

The International Journal On Advances in Software is Published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal On Advances in Software, issn 1942-2628

vol. 2, no. 1, year 2009, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal On Advances in Software, issn 1942-2628

vol. 2, no. 1, year 2009,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2009 IARIA

International Journal On Advances in Software

Volume 1, Number 1, 2008

Editor-in-Chief

Jon G. Hall, The Open University - Milton Keynes, UK

Editorial Advisory Board

 Meikel Poess, Oracle, USA

 Hermann Kaindl, TU-Wien, Austria

 Herwig Mannaert, University of Antwerp, Belgium

Software Engineering

 Marc Aiguier, Ecole Centrale Paris, France

 Sven Apel, University of Passau, Germany

 Kenneth Boness, University of Reading, UK

 Hongyu Pei Breivold, ABB Corporate Research, Sweden

 Georg Buchgeher, SCCH, Austria

 Dumitru Dan Burdescu, University of Craiova, Romania

 Angelo Gargantini, Universita di Bergamo, Italy

 Holger Giese, Hasso-Plattner-Institut-Potsdam, Germany

 Jon G. Hall, The Open University - Milton Keynes, UK

 Herman Hartmann, NXP Semiconductors- Eindhoven, The Netherlands

 Hermann Kaindl, TU-Wien, Austria

 Markus Kirchberg, Institute for Infocomm Research, A*STAR, Singapore

 Herwig Mannaert, University of Antwerp, Belgium

 Roy Oberhauser, Aalen University, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Eric Pardede, La Trobe University, Australia

 Aljosa Pasic, ATOS Research/Spain, NESSI/Europe

 Robert J. Pooley, Heriot-Watt University, UK

 Osamu Takaki, Center for Service Research (CfSR)/National Institute of Advanced Industrial

Science and Technology (AIST), Japan

 Michal Zemlicka, Charles University, Czech Republic

Advanced Information Processing Technologies

 Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

 Michael Grottke, University of Erlangen-Nuremberg, Germany

 Josef Noll, UiO/UNIK, Sweden

 Olga Ormandjieva, Concordia University-Montreal, Canada

 Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania

 Liviu Panait, Google Inc., USA

 Kenji Saito, Keio University, Japan

 Ashok Sharma, Satyam Computer Services Ltd – Hyderabad, India

 Marcin Solarski, IBM-Software Labs, Germany

Advanced Computing

 Matthieu Geist, Supelec / ArcelorMittal, France

 Jameleddine Hassine, Cisco Systems, Inc., Canada

 Sascha Opletal, Universitat Stuttgart, Germany

 Flavio Oquendo, European University of Brittany - UBS/VALORIA, France

 Meikel Poess, Oracle, USA

 Kurt Rohloff, BBN Technologies, USA

 Said Tazi, LAAS-CNRS, Universite de Toulouse / Universite Toulouse1, France

 Simon Tsang, Telcordia Technologies, Inc. - Piscataway, USA

Geographic Information Systems

 Christophe Claramunt, Naval Academy Research Institute, France

 Dumitru Roman, Semantic Technology Institute Innsbruck, Austria

 Emmanuel Stefanakis, Harokopio University, Greece

Databases and Data

 Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

 Qiming Chen, HP Labs – Palo Alto, USA

 Ela Hunt, University of Strathclyde - Glasgow, UK

 Claudia Roncancio INPG / ENSIMAG - Grenoble, France

Intensive Applications

 Fernando Boronat, Integrated Management Coastal Research Institute, Spain

 Chih-Cheng Hung, Southern Polytechnic State University, USA

 Jianhua Ma, Hosei University, Japan

 Milena Radenkovic, University of Nottingham, UK

 DJamel H. Sadok, Universidade Federal de Pernambuco, Brazil

 Marius Slavescu, IBM Toronto Lab, Canada

 Cristian Ungureanu, NEC Labs America - Princeton, USA

Testing and Validation

 Michael Browne, IBM, USA

 Cecilia Metra, DEIS-ARCES-University of Bologna, Italy

 Krzysztof Rogoz, Motorola, USA

 Sergio Soares, Federal University of Pernambuco, Brazil

 Alin Stefanescu, SAP Research, Germany

 Massimo Tivoli, Universita degli Studi dell'Aquila, Italy

Simulations

 Robert de Souza, The Logistics Institute - Asia Pacific, Singapore

 Ann Dunkin, Hewlett-Packard, USA

 Tejas R. Gandhi, Virtua Health-Marlton, USA

 Lars Moench, University of Hagen, Germany

 Michael J. North, Argonne National Laboratory, USA

 Michal Pioro, Warsaw University of Technology, Poland and Lund University, Sweden

 Edward Williams, PMC-Dearborn, USA

International Journal On Advances in Software

Volume 1, Number 1, 2008

Foreword

The first 2009 number of the International Journal On Advances in Software compiles a set of papers

with major enhancements based on previously awarded publications. It brings together a set of articles

that share a common link to software. For this issue, thirteen contributions have been selected.

In the first article, Javier Díaz et al. present a heuristic approach to allocating workloads in

computational grid environments. Experiments were done with several workload distributions. It was

found that a Simulates Annealing approach significantly reduces computation time.

The second article by Torsten Hopp et al. present a Matlab GUI that can facilitate dealing with the large

amount of data that is generated by ultrasound tomography. The proposed approach has a smaller

learning curve and is extensible via plugins.

Sascha Opletal et al. consider aspects of design information. The proposal is an automated setup and

classification of information pieces within several involved knowledge domains.

The fourth article by Kaouthar Fakhfakh et al. address the shortcomings of current SLA models in

service-oriented architectures. Through the use of SWRL (Semantic Web Rule Language), a set of SLA

obligations can be defined as well as actions to handle violations of the agreements.

Marc Aiguier et al. address the issue of formalization needed for large software systems. A mathematical

denotation is proposed for the notion of complex software systems whose behavior is specified by

rigorous formalisms. A denotation is built on Goguen’s institution theory.

Heiko Pfeffer introduces a service composition model that can underlie modern Web applications and

can be executed within a respective runtime at every browser-enabled client. The resulting Underlay

System for Web Mashups provides uniformity irrespective of client technology.

In the next article, S. E. Hegazy and C. D. Buckingham use the case of clinical decision support systems to

present a knowledge based structure for reasoning with uncertainty. Such an approach can be

generalized to similar knowledge-engineering domains where relative weightings of node siblings are

part of the parameter space.

Joerg Bartholdt et al. address variability in the data models and how this is reflected in software. The

challenge is to have proper adapters generated in order to assist integration. An eHealth case study is

presented which shows that information can be consistently preserved while maintaining the desirable

aspects of the software.

A Kernel-based Bayesian Filtering Framework is proposed by Matthieu Geist at al. in order to support

learning at the level of function calls. By quantifying uncertainty, the presented solution can deal with

cases where actual samples are not directly observable.

Joey C. Libby et al. tackles the issue of computationally intensive problems. A hardware approach was

taken in this case, which with additional optimizations yields promising results.

Unit test generation is the focus of the article by Alberto Bacchelli et al. The contribution presents a

practical comparison between different automated methods, tools, and techniques to generate unit

tests. A testing procedure based on bet practices is presented.

In the spirit of consistency and correctness in large scale workflows, Osamu Takaki et al. propose an

incremental verification approach. In order to verify a workflow incrementally, it is necessary to consider

consistency properties of not only a whole workflow but also a subgraph of the whole workflow. The

work presented defines a consistency property for evidence life cycles in workflows with multiple starts.

Finally, Jaroslav Kral and Michal Zemlicka discuss a set of service-oriented antipatterns and their impact

on software engineering. The development risks associated with antipatterns are presented as they can

affect entities from small firms to government sized applications.

We hope that the contents of this journal will add to your understanding of software, and that you will

be inspired to contribute to IARIA’s conferences that include topics relevant to this journal.

Jon G. Hall, Editor-in-Chief

Petre Dini, IARIA Advisory Committees Board Chair

International Journal On Advances in Software

Volume 2, Number 1, 2009

CONTENTS

A Heuristic Approach to the Allocation of Different Workloads in Computational Grid

Environments

Javier Díaz, Universidad de Castilla-La Mancha, Spain

Sebastián Reyes, Universidad de Castilla-La Mancha, Spain

Camelia Muñoz-Caro, Universidad de Castilla-La Mancha, Spain

Alfonso Niño, Universidad de Castilla-La Mancha, Spain

1 - 10

A MATLAB GUI for the analysis and reconstruction of signal and image data of a SAFT-

based 3D Ultrasound Computer Tomograph

Torsten Hopp, Forschungszentrum Karlsruhe, Germany

Gregor F. Schwarzenberg, Forschungszentrum Karlsruhe, Germany

Michael Zapf, Forschungszentrum Karlsruhe, Germany

Nicole V. Ruiter, Forschungszentrum Karlsruhe, Germany

11 - 21

Using Secondary Information Sources to Generate and Augment Semantics of Design

Information

Sascha Opletal, Universität Stuttgart, Germany

Dieter Roller, Universität Stuttgart, Germany

Steffen Rüger, Universität Stuttgart, Germany

22 - 35

Semantic Enabled Framework for SLA Monitoring

Kaouthar Fakhfakh, CNRS – LAAS and Université de Toulouse, France / National Engineering School

of Sfax, Tunisia

Saïd Tazi, CNRS – LAAS and Université de Toulouse, France

Khalil Drira, CNRS – LAAS and Université de Toulouse, France

Tarak Chaari, National Engineering School of Sfax, Tunisia

Mohamed Jmaiel, National Engineering School of Sfax, Tunisia

36 - 46

Complex software systems : Formalization and Applications

Marc Aiguier, École Centrale Paris, France

Pascale Le Gall, École Centrale Paris, France

Mbarka Mabrouki, École Centrale Paris, France

47 - 62

A Underlay System for Enhancing Dynamicity within Web Mashups

Heiko Pfeffer, Technische Universität Berlin, Germany

63 - 75

A Method for Automatically Eliciting node Weights in a Hierarchical Knowledge Based

Structure for Reasoning with Uncertainty

76 - 83

S. E. Hegazy, Aston University, UK

C. D. Buckingham, Aston University, UK

Addressing Data Model Variability and Data Integration within Software Product Lines

Joerg Bartholdt, Siemens AG, Germany

Roy Oberhauser, Aalen University, Germany

Andreas Rytina, itemis, Germany

84 - 100

From Supervised to Reinforcement Learning: a Kernel-based Bayesian Filtering

Framework

Matthieu Geist, Supélec and ArcelorMittal Research and INRIA Nancy, France

Olivier Pietquin, Supélec, France

Gabriel Fricout, ArcelorMittal Research, France

101 - 116

Examining Implementations of a Computationally Intensive Problem in GF(3)

Joey C. Libby, University of New Brunswick, Canada

Jonathan P. Lutes, University of New Brunswick, Canada

Kenneth B. Kent, University of New Brunswick, Canada

117 - 128

How to compare and exploit different techniques for unit-test generation

Alberto Bacchelli, University of Bologna, Italy

Paolo Ciancarini, University of Bologna, Italy

Davide Rossi, University of Bologna, Italy

129 - 144

Incremental verification of consistency properties of large-scale workflows from the

perspectives of control flow and evidence life cycles

Osamu Takaki, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Izumi Takeuti, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Takahiro Seino, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Noriaki Izumi, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Koichi Takahashi, National Institute of Advanced Industrial Science and Technology (AIST), Japan

145 - 159

Crucial Service-Oriented Antipatterns

Jaroslav Král, Charles University, Czech Republic

Michal Žemlička, Charles University, Czech Republic

160 - 171

1

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

A Heuristic Approach to the Allocation of Different Workloads in Computational
Grid Environments

Javier Díaz, Sebastián Reyes, Camelia Muñoz-Caro and Alfonso Niño
Grupo de Química Computacional y Computación de Alto Rendimiento,

Escuela Superior de Informática, Universidad de Castilla-La Mancha,
Paseo de la Universidad 4, 13071, Ciudad Real, Spain

E-mail:{javier.diaz,sebastian.reyes,camelia.munoz,alfonso.nino}@uclm.es

Abstract

Self-scheduling algorithms can achieve a good balance
between workload and communication overhead in compu-
tational systems. In particular, Quadratic Self-Scheduling
(QSS) and Exponential Self-Scheduling (ESS) are flexible
enough to adapt to distributed systems. Thus, they are of
interest for application in Internet-based Grids of comput-
ers. We have tackled the problem of scheduling a set of
independent tasks in a computational Grid using a simula-
tor and a heuristic approach based in simulated annealing.
To test this approach, we have considered different work-
load distributions. We find that the optimal Simulated An-
nealing (SA) results permit to reduce the overall computing
time of a set of tasks up to a 16%, with respect to results
obtained with previous values of the parameters experimen-
tally determined. In addition, the time to obtain the SA opti-
mized parameters by simulation is negligible compared with
that needed using experimental measures. Moreover, after
the optimization, the heuristic approach provides equiva-
lent performance for different workloads (random, increas-
ing, decreasing) and different number of tasks. These re-
sults show the high adaptability of the QSS and ESS self-
scheduling algorithms, which can be fully exploited thanks
to the heuristic approach here presented.

Keyword: Self-Scheduling Algorithms, Heuristic Schedul-
ing, Computational Grid.

1. Introduction

A computational Grid [14] is a hardware and software
infrastructure providing dependable, consistent, and perva-
sive access to resources among different administrative do-
mains. The objective is to enable the sharing of these re-
sources in a unified way, maximizing their use. A Grid can
be used effectively to support large-scale runs of distributed

applications. An ideal case to be run in Grid is that with
many large independent tasks. This case arises naturally in
parameter sweep problems. A correct assignment of tasks,
so that computer loads and communication overheads are
well balanced, is the way to minimize the overall comput-
ing time. This problem belongs to the active research topic
of the development and analysis of scheduling algorithms.
Different scheduling strategies have been developed along
the years (for the classical taxonomy see [6]). In particular,
dynamic self-scheduling algorithms are extensively used in
practical applications. These algorithms represent adap-
tive schemes where tasks are allocated in run-time. Self-
scheduling algorithms were initially developed to solve par-
allel loop scheduling problems in homogeneous memory-
shared systems, see for instance [24]. Self-scheduling al-
gorithms divides the set of tasks into subsets (chunks), and
allocates them among the processors. In this way overheads
are reduced. However, the performance of a self-scheduling
algorithm is not independent of the workload distribution.
The workload represents the tasks duration distribution in a
problem. Figure 1 shows the four possible cases: uniform
workload, increasing workload, decreasing workload, and
random workload. They have a direct influence in the per-
formance of scheduling algorithms. In general, the random
case is the most difficult to schedule, since the duration of
the different tasks is not known beforehand. However, the
increasing workload can be optimally scheduled using a de-
creasing chunk distribution function. This is because it as-
signs a large number of small tasks at first, and a few num-
ber of big tasks at the end, trying to guarantee a good load
balance. On the other hand, the decreasing workload can be
scheduled efficiently using an increasing chunk distribution
function.

Self-scheduling algorithms have been tested successfully
in distributed memory multiprocessor systems and hetero-
geneous clusters [3][7][17][22][27][31]. In addition, some
works about their performance on Grid connected clusters

2

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 1. The four different workloads. a) uni-
form workload, b) increasing workload, c) de-
creasing workload, d) random workload

of computers have been reported [8][9][26][29]. Thus, al-
though self-scheduling algorithms are derived for homo-
geneous systems, in principle, they can be applied to het-
erogeneous ones, such as computational Grids [14]. How-
ever, they could be not enough flexible (they may have not
enough degrees of freedom) to adapt efficiently to a het-
erogeneous environment. In this sense, we have previously
proposed two new flexible self-scheduling algorithms called
Quadratic Self-Scheduling (QSS) [7][8] and Exponential
Self-Scheduling (ESS) [9][10]. The first is based on a
quadratic form for the chunks distribution function. There-
fore, it has three degrees of freedom, which provide high
adaptability to distributed heterogeneous systems. The sec-
ond approach, ESS, is based on the slope of the chunks dis-
tribution function. In this case, we consider that the chunks
distribution function decreases in an exponential way. This
algorithm provides a good adaptability in distributed het-
erogeneous systems through two parameters. Moreover, in
previous works [9][10] we have compared our approaches
with other self-scheduling algorithms in an actual Grid en-
vironment. The new algorithms outperform the previous
ones, since they obtain better load balance and more reduc-
tion of the communication overhead [9].

However, a computational Grid is made up of a large
number of independent resource providers and consumers,
which are running concurrently, changing dynamically, and
interacting with each other. Due to these environment char-
acteristics, new approaches such as those based in heuris-

tic algorithms [20][11] have been proposed to address the
challenges of Grid computing. These kinds of algorithms
make realistic assumptions based on a priori knowledge of
the concerning processes and of the system load character-
istics. Braun et al [4] presented three basic heuristics, based
on Nature, for Grid scheduling. These are Genetic Algo-
rithms (GA), Simulated Annealing (SA) and Tabu Search
(TS).

Genetic algorithms (GA) [16] provide a robust searching
technique that allows a high-quality solution to be derived
from a large search space. This solution is obtained in poly-
nomial time by applying the principle of evolution. One of
the different uses of these algorithms is in Grid Schedul-
ing as seen in [2][23][30]. A genetic algorithm combines
exploitation of best solutions from past searches with the
exploration of new regions of the solution space. A genetic
algorithm for scheduling problems can be organized as fol-
lows [19]. First, an initial population is necessary, which
can be generated by other heuristic algorithm. A population
is a set of “chromosomes” where each represents a possi-
ble solution. A solution is a mapping sequence between
tasks and machines. The “chromosomes” are evaluated and
a fitness value is associated with each. The fitness value
indicates how well the individual is compared with others
in the population. Next, the population evolves, that is, a
new generation is obtained by using the genetic operators,
namely selection, crossover and mutation [16]. Finally, the
chromosomes from this modified population are evaluated
again. This completes one iteration of the GA. The GA
stops when a predefined number of iterations are reached or
all chromosomes converge to the same mapping.

Another heuristic algorithm is Simulated Annealing
(SA) [25]. SA derives from the Monte Carlo method for
statistically searching global minima. The method arises
from a thermodynamic analogy. Specifically, it simulates
the way that liquids freeze and crystallize, or metals cool
and anneal. That is, at high temperatures atoms or mole-
cules move freely with respect to one another. If the system
is cooled slowly, thermal mobility is lost and the atoms or
molecules can line themselves up and form a pure crystal
that is completely ordered. This crystal is the state of min-
imum energy for this system. Here, we focus in SA for
scheduling purposes. This approach has been tested in dif-
ferent environments like computational Grids [13][32]. SA
is organized in several steps. First, a simulated annealing
algorithm needs an initial solution, which is constructed by
assigning at random a resource to each task. The annealing
process runs through a number of iterations at each "tem-
perature" to sample the search space. At each iteration, it
generates a new solution by applying a random change on
the current solution. Whether or not the new solution is ac-
cepted as a current solution is determined by the Metropolis
criteria [25]. Once a specified number of iterations have

3

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

been completed, the system is in "equilibrium", i.e., a pop-
ulation has been generated obeying a Boltzmann statistical
distribution. Then, the temperature is decreased at a spec-
ified rate. The process is repeated until the lowest allowed
temperature has been reached. During this process, the al-
gorithm keeps the best solution found, returning the last
value as the final optimal solution.

In Tabu Search (TS) [12][15] some historical informa-
tion related to the evolution of the search is kept. This is ba-
sically the itinerary through the visited solutions. Such in-
formation is used to guide the movement from one solution
to the next, avoiding cycling. This is one of the most impor-
tant features of the algorithm. The algorithm starts from an
initial solution, typically a random one. At any iteration it
has to find a new solution by making local movements over
the current solution. The next solution is the best among all
(or a subset of) possible solutions in the neighborhood. To
carry out the exploration process, recently visited solutions
should be avoided (tabu list). Therefore, once a solution is
visited the movement from which it was obtained is con-
sidered tabu. Note that the neighborhood of the solutions
will be changing along the exploration. So, in a certain
sense we have a dynamic neighborhood. Typically, there
are two kinds of tabu lists. On one hand, a long term mem-
ory maintains the history through all the exploration process
as a whole. On the other, a short term memory keeps the
most recently visited tabu movements. A movement with
a tabu status (tabu movement) is avoided unless it satisfies
certain aspiration conditions. This prevents falling into lo-
cal minima. There are two kinds of stopping conditions in
Tabu Search. The first relates to the Tabu Search as a whole
(when the algorithm finishes). The second is a stopping
condition over the search of the best among all solutions
in the neighborhood.

As presented above, the QSS and ESS self-scheduling al-
gorithms depend on three and two parameters respectively.
These parameters determine the behavior of the algorithms.
Therefore, for a given computational environment it is nec-
essary to select the most appropriate (optimal) values of
these parameters to obtain a good load balance and to min-
imize the overall computation time. In previous studies, we
obtained the best parameters from experimental measures
on an actual system [8][9]. However, this is a slow and
hard process that we would repeat each time the execution
environment changes. In these conditions, the systematic
exploration of the parameter space when several (more than
two) parameters do exist is simply unmanageable.

Previously, we presented in [1] a way to obtain optimal
QSS and ESS parameters using a heuristic approach. To
such an end, we simulated the execution environment (a
computational Grid in our case). So, using the simulation,
we could obtain the computational time of each algorithm
for a given value of its parameters. Therefore, it was possi-

ble to apply a heuristic algorithm to explore the behavior of
the scheduling method for different values of the parame-
ters, minimizing the overall computation time. The heuris-
tic algorithm selected was Simulated Annealing (SA).

Until now, we have tested these algorithms using a ran-
dom workload distribution. Although, a priori, this is the
most difficult case to schedule, it is interesting to observe
the behaviour of our algorithms when they have to sched-
ule other workload distributions. We have to consider that
self-scheduling algorithms distribute the tasks into chunks
in a decreasing way and therefore the load balance can be
different depending on the task duration distributions. Con-
sidering as starting point the heuristic approach mentioned
before, we study here its scheduling performance for the
different workload distributions, see Figure 1.

In the next Section, we present an overview of the QSS
and ESS self-scheduling algorithms, as well as the method-
ology used for their optimization in the different workload
distributions considered. Section 3 presents and interprets
the results found in the optimization process for each work-
load distribution. Finally, in Section 4 we present the main
conclusions of this paper, and the perspectives for future
works.

2. Methodology

In this work the Quadratic Self-Scheduling (QSS) and
Exponential Self-Scheduling (QSS) algorithms are used as
basic scheduling strategies. QSS [8][9] is based on a Taylor
expansion of the chunks distribution function, C(t), limited
to the quadratic term. Therefore, QSS is given by

C(t) = a + bt + ct2 (1)

where t represents the t-th chunk assigned to a processor.
To apply QSS we need the a, b and c coefficients of equa-
tion (1). Thus, assuming that the quadratic form is a good
approach to C(t), we can select three reference points (C(t),
t) and solve for the resulting system of equations. Useful
points are (C0, 0), (CN/2, N/2) and (CN , N), where N is
the total number of chunks. Solving for a, b and c, we ob-
tain,

a = C0

b = (4CN/2 − CN − 3C0)/N (2)

c = (2C0 + 2CN − 4CN/2)/N2

where N is defined [8] by,

N = 6I/(4CN/2 + CN + C0) (3)

being I the total number of tasks.
The CN/2 value is given by,

4

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

CN/2 =
CN + C0

δ
(4)

where δ is a parameter. Assuming C0 and CN fixed, the
CN/2 value determines the slope of equation (1) at a given
point. Therefore, depending on δ, the slope of the quadratic
function for a t value is higher or smaller than that of the
linear case, which corresponds to δ=2. These two cases are
defined by

Case a ⇒ CN/2 >
C0 + CN

2
⇒ d2C(t)

dt2
< 0 (5)

Case b ⇒ CN/2 <
C0 + CN

2
⇒ d2C(t)

dt2
> 0

The two cases are compared with the linear model in Fig-
ure 2. As we can see, case a) is a function concave down.
Here Nq < Nl, where the q and l subscripts are used to dis-
tinguish the quadratic from the linear model, respectively.
This smaller number of chunks in the QSS algorithm trans-
lates in a smaller communication overhead to the expense of
higher initial chunk sizes, see Figure 2. On the other hand, it
is possible to invert this behaviour, as shown by the dashed
line in Figure 2 (case b), where the function is concave up.
Here, chunk sizes are smaller than in the linear case (almost
all the way) to the expense of a higher number of chunks,
N ′

q > Nl. In this case, we have a better load balance, but
the communication overhead increases. Therefore, the QSS
algorithm can be tuned to optimize the ratio of load balance
to overhead by selecting an appropriate value of the CN/2

coefficient.
In the present work, the values of the three parameters,

C0, CN and δ are heuristically optimized in the simulated
execution environment.

On the other hand, we have Exponential Self-Scheduling
(ESS) [9]. ESS belongs to the family of algorithms based
in the slope of the chunks distribution function, C(t). So,
we consider that the rate of variation of C(t) is a decreasing
function of t, g(t). Therefore, we have the general expres-
sion,

dC(t)
dt

= g(t) (6)

Equation (6) defines a differential equation. After integra-
tion we will have an explicit functional form for C(t) as a
function of t.

ESS considers that the slope (negative) is proportional to
the chunk size,

dC(t)
dt

= −kC(t) (7)

Figure 2. Evolution of the C(t) function for the
linear case (TSS) and QSS algorithms as a
function of the number of chunks, t.

Here, k is a parameter and t represents the t-th chunk as-
signed to a processor. Equation (7) can be integrated by
separation of variables yielding [9],

C(t) = C0e
−kt (8)

Equation (8) defines the Exponential Self-Scheduling (ESS)
algorithm. Here, C0 and k are the parameters to be opti-
mized in the simulated working environment.

With respect to the SA heuristic, as applied here, we con-
sider that the function to minimize, the cost function (f),
is the overall computation time needed to process a set of
tasks, i.e., its makespan. In turn, we consider that the cost
function depends on s, the set of parameters used by each
self-scheduling algorithm. The corresponding pseudocode
is shown in Chart 1.
Here, T is the system’s “temperature” defined as a given
value of the cost function, f(s). This is initialized to a high
value. Symbols s and s’ represent sets of the scheduling al-
gorithm parameters. Three parameters are needed for QSS,
and two for ESS. The f(s) function represents the cost of
the s solution, which is initialized to a high value. As cool-
ing schedule, we use an exponential approach Tn+1 = rTn,
with r = 0.989 [28]. The total number of iterations per-
formed for each temperature (equilibration) is given by L.
In our case, after a previous calibration, we have fixed L to
200 iterations. Finally, FROZEN is the lowest allowed tem-
perature for the system. We select a very small value for
FROZEN, 12x10−11, which has shown to give consistent
results in SA calibration tests.

5

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Chart 1. Simulated Annealing Pseudocode

Function SimulatedAnnealing()
begin

T := initial "temperature"
s := initial parameters, S0
repeat

for i := 1 to L do begin
generates new parameters s’
if f(s’) < f(s) then
s := s’

else begin
x := f(s’)-f(s);
if e^{-x/T} > random(0,1) then

s:= s’
end

end
T := r T

until FROZEN
return s

end

The cost function f(s) is obtained as the simulated time
(in seconds) necessary to solve all tasks in the specified ex-
ecution environment. The tasks are scheduled according to
QSS or ESS, and the optimal parameters are given by the
final value of s in Chart 1. The simulator is organized as fol-
lows. Each task has associated a value, from 1 to 10, which
represents its duration (in seconds). Task durations are ran-
domly generated except when we want to test a uniform
workload. In this case, the duration of each task is 5. On the
other hand, in the increasing and decreasing cases the task
durations are shorted in the required order. As previously
commented, QSS and ESS allocate sets of tasks (chunks).
So, the duration of a chunk is the sum of all tasks durations
composing it. The computing (CPU) time for a chunk is
calculated dividing its duration by the relative computing
power of the processor where the chunk is executed. This
computing power is referred to the fastest processor. Thus,
lower values correspond to slower processors. To this value
we add the temporal cost of transferring the chunk to the
processor where it is executed. In addition, the scheduling
cost introduced by the local queuing software is included as
well.

The execution environment represented in the simulation
is an Internet-Based Grid of computers [14]. Therefore, it
is composed by two main components: network links and
computer elements. Network links have associated a value
that represents the temporal cost, in seconds, of transferring
a file between two machines through Internet. This value is
obtained as an approximate estimate of the transport latency
[18]. To such an end, we consider actual measures of the
bandwidth (bw) and of the smoothed round trip time (srtt)
[21]. This last estimates future round trip times by sampling
the behavior of packets sent over a connection and averag-

ing those samples. Half the srtt is used as a rough estimate
of an effective time of flight. So, the temporal cost of a net-
work link (Tt) is given by Tt = (file_size/bw) + srtt/2,
where “file_size” represents the physical size of the chunk
being sent. We consider that all chunks have the same phys-
ical size. On the other hand, a computer element is typically
a computer cluster [5]. This is composed by a number of
processors connected through an internal network. So, each
simulated computer element has an associated array, which
collects the relative computing power (a real number) for its
processors (CPUs). The computer power of each processor
is determined experimentally. The temporal cost of the in-
ternal network is considered negligible with respect to the
temporal cost of the Internet network links.

The simulated execution environment used is a replica
of the computational Grid considered in [9]. In Figure 3,
we can see the execution environment. The Grid is made
up by a client (qcycar) and three computer elements (C.E.):
Hermes, Tales and Popocatepetl (Popo). Hermes and Tales
are placed in Ciudad Real (Spain), and they are composed
by 8 processors each. On the other hand, Popo is placed in
Puebla (Mexico), and it is composed by 4 processors. We
have subdivided the environment characteristics into three
parts: network, processors and scheduling cost. The net-
work characteristics, for each computer element, are col-
lected in Table 1. The processors characteristics are shown
in Table 2. The scheduling cost could be attributed to the
software. After several tests, we have observed that the
queue managers introduce the most important software de-
lay. In our case, this delay is determined to be about 0.5
seconds.

Table 1. Network Characteristics. bw repre-
sents the bandwidth and srtt the smoothed
round trip time

C.E. Network

Hermes bw = 94.8 Mb/s srtt = 241 µs

Tales bw = 94.8 Mb/s srtt = 241 µs

Popo bw = 243 Kb/s srtt = 665.535 ms

In this work, we perform several tests to verify the effect
of SA optimized parameters in the efficiency of QSS and
ESS. Tests with 1000, 2000, 5000 and 10000 tasks are con-
sidered. To determine the influence of the physical chunk
size, these tests have been performed twice using a random
workload. In the first case, we consider a physical chunk
size of 1 Mb. In the second, we increase the chunk size to
10 Mb. The optimal values for the QSS and ESS parame-
ters obtained by SA are used to compare the behavior of
QSS and ESS. Moreover, we compare these results against

6

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 3. Execution Environment Simulated
for the different tests: Internet based Grid of
Computers.

the results obtained using the parameters experimentally de-
termined for QSS and ESS in [9]. Finally, we compare the
behaviour of the algorithms in the four workload distribu-
tions collected in Figure 1. In each case, new optimal QSS
and ESS parameters are obtained. On the other hand, the
increasing and decreasing workloads are obtained generat-
ing random tasks, and sorting them in the correct way. Each
test is performed 100 times to obtain average results and
determine standard deviations.

3. Results

First, we have performed different tests, using a random
workload, to obtain the SA optimal parameters for QSS and
ESS. Table 3 collects the results of the different tests, in-
cluding the standard deviation (σ). In all cases, we observe
a small σ. This implies that all the simulated values of the
cost function are close to the average. Therefore, they can
be considered very reliable. The main source for σ is the
random generation of task durations in each simulation. Ta-
ble 3 shows that the cost function increases linearly with
the number of tasks. Comparing QSS and ESS, we see that
both exhibit a similar performance. This result agrees with
the data obtained in the experimental tests performed in [9].

To analyse the effect of the chunk sizes in the perfor-

Table 2. Processors Characteristics For each
computer element (C.E.) The number of
processors of each type is specified. The rel-
ative computing power (R.P.) is also included

C.E. Processors

Hermes 5 x P4 3.0 GHz 3 x P4 2.4 GHz

R.P. 1 0.515

Tales 1 x P4 3.0 GHz 4 x P4 2.8 GHz 3 x P4 2.4 GHz

R.P. 1 0.585 0.515

Popo 4 x AMD64 1.6 GHz

R.P. 0.448

mance, we have repeated the simulations using a chunk size
of 10Mb. Table 4 collects the results. We observe that the
new values of the cost function, although higher as they
must be, are very similar to those of Table 3. These re-
sults show that the present scheduling heuristic approach
can compensate efficiently for changes of the network per-
formance in a Grid system.

Table 3. Average cost function (cost) and
standard deviation (σ) for QSS and ESS as
a function of different number of tasks, in
columns. The cost represents the simu-
lated time, in seconds, necessary to solve all
tasks. A physical chunk size of 1Mb is used.

QSS 1000 2000 5000 10000

Cost 428.830 846.191 2098.992 4179.476

σ 6.576 8.194 12.672 19.489

ESS 1000 2000 5000 10000

Cost 428.924 846.571 2098.921 4183.082

σ 6.213 8.817 15.341 17.586

Using SA, we obtained the minimum cost, total comput-
ing time, of QSS and ESS for the different test cases when
the workload distribution is random. It would be interest-
ing to compare these results against those obtained by using
the QSS and ESS parameters experimentally determined in
an actual Grid, see [9]. For QSS, these parameters were
C0 = I/2P , δ = 3 and CN = 2, where I is the total
number of tasks and P is the number of processors. With
these values, we have simulated the behavior of QSS ob-
taining the cost function, total computing time, of each test

7

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Table 4. Average cost function (cost) and
standard deviation (σ) for QSS and ESS as
a function of different number of tasks, in
columns. The cost represents the simu-
lated time, in seconds, necessary to solve all
tasks. A physical chunk size of 10Mb is used.

QSS 1000 2000 5000 10000

Cost 441.256 862.855 2120.979 4211.108

σ 7.183 8.399 15.672 19.253

ESS 1000 2000 5000 10000

Cost 445.563 870.002 2129.203 4211.697

σ 6.143 9.569 16.597 22.767

case. Since we have shown previously that the chunk size
is not very significant, we only use a physical chunk size of
1Mb. Figure 4 collects the QSS results. We observe that
the cost associated to the SA optimized parameters, “QSS
SA”, is always lower than that associated to the experimen-
tally optimized QSS, “QSS E”. In particular, we find that
SA allows for an improvement between 3% and 6%. This is
an interesting result, since SA obtains the most appropriate
parameter values in 12 to 60 seconds, whereas the experi-
mental values need a lengthy time consuming procedure on
the actual Grid system [9].

Figure 4. Comparison between the cost of
QSS optimized using SA (QSS SA) and the
cost of QSS optimized experimentally (QSS
E). The cost is given in seconds.

With respect to ESS, the experimental parameters found
in [9] are Co = I/2P and k = 0.017. As in the QSS
case, we have simulated the ESS behavior in our test cases
using these values. Figure 5 shows graphically a compari-

son of the ESS results. We can appreciate that the cost of
ESS with SA, “ESS SA”, is always lower than that for the
experimental parameters, “ESS E”. In this case, simulated
annealing gives us an improvement between 9% and 12%.
Now, only 15 to 45 seconds are needed by SA to obtain the
optimal results.

Figure 5. Comparison between the cost of
ESS optimized using SA (ESS SA) and the
cost of ESS optimized experimentally (ESS
E). The cost is given in seconds.

The previous experiments were done using a random
workload distribution. Usually, this kind of workload is the
most difficult to handle, since the behaviour is unpredictable
and therefore, it is more difficult to guarantee a good load
balance. However, it is important to assess the behaviour
of our algorithms when they have to schedule the remain-
ing workloads: uniform, increasing, and decreasing (see
Figure1). We have seen that the scheduling results of these
workloads follows the results of the random one, with the
QSS and ESS algorithms outperforming the rest of them.
Therefore, here it is only exposed the results of the tests
performed for QSS and ESS.

First, we have performed the tests using the parameters
obtained experimentally. Thus, Figure 6 and Figure 7 show
graphically the behaviour of QSS and ESS algorithms with
the different workloads and the different test cases (num-
ber of tasks represented in x axis). The y axis represents
the computational cost in seconds. We can observe that
both QSS and ESS have a similar behaviour when schedul-
ing different kinds of workloads. In both algorithms, the
worst case corresponds to the increasing workload distrib-
ution. This is because self-scheduling algorithms distribute
the tasks into chunks in a decreasing way. Therefore, too
large tasks at the end tend to cause load imbalance. On
the other hand, the decreasing workload have a good per-
formance, even better than the random case. Here, there is
too much workload at the start, but the algorithms can ob-
tain a good load balance because they have enough time to

8

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

guarantee it. Nevertheless, the maximum difference in the
execution time of the workloads is around a 12%. Finally,
the uniform case is the less time consuming (between a 9%
and a 18 % less). This is because all tasks have the same
computational cost and because an uniforme workload is
easier to schedule.

Figure 6. Behaviour of “QSS E” for different
workload distributions. The QSS parameters
were optimized experimentally (QSS E). The
cost is given in seconds.

Figure 7. Behaviour of “ESS E” for different
workload distributions. The ESS parameters
were optimized experimentally (ESS E). The
cost is given in seconds.

Now, for each case, we consider the behaviour of QSS
and ESS after optimizing their parameters with the heuris-
tic approach. Figure 8 and Figure 9 show the behaviour of
both algorithms. We can observe that the uniform work-
load is again the less time consuming (around a 9%). On
the other hand, the other workloads are executed more or
less in the same time. So much so that the maximum dif-
ference in the execution time, among these workloads, is

1.3%. Therefore, even for different workloads and different
number of tasks the heuristic approach provides equivalent
performance.

Figure 8. Behaviour of “QSS SA” for different
workload distributions. The QSS parameters
were optimized with SA (QSS SA). The cost
is given in seconds.

Figure 9. Behaviour of “ESS SA” for different
workload distributions. The ESS parameters
were optimized with SA (ESS SA). The cost is
given in seconds.

4. Conclusion and Future Work

We have tackled the problem of scheduling a set of in-
dependent tasks in a computational Grid using a simulator
and a heuristic approach based in SA. Using the simulator
we can model the behavior of scheduling algorithms in an
actual environment, but in a much shorter time than in an
experimental study. We consider several test cases formed
by several thousand tasks. These test cases can be subdi-
vided in four groups depending on their workload distri-

9

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

butions. Thus, random, uniform, increasing and decreas-
ing workload distributions are considered. A comparison
like this is important, because there are situations in which
the duration of the tasks is not known. Therefore, the tasks
can not be sorted to optimize the scheduling. Working with
the previously proposed QSS and ESS self-scheduling al-
gorithms, we observe that optimizing their parameters us-
ing SA permits to reduce the overall computing time up to
a 16%. This maximum difference is found in the increasing
workload case. Moreover, after this optimization, we ob-
serve that the increasing, decreasing and random workloads
have, more or less, the same overall execution time. These
results show the high adaptability of our self-scheduling al-
gorithms, which can be fully exploited thanks to the heuris-
tic approach here presented.

The heuristic approach allows a reduction of the over-
all computing time. In addition, the time needed to obtain
the optimal SA parameters for QSS and ESS, in the sim-
ulated environment, is negligible compared with the time
needed for an experimental calibration in an actual Grid
system. Furthermore, SA can optimize all the parameters in
the scheduling algorithms, despite its number. In the gen-
eral case, this is not possible using experimental measures.
The test cases also show that the present heuristic approach
is very efficient. In fact, we observe a simple linear increase
of the execution time with the problem size.

Several enhancements can be devised for this prelimi-
nary study of a SA Grid scheduler. First, in the present
study the characteristics of the Grid environment are con-
sidered static. A logical extension would be the scheduler
to check, as a function of time, the state of the different net-
work links and the performance of the available processors
in the execution environment. Then, the simulated anneal-
ing procedure would obtain the most appropriate parameters
for this specific behavior of the environment. Second, in the
present work the chunk size is considered constant. This is
an acceptable approach for testing and comparing the effi-
ciency of scheduling algorithms in similar conditions. How-
ever, the situation is different in actual computations, where
there are different physical chunk sizes. These sizes depend
on the number of tasks making up the chunk. Considering
this effect will permit to describe the different transfer costs
of different chunks.

Acknowledgment

This work has been cofinanced by FEDER funds, the Con-
sejería de Educación y Ciencia de la Junta de Comunidades de
Castilla-La Mancha (grant # PBI08-0008), and the fellowship as-
sociated to the grant # PBI-05-009. The Ministerio de Educación y
Ciencia (grant # FIS2005-00293) and the Universidad de Castilla-
La Mancha are also acknowledged. The authors wish also to
thank the Facultad de Ciencias Químicas and the Laboratorio de

Química Teórica of the Universidad Autónoma de Puebla (Mex-
ico), for the use of the Popo cluster.

References

[1] J. Díaz, S. Reyes, C. Muñoz-Caro, and A. Niño, “A Heuris-
tic Approach to Task Scheduling in Internet-based Grids of
Computers,” 2nd Int. Conf. on Advanced Engineering Com-
puting and Applications in Sciences (ADVCOMP 2008), Va-
lencia, Spain, 2008, pp. 110-116.

[2] M. Aggarwal, R. D. Kent and A. Ngom, “Genetic Algo-
rithm Based Scheduler for Computational Grids,” in Proc.
19th Annu. Int. Symp. High Performance Computing Systems
and Applications (HPCS’05), Guelph, Ontario Canada, 2005,
pp.209-215.

[3] F. Berman, “High-performance schedulers,” in The Grid:
Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, Eds. San Fransisco, CA: Morgan-Kaufmann,
1999, pp. 279-309.

[4] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.
Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen and R.
Freund, “A Comparison of Eleven Static Heuristics for Map-
ping a Class of Independent Tasks onto Heterogeneous Dis-
tributed Computing Systems,” J. Par. Dist. Com., vol. 61, no.
6, pp. 810-837, 2001.

[5] R. Buyya, High Performance Cluster Computing: Architec-
tures and Systems. New Jersey: Prentice Hall, vol. 1, 1999.

[6] T. L. Casavant and J. G. Kuhl, “A Taxonomy of Scheduling in
General-Purpose Distributed Computing,” IEEE Trans. Softw.
Eng., vol. 14, no. 2, pp. 141-154, 1988.

[7] J. Díaz, S. Reyes, A. Niño and C. Muñoz-Caro, “Un Algo-
ritmo Autoplanificador Cuadrático para Clusters Heterogé-
neos de Computadores,” XVII Jornadas de Paralelismo, Al-
bacete, Spain, 2006, pp. 379-382.

[8] J. Díaz, S. Reyes, A. Niño and C. Muñoz-Caro, “A Quadratic
Self-Scheduling Algorithm for Heterogeneous Distributed
Computing Systems,” Proc. 5th Int. Workshop Algorithms,
Models and Tools for Parallel Computing Heterogeneous Net-
works (HeteroPar ’06), Barcelona, Spain, 2006, pp. 1-8.

[9] J. Díaz, S. Reyes, A. Niño, and C. Muñoz-Caro, “New Self-
Scheduling Schemes for Internet-Based Grids of Computers,”
1st Iberian Grid Infrastructure Conf. (IBERGRID), Santiago
de Compostela, Spain, 2007, pp. 184-195.

[10] J. Díaz, S. Reyes, A. Niño, C. Muñoz-Caro, “Nuevas Fa-
milias de Algoritmos de Self-Scheduling para la Planificación
de Tareas en Grids de Computadores,” XVIII Jornadas de
Paralelismo, Zaragoza, Spain, 2007, pp. 423-430.

[11] F. Dong and S. G. Akl, “Scheduling algorithms for grid com-
puting: State of the art and open problems,” School of Com-
puting, Queen’s University, Kingston, Ontario, 2006.

[12] I. D. Falco, R. D. Balio, E. Tarantino and R. Vaccaro, “Im-
proving search by incorporating evolution principles in paral-
lel tabu search,” IEEE Conf. Evolutionary Computation, vol.
2, 1994, pp. 823-828.

10

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[13] S. Fidanova, “Simulated Annealing for Grid Scheduling
Problem,” Proc. IEEE John Vincent Atanasoff 2006 Int. Symp.
Modern Computing, 2006, pp. 41-45.

[14] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, San Francisco, CA: Morgan Kauff-
man Publishers, 1999.

[15] F. Glover and M. Laguna, Tabu Search, Boston, MA: Kluwer
Academic Publishers, 1997.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Boston, MA: Addison-Wesley, 1989.

[17] B. Hamidzadeh, D. J. Lilja and Y. Atif, “Dynamic Schedul-
ing Techniques for Heterogeneous Computing Systems,” Con-
curr.: Pract. Exp, vol. 7, pp. 633-652, 1995.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture.
A Quantitative Approach, 3th Ed., San Francisco, CA: Mor-
gan Kaufmann Publishers, 2003.

[19] E. S. H. Hou, N. Ansari and H. Ren, “A Genetic Algorithm
for Multiprocessor Scheduling,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 2, pp. 113-120, Feb. 1994.

[20] J. Yu and R. Buyya, “Workflow Schdeduling Algorithms
for Grid Computing,” Grid Computing and Distrib. Systems.
Lab., Univ. Melbourne, Australia, Tech. Rep., GRIDS-TR-
2007-10, May 2007.

[21] P. Karn, and C. Partridge, “Improving round-trip time esti-
mates in reliable transport protocols,” ACM Trans. Comput.
Syst., vol. 9, no. 4, pp. 364-373, Nov. 1991.

[22] T. H. Kim, and J. M. Purtilo, “Load Balancing for Paral-
lel Loops in Workstation Clusters,” Proc. Int. Conf. Parallel
Processing, vol. 3, 1996, pp. 182-189.

[23] S. Kim, and J. B. Weissman, “A Genetic Algorithm Based
Approach for Scheduling Decomposable Data Grid Applica-
tions,” Proc. 2004 Int. Conf. Parallel Processing (ICPP’04),
Montreal, Quebec Canada, 2004, pp. 406-413.

[24] D. J. Lilja, “Exploiting the Parallelism Available in Loops,”
IEEE Computer, vol. 27, vo. 2, pp. 13-26, 1994.

[25] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equations of State Calculations by Fast
Computing Machines,” J. Chem. Phys., vol. 21, pp. 1087-
1091, 1953.

[26] S. Penmatsa, A. T. Chronopoulos, N. T. Karonis and B.
Toonen, “Implementation of Distributed Loop Scheduling
Schemes on the TeraGrid,” Proc. 21st IEEE Int. Parallel and
Distrib. Proc. Symp. (IPDPS 2007), 4th High Performance
Grid Computing Workshop, 2007.

[27] T. Philip, and C. R. Das, “Evaluation of Loop Schedul-
ing Algorithms on Distributed Memory Systems,” Proc. Int.
Conf. Parallel and Distrib. Computing Systems, Washinton
DC, 1997.

[28] P. Salamon, P. Sibani, R. Frost, Facts, Conjectures, and
Improvements for Simulated Annealing, Philadelphia: SIAM
Monographs Mathematical Modeling and Computation, 2002.

[29] P. J. Sokolowski, D. Grosu and C. Xu, “Analysis of Per-
formance Behaviors of Grid Connected Clusters,” in Perfor-
mance Evaluation of Parallel and Distributed Systems, M.
Ould-khaoua, and G. Min, Eds. Hauppauge, NY: Nova Sci-
ence Publishers, 2006.

[30] S. Song, Y. Kwok and K. Hwang, “Security-Driven Heuris-
tics and A Fast Genetic Algorithm for Trusted Grid Job
Scheduling,” Proc. 19th IEEE Int. Parallel and Distrib. Proc.
Symp. (IPDPS’05), Denver, Colorado USA, 2005, pp. 65-74.

[31] C.-T. Yang, and S.-C. Chang, “A Parallel Loop Self-
Scheduling on Extremely Heterogeneous PC Clusters,” 9th
Workshop Compiler Techniques for High-Performance Com-
puting, Academia Sinica, Taiwan, 2003.

[32] A. YarKhan, and J. J. Dongarra, “Experiments with Schedul-
ing Using Simulated Annealing in a Grid Environment,” Proc.
3rd Int. Workshop on Grid Computing, Baltimore, MD, 2002,
pp. 232-242.

11

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

A MATLAB GUI for the analysis and
reconstruction of signal and image data of a

SAFT-based 3D Ultrasound Computer Tomograph
Torsten Hopp, Gregor F. Schwarzenberg, Michael Zapf, Nicole V. Ruiter

Institute of Data Processing and Electronics, Forschungszentrum Karlsruhe
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

e-mail: {torsten.hopp, gregor.schwarzenberg, michael.zapf, nicole.ruiter}@ipe.fzk.de

Abstract—At Forschungszentrum Karlsruhe, a new imaging
system for early diagnosis of breast cancer is currently developed.
The 3D Ultrasound Computer Tomograph (USCT) consists of
approximately 2000 ultrasound transducers, which produce 3.5
million A-scans (amplitude scans) summing up to 20 GB of
raw data for one image. The large number of A-scans, the
large amount of data and the complex relationship between raw
data and reconstructed image makes analysis, understanding and
further development difficult for the scientists and especially
for new employees and students. For this reason, an interactive
graphical user interface (GUI) was developed using MATLAB. It
integrates existent analysis methods and is easily extendable with
new functionality via a plugin concept. The software provides
several visualization functions for the raw data, the reconstructed
3D images, the USCT aperture and the relationships between
them. This approaches demonstrate that MATLAB is not only
applicable as programming language for numerical problems,
but also adequate for representing complex systems by a GUI.
It has a large benefit for the working group as it is used as
common development platform: The plugin concept is widely
used to integrate new analysis methods and share them with the
rest of the scientists. The GUI and the visualization of the complex
relationships of the USCT reduces the training period for new
employees and students. An evaluation of the usability shows
that the users evaluated the user interface to be very helpful,
clearly arranged and beneficial for a better understanding of the
coherencies of the USCT system.

MATLAB; Graphical User Interface; Ultrasound Com-
puter Tomography; Analysis software

I. INTRODUCTION

At Forschungszentrum Karlsruhe, a 3D Ultrasound Com-
puter Tomograph (USCT) is currently developed [1][2]. The
long term goal of the system under construction is the de-
velopment of a new imaging modality for early breast cancer
detection. It produces images in significant higher quality than
conventional sonography. In contrast to conventional (X-ray)
computer tomography and mammography there is no radiation
exposure for the patient.

The system consists of approximately 2000 transducers,
arranged in layers on a cylindrical tank, which is filled with
water. The tank can be rotated in small steps. For a measure-
ment each emitter emits an unfocused ultrasound pulse, while
all other receivers record the ultrasound reflections caused by
the objects located in the cylinder. This procedure creates up

to 3.5 million A-scans (amplitude scans), which is equal to
more than 20 GB of raw data.

In the first step, the raw data is read out from the data
acquisition hardware and stored in a MATLAB data format [3]
on a file server. In the second step a reconstruction method
based on SAFT (synthetic aperture focusing technique) [4]
and implemented in MATLAB is used to calculate 3D images
based on the raw data. This workflow including the three levels
(USCT aperture, raw data and 3D images) is shown in Figure
1. The relationship between raw data and reconstructed 3D
images is not intuitive due to the large number of A-scans
and the 3D sensor geometry. Every A-scan as well as the
reconstructed 3D images correspond to 3D positions in the
USCT aperture. For the scientists it is necessary to get a
comprehensive overview of this large amount of A-scans and
the whole system.

So far most analysis tools are implemented as command
line scripts using several parameters. These scripts are difficult
to use especially for new employees and students joining the
group.

There are several libraries and software tools implementing
only parts of the required functionality. ImageJ is a Java based
image editing and analysis software including a powerful plu-
gin concept [5]. For 2D and 3D visualization several commer-
cial software systems are available as e.g., Volume Graphics
Studio [6]. For signal processing, MATLAB and LabVIEW [7]
are commonly used. However, the different software systems
are standalone applications and not aimed to work together.
An approach using MATLAB for the implementation of a GUI
for analysis of ocean acoustic propagation is described in [8],
only focusing on this specific topic. To the knowledge of the
authors, no software system satisfies the requirements of the
USCT project for an integrated software for the analysis and
exploration of signal and image data.

For this reason a software tool was developed which in-
tegrates the different levels of the USCT workflow into one
interactive GUI [1]. Because of constant changes and additions
during the development process of the new imaging method,
the interactive GUI has to be adaptable and extendable to
new functionality. As the scientists implement the USCT
algorithms in MATLAB, the implementation of the interactive
GUI was also carried out in MATLAB, despite its limited GUI

12

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 1. Workflow in the USCT: The USCT (bottom) produces A-scans (left), which are recorded by the data acquisition software. The reconstruction
software creates 3D images (right) using the A-scans. The image corresponds to a 3D region in the USCT.

capabilities.
The aim of this paper is to give an outline of the design

of the developed software and to show, how the limited GUI
features of MATLAB can be used to create a complex inter-
active and adaptable GUI. In the following, an introduction
to the ultrasound computer tomograph is given followed by
an overview of the capabilities of the GUI elements that
MATLAB can offer. After this, the design and structure of the
developed software is described. Section IV details selected
functionalities of the software. A user evaluation is shown in
Section V and, finally, a conclusion is presented.

II. BASICS

In this section, the basics on Ultrasound Computer
Tomography are presented to motivate the need for a software
system representing the workflow from raw data to recon-
structed images. Furthermore, capabilities of MATLAB are
shown, which form the framework used for the development
of the software.

A. 3D Ultrasound Computer Tomography

Our first prototype for 3D Ultrasound Computer Tomogra-
phy consists of a cylindrical tank with a diameter of 18 cm
and a height of 15 cm. On the cylinder wall three layers
of 16 Transducer Array Systems (TAS) [9] are mounted,
each consisting of eight ultrasound emitters and 32 receivers
resulting in 384 emitters and 1536 receivers (Figure 2). To
achieve an uniform distribution of emitters and receivers, the

cylinder can be rotated to six positions using a stepping motor.
Applying six motor positions, the system consists of a virtual
number of 2304 emitters and 9216 receivers, creating the 3.5
million A-scans. The emitters are virtually numbered in layers
from 0 to 23 and elements from 0 to 95. The receivers are
virtually numbered in layers from 0 to 47 and elements from
0 to 191.

A measurement is done by emitting an approximately
spherically ultrasound pulse front (center frequency of 2.7
MHz) into the tank, which is filled with water as coupling
medium. The ultrasound is absorbed, scattered and reflected,
depending on the objects within the tank. Simultaneously, all
receivers of the system record the amplitudes of the transmitted
and reflected pulses. Afterwards the next emitter sends an
ultrasound pulse while all other transducers receive. The data
acquisition hardware of the system digitalizes at a sampling
rate of 10 MHz, which results in A-scans of 3000 samples
(each 300 μs). The complete procedure for all emitter-receiver-
combinations or a subset of them is controlled by a data
acquisition software (Andromeda) based on Java, which reads
out the hardware memory via native libraries. The data is
stored on a file server in a MATLAB data format. Additionally
to the raw data, information about the measurement parameters
(temperature, emitted pulse etc.) is stored in separate files.

The A-scans contain the transmitted pulse from emitter i at
position �ei to receiver j at position �rj as well as the reflections
from the object (Figure 3). With the information about the
time the ultrasound needed from the emitter to the object and

13

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 3. Dependence of A-scans from sensor geometry. Left: Principle of the data acquisition for USCT simplified in 2D. The emitter emits an ultrasound
pulse, which is reflected by the object. Here an idealized point scatterer scatters the ultrasound in all directions. The reflected and transmitted signals are
recorded by all the receivers. Right: A-scan recorded at green receiver as pressure over time. The first signal is the transmission pulse (directly transmitted
ultrasound). The successive signals are reflections and scatter from the imaged object and the cylinder.

Figure 2. The prototype of a 3D Ultrasound Computer Tomograph: water
tank (middle) equipped with 48 TAS which are connected by flat cables to
four distribution boards (edges of the picture).

from the object to the receiver, a spheroidal shell with emitter
and receiver as focal points representing all possible positions
of the scattering object can be calculated. This assumes a
constant speed of sound v throughout the water. The volume

of interest I(x) at the position �x is then reconstructed by
summing over each projection of each sample of an A-scan
Ai,j with its specific amplitude. Repeating this for all m · n
emitter-receiver-combinations – hence for all A-scans – high
values are summed up at points that are reflecting ultrasound
at a high level (Figure 4, equation 1). This method is known
amongst others as SAFT [4] and can be written as:

I(�x) =
m∑

i=1

n∑
j=1

Ai,j(t), t =
(‖�ei − �x‖ + ‖�rj − �x‖

v

)
(1)

The image reconstruction software is subjected to constant
development. The code is mainly written in MATLAB. The
kernel of the backprojection was implemented in assembler for
speed up [10]. Depending on the resolution the reconstruction
of a complete volume can take from a few hours up to
several weeks on a standard PC. The reconstruction of two
dimensional slice images takes some seconds to a few minutes.

