Borzsonyi, et al. first introduce the skyline operator
over large databases and proposed three algorithms: Block-
Nested-Loops(BNL), Divide-and-Conquer(D&C), and
B-tree-based schemes [2]. BNL compares each object of the
database with every other object, and reports it as a result
only if any other object does not dominate it. A window
W is allocated in main memory, and the input relation is
sequentially scanned. In this way, a block of skyline objects
is produced in every iteration. In case the window saturates,
a temporary file is used to store objects that cannot be
placed in W . This file is used as the input to the next pass.
D&C divides the dataset into several partitions such that
each partition can fit into memory. Skyline objects for each
individual partition are then computed by a main-memory
skyline algorithm. The final skyline is obtained by merging
the skyline objects for each partition. Chomicki, et al.
improved BNL by presorting, they proposed Sort-Filter-
Skyline(SFS) as a variant of BNL [3]. SFS requires the
dataset to be pre-sorted according to some monotone scoring
function. Since the order of the objects can guarantee that
no object can dominate objects before it in the order, the
comparisons of tuples are simplified.

Among index-based methods, Tan, et al. proposed two
progressive skyline computing methods Bitmap and In-
dex [13]. Both of them require preprocessing. In the Bitmap
approach, every dimension value of an object is represented
by a few bits. By applying bit-wise and operation on
these vectors, a given object can be checked if it is in the
skyline without referring to other objects. The index method
organizes a set of d-dimensional objects into d lists such
that an object O is assigned to list i if and only if its value
at attribute i is the best among all attributes of O. Each
list is indexed by a B-tree, and the skyline is computed
by scanning the B-tree until an object that dominates the

remaining entries in the B-trees is found. Kossmann, et al.
observed that the skyline problem is closely related to the
nearest neighbor (NN) search problem [8]. They proposed
an algorithm that returns skyline objects progressively by ap-
plying nearest neighbor search on an R*-tree indexed dataset
recursively. The current most efficient method is Branch-
and-Bound Skyline(BBS), proposed by Papadias, et al.,
which is a progressive algorithm based on the best-first
nearest neighbor (BF-NN) algorithm [10]. Instead of search-
ing for nearest neighbor repeatedly, it directly prunes using
the R*-tree structure. Balke, et al. show how to efficiently
perform distributed skyline queries and thus essentially ex-
tend the expressiveness of querying current Web information
systems [14]. Kapoor studies the problem of dynamically
maintaining an effective data structure for an incremental
skyline computation in a 2-dimensional space [15]. Tao
and Papadias studied sliding window skylines, focusing on
data streaming environments [16]. Huang, et al. studied
continuous skyline queries for dynamic datasets [17].

B. k-dominant Skyline Query Processing

Chan, et al. introduce k-dominant skyline query [4]. They
proposed three algorithms, namely, One-Scan Algorithm
(OSA), Two-Scan Algorithm (TSA), and Sorted Retrieval
Algorithm (SRA). OSA uses the property that a k-dominant
skyline objects cannot be worse than any skyline object
on more than k dimensions. This algorithm maintains the
skyline objects in a buffer during the scan of the dataset
and uses them to prune away objects that are k-dominated.
TSA retrieves a candidate set of dominant skyline objects
in the first scan by comparing every object with a set of
candidates. The second scan verifies whether these objects
are truly dominant skyline objects or not. This method turns
out to be much more efficient than the one-scan method. A
theoretical analysis is provided to show the reason for its
superiority. The third algorithm, SRA is motivated by the
rank aggregation algorithm proposed by Fagin, et al., which
pre-sorts data objects separately according to each dimension
and then merges these ranked lists [7].

Another study on computing k-dominant skyline is k-
ZSearch proposed by Lee, et al. [18]. They introduced a
concept called filter-and-reexamine approach. In the filtering
phase, it removes all k-dominant objects and retain possible
skyline candidates, which may contain false hits. In the reex-
amination phase, all candidates are reexamined to eliminate
false hits.

For any static dataset in case of insertions and deletions
the k-dominant skyline result should be updated accordingly.
But in a dynamic dataset insertions and deletions are very
frequent and the above schemes [4], [18] are not efficient
to solve the frequent update problem. Because they need to
recompute k-dominant skyline result from scratch. On the
other hand, algorithms developed for skyline maintenance
are not easily adapted for the maintenance of k-dominant

429

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

skyline, except for the obvious case where k = n. This
is because existing skyline computation algorithms do not
satisfy the requirement of k-dominant skyline computation.
Moreover, they can not compute k-dominant skyline for all
k at a time. To overcome frequent update problem, our
proposed method introduce two new concepts dominated
counter and inverted index. From the discussion and ex-
perimental results it has been seen that those are very helpful
to retrieve the k-dominant skyline query result efficiently.

Recently, more aspects of skyline computation have been
explored. Vlachou, et al. introduce the concept of ex-
tended skyline set, which contains all data elements that
are necessary to answer a skyline query in any arbitrary
subspace [19]. Fotiadou, et al. mention about the efficient
computation of extended skylines using bitmaps in [20].
Chan, et al. introduce the concept of skyline frequency to
facilitate skyline retrieval in high-dimensional spaces [5].
Tao, et al. discuss skyline queries in arbitrary subspaces [11].
There exist more work addressing spatial skyline [21],
[22], skylines on partially-ordered attributes [6], dada cube
for analysis of dominance relationships [23], probabilistic
skyline [24], skyline search over small domains [9], and
reverse skyline [25].

V. PERFORMANCE EVALUATION

We conduct a series of experiments to evaluate the
effectiveness and efficiency of our proposed methods. In
lack of techniques dealing directly with the problem of
maintaining k-dominant skyline in this paper, we compare
our methods against TSA, which was the most efficient
k-dominant skyline search algorithm proposed in Ref. 4).
To handle updates, we adapt a variant of the TSA called
ATSA (Adaptive Two-Scan Algorithm). Let r be the total
number of objects in DB. ATSA takes O(r2) to compute
all k-dominant objects from scratch. If an object is inserted
in the DB, ATSA has to perform k-domination check of
the inserted object against all objects. Therefore, for each
insertion ATSA takes O(r). If an object is deleted from
the DB, ATSA has to recompute entire k-dominant skyline
objects because some objects that are not in the current k-
dominant skyline objects may be “promoted” as k-dominant
skyline objects. Therefore, for each deletion ATSA requires
O(r2) time. Moreover, for each update it also requires O(r2)
time for the recomputation of k-dominant skyline.

Though the time complexity of our proposed method is
substantially the same, we can drastically reduce compar-
isons for k-dominant skyline computation. For each new
insertion, the time complexity of proposed method varies
in between O(1) and O(r) to perform k-domination check.
For each deletion, if the deleted object is not in the dominant
objects list then the proposed method takes O(1). Otherwise,
if we assume the number of dominant objects is x, then it
takes O(x2). We can expect that x is much smaller than
r. Finally for each update, if the updated object is not in

the dominant objects list then the proposed method takes
O(r). Otherwise, it takes O(r2). However, the number of
dominant objects is not large. So it is not costly. From the
above analysis we understand that the recomputation of k-
dominant skyline is not efficient than proposed maintenance
solutions. The results of all experiments support our claim
that using proposed techniques we can reduce the number
of comparisons drastically.

We conduct simulation experiments on a PC running on
MS Windows XP professional. The PC has an Intel(R) Core2
Duo 2GHz CPU and 3GB main memory. All experiments are
coded in Java J2SE V6.0. Each experiment is repeated five
times and the average result is considered for performance
evaluation.

A. Performance on Synthetic Datasets

As benchmark synthetic datasets, we use the datasets
proposed in Ref. 2). Objects are generated using one of the
following three value distributions:
Anti-Correlated: an anti-correlated dataset represents an
environment in which, if an object has a small coordinate
on some dimension, it tends to have a large coordinate on
at least another dimension. As a result, the total number
of non-dominating objects of an anti-correlated dataset is
typically quite large.
Correlated: a correlated dataset represents an environment
in which objects with large coordinate in one dimension
are also have large coordinate in the other dimensions. In a
correlated dataset, few objects dominate many other objects.
Independent: for this type of dataset, all attribute values are
generated independently using uniform distribution. Under
this distribution, the total number of non-dominating objects
in between that of the correlated and the anti-correlated
datasets.

Details of the three distributions can be found in Ref.
1). The generation of the synthetic datasets is controlled
by three parameters, n, “Size”, and “Dist”, where n is the
number of attributes, “Size” is the total number of objects
in the dataset, and “Dist” can be the any of the three
distribution. In addition, we have generated smaller synthetic
datasets for all insertion experiments. For example, to con-
duct insertion experiment on 100k synthetic dataset, we have
also generated additional 10k dataset. As for deletion and
update experiments, we choose the deleted/updated objects
randomly from the experimental dataset.

1) Effect of Data Distribution: We first study the effect
of data distributions on our techniques. Anti-correlated,
independent, and correlated datasets with dimensionality n
to 7, cardinality to 100k, and k to 6. Figure 2(a), (b),
and (c) shows the time to maintain k-dominant skyline for
update ranges from 1% to 5%. In the update experiments,
for 100k dataset 1% update implies that we have altered
1000 data objects. Those data objects are randomly selected.
However, among 1000 alterations we make sure that there

430

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Update performance for different data distributions

are 333 insertions, 333 deletions, and 334 updates (total
1k updates) occurred in the dataset. Figure 2 shows that
the performance of both methods deteriorates significantly
with the increase value of update size. We further notice
that for anti-correlated dataset, many k-dominant skyline
objects are retrieved, as a result the maintenance cost of
this distribution incurs high computational overheads. On the
other hand, for correlated dataset, few objects are retrieved,
as a result the maintenance cost of this distribution incurs
low computational overheads.

Figure 3. Update Performance for different dimensions

2) Effect of Dimensionality: For this experiment, we use
the anti-correlated datasets. We fix the data cardinality to
100k and vary dataset dimensionality n ranges from 5 to 9
and k from 4 to 8. Figure 3(a), (b), and (c) shows the update
performance. The ATSA technique is highly affected by the
curse of dimensionality, i.e., as the space becomes sparser
its pruning power rapidly decreases. The proposed technique
also affected but to a lesser degree. The Figure 3 shows that
if the dimensionality and the update ratio increase the time
grows steadily, which is much less than that of ATSA.

431

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Update performance for different datasize

3) Effect of Cardinality: For this experiment, we use
the anti-correlated datasets with varying dataset cardinality
ranges from 100k to 200k and set the value of n to 7 and
k to 6. Figure 4(a), (b), and (c) shows the time to maintain
k-dominant skyline for update ranges from 1% to 5%. The
result shows that if the update ratio and data cardinality
increases the maintenance time of proposed method also
increases. Even though, the time is much smaller than that
of ATSA.

B. Performance on Real Datasets

To evaluate the performance for real dataset, we study two
different real datasets. The first dataset is NBA statistics. It
is extracted from “www.nba.com”. The dataset contains
17k 13-dimensional data objects, which correspond to the
statistics of an NBA players’ performance in 13 aspects
(such as points scored, rebounds, assists, etc.) and domain
have range [0, 4000]. The dataset approximates a correlated
data distribution. The second dataset is FUEL dataset and
extracted from “www.fueleconomy.gov”. FUEL dataset
is 24k 6-dimensional objects, in which each object stands for
the performance of a vehicle (such as mileage per gallon of
gasoline in city and highway, etc). For this dataset attribute
domain range is [8, 89]. Using both datasets we conduct the
following experiment.

1) Experiments on NBA and FUEL datasets: We per-
formed an experiment on NBA dataset. In this experiment,
we study the effect of update and set the value of n to 13, and
k to 12. Figure 5(a) shows the result. NBA dataset exhibits
similar result to synthetic dataset, if the number of updates
increases the performance of proposed algorithm becomes
slower.

For FUEL dataset, we performed similar experiment like
NBA dataset. For this experiment, we set the value of n
to 6 and k to 5. Result is shown in Figure 5(b). In this
experiment with FUEL dataset, we obtain similar result like
NBA dataset that represents the scalability of the proposed
method on real datasets. However, in both cases proposed
method outperform than ATSA method.

VI. CONCLUSION

Compared with skyline query processing, k-dominant
skyline result maintenance is a relatively new research area.
The k-dominant skyline objects are difficult to maintain if
the database is updated. However, in lack of techniques
dealing directly with the problem of maintaining k-dominant
skyline in this paper we propose k-dominant skyline compu-
tation and maintenance algorithms for a frequently updated
database. As shown later, this technique can produce k-
dominant skyline update result for all k at a time. Be-
sides theoretical guarantees, our comprehensive performance
study indicate that the proposed maintenance framework is
very effective and efficient.

We leave as future work extensions to explore precom-
putation techniques to further speed up the computation of
k-dominant skyline query. Future works should investigate
the efficient maintenance of k-dominant skyline for batch
updates. To increase the pruning power is another big
challenge for continuous k-dominant skyline computation.

ACKNOWLEDGEMENTS

This work was supported by KAKENHI (19500123). Md.
Anisuzzaman Siddique was supported by the scholarship of
MEXT Japan.

432

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Experiments on NBA and FUEL datasets

REFERENCES

[1] M. A. Siddique and Y. Morimoto, “Efficient Maintenance of
k-Dominant Skyline for Frequently Updated ”, in: Proceedings
of DBKDA, 2010, pp. 107-110.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline
operator”, in: Proceedings of ICDE, 2001, pp. 421-430.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
presorting”, in: Proceedings of ICDE, 2003, pp. 717-719.

[4] C. Y. Chan, H. V. Jagadish, K-L. Tan, A-K. H. Tung, and
Z. Zhang, “Finding k-dominant skyline in high dimensional
space”, in: Proceedings of ACM SIGMOD, 2006, pp. 503-514.

[5] C. Y. Chan, H. V. Jagadish, K-L. Tan, A-K. H. Tung, and
Z. Zhang, “On high dimensional skylines”, in: Proceedings of
EDBT, 2006, pp. 478-495.

[6] C.-Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified computation
of skylines with partially-ordered domains”, in: Proceedings of
ACM SIGMOD, 2005, pp. 203-214.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware”, in: Proceedings of ACM PODS,
2001, pp. 102-113.

[8] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the
sky: an online algorithm for skyline queries”, in: Proceedings
of VLDB, 2002, pp. 275-286.

[9] M. Morse, J. M. Patel, and H. V. Jagadish, “Efficient skyline
computation over low-cardinality domains”, in: Proceedings of
VLDB, 2007, pp. 267-278.

[10] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive
skyline computation in database systems”, ACM Transactions
on Database Systems, vol. 30(1), pp. 41-82, March 2005.

[11] Y. Tao, X. Xiao, and J. Pei, “Subsky: efficient computation
of skylines in subspaces”, in: Proceedings of ICDE, 2006, pp.
65-65.

[12] T. Xia, D. Zhang, and Y. Tao, “On skylining with flexible
dominance relation”, in: Proceedings of ICDE, 2008, pp. 1397-
1399.

[13] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient Progressive
Skyline Computation”, in: Proceedings of VLDB, 2001, pp.
301-310.

[14] W. T. Balke, U. Guntzer, and J. X. Zheng, “Efficient dis-
tributed skylining for web information systems”, in: Proceed-
ings of EDBT, 2004, pp. 256-273.

[15] S. Kapoor, “Dynamic Maintenance of Maxima of 2-d Point
Sets”, in: SIAM Journal on Computing, vol. 29(6), pp. 1858-
1877, April 2000.

[16] Y. Tao and D. Papadias, “Maintaining Sliding Window Sky-
lines on Data Streams”, in: IEEE Transactions on Knowledge
and Data Engineering, vol. 18(3), pp. 377-391, March 2006.

[17] Z. Huang, H. Lu, B. Ooi, and A. Tung, “Continuous skyline
queries for moving objects”, in: IEEE Transactions on Knowl-
edge and Data Engineering, vol. 18(12), pp. 1645-1658, Dec.
2006.

[18] K. C. K. Lee, B. Zheng, H. Li, and W. C. Lee, “Approaching
the Skyline in Z Order”, in: Proceedings of VLDB, 2007, pp.
279-290.

[19] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis,
“SKYPEER: Efficient Subspace Skyline Computation over
Distributed Data”, in: Proceedings of ICDE, 2007, pp. 416-
425.

[20] K. Fotiadou and E. Pitoura, “BITPEER: Continuous Subspace
Skyline Computation with Distributed Bitmap Indexes”, in:
Proceedings of DaAMaP, 2008, pp. 35-42.

[21] K. Deng, X. Zhou, and H. T. Shen, “Multi-source Skyline
Query Processing in Road Networks”, in: Proceedings of
ICDE, 2007, pp. 796-805.

[22] M. Sharifzadeh and C. Shahabi, “The Spatial Skyline Query”,
in: Proceedings of VLDB, 2006, pp. 751-762.

[23] C. Li, B. C. Ooi, A-K. H. Tung, and S. Wang, “DADA: A
Data Cube for Dominant Relationship Analysis”, in: Proceed-
ings of ACM SIGMOD, 2006, pp. 659-670.

[24] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines
on Uncertain Data”, in: Proceedings of VLDB, 2007, pp. 15-
26.

[25] E. Dellis and B. Seeger, “Efficient Computation of Reverse
Skyline Queries”, in: Proceedings of VLDB, 2007, pp. 291-
302.

433

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enhancing Availability through Dynamic Monitoring and Management in a
Self-Adaptive SOA Platform

Apostolos Papageorgiou, Tronje Krop, Sebastian Ahlfeld, Stefan Schulte, Julian Eckert, Ralf Steinmetz
Technische Universität Darmstadt

Multimedia Communications Lab - KOM
Darmstadt, Germany

apapa@kom.tu-darmstadt.de, tronje.krop@kom.tu-darmstadt.de, ahlfeld@rbg.informatik.tu-darmstadt.de,
stefan.schulte@kom.tu-darmstadt.de, julian.eckert@kom.tu-darmstadt.de, ralf.steinmetz@kom.tu-darmstadt.de

Abstract—The availability of Service-oriented Architectures
(SOA) depends on two factors. These are firstly the availability
of the services that provide a certain business functionality
and, secondly, the availability of the components or services
that make up the underlying SOA platform. For platforms
that are supposed to form the core of mission-critical service-
oriented applications, this implicates the need for mechanisms
that can regulate the availability levels of the core services
in changing conditions. In this paper, we handle open issues
about the kind of monitoring functionalities and adaptation
mechanisms that should be integrated in SOA infrastructures.
In our proposed solution, we integrate concepts of event-
based systems to enhance the dynamicity of the SOA platform
monitoring, as well as concepts from peer-to-peer computing
to achieve an efficient distribution of the SOA platform core.
By prototypically implementing the concepts as extensions
of Apache Tuscany, which is a realization of the Service
Component Architecture standard, we show in an experiment-
based evaluation how the availability of the core services
of SOA infrastructures has been improved. Additionally, we
explain further benefits that can be achieved with adaptation
mechanisms other than replication, which are also enabled by
our extensions.

Keywords-Service Platform, Adaptation, SOA, Web Services,
Availability

I. INTRODUCTION

As has been also described in [1], the success of Service-
oriented Architectures (SOA) is normally not credited to
the strict technical features or Quality of Service (QoS)
levels offered by the underlying technologies. However,
along with their established advantages, such as high flexi-
bility, extensibility, and interoperability [2], Service-oriented
Architectures are now also expected to achieve performance
and availability levels that are as high as these of tradi-
tional, platform-dependent solutions. Approaches that aim
at improving the availability of SOA are usually built on
the assumption that a number of service alternatives can
be invoked ad hoc, if a service fails. These approaches
use techniques like process replanning with dynamic service
substitution (as in [3], [4], and [5]), or dynamic enforcement
of governance guidelines [6], and are usually applied at the
level of service consumption or business process execution.

Still, when the availability of the applications that use these
techniques is measured, there is an upper bound that can
be achieved. It is the maximum availability level that the
used service platform can support. This platform can vary
from a simple enabling infrastructure, i.e., a simple service
registry with any accompanying components, to a complex
Enterprise Service Bus (ESB) [7].

The challenge is that current service platforms can support
limited availability levels, because of vulnerabilities or single
points-of-failure inside their core. Such a basic vulnerability,
which we address with our approach, is the centralized
access to functions of the domain and the deployment, i.e.,
centralized access to interfaces that are used for address
resolution, dynamic launching of services, and more. Even if
the services are available, the availability experienced by the
user declines if the machines that provide these interfaces
under-perform. Similar problems exist with service registries
and search functions. Furthermore, current solutions use
static monitoring approaches (cf. also Section II), which
cannot support quick enforcement of healing mechanisms,
e.g., replication of overloaded services.

Some techniques, such as Web service replication [8],
appeared in order to solve some of the aforementioned prob-
lems. These techniques have sometimes high costs and must
be supported by monitoring mechanisms and by an adequate
decision logic. This monitoring-supported enforcement of
such techniques, as well as related research, are normally
positioned under the fields of adaptation mechanisms and
self-organization. How this can be optimally applied on SOA
infrastructures has not been thoroughly examined from a
technical perspective, and depends on the nature of the used
platform. Different service platforms (e.g., ESBs) are used
in different application domains, and each of them presents
different challenges concerning its enrichment with adapta-
tion or self-organization capabilities. This work presents a
concept which, in its general form, can be used for such
enrichment of many different SOA platforms. Its main ideas
are the distribution of the core parts of a SOA platform and
the employment of event-based monitoring in the platform
core for supporting self-adaptation. This general concept is

434

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then implemented as an extension of the Service Component
Architecture (SCA [9]). The work is presented and evaluated
on the state-of-the-art SCA platform, Apache Tuscany [10].

With this regard, the paper is outlined as follows: Section
II examines the related work and states our contributions.
Section III identifies some additional challenges that are
present in our particular scenario of a mission-critical SCA
platform. Sections IV and V form the core of this paper
by describing our solution and its evaluation results. As the
concept could enhance different platforms, the description
of the idea (Subsection IV.A) will be as independent of
the implementation as possible. Still, the detailed desription
of the different service lifecycle phases (Subsection IV.C)
sometimes needs to refer to implementation details in order
to better support the reader’s understanding. Section V
presents the results of a well defined evaluation scenario
with our extended Apache Tuscany platform and Section VI
offers implementation-related examples of further adaptation
mechanisms that can be integrated due to our extensions.
Our conclusions and plans for future work are summarized
in Section VII.

II. RELATED WORK AND CONTRIBUTIONS

The decision to use concepts from peer-to-peer (p2p)
computing and event-based systems were taken after a
careful analysis of all the phases that a self-adaptive SOA
platform has to go through. Therefore, the best way to
present the related work is to explain where these concepts
have been already used or proposed in order to enhance
SOA platforms. This way we come to new ideas and
propose their usage for further possible enhancements. So,
we look into related work in three main directions, where
we also identify and position the three partial contributions
of our work. First, we look at the research towards third-
generation, self-adapting service platforms. Second, we see
attempts of enhancing service platforms by using peer-to-
peer technologies. Last, we examine monitoring aspects of
up-to-date service platforms.

In accordance to the nature of service-oriented software,
some tasks exist, which must be fulfilled in almost all SOA
solutions. The most important of them are:

• The service registry mechanisms (service advertise-
ment, service look-up, etc.).

• The address resolution (mapping of name-based service
calls to exact addresses/endpoints).

• The service deployment (loading, configuration, start-
ing, and stopping of services).

• The management and monitoring, usually in the form
of auditing and logging, with focus on QoS parameters
such as service response times or hardware metrics such
as CPU load.

Depending on the scale at which these tasks are automated or
undertaken by middleware components, there are tradition-
ally two approaches for building SOA infrastructures: the

point-to-point integration and the hub-and-spoke approach
[2]. While the first is simpler and more static, the latter
includes a service bus and/or other related middleware that
dynamically undertakes the aforementioned tasks, as well
as their subtasks, such as the routing and addressing of
the used services, or the support and transformation of the
used protocols. Other functionalities can also be present,
letting the hub-and-spoke approach be considered as more
advanced and, in essence, as the successor of the point-to-
point integration [2]. Nevertheless, research in the field of
SOA self-adaptation ([11], [12]), lets us assume that we
are heading for a third generation of SOA infrastructures,
in which the service platform, i.e., the service bus with the
accompanying middleware, will offer even more automation
and further functionalities, namely more sophisticated, inte-
grated monitoring, adaptation mechanisms, and more. As the
enrichment of service platforms presents different challenges
and opportunities depending on the exact paradigm, we con-
tribute in these attempts towards “third-generation” service
platforms by presenting an idea of what these extensions
should include, and by showing how it is implemented
in the case of SCA. As the SCA paradigm dictates the
existence of certain components in the service platform, our
contribution is the identification of the exact points where
these SCA-specific components could be enriched with self-
adaptiveness, as well as our corresponding implementation,
performed as an extension of Apache Tuscany.

Main intension of the adaptation mechanisms is to keep
the QoS above certain limits. A recent survey [13] already
placed peer-to-peer mechanisms among the most highly
suitable solutions for the substrate of future service plat-
forms that go in the direction of QoS-guarantee and self-
adaptation. Approaches that use peer-to-peer mechanisms
for the enhancement of service platforms have focused until
now either on special-purpose service orchestration [14], or
on service discovery and group collaboration [15]. Believing
that the enablement of self-adaptation dictates that these
mechanisms lie deeper inside the platform and support all
or most of the functionalities of a service bus, we contribute
by using peer-to-peer mechanisms to distribute the service
bus and enhance the availability of the services of an SCA
platform. Furthermore, unlike most of such new frameworks,
we provide an evaluation scenario and some measurements
to demonstrate the availability enhancement.

Aspects of our integrated platform monitoring can be seen
as a further contribution of this work, given that almost all
state-of-the-art monitoring components of service platforms
are not integrated in the platform logic and cannot serve
the goal of supporting self-adaptation optimally. Instead,
they normally perform centrally-controlled measurements
for hardware modules or service invocations. In the next
sections it will be further clarified how this differs from
our decentralized, event-based, adaptation-enabling platform
monitoring approach. Strengthening our argument, we men-

435

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tion that almost all theoretical SOA Maturity Models (e.g.,
[16]) define five possible maturity levels for a SOA and
they place the feature of event-based platform monitoring
in the maturity level 4. Related studies (e.g., [17]) prove
that almost no current SOAs achieve that maturity level,
but they rather lie on lower levels, usually levels 2 and 3.
The referenced study was done among software departments
of the german banking industry, which are supposed to be
among the leaders of SOA adoption.

