

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 2, no.4, year 2009, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 2, no. 4, year 2009,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2009 IARIA

International Journal on Advances in Software

Volume 2, Number 4, 2009

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

 Meikel Poess, Oracle, USA

 Hermann Kaindl, TU-Wien, Austria

 Herwig Mannaert, University of Antwerp, Belgium

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France

 Sven Apel, University of Passau, Germany

 Kenneth Boness, University of Reading, UK

 Hongyu Pei Breivold, ABB Corporate Research, Sweden

 Georg Buchgeher, SCCH, Austria

 Dumitru Dan Burdescu, University of Craiova, Romania

 Angelo Gargantini, Universita di Bergamo, Italy

 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany

 Jon G. Hall, The Open University - Milton Keynes, UK

 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands

 Hermann Kaindl, TU-Wien, Austria

 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore

 Herwig Mannaert, University of Antwerp, Belgium

 Roy Oberhauser, Aalen University, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Eric Pardede, La Trobe University, Australia

 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe

 Robert J. Pooley, Heriot-Watt University, UK

 Vladimir Stantchev, Berlin Institute of Technology, Germany

 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan

 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

 Michael Grottke, University of Erlangen-Nuremberg, Germany

 Josef Noll, UiO/UNIK, Sweden

 Olga Ormandjieva, Concordia University-Montreal, Canada

 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania

 Liviu Panait, Google Inc., USA

 Kenji Saito, Keio University, Japan

 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India

 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France

 Jameleddine Hassine, Cisco Systems, Inc., Canada

 Sascha Opletal, Universitat Stuttgart, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Meikel Poess, Oracle, USA

 Kurt Rohloff, BBN Technologies, USA

 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France

 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France

 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria

 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

 Qiming Chen, HP Labs – Palo Alto, USA

 Ela Hunt, University of Strathclyde - Glasgow, UK

 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain

 Chih-Cheng Hung, Southern Polytechnic State University, USA

 Jianhua Ma, Hosei University, Japan

 Milena Radenkovic, University of Nottingham, UK

 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil

 Marius Slavescu, IBM Toronto Lab, Canada

 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA

 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy

 Krzysztof Rogoz, Motorola, USA

 Sergio Soares, Federal University of Pernambuco, Brazil

 Alin Stefanescu, SAP Research, Germany

 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore

 Ann Dunkin, Hewlett-Packard, USA

 Tejas R. Gandhi, Virtua Health-Marlton, USA

 Lars Moench, University of Hagen, Germany

 Michael J. North, Argonne National Laboratory, USA

 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden

 Edward Williams, PMC-Dearborn, USA

International Journal on Advances in Software

Volume 2, Number 4, 2009

CONTENTS

Design of a Decoupled Sensor Network Architecture Based on Information Exchanges

Eli De Poorter, Ghent University - IBBT, Belgium

Ingrid Moerman, Ghent University - IBBT, Belgium

Piet Demeester, Ghent University - IBBT, Belgium

300 - 312

Extending a Time-Triggered System by Event-Triggered Activities

Josef Templ, University of Salzburg, Austria

Johannes Pletzer, University of Salzburg, Austria

Wolfgang Pree, University of Salzburg, Austria

Peter Hintenaus, University of Salzburg, Austria

Andreas Naderlinger, University of Salzburg, Austria

313 - 322

Enabling Effective Dependability Evaluation of Complex Systems via a Rule-Based

Logging Framework

Marcello Cinque, Università degli Studi di Napoli Federico II, Italy

Domenico Cotroneo, Università degli Studi di Napoli Federico II, Italy

Antonio Pecchia, Università degli Studi di Napoli Federico II, Italy

323 - 336

The Impact of Source and Channel Coding in the Communication Efficiency of Wireless

Body Area Networks

Richard Mc Sweeney, University College Cork, Ireland

Christian Spagnol, University College Cork, Ireland

Emanuel Popovici, University College Cork, Ireland

Luigi Giancardi, University of Genoa, Italy

337 - 348

Multi-level Security in Wireless Sensor Networks

Faruk Bagci, University of Augsburg, Germany

Theo Ungerer, University of Augsburg, Germany

Nader Bagherzadeh, University of California, Irvine, USA

349 - 358

Temporal Robustness of Real-Time Architectures Specified by Estimated WCETs

Lamine Bougueroua, LRIT ESIGETEL, France

Laurent George, LACSC ECE, France

Serge Midonnet, Université Paris-Est, France

359 - 371

Design of a Decoupled Sensor Network Architecture
Based on Information Exchanges

Eli De Poorter Ingrid Moerman Piet Demeester
Ghent University - IBBT, Department of Information Technology (INTEC)

Gaston Crommenlaan 8, Bus 201, 9050 Ghent, Belgium
Email: eli.depoorter@intec.ugent.be

Abstract

Sensor networks are used for simple monitoring appli-
cations, but also for complex applications, such as wire-
less building automation or medical assistance. Cur-
rent layered architectures do not support the dynamic and
heterogeneous nature of these networks. Therefore, we
present an alternative architecture that decouples protocol
logic and packet representation. Using this system, multi-
ple information exchanges are automatically combined in
a single packet. In addition, the system dynamically selects
the most optimal network protocols and supports system-
wide quality-of-service. Thus, our architecture is bet-
ter suited for next-generation applications. We illustrate
our architecture with several code examples, and prove
that our architecture is much more scalable, in terms of
memory requirements, energy requirements and process-
ing overhead, than tradition system architectures.

Keywords: wireless sensor networks, sensornet architec-
ture; system architecture; QoS; energy efficiency; heterogene-
ity; protocol selection

1 Introduction

Sensor nodes are small and cheap devices that can mon-
itor their environment. They are equipped with a simple
radio to communicate with other sensor nodes. Due to their
low cost, many sensor nodes can be distributed over an area.
Over the last years, many wireless sensor networks (WSNs)
have been deployed to monitor nature and office environ-
ments [2].

This article extends the paper ‘An Information Driven Sen-
sornet Architecture’ [1]. It adds illustrative code examples,
it elaborates on several design choices and it provides addi-
tional evaluation results.

Due to these successes, other application domains have
expressed a strong interest in using WSNs for more com-
plex tasks. More sophisticated applications, such as process
monitoring and control, wireless building automation, med-
ical monitoring, disaster intervention or asset tracking, also
benefit greatly from the use of many cheap sensor devices.
However, the number of successful deployments of these
applications is far less [3].

These next-generation applications impose many net-
work requirements which are not found in traditional
WSNs.

• To provide sufficient end-user support, a WSN must be
easy to update and maintain. Run-time addition of new
services and network protocols should be supported.

• WSNs will become heterogeneous [4], containing both
simple nodes (such as light switches) and more com-
plex nodes (such as heating controllers).

• Additionally, QoS requirements can no longer be ig-
nored [5]. Medical, security and surveillance applica-
tions require that each application has its own set of
specific QoS requirements.

• Since future applications will require even smaller
nodes, new ways have to be found to ensure that net-
work protocols have a very small memory footprint.

• Since most sensor nodes are battery powered, energy
efficiency remains very important.

At present, there is no architecture that supports all of
these challenges. As stated by Culler et. al: “the primary
factor currently limiting progress in sensornets is not any
specific technical challenge but is instead the lack of an
overall sensor network architecture” [6].

Therefore, in this paper, we present an information
driven architecture (‘IDRA’) for wireless sensor networks.
This framework is specifically designed to support next-
generation WSN applications. It takes into account the
heterogeneity of the sensor nodes and supports energy-
efficiency and QoS at an architectural level. What’s more,

300

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

the proposed architecture can be made fully compatible
with existing legacy sensor networks.

The remainder of this paper is organized as follows. In
Section 2, we discuss the design philosophy behind our in-
formation driven system architecture. Section 3 clarifies
how such an information driven architecture can be imple-
mented. Next, in Section 4, we demonstrate how this archi-
tecture can be used to support energy efficiency, QoS, het-
erogeneity and legacy networks. In Section 5, we discusses
possible shortcomings of the architecture. We describe our
implementation experiences in Section 6 and evaluate the
performance of our system in Section 7. Next, in Section 8,
we compare the architecture with existing sensornet archi-
tectures. Finally, Section 9 concludes this paper.

2 What is an information driven architec-
ture?

The main responsibility of a network protocol is to en-
sure that information is relayed to the correct destination.
However, in practice, a network protocol has many respon-
sibilities that are not directly related with its main func-
tion. Each protocol layer must (i) define a message format
(including header and trailer fields), (ii) provide buffers to
temporarily store packets and (iii) gather information from
other nodes.

We argue that this approach is very inefficient. It makes
no sense that every individual protocol layer has to bear
the burden of gathering information, providing buffers and
implementing header manipulations. Common sense indi-
cates that such functions, which are implemented multiple
times in the system, should be implemented in a shared li-
brary. Furthermore, the same information is often gathered
by multiple protocols, each time resulting in an additional
information exchange.

Therefore, we propose a system in which protocol design
is based on ‘information exchanges’. The role of a network
protocol is simplified to its 2 main tasks: sending informa-
tion and interacting with the relayed information. Packet
creation and buffer provisioning are delegated to the archi-
tecture. This way, network protocols are simpler and require
less memory.

3 Design of an information driven architec-
ture

In this section, we describe how such an information
driven architecture can be implemented. A conceptual rep-
resentation is given in Figure 1.

Activate
protocol

Pluggable protocols

Send
Parameter

Receive
Parameter

Hardware Abstraction Layer (HAL)

Parameter
sending

System

Parameter
dispatching Protocol selector

Parameter Parameter

Parameter flow

Packet flow

Configuration

Neighbor
discovery

MAC

Parameter
Extraction Shared queue

Routing

Application

Register
protocol

Packet
Creation

All interactions with packets happen through a packet façade. Thus,
protocols do not require any knowledge about how the actual packet

is constructed

MAC

Routing

...

Add / read
parameter

Packet
façade

Select
correct

implemen-
tation

Network
protocols

Figure 1. In an information driven architecture,
protocols exchange information with the system,
and rely on the system to create and send pack-
ets.

3.1 Information exchanges

Network protocols often exchange information with a re-
mote node. Typical examples of exchanged information are:

• measured data values, such as the local temperature;

• status updates, such as the remaining battery capacity;

• or control information such as a route-request.

Using our information driven approach, network protocols
do not create a new packet to send these types of informa-
tion to a remote node. Instead, they rely on the system to
send and receive information.

To send information to a remote node, the protocol hands
over an information parameter to the system, together with
the required destination (Fig. 1, ‘Parameter sending’). The
system will create a new packet and ensures that the param-
eter is encapsulated into this packet.

To receive information from other nodes, network proto-
cols indicate to the system what type of parameters they are
interested in. Whenever a packet arrives at its final desti-
nation, the system decapsulates the information parameters
and distributes them to the interested protocols (Fig. 1, ‘Pa-
rameter dispatching’).

301

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The main advantages of transferring the creation of pack-
ets to the system are: (i) the system can ensure that redun-
dant control information is sent only once; (ii) protocols
are simpler since they do not need to implement memory
operations for manipulating header fields; and (iii) by com-
bining multiple information parameters into a single packet,
the number of required packets decreases drastically (Sec-
tion 4.1).

3.2 Shared queue

Traditional networks use a ‘store-and-process’ approach,
where each network protocol stores the packets in an inter-
nal queue before processing. Each protocol layer requires
these queues because packets may be passed up or down
faster than they can be processed. Thus, the total amount of
buffer memory increases linearly with the number of proto-
col layers.

In contrast, in the information driven architecture, in-
coming packets are stored in a system-wide queue (Fig. 1,
‘Shared queue’). The system selects which packets are
ready for processing by a network protocol so that one-
after-another the protocols can process the packets.

The use of a shared, system-managed queue has several
advantages: (i) protocols are simpler and smaller since they
do not have to allocate queue memory; (ii) packets do not
need to be copied between protocols, resulting in less pro-
cessing overhead; (iii) since the queue occupation from all
protocols is averaged, less total queue memory is required;
and (iv) monitoring and managing the total number of pack-
ets in the system is simpler.

3.3 Packet façade

Traditional network protocols encapsulate packets in
header fields. These header fields contain information
which can only be read by the protocol that created the
packet header. In our information driven architecture, a
packet façade (Fig. 2) is responsible for packet creation.

The system uses the packet façade to create new, stan-
dardized packets. Information parameters are encapsulated
in the payload of the created packet and stored in the shared
queue.

Network protocols use the packet façade to interact with
relayed packets. Protocols add or retrieve packet attributes,
such as ‘source’, ‘destination’, ‘QoS ID’ or ‘time-to-live’.
These packet attributes fulfill the same role as traditional
header fields, but are more dynamic: they can be omit-
ted or added freely without redefining the packet struc-
ture. Moreover, packet attributes have a system-wide sig-
nificance: they can be inspected by the system or any other
protocol.

Activate
protocol

Pluggable protocols

Send
Parameter

Receive
Parameter

Hardware Abstraction Layer (HAL)

Parameter
sending

System

Parameter
dispatching Protocol selector

Parameter Parameter

Parameter flow

Packet flow

Configuration

Neighbor
discovery

MAC

Parameter
Extraction Shared queue

Routing

Application

Register
protocol

Packet
Creation

Through a packet façade, protocols interact with packets. Protocols
do not require any knowledge about the actual packet construction.

MAC

Routing

...

Add / read
parameter

Packet
façade

Select
correct

implemen-
tation

Network
protocols

In an information driven architecture,
protocols exchange information with the

system, and rely on the system to
create and send packets.

Figure 2. Through a packet façade, protocols in-
teract with packets. Protocols do not require any
knowledge about the actual packet construction.

The packet façade uses a separate ‘packet implementa-
tion’ module to convert the attributes of a packet into an ac-
tual radio packet. Thus, the system and the protocols do not
need to worry about the actual storage of the control infor-
mation associated with a packet. Developers can choose to
use one of the existing ‘packet implementation’ modules, or
provide their own (propriety) packet implementation. This
way, the packet type can be changed without any changes
to the system or the protocols: protocol logic and packet
representation are decoupled.

Using a separate packet façade has the following advan-
tages: (i) protocol development is simplified since there
is no need to define headers; (ii) packet attributes have a
system-wide significance and can be inspected by any pro-
tocol or architecture; (iii) since protocols are not tied to a
specific packet implementation, the encompassing packet
type can easily be changed or optimized (e.g.: 6lowpan,
IEEE802.15.4 or a custom packet).

3.4 Pluggable protocols

The traditional OSI reference model [7] uses a non-
flexible layered architecture: packets are sent to a prede-
termined protocol layer. In contrast, the information driven
architecture does not statically wire packets to a specific
protocol. The system decides at run-time which proto-
cols should be selected to process incoming packets (Fig. 1,
‘Protocol selector’).

To be selected for packet processing, a protocol must
register itself by adding filters to the system. These filters
indicate for which packet types the protocol is optimized.
Through the packet façade, the system checks if the charac-
teristics of the arriving packets match any of the registered
filters, and selects the appropriate network protocols to pro-
cess the packet. When no filters match, a default routing or
MAC protocol is chosen.

This approach has the advantages that multiple, special-
ized network protocols can be combined in the same sys-

302

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

tem. For example, a routing protocol implements an effi-
cient broadcast algorithm. It registers itself for all packets
that are broadcasted over the network. Another routing pro-
tocol delivers high QoS guarantees. It can add a filter to
indicate that it is optimized for routing voice packets.

‘Plugging’ in protocols, rather than statically wiring
them, has several advantages. (i) Since many applications
have diverse network requirements, the architecture is able
to dynamically change between different routing or MAC
protocols at run-time. The optimal protocol is selected
by the system based on the network context or the packet
type [8]. (ii) Run-time insertion of protocols is supported.
(iii) Legacy systems can be supported (Section 4.4). More
system-specific implementation details can be found in Sec-
tion 6.

4 Exploiting the concept

Current system architectures are not designed to support
energy-efficiency, QoS, heterogeneity or legacy networks.
Traditionally, support for these advanced features is very
complex and requires major changes to the underlying sys-
tem architecture. The lack of architectural support for QoS
and heterogeneity is a major obstacle that hampers the de-
ployment of many next-generation applications for WSNs.

In the next sections, we demonstrate how these features
can easily be implemented at an architectural level in our
information driven system.

4.1 Energy efficiency

Since energy is scarce in sensor nodes, wireless sensor
networks aim to transmit as few packets as possible. To
this end, ‘measured data’ from different nodes can be com-
bined into a single packet by data-aggregation protocols [9].
This data-centric approach has several limitations: (i) data
aggregation is application dependent; (ii) aggregation pro-
tocols are often coupled to a specific routing protocol; (iii)
data aggregation is limited to the measured ‘data’, it does
not include other exchanged control messages; (iv) data that
originates from different applications can not be aggregated.

We claim that this approach should be broadened so that
all types of information exchanges are aggregated. Many
information exchanges between nodes are not very time-
sensitive, such as status information, remaining energy in-
formation, or low-priority routing information. As such, it
is reasonable to assume that some of these packets can be
delayed for a short amount of time before being sent. When
a protocol requests the sending of a parameter, the protocol
should also give an indication of the time-sensitivity of the
parameter.

The system collects the information parameters in the
waiting space of a central repository (Figure 3). Delay-

tolerant parameters can remain in the waiting space for up
to a per-parameter predefined period of time. Whenever
a packet is relayed through the node, all information pa-
rameters to the same ‘next hop’ or ‘destination’ address are
added to the packet. If no data has been relayed within the
allowed waiting time, the system generates a new packet
which combines all parameters that are destined for the
same node. Finally, when a packet reaches its final destina-
tion, the system will distribute the encapsulated information
parameters to the interested protocols.

Architectural aggregation

Sh d

Traditional system

Packet

Packet
IN

A li i

Packet
IN

ng

Subscribing
Application

Shared queue

st
in
at
io
n)

prioritypriority

Protocol 1

Packet
Forwarding

Application

m
et
er
 S
en

di
nApplication

Subscribing
Protocol 1

as
si
fie

r (
D
e

tin
g
Sp
ac
e

Protocol k

…

Pa
ra
m

Subscribing
Protocol k

Cl
a

W
aiProtocol k

Queue

(a) (b)

Packet
O
U
T

Packet
O
U
T

(a) (b)

Figure 3. Extending the data aggregation concept.
(a) Traditional architecture. (b) Architecture with
support for global aggregation.

For a more in-depth analysis, we refer to [10], where
it is shown that, ideally, the number of transmissions can
be lowered by a factor, equal to the number of information
parameters which can be combined in a single packet. In
contrast with traditional aggregation schemes [9, 11], this
approach is part of the architectural design. As a result, the
network developer can combine this approach with any type
of routing protocol, and information from all layers can be
aggregated, rather than just application data.

4.2 Architectural QoS

QoS guarantees are required by many medical, security,
critical monitoring and control applications. However, cur-
rent QoS research focuses mainly on one of the network lay-
ers and solves only a few of the application requirements.
As stated by Troubleyn et al. in [5], QoS should be sup-
ported in both the protocols and the architecture. Only then
can system-wide QoS be guaranteed.

The information driven architecture is very suited to sup-
port architectural QoS. Through the packet façade, the sys-
tem can read the QoS attributes of any relayed packet. Since
all packets are stored in a shared packet queue, the system
can monitor all available packets. This gives the system a

303

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

clear view on the expected delay of each packet. QoS can
be supported by giving precedence to packets with a higher
QoS level, or by intelligently dropping non-priority pack-
ets. To fulfill QoS requirements, a QoS protocol can put
the processing of low-priority packets on hold, even when
those packets are currently being processed by a protocol.
Finally, the architecture supports multiple protocols, so that
high-priority packets which require strict QoS guarantees
can be processed by specialized protocols.

4.3 Heterogeneity support

Applications such as process and asset monitoring, dis-
aster intervention and wireless building automation require
special devices (‘actuators’), which can interact with the en-
vironment [2, 4]. Thus, future sensor networks will consists
of nodes with strongly diverging capabilities.

In a layered architecture, every sensor node needs to sup-
port the same protocol stack. Since no protocols can be
omitted or added, the layered approach has limited support
for heterogeneity. When using an information driven archi-
tecture, packet attributes remain associated with a packet,
whether or not the protocol that added them is executed.
Thus, the system can choose to omit non-essential protocols
from nodes with little capabilities (Figure 4). The system
can also choose to execute different, more simple protocols
on lightweight nodes. These protocols can add their own
packet attributes or can reuse the packet attributes that were
added by previous protocols. This flexibility ensures that
our architecture is suitable for both high capacity and low
capacity nodes.

Computing
node

Basic modules

Advanced
routing

Advanced
transmission

Position
discovery

Actuator

Basic modules

Advanced
routing

Interest
management

Advanced
node

Basic modules

Advanced
routing

Advanced
transmission

Lightweight
node

Basic modules

Interest cache

Data
aggregation

Network
Monitoring

Multi-interest

Mobility

Figure 4. Depending on their capabilities, the num-
ber of protocols can be varied

4.4 Legacy support

One of the main problems new architectures face, is that
they are not backwards compatible with existing infrastruc-
ture. Traditionally, the only solution is the installation of a
translation node through which all communication passes,
which results in a very inefficient network use.

The information driven architecture allows legacy nodes
and IDRA nodes to communicate directly by supporting (i)
legacy packet types, and (ii) a legacy MAC protocol.

Legacy packets can be supported transparently for the
new protocols by providing the corresponding ‘packet im-
plementation’. This implementation should store the rele-
vant control parameters at the expected header locations of
the legacy packets.

The legacy MAC protocol can be ported to the new ar-
chitecture. By registering it as the optimal MAC protocol
for neighboring legacy nodes, the ‘protocol selector’ will
always select the correct MAC protocol to send packets to
the legacy nodes.

5 Disadvantages

In the next section, we discuss some possible disadvan-
tages of using an information driven architecture.

5.1 Protocol-defined packets

In an information driven architecture, the system defines
how packets are constructed. In addition, messages defined
by the radio, such as ACKs, are supported through the trans-
mission settings library.

However, some MAC protocols use custom-defined
packet types (such as ‘strobes’) for their operation. Cur-
rently, the architecture does not allow network protocols to
send self-defined packets. We feel that allowing this would
take away many advantages of the packet façade approach.
Asynchronous MAC protocols can still be implemented by
sending the same packet multiple times.

If further research indicates that support for protocol-
defined packets is absolutely required, a library will be
added that allows a protocol to send and receive a self-
defined packet. Of course, these self-defined packets can
not profit from many of the advantages of the information
driven approach (such as reuse of packet parameters, effi-
cient combination of exchanged information, and the de-
coupling of protocol logic and packet representation).

5.2 Standardization

An information driven architecture strongly benefits
from an approach that standardizes both the information pa-
rameters and the attributes that are associated with a packet.

304

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

An information parameter represents information that is
exchanged between protocols or applications on different
nodes. Information parameters are often of interest to sev-
eral protocols (for example: the remaining energy of neigh-
boring nodes). When an already existing, standardized in-
formation parameters is added to the waiting space of the
system, the corresponding value is updated. The informa-
tion parameter is sent only once, rather than once for every
interested protocol.

A packet attribute represents packet-associated informa-
tion that is required to route a packet to its destination. Typ-
ical examples are a ‘next hop’ or a ‘time-to-live’ attribute.
Standardizing control parameters ensures that they can be
read by all network protocols, and that the system is aware
of the properties of each packet.

6 Implementation

The presented information driven architecture (‘IDRA’)
has been implemented using the TinyOS [12] operating sys-
tem. Run-time addition of protocols is currently not sup-
ported, since TinyOS does not support dynamic code up-
dates.

6.1 Internal workflow

Figure 5 shows the internal workings of the architecture.
The shared queue is the central component of the architec-
ture. Each packet in the shared queue has an associated
packet status. Depending on the status of a packet, the fol-
lowing actions can be taken.

Pre-processing is executed once for each arriving packet.
During pre-processing, duplicate packets and packets
with a different next hop address are dropped. Also,
when the packet reaches its final destination, the en-
capsulated information parameters are extracted and
distributed to the interested protocols.

Processing is executed next. The ‘Protocol selector’ mod-
ule analyzes the packet and selects the most optimal
network protocol based on the packet characteristics
(see Section 6.2).

Post-processing Packets that have been processed by the
network protocols are prepared for sending. Relevant
packet attributes (such as the sender address) are up-
dated. Also, if parameters to the same next hop ad-
dress or destination address are available, they are ag-
gregated to the packet.

Ready For Sending After post-processing, the packets re-
main in the shared queue until the MAC protocol or-
ders the system to send the packet.

6.2 Protocol sequence

When using a traditional layered architecture, arriving
packets must first be stripped of their headers before they
can be processed. Therefore, packets go through the pro-
tocol stack twice: once from the bottom to the top to re-
move the packet headers, and a second time from the top to
bottom to actually process the packets. In the IDRA sys-
tem, network protocols can access any packet information
through the packet façade. Thus, there is no need to execute
each protocol layer twice.

There is no fixed call sequence for the protocols since
multiple protocols can co-exist on the same node. Depend-
ing on the protocol filters (see Section 3.4), the most optimal
network protocol is selected. The algorithm for protocol se-
lection is very simple so that it can be implemented even on
lightweight nodes.

1. First, all interested monitoring protocols are executed.
A monitoring protocol is considered interested if at
least one of its filters match the current packet.

2. Afterwards, the most optimal routing protocol is exe-
cuted. This is the network protocol with most match-
ing filters (or, in the case of a tie, the first protocol that
registered itself).

3. Finally, the most optimal MAC protocol is executed.
This is the network protocol with most matching filters
(or, in the case of a tie, the first protocol that registered
itself).

The network protocols are always executed in the same
order. Once a protocol finishes processing a packet, it sig-
nals one of the following return values to the system:

SUCCESS The network protocol finished successfully; the
next protocol can be executed.

FAIL The network protocol can not process the packet; the
packet should be dropped from the shared queue.

EBUSY The network protocol is not yet ready to process
the packet; the protocol will be called again at a later
time.

6.3 System libraries

A vertical component is available to the architecture
(Fig. 5, ‘module interactions’). Through this component,
the following system provided libraries are available:

Information Exchange: through this interface, protocols
can distribute information parameters to other nodes
and receive information parameters from other nodes.
The system converts the information parameters into a
packet.

305

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Activate
protocol

Pluggable protocols

Send
Parameter

Receive
Parameter

Hardware Abstraction Layer (HAL)

Parameter
sending

System

Parameter
dispatching Protocol selector

Parameter Parameter

Parameter flow

Packet flow

Configuration

Neighbor
discovery

MAC

Shared queue

Routing

Application

Register
protocol

In an information driven architecture,
protocols exchange information with the

system, and rely on the system to
create and send packets.

Module
interactions

Settings

Settings

Information
Exchange

Destination
Check

Duplicate
Detection

Packet
Creation

Parameter
piggybacking

Parameter
Extraction

Update
Sender

System
Settings

Transmission
settings

Settings

Packet
implementation

(6lowpan)

Packet
Facades

Packet
implementation

(802.15.4)

Packet
implementation

(propriety)

Information
repository

Neighbor table

Profile
database

Node and
network

information

Figure 5. The information driven architecture (‘IDRA’).

Packet Façade: the packet façade is used to interact with
system-created packets. Packet attributes can be added
or read.

Protocol Selection: protocols can add filters to this compo-
nent to indicate for which packet types the protocol is
optimized.

System Settings: through this interface, modules change or
read system settings, such as the node ID or the current
battery voltage.

Transmission Settings: through this interface, protocols
manage the sending of packets. It has provisions for
(i) requesting how many packets from the shared queue
are ready to be send, (ii) ordering the system to send a
specific packet, and (iii) changing the radio settings.

6.4 Example code

In this section, we show how these libraries can be used
to create a new network protocol. A simple routing pro-
tocol for broadcast packets is shown in Table 1. First, the
network protocol registers itself as a routing protocol that is
optimized for broadcast packets. Whenever the system se-
lects this routing protocol for processing a packet, the net-
work protocol uses the packet façade to update the packet
attributes.

A second example is shown in Table 2 and demonstrates
the implementation of a simple MAC protocol. Through
the ‘Transmission Settings’ library , radio settings such as
the transmission power and channel can be changed. Even
though packets are send by the system, the MAC protocol

306

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Module BroadcastRouting{

// 1. Declaration of variables
uint8 t moduleID=unique(“protocol”);
uint8 t ttl=0;

// 2. The protocol registers itself as a routing protocol suitable for broadcast packets
command error t Module.init(){

call ProtocolRegistration.addFilter(moduleID, ROUTING PROTOCOL,
DESTINATION, 2, EQUALS, BROADCAST ADDR);

return SUCCESS;
}

// 3. Executed when the protocol is selected for routing a broadcast packet
command void Module.processPacket(uint8 t moduleId, void* packet){

if(moduleId == moduleID){

// 3.1. Get the time-to-live of the packet
result=call PacketFacade.getPacketAttribute(packet, TIME TO LIVE, sizeof(ttl), (void*) &ttl);

// 3.2. If the time-to-live equals zero: drop the received packet.
if(ttl==0) signal Module.processPacketDone(moduleId, packet, FAIL);

// 3.3. Otherwise, update the time-to-live and broadcast the packet againa.
else{

ttl=ttl-1;
call PacketFacade.setPacketAttribute(packet, TIME TO LIVE, sizeof(ttl), (void*) &ttl);
signal Module.processPacketDone(moduleId, packet, SUCCESS);

}
}

}
}

aA more advanced implementation should also check for duplicate packets to prevent broadcast storms.

Table 1. Example code: a simple broadcast routing protocol.

remains in control of sleeping schemes and accurate timing
of the sending. The MAC protocol can request at any time
which packets are ready for sending and order the system to
send a specific packet.

7 Evaluation

In this section, we evaluate three key criteria of our ar-
chitecture: the memory footprint, the energy efficiency and
the processing overhead.

7.1 Memory footprint

The memory footprint of the different components of the
architecture is shown in Table 3. The entry ‘Other system
components‘ refers to the implementation of preprocessing

Component ROM RAM
Information exchanges (Section 3.1) 800 585
Shared queue (Section 3.2) 1330 2560
Packet façade (Section 3.3) 1402 6
Protocol selection (Section 3.4) 206 234
Radio support (HAL) 8892 322
Other system components 7606 1637

Total 20236 5344

Table 3. Memory footprint (in bytes) of the different
architectural components of the system.

and postprocessing functions, QoS provisions and a shared
neighbor table. The full architecture requires about 20kb

307

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Module SimpleMAC{

// 1. Get a unique protocol ID
uint8 t moduleID=unique(“protocol”);

// 2. The protocol registers itself as a general purpose MAC protocol
command error t Module.init(){

call ProtocolRegistration.addFilter(moduleID, MAC PROTOCOL,
0, 0, 0, 0); // default protocol

call alarmClock.startPeriodic(200); // Every 200 msec, the protocol checks if packets are ready to be sent
return SUCCESS;

// 3. Regularly check if a packet is ready for sending
event void alarmClock.fired(){

if(call TransmissionSettings.checkNumberOfPackets() > 0) {
call TransmissionSettings.sendPacket();

}
}

// 4. Inform the system that the packet can be removed from the shared queue
event void TransmissionSettings.sendPacketDone(uint32 t timestamp, error t result){

if(result==SUCCESS) call TransmissionSettings.removeLastSentPacket();
}

}

Table 2. Example code: a simple MAC protocol.

Protocol name ROM RAM
TOS2.1 MAC [12] 11528 320
SCP-MAC [13] 21372 1056
X-MAC [14] 19854 876

IDRA LPL MAC [15] 822 176
IDRA S-MAC [16] 1126 184

Table 4. Comparison of the memory requirements
(in bytes) of TinyOS MAC protocols with IDRA
MAC protocols.

ROM and 5 kB RAM memory, well under the memory limit
of most sensor nodes.

To demonstrate the feasibility of the IDRA architec-
ture, we implemented 2 MAC protocols (S-MAC [16] and
LPL [15]) and 2 routing protocols (Collection Tree Proto-
col [17] and DYMO [20]).

When using a layered architecture, the memory con-
sumption increases linearly with the number of network
protocols. In contrast, using the IDRA architecture requires
a significant initial investment in terms of memory, even
without any network protocols. However, adding protocols
to the system requires significantly less memory than when

Protocol name ROM RAM
CTP [17] 7234 1198
DYMO [18] 11404 482(+60 per route)
Lunar [19] 5000 1518

IDRA CTP [17] 712 130
IDRA DYMO [20] 5008 312(+18 per route)

Table 5. Comparison of the memory requirements
(in bytes) of TinyOS routing protocols with IDRA
routing protocols.

using a more traditional approach (Table 4 and 5). Due to
the system provided libraries for most typical operations,
the memory requirements of network protocols are reduced
by a factor 2 to 10. Thus, the greater initial memory cost of
our system is quickly offset.

7.2 Aggregation efficiency

An important feature of IDRA is the automatic combina-
tion and aggregation of information exchanges. In [10] an
ILP formulation is given for calculating required number of
packet transmissions for different protocols when using our

308

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

aggregation method.
The result is illustrated in Figure 6, where the number of

packet transmissions is shown for a variable number of pro-
tocols. All protocols regularly send information to a neigh-
boring node. Information exchanges for protocol i are sent
every (∆Ti) time units. The first protocol has a protocol cy-
cle (∆T1) of five time units, each additional protocol has its
∆T increased by one.

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of protocols

Pa
ck

et
s

pe
r t

im
e

un
it

No aggregation
Acceptable delay = 1
Acceptable delay = 2
Acceptable delay = 3
Acceptable delay = 4

Figure 6. Required number of packets per time unit
when using global aggregation with multiple pro-
tocols (∆Ti = i + 4).

Figure 6 shows that, when using global aggregation,
adding new protocols does not significantly increase the re-
quired number of packets. When the acceptable delay in-
creases, the number of packet required decreases. The min-
imal number of packets per time unit that needs to be sent
is one packet every ∆T1 time units, with ∆T1 the lowest
information interval. Thus, when the acceptable delays in-
creases, the average number of packets per time unit de-
crease, provided that the packet size is big enough to con-
tain the information from all the protocols. The maximum
reduction of transmissions is equal to the number of con-
trol packet types. To summarize, global-aggregation results
in more profit when more parameters need to be exchanged
and when these parameters have no strict deadlines.

7.3 Processing overhead

A final performance criteria is the processing overhead
of the system. System overhead is mainly caused by the
following operations:

Aggregation overhead Searching for parameters to com-
bine with routed packets results in additional process-
ing delay. This causes problems when high-priority

traffic is delayed. Therefore, the QoS module has the
option to disable aggregation for high-priority packets.
Thus, additional delay will only be introduced for low-
priority traffic.

Packet façade overhead Using a packet façade to associate
control parameters with a packet causes additional pro-
cessing delay. If all types of packet attributes are not
known in advance, they must be stored sequentially in
a header byte array. This type of packet implementa-
tion is not very efficient, but can be used for any possi-
ble combination of packet attributes. When all packet
attributes are known in advance, they can be associ-
ated with a specific header location. In this case, the
packet façade can be implemented very efficiently us-
ing a simple switch statement.

Overhead for storing packets IDRA requires very few
copy actions for processing packets: arriving packets
are stored once in the shared queue, and remain there
until processing is finished. This is much more ef-
ficient than copying a packet once for each protocol
layer.