Currently a second prototype of the 3D Ultrasound Com-
puter Tomograph is being developed. The sensor distribution
was optimized to increase the illumination level as well as
the contrast and theoretical resolution [11]. While the first
prototype consists of a cylindrical water tank, the second
generation changes the shape to a half ellipsoid. In the course
of this new development new Transducer Array Systems are
built and the second generation of the acquisition hardware
promises first clinical experiments.

14

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 4. Principle of the SAFT. Ellipses for three emitter-receiver-combi-
nations intersect in one point describing the position of the object.

B. MATLAB capabilities

MATLAB (the abbreviation stands for ‘MATrix LABora-
tory’) is a proprietary mathematical software developed by
‘The Mathworks Inc.’. It provides a wide functionality for
numerical calculations and allows the user to work with
vectors and matrices in a straightforward way. The kernel of
MATLAB is extendable with a large selection of toolboxes for
different application domains. An overview of the available
toolboxes can be found on the MATLAB website [12]. The
main part of MATLAB interpreter, which interprets commands
typed by the user. The commands derive from MATLAB’s own
programming language called M-Code. For rapid prototyping
in signal and image processing, as necessary for improvement
of the USCT reconstruction code, MATLAB provides a very
handy platform due to the availability of many functions and
toolboxes.

The MATLAB GUI functionality is not often used in
scientific programming. Although the GUI functionality is not
as powerful as e.g., the GUI functionality of Java (e.g., tabs
are missing), it was the method of choice for this application,
as the existing script software could easily be integrated. A
complete reference for all interaction objects provided by
MATLAB can be found in [13].

In MATLAB 6 only ten interaction objects were available
to build GUIs:

• Textfields
• Edit Boxes
• Frames
• Pushbuttons
• Togglebuttons
• Checkboxes
• Radiobuttons
• Popup Menus
• List Boxes
• Sliders

Beside these interaction objects, MATLAB offers the power-
ful axes object used for data visualization. It can be extended
by numerous functions for user interaction. Moreover every
MATLAB GUI object can be appended by any desired data
structure, which simplifies object-based interaction.

MATLAB offers several features for creating an interactive
GUI, which kept the effort in development low. The extend-
ability is based on the fact that MATLAB is an interpreter
language. By just adding folders to the MATLAB path it is
possible to access new functionality, even at runtime. For data
visualization MATLAB uses a so-called axes object, which
is able to visualize arbitrary 2D and 3D data. It offers the
possibility to define click functions and context menus for all
displayed graphical elements even in 3D. Moreover any form
of data can be assigned individually to each graphics object.
This simplifies object-based interaction and allows the easy
design of interactive GUIs of any kind.

III. SOFTWARE STRUCTURE AND DESIGN

In the following, the structure and design of the developed
software is presented. Starting with the basic structure, the
partition into three main parts is described. This is followed
by presentation of the data mapping functions and the extend-
ability of the software.

A. Basic structure

Due to the limited availability of MATLAB 7.x by the
time of the development, MATLAB 6.1 was chosen as version
for implementation. The downward compatibility and version
checking of MATLAB ensures the usability of the interactive
GUI with MATLAB 7.x.

To represent the imaging and image reconstruction in the
USCT as concise as possible the functional requirements were
divided into three parts:

1) A-scan GUI: contains all functions working directly on
the A-scans.

2) Images GUI: contains all functionality for the recon-
structed 3D images.

3) USCT GUI: contains the functionality for the representa-
tion of the USCT emitters and receivers for visualization
purposes.

A main purpose of this representation in three parts is to
show clearly what is done with the raw data when it is taken
to reconstruct an image, to show how an image is built up by
the raw data and where images and data sources are located in
the USCT. The functionality covers recurrent procedures used
to explore and analyze the experiments with the USCT.

The structure of the GUI for the system was designed
to consider these requirements: the main GUI consists of
three separate windows (MATLAB figures) related to the three
parts of the functional requirements (Figure 5) This has the
advantage that every part can also be used standalone. The
challenge posed by the use of multi-figure GUIs is that they
are complex to develop in MATLAB.

15

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 5. Graphical user interface with three separate windows: images related function at the left (Images GUI), USCT related functions in the middle
(USCT GUI) and raw data related functions at the right (A-scan GUI).

B. A-scan GUI

The aim of the A-scan GUI is to give a quick overview
of one or more A-scans from USCT experiments by selecting
certain emitter-receiver-combinations. This is useful for qual-
ity control, signal-to-noise ratio and time-of-arrival analysis.
This functionality is provided by four listboxes used to choose
one or more emitter layers, emitter elements, receiver layers
and receiver elements according to the USCT specification.
Dependent on the number of selected A-scans the software
plots the data to an axes object in the GUI or opens a scrollable
dialog showing multiple plots for direct comparison (Figure 6).
The scrollable dialog was done using a MATLAB script by
Bjorn Gustavsson [14]. An additional functionality is to apply
different signal processing functions to the A-scans without
typing MATLAB commands. For this a second axes object
is located at the lower half of the GUI. The user can choose

from a long extendable list of transformations in a popup menu
which are then applied to the currently loaded A-scan or a
marked region of it. It is also possible to overlay a second
graph for comparison of the original A-scan and transformed
data. Measurement information that formerly had to be read
out of separate files is now presented in a structured dialog
reducing the effort of gathering information to a minimum of
one click.

C. Images GUI

The Images GUI deals with large volume datasets. To
give the user an overview, appropriate display functions are
necessary. Therefore the Images GUI shows slices of 3D
images in an axes object. The orientation of the slice can be
chosen by the user as well as the slice number. A slider allows
to browse through the volume. For comparison of images,
which were reconstructed with different parameters, the user

16

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 6. Scrollable dialog showing multiple plots of A-Scans for compar-
ison.

can swap between two images and apply aggregation functions
like calculating the difference of two images. This procedure
is important for the analysis of different parameters for the
reconstruction algorithm. To improve the appearance of the
images, image processing functions are available. The images
can be exported to the several graphical formats offered by
MATLAB.

D. USCT GUI

A 3D model of the USCT aperture, i.e. emitter and receiver
elements, is the main control element in the USCT GUI. It
displays the connection between the Images GUI and the A-
scan GUI, the interactive and color-coded visualization of
selected transducer elements, and the location of currently
loaded images. The model can be displayed in complete or
in three parts according to the three TAS layers of the USCT.
It can be rotated stepwise or freehand using the mouse.

Because of the usage of a parameter file the model can
be adapted to all kinds of aperture geometries by simply
exchanging this file. For the second generation of our 3D
USCT prototype this will be of great advantage. For the
the new developed geometry, a MATLAB file containing the
cartesian transducer positions has to be built and copied into
the specified folder of the USCT GUI.

Each element of the model represents an emitter and four
receivers surrounding the emitter. By right-clicking an element
a context menu offers functionality to mark the elements in
different patterns as emitters or receivers. The left mouse
button is programmed by the last chosen marking pattern
and can be applied to other elements. Hence, the software
is adaptive to click behavior of the user. The use of marking
patterns and the programmable mouse button simplifies user
interaction with the 384 elements shown in the model. An

additional 2D model cutting out layers of the USCT also
provides functionality for the marking of elements in a more
precise way. The file generator uses the current marking
pattern to create parameter files for the data acquisition and
reconstruction software.

The markings in 3D are more intuitive for the scientists.
They can be used to select a subset of A-scans in order to
visualize them or calculate statistics.

E. Data mapping functions

For better understanding of the A-scan to image relation-
ship, the system maps a region in a selected A-scan in the
A-scan GUI to a currently loaded reconstructed image in the
Images GUI. For the inverse process a region in the image
can be calculated back to a time duration in the A-scan.
Marked regions in an image are shown as a rectangle in the
3D model of the USCT giving the user an impression of
the position of the currently shown slice image. The colored
transducer elements in the USCT GUI and the illustration of
the image position supports the understanding of the complex
coherences. The data mapping functions allow the user a
comfortable and easy to use in-depth analysis of the image
formation process.

F. Extendability

The second fundamental purpose of the system was to
provide extendability and adaptability. The interactive GUI
serves as basis for the frequently used functions, which can
be extended by new functionalities. Because of the ongoing
development process modifications in all parts of the USCT
workflow have to be introduced. New functions should be
integrated into the system without major effort. Therefore a
plugin concept was designed which allows the user to add
new functionality by copying the source code – regarding
the interface constraints – in defined folders. At startup the
software checks the folders for new files and integrates them
into pop-up menus or menus of the GUI for immediate access.
The system offers interfaces for function integration. The
interfaces can be grouped into:

• Standalone plugins without parameters and no return
values. These plugins are used to integrate all kinds
of tools into the software, as e.g., a standalone volume
visualization tool . They are presented in the menu bar of
each of the three windows. The GUI has to be designed
by the user.

• Plugins using the currently loaded data of the software.
They have input parameters and return defined data
structures. Additionally to these defined parameters the
programmer can add its own parameters for which a dy-
namically generated input dialog is created when calling
the function. For these plugins the user does not need
to program a GUI as it is generated automatically. This
type of plugin is used for transformation functions on A-
scans and for transformation and aggregation functions
on images.

17

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

At program start the three parts of the GUI are arranged on
the screen dependent on the adjusted screen resolution and all
components including the computationally intensive 3D model
are loaded in background while a status bar is displayed.

IV. IMPLEMENTATION OF SELECTED FUNCTIONS WITH

RESPECT TO THE MATLAB’S GUI CAPABILITIES

Based on the basic overview on the software structure shown
in the last section, the implementation of selected functions
is presented in detail below in respect to MATLAB’s GUI
capabilities.

A. Main GUI

As described in the last section, the interactive GUI consists
of three main windows which are realized as three MATLAB
figures. The interaction between these independent figures is
realized using MATLAB’s global variables, which are avail-
able to all functions within a MATLAB session. At startup
MATLAB stores all references to GUI objects in a specific
variable. By declaring a global variable holding a copy of the
references to GUI objects of the figure, the GUI objects can be
accessed from every function or subfunction. To keep track of
the numerous references every MATLAB figure (A-scan GUI,
Images GUI and USCT GUI) creates its own global variable.

B. 3D USCT Model

A central interaction object of the system is the 3D model of
the USCT. It is based on an USCT emitter geometry file which
holds the position of every ultrasound emitter in cartesian
coordinates. By plotting a voxel (created from six patches)
at each position into the axes object the model is built up at
startup of the software (Figure 7). This is done by use of the
voxel function by Suresh Joel [15].

To restrict the number of voxels, one emitter and four
receivers are represented as single voxel and each can be
addressed by the corresponding emitter layer, emitter number
and the according receiver layers and receiver numbers. These
numbers are stored in each voxel using MATLAB’s UserData
variable, which is part of every GUI object. Within the as-
signed context menu of each voxel the user can select different
options, e.g., setting the element as current emitter or receiver,
setting the complete row or column as emitter or receiver and
deselecting one, more or all elements. Depending on the users
current choice the called routine reads its UserData variable
via the voxel handle and sets the color of the voxel to red
(emitter), green (receiver) or yellow (emitter and receiver). If
the user sets an element as receiver an additional dialog is
opened offering the selection of one to four of the receivers
surrounding the selected element. The coloring routines are
also called when selecting emitters or receivers in the A-scan
GUI.

The name of the last callback routine is saved internally. By
pressing the left mouse button which is pointing to a voxel this
routine is called again. This results in an adaptive behavior of
the left mouse button, which allows a fast marking of elements
and avoids the repetitive use of the context menu. The 3D

Figure 7. Interactive 3D model of the USCT with elements (blue) marked
as emitter (red), receiver (green), emitter and receiver (yellow), the context
menu called by clicking an element with the right mouse button and a red
rectangle showing the position of a reconstructed image loaded in the Images
GUI.

model can be rotated using the MATLAB rotating function
for axes objects.

C. Data-image relationship

The relationship between raw data and reconstructed images
is complex. For an in-depth analysis of reconstructed 3D
images a method was needed to identify regions of one or more
A-scans, which contribute to a specific part to the image. Also
it is of interest which region of the image is concerned when
selecting an area in an A-scan (e.g., a reflection). Therefore
the data-image relationship can be visualized in both ways by
functions marking a region in an A-scan by two points and
in an image by a rectangle. This enables the user a detailed
analysis of artifacts in the image or the spatial contribution of
specific ultrasound pulses to the image.

Using MATLAB’s ginput function two points restricting an
A-scan to a relevant region can be chosen. The corresponding
region in the currently displayed image slice is calculated by
a routine based on the kernel of the reconstruction software.
A slice image of a spheroidal hull, i.e. an ellipse, is calculated
which is drawn into the reconstructed image. This can be done
in two ways (Figure 8): The first method scales the pixel values
of the calculated slice image to the colormap of the shown
image and sums up both images. The second method creates an
image by setting pixels within the ellipse to an opacity of 50 %
and all other pixels to an opacity of 100 %. Moreover, these
ellipses can be summed up, which demonstrates the process
of the reconstruction for a number of A-scans.

18

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 8. Slice of a reconstructed volume showing ten nylon threads with a diameter of 0.15 mm and spacing of 2 mm. Ellipses calculated by the system
are drawn into the image - on the left by summing up the original and the ellipse image, on the right by using semi-transparent overlay.

Vice versa it can be of interest to know about the rela-
tionship of points or regions in the reconstructed images to
A-scans. The system provides functionality to map an area
R in the reconstructed image to a time duration in a chosen
A-scan. For calculation of the two sample points t lower and
tupper in the A-scan, which limit this region, the minimum
and maximum distance from the chosen emitter to the chosen
receiver via the object is calculated by the following terms
regarding equation (1):

tlower = argmin
�x

(t), �x ∈ R (2)

tupper = argmax
�x

(t), �x ∈ R (3)

The resulting two sample points are drawn into the A-scan.
The calculation of the contributing part in an A-scan enables

additional analysis functions such as the calculation of the
N most contributing A-scans to a selected area in the recon-
structed images. The routine searches for the highest amplitude
in the computed region in each A-scan of a chosen subset and
sorts them descending from the highest to the lowest peak.
The resulting list is shown in a separate listfield, the emitters
and receivers are marked in the USCT model. A-scans can be
selected and chosen for further processing by A-scan analysis
functions.

D. Extendability and plugins

The software has several interfaces for the extension with
new functionality. When the software starts up the available
functions are searched in predefined subfolders and entries are
automatically generated in the according menus and pop-up
menus of the GUI.

The plugins implementing the interface for standalone
plugins can be called by accessing the menu entry in the

particular figure. The software calls the specified function
by the filename of the MATLAB source code file (.m-file).
Information about the label of the plugin is stored in an
identically named MATLAB data file (.mat-file) in the same
folder.

The interfaces for non-standalone plugins have predefined
input parameters and return a predefined data structure – e.g.,
an A-scan as input and return value, which is represented as
an array of double values. If a function interface has more
than these predefined parameters, an optional parameter can
be passed as MATLAB struct which can contain arbitrary
subvariables of different data types. The variable used as
parameter is saved in a .mat-file identically named to the .m-
file containing the function. When calling the function, the
.mat-file reads its variable. Using the names of the subvariables
within the struct and the default values defined for them, a
dialog is created. The user can change these values which are
then saved to the .mat-file (Figure 9). For better understanding
of the parameters the .mat-file may contain an additional
comment for each parameter which is shown to the user as
tooltip. After saving modified parameters to the .mat-file the
function is executed. The interface passes all parameters to it
and passes back the result for visualization after execution.

This approach enables the encapsulation of any functionality
by just two files where the .m-file contains the source code and
the .mat-file holds the information for the GUI, the number
of parameters, their default values and parameter descriptions.
Due to the fact that MATLAB is an interpreter the .m-files can
be easily accessed via adding them to the MATLAB path. It is
possible to pass any data structure to the function, however, the
dynamically created GUI can only process single numerical
values so far.

The plugins implementing the interfaces can access all avail-
able data (e.g., the currently selected emitters and receivers)

19

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

.m File
(MATLAB source code)

.mat File
(MATLAB parameter struct)

Main GUI

reads

creates

MATLAB GUI with default
parameters

executes

saves

Figure 9. Files and dialogs used for the non-standalone plugins.

via a set of setter- and getter-functions, which encapsulate the
access to the global variables and return the specific values.

E. Integration of the reconstruction software

Before the integration process, the reconstruction software
was used as command line based tool and based on a simple
text-file defining the various parameters for image reconstruc-
tion. In course of the integration, graphical user interfaces
were developed giving the user a consistent view to all USCT
software systems.

Therefore, the reconstruction software was integrated into
the user interface by setting up a plugin calling the main
function (Image reconstruction GUI). An additionally imple-
mented GUI element in the USCT GUI offers selection of
regions to be reconstructed (Figure 10). This was done using
two axes objects for the representation of the emitter layers
shown from two directions. Dragable lines refer to a cuboid
drawn into the 3D USCT model shown in Section IV-B. The
user can now select a region in 3D to retrieve the according
cartesian coordinates of the edges, which will be used for
definition of the region of interest to be reconstructed. They are
automatically saved in the data structure of the reconstruction
software, which defines all relevant parameters used for image
reconstruction.

For changing parameters there is a dynamically generated
GUI, the Parameter GUI, which reads out the parameter file
of the reconstruction software. By specified types of input, it
chooses interaction elements and arranges them in a MATLAB
figure.

For a better overview, the inputs can be placed in groups
according to their hierarchy level, which can be expanded and
retracted by the use of push buttons. Since MATLAB does not
offer a specific interaction element to manage such hierarchical
structures, the rearrangement of the interaction elements, when
expanding or retracting the parameter groups, has to be done
via displacements of them. This is carried out by accessing
the handles of following interaction elements in the parameter
list and reset the position in the MATLAB figure window.

Another benefit of the Parameter GUI is an automatic
validity check of the parameters. Also an effort was made
to ensure downward compatibility for users working with the
command line based tool. Therefore function wrappers were
developed encapsulating the new functionality. Parsers had to
be developed to read out the parameter text file and format it

Figure 10. Selection of three dimensional regions to be reconstructed by the
reconstruction software.

to an internal data structure used for the GUI generation. To
stay consistent, values changed in the GUI have to be admitted
to the text-based files by the use of text pattern matching.

Because of the dynamic generation of the GUI, it remains
highly adaptable to changes in the reconstruction software.

Each parameter is stated by an importance value. When
stating the category of the current user (beginners, intermediate
and advanced) at program call, the importance value is applied
to enable the appropriate parameters for the current user. E.g.
beginners using the reconstruction software only get access
to the most important parameters, while the rest of them are
set by default values. This simplifies the complexity of the
reconstruction for students and collaboration partners, which
are just starting to use the reconstruction software and do their
first image reconstructions. For experienced users all available
parameters are shown. The visibility level can be set in the
Image reconstruction GUI before calling the Parameter GUI.

V. EVALUATION OF USABILITY

An evaluation of the GUI was done using a usability
questionnaire consisting of three parts. First, the user has to
evaluate his know-how about ultrasound computer tomography

20

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 11. Dynamically generated GUI for changes in the parameter file of the reconstruction software.

and his capability level in software development. The second
part investigates the appearance and functionality of the pre-
sented analysis software as well as the usability of specific
functions. The third part of the questionnaire is based on
the Software Usability Measurement Inventory (SUMI) [16].
The questions focus on the evaluation of efficiency, affect,
helpfulness, control and learnability of the software. Until
now, the questionnaire was completed by five scientists of the
working group.

The results of the first part shows that all of the users in
question develop software in MATLAB. They mainly create
command line-based software tools, which they share with
other scientists. The major part (four of five)of the users
share the opinion, that training of students to get familiar
with the USCT project is time-consuming. The results show
that unexperienced users have problems to understand the
coherency between A-scans, reconstructed images and the
USCT aperture.

In the second part of the questionnaire, the users evaluated
the user interface as clearly arranged. The users agreed on
the simplicity of handling of the 3D model and selection of
A-scans. They appreciated the partition into the three user
interfaces, the presentation and browsing through 3D images
and the extendability of the software. Another significant
conclusion is the good applicability of the software for the
training of students. Throughout all questions concerning the
coherency of the A-scans, reconstructed images and the USCT
aperture the users rated these function to be very beneficial.

The third part of the user evaluation was done using 50
questions following the SUMI questionnaire. For the analysis

,

82% 82%
88% 84%

75%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
E

ffi
ci

en
cy

A
ffe

ct

H
el

pf
ul

ne
ss

C
on

tro
l

Le
ar

na
bi

lit
y

P
er

ce
nt

ag
e

of
 m

ax
im

al
 p

oi
nt

s

Figure 12. Results of the SUMI user evaluation questionnaire showing the
attributes efficiency, affect, helpfulness, control and learnability.

of it, every question was assigned to one or more of the at-
tributes efficiency, affect, helpfulness, control and learnability.
The answers are rated with zero, one or two points, which
are summed up for each attribute and related to the maximal
number of points.

The overall averaged rating of the usability of the software
is 81 % of the total number of points. The standard deviation
is 12 %. Though the number of completed questionnaires
is rather small, with a confidence coefficient of 0.95, the
confidence interval can be acounted to [65 %; 97 %], where
the lowest value is still significantly higher than 50 %. This

21

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

encourages us to assume, that the developed software offers a
good usability to the users.

Figure 12 shows the averaged result for the different at-
tributes. The helpfulness of the software to process USCT
problems was evaluated best (88 %), while there seem to be
small difficulties in the learnability (75 %). Efficiency, affect
and control are on the same level. Overall the results are on
a quite satifying level of 75 % and up.

VI. CONCLUSION AND FUTURE WORK

The described design and implementation shows the vari-
ability of MATLAB as programming language not only for nu-
merical solutions but also for the design of complex software
systems. With limited choice of interaction objects offered
by MATLAB, a software system modeling the workflow
of the USCT was created. The extendability is guaranteed
by several interfaces leaving the programmer the choice of
using already existing GUI elements or providing additional
functions. By using parameter files whenever possible the
system is adaptable to changes in the future – only these files
have to be replaced.

As well as showing the capabilities of using MATLAB, the
developed software also has a large benefit for the scientists.
Before the software system was introduced to the USCT
working group everyone implemented individual analysis tools
for specific problems. The software now integrates most of
these tools and provides a comprehensive GUI to access
them instead of calling them by command line with multiple
parameters. Together with the use of a subversion system
everyone can now share analysis methods with the whole
working group in a concise way. The integration of the
reconstruction software was the next step to centralize all
software systems used for the USCT in a comprehensive GUI.

The usability evaluation showed, that the software provides
a good applicability for the training of students and new
employees because of the new viewing method for the relation-
ships between all parts of the USCT. The visualization makes
the complex system more understandable than only reading
documentation or even source code. By the integration of the
reconstruction software the benefits of the analysis GUI can
be ported to a second software used by the working group.

In the future the software will grow by adding new plugins
and extending the basic functionality. Also the integration
of the data acquisition software has to be improved. For
the second generation of the USCT prototype the software
can easily be adapted to the new transducer geometry by
replacing the parameter files and revising the A-scan GUI.
Furthermore the user evaluation will be extended to a higher
number of attendants. The results of the user evaluation will
be considered while extending and reengineering parts of the
software.

REFERENCES

[1] T. Hopp, G. Schwarzenberg, M. Zapf, and N. V. Ruiter. A MATLAB
GUI for the Analysis and Exploration of Signal and Image Data of
an Ultrasound Computer Tomograph. In Proceedings of the First
International Conference on Advances in Computer-Human Interaction

2008, ACHI 2008, IARIA, pages 53–58. Published by IEEE Computer
Society Press, 2008.

[2] H. Gemmeke and N.V. Ruiter. 3D Ultrasound Computer Tomography for
Medical Imaging. Nuclear Instruments & Methods in Physics Research,
2:1057–1065, 2007.

[3] The MathWorks Inc. MAT-File Format. The MathWorks Inc., 2005.
[4] S.R. Doctor, T.E. Hall, and L.D. Reid. SAFT - the evolution of a signal

processing technology for ultrasonic testing. NDT International 19(3),
pages 163–172, June 1986.

[5] M.D. Abramoff, P.J. Magelhaes, and S.J. Ram. Image Processing with
ImageJ. Biophotonics International, 11(7):36–42, 2004.

[6] Volume Graphics Inc. Website. http://www.volumegraphics.com/, 2009.
[7] National Instruments Corporation. Website. http://www.ni.com/, 2009.
[8] C. Eggen, B. Howe, and B. Dushaw. A MATLAB GUI for ocean

acoustic propagation. volume 3, pages 1415–1421, Oct. 2002.
[9] R. Stotzka, H. Widmann, T. Müller, and K. Schlote-Holubek. Prototype

of a new 3D ultrasound computer tomography system: transducer design
and data recording. In SPIE’s Internl. Symposium Medical Imaging
2004, pages 70 – 79, 2004.

[10] M. Zapf, G. F. Schwarzenberg, and N. V. Ruiter. High throughput
SAFT for an experimental USCT system as MATLAB implementation
with use if SIMD CPU instructions. In Stephen A. McAleavey and
Jan D’hooge, editors, Medical Imaging 2008: Ultrasonic Imaging and
Signal Processing, volume 6920, page 692010. SPIE, 2008.

[11] G.F Schwarzenberg, M. Zapf, and N.V. Ruiter. Aperture Optimization
for 3D Ultrasound Computer Tomography. In Ultrasonics Symposium,
2007. IEEE, pages 1820–1823, 2007.

[12] The MathWorks Inc. The MathWorks - MATLAB and Simulink for
Technical Computing. Website, http://www.mathworks.com, 2007.

[13] The MathWorks Inc. Creating Graphical User Interfaces - Version 6.
The MathWorks Inc., 2002.

[14] The MathWorks, Inc. Matlab file exchange: Scrollsubplot. Website,
http://www.mathworks.com/matlabcentral/fileexchange/7730, 2008.

[15] The MathWorks, Inc. Matlab file exchange: Voxel. Website,
http://www.mathworks.com/matlabcentral/fileexchange/3280, 2008.

[16] Drs. Erik P.W.M. van Veenendaal. Questionaire based usability testing.
In Conference Proceedings European Software Quality Week, November
1998.

22

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Using Secondary Information Sources to Generate and Augment Semantics of

Design Information

Sascha Opletal Dieter Roller Steffen Rüger

Institute of Computer-Aided Product Development Systems, Universität Stuttgart
Stuttgart, Germany

email: {opletal, roller, rueger}@informatik.uni-stuttgart.de

Abstract

The reuse of design knowledge for use in CAD
systems is a promising way to reduce time and cost
during the design cycle. To support this, a semantic
core for a novel type of informational infrastructure
with the focus on supporting CAD systems is
introduced, that allows to extract arbitrary subparts of
the information base and use it efficiently in related
projects.

The key problem addressed in this work is the
automated setup and classification of information
pieces within several involved knowledge domains.
This is solved by connecting depending design methods
strongly to information sources outside the actual CAD
design environment with a focus on knowledge
generation, distribution and application. As a result
the approach will support problem solving within the
geometric area through a system that can classify
information based on context.

Keywords: CAD, Knowledge Bases, Semantic Relation

1. Introduction

Knowledge and information extraction, the
aggregation and propagation of relevant pieces as well
as relevant structures are needed in many application
areas. As the overall goal is the efficient reuse of
design knowledge, it is required to be able to extract
arbitrary subparts of designs and to apply them to other
design situations. Today this is only possible with form
features, configuration models and other predefined
methods, where all the knowledge and the procedures
have already been thought of and have been integrated
into the product models by a human designer.

The presented approach uses selected methods of
different disciplines of information analysis to
effectively support the setup and usage of the semantics
involved with CAD models. These CAD model
semantics have come a long way in the last years, but
are still very low-level compared to the requirements of

a system that allows easy reasoning beyond integrity
checks. Though there are some abstractions that
enhance semantics, like constraints and form features,
the meaning of a certain part of a design remains in the
dark, apart for special use cases, where all knowledge
can be formulated [16]. If there is a special need to
evaluate a certain aspect of a design, evaluations have
to determine the meaning of a design through feature
recognition or analysis of design graphs [15].

The involved techniques for a more generic
approach to the problem are stemming from the field of
computational linguistics, from where disciplines like
information retrieval (IR) and information extraction
(IE) have evolved. IR has the goal of finding
information and evaluates the correctness or relevance
of found documents or information sources. This is
done by computing precision, recall and fallout (Eq. 1-
3)[3], where R is the set of relevant documents, I the
set of irrelevant documents, P the set of found
documents, and N the set of not found documents.

Recall=∣R∩P∣
∣R∣ (1)

Fallout=∣I∩P∣
∣I∣ (2)

Precision=∣R∩P∣
∣P∣ (3)

Recall then defines the found amount of documents,
precision defines the amount of found correct
documents and fallout the amount of not found relevant
documents. A problem with this approach is that all
correct documents have to be known in advance to
optimize the knowledge search and to evaluate it using
recall and precision. Once a set of useful documents is
found, IE can be used to focus on the gathering of
meaning out of the information sources.

[5] defines this as ”An IE system takes as input a
text and ’summarizes’ the text with respect to a
prespecified topic or domain of interest”. This works
generally on unstructured text within a fixed domain
that defines how to handle and combine the found
information. This process is typically even more

23

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

constrained and only works on given scenarios, which
can be described as the focus within the work domain.
As an example, the domain could be ’Economic news’
and a possible scenario for it could be ’Changes in
Management Positions’.

A well defined scenario [28] allows that techniques
like stop-word elimination, filtering of known subjects
and reasoning can be used to strip unimportant
expletives that are irrelevant for the task. A more
general approach, but also focused on domains, is the
field of Knowledge Discovery in Databases (KDD), or
data mining. It has the goal to recognize unknown
patterns and relations that are not specifically encoded
or modeled by using statistical analysis of data sets. An
example is to find changes in the consuming habits of
customers to evaluate products or to rearrange a
business strategy. Data mining is subdivided into
different disciplines, motivated by the processing
methods through which the data is passed. The focus
on data description is to give a compact representation
that is reduced to the essential information. The
differential analysis tries to identify data sets that are
deviating from given norms or standards. The
dependency analysis tries to make out relationships
between the attributes of information objects.
Clustering is used to segment the data set into groups
of interest.

While being focused on special domains or special
purposes and scenarios, a multi-domain approach has
the the advantage of being more practical in
heterogeneous work environments as found in
companies.

2. Knowledge domain and Aggregation

In the product design process, CAD systems cover
the geometrical design aspects. PDM (Product Data
Management)/PLM (Product Life cycle Management)
systems store documentation. CRM (Customer
Relationship Management), SCM (Supply Chain
Management) and ERP (Enterprise Resource Planning)
systems are used for accounting, materials
administration, NC programs, or information for
advertising. The overall knowledge process depends
not only on explicitly structured and stored information
pieces but also on unstructured sources like email that
is exchanged between coworkers or even information
that is not explicitly modeled and stored in the system.
The aspect of explicit and tacit knowledge strongly
influences the work processes [14][20].

In order to input data into a knowledge base and to
be able to reason on it, the construction framework has
to i) consist of rules how to build it and ii) has to have
as a base a specified domain. There are lots of
frameworks for i), like ontologies, semantic networks
and so on, but ii) is still a major problem when it is set
up from a multitude of domains as described above.

The goal is to avoid the case where somebody needs
to write down which concepts belong to the domain of
the application and which not - or even model the
concepts first. One reason for this is, that everybody
has different concepts in mind and also if two people
think about the same piece of equipment, they could
use many different names for it. [17] describes this by
introducing the meaning triangle to relate symbolic
descriptors to objects. Checking for correct descriptive
symbolics is not the focus of this work, but to correlate
given symbolics correctly to each other. This also
covers situations where multiple symbols for an object
exist, like different names or a filing with different
numbers.

Generally a knowledge modeling framework is a
specification of a conceptualization. This is a formal
description of artifacts and their relations, that are used
to build a common base for the concept formation of a
person or a group of persons. The goal is to describe
the concepts of human thought and communication in
an unambiguous way by using a formal fixation of
concept hierarchies, relations and involved attributes.
This allows the use of computational tools for
inference, extraction of information and the generation
of searchable indexes. The main approaches to
represent knowledge are either symbolic or
connectionistic. Symbolic knowledge is formulated in
schemata or rules of the different expressions of a
model. A connectionistic system stores the knowledge
by training and reveals the knowledge through
interaction, which means that there is no way to access
knowledge directly since the storage process is not
transparent.

A knowledge representation can be generally
classified by correctness, power of expression,
efficiency and complexity. The content of one
representation can usually be transformed to another
representation, but there is a risk of semantic loss,
depending on the power of expression of the target
representation or equally a source representation that
does not deliver the required input. The chosen
representation should be connectable to all involved
information resources and will act as an instance that
mediates and aggregates the information.

Three frequently used formalisms to model
knowledge are semantic networks, frames and
ontologies. Generally they consist of concepts and
relationships between concepts. A concept can be an
entity of many types ranging from structured frames to
unstructured data files. The relations (comparable to
ontologies) usually have a base semantic similar to the
UML, but are often extensible to arbitrary semantics.
Expression is high and versatile, but structures have to
be built manually according to a meta-level. A designer
is required to define the base structure and uses
elementary methods to set up concept structures and
relations. Base semantics of relations are usually:

24

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

 IS-A, A-KIND-OF (a kind of) used to represent
heritage or information of generalization

 PART-OF, HAS-A-PART used to represent
aggregated information

 MEMBER-OF, INSTANCE-OF used to represent
instantiation and individualization

The product development is usually carried out
within a knowledge frame that spans between persons
and teams. There exist relations of various semantics
between all involved (also abstract) units like teams,
db-objects, prototypes, projects, and so on. Though
some relations are not explicitly encoded, they are
supplemented by a persons mind while working with
the given data set, which means that the collection of
data together with implicit knowledge forms a
semantically connected knowledge system.

Applied in product development, the vertices of
such a system represent data objects and the edges
represent the semantic relations between the objects.
Once the structures and relations are set up, they are
fixed. The user of the system can only generate
instances by using the structures of the network to fill
in data. Most knowledge representations are tailored to
specific use cases, but can also be enhanced or
modified to be used in other contexts. However,
structure and expression are often too fixed, while rules
are tailored for specific reasoning.

Figure 1. UML relations between classes

Similar semantics are used also by the wide known
UML notation (see fig. 1). From top to bottom is
shown the graphical annotation of an association with
multiplicity, the directed association, the
generalization, the aggregation or composition.

Derived from such semantics, the knowledge
propagation to people and places where it is needed can
be decided. This will save huge amounts of time, but
needs a powerful annotation scheme. Changes in a
CAD model can for example trigger actions in
depending data like cost calculation, manufacturing
processes and so on. Such a system needs an active
component to be able to connect knowledge, push
knowledge or coordinate knowledge generation.

A combination of different knowledge acquisition
methods and representations can be used to form a
system that organizes information without the need to
form structures with fixed concept frames for the
deposition of knowledge. The information should give
rise to structures and not vice versa.

3. Related Work

Recent approaches to model knowledge often use
static setups of rule bases and concepts to capture the
knowledge domain. Currently used [25] informational
infrastructure for the development and manufacturing
of products distributes different information types over
specialized systems.

A system with an intelligent tutoring agent is
described in [26], where the preprogrammed domain
together with the allowed actions form the base for
reasoning. [10] suggests a domain independent
knowledge manager that is very flexible in terms of
application, but omits how the domain knowledge can
be gathered and be distinguished from non-domain
knowledge. In [22], the domain knowledge is acquired
automatically by evolutionary learning but on a very
limited domain. Traditionally the search for domain
knowledge stems from NLP (Natural Language
Processing), that searches for meaning in unstructured
free text, based on large text corpora of a specified
domain. A method to use meta-information to classify
documents based on the citation information of authors
is presented in [9].

A domain independent approach is described in
[21], but the topics and domains have been preselected,
which is undesirable for the problem addressed in this
paper, where more than one domain is involved. [12]
uses a highly sophisticated annotation to classify the
physical effects of single mechanical modules. Using
them as building blocks, mechanical functions can be
created by connecting the available and desired input
and output forces. [9] adresses the reasoning aspects
behind constructability.

A more interactive approach that uses evolutionary
algorithms to design products is presented by [6]. The
validation function from each generation to the next is
the human who tells if he likes a generated design or
not, which resembles an information retrieval.

Many more approaches exist to solve domain
specific problems. The problem discussed in this work
is in contrast to these approaches, as the focus is to
establish a framework that is able to bootstrap itself and
store knowledge domain independently.

4. Capturing Design Knowledge

The aspects involved in developing an object or
structure to meet set criteria are considered as design
knowledge. This includes the lead to a solution, the
process how criteria of the application area are met,
and also the solution itself. Many aspects of the
geometry fall into this definition; some can be analyzed
automatically, others can only be captured by hand.
Generally an algorithm can log the use of utilities and
the steps of creation for a specific object, but the
intention of the designer and what the object should be

Concept A Concept B

Concept A Concept B

Concept A Concept B

Concept A Concept B

1 *

25

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

good for or where it will be used in and what else
would be appropriate in this specific situation is
beyond the perception of the computer. There are
design goals and supporting information that is unique
to special domains, but also special domains are
involved within a project, that don’t cover mechanical
assemblies and require special knowledge capturing
methods as they also contribute to a solution.

The acquisition and storage of the different types of
domain knowledge can be characterized into domain
independent and domain dependent knowledge.
Domain independent knowledge should be equal in use
and acquisition across design domains. This can be
captured at a higher abstraction level [19] above the
feature based design and the product configuration.
Form features represent geometric macros that capture
and preserve the design intent as geometric setups and
machining instructions. They can be considered domain
independent, since they are used to model geometry in
many projects. Certain groups of semantics which are
annotated or classified through usage are similar across
the domains and can therefore be directly transferred.
The basic geometric construction methodology is
domain independent and is used in every design
system. Next to the geometric information there is
process information within the CIM/CIE environment
that has influence on the design process. Those
organizational aspects can be modeled in the same way
across domain boundaries.

Domain specific knowledge in contrast is captured
by information and methods that are unique to a design
domain and cannot be transferred across domains. As
example consider the design of a molding form that is
used to form components out of mold. In order to get
the ready component out of its form, the form needs to
be fitted with ejection channels, where the component
can be pushed out. The placement of those ejection
channels needs to be formalized and calculated by a
specialized tool for each new molding form. Such
knowledge is domain dependent, since it only applies
to the domain of molding forms.

It is however most certain that this knowledge can
be reused within different projects that are developed
within this design domain. Those domains need
customized treatment for capturing, transfer and
application of reusable knowledge. The general
approach to handle these problems is very similar. The
applied construction methods can be generalized and be
fed with specific knowledge for the actual domain.
These specialized methods can be seamlessly
integrated into the information process through a
standardized interface.

The feature recognition serves as a first measure to
compare the design situation at hand with the stored
information in the knowledge base. Features are used in
conjunction with restrictions to capture the design
intent in a product model, so that changes do not

destroy the original intent of the designer. Features of a
design can be captured in two ways: During the actual
design process, the designer assigns features to his
geometric structure knowingly by using a certain
feature function and unknowingly by creating a
structure that holds certain features that were not
explicitly constructed. The features that are assigned
through feature functions can be directly annotated in
the database and be refined by questioning the user to
input his intent. Implicit features and unannotated
features can be found during a preparation phase of the
knowledge base, where new information is being
gathered out of the stored objects. This includes a
feature recognition process to find additional
knowledge about objects through the presence of
features.

The feature recognition is also very important in the
information retrieval process where a design problem is
analyzed into a new feature structure and this feature
structure is then searched in the knowledge base as an
exemplified query. Additional information is supplied
through the characterization of the design situations in
the overall information process. For every applicable
situation found through the recognition of features,
there has to be a measure to decide how much of the
found information is applicable to the given situation.
This is done by a similarity function that takes into
account the geometric similarity and the process
similarity. The geometric similarity is computed
through the involved objects in a design situation with
respect to the needed solution. The similarity of objects
can be determined through design history, annotation
and features. The similarity of the stored design
situations is compared through the similarity of the
involved objects to the objects in the current situation.
Further comparison is done on the information process
level, such as context in terms of design teams, as well
as requirements and input from different organizational
units of the company.

5. Modeling Information

The conventional approach to knowledge based
design means that the user fills the knowledge base
with rules and by doing so decides how the product
model will behave or can be reused [2]. Knowledge in
this context can be described as [14]: “Knowledge is
information that is relevant, actionable, and at least
partially based on experience.”

A special focus has to be on the starting phases of
the product development process as these phase are
characterized through a high need of interdisciplinary
information. A knowledge base that is used in such an
environment needs the capability to cover objects and
relations of many different kinds. These requirements
emerge from the dynamics of the product development
process and as a result, the knowledge base does not

26

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

represent a stable and consistent state, but needs to
reflect several development processes that are running
in parallel. The most important tasks are to find and use
methods to synchronize the work processes and to be
able to recover from inconsistencies. The methods of
representation for the product data have to support
incremental refinement and extensions to the
knowledge which is gathered during the product
development process.

The process of knowledge acquisition is usually
guided through a descriptive framework that serves as a
meta-level to set up the rules and methods to fill in data
(see fig. 2).

Figure 2. Levels to build a data model

A good knowledge representation and the associated
tools should support the need to acquire, consolidate,
and distribute information among involved clients to
create a measurable advantage. The collaborative
environment should support this through a collection of
processes and tools, which will lead to new ideas,
processes and techniques. Several knowledge modeling
techniques were developed over the years:

 Frames
 Ontologies
 Semantic networks

The individual models each focus on different
aspects of knowledge. Ontologies as an example are
suited to provide and organize additional CAD process
information in an effective way, since the development
of a product is done within a project organization and
driven by persons and teams, which are themselves
considered as acting objects in the information
structure. They create several different work objects,
such as requirements, descriptions, CAD-models, NC-
programs, or material for advertising. Between these
logical units exist relations of different kinds.

Those ingredients define a semantic network. An
extension, called the active semantic network (ASN)
[24][7], has been developed at the Institute of
Computer-aided Product Development Systems at the
Universität Stuttgart to support active propagation of
knowledge. It provides means to store all information
that is created during a cooperative development
process. The main component is a mechanism that
executes automatic actions, driven by the states and
situations during the use of the semantic network,

which is of great importance to coordinate the
development in an effective way. The structure of the
active semantic network consists of objects that are
connected in a form that resembles a net. In this net, the
vertices represent objects of the product development
knowledge and the edges represent the context and
relations between those objects. All relevant
information for the product development can be stored
in this active semantic network, such as input from
quality control, marketing, buying department, service
and recycling. The knowledge model of the active
semantic network is dynamic and can support the
growth of knowledge and new knowledge types during
the product development process.

The active part of the semantic network allows for
the propagation of changes through the whole net and
the triggering of actions based on those changes. It
bears the following functionality:

 Inference mechanism
 Message passing
 Communication handling
 Execution of tasks

Inferences are used on the knowledge base to
execute rule-based recombinations of information and
automatic calculation of formulas. Through the passing
of messages to users or the establishment of
communication channels, the system can react on
problems that it or the users cannot solve by themselves
or where human attention is needed. A novel aspect
when compared to other knowledge representations is
that the active component fills the role of an assistant to
the designer. It can execute routine tasks and bring the
attention to problems that have occurred during the
development process.

The active semantic network can support the
designer with knowledge from an expert that would be
out of reach or hard to come by in a standard work
environment. The designer can be notified if a design
decision has consequences on the subsequent product
development phases, such as the manufacturing process
and product cost. By providing the knowledge of areas
where the designer is no expert in, the active semantic
network takes the place of a colleague with the
necessary expertise.

The problem to define the domain of knowledge as
a basis for the subsequent usage in reasoning processes
is not easy. It is often done by hand and thus tailored
explicitly to a specific application area. However
domains and contexts in all industries and application
areas differ a lot, even between companies within the
same field of activity. Thus, the automated set-up and
maintenance with respect to new requirements is an
enormous task. A knowledge base that builds itself and
also has the ability to self-organize is the key for a
substantial push in the re-use of a company's stored
information where it is desired to keep the integrity of

createMethod(slots)

method(slot_parameter)

Instance / actual dataInstance Level

Model Level

Meta-Model Level

27

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the structures of databases. This motivates the approach
of a layer on top of all involved information systems,
that organizes and groups information pieces according
to their relation and relevance for projects.

6. Use Case: The Information Need for
Sheet Metal Design

The application and data flow of the semantic core
is described from the perspective of a CAD designer
that interacts with the knowledge system. Many factors
drive the informational need with cost being the most
significant, as the work area of development and design
contributes 75 percent of the total costs.

The capability and experience of a human designer
generally makes or breaks a project in terms of initial
quality and the time to reach a satisfactory base
construction. As the initial design is taken and refined
in several iterations [23], using input from other
involved teams (quality control, mechanical testing,
production units, …), it is desirable if the system could
automatically provide the information from established
solutions and paid attention that the product design
meets the requirements (norms, cost, quality …).

The design process of a new product requires
precise knowledge on function and manufacturing of
the final product, as the function of the product is
determined by its mechanical construction. The quality
of the construction depends on how it was
manufactured and which materials were used. Also
most new products are not designed from scratch, but
built on or advance an established base construction of
previous designed and proven products.

The designer has to take all these requirements into
account when starting the design process. The goal is to
integrate human design knowledge into the CAD
system, so that certain design decisions can be made
automatically or be suggested in the relevant context to
the human designer. A "semantic CAD system" can be
formed, based on a semantic core, that has the primary
task to support the design process by operating as an
assistant to speed up the process and guarantee high
quality standards by supporting the design process as
detailed as possible. These supporting steps consist of:

1. Idea of the design / 2. Articulation by entering it into
a CAD system / 3. Proposal of the system / 4. Transfer
or modification of the proposed design

A precisely articulated idea, aided by the support of
adequate design methods will make it possible to give
the designer suitable help that is tailored to his needs.
To see the information flow during the CAD process,
standard problems will now be discussed to motivate
the presented approach and to show the benefits it
provides. The proposal of the system is derived from
the consideration of the knowledge base, which will be

checked according to three different controlling areas:
design controlling, component controlling and
realization controlling, with each of the controlling
areas being presented below. The necessary data flow
for the monitoring is made up of several levels:

1st level: design work
At this level all information about the user interactions,
the used materials and the geometry of the design is
collected which represents the raw data for the
knowledge processor.

2nd level: knowledge processor
The knowledge processor receives the raw data and
generates knowledge by consulting relevant sources of
information that are from the same context as the
current workpiece or work context. After aggregating
relevant information, the knowledge processor
synthesizes a helping information piece and presents it
to the designer or applies a modification directly to the
work-piece.

3rd level: decision of the designer
The designer has several options how to continue with
the provided information. Proposed design methods of
the knowledge processor can be applied and change the
design. Alternatively, the information on the current
design only appears passively, is noticed and the design
work continues. Feedback is gathered by other means,
for example when requests are made for more
information on the same topic. The decision will be
monitored and used to evaluate and refine the decision
score.

The global problem is to recognize the intentions of
design work in the correct context within the
information process and stored information. The
knowledge processor is responsible to gather all the
information needed to support the design functions.
Therefore all relevant data has to be extracted from a
modeling process and also from the other information
systems involved. This is guarded by three different
surveillance types:

1st section: design controlling
▪Verification of design rules for the design,

manufacturing, installation and cost reduction: rules
are extracted from active and older, already
completed projects. With these rules a learning
process is able to use relevant and correct older
structures for new designs with the goal to minimize
design errors
▪Connectivity of the knowledge processor to a quality

system: in case of defects or frequent customer
complaints their cause has to be analysed. If the
design is responsible, it is recorded for future
projects to avoid mistakes
▪Compliance with the requirements regarding

existing tools and machinery: avoid expensive

28

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

acquisitions of special tools if it is possible to
manufacture with existing work equipment

2nd section: component controlling
▪Comparison of similar designs: a work history is

stored and accessed during the phase of modeling. In
the case of similarities between older and current
designs, proposals are made by the system. If the
designer agrees with the proposals they are
automatically included in the current design
▪Integration of products from third party manu-

facturers and completed parts: the use of standard
parts has a high potential for cost reduction.
Therefore parts will be identified during the design
as third party parts that can be bought cheaply and
thus avoid the redesign of parts or unproven designs

3rd section: realization controlling
▪Recognition of failure in design: not feasible

designs should be detected as early as possible so
that the designer does not waste time in producing
something incorrect
▪Consideration of the material properties: if a bending

needs to be made in the sheet metal module and the
sheet metal is too thin, it has to be avoided by giving
a corrective proposal
▪Recognition of the possible unfolding of sheet metal

design: invalid designs have to be avoided

As example the following design situation is
considered where the designer needs to be advised why
it has a bad shape. An optimized shape is provided by
the knowledge processor with support of the intelligent
CAD methods based on the controlling sections.

Figure 3. Sheet metal with thin fin elements

The model is checked for various criteria. On one
hand it is checked what kind of material is used and
what material properties it has. On the other hand the
shape and form of the model is analyzed. In this
example the material used is a metal plate (see fig. 3).
The fins were created with a feature that was used six
times. A feature consists of one or more modeling
elements. The analysis of the design recognizes that
there are multiple (five) fins standing out, which are
relatively thin developed. The problem in this design is
that too fine structures are not in accordance with the
design rules derived from manufacturing machinery
constraints and quality feedback. In the production a

fine stamp would be required, which is very sensitive
to destruction. It is also very likely that too subtle fins
will break off in the process of manufacturing.

The design has to be examined whether the fins are
not too close to the edge of the metal sheet or if it
might be too thin to keep the fins in a solid position. To
modify this model into a better shape the slim feature is
modified in the way that two of the slim features side
by side create a new thick feature. Then the system
removes all slim features from the model (see fig. 4)
and by doing this reuses derived and proven
information.

Figure 4. Optimized sheet metal fins

The thick feature will be applied three times to the
model. With the thick feature two massive fins are
generated, which are much less sensitive to damage in
the manufacturing process. A robust stamp can now be
used with more resistance against break off. The
spacing of the fins to the sheet metal edge was
classified as uncritical and was retained.

The required knowledge has to be stored and
retrieved from the knowledge base to be applied to a
relevant design situation. This means that procedural
and other knowledge has to be classified and related to
the current and possible future working contexts. The
knowledge to address the problems described above
could be formulated as:
 begin compare_features;
 if number of features in model browser is >= 2 then
 count all features of equal form;
 else no modification possible;
 end if;
 end compare_features;
 begin merge_features;
 if count of equal features is odd number then
 merge = true;
 create new features;
 /* 2 slim features merge to 1 thick feature */
 else merge = false;
 end if;
 end merge_features;
 begin start_modification;
 if merge = true then
 save positions of slim features;
 calculate new positions for thick features;
 delete slim features from model browser;
 insert thick features at new positions;
 msgbox with information about modifications;
 end if;
 end start_modification;

Manufacturing:
reduce fins

Quality Feedback:
small fins break

Fin Features:
constraints apply

29

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

These and similar code snippets can then be
classified using the keywords „features“, „constraints“,
„modification“, „manufacturing“, „sheet metal“, and
„quality control”. The use of relevant knowledge has to
be decided from the working context, that is partly
derived from the user interactions and partly of the
design situation and previous knowledge that has be
used and applied. The situation could be as described in
fig. 5, where the relations between the areas are given.
The vertices then represent the actual knowledge to be
applied.

Figure 5. Knowledge for sheet metal design

If the user works with features and executes a
verification process for manufacturing constraints or
quality control, the system guides him to the sheet
metal knowledge and applies related information
accordingly. A score of quality through evaluation of
several sources linked to relevant topics then forms the
base of the semantic core. A great difficulty is to store
the geometric information in a readily available form
for the adaptation to design tasks. It is impossible to
extract design knowledge out of a pure geometric
design. The machine would not know what the
functions and intent of the single product parts are.

To know which stored products could be a
knowledge source for a design process, the products
have to be semantically annotated. In a modern CAD
system this is already done in a very limited way. If a
feature-based system is used, then the product model
stores the type of features that the engineer uses during
the design work. This can be driven further, in a way
that the designer gets a semantic toolbar and annotates
product parts and groups by hand while he constructs
them. From this annotation the system can learn and
through comparison of geometric elements it can
annotate other elements in the database using a
probability function.

The annotation layer is needed to be sure, that the
topic of the analyzed design situation fits to the current
design problem. If the analysis was only based on
geometric properties, then there would be many
unwanted solutions. Almost any geometric shape can
be transformed to fit in a given situation, but it has to
be decided which geometry is wanted and which is not
useful in a given situation.

7. Building a Semantic Core

Various information sources need to be integrated
into the knowledge process as discussed in the design
example. Although the information flow is directed to
the requirements of the designer, all other involved
knowledge processes can profit in a similar way. The
approach superimposes the existing information
sources with a guiding structure to provide a new level
of insight by providing more contextual information
than it is possible with the isolated systems. The need
for reasoning and knowledge aggregation is therefore
greatly emphasized.

One key feature as described in the above sections
is to avoid the need to build up structures or to identify,
limit or input the domain by hand. Therefore the first
step is a classification of the involved information
systems that are used as resources provided by the
company. This will be the foundation where the
information is stored, identified and connected to
relevant information from other systems.

Some systems may have a dominating role
regarding the intended purpose, e.g. an information in a
PDM system would be regarded as a primary source,
but information extracted from email would be treated
as a (maybe unproven) secondary source that can
enhance the value of the primary source. The following
step is to set up an initial key set as a seed from which
to build the base core semantics. By extracting
significant descriptors like document or project names
and relating those keys, the information resources are
analyzed for collocations of pairs of those keys. To
refine the confidence of a found or supposed relation,
as shown in fig 6., the internal base is switched with
external resources like Wikipedia [27], Google [11], or
ontologies like OpenCyc [18]. Those resources cover
many domains and are used to identify relationships
between the key identifiers. The results help to
compute if there is a strong or a weak relationship and
if there are more relevant key identifiers that were not
found during the initial seed.

Figure 6. Finding and refining semantics
Through the extraction of internal and after that

again external relationships of concepts by methods of

sheet metal
knowledge

quality
control

features constraints

manufacturing

rough semantics

base relation

+relational confidence

+relational semantic
refined semantics

extracted from
product data

Concept B

statistics analysis

Concept A

assumed domain

modification

30

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

information retrieval, the semantic confidence is rising.
The semantic relations of interest from the aspect of
reasoning in CAD are relations of the type:

“part of”/ “works on” / “similar to” / “instance of” /
“new version of” / “has relation to”

This seed acts as a first rough information structure
which is not static but refined in subsequent steps, with
the work flow and relations of the applied methods
shown in fig. 6.

The semantic core drives all informational
processes regarding retrieval and push of information.
A reference is built by classification of all database
content for fast access. Besides the overall
classification of knowledge resource, there is also a
need to establish an internal resource semantic. The
goal is to be able to extract relevant knowledge for
active knowledge delivery based on context. To keep
the semantic core up to date and valid, there is a need
for constant training on the proposed model, where a
significance evaluation of the pushed content is done
by observation how the knowledge is used in criteria
like access, context and expanding of usage paths along
the network.

A data set that would lead to the situation described
in step 6 of fig. 7 would look as shown in table 1 with
knowledge sources α,β and γ, where the influence
strength is α>β>γ, given by the type of the resource.

Table 1. Relational Information
A B C D E

A αβγ α

B αβγ αγ αβ

C α

D αβγ

E αγ αβ α

Table 1 shows the results delivered by the
information resources as relations between the concepts
A-E. Raising confidence, apart from the influence
strength of resources and the amount of congruent
found relations, can be done by monitoring the usage of
the semantic core. This is used as an approach to avoid
asking the users for feedback. After the initial setup, the
relations can be further refined through usage
observation based on criteria like access, context and
time of usage or informational movements along the
network. This is a passive process, since it is difficult to
detect if the piece of knowledge is directly copied or
used and modified. A heuristic that enables the system
to cope with contradictions and user disagreement is
introduced at the end of this section.

Problem solving capabilities can be integrated at
this point through inference mechanisms and also

external solutions can be requested automatically by
sending messages to experts. If someone introduces a
new concept or term into the databases by creating new
resources or documents with a key that was not in the
original seed, it is evaluated against the original seed
and integrated into it. If the creation happens within a
given context in the semantic core, e.g. while working
with a certain resource, the relations can be applied to
the newly introduced component automatically. The
final semantic core takes as input the relations between
subcomponents and the overall design tree. Fig. 7
shows the process of setting up relations and the
subsequent building of advanced relational semantics.