III. FURTHER CHALLENGES OF OUR SCENARIO

The purpose of our extended platform is to serve as
the SOA substrate for our project [18], which supports
the management of disastrous events. In such a scenario,
the availability of the services not only needs to be high
when the disaster occurs but it is also expected to be
suddenly endangered, because of an “explosion” of the
system usage at that point. This system usage pattern will
be reflected in the test cases of our evaluation in Section
V. The use of our platform in such a scenario indicated a
long list of requirements. In the following, we list how these
requirements can be summarized or translated to technical
challenges for our platform:

• No single point-of-failure is acceptable for any critical
core service.

• Control mechanisms must provide the possibility of
defining different, application- or situation-dependent
algorithms that determine the minimum number of
instances of particular services. These algorithms will
be designed based on the needed availability levels and
the expected usage patterns.

• Consistent and detailed information about the running
services is needed in order to provide enhanced control.
This means that all services have to be registered with
the same procedure before they are started, and there
must be mechanisms that find out which services, and
how many instances of them are registered / active, and
on which nodes.

We have found no service bus, but also no conceptual
or architectural approach, which addresses these needs (cf.
Section II). As for the implementation, the extensions that
will be presented were necessary also because of the fol-
lowing lacking capabilities, which are absent from Apache
Tuscany, but also from all other examined platforms:

• The platform enables the development of distributed
applications but it is almost impossible to distribute all
the core modules in the way that our challenges dictate.
Normally, the Tuscany domain and deployment service
is centralized and it also lacks many of the desired
capabilities and functionalities that we mentioned.

• There are no service monitoring mechanisms that could
support self-organization or absolute control of service
instances. The monitoring modules can only support

Figure 1. Overview of the p2p-based distribution of the core parts

static logging and not the dynamic monitoring logic
that we will describe in more detail in the next sections.

• There are no replication or maintenance mechanisms
for the internal application services.

IV. SERVICE PLATFORM AVAILABILITY EXTENSIONS

With regard to the described challenges, we present in
this section a generally applicable idea of how they could
be handled inside a service platform, and then we briefly
describe how we implemented most parts of the concept
by modifying the Apache Tuscany service platform. In the
third part, we go into more detail in order to explain how our
extensions work. This part mentions implementation details
only when this is helpful for the understanding.

A. Concept

We define as core parts of the service platform those parts
that are responsible for the main platform functionalities,
as we mentioned them in Section II (registry mechanisms,
address resolution, service deployment, and monitoring).
Our main idea was to re-define these core parts so that:

• They are distributed, consisting of many co-operating
instances, supporting fault-tolerance in the classical
p2p manner, i.e., being able to operate despite the
unavailability of some instances.

• They offer an extended set of functionalities that enable
self-organization/adaptation mechanisms and support
the fulfillment of our availability requirements.

• All the extended functionalities are offered through the
interfaces of a p2p overlay, so that no centralized parts

436

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Component interrelations in a node of the modified platform

of the service bus have to be addressed when core
functionalities are requested by any node of the system.

The choice of p2p is driven by our striving for fault-
tolerance. The failure of peer nodes, on which instances
are running in order to provide core mechanisms, will now
not mean that the mechanisms will not be available any
more. At the same time, a flexible cooperation of the core
part instances is needed. Few technologies can support this
fault-tolerance and this cooperation as good as the p2p
technology does. On this basis we designed a platform
where all participating nodes, i.e., all providers/consumers
of application-level services, can also carry instances of core
parts, participating in a common p2p network that connects
their core part instances (Figure 1). We re-define, extend
and distribute four core parts, while a lot of accompanying
platform parts/functionalities are abstracted in our concept
and taken from the used platform in our implementation. A
description of these four core parts follows, focusing on the
features that are normally absent in current solutions, like
Apache Tuscany.

Our distributed domain service is addressable through
the overlay (so that one instance of it might be enough)
and offers the extended possibility of returning multiple
endpoints to service-lookups. This supports the usage of
service replicas that are generated by our self-organization
mechanisms, as well as a more reliable address resolution,
given that any node may be able to perform this resolution.
The service registry can also be seen as part of the domain
service and it has the form of a distributed database with
its entries being transparently and redundantly distributed
among those nodes that carry domain service instances.

Figure 3. Adaptation-enabling event processing of the platform monitor

Our distributed deployment service enables the local or
remote starting/stopping of services. It is assumed that the
services store their resources when they are registered in
the domain and that these resources are sufficient in order
to start/replicate them on other nodes. Nodes also use the
deployment service in order to register themselves as capable
of hosting particular services.

Our distributed system manager takes care of pre-defined
numbers of instances of other core services and offers
additional interfaces for system information that is important
to other core parts, especially to the platform monitor.

Our distributed platform monitor has major differences
from usual service monitoring components or tools. Its goal
is to support adaptation, so it engages the Event Stream
Processing (ESP) concept [19] and a push-approach for
(developer-defined) monitoring events, rather than a database
where simple observations are stored. Furthermore, it is
integrated in the platform logic, so that no direct or indirect
interaction with the monitored services or their “callers”
is needed in order to gather information about the service
calls. In the evaluation scenario, we will see an exemplary
usage of the monitor that would not be achievable with other
approaches.

B. Design and Implementation

All these conceptual extensions pose new challenges
when it comes to their implementation as extensions of
existing service platforms like Tuscany. For example, some
features can be added “on-top” while others may present
incompatibilities with existing mechanisms. We distinguish
three approaches for enhancing the service platform with
new features, which are generally valid when it comes to
middleware enhancement:

• As new platform modules, i.e., developed and built
additionally to the existing modules of the platform.

437

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• As external libraries, which can be either special-
purpose libraries, i.e., software developed for these
extensions, or ready, possibly third-party, software.

• As modifications in the core of existing platform mod-
ules, when incompatibilities appear.

Before listing what we implemented in these three direc-
tions, we present in Figure 2 a compact SCA representation
of a node of our modified platform, providing a view of
the interrelations of the core parts of the service platform,
as well as their relation to the p2p overlay and the normal
application components.

We had to define a new node type, the CoreNode, which
merges an SCA node with a p2p node. While the extended
domain, deployment, and system manager are based directly
on the p2p node, the platform monitor is built on the
(modified) service invocation mechanisms of the platform,
enabling the binding of queries (posed by any monitoring
component) to particular services, in order to retrieve the
data that it needs about the corresponding service invoca-
tions. This is again compactly depicted in Figure 3.

The API of each core part corresponds to the functionali-
ties described in Section IV-A. We provide here an overview
of the implementation with regard to the three categories that
we distinguished in this section:

• New platform modules: The module that defines the
CoreNode and includes the implementations for the
deployment and the system manager instances is the
distributed-core. It is implemented as a new module
but depends on some core modifications, as well as on
an external library for the p2p overlay. The platform-
monitor is also a new module, also depending on core
modifications and on an external library for the Event
Stream Processing.

• External libraries: freepastry is used for the p2p overlay
and esper for the Event Stream Processing. Both are
third-party, open-source libraries.

• Core modifications: The Tuscany module core was
modified in order to implement our domain instances.
Inside the assembly module of the core, we had to
modify the runtime component implementation. Some
other modules, e.g., the java-runtime-implementation,
also had to be modified in order to support dynamic
invocation and other features needed by our modified
platform.

C. Service lifecycle phases for redundancy and self-
adaptation

With regard to the presented concept, design and
implementation of our service platform extension, we
present a more detailed view of the lifecycle of a service
with the focus on self-adapting and self-organization.

Figure 4. DHT entry distribution

Phase 1 - Service Registration and Distribution of
Service Resources:

The most important aspect of the domain service is the
transparent distribution of its database, which holds redun-
dantly all the information needed for a service, e.g., its name,
its configuration, and its resources. In order to coordinate
the self-organization tasks, there is only one instance of the
domain service which is responsible for the registration and
for any modifications of a particular service X. The same
instance is also responsible for returning multiple endpoints
to service look-ups of the service X.

To understand the nature of the responsibilty of an in-
stance of the domain service for a service X, it is important
to know the structure of the used p2p overlay. Our service
platform extension uses freepastry, which is an open-source
implementation of Pastry [20]. Pastry uses a ring structure
for the peer-to-peer overlay, where every node of the ring
is identified by an unique address. The address of a node
is a hash value randomly allocated by the freepastry library
during the bootstrap process, i.e., when the node enters the
overlay. An example ring structure is presented in Figure 4,
where the name and the address of every node are illustrated
among other information.

To address a node of the ring it is not necessary to
know the accurate address of it, but one hash value part
of the range of addresses which “belongs” to the node.
For the example of Figure 4, this means that node C with
the hash value 〈9a37..〉 is addressable by any hash value
from 〈3741..〉 + 1 to 〈9a37..〉. Thus, every node of the
ring is responsible for the hash values from the address of
its predecessor (node Y in the example) to its own. For
more details about this kind of hash-based addressing in
p2p networks, we refer to [21].

The responsibility of a domain service instance is the
range of hash values which belong to the node where
the instance is located. To find out which domain service

438

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Register service X at the domain service

Build DHT entry and get hash value of name of service X

The domain service instance responsible for service X puts
the DHT entry into the DHT

Send DHT entry over P2P overlay to the responsible domain
service instance

DHT entry of service X in local storage and distribution of
DHT entry over P2P

Remote deployment of service X at node C

Local deployment of service X at node C over P2P overlay

Node C gets over the domain service the current DHT entry
of service X with deployment information and resources

Node C stores locally the information and files temporarily

Deployment of service X to local node of service platform
t i

Update the DHT entry over the responsible domain service

Figure 5. Registration of a service X

instance is responsible for the deployment of a service
X, the name of the service will be transformed to a hash
value as well. The domain service instance responsible
for the hash value obtained from the service name is then
addressed in order to deploy the service.

For the registration of an internal service, i.e., for a service
that has been created within our platform and is running on
it, it is important to know which information must be saved
and how the domain service will distribute this information
inside the platform. Before explaining the sequence of this
information distribution, the Distributed Hash Table (DHT)
entry is introduced. A DHT entry contains the name of
the service, the data files needed in order to deploy the
service on the extended service platform, and information
about the nodes where the service is already deployed. In
our implementation, the mentioned data files are stored as a
JAR file of the service X in its DHT entry. This offers the
possibility of remote deployment of the service. This feature
will be explained in more detail in the next phase.

The information of the DHT entry includes the status of
the service on each node as well. This status can have the
values “started”, “running” and “stopped”. “started” stands
for the phase when a service is registered on the domain
service but not yet deployed. After a successful deployment,
the status is changed to “running”, while an undeployment
of the service switches the status to “stopped”, until the in-
formation about the node where the service was undeployed
is deleted.

The different steps of the registration process are pre-
sented in Figure 5. The process starts with the registration
of service X at the instance of the domain service where
the DHT entry of the service was built and the hash value
of the service name was calculated. Then the hash value
is used to address the responsible instance of the domain
service over the peer-to-peer overlay and the DHT entry is
transmitted to it. The responsible instance puts the entry into
the DHT, which stores the entry locally and also distributes

Register service X at the domain service

Build DHT entry and get hash value of name of service X

The domain service instance responsible for service X puts
the DHT entry into the DHT

Send DHT entry over P2P overlay to the responsible domain
service instance

DHT entry of service X in local storage and distribution of
DHT entry over P2P

Remote deployment of service X at node C

Local deployment of service X at node C over P2P overlay

Node C gets over the domain service the current DHT entry
of service X with deployment information and resources

Node C stores locally the information and files temporarily

Deployment of service X to local node of service platform
t i

Update the DHT entry over the responsible domain service

Figure 6. Remote deployment of a service X

it over the peer-to-peer overlay to other nodes. The number
of replicas of the entry is predefined at startup of the peer-
to-peer overlay.

The distribution of the DHT entries is illustrated in Figure
4, where the domain service instance which is responsible
for the example service X is running on node G. The service
itself is running on nodes G and M, while the DHT entry
is stored locally on node G and transmitted to nodes C and
A as replicates. It is important that the information about
a service must not be stored locally where the service is
running. The information can be somewhere else inside the
peer-to-peer network.

Through this redundant storing of the DHT entries, there
is no single point of failure for getting information about
services whenever this information is needed. Even more
important, the resources that are needed to start the service
are also available on more than one node, together with the
rest of the information.

Phase 2 - Local or Remote Service Deployment:

The nodes of the extended service platform have an
instance of the deployment service running, thus providing
the possibility of deploying a service locally and remotely.
With the remote deployment function, it is possible to deploy
a service X on any other node inside the service platform.
This requires the cooperation of the deployment service
instance that “wants” to start service X with the domain
service instance that is responsible for service X. However,
this is performed seamlessly, as the deployment service only
addresses its local domain service instance. The latter locates
then the domain service instance which is responsible for
modifying and re-registering service X.

The procedure of a local deployment includes the regis-
tration process described in Phase 1. If the service to be
deployed is already registered, the information that other
nodes have about the status of the service is updated. After

439

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the registration, the deployment continues by adding the
service to the platform, using the locally stored data. In the
case of Apache Tuscany, the only resource needed for the
deployment of a service is a JAR file. Then, the status of
the service in the DHT entry is updated to “running”. Again,
for this update, the deployment service seamlessly addresses
the responsible domain service instance.

The detailed procedure of a remote deployment for a
pre-registered service X is presented in Figure 6. To deploy
service X on another node C of the platform, a deploy
message will be sent over the peer-to-peer overlay. The
node C receiving this message gets the DHT entry from the
domain service and saves the information and the resources
locally. Then the local resources are used to deploy service
X with the local deploy method, including the update of
the status of service X over the responsible instance of the
domain service.

Phase 3 - Static or Dynamic Service Replication:

Another important additional feature of the extended
service platform with regard to self-adaptation is the static
or dynamic replication of a service. The part that mainly
enables this feature is the system manager. This is performed
by a mechanism called Service Instance Control Mechanism
(SICM), which works in strong cooperation with the domain
service and the deployment service. The dynamic replica-
tion, i.e., the replication as a self-adaptation action, is, of
course, also supported by the platform monitor.

The SICM can be started for a service X directly after its
successful deployment (static replication), or it can be called
later by any other node of the extended service platform
(dynamic replication). The number of deployed instances of
service X with the status “running” is read from the DHT
entry. This number is compared to a threshold (minimum
number of needed service instances). This threshold has been
passed to the SICM as a parameter.

Depending on the result of the comparison, the SICM
terminates if enough instances are running. Otherwise, it
uses the domain service in order to search for nodes where
additional instances of service X could be deployed. If there
are not enough nodes, the SICM will be idle for a predefined
time and then start again. Otherwise it will start to deploy
more instances of service X on nodes with enough resources
that had no running instances of service X.

Additional to the SICM, the system manager provides
interfaces for getting system information, or other
information that support self-adaptation.

Phase 4 - Maintenance and Monitoring of a Deployed
Service:

As already mentioned, a distributed, event-driven platform
monitor has been added. The modules used by such monitors

in order to capture and forward specific information, are
called software sensors. The main features of the platform
monitor, which will be described in more detail in the
following, are the possibility of adding software sensors with
a developer-defined focus, as well as the possibility to trigger
different adaption actions for different “captured events”.

The platform monitor implements the ESP concept. This
means that it can gather and preprocess events from remote
software sensors. Additionally, it offers the developer the
possibility to implement a monitoring logic that may be
different for each software sensor. This monitoring logic is
defined by writing ESP queries with an SQL-like language,
called Event Processing Language (EPL) [19]. With the
following example, we give an idea of how such a query
looks like:

s e l e c t sende r , count (s e n d e r)
as s e n t P a c k e t s from
Event . win : t ime (5 s e c)
group by s e n d e r

The node that submits the query is called actor, because it
will act (or better, react) upon the event defined in the query.
For example, an actor registered at the platform monitor
with the above query is interested in all services which
transmit packets inside the network of the platform. The
platform monitor will store the information that matches
the query and will send back to the actor an event for
every service that sends packets. This event will contain
the packets transmitted by the service within the last five
seconds.

To collect the queried information, a software sensor has
to be registered at the platform monitor. Then, it sends the
collected information back to the platform monitor. The
procedure of a registration of a software sensor for service
X and the calling of this service by a node B is presented
in Figure 7. We refer to this software sensor as sensor S.

After the registration of S at the platform monitor, its
creation is registered at the system manager. The system
manager inserts S to a proxy of the service that is to be
monitored, and not to the service itself.

After this step, S is successfully deployed and will send
events to the platform monitor according to the query with
which it has been created. In order to present the monitoring
process when service X is called by node B, Figure 7 shows
the corresponding sequence of actions. Node B perceives the
call of service X as a direct call, but inside the extended
platform the call is redirected to a proxy. At the proxy, all
registered sensors observe the call and act according to their
logic. For example, there is the possibility of sending an
event just after the service call or after the service execution
has been finished.

When the call finishes, the proxy will transmit the result
to the calling node (B), which perceives it as a answer from
the original service X.

440

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Calling Node
(B)

Service X InstanceProxy of Service XSystem ManagerPlatform
Monitor

5: actual call of service X

4: apply sensor

7: result of service X
8: event: service X call finished

6: event: service X called

3: call of service X2: insert sensor
1: insert sensor for service X

Visual Paradigm for UML Community Edition [not for commercial use]

/

Figure 7. Event-based service monitoring in the extended SCA platform

With the mechanisms of the platform monitor described
above, it is possible for a developer to implement own
software sensors and event consumers for services and to
monitor them according to his needs. This is a completely
new feature for Apache Tuscany and is to our best knowl-
edge a highly innovative feature for any service platform.

V. QUANTITATIVE EVALUATION: AVAILABILITY
ENHANCEMENT

In order to evaluate our approach with regard to the avail-
ability enhancements, which have been our main concern,
we define a specific scenario that was related to our project,
and compare our approach with a release version of the
used platform. Of course, specific adaptation mechanisms
should be compared to related approaches that could po-
tentially enrich the same service platforms. Unfortunately,
such general comparisons do not seem to be applicable
at the moment, and remain subject of future work. Still,
Apache Tuscany is a state-of-the-art SCA platform, and
comparisons with it appear to be in our case more interesting
than any other scenario. In the next section, we will describe
an additional scenario, showing how a node can decide to
adapt the protocols used by its services based on monitored
information about the types of clients that dominate the
system.

A. Evaluation Scenario

The experiments that are based on our modified platform
are such that as many new features as possible can be
evaluated. Nevertheless, they are limited to include only
some capabilities. We condense many functions into two
main capabilities that we will use in our experiments. It is
necessary to describe now these two capabilities:

• Interest Registration: Any component can register itself
as “interested” in an SCA service, saving at the same

time its queries, determining this way what kind of data
the software sensors will be sending to it and when.
Such components contain “actors”, which enforce re-
actions under certain circumstances.

• Service Instance Control Mechanism: The deployment
instances offer to other components the possibility of
retrieving the number of running instances of a partic-
ular SCA service, as well as the addresses of the nodes
that could host further instances. The SICM builds on
these capabilities and can be used by any component
in order to define a minimum number of instances of
a service that should be running. This “requirement”
is saved, so that failures of hosting nodes lead to the
starting of instances of the service on other candidate
nodes.

Internal services of our application are expected to be
suddenly invoked with an increasing frequency when a
disaster occurs or later when the emergency level of the
situation is set higher by the involved organizations. With
this regard, we chose an example service, and implemented
external clients that invoke it with the pattern shown in
Figure 8. There, we see also how a linear increase of
users leads to an exponential increase of erroneous service
invocations, i.e., to decreased availability levels. The test-
clients record errors when no response is received or when
a timeout occurs. More details will be analyzed in Section
V.B.

With Nt(x) denoting the number of occurrences of x in
the last t seconds, we define as availability of S for our
scenario the value

A =
N10(Successful invocations of S)

N10(Invocations of S)
× 100%

441

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Experimental service invocation pattern

and we measure it over time for the following four
experimental cases:

• Exp1: An instance of S is running on the Apache
Tuscany release platform.

• Exp2: Three instances of S are running on the Apache
Tuscany release platform and the invocations are
equally distributed to them. The number of instances (3)
was chosen empirically, so that it could almost always
satisfy the given invocations’ curve (Figure 8). For this
case, as well as for the next two cases, the distribution
of the invocations among the instances was simulated.
This is safe because the load balancing is irrelevant to
the results that we present, though it would, of course,
be interesting to test with different balancing of the
invocations.

• Exp3: An instance of S is running on our extended
platform, the deployment instance of a node (more
nodes could be used for fail-safety) registers itself as
interested in S, with a query for retrieving the number
of users of S each second. The deployment instance
(more precisely its “actor” upon the retrieved data) has
the following simple logic: use the SICM to add an
instance every time that the load of S exceeds a limit.
This limit was chosen in our case so that, for the given
input of Figure 8, the mechanism is started almost every
minute.

• Exp4: As in Exp3, with the difference that the SICM
now doubles the number of instances every time it
is triggered. With these two different configurations,
we show the flexibility of the freely defined adapta-
tion logic, indicating how our framework can easily
integrate application-dependent logic in order to be
optimally exploited in different systems. Obviously, the
choice of this logic affects the results.

B. Comparison Results

Figure 9 and Figure 10 present the evaluation results
based on the four experiments that we described. Although
the results have been obtained from an example service,
which can be either an internal application service or a
core platform service (e.g., an instance of the deployment
service), it is obvious that this does not harm generality.
Similar effects would be noticed for almost any service,
maybe with a slightly modified invocation pattern. These
evaluation results intend to show some enhancements of a
platform in particular scenarios and are not to be seen as
a direct and complete comparison. Furthermore, the results
only show the benefits of the mechanisms described in
Section 5.A, which are based on our extended concept.
Further benefits of our solution that we described earlier
and relate to the p2p-based fault-tolerance of the core parts
are not included in these experiments and are not mirrored
in the results.

The results for Exp1 prove that the availability of a service
sinks when the number of users increases rapidly. The same
effect is slightly noticeable even in the case of the second
experiment that is based on the original Tuscany platform,
namely Exp2, although the number of service instances was
manually chosen in order to satisfy the given input. The
decrease of the availability level is in that case much slower
than in Exp1, though steady. If the number of users would
grow further, then the number of service instances would not
be able to satisfy them any more, and an effect similar to
that observed in the case of Exp1 would appear. Even if the
maximum load that can be expected for a service is known
from the beginning, excluding this way the possibility of
such effects to appear, the usage of many instances from the
beginning can lead to a big waste of resources. In scenarios
like ours, where the service usage explosion is expected to
happen suddenly but also rarely, this waste will be ongoing
during most of the time.

Contrary to Exp1 and Exp2, the number of service in-
stances during the experiments Exp3 and Exp4 is adapted to
the service load, maintaining high availability levels without
wasting resources. Figure 10 shows the effect of service
instance control. The component that uses the extended
mechanisms in order to perform this control is (implicitly)
informed (in this case every ca. 1 minute) by the platform
monitor that the availability is sinking. Accordingly, further
service instances are deployed and the service invocations
are again distributed among them. So, with an appropriate
configuration at the side of the monitoring (and acting)
component, the availability can be maintained at the wished
levels, as long as this is allowed by the total resources that
are available in the system. In a similar manner, the service
instances can be adapted to a decreasing number of users,
though this is not shown with the present experiments.

During the last minute of the evaluation, Exp4 presents a

442

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Measured availability

Figure 10. Adaptation effects

higher availability, because the number of service instances
is increased more abruptly. With the difference between
Exp3 and Exp4, we can understand the configurability of the
used mechanisms. The fact that different logics can be used
inside these mechanisms offers flexibility in the regulation
of the availability levels and of their trade-off with the costs.
For example, a logic like the one used in Exp3 would be
used in a scenario where service instance adaptations can be
performed often, while the logic of Exp4 would rather be
applied in scenarios where the frequent adaptation is either
impossible or not desired.

VI. QUALITATIVE EVALUATION: DYNAMIC PROTOCOL
ADAPTATION

While a quantitative evaluation has been presented in the
previous scenario, the evaluation of this section is character-
ized as qualitative. A qualitative evaluation does not directly
compare approaches in order to mathematically prove which
one is the best one, but it rather provides (measurable) hints
about how an approach could bring benefits and leaves space
for further research. Indeed, we are going to explain on

the basis of some experiments, why the dynamic protocol
adaptation of services can offer benefits.

In this scenario, the adaptation is triggered based on client
types rather than client numbers. More precisely, nodes use
our platform extensions in order to extract information about
the involvement of mobile service consumers and they adapt
their communication protocols accordingly. Mobile usage of
services is not the only case that can profit from dynamic
protocol adaptation but it is by far the most important one.
Thus, our evaluation will refer to this case. Before we
discuss the benefits and the limitations of such adaptations
based on experimental results, we describe the scenario and
explain why it is our platform extension that enables it.

A. Dynamic Protocol Adaptation with Our Apache Tuscany
Extensions

Although mobile SOA is pre-mature and the participants
of SOA systems are usually stationary computers of IT de-
partments, mobile SOA participants start to appear, usually
as simple Web service clients. Mobile SOA participants
have many differences to other participants, regarding both
the way in which the devices consume the service and
the QoS-efficiency of particular communication protocols
[22]. For example, service buses, such as Apache Tuscany,
normally cannot be used for the development of the client
side, if the client is a constrained mobile device. Even more
important, the standard communication protocol of Web
services (SOAP) causes big delays in some cases of mobile
Web service consumption. Although the service platform
cannot be run and used on mobile clients, it could trigger
service adaptation actions in cases of extensive mobile usage
of particular services. Such an important adaptation action
could be the dynamic adaptation of the protocol with which
a service is offered by the platform. In the following,
we describe this dynamic protocol adaptation that can be
triggered by our extended platform. After that, we present
some experimental results that demonstrate the importance
of being able to perform such adaptations dynamically.

In order to explain dynamic protocol adaptation of a ser-
vice with our extended service platform, a short description
of how components and services are configured in SCA
is necessary. SCA uses the Service Component Definition
Language (SCDL) in order to define inside a configuration
file (composite file) the components, the services, and their
interactions inside the system. So, the architecture of a
system, or of a system part, is implicitly defined in this
file. Every service deployed to the service platform has to
be contained in such a composite file, defining the attributes
and settings of the service. The important part related to
dynamic protocol adaptation of services is the determina-
tion of bindings, with which a service is made available.
The bindings determine how a service communicates with
other components, with each binding corresponding with
a particular protocol. To explain the possibility of binding

443

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modifications in SCDL, we provide the following composite
file snippet:
...
<service name="ServiceX">

<binding.ws
uri="http://www.a.com/serviceX"/>

<binding.rmi host="www.b.com"
port="8099" serviceName="serviceX"/>

</service>
...