The total packet delay depends strongly on the complex-
ity of the used packet façade and the complexity of the net-
work protocols. However, even when using relatively net-
work protocols, such as the combination of an AODV rout-
ing protocol, an LPL-like MAC protocol and 6lowpan pack-
ets, the processing delay is less than 20 milliseconds on a
telosb [21] sensor node. This delay is well below the duty
cycle of most typical WSN MAC protocols.

8 Related work

In this section, we will compare our architecture with
other proposed architectures for WSNs.

8.1 A Sensor Network Architecture
(SNA)

The sensor network architecture (SNA) [22] is based
on ‘functionality’: the authors analyzed thoroughly which
‘functions’ or ‘components’ are often executed by pro-
tocols. They provided a modular MAC layer (called
‘SP’) [23] and a modular routing layer (called ‘NLA’) [6,
24]. A protocol designer can use these modules to ‘build’
a custom network protocol. Additionally, a cross-layer
database is provided that shares components such as a mes-
sage pool (similar to the ‘shared queue’), a link estimation
and an extensible neighbor table.

The SNA has several similar goals as IDRA, but differs
in the following ways. (i) Rather than delegating tasks to a
central system, their goal is to enable the quick development
of protocol layers, using the provided components for each

309

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

layer. (ii) Protocols need to define their own headers, and
must encapsulate packets from higher layers. (iii) Dynamic
selection between protocols is not supported, and protocols
can not view or reuse each others packet attributes. (iv)
Limited support for energy-efficiency. Since their system
can not extract meaningful parameters from packets, they
combine full packets rather than only the relevant informa-
tion. Additionally, they can not aggregate information to
non-neighboring nodes. (v) Provisions for QoS or hetero-
geneity are not supported.

A similar component based MAC Layer Architecture
(MLA) [25] also includes power management. The mem-
ory footprints of SCP-MAC and X-MAC from table 4 are
calculated using the MLA architecture.

8.2 A declarative sensornet architecture

The declarative sensor network architecture [26, 27]
(DSN) aims to facilitate the programming of sensor nodes,
using a declarative language (called Snlog). This language
provides a high level of abstraction: protocols describe what
the code is doing but not how it is doing it. Algorithms are
implemented using predicates, tuples, facts and rules.

The compiler represents all this information as tables.
Rules are converted to dataflow plans using database oper-
ations (Join, Select, Aggregate and Project). Execution of
the dataflow plans is triggered by the associated predicates.
Finally, the intermediary operators are compiled into a nesC
program.

DSN is especially suited for recursive protocols, such as
tree construction (which requires only 7 lines of code). Ad-
ditionally, protocol interoperability can be supported using
database scheme matching techniques on the packets. How-
ever, the architecture currently has several disadvantages:
(i) complex data structures are not supported, (ii) total mem-
ory size increases (up to a factor 3) and (iii) no fine grained
radio control is supported (which makes the language un-
suited for low-level MAC protocols).

8.3 Modular architectures

One of the limitations of a layered architecture is that it is
difficult to incorporate new cross-layer services since inter-
faces are explicitly embedded in each layer. An alternative
is to completely discard the layered structure.

Instead of using protocol layers, all responsibilities of a
protocol layer are divided over separate modules [28] with a
well-defined function. For example, a complex MAC layer
can be divided into a neighbor management module, a sleep
management module, a channel monitoring module and a
retransmission module.

To prevent a large number of dependencies between the
different modules, modules do not interact with each other

directly. Instead, communications between modules go
through a cross-layer database repository [29].

The use of a modular architecture has several advan-
tages:

• Duplication of functionality is prevented;

• When developing a new network protocol, existing
modules can easily be reused;

• cross-layer information can be exchanged, supporting
the development of energy-efficient protocols;

• Depending on the node capabilities or network condi-
tions, it is easy to add or adapt a single module;

In the design of our information driven architecture, no
assumptions are made on the use of layering, modular or hy-
brid approaches. For modular approaches, our filter based
protocol registration (Section 3.4) can be expanded to sup-
port dynamic call sequences [30]. Registering modules can
indicate in which sequence the modules should be executed.
Depending on the situation and packet type, the appropriate
call sequence can be initiated. Thus, our proposed informa-
tion driven architecture is easily adaptable to be compatible
with both the layered and the modular approach.

9 Summary

Wireless sensor networks are used for increasingly com-
plex applications, such as wireless building automation and
process and asset monitoring. These applications demand
more and more functionalities from the underlying sensor
network. They are often deployed on strongly heteroge-
neous nodes and require adaptive and reliable end-to-end
services. Such requirements cannot be supported at a proto-
col level but should be part of the overall sensornet architec-
ture. However, no architecture currently exists that supports
heterogeneity, easy protocol-integration and QoS as part of
its architectural design.

Therefore, in this paper, we proposed an information
driven sensornet architecture. This architecture is based on
the notion that protocols should be simplified to their two
main tasks: exchanging information and interacting with
the relayed information. By intelligently manipulating this
information, the system can support advanced network re-
quirements for next-generation sensornet applications.

More specifically, the information driven approach has
the following key advantages:

• by using a packet façade for packet interactions, pro-
tocol logic is decoupled from packet representation;

• rather than statically wiring protocols, protocols are
dynamically selected (based on protocol-provided fil-
ters);

310

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

• by providing a shared, system-wide packet queue the
overall memory footprint is reduced and system-wide
QoS can be enforced;

• heterogeneity is promoted since protocols can be
added to a node according to its capabilities;

• and finally, by efficiently combining the information
exchanges, the number of transmitted packets can be
strongly reduced.

To demonstrate the feasibility of these concepts, we
implemented all techniques in a single architecture. We
demonstrated that in our system, network protocols require
significantly less memory (up to a factor 10), at the price
of a larger initial memory cost. In addition, the number
of packets per time unit can decrease up to a minimum of

1
∆Tx

, with ∆Tx the lowest information interval. Finally, we
demonstrated that the additional processing time of our sys-
tem is far less than the sleeping delay in typical wireless
sensor networks.

To conclude this paper, we are convinced that future ap-
plications for WSNs will be very demanding on the network
in terms of flexibility, reliability and adaptivity. In this pa-
per, we claimed that network requirements, such as support
for QoS, heterogeneity and energy-efficiency, should be part
of the architectural design, rather than being added as an
afterthought. As such, innovative architectural techniques
that support these requirements, like the ones proposed in
this paper, will be of great importance to the successful de-
velopment of next-generation sensornet architectures.

Acknowledgments

This research is funded by the Institute for the Promotion
of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen) through a PhD. grant for E. De Poorter.
The author wishes to acknowledge the valuable feedback
of colleagues Pieter De Mil, Bart Jooris, Benoı̂t Latré,
Evy Troubleyn, Lieven Tytgat and partners from the IBBT-
DEUS project.

References

[1] Eli De Poorter, Ingrid Moerman, and Piet Demeester. An in-
formation driven sensornet architecture (best paper award).
In The Third International Conference on Sensor Technolo-
gies and Applications (sensorcomm 2009), Athens/Glyfada,
Greece, June June 18-23, 2009.

[2] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor net-
works: Research challenges. Ad Hoc Networks Journal (El-
sevier), 2(4):351–367, October 2004.

[3] Carlos F. Garcı́a-Hernández, Pablo H. Ibargüengoytia-
González, Joaquı́n Garcı́a-Hernández, and Jesús A. Pérez-
Dı́az. Wireless sensor networks and applications: a survey.

IJCSNS International Journal of Computer Science and Net-
work Security, VOL.7 No.3,, March 2007.

[4] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu,
and S. Singh. Exploiting heterogeneity in sensor networks.
in Proceedings of the IEEE Infocom, 2005.

[5] Evy Troubleyn, Eli De Poorter, Ingrid Moerman, and Piet
Demeester. AMoQoSA: Adaptive Modular QoS Architec-
ture for Wireless Sensor Networks. SENSORCOMM 2008,
Cap Esterel, France, August 25-31, 2008.

[6] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, ,
and I. Stoica. A unifying link abstraction for wireless sensor
networks. SenSys ’05, San Diego, CA, USA,, pages pp. 76–
89, Nov. 2005.

[7] Hubert Zimmermann. OSI Reference Model — The ISO
Model of Architecture for Open Systems Interconnection.
IEEE Transactions on Communications, 28, no. 4:425 – 432,
April 1980.

[8] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester. To-
wards adaptive ad hoc network routing. International Jour-
nal of Wireless and Mobile Computing, vol. 1:pp. 1–8, 2005.

[9] R. Rajagopalan and P.K. Varshney. Data-aggregation tech-
niques in sensor networks: a survey. Communications Sur-
veys & Tutorials, IEEE, 8(4):48–63, Fourth Quarter 2006.

[10] Eli De Poorter, Stefan Bouckaert, Ingrid Moerman, and Piet
Demeester. Broadening the concept of aggregation in wire-
less sensor networks. SENSORCOMM 2008, Cap Esterel,
France, August 25-31, 2008.

[11] E. Fasolo, M. Rossi, and M. Widmer, J.and Zorzi. In-network
aggregation techniques for wireless sensor networks: a sur-
vey. Wireless Communications, IEEE [see also IEEE Per-
sonal Communications], 14(2):70–87, April 2007.

[12] Tinyos operating system. http://www.tinyos.net/.

[13] W. Ye, F. Silva, and J. Heidemann. Ultra-low duty cycle mac
with scheduled channel polling. pages 321–334, Boulder,
CO, November 2006.

[14] M. Buettner, G. Yee, E. Anderson, and R. Han. X-MAC:
A short preamble mac protocol for duty-cycledwireless net-
works. pages 307–320, Boulder, CO, November 2006.

[15] J. Hill and D. Culler. Mica: a wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12–24, November
2002.

[16] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In 21st Confer-
ence of the IEEE Computer and Communications Societies
(INFOCOM), volume 3, pages 1567–1576, June 2002.

[17] Collection Tree Protocol (CTP) for tinyOS 2.x.,
december 2008. http://www.tinyos.net/tinyos-
2.x/doc/html/tep123.html.

[18] Tymo source code repository. tymo: Dymo implementation
for tinyos, december 2008. http://tymo.sourceforge.net.

[19] LUNAR - Lightweight Underlay Network Ad hoc Routing,
december 2008. http://cn.cs.unibas.ch/projects/lunar/.

311

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

[20] Ian D. Chakeres and Charles E. Perkins. Dynamic manet on-
demand routing protocol (dymo). IETF Internet Draft, draft-
ietf-manet-dymo-12.txt, http://ianchak.com/dymo/draft-ietf-
manet-dymo-12.html, February 2008 (Work in Progress).

[21] Telosb reference datasheet. http://www.xbow.com/Products/-
productdetails.aspx?sid=252.

[22] Arsalan Tavakoli, Prabal Dutta, Jaein Jeong, Sukun Kim,
Jorge Ortiz, David Culler, Phillip Levis, and Scott Shenker.
A modular sensornet architecture: past, present, and future
directions. SIGBED Rev., 4(3):49–54, 2007.

[23] D. Culler, P. Dutta, C.T. Eee, R. Fonseca, J. Hui, P. Levis,
J. Polastre, S. Shenker, I. Stoica, G. Tolle, and J. Zhao. To-
wards a sensor network architecture: Lowering the waistline.
In In Proceedings of the Tenth Workshop on Hot Topics in
Operating Systems (HotOS X), 2005.

[24] C.T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli,
D. Culler, S. Shenker, and I. Stoica. A modular network
layer for sensornets. In the Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 2006), Seattle, WA, November 2006.

[25] Kevin Klues, Gregory Hackmann, Octav Chipara, and
Chenyang Lu. A component-based architecture for power-
efficient media access control in wireless sensor networks.
In SenSys ’07: Proceedings of the 5th international confer-
ence on Embedded networked sensor systems, pages 59–72,
New York, NY, USA, 2007. ACM.

[26] Arsalan Tavakoli, David Chu, Joseph M. Hellerstein, Phillip
Levis, and Scott Shenker. A declarative sensornet architec-
ture. SIGBED Rev., 4(3):55–60, 2007.

[27] David Chu, Joseph M. Hellerstein, and Tsung te Lai. Opti-
mizing declarative sensornets. In SenSys ’08: Proceedings of
the 6th ACM conference on Embedded network sensor sys-
tems, pages 403–404, New York, NY, USA, 2008. ACM.

[28] Robert Braden, Ted Faber, and Mark Handley. From protocol
stack to protocol heap: role-based architecture. SIGCOMM
Comput. Commun. Rev., 33(1):17–22, 2003.

[29] Tommaso Melodia, Mehmet C. Vuran, and Dario Pompili.
The state of the art in cross-layer design for wireless sen-
sor networks. Wireless Syst./Network Architect., LNCS 3883,
page 78–92, 2006.

[30] Eli De Poorter, Benoı̂t Latré, Ingrid Moerman, and Piet De-
meester. Universal modular framework for sensor networks.
In International Workshop on Theoretical and Algorithmic
Aspects of Sensor and Ad-hoc Networks (WTASA’07), pages
pp 88 – 96, Miami, USA, June June 28-29, 2007.

312

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Extending a Time-Triggered System

by Event-Triggered Activities

Josef Templ, Johannes Pletzer, Wolfgang Pree, Peter Hintenaus, Andreas Naderlinger

C. Doppler Laboratory Embedded Software Systems

University of Salzburg

Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract—Time-triggered execution of periodic tasks provides

the cornerstone of dependable real-time systems. In addition,

there is often a need for executing event-triggered activities

while the system would be otherwise idle. We first present the

foundation of a time-triggered system based on the Timing

Definition Language (TDL). Then we introduce event-

triggered activities as an extension of the purely time-triggered

programming model. If time-triggered and event-triggered

activities exchange information among each other, the data

flow must be synchronized such that reading unfinished output

data is avoided. The paper describes a lock-free solution for

these synchronization issues that is based exclusively on

memory load and store operations and can be implemented

efficiently on embedded systems without any operating system

support. We also discuss the implications of our synchroni-

zation approach for the semantics of combined time-triggered

and event-triggered execution in a dependable real-time

system. A case study of an Inertial Navigation System (INS)

illustrates these extensions.

Keywords—Lock-free; Synchronization; Time-triggered;

Event-triggered; Synchronous; Asynchronous; Activity; TDL

I. INTRODUCTION

A dependable real-time system performs safety critical
tasks by periodic execution of statically scheduled activities
[18]. The pre-computed schedule guarantees that the timing
requirements of the system will be met in any case by taking
the worst case execution time into account. Such operations
are called time-triggered (alias synchronous) activities. The
timing requirements of such activities are typically in the
range of milliseconds or sometimes even below.

In addition, many dependable real-time systems execute
event-triggered (alias asynchronous) activities that are, for
example, triggered by the occurrence of an external hardware
interrupt or any other kind of trigger. In the context of a
dependable real-time system such asynchronous activities
are considered to be not as time critical as synchronous tasks
are, and can therefore be executed in a background thread
while the CPU is otherwise idle.

Adding asynchronous activities to a time-triggered
system could be done in a platform specific way by directly
programming at the level of the operating system or task
monitor. However, this approach has two drawbacks: (1) it is
highly platform dependent and (2) it does not support proper

synchronization of data exchanged between synchronous and
asynchronous activities.

In order to tackle both problems we extended a tool chain
[2, 3] for time-triggered systems by asynchronous activities.
This tool chain supports the Timing Definition Language
(TDL), which allows one to specify the timing behavior of a
real-time system in a platform independent way. TDL
separates the specification of the timing behavior from the
implementation of the tasks. We extended TDL by a notation
for asynchronous activities and provided a runtime system
for this extended TDL on a number of target platforms [4].

The resulting lock-free approach for data flow
synchronization [1] is not specific for TDL but—we
believe—can be applied to other time-triggered systems that
need to be extended with asynchronous activities. Our
synchronization approach can be implemented efficiently
without any operating system support such as monitors [5] or
semaphores [6] and it avoids the need for dynamic memory
allocation and the danger of deadlocks and priority
inversions. It also keeps the impact of event-triggered
activities on the timing of time-triggered activities as low as
possible. For more information on non-blocking
synchronization techniques please refer to [7, 8].

Note: This paper represents an extended version of [1]. It
presents (1) the lock-free synchronization approach for data
flow between event-triggered and time-triggered activities in
the context of the TDL project, where the approach had been
developed, and it adds (2) a non-trivial example that shows
the integration of event-triggered and time-triggered
activities. We shall start with an explanation of TDL’s time-
triggered programming model and language features that are
relevant for understanding the proposed extensions and the
example.

II. TIME-TRIGGERED ACTIVITIES IN TDL

A particularly promising approach towards a high-level

component model for real-time systems has been laid out by

the introduction of the so-called Logical Execution Time

(LET [12]), which abstracts from the physical execution

time on a particular platform and thereby abstracts from

both the underlying execution platform and the

communication topology. Thus, it becomes possible to

change the underlying platform and even to distribute

components between different nodes without affecting the

313

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

overall system behavior. LET means that the observable

temporal behavior of a task is independent from its physical

execution. It is only assumed that physical task execution is

fast enough to fit somewhere within the logical start and end

points.
Figure 1 shows the relation between logical and physical

task execution. The inputs of a task are read at the release
time and the newly calculated outputs are available at the
terminate time. Between these, the outputs have the value of
the previous execution. LET provides the cornerstone to
deterministic behavior, platform abstraction and well-defined
interaction semantics between parallel activities. It is always
defined which value is in use at which time instant and there
are no race conditions or priority inversions involved.

TDL is a LET-based language. The basic construct that
represents an executable entity is called a task. Several tasks
can be executed in parallel and each task invocation may
have its specific LET and execution rate. As real-time
systems typically exhibit various modes of operations, TDL
allows the specification of such modes. A TDL mode
consists of a set of periodically executed activities. In
addition to task invocations, an activity can also be an
actuator update or a mode switch. The LET of a task is
always greater than zero, whereas actuator updates and mode
switches are executed in logical zero time (LZT). As the top-
level structuring concept, TDL provides the notion of a
module. Figure 2 sketches a sample module with two modes
containing two cooperating tasks each.

TDL modules support an export/import mechanism

similar to modern general purpose programming languages
such as Java or C#. A service provider module may export
e.g. a task’s outputs, which in turn may be imported by a
client module and used as inputs for the client’s
computations. Every module provides its own distinguished
start mode. Thus, all modules execute in parallel or in other
words, a TDL application can be seen as the parallel
composition of a set of TDL modules. It is important to note
that LET is always preserved, that is, adding a new module
will never affect the observable temporal behavior of other
modules. It is the responsibility of internal scheduling
mechanisms to guarantee conformance to LET, given that
the worst-case execution times (WCET) and the execution
rates are known for all tasks.

Parallel tasks may depend on each other, i.e. the output of
one task may be used as the input of another task. All tasks
are logically executed in sync and the dataflow semantics is
defined by LET. There is always a distinguished time base
which drives all time-triggered activities and that is why they
are also called synchronous activities.

The following TDL source code corresponds with the
schematic representation of the module in Figure 2.

The module is named Sample. It declares a sensor s1 and an
actuator a1, both of type integer. The sensor value is
provided by the external getter function getS1 and the
actuator value is written by the external setter function setA1.
Functionality code such as getters, setters, or task
implementation functions are not implemented in TDL but
must be provided in a conventional programming language
such as C. The module declares three tasks task1, task2, and
task3. The module further declares two modes Init and
Operation. The mode Init has a period of 25ms and it executes
task1 with a frequency of 5 (=200Hz) and task2 with a
frequency of 1 (=40Hz). The actuator a1 is also updated 5
times per mode period with the new value of output port o1
of task task1. Once every 25ms the external boolean function
toOperation decides whether to resume with the initialization

module Sample {

 sensor int s1 uses getS1;
 actuator int a1 uses setA1;

 task task1 {
 input int i1; int i2;
 output int o1;
 uses t1Impl(i1,i2,o1);
 }

 task task2 {
 input int i1;
 output int o1;
 uses t2Impl(i1,o1);
 }

 task task3 {
 input int i1;
 output int o1;
 uses t3Impl(i1,o1);
 }

 start mode Init [period=25 ms] {
 task
 [freq=5] task1(task2.o1,s1);
 [freq=1] task2(task1.o1);
 actuator
 [freq=5] a1 := task1.o1;
 mode
 [freq=1] if toOperation(s1)
 then Operation;
 }

 mode Operation [period=10 ms] {
 task
 [freq=5] task1(task3.o1,s1);
 [freq=1] task3(task1.o1);
 actuator
 [freq=5] a1 := task1.o1;
 mode
 [freq=1] if toInit(s1)
 then Init;
 }
}

Figure 2. Schematic representation of a TDL module

task1
200Hz

Init mode

a1s1

task2
40Hz

task1
500Hz

Operation mode

task3
100Hz

Mode Switch

Sample
Module

Sensor Actuator

Figure 1. Logical Execution Time abstraction

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stop (worst case)suspend resume

release terminate

314

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

or to switch to the second mode Operation. The mode
Operation executes the tasks task1 and task3 and also updates
the actuator a1.

III. ADDING EVENT-TRIGGERED ACTIVITIES

We assume that time-triggered activities have the highest
priority in a dependable real-time system. The runtime
system executes a pre-computed schedule and reads inputs
and writes outputs at well-defined time instants, which are
synchronized with a global time base such as the clock of a
time-triggered bus system.

Asynchronous activities must not interfere with the
timing properties of synchronous activities. This is achieved
by running asynchronous activities in a thread with lower
priority than synchronous activities. However, things get
more complicated when synchronization of the data flow is
involved, as will be described below.

A. Asynchronous activities in TDL

TDL supports three kinds of synchronous activities. Task
invocations and actuator updates also give sense when
triggered asynchronously and should therefore be supported.
Mode switches affect the time-triggered operation of a
module and are therefore not supported as asynchronous
activities.

An asynchronous task invocation consists of (1) reading
input data (also called input ports), (2) execution of the
task’s body, and (3) writing of output data (also called output
ports). With respect to synchronization issues, actuator
updates do not introduce new problems because they can be
seen as a special case of a task invocation. Figure 3 shows
the task model that we assume.

The execution of a task’s body is independent of the
environment if input reading and output writing are separated
from the implementation. Therefore we assume that internal
copies of all input and output ports are maintained by the
system. The task’s body operates exclusively on these
internal port copies.

Reading of input data may involve a sequence of
memory copy operations that could be preempted by a
hardware interrupt or by a time-triggered operation, which
has higher priority. Therefore we need to synchronize input
data reading with the rest of the system such that all input
ports are read atomically.

Like input data reading, writing of output data is a
sequence of memory copy operations that could be
preempted by a hardware interrupt or by a time-triggered
operation. It needs to be synchronized with the rest of the
system such that all output ports are updated atomically.

B. Triggers for asynchronous activities

Asynchronous activities may be triggered by different
events. We have identified the following three kinds of
trigger events, which are consequently supported in our
extension of TDL:

1) Hardware interrupt
A (non-maskable) hardware interrupt has the highest

priority in the system. It may even interrupt synchronous
activities. We must therefore take care that the impact of

hardware interrupts on the timing of synchronous activities is
minimized. Hardware interrupts may be used e.g. for
connecting the system with asynchronous input devices.

2) Asynchronous timer
A periodic or a single-shot asynchronous timer may be

used as a trigger. Such a timer is independent from the timer
that drives the synchronous activities because it introduces
its own time base. An asynchronous timer may for example
be used as a watchdog for monitoring the execution of the
time-triggered operations.

3) Port update
Updating an output port may be considered an event that

triggers an asynchronous activity. We assume that both a
synchronous and an asynchronous port update may be used
as a trigger event. In case of a synchronous port update, i.e. a
port update performed in a time-triggered activity, we must
take care that the impact on the timing of the synchronous
activities is minimized. Port update events may e.g. be used
for limit monitoring or for change notifications.

C. Semantics of asynchronous activities

Obviously, the triggering of an asynchronous activity
must be decoupled from its execution. In addition, reading
input ports for an asynchronous activity must be done at the
time of execution, not at the time of triggering. Thereby we
move as much work as possible into the asynchronous part
and minimize the impact of trigger events on the timing of
synchronous activities, which is particularly important for
hardware interrupts and synchronous port updates.

If multiple different asynchronous activities are triggered,
the question arises whether they should be executed in
parallel or sequentially in a single thread. We opted for the
sequential case because (1) on some embedded systems there
is no support for preemptive task scheduling and (2) because
data flow synchronization is simplified as will be shown
later. In practice, we expect this not to be a severe restriction
because time critical tasks will be placed in the synchronous
part anyway.

We assume that asynchronous activities that are
registered for execution may have different priorities
assigned. The set of registered events thus forms a priority
queue where the next activity to be processed is the one with
the highest priority.

If one and the same asynchronous activity is triggered
multiple times before its execution, the question arises if it
should be executed only once or multiple times, i.e. once per
trigger event. We opted for executing it only once because
this avoids the danger of creating an arbitrary large backlog
of pending activities at runtime if the CPU cannot handle the
workload. In addition this decision also simplifies the

1.

read

2.

execute

3.

 write

internal port copy data flow

Figure 3. Assumed task model

315

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

mechanism for registering trigger events as will be shown
later.

The following list summarizes our design decisions:

• Triggering of an asynchronous activity is decoupled
from its execution.

• Reading input ports for an asynchronous activity is
done at the time of execution, not at the time of
triggering.

• Asynchronous activities are executed sequentially.

• The execution order of asynchronous activities is
based on priorities.

• If one and the same asynchronous activity is
triggered multiple times before its execution, it is
executed only once.

IV. THREADING AND SYNCHRONIZATION

Figure 4 outlines the threads involved including their
priority and the critical regions. The time-triggered activities
are represented by a thread named TT-machine. This thread
may need further internal threads but we assume that all
synchronization issues are concentrated in a single thread
that coordinates the time-triggered activities. It should also
be noted that an asynchronous timer thread could also run at
a lower priority as long as it is higher than the priority of the
asynchronous activities.

The following situations that need synchronization can be
identified and will be described below in more details: (1)
Access to the priority queue of registered events. (2) Reading
the input ports for an asynchronous activity. This must not be
interrupted by the TT-machine. (3) Updating the output ports
of an asynchronous activity. This must be finished before the
TT-machine uses the ports.

A. The priority queue of registered events

As mentioned before, asynchronous events are not
executed immediately when the associated trigger fires but
need to be queued for later execution by the background
thread. Since asynchronous events may be associated with a

priority, we need a data structure that allows us to register an
event and to remove the event with the highest priority. Such
a data structure is commonly referred to as a priority queue.
It provides two operations enqueue and dequeue, which
insert and remove an entry with the property that the element
being removed has the highest priority. A number of
algorithms exists for implementing priority queues with
logarithmic behavior of the enqueue and dequeue operation.
However, in our case it is more important to minimize the
run time of enqueue in order to minimize its impact on the
timing of synchronous activities.

Elements are enqueued when an asynchronous event
occurs and the event is not yet in the queue. As mentioned
earlier, an event can be a hardware interrupt, an
asynchronous timer event, or a port update event. Port
updates may origin from an asynchronous task or from a
synchronous task that is executed by the TT-machine.
enqueue will never be preempted by dequeue, however,
enqueue may be preempted by another enqueue operation.

Elements are dequeued by the single background thread
that executes asynchronous activities. This thread may be
preempted by interrupts and by the TT-machine. Thus,
dequeue may be preempted by enqueue operations.

As shown by the example in Figure 5 we chose an array
representation of the triggerable events because this is both
thread safe and provides for a fast and constant time
enqueue operation. We use a Boolean flag per event that
signals that an event is pending. The flag is cleared when an
event is dequeued. From that time on it may be set again
when the associated trigger fires. The flag remains set when
the same trigger fires again while the flag is already set. The
thread-safe enqueue operation boils down to a single
assignment statement and the dequeue operation becomes a
linear search for the event with the highest priority over all
pending events. Registering an event from a non-maskable
interrupt or from a synchronous port update thereby has only
a negligible effect on the timing behavior of synchronous
activities. The linear search in the background thread is
expected to be acceptable for small to medium numbers of
asynchronous events (< 100), which should cover all
situations that appear in practice.

It should be noted that the array representation of the
priority queue does not impose any restriction on the number
of events the system can handle. There is one array element
for every trigger and the number of triggers is known
statically. Thus, the array can always be defined with the
appropriate size.

on port update

hardware interrupts, async

timer: highest priority

synchronous activities (TT-

machine): high priority

asynchronous activities (back-

ground thread): lowest priority

registered events

enqueue()

dequeue()

on port update

ports

 critical region thread data flow

on interrupt, on timer

Figure 4. Threads and critical regions

pending

event 0

event 1

event 2

event 3

priority

0

true

false

2

2

1

true

false

Figure 5. Array representation of trigger events

316

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The background thread for executing asynchronous
operations is a simple infinite loop that runs with lower
priority than the TT-machine thread. For a particular target
platform there may be some refinements with respect to the
CPU load, which is increased to 100% by permanently
polling the event queue.

 static Thread asyncThread = new Thread() {
 public void run() {
 for (;;) {
 int next = dequeue();
 if (next >= 0) {
 executeEvent(next);
 }
 }
 }
 };

The procedure executeEvent is supposed to execute the

asynchronous activity identified by next. Within its
implementation there will be synchronization issues with
respect to reading input ports and writing output ports as
described below. Instead of showing the complete
implementation, which depends on the particular
environment, we will focus on the synchronization issues
only.

B. Reading the input ports for an asynchronous task

While performing asynchronous reading of input ports
the following situation may arise: An asynchronous input
port reading involving multiple input ports (or at least
multiple memory load operations) has been started. The first
port has been copied. The second port has not yet been
copied but the TT-machine preempts the background thread
and updates the source ports. When the background thread
continues it would read the next port, which has a newer
value than the first port. Moreover, this situation may in
principle occur multiple times when the TT-machine
preempts the background thread after the second port has
been read, etc. We have to make sure that reading all of the
input ports is not preempted by the TT-machine. Since
asynchronous activities don’t preempt each other, we know
that there can only be one such asynchronous input port
reading that is being preempted. Therefore we can introduce
a global flag that is set by the TT-machine in order to
indicate to the background thread that it has been preempted.
The background thread then has to repeat its reading until all
of the ports are read without any preemption. The following
Java code fragments outline a possible implementation.

Asynchronous port reading within executeEvent uses a
loop in order to wait for a situation where input port reading
is not preempted by the TT-machine. Therefore, our solution
does not qualify as a wait-free nonblocking algorithm [7]. It
should be noted, however, that (1) starvation cannot occur in
the TT-machine and (2) in practice it does also not occur in
the background thread because even in the unlikely case that
the TT-machine’s schedule reserves 100% of the CPU, this
refers to the worst case execution time, which typically will
not always be required.

 do {
 ttmachineExecuted = false;
 //copy input ports
 ...
 } while (ttmachineExecuted);

The relevant TT-machine code, which is assumed to be

placed in a central procedure of the TT-machine named
ttmachineStep may look like this:

 void ttmachineStep() {
 ttmachineExecuted = true;
 //perform operations for this time instant
 ...
 }

C. Updating the output ports of an asynchronous task

In the case of asynchronous output port updates the
following situation may arise: An asynchronous output port
update involving multiple output ports (or at least multiple
memory store operations) has been started. The first port has
been copied. The second port is not yet copied but the TT-
machine preempts the background thread and reads both
output ports. Now one port is updated but the second is not.
Since this interruption cannot be avoided, we must find a
way for proper synchronization.

Since we assumed earlier that updating the output ports is
separated from the implementation of a task, we can
encapsulate the output port update operations of a task in a
helper procedure that we call the task’s termination driver.
Since asynchronous activities don’t preempt each other, we
know that there can only be one such termination driver
being preempted and it suffices to make that very instance
available to the TT-machine by means of a global variable.
Whenever the TT-machine performs its next step, it checks
first if a termination driver has been interrupted. If so, it
simply re-executes this driver! This means that the driver
may be executed twice, once by the background thread and
once by the TT-machine. This is only possible if the driver is
idempotent and reentrant, i.e. its preemption and repeated
execution does not change its result. Fortunately, termination
drivers have exactly this property because they do nothing
but memory copies and the source values are not modified
between the repeated driver executions. The source values
are the internally available results of the most recent
invocation of this asynchronous task and only a new task
invocation can change them. Such a task invocation,
however, will not happen because the background thread
executes all asynchronous activities sequentially.

It should be noted that the property of idempotency does
not hold for copying input ports as discussed in the previous
subsection because a preemption by the TT-machine may
alter the value of a source port that has already been copied.
This means that we really need two ways of synchronization
for the two cases.

It should also be noted that setting the driver identity
must be an atomic memory store operation. If storing e.g. a
32 bit integer is not atomic on a 16-bit CPU, an additional
Boolean flag can be used for indicating to the TT-machine
that a driver has been assigned. This flag must of course be

317

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

set after the assignment of the driver’s identity. If this initial
sequence of assignments is preempted, the TT-machine will
not re-execute the driver and that is correct because the
driver has not yet started any memory copy operations.

The following Java code outlines the implementation of
asynchronous task termination drivers and the corresponding
code in the TT-machine. Setting, testing and clearing the
driver identity is kept abstract because the details may vary
between target platforms. Since Java lacks function pointers
we use an integer id and a switch statement instead.
Variations, e.g. using C function pointers or Java singleton
classes, are of course possible.

 void callDriver(int id) {
 switch (id) {
 ...
 case X: //termination driver for async task X
 assignAsyncTerminateDriverID(X);
 //perform memory copy operations
 ...
 clearAsyncTerminateDriverID();
 break;
 ...
 }
 }

The relevant TT-machine code including the code intro-

duced in the previous subsections looks like this:

 void ttmachineStep() {
 ttmachineExecuted = true;
 if (asyncTerminateDriverIDassigned()) {
 callDriver(asyncTerminateDriverID);
 }
 //perform operations for this time instant
 ...
 }

It suffices to clear the registered termination driver at the

end of the termination driver itself. There is no need to do it
after callDriver() in ttmachineStep because the driver’s re-
execution will clear it anyway.

The resulting runtime overhead for supporting
asynchronous operations in the TT-machine is the
assignment of the ttmachineExecuted flag and the test for the
existence of a preempted asynchronous task termination
driver, which is acceptable because this happens only once
per TT-machine step. In case of preempting such a driver the
time for re-execution must be added. When a port update
trigger is used, then the enqueue operation is also a small
constant time overhead that affects the TT-machine. There is
no other runtime overhead for integration of event-triggered
activities in the TT-machine.

V. MEASUREMENT RESULTS

Table I shows the time needed for various operations on
different platforms. The platform named MicroAutoBox uses
a PowerPC 750FX CPU running at 800 MHz and the
Microtec C compiler version 3.2 with optimization level 5.
The platform runs the dSPACE Real-Time Kernel as its
operating system. The platform named ARM uses an ARM7

TDMI CPU running at 80 MHz and the GNU C compiler
with optimization level 2 and runs without an operating
system. The platform named RENESAS uses a Renesas
M32C/85 CPU running at 24 MHz and the GNU C compiler
version 4.1 with optimization level 3. The platform runs the
Application Execution System (AES) provided by
DECOMSYS and executes the programs from read-only
memory, which slows down the execution. This system does
not support external interrupts for user level programs. The
platform named SHARC uses an Analog Devices SHARC
ADSP-21262 CPU running at 200 MHz and the
VisualDSP++ C compiler version 5.0 with maximum
optimization level.