After the initial identification of concepts, they are
statistically verified by using publicly available
services and information resources like Google [11],
Wikipedia [27], forums, product databases or web
crawlers.

Identifying standing terms
Standing terms are composed of smaller units, but form
a key term when combined. They are easy to identify. A
search for standing terms is done by exact string match
and delivers the following hit values:

sheet metal 10.2m deep drawing 8.6m

Singling out random terms
Equally, random terms with no meaning or no relevant
meaning can be singled out or prepared for deep
analysis by taking apart the components. For random
terms or a non-standing term like “fin drawing” very
low hit counts are returned:

Sheet metal xcad1 1 hit
Sheet metal cartest 70 hits
fin drawing 269 hits

Identifying and separating domains
The above approach can also be used to identify
domains by searching for strongly connected concepts
and dividing them from other hot spots. Since we use a
global domain of all domains, there can only be a
tendency of strong belonging computed, but not the
final truth, since all domains are interconnected at some
point without a static border separating them.

Table 2. Domain relations
metal extrusion plastic design

metal - 3,8m 6,2m 13,9m

extrus. 263k - 275k 4,1m

plastic 6,4m 261k - 8,6m

design 25,6m 4,1m 8,7m -

31

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Step 1: Identifying the concept cloud Step 2: Aligning concepts with company resources

Step 3: Identifying basic relations Step 4: Raising relational confidence

Step 5: Adding relational semantics Step 6: Adding structures to knowledge base

Figure 7. Setting up relation semantics between concepts and adding confidence

Domain relations
Combinations of terms reveal if they are semantically
connected or not. A few examples of hit values by
Google are given in table 2. It is interesting to note that
different sequences of terms result in different hit
values. The values can be cross checked with the

inverse values, for example the combination of the
terms “extrusion” and “plastic” delivers around 300k
hits, while subtractive hit values are returned as:

extrusion -plastic 5,7m hits of 9,4m hits (extrusion)
plastic -extrusion 209m hits of 271m hits (plastic)

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

32

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Domain division
Similarly as identifying the domain membership of a
concept, the division and intersection points of domains
can be computed (see table 3).

Table 3. Domain division and intersection
metal extrusion plastic design

crop 743k 115k 691k 1,2m

wheat 674k 172k 597k 741k

tractor 247k 126k 772k 925k

field 10,2m 3m 5,1m 41,8m

Reverse values confirm the findings of divided
domains: metal -crop 54,3m / 619m total

metal -tractor 52,7m/619m total

Also intersections are visible since the term “field”
is too general and appears in many domains. This is
shown through high hit values of combinations within
the domain of sheet metal working, but also within the
domain of agriculture:

field crop 3,2m / field tractor 2,1m

The results strongly depend on the distribution of
domain content in the search databases. The rough
belonging to domains is computed as the sum of both
ordered search results with a cutoff that filters random
hits as: order_normal + order_negated - 2*cutoff > 0,
where cutoff is empirical at around 900k and has to be
related to the average distribution of positive hits.

Refined semantics
Based on the computed rough semantics from domain
and non-domain hits, a dedicated domain source is
added to provide higher semantic confidence between
the recognized terms, using reliable information
sources like encyclopedias or ontologies.

A list of paragraphs of the Wikipedia entry on
„sheet metal” [27] is shown in fig. 8 with a section
containing a classification of the context in fabrication
and similar topics regarding metal working.

Figure 8. Paragraphs about “sheet metal” [27]

The Wikipedia entry on „sheet metal” describes the
relations to other topics:

“Sheet metal is simply metal formed into thin and
flat pieces. It is one of the fundamental forms used in
metalworking, and can be cut and bent into a variety
of different shapes. [...] extremely thin pieces of sheet
metal would be considered to be foil or leaf, and pieces
thicker than 1/4 inch or a centimeter can be considered
plate.“

Combined with the statistical information of the
semantic relations and the involved terms, the concepts
can be extracted. A simplified part of the extracted
semantic graph for sheet metal and its surroundings is
shown in fig. 9.

Figure 9. Semantic graph for sheet metal

8. Comments on Stability and Regression

The need of a semantic core is visible in most
efforts to build an advanced CAD system. The
requirement to build the domain by hand is usually met
shortly after finalizing the building framework. The
approach described in this paper can be applied to all
domains where enough data exists to extrapolate
domain dependencies and semantics of relationships
between concepts. With regard to the stability of the
discussed examples, the most important aspects are:

Reliability: the approach to use unfiltered web-
content to compute concept distribution has the
advantage to be able to use multi-domain information.
The drawback is, that the correctness cannot be
guaranteed, since all domains are mixed into a whole.
Identified hot spots can be searched for in reliable
sources of domain knowledge like encyclopedias. The
problem is, that not all information has to be in there,
which is in turn solved by the general multi resource
approach, that considers multi domain information,
which is supposed to be correct within the domain itself
and then extended beyond domain borders.

Knowledge Acquisition: speed and reliability may
be increased by using an ontology as the starting point
and as a base to guide knowledge acquisition when
building knowledge based systems. Ontologies have
however the disadvantage that they are often fixed to a
specific domain or even subdomain which makes it
difficult to use them for a multi domain interactions.

Sheet metal metal

flat, thin
extrusion

plastic

a-kind-of

has
property

plate

instance-of

manuf acturing

manuf acturing
relation-to

field
too

general

Contents
 1 Processes
 1.1 Stretching
 1.2 Draw ing
 1.2.1 Deep draw ing
 1.3 Cutting
 1.4 Bending and f langing
 1.5 Punching and shearing
 1.6 Spinning
 1.7 Press brake forming
 1.8 Roll forming
 1.9 Rolling

33

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Specification: if company resources are matched
against the external information sources and used as a
filter, then the domain knowledge of a company can be
extracted as a specification for all involved information
which can then be classified accordingly, so that the
established structures of the company serve as an
additional source of how to relate the information.

Re-Usability: the knowledge base is the foundation
for a formal encoding of the important entities,
attributes, processes and their relationships in the
domain of interest. This formal representation supports
the reuse of information and shared components in
subsequent projects.

Search: the structure of the knowledge base may be
used as meta-data, serving as an index for a repository
of information, delivering meta-data for facilitating
searches for product knowledge.

Maintenance and regression: the presented
approach is able to reevaluate the content over time.
This eliminates the need to maintain the system as it
keeps itself up to date automatically and eliminates
weak semantic links. By using a weighted voting
algorithm to train and evaluate the confidence of
semantic connections, a simple heuristic takes into
account the interactions of the knowledge sources on
the target relation. Relations found and verified in
information resources place a weight on the relation,
based on their relevance, as shown in table 4. Since the
users have to use the knowledge base, they also have
impact by voting (see table 5) to influence and reject
structures. By using three areas of reached weight (see

fig. 10), it is decided whether a relation is stable,
discarded or still in the evaluation phase.

Table 4. Voting weights for sources
Source Found Not Found Contrary found

Google 1 3 2

Wikipedia 2 2 2

OpenCyc 3 1 2

Table 5. Voting weights for users
Agrees Rejects New Relation

Using 1 3 5

Browsing 2 2 5

Regression 3 1 5

This means that changing requirements can be
automatically considered by the design methods based
on the semantic core. When new company rules or
norms become effective, the design system tells the
designer where he is outdated.

Designs depending on machining aspects can be
verified by linking the designs in the knowledge base
and have it analyzed for dependencies. Transfer of
ideas between designers is actively promoted since they
all use the same knowledge base and are exposed to
influences from their colleagues. Although all the
above aspects can be applied for many design systems,
the emphasis on a boot strapping setup for a multi
domain knowledge base is a unique approach.

Figure 10. Phases of stable, evaluated and discarded relations

stable
relation

relation in
evaluation
phase

discarded
relation

34

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

For a given context, the knowledge base supports
content such as product models and geometry relations
as well as company related standards, norms and rules.
The explicit build-up and annotation that involves a
user as active part has been avoided by the involvement
of multi-domain information resources that are
combined to extract a semantic confident relation.

9. Application and Conclusions

By using the actual work context in conjunction
with the extracted statistical significant concept
relations, matching patterns can be recognized and be
used to deliver and apply relevant knowledge to the
design process. In the following example (see fig. 7) of
the design of a steering wheel, the size of the circles
reflects the importance of a certain aspect, as derived
from the merged conceptualization of a steering wheel
from human and online sources.

The separation of the identified contexts is
computed by the occurring frequency of its concepts.
The names of the contexts are manually added to mark
them as they can be identified through statistical
clustering. The focus can now be given to a certain
context, depending on where the user is executing the
work. If a frequently use of forming concepts is
detected, it can be deducted, that the work focus is in a
certain design area and knowledge according to related
concepts from this context is then presented.

Figure 7. Context related to steering wheel design

Based on a common design context, qualifying
situations have to be found in the knowledge base.
Depending on the selected semantic method, the
system identifies the geometric knowledge that needs
to be applied to the user’s problem. This information
typically consists of a geometric object as discussed in
the examples above. It can however be any information
aspect that is stored in the knowledge base. After the
identification of a geometric solution, it is extracted
and transformed into a neutral form, since most
certainly the design situation at hand has different

parameters and dimensions, so a direct part transfer
would not be possible. Out of the neutral form a
solution is generated with respect to the actual used
parameters. This solution is then proposed to the user
who can accept or modify it to his needs.

The design context between two design projects has
to match in order to separate relevant from irrelevant
solutions. The design context is identified through
buildup and use of geometric constructs, additionally to
the non geometric information that also delivers
characteristics to evaluate the design context. An
incorrect design context would yield solutions that are
not suited or not optimized for the design situation at
hand and would need considerable effort to make them
compliant.

If more than one solution has been identified, they
have to be evaluated against each other to determine
the best fitting expression. This is again based on
design context, similarity of design situations and user
requirements. The best fitting solution is determined by
how strongly it needs to be transformed to the actual
design situation and if it fits after the application of the
given geometric parameters.

Once a relevant solution is found in another design
project in the knowledge base, the solution has to be
transformed and applied in a fitting manner into the
current design situation. If the solution itself is already
reused information or based on a part library, the
modifiable parameters are reset and it is transformed
into a neutral base form. This base form is then
instantiated with the given parameter values.

If the solution is an original part design complex,
the modifiable parameters have to be identified before
it can be used in the new design project. The
transformation takes place on several logical layers.
Typical geometric transformations include rotation,
translation and scaling, supported by feature
transformations, that include the assignment or change
of feature types to the involved object. Topological
changes regarding the hull or boundary of the object
may need to be applied.

A set of anchor points is recorded from the user’s
actions, that are the driving force in the transformation
to decide how to configure the geometry that has to be
integrated. The initial application of the solution to the
design situation is done by feeding the available
parameter information into matched anchor points of
the solution object. The solution object is then
configured and generates a variant according to its
restrictions and parametric dependencies in the
knowledge base. If an exact fitting solution cannot be
determined, it will be left to the user to make the final
adaptations.

For scenarios other than mechanical assembly, there
has to be a considerable research effort to capture the
domain specifics that are needed for a transforming
operation.

Buttons

Horn

Steering Column

Shape and
Form

Mechanical
Design

Styling

SurfaceInterfaces

Spokes

LayoutWiring

Electrical design

Airbag

Steering Wheel

Base
Tilt

35

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

10. References
[1] Opletal, S., Roller, D., Rüger, S., “Semantic Core to

Acquire and Distribute Design Information”, The 2nd
Int. Conf. on Advanced Engineering Computing and
Applications in Sciences (ADVCOMP'08), IEEE
Computer Society Press, 2008

[2] Altmeyer J., Ohnsorge S., et. al., “Reuse of design
objects in CAD frameworks”, IEEE/ACM Intern. Conf.
on Computer-Aided Design, 1994

[3] Baeza-Yates, R., Ribeiro-Neto, B., “Modern Information
Retrieval”, New York: ACM Press, Addison-Wesley,
1999

[4] Bjørner D., “Domain Engineering” in BCS FACS
Seminars, Lecture Notes in Computer Science, BCS
FAC Series (eds. Boca, P., Bowen, J.), Springer, 2008

[5] Cardie, C., ”Empirical Methods in Information
Extraction” in AI Magazine, Vol. 18, 4, 65-68, 1997

[6] Case, K., Graham, I.J., et. al., “CAD Genetic Algorithms
for Evolutionary Form and Function Design” in
Advances in Manufacturing Technology - XVI , Cheng,
K., Webb, D. (Eds), Professional Engineering
Publishing Ltd, Proc. of the 18th National Conf. on
Manufacturing Research , Leeds Metropolitan
University, UK, pp 103-107, 2002

[7] Dalakakis, S., Dieterich, M., Roller, D., Warschat, J.,
“Multiagentensystem zur Wissenskommunikation in der
Produktentstehung-Rapid Product Develoment”.
Wirtschaftsinformatik 2005, "eEconomy eGovernment
eSociety", Ferstel, O.K., Sinz, E.J., Eckert, S.,
Isselhorst, T. (eds.), Physica-Verlag, 2005

[8] de Moya-Anegón et. al., “Domain analysis and
information retrieval through the construction of
heliocentric maps based on ISI-JCR category
cocitation”, in Information Processing and Management
41, Elsevier, 2005

[9] Fischer, M., Staub, S., “Constructability reasoning based
on a 4D facility model”, in Proc. of Structural
Engineering Worldwide. Elsevier Science Ltd., 1998

[10] Flycht-Eriksson A., “A domain knowledge manager for
dialogue systems”, in Proc. of ECAI 2000, ed. Horn W.,
Gesellschaft für Informatik, Berlin, 2000

[11] Google Search, Google inc., Mountain View, USA
http://www.google.com/advanced_search?hl=en

[12] Kitamura, Y., et. al., “Functional Metadata Schema for
Engineering Knowledge Management” in Proc. of
WWW 2005, Chiba, Japan, 2005

[13] Macquarie, P. B., “Tacit Knowledge in Organizational
Learning and Social Aspects of Technology”,
IGI Publishing, Hershey, USA, 2008

[14] Leonard, D., Sensiper, S., “The role of tacit knowledge
in group innovation”, California Management Review,
Vol. 40 No. 3, 1998

[15] Pratt, M., Regli, W.C., et.al., “Manufacturing Feature
Recognition from Solid Models: A Status Report”, in

IEEE Transaction on Robotics and Automation, Vol. 16,
No. 6, 2000

[16] Mok, C. K., Hua, M., et.al., “A hybrid case-based
reasoning CAD system for injection mould design”, Int.
Journal of Production Research, 1 – 18, 2007

[17] Ogden C.K., Richards I.A., “The Meaning of Meaning:
A Study of the Influence of Language upon Thought and
of the Science of Symbolism”, 8th ed.; New York:
Harcourt, Brace &World, 1946

[18] OpenCyc Ontology, OpenCyc Knowledge Base
Copyright 2001-2008, Cycorp, Inc., Austin, TX, USA
http://www.opencyc.org/

[19] Opletal, S., Dalakakis, S., Roller, D., “Towards
Semantic-Based CAD user Interface and Core
Components”, in "Applications of Digital Techniques in
Industrial Design Engineering", Proc. of the 6th Int.
Conf. on Computer-Aided Industrial Desingn &
Conceptual Desingn, Eds: Pan, Y., Vergeest, J., Lin, Z.,
Wang, Ch., Sun, S., Hu, Z., Tang, Y., Zhou, L., Int.
Academic Publishers, Beijing World Publishing
Corporation, Beijing, 2005

[20] Opletal S., Roller D., et.al., “Pro-active environment for
assisted model composition”, Proc. of Cooperative
Design, Visualization, and Engineering (CDVE07),
Springer, 2007

[21] Piskorski, J.; Xu F., et.al., “A Domain Adaptive
Approach to Automatic Acquisition of Domain Relevant
Terms and their Relations with Boot-strapping”, in Proc.
of the 3rd Int. Conference on Language Resources an
Evaluation (LREC), 2002

[22] Ponsen, M., Munoz-Avila, H., et.al., “Automatically
Acquiring Domain Knowledge For Adaptive Game AI
Using Evolutionary Learning” in Science of Computer
Programming, Volume 67, Issue 1, pp. 59-75 Special
Issue on Aspects of Game Programming, 2007

[23] Rembold, U., Nnaji, B.O., Storr A., “Computer
Integrated Manufacturing and Engineering”, Addison-
Wesley, UK, 1994

[24] Roller, D., Eck, O., Dalakakis, S., “Knowledge based
support of Rapid Product Development” in Journal of
Engineering Design, Taylor & Francis Ltd, Vol. 15, No.
4, 2004

[25] Singh V., “The Cim Debacle: Methodologies to
Facilitate Software Interoperability”, Springer, 1997

[26] St-Cyr O., Yves Lespérance Y., et.al., "An Intelligent
Assistant for Computer-Aided Design” Proc. of AAAI
2000 Spring Symposium Series on Smart Graphics,
Stanford, USA, 2000

[27] Exemplary Wikipedia page on “sheet metal”, Wikimedia
Foundation Inc., San Francisco, USA

 http://en.wikipedia.org/wiki/Sheet_metal
[28] Feiyu, X., Uszkoreit, H., Li H., “A Seed-driven Bottom-

up Machine Learning Framework for Extracting
Relations of Various Complexity” in Proc. of ACL
2007, Prague, 2007

36

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

 Semantic Enabled Framework for SLA Monitoring

Kaouthar FAKHFAKH
1-2-3

, Saïd TAZI
1-2
, Khalil

DRIRA
1,2

1
CNRS- LAAS

2
Université de Toulouse; UT1, UPS, INSA, INP, ISAE;

LAAS;

7 avenue du colonel Roche, F31077 Toulouse, France

{kchaari, tazi, khalil}@laas.fr

Tarak CHAARI3 and Mohamed JMAIEL
3

3
National Engineering School of Sfax

ENIS-ReDCAD

Informatics and applied Mathematics department,

Route de la Soukra, B.P. W, 3038 Sfax, Tunisia

tarak.chaari@redcad.org

mohamed.jmaiel@enis.rnu.tn

Abstract--Defining clear Quality of Service agreements

between service providers and consumers is particularly

important for the successful deployment of service-oriented

architectures. The related challenges include correctly

elaborating and monitoring QoS-aware contracts (called SLA:

Service Level Agreement) to detect and handle their

violations. In this paper, first, we study and compare existing

SLA-related models. To address the insufficiencies of these

models, we propose a complete, generic and semantically

richer ontology-based model of Service Level Agreements. In

this model, we use the SWRL language (Semantic Web Rule

Language) to express SLA obligations. This language

facilitates the SLA monitoring process and the eventual action

triggering in case of violations. In a second step, we use our

SLA model to automatically generate semantic-enabled QoS

obligations monitors. The main algorithms that perform the

monitoring process are presented in this article. We

implement these algorithms in an automatically generated

service-oriented architecture. Finally, we believe that this

work is a step ahead to the complete automation of SLA

management process.

Keywords—Service Level Agreements; ontology-based

model; SOA; SLA monitoring; QoS contracts

I. INTRODUCTION

 Service Level Agreements (SLAs) have become very
important in the information technology area of business
firms. SLAs are used with increasing frequency in general
application integrations, e-commerce, outsourcing and B2B
deployments. As firms increased their outsourcing of IT
services, SLAs become the primary management tool for
governing the relationship among the provider and its
consumers. The emergence of software as a service,
especially Web service, has also spurred the development of
service level agreements. As more business software moves
to a Web delivery platform, SLAs became the primary tool
that regulates the relationship between providers and
consumers when they use software services.

Metrics like processing time, messages per hour,
rejected transaction counts and queries per day are common
examples of defined service qualities which may be
measured either at end-points, or by an intermediary. These
measurements are then typically compared by an
enforcement process or application to the desired level. An

action should be taken according to this comparison. This
action can be simply gathering and reporting results,
identifying and forwarding SLA violations, or changing
service behavior based on current SLA conformance.

Monitoring of SLAs between providers of a service (for
example on-line banking, auctioning, ticket reservation, etc.)
and consumers is a topic that is gaining in importance for
business success over the Internet. SLA monitoring involves
the collection of statistical metrics about the performance of
a service to evaluate whether the provider is delivering the
level of QoS stipulated in a contract signed between the
provider and the consumer. In this context, the monitoring
and the management of SLAs and their related services are
crucially important. Our work focuses on the required
models and software tools to monitor the QoS obligations
specified in these contracts and to react to the violations or
failures in the system. In this paper, we focus on a generic
ontology [1] development to assist the preparation of QoS
contracts and to monitor the agreements and the specified
obligations on these contracts. The choice of ontology is
driven by its potential to facilitate the establishment of
service level agreements between the different knowledge
levels of service providers and consumers. In addition,
ontology implementations, using open standards like OWL
(Web Ontology Language) [2] and SWRL (Semantic Web
Rule Language) [3], provide a common understandable
language for machines and humans. They also facilitate the
contract obligations expression and the necessary inferring
to take the appropriate actions in case of violations.

In Section II of this paper, we start by defining the
principles of the service level agreements, their structure,
their establishment and their existing implementations. In
Section III, we present the main SLA related existing
models. In Section IV, we detail our service level
agreement’s generic model that we called SLAOnt. Then, in
Section V, we explain how this model is used to monitor its
obligation instances. We present also the simplified
architecture and the main algorithms that perform the
monitoring process. In Section VI, we present the SLA
monitoring API (called SLAOntAPI) that we have developed
to implement the monitoring algorithms. Before concluding,
in Section VII, we give a simple instantiation example of
our model and we show how we have monitored its
obligations using our SLA monitoring prototype.

37

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

II. SLA PRINCIPLES

In this section, we present the definition of a Service

Level Agreement (SLA), its structure, life-cycle and its

main implementing languages that we can find in the

literature.

A. Definition: Service Level Agreements (SLA)
Debusmann and al., in [4], define the term SLA as a

contract that exists between consumers and their service
provider, or between service providers. It records the
common understanding about services, priorities,
responsibilities, guarantee, and the quality level of the
service according to all these parameters. For example, it
may specify the levels of availability, serviceability,
performance, operation, or other attributes of the service like
billing and even penalties in the case of violation of the
SLA.

SLA is also described in [5] as a “Contractual service
commitment”. An SLA is a document that describes the
minimum performance criteria a provider promises to meet
while delivering a service. It typically also sets out the
remedial action and any penalties that will take effect if
performance falls below the promised standard. It is an
essential component of the legal contract between a service
consumer and the provider.”

B. SLA structure

Figure 1. General SLA Structure

SLA is composed of three main sections as presented in
figure 1. The first section contains the involved parties in the
contract: the signatory parties (the service provider and its
consumer) and the third parties that supervise SLA
obligations. The second section presents the involved
services description. This part contains the service
operations, their input and output messages. For each
service operation, one or more bindings may be specified. A
binding is the transport encoding for the messages to be
exchanged. It also contains the SLA parameters representing
the QoS variables that will be used in the specification of the

contract obligations. These parameters are based on metrics
evaluated by measurement directives. Some functions can
be used to aggregate multiple metric values. The last
element (schedule) of this second part in the contract
specifies the duration and the frequency of QoS
measurements. The third section presents the contract
obligations: their validity period indicating the time intervals
for which a given SLA parameter is valid (for examples,
business days, regular working hours or maintenance
periods), the predicate that represents the conditions that
specify these obligations and the actions to be taken when
the contract is not respected.

C. SLA life cycle
Although the contracts are intended to formalize

mutually accepted agreements by services providers and
consumers, their establishment usually remains usually
asymmetric and controlled by the providers. It includes
several steps as shown in figure 2.

Figure 2. SLA Establishment

The service provider creates a contract model that
defines the offered services and their associated constraints.
Then, it publishes them at a given broker service. They also
integrate the service’s financial costs (included in the SLA
obligations) as well as penalties in case of contract violation.
The service consumer discovers this model from the broker
service and selects the desired services and the contract
instance. When the provider receives this instance, he
checks it before its validation and sends it to the consumer.
After a negotiation phase and when the two parties are in
agreement, they sign the contract. After that, the consumer
can invoke her/his the corresponding service. The specified
obligations in the contract are constantly supervised by a
controlling authority which is a third party that notifies the
signatory parties when the contract is violated.

D. SLA implementations
Several languages were proposed to implement the SLA

specifications. We can cite WSOL (Web Service Offerings
Language) [6], GXLA [7], WSML (Web Services
Management Language) [8], SLAang [9], Ws-Agreement

Broker Service

Service

Consumer

Service

Provider

Control authority

Contract

Service

Service

description

Discovery
Publication

(1) Negotiation

(2) Signatory

(3)Invocation

Service

Parties
Signatory parties

Supporting parties

Service Description

Service Operations

Bindings

SLA parameters

Metrics

Measurement Directives

Functions

Schedule

Obligations

Validity Period

Predicate

Actions

38

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[10], Ws-Negotiation [11] and WSLA (Web Service Level
Agreement) [12]. Among all these languages, the most
successful contribution is the WSLA language created by
IBM

1
. It is a flexible and extensible language based on XML

Schema2. However, contract development remains a
difficult task to achieve when using this language. In fact,
providers and consumers don’t have the same degree of
knowledge and may not share the same language. In
addition, the contract monitoring and its possible violation
are difficult to establish due to some insufficiencies in the
monitored QoS parameters description especially when they
are composed by other elementary parameters.
Consequently, we explore the existing SLA related models
to find more structured and semantically richer descriptions
of SLA obligations to ensure their automatic monitoring and
management.

III. SLA-RELATED EXISTING MODELS

In this section, we present an analysis of some SLA
related existing models. We notice a great interest in
modeling the quality of services which is a principal element
in the contract specification. In the following parts of this
section, we present the main existing models in QoS
specifications.

A. OWL-QoS (Chen Zhou, Likang-Tien Chia, Bu-Sung
Lee)

OWL-QoS [13] is a QoS description model. It reuses
OWL-S [14], the service description ontology standard. This
model is characterized by its formal QoS specification,
distribution and consumption. Unfortunately, it presents
some insufficiencies: QoS metrics are instantiated without
specifying how they will be measured and in what context
they can be used. Moreover, the used approach is flawed in
that it uses cardinality constraints to express bounds upon
QoS properties. As the term cardinality suggests, this is
actually a misuse of this OWL construct. A cardinality
constraint puts constraints on the number of values a
property can take, not on the values themselves. Even if the
approach taken was valid, it also carries the limitation that it
can only express bounds as positive integers (e.g., there is
no simple way to say "availability> 0.999'').

B. QoSOnt (G. Dobson, R. Lock, I. Sommerville)
QoSOnt [15] has much in common with other OWL

ontologies [16] for web services. It contains links to OWL-S
and concentrates on the metrics definition and on QoS
requirements matching with metrics. As well as pointing the
direction to the correct semantics for matchmaking, QoSOnt
also correctly identifies that the value of a metric is only
relevant in the correct scope (e.g.. network latency applies to
a particular network route) and that metric has a “direction”
e.g., the higher, the better. Initial attempts at representing
how metrics combine when services are composed have also
been made. Unfortunately, despite identifying the correct

1 http://www.research.ibm.com/wsla/

2 http://www.w3.org/XML/Schema

semantics for matching QoS with its metrics, QoSOnt uses a
non standardized XML language losing many of the
advantages of OWL [2].

C. SL-Ontology (Steffen Bleul, Thomas Weise, Kurt
Geihss)

SL-Ontology [17] is another attempt at QoS modeling. It
differentiates between the provider offers and customer
demands. It presents the necessary elements of quality aware
service discovery and the importance of integrating quality
aspects in service integration. A description language needs
flexibility for service level packages and service providing
parties. It must also handle different terms in specifying
QoS-Dimensions. In this scope, SL-Ontology specifies a
part of measurement units transformations to address
disparities between customers and suppliers languages. This
resolution is specified only at the level of units in this
model.

D. WS-QoS (Tian, M., Gramm, A., Ritter, H., and Schiller,
J.)

WS-QoS [18] is a framework that uses a QoS-based
ontology model for the dynamic Web services selection
depending on the performance requirements and network
bandwidth. This model is characterized by specific metrics
that must be known in advance by all the services. It also
uses a specific non-OWL XML language for metric
description. Consequently, it loses the reasoning and the
semantic inferences offered by the OWL language.

E. FIPA QoS (M.B Alberto, G.V Marisol)
FIPA [19] is another ontology-based model of QoS

representation. It is complete, but unfortunately it remains
too specific to the lower layers of the OSI model. This
ontology also lacks an openly available implementation and
links to OWL-S ontology. It has also been applied only in
FIPA architecture and therefore it is not directly applicable
in a web services environment.

F. MOQ (HM. Kim, A. Sengupta and J. Evermann)
MOQ [20] is another attempt of QoS modeling that

defines QoS composite requirements but fails to suggest a
mean to allow logical requirement combinations, only
stating that if all sub-requirements are met then the
composite is always satisfied. Unfortunately, the major
drawback of MOQ is that it does not in itself seem to
present an ontology, but only talks about the semantics of
QoS ontologies in general. It doesn’t use a vocabulary or
taxonomy of QoS terms in its modeling and therefore it fails
to address all of the issues that complete ontologies.

G. Synthesis on existing QoS models
We have made a comparative study between these

various models. Table 1 presents a comparison of these
models according to three criteria. The first criterion
"Scope" illustrates the degree of completeness of each
model by listing its main concepts. The second criterion
"Implementation" shows if concrete examples were
developed to validate these models. The third criterion

39

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

"Automatic use facilities" illustrates the degree of
information structuring into these models to facilitate their
interpretation and their automatic use to monitor and
manage service level agreements.

TABLE 1. QOS MODELS COMPARISON

On the first criterion, the majority of the existing models

have focused on the specification and the measurement of
QoS. Few models are interested in establishing and
managing the QoS contracts. Consequently, we usually have
incomplete specifications to express the obligations of the
involved actors in the contracts. On the second criterion, we
looked for concrete examples that instantiate the existing
models. We encountered various difficulties with the
majority of them due to the insufficiency at the level of QoS
obligation specifications in the contract. For example, the
MOQ model is very abstract and lacks many concrete
elements to be really implemented in real world instances.
On the third criterion, specific and non standard
implementations of some parts of all the described models
make their automatic interpretation and monitoring difficult
to establish. Ad-hoc solutions have to be developed to use
these models.

 All the models that we cited have advantages and
relative limitations. Indeed, few existing models define the
context concept in the quality of service (QoS); however,
context is important to manage the contract lifecycle for
QoS in an automatic way. In addition, some contributions
(as WS-QoS) use specific XML formats for the full or
partial implementation of their models. This may reduce the
interest of using this ontology. In fact, the ontology offer
inference possibilities and semantic interpretations when
they are implemented using the OWL language. In addition,
some models are either specific to a particular domain such
as FIPA-QoS which is specific to the low layers of OSI
model) or presenting various insufficiencies (like the lack of
specifications of logical constraints in MOQ). Finally, all
these models focus on the quality of service modeling
without detailing the obligations and agreements between
the involved actors. This last observation motivated us to
develop an SLA model based on the advantages of the
existing contributions.

Our contribution in this domain is to establish an

ontology-based service level agreements (SLA) model. We
made this choice to (i) facilitate the establishment of
contracts between entities (suppliers and consumers) having
different knowledge levels (ii) have a model offering rich
semantics to be understood by humans and by machines (iii)
use the semantic richness of SWRL rules in order to express
SLA obligations and to easily infer and directly apply the
necessary actions in case of violations and (iv) use their
semantic richness to diagnose the causes of these violations.

IV. SLAONT: ONTOLOGY-BASED SLA MODEL

PROPOSITION

Our model, that we called SLAont [21], defines an

ontology describing various concepts and properties needed

in a quality of service contract. Figure 3 presents the generic

structure of this model. The root is the SLA concept. It

represents the contracts class that can be instantiated from

SLAOnt. This class is composed of the following concepts:

Parties, Obligation and ServiceDefiniton. The first concept

Parties defines the involved parties in the contract: the

signatory and the supporting party. The signatory parties are

generally the service providers and their consumers. The

third parties provide the necessary entities for the quality of

service measurement evaluation and monitoring. The

second concept Obligation defines the quality of service

obligations that have to be respected by the parties. These

obligations are defined by service level objectives. Each

objective is composed of predicates describing the QoS

clauses that may cause the contract violation. The third

concept ServiceDefinition describes the provided services

that are concerned by these obligations. Our model uses the

OWL-S [14] ontology to describe these services. This

ontology is composed of three main parts: the service profile

for advertising and discovering services; the process model,

that gives a detailed description of the service operation; and

 Scope Implementation
Automatic use

facilities

OWL-

QoS [13]

Metric, Unit,
Measurement

functions,

QoS Profile,
agreements,

Actors,

Service

Partial

implementations

QoS constraints as

strings

QoSOnt

[15]

Service
Profile, QoS

Profile,

Metric, Unit,
Actors,

Measurement

functions,
Service

Partial
implementations

Specific partial

implementation
language

SL-

Ontology

[17]

Metric, Unit,,
QoS, Services

Partial
implementations

for SLA

establishment but

not for monitoring

WS-QoS

[18]

Metric,
Functions,

QoS,

agreements,
Actors

No OWL

implementation

Specific

implementation

language

FIPA

QoS [19]

Quality of

Service
Description,

Rate Value,

Probability
Value,

Transport

Protocol
Description

No OWL

implementation

Specific

implementation
language

MOQ

[20]

Qos

Requirement,

Traceability,
Management

Provides a

theoretical basis

without
implementations

Specific predicate

interpretation

40

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the grounding that provides details on how to interoperate

with a service, via messages.

Figure 3. SLAOnt: general structure of a QoS contract

The contract is defined in a specific application domain.

Thus, the concept ApplicationDomain is defined to describe

the contract context. This concept is a reference to an

external ontology describing the business domain of the

involved service in the SLA. The necessary variables for

defining the measured quality of service are modeled by the

SLAParameter concept. SLAParameter is associated with

one or more metrics (an aggregation of metrics), that define

the quality of service parameters to be measured in the

contract. These metrics, modeled by the metric concept, can

be aggregated by a mathematical function or an algorithm

defined in the Function concept. For example, the function

can be an average or a computed percentage from a set of

measurements.

The SLAParameter concept represents a variable that

has a measurement unit (Unit) that can be seconds, minutes,

percentages, etc. For each SLA parameter, the SLA

designer has to specify the corresponding aggregation

function to compute its values. These functions are

described in the SLA instance. They can be composite and

they are described as an abstract service providing an SLA

parameter value and consuming metrics values or constants.

Each function is defined by an implementing class and a list

of operands corresponding to measurements of QoS

metrics. These measurements are obtained using

measurement directives MeasurementDirective

corresponding to remote operation calls to retrieve the

metrics values. We have modeled these calls by the

RemoteOperationCall concept. It describes the operation to

be called with its invocation protocol. Each operation is

associated to a handler that represents the remote class that

hosts the operation. In addition, we describe input

parameters of the operation with the Parameter concept.

This encapsulates the values to be passed to the remote

operation for its invocation. The Predicate concept defines

the QoS obligations that must be respected in the contract.

Each predicate is expressed by an SWRL rule. Each rule is

defined by a head part (swrl:head) and a body part

(swrl:body). In the head part, we specify the actions that

have to be taken when a violation is detected. The body part

specifies the conditions that may cause a contract violation.

Listing 1 gives a concrete example of an SLA predicate in

SLAOnt. This rule sends a disseminate violation message

to the signatory parties if the service response time is

greater or equal to 100 milliseconds.

Listing 1. Response time less than100 ms evaluation rule

hasEvaluation (response_time, ?x) ^ swrlb: greater ThanOrEqual(?x, 100.0) →
slaont:disseminateViolation (response_time, ?x)

SLAOnt is a generic and rich model in terms of

semantics. In fact, SLAParameters can be semantically
composed of metrics according to a user defined
aggregation functions. For example, an SLA parameter can
describe the average response time of a service. In this case,
the attached metric is response time and its aggregation
function is the average function. Moreover, measurement
directives are generic enough to evaluate any metric defined
in this model. The model can also express dependencies
between metrics, SLAParameters and QoS obligations.
These dependencies can be statistical (aggregation to
calculate average for example), logical (comparison with
many thresholds) or semantic (parameters deduced by
inference from other parameters). Finally, the semantic
relationships between metrics, SLAParameters and QoS
obligations offer an easy and reliable means to (1) evaluate
them and (2) to produce inferences and reasoning in order to
detect contract violations and even QoS degradations. In the
next section, we present how we used SLAOnt to monitor
QoS contracts.

V. MONITORING SLAONT INSTANCES

We used SLAOnt model to monitor the obligations
defined in the SLAs. In this section, we present the
simplified architecture and the main algorithms that perform
the monitoring process. Figure 4 shows an overview of this

references

hasInvolvedParties

hasServiceDefintion hasObligation

SLA

Obligation ApplicationDomain ServiceDefinition Parties

P1 :Service
SupportingParty

P1 :ServiceModel

P1 :ServiceProfile

SignatoryParty

Notify*

Notify*

P1 :describes*

P1 :presentedBy

OWL-S

P1 :presents*

ServiceObject

SLAParameter

Measurement

Directive
Metric

Unit

RemoteOperation

Call

Parameter

r

ServiceLevelObjective

hasServiceObject*

hasSLAParameter*

definedByMetric

hasUnit*

hasValueFrom

Is a

Predicate

hasPredicate*

Operation

hasOperation

hasParameter*

isConcernedBy

Function

hasFunction

hasOperand*

isComposedOfSLO*

isComposedOf

SupportingParty*

(4) Termination

isComposedOf

SignatoryParty

P1 :ServiceGrounding

P1 :supports

41

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

monitoring process in our approach. It illustrates the main
entities of our monitoring API. This API contains a
monitoring main module that can deploy SLAOnt instances.
For each metric, SLA parameter and obligation defined in
an SLAOnt instance, the main module respectively generates
a metric measurement service, an SLA parameter
measurement service and obligation measurement service.
In the remaining parts of this section, we detail the main
functions and algorithms of these services.

Figure 4. Simplified architecture of SLAOnt obligations monitoring

A. Metric measurement services
Metric measurement services provide metric values

according to a frequency specified in the SLA. A metric
measurement service is automatically instantiated by the
SLAOnt monitoring main module for each metric defined in
the SLA. This service invokes the measurement directive of
the associated metric. Listing 2 presents the main functions
of this service. First, it collects the metric name, the
measurement directive and the measurement frequency of
the associated metric. Then, it loops according to this
frequency to invoke the measurement directive of the metric
and to store the obtained value in a log file. These values
will be used by the SLA parameter measurement services.

Listing 2. Metric measurement algorithm

MetricMeasurement(Metric metric)
{
 getMetricDetailsRule:="hasName("+ metric + ", ?metricName) ^

hasValueFrom("+metric+",?measurementDirective)^
hasMeasurementFrequency("+ metric +",?frequency) →
query:select(?metricName, ? measurementDirective, ? frequency)";

(metricName, measurementDirective, frequency):= runRule(getMetricDetailsRule);
 Loop on frequency
 {
 measurement := invokeMeasurementDirective(measurementDirective);
 Log.store(metricName,measurement);
 }
}

B. SLA parameter measurement services
The SLA parameter measurement services apply

aggregation functions on the metrics values to compute the
QoS variables defined by the SLA parameter. An SLA
parameter measurement service is automatically instantiated
by the SLAOnt monitoring main module for each SLA
parameter defined in the contract. For each SLA parameter,
we have to specify the corresponding aggregation function
to compute its values. The implementing class of each
function will be called by the SLA parameter measurement
algorithm after getting the necessary metric values to
compute the function. This algorithm collects the different
metrics associated with the SLA parameter. It also gets the
computation frequency and the aggregation function of the
SLA parameter. Then, it loops according to this frequency in
order (i) to collect the last measured values of the metrics
associated to the SLA parameter, (ii) to compute its
aggregation functions and (iii) to add its value in the Log
storage. This value will be used by the obligation
monitoring services. Listing 3 presents the main functions of
this service.

Listing 3. SLA parameter measurement algorithm

SLAParameterMeasurement(SLAParameter parameter)
{
 getMetricsRule := "hasFunction("+parameter+",?function) ^

hasOperand(?function, ?metric) →query:select(?metric);
 metrics := runRule(getMetricsRule);
 getSLAParameterDetailsRule:= "hasFunction("+parameter+",?function) ^

hasAggregationFrequency("+ parameter + ", ? aggregationFrequency)
→query:select(?function, ?aggregationFrequency)";

 (function, aggregationFrequency):=runRule(getSLAParameterDetailsRule);
 Every aggregationFrequency do
 {

 Measurements:= ∅;
 For each metric in metrics do
 {
 Measurements.put(metric, Log.getLastValues(metric));
 }
 functionClass := loadFunctionClass(function) ;
 slaParameterValue := functionClass.call(Measurements);
 SLAOnt.setLastParameterValue(parameter, slaParameterValue);
 Log.store(parameter, slaParameterValue);
 }
}

C. Obligation monitoring services
The obligation monitoring services check the validity of

each obligation defined in the contract. They are
automatically instantiated by the SLAOnt monitoring main
module for each Obligation defined in the SLA. It uses the
computed values in the SLA parameter to check if they
satisfy the specified conditions defined in the obligation.
These conditions are defined as SWRL rules.

Listing 4. Predicate evaluation rule

hasEvaluation(average_response_time, ?x) ^ swrlb: greaterThanOrEqual(?x,
100.0) → slaont:disseminate Violation(average_ response_time, ?x)

The evaluation of these conditions is simply an inference

of these SWRL rules. The actions to be taken in case of

Measurements

SLAOnt

LOG

Metric

Measurement

Service

SLAParameter

Measurement

Service

Obligation

Monitoring

Service

Measurements

Measurements

SLAOnt Monitoring Main Module

Uses

Uses to infer

Uses to infer Uses to infer

Generates Generates
Generates

42

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

violations can be directly applied in these rules like
disseminateViolation in Listing 4.

Listing 5. Obligation monitoring algorithm

checkObligation(Obligation obligation)
{
getPredicatesRule:="isComposedOfSLO("+obligation+",?slo) ^ hasPredicate(?slo,

?predicate) → query:select(?predicate)";
Predicates: = runRule(getPredicatesRule) ;
For each p in Predicates
 { getPredicateRule := "hasRule("+p+", ?rule) ^

hasVerificationPeriodicity("+p+",?periodicity) →
query:select(?rule,?periodicity)";

 (rule,periodicity) := runRule(getPredicateRule)
 Loop on periodicity
 {
 runRule(rule);
 }
 }
}

Listing 5 presents the main functions of this service. It

starts by collecting the different predicates defined in the
associated obligation. Then, every predicate evaluation
periodicity (every sixty minutes for example), the inference
engine computes the attached SWRL rule and executes the
specified action to be taken in case of violation. For
example, the SWRL of Listing 1, if the response time is
greater than 100 ms, the action disseminateViolation is
triggered. This action continuously reports all the detected
violations and their causes to the involved parties in the
SLA.

When the designer creates an SLAOnt instance, she/he
can specify an execution order for the SWRL rules
representing the SLA predicates. This order is ensured by a
numbering sequence in the name of the rules that should be
conflict free in order to produce relevant results. This
conflict verification should be performed before the
monitoring phase. The verification process is out of the
scope of this work. Actually, we are working on a
negotiation approach that generates SLAOnt instances with
conflict free obligations.

In the next section, we present how we implemented
these algorithms to develop a complete and a reusable
monitoring API for SLAOnt instances.

VI. SLAONT MONITORING API

In this section, we present the SLAOnt monitoring API
(named SLAOntAPI) that we have developed to implement
the algorithms presented in the previous section. Figure 5
shows the technical architecture of the monitoring process.
In the lowest layer, ontologies used in the API are
represented by their OWL files. Above this layer, the Xerces
XML API

3
 is used to read data from the owl file. Protégé

OWL API
4
 is used to handle owl data in the ontologies.

Then, the SWRL Jess API5 is used to make inferences and

3 http://xerces.apache.org/xerces-j/apiDocs/index.html

4 http://protege.stanford.edu/plugins/owl/api/

5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab

reasoning on the ontologies instances. In the upper layer, we
have developed a JAVA Monitoring API (SLAOntAPI).

Figure 5. Technical architecture of the monitoring process

Figure 6. The SLAOntAPI class diagram

Java Program (monitoring

code)

SWRL Jess API

Protégé OWL API

Ontologies OWL

(SLAOnt.owl,

SLAOntActions.owl)

Xerces XML API

SLAMonitoringMain

SWRLBuildingLibraryIMPL

SWRLEngineBridge

SWRLFactory

OWL model

XML Parser

SLAMonitoringMain

+ main ()

- CreateObligation

 MonitoringServices()

-CreateMetric

MeasurementService()

-CreateSLAParameter

MeasurementService()

SWRLfactory

CreateImp()

MetricMeasurementService

Start()

SLAParameterMeasurement

Service

Start()

SWRLEngineBridge (Jess)

infer()

PredicateEvalutionService

Start()

SWRLBuiltinLibraryImpl

getMetric()

aggregateMetrics()

setSLAParameterValue()

dissiminateViolation()

Create Rule

Create /start

Create /start

Execute Rule
Execute Rule

Create / start

ExecuteRule

uses

43

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 7. The SLAOntAPI Sequence Diagram

Figure 8. OWL file containing the actions to be triggered in SLA

predicates

Figure 6 shows the class diagram of the SLAOnt API.
The most important class in this API is the
SWRLBuiltInLibraryImpl class. It contains the functions that
will be directly invoked by the SWRL rules. This class
offers the getMetric function which invokes the
measurement directive of the specified metric and sends its
value to the Log store. It also has an aggregateMetrics
method that calls the aggregation function to compute SLA

parameter values. Finally, it offers a disseminateViolation
method that sends SLA violation messages to the signatory
parties. These methods are defined as SWRL Built-ins
which are predicates that can take on or more arguments.

Built-ins are analogous to functions in production rule
systems. A number of core built-ins are defined in the
SWRL specification. This core set includes basic
mathematical operators and built-ins for string and date
manipulations. These built-ins can be used directly in
SWRL rules. User defined built-ins has to be declared in an
external ontology. We have declared getMetric,
aggregateMetrics and disseminateViolation built-ins in the
ontology represented by an Owl file (slaOntActions.owl) as
shown in figure 8.

Figure 7 shows the sequence diagram of our approach.
For each metric in SLAOnt, the main program creates a
measurement rule and a measurement service. For each
SLAParameter, The main program creates a metric
aggregation rule and a service to perform the aggregation.
For each obligation in SLAOnt, the main program generates
an obligation evaluation service.

VII. CASE STUDY: THE FLIGHT SLA EXAMPLE

To validate the service level agreements model and the
developed monitoring API, we created an instance of
SLAOnt model using the “protégé” tool. This instance
consists in a simple agreement example between a provider
of a flight booking service and its consumers. This service
must provide an average response time less than 100
milliseconds for a certain class of clients. Figure 9 illustrates
the FlightSLA instance in this example.

slaont :aggregateMetric()

slaont :getMetric()

infer(obligationRule)

infer(aggregationRule)

infer(measurementRule)

Start()

Start()

Start()

Metric Measurement

service
SLAParameter

MonitoringService

service

Obligation

Monitoring service

SWRLEngine

Bridge

(Jess)

SWRLBuildinLibrary

Impl

slaont :disseminateViolation()

Every Measurement Frequency

Every Aggregation Frequency

For each metric in SLAont : createImp (measurementRule)

For each SLAparameter in SLAont : CreateImp (AggregationRule)

For each SLAparameter in SLAont : createSLAParameterMonitoringService (SLAParameter, AgregationRule)

For each obligation in SLAont : createObligationMonitoringService(obligation)

SLAMonitoring

Main Module
SWRL factory

Every evaluation frequency

For each metric in SLAont : createMeasurementService (Metric,measurementRule)

Jess SWRL API SLAOnt Monitoring API

slaont :setSLAParameterValue()

44

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 9. FlightSLA: An SLAOnt instance example

The service provider of this contract is named

FlightProvider and his consumer is FlightConsumer. In this
example, the third parties involved in this contract are:
FlightProviderMeasurement and FlightAuditor. The
FlightProviderMeasurement service must provide the
response time measurements of the consumer requests. The
FlightAuditor service must notify any violations of the
contract to the signatory parties. The service provider must
respect the objective defined by the FilghtSLO instance in
the contract. This instance specifies the predicates that have
to be satisfied in the contract. These predicates are defined
in SWRL rules to facilitate the monitoring processes of the
contract. The defined obligation in the FlightSLA example is
shown in Listing 6.

Listing 6. Predicate evaluation rule

hasEvaluation(average_response_time, ?x) ^ swrlb: greaterThanOrEqual(?x,
100.0) → slaont:disseminate Violation(AverageLessThan100ms, "false", average_

response_time, ?x)

This rule verifies that the average response time of the

monitored service is greater or equal to 100 milliseconds
(body part of the rule). In this case, a violation message is
disseminated to the signatory parties in the contract. These
messages contain the parameter values that caused the
violation. To perform the automatic monitoring process on
this example, we loaded its owl file6 in the monitoring API
main module (figure 10).

Figure 11 shows the monitoring process of this example.
To use the SLAOntAPI7 with other SLA instances, the SLA

6 http://www.laas.fr/~kchaari/slaOnt/FlightSLA.owl

7 http://www.laas.fr/~kchaari/slaOnt/SLAmonitoring.zip

designer should import the SLAOnt ontology8 and creates
the necessary instances of its main concepts. The actions to
be taken in case of violations should be declared in an
external ontology named SLAOntActions.owl. These actions
should be implemented as SWRL Built-ins to work with our
code. These built-ins are standard java code that can be
easily personalized to manage the actions that should be
taken in case of violations. Finally, the designer should save
the created instance in an owl file and load it in our
monitoring main module as shown in figure 10.

Figure 10. SLAOnt instances loading interface

8 http://www.laas.fr/~kchaari/slaOnt/SLAont.owl

flightSLA

involvedParties

flightServiceDefinition
bookingFlight

flightObligation

notification

flightSLO

flight

flightProviderMeasure

flightAuditor

flightConsumer

flightProvider

AverageLessThan100ms

hasObligations

isConcernedBy
hasServiceDefinition

hasInvolvedParties

hasPredicate

hasObligedParty

notify

notify

isComposedOfSignatoryParty

isComposedOf

SignatoryParty notify isComposedOf

SupportingParty

hasServiceObject

isComposedOf

ActionGuarantee isComposedOf

serviceLevelObjective

Average_response_time

responseTime

hasSLAParameter

definedByMetric

45

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 11. FlightSLA monitoring process

VIII. CONCLUSION AND FUTURE WORK

The service oriented software engineering market
requires QoS specifications by the services suppliers. Much
effort has been invested in modeling QoS parameters to
allow an automatic (or semi-automatic) selection of the
services offering the best quality. We have explored several
existing models in this domain. We have noticed the lack of
a comprehensive and a generic model for the service level
agreements specification and for their monitoring to detect
possible violations. Therefore, we created an ontology that
models these agreements (SLA) to facilitate the QoS
contracts establishment between consumers and suppliers on
one hand and to automate their management and monitoring
on the other hand. In this paper, we presented the structure
of our ontology-based model offering rich semantics to be
understood by humans and by machines. In this model, we
used the semantic richness of SWRL rules in order to
express SLA obligations and to easily infer and apply the
necessary actions in case of violations. Our second
contribution in this work is the development of an API that
guarantees the automatic monitoring of our SLA model
instances. This API is based on an automatic generation of a
service oriented architecture that gathers the measurements
of the QoS defined in the SLAs. For clarity reasons, we
presented a simple SLA example to illustrate the main
principles of our SLA model and our monitoring API. We
have tested this API on more complex examples concerning
video streaming provider who offers two services: the first

one to visualize film online and the second one for
downloading films. In this example, a download time SLA
parameter is monitored according to the video size and the
client’s throughput. Our API is scalable enough to handle a
large number of metrics SLA parameter and obligations. In
fact, their associated measurement services are instantiated
dynamically in separate threads and can be distributed on
many machines. We plan to use the monitored
measurements to analyze and detect system degradations
and to prevent SLA violations. Actually, we are working on
a semantic-enabled negotiation framework to help the
providers and their customers in establishing SLAOnt
contracts. In a long term future work, we intend to propose
corrective actions in case of QoS degradation. This issue
will be very useful to evolve from the existing simple
message notifications to corrective actions assistance.

ACKNOWLEDGEMENTS

This work has been partially funded by the ITEA2's
UseNet (Ubiquitous M2M Service Networks) European
project

9
.

REFERENCES

[1] R.Studer, R.Benjamins, D.Fensel. Knowledge engineering:
principles and methods. IEEE Transactions on Data and Knowledge
Engineering, 25 (1-2) pp.161-197, March 1998.

9 https://usenet.erve.vtt.fi/

46

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[2] Mc Guiness D. & ZSPLITZvan Harmelen F. (2004). OWL Web
Ontology Language Overview, W3C Recommendation
http://www.w3.org/TR/owl-features/

[3] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A semantic web rule language combining
OWL and RuleML. W3C Member Submission, 21 May 2004.

[4] M. Debusmann, R. Kroger, and K. Geihs. “Unifying Service Level
Management Using an MDA-based Approach”. IEEE Network
Operations and Management Symposium, pp.801-814, 2004.

[5] Procullux Media Ltd. http://looselycoupled.com/glossary/SLA.

 Last visited 15/01/09

[6] Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., and Ma, W. 2005.
Management applications of the web service offerings language . Inf.
Syst. 30, 7 (Nov. 2005), 564-586.

[7] Badis Tebbani, Issam Aib. “GXLA a Language for the Specification
of Service Level Agreements”. Autonomic Networking, 201-214,
2006.

[8] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F.Casati.
“Automated SLA Monitoring for Web Services”. IFIP/IEEE
International Workshop on Distributed Systems: Operations and
Management, pp.28-41, 2002.

[9] J. Skene, D. Lamanna, and W. Emmerich. “SLAng: A Language for
Service Level Agreements”. Workshop on Future Trends in
Distributed Computing Systems. IEEE Computer Society, 2002.

[10] A. Andrieux, A. Dan K. Czajkowski, K. Keahey, H. Ludwig, T.
Nakata, J. Pruyne,J. Rofrano, S. Tuecke, and M. Xu. “Web Services
Agreement Specification (WSAgreement)”. Specification draft,
Global Grid Forum (GGF), September Version 09/2005.

[11] P. C. K. Hung, H. Li, and J-J Jeng. “WS-Negotiation: An Overview
of Research Issues”. Hawaii International Conference on System
Sciences (HICSS), 2004.

[12] A. Keller and H. Ludwig. “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services”. Journal of
Network and Systems Management, 11(1), 2003.

[13] Chia, Bu-Sung Lee. “QoS Measurement Issues with DAML-QoS”.
IEEE InterChen Zhou, Likang-Tien national Conference on e-
Business Engineering (ICEBE'05) pp. 395 403.

[14] OWL-S. An OWL-based Web service ontology.
<http://www.w3.org/Submission/2004/07/> November 2004.

[15] G. Dobson, R. Lock, I. Sommerville. “QoSOnt: a QoS Ontology for
Service-Centric System”, EUROMICRO Conference on Software
Engineering and Advanced Applications, Porto, Portugal, Aug. 2005.

[16] C. Zhou, L. Chia, and B. Lee, “DAML-QoS Ontology for Web
Services”, Proceeding of the International Conference on Web
Services 2004 (ICWS04), San Diego, California, USA, July 2004.

[17] Steffen Bleul, Thomas Weise, Kurt Geihss. “An Ontology for
Quality-Aware Service Discovery”. Special Edition Editorial:
Engineering Design and Composition of Service-Oriented
Applications, Computer Systems Science & Engineering, Volume 5,
Number 21 – 2006.

[18] Tian, M., Gramm, A., Ritter,H., and Schiller,J. “Efficient Selection
and Monitoring of QoSaware Web services with the WSQoS
Framework”. IEEE/WIC/ACM International Conference on Web
Intelligence (WI'04), Beijing, China, 2004.

[19] Foundation for Intelligent Physical Agents “FIPA Quality of Service
Ontology Specification”, Geneva, Switzerland, Nov. 2002.

[20] HM. Kim, A. Sengupta and J. Evermann. “MOQ: Web Services
Ontologies for QOS and General Quality Evaluations”, European
Conference on Information Systems, Regensburg, Germany. May
2005.