Two main service settings can be seen in the above
snippet:

• The name with which the service is defined inside the
platform (ServiceX).

• The bindings with which the service is offered, in
this case a Web service (SOAP) binding and an RMI
binding. The Web service binding only needs the URI
of the service, while the RMI binding needs the host
address, the port number and the specific name of the
service at the location it connects to.

To modify an existing service so that a new binding for it
is added, the composite file must be edited and re-deployed.
Let us assume that initially only the Web service binding
is present for Service X and the usage of this service in
the system changes in such a way that the addition of an
RMI binding is desired. The first step for the modification
is to fetch the current resources of the service from the DHT
and to edit the composite file by adding the part written in
bold font in the snippet above. The second step is to upload
the resources back to the DHT, replacing the old, unedited
files with the mechanisms introduced earlier. The last step
is the re-deployment of the service which is recognized as a
restart of it. After the re-deployment, the additional binding
for service X can be used.

SCA supports several protocols and bindings, but it is not
recommended to use every binding for every service from
the beginning, and, of course, this is never done in the praxis.
This is because the existence of many open bindings may
lead to increased complexity, unnecessary traffic inside the
network, or even security gaps. For this reason, a dynamic
and adaptive modification of the bindings of a service
is preferrable and is supported by our extended service
platform. Furthermore, the whole process is easier with our
implementation, because the programmatical re-deployment
of a service is simplified in our extended platform, as it can
be done through a simple function offered by the overlay.

Another example mechanism, not binding-based this time,
for dynamically modifying the way with which a Web
service can be accessed, is the activation or de-activation
of compression for the SOAP communication. It is not
implemented and supported by Apache Tuscany originally,
but it is possible through modifications in the configuration
of the used Web container. The platform monitor could
sense an increase in the number of clients that would profit

from compression, e.g., mobile clients, so that the adaptation
action of activating compression would be then enforced.

B. Experiments Showing the Potentials of Dynamic Protocol
Adaptation

The experiments correspond with the scenario decribed in
the previous subsection. Thus, it is assumed that one or more
services are offered with a SOAP interface, which means,
for our platform, with a Web service binding (“binding.ws”).
The existence of more access methods (or bindings) for this
service, e.g., over RMI or with data compression, may not
be desired from the beginning, for various reasons. This can
be, for example, because of system complexity, server costs,
or security concerns, caused by the existence of many open
endpoints.

Thus, the experiments are meant to answer the following
question: “Assuming that the usage of a service changes
in such a way that we need to reduce the communication
overhead (for example, because more and more mobile
clients are consuming it), can our monitored data help
us decide which of the re-deployment options that our
extensions enable is the most adequate?”. It is reminded that
Apache Tuscany offers various different types of bindings,
but let us abide by our example and prove how the adequacy
of RMI and compression depend on other data that could
be captured by our platform monitor. In order to demon-
strate this, many different experimental setups were possible.
However, an interesting comparison is presented, for which
no equivalent experimental results were found in literature.
This is obviously because the interest in such comparisons
is much bigger in the case of self-adaptive SOA platforms
than in any other case.

The experimental setup is as follows:
• Two Web services were tested. One sends responses

with complex types (a List of complex objects), the
other sends responses with single types (a String of
varying size).

• The size of the data in the response messages has been
varied from 1 to 1000000 bytes (X-axis). In the case
of the complex data, the minimum size was ca. 2000
bytes (= size of one Object).

• The two services were called directly with SOAP
communication, as well as with the two alternative
access methods, i.e., with the RMI protocol and with
compression.

• The reduction of the data needed for the transmission
of the responses was measured in all cases and was
expressed as the size of the “reduced” response divided
by the size of the original SOAP response (Y-axis). As
mentioned, this overhead reduction is usually unimpor-
tant for strong workstations with great connections, but
it may be critical for constrained mobile clients [23].
As nicely described in [24], this gap will continue to
exist. Even the latest analyses of future technologies

444

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Overhead reduction with different protocol adaptations under varying conditions

for wireless communications strengthen this argument.
In the book of Sesia et al. [25] about LTE (Long Term
Evolution of 3G mobile networks), 5 categories of user
equipment are defined, with smartphones being placed
only under the second or third category. According to
this categorization, devices of higher categories will
be able to use wireless internet connection rates that
are up to 6 times bigger. Of course, the wired con-
nections of the future will be even faster than that,
not to mention the fact that devices less capable than
smartphones will be able to consume Web services. So,
the big differences of device capabilities and connection
qualities will maintain the need for adaptation and the
overhead reduction shown in our experimental results
will be always important, as the size of the data that is
processed and wirelessly transmitted is growing parallel
to all other technological developments.

No detailed analysis of the results shown in Figure 11 is
necessary for our qualitative evaluation. The results show
unambiguously that the two techniques perform differently
under different conditions. For example, compression re-
duces the overhead significantly for single-typed big data,
while the opposite is true for RMI. The conditions (data sizes
and data types, in this example) can be perfectly captured by
our platform monitor and exploited by a developer-defined
adaptation logic. Concerning the exact logic, i.e., in order
to answer the question “which adaptation action should
be taken under which conditions?”, further experiments
including all influencing aspects are needed and, of course,
the application-specific requirements, as well as the devel-
oper preferences, play an important role. A corresponding
decision support is an interesting area of research and is a
subject of our future work.

VII. CONCLUSION

In this work, a concept for distributing the core parts of
a service platform and enriching them with self-adaptation

mechanisms in order to offer fault-tolerance and higher ser-
vice availability has been presented. Based on a prototypical
implementation of our concept, the mentioned enhancements
were shown primarily through an evaluation scenario where
service availability was measured for the original and the ex-
tended platform. The prototypical implementation was done
as an extension of the state-of-the-art SCA platform, Apache
Tuscany. In addition to the availability measurements, further
possible enhancements through different adaptation actions
were explained through a qualitative evaluation. In the
following, we mention some limitations of our approach,
as well as further aspects that we see as subject of future
work.

First, security aspects become more critical, because of
the further capabilities that simple nodes have now. Lack
of control upon them is more dangerous when they carry
platform instances than when they simply host applications
services. Moreover, the complexity of the distributed imple-
mentation, as well as the fact that statefull services cannot
be easily replicated or migrated, lead to some limitations
concerning the applicability of our mechanisms.

However, the most important incentives for further re-
search can be found in the qualitative evaluation that has
been presented. There, it has been explained how the diver-
sity of the users of the platform can lead to the need for
different adaptation actions. As an example, mobile clients
have been mentioned. On this basis, it must be researched
how the different possible adaptation actions match different
situations, so that new decision algorithms can be integrated
in the logic of a self-adaptive SOA platform, such as the
one presented in the work at hand.

VIII. ACKNOWLEDGMENTS

This work is supported in part by the E-Finance Lab e.
V. (www.efinancelab.de) and the BMBF-sponsored project
SoKNOS (www.soknos.de). We would also like to thank
Steffen Lortz for his participation in our implementation.

445

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] Apostolos Papageorgiou, Tronje Krop, Sebastian Ahlfeld,
Stefan Schulte, Julian Eckert, and Ralf Steinmetz. En-
hancing Availability with Self-Organization Extensions in a
SOA Platform. In International Conference on Internet and
Web Applications and Services (ICIW 2010), pages 161–166.
IARIA, 2010.

[2] M. P. Papazoglou and W. J. Heuvel. Service-oriented Archi-
tectures: Approaches, Technologies and Research Issues. The
VLDB Journal, 16(3):389–415, 2007.

[3] Rainer Berbner, Michael Spahn, Nicolas Repp, and Ralf
Steinmetz. Heuristics for QoS-aware Web Service Compo-
sition. In International Conference on Web Services (ICWS
2006), pages 72–82. IEEE, 2006.

[4] Dieter Schuller, Apostolos Papageorgiou, Stefan Schulte, Ju-
lian Eckert, Nicolas Repp, and Ralf Steinmetz. Process
Reliability in Service-Oriented Architectures. In Third IEEE
International Conference on Digital Ecosystems and Tech-
nologies (IEEE DEST 2009), pages 640–645. IEEE, 2009.

[5] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani.
QoS-aware Replanning of Composite Web Services. In In-
ternational Conference on Web Services (ICWS 2005), pages
121–129. IEEE, 2005.

[6] Apostolos Papageorgiou, Stefan Schulte, Dieter Schuller,
Michael Niemann, Nicolas Repp, and Ralf Steinmetz. Gover-
nance of a Service-Oriented Architecture for Environmental
and Public Security. In Fourth International ICSC Symposium
on Information Technologies in Environmental Engineering
(ITEE 2009), pages 39–52, 2009.

[7] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA.
Pearson Education, 2005.

[8] Jorge Salas, Francisco Perez-Sorrosal, Marta Patio-Martnez,
and Jimnez-Peris. WS-Replication: a Framework for Highly
Available Web Services. In 15th international conference on
World Wide Web (WWW 2006), pages 357–366. ACM, 2006.

[9] OASIS. openCSA Specifications for the Service Component
Architecture (SCA), 2007. http://www.oasis-opencsa.org/sca,
last accessed on July 2010.

[10] Apache Software Foundation (ASF). Apache tuscany project,
2009. http://tuscany.apache.org/, last accessed on July 2010.

[11] E. Gjorven, R. Rouvoy, and F. Eliassen. Cross-layer
Self-adaptation of Service-oriented Architectures. In Third
Workshop on Midleware for Service Oriented Computing
(MW4SOC 2008), pages 37–42, 2008.

[12] G. Tosi, G. Denaro, and M. Pezze. Towards Autonomic
Service-Oriented Applications. International Journal of Au-
tonomic Computing, 1(1):58–80, April 2009.

[13] V. Issarny, M. Caporuscio, and N. Georgantas. A Perspective
on the Future of Middleware-based Software Engineering.
In IEEE International Conference on Software Engineering
(ICSE 2007), Proc. of the Workshop on the Future of Software
Engineering (FOSE 2007), pages 244–258. IEEE, 2007.

[14] W. Bradley and D. Maher. The NEMO P2P Service Or-
chestration Framework. In 37th Annual Hawaii International
Conference on System Sciences (HICSS 2004), page 90290.3.
IEEE, 2004.

[15] D. Galatopoulos D. Kalofonos and E. Manolakos. A P2P SOA
Enabling Group Collaboration through Service Composition.
In Fifth International Conference on Pervasive Services (ICPS
2008), pages 111–120. ACM, 2008.

[16] C. Rathfelder and H. Groenda. iSOAMM: An Independent
SOA Maturity Model. In 8th IFIP International Confer-
ence on Distributed Applications and Interoperable Systems
(DAIS’08), pages 1–15. IFIP, 2008.

[17] Julian Eckert, Marc Bachhuber, André Miede, Apostolos
Papageorgiou, and Ralf Steinmetz. Readiness and Maturity of
Service-oriented Architectures in the German Banking Indus-
try - A Multi-Participant Case Study. In IEEE International
Conference on Digital Ecosystems and Technologies 2010
(IEEE DEST 2010). IEEE, 2010.

[18] SoKNOS project. Service-oriented Architectures Supporting
Networks of Public Security. http://www.soknos.de, last
accessed on July 2010.

[19] D. C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., 2001.

[20] Antony Rowstron and Peter Druschel. Pastry: Scalable,
Decentralized Object Location and Routing for Large-Scale
Peer-to-Peer Systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–
350, 2001.

[21] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and
Applications. Springer Verlag, 2005.

[22] Apostolos Papageorgiou, Jeremias Blendin, André Miede,
Julian Eckert, and Ralf Steinmetz. Study and Comparison
of Adaptation Mechanisms for Performance Enhancements of
Mobile Web Service Consumption. In The 6th IEEE World
Congress on Services (SERVICES ’10), pages 667–670. IEEE,
2010.

[23] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller.
Performance Considerations for Mobile Web Services. Com-
puter Communications, 27:1097–1105, March 2004.

[24] C. Canali, M. Colajanni, and R. Lancellotti. Performance
Evolution of Mobile Web-based Services. IEEE Internet
Computing, 13:60–68, March 2009.

[25] Stefania Sesia, Issam Toufik, and Matthow Baker. LTE, The
UMTS Long Term Evolution: From Theory to Practice. Wiley
Publishing, 2009.

446

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Web and Distributed Software Development Risks Management: WeDRisk
Approach

Ayad Ali Keshlaf
School of Computing Science

Newcastle University
Newcastle, UK

a.a.a.keshlaf@ncl.ac.uk
ayadali2005@gmail.com

Steve Riddle
School of Computing Science

Newcastle University
Newcastle, UK

steve.riddle@ncl.ac.uk

Abstract—In spite of a variety of software risk management
approaches, the software industry is still suffering from
associated risks. Web and distributed software development is
an example, where there are specific challenges and risk areas,
which need to be addressed, considered and managed. In this
paper we present a list of potential web and distributed risks,
which we have identified based on their challenges and
characteristics. We survey a number of software risk
management approaches and identify their weaknesses and
strengths for managing web and distributed development
risks. Examples of weaknesses that we identify include the
treatment of cultural issues, geographic location, and process
and product perspectives. The identified strengths are quite
general and only few of them are targeted to web and
distributed developments. Following the review of strengths
and weaknesses we present an approach called WeDRisk,
which we propose in order to tackle the weaknesses of the
existing approaches, and to accommodate the continuously
evolving challenges to web and distributed software
development. WeDRisk tries to cover some aspects and
perspectives, which have not been covered up to now.

 Keywords-software risk management; web development;
distributed development; software reliability; WeDRisk approach

I. INTRODUCTION
Software development projects are, by their nature, a

risky, complicated and multi-dimensional endeavor
[1][2][3][4]. Software risks have been increasing for as long
as the software industry has been growing [5]. Many
software development projects miss their goals of delivering
acceptable software products within agreed constraints of
time, budget and quality, due to a combination of the risks
themselves, and absent or poor Software Risk Management
(SRM) [6][7]. SRM is still evolving, and many software
managers have only a limited understanding of its concepts
[4]. Industrial risk management practice tends to lag behind
recommended risk management best practice, although there
are exceptions [4][8][9]. This lag is clearer with Web and
Distributed (W-D) software development, where the level of
SRM practice is still low.

This paper investigates the abilities of existing SRM
approaches to manage W-D software development risks,

and to explore their weaknesses, and proposes a novel
approach, WeDRisk, in order to address the identified
weaknesses. The rest of the paper is structured as follows.
Section II provides a background on SRM, Section III
explores W-D development challenges and their sources of
risks. Section IV provides a list of some potential risks to
W-D development. We then review the existing SRM
approaches (Section V), comparing them based on specific
criteria factors (Section VI) in order to investigate their
abilities to manage W-D development risks. Section VII
introduces the WeDRisk approach, which we propose in
order to tackle the weaknesses of existing approaches in
managing W-D development risks. We then present our
conclusions and propose future work in Section VIII.

II. BACKGROUND
This section gives a background of SRM and its related

definitions.

A. Software Risk
The Software Engineering Institute (SEI) defines risk as

“the possibility of suffering loss [10]” and it defines loss in
a development project, as “the impact to the project, which
could be in the form of diminished quality of the end
product, increased costs, delayed completion, loss of market
share, or failure [10]”.

For each risk there are two aspects: risk probability and
risk loss. These aspects are used to estimate the impact or
Risk Exposure (RE) [11], as follows:

RE= P(UO) · L(UO) (1)
where,

RE is the Risk Exposure (or risk impact),
P(UO) is the probability of an unsatisfactory outcome, and
L(UO) is the loss associated with an unsatisfactory outcome.

Risk probability estimation is not a straightforward task
and can not be 100% accurate (as otherwise there is no risk).
Some probability estimation techniques use qualitative data
and then convert it into its equivalent quantitative data using
some equations, risk-probability table, checklists or relative

447

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scales [6, 11] where some others use subjective Bayesian
approach [12] or other techniques.

The top ten software risk items (listed below), which are
introduced by Boehm, are examples of sources of risk for
software development projects [11].

• Personnel Shortfall
• Unrealistic Schedules and Budget
• Developing wrong software functions
• Developing wrong user interface
• Gold Plating
• Continuing stream of requirements change
• Shortfalls in externally furnished components
• Shortfalls in externally performed tasks
• Real-time Performance Shortfalls
• Straining Computer-science capabilities

A further list of software risk items includes the
following risk items [13]:

• Bad traceability
• Insufficient verification and validation
• System complexity
• Customer unsatisfied at project delivery
• Risk reducing technique producing new risk
• Catastrophe/Disaster

Any list of software risk items will need to be updated
from time to time, when there are new changes or
challenges in software development technology and
environment (e.g., social and culture issues, geographically
dispersed, new technologies). The significance and type of
risks and their sources will also inevitably evolve over time.
As an example a recent review [14] found that different
authors have identified or proposed different software risks,
which means that the number and items of software risks are
not fixed. Therefore, new or improved methodologies,
techniques and tools to identify, measure and control them
are needed.

B. SRM
Boehm [15] defined SRM as “a discipline whose

objectives are to identify, address, and eliminate software
risk items before they become either a threat to successful
software operation or major sources of software rework”.
Figure 1 shows the basic steps of SRM [11]

Figure 1. SRM Basic Steps [11]

The main purpose of SRM is to identify potential
problems of technical and management aspects before they
occur and then take actions to decrease their impact [16].

C. Software Development Perspectives
Software development has three perspectives: project,

process and product [17][18]. Looking at these perspectives
it is expected that each one of them includes, or could be
affected by, different types of risks. For example, the
“personnel shortfalls” risk item mainly affects the project
perspective, “bad traceability” and “poor testing” affects
process whereas “product with wrong functionality” affects
product. However, one risk item may affect more than one
perspective. Risk management is becoming an important
issue from these three perspectives [17][18].

III. CHALLENGES
A number of challenges to traditional software

development can be seen in the fields of distributed and web
development. The following section focuses on these
challenges.

A. Distributed Development Challenges
Distributed Software Development as described by

Jimenez and others [19] is a type of development that
“allows team members to be located in various remote sites
during the software lifecycle, thus making up a network of
distant sub-teams”. Distributed software projects are usually
developed by teams working collaboratively via
communication channels (e.g., networks, internet, emails)
across many locations. Software developers have adopted
distributed software development as a way of reducing the
cost and increasing their projects productivity [20].
Developing software across distributed sites presents many
challenges, which are summarized in the following points
[21][22]:

• Inadequate informal communications
• Lack of trust
• Culture differences (e.g., different language,

different corporate culture and different developers’
background)

• Time-zone difference (leading to ineffective
synchronous communication)

• Development process differences
• Knowledge management challenges (most of the

existing management approaches are designed for
co-located teams).

• Technical issue: Incompatible data formats and
exchanges.

• Security issue (Ensuring electronic transmissions
confidentiality and privacy).

All of these challenges could be sources of risk in a
variety of development types. In the case of distributed
development, they are particularly prevalent challenges and
need to be considered by any proposed risk management
approach.

Risk Management Planning

Risk
Management

Risk Identification

Risk Monitoring

Risk Prioritization

Risk Assessment

Risk Analysis

Risk Resolution

448

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Web Development Challenges
Web applications are a typical example of web

developments, which have become a common type of
modern software application. Mendes [23] defines a web
application as “an application delivered over the Web that
combines characteristics of both Web Hypermedia and Web
Software application”.

Web applications may be deployed instantly worldwide,
without any need for installation or upgrading manuals [24].
They are growing very fast compared with the traditional
software, which makes them an important part of the
business and software industry. High-performance web sites
and applications are used widely in business-to-business
ecommerce and many types of services as fully functional
systems [25][26].

The development, running and deployment environment
of web development need to be considered carefully as well
as the significance of associated challenges and risks.
Features of the W-D environment, such as diversity and
rapid change, present new challenges for the developer,
manager, and to traditional project management approaches
[26][27[28][29]. More effective risk management methods,
models and tools should be introduced to tackle the lack of
existing approaches to deal with these challenges
[9][30][31].

The importance of web risks is different from others in a
number of ways:

• Their impact and significance are different. For
example the exposure to security threats is higher in
the web [32][33][34]35].

• As web applications may be deployed instantly
worldwide [24], their risks can affect a wider range
of components and applications simultaneously in a
very short period of time.

• Additional risk sources related to W-D environment
include communication, culture, diversity and
geographical location [36][37][38][39].

• Estimation of risk probability and loss is more
difficult because of the involved challenges and
relative lack of experience with them.

Ideally, assessment and management of web
development risks should be performed during the whole life
cycle of the projects [40], but unfortunately, many web
developers use a reactive risk strategy (they do not act until
something goes wrong). This strategy is insufficient because
it makes software projects vulnerable to any type of risks at
any time without effective assessment and control [41].

There is no way to avoid risks in W-D development, so
(as with other types of risk) the solution is to attempt to
manage them. The following section gives an overview on
the state of the art of existing SRM approaches and illustrates
their strengths and weaknesses.

IV. W-D POTENTIAL RISKS
The challenges and characteristics of W-D development

could bring many risks to W-D development. Some potential
risks to W-D developments are listed in Table I
[19][21][22][23][24][25][27][32][38][39][40][41][42][43][4
4]. The list of risks is not final, and could be updated when
there are any new challenges or environment changes. Any
co-located software risks are also considered risks to W-D
development, although their impact and significance could
be different.

TABLE I. W-D POTENTIAL RISK ITEMS

SN Risk Item
1 Unfamiliarity with international and foreign contract

law
2 Volatile customer requirement
3 Poor documentation
4 Low visibility of project process
5 Inadequate / inappropriate process development
6 Not enough measurement and estimations
7 Lack of security precautions
8 Weaknesses in protection procedures for Intellectual

Property rights

9 Vendor feasibility (weaknesses)
10 Insufficient competence
11 Communication failures
12 Poor sites management control
13 Failure to manage user expectations
14 Insufficient project stakeholder involvement
15 Process instability
16 Poor performance
17 Poor UI (rapid changes)
18 Insecure communication channels
19 Inadequate user involvement
20 Difficulties in ongoing support and maintenance
21 Unrealistic estimation of the number of users
22 Differences in the development methodologies and

processes
23 Weak or inadequate contracts
24 Complicated development dependencies between

project sites
25 Cross cultural differences / influence
26 Poor product functionality
27 Market fluctuations
28 Scalability limitations
29 Poor availability
30 Lack of top management commitment
31 Instability in other project sites
32 Lack of Face-To-Face meetings
33 Lack of Management availability and efficiency
34 Unfamiliarity with customer type
35 Constraints due to time zone differences
36 Culture Influence
37 Not enough experience with the W-D technologies

449

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another type of risks that could also affect the W-D
developments is the atypical risks type. Atypical risks are
risks that could not be predicted before they occur.

V. SRM APPROACHES
There are many different SRM approaches. Some of

these approaches are named “models” and others are named
“frameworks” or “methods”, but they have the same target,
which is managing software risks.

 Existing SRM methods, models and tools are reviewed
in this section. Each of the approaches uses some steps,
components or techniques, which may be different or have
some similarities with other approaches.

A. Existing Approaches
Nine of the existing approaches have been selected for

detailed comparison in this study. The selected approaches
are the ones that we expect to satisfy the needs of risk
management for software industry in the W-D development
environment. The approaches were selected because they
are dedicated to manage W-D development risks, or related
aspects. The compared approaches are described hereafter.
a) DS-RM-Concept:

Distributed Software - Risk Management Concept (DS-
RM -Concept) has been designed based on the idea that
communication and continuous risk assessment play a vital
role in managing the risks. Risk assessment in this approach
uses three concepts: reviews for risk identification;
snapshots for analysis; and reports for assessment [45].
b) EBIOS Methodology:

Originally the EBIOS (In French: Expression des
Besoins et Identification des Objectifs de Sécurité) method
was introduced by Central Directorate of Security of
Information Systems (DCSSI) in the French government. It
is a risk management methodology concentrating on
Information Systems Security (ISS) risks. It consists of a set
of guidance steps and it is supported with a free open source
software tool. The methodology has five phases: Context
Study; Security Requirements Checklist; Threats Study;
Identification of Security Objectives and Determination of
Security Requirements [33][46]. W-D developments are
highly vulnerable to security risks and EBIOS methodology
is widely used in government and private sectors to manage
such type of risks, as it is supported by an open source tool.
C) ProRisk Framework:

ProRisk is an open system where the users can develop,
calibrate a choice from published models (templates) or use
different models to accommodate their project need. It is a
risk management framework for small and large software
projects. However, in order to provide project risk factor a
detailed analysis of the project is required [47].
d) Riskit Method:

Riskit method is a SRM method introduced by Jyrki
Kontio [48]. Figure 2 shows the process diagram of the
method, which is designed to provide organized SRM
process and to support involvement of all relevant
stakeholders in risk management process [49]. The method

is provided with analysis graph and it uses a specific
ranking technique called Riskit Pareto Ranking Technique,
which uses probability and utility loss ranking [50][51].

Figure 2. The Process Diagram of Riskit Method [48]

e) SoftRisk:
SoftRisk is model to manage software development risks

introduced by the author and others [6]. Figure 3 shows the
main steps of SoftRisk model [6][31][52].

Figure 3. The Main Steps of SoftRisk Model [6]

The model is designed based on the idea of documenting
and using historical risk data and focusing on top risks in
order to reduce the effort and time in managing software
risks. The model has been supported with a prototype tool.

450

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

f) CMMI-RSKM:

Capability Maturity Model Integration (CMMI) is an
approach for improving processes within organization. The
guidance, which is provided by CMMI consists of a group
of steps to improve development management, services, and
maintenance of products. CMMI has RiSK Management
(RSKM) process area and it has been adopted worldwide by
many organizations. Its models cover development,
acquisition, and services in projects [51][53][54][55].

VI. ANALYSIS
The approaches were reviewed for their ability to

manage risks of modern software development under the W-
D environment and how they can deal with their challenges.
In order to see their weaknesses and strengths, a comparison
between them has been conducted based on our predefined
criteria factors.

The criteria factors were prepared after the challenges,
risk areas and characteristics of W-D development were
identified, by conducting a risk management practice survey
and literature search [16][17][18][20][21][22][23][24][25]
[28][29][30][31][32][33][34][35][36][37][38][39][40][41].
In order to get a consistent list of criteria factors initially, a
list of all criteria factors has been created and then the most
related ones to W-D software development were filtered.
Meanwhile, some other factors are specified in order to
cover aspects that we felt that were not touched before.