TABLE I. MEASUREMENT RESULTS [NANOSECONDS]

Platform (MHz) Interrupt Port Update dequeue N

MicroAutoBox (800) 420 8 11 * N + 60

SHARC (200) 1030 72 30 * N + 110

ARM (80) 700 200 287 * N + 500

RENESAS (24) N.A. 1200 790 * N + 2500

The column Interrupt shows the time needed for an

external hardware interrupt trigger, which includes the
interrupt handling overhead and the enqueue operation. The
column Port Update shows the time needed for a
synchronous port update trigger, which consists only of the
enqueue operation. The column dequeue N shows the time
needed for the search for the next event to be processed as a
linear function of the array size N. All timings are given in
nanoseconds.

The values shown in the columns Interrupt and Port
Update are critical for the timely execution of synchronous
operations as they impose an overhead that may affect the
TT-machine. Even on the slowest platform the required time
is only slightly above one microsecond. In comparison with
the ARM platform, the Interrupt time for MicroAutoBox
shows that the operating system introduces a significant
overhead.

The values in the column dequeue N only affect the
background thread and are not visible to the TT-machine. On
the slowest platform a time of 81.5 microseconds results for
N = 100, which means that response times in the range of
milliseconds can easily be achieved for asynchronous
operations.

VI. IMPLEMENTATION

We have implemented the proposed solution in the
context of the TDL tool chain. Currently we support two
networked target platforms, (1) the dSPACE MicroAutoBox,
which is a widely used prototyping platform for embedded
systems in the automotive industries, and (2) the NODE
RENESAS platform provided by DECOMSYS (now
Elektrobit). Furthermore, we are experimenting with
standalone platforms including bare hardware based on an
ARM7 and a SHARC processor.

Both networked systems are programmed in C and
support a FlexRay [19] bus interface and the time-triggered
activities are synchronized with FlexRay’s global time base.
The availability of a high-level description language (TDL)

318

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

for timing properties as well as for asynchronous activities
allowed us to generate the required glue code such as the
event table, the termination drivers and all the code needed
for the background thread and for data flow synchronization
automatically. Even when we added support for distributing
the data flow across multiple nodes we relied on the data
flow synchronization approach presented in this paper.

In analogy to handling the execution of asynchronous
activities in a background thread, network frames that
communicate the outputs of asynchronous task invocations
must be sent in a way such that they do not interfere with
time-triggered frames, i.e. data sent by synchronous
activities. Depending on the communication protocol being
used, this can be done by configuring such asynchronous
frames as low priority frames (if the bus protocol supports
priorities) or by assigning them a designated section in the
communication cycle (typically done when using time-
triggered protocols such as FlexRay or TTEthernet).

Our implementations use the FlexRay communication
protocol. FlexRay is a time-triggered protocol targeted at the
automotive industry. It has a significantly higher bandwidth
than other field bus protocols and is designed to handle
safety critical applications such as steer-by-wire systems. A
FlexRay communication cycle constantly repeats itself and it
consists of a mandatory static part and an optional dynamic
part. The static part is divided into equally sized slots which
are statically assigned to specific nodes, thereby
guaranteeing uninterrupted transmission. The dynamic
segment also has a static size, but it is dynamically allocated
to nodes upon runtime. We use the static segment for
synchronous frames and the dynamic segment for
asynchronous frames.

VII. EXAMPLE

As an example for a real-world TDL application, we
present an augmented strap down inertial navigation system
(INS) [13] designed for computing the position, velocity, and
attitude of a sailing vessel at sea. The example is split into
several modules and uses asynchronous activities for
connecting asynchronous I/O with the time-triggered
navigation system core.

An INS determines the position of a vehicle with respect
to some (inertial) reference system by measuring the three
accelerations along and the three angular velocities around
the vehicle’s axes with respect to the reference system, using
three accelerometers and three gyroscopes which are firmly
attached to the vehicle’s body. By solving the equations of
motion the INS computes the position, velocity, and attitude
of the vehicle. An augmented INS uses additional inputs,
such as position information from a GPS receiver and
compass headings, to correct the drift of the inertial sensors.

A. Hardware

The hardware (see Figure 6) for the augmented INS
consists of an Analog Devices ADSP-21262 Signal
Processor [14], a LAN interface with TCP/IP functionality in
firmware, an ADIS family micromechanical inertial sensor
[15] and a two axis fluxgate compass [16]. Besides a floating
point signal processing core with a peak SIMD performance

of 1.2 GFlops, the ADSP-21262 contains an I/O processor
that is capable of managing several block transfers between
memory and periphery simultaneously. The inertial sensor is
connected to the signal processor using an SPI bus [17]. It
samples the rotations around the three axes of the vehicle and
the accelerations along these axes 819.7 times per second.
The excitation coil of the fluxgate compass is attached to the
ADSP-21262 using a sampling DA converter. The two sense
coils of the compass are connected to two sampling AD
converters. All three converters operate at 48K samples per
second. For determining the heading of the vehicle the
compass has to be excited periodically via the DA converter
and its response measured via the two AD converters.

B. TDL definitions

A TDL module starts with its name and the list of
imported modules. When importing a module it is possible to
define an abbreviation for it:

module INS {

 import Kalman as K;

 ... //constants, types, ports, tasks, modes, asyncs

}

Next, constants and types can be declared. Besides the basic
types as in Java, TDL supports structures and arrays of
constant size. By denoting a name public any importing
module is allowed to refer to this name:

 public const NavPeriod = 1220us;

 public type Vector = struct {

 float x, y, z;

 };

 type FluxBuffer = int[120];

The sensor and actuator declarations that follow define the
hardware inputs and outputs used by the module. With the
uses clause one specifies the name of the external getter or
setter function to access the hardware:

 public sensor InSens in uses getInertial;

The global output ports come next. Global output ports are
not dedicated to an individual task but may be used by all

Figure 6. INS Hardware

319

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

tasks in the module. A port is updated at the end of the LET
of the task that writes it:

 public output Vector pos;

Next, the tasks with their input, output, and state ports are
declared. In the uses clause the name of the external function
providing the task’s functionality is specified. The last four
parameters in the example below refer to global output ports:

 task solveMotion {

 input InSens in; Vector cPos; Vector cVel; Quaternion cAtt;

 uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time);

 }

A mode is a set of activities, i.e. task invocations, actuator
updates and mode switches, which are executed periodically
with the mode period p. For each activity a frequency f and,
optionally, a guard can be specified. For a task invocation the
LET of this invocation is p / f. In the following mode
declaration, the period is set to NavPeriod. Both the
solveMotion and acquireMagHandling tasks are invoked once per
period so that the LET of both tasks is NavPeriod. The mode
Navigation is declared as start mode which means that the
execution of the module starts with this mode.

The names of entities imported from some other module
are qualified either by the name of the imported module or
by its abbreviation (e.g. K.pos):

 start mode Navigation [period = NavPeriod] {

 task [freq = 1] solveMotion(in, K.pos, K.vel, K.att);

 task [freq = 1] acquireMagHeading();

 }

Finally, asynchronous activities can be specified as in the
following code fragment. Once the interrupt named iGPS
occurs, the task receiveGPS is enqueued for later processing
and executed by a background thread. The mapping of the
logical interrupt name iGPS to a particular interrupt line is
platform dependent and must be specified outside the TDL
source code.

 asynchronous {

 [interrupt = iGPS, priority = 2] receiveGPS(INS.time);

 }

C. Complete TDL modules

In our hardware three independent asynchronous timing
sources are visible to the software: the processor clock, the
sampling events of the inertial sensor, and the sampling
events of the DA and AD converters. Choosing the sampling
events of the inertial sensor as the time base for the
synchronous activities allows us to solve the equations of
motion and to consider other sensor inputs using Kalman
filters [16] synchronously with the inertial data stream.

The module INS processes the inputs of the inertial
sensor and of the fluxgate compass. For each new inertial
measurement the task solveMotion advances the estimates for
the position, the velocity, and the attitude of the vehicle.
Quaternions are used for the representation of attitudes.

The excitation of the fluxgate compass is supplied with a
continuous data stream by the I/O processor of the ADSP-
21262. The data streams from the two sense coils are
captured and transferred to buffers in memory by I/O
processor. The size of the array type FluxBuffer is made large
enough to hold the data acquired during one period of the
mode Navigation for both sense coils. A state port (essentially
a private static variable) containing two buffers, one for
capturing and one for processing, is introduced for avoiding
any array copy operations. Task acquireMagHeading is
associated with two external functions (TDL task splitting),
(1) a long running function integrateFluxGate, and (2) an LZT
function exciteFluxGate indicated by the attribute release. The
basic idea is that the LZT function is called first at the LET
start and provides the new output values in a very short time,
closely approximating LZT. The long running function is
executed during the LET. The LZT function exciteFluxGate
restarts the data stream to the fluxgate compass and switches
between the two buffers at the start of the LET of task
acquireMagHeading. By invoking acquireMagHeading in mode
Navigation with the same frequency as solveMotion the compass
is synchronized to the inertial sensor.

The module INS counts the sampling events in the task
solveMotion to provide a time base for the other modules. The
period of 1220 microseconds for the mode Navigation is the
time that passes between two consecutive samples of the
inertial sensor.

module INS {

 import Kalman as K;

 public const NavPeriod = 1220 us;

 public type Vector = struct {float x, y, z;};

 public type Quaternion = struct {float x0, x1, x2, x3;};

 public type InSens = struct {

 float aX, aY, aZ;

 float omegaX, omegaY, omegaZ;

 };

 type FluxBuffer = int[120];

 type FluxDoubleBuffer = struct {

 byte bufState; FluxBuffer flux1, flux2;

 }

 public sensor InSens in uses getInertial;

 public output Vector pos; Vector vel; Quaternion att;

 public output long time; Vector mHead;

 task solveMotion {

 input InSens in; Vector cPos; Vector cVel; Quaternion cAtt;

 uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time);

 }

 task acquireMagHeading {
 state FluxDoubleBuffer flux;
 uses [release] exciteFluxGate(flux);
 uses integrateFluxGate(flux, mHead);
 }

 start mode Navigation [period = NavPeriod] {

 task [freq = 1] solveMotion(in, K.pos, K.vel, K.att);

 task [freq = 1] acquireMagHeading();

 }

}

320

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The module GPS receives position and velocity information
from a GPS receiver via the LAN interface typically once
per second. The LAN interface chip has an internal memory
buffer. It activates interrupt iGPS of the signal processor to
demand service.

To maintain a timing relationship with the inertial data
each dataset from the GPS receiver is time stamped as soon
as it is received.

module GPS {

 import INS;

 public output INS.Vector pos; INS.Vector vel; long timeStamp;

 public task receiveGPS {

 input long time;

 uses getGPSData(time, pos, vel, timeStamp);

 }

 asynchronous {

 [interrupt = iGPS, priority = 2] receiveGPS(INS.time);

 }

}

On power on, the module Kalman aligns the estimates for the
vehicle’s position, velocity, and attitude. Once a good initial
fix has been achieved, it switches to Filter mode. It then
combines the inertial measurement, the GPS position and
velocity, and the compass heading into an estimate of the
vehicle’s position, velocity, and attitude.

module Kalman {

 import INS; GPS;

 public output INS.Vector pos; INS.Vector vel;

 public output INS.Quaternion att; long stamp;

 public task align {

 input INS.InSens in; INS.Vector mHead; long time;

 uses doAlign(in, mHead, time, pos, vel, att, stamp);

 }

 public task filter {

 input INS.Vector nPos; INS.Vector nVel; INS.Quaternion nAtt;

 input INS.Vector mHead; long time;

 input INS.Vector gpsPos; INS.Vector gpsVel; long gpsStamp;

 uses doKalmanFilter(nPos, nVel, nAtt, mHead, time, gpsPos,

 gpsVel, gpsStamp, pos, vel, att, stamp);

 }

 start mode Align [period = INS.NavPeriod] {

 task [freq = 1] align(INS.in, INS.mHead, INS.time);

 mode [freq = 1] if isAligned() then Filter;

 }

 mode Filter [period = INS.NavPeriod] {

 task [freq = 1] filter(INS.pos, INS.vel, INS.att, INS.mHead,

 INS.time, GPS.pos, GPS.vel, GPS.timeStamp);

 }

}

The module NavReporter finally communicates the
navigational solutions to the outside world. Whenever a new
measurement is available, indicated by a port update on the
port Kalman.stamp, it makes it available on the LAN. The
asynchronous operation uses the default priority, which is the
lowest priority (0). Reading the input ports (K.pos, K.vel etc.)
is an atomic operation.

module NavReporter {

 import Kalman as K; INS;

 public task reportNav {

 input INS.Vector pos; INS.Vector vel; INS.Quaternion att;

 long stamp;

 uses doReporting(pos, vel, att, stamp);

 }

 asynchronous {

 [update = K.stamp] reportNav(K.pos, K.vel, K.att, K.stamp);

 }

}

Figure 7 depicts the dataflow between the modules INS and
Kalman. Arrows of the same style indicate measurements that
are combined by the Kalman filter into one navigation
solution. Note that it takes two sampling periods of the
inertial sensor until the data arrives at the output ports of the
Kalman filter. For slow moving vehicles like sailing vessels
this deems satisfactory. For faster moving vehicles one
would combine the two functions solveMotion and
doKalmanFilter in one task.

VIII. RELATED WORK

The xGiotto language [9] also aims at the integration of
time-triggered and event-triggered activities. xGiotto’s
compiler is supposed to perform a static check for the
absence of race conditions. Due to the specific design of
xGiotto, a precise check is possible but not in polynomial
time. Therefore, only a conservative check is done in the
compiler. We do not need such a check at all as we defined
appropriate semantics for event-triggered activities and use
the proposed synchronization mechanisms for their
integration into a time-triggered system.

RT-Linux [10] is an extension of the Linux operation
system which adds a high priority real-time kernel task and
runs a conventional Linux kernel as a low priority task. Its
interrupt handling mechanism is similar to what we propose
for the event queue as all interrupts are initially handled by
the real-time kernel and are passed to a Linux task only when
there are no real-time tasks to be run. In our approach, the
only immediate reaction to an interrupt is its registration in

Figure 7. Data Flow

INS

Kalman Kalman

INS

Kalman

INS

Inertial Data

time

Other Sensors

321

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

the priority queue so that it can be processed later when no
time-triggered activity is executed.

In [11] a non-blocking write (NBW) protocol is
presented. The writer is executed by a separate processor and
is not blocked. It updates a concurrency control field (CCF)
which indicates whether it currently writes data to a shared
variable. The reader uses the CCF to loop until no write
operation is executed while it reads from the shared data
structure. This relates closely to our synchronization strategy
for reading input ports for an asynchronous activity. In our
case the writer would be the TT-machine which is not
blocked.

A comprehensive overview of the field of non-blocking
synchronization can be found in [8]. Among other
techniques, it also describes a so-called roll-forward
synchronization approach by means of a helper function,
which looks similar to the one we used for synchronizing
output port writing.

IX. CONCLUSIONS

We have presented the extension of a time-triggered
system by event-triggered activities. Data flow between
time- and event triggered activities must be carefully
synchronized in order to avoid race conditions. We have
shown that a non-blocking lock-free solution for data flow
synchronization is indeed possible. Our solution does not
need any operating system support such as monitors or
semaphores and thereby avoids dynamic memory operations
and the danger of deadlocks and priority inversions. There is
also no need for switching off interrupts and the solution also
works in a shared-memory multiprocessor system where the
time-triggered and event-triggered activities are performed
on separate CPUs. Our approach relies exclusively on atomic
memory load and store operations, which are provided by
every CPU in hardware. An appropriate semantics for
asynchronous activities helped us to keep the solution simple
and efficient.

ACKNOWLEDGMENT

We want to thank Gernot Turner for providing us with
the hardware for the INS.

REFERENCES

[1] J. Templ, J. Pletzer, W. Pree, “Lock-Free Synchronization of Data
Flow Between Time-Triggered and Event-Triggered Activities in a
Dependable Real-Time System,” In Proceedings of the 2nd

International Conference on Dependability (DEPEND 2009), Athens,
Greece, 2009.

[2] W. Pree and J. Templ, “Modeling with the Timing Definition
Language (TDL),” Proceedings ASWSD 2006, LNCS 4922, 133-144,
Springer, 2008.

[3] J. Templ, “Timing Definition Language (TDL) Specification
1.5,” Technical Report, University of Salzburg, 2008,
http://softwareresearch.net/pub/T024.pdf.

[4] J. Templ, J. Pletzer, and A. Naderlinger, “Extending TDL with
Asychronous Activities,” Technical Report, University of Salzburg,
2008, http://softwareresearch.net/pub/T022.pdf.

[5] C. A. R. Hoare, “Monitors: An Operating System Structuring
Concept,” Comm. ACM 17 (10), 549–557, 1974.

[6] E. W. Dijkstra, “Cooperating sequential processes,” in “Programming
Languages,” Academic Press, New York, 1968.

[7] M. P. Herlihy, “A Methodology For Implementing Highly Concurrent
Data Structures,” Proceedings of the Second ACM Symposium on
Principles and Practice of Parallel Programming, ACM, New York,
1990.

[8] M. B. Greenwald, “Non-Blocking Synchronization and System
Design,” PhD Thesis, CS-TR-99-1624, Stanford U., 1999.

[9] A. Ghosal, T. A. Henzinger, C. M. Kirsch, and M. A. A. Sanvido,
“Event-driven programming with logical execution times,” in
“Hybrid Systems Computation and Control,” Lecture Notes in
Computer Science 2993, Springer, 2004.

[10] V. Yodaiken and M. Barabanov, “A Real-Time Linux,” Proceedings
of the Linux Applications Development and Deployment Conference
(USELINUX), Anaheim, CA, 1997.

[11] H. Kopetz and J. Reisinger, “The non-blocking write protocol NBW,”
Proceedings of the 14th IEEE Symposium on Real-Time Systems,
131-137, IEEE, New York, 1993.

[12] T. Henzinger, B. Horowitz, C. Kirsch, “Giotto: A time-triggered
language for embedded programming,” In Proc. of EMSOFT, LNCS
2211, pages 166–184. Springer, 2001

[13] D. H. Titterton and J. L. Weston, “Strapdown inertial navigation
technology,” 2nd Ed. IEEE radar, sonar, navigation and avionics series
17, 1996. ISBN 978-0863413582

[14] Analog Devices, “SHARC Embedded Processor ADSP-
21261/ADSP-21262/ADSP-21266, Data Sheet, Rev. E. 2008,“
Analog Devices, USA.

[15] Analog Devices, “Six Degrees of Freedom Inertial Sensor
ADIS16364, Data Sheet, Rev PrA. 2008,” Analog Devices, USA.

[16] Autonnic, “AR45 Two Axis Magnetometer Component with Floating
Core, Data Sheet, 2008,” Autonic Research, Great Britain.

[17] Freescale Semiconductor, “Serial Peripheral Interface (SPIV3) Block
Description”.

[18] H. Kopetz, “Real-Time Systems - Design Principles for Distributed
Embedded Applications,” ISBN 0792398947, Springer, 2007.

[19] R. Makowitz, C. Temple, “FlexRay - A Communication Network for
Automotive Control Systems,” Proc. WFCS 2006, pp. 207–212.

322

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Enabling Effective Dependability Evaluation of Complex Systems
via a Rule-Based Logging Framework

Marcello Cinque∗, Domenico Cotroneo∗, Antonio Pecchia∗
∗Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II

Via Claudio 21, 80125, Naples, Italy
Email: {macinque, cotroneo, antonio.pecchia}@unina.it

Abstract—Field Failure Data Analysis (FFDA) is a widely
adopted methodology to characterize the dependability behav-
ior of a computing system. It is often based on the analysis of
logs available in the system under study. However, current logs
do no seem to be actually conceived to perform FFDA, since
their production usually lacks a systematic approach and relies
on developers’ experience and attitude. As a result, collected
logs may be heterogeneous, inaccurate and redundant. This,
in turn, increases analysis efforts and reduces the quality of
FFDA results.

This paper proposes a rule-base logging framework, which
aims to improve the quality of logged data and to make the
analysis phase more effective. Our proposal is compared to
traditional log analysis in the context of a real-world case
study in the field of Air Traffic Control. We demonstrate
that the adoption of a rule-based strategy makes it possible to
significantly improve dependability evaluation by both reducing
the amount of information actually needed to perform the
analysis and without affecting system performance.

Keywords-Field Failure Data Analysis; Dependability Evalu-
ation; Logging Rules; Automated Log Analysis.

I. INTRODUCTION

Field Failure Data Analysis (FFDA) embraces several
techniques aiming to characterize the dependability behavior
of a computing system during the operational phase. De-
pendability of a computing system is the “ability to deliver
service that can justifiably be trusted” [9]. FFDA-based
dependability analysis relies on natural, i.e., not forced
errors and failures, and it commonly exploits logs available
in the system under study. Logs are files where applications
and system modules register events related to their normal
and/or anomalous activities. For this reason, logs “are one
of the few mechanisms for gaining visibility of the behavior
of the system” [2].

FFDA has shown its benefits over a wide range of sys-
tems even though logs are often an under-utilized resource
[3], since their production is known to be a developer-
dependent [4] and error-prone [5] task. Log production lacks
a systematic approach and relies on developers’ experience
and attitude. In fact, crucial decisions about logging are
left to the last phases of the software development cycle
(e.g., coding). As a result, it is reasonable to state that
current logs do not seem to be actually conceived to perform
dependability evaluation.

Logged information can be heterogeneous and inaccurate
[5], [6]. Heterogeneity may affect both format and content,
and usually increases as the system complexity increases.
Many current FFDA tools address format heterogeneity.
Content heterogeneity is more challenging since the meaning
of a logged event depends on what the developer actually
intended to log. Inaccuracy is related to the presence of
duplicate or useless entries as well as to the absence of
relevant failure data. Error propagation phenomena, which
result in multiple and apparently uncorrelated events [7], [8],
represent a further threat for logs effectiveness. A widely
adopted strategy to address this phenomena is to use an one-
fits-all timing window to coalesce related events. However,
this is usually performed without any awareness of the
actual correlation among log messages [2]. The risk is to
classify correlated failures as uncorrelated, and vice versa,
thus leading to unrealistic and wrong results.

The mentioned issues make the analysis of failure data a
very hard task. As a matter of fact it requires significant
manual efforts and ad-hoc algorithms and techniques to
remove useless data, to disambiguate events, and to coalesce
correlated ones. These efforts are exacerbated in case of
complex, networked systems composed by several software
items, each of them with its own logging mechanisms. As a
result, the quality of FFDA-based dependability evaluation
may significantly reduce.

We believe that a promising solution to overcome this
limitation is to re-think the way in which logs are produced
and analyzed. A viable strategy is to provide software de-
velopers with a comprehensive logging framework, inspired
by a high-level system model, which specifies rules to
produce log events, and tools to automate their collection
and analysis. Our proposal aims to improve the quality and
the effectiveness of logged events with respect to traditional
logging, to achieve accurate and homogeneous logs, which
are ready to be analyzed with no further processing, and
to make it possible to extract, even on-line, value-added
information based on log events produced by individual
system components.

This paper presents the concepts underlying our proposal
by focusing on dependability evaluation of complex systems.
More in details, we describe logging rules and algorithms

323

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

aiming (i) to unambiguously detect the occurrence and the
location of a failure (in particular, in this paper the focus
is on timing failures [9]), (ii) to trace error propagation
phenomena induced by interactions within the system, and
(iii) to enable effective dependability measurements. We
also describe currently available automated log collection
and analysis tools. We demonstrate the effectiveness of
the proposed strategy, compared to a real-world logging
subsystem, in the context of a case study in the field of
the Air Traffic Control (ATC). The adoption of systematic
logging rules significantly increases the quality of FFDA-
based dependability evaluation (e.g., availability and time to
failure) and makes it possible to achieve valuable insights
about the behavior of the system in hand. We experience
that the proposed framework allows reducing the amount of
information actually needed to perform the analysis without
affecting performance. In particular, log size decreases by
more 94.3% and system performance is improved by more
12.1% when compared to the initial logging subsystem.

The rest of the paper is organized as follows. We de-
scribe related work in the area of FFDA in Section II
while Section III presents the system model underlying the
design of our framework. Rules to produce log events and
algorithms enabling their on-line processing are presented in
Sections IV and V, respectively, while Section VI describes
the ongoing implementation of the proposed log collection
and analysis infrastructure. We describe the reference case
study and the experimental campaign in Section VII and
results achieved with traditional logging techniques and the
proposed framework in Sections VIII and IX, respectively.
Section X provides the estimation of the overhead introduced
by the proposed framework on the system in-hand while
Section XI concludes the work.

The paper improves and extends the proposal presented in
[1]. In particular (i) we describe an additional set of logging
rules aiming to figure out the operational state of an entity,
(ii) we provide a comprehensive framework to collect and
analyze proposed rule-based logs, and (iii) we significantly
improve the experimental campaign by performing in-depth
availability and failure analyses of collected logs.

II. RELATED WORK

FFDA studies commonly adopt log files as source of
failure data. Logs are usually conceived as human-readable
text files for developers and administrators to gain visibility
in the system behavior, and to take actions in the face of fail-
ures. A programming interface usually allows applications
to write events, i.e., lines of text in the log, according to
developers’ needs. Well-known examples of event logging
systems are UNIX syslog [10] and Microsoft’s event logger.

FFDA has shown its benefits over a wide range of systems
during the last three decades. A non-exhaustive list includes,
for example, operating systems [5], [4], control systems
and mobile devices [11], [12], supercomputers [2], [13],

and large-scale applications [14], [15], [16]. These studies
contributed to gain a significant understanding on the failure
modes of these systems, and made it possible to improve
their successive generations [17].

Log analysis is usually done manually, by means of ad-
hoc algorithms and techniques to remove useless data (e.g.,
housekeeping events [8], which report non-error conditions)
to disambiguate events, and to coalesce correlated events.
In particular, with respect to dependability evaluation, sig-
nificant efforts are needed to identify system reboots and
failure occurrences, which are used to estimate, for example,
the system availability and Time To Failure. A commonly
used approach to figure out a reboot signal from logs is
to locate specific event patterns (e.g., [5]). On the other
hand, the identification of failure-related log events is more
challenging. This task usually requires a preliminary log in-
spection (e.g., to figure out events severity and error-specific
keywords within the logged text) as well as procedures to
cluster a set of related alerts to a single alert per failure [2].

It thus emerged the need for software packages which in-
tegrate a wide range of the state-of-the-art FFDA techniques,
such as tools easing, if not automating, the data collection,
coalescing, and modeling tasks. An example is MEADEP
[18], which consists of four software modules, i.e., a data
preprocessor for converting data in various formats to
the MEADEP format, a data analyzer for graphical data-
presentation and parameter estimation, a graphical modeling
interface for building block diagrams, e.g., Weibull and k-
out-of-n block, and Markov reward chains, and a model-
solution module for availability/reliability estimation with
graphical parametric analysis. Analyze NOW [19] is a set of
tools tailored for networks of workstations. It embodies tools
for the automated data collection from all the workstations,
and tools for automating the data analysis task. In [20], [21]
a tool for on-line log analysis is presented. It defines a set of
rules to model and to correlate log events at runtime, leading
to a faster recognition of problems. The definition of rules,
however, strongly relies on log content and analysts’ skills.

Despite these efforts, several works have pointed out the
inadequacy of event logs to perform dependability evalu-
ation. A study on Unix workstations [5] recognizes that
logs may be incomplete or imperfect, and it describes an
approach for combining different data sources to improve
system availability estimation. In [4], a study on a networked
Windows NT system shows that many reboots, i.e., about
50%, do not show any specific reason, thus enforcing the
need for better logging techniques. A study on supercom-
puters [2] shows that logs may lack useful information for
enabling effective failure detection and diagnosis. Recent
studies (e.g., [22], [23], [24]) highlight logs inadequacy at
providing evidence of software faults, which can be activated
on the field by complex environmental conditions [25]. For
example, bad pointer manipulations may originate a crash
before any information is logged in C/C++ programs.

324

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Recent contributions address inefficiency issues of log
files. A proposal for a new generation of log files is provided
in [26], where recommendations are introduced to improve
log expressiveness by enriching their format. A metric is
also proposed to measure information entropy of log files,
in order to compare different solutions. Another proposal
is the IBM Common Event Infrastructure [27], introduced
mainly to save the time needed for root cause analysis. It
offers a consistent, unified set of APIs and infrastructure for
the creation, transmission, persistence and distribution of log
events, according to a well-defined format.

All these studies represent an important step forward
for log-based dependability evaluation of computer systems.
However, they mainly address format heterogeneity issues,
i.e., they focus on what has to be logged. Logs incomplete-
ness and ambiguity cannot be solved acting solely on format.
Developers may miss to log significant failure events, and
they may produce events with ambiguous descriptions. At
the same time, tools for automated log analysis may co-
alesce uncorrelated events. In this paper logging rules are
introduced to define the points in the source code where,
other than what, events should be logged. We aim to achieve
homogenous, i.e., both in format and semantics, logs, even
if produced by software components coming from different
developers. This allows improving failures detection and
related coalescence, hence increasing the overall quality of
FFDA results.

III. SYSTEM MODEL

We use a high-level model to describe the main compo-
nents of a system and the interactions among them. This
makes it possible to design the proposed logging framework
without the need for focusing on a specific real-world
technology. More in details, we use the model (i) to figure
out where to place effective logging mechanisms within the
source code of an application, and (ii) to design general-
purpose algorithms and tools to automate log collection
and analysis. Following this objective we classify system
components in two categories, according to the following
definitions:
• entity: active system component. It provides services

that can be invoked by other entities. An entity executes
local computations, it starts interactions involving other
entities or resources of the system and it can be the
object of an interaction started by another entity.

• resource: passive system component. At most it is the
object of an interaction started by another entity of the
system.

Proposed definitions provide very general concepts, which
have to be specialized according to designer’s needs. For
example, entities may model processes or threads, i.e., active
elaboration components, while resources may model files
and/or databases. Furthermore, entities may represent logical
components, e.g., the executable code belonging to a library

or package of code, independently of the process/thread
executing it.

As stated, entities interact, e.g., by means of function
calls or method invocations, with other system components,
i.e., entities or resources, to provide complex services. We
do not consider a specific real-world interaction mechanism.
Our focus is on the properties of an interaction, i.e., (i) it
is always started by an entity (ii) its object can be another
entity or a resource of the system (iii) it possibly originates
further computation if the object of the interaction is an
entity.

system interface

entity

resource
interaction

Figure 1: System overview.

We adopt a graphic formalism to represent the pro-
posed concepts. More in details, entities and resources are
represented as circles and squares, respectively, while an
interaction as a direct edge from the caller entity to the
called. Figure 1 is provided for example.

IV. LOGGING RULES

Taking into account the proposed system model, we
investigate how to place log events within the source code of
an entity to enable effective dependability measurements. To
this aim, we identify two types of events, i.e., interaction and
life-cycle events, respectively. The former provides failure-
related information, the latter allows figuring out the opera-
tional state of an entity. Jointly with the event definition, we
present a logging rule, which formalizes its use during the
coding phase. Each rule defines what to log, i.e., the event
that has to be logged by the entity, and where to log, i.e.,
the point in the source code where entities have to log the
event.

A. Interaction Events

Interaction events aim to make it possible (i) to detect
entity failures, (ii) to discriminate if they are related to
a local computation or to an interaction towards a failed
entity or resource. We describe the principle underlying
interaction events in the following. Section V-A provides
an in-depth discussion about the hypothesis and failure
mode assumptions underlying their analysis during system
operations. We start focusing on services provided by system
entities, addressed by the following rules:
• R1, Service Start - SST: the rule forces the SST event

to be logged before the first instruction of each service

325

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

provided by an entity. It provides the evidence that
the entity, when invoked, starts serving the requested
interaction.

• R2, Service End - SEN: the rule forces the SEN event
to be logged after the last instruction of each service.
It provides the evidence that the entity, when invoked,
completely serves the requested interaction.

Figure 2 clarifies the aim of R1 and R2 by means of an
example in the field of object oriented programming. Let
A be an object providing the service named serviceA()
and log() be a facility to log the described events. When
the service is invoked, A logs the SST event. If a fault is
triggered during the service execution (e.g., due to a bad
pointer value used by I1 in Figure 2) SEN will miss in the
log of the entity.

void A : : serviceA (int∗ ptr) {
log(SST); //R1
cout << ∗ptr ; //I1
b . service () ; //I2
log(SEN); //R2

}

Figure 2: Logging rules (R1,R2)

SST and SEN events alone are not enough to figure out
if an entity failure is due to a local error or to an interaction
with a failed entity or resource. As depicted in Figure 2, if
A does not log the SEN event, we are not be able to figure
out if the outage is due to I1, i.e., the local computation, or
to I2, i.e., the interaction involving another entity. For this
reason we introduce interactions-related events:
• R3, Entity (Resource) Interaction Start - EIS (RIS): the

rule forces the EIS (RIS) event to be logged before the
invocation of each service. It provides the evidence that
the interaction involving the entity (resource) is actually
started by the calling entity.

• R4, Entity (Resource) Interaction End - EIE (RIE): the
rule forces the EIE (RIE) event to be logged after the
invocation of each service. It provides the evidence that
the interaction involving the entity (resource) ends.

No other instructions are allowed between the events EIS
(RIS)-EIE (RIE). By using R3 and R4 the example code
shown in Figure 2 turns in Figure 3. In this case, if the
interaction b.serviceB() fails (e.g., by never ending, as in
case of a hang in the called entity), we are able to find it
out, since the event EIE is missing.

An entity usually provides more than one service or start
more than one interaction. In this case multiple SSTs (EISs)
are produced by the entity and it is not possible to figure
out the service (interaction) they are actually related to. To
overcome this limitation, the start and end events, related to
each service or interaction within the same entity, are logged
jointly with a unique key.

void A : : serviceA (int ∗ptr) {
log(SST); //R1
cout << ∗ptr ; //I1
log(EIS); //R3
b . service () ; //I2
log(EIE); //R4
log(SEN); //R2

}

Figure 3: Logging rules (R3,R4)

We recognize that the extended use of logging rules may
compromise code readability. However, by taking advantage
of their simplicity, it is possible to design ad-hoc supports
to automatically insert them just before the compilation
stage. Such an approach makes rules-writing transparent to
developers and does not require the direct modification of the
source code. This issue is not currently a priority, however
we aim to address it in the future.

B. Life-cycle Events

Interaction events do not allow understanding if an entity
is currently down, or if it restarted after a failure. To
overcome this limitation, we introduce life-cycle events,
which aim to make it possible to figure out the operational
state of an entity by providing evidence that it actually
started its execution or it has terminated properly. Two rules
fit this aim:
• R5, Start up - SUP: the rule forces the SUP event to

be logged as the first instruction executed by an entity,
at its startup.

• R6, Shut down - SDW: the rule forces the SDW event to
be logged as the last instruction executed by an entity,
when it is properly terminated.

These events are useful to evaluate dependability figures,
even on-line, such as uptime and downtime for each system
entity. Furthermore, SUP and SDW sequences allow identi-
fying clean and dirty shutdowns, e.g., two consecutive SUP
events are an evidence of a dirty shutdown. This type of
events has been already used or proposed by past studies to
identify clean and dirty reboots of operating systems [28],
[4]. Our idea is to exploit this concept at a finer grain,
according to the system model and applied to all entities.