[21] K. Fakhfakh, T. Chaari, S. Tazi, K. Drira, and M. Jmaiel. 2008. A
Comprehensive Ontology-Based Approach for SLA Obligations
Monitoring. In Proceedings of the 2008 the Second international
Conference on Advanced Engineering Computing and Applications
in Sciences - Volume 00 (September 29 - October 04, 2008).
ADVCOMP 2008. IARIA. Published by the IEEE Computer Society
Press, pp. 217-222.

47

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Complex software systems : Formalization and Applications∗

Marc Aiguier, Pascale Le Gall and Mbarka Mabrouki
École Centrale Paris

Laboratoire de Mathématiques Appliqués aux Systèmes (MAS)
Grande Voie des Vignes - F-92295 Châtenay-Malabry

Programme d’Épigénomique
523, Place des Terrasses de l’Agora - F-91025 Evry

{marc.aiguier,pascale.legall}@ecp.fr, mabrouki@epigenomique.genopole.fr

Abstract

A mathematical denotation is proposed for the notion
of complex software systems whose behavior is specified
by rigorous formalisms. Complex systems are described
in a recursive way as an interconnection of subsystems by
means of architectural connectors. In order to consider
the largest family of specification formalisms and architec-
tural connectors, this denotation is essentially formalism,
specification and connector independent. For this, we build
our denotation on Goguen’s institution theory. In this ab-
stract framework, we characterize complexity by the notion
of property emergence.

This work is a revised and extended version of Aigu-
ier, Le Gall and Mabrouki (3rd International Conference on
Software Engineering Advanced (ICSEA), IEEE Computer
Society Press, 2008).

Keywords-abstract specification language; abstract ar-
chitectural connector; emergent property; institution; cate-
gory theory; transition systems; modal first-order logic.

1 Introduction

A powerful approach to develop large software systems
is to describe them in a recursive way as an interconnec-
tion of sub-systems. This has then made emerge the no-
tion of architectural connector as a powerful tool to de-
scribe systems in terms of components and their interac-
tions [6, 7, 16, 25]. Academic and industrial groups have
defined and developed computer languages dedicated to the
description of software architectures provided with archi-
tectural connectors, calledArchitectural Description Lan-
guage (ADL), such as ACME/ADML [17], Wright [5] or

∗This work is performed within the European project GENNETEC
(GENetic NeTworks: Emergence and Complexity)STREP 34952.

Community [15, 16]. The interest of describing software
systems as interconnected subsystems is that this promotes
the reuse of components either directly taken in a library
or adapted by slight modifications made on existing ones.
The well-known difficulty with such systems is to infer the
global behavior of the system from the ones of subsystems.
Indeed, modern software systems are often open on the out-
side, that is they interact with the environment, composed
of interacting subsystems (e.g. active objects which inter-
act together concurrently [3, 27]) or defined by questioning
requirements of subsystems (e.g. feature-oriented systems
where each feature can modify the expected properties of
pre-existing features [18, 4, 26]). Thus, such global systems
may exhibit behaviors, that cannot be anticipated just from
a complete knowledge of subsystems. Hence, what makes
such software systemscomplexis they cannot be reduced to
simple rules of property inference from subsystems towards
to the global system.

Following some works issued from other scientific dis-
ciplinaries such as biology, physics, economy or sociol-
ogy [10, 13], let us make more precise what we mean by
complex systems. A complex system is characterized by a
holistic behavior, i.e. global: we do not consider that its be-
havior results from the combination of isolated behaviors of
some of its components, but instead has to be considered as
a whole. This is expressed by the appearance (emergence)
of global properties which is very difficult, see impossible,
to anticipate just from a complete knowledge of component
behaviors. This notion of emergence seems to be the sim-
plest way to define complexity. Succinctly, this could be
expressed as follows: suppose a system XY composed of
two subsystems X and Y. Let us also suppose we have a
mathematical functionF which gives all potential pieces of
information on XY, X and Y, and an operation ’+’ to com-
bine potential pieces of information of subsystems. If we
have thatF (XY) = F (X) + F (Y) then this means that

48

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the systemXY integrates in a consistent manner the sub-
systemsX andY without either removing or adding pieces
of information. Therefore, we can say that the systemXY

is notcomplex(i.e. the systemXY is said to bemodular).
On the contrary, if there exists somea ∈ F (X) + F (Y)
such thata 6∈ F (XY) or there exists somea ∈ F (XY)
such thata 6∈ F (X) + F (Y), then there is reconsideration
of some potential pieces of information ofX or Y in the
first case, and appearance of true emergence in the second
case. The systemXY is then saidcomplex.

In this paper, we will study the notion of complex soft-
ware systems by using formal specifications, that is we will
suppose that every part of systems have been specified in a
given formalism from which we can infer properties. The
systemXY will be built from subsystemsX and Y by
means of an architectural connectorc expliciting how the
two subsystems are linked together to form the global sys-
tem c(X,Y) = XY , the connectorc being implicit in the
notationXY . Finally, the function F will give for a spec-
ification its whole set of satisfied properties, the so-called
semantic consequencesof specifications usually notedX•,
andF (X) + F (Y) = (X• ∪ Y •)•. Roughly speaking, this
last notation consists in saturating the property derivation
mechanism, and then represents the fact thatF (X)+F (Y)
denote the set of all properties which can be derived from
the set of propertiesX•, resp.Y •, associated toX, resp.Y .
The notion of complexity being based on the emergence of
properties, a general framework dedicated to complex soft-
ware systems can be defined independently of formalisms,
specifications and architectural connectors. Hence, we in-
vestigate an abstract form of complexity, by following the
paradigm “logical-system independency”. The interest here
is simple. We can observe, whatever the formalism used
to specify softwares, that the same set of notions underlies
complexity. These notions are : architectural connector and
emergent property. To formalize abstractly these elements,
our approach will be based on previous works:

• we will use the general framework of institutions [20]
which is recognized as well-adapted to generalize for-
malisms. The theory of institutions abstracts the se-
mantical part of logical systems according to the needs
of software specifications in which changes of signa-
tures are taken into account. The abstraction of the
different parts of logical systems is obtained by us-
ing some notions of the category theory such as the
category of signatures and the two functors to denote
respectively the set of sentences and the category of
models over a signature (see Section 2 for the complete
definition of institutions and some related notions);

• specifications will be defined following the generic
approach of specification logics [14]. The inter-
est of specification logics is they unify in the same

framework heterogeneous forms of specifications by
considering them as simple objects of a category
SPEC, while handled specifications over institutions
are mostly axiomatic (i.e. of the form(Σ, Ax) where
Σ is a signature andAx is a (finite) set of formulas (ax-
ioms) overΣ). However, because we are interested by
emergent properties, we will adapt/modify specifica-
tion logics by defining them over institutions in order
to focus on specification properties;

• abstract connectors will be defined by using notions of
the category theory. The use of category theory has
already been applied strikingly to model the architec-
ture of software systems by Goguen [19] and Fiadeiro
& al. [15]. It has also been applied to model com-
plex natural systems such as biological, physical and
social systems (e.g. Ehresman and Vanbremeersch’s
works [13]).
Fiadeiro & al. [16] have proposed an abstract formal
denotation of a class of architectural connectors in the
style of Allen and Garlan [6], that is defined by a set of
roles and a glue specification. Here, we will go beyond
by not supposing any structure in the architectural con-
nectors.

Over our abstract notions of specification and architec-
tural connector, we will define the notion of emergent prop-
erties according to the two following classes:

1. the ones we will calltrue emergent propertiesthat are
properties which cannot be inferred from subsystem
properties,

2. and the ones we will callnon conformity properties
that are subsystem properties which are not satisfied
by the global system anymore.

In practice, properties of the first form, i.e. true emer-
gent properties, combine knowledge inherited from subsys-
tems. Thus, they are defined in a richer language than the
ones associated to each subsystem, and the presence of such
emergent properties is quite natural. Conversely, properties
of the second form, i.e. non conformity properties, are often
the consequences of bad interactions between subsystems.
They characterize properties that are satisfied (resp. not sat-
isfied) by a subsystem considered in isolation, but are not
satisfied (resp. satisfied) by the global system incorporating
the subsystem in question.

A software system will be then saidcomplexwhen emer-
gent properties can be inferred from it. The complexity of
systems just means that we do not benefit from the complete
knowledge of subsystems we have, to analyze the behavior
of the large system. Hence, the recursive approach used to
describe the system cannot be used to analyze its behavior.
Complex systems can then be opposed to modular systems

49

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

which by definition strictly preserve local properties at the
global level (see [24] for a state-of-the-art on the modular
approach).

The formalizations of system complexity and emergent
properties are interesting if they are done in such way to
support the characterization of general properties to guar-
antee when a system is or is not complex. To answer this
point, we will give some conditions under which a system
is modular. We will then establish two results: in the first
one we will give a sufficient and necessary condition to en-
sure the absence of true emergent properties. In the sec-
ond result, we will give sufficient conditions based on the
categorical notion of adjunctness to ensure the absence of
non-conformity properties.

As a result of our generalization defined in this paper, all
the notions, results, and techniques established and defined
in our abstract framework arede factoadaptable to any in-
stitution.

The paper is structured as follows: Section 2 reviews
some concepts, notations and terminology about institu-
tions. Section 3 defines an abstract notion of specifications
over institutions. In Section 4, abstract architectural con-
nectors are defined and classified as complex and modular.
The notations of the category theory used in this paper are
the standard ones and can be found in [15]. Although all the
notions and results given in this manuscript are exemplified
by many examples all along the paper, Section 5 illustrates
more particularly the abstract framework developed in this
paper to reactive component-based systems described by
transition systems and combined together through the syn-
chronous product operation.

Note : This manuscript extends the paper published in
the proceedings of [1] with expanded definitions, new re-
sults and additional examples. Moreover, as an application
of our approach, we will study reactive systems described
by means of transition systems as components and of the
usual synchronous product as architectural connector, and
whose behavior is expressed by logical properties over a
modal first-order logic. In this framework, we propose to
study complexity of reactive systems through this notion of
emergent properties. We will also give some conditions to
guarantee when a system is lacking of non-conformity prop-
erties which have been recognized as being the cause of bad
interaction between components. This last work has been
published in the proceedings of [2]. Here, this manuscript
also extends the paper published in [2] with complete proofs
of the main results.

2 Institutions

The theory of institutions [20] is a categorical abstract
model theory which formalizes the intuitive notion of logi-
cal system, including syntax, semantics, and the satisfaction

between them. This emerged in computing science studies
of software specification and semantics, in the context of
the increasing number of considered logics, with the ambi-
tion of doing as much as possible at the level of abstraction
independent of commitment to any particular logic. Now
institutions have become a common tool in the area of for-
mal specification, in fact its most fundamental mathematical
structure.

2.1 Basic definitions

Definition. 1 (Institution) An institution I =
(Sig, Sen,Mod, |=) consists of

• a categorySig, objects of which are calledsignatures,

• a functorSen : Sig → Set giving for each signature
a set, elements of which are calledsentences,

• a contravariant functorMod : Sigop → Cat giving
for each signature a category, objects and arrows of
which are calledΣ-modelsandΣ-morphisms respec-
tively, and

• a |Sig|-indexed family of relations

|=Σ⊆ |Mod(Σ)| × Sen(Σ)

calledsatisfaction relation,

such that the following property holds:
∀σ : Σ→ Σ′, ∀M′ ∈ |Mod(Σ′)|, ∀ϕ ∈ Sen(Σ),

M′ |=Σ′ Sen(σ)(ϕ)⇔Mod(σ)(M′) |=Σ ϕ

Here, we define some notions over institutions which
will be useful thereafter.

Definition. 2 (Elementary equivalence)Let I =
(Sig, Sen,Mod, |=) be an institution. LetΣ be a signa-
ture. TwoΣ-modelsM1 andM2 areelementary equivalent,
notedM1 ≡Σ M2 if, and only if the following condition
holds:∀ϕ ∈ Sen(Σ), M1 |=Σ ϕ⇐⇒M2 |=Σ ϕ.

This means thatM1 andM2 are undistinguishable with
respect to the formula satisfaction.

Definition. 3 (Closed under isomorphism)An institution
is closed under isomorphismif, and only if every two iso-
morphic models are elementary equivalent.

All reasonable logics (anyway all the logics classically used
in mathematics and computer science) are closed under iso-
morphism.

50

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Definition. 4 (Logical theory) Let I =
(Sig, Sen,Mod, |=) be an institution. LetΣ be a
signature of|Sig|. Let T be a set ofΣ-sentences (i.e.
T ⊆ Sen(Σ)). Let us denoteMod(T) the full sub-category
of Mod(Σ) whose objects are allΣ-modelsM such that
for anyϕ ∈ T ,M |=Σ ϕ, andT • the subset ofSen(Σ),
so-calledsemantic consequences ofT , defined as follows:

T • = {ϕ | ∀M ∈ |Mod(T)|, M |=Σ ϕ}

T is a logical theoryif, and only ifT = T •.

ϕ ∈ T • is also denoted byT |=Σ ϕ.

2.2 Examples of institutions

2.2.1 Propositional Logic (PL)

Signatures and signature morphisms are sets of proposi-
tional variables and functions between them respectively.
Given a signatureΣ, the set ofΣ-sentences is the least set
of sentences finitely built over propositional variables inΣ
and Boolean connectives in{¬,∨,∧,⇒}. Given a signa-
ture morphismσ : Σ → Σ′ associating to each proposi-
tional variable ofΣ a propositional variable ofΣ′, Sen(σ)
translatesΣ-formulas toΣ′-formulas by renaming proposi-
tional variables according toσ.
Given a signatureΣ, the category ofΣ-models is the cate-
gory of mappings1 ν : Σ → {0, 1} with identities as mor-
phisms. Given a signature morphismσ : Σ → Σ′, the for-
getful functorMod(σ) maps aΣ′-modelν′ to theΣ-model
ν = ν′ ◦ σ.
Finally, satisfaction is the usual propositional satisfaction.

2.2.2 Many-sorted First Order Logic with equality
(FOL)

Signatures are triples(S, F, P) whereS is a set of sorts,
andF andP are sets of function and predicate names re-
spectively, both with arities inS∗×S andS+ respectively.2

Signature morphismsσ : (S, F, P) → (S′, F ′, P ′) consist
of three functions between sets of sorts, sets of functions
and sets of predicates respectively, the last two preserving
arities.
Given a signatureΣ = (S, F, P), theΣ-atoms are of two
possible forms:t1 = t2 where3 t1, t2 ∈ TF (X)s (s ∈ S),
and p(t1, . . . , tn) where p : s1 × . . . × sn ∈ P and
ti ∈ TF (X)si

(1 ≤ i ≤ n, si ∈ S). The set ofΣ-sentences
is the least set of formulas built over the set ofΣ-atoms by
finitely applying Boolean connectives in{¬,∨,∧,⇒} and

1{0, 1} are the usual truth-values.
2S+ is the set of all non-empty sequences of elements inS andS∗ =

S+ ∪ {ε} whereε denotes the empty sequence.
3TF (X)s is the term algebra of sorts built overF with sorted variables

in a given setX.

quantifiers∀ and∃.
Given a signatureΣ = (S, F, P), a Σ-modelM is a fam-
ily M = (Ms)s∈S of sets (one for everys ∈ S), each one
equipped with a functionfM : Ms1

× . . .×Msn
→Ms for

everyf : s1 × . . .× sn → s ∈ F and with a n-ary relation
pM ⊆ Ms1

× . . . ×Msn
for everyp : s1 × . . . × sn ∈ P .

Given a signature morphismσ : Σ = (S, F, P) → Σ′ =
(S′, F ′, P ′) and aΣ′-modelM′, Mod(σ)(M′) is theΣ-
modelM defined for everys ∈ S by Ms = M ′

σ(s), and for
every function namef ∈ F and predicate namep ∈ P , by
fM = σ(f)M

′

andpM = σ(p)M
′

. Finally, satisfaction is
the usual first-order satisfaction.

Many other important logics can be obtained as FOL re-
strictions such as:

• Horn Clause Logic (HCL). An universal Horn sen-
tence for a signatureΣ in FOL is a Σ-sentence of
the form Γ ⇒ α whereΓ is a finite conjunction of
Σ-atoms andα is a Σ-atom. The institution of Horn
clause logic is the sub-institution ofFOL whose sig-
natures and models are those ofFOL and sentences
are restricted to the universal Horn sentences.

• Equational Logic (EQL). An algebraic signature
(S, F) simply is aFOL signature without predicate
symbols. The institution of equational logic is the sub-
institution of FOL whose signatures and models are
algebraic signatures and algebras respectively.

• Conditional equational logic (CEL). The institution
of conditional equational logic is the sub-institution of
EQL whose sentences are universal Horn clauses for
algebraic signatures.

• Rewriting Logic (RWL) Given an algebraic signature
Σ = (S, F), Σ-sentences are formulas of the form
ϕ : t1 → t′1 ∧ . . . ∧ tn → t′n ⇒ t → t′ whereti, t

′
i ∈

TF (X)si
(1 ≤ i ≤ n, si ∈ S) and t, t′ ∈ TF (X)s

(s ∈ S). Models of rewriting logic are preorder mod-
els, i.e. given a signatureΣ = (S, F), Mod(Σ) is the
category ofΣ-algebrasA such that for everys ∈ S,
As is equipped with a preorder≥. Hence,A |= ϕ if,
and only if for every variable assignmentν : X → A,
if eachν(ti)

A ≥ ν(t′i)
A thenν(t)A ≥ ν(t′)A where

_A : TF (A) → A is the mapping inductively defined
by: f(t1, . . . , tn)A = fA(tA1 , . . . , tAn).

2.2.3 Modal FOL (MFOL)

Signatures are couples(Σ, A) whereΣ is aFOL -signature
and A is a set of actions, and morphisms are couples of
FOL -signature morphisms and total functions on sets of ac-
tions. In the sequel, we will note by the same name both
MFOL -signature and each of its components.

51

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Given a MFOL signature(Σ, A) with Σ = (S, F, P),
(Σ, A)-atoms are either predicatesp(t1, . . . , tn) or the sym-
bol T (for T rue), and the set of(Σ, A)-formulas is the least
set of formulas built over the set of(Σ, A)-atoms by finitely
applying Boolean connectives in{¬,∨,∧,⇒}, quantifiers
∀ and∃, and modalities in{2a|a ∈ A}. For everya ∈ A,
the intuitive meaning of2a is “always after the actiona”.
Given a signature(Σ, A), a (Σ, A)-model (W,R), called
Kripke frame, consists of a familyW = (W i)i∈I of Σ-
models inFOL (thepossible worlds) such that4 W i

s = W j
s

for every i, j ∈ I ands ∈ S, and aA-indexed family of
“accessibility” relationsRa ⊆ I × I. Given a signature
morphismσ : (Σ, A) → (Σ′, A′) and a(Σ′, A′)-model
((W ′i)i∈I , R

′), Mod(σ)(((W ′i)i∈I , R
′)) is the (Σ, A)-

model(Mod(σ)(W ′i)i∈I , R) defined for everya ∈ A by
Ra = R′

σ(a). A (Σ, A)-sentenceϕ is said to be satisfied by
a (Σ, A)-model(W,R), noted(W,R) |=(Σ,A) ϕ, if for ev-
ery i ∈ I we have(W,R) |=i

Σ ϕ, where|=i
Σ is inductively

defined on the structure ofϕ as follows:

• for every FOL -formula ϕ built over Σ-atoms,
(W,R) |=i

Σ ϕ iff W i |=Σ ϕ

• (W,R) |=i
Σ 2aϕ when(W,R) |=j

Σ ϕ for everyj ∈ I

such thati Ra j.

2.2.4 More exotic institutions

The institution theory also enables to represent formalisms
which are not logics strictly speaking.

Formal languages (FL)The institution of formal lan-
guages is defined by the category of signaturesSet. Given
a setA, the set of sentences isA∗ andMod(A) is the cate-
gory whose objects are all subsets ofA∗. Given a signature
morphismσ : A → A′, Mod(σ) is the functor which at
L′ ⊆ A′∗ associates the setL = {α|σ(α) ∈ L′}. Finally,
given a signatureΣ ∈ Sig, |=Σ is just the membership rela-
tion 3. It is obvious to show that the satisfaction condition
holds.

Programming languages (PLG)The institution of a
programming language [28] is built over an algebra of built-
in data types and operations of a programming language.
Signatures are FOL signatures and sentences are programs
of the programming language over signatures; and models
are algebraic structures in which functions are interpreted
as recursive mappings (i.e for each function symbol is as-
signed a computation (either diverging, or yielding a result)
to any sequence of actual parameters). A model satisfies a
sentence if, and only if it assigns to each sequence of param-
eters the computation of the function body as given by the
sentence. Hence, sentences determine particular functions

4In the literature, Kripke frames satisfying such a property are saidwith
constant domains.

in the model uniquely. Finally, signature morphisms, model
reductions and sentence translations are defined similarlyto
those in FOL.

3 Specifications in institutions

Over institutions, specifications are usually defined ei-
ther by logical theories or couples(Σ, Ax) whereΣ is a
signature andAx a set (usually finite) of formulae (often
called axioms) overΣ. However, there is a large family of
specification formalisms mainly used to specify concurrent,
reactive and dynamic systems for which specifications are
not expressed in this way. We can cite for instance pro-
cess algebras, transition systems or Petri nets. Now, all of
these kinds of specifications can be studied through the set
of their semantic consequences expressed in an adequate
formalism. This leads us up to define the notion of specifi-
cations over institutions.

3.1 Definitions

Let us now consider a fixed but arbitrary institutionI =
(Sig, Sen,Mod, |=).

Definition. 5 (Specifications)A specification languageSL
overI is a pair (Spec,Real) where:

• Spec : Sigop → Set is a functor. Given a signature
Σ, elements inSpec(Σ) are calledspecifications over
Σ.

• Real = (RealΣ)Σ∈|Sig| is a Sig-indexed family of
mappingsRealΣ : Spec(Σ) → |Cat| such that
for every Σ ∈ |Sig|, and everySp ∈ Spec(Σ),
RealΣ(Sp) is a full subcategory ofMod(Σ). Objects
of RealΣ(Sp) are calledrealizations ofSp.

Definition. 6 (Semantic consequences)Let SL =
(Spec,Real) be a specification language overI. Let us
define _• = (_•Σ)Σ∈Sig theSig-indexed family of mappings
_•Σ : Spec(Σ)→ P(Sen(Σ)) that to everySp ∈ Spec(Σ),
yields the setSp•Σ = {ϕ|∀M ∈ RealΣ(Sp),M |=Σ ϕ}.
Sp•Σ is called theset of semantic consequencesof Sp or
thetheory ofSp.

Definition 6 calls for some comments:

• We could expect thatMod(Sp•) = Real(Sp) what
would make unmeaning the existence of the mappings
in Real in Definition 5. However, we can often be led
up to make some restrictions on specification models.
For instance, when dealing with axiom specifications
expressed in equational logic, we can be interested by
reachable or initial models to allow inductive proofs or
for computability reasons.

52

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

• Sometimes, _• is a natural transformation fromSpec

to5 P ◦ Senop. However, most of times, it is not the
case (see the examples in Section 3.2).

Definition. 7 (Category of specifications)Let SL be a
specification language over an institutionI. Denote
SPEC the category of specifications overSL whose the
objects are the elements in

⋃

Σ∈|Sig|

Spec(Σ), and morphisms

are actually given by signature morphisms (i.e. for every
Sp ∈ Spec(Σ) and everySp′ ∈ Spec(Σ′), σ : Sp →
Sp′ ∈ SPEC iff σ : Σ → Σ′ ∈ Sig). If a morphism
σ : Sp→ Sp′ in SPEC further satisfies:Sen(σ)(Sp•Σ) ⊆
Sp′

•
Σ′ , thenσ is calledspecification morphism.

Sig : SPEC → Sig is the functor which maps any specifi-
cationSp ∈ Spec(Σ) to the signatureΣ and any morphism
σ to the signature morphismSig(σ).

Hence, specification morphisms are arrows inSPEC

that further preserve semantic consequences. Com-
monly, the category of specifications over institutions have

⋃

Σ∈|Sig|

Spec(Σ) as objects and specification morphisms as

arrows [20, 29]. Here, the fact to consider just signature
morphisms between specifications will be useful to define
both architectural connectors and their combination.

3.2 Examples of specifications

We give three examples of specification languages that
correspond to the usual forms of specifications over arbi-
trary institutions.

3.2.1 Logical theories

Here, specifications are logical theories. To meet the re-
quirements given in Definition 5, this gives rise to the func-
tor Spec : Sigop → Set which to everyΣ ∈ Sig, as-
sociates the set of allΣ-theoriesT , and to every signa-
ture morphismσ : Σ → Σ′, matches everyΣ′-theoryT ′

with the Σ-theory T = {ϕ|Sen(σ)(ϕ) ∈ T ′}. Hence,
Spec(Σ) ⊆ P(Sen(Σ)). We naturally defineRealΣ(T) =
Mod(T). Moreover, specifications being saturated theories,
this naturally leads to the identity function _•

Σ : Spec(Σ)→

5Given a functorF : C → D, Fop : Cop → Dop is the dual ofF
defined as follows:

– ∀o ∈ C, F op(o) = F (o)

– f∗ being the reverse arrow off in C, ∀o, o′ ∈ C, ∀f ∈
HomC(o, o′), F op(f∗) = F (f)∗

The powerset functorP : Setop → Set takes a setS to its powerset
P(S), and a set functionf : S → S′ (i.e., an arrow fromS′ to S in
Setop) to the inverse image functionf−1 : P(S′) → P(S) which asso-
ciates to a subsetA ⊆ S′ the subset{s ∈ S|f(s) ∈ A} of S.

P(Sen(Σ)). It is easy to check that given a signature mor-
phismσ : Σ → Σ′, the following diagram commutes and
then _• is a natural transformation:

Spec(Σ) P(Sen(Σ))

Spec(Σ′) P(Sen(Σ′))

_•Σ

_•Σ′

Spec(σ) P(Senop(σ∗))

(See Footnote 5 for the definition ofσ∗)

3.2.2 Axiomatic specifications

In this case, specifications are defined by pairs(Σ, Ax)
where Σ is a signature andAx ⊆ Sen(Σ), and
given a signature morphismσ : Σ → Σ′, Spec(σ)
matches everyΣ′-specificationSp′ = (Σ′, Ax′) to Sp =
(Σ, {ϕ|Sen(σ)(ϕ) ∈ Ax′}). By the satisfaction condition,
we have thatSen(σ)(Ax•) ⊆ Ax′•. The functorSpec then
associates to every signatureΣ the set of pairs(Σ, Ax), and
(Σ, Ax)•Σ = Ax•. Observe that _• is not a natural transfor-
mation. Indeed, let us set inFOL , and consider the inclu-
sion morphismσ : Σ → Σ′ whereΣ′ = ({s}, ∅, {R1, R2 :
s× s}) andΣ = ({s}, ∅, {R1 : s× s}). Let Ax′ be the set
of axioms:

x R2 y =⇒ y R2 x

x R1 y ⇐⇒ x R2 y

Obviously, we prove fromAx′ that R1 is a symmetric
relation.
However, Spec(σ)((Σ′, Ax′)) = ∅, and then
Spec(σ)((Σ′, Ax′))• is restricted to tautologies while
P(Senop(σ∗))(Ax′) contains at leastx R1 y ⇒ y R1 x.

3.2.3 Inference rules

In the framework of formal language, languagesL over an
alphabetA can be specified by inference rules, that isn-
ary relationsr on A∗ and a tuple(α1, . . . , αn) ∈ r means
that if α1, . . . , αn−1 are words of the language, then so
is αn. Hence, a specification over an alphabetA is a set
R of n-ary relations onA∗. Given a signature morphism
σ : A→ A′ and a specificationR′ overA′, the specification
Spec(σ)(R′) over A is the setR of n-ary relationr such
that there existsr′ ∈ R′ andr = {(a1, . . . , an)|(∀i, 1 ≤
i ≤ n, ai ∈ A) ∧ (a1, . . . , an) ∈ r′}. Given a set of infer-
ence rulesR over an alphabetA, R•

A is the languageL in-
ductively generated from inference rules ofR. Given a sig-
nature morphismσ : A→ A′ and a set of inference rulesR′

overA′. It is easy to show thatSpec(σ)(R′)•A = R′•
A′ ∩A∗

what proves that _• is a natural transformation fromSpec

toP ◦ Senop.

53

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

3.3 Properties of specifications

Proposition. 1 Let σ : Sp → Sp′ be a specification mor-
phism. Then, the functorMod(σ) : Mod(Sig(Sp′)) →
Mod(Sig(Sp)) can be restricted to specification semantic
consequences (i.e.Mod(σ) : Mod(Sp′•Σ′) → Mod(Sp•Σ)
is a functor).

Proof. Let ϕ ∈ Sp•Sig(Sp) andM ∈ Mod(Sp′). As
σ is a specification morphism,M |=Sig(Sp′) Sen(σ)(ϕ).
Therefore, by the satisfaction condition, we also have that
Mod(σ)(M) |=Sig(Sp) ϕ.

We cannot state a similar result for the family of map-
pingsReal, i.e. we cannot define in a general way a func-
tor of the formReal(σ) : Real(Sp′) → Real(Sp). The
following notion of compatibility captures the existence of
such a functor.

Definition. 8 (Compatible) Let SL = (Spec,Real) be a
specification language overI. Let σ : Sp → Sp′ be a
specification morphism.Real is saidcompatiblewith σ if,
and only if we can define a functorReal(σ) : Real(Sp′)→
Real(Sp).

Here, we define two other notions that we will use after-
wards.

Definition. 9 (Definable by specification)Given an insti-
tution I and a specification language overI, a Σ-theory
T is saiddefinable by specificationor definablefor being
shorter if, and only if there existsSp ∈ Spec(Σ) such that
T = Sp•Σ.

In the following definition, we now adapt the standard
notion of liberal specification morphism [12] which will be
useful in Section 4.3.

Definition. 10 (Liberality) In any specification language
SL over I, a specification morphismσ : Sp → Sp′

is liberal if, and only if Real is compatible withσ and
Real(σ) : Real(Sp′) → Real(Sp) has a left-adjunct
F(σ) : Real(Sp)→ Real(Sp′).

Specifications defined by logical theories and axiomatic
specifications over the institutionCEL is liberal for every
specification morphismσ. Indeed, letσ : Σ = (S, F) →
Σ′ = (S′, F ′) be a signature morphism, and letΓ andΓ′

be two sets of conditional equations over, respectively,Σ
andΣ′ such thatSen(σ)(Γ) ⊆ Γ′. We can build a functor
TΓ′/Γ : A 7→ TΓ′/Γ(A), from the category ofΓ-algebras to
the category ofΓ′-algebras.
Let A be a Γ-algebras. TΓ′/Γ(A) is the quotient of

TF ′(A) by the congruence generated by the kernel of theΣ-
morphismTF (A) in A extending the identity onX. 6 This
algebra satisfies the following universal property: for every
Γ′-algebraB and everyΣ-morphismµ : A → Mod(σ)B,
there exists a uniqueΣ′-morphismηB : TΓ′/Γ(A) → B
such that for everya ∈ A, ηB(a) = µ(a). This universal
property directly shows that the functorTΓ′/Γ is left-adjunct
to Mod(σ), i.e., for everyΓ-algebraA there exists a univer-
sal morphismµA : A →Mod(σ)(TΓ′/Γ(A)). µA is called
theadjunct morphismfor A.

4 Architectural connector

4.1 Definitions

Succinctly, architectural connectors enable one to com-
bine components (specifications) together to make bigger
ones. However, depending on the used specification lan-
guage, the way of combining components can be differ-
ent. For instance, when specifications are logical theories
then their combination is often based on the set theoretical
union on signatures whereas the combination of specifica-
tions made of transition systems is based on some kinds of
product. However, one can observe that most of existing
connectorsc have the following common features:

• a connectorc gets as arguments a fixed numbern of
existing specificationsSp1, Sp2, . . .Spn defined re-
spectively over the signaturesΣ1, Σ2, . . .Σn, to build
a new one, denotedSp = c(Sp1, Sp2, . . . , Spn). We
can then see the connectorc as a mapping of arityn
from |SPEC|n to |SPEC|. We will see in the ex-
amples that actuallyc may be a partial function, but
often defined in a way sufficiently general to accept as
arguments tuples(Sp1, Sp2, . . . , Spn) with a large as-
sociated family of signature tuples(Σ1,Σ2, . . . ,Σn).

• as specifications will be recursively defined by means
of connectors, the argumentsSp1, Sp2, . . .Spn of
the connectorc can be linked together by some con-
straints on elements present in specification signatures,
expressed by signature morphisms. These constraints
will be taken into account by the definition of the con-
nectorc. Hence, the arguments of a connectorc will
not be a tuple ofn specifications, butn specifications
equipped with signature morphisms. This will be de-
fined by a graph whose nodes are specifications and
edges are signature morphisms. In our category theory
based setting, such a graph is called a diagram of the
specification categorySPEC. In practice, for a given
connectorc, all the diagrams accepted as arguments by

6TF ′ (A) (resp. TF (A)) is the term algebra built overF ′ (resp. F)
with sorted variables in the carrierA of theΓ-algebraA.

54

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

c have the same graph shape (i.e. the same organiza-
tion between nodes and edges). Hence, our connectors
will be built on the diagram category with the same
shape over the categorySPEC.

• the signatureΣ of Sp is the least one over the sig-
naturesΣ1, Σ2, . . . , Σn. This expresses the fact that
generally, a connectorc does not explicitly introduce
new elements to be specified, but on the contrary only
combines the elements already present in one of the
signaturesΣ1, Σ2 . . .Σn. In the following definition
of connectors, this will be expressed by the co-limit of
the diagram, projected on signatures.

This then leads us up to formally define architectural
connectors as follows:

Notation. 1 (Diagram category) Let I andC be two cat-
egories. Note∆(I,C) the category of diagrams inC with
shapeI, i.e. the category whose objects are all functors
δ : I → C, and morphisms are natural transformations be-
tween functorsδ, δ′ : I → C.
Let I ′ be a subcategory of a categoryI. Let δ be a dia-
gram of∆(I,C). Let us denoteδ|I′ the diagram of∆(I′,C)

obtained by restrictingδ to I ′.

Definition. 11 (Co-cone)Given a diagramδ : I → C. A
co-coneof δ consists of an objectc ∈ |C| and aI-indexed
family of morphismsαi : δ(i) → c such that for each edge
e : i→ i′ in I, we have thatαi′ ◦ δ(e) = αi.

A co-limiting co-cone (co-limit)(c, {αi}i∈I) can be un-
derstood as a minimal co-cone, that is:

Definition. 12 (Co-limit) A co-cone(c, {αi}i∈I) of a dia-
gram δ is a co-limit if, and only if it has the property that
for any other co-cone(d, {βi}i∈I) of δ, there exists a unique
morphismγ : c→ d such that for everyi ∈ I, γ ◦ αi = βi.
WhenI is the category• ← • → • with three objects and
two non-identity arrows, the co-limit is called apushout.

Definition. 13 (Co-complete)A category C is co-
complete if for every shape categoryI, every diagram
δ : I → C has a co-limit.

In the sequel, we will then consider institutions whose
the signature category is co-complete.

Definition. 14 (Architectural connector) Let SL be a
specification language over an institutionI for which the
categorySig is co-complete. Anarchitectural connector
c : |∆(I,SPEC)| → |SPEC| is a partial mapping such that
everyδ ∈ ∆(I,SPEC) for whichc(δ) is defined, is equipped
with a co-conep : Sig ◦ δ → Sig(c(δ)) co-limit ofSig ◦ δ.

Example. 1 (Enrichment and union) Enrichment and
union of specifications have surely been the first primitives
architectural connectors (so-called structuring primi-
tives) to be formally defined and studied especially when
dealing with specifications defined as axiomatic speci-
fications. They even received an abstract formalization
in institutions [8]. In our framework, both structuring
primitives are defined as follows: we consider an institu-
tion I = (Sig, Sen,Mod, |=). Moreover, in Example 1,
SPEC is the category whose objects are specifications of
the form(Σ, Ax) over a given institutionI and morphisms
are anyσ : (Σ, Ax) → (Σ′, Ax′) s.t. σ : Σ → Σ′ is a
signature morphism.

Enrichment Let I be the graph composed of two nodes
i and j and one arrowa : i → j. The connectorEn-
rich for axiomatic specifications is defined for every di-
agram δ : I → SPEC where δ(i) = (Σ, Ax) and
δ(j) = (Σ′, Ax′) such thatSen(Sig(δ(a)))(Ax) ⊆ Ax′,
and yieldsEnrich(δ) = (Σ′, Ax′) together with the co-
coneSig(δ(a)) and IdSig(δ(j)) which is the obvious co-
limit of Sig ◦ δ. Observe thatδ(a) and Idδ(j) are further
specification morphisms.

Union Let I be the graph composed of three nodesi, j,
andk and two arrowsa1 : i→ j anda2 : i→ k. The con-
nectorUnion is defined for every diagramδ : I → SPEC

whereδ(i) = (Σ0, Ax0), δ(j) = (Σ1, Ax1) and δ(k) =
(Σ2, Ax2), and such thatSen(Sig(δ(a1)))(Ax0) ⊆
Ax1 and Sen(Sig(δ(a2)))(Ax0) ⊆ Ax2, and yields
Union(δ) = (Σ, Ax) with the co-conep : Sig ◦ δ → Σ
which is the pushout ofSig(δ(a1)) and Sig(δ(a2)) and
such thatAx = Sen(pj)(Ax1) ∪ Sen(pk)(Ax2). Observe
that we can derive the co-conepSPEC : δ → (Σ, Ax) such
thatSig ◦ pSPEC = p, andpSPECj

andpSPECk
are spec-

ification morphisms.
In [8], both above connectors have been brought down

to two basic connectors: union with constant signatures
⋃

,
andtranslate _ by σ for every signature morphismσ. They
are defined by:

1. Let I be the graph composed of two nodesi and j

and without arrows betweeni and j. The connec-
tor

⋃

is defined for every diagramδ : I → SPEC

whereδ(i) = (Σ, Ax1) and δ(j) = (Σ, Ax2), and
yields

⋃

(δ) = (Σ, Ax) with the obvious co-limitp :
Sig ◦δ → Σ wherepi andpj are the identity signature
morphism forΣ, and such thatAx = Ax1 ∪Ax2.

2. LetI be the graph composed two nodesk and l. The
connector translate _ by σ where σ : Σ → Σ′

is a signature morphism, is defined for every dia-
gram δ : I → SPEC whereδ(k) = (Σ, Ax) and
δ(l) = (Σ′, Sen(σ)(Ax)), and yieldstranslate _ by
σ(δ) = (Σ′, Sen(σ)(Ax)).

55

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

In [8],
⋃

(δ) andtranslate _ by σ(δ) are respectively noted
δ(i)

⋃

δ(j) andtranslate δ(k) by σ.

Architectural connectors can be combined to deal with
specifications in the large.

Definition. 15 (Connector combination) Let c :
|∆I,SPEC | → |SPEC| andc′ : |∆(I′,SPEC)| → |SPEC|
be two architectural connectors. Leti′ ∈ |I ′| be an object.
Let I ′ ◦i′ I be the category defined by:

• |I ′ ◦i′ I| = |I|
∐

|I ′|

• the setsHomI′◦i′I(k, l) for everyk, l ∈ |I ′ ◦i′ I| are
inductively defined as follows:

– k, l ∈ |I ′| ⇒ HomI′(k, l) ⊆ HomI′◦i′I(k, l)

– k, l ∈ |I| ⇒ HomI(k, l) ⊆ HomI′◦i′I(k, l)

– for everyi ∈ |I|, we introduce the arrowqi in
HomI′◦i′I(i, i

′).

– HomI′◦i′I is closed under composition.

Let us denotec′ ◦i′ c : |∆I′◦i′I,SPEC | → |SPEC| the
architectural connector defined by :7

δ 7→

c′(δ|I′) if c(δ|I) is defined
δ(i′) = c(δ|I)
andδ(qi) is the morphismri in SPEC

whose the image bySig is the component
pi of the co-limitp associated toc(δ|I)

undefined otherwise

Example. 2 Enrichment can be removed and replaced by
the following combination oftranslate and∪ as follows:
let δ be a diagram of∆(I,SPEC) where I is the index
category of the connectorEnrich, δ(i) = (Σ, Ax) and
δ(j) = (Σ′, Ax′)

Enrich(δ) =
⋃

◦itranslate_byδ′(pi)(δ
′)

whereδ′ is the diagram of∆(I′′◦iI′,SPEC) for I ′′ (resp.
I ′) the index category of the connector∪ (resp. translate),
defined by:δ′(k) = δ(i), δ′(i) = translateδ′(k)byδ′(pi) =
(Σ′, Sen(Sig(pi))(Ax)) andδ′(j) = (Σ′, Ax′ \Ax).

The reader accommodated to the terminology and to the
concepts of software architecture can be disappointed by the
way connectors are interpreted here, i.e. by functions that
take components and produce systems. Indeed, connectors
are typically viewed as forms of communicating compo-
nents. Such connectors can also be formalized in our frame-
work. For instance, in Community [15, 16], in the style of
Allen and Garlan [6], a connector consists ofn rolesRi and

7qi is the arrow introduced inHomI′◦i′ I(i, i′).

one glueG stating the interaction between roles (i.e. the
way roles communicate together). Roles and glue are pro-
grams defined over signatures (see [16] for a complete def-
inition of programs). In our framework, programs denote
specifications from which we can observe temporal proper-
ties. Each role and the glue are interconnected by a channel
to denote via signature morphisms shared attributes and ac-
tions. This gives rise to a diagram defined as the intercon-
nection on the glueG of basic diagrams of the form:

channel

Ri G

In Community, the mathematical meaning of a connector is
then defined by the colimit of such diagrams. This can be
easily defined in our framework by considering a connec-
tor c defined for every diagram of the previous form over
the categoryPROG (defined in [16]) taken as the category
SPEC.

4.2 Complex structuring

As already explained in the introduction of the paper,
an architectural connector will be considered as complex
when:

1. The global system does not preserve the complete be-
havior of some subsystems. We will then talk about
non-conformity properties.

2. Some global properties cannot be deduced from a com-
plete knowledge of these components. We will then
talk abouttrue emergent properties.

This is expressed by comparing the set of semantic con-
sequences of subsystems with the ones of the global system
up to signature morphisms.

Definition. 16 (Complex connector)Let c :
|∆(I,SPEC)| → |SPEC| be an architectural connec-
tor. Let δ be a diagram of∆(I,SPEC) such thatc(δ) is
defined. c is saidcomplex forδ if, and only if one of the
two following properties fails:

1. Conformity.

∀i ∈ I,∀ϕ ∈ Sen(Sig(δ(i))), ϕ ∈ δ(i)•Sig(δ(i)) ⇐⇒

Sen(pi)(ϕ) ∈ c(δ)•Sig(c(δ))

56

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

2. Non true emergence.

∀ϕ ∈ c(δ)•Sig(c(δ)),
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))) |=Sig(c(δ))

ϕ

A formulaϕ that makes fail the equivalence of both Point 1.
and Point 2. is calledemergent property.
If c is not complex for a diagramδ, then it is saidmodular.

Example. 3 Here, we give a very simple example of spec-
ifications in which modularity fails. LetNat be the specifi-
cation inEQL defined as follows:

Specification of Nat Sorts: SNat = {nat }

Functions : FNat =
{0 :→ nat ,

succ : nat→ nat ,

_ + _ : nat× nat→ nat }

Axioms: AxNat =
{x + 0 = x

x + succ(y) = succ(x + y)}

Let us us enrich this specification by adding operations
and axioms to specify stacks of natural numbers. This leads
to the following enrichment:

Sorts: SStack = {nat, stack }

Functions : FStack = FNat ∪
{empty :→ stack ,

push : nat× stack → stack ,

pop : stack → stack ,

top : stack → nat ,

high : stack → nat}

Axioms: AxStack = AxNat ∪
{pop(empty) = empty

pop(push(e, P)) = P

top(push(e, P)) = e

high(push(e, P)) = succ(high(P))}

If we suppose that realizations are either the initial
model or reachable models8 of both specifications, then an
example of emergent property is:

∀x, (x = 0) ∨ (∃y, x = succ(y))

This is becausehigh(empty) has not been specified to
be equal to0. On the contrary, if we add this equation in
AxStack, there is not emergent property anymore.

8A model is reachable when any of its values is the result of the evalu-
ation of a ground term.

4.3 Conditions for modularity

As we have explained it in the introduction of this
manuscript, complex software systems prevent to check
their correctness with respect to their specification step by
step by taking the benefit of their recursive structure. This
leads to the important consequence that adding any compo-
nent gives rise to a new systems whose the correctness has
to be completely (re)checked. It is then important to study
general properties that guarantee when a system is not com-
plex (i.e. modular). This is what we propose to do with the
two following results.

Theorem 1 states that showing the non-presence of true
emergent properties for a connectorc and a diagramδ

comes to show that(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is defin-

able byc(δ).

Theorem. 1 Letc be an architectural connector andδ be a
diagram such thatc(δ) is defined. Then, we have:

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ) if, and

only if the set of true emergent properties is empty and each
pi is a specification morphism.

Proof. The only if part. This obviously results
from the fact that (

⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•

is definable by c(δ). Indeed, we have

c(δ)•Sig(c(δ) = (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•, that

is for every ϕ ∈ c(δ)•Sig(c(δ)), we have that
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))) |=Sig(c(δ)) ϕ.

Theif part. As eachpi of p is a specification morphism,
we have that(

⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• ⊆ c(δ)•Sig(c(δ).

Moreover, as the set of true emerging properties is empty,
we have thatc(δ)•Sig(c(δ) ⊆ (

⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•.

Hence,c(δ)•Sig(c(δ) = (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•, and

then
(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ).

By Theorem 1, the architectural connectorsEnrich,
Union,

⋃

and translate _ by σ have no true emergence
properties for any defined diagram.

As we could expect, modularity is a property which
holds for some, but certainly not for all architectural con-
nectors. More surprising, even under the condition that

57

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ) for a con-

nectorc and a diagramδ such thatc(δ) is defined, mod-
ularity can fail because of non-conformity properties (see
Example 3).
In the next theorem, we give a supplementary condition
based on the liberality of eachpi of the co-limitp, that leads
to an empty set of non-conformity properties. For Theo-
rem 2, we suppose the following conditions :

1. the institution under consideration is closed under iso-
morphism,

2. Real is compatible for every specification morphism
pi of the associated co-conep, and

3. each pi of the co-limit p associated to the con-
nector c in ∆(I,SPEC) satisfies the supplemen-
tary condition, so-calledRight Satisfaction Con-
dition (RSC) : ∀ϕ ∈ Sen(Sig(δi)),∀M ∈
Real(c(δ)), Real(pi)(M) |=Sig(δi) ϕ =⇒
M |=Sig(δ(c)) Sen(pi)(ϕ).

The interest of RSC is, realizations being a subset of mod-
els, some pruning on realizations inReal(δ(c)) have been
allowed to be done, and then this direction of the satisfac-
tion condition has been able to be brought into failure. For
instance, this property does not hold when specifications are
logical theories and realizations are restricted to reachable
models (see Example 3). For the next theorem, we suppose
that these three conditions hold.

Theorem. 2 Let c be an architectural connector andδ
be a diagram such thatc(δ) is defined. Suppose that

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ), Real is

compatible with eachpi and eachpi is liberal. Then, for
everyi ∈ I and everyM ∈ Real(δ(i)), If each adjunct
morphismµM :M→ Real(pi)(F(pi)(M)) is an isomor-
phism, then the set of non-conformity properties is empty.

Proof. Let ϕ ∈ δ(i)•Sig(δ(i)), and letM ∈ Real(c(δ)).

As (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable by c(δ),

Real(pi)(M) |=Sig(δ(i)) ϕ. Therefore, by the hypothe-
sis that the truth of property is preserved for the functor
Real through each signature morphismpi, we have that
M |=Sig(c(δ)) Sen(pi)(ϕ).

letϕ ∈ Sen(δ(i)) such thatSen(pi)(ϕ) ∈ c(δ)•, and let
M ∈ Real(δ(i)). AsF(pi) is left-adjunct toReal(pi), we
haveF(pi)(M) |=Sig(c(δ)) Sen(pi)(ϕ). AsReal is com-
patible with eachpi, Real(σ)(F(pi)(M)) |=Sig(δ(i)) ϕ.
As the adjunct morphism is an isomorphism andI is sta-
ble under isomorphism,M and Real(σ)(F(pi)(M)) are
elementary equivalent, and thenM |=Sig(δ(i)) ϕ.

Theorem 2 generalizes to any architectural connectors
the standard condition of modularity based on the two no-
tions of hierarchical consistency and sufficient complete-
ness [22], which has been stated for the enrichment connec-
tor in the algebraic specification framework (when specifi-
cations are conditional positive).

5 Application to reactive systems

In this section, we propose to exemplify our abstract
framework to reactive system modeling. We will then give a
rigorous and formal definition of emergent properties in the
framework of reactive system modeling. We restrict our-
selves to reactive systems described by means of the usual
synchronous product of transition systems, and whose be-
havior is expressed by logical properties overMFOL . The
reason is this is sufficient for the purpose of the study, and
the results given in this paper could easily be adapted to
temporal logics more classically used to reason on reactive
systems and other composition connector whose the great-
est number are based-on transition system product. In our
setting, we will study some conditions under which non-
conformity properties do not occur. The interest is this pro-
vides guidance in the design process. Indeed, the appear-
ance of non-conformity properties leads to make a posteri-
ori verification of the global system without benefiting from
the decomposition of the system into components.

In Section 5.1, we introduce transition systems and their
semantics, and define the synchronous product as means to
compose them. Finally, Section 5.2 presents results ensur-
ing the non-existence of non-conformity properties along
synchronous product.

5.1 Transition systems

5.1.1 Syntax

As usual when considering automata, transition systems
describe possible evolutions of system states. Elementary
evolutions are represented by a transition relation between
states. Each transition between two states is labeled by three
elements: actions of the system, guards expressed here by
formulas ofFOL presented in Section 2, and side-effects
on states defined by pairs of ground terms or of the form
(p(t1, . . . , tn), b) wherep(t1, . . . , tn) is a ground atom and
b is equal totrue or false. As usual, we start by defin-
ing the language, so-called signature, on which transition
systems are built:

Definition. 17 (Signature) A signatureis a triple L =
(Σ, V, A) where:Σ is a FOL -signature,V is a set of vari-
ables overΣ andA is a set whose elements are calledac-
tions.

58

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Definition. 18 (Side-effect)Given a signature L =
(Σ, V, A) whereΣ = (S, F, P), a side-effectoverL is a
pair of ground terms overΣ (t, t′) of the same sort (i.e.
∃s ∈ S, t, t′ ∈ TF) or a couple(p(t1, . . . , tn), b) where
p(t1, . . . , tn) is a groundΣ-atom (i.e. eachti is a ground
term) andb is equal totrue or false. In the sequel, a side-
effect(t, t′) will be notedt 7→ t′.
We noteSE(L) the set of side-effects overL.

A transition system is then defined as follows:

Definition. 19 (Transition system) Given a signature
L = (Σ, V, A), a transition systemis a couple(Q, T)
where:

• Q is a set ofstates, and

• T ⊆ Q×A× Sen(Σ)× 2SE(L) ×Q.

A small specification example is given in [2]. Transi-
tion systems are specifications of reactive systems. Given
a signature morphismσ : (Σ, A) → (Σ′, A′) and a spec-
ification S ′ = (Q′, T′) over (Σ′, A′), Spec(σ)(S ′) is the
specificationS = (Q, T) over(Σ, A) such thatQ = Q′ and
T = {(q, a, ϕ, δ, q′)|(q, σ(a), Sen(σ)(ϕ), σ(δ), q′) ∈ T

′}.

5.1.2 Semantics

Semantics of transition systems are defined by Kripke
frames themselves defined as follows:

Definition. 20 (Kripke frame) Given a signatureL =
(Σ, V, A), an Kripke frameoverL or L -model, is a cou-
ple (W, R) where:

• W is a I-indexed set(Wi)i∈I of Σ-models such that
W i

s = W j
s for everyi, j ∈ I ands ∈ S, and

• R is aA-indexed set of “accessibility” relationsRa ⊆
I × I.

Here, states are defined byΣ-models. Therefore, side-
effects will consist on moving from aΣ-model to another
one by changing the semantics of functions according the
assignments given in the setδ of transitions. Formally, this
is defined as follow: ifA is aΣ-model, then _A : TF → A
is theΣ-morphism inductively defined byf(t1, . . . , tn) 7→
fA(tA1 , . . . , tAn)

Definition. 21 (Side-effect semantics)LetL = (Σ, V, A)
be a signature. LetA andB be twoΣ-models. We note
A ;δ B to mean that the stateA is transformed into the
stateB alongδ, if and only ifB is defined asA except that
for everyt 7→ t′ ∈ δ (resp. p(t1, . . . , tn) 7→ b), tB = t′A

(resp.(tA1 , . . . , tAn) ∈ pB iff b = true).

Definition. 22 (Semantics of transition systems)Given a
transition systemS = (Q, T) over a signatureL , the se-
mantics forS, notedReal(S), is the set of all the Kripke
frames(W, R) overL such that the set of indexesI = Q,
and satisfying both implications:

1. (q, a, ϕ, δ, q′) ∈ T ∧Wq |= ϕ ∧Wq
;δ W

q′

⇒ q Ra q′

2. q Ra q′

⇒ ∃(q, a, ϕ, δ, q′) ∈ T,Wq |= ϕ ∧Wq
;δ W

q′

Hence, the way whose dynamic is dealt with in this paper
follows the state-as-algebra style [21, 3] where states are
Σ-models and state transformations are transitions from a
state-model to another state-model.

5.1.3 Synchronous product

Synchronous product combines two transition systems into
a single one by synchronizing transitions. Understandably,
executions of synchronous product modelize system behav-
ior as a synchronizing concurrent system. Hence, when an
actiona is “executed” in the product, then every compo-
nent witha in its alphabet must execute a transition labeled
with a. Formally, the synchronous product of two transition
systems is defined as follows:

Definition. 23 (Synchronous product) Let Si = (Qi, Ti)
be a transition system over a signatureLi = (Σi, Vi, Ai)
with i = 1, 2 such that:

• for every transition(q1, a, ϕ1, δ1, q
′
1) ∈ T1 and ev-

ery f(t1, . . . , tn) 7→ t′1 ∈ δ1 (resp. p(t1, . . . , tn) 7→
b ∈ δ1), there does not exist a transition
(q2, a, ϕ2, δ2, q

′
2) ∈ T2 and a side-effectt2 7→

t′2 ∈ δ2 with t2 of the form f(t′1, . . . , t
′
n) (resp.

p(t′1, . . . , t
′
n) 7→ b′ ∈ δ2),

• and conversely, that is this condition on side-effects
has also to be satisfied by replacingT1 by T2, δ1 by
δ2 andδ2 by δ1.

Thesynchronous productofS1 andS2, notedS1⊗S2, is the
transition system(Q, T) overL = (Σ1∪Σ2, V1∪V2, A1∪
A2) defined as follows:

• Q = Q1 ×Q2

• if a ∈ A1 ∩ A2, (q1, a, ϕ1, δ1, q
′
1) ∈ T1 and

(q2, a, ϕ2, δ2, q
′
2) ∈ T2 then

((q1, q2), a, ϕ1 ∧ ϕ2, δ1 ∪ δ2, (q
′
1, q

′
2)) ∈ T

• if a ∈ A1 \ A2 and (q1, a, ϕ1, δ1, q
′
1) ∈ T1 then for

everyq2 ∈ Q2, ((q1, q2), a, ϕ1, δ1, (q
′
1, q2)) ∈ T

59

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

• if a ∈ A2 \ A1 and (q2, a, ϕ2, δ2, q
′
2) ∈ T2 then for

everyq1 ∈ Q1, ((q1, q2), a, ϕ2, δ2, (q1, q
′
2)) ∈ T

Both conditions on side-effects allow us to remove the case
where for an identical function namef (resp. a predicatep)
applied to an identical tuple of arguments yields different
values, and then causes the functionality off (resp. makes
inconsistent the set of side-effects resting onp) to fail.

By following the notions of our abstract framework, the
synchronous product gives rise to the connectorSync. To
define this connector, we consider the shapeI composed
of three nodesi, j andk and two arrowsa1 : i → j and
a2 : i → k. The connectorSync is then defined for ev-
ery diagramδ whereδ(i) is the empty transition system
over the signature(Σ∅, Ai) whereΣ∅ is the emptyFOL -
signature,δ(j) = (Qj , Tj) over the signature(Σj , Aj) and
δ(k) = (Qk, Tk) over the signature(Σk, Ak), and yields
Sync(δ) = δ(j) ⊗ δ(k) over the signature(Σ, A) with the
co-conep : Sig ◦ δ → (Σ, A) which is the pushout of
Sig(δ(a1)) andSig(δ(a2)) in Sig.