The factors cover important risk management aspects
(e.g., Perspectives, Communications, Geographically
Dispersed, Evolving Environment, Risk Management
Evolution, culture issue and Interoperability tracking).

The comparison has been conducted based on available
literature such as papers, reports, previous comparison,
formal websites of the approaches and related technical
reports (references are mentioned in Section V). Table II
shows the result of the comparison.

In Table II there are three options for each criteria factor:
D when the factor is supported or agreed by the

approach.
U if the factor is not supported or not agreed by the

approach.
P if it is partially supported or partially agreed by the

approach.

g) PMBOK RM Process:
Project Management Body of Knowledge (PMBOK) is a

process introduced by Project Management Institute (PMI).
Its third edition was published in 2004. The PMBOK
combines nine areas of knowledge (Integration, scope, time,
cost, quality, human resource, communications, purchase
and risk). It consists of four process phases - Initiating,
Planning, Executing, and Closing. It can be considered as
standard for Project Management [51][56][57].
h) GDSP RM Framework:

Geographically Distributed Software Projects (GDSPs)
is an integrated framework to manage risks in distributed
software projects. It emphasizes many aspects, which are
shared between GDSPs and web application developments.
The idea behind this framework was based on synthesizing
some known risks and risk techniques into integrated
approaches. GDSPs links resolution techniques into project
risk areas [39]. Elements of the framework are illustrated in
Figure 4.

Table II can be read either horizontally or vertically. If it

is read horizontally then the numbers on the table represent
the total of points that each criteria factor has got from all of
the approaches for each one of the above three options. If
the table is read vertically then the numbers represent the
total of points each approach has got for each one of the
above three options.

 Figure 4. Elements of GDSP’s Risks Management Framework [39]

i) Risk and Performance Model:
This model is designed to inspect the relationship

between risk and project performance. This includes product
and process performance. For this purpose six dimensions
(Organizational Environment, User, Requirements, Project
Complexity, Planning & Control and Team risk) of software
risks are used by the model [58].

451

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. SRM APPROACHES COMPARISON RESULT

Sub
Totals:
D U P

 Approaches

Criteria
Factors

Perspectives:
 - Project D U D D D D D D D 8 1
 - Process U P P P U D D U D 3 3 3
 - Product U P U U U P U U P 6 3
Stakeholder :
 - Involved Stakeholder D D D D D P P P P 5 4
 - Stakeholder Roles in SRM P P P P P D P P P 1 8
SRM & Product Quality Link U U P D U P D U D 3 4 2
Remote SRM P U P U P U U D U 1 5 3
Estimating SRM Cost U U P P U P P P U 4 5
Provided/Suggested Options :
 - Communications D D U U D D D U P 5 3 1
 - Collaboration P U U P U U U P U 6 3
 Consideration of:
 - Geographically dispersed D U U U U U D U P 2 6 1
 - Social and legal issues U D U U U U U P P 1 6 2
 - Intellectual property U U U U U U U U U 9
 - Ethical issues U D U U U U U D U 2 7
 - Multicultural environment U U U U U U U D U 1 8
 - Evolving environment U U U U U U U U U 9
Preparedness to Atypical Risk U U U U U U U U U 9
Provided SRM Types:
 - Plain U U U U U U U U U 9
 - Deep / Ordinary D D D D D D D D D 9
 SRM Evolution Ability U U P U U U U U U 8 1
 SRM Effect Evaluation P U P D P U P P P 1 2 6
 Learning from Mistakes D U U U D U P P U 2 5 2
 Performance Evaluation P U P D P D U P D 3 2 4
 Acceptable Levels U U P P D D D D U 4 3 2
 Risks of SRM Exploration U U U U U U U U U 9
 Prediction Techniques D P P D P U U P P 2 2 5
 Side Affect Absorber U U U U U U U U U 9
 Interoperability Tracking U U U P U U U P D 1 6 2
 Dependences Tracking P U P P U U P P P 3 6
 Virtual SRM support P U U U P U U D U 1 6 2
Standard Operation Procedures U U U U U U U U U 9
Risk Source Tracing U U U U U P D U U 1 7 1
Totals :
D Supported or agree 7 4 3 7 4 8 8 9 6 56

U Not Supported or not 18 23 17 18 20 20 19 12 19
1agree 66

P Partially rted or Suppo
partially agree

7 5 12 7 8 4 5 11 7
66

Total: 288
From the numbers that appear in Table II it can be

not

the lowest support are:

• Covering of process and product ves

, Intellectual property, Ethical issues,
ving

•
•
•

iced that the total number of criteria factors that are
supported or agreed by the approaches has got 56 points
from the total of points, which is 288 (with percentage 19%)
The ones that are partially supported or partially agree have
got 66 points (with percentage from the total of points 23 %)
whereas the factors that have got the lowest support by the
existing approaches have got the highest number of points,
166 (with percentage 58%). The criteria factors that have got

• Consideration of: Geographically dispersed, Social
and legal issues

 perspecti

Multicultural environment and Evol
environment
Preparedness for atypical risks
Plain risk management type
Evolution of S RM processes

• Exploration of SRM Risks itself

452

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Risks side affects absorber mechanism

s are different from
one p at a weak aspect in
one

EAKNESSES OF EACH APPROACH

• Risks interoperability tracking
• Standard Operation Procedures
As can be seen in Table II, the point
 ap roach to another. This means th
 approach could be a strong aspect in another one. This is

clear from the total points at the end of each approach. On
the other hand there are many similarities between many
approaches in many aspects as they have the same selections
for some criteria factors. Table III summarizes the main
strengths and weaknesses of the approaches, from the W-D
point of view.

TABLE III. SOME STRENGTHS AND W

Approach Strengths Weaknesses
DS-RM-Concept of distributed software.

nique.

onsider some aspects such as social,

ment

• Targeting
• Focusing on communications role.
• Supports the use of risks database.
• Supported with Risk Guide tool.

ch• It has an effective identification te

• It does not c
multicultural, and evolving environment.

• Lack of risk controlling.
gement to develop• It does not link risk mana

processes and product.

EBIOS
logy ies and

 ted to Information Systems
Methodo

• Supported with an open source tool.
• Its consideration of technical entit

non-technical entities.
• Compliance with some standards

(ISO27001:2005).

• It is dedicated and limi
Security (ISS) risks only.

• It has a very limited ability to consider aspects of
W-D development environment.

ProRisk
rk

main to risk management.

perform the risk

•

Framewo

• Can be applied to small and complex •
projects.

• It is open system.
• It links business do
• It is partially considers the cost in risk

management.

It requires detailed risk analysis.
• It depends on other models to

analysis, which sometimes are not validated
enough or not available to the users.

 It does not consider most of aspects that are
related to W-D environment.

Riskit Method and graphical tool.
ain

• risk communication • It provides conceptual
• It defines project goals based on cert

steps.

It is not supported with
channel.

• Other weaknesses can be seen in Table II.
SoftRisk

ative and oduct
• It supports risk documentation.
• It switches between qualit

quantitative data.
• It is provided with checklist for risks •

estimation.

• It does not support risk communication.
 pr• It does not provide management for

perspective.
 Other weaknesses can be seen in Table II.

CMMI-RSKM
gement

• It supports the standardizations in risk
management.

• It is provided with a sort of guidelines.

• It supports only heavy risk management.
• Project managers play most of risk mana

role.
• Many aspects that are related to W-D environment

are not considered.
PMBOK RM It considers the processes of software

Process
•

development.
• It includes risk management as a part of

project management.

• It is generic to meet some special needs of
software projects.

• Project managers play most of risk management
role.

• It does not support many features related to W-D
development like consideration of remote risk
management, social issues.

GDPS RM • Consideration of geo aphically dispersed
sk

•
Framework

gr
• It supports categorization of risk areas, ri

factors and resolution techniques.

 It uses a predefined list of risk areas and factors,
which limits risk identification process.

• No integration between risk management and
overall project plan.

• It does not consider process and product
perspectives.

• It provides only one type of management. It does
not provide plain management.

Risk and
 Model

• It comes with six dimensions of software

I.
Performance

risks.
• It treats the relation between risk and

performance.

• It does not give guidelines for managing risks.
• It considers only internal risks.

ed from Table I• Other weaknesses can be extract

In general, the associated weaknesses of existing

app

ncentrate on project

not pay enough attention to other perspectives

• modate the continuous
roaches that have resulted from the comparison can be

summarized in the following points:
• The existing approaches co

perspective of software development and they do

(Process and Product).
They do not accom
evolvement and changes issues of software
industry and they do not consider aspects related
to web, and distributed development environment

453

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(e.g., geographical difference, time zones
differences, intellectual property, culture issues,
evolving environment etc.).
Lack of preparedness to • atypical risks (No

• o not suggest any effective mechanisms to

• lexible enough and they offer only

• M performance and

• hes are focused on theoretical

 WEDRISK APPROACH
WeDRisk is rder to tackle

the

isting

• but it

• ed to be flexible and able

• three perspectives (project,

A. We
h consists of five layers (Project

Lay

components, which contain
ste

absorbing mechanism for side affects of atypical
risks).
They d
monitor or trace risks interoperability and
dependences.
They are not f
deep type of risk management. Plain risk
management is not offered.
Not enough monitoring to SR
its associated risks.
Most of the approac
aspects and do not provide clear guidelines for
practicing.

VII.
 an approach we propose in o

 weaknesses of existing SRM approaches with more
emphasis on W-D development. While the approach is
particularly aimed towards W-D development, it should
be applicable to modern software developments in
general. The general principles of this approach are:

• It is built to tackle the weaknesses of ex
approaches, with some new improvements.
It focuses on W-D software development,
can be used for others.
The approach is suppos
to evolve if need be.
It considers risks from
process, and product) and uses a modular
approach structure of components, phases and
layers to manage the complexity in the range of
different weaknesses identified.

DRisk Structure:
The WeDRisk approac
er, Stakeholder Layer, Risk Management (RM)

Customization Layer, RM Implementation Layer and
Evaluation & Auditing Layer) and two supporter
components (Communication & Plug-In Controller and
RM Evolution Regulator).

The layers consist of
ps, techniques and guidelines. The supporter

components provide the necessary support to the other
WeDRisk components. Figure 5 illustrates the main
architecture design of WeDRisk approach.

Figure 5. WeDRisk Main Architecture

This modular approach structure simplifies the

WeDRisk design and makes it ready for evolving and
integrating.

B. WeDRisk Run Phases & Layer Descriptions
Running phases of the WeDRisk consist of three main

phases (see Figure 6). They are briefly described below
with the appropriate layers that work under them.

First Phase: Establishing RM set-up:
This is an essential phase for RM establishment (set-

up). It produces projects’ and stakeholders’ cards. As well
as it customizes the type of RM (deep or plain type). The
following layers work under this phase:

Project Layer Produces /updates Project Card

Stakeholder Layer Produces Stakeholders Cards

RM Customization
Layer

Specifies Management Type

Table IV shows an example of the project card. The

data that is shown in the example is dummy data (not
real).

454

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. PROJECT CARD EXAMPLE (DUMMY)

Project ID WP-09-001
Opening Type New Project (may be updating an old one)
Project Name Billing System for van hiring system
Type Web Application
Customer Newcastle Group
Project Developer Advanced SoftGroup Ltd.
Project Manager ALI
Development Sites One site ; Main Site (Newcastle)
Development Team 3 Programmers + Editor + Graphics Designer
Dev. Team Leader John
Planned Starting Date 01/04/2009 Planned Finishing Date: 30/04/2009
Actual Starting Date 05/04/2009 Actual Finishing Data: 25/05/2009
Initial Contract Cost £100,000 Actual Cost at Delivery: £177,000
Requirement
Specification Doc. File

WP-09-001-Req.Pdf

Events Registry Ref.
No

WP-09-001EventReg

Dependency or Linked
Projects

WP-09-201; DP-09-30

All Project’s Identified Risks
Risk ID Associated

Loss
Responsible Attack Date Resolve Date Attack

TREV
Resolve
TREV

R-Cu-011 5 days delay Project Secretary 01/04/2009 04/04/2009 5.7 20.2

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
R-Cu-034 £500 Site 2 manager 12/05/2009 11/05/2009 4.5 10.5

Project’s Current Identified Risks (Prioritized based on TREV)
Risk ID Associat

ed Loss
Responsible Attack Date Prob. Mag. Attack

TREV

R-Cu-011 Extra
Cost

Programmer No. 1 01/04/2009 0.3 200 60.7

R-Te~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
R-Ge-231 45.5

Second Phase: Implementation of RM Cycles:
The main RM operation/steps are implemented at this

phase. The operations include the estimation, evaluation,
planning and controlling of the risks.

 At this phase risk cards (Table V shows a dummy
example of the risk card) are produced for new risks.
These cards contain all important identification data of the
risks. The identified risks are clustered from their
perspectives (Project, Process and Product). Project cards
are continuously updated with current risks data. In case
of any attack from atypical risks the absorber mechanism
will be triggered. Extracting Learned Lessons and tracing
dependencies and interoperability are also operations
implemented under this phase using special components.
The layer that works under this phase is the
implementation layer.

Implementation
Layer

Produces Risks Cards; Estimates, evaluates,
plans for and controls the risks; Deals with
atypical risks and cluster risks from the three
perspectives (Project, Process and Product),
Extracts Learned Lessons traces risks
dependencies & interoperability

Third Phase: Evaluation and Auditing
This phase is concerned with RM performance and

RM cost evaluation. This required data is periodically
collected about RM progression during RM cycle.
Collected data cover RM Establishing cost, RM Running
cost, Risks Consequences cost, RM durations time and
RM efficiency. These data are used to monitor cost and
performance of RM operations and it is used to produce
RM performance report. It is also used to support
evolution of the approach. The responsible layer for this
phase is the Evaluation and Auditing Layer.

Evaluation & Auditing
Layer

Monitors RM progress
Produces Performance Report

455

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: WeDRisk Running Phases

C. WeDRisk Supporter Units
The role of these units is to provide required support

and services to WeDRisk components. There are two main
units (Communication & Plug-in Controller and RM
Evolution Regulator), which are described briefly
hereafter:

Communication & Plug-in Controller:
The communication and Plug-in Controller works

with all layers and at all phases. It consists of the
following components:

Communications channel is a component used to
ensure all needed communications between all RM layers
during the RM cycle. Furthermore, this channel also
ensures the exchanges of the RM data between all project
sites.

Events Registry is a component used to record some
important data about all RM events and actions during the
RM cycle. The recorded data are considered as the history
of RM implementation cycles, which could be used for
statistics, performance monitoring or taking corrective
actions.

Plug-in Components provides the support for
connecting WeDRisk with other approaches. For that it
provides standard format for data exchange and checks
the permissions and authentications.

RM Evolution Regulator:
The Evolution Regulator is responsible for making

any evolutions (improvement or changes) to the RM
process. The evolutions are based on needs, enhancement
or in some cases as part of corrective actions, which are
collected in a special repository called the Evolution Box,
and then implemented after they get approval from
Evolutions Approval Board. Evolution Regulator
components and their roles are summarized below:

Evolution Box

Repository collects data about needs,
problems and any evolution
suggestions during the RM process

Evolution Approving
Board

Evaluates the needs and take
evolution decisions; specifies the
modifications, priorities,
responsibilities and schedules

TABLE V. RISK CARD EXAMPLE (DUMMY)

R. ID R-Te-011
R. Name Not enough experience with the W-D

technologies
R. source Programmer
Aspect Technical Risks
Perspective Process
Risk Description The programmer supposed to have enough

experience with Java and web services, but he
has got stuck with some critical web services
aspects.

Risk Factors - The time is too short to learn web
services.

- Not enough time/budget to hire
programmers

- Not enough experience
Potential Impact Extra Cost (e.g., it cost £3000 per a day for

any delays)
Potential Affected
Areas

Web related aspects

Dependability of Risks Testing phase, product perspective
Mitigation Steps Fast training course, postponing web service

part, changing the type of the application or
hiring programmer

Primary Precautions Allocate some funds for hiring extra
programmers

Controlling Steps Hire extra programmers if the time is short,
but if there is enough time and less
dependency train the existing programmers.

Card Issue Date 18/11/2009
Relation Pointer
(Linker)

In our case is null, which means that there is
no any risk linked to this risk

Communications
Channel

Ensures communication for RM
operations

Events Registry Registers RM process Events

Plug-in Component Link / communicate with others

456

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. WeDRisk Distinctiveness
WeDRisk tackles the existing approaches weaknesses

by providing new components and covering new aspects
to improve RM in W-D development. Although the
WeDRisk approach is mainly designed for W-D
development, it can also be used in the rest of software
developments in general. The main contributions of
WeDRisk are:

• It considers the three W-D perspectives (Project,
Process and Product) as it clusters the risks from
these three perspectives. This saves time and effort
and increases the effectiveness of RM in W-D
developments by making the concentration only
on the risks of the appointed perspective.

• It provides an absorption mechanism to deal with
W-D atypical risks.

• It considers the challenges and characteristics of
W-D development since it provides a list of the
potential risks that are associated with these
characteristics and challenges. This helps to
identify current risks faster and easier. This list of
potential risks is updateable based on the current
challenges and environment.

• The nature of W-D developments needs a flexible
RM, therefore WeDRisk approach offers two types
of RM (plain and deep).

• WeDRisk has been provided with an Events
Registry component, which works as a log file,
recording important events data during RM
operation progression.

• Communication plays a vital role in managing W-
D development risks. Therefore, the approach has
a Communication and Plug-in Controller to ensure
the internal communication (between approach
components) via a communication channel, and
external communication with other approaches via
Plug-in unit.

• The approach includes W-D factors as a part of the
risk estimation equation.

• Risks network is very complicated in W-D
development projects. Combination of some risks
could produce new risks or increase their severity.
Meanwhile as many projects are multisite projects
there is a dependency among them. WeDRisk
treats this with a special component called
Dependencies & Interoperability Tracer.

• WeDRisk is an evolutional approach as it has been
designed to accommodate the evolutions in W-D
developments.

E. Benchmarking
Comparing with other approaches, WeDRisk maintains

the strengths of existing approaches and tackles their
weaknesses in managing W-D risks. It designed to be an
evolutionary approach. Table VI illustrates how WeDRisk

approach comes with new features to improve the RM in
W-D development.

TABLE VI. BENCHMARKING TABLE

Current Approaches WeDRisk Approach

Perspectives Consideration
The consideration is mainly on
Project Perspective

It considers all perspective
(project Product Process) and
clusters the risks from all
perspectives.

Evolution Ability
They are fixed approaches It is flexible to accommodate the

W-D evolutions. It has a special
component to handle that.

Offered RM types
Usually they offer one type of
RM, which is Deep RM type.

WeDRisk offers two types of RM
(Deep and Plain). RM can be
customized based on the situation
needs, availability of resources
and criticality of time.

Preparedness to atypical Risk
None of them can deal with to
atypical risk

WeDRisks has a mechanism to
deal with atypical risks

W-D risk estimation and assessment
Not enough consideration to W-D
factors

It includes W-D factors at risks
estimation equations

Dependencies & Interoperability
Very limited and indirect ability WeDRisk maps risks

Dependencies and Interoperability
Auditing and Evaluation

Limited in some of them It has components for RM cost
and performance evaluation

Learning from Mistakes
Somewhat some of them have
databases that can be used to learn
from previous cycles

WeDRisk Extracts Learned
Lessons from RM cycles

Communication
Some of them has good
communication channels

It has a communication channel
supported with events registry and
plug-in components

F. WeDRisk Evaluation
Currently, we are in the stage of evaluating the

WeDRisk approach. For the evaluation purpose we have
planned for two options, which are:

• Evaluating the whole approach (all components
together) using one or more case studies.

• Dividing the approach into ‘chunks’ (representing
the novel aspects in the WeDRisk approach) and
then evaluating them one by one using case
studies or experiments.

The preparation for the two options is currently in
progress. A case study has been designed for the first
option whereas, for the second option an experiment has
been designed to evaluate the first ‘chunk’, which covers:

• Proposed list of W-D potential risks
• The usefulness/effectiveness of clustering the risks

from the three perspectives (project, process
product) and clustering criteria

• Potential of atypical risks in W-D development

457

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Due to some difficulties in getting suitable projects
where a case study can be executed, we plan to start with
the second option (the experiment). The subjects for the
first experiment are PhD and MSc students at School of
Computing Science, Newcastle University, UK. The
experiment was conducted in July/August 2010.

Other experiments or case studies will be designed to
evaluate other novel aspects of WeDRisk approach and the
evaluation results will be presented in the forthcoming
papers.

G. The Prototype
It is expected that WeDRisk approach will lead to the

development of a risk management tool. The tool will be
targeted for use by W-D software development houses to
manage W-D development risks. The tool functions are
intended to comply with the proposed WeDRisk
components and techniques. Currently the prototype of
the tool is under construction. There are some challenges
for the prototype implementation, which include:

• The prototype should cover important novel
aspects of WeDRisk.

• It should be a web application and be able to deal
with W-D multisite developments.

• It should be able to cover the three perspectives
(project, process and product).

• It should be supported with a database for risks,
projects and stakeholders cards data.

 Implementing the prototype early could help
in WeDRisk evaluation. However, in order to reduce
rework in the implementation, commencing work on the
prototype is dependent upon the completion of the first
phase of the WeDRisk evaluation. We expect that the
prototype could accelerate the rest of evaluation and
validation phases and saves the time and effort. Moreover
the result of evaluation can be considered as evaluation
for both WeDRisk and the prototype, and can be used to
improve both of them and to build a reliable tool based on
the prototype. The work finished in the prototype
implementation includes the design and creation of the
supported database and building some main components.
The prototype is expected to be ready in the middle of
2011.

VIII. CONCLUSION AND FUTURE WORK
The paper has identified the challenges of W-D

development and shown how the importance of risk in this
context is different from others. A list of potential risks to
W-D has been presented. The list is just an initial one, and
should be updated from time to time when there are any
new challenges or changes in the development
environment. In order to investigate the weaknesses and
strengths of existing approaches in managing the risks in
W-D, the related existing SRM approaches have been
reviewed and compared. The comparison is based on
special criteria factors, which are prepared carefully in
order to examine the ability of the approaches to manage

the risks of W-D software development. The weaknesses
and strengths of the compared approaches are identified in
this paper. In general, most of the identified strengths are
related to co-located development software and they are
spread among the approaches.

It can be concluded that though there are many SRM
approaches there is still a large gap between the existing
approaches and actual practicing in software industry
practice. This is due to the associated weaknesses in the
approaches (e.g., not enough consideration to: difference
in geographical locations, culture issues, process
perspective and product perspective).

From Table II and Table III the following points can be
concluded:

• There is no single approach that is able to manage
software risks in W-D environments alone,
unfortunately the strengths of the approaches are
dispersed between them. In the current situation
the developers either have to use more than one
approach or miss some aspects and support.

• Tackling the weaknesses of the approaches and
combining the strengths of them in a new
approach is a step toward improving risk
management in W-D environment.

For effective risk management in W-D development all
challenges, characteristics, risk areas, development and
running environment and development perspectives
(project, process and product) and other related aspects
must be considered.

 The reviewed approaches have added significant value
to traditional software development projects, but it is clear
that the W-D developments are not yet well covered.

As a part of ongoing PhD research at School of
Computing Science, Newcastle University, UK, the
WeDRisk approach to manage W-D development projects
risks has been presented in this paper. The approach aims
to tackle the weaknesses in existing approaches and to
propose new management concepts in order to improve the
level of practicing of SRM in the field. While the approach
is particularly aimed towards W-D development, it should
be applicable to modern software developments in general.

The WeDRisk approach has been designed to satisfy
the needs of risk management for W-D development.
WeDRisk provides some contributions to manage W-D
risks such as: the consideration of W-D risks from three
perspectives (Project Process and product); involving
specific factors for W-D as a part of risks estimation
equations; providing a mechanism to deal with atypical
risks; ability to evolve; mapping the dependencies and
interoperability of the risks; managing risks across
multisite projects; and reflecting W-D risks by providing
an updateable list of W-D potential risks. In addition to W-
D development WeDRisk is thought to be ready for serving
other software development. The future work in this
project includes more evaluation of WeDRisk and
completing the prototype tool.

458

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] A. Keshlaf and S. Riddle, “Risk Management for Web and

Distributed Software Development Projects,” in 2010 Fifth
International Conference on Internet Monitoring and Protection
(ICIMP 2010), IEEE Computer Society, 2010, pp. 22-28.

[2] Y. Kwak and J. Stoddard, “Project Risk Management: Lessons
Learned from Software Development Environment,” Technovation,
vol. 24, November 2004, pp. 915–920.

[3] H. Yong, C. Juhua, R. Zhenbang, M. Liu, and X. Kang, “A Neural
Networks Approach for Software Risk Analysis,” Proc. of Sixth
IEEE International Conference on Data Mining - Workshops
(ICDMW'06), IEEE, 2006, pp. 722-725.

[4] P. Bannerman, “Risk and Risk Management in Software Projects: A
Reassessment,” Journal of Systems and Software - Elsevier, vol. 81,
December 2008, pp. 2118 - 2133.

[5] A. Tiwana and M. Keil, “Functionality Risk in Information Systems
Development: An Empirical Investigation,” IEEE Transactions on
Engineering Management, vol. 53, AUGUST 2006, pp. 412- 425.

[6] A. Keshlaf and K. Hashim, “A Model and Prototype Tool to
Manage Software Risks,” Proc. of First Asia–Pacific Conference on
Quality Software, IEEE Computer Society, 2000, pp. 297–305.

[7] S. Islam, “Software Development Risk Management Model – A
Goal Driven Approach,” Proc. of ESEC/FSE Doctoral
Symposium’09, ACM, 2009, pp. 5-8.

[8] J. Esteves, J. Pastor, N. Rodriguez, and R. Roy, “Implementing and
Improving the SEI Risk Management Method in a University
Software Project,” Latin America Transactions, IEEE (Revista
IEEE America Latina), vol. 3, March 2005, pp. 90-97.

[9] M. Kajko-Mattsson and J. Nyfjord, “State of Software Risk
Management Practice,” IAENG International Journal of Computer
Science - On-line Issue, vol. 35, November 2008.

[10] R. Williams, G. Pandelios, and S. Behrens, “Software Risk
Evaluation (SRE) Method Description (Version 2.0),” Software
Engineering Institute (SEI) December 1999.

[11] B. W. Boehm, “Software Risk Management: Principles and
Practices,” IEEE Software, vol. 8, 1991, pp. 32-41.