V. EVENTS PROCESSING

The joint use of both the proposed model and logging
rules makes a system to be perceived, from the analyst
point of view, as a set of entities, each producing an event
flow. These flows can be used to extract, during system
operations, useful insights about the current execution state
of the entities as well as to detect failure occurrences. To
this aim we design algorithms to identify and to correlate
alerts during system operations and to perform effective
dependability measurements.

326

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

A. Alerts Identification

Analyzing log files to isolate entries, which provide
evidence that a failure occurred in the system, is a time-
consuming task of FFDA. We refer to these entries as to
alerts. As discussed in Section II, alerts identification is
usually preformed by looking at the severity level or the
type of the entry (if available in the logging mechanism)
and by analyzing the free text contained in the entry (e.g.,
to understand if it contains specific error-related keywords,
such as error, halt, unable, etc.). As discussed, logs
inaccuracy may compromise this kind of analysis. Entries
with the semantics, but containing a different text, can be
erroneously classified as different and vice versa. In addition,
some failures, e.g., hangs, are unlikely to produce entries
useful for their identification.

Interaction events are designed to make it possible to auto-
mate alerts identification, and to discriminate between alerts
due to local or external causes, as explained in the following.
By construction, logging code interleaves the source code of
the entity. Hence we assume as possible errors the ones that
result in modification, suspension or termination of the entity
control flow, thus leading to delayed or missing log events.
This assumption indirectly provides possible failure modes
covered by the proposed logging mechanism. Let clarify
the concept by examples. The assumption covers crashes
or hangs (both active and passive) failures of the system
entities. When an entity crashes (or hangs) while serving
a request, SEN is missing in the related flow. At the same
time the calling entity may not be able to correctly log its
EIE. The assumption, on the other hand, does not fit value
failures, but, at the state of art, it is known that they seem
to be not detectable solely via logs.

…	
…	

SST	 	 	 4	
EIS	 	 	 2	
EIE	 	 	 2	
RIS	 	 	 7	
RIE	 	 	 7	
SEN	 	 4	
…	
…	

ev
en

t f
lo

w

…	
…	
t1	
t2	 	
t3	
t4	
t5	
t6	
…	
…	

events arrivals
times

estimated
durations

2

7

4

time

Figure 4: Alert identification.

Since our focus is on anomalies that ultimately result
in delayed or missing events, we design external detectors
based on timeouts. As a reminder, log events are provided
in start-end pairs. A SST has to be followed by the related
SEN, and an EIS has to be followed by the related EIE (in
a similar way for a resource). We measure the time between

two related events (i.e., the start and end events belonging
to the same service or interaction) during each fault-free
operation of the target system, in order to keep constantly
updated the expected duration (e.g., ∆2, ∆7, and ∆4, in
Figure 4) of each pair of events. A proper timeout is then
tuned for the alerts identification process. Figure 4 clarifies
the concept. Proposed detector generates an alert whenever
an end event is missing. We define three types of alerts:
• entity interaction alert - EIA: it is generated when EIS

is not followed by the related EIE within the currently
estimated timeout;

• resource interaction alert - RIA: it is generated when
RIS is not followed by the related RIE within the
currently estimated timeout;

• computation alert - CoA: it is generated when SST is
not followed by the related SEN within the expected
timeout and neither an entity interaction alert, i.e., EIA,
nor a resource interaction alert, i.e., RIA, has been
generated.

As discussed in Section IV a computation alert represents
a problem that is local with respect to the entity that
generated it. On the other hand, an interaction alert reports
a misbehavior due to an external cause.

B. Alerts Coalescence

Error propagation phenomena, due to interactions among
system components, usually result in multiple alerts. Coales-
cence makes it possible to reduce the amount of actually use-
ful information to perform the analysis, by putting together
distinct alerts into a clustered one. As discussed in Section I,
traditional log-analysis commonly faces alert redundancy by
means of time-based approaches, but without any awareness
of the actual correlation among log messages.

…	
SST	 	 	 2	
EIS	 	 	 7	
EIE	 	 	 7	

A
B

A interacts with B

…	
SST	 	 	 4	
SEN	 	 4	

!

tim
e

tim
e

missing events

Figure 5: Example.

The use of precise logging rules significantly reduces anal-
ysis efforts and increases the effectiveness of the coalescence
phase. As a matter of fact, interaction events make it possible
to discriminate different types of alerts, each of them with
its own specific meaning: CoA and RIA allow to identify a
failure source, EIA to trace error propagation phenomena.

Figure 5 clarifies the concept. Let A and B be two system
entities. A starts an interaction with B. If a latent fault is
triggered during the service execution, B does not log SEN.
At the same time A, that is still working, is not able to

327

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

properly log the EIE because of the outage of B. An entity
interaction alert and a computation alert are raised for A
and B, respectively.

We generalize the example according to the proposed
model. A system is composed by several entities, which
interact among them in order to provide complex services.
An interaction chain is ultimately composed by simpler one-
to-one interactions between (i) two entities or (ii) an entity
and a resource. When a fault is triggered within an entity,
we experience one CoA or RIA, related to the component
ultimately responsible of the problem, possibly followed
by multiple EIAs coming from the entities involved in the
interaction chain.

The described principle underlies the following coales-
cence strategy. When a CoA or RIA is observed in the
system, a new tuple, i.e., a clustered alert, is created. Each
experienced EIA is stored until the previous and successive
tuples have been created and it is subsequently coalesced
with the one that is closer in time. Each tuple allows achiev-
ing useful insights about the failure occurred in the system.
As a matter of fact it provides information about the source
of a failure and all the entities involved due to propagation
phenomena. Tuples produced with this approach can be used
to evaluate the failure behavior of each system entity, e.g.,
in terms of the time-to-failure statistical distribution.

C. Identification of Execution States

We design a state-machine (Figure 6) to figure out the
execution state of an entity during system operations. To
this aim we use both life-cycle events and described alerts.
We identify three possible states detailed in the following:
UP - the entity is up and properly running;
BAD - the entity may be in a corrupted state;
DOWN - the entity is stopped.

UP	 BAD	

DOWN	

SUP
SDW

SUP

SDW

SUP

CoA

CoA,EIA,RIA SUP, EIA, RIA

Figure 6: Entity execution states

When an entity starts, a SUP event is received, and the
UP state is assumed. If an interaction alert, i.e., EIA or RIA,
is received, the entity is considered to be still UP, but it
is likely involved in a failure caused by another system
entity or resource. In some cases, e.g., due to scheduled
maintenance or to the persistence of interaction problems,

an entity may be restarted. In this case, a SDW event will
be observed, which makes the entity transit into the DOWN
state. If a CoA is received, the entity transits into the BAD
state. As discussed, a CoA is the result of a local problem
within the entity. We thus assume that the internal state of
the entity may be corrupted. An entity in a BAD state may
be (i) still able to perform normal operations (e.g., the CoA
is the result of a transitory problem) or (ii) actually failed
(e.g., crashed). If an alert, i.e., CoA, EIA or RIA, is received,
the entity is considered to be still BAD. When the entity is
resumed, we may observe either a clean or dirty restart. In
the former case the couple SDW, SUP is observed, which
means that the entity was still active and able to handle a
shutdown command. In the latter case, only the SUP event
is observed (transition BAD to UP), i.e., the entity is restarted
abruptly.

The evolving of the state machine over time makes it
possible to achieve useful insights about the dependability
behavior of the entity. As for example, (i) the time the entity
persists in the UP state contribute to the estimation of the
uptime of the entity, (ii) the time between a SUP and a CoA
event is an estimate of the Time To Failure.

VI. LOGGING FRAMEWORK

We design a comprehensive framework to automate on-
line collection and analysis of described events. Figure 7
depicts the proposed infrastructure and highlights its main
components, i.e., (i) the operational system producing log
events according to the rules (ii) a transport layer named
LogBus (iii) a set of pluggable components, which perform
several types of analyses.

Events are sent over the LogBus, which is the adopted
transport layer among the machines of the system under
analysis and the processing components. LogBus keeps
logically separated event flows coming from distinct entities
of the system by means of labeling each flow with a unique
key. We implement a C++ object-based LogBus prototype
using standard TCP sockets to transmit events. An API
exposing simple methods to access the infrastructure hides
internal event management mechanisms.

LogBus forwards events towards an extensible set of plug-
gable components. Each component connect the LogBus
during system operations and subscribe only the class of
events (i.e., interaction or life-cycle) it is interested in, by
using a filtering mechanism provided by the LogBus API.
This makes it possible to design specific tools, just doing a
part of the whole FFDA analysis but doing it in an effective
way. Furthermore, the adoption of a model-based approach
makes it possible to reuse a designed tool. In fact the
analysis is performed on events with well-defined semantics,
despite of the system producing them. Output coming from
different components is combined to produce value-added
information.

328

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Operational System
logger

coalescer

st
at

is
tic

s
monitor

RB log

event filters

E1

...	
SST	 	 5	
EIE	 	 	 7	
EIS	 	 	 7	
SUP	 ...	

EIS	 	 	 7	
RIE	 	 	 3	
RIS	 	 	 3	
...	

SDW	
EIE	 	 	 5	
EIS	 	 	 5	
...	 ...	

SEN	 2	
SST	 	 2	
EIE	 	 	 8	
EIS	 	 	 8	
...	

SU
P,
	 S
D
W
	

EIS,	 EIE,	 RIS,	 RIE	
SST,	 SEN	

CoA,	 EIA,	 RIA	

tuples	 RB report

L o g B u s

on-agent

Pluggable
Components

E2

E3

EN

SU
P,
	 S
D
W
	

Figure 7: Logging and Analysis Infrastructure.

We describe currently available tools in the following. It
should be noted that they only provide a possible set of
analysis tools. In fact, LogBus is an open platform, which
makes it possible to connect novel components provided by
third-party developers.

The on-agent component includes a set of monitors and a
coalescer. Each monitor subscribes interactional events for
a unique entity and implements the alert identification stat-
egy described in Section V-A. Generated alerts are supplied
to the coalescer during operations. This component, in turn,
implements the coalescence approach described in Section
V-B. Produced tuples are not immediately stored on a log
file, but they are forwarded to the logger.

The logger component is the one in charge of maintaining
a log file, i.e., the Rule-Based (RB) log, specifically con-
ceived to perform dependability analyses. It jointly stores
both tuples supplied by on-agent and life-cycle events com-
ing from the LogBus. Figure 8 shows the content of the RB
log. This enables detailed analyses without preprocessing
effort. As a matter of fact, tuples provide clustered failure
data, thus avoiding the need for coalescence procedures. This
information is combined with life-cycle events, which avoid
the need for manual efforts to figure out reboot occurrences.
Section IX shows how this log has been used to characterize
the dependability behavior of the reference case study.

The statistics component keeps the state machine de-
scribed in Section V-C for each entity of the system. More
in details, it manages a set of variables, which are updated
upon state transitions during system operations. These are
used, for example, to estimate, for each entity (i) uptime,
downtime (i.e., the time between a SDW and a SUP), and
failtime (i.e., the time between a CoA and a SUP when no
SDW event has been experienced between them) (ii) SUP,
SDW and alert counts and, (iii) availability. This information
is used to provide an on-line snapshot for the overall system,
i.e., the Rule-Based (RB) report.

Timestamp Type Source Affected
--
. . .
2 0 0 9 / 0 5 / 0 3 1 6 : 4 2 : 5 5 SUP [E1]
2 0 0 9 / 0 5 / 0 3 1 6 : 5 0 : 4 0 SUP [E4]
. . .
2 0 0 9 / 0 5 / 0 6 0 9 : 4 5 : 0 5 CoA [E3] [E4 , E1 , E2]
. . .
2 0 0 9 / 0 5 / 1 0 0 8 : 1 5 : 0 7 CoA [E1] [E5 , E3]
. . .
2 0 0 9 / 0 5 / 1 0 1 0 : 5 0 : 4 0 SDW [E4]
2 0 0 9 / 0 5 / 1 0 1 0 : 5 0 : 4 3 SDW [E5]
2 0 0 9 / 0 5 / 1 0 1 0 : 5 1 : 2 0 SDW [E3]
. . .

Figure 8: Content of RB log.

VII. CASE STUDY

We evaluate the effectiveness of both traditional and rule-
based logging approaches at characterizing the dependability
of an operational system. To this aim we deliberately em-
ulate a known failure behavior into a real-world software
system producing both its own logs and instrumented to use
the described framework. Field data collected with both the
mechanisms during a 32 days long-running experiment are
analyzed.

A. Air Traffic Control (ATC) Application

The reference application consists of a real-world software
system in the field of ATC. In particular we consider a Flight
Data Plan (FPL) Processor. FPLs provide information such
as a flight expected route, its current trajectory, vehicle-
related information, and meteorological data.

The FPL Processor is developed on the top of an open-
source middleware platform named CARDAMOM1. This
platform provides services intended to ease the development
of critical software systems. For example, these include Load
Balancer (LB), Replication (R), and Trace Logging (TL)
services, used by the application in hand. The FPL Processor
integrates the OMG-compliant2 Data Distribution System
(DDS) [29]. DDS allows applicative components to share
FPLs in our case study. This is done by means of the read
and write facilities provided by the DDS API, which allow
to retrieve and to publish a FPL instance, respectively.

Figure 9 depicts the FPL Processor. It is a CORBA-based
distributed object system. It is composed by a replicated
Facade object and a set of processing Servers managed
by the LB. Facade accepts FPL processing requests (i.e.,
insert, delete, update) supplied by an external Tester and
guarantees data consistency by means of mutual exclusion
among requests accessing the same FPL instance. Facade
subsequently redirects each allowed request to 1 out of the
3 processing Server, according to the round robin service
policy. The selected server (i) retrieves the specified FPL

1http://forge.objectweb.org/projects/cardamom
2OMG specification for the Data Distribution Service,

http://www.omg.org

329

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Server 3

Tester Facade

Server 1

Server 2

FPL Processor

LogBus + Pluggable Components

Trace Logging (TL)

Facade (R)
 LB

DDS

 FPL
interaction
 FDP
LogBus API
 FDP
TL API

Trace Admin
trace
collector trace

collector trace
collector

 Log file/
report

./start.sh

re
bo

ot

Figure 9: Case study.

instance from the DDS middleware (ii) executes request-
related computation, and (iii) returns the updated FPL in-
stance to the Facade object. Facade publishes the updated
FPL instance and finalizes the request by acknowledging the
Tester.

Tester object invokes Facade services with a frequency
of 1 request per second. Under this workload condition a
request takes about 10 ms to be completed, as shown in
Section X. We instrument the Tester object in order to detect
request failures. A timeout-based approach is adopted to
this aim. We assume 15 ms to be an upper bound for a
request to be completed. Consequently, if a request is not
acknowledged within a 50 ms timeout, it is considered as
failed. Due to the replicated nature of both Facade and
Server objects, one request failure does not imply that the
mission of the FPL Processor is definitively compromised.
The system may be in a degraded state, but still able to
satisfy further requests. For this reason we assume the
mission of the system to be definitively compromised only
if 3 consequent requests fail. In this case the Tester object
triggers the FPL Processor reboot via the start.sh bash
script. We experience that the application reboot time varies
between 300 s and 400 s.

Machines composing the application testbed (Intel Pen-
tium 4 3.2 GHz, 4 GB RAM, 1,000 Mb/s Network Interface
equipped) run a RedHat Linux Enterprise 4. A dedicated
Ethernet LAN interconnects these machines. About 4,000
FPLs instances, each of them of 77,812 bytes, are shared
with the DDS.

Table I: Time To Failure (TTF) distributions
Object Distribution
Facade F (t) = 1− e−0.000001t0.92

Server S(t) = 1− e−0.000005t0.92

B. Logging Subsystems

FPL Processor uses the TL service to collect log mes-
sages produced by applicative components (Figure 9). TL
provides a hierarchical mechanism to collect data. A trace
collector daemon is responsible to store messages coming
form processes deployed on the same node. A trace admin
process collects per-node log entries and store these data in
a file. Each log entry contains information such as a times-
tamp, 1 out of 5 severity levels (i.e., DEBUG, INFO, WARN,
ERROR, FATAL), source-related data (e.g., process/thread id),
and a free text message. We assume data collected via the
TL service to be an example of traditional logs.

We instrument the application code to produce rule-based
events and to integrate the LogBus infrastructure (Figure 9).
To this aim we assume a high-level system model. In
particular each FPL object (i.e., Facade and Serves) is an
entity and the DDS, as a whole, is modeled as a resource.
Interactions consist of both CORBA-based remote methods
invocations and DDS read/write facilities.

C. Experiments

We leave the FPL Processor running for about 32 days,
from Aug-07-2009 to Sep-07-2009. During this period we
do not wait for natural occurring errors but we deliberately
emulate a known failure behavior in the system. Our aim
is to evaluate if/how traditional and rule-based logs allow
to reconstruct this known dependability behavior. More in
details we perform availability and failure analyses by using
both logs.

We instrument FPL Processor objects (i.e., Facade and
Servers) to trigger failures according to the Time To Failure
(TTF) distributions shown in Table I (time measured in
centiseconds). We find the Weibull distribution a proper
choice since it has shown to be one of the most used
distribution in failure analysis [30]. However, any other
reliability function clearly fits the aim of the experiment.
Different scale parameters assure that Facade and Servers
fail with different rates. When an object failure has to be
triggered according to the current TTF estimate we inject
either a crash or a hang with the same probability. A faulty
piece of code, i.e., a bad pointer manipulation and an infinite
wait on a locked semaphore, is executed to emulate, crashes
and hangs failures, respectively. Jointly with the execution
of the faulty code we record the type of the emulated failure,
i.e., crash or hang, as well as the component executing it. An
object failure always results in a system failure in our case
study, as the current FPL request does not correctly succeed.

330

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Table II: Failures breakup by object
Object Failures
Facade 260

Server 1 732
Server 2 772
Server 3 738

Total 2,502

Furthermore an object is not immediately resumed after a
crash failure. This is the reason why subsequent crashes
lead progressively to the reboot signal. In this case the FPL
Processor as a whole is restarted. We experience that during
the 32 days period the FPL Processor is rebooted 400 times
and 2,502 object failures are triggered. Table II reports the
failures breakup by object. We collect logs and/or reports
produced both by the TL service and pluggable components
to perform the analysis.

VIII. ANALYSIS OF TRACE LOGGING (TL) LOG

TL log collected during the long-running experiment is
about 2.2 MB and contains 24,126 lines.

A. Availability Analysis

We perform FPL Processor availability analysis by es-
timating system uptimes and downtimes, as described in
previous works in the area of FFDA (e.g., [4], [28]). To
this aim, for each reboot occurred during the experiment,
we identify the timestamp of (i) the event notifying the end
of the reboot, and (ii) the event immediately preceding the
reboot. A downtime estimate is the difference between the
timestamps of the two events. An uptime estimate is the time
interval between two successive downtimes. Uptime and
downtime estimates are used to evaluate system availability
by means of Equation 1.

A =
∑

i uptimei∑
i uptimei +

∑
i downtimei

· 100 (1)

The described approach requires the identification of
application reboots from logs. To this aim we directly inspect
TL log in order to identify sequences of log events triggered
by application reboots. Figure 10 depicts a simplified version
of such a reboot sequence. The “Startup complete” event
identifies the end of the reboot. We assume the event pre-
ceding the “CDMW Finalize” event to be the one preceding
the reboot.

We develop an ad-hoc algorithm to automatically extract
(i) reboot events, and (ii) uptime and downtime estimates
from TL log. Table III provides statistics characterizing the
estimates. Downtime estimates are close to the expected re-
boot time. We estimate FPL Processor availability according

2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 0 5 INFO CDMW Finalize
2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 2 0 INFO Parsing XML Finalize FDPSystem
2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 4 7 INFO FDP Server
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 5 4 INFO Finalize APP1 / Server process
. . .
[omissis]
. . .
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 1 3 INFO CDMW Init
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 2 3 INFO Parsing XML Init file FDPSystem
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 2 7 INFO FDP Server
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 3 0 INFO Initialize APP1 / Server process

with XML File
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 4 0 INFO CDMW init ongoing for APP1 / Server
2 0 0 9 / 2 6 / 0 8 1 4 : 4 4 : 1 0 INFO Acknowledge creation of process

APPL1 / Server
. . .
[omissis]
. . .
2 0 0 9 / 2 6 / 0 8 1 4 : 4 6 : 4 4 INFO Acknowledge creation of process

APPL4 / Facade
2 0 0 9 / 2 6 / 0 8 1 4 : 4 6 : 4 8 INFO Startup complete

Figure 10: FPL Processor reboot sequence (TL log).

Table III: Downtime and uptime estimates: statistics (TL log)
Downtime Uptime

Value 350.2 (±23.6) s 6,740.6 (±4,399.6) s
Minimum 300.1 s 843.4 s
Maximum 400.2 s 32,518.6 s

to Equation 1. Equation 2 provides AT , i.e., the availability
estimate resulting from TL log.

AT =
2, 689, 487.9 s

2, 689, 487.9 s + 143, 736.5 s
· 100 ≈ 94.9% (2)

AT is about 94.9%. The overall downtime is 143,736.5 s.
It should be noted that this is a realistic finding. As a matter
of fact a reboot of the FPL Processor takes about 350.2 s
(Table III). During the long-running experiment 400 reboots
occur. An overall downtime estimate is thus 400 · 350.2s =
140, 080s, which is close to the actual one.

B. Failure Analysis

As discussed in Section II, we investigate TL log to
characterize failure related data. The analysis reveals that
anomalous conditions and error propagations phenomena
usually result in the higher severity levels, i.e., WARN, ERROR,
and FATAL, provided by the TL logging mechanism. We
develop an algorithm to automatically extract failure related
entries from TL log by means of the severity information.
This procedure filters 20,637 out of the collected 24,126
events. In other words 3,489 events, i.e., about 14% of the
amount of the collected information, are used to perform
failure analysis.

It should be noted that a component failure might lead to
multiple log entries due to propagation phenomena within
the system. We filter out redundant entries by applying the
tuple heuristic [8]. Its aim is to put together distinct entries in

331

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

a clustered one, i.e., the tuple, with respect to a coalescence
timing window. The objective is to build one tuple for
each actually occurred failure. We implement LogFilter as
described in [2] to analyze the collected TL log.

3489	

1289	

0	

1000	

2000	

3000	

4000	

0	 10	 20	 30	 40	 50	

tu
pl
e	
co
un

t	

coalescence	 window	 (s)	

Figure 11: Time effect on tuple count

We perform a sensitivity analysis to choose a suitable
coalescence window for the proposed case study. Figure 11
shows the analysis results. Tuple count suddenly decreases
from the 3,489 initial value, since log entries related to the
same failure are very close in time. As suggested in [8]
the vertex of the “L” shaped curve represents the internal
clustering time of the system and the coalescence window
should be greater that this value. We thus assume 2 s, i.e.
1,289 tuples, to be a suitable coalescence window for our
case study. It should be noted that only 1,289 out of the
2,502 actually emulated failures result from the analysis.
An in depth analysis reveals that only crashes are logged
while hangs do not leave any trace in TL log.

0	

0,2	

0,4	

0,6	

0,8	

1	

0	 200000	 400000	 600000	 800000	 1000000	

p	

#me	 (cs)	

s_TL(t)	

Figure 12: FPL Processor estimated TTF (TL log).

We estimate the TTF distribution for the FPL Processor,
named s_TL(t), by using the timestamp information of both
the tuples and the events notifying the end of a reboot. Figure
12 depicts the analysis finding. Resulting Mean Time To
Failure (MTTF) is approximately 34 minutes. This is greater
than the expected since only 1,289 out of the 2,502 actual
emulated failures result from the analysis.

Table IV: Downtime and uptime estimates: statistics (RB
log)

Downtime Uptime
Value 350.2 (±23.6) s 6,740.6 (±4,399.6) s

Minimum 300.1 s 843.4 s
Maximum 400.2 s 32,518.6 s

Regardless of the quality of the achieved finding, s_TL(t)
provides a characterization of the failure behavior of the
system under study. Anyway, it is not clear how this finding
could be actually exploited by developers, e.g., to drive
specific dependability improvements where needed. In the
proposed case study, among multiple notifications reported
by the TL log, we are not able to figure out the object
that first signaled a problem, thus preventing and in-depth
characterization of the system in hand.

IX. ANALYSIS OF RULE-BASED (RB) LOG

During the 32 days long-running experiment about 30
millions of rule-based events are sent over the LogBus.
Resulting RB log, provided by the logger pluggable compo-
nent, is about 128 KB and contains 4,500 lines. It should be
noted that the size of RB log is about 5.7% when compared
to TL log. The amount of information actually needed for
the analysis phase has been significantly reduced with the
proposed strategy.

A. Availability analysis

We perform FPL Processor availability analysis by tailor-
ing the approach described in Section VIII-A to RB log. In
this case, application reboots are identified by SDWs-SUPs
sequences. Figure 13 is provided as an example.

2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 0 5 SDW [Facade]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 2 : 5 5 SUP [Server1]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 4 0 SUP [Server2]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 5 : 0 5 SUP [Server3]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 6 : 4 0 SUP [Facade]

Figure 13: FPL Processor reboot sequence (RB log).

Facade SUP identifies the end of a reboot. We assume
the event preceding the first SDW of a reboot sequence to
be the one preceding the reboot itself. Table IV provides
statistics characterizing uptime and downtime estimates. We
estimate FPL Processor availability according to Equation
1. Equation 3 provides ARB , i.e., the availability estimate
resulting from RB log.

ARB =
2, 689, 488.1 s

2, 689, 488.1 s + 143, 736.3 s
·100 ≈ 94.9% = AT

(3)

332

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

0	

0,2	

0,4	

0,6	

0,8	

1	

0	 200000	 400000	 600000	 800000	 1000000	

p	

#me	 (cs)	

s_RB(t)	

s_TL(t)	

(a) FPL Processor estimated TTF.

0 

0,2 

0,4 

0,6 

0,8 

1 

0  200000  400000  600000  800000  1000000 

p 

#me (cs) 

S(t) 

s(t) 

(b) Server 2 estimated TTF.

0 

0,2 

0,4 

0,6 

0,8 

1 

0  500000  1000000  1500000 

p 

#me (cs) 

f(t) 

F(t) 

S(t) 

(c) Facade estimated TTF.

Figure 14: Estimated TTF distributions (RB log).

Table V: Kolmogorov-Smirnov test
Process Samples D L
Server 1 732 0.0410 0.80<L<0.90
Server 2 772 0.0325 L<0.80
Server 3 738 0.0253 L<0.80

ARB is about AT . The proposed framework allows to
estimate system availability as well as a traditional logging
approach, however the introduction of SUP and SDW events
significantly reduces analysis efforts. In addition, as shown
in Section IX-C we are allowed to perform a detailed
availability analysis for each system entity.

B. Failure analysis

We exploit the RB log to gain insights of the FPL
Processor dependability behavior. The tuple heuristic is not
needed anymore. By construction, RB log already contains
a clustered entry for each occurred failure, and the presence
of life-cycle events allows to easily extract TTF estimates.

RB log contains 2,502 tuples. It should be noted that this
is the amount of the actually emulated failures as shown in
Table II. We perform a TTF analysis for the FPL Processor
as a whole, i.e., by jointly considering tuples from all system
entities. Figure 14a shows both s_TL(t) and s_RB(t),
i.e., the application TTF estimated by analyzing RB log.
Resulting MTTF is approximately 17 minutes, thus shorter
if compared to s_TL(t). This finding highlights deficiency
of TL log at providing evidence of all the occurred failures
in the reference case study.

Information provided by RB log makes it possible to
achieve further insights about the dependability behavior
of the proposed case study. As a matter of fact, we use
the source field supplied by the logger component for each
tuple, to figure out TTF distributions for each entity of the
system. Figure 14b depicts the estimated TTF, named s(t),
when compared to S(t), for Server 2 (a similar finding
comes out for the two remaining Servers). The experienced
distribution is close to the one emulated during the long
running experiment. We perform the Kolmogorov-Smirnov

test to evaluate if s(t) is a statistically good S(t) estimate.
Let (i) D be the maximum distance between the analytical
and the estimated distributions and (ii) L be the resulting
significance level of the test. Table V reports results obtained
for the all the Servers. The low value of L assures that
the collected samples are consistent with the actual failure
distributions.

We perform a similar analysis for the Facade object.
Figure 14c shows f(t), i.e., the TTF estimate. It is imme-
diate to figure out that f(t) is different form the emulated
F(t), but lower than S(t). This is a realistic finding, which
depends on the recovery strategy adopted in the case study.
In our long-running experiment Servers exhibit a failure
rate higher than the Facade (Table I). This makes it very
likely that all Servers have crashed while the Facade is still
properly working. In this case the Tester object triggers the
FPL Processor reboot, thus preventing the Facade object
from exhibiting its actual behavior.

By concluding, the proposed strategy enables an in-
depth characterization of the FPL Processor dependability
behavior. The comparison between the estimated TTF dis-
tributions, i.e., f(t) and s(t), makes it possible to identify
the actual most failure-prone entity within the system. This
information can be used, for example, to reduce the Mean
Time To Repair [31] or to apply proper recovery actions
only when needed [32].

C. On-line Report

The statistics component provides a snapshot, i.e., the RB
report, of the current states of the system entities during the
operational phase. This information is not available with the
TL logging subsystem and it is the result of the proposed
strategy. Table VI shows the RB report at the end of the
long running experiment. In the following, we discuss the
resulting findings in order to evaluate if they are realistic
with respect to the emulated failure behavior.

Facade availability is 95%, thus close to the one estimated
for the system as a whole (Equation 3). As a matter of
fact when the Facade is unavailable, the FPL Processor is
rebooted, since FPL requests cannot be satisfied anymore.

333

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Table VI: RB report at the end of the long-running experiment
Uptime Downtime Failtime SUP SDW CoA EIA Avalability

Facade 2,700,740 s 129,111 s 4,863 s 400 385 260 2,242 95.0%
Server 1 1,479,900 s 770 s 1,354,250 s 400 7 732 0 52.2%
Server 2 1,591,580 s 1,470 s 1,240,200 s 400 7 772 0 56.1%
Server 3 1,522,890 s 1,860 s 1,308,500 s 400 6 738 0 53.8%

Consequently, the Facade object is not allowed to remain in
a failed state for a long time (i.e., a low failtime). On the
other hand, Servers availability is around 54%. Due to the
adoption of the LB policy, even if a Server crashes, the two
remaining ones make it possible to execute subsequent FPL
request. It may take a long time before the application is
rebooted and a crashed Server is resumed.

Facade SDWs are mainly clear, i.e. the SUP count is close
the SDW one. This is a realistic finding, since the Facade
object has a failure rate lower than the Servers. As discussed,
it is very likely that it is still able to correctly handle FPL
requests when the reboot signal is triggered. Not the same
for the Server objects. In this case most of the reboots are
dirty.

Adopted logging rules, make it possible to understand if a
problem with an entity is caused by a propagating error and
thus to prevent erroneous findings. Table VI reports CoA
and EIA counts, which allow to break the total amount
of outages for each system entity by local, i.e. CoA, and
interaction, i.e., EIA. Servers exhibit only CoAs, as they
do not start interactions with any other entity within the
system. It should be noted that the CoA count is equal to
the actual emulated failure count for each Server (Table II).
This finding demonstrates the effectiveness of the proposed
alerts identification strategy with respect to the proposed
case study. On the other hand, alerts experienced by the
Facade object are mainly due to interaction causes.

X. OVERHEAD ESTIMATION

We evaluate how both TL and LogBus subsystems affect
application performance. It should be noted that system
response time and resource usage are widely recognized to
be effective metrics for performance analysis in computer
systems [33]. This is the reason why we choose the Round
Trip Time (RTT) of FPL requests, measured at the Tester
node, to be the reference metric for our case study. RTT
makes it possible to achieve insights about the FLP Proces-
sor performability.

We analyze performance by taking into account two
parameters, i.e., the specific logging subsystem and the FPL
request invocation period. The logging subsystem assumes
a value in LS = {T, RB, TL} with T, RB, TL denoting,
no logging subsystem, Rule-Base framework and Trace
Logging, respectively. Invocation period varies in the range
I = {300, 400, 600, 800, 1, 000} ms. These values take

into account real world traces coming from the Air Traffic
Control domain where CARDAMOM is commonly used as
support middleware.

We design a full-factorial experimental campaign by ex-
ecuting a stress test for each combination of parameters in
LS × I . In particular, for each test we execute 3,000 FPL
Processor requests, i.e, 1,000 requests per type (i.e., insert,
delete, update) and we subsequently estimate the mean RTT
after filtering outliers out. Figure 15 depicts experienced
RTTs.

T	

RB	
TL	

0	

4000	

8000	

12000	

1	 s	
800	 ms	 	

600	 ms	
400	 ms	

300	 ms	

8000	
7900	

8300	
8500	

8800	

8300	 8400	 8700	 9100	 9700	

9300	 9250	 9600	 10200	
10900	

m
ea
n	
RT

T	
(u
s)
	

invoca<on	 period	

Figure 15: FPL requests RTT.

For each value of the invocation period in I we estimate
the overhead of TL with respect to RB, i.e., OTL,RB , when
compared to T. Equation 6 shows how we estimate OTL,RB .
OTL,T and ORB,T denote the overhead of TL and RB with
respect to T, respectively.

OTL,T =
RTTTL −RTTT

RTTT
· 100 (4)

ORB,T =
RTTRB −RTTT

RTTT
· 100 (5)

OTL,RB = OTL,T −ORB,T =
RTTTL −RTTRB

RTTT
· 100

(6)
Table VII summarizes overhead estimates. For each value

of the invocation period in I , OTL,RB is a positive value. In
other words, according to Equation 6, overhead introduced
by RB is lower than TL when compared to T. Mean OTL,RB

334

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Table VII: Overhead estimates
1s 800ms 600ms 400ms 300ms

OTL,T 16.3% 17.1% 15.7% 20.0% 23.8%
ORB,T 3.8% 6.3% 4.8% 7.1% 10.2%

OTL,RB 12.5% 10.8% 10.9% 12.9% 13.6%

is approximately 12.1%. This value roughly estimate the
expected overhead of TL when compared to RB. By con-
cluding, the proposed logging framework does not affect, if
not improve, application performance in the proposed case
study.

XI. CONCLUSION

The paper described a framework to overcome the well-
known limitations of traditional logging with respect to the
dependability evaluation of complex systems. After present-
ing the principles underlying our proposal, we describe log-
ging rules and algorithms enabling effective dependability
evaluation of complex systems. We provide an in-depth
comparison between the proposed framework and a real-
world logging subsystem in the context of the Air Traffic
Control domain. Results show that the proposed rule-base
strategy:
• Eliminates preprocessing effort to analyze data. We

show that the analysis of a traditional log, such as the
one collected via the Trace Logging service, requires
significant manual effort and ad-hoc procedures to
identify and extract log events (e.g., reboot and failure
occurrences) relevant for the analysis phase.

• Preserves and improves findings of traditional log
analysis. Rule-based log makes it possible to estimate
system availability as well as traditional logging. Fur-
thermore it increases the quality of TTF analysis by
means of an exhaustive coverage of timing failures in
our case study.

• Provides value-added information. The proposed
framework makes it possible to gain in-depth visibility
of the dependability behavior of a system by means of
a finer analysis grain. In particular, it enables valuable
results (e.g., TTF distributions, on-line statistics) for
each system entity, which cannot be achieved with
traditional logging techniques.