5.2 Results

The synchronous product of two transition systemsS1⊗
S2 have generally true emergent properties. The reason
is the setMod(Th(S•1 ∪ S

•
2)) of Kripke frames may be

greater thanReal(S1 ⊗ S2). Indeed, Kripke frames in
Real(S1 ⊗ S2) have to preserve the shape of the transition
systemS1⊗S2 unlike Kripke frames inMod(Th(S•1∪S

•
2)).

Hence, properties in(S1⊗S2)
• may be more numerous than

in Th(S•1 ∪ S
•
2). However, we can show under some con-

ditions that non-conformity properties cannot occur along
synchronous product. More precisely, we are going to show
that the “only if” part of the conformity property is satisfied
but the “if” part only holds when formulas that label tran-
sitions are conditional equations (i.e. expressed in the logic
CEL).
Let us start by showing that the semantic consequences
of S1 andS2 are preserved byS1 ⊗ S2. Let us suppose
a S1 ⊗ S2-model (W, R), and let us define aLi-model
(Wi, Ri) for i = 1, 2 as follow:

• for everyq ∈ Qi,W
q
i = Mod(Σi ↪→ Σ)(W(q,q′)) for

anyq′ ∈ Qj with j 6= i ∈ {1, 2}

• ∀a ∈ Ai, Ria
= {(q, q′)|∃ϕ ∈ Sen(Σi),∃δ ∈

SE(L), (q, a, ϕ, δ, q′) ∈ Ti}

Let us noteΓi for i = 1, 2, the set of all theseLi-models.

Theorem. 3 Each(Wi, Ri) ∈ Γi is aSi-model.

Proof. The first condition of Definition 22 is obvious. To
prove the second condition, let us suppose a transition

(q, a, ϕ, q′) ∈ Ti. By construction, there exists a transi-
tion ((q, qj), a, ϕ′, δ′, (q′, q′j)) ∈ T such that eitherϕ′ = ϕ

andδ′ = δ, or ϕ′ = ϕ∧ϕ′′ andδ′ = δ ∪ δ′′. In both cases,
by hypothesis, we have that(W(q,qj) |= ϕ′. Therefore, by
the satisfaction condition forFOL Wq

i |= ϕ. Moreover, by
the condition on side-effects in Definition 23, we have that
Wq

i ;δ W
q′

i

Proposition. 2 ∀ι : V →W,

(∀(Wi, Ri) ∈ Γi, ∀q ∈ Qi, (Wi, Ri) |=
q
ι ϕ)

=⇒ (∀qj ∈ Qj , (W, R) |=
(q,qj)
ι ϕ)

Proof. By induction on the structure ofϕ.

Basic case.ϕ is of the formp(t1, . . . , tn). Let qj ∈
Qj . By definition, there exists(Wi, Ri) ∈ Γi such that
Wq

i = Mod(Σi ↪→ Σ)(W(q,qj)). By hypothesis, we have
Wq

i |=ι p(t1, . . . , tn), and thenW(q,qj) |=ι p(t1, . . . , tn).

General case.Let us handle the case whereϕ is 2aϕ′.
Let us suppose that(W, R) |=

(q,qj)
ι ϕ. Then, let us consider

(q′, qj) such that(q, qj) Ra (q′, q′j). By the hypothesis, we
have for every(Wi, Ri) ∈ Γi that (Wi, Ri) |=

q
ι ϕ. By con-

struction, we also haveq Ria
q′ for every(Wi, Ri) ∈ Γi.

Therefore, for every(Wi, Ri) ∈ Γi, (Wi, Ri) |=
q
ι ϕ′, and

then by the induction hypothesis, we have(W, R) |=
(q′,q′

j)
ι

ϕ′, whence we can conclude(W, R) |=
(q′,q′

j)
ι ϕ.

The cases of Boolean connectives and quantifier are sim-
pler and left to the interested reader.

Theorem. 4 S•i ⊆ (S1 ⊗ S2)
•

Proof. Letϕ ∈ S•i , and let(W, R) ∈ Real(S1 ⊗ S2). Let
ι : V → W be an interpretation. By Theorem 3, for every
model(Wi, Ri) ∈ Γi, we have(Wi, Ri) |= ϕ, and then
for everyq ∈ Qi we also have(Wi, Ri) |=

q
ι ϕ. There-

fore, by Proposition 2, we have for everyqj ∈ Qj that

(W, R) |=
(q,qj)
ι ϕ, and then(W, R) |= ϕ.

To show the “if” part of the conformity property, we need
to make some restrictions on formulas that label transitions.
Hence, we suppose that transition systems are built over the
logic CEL , and then given a model(W, R) of transition
systemS, for eachq ∈ Q, Wq is now an algebra. There-
fore, the logic for transition systems is the modal first-order
logic defined as in Section 2 except that nowΣ-atoms are
restricted toΣ-equations.

Given two transition systemsS1 andS2 over the signa-
turesL1 andL2, respectively, and satisfying the above re-
striction, for i 6= j ∈ {1, 2}, and for every(Wj , Rj) ∈
Mod(Sj) we define the mappingF(Wj ,Rj) : Mod(Si) →
Mod(L) whereL is the signature over which the transition
systemS1⊗S2 is built as follow: if we note for aΣ-algebra
A, th(A) = {ϕ|ϕ : CEL -formula,A |= ϕ}, then to every

60

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

(Wi, Ri),F(Wj ,Rj)((Wi, Ri)) = (W, R) such that(W, R)

is theL-model defined by9

• ∀q ∈ Qi, ∀q
′ ∈ Qj , W (q,q′) = TΓi/Γ(Wq

i) ×
TΓj/Γ(Wq

i)

• Ra = {((q1, q
′
1), (q2, q

′
2))|∃ϕ ∈ Sen(Σ),∃δ ∈

SE(L), ((q1, q
′
1), a, ϕ, (q2, q

′
2)) ∈ T}

whereΓi = th(Wq
i), Γj = th(Wq′

j), andΓ = th(Wq
i) ∪

th(Wq′

j).

Theorem. 5 For every (Wj , Rj) ∈ Mod(Sj) and every
(Wi, Ri) ∈ Mod(Si), F(Wj ,Rj)((Wi, Ri)) is a S1 ⊗ S2-
model.

Proof. The first condition of Definition 20 is obvious. To
prove the second condition, let us suppose a transition
((q1, q

′
1), a, ϕ, δ, (q2, q

′
2)) ∈ T. By construction,ϕ and δ

are:

1. either of the formϕ′ ∧ ϕ′′ with ϕ′ ∈ Sen(Σi) and
ϕ′′ ∈ Sen(Σj) and δ′ ∪ δ′′ with δ′ ∈ SE(Li) and
δ′′ ∈ SE(Lj),

2. orϕ ∈ Sen(Σi)∪Sen(Σj) andδ ∈ SE(Li)∪SE(Lj).

This then leads to the two following cases:

1. Suppose thatϕ is of the formϕ′ ∧ ϕ′′ and then
δ = δ′ ∪ δ′′. This means by construction, that
(q1, a, ϕ′, δ′, q′1) ∈ Ti and (q2, a, ϕ′′, δ′′, q′2) ∈ Tj .

By hypothesis, we haveWq1

i |= ϕ′ and Wq′
1

j |=
ϕ′′. Therefore, we have thatTΓi/Γ(Wq1

i) |= ϕ′ ∧
ϕ′′ and TΓj/Γ(Wq2

j) |= ϕ′ ∧ ϕ′′, and then so is

9Cartesian product and preservation resultsLet Σ be a signature,I
be a set and(Ai)i∈I be aI-indexed family ofΣ-algebras. Let us note
∏

i∈I

Ai theΣ-algebra defined as follow:

• for everys ∈ S, its carrier of sorts is
∏

i∈I

(Ai)s,

• for everyf : s1 × . . . × sn → s ∈ F , f

∏

i∈I

Ai

is the mapping that
to every(a1, . . . , an) ∈

∏

i∈I

(Ai)s1
×. . .×

∏

i∈I

(Ai)sn , associates

(fAi (ai
1
, . . . , ai

n)|i ∈ I) where givena ∈
∏

i∈I

(Ai)s, ai is the ith

coordinate ofa.

By construction, we can notice that:

∏

i∈I

Ai |=ι ϕ ⇐⇒ ∀i ∈ I, Ai |=ιi ϕ

where for every interpretationι, ιi is the interpretation defined byx 7→ ai

if ι(x) = a. It is well-known that conditional equations are preservedby
Cartesian product of algebras, that is, if for everyi ∈ I, Ai |= Γ ⇒ α,

then
∏

i∈I

Ai |= Γ ⇒ α.

TΓi/Γ(Wq1

i) × TΓj/Γ(Wq2

j) (recall that conditional
equations are preserved along the cartesian product of
algebras). Moreover, by hypothesis, we also have that

Wq1

i ;δ′ Wq2

i andWq2

j ;δ′′ W
q′
2

j . By definition,
Γi (resp.Γj) contains the ground equational theory of

Wq1

i (resp. Wq2

j). If we noteΓ′
i = th(W

q′
1

i), Γ′
j =

th(W
q′
2

j) andΓ′ = th(W
q′
1

i)∪ th(W
q′
2

j), then we have
TΓi/Γ(Wq1

i) ;δ TΓ′
i
/Γ′(Wq2

i) and TΓj/Γ(Wq2

j) ;δ

TΓ′
j
/Γ′(W

q′
2

j).

2. The case whereϕ ∈ Sen(Σi) ∪ Sen(Σj) and δ′ ∈
SE(Li) andδ′′ ∈ SE(Lj) is noticeably similar to the
previous one.

MFOL is closed under isomorphism. Moreover, by The-
orem 3,Real is compatible with each morphismspi of the
co-conep associated to the connectorSync. Finally, by
Proposition 2 and Theorem 4, RSC is satisfied. Therefore,
Theorem 6 is a specialization of Theorem 2.

Theorem. 6 If for every (Wi, Ri) ∈ Mod(Si), every
(Wj , Rj) ∈ Mod(Sj), and everyq ∈ Qi and every
q′ ∈ Qj , the adjunct morphismµWq

i
: Wq

i → Mod(Σi ↪→

Σ)(TΓi\Γ(Wq
i)) is an isomorphism, then(S1 ⊗ S2)

• ∩
Sen(Li) ⊆ S

•
i .

Proof. Letϕ ∈ (S1 ⊗ S2)
• ∩ Sen(Si) and let(Wi, Ri) ∈

Mod(Si). By Theorem 5, for every(Wj , Rj) ∈ Mod(Sj),
we have thatF(Wj ,Rj)((Wi, Ri)) |= ϕ. As the adjunct mor-
phismµWq

i
is an isomorphism, for everyι : V → Wi there

existsι′ : V → TΓi/Γ(Wi)×TΓj/Γ(Wj) such thatι = pi◦ι
′

wherepi is the i-th projection mappi : TΓi/Γ(Wq
i) →

TΓi/Γ(Wq
i) ⊗ TΓj/Γ(Wq′

j) for q ∈ Qi and q′ ∈ Qj .
By hypothesis, for everyq ∈ Qi and everyq′ ∈ Qj ,

F(Wj ,Rj)((Wi, Ri)) |=
(q,q′)
ι′ ϕ. It is then easy to show by

induction on the structure ofϕ that (Wi, Ri) |=
q
ι ϕ.

Example. 4 When dealing with formulas expressed in the
logic CEL to label transitions, we often make restrictions
on algebras denoting states. Indeed, to allow inductive
proofs or for computability reasons, state-algebras are then
restricted to reachable10 or some quotients of the ground
term algebra. Let us the suppose for the below counter-
example of the conditions given in Theorem 6, that we re-
strict our approach to state-algebras defined by reachable
algebras. Let us consider the two following transition sys-
temsS1 andS2 defined respectively over the two following
signaturesL1 andL2:

10A Σ-algebra isreachable if, and only if the uniqueΣ-morphism
µ : TF → A is surjective, that is all the values inA are denoted by
the evaluation of a ground term.

61

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Σ1 =

S = {nat},

F =

0 :→ nat;
s : nat→ nat,

+ : nat× nat→ nat

,

P = ∅

Σ2 =

S = {nat},
F = {0 :→ nat; s, p : nat→ nat},
P = ∅

A1 = A2 = {a}

Let us defineS1 andS2 as follows:

• S1 = ({q1, q2}, {q1
a,ϕ1,δ1

−→ q2}) whereϕ1 = (s(x) =
s(y)⇒ x = y)∧x+0 = x∧x+s(y) = s(x+y) and

δ1 = ∅. S2 = ({q′1, q
′
2}, {q

′
1

a,ϕ2,δ2

−→ q′2}) whereϕ2 =
(s(x) = s(y)⇒ x = y)∧ s(p(x)) = x∧ p(s(x)) = x

andδ2 = ∅.

By definition ofS1 (resp. S2), the uniqueS1-model (resp.
S2-model) is (W, R) whereWq1

1 = Wq2

1 = N (resp.

W
q′
1

2 = W
q′
2

2 = Z). On the contrary, by construction,

in S1 ⊗ S2, we have the transition(q1, q
′
1)

a,ϕ′,δ′

−→ (q2, q
′
2)

whereϕ′ = ϕ1 ∧ ϕ2 andδ′ = ∅, and then all theS1 ⊗ S2-
model satisfyW(q1,q′

1
) = W(q2,q′

2
) = Z. Consequently, the

modal formulaϕ′ ⇒ 2a(∀x.∃y.x + y = 0) belongs to
(S1 ⊗ S2)

• but not inS•1 . The reason isF(W2,R2)(W
q1

1) =
Z. Therefore, the adjunct functorµW

q1
1

is injective but not
surjective, and then is not an isomorphism.

6 Conclusion

In this paper, our main contribution is twofold. First,
we have formally defined the notion of emergent properties
independently of formalism, and of the form of both spec-
ifications and architectural connectors. Secondly, we have
studied in this abstract framework, some general conditions
that enable us to obtain two general properties that guar-
antee when a system is not complex. These conditions are
based on the category theory of morphism conservativeness
and adjunction. Finally, to illustrate our abstract framework,
we have instantiated our abstract framework with reactive
component-based systems described by transition systems
and combined together through synchronous product, and
we have applied our general results to obtain global sys-
tems lacking of non-conformity properties which have been
recognized as being the cause of bad interactions between
components.

An ongoing research that we are currently pursuing is to
extend abstract connectors to heterogeneous abstract con-
nectors, that is connectors defined on component specifica-
tions described in heterogeneous formalisms. For this pur-
pose, we will take benefit from [11, 23] and from works that
we made on hierarchical heterogeneous specifications [9].

References

[1] M. Aiguier, P. Le Gall, and M. Mabrouki. A formal defi-
nition of complex software. InICSEA 2008: Proceedings
of the 2008 The Third International Conference on Software
Engineering Advances, pages 415–420. IEEE Computer So-
ciety, 2008.

[2] M. Aiguier, P. Le Gall, and M. Mabrouki. Emergent prop-
erties in reactive systems. InAPSEC 2008: Proceedings
of the 2008 15th Asia-Pacific Software Engineering Confer-
ence, pages 273–280. IEEE Computer Society, 2008.

[3] M. Aiguier. Étoile-specifications: An object-oriented alge-
braic formalism with refinement.Journal of Logic and Com-
putation, 14(2):145–178, 2004.

[4] M. Aiguier, C. Gaston, and P. Le Gall. Feature logics and
refinement. InAPSEC 2002: Proceedings of the 9th Asian
Pacific Software Engeenering Conference, pages 385–395.
IEEE Computer Society Press, 2002.

[5] R. Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon, School of Computer Science,
Junuary 1997. Issued as CMU Technical Report CMU-CS-
97-144.

[6] R. Allen and D. Garlan. A formal basis for architectural
connectors.ACM TOSEM, 6(3):213–249, 1997.

[7] L. Blass, P. Clements, and R. Kasman.Software Architecture
in Practice. Addison Wesley, 1998.

[8] T. Borzyszkowski. Logical systems for structured specifica-
tions. Theoretical Computer Science, 286:197–245, 2002.

[9] S. Coudert and P. Le Gall. A reuse-oriented framework for
hierarchical specifications. InAMAST 2000: Proceedings
of the 8th International Conference on Algebraic Methodol-
ogy and Software Technology, pages 438–453, London, UK,
2000. Springer-Verlag.

[10] R.-I. Damper. Emergence and levels of abstraction.Inter-
national Journal of Systems Science, 31(7):811–818, 2000.
Editorial for the Special Issue on ’Emergent Properties of
Complex Systems’.

[11] R. Diaconescu. Grothendieck institutions.Applied Categor-
ical Structures, 10(4):383–402, 2002.

[12] R. Diaconescu. Jewels of institution-independent model the-
ory. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, ed-
itors, Algebra, Meaning, and Computation, Essays Dedi-
cated to J.-A. Goguen on the Occasion of His 65th Birth-
day, volume 4060 ofLecture Notes in Computer Science.
Springer-Verlag, 2006.

[13] A.-C. Ehresmann and J.-P. Vanbremeersch.Memory Evo-
lutive Systems: Hierarchy, Emergence, Cognition. Elsevier
Science, 2007.

[14] H. Ehrig, M. Balmadus, and F. Orejas. New concepts for
amalgation and extension in the framework of specifica-
tion logics. InAMAST 1991: Algebraic Methodology and
Software Technology, Lecture Notes in Computer Science.
Springer, 1991.

[15] J.-L. Fiadeiro. Categories for Software Engineering.
Springer-Verlag, 2004.

[16] J.-L. Fiadeiro, A. Lopes, and M. Wermelinger. A math-
ematical semantics for architectural connectors. In R.-C.
Backhouse and J. Gibbons, editors,Generic Programming,
volume 2793 ofLecture Notes in Computer Science, pages
178–221. Springer-Verlag, 2003.

62

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[17] D. Garlan, R.-T. Monroe, and D. Wile. Acme: An architec-
ture description interchange language. InCASCON 1997:
Proceedings of the 1997 conference of the Centre for Ad-
vanced Studies on Collaborative research, pages 169–183.
IBM Press, 1997.

[18] C. Gaston, M. Aiguier, and P. Le Gall.Language Con-
structs for Decsribing Features, chapter Algebraic treat-
ment of feature-oriented systems, pages 105–125. Springer-
Verlag, 2000.

[19] J. Goguen.Advances in Cybernetics and Systems Research,
chapter Categorical Foundations for General Systems The-
ory, pages 121–130. Transcripta Books, 1973.

[20] J. Goguen and R.-M. Burstall. Institutions: Abstract model
theory for specification and programming.Journal of the
ACM, 39(1):95–146, 1992.

[21] Y. Gurevich. Evolving algebras 1993: Lipari guide. InSpec-
ification and Validation Methods, pages 9–36. Oxford Uni-
versity Press, 1995.

[22] J.-V. Guttag and J.-J. Horning. The algebraic specification
of abstract data types.Acta Informatica, pages 27–52, 1978.

[23] T. Mossakowski. Institutional 2-cells and grothendieck insti-
tutions. InEssays Dedicated to Joseph A. Goguen, volume
4060 ofLecture Notes in Computer Science, pages 124–149.
Springer, 2006.

[24] F. Orejas.Algebraic Foundations of Systems Specification,
chapter Structuring and Modularity, pages 159–201. IFIP
State-of-the-Art Reports. Springer, 1999.

[25] D. Perry and A. Wolf. Foundations for the study of software
architectures.ACM SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[26] M. Plath and M. Ryan. Feature integration using a feature
construct.Science of Computer Programming, 41(1):53–84,
2001.

[27] A. Sernadas, C. Sernadas, and C. Caleiro. Denota-
tional semantics of object specification.Acta Informatica,
35(9):729–773, 1998.

[28] A. Tarlecki. Moving between logical systems. In M. Hav-
eraaen, O. Owe, and O.-J. Dahl, editors,Recent Trends in
Data Type Specifications. 11th Workshop on Specification of
Abstract Data Types, volume 1130 ofLecture Notes in Com-
puter Science, pages 478–502. Springer Verlag, 1996.

[29] A. Tarlecki. Algebraic Foundations of Systems Specifica-
tion, chapter Institutions: An abstract Framework for For-
mal Specifications, pages 105–131. IFIP State-of-the-Art
Reports. Springer, 1999.

63

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

A Underlay System for Enhancing Dynamicity within Web Mashups

Heiko Pfeffer
Technische Universität Berlin

Franklinstr. 28/29, 10587 Berlin, Germany
heiko.pfeffer@tu-berlin.de

Abstract

Rich Internet Applications (RIA) and composed Web ap-
plications, referred to as Mashups, have become the new
generation of Web based applications, aggregating multi-
media data such as audio, video and images from multiple
providers and combining them to more powerful and value-
added applications. In the same time, mobile devices such
as smartphones or PDAs are increasingly used to access
the Web and Web based applications. Therefore, Web de-
velopers nowadays face a huge client heterogeneity, where
devices differ in their computing capabilities, screen size,
available bandwidth, and mobility pattern.

This paper introduces a service composition model that
can underlie modern Web applications and can be executed
within a respective runtime at every browser-enabled client.
This model allows software develops to create applications
by abstracting from concrete services and APIs, which are
incorporated dynamically during runtime. Thus, the result-
ing Underlay System for Web Mashups overcomes device
heterogeneity by providing means to execute the applica-
tion logic in a unified runtime while integrating the concrete
service implementations based on the current context of the
user and the respective client device.

Keywords: Service Composition, Mashups, Composed Web
Applications, Workflows, Timed Automata, Realtime

1 Introduction

In 2003, Macromedia coined the term of Rich Internet
Applications (RIA), describing a new breed of upcoming
Web applications that combines the best of desktop soft-
ware, the Web, and advanced communication technologies
[11]. Here, the aim is to build highly interactive Web ap-
plications that feature a broad spectrum of data such as au-
dio, video, images and text in order to enhance the expe-
rience of the user. Lawton later introduced an update on
the definition of RIA, highlighting the importance of the

usage of Web technologies [18]. At the same time, com-
posed Web applications, i.e. applications that were built
by the incorporation of content from multiple 3rd party ser-
vice providers, referred to as Mashups, gained importance.
On ProgrammableWeb.com [1], 1318 open APIs and 3985
Mashups were registered in May 2009. The most promi-
nent motives for offering data to communities of users and
software developers are the generation of new ideas by inde-
pendent developers, the search for new revenue streams and
the opportunity to draw traffic to the providers’ sites and
remain or become a dominant player in the Web. Through
publicly available APIs the community often develops new
features without assistance from the providers, posing the
possibility of vertical integration for the providers.

However, the development of such Web Mashups as a
composition of 3rd party services is aggravated by differing
interface descriptions of 3rd party services and their varying
return types that considerably reduce the amount of reusable
code and forestall an easy swapping of services with simi-
lar functionality. Thus, today’s composed Web applications
remain tailor-made for specific purposes.

Other domains have already faced similar challenges
and responded with respective mechanisms. For instance,
architecting distributed applications in open systems with
SOA-based software patterns has proven as good practice
to achieve robustness and extensibility. Inter-component
dependencies are loosened to on-demand selection and
purpose-driven interaction at runtime, service consuming
and service providing entities stay autonomic; this central
concept is often referred to as late binding of services.

However, SOA based applications incorporate a huge
protocol stack and are thus a bad fit for modern Web appli-
cations based on the REST architectural style [13]. More-
over, SOAs are tailor-made to support large-scale business
processes where end-users are not the center of attention as
opposed to Web Mashups. Business processes completely
lack a presentation layer to display results of computations
and to interact with the user. Moreover, they do not pro-
vide suitable means to remain responsive to user prefer-
ences or context or to support a broad device heterogeneity,

64

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

i.e. mobile users accessing Web applications through small
portable devices with restricted computing capabilities.

Within the remainder of this work, a Underlay System
for Web Mashups is introduced that considerably reduces
the problems entailed by a high device heterogeneity by
incorporating services based on the current context during
runtime. Here, section 2 first gives a general introduction to
composed applications, highlighting results from the world
of SOA and the Web, respectively. The conceptual part of
section 3 discusses the Underlay System itself and builds
upon results given in [29], while section 4 highlights an ar-
chitecture for realizing the proposed approach.

2 State of the Art and Related Work

This section gives a short introduction to the most im-
portant concepts relevant within the scope of this work and
relates it to similar approaches. While subsection 2.1 fo-
cuses on the concept of service composition and workflow
languages, subsection 2.2 deals with a respective ground-
ing to the Web architecture, discussing Mashups as a poster
child for composed Web applications.

2.1 Service Composition

Service Oriented Architecture (SOA) and Web Services
have successfully addressed the problem of Service Com-
position for business processes by introducing appropriate
composition languages [5], enabling the controlled execu-
tion of multiple accumulated Web Services. However, those
technologies such as UDDI and SOAP strictly rely on fix in-
frastructures for service discovery and provisioning. First
steps towards perpetuating the success of SOA and Web
Services to mobile networks have been achieved by provid-
ing service frameworks for accessing Web Services from
mobile devices such as PDAs and Smartphones [23]. A
static service infrastructure for service discovery and provi-
sioning is nevertheless still indispensable. Successful Ser-
vice Composition methods remain tailor-made for business
processes [17].

Within the world of SOA and Web Services, various
models for service composition are present. The currently
most prominent one is BPEL4WS [3, 8], a combination of
IBM’s graph-based Web Service Flow Language (WSFL)
[19] and Microsoft’s block-oriented XLANG [30]. Beside,
many other composition languages exist, wherefrom none
has made the breakthrough to an holistically accepted stan-
dard for Web Service Composition [33]. In order to pro-
vide more dynamic service composition approaches fea-
turing a functional-based service discovery and binding,
some approaches have replaced the Web Service Descrip-
tion Language (WSDL) [6] by semantic service descrip-
tions such as OWL-S [31]. Especially for mobile devices,

more lightweight descriptions have been proposed in order
to reduce the computation complexity entailed by semantic
reasoning processes [27].

However, dynamic service composition faces the diffi-
culty that new semantic service descriptions have to be gen-
erated that can be used for future service discovery and
binding. The approach introduced in this paper therefore
aims at extending the flexibility of service compositions
achieved trough late binding mechanisms to the structure
of service composition plans. This proceeding entails the
generation of multiple equivalent or similar service compo-
sitions with regard to their functionality, which may how-
ever differ in their non-functional properties.

2.2 Mashups - Composed Web Applica-
tions

Mashups are composed Web applications integrating
data from multiple 3rd party providers to provide a value-
added functionality and experience to the user. Within
this section, we first outline the three basic roles within
Mashup based Web applications and then discuss two dif-
ferent Mashups styles that denote possible ways to realize
them, building upon [21] and [22] mainly.

2.2.1 Mashup Roles

In general, Mashups architectures feature three elementary
roles as illustrated in Figure 1. The Content Provider is a
source of data that can be accessed through open APIs over
various Web protocols such as REST, RSS or SOAP. The
Mashup Site is the new build Web application that requests
content and services from various data sources and com-
bines them in order to provide a value-added application
to the user. The Client is the interface to the user (pre-
sented within a Web-browser). The user can interact with
the Mashup through client-side scripting languages such as
JavaScript.

Within the following section, we will first focus on the
role of content providers, introducing famous and success-
ful services that are exposed through open APIs. Here, spe-
cial emphasis will be put on the way they expose their APIs,
the types of data they return and how their integration can
characterize the resulting Mashup. Thereafter, we will dis-
cuss basic styles of Mashups, highlighting the different re-
sponsibilities of clients and Mashup sites within the respec-
tive approaches.

2.2.2 Mashup Styles

In general, it is distinguished between two basic styles for
creating and executing Mashups, entailing different respon-
sibilities of the client and the Mashup site in order to exe-
cute the actual Mashup. Both styles expose serious advan-

2

65

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Client

Mashup Site

Content
Providers

Figure 1. General Roles of a Mashup Web Ap-
plication.

tages and disadvantages with regard to their performance,
load distribution and security, and thus have to be pondered
against each other carefully with regard to the requirements
of the respective Mashup application.

Server-side Mashups Within server-side Mashups, ser-
vices and content are integrated at a server, which plays the
role of a proxy between the Web application on the client
and other Web sites that are integrated into the Mashup.
Every request or event originating from the client is for-
warded to this proxy server, which then makes the calls on
the respective Web sites. Because of this central server role
acting as a proxy, server-side Mashups are often referred to
as Proxy Mashups. Figure 2 shows the general setting of a
server-side Mashup.

Whenever a user generates an event at the client Web
browser, e.g. pushes a button or clicks on a map, the event
triggers a JavaScript function (#1). This Java Script func-
tion makes a HTTP request to the Mashup site (#2). Com-
monly, this request is an Ajax request; it will later be dis-
cussed in greater detail. The request is received by a Web
component such as a Servlet or Java Server Page (JSP) on
the Mashup site. Based on the received request, the com-
ponent calls one or multiple methods within a class or mul-
tiple classes containing the application logic to make calls
on 3rd party APIs (#3). Because of their role of acting as
a proxy between the client’s request and the request to the
actual Mashup servers, these classes are often referred to as
Proxy Classes. Note that proxy classes are not restricted in
the way they are realized, thus, they can be implemented as
plain Java classes or large-scale J2EE components. Thus,
the Proxy classes connect to the addressed Mashup servers
and request the respective services (#4). In turn, the Mashup
servers process the request and respond with the resulting
data (#5). The proxy classes receive the response and can

process the data before forwarding it to the Web component
(#6). This option of processing data on the server side en-
ables most of the advantages of a server-side Mashups. For
instance, data can be transformed in a format such as JSON
that is easier to process by the client, it can integrate differ-
ent data sources and only send the integrated piece of data
to the client, or data can be buffered or cached in order to in-
crease the performance of succeeding requests. Finally, the
Web component sends the response to the client (#7). Here,
the view of the page at the client side is updated according
to the response. In case the initial request has been an Ajax
request in form of an XMLHttpRequest object, this page up-
date is achieved by the callback function within the XML-
HttpRequest that manipulates the Document Object Model
(DOM) accordingly.

Client-side Mashups Within client-side Mashups, the in-
tegration of the single services and data sources is per-
formed at the client instead of using an additional proxy
server. Thus, clients connect directly to 3rd party APIs in
order to request services; a client-side Mashup is abstractly
depicted in Figure 3.

Application
Logic

(JavaScript)

Client Mashup Site

Content Provider

Web Server

(Web
Component)

Mashup
Application

(Proxy Classes)

DatabaseUser Interface

Web Server

#3
JS Call

#6
Site Update

#1
Request

#2
Response

#3 #6

#4
Request

#5
Response

Figure 3. Client-side Mashup.

Initially, the client’s browser makes a request to the
Mashup site (#1), initiating the server to load the requested
Web page into the client (#2). This Web page provides ac-
cess to JavaScript libraries that enable the client later to di-
rectly call services at 3rd party APIs without addressing the
Mashup site beforehand. There are three common ways
to provide access to JavaScript libraries. First, the Web

3

66

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Application
Logic

(JavaScript &
XMLHttpRequest)

Client Mashup Site Content Provider

Web Server
(Web

Component)

Mashup
Application

(Proxy Classes)

DatabaseUser Interface

Web Server#1
JS Call

#8
Site Update

#2
Request

#7
Response

#3 #6

#4
Request

#5
Response

Figure 2. Server-side Mashup.

page may reference the JavaScript library from the respec-
tive 3rd party service provider such as Google Maps; here,
it is sufficient to reference the library by a valid URL. In
case the 3rd party provider does not expose an appropriate
JavaScript library, the Mashup developer can provide one
on his own and make it available on the Mashup site. Al-
ternatively, other 3rd party libraries may be referenced to
ease the Mashup’s creation. Specific actions on the Web
page trigger the browser to call a function in the JavaScript
library integrated within the Web page. This function dy-
namically creates a <script> tag in the Web site that points
to the according 3rd party server (#3). Afterwards, the client
initiates an HTTP request based on the ¡script¿ tag includ-
ing the desired format of the response (#4). As discussed
above, the format of the response provided by a service can
commonly vary, ranging from XML to YAML or JSON. For
client-side Mashups, JSONP (JSON with Padding) is the
most common response format since it can be easily evalu-
ated (by the JavaScript function eval()) at the client. JSONP
extends JSON by the capability of appending the name of
a local callback function to the JSON object. Thus, in case
the server provides the response in JSONP, a call is made
on the callback function with the JSON object as parameter
(#6). Finally, the DOM of the page is manipulated by the
JavaScript function and the page is updated accordingly.

3 Underlay System for Web Mashups

Within this section, a Underlay System for Web Mashups
is specified by introducing a service composition model that
can describe and execute composed Web applications, i.e.
Mashups, and is -in the same time- responsive to the envi-
ronmental user context. Special emphasis is put on over-

coming the high degree of device heterogeneity we face in
today’s Web.

3.1 Distinguishing Mashups and Business
Processes

Business processes and Web Mashups both constitute
composed applications. However, they are created with dif-
ferent requirements. While business processes are tailor-
made to describe large-scale business transactions among
multiple enterprises, Mashups are rapidly created Web ap-
plications for end-users aiming at a high degree of interac-
tivity and graphical presentation, where content from 3rd
party providers is combined to add value to the created Web
application.

The fact that Mashups are built on top of the Web proto-
col stack while business processes are designed for SOAs is
also reflected in the underlying technologies for remote ser-
vice invocation and service interworking as shown in Table
1.

Moreover, Table 1 outlines the focus of both technolo-
gies. Business processes are defined by service composition
languages such as BPEL and provide late binding mech-
anisms for services that are described by languages such
as WSDL and stored in repositories where they can be ac-
cessed via UDDI. Thereby, enterprises can modify the im-
plementations of their single services (e.g. upgrade them
to a new version) without any need to notify service con-
sumers of their changes since the services are incorporated
by their descriptions only and thereby decoupled from the
actual service implementation. Mashups on the contrary do
not provide any kind of controlled service execution or late
binding of services. Instead, Web developers directly in-
tegrate the concrete APIs of 3rd party providers into their

4

67

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Feature Business Processes (SOA) Web (Mashups)
Remote Invocation WebServices (WSA), XML-RPC XMLHttpRequest (Ajax), JSON RPC,

COMET
Service Interworking .NET, J2EE EcmaScript (Java Script)
Service Composition Yes No
Composition Languages BPEL4WS, WSFL, WSCDL
Composition Execution Engines Bexee, Oracle BPEL Process Manager,

IBM WBISF
Late Binding Yes No
Service Description Languages WSDL, WSDL-S, OWL-S
Service Discovery UDDI
Interaction No Yes
Presentation HTML, CSS, XML, Streamed audio and

video
User Input HTML Forms, XForms, JS Key-

board/Mouse Event Models

Table 1. Business Processes vs. Mashups

Mashups. In return, Mashups provide a connection to the
user by default: Web applications are build by a Web page
that consists of HTML, CSS and Java Script and therefore
possess a presentation and means to interact with the user
by nature. Application logic is only invoked when an event
is created by the user that triggers a certain functionality.

The following can be concluded: While business pro-
cesses enable software developers to create the application
logic of a process without dealing with its graphical presen-
tation and possible user interaction, Mashups are created as
interactive graphic presentations that react on user input and
thereby invoke small parts of application logic that modifies
the presentation of the application.

3.2 Requirements for a Mashup Underlay
System

The objective of this work is to incorporate the ability
of SOA business processes to structure the underlying ap-
plication logic as a service composition and to dynamically
incorporate services or APIs through late binding mecha-
nisms in order to overcome the device heterogeneity of to-
day’ Web Mashups. Moreover, this techniques allow for a
more dynamic adaptation of Mashups to the users’ needs
and their environmental context by providing means to in-
clude services based on the users’ preferences, on the client
device and its respective capabilities, and the current per-
formance of the single services.

Given these requirements, the following components
are identified as central for the Underlay System for Web
Mashups:

• Workflow - A workflow graph enables software de-
velopers to specify the execution order of the single

services and APIs.

• Dataflow - A dataflow graph allows developers to con-
nect data retrieved as output of one service to the inputs
of other services.

• Abstract Service Access - An abstraction layer for
services and APIs defines a unified way to access ser-
vices providing the same resource, i.e. the same object
on the presentation and interaction layer. Thus, this
layer allows developers to conceptually include a map
within their Mashups without specifying the concrete
service that is creating this presentation. This proce-
dure does not only free the software developer from
programming against multiple APIs, but also allows
for a dynamic exchange of the bound services or APIs
in case the context of the user changes.

• Context Awareness - The Underlay System provides
an interface to develop selection mechanisms in case
multiple services are available for the same presenta-
tion. For instance, in case both Google Maps and Ya-
hoo Maps are identified to be capable of presenting a
map to the user, the selection can be made dependent
on user preferences or context.

• Time Awareness - To overcome device heterogeneity,
time is identified as critical context information that
can trigger the evaluation of the appropriateness of in-
tegrated services. For instance, in case the processing
of a service exceeds a predefined time limit, it can be
concluded that the processing power of the device is
too low and that the service should be replaced. The
same technique can be applied to identify services that

5

68

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

are causing too much traffic given the available band-
width. For instance, one could define that in case the
response time of a service exceeds a certain time span,
the traffic has to be too high for the currently available
bandwidth such that the service has to be replaced with
a less demanding one.

Within the next subsections, a service composition
model is developed on a theoretical level that builds the
core of the Underlay System for Web Mashups and can be
executed within a respective runtime both on servers and
browser-enabled clients. More insights on the related real-
ization of the Underlay System is given later in section 4.

3.3 Modeling Service Compositions

This section deals with the representation and execu-
tion control of service compositions. Therefore, subsection
3.3.1 defines a service model assumed for the software com-
ponents serving as basis for service compositions provides a
general overview of the two main representation paradigms
chosen for service compositions. The graph-based repre-
sentation of the workflow and the dataflow within those
compositions is then discussed in subsections 3.3.2 and
3.3.3, respectively. Finally, the interworking of both graphs
is exemplarily outlined in subsection 3.3.4.

3.3.1 Service Model and Basic Concepts

Services themselves are considered as atomically exe-
cutable parts of application logic, whereby the execution
of the service is independent from outer computations and
data structures. This assumption is in-line with the REST
architectural style of the Web, where services are defined
as stateless. We rely on IOPE descriptions characterizing
a service functionality by its inputs, outputs, preconditions
and effects as discussed by Jaeger et al. [16]. Inputs and
outputs of a service are distinguishable by a unique identi-
fier referred to as a port. Since it is aim at introducing a
representation of service composition plans that is indepen-
dent from the service descriptions they rely on, possible se-
mantically enhanced description of preconditions or effects
are not specified. Instead, we assume effect to be present
or not, thus, we identify every effect with a boolean indi-
cating whether the effect has already been generated or not.
Preconditions can then be pondered against those boolean
representations of service effects.

To represent service compositions properly as well as to
control their execution, a bipartite graph concept based on
a workflow graph controlling the execution of the single
components within a service composition and a dataflow
graph defining the passage of data between services’ out-
put and input ports is introduced. Each transition of the

workflow graph corresponds to a service containing I/O pa-
rameters and a set of effects it generates during execution as
described above.

In case a services precondition is met, the service can be
executed, thus, an action representing the service function-
ality is performed, which consumes the service’s input and
generates a finite set of effects and a finite set of outputs.
Transitions between locations are optionally annotated with
guards, which restrict the passage of the transition by re-
quiring the satisfaction of specific preconditions or previ-
ously generated outputs. Notably, the output of a service is
not necessarily required as input for a service reached by the
next transition within the workflow graph; instead, an out-
put may also become relevant after multiple other services
have been executed. Therefore, a second graph is defined,
specifying the dataflow within a service composition. This
dataflow graph shares the set of locations with the workflow
graph, but represents the flow of outputs from one service
component to the input of another with its transitions. A
guard for passing a transition within a workflow graph that
would lead to the execution of the next service can thus de-
pend on the presence of a set of effects (expressed through
preconditions) and on the availability of all inputs that have
to be created as outputs of other services before. Notably,
the dataflow graph is not necessarily completely connected,
thus may be a set of graphs.

In the following section, the workflow graph of a service
composition is formally defined, specifying its guard based
transition behavior and its time awareness.

3.3.2 Workflow Graph

The workflow graph is supposed to control the execution or-
der of single services within a service composition. Based
on the requirements identified in subsection 3.2, automata
theory is proposed as the mathematical basis for service
composition representation. In [24], a transformation from
UML state machines [10] to timed automata has already
proven that automaton theory can be easily accessed by
user-friendly modeling languages such as UML, enabling
the feasibility of the presented approach. Coevally, automa-
ton theory already provides rapid modifications of the au-
tomaton structure by simple operations, because automata
are represented as basic digraphs. In order to provide re-
altime consideration within service compositions, the def-
inition of workflow graphs borrows from timed automata.
Timed automata [2, 9] are finite automata [4, 12] extended
by a set of real-time valued clocks. In the following, we
will refer to the definition provided by Clarke et al. in [7].
Let X be a finite set of real-valued variables standing for
clocks. Clock constraints are then defined as follows.

Definition 3.1 (Clock Constraints) A clock constraint is a
conjunctive formula of atomic constraints of the form x ∗ n

6

69

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

or x− y ∗n for x, y ∈ X , ∗ ∈ {≤, <,=, >,≥} and n ∈ N.
C(X) denotes the set of clock constraints. If ϕ1 is in C(X),
then ϕ1 ∧ ϕ2 is also in C(X).

A Timed Automaton is then defined as follows.

Definition 3.2 (Timed Automaton) A timed automaton A
is a 6-tuple {Σ, S, s0, X, I, T}, where

1. Σ is a finite alphabet (standing for actions),

2. S is a finite set of locations,

3. s0 ∈ S are the initial locations (also called starting
locations),

4. X is a set of clocks,

5. I : S →C(X) assigns invariants to locations, i.e., pro-
vides a mapping from locations to clock constraints,
and

6. T ⊆ S× C(X)×Σ× 2X × S is the set of transitions.

Abbreviatory, we will write s
g,a,λ→ s′ for 〈s, g, α, λ, s′〉, i.e.

the transition leading from location s to s′. The transition is
restricted by the constraint g (often called guard); λ ⊆ X
denotes the set of clocks that is reset during the transition
passage.

Notably, many model checker such as UPPAAL [32], op-
erating on timed automata restrict the location invariants to
downwards closed ones, i.e. do only allow invariants of the
form x ≤ n or x < n for n ∈ N.

Infinite state transition systems (sometimes called infi-
nite state transition graphs) are used as model for a timed
automaton A. Deep introductions into the notion of tran-
sition systems can be found in [15, 20]. Here, the defi-
nition of Clarke et al. [7] will be followed again, speci-
fying an infinite state transition system T (A) for a given
timed automaton A as a 4-tuple T (A) = {Σ, Q,Q0, R}.
A state q ∈ Q of this transition system is defined as a
pair (s, v), where s ∈ S is a location and v : x → R+

is a clock assignment. The initial states are identified by
all initial locations, where all clocks are set to zero, i.e.
Q0 = {(s, v)|s ∈ S0 ∧ ∀x ∈ X [v(x) = 0]}.

The definition of the state transition relation is implied
by the following two needs. First, a notion is required to re-
set a clock to zero, i.e., for λ ∈ X , we define v[λ := 0] for
mapping all clocks in λ to zero. For d ∈ R, we define v+ d
as a clock assignment that maps the current value of v to
v(x) + d for all clocks x ∈ X . Based on this, two different
types of transitions are defined, covering the passage of time
and the triggering of actions. Time can pass while the sys-
tem is in a specific location as long as the according state in-
variant is not violated. This elapsing of time is referred to as

delayed transition, specified as (s, v) d→ (s, v+d), d ∈ R+,
subjected to the condition that the invariant I(s) is not vi-
olated for every v + e, 0 ≤ e ≤ d. The second type of
transitions describes the actual execution of an action and is
thus referred to as action transition. If there is a transition
〈s, α, g, λ, s′〉 where v satisfies g and v′ = v[λ := 0], we
note (s, v) α→ (s′, v′) for a transition with α ∈ Σ. To-
gether, we receive the transition relation R for T (A) as
(s, v)R(s′, v′) (also written as (s, v) α⇒ (s′, v′)), if there
are s′′ and v′′ so that (s, v) d→ (s′′, v′′) α→ (s′, v′) for some
d ∈ R. Thus, an action α can also be performed without
elapsing time, i.e. in case d = 0. Moreover α may also
stand for the empty action τ ∈ Σ, i.e. a transition can also
be passed without entailing the execution of an specific ac-
tion.

Since actions are supposed to model the behaviour of a
service, the execution of an action α is mapped to the con-
sumption of inputs, the creation of outputs and the gener-
ations of effects. Inputs and outputs are regarded as typed
variables bounded to specific ports, enabling the definition
of I/O passage by means of a dataflow graph. The domains
of variables thus constitute their primitive data type.

The Workflow Graphs Θ are now modeled as timed au-
tomata as defined in Definition 3.2, extended by the ability
of actions α ∈ Σ to operate on typed variables and effects.
Typed variables are defined as 2-tuples (x,Γ (x)), where x
is a variable and Γ (x) its respective domain. For now, only
variables x with x ∈ R ⊂ R are considered. Let V be a
finite set of typed variables. Regarding the handling of ef-
fects, we define E as a final set of variables γ∗ ∈ {0, 1}
indicating whether an effect γ has been created (γ∗ set to 1)
or not (γ∗ set to 0). We assume that V contains at least all
variables of E , thus, E⊆V .

Definition 3.3 (Guard Constraints) A real-value con-
straint is a propositional logic formula x ∗ n, where x ∈ V
is a typed variable, n ∈ R and ∗ ∈ {<,≤,≥, >,==}.
C(R\V) denotes the set of real-value constraints containing
only variables of V .

If ϕ1 and ϕ2 are in C(R\V), ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1

are also in C(R\V).
Let ϕc ∈ C(X) be a clock constraint as defined in Defi-

nition 3.1, ϕr a real-value constraint.
A guard constraint is a formula ϕ = ϕc|ϕr|ϕc∧ϕr eval-

uating to a Boolean. C(X ◦ R\V) denotes the set of all
guard constraints.

The workflow graph is now defined as a timed automaton
whose actions and guards can also operate on typed vari-
ables.

Definition 3.4 (Workflow Graph) A workflow graph Θ is
a timed automaton as defined in Definition 3.2, where

7

70

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

1. Σ is a finite alphabet. The alphabet represents the ac-
tions which are identified by the single services within
the service composition.

2. S is a finite set of locations defining the service com-
positions’s current state,

3. s0 ∈ S are the initial locations defining the initial state
of the service composition,

4. X is a set of clocks,

5. I : S →C(X) assigns invariants to locations, restrict-
ing the system in the amount of time it is allowed to
remain in the current state, and

6. T ⊆ S× C(X ◦R\V)×Σ×2X×S is the set of transi-
tions, denoting the execution of a service (represented
by an action α). The passage of a transition (and thus
the execution of a service) thereby depends on whether
the according guard is met.

In order to decide whether an output of a service com-
ponent is required as an input for another one, a dataflow
graph is introduced in the following section.

3.3.3 Dataflow Graph

Dataflow graphs represent the connections of output and in-
put ports. They keep the same locations as the workflow
graph introduced in Definition 3.4 and use labeled transi-
tions to express inter-component data passing.

Definition 3.5 (Dataflow Graph Ω) A dataflow graph Ω is
a labeled directed digraph Ω = {N,P,E}, where,

1. N is a final set of labeled nodes, which is equivalent to
the set of locations S held in the according workflow
graph Θ,

2. P is a set of port mappings represented by 2-tuples
p = (p1, p2) indicating the passage of the output from
port p1 to the input port p2, and

3. E ⊆ N × P × N is a final set of labeled directed
transitions.

Each location represents the data generated by the execu-
tion of action αi; we therefore label a node with d(αi) in-
dicating the output data from action αi. If a transition is
passed within a workflow graph Θ entailing the execution
of action αi, all outgoing transitions from location d(αi)
within the according dataflow graph Ω are passed. A tran-

sition passage d(αi)
(pm,pn)→ d(αj) within Ω effectuates that

the output at port pm from action αi is redirected to input
port pn of action αj in case action αi is executed within Θ.

A service composition is specified by its workflow and
dataflow graph, i.e., is defined as a 2-tuple 〈Θ,Ω〉.

The following section discusses a small example for ser-
vice composition representation and control.

3.3.4 Workflow and Dataflow Graph Interworking

The service composition to be represented is abstractly de-
picted in Figure 4.

Figure 4. A Possible Service Composition.

The involved service components are represented by
rectangles labeled with an action αi describing their func-
tionality. The order of execution, i.e., the workflow, is de-
picted by bold arrows while the passage of inputs and out-
puts is indicated by dashed arrows. They connect the output
ports of service components with input port of other com-
ponents that are drawn as numbered squares.

The example service composition contains five service
components (labeled with α1, ..., α5).

After α1 has been started, either α2 or α3 and α4 are
executed. In case both execution paths are enabled, i.e. all
premises in terms of I/O and effect availability are met, a
path is chosen nondeterministically according to the notion
of transition systems.

While service executions in common service composi-
tion representations such as in Figure 4 are represented as
nodes within graphs, the one introduced in this paper mod-
els service executions as actions performed during transi-
tions between locations. The workflow graph deduced from
the example service composition is illustrated in Figure 5
(a).

Guards restricting the transition from a location s to a
location s′ operate on the generated effects (through pre-

8

71

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

conditions) and a final set of inputs and outputs. Outputs
are not stored but redirected to input ports by means of the
according dataflow graph. The dataflow graph depicted in
Figure 5 (b) is supposed to belong to the workflow graph
illustrated in Figure 5 (a). For instance, the execution of

Figure 5. (a) An according workflow graph.
(b) A dataflow graph representing the I/O
Passing.

α1 implies the redirection of the output from the first output
port of α1 to the second input port of α2 and the first input
port of α3. Moreover, the output from the second output
port of α1 is forwarded to the second input port of α3 and
to the second input port of α5.

3.3.5 Enabling Parallel Execution

Because of their relation to automata and their given tran-
sition relation introduced in section 3.3.2, workflow graphs

already support a wide set of control structures required to
guide the execution order of services; the three most im-
portant ones are abstractly depicted in Figure 6. First,

Figure 6. Basic control structures of au-
tomata semantics. (a) Nondeterministic Se-
lection. (b) Choice. (c) Looping.

nondeterministic decisions between multiple possible ser-
vice invocations are modeled with a finite set of outgo-
ing transitions labeled with the same guard g. In case the
guard is met, all transitions are enabled and the transition
relation discussed in section 3.3.2 selects a transition non-
deterministically. Decisions such as if-else or switch state-
ments are represented by multiple outgoing transitions la-
beled with different guards g1, ..., gk. Here, deadlocks can
occur in case all guards are evaluated as false under a given
set of constraints. Moreover, multiple guards may be true,
entailing a non-deterministic decision making between the
enabled transitions. Last, looping can be modeled with tran-
sitions pointing back to the origin state as depicted in Figure
6 (c).

However, workflow graphs do not provide all means to
model parallel execution of services. By passing a transi-
tion, the according service is executed. Note that the in-
troduced model does not assume that the workflow graph
remains in the location reached by the transition passage
until the service’s execution is finished. Instead, the next
transition is directly passed (in case at least one transi-
tion’s guards are met), entailing the execution of the next
service. Thereby, service execution becomes parallel. If
both services have been started on the same device, the lo-
cal scheduling algorithm ensures their pseudo-parallel ex-
ecution. In case they are executed on different nodes and
therefore multiple processors, they are running in parallel.
However, this approach fails in case the biggest subset of a
given set of services should be executed in parallel.

Assume two services α1 and α2 are selected for paral-
lel execution. In case the services are initiated in the order

9

72

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

α1 → α2, it may be possible that α1 cannot be started since
an input is missing. The blocking of the transition would
entail that also service α2 is not started, although its guard
may be met. Therefore, a control structure for parallel exe-
cution of services is required. The left-hand side of Figure
7 depicts an abstract workflow reflecting the previously de-
scribed situation of two services α1 and α2 that should be
executed in parallel.

l0

l3

l1

g0 : α0

l2

g1 : α1

g2 : α2

l4

g4 : α4

g3 : α3

α0

α1 α3

α2

α4

Figure 7. Timed automaton structure ensur-
ing parallel execution.

The right-hand side of the same Figure depicts the timed
automaton that corresponds to the abstract service composi-
tion. Here, the execution of α2 would be forestalled in case
guard g1 is not met although g2 may be fulfilled. In order
to unblock this behavior, an additional idle state is automat-
ically inserted during the generation of the workflow graph
that is entered after every execution of a service that may
be executed in parallel to other services. The accordingly
modified workflow graph is illustrated in Figure 8.

Because of this modification, the timed automaton
moves into the idle state as soon as the guard of the next ser-
vice is not met, such that the invocation of another service
can be initiated whose guards is fulfilled. The utilization
of semaphores ensures that every service is only executed
once.

Thus, by inserting a special control structure that can
be generated for a given finite set of services, workflow
graphs possess the same expressiveness as other workflow
languages such as BPEL, while relying on sound formal

Idle
g2

g2

g3

g3

g1

g1

l0

l3

l1

g0 : α0

l2

g1 : α1

g2 : α2

l4

g4 : α4

g3 : α3

Figure 8. Timed automaton structure ensur-
ing parallel execution.

model featuring realtime consideration and flexibility.

4 An Architecture featuring a Underlay Sys-
tem for Web Mashups

Within this section, the previously introduced formal
method for the representation of workflow-based service
compositions within a Underlay System for Web Mashups
is realized as an architecture enabling the utilization of
workflows for the representation of Web applications and
features the late binding of 3rd party APIs. This architec-
ture is implemented according to the REST architectural
style, the architectural style of the Web, that was proposed
by Fielding within his PhD thesis and is known for its re-
lated realization within the Web, HTTP [13].

Figure 9 gives an high-level overview of the proposed
architecture.

Here, the Mashup site, i.e. the Mashup proxy, is ex-
tended by 4 key components. First, a workflow engine for
the previously introduced model based on timed automata
enables the structured execution of service compositions. In
addition to version for servers written in Java, the runtime is
also implemented in pure Java Script that can be transferred
to any browser enabled client during initialization such that
the workflows can be executed on the client side and in-

10

73

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

corporate local services residing on the client. A detailed
description of the implementation was presented in [25].
The single services of the service composition are given
as abstract triples <res, act, attr[]>. Here, res describes
the resource that should result from the respective service
execution, act defined an action that should be performed
on the resource res, and attr[] denotes a set of attributes
that are required for the execution of the specified action.
Thus, the triple <map, center, lat=23432, long=92834>

Mashup Site

RERE

Workflow
Engine

Service
Discovery

Engine

Service
Call

Generator

Service
Repository

Client

3rd Party Service Providers

Service
Repository

Presentation

Mashup
Request

Extended Mashup Site

Figure 9. Server-side Service Composition
Engine for Composed Web Applications: Ar-
chitecture.

denotes that a map is requested that is centered on the loca-
tion given by the longitude long and latitude lat. In general,
a location is not known by its longitude and latitude, but
by its name. Therefore, another service may be requested
by the triple <location, getCoordinates, location=Berlin>
that generates the longitude and latitude values for the city
“Berlin”. The output of this service can thus be used as in-
put for the next service. Of course, the attribute “Berlin”
can also be given during runtime by a user input.

This proceeding interprets the workflow model in a
REST conform way: The developer requests a resource and
is returned a representation of the resource that depends on
the given action and set of attributes. For instance, while
the triple <location, getCoordinates, location=Berlin> re-
turns the location of a given city by its longitude and lat-
itude coordinates, the triple <location, getStreetName, lo-
cation=Peter’s Pub> may return a String contain the street
name of a bar called “Peter’s Pub”.

To enable such an abstraction from actual service imple-
mentations, the proposed architecture features a late bind-
ing engine. Here, 3rd party provides can describe their ex-
posed APIs featuring REST interfaces with the Web Ap-
plication Description Language (WADL) [14]. (The inte-
gration of other services such as classic SOAP Web Ser-
vices described by WSDL [6] are also supported but are not
described in greater detail here.) The late binding engine
is capable of matching the previously introduced triples
denoting abstract descriptions of a requested resource to
these WADL descriptions and return a set of WADL files
that describe services which can generate the requested re-
source. For instance, a triple <location, getCoordinates,
location=Berlin> may be matched by Google Maps, Ya-
hoo Maps, and suchen.de. One of these WADL based de-
scriptions can now be passed to the Service Call Generator
where a REST call for the chosen service is automatically
created and handed back to the workflow engine where the
service can be invoked.