[12] J. Moses, “Bayesian Probability Distributions for Assessing
Measurement of Subjective Software Attributes,” Information and
Software Technology, vol. 42, 15 May 2000, pp. 533-546.

[13] K. Hashim and A. Keshlaf, “An Approach to Sharing Solutions to
Software Project Management Problems,” Proc. of International
Conference on Information Management and Engineering (ICIME
'09), IEEE Computer Society, 2009, pp. 694-697.

[14] W. Han and S. Huang, “An Empirical Analysis of Risk Components
and Performance on Software Projects,” Journal of Systems and
Software, vol. 80, January 2007, pp. 42-50.

[15] B. W. Boehm, Software Risk Management, IEEE Computer Society
Press, 1989.

[16] IEEE Std. 1540-2001, “IEEE Standard for Software Life Cycle
Processes – Risk Management,” IEEE 2001.

[17] B. Boehm, J. Kwan, D. Port, A. Shah, and R. Madachy, “Using the
WinWin Spiral Model: A Case Study,” IEEE Computer, 1998, pp.
33 - 44.

[18] S. Misra, U. Kumar, V. Kumar, and M. Shareef, “Risk Management
Models in Software Engineering,” International Journal of Process
Management and Benchmarking (IJPMB), vol. 2, 2007, pp. 59-70.

[19] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and
Improvements in Distributed Software Development: A Systematic
Review,” Advances in Software Engineering, vol.2009, 2009, pp. 1-
14.

[20] M. Malarvannan, “Managing Offshore Software Teams.” vol. 2009:
Outsource Portfolio, 2009.

[21] B. Sengupta, S. Chandra, and V. Sinha, “A Research Agenda for
Distributed Software Development,” Proc. of 28th International
Conference on Software Engineering (ICSE'06), ACM, 2006, pp.
731 - 740.

[22] K. Nidiffer and D. Dolan, “Evolving Distributed Project
Management,” IEEE Software, vol. 22, September/October 2005,
pp. 63-72.

[23] E. Mendes and N. Mosley, Web Engineering, Berlin Heidelberg:
Springer-Verlag, 2006.

[24] A. Taivalsaari, “Mashware: The Future of Web Applications.” vol.
2009: Sun Microsystems Laboratories, 2009.

[25] J. Offut, “Quality Attributes of Web Software Applications,” IEEE
Software, vol. 19, March / April 2002, pp. 25-32.

[26] F. Donini, M. Mongiello, M. Ruta, and M. Totaro, “A Model
Checking-based Method for Verifying Web Application Design,”
Electronic Notes in Theoretical Computer Science, vol. 151, 31
May 2006, pp. 19 - 32.

[27] C. Beise, “IT Project Management and Virtual Teams”, Proc. of
(SIGMIS’04) Conference Arizona, USA,Tucson, 2004, pp. 129-
133.

[28] B. Behkamal, M. Kahani, and M. Akbari, “Customizing ISO 9126
Quality Model for Evaluation of B2B Applications,” Information
and Software Technology, vol. 51, March 2009, pp. 599-609.

[29] J. Tian, S. Rudrarjuand, and Z. Li, “Evaluating Web Software
Reliability Based on Workload and Failure Data Extracted from
Server Logs,” IEEE Transaction on Software Engineering, vol. 30,
November 2004, pp. 754 - 769.

[30] J. Kontio, M. Hoglund, J. Ryden, and P. Abrahamsson, “Managing
Commitment and Risks: Challenging in Distributed Agile
Development,” Proc. of 26th International Conference on Software
Engineering (ICSE ’04), 2004, pp. 732- 733.

[31] M. Rabbi and K. Mannan, “A Review of Software Risk
Management for Selection of Best Tools and Techniques,” Proc.
9th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel / Distributed
Computing, IEEE Computer Society, 2008, pp. 773 - 778.

[32] W. Glisson and R. Welland, “Web Development Evolution: The
Assimilation of Web Engineering Security,” in Proc. of Third Latin
American Web Congress (LA-WEB’05), IEEE Computer Society,
2005, p. 5.

[33] B. Romero, H. Haddad, and J. Molero A, “A Methodological Tool
for Asset Identification in Web Applications Security Risk
Assessment,” in Proc. of Fourth International Conference on
Software Engineering Advances, IEEE Computer Society, 2009, pp.
413-418.

[34] Y. Huang, C. Tsai, D. Lee, and S. Kuo, “Non-Detrimental Web
Application Security Scanning,” in Proc. of the 15th International
Symposium on Software Reliability Engineering (ISSRE’04): IEEE
Computer Society, 2004, pp. 219-239.

[35] X. Ge, R. Paige, F. Polack, H. Chivers, and P. Brooke, “Agile
Development of Secure Web Applications,” Proc. of 6th
International Conference on Web Engineering (ICWE'06), ACM,
2006, pp. 305 -312.

[36] CA/Wily, “White Paper: Effectively Managing High-Performing
Business-Critical Web Application,”
http://zones.computerworld.com/ca/ accessed on 16 Jan. 2011.

[37] G. Kappel, B. Proll, S. Reich, and W. Retschitzegger, Web
Engineering the Discipline of Systematic Development of Web
Application, John Wiley & Sons, Ltd, 2006.

[38] V. Bruno, A. Tam, and J. Thom, “Characteristics of Web
Applications that Affect Usability: A Review,” in Proc. of the 17th
Australia conference on Computer-Human Interaction: Citizens
Online: Considerations for Today and the Future (OZCHI 05), vol.
122 Canberra, Australia, 2005, pp. 1- 4.

[39] J. Presson, L. Mathiassen, B. Jesper, T. Madsen, and F. Steinson,
“Managing Risks in Distributed Software Projects: An Integrative
Framework,” IEEE Transaction on Software Engineering, vol. 56,
2009, pp. 508-532.

[40] S. Willis, Using QA for Risk Management in Web Projects,
Software Quality and Software Testing in Internet Times, New
York,USA: Springer-Veriag Inc., 2002.

[41] P. Pressman and D. Low, Web Engineering A Practitioner’s
Approach. International Edition, Mc Graw Hill, 2009.

[42] C. Iacovou and R. Nakatsu, “A risk profile of offshore-outsourced
development projects,” Communications of the ACM, vol. 51,
2008, pp. 89-94.

[43] R. Prikladnicki, J. Audy, and R. Evaristo, “Global Software
Development in Practice Lessons Learned ,” Software Process
Improvement and Practice, vol. 8, October/December 2003, pp.
267-281.

[44] C. Ebert, B. Murthy, and N. Jha, “Managing Risks in Global
Software Engineering: Principles and Practices,” in Proc. of 2008
IEEE International Conference on Global Software Engineering.
2008, pp. 131-140.

459

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[45] J. Gorski and J. Miler, “Towards an Integrated Environment for
Risk Management in Distributed Software Projects,” Proc. of 7th
European Conference on Software Quality (ECSQ02), Helsinki,
Finland, 2002.

[46] ENISA, “Ebios Product Identity Card,” ENISA,
http://rm-inv.enisa.europa.eu/methods_tools/m_ebios.html accessed
on 28 December 2010.

[47] G. Roy, “A Risk Management Framework for Software
Engineering Practice,” in Proc. of the 2004 Australian Software
Engineering Conference (ASWEC’04), IEEE Computer Society,
2004, pp. 60-67.

[48] J. Kontio, “The Riskit Method for Software Risk Management,
Version 1.00 CS-TR-3782 / UMIACS-TR- 97-38,” University of
Maryland, Maryland 1997.

[49] J. Kontio and V. R. Basili, “Empirical Evaluation of a Risk
Management Method,” in SEI Conference on Risk Management
Atlantic City, Nj, USA, 1997.

[50] B. Freimut, S. Hartkopf, P. Kaiser, J. Kontio, and W. Kobitzsch,
“An Industrial Case Study of Implementing Software Risk
Management,” in Proc. of 8th European Software Engineering
Conference held jointly with 9th ACM (SIGSOFT) International
Symposium on Foundations of Software Engineering, ACM, 2001,
pp. 277- 287.

[51] J. Dhlamini, I. Nhamu, and A. Kachepa, “Intelligent Risk
Management Tools for Software Development,” in Proc. of the
2009 Annual Conference of the Southern African Computer
Lecturers' Association (SACLA 09), ACM, 2009, pp. 33 - 40.

[52] J. Smith, S. Bohner, and D. McCricard, “Project Management for
the 21st Century Supporting Collaborative Design Through Risk
Analysis,” Proc. of 43rd ACM Southeast Conference, ACM, 2005,
pp. 300 - 305.

[53] C. Pan and Y. Chen, “An Optimization Model of CMMI-Based
Software Project Risk Response Planning,” International Journal of
Applied Mathematics and Computer Sciences, vol. 1, 2005, pp. 155
- 159.

[54] SEI-CMMI, “CMMI-SVC,V1.2.” Software Engineering Institute,
http://www.sei.cmu.edu/reports/09tr001.pdf accessed on 30
December 2010.

[55] R. Williams, “The CMMI RSKM Process Area as a Risk
Management Standard,” in Proc. of Sixteenth Annual International
Symposium of the International Council On Systems Engineering
(INCOSE): INCOSE, 2006.

[56] D. Callegari and R. Bastos, “Project Management and Software
Development Processes: Integrating RUP and PMBOK,” in Proc. of
2007 International Conference on Systems Engineering and
Modeling, IEEE, 2007, pp. 1- 8.

[57] W. R. Duncan, “A Guide to the Project Management Body of
Knowledge PMBOK- PMI,” Project management Institute,
Boulevard -Newtown Square, USA 1996.

[58] L. Wallace, M. Keill, and A. Rai, “How Software Project Risk
Affects Project Performance: An Investigation of the Dimensions of
Risk and an Exploratory Model,” Decision Sciences vol. 35, 2004,
pp. 289 – 321.

460

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Privacy by Flexible Parameterization with Erlang Active Objects

Andreas Fleck
Software Engineering Group

Technische Universität Berlin, Germany
Email: andreasfleck@web.de

Florian Kammüller
Middlesex University, London UK and

Technische Universität Berlin, Germany
Email: f.kammueller@mdx.ac.uk

Abstract—Functional active objects are a new paradigm for
the implementation of services. They offer safe distributed
evaluation with futures and immutable objects guaranteeing
efficient implementation of privacy while offering verified
quality assurance based on the functional paradigm and a
development in an interactive theorem prover. In this paper,
we present a novel and highly performant implementation of
functional active objects in Erlang. Besides outlining the guid-
ing principles of the interpreter, we show how secure services
can be realized based on the classical service triangle and prove
its security based on a formal definition of information flow
security for functional active objects.

Keywords-Active object, future, Erlang, privacy, service com-
puting

I. INTRODUCTION

The free lunch is over – as Sutter describes so vividly in
his famous paper [24]. In all realms of modern computing,
we need to distribute to keep up performance. Active objects
combine the successful concept of object-orientation with
the necessary concepts of concurrent processes to make them
fit for this distributed world.

We present an implementation of the novel language
ASPfun for functional active objects in the programming
language Erlang. ASPfun is an computation model that can
be seen as a descendant of the actor model, or more precisely
active objects. Its main specialty is the use of futures to avoid
blocking states while invoking asynchronous methods. Since
no data is shared between active objects, concurrent method
invocation can be simply used without fear of racing. These
features are very similar to the features of services. Hence,
it is possible to formalize complex services in ASPfun and
this fact allows us to transfer ASPfun properties to services.
The Erlang implementation of ASPfun enables a prompt
transfer from an ASPfun configuration to executable code
and so the ”real behavior” can be tested. Besides the highly
performant parallelization of Erlang, this approach supports
privacy enhancing implementations for services. The main
contributions presented in this paper are as follows.

• Functional active objects enable a deadlock free evalu-
ation that implies service invocation in a higher order
fashion. That is, a customer can invoke a service
without needing to provide his private data.

• The use of futures as the machinery behind method
invocation enables a flexible reply to method requests.
In particular, this reply mechanism supports the privacy
enhancing result acquisition described in the previous
point.

• Using Erlang as implementation language we present
a novel future implementation concept where each
future is represented as a process. Thereby, we can
abstract from different future update strategies; the
Erlang ASPfun interpreter stays close to the original
semantics (see Section II-A): since it is functional it
is not forced to sacrifice generality for the sake of
operationality.

• We offer a formal definition of information flow secu-
rity and illustrate its use for the proof of security on
the service triangle – our running example.

In this paper we first provide the prerequisites of this
project: brief introductions to the language ASPfun, currying
in ASPfun, and Erlang (Section II). From there, we develop
the concepts of our implementation of active objects in
Erlang (Section III). We then illustrate how the language
can be efficiently used to implement secure services on
three examples from privacy reflecting our contribution
(Section IV). A formal security definition enables the proof
of privacy for flexible parameterization (Section V). We
finally offer conclusions, position our work, and give an
outlook on further plans (Section VI). This paper extends
the original conference contribution [13] by further details
on the implementation concepts and a formal definition of
security and proof of privacy for the service triangle using
flexible parameterization.

II. PREREQUISITES

In this section, we present the formal definitions of the
language ASPfun and a brief introduction in the concepts
behind Erlang.

A. Functional Active Objects

The language ASPfun [12] is a computation model for
functional active objects. Its local object language is a simple
ς-calculus [1] featuring method call t.l(s), and method
update t.l := ς(x, y)b on objects (ς is a binder for the
self x and method parameter y). Objects consist of a set

461

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

configuration

request queue
t

activity

active object
α

...

...

...

E [fk]

request queue
t'

β

...

...

...

t'.l(s)

Figure 1. ASPfun: a configuration

of labeled methods [li = ς(x, y)b]i∈1..n (attributes are
considered as methods with no parameters). ASPfun now
simply extends this basic object language by a command
Active(t) for creating an activity for an object t. A simple
configuration containing just activities α and β within which
are so-called active objects t and t′ is depicted in Figure
1. This figure also illustrates futures, a concept enabling
asynchronous communication. Futures are promises for the
results of remote method calls, for example in Figure 1,
fk points to the location in activity β where at some point
the result of the method evaluation t′.l(s) can be retrieved
from. Futures are first class citizen but they are not part
of the static syntax of ASPfun, that is, they cannot be
used by a programmer. Similarly, activity references, e.g.
α, β, in Figure 1, are references and not part of the static
syntax. Instead, futures and activity references constitute
the machinery for the computation of configurations of
active objects. Syntactically, we write configurations as
α[Rα, tα] ‖ β[Rβ , tβ] ‖ For example, the configuration
of Figure 1 would be syntactically expressed as α[f0 7→
E[fk] :: Rα, t] ‖ β[fk 7→ t′.l(s) :: Rβ , t

′].

B. Informal Semantics of ASPfun

Local (ς-calculus) and parallel (configuration) semantics
are given by a set of reduction rules informally described as
follows.
• LOCAL: the local reduction relation→ς is based on the
ς-calculus.

• ACTIVE: Active(t) creates a new activity α[∅, t] for
new name α, empty request queue, and with t as active
object.

• REQUEST: method call β.l creates new future fk in
future-list of activity β (see Figure 1).

• REPLY: returns result, i.e. replaces future fk by the
referenced result term s (possibly not fully evaluated).

• UPNAME-AO: activity upname creates a copy of the
activity and upnames the active object of the copy –
the original remains the same (functional active objects
are immutable).

C. Formal ASPfun semantics

We use a concise contextual description with contexts E
defined as usual. Classically we define contexts as expres-
sions with a single hole (•).

E ::= • | [li = ς(x, y)E, lj = ς(xj , yj)t
j∈(1..n)−{i}
j] |E.li(t) |

s.li(E) |E.li := ς(x, y)s | s.li := ς(x, y)E|Active(E)

E[s] denotes the term obtained by replacing the single hole
by s. The semantics of the ς-calculus for (local) objects is
simply given by the following two reduction rules for calling
and updating a method (or field) of an object.

CALL

li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]

j∈1..n.li(b)
]
→ς

E
[
bi{xi ← [lj = ς(xj , yj)bj]

j∈1..n, yj ← b}
] (1)

UPDATE

li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]

j∈1..n.li := ς(x, y)b
]
→ς

E
[
[li = ς(x, y)b, lj = ς(xj , yj)b

j∈(1..n)−{i}
j]

] (2)

The semantics of ASPfun is built over the local semantics
of the ς-calculus as a reduction relation →‖ that we call the
parallel semantics (see Table I).

D. A Running Example from Service Computing

In the following example (an extension of the motivating
example of [11]), a customer uses a hotel reservation service
provided by a broker. This simple example is representative
for service oriented architectures; we refer to it also as
the service triangle. In this triangle, the three activities
hotel, broker, and customer are composed by ‖ into a
configuration. To simplify this example the broker’s search
for a hotel is omitted and we always consider the same hotel
and in addition we abstract from the computation in hotel
that produces the booking reference for the customer. We
concentrate on the message passing implemented in futures
to highlight the actual flows of information in the following
evaluation sequence.

customer[f0 7→ broker.book(date), t]
‖ broker[∅, [book = ς(x, (date))hotel.room(date), . . .]]
‖ hotel[∅, [room = ς(x,date)bookingref, . . .]]

The following step of the semantic reduction relation →∗‖
creates the new future f1 in broker following rule REQUEST.
According to LOCAL, this call is reduced and the original
call in the customer becomes f1.

customer[f0 7→ f1, t]
‖ broker[f1 7→ hotel.room(date), . . .]
‖ hotel[∅, [room = ς(x,date)bookingref, . . .]]

The parameter x representing the self is not used but the call
to hotel’s method room with parameter date creates again
by rule REQUEST a new future in the request queue of the

462

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LOCAL
s→ς s

′

α[fi 7→ s ::Q, t] :: C →‖ α[fi 7→ s′ ::Q, t] :: C
(3)

ACTIVE
γ /∈ (dom(C) ∪ {α}) noFV(s)

α[fi 7→ E[Active(s)] ::Q, t] :: C →‖ α[fi 7→ E[γ] ::Q, t] :: γ[∅, s] :: C
(4)

REQUEST
fk fresh noFV(s)

α [fi 7→ E[β.l(s)] ::Q, t] :: β[R, t′] :: C →‖ α [fi 7→ E[fk] ::Q, t] :: β
[
fk 7→ t′.l(s) ::R, t′

]
:: C

(5)

SELF-REQUEST
fk fresh noFV(s)

α [fi 7→ E[α.l(s)] ::Q, t] :: C →‖ α [fk 7→ t.l(s) :: fi 7→ E[fk] ::Q, t] :: C
(6)

REPLY
β[fk 7→ s ::R, t′] ∈ α[fi 7→ E[fk] ::Q, t] :: C

α[fi 7→ E[fk] ::Q, t] :: C →‖ α[fi 7→ E[s] ::Q, t] :: C
(7)

UPDATE-AO
γ /∈ (dom(C) ∪ {α}) noFV(ς(x, y)s) β[Q, t′] ∈ (α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C)

α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C →‖ α[fi 7→ E[γ] :: Q, t] :: γ[∅, t′.l := ς(x, y)s] :: C
(8)

Table I
ASPFUN SEMANTICS

hotel activity that is immediately reduced due to LOCAL to
bookingreference where the index indicates that date has
been used.

customer[f0 7→ f1, t]]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref〈date〉, . . .]

Finally, the result bookingreference is returned to the client
by two REPLY-steps: first the future f2 is returned from
the broker to the customer and then this client receives the
bookingreference via f2 directly from the hotel.

customer[f0 7→ bookingref〈date〉, t]

‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref〈date〉, . . .]

This configuration can be considered as the final one; at
least the service has been finished. From the perspective of
privacy, it is actually here that we would like to end the
evaluation. Unfortunately, the future f2 is also available to
the broker. So, in an final step the broker can serve himself
the bookingreference as well.

customer[f0 7→ bookingref〈date〉, t]

‖ broker[f1 7→ bookingref〈date〉, . . .]

‖ hotel[f2 7→ bookingref〈date〉, . . .]

The abstract general semantics of ASPfun allows this privacy
breach.

We introduce now a general way of enforcing privacy
by not disclosing private data in the first place. We show
that relying on the ASPfun paradigm guarantees that flexible
parameterization can be used to use services in a private
manner.

E. Currying for ASPfun

The contribution of this paper is a concept more generally
useful for privacy: flexible parameterization – enabling the
use of service functions while not supplying all parame-
ters. For example, in the European project SENSORIA the
COWS calculus has been designed as an extension to the Pi-
calculus to realize correlation, a similarly dynamic service
concept [4].

We have implemented this technique in our Erlang pro-
totype for ASPfun (see Section III) as a pragmatic extension
of the base language. However, as we will show now,
this feature on flexible parameterization can be constructed
conservatively in ASPfun using currying.

Currying is a well known technique in functional pro-
gramming to render functions with several parameters par-
tially applicable. That is, the parameters of a curried function
may be supplied one after the other, in each step returning
a new function.

Recall the definition of curry and its inverse uncurry in
the λ-calculus.

curry ≡ λ f p. f(fst p)(snd p)
uncurry ≡ λ f a b. f(a, b)

Here, (a, b) denotes the product and fst and snd the corre-
sponding projections on a and b respectively. This datatype
is itself definable in terms of simpler λ-terms as follows.

(a, b) ≡ λ f. f a b

fst p ≡ (λ x y. x)

snd p ≡ (λ x y. y)

463

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We recall these classic definitions in order to prepare the
less intuitive definition of currying for the ς-calculus and
hence for ASPfun. In comparison to the ς-calculus, the base
objects of ASPfun differ in that we explicitly introduce a
second parameter to each method in addition to the self-
parameter x. Therefore, when we emulate functions in our
version of the ς-calculus we profit from this parameter
and avoid roundabout ways of encoding parameters.1 As a
prerequisite for having several parameters, we need products.
Compared to the above presented encoding of pairs in the λ-
calculus, pairs in the ς-calculus can make use of the natural
record structure of objects thus rendering a more intuitive
notion of product as follows.

(a, b) ≡ [fst = ς(x, y)a, snd = ς(x, y)b]

fst p ≡ p.fst
snd p ≡ p.snd

We simulate currying of a method f of an object o that
expects a pair p of type α× β as second parameter, i.e.

o = [f = ς(x, p).t]

by extending this object o with a second method fC as
follows.

curry o ≡ [f = ς(x, p)o.f(p),
fC = ς(x, a)[f ′ = ς(y, b)x.f(a, b)]]

F. Erlang

Erlang is a concurrent-oriented functional programming
platform for open distributed telecommunication (OTP) sys-
tems developed by Ericsson corporation. It implements the
actor paradigm by providing message passing as strategy
for communication between several actors implemented as
processes. Processes run fully parallel in Erlang. Each
process has a mailbox where arriving messages are stored.
The programmer can use pattern matching for message
selection. Hence, the behavior of an actor is controllable. If a
process needs an answer its process identifier (PID) has to be
passed through the message. Since memory sharing does not
exist, neither locks nor mutexes are necessary. The code is
grouped in modules which are referred to by their name. So
modulname:functionname(args). starts a function from
a specific module.

A process is created by the spawn-command supplying it
with the process’ function and initial arguments. Erlang sup-
ports also named processes. Using register(Name,PID)

the PID is registered in a global process registry and the
process can be called by its name.

PID = spawn(Func,Args),

1In the ς-calculus the parameter has to be simulated by updating a
separate field in an objects and that consequently needs to be attached
to each object.

PID!Message,
Func(Args)...
receive
Pattern1 [when Guard1] -> Expression1;
Pattern2 [when Guard2] -> Expression2;
...
end.

Above, we show the basics of distribution in Erlang. First,
we start a new process which runs the function Func. Then,
we send a Message to the new process which is identified
by PID. The function Func implements several patterns
for incoming messages. Now, the system tries to match
the arrived message against Pattern1 (and the guard if it
exists). In case of success, Expression1 is evaluated. If the
first pattern fails, the second will be used and so on. Another
fundamental feature of Erlang is the single assignment, as
in algebra, meaning that Erlang variables are immutable.

The main data types are (untyped) lists and records,
called tuple, for example {green, apple} and atoms which
represent different non-numerical constant values. Any lower
case name is interpreted as an atom, any higher case name is
a variable. In addition, there are modules for interoperability
to other programming languages like C, Java or databases.

III. AN ASPFUN INTERPRETER IN ERLANG

Active objects bridge the gap between parallel processes
and object-orientation. Intuitively, we want an object to be
a process at the same time; unfortunately the two concepts
are not identical. Hence, activities are introduced as a new
notion of process containing an active object together with
its current method execution(s).

In this section we describe how the concepts of activities,
active objects and futures are realized on the infrastructure
of Erlang; each concept resides in a separate module.

A. Activity

The first module describes the functionality of an activ-
ity. An activity encapsulates a functional active object to
prevent direct access to it and manage requests simultane-
ously. In a functional language there is no need to make
a sequential plan for execution in contrast to imperative
active objects [6]. All requests are executed in parallel and
run in individual processes. In our Erlang interpreter, the
activity is implemented as a separate process. Following
the ASPfun semantics, an activity contains a request-queue
and the functional active object which are dedicated to the
process. We use the Erlang built-in functionality for send and
receive. This comes in quite naturally to model asynchronous
communication of activities. In fact – as we will see when
implementing futures (see Section III-C) – message passing
is the correct foundation for asynchronous communication
with futures.

To keep the activity alive, the process is called again
after each receive. Any request has to be sent as a tuple
{Caller_PID,request,RequestFunction,Args} where

464

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Caller_PID is the PID or registered name of the calling
process (see Section III-C), the constant request which
is used as pattern in the receive evaluation, the name of
a requested function, and optionally the arguments as tuple
or nil. An activity is now started in Erlang by

ActiveObject_PID = activeObject:start(),
activity:start(Identifier,ActiveObject_PID).

where ActiveObject_PID is the process identifier of the
functional active object to be introduced next.

B. Functional Active Object

The second module specifies the functionality of func-
tional active objects. The active object stores the ς-calculus
methods in an list, where they can identify by a given name.
Deviating from the original notion of immutable objects of
ASPfun, our Erlang implementation is a dynamic ASPfun-
interpreter: ς-calculus methods can be added or deleted on
the fly. Methods can also be declared at runtime or even
be specified in separate modules. In our implementation,
a functional active object is also a process which commu-
nicates with its activity by message passing. The activity
requests a function using its name and the functional active
object replies the function to the activity if it exists. This
fact allows additionally separate distribution of the activity
and the active object. To start an empty functional active
object in our Erlang active object interpreter, we just call
the following function.