• Reduces the amount of information actually needed to
perform the analysis. Log size is reduced by more than
94.3% with respect to an example of traditional log.
This improvement does not introduce information loss.

• Does not affect application performance. The overhead
introduced by the proposed framework on the FPL
Processor is 12.1% lower than the one introduced by
the Trace Logging service.

Future work will encompass the definition of novel log-
ging rules, aiming to support a wider range of FFDA

analyses. LogBus and pluggable components will be conse-
quently enhanced in order to provide additional features and
capabilities. We also intend to explore the use of standard
languages, e.g., XML, to represent the rule-based log.

Additionally, it is needed to deal with existing components
that do not adopt the proposed logging rules. In this case, we
claim the need for component-specific wrappers to produce
events according to the described strategy. Following this
direction, future work will be also devoted to research
for model-driven techniques to automate the logging-code
writing process. This is a need to significantly reduce, if not
completely eliminate, manual instrumentation efforts.

ACKNOWLEDGMENT

This work has been partially supported by the “Con-
sorzio Interuniversitario Nazionale per l’Informatica” (CINI)
and by the Italian Ministry for Education, University, and
Research (MIUR) within the frameworks of the “Cen-
tro di ricerca sui sistemi Open Source per la appli-
cazioni ed i Servizi MIssion Critical” (COSMIC) Project
(www.cosmiclab.it) and the "CRITICAL Software Tech-
nology for an Evolutionary Partnership" (CRITICAL-STEP)
Project (http://www.critical-step.eu), Marie Curie
Industry-Academia Partnerships and Pathways (IAPP) num-
ber 230672, in the context of the Seventh Framework
Programme (FP7).

REFERENCES

[1] M. Cinque, D. Cotroneo, and A. Pecchia. A logging approach
for effective dependability evaluation of complex systems. In
Proceedings of the 2nd International Conference on Depend-
ability (DEPEND 2009), pages 105–110, Athens, Greece,
June 18-23, 2009.

[2] A. J. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In International Conference on
Dependable Systems and Networks (DSN 2007), pages 575–
584. IEEE Computer Society, 2007.

[3] C. Lim, N. Singh, and S. Yajnik. A log mining approach
to failure analysis of enterprise telephony systems. In Inter-
national Conference on Dependable Systems and Networks
(DSN 2008), Anchorage, Alaska, June 2008.

[4] M. Kalyanakrishnam, Z. Kalbarczyk, and R. K. Iyer. Failure
data analysis of a LAN of windows NT based computers. In
Proceedings of the Eighteenth Symposium on Reliable Dis-
tributed Systems (18th SRDS’99), pages 178–187, Lausanne,
Switzerland, October 1999. IEEE Computer Society.

[5] C. Simache and M. Kaâniche. Availability assessment of
sunOS/solaris unix systems based on syslogd and wtmpx log
files: A case study. In PRDC, pages 49–56. IEEE Computer
Society, 2005.

[6] M. F. Buckley and D. P. Siewiorek. VAX/VMS event
monitoring and analysis. In FTCS, pages 414–423, 1995.

335

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

[7] Michael M. Tsao and Daniel. P. Siewiorek. Trend analysis
on system error files. In Thirteenth Annual International
Symposium on Fault Tolerant Computing, IEEE Computer
Society, pages 116–119, 1983.

[8] J. P. Hansen and D. P. Siewiorek. Models for time coalescence
in event logs. In FTCS, pages 221–227, 1992.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. Dependable and Secure Computing, IEEE Trans-
actions on, 1(1):11–33, Jan.-March 2004.

[10] C. Lonvick. The bsd syslog protocol. Request for Com-
ments 3164, The Internet Society, Network Working Group,
RFC3164, August 2001.

[11] J.-C. Laplace and M. Brun. Critical software for nuclear
reactors: 11 years of fieldexperience analysis. In Proceedings
of the Ninth International Symposium on Software Reliability
Engineering, pages 364–368, Paderborn, Germany, November
1999. IEEE Computer Society.

[12] M. Cinque, D. Cotroneo, and S. Russo. Collecting and
analyzing failure data of bluetooth personal area networks.
In Proceedings 2006 International Conference on Dependable
Systems and Networks (DSN 2006), pages 313–322, Philadel-
phia, Pennsylvania, USA, June 2006. IEEE Computer Society.

[13] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. K.
Sahoo. Bluegene/L failure analysis and prediction models. In
Proceedings 2006 International Conference on Dependable
Systems and Networks (DSN 2006), pages 425–434, Philadel-
phia, Pennsylvania, USA, June 2006. IEEE Computer Society.

[14] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and
Y. Zhang. Failure data analysis of a large-scale heterogeneous
server environment. In Proceedings 2004 International Con-
ference on Dependable Systems and Networks (DSN 2004),
pages 772–, Florence, Italy, June-July 2004. IEEE Computer
Society.

[15] D. L. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do internet services fail, and what can be done about it? In
USENIX Symposium on Internet Technologies and Systems,
2003.

[16] B. Schroeder and G. A. Gibson. A large-scale study of failures
in high-performance computing systems. In DSN, pages 249–
258. IEEE Computer Society, 2006.

[17] B. Murphy and B. Levidow. Windows 2000 Dependability.
MSR-TR-2000-56, Microsoft Research, Microsoft Corpora-
tion, Redmond, WA, June 2000.

[18] D. Tang, M. Hecht, J. Miller, and J. Handal. Meadep: A de-
pendability evaluation tool for engineers. IEEE Transactions
on Reliability, pages vol. 47, no. 4 (December), pp. 443–450,
1998.

[19] A. Thakur and R. K. Iyer. Analyze-now - an environment
for collection and analysis of failures in a networked of
workstations. IEEE Transactions on Reliability, pages Vol.
45, no. 4,560–570, 1996.

[20] R. Vaarandi. Sec - a lightweight event correlation tool. In
IEEE IPOM’02 Proceedings, 2002.

[21] J. P. Rouillard. Real-time log file analysis using the simple
event correlator (sec). USENIX Systems Administration (LISA
XVIII) Conference Proceedings, Nov. 2004.

[22] D. Cotroneo, R. Pietrantuono, L. Mariani, and F. Pastore.
Investigation of failure causes in workload-driven reliability
testing. In Foundations of Software Engineering, pages 78–
85. ACM Press New York, 2007.

[23] D. Cotroneo, S. Orlando, and S. Russo. Failure classification
and analysis of the java virtual machine. In Proc. of 26th Intl.
Conf. on Distributed Computing Systems, 2006.

[24] L.M. Silva. Comparing error detection techniques for web
applications: An experimental study. 7th IEEE Intl. Symp. on
Network Computing and Applications, pages 144–151, 2008.

[25] J. Gray. Why do computers stop and what can be done about
it. In Proc. of Symp. on Reliability in Distributed Software
and Database Systems, pages 3–12, 1986.

[26] F. Salfner, S. Tschirpke, and M. Malek. Comprehensive
logfiles for autonomic systems. Proc. of the IEEE Parallel
and Distributed Processing Symposium, 2004, April 2004.

[27] IBM. Common event infrastructure. http://www-
01.ibm.com/software/ tivoli/features/cei.

[28] C. Simache and M. Kaâniche. Measurement-based availabil-
ity analysis of unix systems in a distributed environment. In
Proc. of the 12th IEEE International Symposium on Software
Reliability Engineering, 2001.

[29] Gerardo Pardo-Castellote. OMG data-distribution service:
Architectural overview. In ICDCS Workshops, pages 200–
206. IEEE Computer Society, 2003.

[30] T.-T.Y. Lin and D.P. Siewiorek. Error log analysis: statistical
modeling and heuristic trend analysis. IEEE Transactions on
Reliability, pages 419–432, 1990.

[31] G. Khanna, I. Laguna, F.A. Arshad, and S. Bagchi. Dis-
tributed diagnosis of failures in a three tier e-commerce
system. In Proceedings of the 26th IEEE International
Symposium on Reliable Distributed Systems (SRDS07), pages
185–198, Oct 10-12, 2007.

[32] I. Rouvellou and G. W. Hart. Automatic alarm correlation
for fault identification. In INFOCOM ’95: Proceedings of the
Fourteenth Annual Joint Conference of the IEEE Computer
and Communication Societies (Vol. 2)-Volume, page 553,
Washington, DC, USA, 1995. IEEE Computer Society.

[33] R. Jain. The Art of Computer Systems Performance Analysis.
John Wiley & Sons New York, 1991.

336

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The Impact of Source and Channel Coding in the Communication Efficiency of
Wireless Body Area Networks

Richard Mc Sweeney, Christian Spagnol, and Emanuel Popovici
Department of Microelectronics Engineering

University College Cork
Cork, Ireland

richardmcs@ue.ucc.ie, c.spagnol@ue.ucc.ie, e.popovici@ucc.ie

Luigi Giancardi
Department of Biophysical and Electronic Engineering

University of Genoa
Genoa, Italy

luigi.giancardi@ingegneria.studenti.unige.it

Abstract—This paper examines the system level energy per-
formance of Wireless Sensor Motes for Electroencephalography
(EEG) patient monitoring application by the use of concate-
nated source and channel coding. The addition of coding in
a power constraint system has its advantages by reducing the
energy per bit, but it also has its drawback in the cost of the
power consumption in the encoding and decoding processes. In
this work Huffman code is implemented as the source coding,
and a shortened Reed-Solomon code is used for channel coding.
The reliability and energy savings of the scheme is presented
and the impact of the coding procedure on the communications
performance is analyzed. The results show that it is possible
to have Bit Error Rate (BER) and compression gains in the
system, and that the computational time of purely software
oriented implementations are not optimal. Also, the possibility
for future extensions of this coding scheme, which would
introduce better efficiency and accuracy, are shown. The error
patterns that occur in the channel are investigated, and a design
space for a possible Hybrid Automatic Repeat reQuest (HARQ)
scheme that would minimize the power consumption of this
implementation is proposed.

Keywords-Medical application; power reduction; WBAN;
Huffman source coding; Reed-Solomon channel coding

I. INTRODUCTION

The growing interests and developments in the area of
wireless sensor networks have opened up many avenues
for the applications of such systems in remote monitoring,
whether they may be in medical, environment, security,
surveillance, or industrial. Patient monitoring and personal
healthcare are the focus of this paper, and power optimiza-
tion in the wireless communication by the use of source and
channel coding are presented [1].

Wireless Body Area Network (WBAN) is one type of
network that is considered for patient monitoring, where the
sensors are distributed around the body and their commu-
nications range is limited to the immediate vicinity. They
monitor the body and process the acquired data on the
battery operated sensor node and then wirelessly transmit
them to a monitoring station for further analysis or alarm.
The main constraints of such systems include reliability,
area, timing, and efficiency, however the main bottleneck

that has been generally accepted is the issue of power
consumption [2].

The power consumption of the wireless sensor node is dis-
tributed among several different areas of the device, where
the most common configurations include one or several
sensors, a microprocessor/microcontroller/DSP referred as
software component, a Custom Digital Signal Processing
unit referred as digital hardware component (FPGA/ASIC),
memory, and a transceiver. Since one of the most power-
consuming devices is the RF module, in order to achieve
minimum system power consumption the most effective
solution is to buffer the data and operate the transmitter at the
highest possible data rate at low duty cycle, thus minimizing
the time in which the communication occurs. This can lead
to design constraints such as data rate and packet size,
and can have a significant effect on the communication
efficiency.

Since WBAN in patient monitoring is employed in an
indoor environment with communication occurring through
the patients body, it is expected that the channel quality
would vary significantly. This would require frequent re-
transmissions, which is not energy efficient if a number
of these errors in the corrupted packets can be corrected,
thereby mitigating repeat transmissions. This is done by the
use of Forward Error Correction (FEC), which introduces
systematic redundancies allowing transmission of data at a
reduced energy per bit, achieving the same bit error rate. The
cost of FEC is additional decoder power consumption at the
receiver. To further increase the throughput of the commu-
nication, source coding is used to remove redundancies that
are inherent in the data. Compression reduces the amount
of energy required per bit-of-information in transmission
through the channel. Both methods work on the assumption
that power savings in the wireless data transmission can
be achieved at the expense of power consumption in the
encoding/decoding stages of either the processor or the
dedicated hardware.

The work proposed in this paper focuses on a software
implementation of a source and channel coding scheme on
an 8-bit micro-controller. Huffman code is used for com-

337

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 1. The proposed system flow, illustrating the steps taken from
source to sink

pression, and a shortened Reed-Solomon RS(28,24) code
over Galois Field GF(28) is used for FEC. The system is
designed with the applications in the Electroencephalogra-
phy (EEG) patient monitoring in WBAN architecture. The
system itself is implemented on the Tyndall 25mm mote
[3] that has an Atmel mega128L processor, and a Nordic
nrf2401 transceiver that operate on the 2.4 GHz Industrial,
Scientific and Medical (ISM) band. By using the sample
EEG data [4], the power measurements are performed in a
laboratory environment. The system logical architecture is
illustrated in Fig. 1.

Section II discusses the constraints of WBAN and the
type of channel that is encountered. Section III of this
paper presents the theory and background of source coding
and illustrates the factors that affect the quantization and
Huffman compression scheme. The theory and methods used
in Reed-Solomon channel coding is presented in Section
IV. Section V of the paper gives the results of the power
reduction and gains in terms of compression and error
correcting code. Section VI presents the power savings of
using RS to mitigate retransmissions. The conclusion of the
findings and the future works are presented in Section VII.

II. WBAN CONSTRAINTS

It is well known that wireless communication has vari-
able channel characteristics that are determined by many
factors such as transmitter/receiver power, communication
frequency, modulation scheme, reflection, scattering, obsta-
cles, and interferences from other radiating sources. Indoor
wireless sensor networks are more susceptible to these fac-
tors since the motes operate at lower communication power
levels and in environments that contains more obstacles and
reflecting sources. The result is that the Receiver Signal
Strength (RSS) profile shows pockets of low sensitivity
determined by the wave reflections and scattering effects
or other factors such as interference and direct obstructions.
This in turn affects the Bit Error Rate (BER), and can result
in poor communication even at small distances.

Fig. 2 is a path loss model from [5] that illustrates the
impact of RSS considering only free space with ground
reflections at a power level of 0dBm. It is observed that

Figure 2. Path loss model for free space with ground reflection at a power
level of 0dBm. [5]

there is quite a large degradation in the RSS even at small
distances.

When implementing wireless communication in WBAN,
which has communication distances that are even smaller
and that often place the persons body in between the sensor
nodes, the problem of reliability in the communication
becomes even more pronounced. Therefore it becomes in-
evitable that severely varying BER would be encountered
and the solution becomes that either the transmitter power
needs to be increased or some form of error correction needs
to be used to alleviate this increase in signal power.

The structure of a WBAN system with a gateway is
shown in Fig. 3. The links between the sensors (S) and
the master nodes (MN) are the WBAN, and the link with
the MN to the monitoring station (MS) is the WLAN.
These two types of links have channel characteristic that
are different and demand physical (PHY) and media access
control (MAC) layers that differ from one another. In the
case of WLAN for example, the network can adopt either
singlehop or multi-hop schemes, and can have RSS profile
that are affected significantly by reflections and scattering
from various sources. They may also have different data rate
and may use a different frequency for communications than
that of WBAN. The WBAN on the other has very small
communications range, is usually single-hop architecture
and pose a different challenge to the WLAN by often placing
direct obstruction (the body) in the line of sight.

One of the works in channel performance and the effect of
path loss in the body is presented in [6], where an investi-
gation of the path loss in flat biological tissue at 2.4GHz
ISM band is performed. The research draws conclusions
on that among the tissue types investigated, the thickness
of skin and fat layers have the most variable influence on
the path loss, and that proper sizing of the antenna is an
important factor. The Research reported in [7] investigates
the path loss for the human arm and torso, and path loss
parameters were derived from experimental measurements

338

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 3. Possible WBAN system connected to WLAN gateway [8]

and are then compared with the model stated in [6]. The
study shows that the path loss along the arm and the torso
follow the same course but the magnitude of the loss along
the torso is higher due to increased absorption, and suggests
that the path loss model for a flat homogeneous tissues may
underestimate the effect near a human body. These studies
show that there is quite a significant amount of degradation
in communications efficiency near the human body, and that
the designs of WBAN needs to have a high communications
power or an appropriate FEC to keep the desired BER.

III. SOURCE CODING

Data compression algorithms can be divided into two
families, namely lossless compression and lossy compres-
sion techniques [9]. The lossless compression scheme allows
perfect reconstruction of the original data, while lossy com-
pression returns an approximation that can achieve better
compression rates. The choice of compression scheme used
depends heavily on the application and the performance
required by the system.

Due to lack of approved standards, medical data is often
required by clinical practice physicians to be lossless, and
is believed to be an essential requirement for a correct
diagnosis. However as it is noted in [10], the diagnosis of
8-bit resolution EEG data gives enough precision to ensure
a correct interpretation of the signal by a physician. In this
work the EEG data used was sampled with a 12-bit resolu-
tion ADC, and an 8-bit micro-controller is used to perform
the compression. Basing our system upon the observations
made in [10], the ADC data is uniformly quantized from 12-
bits to 8-bits. The operation affects the quality of the signal,
but also has its advantages by providing easier computations
for the 8-bit microcontroller, and by providing less memory
requirements for the Huffman codeword LUT.

Huffman code has been chosen due to its simplicity. Given
a known probability function, the huffman tree can be built
and stored in the SRAM or the flash in the micro-controller.
The encoding is performed on the sensor node immediately
after data acquisition, using just memory accesses to the
codeword LUT. However decoding has higher complexity
since it has to assess individual bits to find the corresponding

Figure 4. The procedure for source encoding

codeword in the LUT. But this is performed on the master
node, which is a more powerful machine, hence is not
considered critical.

Therefore for this work a trade-off solution is proposed,
where some error (loss) is introduced before the lossless
compression stage. The steps of this technique are illustrated
in Fig. 4.

The initial step quantizes the 12-bit EEG data to 8-bits,
which results in resolution-loss of the amplitudes that is
uniformly distributed over the whole dynamic range of the
data set. The quantized EEG data is then compressed using
the static Huffman encoder, and is subsequently passed into
a payload setup, where bit packing is performed. The packet
is then either encoded by the channel-encoding scheme, or
wirelessly transmitted directly.

A. Quantization

The procedure for the quantization is as follows. The
EEG data set is uniformly quantized over the entire dynamic
range. The error introduced by the quantizer varies with the
maximum amplitude that has to be represented after the
quantization, where the peak of the Gaussian distribution
plays an integral role in the choice of the quantization
interval. This peak amplitude parameter V M is chosen so as
to minimize the negative effect of the quantization without
significantly affecting the compression performance. The
cost-function in (1) is used to select V M .

min(V M)

[

J = αErr(V M) +
(1 − α)

Gain(V M)

]

, (1)

where the term Gain(V M) is an expression of the source
coding gain (explained in details in Section V.A), and the
term Err(V M) is an error-function defined by:

Err(V M) =

√

√

√

√

1

S

S
∑

i=1

|qi − di|2wi, (2)

where S is the number of EEG samples in the entire training
set, |qi − di| is the difference between the quantized value
and the original sample, and wi is the weight-coefficient. i.e.
the frequency of occurrence of each value in the database.
The α value is a term used to vary the weight between the
error and the coding gain.

339

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 5. (a) Illustration of the local minima for the 2D Cost function
without α (b) 3D Cost function

The plot of the cost function J(V M, α) is shown in Fig.
5(b). It is seen from the figure that this is not a convex
function, there are no local minima, and the global minima
occurs at α = 0. The conclusion is that α does not contribute
to the cost function and is trivial when trying to determine
the optimum value of V M . Therefore the cost function is
analysed without α. This is illustrated in Fig. 5(a). The
minima of this new function J(V M) is found to be at V M
= 1330, which is an integer representation of the voltage
value that was measured on the sensor.

After the quantization, the data will assume only 256
different values. This is the base-requirement for the next
step of the source coding algorithm.

B. Huffmann Coding

Given a discrete source of symbols, the Huffman coding
procedure builds for that source a variable-length minimum-
redundancy prefix code. The minimum redundancy code is
often referred as optimum in the sense that it leads to the
lowest possible average codeword length, given N symbols
and M digits. It is important to note that for every source
there are several optimum codes. We considered only prefix
codes, in which a codeword cannot be a prefix of some
other codeword, because there is no loss of generality in
considering only the prefix ones. In fact it can be shown that
given a general optimum code, there exists a prefix code that
achieves the same results [10].

The Huffman code tree [11] has a number of leaves
proportional to the number of different symbols coming
from the discrete source: in this case they are 256, as the
Discrete Source is the Quantizer from the previous step.
Each leaf contains a string of bits, here called codeword
that corresponds to an input symbol. Going from the root
deep through the code tree, the symbols become step-by-
step less likely, while the related codewords much longer.
The average length of the code is defined as,

Lav =

N−1
∑

i=0

bivi, (3)

where bi is the codeword, and vi is the corresponding error
probability. The Huffman compression scheme is designed
so that the average length of the code is smaller than the
uncoded version.

An issue related to this code is that it is impossible to put
a limit on the maximum length of a codeword. This is due
to fact that the maximum depth of the Huffman tree results
from the code-design procedure without any possibility of
control. This is a problem since a fixed maximum codeword
length is required when working with an 8-bit micropro-
cessor that cannot efficiently handle variables exceeding the
size of 8-bits.

To solve this problem a hybrid technique based on the
Collapsed Huffman Tree (CHT) is used [10]. Each Huffman
codeword larger than length 8-bits are appended a CHT
codeword that flag such a case. The resulting final codeword
has 16-bits. It has been observed that this does not have a
significant negative impact on the average length of the code,
because the CHT leaf collects the most unlikely symbols of
a given source.

C. Multiple Huffman codes

A possible variant of both classic Huffman and CHT
coding is the use of Multiple Huffman codes, i.e. a family
of codes that allow the encoder and the decoder to switch
between them, by following a certain rule.

By definition, Huffman codes are built (and optimized)
to best represent the source of symbols they have been
constructed from. This means that such a code has good
performances when the training sequence used to build the
code is truly representative of the source of symbols that are
to be encoded. These considerations imply that a Huffman
code is optimum when the source that has been compressed
emits the symbols with a homogeneous time-independent
distribution. Even if this is true over a large time scale
(which is the assumption that the Huffman coding takes),
it could be not true over a small time window. In the case
of EEG signal processing, it is observed that the distribution
of amplitudes differs from normal activity to seizure activity
as shown in Fig. 6.

Figure 6. Distribution of amplitudes for a large number of samples taken
from normal activity (left) and abnormal activity (right)

340

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 7. Modified compression scheme for seizure-aware coding

The knowledge of when abnormal activity occurs during
a long-term EEG examination would permit to introduce
further optimizations to this scheme by the use of multiple
Huffman codes. A possible scheme to realize this idea is
shown in Fig. 7.

In such a case where the sensor node is aware of the
current brain state by means of either an internal procedure
or an external indication, the seizure detection block chooses
the appropriate Huffman tree to perform the encoding. In this
implementation, two Huffman trees are used; one optimized
for normal activity, and another one for seizures activity.
The codewords are packed in the payload setup as before.

IV. REED SOLOMON CHANNEL CODING

The channel code that was chosen for this particular
implementation of FEC is the shortened Reed- Solomon
(28,24,4) over the Galois Field size of GF(28). The RS
code [12] is traditionally popular and has been a longtime
industry-standard that has found uses in various applications
such as satellite communications, Digital Video Broadcast-
ing (DVB), Compact Disks (CD), Digital Versatile Disks
(DVD), mass storage, and in wireless communications. The
main reasons for such wide-ranging popularity stems from
the fact that the RS code has efficient encoding and decoding
algorithms, and targets (multiple) burst errors.

A. Reasons for code choice

The RS(28,24,4) over the GF(28) is implemented in this
scheme due to a variety of reasons. One of the requirements
for a power-constrained wireless sensor mote is to operate
the most power consuming devices as seldom as possible.
The transceiver is then needed to work at as small time
frame as possible and at high data rate. These constraints
lead to the need of the packet to be small but also at
the same time to keep the power consumption of the FEC
as low as possible. Therefore the FEC should keep the
size small and be computationally easy. This is especially
the case for the power-constrained sensor nodes, but is
also true for the master node in terms of time taken to
decode, which becomes critical in networks that utilize
Time-Division Multiple Access (TDMA) protocols.

Various research groups have performed works in the field
of feasibility of FEC in Wireless Sensor Networks (WSN).

The research done in [13] explores the power estimation of
Hamming codes, Convolutional codes (CC), and RS codes
and has proposed a framework for the design space of FEC
for WSN. It was established that RS codes perform the best
in terms of total energy consumed by the motes, and it
was seen that packet size of 31 bytes consumes the least
amount of power at varying node distances. Through the
BER analysis it is shown that the computational power of
RS(31,29,3) is the lowest at BER of 10−4 and RS(31,27,5)
is the lowest at path loss exponent of 4, which equates
to a dense noisy environment. The authors of [14] have
performed works on power estimation of various BCH, RS,
and CC cores on tsmc180nm ASIC process and Xilinx
Spartan III FPGA platform. It is shown that the power
consumption of linear block codes are much less than that
of CC, and that BCH and RS codes are useful in WSN
applications. In [15], empirical research has been performed
on the BER of the motes in short range (< 1.5 m) WSN,
and investigated the packet loss and packet reception of the
sensors. The packets are sized to 64 bytes, and through their
analysis the authors found that the average number of bit
errors in a packet that passed synchronization is 16.68 bits.

The maximum packet size of the burst mode in the
nrf2041 is 32 bytes, of which 4 bytes are set for synchroniza-
tion and address. The maximum size of the packet payload is
28 bytes, and thus the code is built with n=28. The reason
for choosing the field size of GF(28) is due to the 8-bit
micro-controller, where all operations are performed in 8-
bit blocks, therefore for ease of operation, and to reduce
computational power, the code is built over this field size.

The combination of these reasons not only shows that the
choice of RS(28,24) is acceptable for short range WSN, but
also justify them from an implementation point of view and
that the performance should be similar to the stated figures.
B. Code Architecture

Following the encoding of the EEG data by the Huffman
compression scheme on the sensor node, the resulting mes-
sage m(x) is systematically encoded by the concatenated
code and is sent wirelessly through a highly noisy indoor
environment. The systematic encoding ensures that the data
symbols appear in the codeword, and is expressed, using
polynomial notation as follows,

c(x) = p(x) + xn−km(x), (4)
where the parity symbols p(x) is chosen such that the
codeword c(x) is divisible by the generator polynomial.

Due to the complexity of the Galois field multiplication,
and the limitations of the processor to perform only one
operation per clock cycle, a bit serial multiplier is used for
multiplications in GF(28), and a look-up-table is made for
inversion to facilitate maximum speed of the operation [16].

Once the packet is received on the master node, the
word may be corrupted and this is expressed as r(x) =

341

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 8. Reed-Solomon Decoder architecture

c(x) + e(x), where r(x) is the received data, c(x) is
the codeword, and e(x) is the added channel noise. The
RS decoder attempts to correct the errors by means of
polynomial operations. The decoding flow can be seen in
Fig. 8.

The (n − k = 2t) syndromes Si are computed and these
are used to calculate the Error Locator Polynomial ELi(x)
in an iterative fashion. The commonly used Berlekamp-
Massey algorithm [17] for the calculation of the error locator
polynomial is here replaced with the Fitzpatrick algorithm
[18] due to its faster performance.

Once the Fitzpatrick algorithm has calculated the error
locator polynomial, the roots of the polynomial, X−1

i are
then found by the shortened Chien search algorithm, which
only cycle through the last 28 elements of the GF(28) since
the code has been shortened to RS (28,24). This observation
leads to a considerably shortened computational time for the
search calculation.

The resulting roots X−1

i are the inverses of the error loca-
tions in the received word and are used for the calculation of
the error values Yi. These error values are calculated without
the use of the error evaluator polynomial, as was proposed
in [19]. The equation used for the error value calculations
is shown in (5).

Yi =
X−2t+1

i

ELi′(X
−1

i)EL
′

i(X
−1

i)
, (5)

where ELi′(x) is the update polynomial obtained through
the Fitzpatrick algorithm, and EL′

i(x) is the formal deriva-
tive of ELi(x). This algorithm has the advantage over the
traditional Forney algorithm [20] in that it does not have
to calculate the error evaluator polynomial, thereby saving
significant computational effort.

Finally the error is corrected with the use of the error
values Yi and their corresponding error positions X−1

i .

V. POWER MEASUREMENTS AND RESULTS

Several implementations are considered for the analysis of
the power consumption and the performances of the source
and channel codes. These are summarized in Table I.

Table I
COMMUNICATION VERSIONS USED

Version Description
Orig. 12-bit EEG data that is transmitted as a 16-bit word

Quant. Quantized 8-bit EEG data
QH Quantized 8-bit EEG data with Huffman coding
QRS Quantized 8-bit EEG data with RS coding

QHRS Quantized 8-bit EEG data with Huffman and RS coding

Figure 9. TX system current consumption vs. time

The data is sent wirelessly in burst mode of the nrf2041
at data rate of 250 kb/s and at TX power level of -20dBm.
The transmission packets are sized to 32 bytes per packet,
with 28 bytes of information payload.

The result current consumption waveforms at the trans-
mitter for the versions 1 to 4 are shown in Fig. 9, where
each peak corresponds to a packet being sent. The wave-
forms are captured via voltage measurement across a 1.7
Ω external resistor with the supply voltage for the Tyndall
mote set at 5V. The micro-controller operates on 3.3V, and
the transceiver operates on 2.5V. The power consumption
of the voltage regulators and the surrounding circuitry are
assumed to be negligible. It should also be noted that

342

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Table II
TX POWER AND ENERGY CONSUMPTION

Version Pac rate Pwr TX En /Pac Pwr RX En /Pac
(s−1) (mW) TX (mJ) (mW) RX (mJ)

Orig. 320.5 65.334 0.2038 88.2 0.2752
QH 159.2 59.168 0.3716 88.2 0.5540

QRS 15.21 54.274 3.5683 88.2 5.7988
QHRS 14.79 54.247 3.6678 88.2 5.9635

the development board on which the measurements are
performed adds 20.38mV shown in Fig. 9, and needs to
be subtracted in order to calculate the power consumption
of the mote itself.

Table II summarizes the communication performance and
the energy usage of the various schemes at the transceiver
power level of -20dBm.

Moving down the column for the different versions, it is
observed that the power consumption of the system drops
due to a decrease in the packet rate, but the overall energy
consumption rises due to the heavier processing demands
of the codes. This is due to the limitations of the 8-bit
microprocessor to carry out tasks such as efficient bit-
wise Galois-Field multiplication, hence high amounts of
computational time were introduced that led to reduced
packet rate.

In regards to Orig. and QH, it is observed that Orig. has
twice the packet rate of QH due to the necessary computa-
tional effort required by the Huffman coding operation in
QH. However as seen in Table V, the compression gain
works out to be around 60% for most of the time, and
therefore the overall throughput of the Huffman encoded
data is superior.

In terms of channel coding, it is seen from Table II
that communication has higher throughput and hence better
performance when the code is not used. However these
results do not take into account of the coding gain provided
by the FEC nor the channel characteristics. Investigation and
results on these aspects are provided in Section V.C and
Section VI respectively. It is shown that there are advantages
to be had in using FEC in terms of coding gain and in
mitigating retransmissions as well as the system power.

A. Compression Performance

The Compression rate is strictly dependent on the average
length of the source code, Lav as defined in (3). We
consider the case of a Huffman tree built using the entire
EEG database as the training set with V M=1330 and 8-bit
quantization. The compression performance of huffman and
collapsed huffman trees are shown in Table III.

It is seen from the table that the efficiency of the CHT
technique ηcht is lower than the original one η , and the
average length of the CHT Lavcht

is higher than the original
Lav. Although this is a slight trade-off in the performance

Table III
COMPRESSION FIGURES

Term Term Description
H = 5.345 Entropy of the signal from quantizer
Lav=5.366 Avg. length for the standard Huffman tree

Lavcht
=5.96 Avg. length for the Huffman tree with the CHT leaf

CHT = 38 Position of the CHT leaf in Huffman tree
η = 0.996 Efficiency of Huffman coding

ηcht = 0.897 Efficiency of Huffman coding with the CHT leaf
Mem=507 Memory usage of original LUT in Bytes

Memcht=38 Memory usage of CHT LUT in Bytes

of the code, it is also seen from the comparison of Mem
and Memcht that there are large memory savings of approx-
imately 92.5% to be had from using CHT.

Although the figures of Table III give the performace of
the code that is optimized for the given statistics, it should be
noted that the EEG sample used to build the tree contains
20% seizure activity. Since it is rare to see 20% seizure
activity in the real case, a test that was devised to explore the
compression scheme on various EEG data types. i.e. Seizure
and Non-seizure activity. The test consists of transmitting
the EEG data in 200 packets through the wireless link, and
counting how many information bits are communicated. The
average packet length is sized to 24 bytes, where for QH one
byte is reserved for information on the number of significant
bits in the data payload. Fragment 1 holds EEG data activity
of seizure prone patients, Fragment 2 holds the data of the
patients when in seizure, and Fragment 3 is the normal EEG
data of healthy adult subjects. The results are summarized
in Table IV.

Table IV
COMMUNICATION PERFORMANCE WITH VARIOUS TYPES OF DATA

FRAGMENT 1 Orig. Quant. QH
Total number of packets 200 200 200
Total EEG samples sent 2400 4800 7725

Avg. data payload length (bits) 192/192 192/192 179/184

FRAGMENT 2 Orig. Quant. QH
Total number of packets 200 200 200
Total EEG samples sent 2400 4800 3605

Avg. data payload length (bits) 192/192 192/192 177/184

FRAGMENT 3 Orig. Quant. QH
Total number of packets 200 200 200
Total EEG samples sent 2400 4800 8690

Avg. data payload length (bits) 192/192 192/192 181/184

The table shows that the quantized values, Quant. sends
twice as many samples than that of original values Orig. and
that QH achieves even better performance for Fragments
1 and 3. The average data payload length varies for QH
due to the variable length nature of Huffman coding. To

343

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Table V
HUFFMAN PERFORMANCE WITH VARIOUS EEG

FRAGMENT 1 FRAGMENT 2 FRAGMENT 3
Avg. length 4.682 9.878 4.1988
Gaincht 2.560 1.210 2.850
Gain (%) 60.91 17.35 64.91

summarize the compression performance, the experimental
average code length and the corresponding compression gain
of the Huffman encoded data for each Fragment can be seen
in Table V, where only QH is considered. The estimation
of the overall compression gain is made using a simple
relationship in (6), where 12 is the original resolution of
the sample.

Gain =
12

Lav

, Gaincht =
12

Lavcht

, (6)

The results show that coding gain is strictly dependent on
the nature of the signal, and if considering that segments
such as fragments 1 and 3 occur for more than 99% of the
time, the little increment from 8 to 9.878 bits per sample
(during the seizure activity) does not affect the compression
capabilities of the system over a macro-scale.

B. Multiple Huffman codes

Previous considerations on EEG signal compression with
CHT Huffman code show that the coding performances in
terms of accuracy and coding gain are strictly related to
the composition of the signal entering the encoder. This
is inherent to the Huffman-code building algorithm, since
seizures (and abnormal activity in general) are less likely
than normal activity over a large time scale, than a general
activity Huffman code. Even if the encoding scheme here
presented can represent any sample with similar level of
quality (due to uniform quantization), the performance of
the encoder decreases when abnormal activity is present.