This proceeding enables more responsiveness and dy-
namicity of Web Mashups on multiple levels. First, ser-
vice interfaces are encapsulated behind abstract descrip-
tions which reduce the amount of coding for the software
developer. Thus, instead of dealing with the concrete API
of Google Maps, software developers can interface with the
abstract notion of triples, which is conform to the REST
architectural style of the Web. Thereby, the integration
of multiple APIs providing a similar functionality can be
avoided. For example, a developer that has always used
Google Maps to integrate a map into his or her Web appli-
cation may decide to use Yahoo Maps instead. In this case,
the developer would have to incorporate a complete new
API into his or her Mashup, although both services provide
the same functionality.

However, the dynamic binding of services does not only
reduce the development time for Mashups, but also enables
the consideration of device capabilities, user profiles, con-
text information, and Quality of Service (QoS) parameters
of services. Thus, in case the late binding engine returns
multiple WADL files, i.e., has discovered multiple services
or APIs that can provide the requested resource, the service
may be explicitly selected that matches the current circum-
stances best. For instance, in case a user has defined in his
profile that he prefers services from Google because of the

11

74

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

familiar user interface, Google Maps may be bound instead
of Yahoo Maps. On the other hand, a monitoring entity may
have noticed that the response time of Yahoo has been con-
siderably shorter than from Google, leading to the incorpo-
ration of Yahoo Maps instead of Google Maps; this incor-
poration of non-functional properties if services has been
introduced in [26]. It also enables the recovery of services
that expose a weak performance during runtime, i.e. in case
a service is not responding or responding too slow, it may
be dynamically replaced during runtime by another service.

In addition to the flexibility provided by the dynamic in-
tegration of single service implementations within the ser-
vice composition, the workflow graph itself may be adapted
in its structure to as a response to environmental changes;
this adaption has already been introduced in [28].

Thus, the architecture proposed in this work provides
means to overcome the problem of heterogeneous clients by
providing means to bind and replace services dynamically
before and during runtime based on non-functional proper-
ties of services, context information, device capabilities or
user profiles.

5 Conclusion and future Prospect

Within this paper, a Underlay System for Web Mashups
was introduced that combined the advantages of SOA
business processes and the rich presentation and interaction
capabilities of today’s Mashups to overcome the challenge
of device heterogeneity and context dependence in modern
Web applications. Therefore, a formal model for service
compositions based on a bipartite graph concept has been
introduced that consists of a workflow graph defined as
a timed automaton over an extended finite set of typed
variables and a dataflow graph specifying the passage of
data between the single services. By introducing a special
structure of a timed automaton, the semantics of classic
automata were extended to support parallel execution of
services beside their given ability to express interleaving,
decisions and looping. The model has then been used to
build the basis for a new type of rich Web Mashups that are
responsive the the users’ preferences and device context
by supporting late binding of 3rd party services during
runtime.
Within future work, algorithms for the automatic creation
of service compositions are developed. Here, the descrip-
tions for 3rd party services are extended by lightweight
semantics to support the automatic creation of workflows
and binding of services based on a request given by either a
user or another service. Moreover, a GUI is developed that
enables the manual creation of service compositions in an
intuitive way; this representation is then transformed into
corresponding workflow and dataflow graphs automatically.

References

[1] www.programmableweb.com.
[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for

real-time systems. In Proceedings of of the 5th Annual Sym-
posium on Logic in Computer Science, pages 414–425. IEEE
Computer Society Press, 1990.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Busi-
ness Process Execution Language for Web Ser-
vices, Version 1.1, May 2003. [Online]. Available:
http://www.ibm.com/developerworks/library/specification/ws-
bpel/. [Accessed: November, 2007].

[4] J. Berstel. Transductions and Context-free Languages. B.G.
Teubner, Stuttgart, 1979.

[5] A. Bucchiarone and S. Gnesi. A Survey on Services Compo-
sition Languages and Models. In A. Bertolino and A. Polini,
editors, in Proceedings of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006), pages 51–
63, Palermo, Sicily, ITALY, June 9th 2006.

[6] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana.
Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. In World Wide Web Consortium
(W3C) recommendation, January 2006. [Online]. Avail-
able: http://www.w3c.org/TR/wsdl20/. [Accessed: Mar. 24,
2006].

[7] E. M. J. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts and
London, England, 1999.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. Business Process Execution
Language for Web Services (Version 1.0), July 2002.

[9] D. Dill. Timing assumptions and verification of finite-state
concurrent systems. In J. Sifakis, editor, Proceedings of the
International Workshop on Automatic Verification Methods
for Finite State Systems, number 407 in LNCS, pages 197–
212. Springer, 1989.

[10] L. Doldi. UML2 illstrated, Developing Real-Time & Com-
munication Systems. TMSO, 2003.

[11] J. Duhl. Rich Internet Applications. Whitepa-
per (sponsored by Macromedia and Intel), page
Online: http://www.adobe.com/resources/ busi-
ness/rich internet apps/whitepapers.html, 2003.

[12] S. Eilenberg. Automata, Languages, and Machines, volume
Volume A. Academic Press, New York, 1974.

[13] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Univer-
sity of California, Irvine, 2000.

[14] M. J. Hadley. Web application description language (wadl).
Technical report, Sun Microsystems Inc., November 2006.

[15] M. Huth and M. Ryan. Logic in Computer Science - Mod-
eling and reasoning about systems. Cambridge University
Press, 2004.

[16] M. Jaeger, L. Engel, and K. Geihs. A Methodology for De-
veloping OWL-S Descriptions. In First International Con-
ference on Interoperability of Enterprise Software and Ap-
plications Workshop on Web Services and Interoperability
(INTEROP-ESA ’05). Springer, 2005.

[17] F. Lautenbacher and B. Bauer. A Survey on Workflow An-
notation & Composition Approaches. In Proceedings of the

12

75

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Workshop on Semantic Business Process and Product Life-
cycle Management (SemBPM) in the context of the European
Semantic Web Conference (ESWC), pages 12–23, Insbruck,
Austria, 7th June 2007.

[18] G. Lawton. New ways to build rich internet applications.
Computer, 41(8):10–12, Aug. 2008.

[19] F. Leymann. Web Service Flow Language (WSFL 1.0). In
IBM, May 2001.

[20] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[21] E. Ort, S. Brydon, and M. Basler. Mashup styles, part 1:
Server-side mashups. Technical report, Sun Developer Net-
work (SDN), May 2007.

[22] E. Ort, S. Brydon, and M. Basler. Mashup styles, part 2:
Client-side mashups. Technical report, Sun Developer Net-
work (SDN), August 2007.

[23] C. E. Ortitz. Introduction to J2ME Web
Services, April 2005. [Online]. Available:
http://developers.sun.com/mobility/apis/articles/wsa. [Ac-
cessed: October, 2007].

[24] H. Pfeffer. UPPAAL Model Checking as Performance Eval-
uation Technique. Master’s thesis, Rheinische Friedrich-
Whilhelms-Universität Bonn, 2005.

[25] H. Pfeffer, L. Bassbouss, and S. Steglich. Structured ser-
vice composition execution for mobile web applications. In
Proceedings of the 12th IEEE International Workshop on
Future Trends of Distributed Computing Systems (FTDCS
2008), volume ISBN: 978-0-7695-3377-3, pages 112–118,
Kunming, China, 2008. IEEE Computer Society Press.

[26] H. Pfeffer, S. Kr”ussel, and S. Steglich. Fuzzy Service Com-
position Evaluation In Distributed Environments. In In Pro-
ceedings of I-CENTRIC 2008, 2008.

[27] H. Pfeffer, D. Linner, C. Jacob, and S. Steglich. To-
wards Light-weight Semantic Descriptions for Decentralized
Service-oriented Systems. In Proceedings of the 1st IEEE
International Conference on Semantic Computing (ICSC
2007), volume CD-ROM, Irvine, California, USA, 17-19
September 2007. PLJ+07.

[28] H. Pfeffer, D. Linner, and S. Steglich. Dynamic adaptation
of workflow based service compositions. In ICIC ’08: Pro-
ceedings of the 4th international conference on Intelligent
Computing, number ISBN: 978-3-540-87440-9, pages 763–
774, Berlin, Heidelberg, 2008. Springer-Verlag.

[29] H. Pfeffer, D. Linner, and S. Steglich. Modeling and con-
trolling dynamic service compositions. Computing in the
Global Information Technology, 2008. ICCGI ’08. The Third
International Multi-Conference on, pages 210–216, 27 2008-
Aug. 1 2008.

[30] S. Thatte. XLANG - Web Services for Business Process De-
sign, 2001.

[31] The OWL Services Coalition. OWL-S: Semantic Markup
for Web Services, November 2004. [Online]. Available:
http://www.daml.org/services/owls/1.1/. [Accessed: Febru-
ary 26, 2007].

[32] U. University and A. University. UPPAAL 4.0.6.
http://www.uppaal.com, December 2007.

[33] W. van der Aalst. Don’t go with the flow: Web services
composition standards exposed. IEEE Intelligent Systems,
2003.

13

76

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

A Method for Automatically Eliciting node Weights in a Hierarchical
Knowledge-Based Structure for Reasoning with Uncertainty

S. E. Hegazy, C. D. Buckingham
School of Engineering and Applied Science, Aston University, Birmingham, UK.

hegazys@aston.ac.uk c.d.buckingham@aston.ac.uk

Abstract - Hierarchical knowledge structures are frequently
used within clinical decision support systems as part of the
model for generating intelligent advice. The nodes in the
hierarchy inevitably have varying influence on the decision-
making processes, which needs to be reflected by
parameters. If the model has been elicited from human
experts, it is not feasible to ask them to estimate the
parameters because there will be so many in even
moderately-sized structures. This paper describes how the
parameters could be obtained from data instead, using only
a small number of cases.

The original method [1] is applied to a particular web-
based clinical decision support system called GRiST, which
uses its hierarchical knowledge to quantify the risks
associated with mental-health problems. The knowledge
was elicited from multidisciplinary mental-health
practitioners but the tree has several thousand nodes, all
requiring an estimation of their relative influence on the
assessment process. The method described in the paper
shows how they can be obtained from about 200 cases
instead. It greatly reduces the experts’ elicitation tasks and
has the potential for being generalised to similar
knowledge-engineering domains where relative weightings
of node siblings are part of the parameter space.

Keywords: Clinical Decision Support Systems; Mental Health;
Risk Screening; Hierarchical Knowledge; Decision Trees;
Mathematical Modelling.

I. INTRODUCTION

Clinical decision support systems (CDSSs) often
work in complex domains that require modelling of
human expert knowledge [2,3]. The resulting models
may possess high numbers of parameters that need to be
instantiated, which is extremely time-consuming for the
domain experts and may not even be realistically
achievable. An important element of human expertise is
its hierarchical structuring [2], which leads to equivalent
knowledge structures within CDSSs. These structures or
trees have many nodes and the influence of each child
node on its parent node will vary across the siblings
when it comes to processing uncertainty through the tree.
Each node will therefore require a parameter to represent
its particular influence on the decision making process,

which adds up to a very large number of values to be
given by the domain experts on whom the CDSS is being
modelled. This paper describes a method for inducing the
parameters from a small number of cases instead and
shows how it has been applied to a particular CDSS in
the domain of mental health risk assessment. The method
has the potential for being generalised to any tree where
siblings of single parent nodes need individual weights to
fit the data. The paper will begin by introducing the
domain and the specific CDSS.

A. Risk assessment in mental health

Risk screening in the mental health field is a
particularly complex procedure but lacks much assistance
beyond paper-based tools [4]. At present, actuarial
approaches to risk prediction gain favour because of their
evidence base, but have a predictive value that remains
unsatisfactory. They also tend to rely on isolated factors,
not combinations [5], and ignore the individual
qualitative and idiosyncratic patient data that support
clinical judgements in practice [6]. There is a need for
tools based on clinical expertise as well as empirical
evidence and this was precisely the motivation for
developing the Galatean Risk Screening Tool, GRiST [7,
8]. It is a web-based CDSS that is designed to assist the
early detection of multiple risks, including suicide, self-
harm, harm to others, self-neglect, and vulnerability
amongst people with mental health problems. It is the
only risk-assessment tool that uses a computational
model of psychological processes to represent structured
clinical judgements of multidisciplinary mental-health
practitioners [9, 10].

GRiST has successfully elicited the hierarchical
knowledge used by expert mental-health practitioners
[11] but it generated a tree with over one thousand nodes,
each of which has a parameter representing its relative
influence on the assessment process. Asking the domain
experts to set these parameters was not feasible and an
alternative approach was investigated instead.

In essence, GRiST is a weighted decision tree where
risk is represented by fuzzy-set membership grades
(MGs) [12] that are associated with each node of the tree.
Figure 1 shows a small portion of the GRiST tree for

77

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

suicide risk. The bottom level boxes are the data for a
patient assessment (case). These generate a MG at the
matching leaf node using a function that depends on
some parameters given by the experts for each leaf node
(see [9] for more details). The MGs then propagate up the
risk hierarchy and eventually to the top level risks, where
the MG associated with a risk represents the simulated
clinical risk judgement. The relative influence (RI) of
each node in the hierarchy is a parameter that decides
how much risk is propagated up the tree by a node
compared to its siblings [9]. This parameter also needs to
be set so that it reflects the expertise of mental-health
practitioners. Getting them to do it themselves as part of
the knowledge elicitation process is an arduous task
when the tree has so many nodes. This makes it unlikely
that a large enough set of participants can be obtained to
ensure the consensus for each RI is reliable, as opposed
to eliciting the leaf node parameters, which are far fewer:
192 for GRiST.

Figure 1: A portion of the GRiST for suicide risk
showing how the relative influences of the nodes
moderate the flow of risk. Each node MG is multiplied by
its associated RI and summed with the siblings to give the
parent MG. Note that the actual values are hypothetical.

In this paper, we devise an algorithm that induces the
RIs from the clinical judgements given by expert mental-
health practitioners for patient cases. This will mean the
RIs are modelled on the clinicians’ own risk judgements
because the RIs are set to the exact values required for
simulating those judgements. It depends on knowing the
MGs at the leaf nodes for a patient’s data along with the
associated clinical risk judgements, where the risk
judgements equate to the MG that GRiST needs to
generate at the root node (risk) for that patient. The

number of cases required to solve the RIs must be the
same as the number of cues in the patient’s data set. For
GRiST, these judgements are given by clinicians as part
of their everyday use of GRiST in practice. Hence the
elicitation process has been reduced to providing only the
parameters for the 192 leaf nodes. It is important, if not
mandatory, for having such an automated system to elicit
RIs because the sheer number is likely to mean experts
don’t do it accurately themselves.

This paper will give some background to the basic
problem, after which the method and algorithm will be
described. It will conclude with a discussion about how
the approach could have generic applicability and be
extended.

II. BACKGROUND

The problem we are trying to solve could be
represented in a more generalized form, which is a
decision tree with weighted inputs. Each input at the
leaves contributes to the final decision at the top of the
tree, through a weight that determines how much
influence the node has compared to its siblings. Every
node has these weights applied to its child nodes and, for
GRiST, there is an additional constraint that the weights
across all the sibling nodes must sum to unity. The task is
to find a way of automatically deducing the weights
throughout the tree from a minimal set of inputs and
outputs.

Most algorithms that have been developed for
learning decision trees are variations on a core algorithm
that employs a top-down, greedy search through the
space of possible trees. These algorithms generally
construct a decision tree, T, from a set of training cases
[13]. J. Ross Quinlan developed the first algorithm, ID3
[14], and based it on the Concept Learning System (CLS)
algorithm [15]. Other methods like CART (Classification
and Regression Trees) were introduced for the induction
of a tree [16].

Variations on the above methods usually deal with
the type of the input variables, the data pool or set
properties, or the output type (i.e. continuous or discrete
data) [17-19]. Most of these methods attempt to construct
the tree without prior knowledge of the desired tree
structure. This means, they try to predict the layout of the
tree and number of nodes based on the training cases.
The trees are then pruned and optimized to the minimum
structure that satisfies the classes in the training
instances.

Our problem is very different. We aim to model the
GRiST decision tree parameters mathematically, since
the structure of the tree is known in advance from the
psychological model that has been induced from the
experts [10, 11]. Hence, we are in control of the
structure, don’t require pruning and optimization

78

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

processes, and can use the training sets purely to induce
the unknown weights in our model.

III. METHODOLOGY

In this section, we introduce the general structure of
the decision tree used by GRiST, which is the same
structure that our model will use to calculate the RI
values. It is shown in Figure 2 as follows:

LRn : denotes the RIs in level n.
Mn : denotes the MGs (Membership Grades) in level n.
Mxy : denotes the MG of node y in level x; y=0 to Zjh ,
where Zjh is the number of children of node number h-1
at level j.
Rti : denotes the RI of node number i at level t on the
total MG at level t-1 which equals M(t-1)y where y is the
number of the parent node of Rti .

Figure 2: The General GRiST DSS Tree.

To find M, the total membership grade of the tree (which
represents the overall diagnosis or risk of the patient’s
mental health [9]), there are several methodologies we
could follow. One would be to train the model using
known cases and, assuming that leaf MG values and M
are given, we could use a neural networks simulation.
The problem with neural networks is, though, that we
won’t be able to represent the internal hierarchical
structure of the GRiST tree as given by the experts,
which is crucial to the explanation of how risks are
generated. We have thus developed a method that

maintains the tree structure within a mathematical
representation and uses training sets to induce the values
of RIs. To model the tree mathematically, we follow the
psychological model underlying GRiST [9], which
defines how to calculate the overall result, M (the details
of the model are not relevant for this paper because our
algorithm applies to the RIs only, not the generation of
MGs at the leaf nodes). The MG at each node is the
summed product of each child node’s MG and RI, which
then feeds through to the next parent node in the same
way, as follows:

M = R00 M00

R00 = 1, thus, M = M00

M = R00 (R10 M10 + R11 M11 + R12 M12 + ……… +
R1Z10 M1Z10)

If we expand the calculations for the MGs in the child
nodes, we get

M = R00 (R10 (R20 M20 + R21 M21 + R22 M22 +
……… + R2Z10 M2Z20) +

R1Z10 (…………………………..))

If we continue this process, until we reach the leaves, the
resulting expression will be the sum of the products of all
RIs along the path to a leaf node and that leaf node’s
MG, which creates a certain pattern for the multiplication
expression that we will clarify and make use of later.

To illustrate the above, we use a simpler example of
a tree with just two levels, as shown in Figure 3, where a
to g are used to represent the specific leaf node MGs of
M20 to M27 for clarity.

M = R00 (R10 M10 + R11 M11 + R12 M12)
= R00 (R10 (R20 a + R21 b) + R11 (R22 c + R23 d) +

R12 (R24 e + R25 f + R26 g)
(1a)

Or:

M = R00 R10 R20 a + R00 R10 R21 b +
R00 R11 R22 c + R00 R11 R23 d +

R00 R12 R24 e + R00 R12 R25 f + R00 R12 R26 g

(1b)

Since, a to g are given, the unknowns are all the Rs.
The top-level M is also given, because it represents the
clinical judgement associated with the case (for different
cases, we will use M1, M2, M3, …). We have several of
the above equations, one per case, and can regard them as
a system of linear simultaneous equations. To solve the R

79

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

values, we need the same number of cases as there are
leaf nodes.

Figure 3: A simple two level GRiST tree.

To simplify, we rename RI products along a path as:

A = R00 R10 R20

B = R00 R10 R21

C = R00 R11 R22

D = R00 R11 R23

E = R00 R12 R24

F = R00 R12 R25

G = R00 R12 R26 (2)

to give seven equations for our example with R00 = 1
(from the RI properties).

The system can be set up as a set of linear
simultaneous equations, as follows:

M1 = a1. A + b1. B + c1. C + d1. D + e1. E
+ f1. F + g1 .G

M2 = a2 .A + b2. B + c2 .C + d2 . D + e2. E
+ f2 .F + g2. G

.... and so on

M7 = a7. A + b7. B + c7. C + d7. D + e7. E
+ f7. F + g7 .G

(3)

Solving (3) is straightforward (using matrices), which
gives us A to G. But originally, we had eleven
unknowns, so to determine RIs, we need an extra four
equations in addition to the above seven. For this we use
the inherent property of RIs that they must sum to one
across all siblings:

1
0

Zxn

y
xyR (4)

In our case this gives us:

R10 + R11 + R12 = 1 (4b)
R20 + R21 = 1
R22 + R23 = 1
R24 + R25 + R26 = 1 (5)

So we have eleven equations and eleven unknowns.
By substitution, we can solve the system exploiting
another pattern:

A / B = (R10 . R20) / (R10 . R21)

= R20 / R21

So: R21 = (B / A) R20 (5a)

Substituting in the relevant equation, we get:

R20 + R21 = R20 + (B / A) R20 = 1

Or: R20 (1 + (B/A)) = 1

Or: : R20 ((A+B) / A) = 1

Thus: R20 = A / (A+B)

By continuing in the same manner, we can obtain the
rest of the RIs.

)(
20

BA

A
R

)(
21

BA

B
R

)(
22

DC

C
R

)(
23

DC

D
R

)(
24

GFE

E
R

)(
25

GFE

F
R

)(
26

GFE

G
R

(5b)

In other words, each leaf RI can be found as a function of
the RI products along the path from each sibling leaf to
the root node. These products, A to G, have been solved

80

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

from the simultaneous equations, so each individual leaf
RI can thus be calculated.

IV. THE COMPLETE ALGORITHM

The input to the algorithm would be n vectors of known
and diagnosed cases given by experts. In the example for
Figure 3, that vector will contain the following:

V = (M, a, b, c , d, e, f, g) (6)

where M is the top-level clinical judgement given by the
clinician for the patient MGs of a,b, … g (i.e. the leaf-
node MGs generated directly from the patient values).

The algorithm we propose can be divided into two
steps: solving for the multipliers of each leaf MG, which
are the products of the RIs along the path from the leaf to
the root (i.e. A to G), and then solving for the individual
RIs themselves.

Step 1: Solving for Multipliers

The first step will be solving n simultaneous linear
equations, where n is the total number of leaves of the
GRiST tree (seven, a to g, in Figure 3):

M1 = a1. A + b1. B + c1. C + d1. D + e1. E +
f1. F + g1 .G

M2 = a2. A + b2. B + c2 .C + d2 . D + e2. E + f2
.F + g2. G
………………………
……………

M7 = a7. A + b7. B + c7. C + d7. D + e7. E +
f7. F + g7 .G

(7)
Or in matrix form:

G

F

E

D

C

B

A

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

M

M

M

M

M

M

M

7777777

6666666

5555555

4444444

3333333

2222222

1111111

7

6

5

4

3

2

1

(8)
Equation 8 can be solved using Gaussian Elimination so

we now know the values of A to G, which is given by the
solution, S:

S = (A, B, C, D, E, F, G) (9)

Step 2: Solving for individual RIs

To find each RI, we look at a general leaf node and its
children (see Figure 4).

Figure 4: A general leaf node with seven children.

The challenge is to devise a systematic way for deriving
the solution. Let us take a slice of matrix S, and call it S’
for simplicity; it only contains entries for leaf nodes that
are siblings and that therefore share the same ancestral
path of RIs, which is R10 … R(n-1)0 in our example.

n61)0-(n10

n51)0-(n10

n41)0-(n10

n31)0-(n10

n21)0-(n10

n11)0-(n10

n01)0-(n10

RR........R

RR........R

RR........R

RR........R

RR........R

RR........R

RR........R

'S
(10)

From the GRiST model [9], we know that:

Rn0 + Rn1 + Rn2 + Rn3 + Rn4 + Rn5 + Rn6 = 1
(11)

We will convert Equation 10 into a function of only one
variable, e.g. Rn0. To do this we use S’, where each of
the rows are represented by a symbol, A to G, for the RI
product along the path.

B/A = Rn1 / Rn0

Rn1 = (B/A) . Rn0

C/A = Rn2 / Rn0

Rn2 = (C/A) . Rn0

…. and so on ….

81

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

G/A = Rn6 / Rn0

Rn6 = (G/A) . Rn0

Substituting in Equation 11:

Rn0 + (B/A) . Rn0 + (C/A) . Rn0 + (D/A) . Rn0 + (E/A) .
Rn0 + (F/A) . Rn0 + (G/A) . Rn0 = 1

Factoring out Rn0:

We get

GFEDCBA

A
R n0

Solving in the same way, we obtain:

GFEDCBA

B
R n1

… and so on to …

GFEDCBA

G
R n6

(12a)

Hence the general rule in the algorithm, to find a certain
RI in the leaf nodes is:

k

j

j

jS

jS
RI

1

)('

)('
(12b)

Where j is the leaf node MG (in our example, a,b,c, …),
k is the total number of siblings, and S’ is the product of
all RIs along the path from the specified leaf node to the
root node..

Step 3: Shrinking the tree

Having found the RIs of the leaf node (see Figure 4),
we can now calculate the MG for the parent node, M(n-1)0,
which can then become a leaf itself. We can do this for
all the parent nodes that have leaf nodes as children and,
by converting them into leaves themselves once their MG
has been calculated, the tree is shrunk.

Summary of the generalised algorithm

So far, the explanation has used specific trees to illustrate
it. We can now generalize the algorithm as follows.

Inputs:

V1 = (M1, Mn01, Mn11, …………, Mnk1)

To:

Vk = (Mk, Mn0k, Mn1k, …………, Mnkk) (16)

Where:
M1 to Mk : are the k different cases outcomes.
Mn0y : is the input MG at the leaf on the nth level (lowest
level) of the GRiST tree of the yth input vector (Vy).
We need k vectors to solve the resulting k simultaneous
equations where k = the number of leaf nodes of the
GRiST tree = the number of cases required.

Outputs:

RI values, representing the node weightings for every
node in the tree.

Procedure:

Step one:

Solve the following simultaneous equations:

Ak

A

A

A

Mk

M

M

M

...

...

...

3

2

1

M.........MMM

.......................

......................

........................

M...........MMM

M..........MMM

M........MMM

....

...

....

3

2

1

nkkn2kn1kn0k

nk3n23n13n03

nk2n22n12n02

nk1n21n11n01

(17)
The above matrix is kXk in dimension.
The solution yields vector A1 to Ak.

Step two:

We use S’ to denote a sub tree of each node at level (n-
1), where n is the deepest level of the tree where all
nodes are leaf nodes.
Hence we have: S’1 to S’h where h is the number of
nodes at level (n-1) in the GRiST tree.
For each subtree, S’j, we solve to find its RIs.

82

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

r

nr
rjS

rjS
RI

)('

)('
(18)

Where r represents the children (and thus leaf nodes) of
parent node j, with r going from 1 to the number of
leaves of node j at level (n - 1); j = 0 to h.

Step three:

Once the RIs have been found at a particular level,
the tree can be shrunk by a level by making the parent
nodes the new leaf nodes with their MGs calculated by:

M(n-1)h =
r

MGjjS)(' (19)

Once the new shadow MGs are found for the new level,
we can go to step two and repeat step two and three for
the new tree. This process is continued n times (for an n-
level tree). At the end, we will have determined all the
RIs in the tree.

Case study:

This part of the paper demonstrates the effectiveness of
the algorithms using a case study with arbitrary numbers.
We will use our algorithm to calculate the RI values in
the tree shown in Figure 5. The tree has six leaves (A to
F), hence we need six training cases. The following
matrix sets up the synthetic data in the format of
Equation 17:

F

E

D

C

B

A

4.05.05.06.01.03.0

2.09.03.04.03.02.0

3.07.06.05.04.03.0

7.08.07.03.01.02.0

2.06.04.05.02.01.0

6.03.02.04.03.01.0

1.0

8.0

7.0

9.0

4.0

3.0

(20)
Using Gaussian Elimination, to solve the above matrix
for the unknowns, we obtain:

A = -0.44 D = 0.44
B = 0.92 E = 0.964
C = -1.067 F = 0.196

Note that we use 3 decimal points approximation for
simplicity (rounding).

.

Figure 5: A sample decision sub-tree.

Using Equation 18 and the propagation technique in
Equation 19, we obtain all the RI values as in Figure 5.
To verify the model, we use the first training case (first

line in Equation 20) as an input (on Figure 5, it is the
number printed inside each leaf node, A to F).
Propagating through the decision tree using the new RI
values, we finally reach a decision (M = 0.298, inside the
top node). This is almost the same as the desired output
in the original test case, in Equation 20 (i.e. 0.3). The
error is due to approximation and using only three
decimal points precision.

The case study shows that solutions may require
negative RI values, which is only a problem if the
semantics of the knowledge domain demand positive
values. For the GRiST domain, and probably many other
knowledge-based systems, the concept of negative RIs is
not psychological meaningful, although semantically it
can be explained in terms of a bigger span between the
RIs of the siblings and those could then be mapped to
normalized values. It is possible that real-world data,
where clinicians have provided risk assessments for a

83

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

given set of patient values, will have inherent constraints
that mean the RIs willl not be negative. However, it
remains a possibility that limiting RIs to positive values
would mean a solution cannot be found. In the next
section, we will discuss an extension to the method that
will circumvent this problem.

V. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of
eliciting parameters in the GRiST tree structure [10, 11].
These parameters can then be used to analyze new cases
and provide advice for mental health practitioners. The
techniques presented here are extending our ARRIVE [1]
algorithm, and provide a robust mathematical calculation
of the Relative Influence (RI) values in the GRiST tree
[9] that that are crucial for enabling risk quantifications
to be generated. Similar approaches could be relevant to
many intelligent knowledge-based systems based on
human expertise where the knowledge is in a hierarchical
structure and the nodes have varying influence on the
decision making processes. For GRiST, the RIs represent
varying weights of sibling nodes on their parents and
were normalised so that the total weighting across
siblings was unity for all nodes.

At present, the method is intended to initialise the
node weightings from a fixed number of cases equal to
the number of leaf nodes in the tree, where the risk
judgements have been given by expert clinicians for the
set of patient data associated with those leaf nodes. It
would be better, though, if the weightings could be
incrementally updated as new cases are classified and
future work will explore techniques for accomplishing
this. It means the RIs would be a more representative
consensus for the clinicians, having been induced from
an ever-increasing data set. The resulting weights would
thus be best estimates from the data and would enable
constraints on the range of allowable values to be set
without jeopardising the generation of solutions. The
method described in this paper could create the initial
weights that would then be updated as new cases arrive.

Other aspects of future work include analyzing the
sensitivity of the algorithms to variations in patient data
as well as the impact of missing data and noise in the
learning data sets. An interesting problem is how to
determine ways of quantifying error margins and
confidence in the risk judgements based on the
constitution of patient data sets.

REFERENCES

[1] S. E. Hegazy, C. D. Buckingham (2008). ARRIVE: An Algorithm
for Robust Relative Values Elicitation, Proceedings of the International
Conference on Computing in the Global Information Technology, July
2008, 91-96.

[2] Buchanan, B.G., Davis, R., & Feigenbaum, E.A. (2006). Expert
Systems: A perspective from computer science. In: K.A. Ericsson, N.
Charness, P. Feltovich and R. Hoffman, Editors, The Cambridge
handbook of expertise and expert performance, Cambridge University
Press, New York (2006), pp. 87-103

[3] Berner, E.S. (2006). Clinical Decision Support Systems: Theory and
Practice (Ed.), 2nd Ed, Springer: New York.

[4] Hawley, C. J., Littlechild, B., Sivakumaran, T., Sender, H., Gale, T.
M. & Wilson, K. J. (2006). Structure and content of risk assessment
proformas in mental healthcare. Journal of Mental Health, 15, 437-
448.

[5] Skegg, K. (2005). Self-harm. Lancet, 366, 1471-1483.

[6] Holdsworth, N., & Dodgson, G. (2003). Could a new Mental Health
Act distort clinical judgement? a Bayesian justification of naturalistic
reasoning about risk. Journal of Mental Health, 12(5), 451-462.

[7] Buckingham, C.D. (2007). Improving mental health risk assessment
using web-based decision support. Health Care Risk Report, 13(3), 17-
18.

[8] GRiST [www.galassify.org/grist] GRiST [updated December 2008;
cited 2009 Jan 5th]. Available from www.grist.galassify.org/grist

[9] Buckingham, C.D. (2002). Psychological cue use and implications
for a clinical decision support system. Medical Informatics and the
Internet in Medicine, 27(4), 237-251

[10] Buckingham, C. D., Adams, A.E. & Mace, C. (2008). Cues and
knowledge structures used by mental-health professionals when making
risk assessments. Journal of Mental Health, 17(3), 299-314.

[11] Buckingham, C.D., Ahmed, A., & Adams, A.E. (2007). Using
XML and XSLT for flexible elicitation of mental-health risk
knowledge. Medical Informatics and the Internet in Medicine, 32(1),
65-81.

[12] Zadeh LA. Fuzzy sets. Information Control 1965;8:338-53.

[13] Ivan Bratko, Dorian Šuc Learning qualitative models Published in
AI Magazine, 2003, vol. 24, no. 4, pp. 107-119, © AAAI Press

[14] J. R. Quinlan (1975). Machine Learning, vol. 1.

[15] J.R. Quinlan (1986). Induction of Decision Trees, Machine
Learning, (1), 81-106

[16] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).
Classification and regression trees. Monterey, CA: Wadsworth &
Brooks/Cole Advanced Books & Software

[17] Quinlan. (1992). C4.5: Programs for Machine Learning, Morgan
Kaufmann

[18] C. Z. Janikow, “Exemplar learning in fuzzy decision trees,” Proc.
FUZZIEEE, pp. 1500–1505, 1996

[19] Harris Drucker and Corinna Cortes. Boosting decision trees. In
Advances in Neural Information Processing Systems 8, pages 479–485,
1996.

84

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Addressing Data Model Variability and Data Integration
within Software Product Lines

Joerg Bartholdt
Siemens AG

Corporate Technology
Architecture, CT SE 2

Otto-Hahn-Ring 6
81739 Munich, Germany

joerg.bartholdt@siemens.com

Roy Oberhauser
Aalen University

Computer Science Dept.
Beethovenstr. 1,

73430 Aalen, Germany
roy.oberhauser@htw-aalen.de

Andreas Rytina
itemis

Agnes-Pockels-Bogen 1
80992 Munich, Germany
andreas.rytina@itemis.de

Abstract

Software Product Line (SPL) engineering is one
approach for addressing customization and variability
for software products. However, current state-of-the-
art often focuses on feature modeling and component
variability while insufficiently addressing data model
variability difficulties and their associated complexity.
Various software qualities, such as correctness,
reusability, maintainability, testability, and
evolvability, are negatively impacted.

In this article the Approach for Data Model
Variability (ADMV) is described which provides a
unified and systematic methodology for providing a
consistent view to capture data variability in data
models. Adapter generation hides and decouples
components from superfluous data elements and
supports SPL data integration with the potentially
multifarious external systems and devices that a SPL
may need to consider. An eHealth SPL case study is
presented supporting adapter generation with
differential data conversion and data integration with
medical devices. The results show that with this
approach, data model variability and data integration
can be effectively addressed and desirable software
qualities preserved.

Keywords - Data Modeling; Data Integration;
Variability; Software Product Lines; Unified Modeling
Language; Model-Driven Software Development

1. Introduction

One approach that promotes the systematic reuse of
software components for different but similar software
products (typically products in the same domain) is
SPL Engineering (SPLE). Typically the commonalities

and variability of the products in the product line are
captured and then the development is split into domain
(commonalities) and application (additional individual
features for the final product). Products are then built
by integrating the common artifacts (usually a
platform) and optionally configuring them with
product-specific artifacts [11] [14].

Significant work and various methodologies for
domain analysis and variability modeling for SPLs
with a focus on features are, for instance, Feature-
Oriented Domain Analysis (FODA) methodology [9],
FeatuRSEB [8], PuLSE [2] and “the notion of
variability” [25]. Typical feature models in SPLs allow
for many (~10x) possible permutations. Considering
that an artifact may influence the data model (e.g., adds
new data or relations), all artifacts must be able to
handle multiple data variants, although they themselves
make no use of the available differences. Yet the
aforementioned methodologies do not sufficiently
support and address variability in the data models. The
Orthogonal Variability Model (OVM) [14] does go
beyond features to addressing variability in artifacts,
but is an abstract approach missing a notation that can
be used by automation for data models (also known as
schemata). While the challenging issue of data model
variability has been previously studied under schema
integration [13], data conversion, data and metadata
heterogeneity, schema evolution, enterprise application
integration, etc., a holistic approach for SPLE is
absent.

The Approach for Data Model Variability (ADMV)
described in this paper provides a unified methodology
for SPLE to consistently view and edit the data within
the data model, capture the variability, as well as shield
artifact developers from extraneous differences.
Additionally, constraint checking support for data
integration variability in SPLs via views and adapter

85

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

generation is considered, expanding on our previous
work [1].

To motivate and demonstrate the features of the
ADMV, a case study in the medical domain for an
eHealth SPL derived from a third party served as the
research basis. It is presented in simplified form for
this article. In the following section the scenario and
solution requirements are presented. In Section 3, the
ADMV is presented and then applied in Section 4 to an
eHealth SPL scenario to exemplify the approach.
Section 5 considers alternative approaches and Section
6 evaluates the solution against qualities. Related work
is then discussed in Section 7. A conclusion and future
work discussion follows in Section 8.

2. Scenario and requirements

In eHealth, an increasing market demand for
integrated medical information systems and solutions
exists, with globalization in the market and
customization demands spanning national boundaries.
The difficulties for developing and supporting such
systems become apparent in time-to-market, labor
costs, and error-proneness when aligning and
supporting the various data models and data integration
needed for such systems. To support a variety of
markets, an SPL approach allows the medical
information platform customer to select arbitrary
features as add-ons to the base product, e.g., date-
definition, record repository, security, etc. This entails
various challenges, among them that the overall
product instance-specific data model will change
depending on the features selected, and another
challenge being the integration requirements with
medical devices and other medical systems.

For example, a medical information system shall
work in different hospital environments. Patient data
are stored in folders representing a single hospital stay
(“clinical record”). All documents created during a
later hospital stay are stored in a different folder. In
another environment (e.g., triggered by the electronic
case record (eCR) specification in Germany [19]) a
new folder level “case record” is introduced on the top
level. Beneath, the structure follows the previously
described “clinical record”. All clinical records are
sorted by a disease code into the different “case
record” folders. That way, explicit access can be
granted to medical personnel based on the medical
issue (an orthopedic physician treating a broken leg
would have no or restricted access to the psychological
problems of the same patient). The product line shall
be applicable in both types of domains.

Another requirement is the integration of various
measurement devices for blood pressure, body

temperature, etc., see Figure 2.1. The devices deliver
semantically comparable values, but in different data
formats, different scales (e.g., °C/°F) and different
protocols. Nonetheless, the application must be able to
manage that data in a consistent way, abstracting from
the differences in detail.

Measurement

-measuredBy : MedicalPerson
-calibExp : date
-measureTime : String

BodyTemperature

-location : TempLocation
-celsius : float

Pulse

-bpm : int
-type : PulseType

BloodPressure

-systolic : int
-diastolic : int

Sugar

-mgpdl : int

Figure 2.1. UML class diagram of the

Measurement data model

A feature of the medical application includes, for

instance, the calibration expiration management of the
measurement devices. This requires each measurement
to carry the information if the measurement was made
beyond the calibration expiration and ideally, the
expiration date itself (to leave the interpretation to the
physician).

Optionally - depending on the environment (e.g.,
ambulatory vs. stationary), a history of data changes
(measured values, patient demographics, etc.) must be
recorded, which can be seen as a cross-cutting
concern/requirement on domain objects.

Implementing these features and their variability
has many effects on the data model of the product
instances. E.g., modules for presentation of patient
measurements should be programmed with a stable
view on the relevant data, ignoring various formats of
data delivery (date in long or String format), data
interpretation (°C/°F), and additions like history. This
reduces the dependency of such modules on the data
model and other components that can vary in the
product line instances, thus relieving developers from
dealing with this (from their perspective impertinent)
variability.

2.1. Requirements

The deficiencies in the examples above illustrate the
following requirements that are imposed on the
solution to cope with variability in data models:

1) Modeling of the data objects in the solution space
must be consistent and provided in a central view
(analogous to the feature tree in the problem space that

86

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

shows a central view of the variants of the product
line). This allows developers and engineers to keep the
overview and consistency of the possible product
instances and the corresponding data models. The
individual products must be derived from this model.

2) Developers of artifacts shall be shielded from the
effects of the many possible variants on their code
(API and structure of the domain objects) while
retaining the compile-time safety that getter/setter
navigation in the domain object model guarantees. This
includes the demand for loose coupling not only for the
functionality of components, but also for the data
exchanged between those services.

3) Interoperability of artifacts shall be supported
automatically over the SPL lifetime even if the
development takes place at different times and
disparate locations, thus implying support of multiple
versions of the artifacts.

4) In support of correctness, data integrity, data
security, and other data-related requirements across the
multitude of possible SPL variations, constraints on
model consistency and runtime checks shall be
supported. Examples are dependency checks of the
resulting instance data model (consistency) and
authorization constraints for accessing data elements
(runtime).

5) Desirable qualities, motivated by SPLE in
general, should be supported including consistency,
correctness, comprehension, maintainability, usability,
efficiency, portability, integration, interoperability,
reusability, testability, and traceability.

Although this case study comes from the eHealth
domain, the issues are representative and applicable to
data variability in SPLs in general.

3. Solution

This section provides a general description of the
ADMV process and details on the utilization of
fundamental concepts. The approach will then be
illustrated by applying the ADVM to an eHealth SPL
in Section 4.

3.1 ADMV-Process

The ADMV Process is an UML standards-based
approach for SPL data modeling and data integration
usable with common Model-Driven Software
Development (MDSD) tooling, integrated with feature
modeling, and supporting desirable software qualities
during SPL development. Unified Modeling Language
2.x (UML2) class diagrams were selected for modeling
due to the extensibility via stereotypes (in contrast,
e.g., to the entity-relationship diagram) and the

plethora of tools available to process the UML model
further.

Figure 3.1. ADMV Process

The ADMV process (Figure 3.1) defines several

steps in domain engineering and application
engineering. These steps are:

1. Requirements Analysis. The ADMV starts in the

Domain Engineering phase with requirements
analysis. Through the analysis of the problem
domain, common and variable requirements are
collected.

2. Feature Modeling. Each variable requirement
results in a String which is used as feature name.
Dependencies of the features are analyzed and
structured in a Feature Model (e.g., using FMP
[23]).

3. Data Modeling. A Data Model is created in
UML2 XMI (XML Metadata Interchange) [30]
that includes variations. The first step before
integrating variability is the definition of all the
common parts. Then, for each feature, the
variation points and variants are identified.
Eventually the variants are associated with the
variation points in connection with an adequate
variability type. The ADMV addresses three types
of variability: positive - adding new fields, data or
relations to the core model; negative - eliminating
fields, data, or relations from the core model; and
structural - varying the type, cardinality, or
naming of elements.

4. Configuration. At the start of the Application
Engineering phase, a product configuration is
created, e.g., in FMP.

5. Artifact Generation. Product artifacts are
generated such as adapters, converters, views and
runtime checks. To accomplish this, the current
ADMV Generator implementation uses the

87

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

configuration in FMP as well as the Data Model as
inputs (e.g., using openArchitectureWare (oAW)
[12]) to create a Data Model Instance based on the
ADMV metamodel (e.g., an Ecore metamodel
[26]), from which the required code artifacts are
generated (e.g., using Xpand, oAW’s template
language for code generation).

6. Generated Artifact Customization. Complex
Conversions which the ADMV Generator cannot
automatically resolve are implemented manually.
In addition, the exceptions for the generated
runtime checks are implemented manually to
fulfill certain tasks when a runtime check fails.

7. Artifact Integration. Artifacts are integrated into
the build of the data layer and other components.

3.2 Variability types

Negative variability. Negative variability starts
from a maximal description (e.g., a UML (Unified
Modeling Language) model containing all possible
elements of the product line) and deletes the elements
that are not connected to selected features. By this
reduction, the final model of the selected product
instance will be the result. Thus the complete model
can be viewed, which may be advantageous if a
product instance usually consists of mostly selected
features such that the resulting model is close to the
complete model (the delta to the complete model is
small). On the other hand, it might result in
information overload - especially if the product
instances consist of only a few selected features such
that the resulting models are small (the delta to the
complete model is large).

Depending on the selected features, model elements
can be removed to derive different product instances.
This is reflected in the data model by tagging the
different types with the stereotype <<Variation>>. The
condition for which it is generated for the product
instance is defined by the tagged value {feature = “any
feature condition”}. This indicates to the generation
process that the elements associated with the feature
condition are only generated if the condition evaluates
to true, otherwise they are removed.

This is called negative variability since the starting
point is a superset of the data model definition and the
unnecessary elements are stripped away according to
the features selected.

Positive variability. In contrast to negative
variability, positive variability starts from a minimal
description (a core model, containing only the common
parts) and, depending on selected features, additional
elements (classes/members/associations) are added to
the core model. The parts to merge are described in
different places, which may make comprehension of

the overall model difficult. This is especially true if
there are many additional parts, which is often the case
in non-trivial product lines.

Positive variability is useful if cross-cutting
concerns should be modeled that cannot be effectively
modeled by common base classes and negative
variability. As this approach separates the data
definition (class plus cross-cutting concerns described
outside the class), it contradicts Requirement 1 in
Section 2.1. The necessity and benefits in certain
circumstances may be reasonable, but we recommend
the technique be applied rarely, e.g., due to its potential
negative effect on understandability. One technique for
applying positive variability in an efficient way is
described in [18].

Structural variability. Structural variability
describes a change in the model dependent on some
feature selection. The element is already contained in
the model, but its structure (type, cardinality,
association) may vary. Structurally changing the data
model is achieved by adding the stereotype
<<modify>> to the elements that should be structurally
changed and by setting predefined tagged values.
Possible tagged values are, e.g., feature, type,
cardinality, name and initialValue.

In the resulting data model, the corresponding
property is changed. This can also be used to redirect
associations by changing the type of the association.
An example is given in Section 4 regarding the
introduction of additional folder structures due to the
electronic case record (eCR) feature.

3.3 Check-Constraints

Constraints are a common concept in modeling and

many approaches exist, for instance the Object
Constraint Language (OCL). Constraints are used in
many different ways: for consistency checks, such as
the model itself (e.g., cardinality); for runtime checks
(valid references, consistent instantiations); or for
optimization [28].

Constraint checking and their languages are a
known and powerful capability in assuring modeling
correctness, which is especially important when
supporting data model variability in a SPL. The
ADMV encourages the application of constraint
capabilities at the most appropriate points across the
tools used in the process. For instance, feature
modeling constraints can be utilized to determine the
validity of a certain combination of features; data
modeling constraints can be applied using active
validation (e.g., via OCL or binaries as available in
some UML 2 modeling tools) before transformation;
transformation constraints can be applied to check
conditions (e.g., ensuring that the domain and feature

88

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

model are not inconsistent with each other) before or
during the generation process; and runtime checks can
be automatically included by generators. Thus
preconditions, invariants, and postconditions can be
specified and carried through the process and applied
at the appropriate points.

Consistency checks. The ADMV applies a variety
of checks at different phases of the process to ensure
the consistency of the models. At modeling time a
UML2 tool applies constraints to check the validity of
the data model. The uniqueness of members within a
class is an example.

To ensure the consistency between the feature
model and the data model, additional modeling time
checks can be defined. When associating model
elements to features, the checks can ensure that the
feature model also contains these features.

Aside from ensuring model consistency, the model
transformation for deriving product line instances must
also be checked. This is done during the generation
phase by applying, e.g., oAW-Checks. To ensure that
the transformation was correct, oAW-Checks can test
if the respective variation points are bound to variants
and if the resulting data model is still valid after
transformation.

Accessor constraints. To support the verification
of certain conditions at run time, the ADMV
additionally extends the support of the definition of
constraint checks for accessor methods (also known as
getters and setters). These constraints can be expressed
with a constraint language such as oAW Check. The
ADMV Generator transforms these constraints into
methods which implement the oAW Check constraints.
Every time a getter or setter is called, the associated
constraints are successively executed. If one check
fails, a runtime exception will be thrown. If all
constraints are evaluated to true, the accessor method
will be executed.

The analysis of the constraint-string is currently
done in the ADMV implementation by the Xtend
Parser which is part of the oAW framework. The
Xtend Parser returns an abstract syntax tree (AST)
which is the input for the ADMV Generator.

3.4 Views

View concepts are known from database systems,
model-driven approaches, etc. The way views are
considered in the ADMV is from the perspective of the
view that a product-line component has on the data
model. Certain components may be interested in
viewing only parts of entities and shall be shielded
from their further development because those
components are considered stable and should not have

to be adjusted just because the product-line data model
changes.

A view is defined as a variant of an entity, which
might be shared among several product line instances,
or is specific to only one of these instances. An entity
can have many views, each of them defining a set of
child elements. All child elements have several
attributes such as name, type, cardinality, etc. The
definition of the view is done in the data model. For
each entity there is exactly one complete view (which
is the only one potentially persisted in a database) and
an unlimited number of projected views. The complete
view can be converted to any other projected view and
vice versa. The child elements of the projected view
can be arbitrarily filled with the source data. In this
way it is possible to distribute the content of the source
element over multiple elements of the projected view.
Vice versa, it is possible to join the source element’s
data and assign it to a single element of the projected
view. In addition, the datatype or properties of the
target element can be different from the source
element. Thus the structure and content of a projected
view and the complete view can be disparate.

Functional components should be shielded from any
differences in the data models, which can be achieved
with adapters. However, manually written adapters
place an additional burden on the developer: besides
the initial development, they must be kept consistent
with the changes in the data model over time. The
ADMV models those adapters together with the data
model and generates the code normally automatically –
at least for members with the same name. For more
difficult conversions, only the getter and setter are
generated – the implementation must be added
manually. To preserve manual code upon a later update
of the data model with subsequent re-generation of the
source-code, the Generation Gap pattern [27] may be
applied. This is a step towards a consistent view on the
data model over the whole SPL over time and it allows
the exchange of data between components with
different views on those artifacts.

Introducing “Views” gives those types of
components a stable, reduced view on the data model.
The actual designers and programmers need not be
concerned about a variation; they are shielded by their
view of an entity.

Note that if modules execute write access to the
data, a reverse mapping from the projected view to the
complete view must be defined.

Adapters. Adapters are based on the original data

object of the product instance and provide a more
stable view on the data for components that only
require a subset. The adapters provide multiple data
views to components and utilize a common data model,

89

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

thus conversions are required at runtime. In Figure 3.2a
the conversion relationships between views to support
the differing projected views desired by components
are illustrated, with a maximum number of
unidirectional converters required being n(n -1) where
n is the number of views required. The maximum
number of converters required can be reduced to a
linear 2(n-1) if the direct conversions between
projected views are avoided and only conversions to
and from a complete view are utilized (a star topology)
(see Fig 3.2b). This incurs a higher runtime cost of two
conversions (once to the common view and then to the
desired view) vs. only one, but benefits maintenance
and evolution due to the reduced number of conversion
methods. The runtime impact is dependent on the
number of elements and complexity of conversion.

Figure 3.2. Projected view conversions

Data integration via adapters. The view concept
supports integration in that it makes different formats
and semantics explicit and generates the different
adapters.

Advantages of this approach versus manual adapter
implementation include the management of data
structures from a single unified model, the retention
and utilization of the core data model and its variability
information by generators when conversion code is
generated (the generators use the variability), and the
automatic generation of conversion skeleton code and
trivial body code (for simple conversions).

3.5 Artifact generation

The process of artifact generation is shown in the

Figure 3.3. The data model and the configuration
model are the input of the ADMV Generator. While
any realization could be used, the current
implementation is now described.

The two models are transformed by the template
“models2Ecore” to a new data model which is based
on an Ecore metamodel. The Ecore-based metamodel
is less complex than the UML2 metamodel, making it
is easier to define templates for transformation and
generation. Initially the variability is not bound in the
Ecore data model. It will be bound by the template
“toProductModel”. This is a model-to-model

transformation where all variation points are bound to
the configured variants, creating the data model for the
configuration. The derived data model is the input for
code generation. The views, adapters, and runtime
checks are generated by Xpand.

Figure 3.3. ADMV generation process

4. eHealth SPL example

Based on the scenario described in Section 2, the
ADMV will now be illustrated.

After requirements analysis (Step 1), a feature
model will be defined from the collected features (Step
2). This is the foundation for the product
Configuration, defining how features can be combined
during the configuration. Figure 4.1 shows the
(reduced) Feature Model (FM) for the example domain
using the Czarnecki-Eisenecker notation [4]. Hollow
circles describe optional features, hollow arcs describe
alternative features and filled arcs describe an “or”-
relation (select one or more of associated features). A
simplified form is used here, e.g., containing functional
and non-functional features without explicit
constraints, to show the possibilities of the ADMV.

Figure 4.1. Feature model

90

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Four topics were chosen to illustrate the approach:
the change in the folder structure due to support of the
eCR capability; support for various medical sensors
and their different reporting formats (e.g. temperature
in °C or °F); security in the sense of authorization of
access to data; and a history of data changes. Different
variability types can now be chosen to translate the
related features into the solution space.

Figure 4.2 shows the FMP representation of the
feature model from Figure 4.1 with an example product
configuration (Step 4).

Figure 4.2. Feature model instance

Negative variability (Step 3). Variation points that

will be bound through negative variability are marked
with the stereotype <<Variation>> on class,
association, or member level. An appended condition
(using bracket: {}) describes which features in the
feature model must be selected in order for this part to
appear in the data model of the product instance. Note
that Boolean expressions are allowed, e.g., Feature1
AND NOT Feature2.

Negative variability is shown here to adapt the
maximized data model to the resulting instance data
model. Figure 4.3 shows the reduced data model.

The presented variation points are the four
subclasses and the member calibExp (calibration
expiration) of the superclass Measurement. Because
Pulse and Sugar were not selected, the resulting data
model shown in Figure 4.4 only contains the
measurement types BloodPressure and
BodyTemperature. Because the feature Calibration

is selected, the resulting data model contains the
member calibExp.

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<Variation>>-calibExp : date{feature = "calibration"}

...

<<Variation>>
BloodPressure

{feature = "Blood Pressure"}

-systolic : int
-diastolic : int

<<Variation>>
BodyTemperature
{feature = "Body Temp"}

-location : TempLocation
-celsius : float

<<Variation>>
Sugar

{feature = "Sugar" }

-mgpdl : int

<<Variation>>
Pulse

{feature = "Pulse" }

-bpm : int
-type : PulseType

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

-measurements
*1

Figure 4.3. Data model with negative

variability

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

Measurement

-measuredBy : MedicalPerson
-calibExp : date

BloodPressure

-systolic : int
-diastolic : int

BodyTemperature

-location : TempLocation
-celsius : float

*1

Figure 4.4. UML diagram of the example

data model instance

Positive variability (Step 3). Positive variable is

demonstrated by the history feature, where the changes
to each domain object over time should be tracked.
Each domain object receives an additional member
variable “history” containing previous entries and
several operations. In ADMV, positive variability is
realized by the stereotype <<add>> and the feature
condition in brackets. Figure 4.5 shows an example.

The elements which will be added to the variation
points by positive variability are composed in the class
HistoryElements. To implement these elements
via positive variability, the owner class is assigned
with the stereotype <<add>> and the feature condition
“History”. The example reveals a scenario when
positive variability is appropriate. Using negative
variability to achieve the same behavior is more
complex, especially the more members depend on the

91

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

cross-cutting feature: it would have to be repeated in
each class that could potentially have that feature
enabled and would have to be tagged with
<<Variation>>. By choosing positive variability, the
elements have to be modeled only once.

<<add>>
HistoryElements

{feature = "History" }

+addHistory(userID : String, history : History<T>)
+getLastHistory() : History<T>
+getHistories(userID : String) : History<T>"[]"
+getHistories(from : Timestamp, until Timestamp) : History<T>"[]"

-history : History<T>"[]"

History<T>

-changeTimestamp : Timestamp
-previousElement : T

Document

ClinicalRecord

-diagnosis : Diagnosis

-documents*

1

Figure 4.5. Positive variability

Structural variability (Step 3). Structural

variability is tagged using the sterotype <<modify>>,
introducing the condition and type modification (again,
in brackets: {}). For instance, see the association
records from class Patient to
ClinicalRecord in Figure 4.6.