ActiveObject_PID = activeObject:start().

To add functionality to this initial functional active object
one can define own functions or use existing Erlang modules.

Foo = fun(Self,{arg1,arg2,...})
-> some calculation, return value

end.
ActiveObject_PID!{add_func,functionname, Foo}.

where functionname is the name which one can use in
other activities. To enable functions as return values, it is
important to add a Self-Parameter. This parameter is set
automatically by our system when distributing functions.

C. Future

The last module represents the implementation of futures.
Futures act traditionally as placeholder for later results
calculated in parallel [6]. In the ASPfun computation model
there is no need to describe the fashion of updating a future
with the calculated value. Furthermore, the evaluation of a
future is possible at any time. This means, the result can be
an value or the current state of the function evaluation. These
facts have to be considered while implementing ASPfun. For
example, the ”on demand evaluation” can be implemented
in Erlang by a watching process for each calculation which
stores the current state. This is not very efficient and in most
cases unnecessary. For the future updating process there exist

activity α

activity γ

request queue

activity β

request queue

future β

future γ

t'

t''

t

p: parallel process which calculates a
specific function for a request and response
the result

request

response

scope of α

p

Figure 2. ASPfun-Erlang: communication flow

several approaches, such as message-based or forward-based
updates [16]. These strategies have in common that they
need to store the relations between activities and futures
[27]. We decided to expand the functionality by implement-
ing the future as a process which also stores the final value.
This concept makes allows a complete separation from the
activity in a parallel manner and presents several advantages.
First, the future is more active and allows the use of message
passing and the distribution by its network identifier. So a
future is unique in the entire configuration and therefore,
there is no need to plan the update-process because other
activities can call the future directly by its network identifier
to get the value. The second advantage is the location of
future creation. In our implementation, the future is created
by the enquiring activity and not by the requested activity.
This augments the privacy of activities by using the future
as a kind of “proxy for communication” between activities.
No activity has to announce itself to others when remote
calculation is needed. The future asks the remote activity
for the requested calculation and waits for the response: it
is a “proxy for communication”. In Figure 2, we illustrate
this communication flow. In our opinion, this approach is the
consequent continuation of an asynchronous communication
concept (cf [5]). In some existing approaches [6], a future is
created and immediately returned by the called activity (in
pseudo-code).

Future localfuture = activity_anywhere_in_www.foo()

However, this call is not really asynchronous because the re-
mote activity might not respond immediately or the message
is lost. As a result, the local activity also blocks. A really
asynchronous solution must therefore use messages instead
of return-values [5]. Our approach works as follows.

Future localfuture = new Future,
localfuture.start(activity_anywhere_in_www.foo())

First, the future is created in the scope of a calling activity
and, then, the communication with the remote activity starts
through the future by messages in an asynchronous manner.
A new future-activity-request in Erlang may be started as

465

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

follows.

newfuture = future:start(activity,functionname,args)

This function call creates a new future, sends a request
message with the identifier of the new future, the function’s
name and the arguments to activity (see Section III-D).
The final value of this local function is the process identifier
of the future. A next advantage is the enforcement of security
policies at the point of communication. The circumstance
that the future is created by the calling activity and stores
the final value (see Section IV-D) allows to enforce security
policies of this activity for requests and responses at one
single point.

D. Function Execution and Evaluation

All functions which are invoked in activities are running
completely parallel in their own processes. By contrast,
imperative active object systems like ProActive or others [9]
use a sequentializing process and the execution runs in the
thread of the activity. A further benefit is that activities do
not freeze in case a function execution blocks. If a function
blocks, only the future evaluation blocks. Therefore, we
have built a second argument into our evaluation function
representing the maximal evaluation time. After that time
span the evaluation returns nil. If and when the result is
ready, the requested activity, that is, the calculating process,
sends a message with the result to the calling future. The
future get the result, stores it and waits for the evaluation
by the activity which starts by

Result = future:evaluate(Future, 10).

Since the evaluation can occur at any time, we have imple-
mented two different cases:
• if the result is finished, it will be returned,
• and, if the result is not ready, the evaluation-process

blocks until the future is updated (wait-by-necessity and
finished after the update).

The result for self can be an ordinary value (tuple, atom,
variable, etc.), a function (higher-order), an activity (a PID

or name) or again a future. In the first three cases, the result
is returned. If the result is itself a future, the evaluation
function evaluate this future and returns this result.

IV. SECURE SERVICES IN ASPFUN

In this section, we will now come back to the running
example of a hotel-broker-service and show that our Er-
lang active object interpreter can model different possible
scenarios. Note, that these scenarios are consistent with
the ASPfun semantics given in Section II. They define just
different strategies corresponding to various privacy goals.
We first show the classical evaluation order where service
results flow back via the invocation structure to the customer.
We then additionally sketch two refinements, where first
the actual service is passed to the customer so he can

communicate directly with the hotel without passing private
data through the broker. Next, we show that our Erlang active
object interpreter makes full use of the functional support:
a customer can use a service by only providing partial
information. Thereby, he can guard private information and
still get some (information about the) service.

Thus, our Erlang active object interpreter2 represents an
implementation of ASPfun in its broadest sense. Various
different more “operational” semantics corresponding to
different security policies can be easily implemented in our
Erlang active object framework. For professional use, the
basic machinery presented in this paper needs to be equipped
with a mechanism for a simplified control over the different
strategies.

A. Classic Service Evaluation

First, we show how the ASPfun example from Section II
looks in “standard” form. Therefore, we define a function
Room where we use the ordinary Erlang syntax including the
named specifications.
Room=fun(Self,{Date})->
BookingRef= database:any_database_call(Date),
BookingRef
end.

This function calls a function at a local database module.
This can take some time. Next, we create a new active object,
add the created function, and instantiate an activity named
hotel which encapsulates the active object.
AO_Hotel = activeObject:start(),
AO_Hotel!{add_func,room,Room},
activity:start(ActHotel,AOHotel),

Thereafter, we define the broker in the same manner, with
the exception that the book function uses the Room function
of hotel and returns a future.
Book = fun(Self,{Date})->
... find a hotel by Date -> return an activity hotel
FutBookingRef=future:start(hotel,room,{Date}),
FutBookingRef
end,

The newly created future sends a message to hotel and
waits for an answer with result. Finally, we define the
customer’s wish.
FutBookHotelRoom =
future:start(broker,book,{Mydate}),
BookingRef = future:evaluate(FutBookHotelRoom)

The arguments is the date on which he wants to book a
room. The created future FutBookHotelRoom sends a mes-
sage to the activity broker which runs the function book.
The function book also creates a future FutBookingRef

to communicate with hotel and returns this to the fu-
ture of customer – similar to the first application of
the rule REPLY in the ASPfun example. After the Room

function has finished, the future FutBookingRef is up-
dated. The evaluation of FutBookHotelRoom additionally

2For the sources http://www.users.cs.tu-berlin.de/~flokam

466

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

calls an evaluate at FutBookingRef which returns the
BookingRef. These two steps represent the second appli-
cation of the rule REPLY in the ASPfun example. In the
case that FutBookingRef is not updated yet, a wait-by-
necessity occurs until FutBookingRef is ready. As in the
original ASPfun example, the broker can evaluate the future
FutBookingRef too because it is in the same scope. This
means that the result is not passed directly to the broker but
there is a potential risk that he can retrieve it.

B. Private Customer Negotiation

In the first extension, the customer has an additional
parameter Name, which should not be shared with the
broker. So in the relation between this special customer
and the untrusted broker our goal is to prevent the untrusted
broker to read the private data. For another customer, the
same broker could be a trusted partner. This behavior can
be defined in individual security policies. To make these
scenarios possible we change the book function and add a
case analysis.
Book = fun(Self,{Date,Name})->
case (Name == nil) of
true ->
whereis(hotel);

false ->
...find a hotel by Date -> return an activity hotel
FutBookingRef=future:start(hotel,room,{Date,Name}),
FutBookingRef

end
end,

So, if the argument Name is missing, the function returns
the network identification of the activity hotel. Now, the
customer can communicate directly with the services of the
hotel.
FutBookHotelRoom =

future:start(broker,book,{mydate,nil}),
ActHotel =future:evaluate(FutBookHotelRoom),
FutBookingRef =

future:start(ActHotel,room,{mydate,myname}),
BookingRef = future:evaluate(FutBookingRef),

The evaluation of the future FutBookHotelRoom returns
now an activity. The customer uses this activity to call
the function Room directly with his private data. In this
example, the broker cannot read the private argument of
the customer. This strategy is simple and intuitive but needs
the knowledge of the inner structure of the web-service. So
the programmer needs to know the interfaces of actually
hidden services. The difficulty grows with the complexity
of the web-service.

C. Privacy by Partial Services

In the second extension, we show another way to im-
plement privacy, now with distributed functions. This time,
the customer also shares the date with the broker and the
date and the name with the hotel. However, the function
book is not modified and calls the function Room with one

argument missing. In the definition of Room, we use a local
database function. This fact does not allow to distribute this
function. To make it again possible, we change the code
slightly using our Self-operator and add a case analysis
because Erlang does not implement currying. Using existing
implementations of currying functors, the following code
could be further improved.
Room=fun(Self,{Date,Name})->
case Name == nil of
true ->

NewFun = fun(MissingName) ->
Args ={Date,MissingName},
future:start(Self,room,Args)
end;

false ->
BookingRef= database:any_database_call(Date,Name),
BookingRef

end
end.

In case argument Name is missing, a new function is defined
which uses the existing argument Date and needs the
missing Name. This function returns a new future which
communicates also with hotel and uses both arguments
the private Name and the public Date. The customer’s wish
looks now as follows.
FutBookHotelRoom =

future:start(broker,book,{Mydate,nil}),
FunctionRoomByName=future:evaluate(FutBookHotelRoom),
FutBookingRef = FunctionRoomByName(myname),
BookingRef = future:evaluate(FutBookingRef),

The evaluation of FutBookHotelRoom returns the function
NewFun which is defined in Room and awaits Name as
argument. The execution of this function returns a new
future which is evaluated by customer and returns the
bookingreference.

D. Subsumption

The three different examples show how privacy can be
implemented by using futures and active objects. As shown
above there are the possibilities to use intermediary activi-
ties, which return futures of others requests. Furthermore, the
result can be an activity allowing to break up the communi-
cation flow. In the last example, we show how functionality
can be transferred/delegated. These basic concepts allow – in
the context of web-services – to implement private services
in a new manner. The concept of partial services is the base
of a new kind of using complex partially trusted services.
The fact that the name is just shared with hotels (or one
of them) and that the date is public can be specified by the
customer in an individual security policy. The implementa-
tion of an active future, the evaluation behavior of futures
and the idea of currying allow to enforce these policies
by using flexible parameterization in the future. The future
knows the current communication partner and can share the
arguments on the basis of the actual security policy. If the
current call is untrusted, private data will not be shared.

467

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[book = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
n → bookingref]

broker.book(date)(n)

t

...

customer

broker

hotel

Figure 3. Private service scenario using currying

Then the behavior of currying will take effect and the result
is a new function of a new communication partner and the
description of them. So, the evaluation will run again and
call the function with the required arguments, depending
on the policy. For the case of the evaluation of a future
by another activity, the future can also check the policy
before returning the result. Another challenge is to avoid an
information flow between requests inside an activity. This is
prevented by Erlang through the no data sharing concept and
in ASPfun through the rule UPDATE. For example, the use
of one generic service which can be cloned and loaded with
private data by clients allows to create a one-to-one relation
between a client and his “private” web service. The generic
service and other private services are then excluded from
the communication of one specific service client relationship
[11].

E. Service Triangle with Currying

To prepare a rigorous privacy analysis, we generalize
the service triangle in an abstract fashion summarizing the
various possible extensions seen above to a “bare bones”
privacy scenario. Now, the function room in hotel has
one additional parameter n for name besides date. This
is to emphasize the privacy issue; wishing to keep your
name n private seems natural; date, by contrast, can be
considered as irrelevant, i.e. low. See Figure 3 for the setup
configuration of this privacy scenario.

Now in the curried version, room can be called just
supplying the first date parameter. The broker still delegates
the partially instantiated request to the hotel (see Figure 4).
Thereby, the customer can then directly access a function
in hotel – via the futures f1 and f2 – that calculates his
bookingref on supplying the missing parameter name (see
Figure 5).

This intuitive idea of a curried version looks in the ASPfun
representation as follows.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
n → bookingref]

f1(n)

t

...

customer

broker

hotel

hotel.room(date)

Figure 4. Partially instantiated request is delegated.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
 n → bookingref]

f1(n)

t

...

customer

broker

hotel

f2

n → bookingref

Figure 5. Customer may retrieve ”bookingref”-function.

data[∅, [id = hugo]]
‖ customer[f0 7→ broker.bookC(d).room’(data.id), t]
‖ broker[∅, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

It can reduce according to the semantics as shown in the
subsequent configurations.3 First, f1 is created in data.

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ broker.bookC(d).room’(f1), t]
‖ broker[∅, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

The call to bookC creates future f2,

3Clearly, there are also other possibilities to reduce, e.g. instead of
evaluating data.id in the first step we could first reduce the call to bookC ,
thereby duplicating data.id. Since ASPfun is confluent up to identical copies,
we always end with the same result.

468

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ f2.room’(f1), t]
‖ broker[f2 7→ hotel.roomC(d),

[bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

which in turn produces a future f3 in hotel where A is an
abbreviation for the active object of hotel.

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ f2.room’(f1), t]
‖ broker[f2 7→ f3, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[f3 7→ [room’ = ς(x′, n)A.room(d, n)],

[room = ς(x, (d, n))bookingref,
roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

Now, we choose to reply first f3 to customer,

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ f3.room’(f1), t]
‖ broker[f2 7→ f3, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[f3 7→ [room’ = ς(x′, n)A.room(d, n)],

[room = ς(x, (d, n))bookingref,
roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

whereby the customer can serve himself by f3 the result-
ing object containing the room’ method from hotel.

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ [room’ =

ς(x′, n)A.room(d, n)].room’(f1), t]
‖ broker[f2 7→ f3, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[f3 7→ [room’ = ς(x′, n)A.room(d, n)],

[room = ς(x, (d, n))bookingref,
roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

Finally, the customer receives by the rule REPLY the id
hugo contained in f1 (see Table I),

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ [room’ =

ς(x, n)A.room(d, n)].room’(hugo), t]
‖ broker[f2 7→ f3, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[f3 7→ [room’ = ς(x′, n)A.room(d, n)],

[room = ς(x, (d, n))bookingref,
roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

and we locally reduce the future f0 in several steps with
the rule for CALL of the ς-reduction (see Section II-A).

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ bookingref〈hugo〉, t]
‖ broker[f2 7→ f3, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[f3 7→ [room’ = ς(x′, n)A.room(d, n)],

[room = ς(x, (d, n))bookingref,
roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

It is crucial to observe that, even if the broker would have
served himself the content of future f3 he would not be able
to produce the result bookingref〈hugo〉. Thus, the program
with currying is secure with respect to a security assignment
that marks broker as low, or an outsider, and thus protects
the privacy of customer. Although the acquired privacy effect
might now seem obvious, it is necessary to find a way
to ascertain it rigorously. Therefore, we introduce in the
following section a formal notion of security for ASPfun and
use it to analyze the security of the server triangle.

V. FORMAL SECURITY PROOF

In this section, we present a formal analysis of security for
the service triangle. We show that the classical solution is
insecure while the one with currying is secure. These formal
proofs apply a formal security definition for ASPfun to show
that no information flows from the private domain of the
client to the public server.

A. Noninterference Definition for ASPfun

Intuitively, noninterference [26] means that an attacker
cannot learn anything about private data by regarding public
parts of a program. To arrive at a formal expression of this
idea for ASPfun, we first define a relation of indistinguisha-
bility, often also called L-equivalence because in this relation
L-terms have to be equal.

We use here the notion of types informally because this
suffices to disambiguate the following bijection. Indeed,
ASPfun has a safe type system [11] that can serve here but
is omitted for brevity.

Definition 5.1 (Typed Bijection): A typed bijection is a
finite partial function σ on activities α (or futures fk
respectively) such that

∀ a : dom(σ). ` a : T ⇒ ` σ(a) : T

(where T is given by an activity type Γact(α) or a future
type Γfut(fk) respectively).
The intuition behind typed bijections is that dom(σ) desig-
nates all those futures or activity references that are or have
been visible to the attacker. We cannot assume the names in
different runs of programs, even for low elements, to be the
same. Hence, we relate those names via a pair of bijections.
These bijections are typed because they relate activities and
futures that might need to be structurally equivalent, in case
they are low. The following definition of indistinguishability
uses the typed bijection in this sense.

We define (low)-indistinguishability as a relation ∼σ,τ
parameterized by two typed bijections one over activity
names and one over futures. It is a heterogeneous relation
as it ranges over elements of different types, for example
activities and request queues. We leave out the types as they
are indicated by our notational convention. By t =σ,τ t

′ we
denote the equality of terms up to replacing all occurrences
of activity names α or futures fk by their counterparts τ(α)

469

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or σ(fk), respectively. The local reduction with→ς of a term
t to a value te (again up to future and activity references)
is written as t ⇓ te.

Definition 5.2 (Indistinguishability): An indistinguisha-
bility relation is a heterogeneous relation ∼σ,τ , parameter-
ized by two isomorphisms σ and τ whose differently typed
subrelations are as follows.

t ∼σ,τ t′ ≡ t ⇓ te ∧ t′ ⇓ t′e

∧ te =σ,τ t′e

α ∼σ,τ β ≡ τ(α) = β

fk ∼σ,τ fj ≡ σ(fk) = fj

[Rα, tβ] ∼σ,τ [Rα, tα] ≡ Rβ ∼σ,τ Rβ ∧ tα ∼σ,τ tβ

Rα ∼σ,τ Rβ ≡ dom(σ) ⊆ dom(Rα) ∧ ran(σ) ⊆ dom(Rβ)
∧∀ fk ∈ dom(σ). Rα(fk) ∼σ,τ Rβ(σ(fk))

C0 ∼σ,τ C1 ≡ dom(τ) ⊆ dom(C0) ∧ ran(τ) ⊆ dom(C1)
∧∀α ∈ dom(τ). C0(α) ∼σ,τ C1(τ(α))

The high part of the program is ignored for the above
L-indistinguishability. That is, it is not part of the typed
bijections σ and τ . Indistinguishability is for H-elements
really something like “indistinguishability undefined”.

Using indistinguishability we define now noninterference
as preservation of “low”-indistinguishability between pairs
of configurations. This is equivalent to saying that the
indistinguishability relation is a (weak low)-bisimulation
[19] over the configuration semantics. “Low” is the set of
all elements (activities and futures) identified as low by the
security assignment and hence in the domain of σ and τ .
The definition of security of an ASPfun configuration is given
with the following definition of noninterference.

Definition 5.3 (Noninterference): Two ASPfun configura-
tions C0 and C1 are called non-interfering with respect to a
security assignment sp represented by σ, τ , if whenever they
are indistinguishable, i.e. C0 ∼σ,τ C1 and C0 →‖ C ′0 there
exists a configuration C ′1 that C1 →∗‖ C

′
1 and C ′0 ∼σ,τ C ′1. A

configuration C is now called secure for sp if C and C1 are
non-interfering for all configurations C1 with C ∼σ,τ C1.

B. Classical Service Triangle is Insecure

Let us now show how the formal definition of information
flow security, i.e. noninterference, is applied by reconsider-
ing our running example of a service triangle.

C0 ≡

data[∅, [id = hugo]]
‖ customer[f0 7→ broker.book(d, data.id), t],
‖ broker[∅, [book = ς(x, (d, n))

hotel.room(d, n), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref, . . .]]

We want to protect the customer’s privacy against the
broker as reflected in the following security assignment sp.

sp ≡ ({data, customer, hotel} 7→ H, broker 7→ L}, {f0 7→ L})

According to the above assumption, the name hugo in
data is thus confidential. To show that the above configura-
tion, say C0, is secure with respect to sp, we have to prove
according to Definition 5.3, that all other configurations C1

that are indistinguishable with respect to σ, τ containing sp,
remain so under evaluation – or – fail in the attempt. In fact,
as this example is insecure, we must fail. Let us consider an
arbitrary configuration C1 with C0 ∼σ,τ C1 as follows.

C1 ≡

δ[∅, [id = ianos]]
‖ γ[g0 7→ β.book(d, δ.id), t],
‖ β[∅, [book = ς(x, (d, n))

α.room(d, n), . . .]]
‖ α[∅, [room = ς(x, (d, n))bookingref, . . .]]

Since C1 is low-indistinguishable to C0 with respect to
sp, we can define σ and τ as a bijection of the low future
and activity references of sp.

τ ≡ {broker 7→ β}
σ ≡ {f0 7→ g0}

Now, in three steps of evaluation of C0 we reach the
following configuration C ′0.

C′
0 ≡

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ f2, hugo), t],
‖ broker[f2 7→ hotel.room(d, hugo),

[book = ς(x, (d, n)) α.room(d, n), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref, . . .]]

A configuration C ′1 can be reached similarly from C1.

C′
1 ≡

δ[g1 7→ ianos, [id = ianos]]
‖ γ[g0 7→ g2, t],
‖ β[g2 7→ α.room(d, ianos),

[book = ς(x, (d, n))α.room(d, n), . . .]]
‖ α[∅, [room = ς(x, (d, n))bookingref, . . .]]

Since the future f0 and g0 are low, the new futures f2
and g2 are low, while the call to the high object data and
δ has created the new futures f1, g1 as high. Now, σ can
only be extended to σ′ = σ ∪ (f2 7→ g2) since it must
remain a bijection of the low futures. However, differing
from the definition of indistinguishability we have for the
request queues

RC′
0
(f2) = hotel.room(d, hugo) 6= RC′

1
(g2) = α.room(d, ianos)

whereby ¬(C ′0∼σ,τC ′1). Since no further reduction of
C ′1 can remedy this, we know by Definition 5.3 that the
configuration C0 is not secure.

470

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Curried Service Triangle is Secure

Now, we reconsider the same example but this time
using the curried call to the booking function in the bro-
ker activity. We use the same security assignment sp =
({data, customer, hotel} 7→ H, broker 7→ L}, {f0 7→ L})
and abbreviate again date by d.

C0 ≡

data[∅, [id = hugo]]
‖ customer[f0 7→ broker.bookC(d).room’(data.id), t]
‖ broker[∅, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[∅, [room = ς(x, (d, n))bookingref,

roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

Now, any other indistinguishable configuration, say C1,
would have at least elements corresponding to the low
elements f0 and broker of C0 because otherwise the bi-
jections σ and τ with f0 ∈ dom(σ) and broker ∈ dom(τ)
were undefinable. In addition, the methods that are called
in the low parts of C1 must be defined even if they are
contained in its high part. So, the least structure we have in
an indistinguishable configuration C1 is up to renaming as
follows, unknown parts marked by dots.

C1 ≡
δ[. . . , [id = . . .]]
‖ . . . [g0 7→ β.bookC(d).room’(δ.id), . . .]
‖ β[∅, [bookC = ς(x, d)α.roomC(d), . . .]]
‖ α[. . . , [. . . , roomC = ς(x, d)[room’ = ς(x′, n) . . .]]

The typed bijections are now σ = {f0 7→ g0} and τ =
{broker 7→ β}. The configuration C0 can now make the
steps we have seen in Section IV-E arriving at the following
configuration C ′0.

C′
0 ≡

data[f1 7→ hugo, [id = hugo]]
‖ customer[f0 7→ [room’ =

ς(x′, n)A.room(d, n)].room’(hugo), t]
‖ broker[f2 7→ f3, [bookC = ς(x, d)hotel.roomC(d), . . .]]
‖ hotel[f3 7→ [room’ = ς(x′, n)A.room(d, n)],

[room = ς(x, (d, n))bookingref,
roomC = ς(x, d)[room’ = ς(x′, n)x.room(d, n)]]]

For any arbitrary C0-indistinguishable configuration C1

described above we know that we can arrive in a similar
configuration C ′1, where α̂ denotes α’s active object.

C′
1 ≡

δ[g1 7→ “value of id” :: . . . , [id = . . .]]
‖ . . . [g0 7→ [room’ = ς(x′, n) . . .].room’(g1), . . .]
‖ β[g2 7→ g3, [bookC = ς(x, d)α̂.roomC(d), . . .]]
‖ α[g3 7→ [room’ = ς(x′, n) . . .] :: . . . ,

[. . . , roomC = ς(x, d)[room’ = ς(x′, n) . . .]]

This parallel reduction C1 →‖ C ′1 might have taken some
more steps than C0 →‖ C ′0 but this is legal for a weak
bisimulation. The bijection τ is updated to τ ′ ≡ τ ∪ {f2 7→
g2}; σ′ = σ. Since

RC′
0
(f2) = f3 ∼σ′,τ ′ g3 = RC′

1
(g2)

we see that the resulting configurations are low-bisimilar,
i.e.

C ′0 ∼σ′,τ ′ C ′1.

That is, the service triangle based on flexible parameteriza-
tion using currying is secure with respect to the security
assignment sp, i.e. preserves the privacy of customer’s
identity from the service broker.

D. Discussion

Concerning the enforcement of privacy policies in dis-
tributed application, the most successful and well-known
approach is the Decentralized Label Model (DLM) of A. C.
Myers [21]. It enables role based enforcement of program
security. In the DLM, explicit labels are used to annotate
elements of programs. These labels specify the principals
that own those program elements as well as who has access
to them. The DLM model is founded as our approach on the
idea of information flow control; the labels serve as types
in a noninterference type systems for static analysis of the
allowed information flows. The main criticism to the DLM
is that it assumes that all principals respect the DLM. We
also consider this as a weakness in particular in distributed
applications where assumptions about remote parties seems
inappropriate. To illustrate this difference: in our example
above the DLM would have assumed that the customer’s
call of book to the broker would also be high and thus be
treated confidentially. Contrarily to this strong assumption
of the DLM, we do not make any assumptions about the
low site. In particular the customer can see everything in his
request queue, be it marked high or low.