In this section, a mixed-activity signal with known oc-
currences of seizure activity has been encoded using both
single and multiple codes. Using the same criterion as (1),
the best value for V M (which is a parameter related to
quantization intervals size, i.e. to accuracy) are chosen,
and two more Huffman codes are built. Based on these, a
mixed code is implemented that takes advantage of seizure
awareness (available by construction, in this particular case)
to introduce further optimization.

The results of the comparison are shown in Table VI,
where f is the expected frequency of occurrence of seizures.
It is seen that the seizure-aware (multiple Huffman) coding
shown in column 4 introduces a double advantage.

First, it encodes the mixed-activity samples with an in-
creased efficiency in comparison to the general code (column
3). This can be observed by looking at the larger number
of samples-per-packet sent. Secondly, since the value V M

Table VI
A PERFORMANCE COMPARISON BETWEEN DIFFERENT HUFFMAN

CODES

Signal Normal Seizure Mixed activity
activity activity

Code Normal act. Seizure act. General Multiple
code code code code

V M 250 1680 1330 Norm, Seiz
ERR 0.07 0.46 0.64 (1-f)*0.07
(V M) + f*0.46

EEG / Pac 25.06 20.03 20.15 24.29

is targeted on the particular class of brain activity, the
effects of quantization on signal quality are lower, i.e. the
reconstructed (decoded) samples are more similar to the
original ones. For example if f = 0.1 (which implies 10%
seizure activity), the average error would result to be 6
times lower than the case when the general code is used.
This means that the reconstructed signal would have 6 times
more accuracy than before. This shows that the multiple-tree
scheme brings improvements with respect to the single-tree
implementation in terms of compression and the accuracy
of the data due to the change in the quantization intervals.

C. Reed Solomon Coding Gain

The coding gain of the RS(28,24) code is usually cal-
culated by setting the desired bit error rate of the un-
coded BPSK and the coded BPSK and then measuring
the difference between the Signal-to-Noise Ratio (SNR)
required to reach such BER. This is achieved by varying
the transmitter power levels. However due to the limitations
of the transceiver of the Tyndall mote in setting the TX
power levels, the SNR was modified by varying the distance
between the TX and RX at a constant transceiver power level
of -20dBm. It is also noted that the modulation scheme used
by the nrf2041 is Gaussian Frequency Shift Keying (GFSK).
The results of the measurement are shown in Fig. 10. It
should be noted that the distance is inversely proportional
to the SNR, and also that the BER decreases with rising
SNR.

It is observed visually that as the BER decreases, the
gap between the GFSK(uncoded) and that of RS(28,24)
become larger. It is interesting to note that there are certain
points when the communication becomes worse even at
small distances where one would expect lower BER, such
as the case at the distance 0.15m. At other distances such as
0.95m to 1.3m, the effect is more prominent. This is due to
path loss and reflections from the ground and walls, which
interact with the original signal to produce low receiver
signal strength. To measure the coding gain of the RS code,
the following model is used [21],

PTX,U [W] = ηU

Eb

N0

N

(

4π

λ

)2

dn, (7)

344

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

00.20.40.60.811.210−6

10−5

10−4

10−3

10−2

Distance (m)

Bi
t E

rro
r R

at
e

(B
ER

)

RS(28,24)
GFSK

Figure 10. Plot of TX-RX distance vs. Bit Error Rate

where:
ηU = Spectral efficiency (=1 for BPSK)
Eb/N0 = SNR (energy ratio)
N = Signal noise (Thermal noise*Bandwidth)
λ = Transmitted wavelength
d = Distance between TX and RX
n = Path loss exponent

By placing the coded and uncoded case in proportion, the
following relationship is obtained.

PTX,RS [W]

PTX,U [W]
=

ηMAX

(

Eb

N0

)

RS
N

(

4π
λ

)2
dn

ηMAX

(

Eb

N0

)

U
N

(

4π
λ

)2
dn

. (8)

Since the same channel and transmitter are used, the above
equation can be simplified to,

(

Eb

N0

)

U
(

Eb

N0

)

RS

=

(

dRS

dU

)n

. (9)

To account for experimental error, the BER values shown
in Table VII were chosen to calculate the coding gain. The
table illustrates the values of the FEC gain in relation to
various environmental conditions expressed as the path loss
exponent, where n=2 is for free space, n=3 is for indoor
environment, and n=4 is for indoor environment with many
obstructions.

It is observed from Table VII that the coding gain rises as
the BER is reduced, and that it starts to make larger gains
at BER less than 10−4. As mentioned previously, due to the
geometrically constrained antenna, the BER is expected to
be lower than these values for a system with a better matched
antenna and that perhaps these gains actually start at even
lower BER. Considering that the frequency of the transceiver
used is in a busy communication band (2.4GHz), and the
testing is performed in a laboratory setting with plenty of
reflections, it is reasonable to assume that the value of the
path loss exponent n=3 for this scenario.

Table VII
FEC GAIN FOR VARIOUS ENVIRONMENTAL MODELS

BER 2x10−5 3x10−5 9x10−5 2x10−4 3x10−4

Gain dB 5.0263 2.8394 0.5097 0.3855 0.4706
(n=2)

Gain dB 7.5394 4.2591 0.7646 0.5782 0.7059
(n=3)

Gain dB 10.0526 5.6788 1.0194 0.7709 0.9412
(n=4)

VI. ANALYSIS OF THE CHANNEL

The BER was measured by tallying the number of byte
errors that occurred in the communcation at varying distance
values of 10cm to 130cm. They are then normalized and
presented in terms of overall percentage of errors that
occurred in the experiments. These are shown in Fig. 11. To
account for the variation in the channel characteristic, the
following analysis was performed on four different types
of communication based on their bit error rates. They are
summarized in Table VIII, where the BER and distance
values correspond to the GFSK plot shown in Fig. 10.

Table VIII
CHANNEL SEGMENTS

Segment Description
10 to 50 Between BER of 2x10−5 and 3x10−5 (10→50cm)
55 to 90 Between BER of 3x10−5 and 1x10−4 (60→90cm)
95 to 130 Between BER of 2x10−4 and 4x10−4 (95→130cm)

105 & 125 BER of 3x10−3 (105cm and 125cm)

A. Error Distribution

The plots in Fig. 11 show that a vast majority of the errors
that occur are short bursts, where for segments 10 to 50,
55 to 90, and 95 to 130, single byte errors occur at around
60-70% of the time. As the BER rises beyond 10−3 (segment
105 & 125), the error distribution flattens out and is seen
that longer burst type errors occur (up to 6 bytes) more
frequently. Single byte errors happen less often (40%), and
the energy of the noise looks to be spread more around a
few bytes. It can also be observed that there is a slight rise
in the 28-byte error type in all the segments in this figure.
This is considered as packet loss, where an entire packet
becomes corrupt and needs to be retransmitted.

From the error distribution, it is also possible to calculate
the retransmission rate required for error free communica-
tion, and how FEC can be used to reduce this value, hence
save energy. Equation (10) is used to calculate the required
packet rate.

ARQm =

∑28

i=m

∑28

j=i ej

TPac

, (10)

345

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

10

20

30

40

50

60

70

Number of byte errors in packet

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce
 (%

)

10−to−50
55−to−90
95−to−130
105−&−125

Figure 11. Types of errors occuring for various channel characteristics

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1410−2

10−1

100

101

102

Error correction capability

Re
tra

ns
m

iss
io

n
ra

te
 (%

)

10−to−50
55−to−90
95−to−130
105−&−125

Figure 12. Required retransmission rate for error free communication

where ARQm is the retransmission rate, ej is the error types
shown in Fig. 10, TPac is the total number of packets sent
over the channel, and m is the range of error correction
capability. The calculation of the retransmission rate is
performed and the results are shown in Fig. 12.

The plot shows that with a larger BER such as segment
105 & 125, the overall retransmission rate is higher of
around a factor of 102 than that of almost error free commu-
nication of segment 10 to 50. Also it can be observed that
the addition of FEC alleviates the need for retransmissions,
and this value goes down as the error correcting capability
rises.

B. Power savings

Considering that the communication occurs at the same
packet rate for the uncoded and the coded versions in the
link, it is possible to calculate the power savings of the
system. Such assumption can be achieved by using a code
thats implemented in hardware such as an FPGA or an ASIC.
Therefore one can derive an optimal operating point for
FEC that best utilizes the energy when working at varying
BER levels at this packet size and data rate. Although the
experiment did not directly place any obstructions between
the TX and RX, it did however reach a distance in which

the receiver sensitivity failed. The experiment was also
performed in a closed laboratory environment that provided
strong reflections of the transmission. Therefore it is as-
sumed that at higher transmit power (e.g. -10dBm) on a
real patient would provide a similar type of scenario, and
that the results could be used to design a system specific
HARQ.

The power and energy savings are calculated by com-
paring the original values without any coding with that of
increasing error correction capability. Equation (11) is used
to calculate the new packet rate Pacnewm

from the original
packet rate Pacorig and the retransmission requirements
RTm that is in terms of percentage.

Pacnewm
=

100Pacorig

Pacorig +
(

PacorigRTm

100

) . (11)

The total transmission time, Ttot is calculated using (12),
where TTX is the time taken to transmit a packet.

Ttotm
= TTXPacnewm

. (12)

The average power is found using the information about
the power consumption of the micro-controller PµC , and the
power consumption of the transceiver PTX . By knowing the
time it takes to transmit the packets in a given window, the
product of the respective times and the known powers give
the average power consumption of the system by following
the relationship shown in (13).

PAvgm
= Ttotm

(PµC + PTX) + (1 − Ttotm
)PµC (13)

= PµC + PTX(Ttotm
).

PAvgm
is used to find the average energy EAvgm

that is
the average energy consumed by the system to transmit one
packet. This is achieved using (14).

EAvgm
=

PAvgm

Pacnewm

, (14)

The energy savings is calculated by taking the difference
in the average energy consumption per packet for trans-
mission with no coding, EAvgNo F EC

and that of energy
consumption of coded transmission EAvgm

, as shown in
(15).

ESavingsm
= EAvgNo F EC

− EAvgm
, (15)

From the energy savings, the average power savings or the
difference in terms of power between the uncoded and the
coded transmission is calculated at the respective required
packet rates as shown in (16).

PSavingsm
= ESavingsm

Pacnewm
(16)

Fig. 13 illustrates the amount of power saved for the
various segment types plotted against the error correcting

346

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

5

10

15

20

25

30

35

40

Error correction capability

Po
w

er
 sa

vi
ng

s (
m

W
)

10−to−50
55−to−90
95−to−130
105−&−125

Figure 13. Power savings using shortened Reed-Solomon (28,k,t) with
various error correcting capabilities

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

120

Error correction capability

Re
qu

ire
d

ex
tra

 p
ac

ke
ts

(%
)

10−to−50
55−to−90
95−to−130
105−&−125

Figure 14. Error correction capability vs. Extra transmissions needed (%)

capability. The zero point on the horizontal axis refers to
the case when no FEC is used. It is observed that the power
savings approach a certain threshold where the addition
of more FEC does not give significant savings. It is also
seen that worse the channel, the more benefit in terms of
power savings of the wireless sensor mote is achieved by
the addition of FEC, and that hardly any power savings are
to be had in segments 10 to 50 and 55 to 90.

Although the addition of FEC can mitigate retransmis-
sions, the cost of this operation is the additional parity bits
in the packets, which reduces the overall throughput of the
data. Therefore it is also important to consider the cost of
total throughput versus the gains achieved by the utilization
of FEC. This is illustrated in Fig. 14, where the additional
packets needed for a complete transmission of a data set
in terms of percentage is shown versus the error correction
capability. The point where no error correction is available
refers to a link that utilizes just retransmissions.

The figure shows that for segments 10 to 50 and
55 to 90, the addition of FEC does not result in bet-
ter throughput. However at a higher BER of segment
95 to 130, it is observed that there is a slight improvement
at m=1. Moving up to segment 105 & 125 shows that there

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14−30

−25

−20

−15

−10

−5

0

5

10

15

Error correction capability

Po
w

er
 sa

vi
ng

s (
m

W
)

10−to−50
55−to−90
95−to−130
105−&−125

Figure 15. Total TX system power savings using FEC considering
throughput

is significant savings as the error correction capability rises,
and that the optimum for this BER is at m=3.

The total power savings is calculated by applying (11)
to (16), to the results shown in Fig. 13 and Fig. 14. The
retransmission requirement RTm in (11) is modified to
incorporate the effect of the throughput. The calculated total
power savings are plotted in Fig. 15.

The total power savings shown in the figure strongly
reflects the effect that the throughput has on the effectiveness
of the FEC. Again it is seen that there are hardly any savings
by the FEC at low BER, but it does start to become energy
efficient at above BER of 10−4. In segment 95 to 130 it is
observed that there is small savings of 0.6mW at m=1, and
at segment 105 & 125 the optimum error correction value
is at m=3 with savings of 14mW.

VII. CONCLUSION AND FUTURE WORK

The possibility of energy savings using a software imple-
mentation of a serially concatenated Huffman-RS code was
presented. The analysis of the Huffman compression show
that EEG compressions gains are achieved in a general case,
and that the use of multiple trees for normal and seizure
activity present even more gains.

In terms of the mote system performance however, the im-
plementation presented long computational time that made
the coding seem less practical. The main reason is due
to the limitations of using the 8-bit microprocessor, where
the computationally difficult Galois Field operation for the
Reed-Solomon code presented significant addition to the
processing time. Thus the packet rate was reduced and the
energy consumption per packet was increased. This would
result in faster depletion of the battery on the real system,
which would have a negative effect on the maintenance of
the patient monitoring wireless sensor node.

The error distribution for the channel at various BER
levels was also performed, and the power savings by the
mitigation of retransmissions was calculated. The findings
show that FEC can save power at BER levels of 10−4 or

347

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

higher, and approach optimum values at error correction
capabilities of up to 3 bytes for this implementation.

Future work will explore the hardware-software codesign
of the Reed-Solomon code along with a HARQ scheme,
and also investigate the advantages of joint source-channel
coding for medical applications WBAN.

ACKNOWLEDGMENT

The authors wish to thank the Tyndall National Institute
for their support in the provision of hardware through the
SFI-NAP scheme and for the facilitation of the testing
process. This work is funded by SFI-EEDSP for Mobile
Digital Health, grant number: 07/SRC/I1169.

REFERENCES

[1] R. Mc Sweeney, L. Giancardi, C. Spagnol, and E. Popovici,
“Implementation of source and channel coding for power
reduction in medical application wireless sensor network,” in
Third International Conference on Sensor Technologies Ap-
plications (SENSORCOMM’09), Athens, Greece, Jun. 2009,
pp. 271–276.

[2] S. Drude, “Requirement and application scenarios for body
area networks,” in Mobile and Wireless Communications
Summit 2007: 16t

h IST, Budapest, Hungary, Jul. 2007, pp.
1–5.

[3] Tyndall National Institute, Available at:
http://www.tyndall.ie/mai/25mm.htm.

[4] R. G. Andrezjak, K. Lehnertz, F. Mormann, C. Rieke,
P. David, and C. Elger, “Indications of nonlinear deterministic
and finite dimensional structures in time series of brain
electrical activity: Dependence on recording region and brain
state,” Physical Review E, vol. 64, no. 6, p. 061907, Nov.
2001.

[5] T. Stoyanova, F. Kerasiotis, A. Prayati, and G. Papadopou-
los, “A practical rf propagation model for wireless network
sensors,” in Third International Conference on Sensor Tech-
nologies Applications (SENSORCOMM’09), Athens, Greece,
Jun. 2009, pp. 194–199.

[6] L. Roelens, W. Joseph, and L. Martens, “Characterization
of the path loss near flat and layered biological tissue for
narrowband wireless body area networks,” in International
Workshop on Wearable and Implantable Body Sensor Net-
works, (BSN’06), Cambridge, Massachusetts, U.S.A, Apr.
2006, pp. 50–56.

[7] E. Reusens, W. Joseph, G. Vermeeren, and L. Martens,
“On-body measurements and characterization of wireless
communication channel for arm and torso of human,” in
International Workshop on Wearable and Implantable Body
Sensor Networks, (BSN’07), Aachen University, Germany,
Mar. 2007, pp. 264–269.

[8] S. Marinkovic, C. Spagnol, and E. Popovici, “Energy-efficient
tdmabased mac protocol for wireless body area networks,” in
Third International Conference on Sensor Technologies Ap-
plications (SENSORCOMM’09), Athens, Greece, Jun. 2009,
pp. 604–609.

[9] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression. Norwell, MA: Kluwer Academic Publishers,
1992.

[10] G. Antoniol and P. Tonella, “Eeg data compression tech-
niques,” IEEE Transactions on Biomedical Engineering, vol.
44, 2, pp. 105–114, Feb. 1997.

[11] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the I.R.E., vol. 40, 9, pp.
1098–1101, Sep. 1952.

[12] I. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, 2, pp. 300–304, Jun. 1960.

[13] S. Chouhan, R. Bose, and M. Balakrishnan, “A framework
for energy-consumption-based design space exploration for
wireless sensor nodes,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, 7,
pp. 1017–1024, Jul. 2009.

[14] G. Balakrishnan, M. Yang, Y. Jiang, and Y. Kim, “Perfor-
mance analysis of error control codes for wireless sensor
networks,” in International Conference on Information Tech-
nology, (ITNG’07), Las Vegas, Nevada, USA, Apr. 2007, pp.
876–879.

[15] A. Willig and R. Mitschke, “results of bit error measurements
with sensor nodes and casuistic consequences for design of
energy-efficient error control schemes,” in Proc. 3rd European
Workshop on Wireless Sensor Networks, Zrich, Switzerland,
Jan. 2006, pp. 310–325.

[16] S. Lin and D. Costello, Error Control Coding: Fundamentals
and Applications. New Jersey, USA: Prentice Hall, 1983.

[17] J. L. Massey, “Shift register synthesis and bch decoding,”
IEEE Transactions on Information Theory, vol. 15, pp. 122–
127, Jan. 1969.

[18] P. Fitzpatrick and S. Jenning, “Comparison of two algorithms
for decoding alternant codes,” Applicable Algebra In Engi-
neering, Communication and Computing, vol. 9, 3, pp. 211–
220, 1998.

[19] E. Popovici, “Algorithms and architectures for decoding reed-
solomon and hermitian codes,” Ph.D. dissertation, University
College Cork, University College Cork, Cork, Ireland, 2002.

[20] G. D. Forney, “On decoding bch codes,” IEEE Transactions
on Information Theory, vol. 11, pp. 393–403, Oct. 1965.

[21] S. L. Howard, C. Schlegel, and K. Iniewski, “Error control
coding in low-power wireless sensor networks: When is ecc
energy-efficient?” EURASIP Journal on Wireless Communi-
cations and Networking, vol. 2006, 2, pp. 1–14, 2006.

348

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Multi-level Security in Wireless Sensor Networks

Faruk Bagci and Theo Ungerer
Institute of Computer Science

University of Augsburg
Augsburg, Germany

{Bagci, Ungerer}@Informatik.Uni-Augsburg.DE

Nader Bagherzadeh
Department of Electrical Engineering and Computer Science

University of California
Irvine, USA

nader@uci.edu

Abstract—As the potential range of applications for sensor
networks expands, the need for security mechanisms grows.
Security relevant problems are limited mostly to areas such as
key distribution and cryptographic algorithms, due to severe
resource constraints in wireless sensor networks. Even if it
is not possible to cover all threats, a security architecture
for sensor networks should provide mechanisms on several
levels, in order to maximize the obstacles for attackers. This
paper presents SecSens, an architecture that provides basic
security components for wireless sensor networks on multiple
system levels. Since robust and strong security features require
powerful nodes, SecSens uses a heterogeneous sensor network.
In addition to a large number of simple (cheap) sensor nodes
providing the actual sensor tasks, there are a few powerful
nodes (cluster nodes) that implement the required security
features. The basic component of SecSens offers authenticated
broadcasts to allow recipients to authenticate the sender of
a message. On the basis of this basic component, SecSens
provides a key management, used for exchange of secret keys
among nodes. In order to bind nodes to their neighborhood,
keys and their owners are linked together. This ensures a
certain grade of location relationship. To protect the Sensor
network against routing attacks, SecSens includes a proba-
bilistic multi-path routing protocol, which supports the key
management and the authenticated broadcasts. SecSens also
provides functions to detect forged sensor data by verifying
data reports en-route. In order to evaluate the efficiency of
our security architecture, we simulated different sizes of sensor
networks. Furthermore, SecSens is successfully evaluated in a
real test environment with two different kinds of sensor boards.

Keywords-wireless sensor network; security architecture; key
management; energy efficiency; multi-path routing; en-route
filtering

I. INTRODUCTION

Wireless Sensor Networks (WSN) have emerged as a new
information-gathering paradigm based on the collaborative
efforts of a large number of self-organized sensing nodes.
These networks form the basis for many types of smart
environments such as smart hospitals, intelligent battlefields,
earthquake response systems, and learning environments. A
set of applications, such as biomedicine, hazardous environ-
ment exploration, environmental monitoring, military track-
ing and reconnaissance surveillance, are the key motivations
for the recent research efforts in this area [7] [9].

Different from traditional networks, sensor networks do
impose a set of new limitations for the protocols designed
for this type of networks [10]. Devices in sensor networks
have a much smaller memory, constrained energy supply,
less process and communication bandwidth. Topologies of
the sensor networks are constantly changing due to a
high node failure rate, occasional shutdown and abrupt
communication interferences. Because of the nature of the
applications supported, sensor networks need to be densely
deployed and have anywhere from hundred to thousands
of sensing devices, which are orders of magnitude larger
than traditional ad hoc mobile networks. In addition, energy
conservation becomes the center of focus because of the
limited battery capacity and the difficulty of recharge in the
hostile environment. With fundamental difference between
traditional networks and sensor networks, it is not appropri-
ate and probably inefficient to port previous solutions for ad
hoc networks into sensor networks with only incremental
modifications. For instance, the sheer number of sensor
nodes makes flooding-based standard routing schemes for
ad hoc networks undesirable [4].

Because of the steady increase in applications, security
requirements for sensor networks have received more at-
tention. Areas such as health or safety critical industrial
facilities offer very good use for sensor networks, on the
other hand, they also demand high safety standards to be
observed. A security architecture can never cover all types
of threats simultaneously. The application determines, which
attack vectors are probable in current scenarios, and how at-
tractive collected and processed data could be for a potential
intruder. In particular, denial-of-service attacks at network
level, require special and expensive countermeasures. A
comprehensive security architecture can increase protection
and number of blocked attacks, but on the other hand,
hardware costs and thus cost per sensor board increases,
which is not always desirable. It also may increase energy
requirements of sensor nodes significantly due to several
successive protocols. This extra effort can, however, reduce
considerably the life-time of individual sensor boards.

Not every sensor network pays an attack with enormous
resources required to access its data, or to block it. In
most cases, a combination of multiple protocols can confine

349

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

a wide range of threats. Therefore a good compromise
between cost and protection is often not a full defense
against all attacks, instead it is preferable to maximize the
obstacles for attackers. Many attackers resile if they have to
increase extremely costs to break a security architecture.

Regarding sensor networks, following basic requirements
exist for the security concept:

• Confidentiality: Confidentiality means that informa-
tion remain secret to unauthorized parties. Therefore
sensor nodes must protect transferred data against ille-
gal access.

• Authenticity: A node must always verify the authen-
ticity of received messages. In particular, authenticity
ensures that messages are really sent by the stated
source.

• Integrity: Received data can be changed during trans-
mission by failures or intent. Integrity should recognize
these manipulations.

• Timeliness: The timeliness of data ensures that re-
ceived information is up-to-date. An attacker should not
be able to send old data (repeatedly).

• Scalability: Especially key management in large sensor
networks can cause significant burden. Therefore the
security architecture should consider also scalability.

• Availability: The sensor network should be robust and
fault-tolerant, i.e. compromising individual node should
not affect security of the entire network. On the other
hand, the effort for security must not impair actual tasks
of the sensor network, e.g., by long delays.

• Compromise: A complete protection can not be en-
sured by any security architecture. Hence it must take
the worst-case scenario into account, in which parts of
the network are compromised. The aim should be a
verification of data in order to prevent insider attacks,
or at least to limit them locally.

• Self-organization: Characteristic for sensor networks
is their capacity for self-organization. This should be
considered by the security concept, especially in rela-
tion to key management and join/loss of nodes in the
network.

• Accessibility: In order to decrease transfer costs, in-
termediate nodes on a path to the base station should
aggregate and process received sensor data (in-network-
processing/ aggregation). This implies, however, suit-
able access to secured data. By contrast, access must
be minimized as far as possible to limit possible impact
of compromised nodes.

• Energy-efficiency: To provide a certain life-time and
to prevent attacks on depletion of energy resources,
energy-efficiency plays an important role in security
architecture that should be taken into account.

This paper describes SecSens a security architecture for
wireless sensor networks that fulfills above mentioned re-

quirements [1]. SecSens focuses mainly on a robust and
secure routing protocol and protection against data manipu-
lation. The next section describes related security approaches
for sensor networks. Section III introduces the SecSens
architecture and its security features. SecSens is successfully
evaluated in a simulator and a real test environment with
two different kinds of sensor boards. Section IV describes
the evaluation results. The paper ends with the conclusion.

II. RELATED WORK

SecSens focuses basically on three security aspects: key
management, secure routing, and verification of sensor data.
This section describes related approaches that are relevant
for each aspect and can be used in wireless sensor networks.

Critical factor in key management is secure and efficient
distribution of keys to sensor nodes. Because of limited
resources in sensor networks usually symmetric keys are
used. Symmetric encryption requires that both communicat-
ing nodes know the same secret key.

Key Management: [2] presents secure key distribution
techniques for sensor networks. In particular, two approaches
are described: single network-wide key and pair-wise shared
key. The simplest method of key distribution is to pre-load a
single network-wide key onto all nodes before deployment.
Storage cost is minimal because each node has to store
only one key. Unfortunately this approach provides sufficient
security only if all nodes are protected against physical force.
But this usually does not apply to low cost sensor nodes. The
pair-wise shared key approach requires that every node in the
sensor network shares a unique symmetric key with every
other node. Hence, in a network of n nodes there are a total
of

(n
2
)

unique keys, whereas each node has to store n− 1
keys. The storage cost is proportional to the total number of
nodes in the network. Therefore, the pairwise key scheme
does not scale well for large sensor networks.

In [8] a security protocol for sensor networks called
SPINS was presented for hierarchical sensor networks with
one or more trustworthy base stations. SPINS consists of
two parts: a secure network encryption protocol (SNEP)
and authenticated broadcasts (µTESLA). Each sensor node
receives on a secure channel an individual, symmetric
master key, which is only known by the base station and
the node. Using this master key the sensor node is able
to generate all keys. The disadvantage of SNEP is that
secure communication can be built only between a base
station and nodes, and it is not possible to protect the
communication in or between clusters. The second part of
SPINS is µTESLA that provides sending of authenticated
broadcasts. For symmetric encryption, sender and receiver
must share the same secret. Consequently, a compromised
receiver is able to act as a designated sender by transferring
forged messages to all receivers. µTESLA uses delayed
disclosure of symmetric keys for generating an asymmetry
between sender and receiver. This approach requires weak

350

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

time synchronization of sender and receiver in order to
achieve time shifted key disclosure. Storage cost increases
because each node has to buffer packets which it can only
verify after receiving the key in the future time-slots. Also,
this causes new possibilities for DoS-attacks. An attacker
can force a buffer overflow by sending planned broadcasts.
Furthermore µTESLA leads to scalability problems, which
are described in [6].

An important aspect for sensor networks is that different
communication patterns exist requiring different security
steps. [13] suggests an adjusted key distribution for different
security requirements. For this reason, four different kinds
of keys are used. The individual key is similar to the
master key of SPINS. The second kind of key is a pair-
wise shared key, which is generated in the initial phase for
each known neighbor. Furthermore, the nodes have a cluster
key for secure communication between cluster members.
The last key is the group key that is used for secure
broadcasting. This approach provides more flexibility but
contains a security risk during the initial key distribution
phase.

Secure Routing: Compromised sensor nodes can influ-
ence a sensor network, especially by manipulating of routing
information. In order to minimize the impact, [3] suggests
intrusion tolerant routing in wireless sensor networks called
INSENS. The goal is to provide a working network even if
parts of it are infiltrated. INSENS contains two phases: route
discovery and data forwarding. In the first phase, the base
station sends out a broadcast to build routes to each node.
After receiving the route request, the nodes send a list of
all known neighbors back to the base station. For the last
step, the base station generates several disjoint paths to each
node and sends this routing information back to all network
members. Based on this routing table, the nodes can forward
data to the base station (data forwarding phase). INSENS
prevents the network against most outsider attacks and even
insider attacks remain locally. But the dependance on the
base station suggests a single point of failure. Furthermore,
the route discovery phase is extremely energy inefficient.

Another approach for secure routing called ARRIVE is
presented in [5]. The routing algorithm tries to send packets
over different paths based on probability. Also, nodes in
ARRIVE listen passively to communication among neigh-
bors. In case of detected failures, other nodes can forward
the packet on behalf of its neighbor. ARRIVE works with
smaller routing tables, but the chosen path is not always op-
timal. Furthermore, ARRIVE does not provide authenticated
broadcasts, that provides a mechanism for manipulation of
routing information.

Verification of Sensor Data: Each individual sensor
node is potential target for attackers. Using compromised
nodes, an attacker can directly influence the sensor network
by infiltrating false reports of network sensor data. This
kind of attack is called fabrication report attack. These

fake reports can reach the base station, if they remain
undetected, where they can trigger off false alarms. Also
this causes high consumption of bandwidth and energy.
En-route filtering attempts to verify reports on the way
from sending node to the base station. The goal is to
detect and discard false reports earlier. [14] describes an
interleaved hop-by-hop authentication scheme for filtering
of injected false data. This algorithm recognizes infiltrated
reports by a deterministic process, as long as no more than
t nodes are compromised. The sensors build clusters with a
minimum of t+1 nodes, where each group chooses a cluster
head C. Only the cluster heads can send collected events
in the form of reports to the base station. These reports
include additionally to the actual event t + 1 independent
confirmations of the respective parties, in order to verify the
authenticity of the report. Each intermediate node checks the
report on the way to the base station (En-route filtering).
Unfortunately, this approach uses single path routing to the
base station providing several security risks. A statistical en-
route filtering is presented in [12] that enhances the approach
above by using probabilistic algorithms. Each node chooses
randomly a number of keys from a partition of a global key
pool. Because of the probabilistic distribution of keys, any
node can verify with a certain probability a report before it is
forwarded. In this manner, [12] supports multi-path routing.
But in both approaches, an attacker can create any report,
once it has compromised at least t nodes. [11] attempts
to solve this problem by binding keys to the location of
nodes. The sensor area is divided into cells of width c,
whereas each cell contains several keys. The nodes receive
a location-bound key for each sensing cell. This approach
bounds reports to their original location.

III. SECSENS - SECURITY ARCHITECTURE FOR
WIRELESS SENSOR NETWORKS

The sensor network in SecSens consists of clusters, each
containing simple sensor nodes ui and one powerful sensor
node v that acts as a cluster-head. Sensor nodes ui connect
directly to the cluster-head, because routing in clusters is
not necessary. Sensor nodes can be a member of several
clusters. Cluster-heads again build together an inter-cluster
network, that is used to transfer messages to base stations.
It is assumed that sensor nodes have a fixed position, once
they are attached to a location. SecSens works with multiple
base stations to avoid the risk of single-point-of-failure (see
Figure 1).

The security architecture of SecSens combines several
security approaches in order to provide high protection.
Basically SecSens contains four components, which interact
with each other: authenticated broadcasts, key management,
routing, and en-route filtering.

351

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Base station

Cluster head

Marked Cluster heads

Simple sensor nodes

Cluster

Inter-cluster network

Figure 1. Basic sensor network architecture

A. Authenticated Broadcasts

Authenticated broadcasts ensure that the stated sender
is identified as the true sender. Symmetric approaches use
a shared key to generate a message authentication code
(MAC). In case of only one receiver, the sender is clearly
identified. But if there are multiple receivers with the same
shared key, this approach for authentication is not applicable.
Potentially each receiver could be the sender. To solve this
problem, there must exist an asymmetry between sender and
receiver.

SecSens provides two authenticated broadcasts: broad-
casts from base stations, and broadcasts in clusters. It is
assumed that base stations are trustworthy and can not
be infiltrated. In order to generate an asymmetry, SecSens
uses key chains. Each packet contains a key. To decrypt a
previous packet, a node has to wait for the key of next packet
(Figure 2).

t

Figure 2. Key chain approach

The base station generates a key chain Kb
0 . . .K

b
n with

sufficient number of keys using a publicly known one-way
function F , so that for i ∈ {0, . . . , n− 1} is:

Kb
i = F (Kb

i+1) (1)

Each node knows that the first key in the chain is
〈
i,Kb

i

〉
with i = 0. Therefore, Kb

0 is public and Kb
1 is the first

non-disclosed key. Keys can be used only once. In order
to broadcast a message M , the base station calculates the
corresponding MAC using the next non-disclosed key Kb

i

and sends it together with used key index to all its neighbors:

BS → ∗ : i,MACKb
i
(M) (2)

A receiving node u checks, if it has already received a
MAC for the stated index, before storing the MAC and index
i into the MAC buffer. Consequently node u accepts only
one MAC per key index. If i is a new index and u is a cluster-
head, it forwards the message to all its neighbors. In this
way, it is efficiently distributed over the inter-cluster network
to all sensor nodes. After a maximum time T all sensor
nodes know the MAC together with its key index. Sensor
nodes can not manipulate the MAC, because the base station
has not yet disclosed Kb

i at this time. Time Tp describes a
dynamically adaptable system parameter. The base station
can set Tp depending on the network size, whereas T <
Tp. After expiration of Tp, the base station sends the actual
message M besides the disclosed key data

〈
i,Kb

i

〉
to all

neighbors:

BS → ∗ : M,
〈
i,Kb

i

〉
(3)

Sensor node u can now verify Kb
i using a previous

disclosed key Kb
i−1. If it does not have Kb

i−1, it can verify
the current key through recursively performing Equation 1
with previous keys. To prevent DoS-attacks, the new key
must not be older than Gmax generations. If Kb

i is finally

352

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

verified, node u makes new key data
〈
i,Kb

i

〉
effective.

Subsequently, u can check message M using MACKb
i
(M)

and index i. It is important that the index for MAC and key
are the same.

The concept of authenticated broadcasts for base stations
has a disadvantage, if it is used for local authenticated broad-
casts between clusters, because of the delayed disclosure of
keys. However, all receivers of a message in a cluster can be
reached after a single hop. This fact can be used to simplify
the concept, in order to avoid time delays. The cluster-head
generates a key chain Kb

0 . . .K
b
n using a publicly known

function F (see Figure 2). All cluster members receive
the first key Kb

0 over a secure connection using pair-wise
shared keys known only by cluster-head and respective node.
Cluster-head v uses for each local authenticated broadcast a
key Kb

i , which is not yet disclosed. It sends the message M
together with the key data:

v → ∗ : M,Kb
i (4)

Cluster nodes can verify Kb
i and the message M using

previously disclosed keys. With this the sender is authen-
ticated as cluster-head, because only the cluster-head can
know Kb

i , that was not public until current message. On the
other hand, no intermediate node can manipulate the mes-
sage M , because all potential receivers of M are reachable
with only one hop.