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<modify>>-measureTime : String{type = "long", feature = "Epoch"}

...

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

ClinicalRecord

Document

<<Variation>>
CaseRecord

{feature = "eCR" }

<<modify>>
{type = "CaseRecord" ,
feature = "eCR" }

-records

*

1

-clinicalRecords*

1

-measurements*

1

-documents*

1

Figure 4.6. Data model with structural

variability

In this example the eCR feature introduces an
additional level for structuring the medical records,
which is reflected by tagging the association from
patient to clinical record as <<modify>> and
redirecting the association to CaseRecord if feature
“eCR” is selected. A second structural variation point
is tagged to the member measureTime of the class
Measurement. The date format is usually a
String, but if “Epoch” is selected in the feature
model, the date format will be a long (seconds since
epoch).

Generated views (Step 5). The example of
hierarchically differently structured patient information
is defined by the structural variation point assigned to
the reference records between Patient and the
ClinicalRecord (see Figure 4.6). By default
(“eCR” is not selected) records directly reference
clinical records. Once the feature “eCR” is selected,
the patient member records references
CaseRecord which in turn references the
ClinicalRecord. The two instances of the data
model are shown for comparison in Figure 4.7.

Patient

CaseRecord

ClinicalRecord

DocumentDocument

ClinicalRecord

Patient

-records*

1

-documents*

1

-documents*

1

-records*

1

-clinicalRecords*

1

Figure 4.7. Data model results of structural

variability

Generated data views for the structural variability
example are shown in Listing 4.1 and different usage
examples of generated data types are shown in Listing
4.2. The actual differences are written in bold font.

92

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Listing 4.1
public interface Patient {
 List<ClinicalRecord> getRecords();
 void addRecords(ClinicalRecord value);
 void addRecords(List<ClinicalRecord>
 valueList);
 ...
}

public interface Patient {
 List<CaseRecord> getRecords();
 void addRecords(CaseRecord value);
 void addRecords(List<CaseRecord> valueList);
 ...
}

Listing 4.2
//default hierarchy
public void test1(Patient p) {
 p.getRecords().get(0).getDocuments();
}

//eCR 3-level hierarchy
public void test2(Patient p) {
 p.getRecords().get(0).getClinicalRecords()
 .get(0).getDocuments();
}

Consistency checks. To avoid inconsistencies in
the generated artifacts, multiple checks which are
defined in OCL and in the oAW Check language are
executed. Listing 4.3 shows a simple oAW Check to
verify the uniqueness of members. The check is
applied to all attributes in the data model. If there are
more than one equally named attributes within the
same class, an error message informs the developer.

Listing 4.3

context Attribute ERROR "name not unique" :
((Class)eContainer).attributes
 .select(a|a.name == name).size == 1;

To verify the consistency between the feature model
and the data model the following oAW check in
Listing 4.4 is applied to all variation points.

Listing 4.4
context VariationPoint ERROR
"feature does not exist in feature model":
 getAllFeatures(featureModelUri())
 .contains(feature);

The function getAllFeatures() expects the
path to the feature model as an input parameter which
is resolved by featureModelUri(). It then returns
the list of features of the feature model. Eventually the
function contains(..) checks if the feature of the
variation point in the data model is also contained in
the feature model. If this evaluates to false it results in
an error message.

Accessor constraints. The capability of defining
runtime checks for accessors is illustrated with a

security feature. The two security alternatives in the
feature tree are bound to different access policies to
measurements. Level 1 allows all the medical team
personnel (usually, the staff in the same ward who
cares for a patient) to access the measurements, Level
2 is stricter in the sense that each user may see only
measurements made by themselves). Figure 4.8 shows
the two examples of accessor constraints. Furthermore,
accessor constraints can be associated with features as
shown in Figure 4.8, again defined in brackets: {}.

Patient

...

+getMeasurements() : List<Measurement>

MedicalPerson

-userID : int
-name : String

LoginSession

-sessionId : String

//checks, if the measurements in the returning list
//are all done by the user
{feature = "Security Level 2"}
context Patient
this.measurements.forAll(m| m.measuredBy == LoginSession.user);

//checks, if the user is a member of the patient's
//medical team
{feature = "Security Level 1"}
context Patient:
this.medicalTeam.contains(LoginSession.user);

-medicalTeam
*

-user1

Figure 4.8. Accessor constraints

Run-time checks. Listing 4.5 shows the result of

the generation process if “Security Level 1” is selected.

Listing 4.5
public void check1_getMeasurements()
 throws ConditionExceptionCheck1{
 if (! this.getMedicalTeam()
 .contains(LoginSession.getUser()))
 throw new ConditionExceptionCheck1();
}

public List<Measurement> getMeasurements() {
 try {
 check1_getMeasurements();
 } catch (ConditionExceptionCheck1 e) {
 // resolve in an error message
 }
 return this.measurements;
}

The getter method calls

check1_getMeasurements(), which checks if
the logged-in user is a member of the patient’s medical
team. If this is not the case, then an exception will be
thrown. The content of the catch block must be
manually coded (Step 6) to perform further actions

93

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

such as logging, informing the user that he is not
allowed to access the measurements, and returning
null.

The authorization requirements may even be
stricter. This is presented by the constraint which is
associated to the feature “Security Level 2”. It checks
if the measurements in the returning list are all done by
the logged-in user. The generated and manually added
code for this check is depicted in Listing 4.6. Again the
content of the catch block must be manually coded to
the specific needs (Step 6), e.g., by filtering the
returning list to fulfill the security rule. The manually
added filtering is formatted in bold.

Listing 4.6

public void check1_getMeasurements()
 throws ConditionExceptionCheck1 {
 boolean cond = true;
 for (Measurement m : this.getMeasurements())
 {
 cond &= m.getMeasuredBy()
 == LoginSession.getUser();
 }
 if (! cond)
 throw new ConditionExceptionCheck1 ();
}

public List<Measurement> getMeasurements() {
 try {
 check1_getMeasurements();
 } catch (ConditionExceptionCheck1 e) {
 List<Measurement> filteredList
 = new ArrayList<Measurement>();
 for (Measurement m : this.getMeasurements())
 {
 if (m.getMeasuredBy()
 == LoginSession.getUser())
 filteredList.add(m);
 }
 return filteredList;
 }
 return this.measurements;
}

Adapters and views. The eHealth SPL contains

components that operate on the clinical records
independent of the context being an electronic case
record infrastructure or a standard hospital.
Instantiating the eCR data model would invalidate all
code that uses the (simple) patient API. This illustrates
the need for adapters.

The ADMV approach uses adapters to shield the
actual designers and programmers from the differences
in the instantiated data model. They need not be
concerned about the “eCR” variation; the view – in this
case – flattens the hierarchy of case records and resorts
the clinical records together. Figure 4.9 shows the
complete view to the left and the projected view to the
right. The common elements are omitted for clarity.

Patient

<<reference>>-records : ClinicalRecord [*]
...

<<View>>
Patient_eCR

<<reference>>-records : CaseRecord [*]
...

Figure 4.9. View of Patient

The ADMV Generator creates an adapter for the

patient and two convert methods for each view to
support bidirectional conversion (Step 5). Listing 4.7
shows a generated adapter and manually added code
(Step 6) in bold.

Listing 4.7

public class Patient_eCR_Adapter
implements IPatient_eCR
{
 private IPatientView srcView;
 private IPatient_eCR adaptedView
 = (IPatient_eCR) new Patient_eCR();

 public Patient_eCR_Adapter
 (IPatientView srcView)
 {
 this.srcView = srcView;
 PatientViewConverter.convert(srcView,
 adaptedView);
 }

 public List<CaseRecord> getRecords()
 {
 return adaptedView.getRecords();
 }
}

// there can be many convert methods
// depending on the no. of views
// the right method will be called via
// multi-method dispatching

public static void convert(Patient srcView,
 Patient_eCR targetView)
{
 // Bold code must be manually added
 CaseRecord cr = new CaseRecord();
 cr.setClinicalRecords(srcView.getRecords());
 targetView.setCaseRecords(cr);
 ...
}

public static void convert(...)
 ...
}

Using adapters for data integration. In case

multiple devices deliver measurement data slightly
differently, these must be converted to a specified core
data structure. E.g., body temperature may be delivered
as value: int; scale: enum, celsius:
float, or fahrenheit: int from the different
devices. The systems normative data structure assumes
celsius: float, so all others need to be
converted. New formats may arise at run-time too, e.g.,

94

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

when the hospital buys new devices or hospitals with
different devices are merged.

The example in Figure 4.10 models a view
containing a measurement type with a float
representing the temperature in degrees Fahrenheit
(Step 3). The resulting conversion types are generated
(Step 5) and the bodies of the methods have to be
added (Step 6).

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<modify>> <<Variation>>-measureTime : String{type = "long", feature = "Format 2"}
<<Variation>>-calibExp : date{feature = "calibration"}

<<View>>
BodyTemp_Fahrenheit

-location : TempLocation
-fahrenheit : float

<<Variation>>
BodyTemperature
{feature = "Body Temp"}

-location : TempLocation
-celsius : float

Figure 4.10. View of BodyTemperature

Listing 4.8 shows the conversion adapter for

integrating measurement devices.

Listing 4.8
public static void convert(BodyTemp_Fahrenheit
 srcView, BodyTemperature targetView)
{
 targetView.setCelcius((
 srcView.getFahrenheit()-32)/1.8);
 …
}

Adapter generation. Listing 4.9 shows a simplified
illustration of the Xpand-Template for the adapter
generation. The input parameter for the adapter
template can be any view. The French quotation marks
« and » serve to distinguish between the static output
and escaped control code that is interpreted. The
instructions which fill the adapter template with model
data are formatted here in bold.

Listing 4.9

«DEFINE adapterTmpl FOR View»
«FILE name + "_Adapter.java"»
public class «name»_Adapter
implements I«name»
{
 private I«entityName»View srcView;
 private I«name» adaptedView
 = (I«name») new «name»();

 public «name»_Adapter
 (I«entityName»View srcView)
 {
 this.srcView = srcView;
 «entityName»ViewConverter.convert(srcView,

 adaptedView);
 }
 «FOREACH attributes AS a»
 public «a.type» get«a.name»()
 {
 return adaptedView.get«a.name»();
 }
 «ENDFOREACH»
 ...
«ENDDEFINE»

In order to convert the source view to the adapted
view, the converter methods are generated (Step 5).
This is done by the template in Listing 4.10. The
converter template expects a complete view as an input
parameter. The converter methods are generated in two
steps: first all conversions from the complete view to
the projected views are generated followed by all
conversions in the reverse direction. When generating
a convert method, it checks if the target attribute is also
contained in the source view. If so, the conversion is a
simple pass-through of data and can be generated
automatically. Otherwise, it has to be implemented
manually (Step 6).

Listing 4.10

«DEFINE converterTmpl FOR CompleteView»
«FILE name + "ViewConverter.java"»

public class «name + "ViewConverter"»{
«FOREACH views AS target»
 private void convert(«name
+ " src, " + target.name + " target" »){

 «FOREACH target.attributes AS attrib»
 target.set«attrib.name»(
 «IF attributes
 .select(e|e.name == attrib.name
 && e.type == attrib.type).size > 0 -»
 src.get«attrib.name»());
 «ELSE-»
 null);
 «ENDIF-»
 «ENDFOREACH»
 }
«ENDFOREACH»
«FOREACH views AS src»
 private void convert(«src.name
 + " src, " + name + " target" »){
 ...
 }
«ENDFOREACH»
...
«ENDDEFINE»

5. Alternatives

This section considers various alternatives for
dealing with data variability within the constraints set
forth in Section 2.

UML2 package merge. The most viable alternative
for data model variability is the "package merge"
feature [29] introduced in UML2, and its usage for

95

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

SPLs has been evaluated [17][10]. Class extensions
(e.g., additional members) can be modeled in a
separate package that must have a merge association
with the base package. The mapping is done on class
name equality. Package merge is not suitable for the
requirements described in Section 2 because it scatters
the variation point over multiple packages. Thus the
number of packages explodes and does not scale well
with the number of features. Package merge cannot
model negative or structural variability that is needed
for requirement 2.

To compare the ability of both approaches, the
number of classes to model was counted. The
Measurement class and its subtypes result in five
classes, four of which are tagged to be variable, two
members are also tagged.

Using package merge, a core model containing only
the base class Measurement without the members
calibExp and measuredTime was used. For each
subtype, a package was created since each of the
subtypes is selectable separately. Within the package,
the base class is repeated to add the child class and the
association between them. For the optional calibration
management, a package is added, repeating the base
class with the member calibExp. For the structural
variability of the measuredTime, two packages are
needed, one repeating the base class with the long
type and one with the String type. This requires up
to seven additional packages and 12 classes.
Additionally, data model comprehension becomes
difficult since the information is spread across many
packages (see Figure 5.1).

A general comparison of the effort involved in the
two approaches is shown in Table 5.1, where:

F = number of features influencing the data model
V(f) = number of variation elements for a single

feature f
C(f) = Number of classes created or modified by

feature f (might be less then V(f) in case a feature
controls more than one member of a class)

Table 5.1. UML Package Merge vs. ADMV
for packages, attributes, and classes

Approach Packages Attributes
created or
modified

Repeated
Classes

UML
package
merge

F
∑
=

F

f
fV

1
)(∑

=

F

f
fC

1
)(

ADMV 0
∑
=

F

f
fV

1
)(

0

Body Temp

BodyTemperature

-location : TempLocation
-celsius : float

Measurement

Sugar

Sugar

-mgpdl : int

Measurement

Pulse

Measurement

Pulse

-bpm : int
-type : PulseType

Blood Pressure

Measurement

BloodPressure

-systolic : int
-diastolic : int

CorePackage

Measurement

-measuredBy : MedicalPerson

DeviceFormat1

-measureTime : String

Measurement

Calibration

-calibExp : date

Measurement

DeviceFormat2

Measurement

-measureTime : long

Figure 5.1. UML Package Merge

Optional members. Negative variability could be

modeled by using a full-blown data model for each
instance and returning “null” in case a non-selected
member or association is requested. Alternatively,
hashmaps could be used to carry (single-valued)
optional members. Shortcomings of this approach
include:

• Members cannot be declared to be not null, in
case the feature is selected and null is an
inappropriate value (especially if the data
model is persisted in databases).

• The development of all components could
accidentally use members that are not
necessarily selected. Auto-completion and
compile-time checks are not possible.

• Using hashmaps gives developers no indication
about available members.

• Structural variability is not possible.

Explicit dependencies. Each extension to the data
model could be presented by a separate data
component and explicitly used by a functional
component (see Figure 5.2). The data components
retrieve the necessary elements to form their view on a
domain data. Communicating with other components
introduces the obligation for the receiving component
to retrieve their view of the data again.

Drawbacks include the numerous calls for database
retrievals per component due to a lack of sharing, as

96

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

well as interpretation difficulties when components
transmit or receive data via references or value objects.
If transactions are considered or the services are
remote, this solution is infeasible.

Core Data Objects

Calibration
Component

Record
Extension

Patient
Record

Management

Calibration
 Extension

Database

Figure 5.2. Data model with explicit

dependencies

Layering. Similar to the Decorator design pattern

[6], components are grouped in layers that correspond
to the level of enrichment of the data (see Figure 5.3).
Per layer, one definition of each data element exists.
On the lowest level this will be a core element, on the
next level a slightly enriched element (some more
attributes or associations) that can even be extended on
higher levels. If a component of a higher layer needs
data, it asks the persistence component of that layer to
retrieve it. The persistence component routes this
request down the layers and extends (“enriches”) the
data, converting the data into its own layer data model.

Layer2 Component
(e.g. Patient Observation

Component)

Layer3 Component
(e.g. Calibration

Management)

Layer3 Persistence
(e.g. Calibration)

Layer2 Persistence
(e.g. Measurements)

Layer1 Persistence
(e.g. BasicPatient)

Layer1 Component

Database

Figure 5.3. Data model with layered

extensions

Multiple calls have to be executed to provide the

Layer 3 component with the data and there is
insufficient support for transaction handling.

In summary, the aforementioned alternatives have
the disadvantage that the data model is not presented
consistently and that knowledge is spread over at least
some layers or even individual components. This
assumes that a strict layering is even possible. The
ADMV does not create separate information in
separate packages nor does it need to repeat classes as

UML package merge does. Feature-dependent classes
are defined once in both approaches (see the
Measurement children).

6. Evaluation

For an evaluation of the ADMV, an appraisal of its
support for desirable qualities is considered.
Additionally, any practical limitations of the approach
with regard to performance and scalability with current
implementations are also assessed.

6.1 Quality properties

Consistency and correctness. Correctness is
supported via constraint checks and the generation of
adapters and projected data views appropriate for a
component in its current version. Via the validation of
the data model at usage time via OCL constraints (e.g.,
MagicDraw Active validation), various modeling
errors can be detected sooner and thus avoided in later
phases. Consistency checks can assure the consistency
of the models, e.g., between the feature model and data
model. Support for the correctness of the generated
artifacts is thus enhanced.

Comprehension. ADMV reduces the number of
classes and locations where (redundant) information is
stored, which furthers comprehension. Code generation
is based on a metamodel specialized for modeling data
variability. Code generation templates can thus be
more simply created compared to UML metamodel
generative approaches such as OMG’s Model-Driven
Architecture (MDA).

Maintainability. Maintenance and evolvability are
supported by both shielding component developers
from changes via adapters as well as the application of
constraints throughout development. By programming
templates against a common ADMV metamodel, an
unlimited number of future templates and template
changes support any necessary extensibility.

Usability. Usability is fostered by the integration of
ADMV in standard modeling (FM and UML) and with
tool frameworks that support customization (e.g.,
oAW). The usage of constraint languages at the
appropriate levels also furthers usability.

Efficiency. The enhanced support for code
generation techniques has the potential to improve
efficiency for larger SPLs. Runtime efficiencies are
also achievable since variation decisions are typically
made at generation time. The reduction in the number
of classes required to deal with variability also
promotes efficiency.

Portability. Modeling variability with UML-based
stereotypes, coupled with the ADMV metamodel as a

97

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

basis for generation, supports the portability and
exchangeability of MDSD implementations for
modeling, model-to-model transformations, and
artifact generation.

Data integration and interoperability. These
qualities are supported via the adapters and projected
component views that support independent
conversions. The complete view also supports
interoperability across the SPL and product instance
life cycle.

Reusability. Component reuse is supported since no
direct tight coupling to other components via data
elements occurs. Enhanced comprehension enhances
reusability opportunities. Templates reuse common
code.

Testability. Constraints can be readily defined via
very capable languages such as OCL and oAW Check,
which supports the testability of the models. The
reduced number of classes also simplifies component
testing, since knowledge of other existing components
in the individual product instances is not required.

Traceability. The modeling of variability and data
in a central model makes the effects of the variability
more traceable. By using UML tools with stereotypes
and tagged-value-based search capabilities (as in
MagicDraw), the traceability of variation points and
features is improved. Certain variation points can be
localized by simple string searches.

6.2 Performance and scalability

Due to the use of code generation techniques, the

impact of the variations and the use of the adapters at
runtime is relatively inconsequential. View conversion
of data where necessary, e.g., from one format to
another, is currently a manual programming task and
thus the runtime impact is dependent on the conversion
complexity. However, due to the large set of possible
permutations and the reliance on MDD, variation
scalability measurements were made to determine the
impacts of the variations for development time usage
of the ADMV.

The measurements were performed on an AMD
Athlon XP 2400+ (2GHz) PC with 3GB RAM running
Microsoft Windows XP Pro SP2, Java JDK 1.6,
Eclipse 3.3, openArchitectureWare 4.2, and the Eclipse
Modeling Framework 2.3. All measurements were
performed 3 times and the averages presented.

For the first set of measurements, the transformation
time using oAW from an XMI Data Model file
containing variations to a Data Model Instance XMI
(all variation points applied based on features) was
measured as shown in Table 6.1 and Figure 6.1. A
nearly linear correlation between a change in the
number of variation points and the generation time was

measured as the number of features was held constant,
and an increase in the number of features also showed
a nearly linear increase in the generation time. This
result is explained by the iterations in the generator
code implementation for each variation point and for
each feature. Varying the number of Boolean
conjunctions up to 20 for a variation point made no
perceptible difference due to other inherent overheads.

Table 6.1. Data model instance

transformation time (ms) for features and
variation points

Number of
variation

points

Total number of features
300 600 900

50 2771 5281 9141
100 4429 9696 17781
150 6416 14219 26078

Figure 6.1. Data model instance

transformation time vs. variation points and
features

A second set of measurements concerned the

generation of adapters. Each of the different variability
types was tested and, as expected, no noticeable
difference in generation time occurred based on the
negative, positive, or structural variability types. In the
ADMV, each adapter for an entity can support multiple
projected views. The Lines of Code (LOC) generated
in support of the conversion betweens views increased
in the same percentage to the number of views, as
expected due to the 2n relation resulting from the
complete view basis for all conversions. The
maintainability of the conversions is thereby
supported. The generation time required for adapters
with multiple views is shown in Figure 6.2, showing a
nearly linear increase as the number of adapters or
views increase. The generation time for this scale

98

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

appears reasonable for development usage in current
SPLs.

2500

3000

3500

4000

4500

5000

5500

6000

6500

10 20 30 40 50 60 70 80 90 100

G
en

er
at

io
n

Ti
m

e
(m

s)

Adapters

30 Views

60 Views

90 Views

Figure 6.2. Generation time vs. number of

adapters

In summary, the development-time variation

scalability and performance of the ADMV with current
tooling for industrial use is shown to be practicable.

7. Related work

Other approaches for SPL variability in data models
include the conceptual framework SPLIT [3], where
additional UML stereotypes, e.g.,
<<variabilityMechanism>> and <<variationPoint>>,
are used for specifying variable elements. SPLIT does
not, however, integrate an abstract feature view as does
the ADMV, and each variation point and the
corresponding variants requires a separate class which
can cause issues in lucidity for large SPLs.

Clauß presents in [24] a generic modeling approach
which uses additional stereotypes to express
variability. The Stereotype <<optional>> is used for
optional variants which do not stand in a relationship
with other variants (variation point with one variant).
Variation points which group multiple variants
together are tagged with the stereotype
<<variationPoint>> and the associated variants with
<<variant>>. Furthermore, the variation points and
variants can be assigned with tagged values to define
certain properties. Some of these properties are the
binding time of variants, the multiplicity of associable
variants, and the condition of binding. However, this
approach doesn’t offer a concept to handle data
independently from the corresponding product
instance, nor does it address the derivation of product
line instances.

In [7], PLUS (Product Line UML-Based Software
Engineering) extends UML to model variability and
commonality using stereotypes and primarily
subclassing. While entities are mentioned, the
wrappers described are intended for database access

and do not support all variation types and multiple
view and data versions for components as addressed in
the ADMV. The extension of PLUS with the ADMV
would provide a more comprehensive solution for SPL
UML techniques.

In MDD-AO-PLE [15][16][18] and similar related
aspect-oriented SPLE work, the application of
techniques to SPLs are investigated for addressing
cross-cutting variability. While this work has not
specifically addressed the difficulties described in this
paper for data models, the combination of these
techniques with ADMV could be synergistic, e.g., to
address positive variability or for common data view
format conversions in adapters.

The following comparison matrix shows a
assessment of related SPLE approaches in regard to a
selection of requirements.

Table 7.1. Comparison matrix

 S
PL

IT

 P
LU

S

 M
D

D
-A

O
-P

LE

 U
M

L
ex

t.
[2

4]

 A
D

M
V

requirement analysis +++ +++ ++ + ++
FM1 integration D D D D

positive variability D D D D D
negative variability D D
structural variability D D D D
UML2 D D D D
data conversion2 D
checks (modeling) D D D D D
checks (config.)3 D D D
checks (generator) D D D
checks (runtime) D
product instantiation4 +++ + +++ + +
code generation D D
trace variability5 D D D D D

(1) FM = feature model.
(2) Ability to convert data to different formats.
(3) Checks at configuration time.
(4) The process of creating a specific software product
using a software product line is referred to as product
instantiation [25].
(5) Ability to trace variability between solution space
and problem space.

99

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Work with regard to SPL component evolution

support includes [5], where a multi-team decentralized
SPL variability modeling approach is described,
supporting the merging of model fragments. However,
it does not address versioning of entities and
component usage and lacks UML support. [22]
addresses multi-context component reusability using
UML extensions views (functional, static, and
dynamic), but does not consider data modeling,
constraints, or code generation issues.

Work on model-based data integration, mapping,
and transformation in the eHealth domain includes [21]
and the AutoMed project [20]. To our knowledge the
usage of such an approach for an eHealth SPL for
modeling data variability has not been explored.

8. Conclusion and future work

Given the inadequate integration and specific
support for MDSD data modeling and variability in
current SPL approaches and research, the ADMV
contributes a UML standards-based method for data
modeling that can be utilized by common MDSD
tooling, is integrated with feature modeling, and
supports desirable software qualities during SPL
development. UML diagrams are augmented with
variability information including constraints, from
which artifacts for particular configurations can be
generated automatically. The approach for adapter
generation supports SPL data integration with the
potentially multifarious external systems and devices,
which may represent the same kind of information in
different formats

An eHealth case study that motivated the work was
used to illustrate the application of the ADMV to a
SPL. Scalability of the ADMV with regard to features
and variation points is linear and likely to be sufficient
for typical current SPL development. The unification
of concepts and mechanisms in ADMV promote
support for desirable SPLE qualities, including
consistency, correctness, comprehension,
maintainability, usability, efficiency, portability,
integration, interoperability, reusability, testability, and
traceability. These and other benefits can be realized
for SPLs in conjunction with the ADMV.

Future work includes the addition of a conversion
language for somewhat complex conversions in
adapters (e.g., concatenation and regex-split). Support
of dynamic runtime variation including adaptation and
binding of component views with database migration is
another area to be investigated. Additionally,
optimization for object tree transfers and greater

automatic adapter data conversion code generation are
promising.

9. References

[1] Bartholdt, J., Oberhauser, R., and Andreas Rytina, "An
Approach to Addressing Entity Model Variability within
Software Product Lines". In Proceedings of the Third
International Conference on Software Engineering Advances
(ICSEA 2008), IEEE Computer Society Press, 2008.

 [2] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D.,
Schmid, K., Widen, T., and DeBaud, J., “PuLSE: a
methodology to develop software product lines,” In
Proceedings of the 1999 Symposium on Software Reusability
(SSR '99). ACM, pp. 122-131.

[3] Coriat, M., Jourdan, J., and Boisbourdin, F., “The SPLIT
method: building product lines for software-intensive
systems,” In Proceedings of the First Conference on
Software Product Lines: Experience and Research
Directions (Denver, Colorado, United States). P. Donohoe,
Ed. Kluwer Academic Publishers, Norwell, MA, 2000, pp.
147-166.

[4] Czarnecki, K. and Eisenecker, U.W., Generative
Programming: Methods, Techniques, and Applications.
Addison–Wesley, May 2000, ISBN 0201309777.

[5] Dhungana, D., Neumayer, T., Gruenbacher, P., and
Rabiser, R., “Supporting the Evolution of Product Line
Architectures with Variability Model Fragments,” In
Proceedings of the Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA 2008) (February 18 - 21,
2008). WICSA. IEEE Computer Society, Washington, DC,
2008, pp. 327-330.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
patterns: elements of reusable object-oriented software,
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, 1995, ISBN 0-201-63361-2.

[7] Gomaa, H., Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures, Addison-Wesley, 2005, ISBN 0201775956.

[8] Griss, M. L., Favaro, J., and Alessandro, M. d.
“Integrating Feature Modeling with the RSEB,” In
Proceedings of the 5th international Conference on Software
Reuse (June 02 - 05, 1998). ICSR. IEEE Computer Society,
Washington, DC, 1998, p. 76-85.

[9] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E. &
Peterson, A. S. “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Carnegie-Mellon University Software
Engineering Institute, 1990.

[10] Laguna, M. A., González-Baixauli, B., and Marqués, J.
M., “Seamless development of software product lines,” In
Proceedings of the 6th international Conference on

100

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Generative Programming and Component Engineering
(GPCE 2007). ACM, New York, NY, pp. 85-94.

[11] Linden, F.J. v.d., Schmid, K., and Rommes, E., Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering, Springer, Berlin, ISBN
3540714367, 2007.

[12] Voelter, M., Haase, A., Kolb, B., and Efftinge, S.,
“Introduction to openArchitectureWare 4.1.2,” In
Proceedings of the Model-Driven Development Tool
Implementers Forum (MDD-TIF07), TOOLS EUROPE
2007.

[13] Batini, C., Lenzerini, M., and Navathe, S. B., “A
comparative analysis of methodologies for database schema
integration,” ACM Computing Surveys (CSUR), Vol. 18,
Issue 4, (Dec. 1986), 323-364.

[14] Pohl, K., Böckle, G., Linden, F.J. v.d., Software Product
Line Engineering: Foundations, Principles and Techniques,
Springer-Verlag, 2005, ISBN 3540243720.

[15] Voelter, M. and Groher, I., “Handling Variability in
Model Transformations and Generators”, in Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07), Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.-P.,
(eds.), Computer Science and Information System Reports,
Technical Reports, TR-38, University of Jyväskylä, Finland
2007, ISBN 978-951-39-2915-2.

[16] Voelter, M. and Groher, I., “Product Line
Implementation using Aspect-Oriented and Model-Driven
Software Development,” In Proceedings of the 11th
international Software Product Line Conference (September
10 - 14, 2007). International Conference on Software Product
Line. IEEE Computer Society, Washington, DC, 2007, pp.
233-242.

[17] Laguna, M. A., González-Baixauli, B., and Marqués, J.
M., “Seamless development of software product lines,” In
Proceedings of the 6th international Conference on
Generative Programming and Component Engineering
(Salzburg, Austria, October 01 - 03, 2007). GPCE '07. ACM,
New York, NY, 2007, pp. 85-94.

[18] Groher, I., "Aspect-Oriented Feature Definitions in
Model-Driven Product Line Engineering", Dissertation,
Johannes Kepler Universität, Linz, April 2008.

[19] Boehm, O., “eCR Application Architecture v1.2
Services and Interfaces“, Fraunhofer Institute for Software
and Systems Engineering (ISST), www.fallakte.de 2008

[20] Smith, A. and Mcbrien, P., “A Generic Data Level
Implementation of ModelGen,” In Proceedings of the 25th
British National Conference on Databases: Sharing Data,
information and Knowledge (Cardiff, Wales, UK, July 07 -
10, 2008). A. Gray, K. Jeffery, and J. Shao, Eds. Lecture
Notes In Computer Science, vol. 5071. Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 63-74.

[21] Ying, B., Rong, Z., and Xiao, J., “A Data Integration
Approach to E-Healthcare System”. In Proceedings of the 1st
International Conference on Bioinformatics and Biomedical
Engineering, 2007 (ICBBE 2007), pp. 1129 – 1132.

[22] Saidi, R., Front, A., Rieu, D., Fredj, M., Mouline, S.,
“From a Business Component to a Functional Component
using a Multi-View Variability Modelling,” In Proceedings
of the International Workshop on Model Driven Information
Systems Engineering: Enterprise, User and System Models
(MoDISE-EUS'08) held in conjunction with the CAiSE'08
Conference, Montpellier, France, June 16-17, 2008, ISSN
1613-0073, pp. 34-45.

[23] Antkiewicz, M. and Czarnecki, K., “FeaturePlugin:
feature modeling plug-in for Eclipse,” In Proceedings of the
2004 OOPSLA Workshop on Eclipse Technology Exchange
(Vancouver, British Columbia, Canada, October 24 - 24,
2004), eclipse '04, ACM, 2004, pp. 67-72.

[24] Clauss M., “Generic modeling using UML extensions
for variability”, In Proceedings of the Workshop on Domain
Specific Visual Languages, OOPSLA 2001, Jyväskylä
University Printing House, Jyväskylä, Finland, 2001, ISBN
951-39-1056-3, pp. 11-18.

[25] Van Gurp, J., Bosch, J., and Svahnberg, M. “On the
Notion of Variability in Software Product Lines,” In
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (August 28 - 31, 2001). WICSA. IEEE
Computer Society, Washington, DC, 2001, pp. 45-54.

[26] Eclipse Modeling Framework Project,
http://www.eclipse.org/modeling/emf/ May 14, 2009.

[27] Vlissides, J., “Generation Gap,” C++ Report Volume 8,
Number 10, November / December, 1996, pp. 12-18.

[28] Generic Eclipse Modeling System (GEMS),
http://www.eclipse.org/gmt/gems/ May 14, 2009.

[29] OMG, “UML 2.1.2 Superstructure Specification”, OMG
doc# formal/07-11-02, 2007.

[30] OMG, “Meta Object Facility(MOF) 2.0 XMI Mapping
Specification, v2.1.1”, OMG doc# formal/07-12-01.

101

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

From Supervised to Reinforcement Learning:
a Kernel-based Bayesian Filtering Framework

Matthieu GEIST1,2,3, Olivier PIETQUIN1 and Gabriel FRICOUT2

1IMS Research Group, Supélec, Metz, France
2MC Cluster, ArcelorMittal Research, Maizières-lès-Metz, France

3CORIDA Project-Team, INRIA Nancy - Grand Est, France
{matthieu.geist,olivier.pietquin}@supelec.fr

Abstract—In a large number of applications, engineers have
to estimate a function linked to the state of a dynamic system.
To do so, a sequence of samples drawn from this unknown
function is observed while the system is transiting from state
to state and the problem is to generalize these observations
to unvisited states. Several solutions can be envisioned among
which regressing a family of parameterized functions so as to
make it fit at best to the observed samples. This is the first
problem addressed with the proposed kernel-based Bayesian
filtering approach, which also allows quantifying uncertainty
reduction occurring when acquiring more samples. Classical
methods cannot handle the case where actual samples are not
directly observable but only a non linear mapping of them is
available, which happens when a special sensor has to be used or
when solving the Bellman equation in order to control the system.
However the approach proposed in this paper can be extended to
this tricky case. Moreover, an application of this indirect function
approximation scheme to reinforcement learning is presented. A
set of experiments is also proposed in order to demonstrate the
efficiency of this kernel-based Bayesian approach.

Index Terms—supervised learning; reinforcement learning;
Bayesian filtering; kernel methods

I. INTRODUCTION

In a large number of applications, engineers have to estimate
values of an unknown function given some observed samples.
For example, in order to have a map of wifi (wireless fidelity)
coverage in a building, one solution would be to simulate
the wave propagation in the building according to Maxwell
equations, which would be intractable in practice. An other
solution is to measure the electromagnetic field magnitude in
some specific locations, and to interpolate between theses ob-
servations in order to build a field map which covers the whole
building. This task is referred to as function approximation or
as generalization. One way to solve the problem is to regress
a family of parameterized functions so as to make it fit at best
the observed samples. Lots of existing regression methods can
be found in the literature for a wide range of function families.
Artificial Neural Networks (ANN) [2] or kernel machines [3],
[4] are popular methods. Yet, usually batch methods are used
(gradient descent for ANN or Support Vector Regression for
kernel machines); that is all the observed samples have to
be known before regression is done. A new observed sample
requires running again the regression algorithm using every
sample.

Online regression describes a set of methods able to in-
crementally improve the regression results as new samples
are observed by recursively updating previously computed
parameters. There exists online regression algorithms using
ANN or kernel machines, yet the uncertainty reduction oc-
curring when acquiring more samples (thus more informa-
tion) is usually not quantified, as well as with the batch
methods. Bayesian methods are such recursive techniques
able to quantify uncertainty about the computed parameters.
They have already been applied to ANN [5], [6] and, to
some extent, to kernel machines [7], [8]. In this paper is
proposed a method based on the Bayesian filtering framework
[9] for recursively regressing a nonlinear function from noisy
samples. In this framework a hidden state (here the regression
parameter vector) is recursively estimated from observations
(here the samples), while maintaining a probability distribution
over parameters (uncertainty estimation).

Several problems are not usually handled by standard tech-
niques. For instance, actual samples are sometimes not directly
observable but only a non linear mapping of them is available.
This is the case when a special sensor has to be used (e.g.,
measuring a temperature using a spectrometer or a thermocou-
ple). This is also the case when solving the Bellman equation
in a Markovian decision process with unknown deterministic
transitions [10]. This is important for (asynchronous and
online) dynamic programming, and more generally for control
theory. The proposed approach is extended to online regression
of nonlinear mapping of observations. First a quite general
formulation of the problem is described in order to appeal
a broader audience. Indeed the technique introduced below
handles well nonlinearities in a derivative free way and it can
be useful in other fields. Nevertheless, an application of this
framework to reinforcement learning [11] is also described.
The general outline of the proposed method is as follows.

The parametric function approximation problem as well as
its extension to nonlinear mapped observations case mainly
breaks down in two parts. First, a representation for the
approximated function must be chosen. For example, it can
be an ANN. Notice that this also involves to choose a specific
structure, e.g., number of hidden layers, number of neurons,
synaptic connections, etc. A kernel representation is chosen in
this paper, because of its expressiveness given by the Mercer
theorem [4]. Moreover a dictionary method [12] allows quasi-

102

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

automatizing the choice of the associated structure (that is
number and positions of kernel basis). Second, an algorithm
to learn the parameters is necessary. For this, the regression
problem is cast in a Bayesian tracking problem [9]. As it will
be shown, it allows handling well nonlinearities, uncertainty
and even non-stationarity.

The next section presents some necessary background:
the dictionary method and Bayesian filtering. The following
sections describe the proposed algorithm for function ap-
proximation [1], its extension to regression from nonlinear
mapping of observations [13] and the application of this
general algorithm to reinforcement learning [14]. All these
algorithms are experimented and compared to the state-of-the-
art, and the last section concludes.

II. BACKGROUND

Before introducing the proposed approach, some back-
bone methods are presented. The first one is a dictionary
method [12] based on mathematical signification of kernels
and basic linear algebra which allows automatizing the choice
of the structure (number and position of kernels). The sec-
ond one, Bayesian filtering and more precisely Sigma Point
Kalman filtering, is used as the learning part of the proposed
algorithms. First, kernel-based regression is briefly introduced.

A. Kernel-based Regression

A kernel-based regression is used, namely the approxi-
mation is of the form f̂θ(x) =

∑p
i=1 αiK(x, xi) where x

belongs to a compact set X of Rn (all the work is done
in X) and K is a kernel, that is a continuous, symmetric
and positive semi-definite function. The parameter vector θ
contains the weights (αi)i, and possibly the centers (xi)i and
some parameters of the kernel (e.g., the variance for Gaussian
kernels). These methods rely on the Mercer theorem [4] which
states that each kernel is a dot product in a higher dimensional
space. More precisely, for each kernel K, there exists a
mapping ϕ : X → F (F being called the feature space)
such that ∀x, y ∈ X , K(x, y) = 〈ϕ(x), ϕ(y)〉. Thus, any
linear regression algorithm which only uses dot products can
be cast by this kernel trick into a nonlinear one by implicitly
mapping the original space X to a higher dimensional one.
Many approaches to kernel regression can be found in the lit-
erature, the most classical being the Support Vector Machines
(SVM) framework [4]. There are fewer Bayesian approaches,
nonetheless the reader can refer to [7] or [8] for interesting
examples. To our knowledge, none of them is designed to
handle the second regression problem described in this paper
(when observations are nonlinearly mapped).

B. Dictionary

A first problem is to choose the number p of kernel functions
required for the regression task and the prior kernel centers.
A variety of methods can be contemplated, the simplest one
being to choose equally spaced kernel fonctions. However
the method described below rests on the mathematical sig-
nification of kernels and basic algebra, and is thus well

motivated. By observing that although the feature space F
is a (very) higher dimensional space, ϕ(X) can be a quite
smaller embedding, the objective is to find a set of p points
in X such that

ϕ(X) ' Span {ϕ(x̃1), . . . , ϕ(x̃p)} (1)

This method is iterative. Suppose that samples x1, x2, . . .
are sequentially generated. At time k, a set

Dk−1 = (x̃j)
mk−1
j=1 ⊂ (xj)k−1

j=1 (2)

of mk−1 elements is available where by construction feature
vectors ϕ(x̃j) are approximately linearly independent in F . A
sample xk is then uniformly sampled from X , and is added to
the dictionary if ϕ(xk) is linearly independent on Dk−1. To
test this, weights a = (a1, . . . , amk−1)

T have to be computed
so as to verify

δk = min
a∈Rmk−1

∥∥∥∥∥∥
mk−1∑
j=1

ajϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

(3)

Formally, if δk = 0 then the feature vectors are linearly depen-
dent, otherwise not. Practically an approximate dependence is
allowed, and δk is compared to a predefined threshold ν de-
termining the quality of the approximation (and consequently
the sparsity of the dictionary). Thus the feature vectors will
be considered as approximately linearly dependent if δk ≤ ν.

By using the kernel trick and the bilinearity of dot products,
equation (3) can be rewritten as

δk = min
a∈Rmk−1

{
aT K̃k−1a− 2aT k̃k−1(xt) + K(xk, xk)

}
(4)

where (
K̃k−1

)
i,j

= K(x̃i, x̃j) (5)

is a mk−1 ×mk−1 matrix and(
k̃k−1(x)

)
i
= K(x, x̃i) (6)

is a mk−1 × 1 vector. If δk > ν, xk = x̃mk
is added to the

dictionary, otherwise not. Equation (4) admits the following
analytical solution{

ak = K̃−1
k−1k̃k−1(xk)

δk = K(xk, xk)− k̃k−1(xk)T ak

(7)

Notice that the matrix K̃−1
k can be computed efficiently. If

δk ≤ ν no point is added to the dictionary, and thus K̃−1
k =

K̃−1
k−1. If xk is added to the dictionary, one can write the matrix

K̃k by blocs:

K̃k =
(

K̃k−1 k̃k−1(xk)
k̃k−1(xk)T K(xk, xk)

)
(8)

By using the partitioned matrix inversion formula, its inverse
is incrementally computed:

K̃−1
k =

1
δk

(
δkK̃−1

k−1 + akaT
k −ak

−aT
k 1

)
(9)

103

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

where ak and δk are the given analytical solution to prob-
lem (4). This bounds the computational cost for the kth

sample by O(m2
k). Thus this approach allows computing

sequentially and incrementally an approximate basis of ϕ(X).
The dictionary method is briefly sketched in Algorithm 1,
nevertheless see [12] for more details and theoretical analysis
of the properties of this approach.

Algorithm 1: Dictionary computation
inputs : a set of N samples randomly selected from X ,

sparsification parameter ν
outputs: a dictionary D
Initialization;
D1 = {x1};
Dictionary computation;
for k = 1, 2, . . . N do

Observe sample xk;
Compute approximate dependence:

δk = min
a∈Rmk−1

∥∥∥∥∥∥
mk−1∑
j=1

ajϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

if δk > ν then
Add xk to the dictionary: Dk = Dk−1 ∪ {xk}

else
Let the dictionary unchanged: Dk = Dk−1

Thus, by choosing a prior on the kernel to be used, and
by applying this algorithm to a set of points (x1, . . . , xN)
randomly sampled from X , a sparse set of good candidates
to the kernel regression problem is obtained. This method is
theorically well founded, easy to implement, computationally
efficient and it does not depend on kernels nor space topology.
Notice that, despite the fact that this algorithm is naturally
online, this dictionary cannot be built (straightforwardly) while
estimating the parameters, since the hyper-parameters of the
chosen kernels (such as mean and deviation for Gaussian
kernels) will be parameterized as well (which leads to a
nonlinear parameterization). If the samples used for regression
are known beforehand, they can be used to construct the dic-
tionary. However, for online regression, samples are generally
not known beforehand. Knowing bounds on X is sufficient to
compute a dictionary.

C. Bayesian Filtering

Bayesian filtering was originally designed to track the state
of a stochastic dynamic system from observations (e.g., track-
ing the position of a plane from radar measures). When used
as a learner for function approximation, the parameter vector is
the hidden state to be tracked. As it will be shown below, this
parameter vector is modeled as a random variable, whereas it
is generally deterministic. However, this allows handling non-
stationary regression problems, and even if stationary, it helps
avoiding local minima. Indeed, the process noise (to be defined

below) then plays a role quite similar to simulated annealing.
A comprehensive survey of Bayesian filtering is given in [9].

1) Paradigm: The problem of Bayesian filtering can be
expressed in its state-space formulation; suppose that the
dynamic of a system and the associated generated observations
are driven by the following equations:{

sk+1 = fk(sk) + vk

yk = gk(sk) + nk

(10)

The objective is to sequentially infer the hidden state sk given
the observations y1, . . . , yk = y1:k. The state evolution is
driven by the possibly nonlinear mapping fk and the process
noise vk (centered and of variance Pvk

). The observation yk is
a function of the state sk, corrupted by an observation noise
nk (centered and of variance Pnk

). To do so, the posterior
density (of state over past observations) is recursively updated
as new observations arrive by making use of the Bayes rule
and of the dynamic state-space model of the system (10).

Such a Bayesian filtering approach can be decomposed
in two steps, which crudely consists in predicting the new
observation generated by the system given the current approx-
imated model, and then correcting this model according to the
accuracy of this prediction, given the new observation. The
first stage is the prediction step. It consists in computing the
following distribution:

p(Sk|Y1:k−1) =
∫
S

p(Sk|Sk−1)p(Sk−1|Y1:k−1)dSk−1 (11)

It is the prior distribution of current state conditioned on past
observations up to time k − 1. It is a projection forward in
time of the posterior at time k − 1, p(Sk−1|Y1:k−1) by using
the process model represented by p(Sk|Sk−1) which depends
on fk. For example, if the evolution function is linear and the
noise is Gaussian, the distribution of Sk|Sk−1 is Gaussian of
mean fk−1(Sk−1) and of variance Pvk−1 :

Sk|Sk−1 ∼ N
(
fk−1(Sk−1), Pvk−1

)
(12)

Second, the noisy measurement is incorporated using the
observation likelihood and is combined with the prior to update
the posterior. This is the correction step:

p(Sk|Y1:k) =
p(Yk|Sk)p(Sk|Y1:k−1)∫

S p(Yk|Sk)p(Sk|Y1:k−1)dSk
(13)

The likelihood Yk|Sk is linked to the observation function
gk. For exemple, if this function is linear and if the noise
is Gaussian, the likelihood is also Gaussian:

Yk|Sk ∼ N (gk(Sk), Pnk
) (14)

If the mappings are linear and if the noises nk and vk

are Gaussian, prior and posterior distributions are analytically
computable and the optimal solution is given by the Kalman
filter [15]: quantities of interest are random variables, and
inference (that is prediction of these quantities and correction
of them given a new observation) is done online by propagat-
ing sufficient statistics through linear transformations. If the

104

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

mappings are nonlinear (but the noises are still Gaussian), a
first solution is to linearize them around the state: it is the
principle of the Extended Kalman Filter (EKF), and sufficient
statistics are still propagated through linear transformations.
Another approach is the Sigma Point Kalman Filter (SPKF)
framework [6]. The basic idea is that it is easier to approximate
a probability distribution than an arbitrary nonlinear function.
It is based on the unscented transform [16], which is now
described (the sigma-point designation can be seen as a
generalization of the unscented transform).

2) The Unscented Transform: The problem of approxi-
mating Bayesian filtering when evolution and observation
equations are not linear can be expressed as follows: given
first and second order moment of a random variable, compute
first and second order moments of a nonlinear mapping of this
random variable. The unscented transform addresses this issue
by deterministically sampling the distribution using its mean
and variance.

Let’s abstract from previous sections and their notations.
Let X be a random vector, and let Y be a mapping of X . The
problem is to compute mean and covariance of Y knowing
the mapping and first and second order moments of X . If
the mapping is linear, the relation between X and Y can be
written as Y = AX where A is a matrix of ad hoc dimension.
In this case, required mean and covariance can be analytically
computed: E[Y] = AE[X] and E[Y Y T] = AE[XXT]AT .

If the mapping is nonlinear, the relation between X and Y
can be generically written as:

Y = f(X) (15)

A first solution would be to approximate the nonlinear map-
ping, that is to linearize it around the mean of the random
vector X . This leads to the following approximations of the
mean and covariance of Y :

E[Y] ≈ f (E[X]) (16)

E[Y Y T] ≈ (∇f (E[X]))E[XXT] (∇f (E[X]))T (17)

This approach is the basis of Extended Kalman Filtering
(EKF) [17], which has been extensively studied and used in
past decades. However it has some limitations. First it cannot
handle non-derivable nonlinearities. It requires to compute the
gradient of the mapping f , which can be quite difficult even if
possible. It also supposes that the nonlinear mapping is locally
linearizable, which is unfortunately not always the case and
can lead to quite bad approximations, as exemplified in [16].

The basic idea of the unscented transform is that it is easier
to approximate an arbitrary random vector than an arbitrary
nonlinear function. Its principle is to sample deterministically
a set of so-called sigma-points from the expectation and the
covariance of X . The images of these points through the
nonlinear mapping f are then computed, and they are used
to approximate statistics of interest. It shares similarities with
Monte-Carlo methods, however here the sampling is deter-
ministic and requires less samples to be drawn, nonetheless
allowing a given accuracy [16].

The original unscented transform is now described more
formally (some variants have been introduced since, but the
basic principle is the same). Let n be the dimension of X . A
set of 2n + 1 sigma-points is computed as follows:

x0 = X̄ j = 0 (18)

xj = X̄ +
(√

(n + κ)PX

)
j

1 ≤ j ≤ n (19)

xj = X̄ −
(√

(n + κ)PX

)
n−j

n + 1 ≤ j ≤ 2n (20)

as well as associated weights:

w0 =
κ

n + κ
and wj =

1
2 (n + κ)

∀j > 0 (21)

where X̄ is the mean of X , PX is its variance matrix, κ is
a scaling factor which controls the accuracy of the unscented
transform [16], and (

√
(n + κ)PX)j is the jth column of the

Cholesky decomposition of the matrix (n + κ)PX . Then the
image through the mapping f is computed for each of these
sigma-points:

yj = f(xj), 0 ≤ j ≤ 2n (22)

The set of sigma-points and their images can finally be used
to compute first and second order moments of Y , and even
PXY , the covariance matrix between X and Y :

Ȳ ≈ ȳ =
2n∑

j=0

wjyj (23)

PY ≈
2n∑

j=0

wj (yj − ȳ) (yj − ȳ)T (24)

PXY ≈
2n∑

j=0

wj (xj − x̄) (yj − ȳ)T (25)

where x̄ = x0 = X̄ .
3) Sigma Point Kalman Filtering: The unscented transform

having been presented, the Sigma-Point Kalman Filtering,
which is an approximation of Bayesian filtering for nonlinear
mapping based on unscented and similar transforms (e.g.,
central differences transform, see [6] for details), is shortly
described.

SPKF and classical Kalman equations are very similar.
The major change is how to compute sufficient statistics
(directly for Kalman, through sigma points for SPKF). Al-
gorithm 2 sketches a SPKF update based on the state-space
formulation (10), and using the standard Kalman notations:
sk|k−1 denotes a prediction, sk|k an estimate (or correction),
Ps,y a covariance matrix, n̄k a mean and k is the discrete
time index. The principle of each update is as follow. First,
the prediction step consists in predicting the current mean
and covariance for the hidden state given previous estimates
and using the evolution equation. From this and using the
observation equation, the current observation is predicted.
This implies to use the unscented transform if the mappings
are nonlinear. Then mean and covariance of the hidden state
are corrected using the current observation and some system

105

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

statistics (the better the prediction, the lesser the correction).
Update (or equivalently correction step) is made according
to the so-called Kalman gain Kk which depends on statistics
computed thanks to the unscented transform and using system
dynamics. Notice also that being online this algorithm must
be initialized with some priors s̄0|0 and P0|0.

The reader can refer to [6] for details. More precise al-
gorithms will be given later, when developing specific ap-
proaches. Generally speaking, the computational complexity
of such an update is O(|S|3), where |S| is the dimension of
the state space. However, it will be shown that a square com-
putational complexity is possible for the approach developed
in next sections.

Algorithm 2: SPKF Update
inputs : s̄k−1|k−1, Pk−1|k−1

outputs: s̄k|k, Pk|k

Sigma-points computation;
Compute deterministically sigma-point set Sk−1|k−1

from s̄k−1|k−1 and Pk−1|k−1;

Prediction Step;
Compute sigma-point set Sk|k−1 from fk(Sk−1|k−1, n̄k)
and process noise covariance;
Compute s̄k|k−1 and Pk|k−1 from Sk|k−1;

Correction Step;
Observe yk;
Compute sigma-point set Yk|k−1 = gk(Sk|k−1, v̄k);
Compute ȳk|k−1, Pyk

and Psyk
from Sk|k−1, Yk|k−1 and

observation noise covariance;
Kk = Psyk

P−1
yk

;
s̄k|k = s̄k|k−1 + Kk(yk − ȳk|k−1);
Pk|k = Pk|k−1 −KkPyk

KT
k ;

III. SUPERVISED LEARNING

The approach presented in this section addresses the prob-
lem of nonlinear function approximation. The aim here is to
approximate a nonlinear function f(x), x ∈ X , where X is a
compact set of Rn, from noisy samples

(xk, yk = f(xk) + nk)k (26)

where k is the time index and nk is the observation random
noise, by a function f̂θ(x) parameterized by the vector θ. The
rest of this paper is written for a scalar output, nevertheless
Bayesian filtering paradigm allows an easy extension to the
vectorial output case.

The hint is to cast this regression problem in a state-space
formulation. The parameter vector is considered as the hidden
state to be infered. It is thus modeled as a random variable. As
a process model, a random walk is chosen, which is generally a
good choice if no more information is available. First it allows
handling non-stationarity, but it can also help to avoid local
minima, as discussed before. The observation equation links
the observations (noisy samples from the function of interest)

to the parameterized function. Notice that even if the function
of interest is not noisy, it does not necessarily exist in the
function space spanned by the parameters, so the observation
noise is also structural. This gives the following state-space
formulation : {

θk+1 = θk + vk

yk = f̂θk
(xk) + nk

(27)

As announced in Section I, the principle of the propose
approach is to choose a (nonlinear) kernel representation of
the value function, to use the dictionary method to automate
the choice of the structure, and to use a SPKF to track the
parameters.

A. Parameterization

The approximation is of the form

f̂θ(x) =
p∑

i=1

αiKσi
(x, xi) (28)

where θ = [(αi)
p
i=1, (xi)

p
i=1, (σi)

p
i=1]

T

and Kσi
(x, xi) = exp(−‖x− xi‖2

2σ2
i

)

The problem is to find the optimal number of kernels and a
good initialisation for the parameters (extension to other types
of kernel is quite straightforward). As a preprocessing step,
the dictionary method of Section II-B is used. First a prior
σ0 is put on the Gaussian width (or alternatively on ad hoc
parameters if another kernel is considered, e.g., degree and bias
for a polynomial kernel). Then N random points are sampled
uniformly from X and used to compute the dictionary. Thus
a set of p points D = {x1, . . . , xp} is obtained such that

ϕσ0(X) ' Span {ϕσ0(x1), . . . , ϕσ0(xp)} (29)

where ϕσ0 is the mapping corresponding to the kernel Kσ0 .
Notice that even if the sparsification procedure is offline,
the algorithm (the regression part) is online. Moreover, no
training sample is needed for this preprocessing step, but only
classical prior which is anyway needed for the Bayesian filter
(σ0), one sparsification parameter ν and bounds for X . These
requirements are not too restrictive.

Let q be the number of parameters. Given the chosen
parameterization of equation (28), there is p parameters for
the weights, p parameters for Gaussian standard deviations
and np parameters for Gaussian centers: q = (2 + n)p.

B. Prior

As for any Bayesian approach (and more generally any
online method) a prior (an initialization) has to be put on the
(supposed Gaussian) parameter distribution:

θ0 ∼ N (θ̄0,Σθ0) (30)

where mean and covariance matrix are defined as{
θ̄0 = [α0, . . . , α0,D, σ0, . . . , σ0]T

Σθ0 = diag([σ2
α0

, . . . , σ2
α0

, σ2
µ0

, . . . , σ2
µ0

, σ2
σ0

, . . . , σ2
σ0

])
(31)

106

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

The operator diag applied to a column vector gives a diagonal
matrix. In these expressions, α0 is the prior mean on kernel
weights, D is the dictionary computed in the preprocessing
step, σ0 is the prior mean on kernel deviation, and σ2

α0
, σ2

µ0
,

σ2
σ0

are respectively the prior variance on kernel weights,
centers and deviations. All these parameters (except the dic-
tionary) have to be set up beforehand. Notice that θ̄0 ∈ Rq

and Σθ0 ∈ Rq×q. A prior has also to be put on noises:
v0 ∼ N (0, Rv0) where Rv0 = σ2

v0
Iq, Iq being the identity

matrix, and n0 ∼ N (0, Rn0), where Rn0 = σ2
n0

is a scalar.