Following the earlier paper [15], we follow the philosophy
that private information must not leave the trusted site.
However, this is often too strong an assumption. Consider
again our example as analyzed in this section. The additional
parameter d for the date is considered to be low, thus
not relevant to the security analysis. However, to avoid
invalidating our security analysis, date needs to be constant
in all applications! Otherwise, the broker would note a
difference between changes on the high data. It might seem
from this example that our notion of low-indistinguishability
is too strict. However, in principle, it is correct to reject the
application example if date can differ: since it is a parameter
set by high, its visibility in broker represents a flow of
information from high to low. To overcome this problem,
we should consider a possibility to mark certain terms from
high as “don’t care” in our security model. That is, they are
treated as low values, but their actual value is abstracted to
make them admissible to low-equality. This represents a kind
of down-grading of high values; in our example a “real” date
of arbitrary value would be downgraded by anonymizing it
to a default constant d before passing it on to the broker (this
only for the analysis, the program remains unchanged). Then
the call would pass as before as indistinguishable.

471

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSIONS

We have introduced functional active objects, their im-
plementation in Erlang, and how the Erlang active object
framework can be employed to support privacy in web-
services: using flexible parameterization by currying, we
could prevent illegal information flows of private data. This
claim has been formally justified using a formal definition
for noninterference for ASPfun functional active objects.

A. Related work

In earlier work, we have used Erlang to support privacy
for data enquiries [15]. The current work follows the same
basic philosophy used in this earlier paper as a naı̈ve solution
to the privacy problem in distributed settings: never let the
private data leave the trusted home environment, instead
import all data and search at home. We already discussed
in [15] the implications for the more general setup of
distributed active objects – now finally treated here.

Our implementation of futures is – in comparison – the
most natural as we base it on message passing. Similar to the
ideas recently expressed in Ambient Talk [5], the future is
created by the asynchronous send. In other implementations,
the future is the result of a remote method invocation and
therefore not completely asynchronous: blocking can occur.
The next difference to other future implementations is the
fact that our future is more active. This means that the future
is the active communicator between activities. In addition,
this augments privacy: in the example above, the customer
is always invisible for broker and hotel. In our current
implementation, we decided to declare the future explic-
itly to show the concrete communication and information
flows. Although possible for little examples, it represents a
source of fault for complex programs. The idea to hide the
complete asynchronous communication can be implemented
as a further step. For the time being, it should be seen as a
playground for evaluating different strategies. We believe our
functional parallel approach even allows us to run activities
with circular references without deadlock (because the circle
is formed to a helix).

As already discussed in Section IV, when presenting our
different strategies to support privacy, there is need to enable
users to specify these strategies and consequently to enforce
these privacy requirements based on our implementation.
Concepts similar to Myers’ Decentralized Label Model
(DLM) [20] and the related Java implementation JIF based
on type systems for information flow control are an adequate
means to specify security policies for Java programs and
make them amenable for (mostly) static analysis. However,
as a prerequisite, a formal proof that typing implies the
semantical notion of security, usually noninterference, is
necessary. Myers has only lately come up with (partial) proof
of soundness of JIF [25].

B. Positioning

For open communication systems, such as web-
application and web-services where data and the computa-
tion are commonly distributed, there exist several approaches
to enforce privacy, in particular the protection of private data.
In the scope of local computation, information flow control
[8], [7] – an approved method to protect data sharing in
operating systems – is used more an more. This method,
originally a centralized form of mandatory access control,
has more recently been extended by decentralized aspects
to concern distributed data. A practical implementation is
Myer’s JIF [21] that tags variables by labels represent-
ing owners and readers. The information of a variable is
governed by the security policy that is expressed by these
labels. A special compiler enforces the security policy by
verifying that a program respects its policy. Between verified
programs privacy is secured. As pointed out in Section
V, we doubt that in a distributed setting it is reasonable
to assume that activities stick to the rules. Therefore, our
security model uses much weaker assumptions, and still
enforces privacy using computational methods, like currying,
to enforce data protection. The formal model of currying
presented in Section II-E has already been presented in
[14] but the notion of security presented there has been
further refined in this paper. Here, it is a precise general
bisimulation.

Another approach, which goes one step further, is the use
of cryptographic protocols such as blind signatures and zero
knowledge proof to hide or masquerade real private data. So
data can be protected not just against outsider attacks but
also against attacks caused by the communication partners.
To confirm the cryptographic token a centralized verifier
is needed. We consider this technique an important step
forward because it can be used in addition to techniques
as we use them to support the kind of “downgrading” we
consider as necessary based on the security analysis in
Section V. In that respect, work on integration of typing
techniques for a static security analysis with cryptographi-
cally masked flows, e.g. [18], [17] serves the same purpose
as our approach of protecting confidential parameters via
flexible parameterization.

Complex distributed systems and the provided services
are characterized by being often not completely verified.
A centralized instance to enforce policies is not always
possible or desired and sometimes sharing of private data
is necessary. In the scope of intercommunication between
the parts of a service, there are trusted and untrusted parts.
Of course, programmers can differentiate between trusted
and untrusted parts and split the communication process.
But with the complexity level of the system, this task
becomes more complicated. Our approach tries to implement
privacy without a centralized policy instance, splitting com-
munication processes but sharing private data with trusted

472

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

parties. For the enforcement of these policies inside the local
computation we can rely on existing components like JIF.

Nevertheless, being based on a formal computation model,
i.e. ASPfun, even distributed systems might be amenable to
statically provable security as illustrated in a first approxima-
tion in this paper. With this goal in mind, our further plans
are to define a security type system enabling static analysis
of privacy of an ASPfun program as seen in this paper.
The semantic security definition for ASPfun presented in this
paper can be used as the basis for proving the correctness
of this type system.

REFERENCES

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer,
New York, 1996.

[2] J. Armstrong. Programming Erlang – Software for a
Concurrent World. The Pragmatic Bookshelf, 2007.

[3] H. Baker and C. Hewitt. The Incremental Garbage Col-
lection of Processes. Symposium on Artificial Intelligence
Programming Languages. SIGPLAN Notices 12, 1977.

[4] J. Bauer, F. Nielsen, H. Ries-Nielsen, and H. Pilegaard.
Relational analysis of correlation. In Static Analysis, 15th
International Symposium, SAS’08, volume 5079 of LNCS,
pages 32–46. Springer, 2008.

[5] E. Boix, T. Van Cutsem, J. Vallejos, W. De Meuter, and T.
D’Hondt. A Leasing Model to Deal with Partial Failures
in Mobile Ad Hoc Networks TOOLS, 2009.

[6] D. Caromel and L. Henrio. A Theory of Distributed
Objects. Springer-Verlag, 2005.

[7] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7), 1977.

[8] D. E. Denning. Lattice model of secure information flow.
Communications of the ACM, 19(5):236–242, 1976.

[9] T. Gurrock. A Concurrency Abstraction Implemented for
C# and .NET. Bachelor Thesis. Universität. Paderborn,
2007.

[10] L. Henrio and F. Kammüller. Functional active objects:
Noninterference and distributed consensus. Technical
Report 2009/19, Technische Universität Berlin, 2009.

[11] L. Henrio and F. Kammüller. Functional Active Objects:
Typing and Formalisation. 8th International Workshop on
the Foundations of Coordination Languages and Soft-
ware Architectures, FOCLASA’09. Satellite to ICALP’09.
ENTCS 255:83–101, Elsevier, 2009.

[12] L. Henrio, F. Kammüller, and B. Lutz. ASPfun: A Func-
tional Active Object Calculus. Science of Computer Pro-
gramming, Elsevier. In print, 2011.

[13] A. Fleck and F. Kammüller. Implementing privacy with
Erlang active objects. The 5th International Conference
on Internet Monitoring and Protection, ICIMP’10. IEEE,
2010.

[14] F. Kammüller. Privacy Enforcement and Analysis for
Functional Active Objects. Fifth International Workshop
on Data Privacy Management, DPM’10. Satellite to ES-
ORICS’10. LNCS 6514, Springer, 2011.

[15] F. Kammüller and R. Kammüller. Enhancing Privacy Im-
plementations of Database Enquiries. The Fourth Interna-
tional Conference on Internet Monitoring and Protection.
IEEE, 2009. Extended version: Security Analysis of Pri-
vate Data Enquiries in Erlang. Int. Journal on Advances
in Security, 2(2+3), 2009.

[16] M. Uzair Khan and L. Henrio. First class futures: a study
of update strategies. Research Report RR-7113, INRIA,
2009.

[17] P. Laud. On the computational soundness of cryptograph-
ically masked flows. 35th Symposium on Principles of
Programming languages, POPL’08. ACM 2008.

[18] P. Laud and V. Vene. A type system for computationally
secure information flow. FCT’05, volume 3623 of LNCS,
Springer, 2005.

[19] Robin Milner. Communication and Concurrency. In-
ternational Series in Computer Science. Prentice-Hall,
Englewood Cliffs, New Jersey, 1989. SU Fisher Research
511/24.

[20] A. C. Myers. Jflow: Practical mostly-static information
flow control. In 26th ACM Symposium on Principles of
Programming Languages, POPL’99, 1999.

[21] A. C. Myers and B. Liskov. Protecting Privacy using
the decentralized label model. Transaction on Software
Engineering and Methodology, TOSEM 9:410–442, IEEE
2000.

[22] L. Paulson. ML for the Working Programmer. Cambridge
University Press, 1995.

[23] R. G. Lavender and D. C. Schmidt. An Object Behavioral
Pattern for Concurrent Programming [Online] Available:
http://www.cs.wustl.edu/∼schmidt/PDF/Act-Obj.pdf

[24] H. Sutter. The Free Lunch Is Over – A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal,
30(3), 2005.

[25] L. Zheng and A. C. Myers. Dynamic security labels and
static information flow control. International Journal of
Information Security, 6(2–3), 2007.

[26] J. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. Proceedings of Symposium on Security and
Privacy, SOSP’82, pages 11-22. IEEE Computer Society
Press, 1982.

[27] Muhammad Uzair Khan. A Study of First Class Futures:
Specification, Formalisation, and Mechanised Proofs Uni-
versity of Nice, PhD Thesis, 2011.

473

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automatic Tagging of Art Images with Color Harmonies and Contrasts
Characteristics in Art Image Collections

Krassimira Ivanova
Institute of Mathematics and

Informatics – BAS
Sofia, Bulgaria

kivanova@math.bas.bg

Peter Stanchev
Kettering University

Flint, MI, 48504, USA
Institute of Mathematics and

Informatics – BAS
pstanche@kettering.edu

Koen Vanhoof
IMOB

Hasselt University
Hasselt, Belgium

koen.vanhoof@uhasselt.be

Abstract – In this paper we present a classification of color
harmonies and contrasts, which is consistent with human
perceiving of visual expression. It is conformed to the
possibilities of automatic extraction of visual information from
digitalized copies of art images. The classification is done on
the base of the three main characteristics of the color most
closed to the human perception – hue, saturation and lightness.
Functions for automatic features extraction from digital
images are defined. These functions are realized as part of a
virtual laboratory "Art Painting Image Color Aesthetic and
Semantic" (APICAS). The system can be used by designers
and art students for searching images, having certain
harmonies or contrasts in image collections as well as a for
examining specifics of artists or movements. In future we will
use the system as a Web 2.0 service, which could be included in
a virtual learning environment.

Keywords – Content-Based Image Retrieval; Image content;

Color; Harmonies; Contrasts

I. INTRODUCTION

One of the most felicitous analogies for presenting the
existing semantic gap in area of Content-Based Image
Retrieval (CBIR) can be found in "The Hitch-Hiker’s Guide
to Galaxy" by Douglas Adams. In this story, a group of
hyper-intelligent pan-dimensional beings demand to learn
the "Answer to Life, the Universe, and Everything" from the
supercomputer Deep Thought, specially built for this
purpose. It takes Deep Thought 7½ million years to compute
and check the answer, which turns out to be "42" [2]. The
efforts of covering the semantic gap in CBIR are turned to
avoid these misunderstanding between human perceiving
and the ways of communications and computer manner of
low-level representations.

As it is mentioned in [3], the user questions in image
search are partitioned into three main levels:

Low level – this level includes basic perceptual features
of visual content (dominant colors, color distribution, texture
pattern, etc.). Low-level queries and analysis can support the
retrieval of art images in order to seek some specifics or
common characteristics between artists, schools or
movements.

Intermediate level – this level forms next step of
extraction from visual content, connected with emotional
perceiving of the images, which usually is difficult to express
in rational and textual terms. The visual art is an area, where
these features play significant role. Typical features in this
level are color harmonies and contrasts, because one of the
goals of the painting is to produce specific psychological
effects in the observer, which are achieved with different
arrangements of colors.

High level – this level includes queries according to
rational criterions. In many cases the image itself does not
contain information, which would be sufficient to extract
some of the characteristics. For this reason current high-level
semantic systems still use huge amount of manual
annotation.

Different features' levels imply different ways for
communication between the user and the CBIR system.
When a system uses low-level properties such as color
percentages, color layout, and textures (see the pioneer of the
area QBIC, developed by IBM [4]), the queries do not need
to be described in words. When working with such systems,
the user can select a sample image and the system returns all
images that are "similar" to it. For systems, which operate
with high level features, only choosing a sample or drawing
a sketch and search similar characteristics is not sufficient,
even because such system has to "know" which of
characteristics are targeted by the user. There are two
mutually connected tasks in this area:

 Defining features and terms, which present certain
effect or criterion and describing correlation between
defined concepts;

 Finding appropriate algorithms for generating
metadata, which alone or in combination with
present terminal features and terms will allow
improved image search as well as proposing
adequate methods and tools for establishing
belonging of a sample to same concept.

This paper presents an experimental software system for
intermediate semantic image search based on color
harmonies and contrasts. These ideas were firstly introduced
in [1]. Section 2 stops the attention on the different sides of
the image content. In Section 3 we make an analysis of the
phenomenon of the impact of one color on the perception of
others. In Section 4 we present a hierarchical classification of

474

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different types of harmonies and contrasts in order to be used
as base for further analysis and extraction tools from image
databases. In Section 5 we describe an experimental software
system, which integrates the proposed tools. Section 6
contains experimental results made by the realized system.
Finally, conclusion and future work are presented.

II. TAXONOMY OF ART IMAGE CONTENT

In the last years several efforts have been devoted to the
application of image processing and digital imaging
techniques in order to facilitate museums activities.
Numerous applications have to consider fully or partially
some artworks analysis techniques: e.g., virtual restoration of
artworks, artistic practices studies, art history investigation,
authentication, watermarking, expressive rendering, etc. [5].
From point of view of universal citizen, taking into account
that artwork brings a specific authors' message to the viewer
the computer should provide the ability to present history,
context, and relevance in order to enrich education, enhance
cross-cultural understanding, and sustain one’s heritage and
cultural diversity.

In the field of image retrieval we have faced with
obvious difference between human vision system, which has
evolved genetically over many millenniums, and computer
possibilities, which is limited to processes of capturing and
analyzing pixels. Even in this first step of image recognition
we have a hard task to find appropriate machine algorithms
to represent the picture, which are different of human ways
of perceiving, but that can give similar results for
interpreting the aesthetic and semantic content in the
pictures. Naturally, the interpretation of what we see is hard
to characterize, and even harder to teach a machine. Over the
past decade, ambitious attempts have been made to make
computers learn to understand, index and annotate pictures
representing a wide range of concepts, with much progress.

The unique specific of visual pieces of arts is that they
are created by a cognitive process. It can therefore be
instructive not to only understand the way we look at an
artistic image, but also to understand how a human being
creates and structures his artwork. Each touch to the artwork
causes building the bridge between cultures and times. As
was mentioned in [6] "research on significant cultural and
historical materials is important not only for preserving them
but for preserving an interest in and respect for them".

Different styles in art paintings are connected with used
techniques from one side and aesthetic expression of the
artist from other side. The process of forming artist style is
very complicated process, where current fashion painting
styles, social background and personal character of the artist
play significant role. All these factors lead to forming some
common trends in art movements and some specific features,
which distinguish one movement to another, one artist style
to another, one artist period to another, etc. From other side
the theme of the paintings also stamp specifics and can be
taken into account. The compositions in different types of
images (portraits, landscapes, town views, mythological and
religious scenes, or everyday scenes) also set some rules,
aesthetically imposed for some period.

Trying to put some basis for bridging the gaps between
interpreting the information from human and from computers
several taxonomies of image content as extracted by the
viewer of an image are suggested. Alejandro Jaimes and
Shih-Fu Chang [7] are focused on two aspects of image
content – the received visual percepts from the observed
images and underlying abstract idea, which corresponds to
concepts, connected with the image content. In his brilliant
survey for 2D artistic images analysis Tomas Hurtut [5]
expands taxonomy given by Bryan Burford, Pam Briggs and
John Eakins [8]. He gives profiling of extraction primitives
and concepts accounting the specific of artworks, splitting
image categories into three groups: image space, object
space and abstract space.

In our investigation we consent Hurtut's proposition with
slightly changes of distribution of features in the groups. We
examine image space, semantic space and abstract space.
Image space contains visual primitives, needed to record an
image through visual perception. Image space includes
perceptual primitives (color, textures, local edges), geometric
primitives (strokes, contours, shapes) and design
constructions (spatial arrangement, composition). Semantic
space is related to the meaning of the elements, their
potential for semantic interpretation. Semantic space consists
of semantic units (objects), 3D relationship between them
(scene, perspective, depth cues) and context (illumination,
shadow). Abstract aspects are specific to art images and
reflect cultural influences, specific techniques as well as
emotional responses evoked by an image.

Several big projects addressed the description of the
high-level semantic and abstraction concepts in the art
domain:

 The Getty vocabulary databases [9] are produced
and maintained by the Getty Vocabulary Program.
They contain terms, names, and other information
about people, places, things, and concepts relating
to art, architecture, and material culture. The
vocabularies in this program are: The Art and
Architecture Thesaurus (AAT), the Union List of
Artist Names (ULAN), the Getty Thesaurus of
Geographic Names (TGN), and finally the Cultural
Objects Name Authority (CONA), which expects to
be introduced in 2011;

 WordNet [10] is a large lexical database of English,
developed under the direction of George A. Miller.
WordNet is freely and publicly available for
download. Although it is not domain-specific, it is a
useful tool for computational linguistics and natural
language processing especially for English-
language texts;

 Iconclass [11] is a hierarchical system designed for
art and iconography, developed by the Netherlands
Institute for Art History. It includes the following
main divisions: Abstract, Non-representational Art;
Religion and Magic; Nature; Human being, Man in
general; Society, Civilization, Culture; Abstract
Ideas and Concepts; History; Bible; Literature;
Classical Mythology and Ancient History.

475

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to present properly concepts and their correlation
between low and intermediate levels as well as the
connections to the high level, every system usually creates its
own dataset. This allows implementing the specific elements
of the used methods and tools. Some examples are:

 The "Pictorial Portrait Database" [12] uses a
hierarchical database indexing method based on
Principal Component Analysis. Its description model
is based on the eyes as the most salient region in the
portraits;

 An approach for extraction of low level color
characteristics and their conversion into high level
semantic features using Johannes Itten theory of
color, Dempster-Shafer theory of evidence and fuzzy
production rules is suggested in [13];

 Hering theory of complementary colors is in the
ground of the approach for extracting high level
concepts, proposed by [14];

 The team, headed by R. Jain uses annotation of
paintings based on brushwork, where brushwork is
modeled as part of the annotation of high-level
artistic concepts such as the artist name using low-
level texture [15].

III. HUMAN PERCEPTION OF THE COLOR

From all the senses that connect us to the world – vision,
hearing, taste, smell, and touch – vision is the most
important. More than 80% of our sensory experiences are
visual [16]. When the brain receives a light stimulus it first
interprets form as distinct from background. Figure-ground
separation or pattern recognition is the first cognitive step in
the process of perception. Color plays an important, but
secondary role in recognition. Color responses are more tied
to human emotions than to his intellect. Just this property
makes the colors very powerful source of influence of human
perception. The presence of one or more colors in different
proportions conveys different messages, which can increase
or suppress the perception of the observed objects.

A. Color

The nature of color is in the focus of research by different
science disciplines – Physics studies the power essence of
the color, Physiology is interested in the process of human
eyes perception of specific wavelengths and theirs
transformation to color, Psychology examines the problems
of colors' perception and theirs influence on the mentality,
Mathematics suggests methods for color measurement. The
enormous growth of the number of digital images and videos
in different application areas explains the extensive interest
in developing computer science methods in this area.

Different models for presenting the color have been
created from Antiquity. A detailed survey of color models
was made by the team of Urs Baumann [17]. Different
models serve various domains – from Physics and
Colorimetry; through Painting, Architecture, and Design; to
Digital coding for printers, monitors and TV. The history and

practice show that a perfect color model cannot be created:
one is suitable to supply compact coding and transmitting of
the color characteristics, another is easy perceived from
humans, etc.

From human point of view, it is most easy to define the
color as composition of three components – hue, saturation
and lightness. Hue means the name of the color – red,
orange, etc. Black, grays and white are called achromatic.
Saturation measures the hue intensity or brilliance of a
sample, its dullness or vividness. Lightness refers to relative
light and dark in a sample [16]. Such point of view to the
color facilitates the structuring of color harmonies and
contrasts are evinced in art images.

B. Harmonies and Contrasts

The contrasts are experienced when we establish
differences between two observed effects. When these
differences reach maximal values we talk about diametrical
contrast. Our senses perceive only on the base of
comparison. For instance one segment is short when lays
near long segment and vice versa. In similar way color effect
becomes strong or weak thorough contrasts.

The color combinations called "harmonious" in common
speech usually are composed of closely similar hues, or else
of different colors in the same shades. They are combination
of colors that meet without sharp contrast. As a rule, the
assertion of harmony or discord simply refers to an
agreeable-disagreeable or attractive-unattractive scale.

Many people are observed and examined the influence of
the color each other. Aristotle in his "De meteorologica"
posed questions about different looking of violet near to
white wool and black wool [18]. His questions were
systematically examined and explained later by Michel
Eugène Chevreul.

In 1772 – the same year that Johann Heinrich Lambert
constructed his color pyramid and demonstrated for the first
time that the complete fullness of colors can only be
reproduced within a three dimensional system [19], another
color circle was published in Vienna by Ignaz
Schiffermüller. He was one of the first, who arranged the
complementary colors opposite one another: blue opposite
orange; yellow opposite violet; red opposite green [18].

Leonardo da Vinci (1452-1519) had probably been the
first to notice that when observed adjacently, colors will
influence each other. Goethe, however, was the first who
specifically draw attention to these associated contrasts.

Michel Eugène Chevreul (1786-1889) had continued
resolving the questions for contrast with establishing a law of
"Simultaneous Contrast" [18]. When colors interact, they are
capable of changing in appearance, depending on particular
relationships with adjacent or surrounding colors.
Simultaneous contrast is strongly tied to the phenomenon of
afterimage, also known as "Successive contrast", when the
eye spontaneously generates the complementary color even
when the hue is absent. The explanation of successive
contrast is given in opponent color vision theory, which
acquired its integral view in the works of Ewald Hering in
1872 [18]. Successive and simultaneous contrast suggest that

476

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the human eye is satisfied, or in equilibrium, only when the
complemental relation is established.

The great contribution in revealing effects of color
interactions has Josef Albers (1888-1976). His book "The
Interaction of Color" [20] has proven key to understanding
color relationships and human perception. Albers stated that
one color could have many "readings", dependent both on
lighting and the context in which the color is placed. He felt
that the comprehension of color relationships and
interactions was the key to gaining an eye for color.
According to Albers, we rarely see a color that is not affected
by other colors. Even when a color is placed against a pure
neutral of black, white, or gray, the color is influenced by
that neutral ground. Colors interact and are modified in
appearance by other colors in accordance with three guiding
rules: Light/dark value contrast, Complementary reaction,
and Subtraction.

Johannes Itten (1888-1967) continued theories of Albers.
He was one of the first to define and identify strategies for
successful color combinations [21]. Through his research he
devised seven methodologies for coordinating colors
utilizing the hue's contrasting properties. These contrasts add
other variations with respect to the intensity of the respective
hues; i.e., contrasts may be obtained due to light, moderate,
or dark value. He defined the following types of contrasts:
Contrast of hue, Light-dark contrast, Cold-warm contrast,
Complementary contrast, Simultaneous contrast, Contrast of
saturation, and Contrast of extension (proportion).

C. Artists' color wheel

Usually, in accordance of Johannes Itten proposition, the
color wheel, which represents relations between hues, is
divided in twelve sections. Centers of three equidistance
sections correspond to primary colors. Between them
secondary colors are posed, which from one side are middle
points of two primary colors, and from other side are
complementary to the third color. The quantization is
expanded with the intermediate colors, which lays at
midpoint to adjacent primary and secondary hues.

RED

VI
O

LE
T

BLU
E

GREEN

Y
EL

LO
W

O
R

AN
G

E

Figure 1. Standard artists' color wheel

In Figure 1 the position of the hues in standard artists'

color wheel is shown. This order and correlations between
hues is described in RYB (Red-Yellow-Blue) color model,
used by the artists. Let us mention that this arranging of hues
differs from many of contemporary color models – RGB

(Red-Green-Blue), CMY (Cyan-Magenta-Yellow), HSL
(Hue-Saturation-Luminance), HSV (Hue-Saturation-Value),
based on the defining of colors as primary or secondary in
accordance with trichromatic theory [22].

IV. CLASSIFICATION OF HARMONIES AND CONTRASTS

We present one classification of different types of
harmonies and contrasts, from the point of view of the three
main characteristics of the color – hue, saturation and
lightness.

A. Harmonies/contrasts from point of view of hue

There can be examined two different types of
harmonies/contrast: ones that take into consideration only
disposition of hues each other and others that account exact
hue values and their influence on the human perceiving.

1) Hue harmonies/contrasts based on the disposition of
hues

The figures below shows only relatively disposition of
the colors, not the absolute meaning of the color. Some of
these combinations are discussed in [16] and [23].

a) Monotone compositions: These compositions use one
hue, and image is built on the base of varying of lightness of
color. These images are used to suggest some kind of
emotion since every hue bears specific psychological
intensity;

b) Analogous hues: Analogous hues can be defined as
groups of colors that are adjacent on the color wheel; contain
two, but never three primaries and have the same hue
dominant in all samples;

c) Complementary contrasts: Complementary colors are
hues that are opposite one another on the color wheel. When
more than two colors take part in the composition the
harmonic disposition suggests combination between
analogous and complementary hues;

d) Triads: Three colors that are equidistance on the color
wheel form triad. This means that all colors are primary or
secondary, or intermediate;

477

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

e) Tetrads: The tetrad includes four colors in
equidistance on the color wheel. This contrast produces very
complicated scheme and can lead to disharmony;

f) Achromatic compositions: As a special case, images
composed by black, grays and white tones or contain colors
with very small saturation.