B. Key Management

Sensor nodes basically distrust each other. To build trust
between two or more nodes, a shared secret in the form
of keys is needed. However, neighborhood and relations
between sensor nodes are not known before. Therefore,
nodes must build trust during life-time, more strictly in the
initial phase. For security reasons, a sensor node should
join a network only once. In this critical phase, it can
establish shared keys with its neighbors. Since this procedure
is performed only once, the node is binding itself to the
location. Furthermore, sensor nodes can communicate at sev-
eral levels, that is cluster- or network-wide. Consequently,
SecSens uses several kinds of keys to fulfill different security
requirements.

Activation: In the initial phase, a sensor node needs an
initial key KI . This key is stored only on a specific activation
node, which does not take part for usual networking tasks.
The basic idea is that sensor nodes can not install themselves
independently. Instead a trustworthy employee, who own the
activation node, establishes sensors. In order to add a set of
sensor nodes, the base station stores a randomly generated
master key KA, timer TA, initial key KI , and current group
key Kg onto the activation node A. Using master key KA,
the base station can generate for each sensor node u a
personal activation key Ka

u based on the node ID.

Ka
u = FKA

(u) (5)

All key material and other security critical data is stored
only in RAM of A. TA determines period of validity for
the master key. After expiration of this time, the activation
node deletes KA and all critical data. Each sensor node u has
a unique ID and a personal activation key Ka

u . In order to
activate sensor node u, the activation node A has to be in the
communication range. For security reasons, the radio power
of A is kept low, to ensure physical proximity. After turning
on for the first time, sensor node u broadcasts periodically its
plain ID and the ID encrypted with the personal key with the
same low radio power. Activation node A can easily verify
the ID, because it knows the master key KA. As the next
step, A encrypts with personal key of u the initial key KI ,
group key Kg , and data X that was given by base station.
Finally, A sends encrypted message to sensor node u:

u→ A : u,MACKa
u
(u) (6)

A→ u : {KI ,K
g, X}Ka

u
(7)

After receiving all key material, sensor node u is activated
and it deletes the personal activation key.

Group keys: The group key Kg is used by the base
station to secure network-wide communication. An attacker,
who compromises a node, can also access the group key. In
order to update Kg , the base station broadcasts first a list
of known compromised nodes {x1, ..., xm} to all sensor
nodes. Additionally, it sends a verification key FKg ′(0),
whereas Kg ′ is a new randomly generated group key, and F
a publicly known one-way function. FKg ′(0) is used later
to verify the new group key Kg ′.

BS → ∗ : i,MACKb
i
({x1, . . . , xm} ||FKg ′(0)) (8)

BS → ∗ : {x1, . . . , xm} , FKg ′(0),
〈
i,Kb

i

〉
(9)

The base station uses an authenticated broadcast with key
Kb

i and index i that is not disclosed yet. After receiving
key Kb

i and successfully verifying the above message (see
section III-A), sensor nodes delete all pair-wise shared keys
or cluster-keys with compromised node xi. Cluster-heads
additionally update their cluster-keys and inform other non-
compromised cluster-heads about new cluster-key. After-
wards, all sensor nodes store verification key FKg ′(0). As a
second step, the base station publishes new group key Kg ′.
Therefore, it encrypts the group key using its cluster-key
Kc

BS and transfers the message to all direct neighbors. The
neighbors can verify Kg ′ using verification key FKg ′(0) and
store afterwards the new group key.

BS → ∗ : {Kg ′}Kc
BS

(10)

353

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

If receiver u is a cluster-head, it forwards new group key
Kg ′ encrypted by its own cluster key Kc

u. Consequently,
the new group key Kg ′ is forwarded over the inter-cluster
network to all sensor nodes. Since cluster-heads updated
their cluster keys before, the compromised nodes do not
receive the new group key. This procedure is periodically
repeated by base stations to prevent the network against
attacks. If there are no new known compromised nodes, the
transferred list is empty.

Pair-wise shared keys: For secure communication be-
tween sensor nodes, pair-wise shared keys are used. A new
cluster-head exchanges a pair-wise key with all neighbors.
Simple sensor nodes communicate only over cluster-head,
therefore, they need only a shared key with their cluster-
head. Using the initial key KI each node u generates a
personal master key Kp

u based on its ID. In order to establish
a pair-wise shared key with its neighbor v, node u needs
the ID of v. For this reason u broadcasts a HELLO-message
containing its ID. If v decides to establish secure connection
with new node u, it answers with an acknowledgment
containing its own ID.

u→ ∗ : u (11)
v → u : v,MACKp

v
(u||v) (12)

The additional MAC authenticates the acknowledgement
of v, because u can calculate master key Kp

v of v using initial
key KI . Node u does not need to authenticate itself, because
the succeeding message exchange verifies the identity of u.
The pair-wise shared key Kp

uv can be calculated by both
nodes without new message exchange:

Kp
uv = FKp

v
(u) (13)

After expiration of time TI the nodes delete initial key
KI and all personal master keys of its neighbors received
during initialization. Only own master key is stored for
future pair-wise keys with new sensor nodes. The annulment
of compromised pair-wise keys is efficiently realized by
deletion of corresponding keys.

Cluster keys: Sensor nodes transfer information to all
other cluster members using the cluster key without encrypt-
ing the message for each receiver separately. This approach
allows in-network-processing and passive participation of
sensor nodes within a cluster. Cluster-head u generates
randomly cluster key Kc

u, if u joins a network or if u updates
cluster key because of compromised nodes. Each cluster
member v1, . . . , vm receives new cluster key Kc

u, whereas
u encrypts cluster key using pair-wise shared keys Kp

uvi
for

i ∈ {1, . . . ,m}:

u→ vi : {Kc
u}Kp

uvi
(14)

Only sensor node vi can decrypt cluster key and store
it. If an additional sensor nodes v joins the network, it
establishes a new pair-wise shared key with cluster-head.
In this case it also gets the current cluster key. If a cluster
member is compromised, cluster-head annuls cluster key Kc

u

and distributes new key Kc
u
′ as described above, without

sending it to the compromised nodes.

Report of event E

Cluster ID

Event ID

Event E

Verification

Verification keys of members

Key ID MAC with
en-route key

MAC with
location key

Figure 3. Report content

C. Routing

To prevent attacks on routing level or restrict them locally,
SecSens provides a secure routing protocol. Simple sensors
in SecSens do not need routing capability, because they
exclusively communicate with the cluster-head. Therefore,
routing is used only within the inter-cluster network built
by cluster-heads. The routing algorithm has two phases:
initialization and the actual routing. In the initialization
phase each node gets a level using breadth first search that
determines the distance to base station in hops. Since base
station has level 0, its direct neighbors have level 1. The base
station uses an authenticated broadcast including its ID BSu,
a non-disclosed key Kb

i , and key index i to authenticate an
initialization.

BS → ∗ : i,MACKb
i
(BSu) (15)

BS → ∗ : BSu,
〈
i,Kb

i

〉
(16)

Cluster-heads can identify from authenticated messages,
which base station wants to update routing information.
After reception of initialization, cluster-heads have time T
to modify their routing tables. After expiration of T , further
changes are not allowed. Cluster-heads set their level on
L = ∞ after reception of the message (see Equation 16).
The breadth first search can now begin. Starting from the
base station, the level values are locally broadcasted by
cluster-heads. To prevent outsider-attacks each cluster-head
u uses key Kb

i , that will be published later, and its cluster
key Kc

u to generate an encrypted message containing ID and
level value Lu:

u→ ∗ : {u||Lu}Kc
u
,Kb

i (17)

354

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

A cluster-head v updates its level to Lv = Lu + 1,
if Lv > Lu + 1. It also stores level of u. After level
update, v forwards its level value to its neighbors in the
same way. Each base station triggers its own initialization
without disturbing ongoing updates of others. The cluster-
heads manage a routing table for each base station.

SecSens uses probabilistic multi-path routing based on the
level values to forward messages from cluster-heads on the
way to the corresponding base station. Cluster-heads build
up a trust matrix, where each transmission to its neighbors
is recorded. Based on this trust information and current
level, cluster-heads calculate a probability value and write
it into the packet header. This value is used to decide in
which direction the packet has to be send. Each cluster-
head modifies the probability value and sends the message
over the most trustworthy route. Since this could lead to the
problem that a packet stays at the same level while making
a round-trip, the weight of upper level increases with each
hop. This ensures that packet transfer goes in the direction
of the base station.

Furthermore, SecSens provides passive participation, i.e.
sensor nodes listen to packet transmissions of their neigh-
bors. If cluster-head u detects a packet addressed to its
neighbor v, and recognizes that v is not forwarding the mes-
sage, u takes responsibility with a certain (low) probability.
Also, if u assumes that v forwards the message to a non-
existent node, u takes care of transferring.

D. En-route Filtering
Attacks like report fabrication or false data injection

threaten the network by manipulating and infiltrating sensor
data. SecSens prevents such threats using en-route filtering
extending approach of [12]. Cluster-heads generate data
reports containing sensor information of cluster members
for sending them to base stations. These reports are veri-
fied during transfer through the inter-cluster network (see
Figure 3).

En-route filtering consists of three phases: key generation,
report generation, and verification.

Key generation: SecSens provides a global pool contain-
ing N en-route keys

{
Ke

0 , . . . ,K
e
N−1

}
. The keys Ke

i are
subdivided in n partitions with each m keys. Each sensor
node generates all en-route keys in the initial phase using
one-way function F and chooses randomly a partition j
where it finally draws k < m keys from set j:

∀i ∈ {0, . . . , N − 1} : Ke
i = FKe

M
(i) (18)

At least base stations can detect all fault reports, because
they have global view of the key pool. Based on the same
partition j, each node calculates in a similar way location
key Kl

C,j for all its clusters that it senses as a member.
Sensor nodes bind themselves locally to actual cluster by
the location key. After the initial phase nodes delete all
remaining unused keys.

Report generation: If a cluster-head wants to generate
a report, it collects sensor data from all its cluster members.
Sensor nodes belonging to same cluster report events (sensor
data) collectively by generating MACs based on their en-
route keys, whereas keys must be chosen from different
partitions. These multiple MACs collectively act as the proof
that a report is legitimate. Finally, the cluster-head forwards
the report to the base station over the inter-cluster network.

Verification of reports: A cluster-head receiving a report
checks, if it has one of the keys, that were used to generate
the MACs in the report. With a certain probability, it will
be able to verify the correctness of MACs. A report with
an insufficient number of MACs will not be forwarded. A
compromised node has keys from one partition and can
generate MACs of one category only. Since keys and indices
of distinct partitions must be present in a legitimate report,
the compromised node has to forge the other key indices and
corresponding MACs. This can be easily detected by cluster-
heads possessing these keys. If cluster-head has none of the
keys and number of MACs is correct, it forwards report to
the next cluster-head. Even if a forged report receives a base
station, it can be detected, because base stations know all
used keys.

IV. EVALUATION

To evaluate the efficiency of our security architecture
we implemented a simulation tool where it is possible to
establish different sizes of sensor networks. Figure 4 shows
the GUI of the SecSens simulator. The aim was to measure
energy consumption and throughput of security mechanisms.
SecSens simulator provides the possibility to change param-
eters like network size, node density, and number of cluster
heads or cluster members. After initializing the network
we performed several attacks and examined the network
stability.

Denial-of-Service attacks are the most common threats in
a network. SecSens limits the effect of DoS attacks to a
local area compensating high node failures. When a node
failure is detected, SecSens tries to send the message over
an alternative route. Figure 5 shows the delivery rate of
messages in dependance to node failure varying the distance
between failure location and receiver. We simulated here a
sensor network with 10.000 nodes. If the center of failure
is near to message receiver (5 hops), SecSens finds enough
alternative routes to achieve %50 delivery rate considering
number of 100 failed nodes. Increasing the distance means
that the failure center comes near to the message sender
blocking most alternative routes.

Insider attacks aim to manipulate behavior of the sensor
network by infiltrating false sensor data. SecSens uses data
reports to secure the delivery. In order to generate a new
report, a node needs five verification keys from five different
neighboring nodes. If an attacker wants to send a false
report, he has to compromise several nodes to access the

355

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Kapitel 5. Implementierung 52

Abbildung 5.1.: Die Software in der Abbildung simuliert im laufenden Prozess 20.000 Knoten
respektive 3.332 Cluster und vier Basisstationen in einer 400 x 100 großen
Simulation. Für eine bessere Analyse lassen sich die einzelnen Knoten farblich
markieren, um ihren Zustand zu visualisieren. Die blauen Ringe in der Abbil-
dung visualisieren das Übertragen von Paketen (Der Sender liegt im Ringzen-
trum).

und das Zusammenspiel der einzelnen Knoten und auf höherer Ebene der Cluster simulie-
ren zu können. Für eine bessere Trennung zwischen der eigentlichen SADS-Implementierung
und zusätzlich benötigten Komponenten wie dem Simulator, ist das System in vier Module
untergliedert. Das Basismodul stellt die eigentliche Simulations-Engine dar, welche ein Sensor-
netz simulieren kann und Schnittstellen für die SADS-Implementierung bereitstellt. Auf der
Simulations-Engine setzt als zweites Modul die SADS-Implementierung für den Simulator auf.
Daneben ist der im Hintergrund arbeitende Server, mit welchem alle Basisstationen verbun-
den sind, in ein eigenes Modul ausgegliedert. Dieses Server-Modul kann anschließend auch als
Schnittstelle für die Basisstation auf der realen Hardware dienen. Abschließend stellt das vierte
Modul die Visualisierung und UI-Schnittstelle für den Benutzer bereit.

Figure 4. SecSens Simulation Tool

of node failures

de
liv

er
y

ra
te

5 hops
10 hops
15 hops
20 hops

Figure 5. Message delivery rate after DoS attacks

verification keys (see previous section). Alternatively, he can
forge missing keys. Figure 6 illustrates the rate of detected
false reports in dependance of the distance between sender
and receiver. As you can see in the results, the detection rate
increases with more forged keys. Already after ten hops,
SecSens can refuse %90 of false reports containing four
forged keys.

The detection rate on intermediate nodes is directly de-
pendent on the size N of the global key pool and number
k of locally stored en-route keys (see previous section).
With increasing number of en-route keys, the probability
of an intermediate node to hold the same en-route key rises.
Figure 7 shows the simulation results for using different
numbers of en-route keys. As expected, the detection rate for
false reports rises with increasing number of locally stored
keys. On the other hand, the ratio k/N should not be too
high, since a compromised node would irrevocably disclose

of hops

re
fu

se
d

re
po

rts

1 forged key
2 forged keys
3 forged keys
4 forged keys

Figure 6. Rate of refused reports in reference to distance

a part of the global key pool.

of hops

re
fu

se
d

re
po

rts

25 en-route keys
50 en-route keys
75 en-route keys

Figure 7. Influence of local stored en-route keys

In order to show the feasibility of SecSens on real environ-

356

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

ments, we established a testbed with different kinds of sensor
nodes: ESB 430/1 and MSB-430 of Freie University Berlin
(see Figure 8). Both sensor boards have the TI MSP430
microcontroller.

Figure 8. Sensor boards: ESB 430/1 and MSB-430

ESB 430/1 contains 60 KB flash memory and 2 KB
RAM, whereas MSB-430 has 55 KB flash memory and
5 KB RAM. Because of the larger RAM, MSB-430 was
used as cluster-head. We used four cluster-heads managing
each four sensor nodes that were all ESB boards, making
20 nodes alltogether. Two PCs act as base stations. We
could successfully perform all stages of SecSens which were
described before.

Authenticated broadcast

Key management

Multi-path routing

En-route filtering

Figure 9. Memory map of SecSens security components

In order to use memory effectively, SecSens stores fre-
quently changing data in RAM and relatively static data
in EEPROM. Table I describes memory consumption of
cluster-heads and sensor nodes. The most memory space is
used for key management. Figure 9 shows the memory map
of SecSens security components.

In the initial phase, energy consumption is comparatively
high. For establishing the network and distribution of keys,
cluster-heads consume in average 2.6Ws energy, whereas
sensor nodes need only 0.2Ws (see Table II).

Energy consumption for sending reports depends on the

reference

fanout 1

fanout 2

fanout 3

fanout 4

sender level

en
er

gy
 c

on
su

m
pt

io
n

in
 W

s

Figure 10. Consumed energy for reporting

sender level

en
er

gy
co

ns
um

pt
io

n
in

 W
s

reference

fanout 1

fanout 2

fanout 3

fanout 4

Figure 11. Energy consumption of single cluster head in reference to
sender level

distance between cluster-head and the base station. We
established in a second test a network with up to 20 cluster-
heads placed in a line side by side. The last cluster-head
received level 20, which means that it needs 20 hops to
reach the base station. We measured the energy consumption
for sending reports from different levels. The multi-path
routing ensures a robust transmission, but sending duplicated

reference

fanout 1

fanout 2

fanout 3

fanout 4

passive participation

en
er

gy
 c

on
su

m
pt

io
n

in
 W

s

Figure 12. Energy consumption with passive participation

packets data energy
sensor node 15 0,2 KB 0,2 Ws
cluster-head 142 4,1 KB 2,6 Ws

Table II
COSTS IN INITIAL PHASE

357

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

AB KM MPR EF total
cluster-head: RAM 434 B 9 B 710 B 41 B 1194 B
cluster-head: EEPROM 800 B 2440 B 252 B 981 B 4473 B
sensor node: RAM 54 B 9 B 0 B 0 B 63 B
sensor node: EEPROM 0 B 92 B 0 B 537 B 629 B

Table I
SECSENS MEMORY REQUIREMENTS, (AB) - AUTHENTICATED BROADCASTS, (KM) - KEY MANAGEMENT, (MPR) - MULTI-PATH ROUTING, (EF) -

EN-ROUTE FILTERING

packets from several routes (fanout) increases the energy
consumption. Figure 10 shows consumed total energy in
the sensor network for reports using no fanout (reference)
or multiple fanouts. On figure 11 you can see the average
energy consumption of a single cluster head in reference
to the sender level. It is interesting to mention that energy
consumption for sending four packets increases by only
%200 instead of %400 as would be expected. The reason lies
in the good balance of load in sending multi-path messages.

As mentioned above, nodes can listen to packet trans-
mission of neighbors and can take the responsibility for
forwarding with a certain probability in case of detected
failures. Figure 12 describes the energy results for passive
participation with different probabilities. Increasing passive
participation naturally leads to higher energy consumption,
because of the additional message delivery.

V. CONCLUSION

This paper presented SecSens, a multi-level security ar-
chitecture for wireless sensor networks. SecSens combines
several security approaches on different system levels in
order to provide high protection. SecSens contains four
components, which interact with each other: authenticated
broadcasts, key management, routing, and en-route filtering.
We implemented a simulation tool, where huge network
sizes can be established. Evaluation results show that Sec-
Sens can resist DoS and insider attacks limiting failures to
a local area. Infiltrated false sensor data can be refused with
a high probability. We also demonstrated the feasibility of
SecSens by building a real sensor network environment with
two different kinds of sensor boards.

REFERENCES

[1] Faruk Bagci, Theo Ungerer, and Nader Bagherzadeh. SecSens
- Security Architecture for Wireless Sensor Networks. In
The Third International Conference on Sensor Technologies
and Applications (SENSORCOMM ’09), Athens, Greece, June
2009.

[2] Haowen Chan, Adrian Perrig, and Dawn Song. Key distribu-
tion techniques for sensor networks. pages 277–303, 2004.

[3] Jing Deng, Richard Han, and Shivakant Mishra. Insens:
Intrusion-tolerant routing for wireless sensor networks. Com-
puter Communications, 29(2):216–230, 2006.

[4] P. Downey and R. Cardell-Oliver. Evaluating the Impact of
Limited Resource on the Performance of Flooding in Wireless
Sensor Networks. In Proceedings of the 2004 international
Conference on Dependable Systems and Networks, Washing-
ton, DC, USA, June 2004.

[5] Chris Karlof, Yaping Li, and Joe Polastre. Arrive: Algorithm
for robust routing in volatile environments. Technical Report
UCB/CSD-03-1233, University of California at Berkeley,
May 2002.

[6] Donggang Liu and Peng Ning. Multilevel µtesla: Broadcast
authentication for distributed sensor networks. Trans. on
Embedded Computing Sys., 3(4):800–836, 2004.

[7] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless Sensor Networks for Habitat Moni-
toring. In ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA’02), Atlanta, GA, USA,
September 2002.

[8] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen,
and David E. Culler. Spins: Security protocols for sensor
networks. Wireless Networks, 8(5):521–534, 2002.

[9] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Communications of the ACM, 43(5):51–58, 2000.

[10] R. Verdone and C. Buratti. Modelling for Wireless Sensor
Network Protocol Design. In International Workshop on
Wireless Ad-hoc Networks (IWWAN 2005), London, United
Kingdom, May 2005.

[11] Hao Yang, Fan Ye, Yuan Yuan, Songwu Lu, and William Ar-
baugh. Toward resilient security in wireless sensor networks.
In MobiHoc ’05: Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing,
pages 34–45, New York, NY, USA, 2005. ACM Press.

[12] Fan Ye, Haiyun Luo, Songwu Lu, and Lixia Zhang. Statistical
en-route filtering of injected false data in sensor networks.
IEEE Jounal on Selected Areas in Communications, Special
Issue on Self-organizing Distributed Collaborative Sensor
Networks, 23(4):839–850, April 2005.

[13] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia. Leap: efficient
security mechanisms for large-scale distributed sensor net-
works. In CCS ’03: Proceedings of the 10th ACM conference
on Computer and communications security, pages 62–72,
New York, NY, USA, 2003. ACM Press.

[14] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, and Peng Ning. An
interleaved hop-by-hop authentication scheme for filtering of
injected false data in sensor networks. 2004 IEEE Symposium
on Security and Privacy, 00:259–271, 2004.

358

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Temporal Robustness of Real-Time Architectures Specified by Estimated WCETs

Lamine Bougueroua
LRIT

ESIGETEL
Avon, France

lamine.bougueroua@esigetel.fr

Laurent George
LACSC

ECE
Paris, France

lgeorge@ieee.org

Serge Midonnet
LIGM, UMR CNRS 8049

Université Paris-Est
Champs sur Marne, France

Serge.Midonnet@univ-paris-est.f

Abstract— Real-time dimensioning depends on the Worst Case
Execution Time (WCET) of its tasks. Using estimated WCETs
for the dimensioning is less conservative but execution
overruns are more likely to happen. Fault tolerant mechanisms
must be implemented to preserve the real-time system from
timing failures, associated to late task termination deadlines
misses, in the case of WCETs overruns. We show in this article
how to compute the extra duration (allowance) on the WCETs
that can be given to faulty tasks while still preserving all the
deadline constraints of the tasks. This allowance is used on-line
to tolerate WCET overruns. We present a mechanism called
the Latest Execution Time (LET) using the allowance of the
tasks for the temporal robustness of real-time systems. This
mechanism only requires classical timers. Its benefits are
presented in the context of a java virtual machine meeting the
Real-Time Specification for Java (RTSJ) with estimated
WCETs.

Real-time System; fault tolerance; estimated WCET;
allowance; slack time; temporal robustness

I. INTRODUCTION

Real-time scheduling theory can be used at the design
stage for checking the timing constraints of a real-time
system, whenever a model of its software architecture is
available. In specific cases, standard real-time scheduling
analysis techniques can significantly shorten the
development cycle and reduce the time to market. The
correct dimensioning of a real-time system depends on the
determination of the Worst Case Execution Time (WCET) of
the tasks.

Based on the WCET, a feasibility condition (e.g.
[2][3][4]) can be established to ensure that the deadlines of
all the tasks are always met, whatever their release times.
The computation of the WCET can be performed either by
analyzing the code on a given architecture or by
measurement of the execution duration [5]. In both cases, the
correctness of the WCET is hard to guarantee. The WCET
depends on the condition of execution; the type of
architecture, memory or cache. This can lead to an imprecise
WCET. Also a very complex analysis may be necessary to
obtain it. The obtained WCET can therefore be either
pessimistic or optimistic compared to the exact execution
duration obtained at run time. In the first case, we have
reserved CPU resources that may not be used, leading to a
pessimistic dimensioning of the system but the deadlines can
always be guaranteed. In the second case we might have
execution overruns, i.e. task durations exceeding their

WCET but more CPU resources left to deal with such a
situation. We are interested in this paper in the second case
observing that an execution overrun does not necessarily lead
to a deadline miss. With enough free CPU resources, a
system can self stabilize and still meet the deadlines of all
the tasks. So the problem consists of determining how much
time may be allocated to the execution overrun.

In this paper, we consider that the WCETs are estimated
by benchmark on a given architecture. The lack of precision
on the WCETs is taken into account in this paper with the
concept of allowance introduced in section 3.

We consider two types of faults captured by two errors:
the ExecutionOverrun error and the DeadlineMiss error. In
the first case, the task execution duration exceeds its WCET
while in the second case the task does not meet its deadline.
Yet, among all possible execution overruns, only those
leading to a deadline miss, if nothing is done to correct the
system, should be considered. We therefore need to
determine how long we can let a faulty task proceed with its
execution without compromising the deadlines of all other
tasks. We call this duration the allowance of the task. Based
on the allowance, we can determine when an execution
overrun error should be raised.

In this paper, we consider a set τ = {τ!, τ2,..., τn} of n
sporadic or periodic tasks with timeliness constraints.

A task τi, is defined by:
 Ci, the estimated Worst Case Execution Time
 Ti, the inter-arrival time also called the period
 Di, the relative deadline (a task released at time t

must be executed by its absolute deadline t + Di. We
consider in this paper, that for any task τi , Di ≤ Ti

 Pi, the priority

In this paper, we first present a short description of
related work (see Section 2). We then focus on the
allowance of the WCETs in Section 3 when tasks are
scheduled with Fixed Priority/highest priority first (FP/HPF)
scheduling (e.g. [3][4][6]). We then show how to use the
allowance on-line, with a mechanism called the Latest
Execution Time (LET), in Section 4. The LET analysis was
first introduced by Bougueroua and al. in [7]. Moreover [1],
extends this analysis further by considering the EDF
scheduling. In Section 5 we give results of some
simulations, obtained from a tool we developed, so as to
compare the different execution overrun management
mechanisms. We do this firstly for a task deadline miss, and
secondly for a task execution overrun, showing the benefits
of the LET mechanism. Finally, we give some conclusions.

359

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

II. RELATED WORK

Most fault tolerant real-time systems present solutions to
deal with deadline miss by stopping the execution of the
tasks that miss their deadlines. In the case of overloaded
systems, the idea is to stop some tasks so as to prevent the
others from missing their deadlines and to come back to a
normal load condition. Tasks are scheduled according to
their importance: Locke's Best Effort Scheduling Algorithm
in [8], D-Over in [9] and Robust EDF in [10]. The problem
with this solution is that a task missing its deadline might
already have had cascading effects on the other tasks of the
system. The reaction might be too late.

In fact, a task which does not respect its deadlines might
result in unacceptable delays on other lower priority tasks.

Several approaches have been considered in the state of
the art: either in the dimensioning phase or on-line.

A. In a dimensioning phase:

In a dimensioning phase, a sensitivity analysis can be
used to compute the maximum acceptable deviations on the
WCETs, Period on Deadlines preserving the schedulability
of the tasks (e.g. [11][12][13]). Most of the existing solutions
to the sensitivity problem consider only one parameter can
change. We place ourselves in this context for this article by
considering the WCETs overrun. The reader interested by
multidimensional analyses of sensitivity will be able to refer
to work of Racu in [14] and [15], where a stochastic
approach is proposed to deal with the variations of several
parameters.

Bini in [13] shows how to calculate the maximum value
of the multiplicative factor λ, applied to the set of tasks. In
this case when scheduling FP of n periodic tasks, if for any
task τi, Di ≤ Ti, then for any task τi, its WCET becomes Ci +
λCi.

λ is the maximum value so that the set of tasks is
schedulable. If for a set of tasks given, λ < 0 then initial set
of tasks is not schedulable and it is necessary to reduce the
WCET of λCi so that the tasks set become schedulable.

The computation complexity of λ is pseudo-polynomial.
The authors in [13] Show also how to calculate λ for a subset
of tasks.

However, the use of a multiplicative factor λCi for any
task τi, gives more allowance to the task τi when its Ci is
large, a choice which inevitably does not reflect the
importance of the task.

In [16], the authors show how to determine for a
scheduling FP, in the case Di ≤ Ti, the feasibility domain to n
dimensions of WCETs (called C-space). They show that
when the number of tasks is reasonable, it is possible to
express the parametric equation of the WCETs feasibility
domain in the form of a set of inequations to be tested. This
approach is useful in a phase of dimensioning but from its
polynomial pseudo complexity (the number of inequation is
pseudo polynomial), is not applicable on line to determine if
it is possible to continue the execution of a task exceeding its
WCET.

Slack time analysis has been extensively investigated in
real-time systems in which aperiodic (or sporadic) tasks are
jointly scheduled with periodic tasks (e.g. [17][18][19]). In

these systems, the purpose of slack time analysis is to
improve the response time of aperiodic tasks or to increase
their acceptance ratio. Yet, those approaches require high
time overheads to determine the available slack time at a
given time. Some research has been proposed to approximate
the slack time (e.g. [19] and [20]). Nevertheless, the slack is
computed for a single aperiodic task occurrence whereas the
allowance is valid for all the requests of a periodic task.
Computing the slack time for every periodic request would
be time consuming.

B. On-line:

Some solutions consist of adapting the task parameters to
the context of execution (e.g. approaches based on the
variation of the periods (e.g. [21][22][23]) to obtain more or
less precision). In the context of a network transmission,
some transmission failures have been considered with the
(m,k)-firm model [24] to tolerate m transmission failures
among k.

This algorithm is classified as a best effort algorithm. In
[25], the authors propose an extension of the model (m,k)-
firm called Weakly-hard to consider non-consecutive
failures.

The allowance on the WCETs proposed in Section 3 is
computed with a sensitivity analysis with a sliding windows
fault model. Yet, applying an identical scaling factor to a
subset of tasks leads to providing more allowance to the
tasks having higher WCETs. We remove this constraint by
analyzing several allowance sharing strategies in Section 4.
We then propose a fault prevention mechanism to prevent an
execution overrun error from leading to a deadline miss
error. We present the concept of Latest Execution Time a
task can proceed with its execution without compromising
the real-time constraints of all the tasks. The use of estimated
WCET for the dimensioning of a real-time system enables us
to be less conservative. However, it is necessary to take into
account the faults that result in WCETs overruns and to
guarantee the temporal robustness of the system in the case
of execution overrun faults. The temporal robustness in our
context is defined as follows: a faulty task should not have
any influence on the other correct tasks. In our context, this
means that an execution overrun of a task should not lead to
a deadline miss of any other correct task.

III. ALLOWANCE ON WCETS – PRINCIPLES

The processor utilization corresponding to a task set τ is

defined in [2]:

n

n i

i

T

C
U

1

. From this definition, 100U

represents the percentage of processor utilization. A
necessary condition for the feasibility of a task set is: U ≤ 1.

We are considering a real-time system based on the
preemptive Fixed Priority, highest priority first (FP)
scheduling algorithm with an arbitrary priority assignment.
Preemptive scheduling means that the processing of any task
can be interrupted by a higher priority task.

We define for any task τi scheduled with FP:
 hp(i) - the set of tasks except τi having a priority

higher than or equal to τi except τi;

360

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

 lp(i) - the set of tasks having a lower priority than τi;
 hpR(i) and lpR(i) which denotes at any time the

tasks released, respectively in hp(i) and lp(i).
The allowance consists of computing the allowance in

the WCET tolerated by the system. It represents the
maximum execution time that can be added to the WCET of
a task without compromising the deadlines of all the tasks.
We now give a more formal definition of the task allowance.

Definition 1:
A temporal fault (WCET overrun) of a task τi is said to

be isolated if it does not result in any deadline miss of the
other tasks.

Definition 2:
The task allowance is the maximum available CPU

resources allotted to a faulty task when it exceeds its WCET.
In addition, it represents the maximum duration that can be
added for the execution of a task without compromising the
execution of other tasks.

A. Identification of the available CPU Resources

The identification of CPU resources consists in
computing from the available system resources the
maximum extra execution duration that can be given to
faulty tasks without missing the deadline of any task. The
computation of available resources must be carried out
during the worst case scenario thus minimizing the
allowance of the tasks. Considering timeliness constraints,
the worst-case scenario for the respect of the task deadlines
occurs for FP scheduling in the synchronous scenario, i.e. all
tasks are at their maximum rate and released synchronously
at time t=0 (e.g. [4]).

We now show that the available CPU resources are also
minimized in the synchronous scenario.

Let 00
i

t be the first activation request time of the task

τi in an arbitrary processor busy period. The duration of free
CPU resources left available by the system at any time t ≥ 0
is given by:

i

n

i i

i C
T

tt
t

1

0

,0max

This duration is minimum for ,0,,1 0 itni

corresponding to the synchronous scenario. In this paper, we
are therefore interested only in the synchronous scenario for
the computation of the allowance on WCETs as the
synchronous scenario is a possible scenario. According to
figure 1, representing the execution of the three tasks (the
task parameters are defined in table 1). We would draw your
attention to the availability of many free CPU intervals
resulting from processor idle times.

Let us suppose that none of the three tasks have exceeded
its execution duration. In this case, the average processor
utilization of the available resources Ufree is equal to:

n

n i

i
free

T

C
U

1

1

TABLE 1. Average duration of free CPU resources

Task Ci Di Ti Qi Pi

 400 1000 1000 325 High

 200 1600 1600 520 Medium

 300 2000 2000 650 Low

Those idle times could be used by faulty tasks. However,
the amount of free resources, for each task, is not constant
for each activation of the task. The average duration of free
resource for a task τi is given by the following equation:

ifreei TUQ

Table 1 gives the value of Qi for all the three tasks τ1, τ2

and τ3.

B. Discussion - margin analyzes

The use of the average duration of free CPU resources
does not guarantee the respect of task deadlines. For
example, in figure 2(synchronous scenario for the set of tasks
given in table 1), during the first activation of task , the
CPU resources which are really available for this task, in the
event of a fault, are 300 units of time. This is less than the
average quantity of available resource during future
executions. (Q2 = 520). The use of Q2 leads to a temporal
failure for task activated at t=0.

We can use the total free resources during the lcm (least
common multiple) of the periods of the tasks (also called the
hyper period). The amount of available free resource during
the hyper period is represented by the following equation:

),...,(1 nfreehp TTlcmUQ

We obtain Qhp = 2600 units of time in our example.
However, this solution cannot guarantee the respect of the
timeliness constraints of the tasks. In fact, task as it has the
greatest priority can use more CPU resources and this can
result in deadline misses for lower priority tasks. Our goal is
to use from amongst the available resources those which will
not lead to deadline miss failures for all the tasks.

Figure 2. Available resources sharing

Figure 1. Available resources in the system.