2) Harmonies/contrasts based on the group of hues

(Warm-cold contrast)
Warm and cold are two opposing qualities of hue. Warm

colors are hues around red and orange; cold colors are these
around blue. The terms warm and cold are helpful for
describing families of colors. They can be defined as
follows:

a) Warm: The image is warm when composition is built
from family of warm colors;

b) Cold: By analogy – the image is cold when it is
composed only (or predominantly) with cold colors;

c) Neutral: The composition contains colors mainly from
neutral zones;

d) Warm-cold: The composition lays in this category
when the percentage of cold family is in some proportion to
the percentage of warm family;

e) Warm-neutral: In such compositions there is
proportion between warm colors and neutral ones;

f) Cold-neutral: The image contains cold and neutral
tones in some proportion.

Unlike of hue, which is circular and continuous,

saturation and lightness are linear. That difference
determines different definitions of harmonies for these
characteristics.

B. Harmonies/contrasts from point of view of saturation

This harmony appears together with the hue ones. It is
used to give different perception when the color is changed.
As a whole we can define three big groups of harmonies and
contrasts:

a) Dull: An image can be classified as dull when
composition is constructed mainly from desaturated colors;

b) Clear: Clear images have been build mostly from clear
(spectral and near to spectral, respectively only with varying
in lightness) colors.

c) Different proportion of saturations: Usually in
composition of clear colors in combination of dull ones.
Depending on content of different saturation and of distance
between predominate quantities harmonies can be defined
such as smooth, contrary, etc.

C. Harmonies/contrasts from point of view of lightness

The whole effect of the lightness of the image as well as
light-dark contrast is a very powerful tool in art mastering.
Mainly, an artwork can not contain light-dark contrast – at
that case the image has one integral vibration of the
lightness. In other case sharp light-dark contrast is used to
focus the attention in exact points of the image.

a) Dark: Dark compositions are built mainly from dark
colors;

b) Light: Light images contain mostly colors near white;

c) Different proportion of lightness: Light colors
combined with dark ones compose the image. Depending on
content of different lightness and of distance between
predominate quantities contrasts can be defined as: smooth,
contrary, etc.

V. EXPERIMENTAL SOFTWARE SYSTEM FUNCTIONALITY

An experimental software system for automatic image
descriptor annotation, which corresponds to defined
harmonies and contrasts, was created in the frame of a virtual
laboratory for semantic image retrieval APICAS.

We have used analyses of the images and artists' styles,
made in [18][21][24][25][26] to tune up our algorithms and
parameters.

For the purposes of the system we convert RGB-values
of color of each pixel to values in non-uniformly quantized
HSL-feature space – twelve hues plus one value for
achromatic color, five levels of saturation and five levels of
luminance are identified. The numbers of the layers are
chosen on the base of Itten’s color theory.

The system allows user definitions of the quantization of
the space. Figure 2 shows the screen where the user can set
up quantization for the purposes of further defining of color
harmonies or contrasts. The screenshot is made when
quantization of hue is in accordance with artists' color wheel.
The displacement between correlation of hues in two color
models – RYB and HSL is clearly seen. Current realization
of defining hue dispositions is based on RYB color space.

Figure 2. Screen for set up the quantization parameters and boundaries

478

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The saturation and luminance are quantized in five levels.
The boundaries can be set up by the user. By default, equal
quantization is proposed.

In previous version [1] we have used exact function of
defining the belonging of the color characteristic to
quantizing segment. Now, quantization of colors is made
using fuzzy calculating of belonging of color to
corresponded index (Figure 3). If the position of examined
value is in inner part of one defined segment (more than one
half from the left bound and less than three half from the
right bound) the characteristic is considered to belong to this
segment. In other case (except the endmost parts for
saturation and lightness), part of the characteristic is
considered to belong to this segment and the rest part is
considered to belong to the adjacent segment. For receiving
that part a linear function, which reflects the decreasing of
belonging of that characteristic to the segment, is used.

Figure 3. Fuzzy function for calculating quantization part

of color characteristic

Taking into account our earlier examination of the

distribution of color components in art paintings [27] we
make normalization of the colors in respect of hue
distribution (Figure 4). This normalization allows
simplifying of comparing presence of color characteristic
values in further stages.

Figure 4. Average distribution of hue component in art paintings

As a result, every picture is represented with three

dimensional array containing coefficients of participation of
colors with correspondingly measured characteristics of the
picture.
A={A(ih,is,il)|ih=-1,...,NH-1; is=0,...,NS-1; il=0,...,NL-1}

Here NH=12 and corresponds to the number of
quantized colors in Ittens' circle. "-1" index percentage of
achromatic tones; "0" to "NH-1" points percentage of colors,
ordered as it is shown on Figure 1, starting from reds and
ending to purples.

In our examination NS=5 . Index "0" holds percentage of
grays and almost achromatic tones, and "4" contains
percentage of pure (in particular – spectral) tones.

For indexing of luminance we use NL=5 also. "0" holds
percentage of very dark colors, and "4" contains percentage
of very light colors.

On the base of this array for simplification of further
calculation in some cases three arrays, containing percentage
values of corresponding characteristics in the picture is
calculated. These arrays are:

 H (h-1, h0, … , hNH-1) for hues;
 S (s0, …, sNS-1) for saturation;
 L (l0, …, lNL-1) for lightness.

A. Hue order vector

This vector contains number of dominant hues nh, and
positions of dominant hues, ordered in decreasing
percentage. nh can vary from zero for achromatic paintings,
to maximal defined dominant colors. For the purposes of
defining hue harmonies maximal dominant colors are
restricted in this example to 5. When image is not achromatic
the value of nh is defined as the number of ordered hues,
which sum of the percentages exceed some (expert-defined)
value x.

(nh; p1, p2, …, pnh),
nh{0, …, 5}
pi {-1, …, NH-1} and

i i+1p ph h , i{1, … , nh-1}

1

1

1 1

1

 <
:

i i

p

n n

p p

i i

nh if h x

nh n if h x and h x
nh

B. Hue harmony/contrast, based on disposition

For defining hue harmonies/contrasts first we define:

2 2

2 2
()

p NH div if p NH div

p NH div if p NH div
opposite p

1 0

1 {1, ..., 1}
_ ()

NH if p

p if p in NH
l neighbour p

0 1

1 {0, ..., 2}
_ ()

 if p NH

p if p in NH
r neighbour p

_ () (3) mod l triad p NH p NH div NH

_ () (3) mod r triad p p NH div NH

(4) mod _ () NH p NH div NHl tetrad p
(4) mod _ () p NH div NHr tetrad p

The values of the hue harmony depend from the number

of dominant hues nh:

479

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 nh=0:

Achromatic: the composition is constructed by black, white
and gray tones. This construction can be examined as special
case of monochromatic harmony;

 nh=1:

Monochromatic: only one hue predominates in image;

 nh=2:

Analogous: when p2=l_neighbour(p1) or p2=r_neighbour(p1);

Complementary: when p2=opposite(p1);

Partial Triad: when p2=l_triad(p1) or p2=r_triad(p1);

 nh=3:

Analogous: if for one of dominant hues pi (i{1,…,nh}) is
fulfilled that the other two colors are l_neighbour(pi) and
r_neighbour(pi) respectively;

Split complementary: if for one of dominant hues pi
(i{1,…,nh}) is fulfilled that the other two colors are
l_neighbour(opposite(pi)) and r_neighbour(opposite(pi));

Triad: if for one of dominant hues pi (i{1,…,nh}) the other
two colors are l_triad(pi) and r_triad(pi);

 nh=4:

Analogous: if for one of dominant hue pi (i{1,…,nh}) is
fulfilled that one of the other three colors pj
(j{1,…,nh}, ji) pj=l_neighbour(pi) or pj=r_neighbour(pi)
and other two colors are l_neighbour(pj) and
r_neighbour(pj);

Double Complementary: if for one of dominant hue pi
(i{1,…,nh}) is fulfilled that one of the other three colors pj
(j{1,…,nh}, ji) pj=opposite(pi) and other two colors are
l_neighbour(pi) and l_neighbour(pj) or r_neighbour(pi) and
r_neighbour(pj);

Split Complementary: if for one of dominant hue pi
(i{1,…,nh}) is fulfilled that one of the other three colors pj
(j{1,…,nh}, ji) pj=opposite(pi) and other two colors are
l_neighbour(pj) and r_neighbour(pj);

Tetrad: if for first hue p1 the other hues are l_tetrad(p1),
opposite(p1), r_tetrad(p1) respectively;

 nh=5:

Multicolor: here can be searched the presence of defined
combinations discarding one of the colors.

C. Cold/warm contrast

For defining cold/warm contrast the system compares
percentage values of families of colors pwarm, pcold, and
pachromatics. We have take into account the fact of changing the
type of some color in dependency of its saturation and
lightness [28]. Because of this we calculate the values of
pwarm, pcold, and pachromatics on the base of three-dimensional

array A . The strongest contrasts points is the warmest "red-
orange" (ih=1) and the coolest "blue-green" (ih=7). We use
semi-linear function of including colors in warm,
respectively cold family, whit following properties:

 all achromatic values (ih=-1) and very desaturated
colors (is=0) are added to achromatic family;

 increasing the lightness in desaturated colors (is=1,2)
leads to increasing of coldness. For instance dark
desaturated colors is added in warm family from
magenta to orange-yellow (ih in {11, 0, 1, 2, 3}), but
from light ones only red and red-orange are added
(ih in {0, 1}). Conversely, dark colors added to cool
family are only these near blue-green
(ih in {6, 7, 8}); increasing the light expands the
range and in cool family from lightest yellow-green
to lightest blue-magenta (ih in {5, 6, 7, 8, 9}) and
half of neighbors are included (ih in {4, 10});

 colors with middle saturation (is=3) include stable
families of warm colors (ih in {0, 1, 2, 3}) and cold
colors (ih in {6, 7, 8});

 for saturated colors (is=4) increasing the lightness
cause expanding of both families of warm and cold
colors. For instance for dark saturated colors in
warm family belongs from magenta to orange-
yellow (ih in {11, 0, 1, 2, 3}), while in light
spectrum half of their neighbors also are included
(ih in {10, 4}).

The image is defined as warm, cold, or neutral if
corresponding value is greater than some threshold. If none
of these values exceeds given parameters, the image is
warm-cold, warm-neutral, cold-neutral according to order of
decreasing of corresponded values.

D. Saturation order vector

This vector contains number of dominant saturations ns
(ns{1,…, NS}), and positions of dominant saturations,
ordered in decreasing percentage. The value of ns is defined
as the numbers of ordered saturations, which sum of the
percentages, exceed some value y.

(ns; p1, p2, …, pns),
ns{1, …, NS}
pi {0, …, NS-1} and

i i+1p ps s , i{1, … , ns-2}

1

1

1 1

1 s

:

i i

p

n n

p p

i i

ns if y

ns n if s y and s y
ns

E. Saturation combinations

If ns=1 the picture is defined as monointense. If ns>1
some combinations of presence of dominant saturations can
be outlined. For instance, if p0 and pNS-1 are dominant
saturations, the image can be defined as contrary;
if saturations are adjoining – the feature is smooth, etc.

480

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Clear/dull contrast

Depending of the global lightness of the image the
saturation distribution of the image is possessed in another
attribute, which can receive values as soft or sharp for light
images, ground or spectral for images with medium
lightness and dull or clear for dark images.

G. Lightness order vector

This vector (nl; p1, p2, …, pnl) is defined in the same way
as the saturation order vector. It contains number of
dominant lighting values nl (nl{1,…, NL}), and their
positions, ordered in decreasing percentage.

H. Lightness combinations

These values are defined in the equal manner as
saturation ones – the same function are used; only
corresponding parameters are changed.

I. Light/dark contrasts

The attribute, which receives values for light-dark
contrast depends of user defined threshold of darkness and
lightness. The images, which hold l0 more than given dark
threshold, are identified as very dark. Dark images are these
for which l0+l1 exceed this threshold. Similarly, the images
with l4 receive value very light and these for which l3+l4
exceed the threshold are light. Depending of distribution of
lightness, images can be categorized as dark-light, light-
dark, middle, etc.

VI. EXPERIMENTAL SOFTWARE SYSTEM REALIZATION

The proposed tools for automatic annotation of the
images with harmonies' and contrasts' descriptors are
realized as part of a virtual laboratory for image retrieval
"Art Painting Image Color Aesthetic and Semantic"
(APICAS).

A. Data entry

The system operates with images in JPEG-format.
Images, stored in one directory, form a collection.

The user can choose the specific collection by changing
the working directory. The system automatically scans the
collection and extracts features. The user can refine setting of
some parameters or boundaries (see Figure 2), which
provoke recalculating of the corresponded descriptors.

The files, used in these collections, contain in their names
the information about the artist and the name of the stored
painting. The system extracts the names of the picture and
the artist and, using a small thesaurus with information about
the artists (dates of birth and death; countries; movement;
periods), connects these metadata, extracted by the context,
to information for the pictures. This way for automatic
metadata extraction is applied in order to ensure easy way for
making the experiments and analyzing the results.

B. Access

The extracted descriptors (from the content and from the
context) can be observed in a grid. The user can sort it by
any selected feature. Pointing on the exact image, the user
can see all extracted metadata, connected to this image – an
example is given on Figure 5.

Figure 5. Results of calculating of types of harmonies/contrasts

for the picture "Annunciation" by Botticelli

The user can set different conditions on the extracted

descriptors and receive the images that satisfy these
conditions. The results can be obtained in two forms:

 in thumbnail form, where the images can be seen.
An example of such result is shown on Figure 6;

 in a file, where selected images can be additionally
batched using other features, selected by user.

The system allows searching within a collection of
images, which has specific combination of the colors,
defined by some harmony or contrast.

Figure 6. Result of retrieval from the image base with parameter:

"Dark/light contrast = Light"

481

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another part of the system allows creating a datasets,
containing extracted attributes or selected part of them
labeled with chosen profile such as artist name, movement,
scene-type. These datasets can be used for further analysis by
data mining tools for searching typical combinations of
characteristics, which form profiles of artists or movements,
or reveal visual specifics, connected to the presented
thematic in the images.

VII. EXPERIMENT RESULTS

For our experiments we have used a dataset that includes
600 paintings of 18 artists from different movements of
West-European fine arts and one group, which represent
Orthodox Iconographic Style from Eastern Medieval Culture
(Table 1). The paintings were chosen by an art expert
reviewer. He has included in the collection the most valuable
paintings for every movement. The pictures were obtained
from different web-museums sources using ArtCyclopedia as
a gate to the museum-quality fine art on the Internet [29].

TABLE I. LIST OF THE ARTISTS, WHICH PAINTINGS WERE USED IN
EXPERIMENTS, CLUSTERED BY MOVEMENTS

Movement Artist

Icons (60) Icons (60)

Renaissance (90) Botticelli (30); Michelangelo (30); Raphael (30)

Baroque (90) Caravaggio (30); Rembrandt (30); Rubens (30)

Romanticism (90) Friedrich (30); Goya (30); Turner (30)

Impressionism (90) Monet (30); Pissarro (30); Sisley (30)

Cubism (90) Braque (30); Gris (30); Leger (30)

Modern Art (90) Klimt (30); Miro (30); Mucha (30)

A. Distribution of some harmonies/contrasts in art
paintings

Here some examples of distribution of defined features
by movements or artists styles are presented.

In these experiments we have used HSL-artist color
model with fuzzy calculating of belonging of color to
corresponded index.

Figure 7 shows the distribution of images from different

movements, based on cold/warm contrast. The high
predominance of warm paintings in ICON style can be
explained with the orthodox tradition for using gold paints as
well as red color, which is main symbol of sacrificing and
martyrdom. The big presence of dark warm colors is specific
for the Baroque. Presenting the nature in paintings is typical
for the Romanticism, which leads to forcing the presence of
cold (green and blue) tones. This tendency increases in the
Impressionism. Intensive study of nature led the
Impressionists to an entirely new color rendition. Study of
sunlight, which alters the local tones of natural objects, and
study of light in the atmospheric world of landscape,
provided the Impressionist painters with new essential
patterns [21].

Figure 7. Distribution of paintings,

grouped by movements, based on cold/warm contrast

Figure 8 shows the distribution of lightness in paintings

from different movements. The big presence of dark colors
and dark-light contrast is typical for Baroque. This is
connected with using the techniques of oil-paints, which
gives very deep dark effects in the paintings from one side
and with typical using of light-dark contrast in this
movement. This fact is connected not only with searching of
maximal expression with applying this tool in the paintings,
but also with the practice of this epoch to paint in the candle
lights in studios [18].

Figure 8. Lightness distribution of paintings,

grouped by movements

Figure 9 shows the distribution of images in different

movements, based on the first dominant hue. As we have
observed in our previous work [27] the colors around orange
are frequently dominant colors in the paintings in classic art.
More modern movements tend to use different colors as
dominant.

482

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Distribution of paintings,

grouped by movements, based on first dominant hue

Figure 10 shows the distribution of hue contrasts in the

paintings, clustered by authors.

Figure 10. Percentage of different hue contrasts in the paintings of

examined movements

As we can see partial triads are used in a lot of cases of

natural paintings, for instance Pissarro and Sisley. The triads
exist in paintings with scene presentation from authors,
which techniques are based mainly on hue contrasts, such as
Botticelli and Goya. Monochromaticity and analogous
harmonies are presented in artworks of painters, where other
key expressions are used, for instance light-dark contrast in
Baroque artists, gradient expressions in Braque style, Miro's
abstract paintings, etc. [26].

B. Analysis of combination of defined features

The collective of Institute of Mathematics and
Informatics in Bulgarian Academy of Sciences has created
data mining environment system PaGaNe [30]. Using the

associative rule miner, realized in PaGaNe we have made
more complicated analysis for extracting combinations of
extracted features typical for examined artists. For instance,
for more than one third of paintings, combinations of four
attributes are presented in Table II.

TABLE II. COMBINATIONS OF FOUR ATTRIBUTES, WITH MORE THAN
33.33% SUPPORT FOR EXAMINED ARTISTS

Artist 4-items combinations support

CARAVAGGIO

Sat. Harmony =3-SMOOTH
Lum. Harmony =2-SMOOTH
Warm-cold contrast =WARM-NEUTRAL
Clear-dull contrast =CLEAR-DULL

33.33

GRIS

Hue Harmony =PARTIAL TRIAD
Sat. Harmony =4-VARIETY
Lum. Harmony =3-SMOOTH
Dark-light contrast =MIDDLE

36.67

GRIS

Hue Harmony =PARTIAL TRIAD
Lum. Harmony =3-SMOOTH
Clear-dull contrast =SPECTRAL-GROUND
Dark-light contrast =MIDDLE

33.33

ICON

Hue Harmony =ANALOGOUS
Lum. Harmony =3-SMOOTH
Warm-cold contrast =WARM
Dark-light contrast =MIDDLE

35.00

ICON

Hue Harmony =ANALOGOUS
Sat. Harmony =3-SMOOTH
Warm-cold contrast =WARM
Dark-light contrast =MIDDLE

31.67

MUCHA

Hue Harmony =ANALOGOUS
Sat. Harmony =3-SMOOTH
Lum. Harmony =3-SMOOTH
Warm-cold contrast =WARM

36.67

MUCHA

Hue Harmony =ANALOGOUS
Sat. Harmony =3-SMOOTH
Lum. Harmony =3-SMOOTH
Clear-dull contrast =SPECTRAL-GROUND

33.33

MUCHA

Hue Harmony =ANALOGOUS
Lum. Harmony =3-SMOOTH
Warm-cold contrast =WARM
Clear-dull contrast =SPECTRAL-GROUND

33.33

RUBENS

Hue Harmony =ANALOGOUS
Sat. Harmony =3-SMOOTH
Lum.Harmony =2-SMOOTH
Warm-cold contrast =WARM

33.33

REMBRANDT

Hue Harmony =ANALOGOUS
Warm-cold contrast =WARM
Clear-dull =CLEAR-DULL
Dark-light =DARK

40.00

REMBRANDT

Warm-cold contrast =WARM
Hue harmony =ANALOGOUS
Clear-dull contrast =CLEAR-DULL
Sat. Harmony =1-MONOINTENSE

36.67

REMBRANDT

Warm-cold contrast =WARM
Clear-dull contrast =CLEAR-DULL
Lum. harmony =1-MONOINTENSE
Dark-light =DARK

33.33

Such approach of extracting rules from frequent datasets

as well as their extension in the direction of class association
algorithms can be used for defining semantic profiles of
observed phenomena – movement, artists style or thematic,
connected with abstract space of the taxonomy of the art
image content, discussed by T. Hurtut [5].

483

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSION AND FUTURE WORK

In this article we presented a novel and more complete
classification of color harmonies by three main
characteristics of the color, which is most close to the human
perception. We used this classification in a designated
software tool, which extracts the defined features from an
image.

The next step will be to extend these concepts, adding
texture features, which will allow us to address additional
definitions of contrasts, presented in Ittens' theory.

One of the directions for future work will be to conduct
experiments for the educational use of the resource and build
a service, which could be included in a virtual learning
environment and will allow student to search for similar
images.

Another future application of the method and tool
presented in the article is to integrate it in image databases as
a service for generation of tags for use within Web 2.0
services. The huge amount of digital objects and the
metadata bottleneck are well known; such a system will not
produce the human social tagging but could generate image-
characteristics tags like ‘greenish’, ‘scarlet’, ‘pale’, ‘dark’,
which will be useful in image searches.

This makes the presented tool a natural component
within the virtual laboratory for semantic image retrieval.
The work presented here provides a good basis for these
subsequent developments.

ACKNOWLEDGMENT

This work is partially financed by Bulgarian National
Science Fund under the project D002-308/19.12.2008
"Automated Metadata Generating for e-Documents
Specifications and Standards".

REFERENCES
[1] Kr. Ivanova, P. Stanchev, "Color harmonies and contrasts search in

art image collections", First International Conference on Advances in
Multimedia MMEDIA, 20-25.07.2009, Colmar, France, pp. 180-187.

[2] D. Adams, The Hitch-hiker’s Guide to Galaxy, Pan Macmillan, 1979.

[3] V. Castelli, L. Bergman (eds.), Image Databases: Search and
Retrieval of Digital Imagery, John Wiley & Sons, 2002.

[4] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker,
"Query by image and video content: the QBIC system", Computer,
1995, pp. 23-32.

[5] T. Hurtut, 2D artistic images analysis, a content-based survey, 2010,
http://hal.archives-ouvertes.fr/hal-00459401_v1/, 10.01.2011.

[6] C.-C. Chen, H. Wactlar, J. Wang, K. Kiernan, "Digital imagery for
significant cultural and historical materials – An emerging research
field bridging people, culture, and technologies", International Journal
Digital Libraries, 5(4), 2005, pp. 275–286.

[7] A. Jaimes, S.-F. Chang, "Concepts and techniques for indexing visual
semantics", Image Databases: Search and Retrieval of Digital
Imagery. V. Castelli and L. D. Bergman, John Wiley & Sons, 2002,
pp. 497-565.

[8] B. Burford, P. Briggs, J. Eakins, "A taxonomy of the image: on the
classification of content for image retrieval", Visual Communication,
2(2), 2003, pp. 123-161.

[9] Getty Vocabulary Program,
http://www.getty.edu/research/conducting_research/vocabularies/,
10.01.2011.

[10] WordNet: a lexical database for the English language,
http://wordnet.princeton.edu/, 10.01.2011.

[11] Iconclass, http://www.iconclass.nl/, 10.01.2011.

[12] C. Saraceno, M. Reiter, P. Kammerer, E. Zolda, W. Kropatsch,
"Pictorial portrait indexing using view-based eigen-eyes",
D. Huijsmans and A. Smeulders (eds), Visual Information and
Information Systems, Lecture Notes in Computer Science, vol. 1614,
1999, pp. 649-656.

[13] P. Stanchev, D. Green Jr., B. Dmitrov, "High level color similarity
retrieval", International Journal on Information Theories and
Applications, vol.10, Num.3, Sofia, 2003, pp 283-287.

[14] J. Lay, L. Guan, "Retrieval for color artistry concepts", IEEE Trans.
on Image Processing 13, 3, 2004, pp. 326-339.

[15] Y. Marchenko, T. Chua, R. Jain, "Semi-supervised annotation of
brushwork in painting domain using serial combinations of multiple
experts", Technical Report, NUS, Singapore, 2006.

[16] L. Holtzschue, Understanding Colors, John Wiley & Sons, 2006.

[17] Color museum, ©Echo Productions, http://www.colorsystem.com/,
10.01.2011.

[18] J. Gage, Colour and Culture: Practice and Meaning from Antiquity to
Abstraction, Thames and Hudson, London, 1993.

[19] W. Spillmann, "Color systems", Color Consulting, H. Linton, New
York, 1992, pp. 169-183.

[20] J. Albers, Interaction of Color, Yale University Press; Revised
edition, 1975.

[21] J. Itten, The Art of Color: the Subjective Experience and Objective
Rationale of Color, Reinhold Publishing Corporation of New York,
1961.

[22] A. Colman, A Dictionary of Psychology, 2nd ed., Oxford University
Press, Oxford, 2006.

[23] L. Eiseman, Color: Messages and Meanings. A PANTONE Color
Resource, Hand Books Press, 2006.

[24] R. Arnheim, Art and Visual Perception: A Psychology of the Creative
Eye, University of California Press, Berkeley, 1974.

[25] M. Walch, A. Hope, Living Colors – The Definitive Guide to Color
Palletes through the Ages, Chronicle Books, San Francisco, 1995.

[26] B. Koenig, Color Workbook, Prentice Hall, Third edition, 2010.

[27] Kr. Ivanova, P. Stanchev, B. Dimitrov, "Analysis of the distributions
of color characteristics in art painting images", Serdica Journal of
Computing, vol.2, num.2, Sofia, 2008, pp. 111-136.

[28] K. Clark, Civilisation – a Personal View. British Broadcasting
Corporation, London and John Murray, London. 1969.

[29] ArtCyclopedia: The Guide to Great Art on the Internet,
http://www.artcyclopedia.com/, 10.01.2011.

[30] I. Mitov, K. Ivanova, K. Markov, V. Velychko, K. Vanhoof,
P. Stanchev, "PaGaNe – a classification machine learning system
based on the Multidimensional numbered information spaces", In
Intelligent Decision Making Systems, WSPS on Computer
Engineering and Information Science, No:2, pp. 279-286, 2009.

484

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS,
CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