361

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

C. Allowance computation

The allowance on WCETs is related to the scheduling
policy used by the system. In this article we are interested in
FP scheduling with an arbitrary priority assignment. A
classical feasibility condition for FP scheduling is obtained
by calculating the worst-case response time Ri for any task τi.
Ri is defined as being the longest duration time between
release time and termination time [3]. A Necessary and
Sufficient Condition (NSC) for the feasibility of Task Set
Scheduled FP is then:

i = 1..n, Ri Di and U 1
Many results showing the computation of the worst-case

response time in a preemptive context are available [3][4]. In
order to optimize the computation of the worst-case response
time, [3] has proven that in the case of FP scheduling, when
the deadlines are lower than or equal to the periods, the
worst-case response time is obtained in the first activation of
each task when all the tasks are released in the synchronous
scenario.

Theorem 1: [3]
The worst-case response time Ri of a task τi of a non-

concrete periodic, or sporadic, task set (with Di ≤ Ti, i [1,
n]) is found in a scenario in which all tasks are at their
maximum rate and released synchronously at a critical
instant t=0. Ri is computed by the following recursive
equation (where hp(i) denotes the set of tasks with higher
priority than τi):

)(

1

ihpj
j

j

m
i

i
m
i C

T

R
CR

The recursion ends when
i

Rm
i

Rm
i

R 1 and can be

solved by successive iterations starting from iCiR 0 .

We can easily show that m
iR is not decreasing.

Consequently, the series converges or exceeds Di. In the
latter case, task τi is not schedulable.

Remark:
A task is said to be non-concrete if its request time is not

known in advance of its execution. In this paper, we only
consider only non-concrete request times.

The computation of the allowance on WCETs can be
carried out:

 In the dimensioning phase or on-line. Subsequently
the tasks are activated by admission control, as
long as the deadlines of the tasks can always be
met. This is called the static approach.

 At each execution overrun detection. This is called
the Dynamic approach.

 Once the static allowance is consumed then the
dynamic computation is activated. This is called
the Hybrid.

The computation of the allowance has a pseudo-polynomial
time complexity (see property 1). Because of this we have
adopted an approach based on a static computation of the
allowance.

We consider in this paper a temporal fault model [m/n]
corresponding to a fault model where there can be at most
m≤n faulty tasks exceeding their WCET on a sliding
window W = min (T1,…, Tn). The allowance on the WCET
of a task is related to the number of faulty tasks.
Firstly let us look at the case where m=1. The general case
will be given in a later section. The allowance of a periodic
or sporadic task τi, when only one task is faulty, called Ai,1,
is obtained from the Necessary and Sufficient Condition
(NSC) established in theorem 1.

Lemma 1:
The maximum allowance that can be given to the

periodic or sporadic task τi, under the fault model [1/n], is
equal to the maximum duration that can be added to the
WCET of the tasks τi without missing the deadline of any
task.

1U(3)

)()2(

:)(

)1(

1,

1,

),(

1

)(
1,

1

i

i

jii
i

n
j

k

ikjhp k

n
j

j
n
j

j

ihp
ij

j

n
i

ii
n
i

T

A

DAC
T

R
C

T

R
CR

ilp

DC
T

R
ACR

k

j

Proof:
Let τi be the faulty task. By assumption, the maximum

execution duration of τi is then Ci + Ai. Applying theorem 1
with the new execution duration of τi we find the formula
(1) of lemma 1. Formula (2) is similar to formula (1) but
relates to the tasks with lower priority than τi. It consists of
checking that their response time is always lower than their
relative deadline when τi uses its allowance. Formula (3) of
the lemma is the Necessary Condition for the feasibility of
the task set taking into account the allowance of the faulty
task.

Example:
The allowance computation is done for all the tasks

given in the previous example (see table 1). The following
table gives the allowance values for each task:

TABLE 2. Margin Ai,1 - temporal fault model [1/n]

Task
Ai,1 250 300 500

For example, when a fault occurs, task will be able to
use an allowance equals to 300 time units. Figure 3
illustrates the synchronous scenario.

362

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

These 300 time units guarantee that the other non faulty
tasks will not be penalized by the faulty task and will
respect their temporal constraints, as long as the faulty task
does not consume more than its proper allowance.

IV. THE ALLOWANCE SHARING POLICY

Giving all the available resources to a faulty task is not
an optimal solution in itself, as this can use up the totality of
the resources without even correcting the fault. Worse than
that, when consuming its allowance, the faulty task will
reduce the allowance of more important tasks to zero. In that
case, the recommended solution is the share of the available
resources between the tasks. The resource sharing can be
done in the following ways:

 Fair sharing allowance: this consists of allotting
identical additional execution time to each faulty
task, without taking into consideration the task
parameters like: priority, importance and response
time.

 Balanced allowance: this is based on tasks
preference, i.e. when a task causes a fault, the
available resources will be attributed according to
importance of this task. In this case, a new parameter
will be used: the weight, which will be attributed to
each task according to its importance. The total
amount of assigned weight must be equal to 1.

A. Fair sharing allowance

Let us look at the faulty tasks model [m/n]. In this
section, we suggest an equal share of the static allowance
between the m faulty tasks. For a task τi, we identify the set
of (m-1) faulty tasks minimizing the allowance allotted to τi.

Lemma 2:
The maximum allowance that can be given to the faulty

task τi, when using [m/n] fault model, is equal to the
maximum duration that can be added to the execution of the
faulty tasks. There are two conditions which must be
fulfilled; firstly, (m-1) other faulty tasks must be taken into
account and secondly, all deadlines must be respected.

)(),(
,,

1)4(
ihp

i
midis

mi
j

n
i

j
j

n
i

mii
n
i

j j

DA
T

R
C

T

R
ACR

1U(6)

)5(

:)(

),(

,

,

),(),(

1

ij

ikk

midis j

mi

jmi

midis k

n
j

k

ikjhp k

n
j

j
n
j

j

T

A

DA
T

R
C

T

R
CR

ilp

Where dis(i,m) = set of (m-1) which comprises the most
unfavorable task execution time for the task τi in the event of
faults. The most unfavorable task execution time is that
which occurs when tasks are liable to consume most of the
available resources, i.e. tasks which maximize the quantity of

work

j

i

T

R
).

Proof:
Let τi be the faulty task. Let us suppose that there exists,

at the most, m faulty tasks. In the case of equal shares, for a
faulty task τi, each faulty task τj has an allowance Ai,m added
to its WCET. The tasks set with priority higher than the task
τi will be divided into two sub-groups according to fault
model of the task (faulty or not faulty). Applying theorem 1
with the new execution duration of τi we find the formula (4)
of lemma 2.

The formula (5) consists of checking that the response
time, of tasks with low priority than τi, is always lower than
their relative deadline when τi consumes its allowance. The
formula (6) of the lemma is the Necessary Condition for the
feasibility of the task set taking into account the allowance of
the faulty tasks.

Example:
We consider the parameters of the previous example (see

table 1):
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously at time t=0.

 The tasks , and have decreasing priorities.
 Any task can be faulty.

The following table gives the allowance values for each
task:

TABLE 3. Margin value - temporal fault model [m/n]

Task
Ai,m

m=1 m=2 m=3

 250 125 100

 300 125 100

 500 166 100

Figure 3. Task Margin – example

363

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 4 illustrates the scenario in which all the tasks are
faulty, in this case no task misses its deadline if the faulty
tasks do not consume more than their allowance.

Property 1:
The computation of the allowance, using FP and [m/n]

fault model, has a pseudo-polynomial time complexity.

Proof:
The formula (6) of lemma 2 limits the maximum

allowance for a task τi:

ij midis j

mi

T

A

),(

, 1

U-1

Furthermore, we know that the deadline Di is considered
as an upper bound on the iteration number for the
computation of the task response time (Ri ≤ Di). This
computation is carried out for a task τi and for all the tasks
with lower priority than τi.

Thus we have

)(

D
ihp

ji

j

D

iterations to execute. It follows

that:

 iniini

midis j

ihp

ji TDn

T

DD

ij

j

..1..1

),(

)(

maxmaxU-1
1

U-1

The complexity is polynomial for each task, it takes O(n
maxi=1..n(Di) maxi=1..n(Ti)) time, thus the whole computation
for n tasks takes O(n2 maxi=1..n(Di) maxi=1..n(Ti)), thus the
complexity becomes pseudo-polynomial.

B. Balanced allowance

The share of the available free resources between faulty
tasks should not be always being fair. A balanced approach
takes into account the importance of a task. In that case, an
additional parameter is used to balance the allowance among

faulty tasks: a weight (i) associated to task τi. The higher

weight, the greater the importance.

Lemma 3:
The maximum allowance that can be given to the faulty

task τi, when using [m/n] fault model, is equal to the
maximum duration that can be added to the duration of the
faulty tasks according to their weight.

 1
1

U:,1(9)

)8(

:)(

)7(

),(

,
,

,

),()(

1

)(),(
,,

1

jmidis i

j
mi

i

mi

j
i

k
mi

midis k

n
j

k

jhp k

n
j

j
n
j

j

ihp
i

midis i

j
mi

j

n
i

j
j

n
i

mii
n
i

T
A

T

A
ni

DA
T

R
C

T

R
CR

ilp

DA
T

R
C

T

R
ACR

j

ikk

j j

Where dis(i,m) = set of the (m-1) minimizing the allowance
of task τi in the case of execution overrun faults. This set

comprises tasks which maximize the quantity

Tj

Ri .

Proof:
Let τi be the faulty task. Let us suppose that there exist at

most m faulty tasks. In the case of balanced allowance
sharing, for a faulty task τi, each (m-1) faulty tasks τj with

higher priority than τi has an allowance equal to

i

j
miA

,

added to its WCET. If we apply the modifications to the
theorem 1 replacing the values of Ci by the Ci plus
allowance, we will find equations (7) and (8) of lemma 3.
Equation (9) of the lemma is the Necessary Condition for the
feasibility of the task set, taking into account the allowance
of the faulty tasks.

Example:
We consider the parameters of the previous example (see

table 1):
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously time t=0.

 The tasks , and have decreasing priorities.
 Any task can be faulty (m=n).
 The WCET is the degree of importance of the task:

n

j j

i
i

C

C

1

 .

The following table gives the allowance values for each
task:

TABLE 4. Margin value - Balanced allowance

Task i Ai,3

1 44 133

2 22 66

3 33 100

Figure 4. Margin example - fair sharing allowance

364

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

Figure 5 illustrates the scenario in which all the tasks are
faulty. We observe that each task meets its deadline as long
as the tasks do not consume more than their allowance.

V. LATEST EXECUTION TIME - LET

In order for static allowance to work properly execution
overruns must be detected when they occur. This requires the
presence of a detector in the system. This does not
necessarily mean that available resource will be immediately
consumed by a faulty task as a task with a higher priority
may be running.

From this detector (WCET overrun), an approach using a
budget manager (as in the approaches for management of the
aperiodic tasks) is possible. [26] studies various strategies for
budget management (differed server, polling server) for the
allowance use with WCETs.

These solutions impose on each task a strict use of their
allowance and do not allow tasks to recover the unused
allowance of the other tasks. Moreover, when a task has an
execution time lower than its WCET, it is impossible to
recover the used duration to allocate it to other faulty tasks.
Concerning the real-time java environment, the specification
(RTSJ: Real-Time Specification for Java) proposes the use
of handlers for the detection of the execution overrun
(CostOverRunHandler) and for the detection of the deadline
miss (DeadlineMissHandler) [27].

However, the execution overrun handler is rarely
implemented in real-time systems (for example on
JbedRTOS of the Esmertec Company [28]). In the current
minimum implementation of RTSJ, the CostOverrunHandler
is ignored, but a handler which detects an absolute deadline
miss is provided. Thus we propose a new approach with an
implicit recovery of resources not used by a task τi for all the
tasks with lower priority than τi. Moreover, this approach
solves the problem of the lack of overrun handlers.

It consists of using classical timers which are initialized
with their Latest Execution Time (LET), computed
according to the assumption that all the allowances have
been consumed as well as the WCETs. The LET principles
are described in the following subsections. We introduce the
static and the dynamic LET. The first can be used for soft
real-time systems; the second provides hard real-time
guarantees.

A. Static Latest Execution Time

The static LET (called: LETi,m) of a task τi corresponds to
the worst-case response time of τi by supposing that all the m
faulty tasks consume their allowance.

Lemma 4:
The static LET of a faulty task τi can be seen as a

relative deadline of execution (a task released at time t must
be executed by its absolute LET: t + LETi,m), beyond which
the risk of deadline miss is very high. Notice that with this
approach, we cannot guarantee deadline respect (see figure
7). The static LET should therefore be used in a soft real-
time context. It is equal to the worst-case response time of
the task when all the faulty tasks consume their allowance. It
is calculated as follows:

 1U:,1(12)

:)()11(

)10(

),(

,

)(),(
,

,,
,

ij

j k

midisLet j

mi

kkik

ihp midisLet
mk

k

mi
j

j

mi
miii

T

A
ni

DLETUilp

A
T

LET
C

T

LET
ACLET

Where disLet (i,m) = set of the (m-1) tasks minimizing the
allowance of task τi in the event of faults (tasks suspected to
consume the most free resources, i.e. tasks which maximize

the quantity of work mk
k

mi
A

T

LET
,

,

).

Proof:
Let us suppose that there exist m faulty tasks. In this

case, the WCET of each task is increased with a value equal
to the allowance which is computed according to resource
sharing mode (fair or balanced). Equation (10) corresponds
to the formula of the worst-case response time computation.
According to lemma 3, the new response time values must be
lower than the tasks deadlines: Ri ≤ LETi,m ≤ Di, which
respects the formula condition (11). The formula (12) of the
lemma is the Necessary Condition for the feasibility of the
task set.

Example:
We consider three tasks τ1, τ2 and τ3 scheduled with FP,

having decreasing priorities and we suppose at most m=n=3
faulty tasks. We attribute to each task τi, i=1..3, the
allowance values of Ai,3 and LETi,3 (see table 5).

 The execution is carried out in a scenario in which
all tasks are at their maximum rate and released
synchronously at time t=0.

 Any task can be faulty.

The following table gives the allowance values for each
task according to an equal share of the allowances between
the m faulty tasks:

TABLE 5. Margin value - Static LET

Task Ci Di Ti Ai,3 3,iLET

 1 7 7 1 2

 2 11 11 1 5

 4 17 17 1 17

Figure 5. Margin example - balanced allowance

365

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

In figure 6, we can see that the first activation of task may
use several time units when it exceeds its WCET instead of
the one granted by the allowance. With the LET mechanism,
the unused allowance can be recovered by the faulty tasks.

Advantages of this solution:
 This mechanism improves system performance by

the use of the allowance without requiring a cost
overrun handler.

 The unused allowance of non faulty tasks can be
recovered. Indeed, when a task does not use its
allowance, all these saved resources (time CPU) can
be used by all the other tasks.

In spite of its good performance, the LET static has a
drawback; it does not guarantee the isolation of temporal
faults. The computation of the static LET for task τi supposes
that the tasks with higher priority are present in the system.
This represents the worst-case scenario with the use of fixed
priority driven schedulers. However, during execution, it is
possible that a task with an intermediate priority can
consume the allowance of task, with higher priority, not
present in the system at that time. This has a knock-on effect
on the execution of the task with lower priority (see figure
7). We identify this problem in the following example.

Example:
We consider three tasks τ1, τ2 and τ3 scheduled with FP,

having decreasing priorities and we suppose at most m=n=3
faulty tasks. We attribute to each task τi, i=1..3, the
allowance values of Ai,3 and LETi,3 (see table 6).

 The execution is carried out in a scenario in which
all tasks are at their maximum rate and released
synchronously at time t=0.

 Any task can be faulty.

The following table gives the allowance values for each
task according to a fair share of the allowances between the
m faulty tasks:

TABLE 6. Margin value - Static LET - example 2

Task Ci Di Ti Ai,3 3,iLET

 2 12 12 1 3

 2 15 15 1 6

 3 10 10 1 10

Figure 7 shows that there are possible cases where non
faulty tasks (task in figure 7) exceed their deadlines
following faults generated by tasks with higher priority
(tasks and in figure 7).

For example at t1 = 30, the task is running and has a
LET deadline at t2 = 36, (calculated with the presence of task
) whereas will not be activated until t = 36. The fact that
has the greatest priority in the interval [t1, t2] authorizes the
task to be executed up to t = 35 (see figure 7). It then takes
all available CPU resources, and delays the execution of the
task . At t2, starts its execution and leaves insufficient
resources for task (only one unit in this example). The
failure of the task at t3 = 40 is due to an overconsumption
of CPU resources by task , which by consuming its
allowance, plus a part of that of has indirectly used a part
's allowance.

The problem with the static LET is thus that it is not
possible to guarantee for periodic or sporadic tasks the
isolation of temporal faults. However, it enables us to
anticipate a deadline miss. The majority of real-time systems
propose only one detector in the event of a deadline miss.

The problem with this solution is that a task which has
missed its deadline may already have had a cascading effect
on the other tasks of the system. The correction may come
too late. Static LET, with its preemptive correction, is a
possible solution for fault prevention. Here is the dynamic
LET, which solves the problems brought to our attention by
the use of the static LET.

B. Dynamic Latest Execution Time

Definition:
Let task τi be a new task released at time ti. The dynamic

Latest Execution Time of all the tasks in)(ilpi released

at time tj and FP scheduled is computed as follows:

niijnjjnj
R

j

jnj
ihp

iniiini

ACtLETtLETilp

tLETtACtLET
R

j

,,,

,
)(

,,

)()(:)()14(

))((max,max()()13(

Where:
 tj: is the last request time of task tj

 lpR(i): denotes the set of tasks released and still in
the system with priority lower than i.

 hpR(i): denotes the set of tasks released and still in
the system with priority higher than i.

Lemma 5:
The dynamic LET guarantees the isolation of temporal

faults in the event of WCETs overrun, as long as the faulty
tasks do not exceed their dynamic LET.

Proof:
The dynamic LET is updated for all tasks with priority

lower than or equal to task i. It takes into account the
released tasks with higher priority than i. The dynamic LET

Figure 6. Execution example - Static LET

1

Execution durationLatest Execution Time Margin Deadline miss

time

Figure 7. Execution example - Static LET limit

366

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

of the task i corresponds to its completion time, after the
execution of all the released tasks in hp(i). For the task i, the
maximum number of requests for tasks activations with
higher priority than i is the maximum possible for the first
activation of i in the synchronous scenario. The response
time of the first activation of i in the synchronous scenario
is the maximum limit of the response time of any instances
of the task i in any scenario. Thus we have:

 nij

ihp j

i
niiiiinii AC

T

R
ACRttLETt

j

,

)(

,,)(,0

Where Ri is the response time, computed according to
lemma 2, extended to the case m=n, including the
allowances on WCETs, and respecting the condition: Ri ≤ Di.

Thus we find: iiinii DttLETt)(,0 ,

Consequently all the tasks will respect their deadlines
provided that they are not run after their dynamic LET. An
execution overrun is then isolated as long as the tasks do not
exceed their dynamic LET.

Example:
We consider three tasks , and with FP scheduling,

having decreasing priorities and we suppose at most m=n=3
faulty tasks. Each task i, i=1..3, has allowance values of Ai,3

(see table 7).
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously at time t=0.

 Any task can be faulty.

The following table gives the allowance values for each
task according to fair allowance sharing between the m=n
faulty tasks:

TABLE 7. Fair Allowance - Dynamic LET

Task Ci Di Ti Ai,3

 4 10 10 1

 2 16 16 1

 3 20 20 1

At t=0, the dynamic LET of each task is equal to Ci + Ai

(values equal to: 5, 3 and 4 respectively). During the
activation of 2, its LET is updated when a higher priority
task is released into the system (task 1 in this example).
When t=10, 1 activates and recalculates the LET of task 3,
the LET of 3 changes from 12 to 17. At t=16, task 2

modifies the LET of task 3 up to the value of its deadline.

The CPU resources not used by higher priority tasks can
be exploited by task 3.

The advantages of the dynamic LET are shown in the
following points:

 Error prevention: this is based on the determination
of the maximum execution time that can be added to the
EWCET of a faulty task without compromising the real-time
constraints of all the tasks in the system.

 Failure prevention: our solution makes it possible to
anticipate the failures. This leaves us a precious time to make
a decision before the deadline miss and to guarantee the
isolation of the fault if it occurs.

 Efficient resource management: unused resources
can be recovered by faulty tasks automatically without needs
of additional calculation (implicitly recovered).

 Independence of platform type: the dynamic LET
is a solution, based on the use of timers' handlers, which is
easily implemented on all real-times systems.

 Isolation of the faulty task: the dynamic LET
guarantees the isolation of temporal faults in the event of
EWCETs overrun, as long as the Dynamic LET is not
exceeded by the faulty tasks.

C. Latest Execution Time implementation

We show in this section how to implement the
allowance use in a real-time system. The following diagram
(see figure 9-a) shows the possible execution states for a
task.

 Admission state: ready to accept a new task i. This
state is only used for the first activation of the task. In this
state, admission control, based on theorem 1, must be
requested to check feasibility. If the new task set of n
sporadic tasks, including i is declared feasible; all the task
deadlines can be met. The system then determines the
allowance sets Aj, j=1..n based on lemma 2. Task i can be
started and then the scheduler will place the task into a
Ready state. This means the task is ready to run. If task i

cannot be admitted, its execution state changes to Halted.
The system will be notified of the admission failure. We
will not deal in this paper with the treatment of this
exception.

 Running state: based upon the behavior of the other
tasks and threads in the system, a task is scheduled to begin
executing, at which point it enters it’s Running state.

 Finished state: while the task is running, the
scheduler may preempt it and switch execution to another
task. If this occurs, the Running task returns to a Ready
state. Alternatively, the scheduler may decide to continue to
execute the task. When the task has finally completed
executing its run method, it enters a finished state.

 Ready state: in addition to the normal execution
states, a task can enter a Waiting state if it needs resources
which are not currently available. The scheduler may
reschedule another task to begin execution. When the
resources become available, the original task is return to a
Ready state where it will be rescheduled.

Figure 8. Execution example - Dynamic LET

367

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

The diagram b (see figure 9) shows the possible
execution states of tasks:

 Correct state: if the task completes normally before
the LET, its state changes to end state. Alternatively, the
task becomes faulty and then the scheduler changes the task
state to error state.

 Error state: different strategies can be used to deal
with such a situation: stop the faulty task or execute it in the
background (when no others tasks require execution). In the
experiments carried out in the following section, we have
chosen to stop the faulty task to prevent cascading effects on
the other tasks. The state of the faulty task is set to failure
state and an exception is used to inform the system of the
failure.

VI. TESTS AND RESULTS

A. Tests per simulation

In order to make a comparative study on the robustness
of the various solutions, it should be noted that in the
following tests, we consider that the faulty tasks have real
execution times which can exceed their execution time plus
their allowance. We then obtain temporal failures and we
compare the capacity of the various algorithms to contain
these failures. Indeed, if all the tasks did not consume more
than their allowance, we would not observe a temporal
failure with the dynamic LET. In these simulations, we
consider the following conditions:

 Given a set of 10 periodic tasks: 1, 2...10

scheduled with FP.
 The execution is carried out in a scenario in which

all tasks are at their maximum rate and released
synchronously at time t=0.

 The task 1 will have the greatest priority with very
large execution duration.

 The tasks 1...10 will have very short execution
duration.

 The tasks 1, 2...10 have decreasing priorities.
 The margin value for each task is calculated

according to equal resource sharing between tasks.

We assume that every task can cause faults; we simulate
this by modifying the task execution time according to the
Normal law during each period. We carried out the test 100
times in order to study the failure tendency. In this
experiment, we consider the tasks set with a processor
utilization U=0.848. The goal of these simulations is to
compare the performances between the various techniques
of allowance management and a mechanism being satisfied
to detect the deadline (NTD: nothing to be done in the case
of faults).

The values represented on the x-axes indicate the
number of simulations carried out (see figures 10, 11, 12
and 13). Each simulation corresponds to an execution
scenario. The duration of the test is higher than the lcm of
the periods of the tasks (14000 units of time).

The allowance value Ai,10, ,10,1i is equal to 22 time
units. The following table (see table 8) gives the static LET
values for each task according to an equal share of the
allowances between tasks:

TABLE 8. Simulation example - 10 tasks

Task Ci Di Ti Pi LET i,10

1 120 200 200 10 122

2 20 300 300 9 144

3 20 300 300 8 166

4 20 300 300 7 188

5 5 500 500 6 195

6 5 500 500 5 390

7 5 500 500 4 397

8 5 800 800 3 547

9 5 800 800 2 554

10 5 800 800 1 561

A task has an indirect failure when it does not exceed its
WCET but misses its deadline. The deadline miss is then
due when other faulty tasks exceed their WCET. This can
only happen when no allowance mechanism is used.
Without the allowance mechanism, we observe the
multiplication of indirect failures.

Figure 10 shows that in the case of task fault, nothing to
be done i.e. let the faulty task continue its execution, does
not guarantee the task against a temporal failure but exposes
the other tasks in the system to successive cascading
failures. Only one task fault can cause several failures on the
level of the other tasks. The use of allowance preserves the
system from cascading effects. We remark also that the
static allowance is less powerful than the LET techniques.

When the faulty tasks consume their entire allowance or
if a task reaches it LET deadline, we put the execution of
these tasks in background. The results obtained in this case
(see figure 11) show the benefits of the solutions using the
allowance. The performances (reduction of failures) of the
solutions are always in the same order: the static LET gives
the best results, followed by the dynamic LET and finally
the equitable allowance.

Error

End

Start,x=0
LET miss, x>LET

FailureCorrect

(a)

(b)

Ready

Finished

Waiting

Start
RunningAdmission

Admission
Admission

failure

Deadline miss,
x>D

, x ≤D, x ≤LET

Figure 9. State diagram - Dynamic LET

368

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

In the following simulation test, we increase the number
of tasks in the system. We consider a set of 20 periodic tasks
1,.., 20. The first task will have the greatest priority. The 19
remaining tasks will have very short execution duration with
decreasing priorities.

We assume that every task can cause faults, which is
made possible by modifying the task execution time
according to the Normal law during each period. We remake
the test 100 times in order to study the failure tendency. In
this experimentation, the processor utilization is equal to
U=0.7766. The goal of this simulation is to study the effect
of the increase on the number of tasks in the failure rate.
The most important remark on this simulation (see figure
12) resides in the fact that the failure rate is considerably
reduced if we use the allowance compared to the solution
nothing to be done (NTD).

The increase in the number of tasks in the system
amplifies the risk of the indirect failures. The results of the
tests on the simulator show that the use of the allowance,
whatever the adopted solution, makes it possible to reduce
the number of failures in the system. We focused our tests
on the LET mechanism which can be installed on a real-
time platform. The results of simulations confirmed that the
use of the static LET, in spite of some indirect failures,
makes it possible to reduce the number of failures.

B. Practical Tests

The static LET mechanism has been tested on RedHat
Linux 8 with kernel 2.4.18 and on the TimeSys RT/Linux 4
[29].

In this test, we compare the correction rates obtained by
the static LET mechanism by simulation and on real
platforms.

With the objective of to comparing like with like, we
used the same example of tasks tested on the simulator (see
table 8). The test was carried out on the platform described
in the preceding point. In our test (see figure 13), we
obtained on average, a 17% less good results of fault
correction by using practical LET mechanism compared to
the results obtained by simulation. In fact, we obtained a
correction rate of faults, equal to 84% during the tests on the
simulator and 67% during the tests on a real-time platform.
We suspect the garbage collector of Java to be partly
responsible for this degradation. The practical tests
confirmed the benefits of the use of the allowance concept.

In the last experiment, we consider the same set of tasks;
the difference resides in the execution duration of the task 1

which varies between 900 and 1500. This corresponds to a
utilization ratio of the processor which varies between 0.533
and 0.883.

The tests were carried out in a synchronous scenario for
a length of time equal to 10 times the lcm of the tasks
(120000 time units). For each test, we take the average of 10
executions, which corresponds approximately to twenty
minutes per test.

The test objective is to analyze, on a real-time platform
Jtime (TimeSys), the influence of the processor utilization
rate on the performances of the static LET mechanism (see
figure 14).

Figure 12. Failures comparison - LET and NTDFigure 10. Failures comparison - stop after margin exceeds

Figure 11. Failures comparison - background after margin exceeds

Figure 13. Correction rate - LET simulation vs. LET practice

369

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

We can notice that the number of failures is more
important when the static LET is used, which is not the case
with solution NTD. The tests of the solutions on the
simulator show the improvements made by the use of the
allowance. The decrease of the performances in practice is
explained by the system cost of the allowance mechanism.

VII. CONCLUSION

In this article we have considered the problem of fault
prevention in a real-time system. The faults correspond to
WCETs overruns resulting from the use of estimated
WCETs. This enables us to consider an open architecture,
independent of the operating system. The use of a virtual
machine such as Java allows this independence. In this
context, the worst case execution times are not easily
determinable by a static analysis due to portability issues.
The design of real-time system then requires techniques to
tolerate an uncertainty on the WCET. The solution that we
propose is based on the determination of the acceptable
deviations on the WCETs which is called the allowance.
The allowance enables us to reduce the failure rate of the
real-time tasks and to make the system more robust in the
event of temporal fault. This mechanism permits the
recovery of free CPU resources in the event of temporal
fault. We propose equations to compute the allowance in the
case of a fixed priority scheduling. We proposed an
implementation based on the computation of the Latest
Execution Time (LET) preserving the timeliness constraints
of the tasks. Simulations carried out and the studies on a real
platform enabled us to conclude that this mechanism is
interesting to limit the impact of temporal faults of the
WCETs overruns by increasing the rate of their correction.
Furthermore, the LET provides an implicit recovery of the
unused allowance.

ACKNOWLEDGMENT

The authors gratefully acknowledge Siân Cronin at
ESIGETEL for providing linguistic help.

REFERENCES

[1] L. Bougueroua, L. George, S. Midonnet, Dealing with execution-
overruns to improve the temporal robustness of real-time systems
scheduled FP and EDF. The second International Conference on
Systems – ICONS 2007.Sainte-Luce, Martinique, 22-28 April 2007.

[2] Liu, C.L., Layland, J.W., Scheduling Algorithms for
multiprogramming in a Hard Real Time Environment; Journal of
Association for Computing Machinery, Vol. 20, N° 1, (Jan 1973).

[3] Joseph, M., Pandya, P., Finding reponse times in a real-time system ;
BCS Computer Journal, 29(5), (1986) 390-395.

[4] Lehoczky, J.P., Fixed priority scheduling of periodic task sets with
arbitrary deadlines; Proc. 11th IEEE Real-Time Systems Symposium,
Lake Buena Vista, Floride, USA, (Dec 1990) 201-209.

[5] Puaut, I., Méthodes de calcul de WCET (Worst-Case Execution
Time) Etat de l'art; 4ème édition Ecole d'été temps-réel(ECR), Nancy,
(Sep 2005) 165-175.

[6] Tindell, K., Burns, A., Wellings, A. J., An extendible approach for
analyzing fixed priority hard real time tasks ; Real-Time Systems,
Vol. 6, N°2, (Mar 1994)133-151.

[7] L. Bougueroua, L. George and S. Midonnet, An execution overrun
management mechanism for the temporal robustness of java real-time
systems. The 4th workshop on Java technologies for Real-Time and
Embedded Systems (JTRES) 11-13 October 2006, Paris.

[8] Locke, C.J., Best effort decision making for real-time scheduling;
PhD thesis, Computer science department, Carnegie-Mellon
university, (1986).

[9] Koren, G., Shasha, D., D-over: An Optimal On-line Scheduling
Algorithm for over loaded real-time system; technique report 138,
INRIA, (Feb 1992).

[10] Buttazo, G., Stankovic, J.A., RED: A Robust Earliest Deadline
Scheduling; 3rd international Workshop on responsive Computing,
(Sept 1993).

[11] Buttazzo, G., Lipari, G., Abeni, L., Elastic Task Model for Adaptive
Rate Control; Proc. IEEE Real-Time Systems Symposium, Madrid,
Spain, (Dec 1998) 286-295.

[12] Buttazzo, G., Lipari, G., Caccamo, M., Abeni, L., Elastic Scheduling
for Flexible Workload Management; IEEE Transactions on
Computers, Vol. 51, No. 3, (Mar 2002) 289-302.

[13] Bini, E., Di Natale, M., Buttazzo, G., Sensitivity Analysis for Fixed-
Priority Real-Time Systems; Proc. 18th Euromicro Conference on
Real-Time Systems, ECRTS'06, (2006).

[14] Racu, R., Jersak, M., Ernst, R., Applying sensitivity analysis in real-
time distributed systems; Proc. 11th Real-Time and Embedded
Technology and Applications - RTAS'05, (2005).

[15] Racu, R., Hamann, A., Ernst, R., A formal approach to multi-
dimensional sensitivity analysis of embedded real-time systems; Proc.
18th Euromicro conference on realtime systems - ECRTS'06, (2006).

[16] Bini, E., Buttazzo, G., Schedulability Analysis of Periodic Fixed
Priority Systems; IEEE Transactions On Computers, Vol. 53, No. 11,
(Nov 2004).

[17] Lehoczky, J. P., Ramos-Thuel, S., An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks Fixed-Priority Preemptive systems;
Proc. Real-Time System Symposium, (Dec 1992) 110-123.

[18] Davis, R.I. Scheduling Slack Time in Fixed Priority Pre-emptive
Systems; Proc. 14th Real-Time Systems Symposium, (1993) 222-231.

[19] Spuri, M., Buttazzo, G., Scheduling aperiodic tasks in dynamic
priority systems; Journal of real time systems, vol. 10, (1996) 179-
210.

[20] Caccamo, M., Lipari, G., Buttazzo, G., Sharing resources among
periodic and aperiodic taskc with dynamic deadlines; Proc. 20th IEEE
Real Time System Symposium, (1999).

[21] Kuo, T.W., Mok, A.K., Load Adjustment in Adaptive Real-time
Systems; Proc. 12th IEEE Real-Time Systems Symposium, (Dec
1991).

[22] Nakajima, T., Tezuka, H., A Continuous Media Application
Supporting Dynamic QoS Control on Real-Time Mach; Proc. ACM
Multimedia, (1994).

[23] Seto, D., Lehoczky, J.P., Sha, L., Shin, K.G, On Task Schedulability
in Real-Time Control Systems; Proc. IEEE Real-Time Systems
Symposium, (Dec 1997).

Figure 14. Failures - utilization rate of the processor

370

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

[24] Hamdaoui, M., Ramanathan, P., A dynamic priority assignment
technique for streams with (m,k)-firm deadlines; IEEE Transactions
on Computers, vol. 44(12), (1995) 1443-1451.

[25] Bernat, G., Burns, A.A.L., Weakly Hard Real-Time Systems; IEEE
Transactions on Computers, (2001).

[26] Bougueroua L., Conception de systèmes temps réel déterministe en
environnement incertain; PhD thesis, vol 1, n° 2007PA120004, SI
(Mar 2007).

[27] Bollela, G., Gosling, Brosgol, Dibble, Furr, Hardin and Trunbull, The
Real-Time Specification for Java; Addison Wesley, 1st edition,
(2000).

[28] Esmertec, jbedRTOS: Java Bulding Embedded Operating System;
http://www.esigetel.fr/images/stories/Recherche/SITR/spec-jbed-
rtos.pdf.

[29] TimeSys, TimeSys' real-time Java Virtual Machine (JVM);
http://www.timesys.com.

371

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