C. Artificial Process Noise

Another issue is to choose the artificial process noise.
Formally, since the target function is stationary, there is
no process noise. However introducing an artificial process
noise can strengthen convergence and robustness properties
of the filter. Choosing this noise is still an open research
problem. Following [6] two types of artificial process noise are
considered (the observation noise is chosen to be constant).

The first one is a Robbins-Monro stochastic approximation
scheme for estimating innovation. That is the process noise
covariance is set to

Rvk
= (1−αRM)Rvk−1+αRMKk(yk−f̂θ̄k|k

(xk))2KT
k (32)

Here αRM is a forgetting factor set by the user, and Kk is the
Kalman gain obtained during the Bayesian filter update.

The second type of noise provides for an approximate
exponentially decaying weighting past data. Its covariance is
set to a fraction of the parameters covariance, that is

Rvk
= (λ−1 − 1)Pk|k (33)

where λ ∈]0, 1] (1 − λ � 1) is a forgetting factor similar to
the one from the recursive least-squares (RLS) algorithm.

D. Tracking Parameters

A Sigma Point Kalman filter update (which updates first
and second order moments of the random parameter vector)
is applied at each time step, as a new training sample (xk, yk)
is available. The evolution equation being linear, the update
algorithm does not involve the computation of a sigma-point
set in the prediction step as in Algorithm 2. The proposed
approach is fully described in Algorithm 3.

First, the dictionary has to be computed and priors have
to be chosen. Then, as each input-output couple (xk, yk)
is observed, the parameter vector mean and covariance are
updated. First is the prediction phase. As the parameter vector
evolution is modeled as a random walk, the prediction of
the mean at time k is equal to the estimate of this mean at
time k − 1 (that is θ̄k|k−1 = θ̄k−1|k−1), and the parameters
covariance is updated thanks to the process noise covariance.
Then, the set of 2q +1 sigma-points Θk|k−1 corresponding to
the parameters distribution must be computed using θ̄k|k−1 and
Pk|k−1, as well as associated weights W (see Section II-C2):

Θk|k−1 =
{

θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
(34)

W = {wj , 0 ≤ j ≤ 2q } (35)

Notice that each of these sigma-points corresponds to a
particular parameterized function. Each of these functions is
evaluated in xk, the current observed input, which forms the
set of images of the sigma-points:

Yk|k−1 =
{

y
(j)
k|k−1 = f̂

θ
(j)
k|k−1

(xk), 0 ≤ j ≤ 2q
}

(36)

It can be seen as an approximated sampled prior distribution
over observations. This sigma-point set and its image are then
used to compute the prediction of the observation as well as
some statistics necessary to the computation of the Kalman
gain:

ȳk|k−1 =
2q∑

j=0

wjy
(j)
k|k−1 (37)

Pθyk
=

2q∑
j=0

wj(θ
(j)
k|k−1 − θ̄k|k−1)(y

(j)
k|k−1 − ȳk|k−1) (38)

Pyi
=

2q∑
j=0

wj

(
y
(j)
k|k−1 − ȳk|k−1

)2

+ Pnk
(39)

Finally, the Kalman gain can be computed, and the estimated
mean and covariance can be updated:

Kk = Pθyk
P−1

yk
(40)

θ̄k|k = θ̄k|k−1 + Kk

(
yk − ȳk|k−1

)
(41)

Pk|k = Pk|k−1 −KkPyk
KT

k (42)

If necessary, the artificial process noise is updated following
one of the two proposed schemes. A constant or null process
noise can also be considered.

Notice that practically a square-root implementation of this
algorithm is used, which principally avoids a full Cholesky
decomposition at each time-step. This approach is computa-
tionally cheaper: the complexity per iteration is O(q2), where
it is recalled that q = |θ| is the size of the parameter vector
(O(q3) in the general case). See [6] for details concerning this
square-root implementation of SPKF.

E. Experiments

In this section, the aim is to experiment Algorithm 3
by regressing a cardinal sine (sinc(x) = sin(x)

x) on X =
[−10, 10]. It is an easy problem, but a common benchmark
too which allows comparison to state-of-the-art algorithms.
The uncertainty about function approximation which can be
computed from this framework is also illustrated.

1) Problem Statement and Settings: At each time step k
samples xk ∼ UX (xk uniformly sampled from X) and yk =
sinc(xk) + wk where wk ∼ N (0, σ2

w) are observed. Notice
that the true observation covariance noise σ2

w and the prior
σ2

v are distinguished. For those experiments the first type of
artificial process noise presented in Section III-C is used. The
true noise is set to σw = 0.1. The algorithm parameters are
set to N = 100, σ0 = 1.6, ν = 0.1, α0 = 0, σv = 0.5,
αRM = 0.7, and all variances (σ2

α0
, σ2

µ0
, σ2

σ0
, σ2

n0
) to 0.1.

Notice that this parameters were not finely tuned (only orders
of magnitude seem to be important).

107

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Algorithm 3: Direct regression algorithm
Compute dictionary;
∀i ∈ {1 . . . N}, xi ∼ UX ;
Set X = {x1, . . . , xN} ;
D =Compute-Dictionary (X ,ν,σ0) ;

Initialisation;
Initialise θ̄0, P0|0, Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe (xk,yk);

SPKF update;

Prediction Step;
θ̄k|k−1 = θ̄k−1|k−1;
Pk|k−1 = Pk−1|k−1 + Pvk−1 ;

Sigma-points computation ;
Θk|k−1 =

{
θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
;

W = {wj , 0 ≤ j ≤ 2q } ;
Yk|k−1 =

{
y(j)
k|k−1 = f̂

θ
(j)
k|k−1

(xk), 0 ≤ j ≤ 2q
}

;

Compute statistics of interest;
ȳk|k−1 =

∑2q
j=0 wjy

(j)
k|k−1;

Pθyk
=

∑2q
j=0 wj(θ

(j)
k|k−1 − θ̄k|k−1)(y

(j)
k|k−1 − ȳk|k−1);

Pyi
=

∑2q
j=0 wj

(
y
(j)
k|k−1 − ȳk|k−1

)2

+ Pnk
;

Correction step;
Kk = Pθyk

P−1
yk

;
θ̄k|k = θ̄k|k−1 + Kk

(
yk − ȳk|k−1

)
;

Pk|k = Pk|k−1 −KkPyk
KT

k ;

Artificial process noise update;
Robbins-Monro covariance;
Rvk

=
(1− αRM)Rvk−1 + αRMKk(yk − f̂θ̄k|k

(xk))2KT
k ;

or;
Forgetting covariance;
Rvk

= (λ−1 − 1)Pk|k;

2) Quality of Regression: The quality of regression is
measured with the RMSE (Root Mean Square Error) ‖f− f̂θ‖
(where ‖.‖ is the usual L2-norm), computed over 200 equally-
spaced points. Averaged over 100 runs of Algorithm 3, a
RMSE of 0.0676 ± 0.0176 is obtained for 50 samples, of
0.0452 ± 0.0092 for 100 samples, and of 0.0397 ± 0.0065
for 200 samples, for an average of 9.6 kernels. This is
illustrated on Figure 1. A typical result is given in Figure 2 (50
observed samples). The dotted line, solid line and the crosses
represent respectively the cardinale sine, the regression and
the observations.

The proposed algorithm compares favorably with state-
of-the-art batch and online algorithms. Table I shows the
performance of the proposed algorithm and of other methods
(some being online and other batch, some handling uncertainty
information and other not), for which results are reproduced

Fig. 1. RMSE (mean ± deviation).

Fig. 2. Typical regression.

from [8] (see this paper and references therein for details about
these algorithms). For each method is given the RMSE as
well as the number of kernel functions, and the associated
variations, the SVM (Support Vector Machine) [4] being the
baseline. The proposed method achieves the best RMSE with
slightly more kernels than other approaches. However the
sparsification parameter ν of the dictionary can be tuned in
order to address the trade-off between number of kernels and
quality of approximation. Moreover, recall that the parameters
were not finely tuned.

3) Uncertainty of Generalization: Through the sigma point
approach, it is also possible to derive a confidence interval over
X . This allows to quantify the uncertainty of the regression at
any point (and not a global upper bound as it is often computed

Method test error # kernels
Proposed algorithm 0.0385 (-25.8%) 9.6 (-65.7%)
Figueiredo 0.0455 (-12.3%) 7.0 (-75%)
SVM 0.0519 (-0.0%) 28.0 (-0%)
RVM 0.0494 (-4.8%) 6.9 (-75.3%)
VRVM 0.0494 (-4.8%) 7.4 (-73.5%)
MCMC 0.0468 (-9.83%) 6.5 (-76.8%)
Sequential RVM 0.0591 (+13.8%) 4.5 (-83.9%)

TABLE I
COMPARATIVE RESULTS.

108

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Fig. 3. Confidence (uniform distribution).

Fig. 4. Confidence (normal distribution).

in kernel-based regression methods). A typical confidence
interval is illustrated on Figure 3. The dotted line, solid
line and the crosses represent respectively the cardinale sine,
the confidence interval (indeed the standard deviation, which
corresponds to a confidence interval if Gaussian noise is
assumed) and the observations. It can be particularly useful
when the regression is used in a control framework, where
this confidence approach can be used to take more cautious
decisions (see [18] for example). It can be also useful for
active learning, which aims at selecting costly samples such
as gaining the more possible new information.

In Figure 3, the samples used to feed the regressor are
sampled uniformly from X , and thus the associated confidence
interval has an approximately constant width. However, a
regressor which handles uncertainty should do it locally. This
is indeed the case for the proposed algorithm. In Figure 4, the
distribution of samples is Gaussian zero-centered. It can be
seen that the confidence interval is much larger where samples
are less frequent (close to the bounds). So the computed
confidence intervals make sens.

IV. EXTENSION TO THE CASE OF NONLINEARLY MAPPED
OBSERVATIONS

The problem addressed here is slightly different from the
one in Section III. The function of interest is not directly
observed, but only a nonlinear (and possibly non-derivable)
mapping of it is available, the mapping being known analyt-

ically. Moreover, some of the involved nonlinearities can be
just observed. This is the case when a special sensor has to
be used (e.g., measuring a temperature using a spectrometer
or a thermocouple). This is also the case when solving
the Bellman equation in a Markovian decision process with
unknown deterministic transitions, which will be developped
in Section V.

More formally, let x = (x1, x2) ∈ X = X 1 × X 2 where
X 1 (resp. X 2) is a compact set of Rn (resp. Rm). Let t :
X 1 × X 2 → X 1 be a nonlinear transformation (transitions in
case of dynamic systems) which will be observed. Let g be a
nonlinear mapping such that g : f ∈ RX → gf ∈ RX×X 1

. The
aim here is to approximate sequentially the nonlinear function
f : x ∈ X → f(x) = f(x1, x2) ∈ R from samples(

xk, tk = t(x1
k, x2

k), yk = gf (x1
k, x2

k, tk)
)
k

(43)

by a function f̂θ(x) = f̂θ(x1, x2) parameterized by the vector
θ. Here the output is scalar, however the proposed method can
be straightforwardly extended to vectorial outputs. Notice that
as

(
RX)RX ⊂

{
g ∈

(
RX×X 1

)RX
|gf : x ∈ X → gf (x, t(x))

}
(44)

this problem statement is quite general. Thus the work pre-
sented in this section can be considered with g : f ∈ RX →
gf ∈ RX (g being known analytically), this case being more
specific. The interest of this particular formulation is that a
part of the nonlinearities has to be known analytically (the
mapping g) whereas the other part can be just observed (the
t function).

As before, this regression problem is stated in the corre-
sponding state-space formulation:{

θk+1 = θk + vk

yk = gf̂θk
(x1

k, x2
k, tk) + nk

(45)

Recall that the algorithm proposed in Section III is derivative
free and handle nonlinearities. Thus it is quite simple to adapt
it to this new state-space formulation. A kernel-based repre-
sentation is chosen as before, and its structure is automatized
thanks to the dictionary method. A prior is put, and then a
SPKF is used to learn the parameters.

A. Parameterization

Recall that the objective here is to sequentially approximate
a nonlinear function, as samples (xk, tk = t(x1

k, x2
k), yk) are

available, with a weighted sum of kernel functions. This pa-
rameter estimation problem can be expressed as the state-space
problem (45). Notice that here f does not depend on time,
however this approach can be easily extended to nonstationary
function approximation. In this section, the approximation is

109

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

of the form

f̂θ(x) =
p∑

i=1

αiKσ1
i
(x1, x1

i)Kσ2
i
(x2, x2

i), with (46)

θ = [(αi)
p
i=1,

(
(x1

i)
T
)p

i=1
, (σ1

i)p
i=1,

(
(x2

i)
T
)p

i=1
, (σ2

i)p
i=1]

T

and Kσj
i
(xj , xj

i) = exp(−‖x
j − xj

i‖2

2(σj
i)2

), j = 1, 2

Notice that Kσi
(x, xi) = K(σ1

i ,σ2
i)

(
(x1, x2), (x1

i , x
2
i)

)
=

Kσ1
i
(x1, x1

i)Kσ2
i
(x2, x2

i) is a product of kernels, thus it is a
kernel. Again, extension to other kernels is straightforward.
The optimal number of kernels and a good initialisation for
the parameters have to be determined first.

To tackle this initial difficulty, the dictionary method is used
in a preprocessing step. A prior σ0 = (σ1

0 , σ2
0) on the Gaussian

width is first put (the same for each kernel). Then a set of N
random points is sampled uniformly from X and used to com-
pute the dictionary. A set of p points D = {x1, . . . , xp} is thus
obtained such that ϕ(X) ' Span {ϕσ0(x1), . . . , ϕσ0(xp)}
where ϕσ0 is the mapping corresponding to the kernel Kσ0 .
As before, even though this sparsification procedure is offline,
the proposed algorithm (the regression part) is online.

B. Prior, Learning and Artificial Noises
A SPKF is then used to estimate the parameters. As for

any Bayesian approach an initial prior on the parameter
distribution has to be put. The initial parameter vector follows
a Gaussian law, that is θ0 ∼ N (θ̄0,Σθ0), where{

θ̄0 = [α0, . . . , α0,D1, σ1
0 , . . . , σ1

0 ,D2, σ2
0 , . . . , σ2

0]T

Σθ0 = diag(σ2
α0

, . . . , σ2
µ1

0
, . . . , σ2

σ1
0
, . . . , σ2

µ2
0
, . . . , σ2

σ2
0
, . . .)

(47)
In these equations, α0 is the prior mean on kernel weights,
Dj = [(xj

1)
T , . . . , (xj

p)
T] is derived from the dictionary

computed in the preprocessing step, σj
0 is the prior mean

on kernel deviation, and σ2
α0

, σ2
µj

0
(which is a row vector

with the variance for each component of xj
i , ∀i) and σ2

σ0
are

respectively the prior variances on kernel weights, centers and
deviations. All these parameters (except the dictionary) have
to be set up beforehand. Let |θ| = q = (n + m + 3)p. Notice
that θ̄0 ∈ Rq and Σθ0 ∈ Rq×q. A prior on noises has to be
put too: more precisely, v0 ∼ N (0, Rv0) where Rv0 = σ2

v0
Iq

and n ∼ N (0, Rn) where Rn = σ2
n. Notice that here the

observation noise is also structural. In other words, it models
the ability of the parameterization f̂θ to approximate the true
function of interest f . Then, a SPKF update is simply applied
at each time step, as a new training sample (xk, tk, yk) is
available, as summarized in Algorithm 4. The only difference
between this algorithm and Algorithm 3 is what is observed,
as well as how to compute the set of images of sigma-points,
directly using the approximated function f̂θ for the first one,
and using its nonlinear mapping gf̂θ

for the second one.
A last issue is to choose the artificial process noise. The

same noises as in Section III-C are considered, namely the
Robbins-Monro stochastic approximation scheme for estimat-
ing innovation and the approximate exponentially decaying

Algorithm 4: Indirect regression algorithm
Compute dictionary;
∀i ∈ {1 . . . N}, xi ∼ UX ;
Set X = {x1, . . . , xN} ;
D =Compute-Dictionary (X ,ν,σ0) ;

Initialisation;
Initialise θ̄0, P0|0, Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe (xk, tk,yk);

SPKF update;

Prediction Step;
θ̄k|k−1 = θ̄k−1|k−1;
Pk|k−1 = Pk−1|k−1 + Pvk−1 ;

Sigma-points computation ;
Θk|k−1 =

{
θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
;

W = {wj , 0 ≤ j ≤ 2q } ;
Yk|k−1 =

{
y(j)
k|k−1 = gf̂

θ
(j)
k|k−1

(xk, tk), 0 ≤ j ≤ 2q
}

;

Compute statistics of interest;
ȳk|k−1 =

∑2q
j=0 wjy

(j)
k|k−1;

Pθyk
=

∑2q
j=0 wj(θ

(j)
k|k−1 − θ̄k|k−1)(y

(j)
k|k−1 − ȳk|k−1);

Pyi
=

∑2q
j=0 wj

(
y
(j)
k|k−1 − ȳk|k−1

)2

+ Pnk
;

Correction step;
Kk = Pθyk

P−1
yk

;
θ̄k|k = θ̄k|k−1 + Kk

(
yk − ȳk|k−1

)
;

Pk|k = Pk|k−1 −KkPyk
KT

k ;

Artificial process noise update;
Robbins-Monro covariance;
Rvk

=
(1−αRM)Rvk−1 +αRMKk(yk−gf̂θ̄k|k

(xk, tk))2KT
k ;

or;
Forgetting covariance;
Rvk

= (λ−1 − 1)Pk|k;

weighting past data. Alternatively a constant or null process
noise can be considered. The observation noise is chosen
constant.

C. Experiments

This section aims at illustrating Algorithm 4. The proposed
artificial problem is quite arbitrary, it has been chosen for its
interesting nonlinearities so as to emphasize on the potential
benefits of the proposed approach. Let X = [−10, 10]2 and f
be a 2d nonlinear cardinal sine:

f(x1, x2) =
sin(x1)

x1
+

x1x2

100
(48)

Let the observed nonlinear transformation be

t(x1, x2) = 10 tanh(
x1

7
) + sin(x2) (49)

110

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Recall that this analytical expression is only used to generate
observations in this experiment but it is not used in the
regression algorithm. Let the nonlinear mapping g be

gf

(
x1, x2, t(x1, x2)

)
= f(x1, x2)− γ max

y∈X 2
f

(
t(x1, x2), y

)
(50)

with γ ∈ [0, 1[a predefined constant. This is a specific form
of the Bellman equation [10] with the transformation t being
a deterministic transition function. Recall that this equation is
of special interest in optimal control theory. The associated
state-space formulation is thus{

θk+1 = θk + vk

yk = f̂θk
(x1

k, x2
k)− γ maxx2∈X 2 f̂θk

(
t(x1

k, x2
k), x2

)
+ nk

(51)
1) Problem Statement and Settings: At each time step k

the regressor observes xk ∈ UX (xk uniformly sampled from
X), the transformation tk = t(x1

k, x2
k) and yk = f(xk) −

γ maxx2∈X 2 f(tk, x2). Once again the regressor does not have
to know the function t analytically, it just has to observe it. The
function f is shown on Figure 5(a) and its nonlinear mapping
on Figure 5(b). For these experiments the first type of artificial
process noise presented in Section III-C is used. The algorithm
parameters were set to N = 1000, σj

0 = 4.4, ν = 0.1, α0 = 0,
σn = 0.05 , αRM = 0.7, and all variances (σ2

α0
, σ2

µj
0
, σ2

σj
0
,

σ2
n0

) to 0.1, for j = 1, 2. The factor γ was set to 0.9. Notice
that this empirical parameters were not finely tuned.

2) Quality of Regression: Because of the special form
of gf , any constant bias added to f still gives the same
observations and it may exist other invariances: the root mean
square error (RMSE) between f and f̂ should not be used
to measure the quality of regression. Instead the nonlinear
mapping of f is computed from its estimate f̂ and is then
used to calculate the RMSE. The quality of regression is thus
measured with the following RMSE:√∫

X

(
gf (x, t(x))− gf̂θ

(x, t(x))
)2

dx (52)

As it is computed from f̂ , it really measures the quality of
regression, and as it uses the associated nonlinear mapping, it
will not take into account the bias. Practically it is computed
on 104 equally spaced points. The function gf is what is
observed (Figure 5(b)) and it is used by the SPKF to ap-
proximate f (Figure 5(a)) by f̂θ (Figure 6(a)). The nonlinear
mapping of the approximated function gf̂θ

is computed from
f̂θ (Figure 6(b)) and it is used to compute the RMSE.

As the proposed algorithm is stochastic, the results have
been averaged over 100 runs. Figure 7 shows an errorbar plot,
that is mean ± standard deviation of RMSE. The average
number of kernels was 26.55 ± 1.17. This results can be
compared with the RMSE directly computed from f̂ , that is√∫

x∈X
(f(x)− f̂θ(x))2dx (53)

(a) 2-dimensional nonlinear cardinal sine.

(b) Nonlinear mapping observed by the regressor.
Fig. 5. Original functions.

500 1000 1500
gf̂θ

0.072± 0.022 0.031± 0.005 0.024± 0.003

f̂θ 0.296± 0.149 0.108± 0.059 0.066± 0.035

TABLE II
RMSE (MEAN ± DEVIATION).

which is illustrated on Table II (RMSE as a function of number
of samples). There is more variance and bias in these results
because of the possible invariances of the considered nonlinear
mapping. However one can observe on Figure 6(a) that a good
approximation is obtained.

Thus the RMSE computed from gf is a better quality
measure. As far as we know, no other method to handle
such a problem has been published so far, thus comparisons
with other approaches is made difficult. However the order of
magnitude for the RMSE obtained from gf is comparable with
the state-of-the-art regression approaches when the function of
interest is directly observed. This is demonstrated on Table III.
Here the problem is to regress a linear 2d cardinal sine
f(x1, x2) = sin(x1)

x1 + x2

10 . For the proposed algorithm, the

111

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

(a) Approximation of f(x).

(b) Nonlinear mapping calculated from f̂θ(x).
Fig. 6. Approximated functions.

Fig. 7. RMSE (nonlinear mapping).

test error
Method f̂ gf̂ %DV/SVs
Proposed Alg. 2.45× 10−1 4.5× 10−2 2.6%
KRLS 1.5× 10−2 7%
SVR 5.5× 10−2 60%

TABLE III
COMPARATIVE RESULTS.

nonlinear mapping is the same as considered before. RMSE
results of Algorithm 4 are compared to Kernel Recursive Least
Squares (KRLS) and Support Vector Regression (SVR). For
the proposed approach, the approximation is computed from
nonlinear mapping of observations. For KLRS and SVR, it is
computed from direct observations. Notice that SVR is a batch
method, that is it needs the whole set of samples in advance.
The target of the regressor is indeed gf , and the same order of
magnitude is obtained (however much nonlinearities are intro-
duced for this method and the representation is more sparse).
The RMSE on f̂ is slightly higher for this contribution, but this
can be mostly explained by the invariances (as bias invariance)
induced by the nonlinear mapping.

V. APPLICATION TO REINFORCEMENT LEARNING

The work presented in this section is a rather direct applica-
tion of the general algorithm proposed in Section IV. However,
before presenting the so-called Bayesian Reward Filter, the
reinforcement learning paradigm is briefly introduced. Notice
that the notion of state used in this section is different from
the one used in Section II-C, despite same name and notation.
Here the state is the state of a dynamic system to be controlled
and not a parameter vector. Moreover it is directly observable
and there is no need to infer it.

A. Reinforcement Learning Paradigm

Reinforcement learning (RL) [11] is a general paradigm
in which an agent learns to control a dynamic system only
through interactions. A feedback signal is provided to this
agent as a reward information, which is a local hint about the
quality of the control. Markov Decision Processes (MDP) are
a common framework to solve this problem. A MDP is fully
described by the state space that can be explored, the action
set that can be chosen by the agent, a family of transition
probabilities between states conditioned by the actions and
a set of expected rewards associated to transitions. This is
further explained in Section V-B. In this framework, at each
time step k, the system adopts a state sk. According to this,
the agent can chose an action ak, which leads to a transition
to state sk+1 and to the obtention of a reward rk, the agent
objective being to maximize the future expected cumulative
rewards. Here the knowledge of the environment is modelled
as a Q-function which maps state action pairs to the expected
cumulative rewards when following a given associated policy
after the first transition. The proposed approach is model-free,
no model of transitions and reward distributions is (directly or
explicitly) learnt or known.

112

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Solutions exist for the RL problem with discrete state and
action spaces. However they generally do not scale up very
well and cannot handle continuous state and/or action spaces.
A wide variety of function approximation schemes have thus
been applied to reinforcement learning (see [11] as a starting
point). This is known as the generalization problem, and it is
proposed here to handle it with a Bayesian filtering approach.
The idea to use Bayesian filtering for reinforcement learning is
not novel, but it has been surprisingly little studied. In [19] a
modification of the linear quadratic Gaussian Kalman filter
model is proposed, which allows the on-line estimation of
optimal control (which is off-line for the classical one). In
[20] Gaussian processes are used for reinforcement learning.
This method can be understood as an extension of the Kalman
filter to an infinite dimensional hidden state (the Gaussian
process), but it can only handle (optimistic) policy-iteration-
like update rules (because of the necessary linearity of the
observation equation), contrarily to the proposed contribution,
which can be seen as a nonlinear extension of the parametric
case developed in [20] to a nonlinear and value-iteration-like
scheme. In [21] a Kalman filter bank is used to find the
parameters of a piecewise linear approximation of the value
function.

B. Problem Statement

A Markov Decision Process (MDP) consists of a state
space S, an action space A, a Markovian transition proba-
bility p : S × A → P(S) and a bounded reward function
r : S × A × S → R. A policy is a mapping from state to
action space: π : S → A. At each time step k, the system is
in a state sk, the agent chooses an action ak = π(sk), and the
system is then driven in a state sk+1 following the conditional
probability distribution p(.|sk, ak). The agent receives the
associated reward rk = r(sk, ak, sk+1). Its goal is to find
the policy which maximizes the expected cumulative rewards,
that is the quantity Eπ[

∑
k∈N γkr(Sk, Ak, Sk+1)|S0 = s0] for

every possible starting state s0, the expectation being over the
state transitions taken upon executing π, where γ ∈ [0, 1[is a
discount factor.

A classical approach to solve this optimization problem is
to introduce the Q-function defined as:

Qπ(s, a) =
∫

S

p(z|s, a)
(
r(s, a, z) + γQπ(z, π(z))

)
dz (54)

It is the expected cumulative rewards by taking action a in state
s and then following the policy π. The optimality criterion
is to find the policy π∗ (and associated Q∗) such that for
every state s and for every policy π, maxa∈A Q∗(s, a) ≥
maxa∈A Qπ(s, a). The optimal Q-function Q∗ satisfies the
Bellman’s equation:

Q∗(s, a) =
∫

S

p(z|s, a)
(

r(s, a, z) + γ max
b∈A

Q∗(z, b)
)

dz

(55)
In the case of discrete and finite action and state spaces, the
Q-learning algorithm provides a solution to this problem. Its

principle is to update a tabular approximation of the optimal
Q-function after each transition (s, a, r, s′):

Q̂(s, a)← Q̂(s, a)+α

(
r + γ max

b∈A
Q̂(s′, b)− Q̂(s, a)

)
(56)

where α is a learning rate. An interesting fact is that the
Q-learning is an off-policy algorithm, that is it allows to
learn the optimal policy (from the learned optimal Q-function)
while following a suboptimal one, given that it is sufficiently
explorative. The proposed contribution can be seen as an
extension of this algorithm to a Bayesian filtering framework
(however with other advantages). See [11] for a comprehensive
introduction to reinforcement learning, or [22] for a more
formal treatment.

The reward is what is observed, the Q function is what
is searched, and both are linked by the Bellman equation.
Suppose that the Q-function is parameterized (either linearly
or nonlinearly) by a vector θ. The aim is to find a good
approximation Q̂θ of the optimal Q-function Q∗ by observing
transitions (s, a, r, s′). This reward regression problem is cast
into a state-space representation. For an observed transition
(sk, ak, rk, s′k), it is written as:{

θk+1 = θk + vk

rk = Q̂θk
(sk, ak)− γ maxa∈A Q̂θk

(s′k, a) + nk.
(57)

Here vk is the artificial process noise and nk the centered
observation noise including all the stochasticity of the MDP.
The framework is thus posed, but is far from being solved.
The observation equation is nonlinear and even non-derivable
(because of the max operator), that is why classical methods
such as the standard Kalman filter cannot be used. Formally,
the process noise is null, nevertheless introducing an artificial
noise can improve the stability and convergence performances
of the filter, as discussed before. This can be seen as a
special case of the algorithm of the previous section, which is
developed next.

C. Algorithm

As before Gaussian kernels are chosen, and their mean and
deviation are considered as parameters:

Q̂θ(s, a) =
p∑

i=1

αiKσs
i
(s, si)Kσa

i
(a, ai) (58)

with Kσx
i
(x, xi) = exp

(
−(x− xi)T (Σx

i)−1(x− xi)
)
,

where x = s, a, Σx
i = diag(σx

i)2,

and θ = [(αi)
p
i=1, (s

T
i)p

i=1, (a
T
i)p

i=1, ((σ
s
i)

T)p
i=1, ((σ

a
i)T)p

i=1]
T

Once again, the dictionary method is used to automatize the
choice of the structure for this kernel parameterization and the
ad hoc prior is chosen. Once the parameters are initialized, the
parameter vector has still to be updated as new observations
(sk, ak, rk, s′k) are available. A SPKF is used, and this is
a special case of the theory developed in Section IV, the

113

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

functions t and g being given by:

t : S ×A→ S (59)
s, a 7→ s′

and

g : RS×A → RS×A×S (60)

Q 7→
(

s, a, s′ 7→ Q(s, a)− γ max
b∈A

Q(s′, b)
)

Thus Algorithm 4 can be specialized for reinforcement learn-
ing, which gives the Bayesian Reward Filter summarized in
Algorithm 5.

Algorithm 5: Bayesian Reward Filter
Compute dictionary;
∀i ∈ {1 . . . N}, [si, ai]T ∼ US×A;
Set X = {[s1, a1]T , . . . , [sN , aN]T } ;
D =Compute-Dictionary (S ×A,ν,σ0) ;

Initialisation;
Initialise θ̄0, P0|0, Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe (sk, ak, s′k, rk);

SPKF update;

Prediction Step;
θ̄k|k−1 = θ̄k−1|k−1;
Pk|k−1 = Pk−1|k−1 + Pvk−1 ;

Sigma-points computation ;
Θk|k−1 =

{
θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
;

W = {wj , 0 ≤ j ≤ 2q } ;
Rk|k−1 =

{
r
(j)
k|k−1 = Q̂

θ
(j)
k|k−1

(sk, ak)−

γ maxb∈A Q̂
θ
(j)
k|k−1

(s′k, b), 0 ≤ j ≤ 2q
}

;

Compute statistics of interest;
r̄k|k−1 =

∑2q
j=0 wjr

(j)
k|k−1;

Pθrk
=

∑2q
j=0 wj(θ

(j)
k|k−1 − θ̄k|k−1)(r

(j)
k|k−1 − r̄k|k−1);

Pri =
∑2q

j=0 wj

(
r
(j)
k|k−1 − r̄k|k−1

)2

+ Pnk
;

Correction step;
Kk = Pθyk

P−1
yk

;
θ̄k|k = θ̄k|k−1 + Kk

(
rk − r̄k|k−1

)
;

Pk|k = Pk|k−1 −KkPyk
KT

k ;

Artificial process noise update;
Robbins-Monro covariance;
Rvk

= (1− αRM)Rvk−1 + αRMKk(rk +
γ maxb Q̂θ̄k|k

(s′k, b)− Q̂θ̄k|k
(sk, ak))2KT

k ;
or;

Forgetting covariance;
Rvk

= (λ−1 − 1)Pk|k;

D. Maximum over action space

Notice that a technical difficulty can be to compute the
maximum over the actions for the parameterized Q-function.
This computation is necessary for the filter update. If the
action space is discrete and finite, computation of the max
is easy. Otherwise it is an optimization problem. A first
solution could be to sample the action space and to compute
the maximum over the obtained samples. However this is
especially computationally inefficient. The used method is
close to one proposed in [23].

The maximum over action kernel centers is computed: µa =
argmaxai

Q̂θ(s, ai). It serves then as the initialization for the
Newton-Raphson method used to find the maximum :

am ← am −
(
(∇a∇T

a)Q̂θ(s, a)
)−1

a=am

∇aQ̂θ(s, a)
∣∣∣
a=am

If the Hessian matrix is singular, a gradient ascent/fixed point
scheme is used:

am ← am + ∇aQ̂θ(s, a)
∣∣∣
a=am

The obtained action am is considered as the action which
maximizes the parameterized Q-function.

E. Experiments

The proposed Bayesian Reward Filter is demonstrated on
two problems. First, the “wet-chicken” task is a continuous
state and action space and stochastic problem. Second, the
“mountain car” problem is a continuous state, discrete action
and deterministic problem. The latter one requires an hybrid
parametrization. Let’s first discuss the choice of parameters.
They are given for reproducibility, nevertheless the reader can
skip this without hurting understanding.

1) Choice of Parameters: For both tasks the reinforcement
learning discount factor is set to γ = 0.9. The dictionary
sparsity factor is set to ν = 0.9. The second type of arti-
ficial process noise presented in Section III-C is used, and
similarly to the recursive least-squares algorithm, the adaptive
process noise covariance is set to a high value, such that
λ−1 − 1 ' 10−6.

The initial choice of kernel deviations is problem dependant.
However a practical good choice seems to take a fraction
of the quantity x(j)max − x(j)min for the kernel deviation
associated to x(j), the jth component of the column vector
x, x(j)max and x(j)min being the bounds on the values taken
by the variable x(j). The prior kernel weights are supposed
to be centered, and the associated standard deviations are set
to a little fraction of the theoretical bound on Q-function,
that is rmax

1−γ . Because of geometry of Gaussian distributions,
centers provided by the dictionary are supposed to be approx-
imately uniformly distributed, and the prior deviation of the
jth component of the vector x is set to a little fraction of
(x(j)max − x(j)min)p−

1
ns+na , with the convention that for

discrete spaces n = 0. Finally the deviation of the prior
kernel deviations is set to a little fraction of them. Otherwise
speaking, σ

σ
x(j)
0

is set to a little fraction of σ
x(j)
0 for the jth

component of x.

114

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Fig. 8. Wet-chicken.

To sum up, the Gaussian prior on parameterization is chosen
such that:

σ
x(j)
0 ∝ x(j)max − x(j)min

µα0 = 0 and σα0 ∝ rmax
1−γ

σ
µ

x(j)
0
∝ x(j)max−x(j)min

(ns+na)√p

σ
σ

x(j)
0
∝ σ

x(j)
0

(61)

2) Wet-Chicken: In the wet-chicken problem (inspired by
[24]), a canoeist has to paddle on a river until reaching a
waterfall. It restarts if it falls down. Rewards increase linearly
with the proximity of the waterfall, and drop off for falling.
Turbulences make the transition probabilistic. More formally,
the state space is S = [0, 10] (10 being the waterfall position),
the action space A = [−1, 1] (continuously from full backward
padding to full forward padding), the transition is s′ = s+a+c
with c ∼ N (0, σc), σc = 0.3 and the associated reward is
equal to r = s′

10 . If s′ ≥ 10 the canoeist falls, the associated
reward is r = −1 and the episode ends.

To test the proposed framework, random transitions are
uniformly sampled and used to feed the filter: at each time
step k, a state sk and an action ak are uniformly sampled
from S×A, and used to generate a (random) transition to s′k,
with associated reward rk, and the transition (sk, ak, s′k, rk) is
the input of the algorithm. The results are shown on Figure 8.
For each run of the algorithm and every 250 samples, the
expected cumulative rewards for the current policy has been
computed as an average of cumulative rewards over 1000
episodes which were randomly (uniform distribution) initiated
(thus the average is done over starting states and stochasticity
of transitions). Notice that the lifetime of the agent (the
duration of an episode) was bounded to 100 interactions with
its environment. Then a two dimensional histogram of those
averaged cumulative rewards is computed over 100 different
runs of the algorithm. In other words, the distribution of
cumulative rewards over different runs of the algorithm as
a function of the number of observed transitions is shown.
The bar on the right shows the percentages associated to the
histogram.

The optimal policy has an averaged cumulative rewards of
6. It can be seen on Figure 8 that the proposed algorithm
can learn near optimal policies. After 1000 samples some of
policies can achieve a score of 5 (84% of the optimal policy),
which is achieved by a majority of the policies after 3000
samples. After 7000, very close to optimal policies were found
in almost all runs of the algorithm (the mode of the associated
distribution is at 5.85, that is 98% of the optimal policy).
To represent the approximated Q-function, 7.7 ± 0.7 kernel
functions were used, which is relatively few for such a problem
(from a regression perspective).

Two remarks of interest have to be made on this benchmark.
First, the observation noise is input-dependant, as it models
the stochasticity of the MDP. Recall that here a constant
observation noise has been chosen. Secondly, the noise can
be far to Gaussianity. For example, in the proximity of the
waterfall it is bimodal because of the shift of reward. Recall
that the proposed filter assumes Gaussianity of noises. Thus it
can be concluded that the proposed approach is quite robust,
and that it achieves good performance considering that the
observations were totally random (off-policy aspect).

3) Mountain Car: The second problem is the mountain-
car task. A underpowered car has to go up a steep mountain
road. The state is 2-dimensional (position and velocity) and
continuous, and there are 3 actions (forward, backward and
zero throttle). The problem full description is given in [11].
A null reward is given at each time step, and r = 1 is given
when the agent reaches the goal.

A first problem is to find a parameterization for this task.
The proposed one is adapted for continuous problems, not
hybrid ones. But this approach can be easily extended to
continuous states and discrete actions tasks. A simple solution
consists in having a parameterization for each discrete action,
that is a parametrization of the form θ = [θa1 , θa2 , θa3] and
an associated Q-function Qθ(s, a) = Qθa(s). But it can be
noticed that for a fixed state and different actions the Q-values
will be very close. In other words Q∗(s, a1), Q∗(s, a2) and
Q∗(s, a3) will have similar shapes, as functions over the state
space. Thus consider that the weights will be specific to each
action, but the kernel centers and deviations will be shared
over actions. More formally the parameter vector is

θ = [(αa1
i)p

i=1, (α
a2
i)p

i=1, (α
a3
i)p

i=1, (s
T
i)p

i=1, ((σ
s
i)

T)p
i=1]

T

(62)
the notation being the same as in the previous sections.

As for the wet-chicken problem, the filter has been fed with
random transitions. Results are shown on Figure 9, which is
a two-dimensional histogram similar to the previous one. The
slight difference is that the performance measure is now the
“cost-to-go” (the number of steps needed to reach the goal).
It can be linked directly to the averaged cumulative rewards,
however it is more meaningful here. For each run of the
algorithm and every 250 samples, the expected cost-to-go for
the current policy has been computed as an average of 1000
episodes which were randomly initiated (average is only done
over starting states here, as transitions are deterministic). The

115

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Fig. 9. Mountain car.

lifetime of the agent was bounded to 1000 interactions with
its environment. The histogram is computed over 100 runs.

The optimal policy has an averaged cost-to-go of 55. It can
be seen on Figure 9 that the proposed algorithm can find near
optimal policies. After 1500 samples most of policies achieve
a cost-to-go smaller than 120. After 6000 samples, policies
very close to the optimal one were found in almost all runs
of the algorithm (the mode of the associated distribution is
at 60). To represent the approximated Q-function, 7.5 ± 0.8
kernel functions were used, which is relatively few for such a
problem (from a regression perspective).

This problem is not stochastic, however informative rewards
are very sparse (which can cause the Kalman gain to converge
too quickly), transitions are nonlinear and rewards (that is
observations) are binary. Despite this, the proposed filter
exhibits good convergence. Once again it can be concluded
that the proposed approach achieves good results considering
the task at hand.

4) Comparison to Other Methods: For now the proposed
algorithm treats the different control tasks as regression prob-
lems (learning from random transitions), thus it is ill com-
parable to state-of-the-art reinforcement learning algorithms
which learns from trajectories. Nevertheless it is argued that
the quality of learned policies is comparable to state-of-the
art methods. Measuring this quality depends on the problem
settings and on the measure of performance, however the
Bayesian reward filter finds very close to optimal policies.
See [24] for example.

In most approaches, the system is controlled while learning,
or for batch methods observed samples come from a subopti-
mal policy. In the proposed experiments, totally random tran-
sitions are observed. However for the mountain-car problem it
is often reported that at least a few hundreds of episodes are
required to learn a near-optimal policy (see for example [11]),
and each episode may contain from a few tens to hundreds
steps (this depends on the quality of the current control). In
the proposed approach a few thousands of steps have to be
observed in order to obtain a near optimal policy. This is
roughly the same order of magnitude for convergence speed.

VI. CONCLUSION

A Bayesian approach to online nonlinear kernel regression
with a preprocessing sparse structure automatization procedure
has been proposed. This method has proven to be effective
(from a RMSE point of view) on a simple cardinale sine
regression problem. This example demonstrated that the pro-
posed approach compares favorably with the state-of-the-art
methods and it illustrated how the uncertainty of generalization
is quantified.

An approach allowing to regress a function of interest f
from observations which are obtained through a nonlinear
mapping of it has also been proposed as an extension. The
regression is still online, kernel-based, nonlinear and Bayesian.
This method has proven to be effective on an artificial problem
and reaches good performance although much more nonlinear-
ities are introduced.

Finally the proposed approach has been specialized into a
general Bayesian filtering framework for reinforcement learn-
ing. By observing rewards (and associated transitions) the filter
is able to infer a near-optimal policy (through the parame-
terized Q-function). It has been tested on two reinforcement
learning benchmarks, each one exhibiting specific difficulties
for the algorithm. This off-policy Bayesian reward filter has
been shown to be efficient on these two continuous tasks.

However, this paper did not demonstrated all the poten-
tialities of the proposed framework. The Bayesian filtering
approach allows to derive uncertainty information over es-
timated Q-function which can be used to handle the so-
called exploration-exploitation dilemma, in the spirit of [25]
or [26]. This could allow to speed-up and to enhance learn-
ing. This uncertainty information can also be useful from a
regression perspective if used for active learning. Moreover,
the partial observability problem (the issue of non-directly
observable state in RL) can be quite naturally embedded in
such a Bayesian filtering framework, as the Q-function can be
considered as a function over probability densities. Finally, the
observation noise arising in the Bayesian Reward Filter is not
purely white if the Markovian decision process has stochastic
transition probabilities. The whiteness of this noise being a
necessary assumption for the derivation of the sigma-point
Kalman filter, which is a baseline of the proposed framework,
this aspect should be investigated further.

ACKNOWLEDGMENT

Olivier Pietquin thanks the Région Lorraine and the Eu-
ropean Community (CLASSiC project, FP7/2007-2013, grant
agreement 216594) for financial support.

REFERENCES

[1] M. Geist, O. Pietquin, and G. Fricout, “A Sparse Nonlinear Bayesian
Online Kernel Regression,” in Proceedings of the Second IEEE Inter-
national Conference on Advanced Engineering Computing and Appli-
cations in Sciences (AdvComp 2008), vol. I, Valencia (Spain), October
2008, pp. 199–204.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford University Press, 1995.

116

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[3] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[4] V. N. Vapnik, Statisical Learning Theory. John Wiley & Sons, Inc.,
1998.

[5] L. Feldkamp and G. Puskorius, “A signal processing framework based
on dynamic neural networks with application to problems in adaptation,
filtering, and classification,” in Proceedings of the IEEE, vol. 86, no. 11,
1998, pp. 2259–2277.

[6] R. van der Merwe, “Sigma-Point Kalman Filters for Probabilistic Infer-
ence in Dynamic State-Space Models,” Ph.D. dissertation, OGI School
of Science & Engineering, Oregon Health & Science University, April
2004.

[7] C. M. Bishop and M. E. Tipping, “Bayesian Regression and Clas-
sification,” in Advances in Learning Theory: Methods, Models and
Applications, vol. 190. OS Press, NATO Science Series III: Computer
and Systems Sciences, 2003, pp. 267–285.

[8] J. Vermaak, S. J. Godsill, and A. Doucet, “Sequential Bayesian Kernel
Regression,” in Advances in Neural Information Processing Systems 16.
MIT Press, 2003.

[9] Z. Chen, “Bayesian Filtering : From Kalman Filters to Particle Filters,
and Beyond,” Adaptive Systems Lab, McMaster University, Tech. Rep.,
2003.

[10] R. Bellman, Dynamic Programming, 6th ed. Dover Publications, 1957.
[11] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction (Adaptive Computation and Machine Learning),
3rd ed. The MIT Press, March 1998. [Online]. Available:
http://www.cs.ualberta.ca/ sutton/book/the-book.html

[12] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares
algorithm,” IEEE Transactions on Signal Processing, vol. 52, pp. 2275–
2285, 2004.

[13] M. Geist, O. Pietquin, and G. Fricout, “Online Bayesian Kernel Re-
gression from Nonlinear Mapping of Observations,” in Proceedings of
the 18th IEEE International Workshop on Machine Learning for Signal
Processing (MLSP 2008), no. a53, Cancun (Mexico), October 2008, pp.
309–314.

[14] ——, “Bayesian Reward Filtering,” in Proceedings of the European
Workshop on Reinforcement Learning (EWRL 2008), ser. Lecture Notes
in Artificial Intelligence, S. G. et al., Ed. Lille (France): Springer
Verlag, June 2008, vol. 5323, pp. 96–109.

[15] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[16] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear
Estimation,” in Proceedings of the IEEE, vol. 92, no. 3, March 2004,
pp. 401–422.

[17] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches, 1st ed. Wiley & Sons, August 2006.

[18] A. L. Strehl, L. Li, and M. L. Littman, “Incremental model-based
learners with formal learning-time guarantees,” in 22nd Conference on
Uncertainty in Artificial Intelligence, 2006, pp. 485–493.

[19] I. Szita and A. Lőrincz, “Kalman Filter Control Embedded into the
Reinforcement Learning Framework,” Neural Comput., vol. 16, no. 3,
pp. 491–499, 2004.

[20] Y. Engel, “Algorithms and Representations for Reinforcement Learning,”
Ph.D. dissertation, Hebrew University, April 2005.

[21] C. W. Phua and R. Fitch, “Tracking Value Function Dynamics to
Improve Reinforcement Learning with Piecewise Linear Function Ap-
proximation,” in ICML 07, 2007.

[22] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 1995.

[23] M. A. Carreira-Perpinan, “Mode-Finding for Mixtures of Gaussian
Distributions,” IEEE Transsactions on Pattern Analalysis and Machine
Intelligence, vol. 22, no. 11, pp. 1318–1323, 2000.

[24] D. Schneegass, S. Udluft, and T. Martinetz, “Kernel Rewards Regres-
sion: an Information Efficient Batch Policy Iteration Approach,” in
AIA’06: Proceedings of the 24th IASTED international conference on
Artificial intelligence and applications. Anaheim, CA, USA: ACTA
Press, 2006, pp. 428–433.

[25] R. Dearden, N. Friedman, and S. J. Russell, “Bayesian Q-learning,”
in Fifteenth National Conference on Artificial Intelligence, 1998, pp.
761–768. [Online]. Available: http://www.cs.bham.ac.uk/ rwd/

[26] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “PAC
Model-Free Reinforcement Learning,” in 23rd International Conference

on Machine Learning (ICML 2006), Pittsburgh, PA, USA, 2006, pp.
881–888. [Online]. Available: http://paul.rutgers.edu/ strehl/

117

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Examining Implementations of a Computationally
Intensive Problem in GF(3)

Joey C. Libby Jonathan P. Lutes Kenneth B. Kent

Faculty of Computer Science Faculty of Computer Science Faculty of Computer Science

University of New Brunswick University of New Brunswick University of New Brunswick

Fredericton, NB, Canada Fredericton, NB, Canada Fredericton, NB, Canada

g6x2d@unb.ca f9dz2@unb.ca ken@unb.ca

ABSTRACT

Computing the irreducible and primitive polynomials
under GF(3) is a computationally intensive task. A
hardware implementation of this algorithm should prove
to increase performance, reducing the time needed to
perform the computation. Previous work explored the
viability of a co-designed approach to this problem and
this work continues addressing the problem by moving the
entire algorithm into hardware. Handel-C was chosen as
the hardware description language for this work due to its
similarities with ANSI C used in the software
implementation. A hardware design for the algorithm was
developed and optimized using several different
optimizations techniques before arriving at a final design.

Optimization; Handel-C; Galois Fields

1. INTRODUCTION

The performance of many software systems can be
improved by the creation of custom hardware circuits that
are capable of performing some or all of a software
systems processing in a native hardware environment
[8,9,10,11]. One major reason that software is
implemented in hardware is the core features that a
hardware implementation offers a system designer. The
most important of these features is the inherent parallelism
that is found in hardware systems such as Field
Programmable Gate Arrays (FPGA).

The work presented in this paper is a continuation of
work started in [1] and centers around the creation [14] of
migrating a software system for the computation of
irreducible and primitive polynomials over GF(3)
completely to hardware, the issues that surrounded the
migration and optimizations that were applied to the final
hardware design using an automated parallelism extraction

tool. The original work [1] concentrated only on
implementing the computation intensive multmod function
of the GF3 algorithm in hardware.

Further work presented includes further optimization
of the design described in [14] and a discussion of several
optimization techniques that were used to perform these
optimizations.

This paper begins by presenting a brief background
on some of the subject matter deemed relevant to the
proper understanding of this paper. Following this the
original research that lead to this project is presented, as
well as work from another project on automated extraction
of parallelism from Handel-C hardware definitions. The
full hardware design is then presented followed by a
discussion of the different optimization techniques used to
optimize the design, as well as benchmarking results for
each of the techniques.

2. BACKGROUND

This section will discuss the background information
that is necessary for understanding this paper. This
discussion includes Handel-C [2], Galois Fields [3] and
the previous work that was completed.

2.1 HANDEL-C

The hardware implementation for this work was
implemented in Handel-C [2]. Handel-C is a high level
hardware description language that bears much
resemblance to the ANSI C programming language. While
Handel-C is very similar to ANSI C in many respects,
there are some major differences between the two
languages. Handel-C does not support the entire ANSI C
specification. One of the more important features removed
from Handel-C is support for runtime recursion. Handel-C,
along with support for a subset of the ANSI C

118

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

specification, includes extra support for hardware
descriptions. Included in this extended support are
constructs for input and output, communications, and
control flow constructs for controlling the parallelism of a
design. Parallelism in a Handel-C program is defined by
using the par{} and seq{} statement blocks. Sequential
instructions wrapped in a par{} statement will be
executed in parallel, while statements wrapped in a
seq{} statement will be forced to execute sequentially.
Example 1 shows par and seq statements in a simple
Handel-C design.

The absence of runtime recursion support in Handel-C
proved to be one of the more challenging aspects of this
work. In most cases recursive algorithms can be easily
converted to a non-recursive, loop based algorithm. This
would prove to be problematic during the course of this
work as several of the recursive functions written in the C
algorithm proved to be resistant to conversion loops.

int 8 a,b,c,d,e,f,g,h;

a = 1; b = 2; c = 3; d = 4;

seq {

d = a + b;

e = c + d;

}

par {

f = d+e;

g = d*e;

}

Example 1: Example of par and seq Statements

2.2 GALOIS FIELDS AND THE ALGORITHM

A Galois Field is a finite order denoted by GF(p),
where p is a prime or a power of primes [3]. A Galois
Field of order p has only p elements, 0 though p-1. The
focus of the algorithm implemented for this paper is
Galois Fields of the order GF(3). These fields are of
interest due to their application in pairing based
cryptographic systems [4].

The C algorithm discussed in this paper describes the
problem of enumerating all of the primitive and
irreducible polynomials of a given order [5]. Irreducible
polynomials are polynomials such that p(x) in F(x) is
called irreducible over F if it is non-constant and cannot
be represented as the product of two or more non-constant
polynomials from F(x) [3]. A primitive polynomial is a
polynomial such that F(X), with coefficients in GF(p) =
Z/pZ, is a primitive polynomial if it has a root α in

GF(pm) such that is the

entire field GF(pm), and moreover, F(X) is the smallest
degree polynomial having α as root [3].

The C algorithm consists of a number of functions
that will now be detailed. Where applicable functions that
are recursive are noted.

Add: Adds two polynomials under GF(3).
Subtract: Subtracts two polynomials under GF(3).
Mod: Takes the modulus of two polynomials under
GF(3).
GCD: Find the greatest common divisor of two
polynomials under GF(3) (recursive).
Multmod: Multiplies two polynomials under mod p.
Powmod: Finds the result of one polynomial raise to the
power of another polynomial under GF(3).
Minpoly: Finds the minimum polynomial given a
necklace.
Gen: Controls execution of the algorithm by cycling over
all possible necklaces (recursive).

2.3 THE CO-DESIGNED SOLUTION

The previous implementation of the C algorithm did
not attempt to migrate the entire software algorithm into a
hardware system. Instead it was decided to explore a co-
designed approach [1] where only a portion of the
software would be translated into a hardware design and
this hardware module would be called from the software
running on a general purpose CPU.

2.3.1 THE CO-DESIGN

The first task was to determine how to partition the
hardware and software for this project. Timing analysis of
the original software showed that the multmod function,
which computes multiplication between polynomials, is
the most processing intensive portion of the software. It
was found that 80% of the total processing time was spent
in the multmod function. It was decided that a suitable
solution to improve the performance of the system would
be to implement the multmod function in hardware.

The design of the hardware was created based on
careful analysis of the operations that are performed in the
multmod function. These operations were then placed in a
module called the Arithmetic Computation Unit (ACpU).
Figure 1 shows a flowchart of the operations performed
when executing a call to the multmod function.

The hardware partition also contains a module
responsible for controlling the execution of calls to the
multmod hardware. This module is called the Arithmetic
Control Unit (ACtU). The ACtU is a finite state machine
that is responsible for sequencing the operations that take
place in the ACpU. The main requirement of this state

119

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

machine is to increase the performance of the hardware
module by leveraging as much parallelism as is possible in
the multmod operation. The design of the state machine
for the ACtU can be seen in Figure 2.

Two different implementations of this co-designed
hardware were then created. The first implementation was
designed to be housed on an FPGA located on a board
connected to its host computer via a PCI bus. Using this
configuration software running on the host machine
communicates with the hardware device via the PCI bus.
One of the issues with this design, however, was
communication delays between the hardware and software.
In order to remove this communications gap, it was
decided to explore another option using a System-on-chip
architecture. In this design the FPGA is very closely
integrated with an embedded processor. This allows the
software partition to communicate with the custom
hardware directly, without the use of the time costly PCI
bus.

Figure 1: Arithmetic Computation Unit

Figure 2: Arithmetic Control Unit

2.3.2 THE PCI-BASED SOLUTION

For the PCI-based solution the reconfigurable
hardware receives and sends data to the software partition
over a PCI bus. For this implementation the software was
running on a Windows 2000 PC with a 1.8 Ghz Intel Xeon
processor with 1 GB of RAM. The FPGA development
board used for this project is an APEX PCI Development
board with an Altera Apex 20KC1000CF672 FPGA [15]
supporting 32 and 64 bit PCI communications at 33 and
66 Mhz [16]. The software running on the host machine is
a modified version of the original software
implementation. The modifications allow the software to
call the hardware when necessary for completing
computations. A high level view of the structure of this
loosely coupled co-designed system can be seen in Figure
3.

Figure 3: Overview of loosely coupled system

120

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

In order to interface the software partition with the
hardware device it was necessary to develop a PCI device
driver for the system [17].

The modifications to the original C code allowed all
calls made to the multmod function to be redirected to the
hardware device. In order to do this, input data for the
calls to the multmod function are redirected to the PCI
device driver. The device driver is then responsible for
initiating communications with the FPGA and sending all
required data for the call. In this implementation the
configuration is static and must be downloaded to the
FPGA before runtime. This configuration contains four
modules: the ACpU, ACtu, PCI Core and PCI control unit.

The hardware implementation of the multmod
algorithm was implemented in Verilog and was targeted to
an Amirix AP1000 development board [6]. This
development board was chosen as the target platform
because of its on-chip PowerPC processor that is directly
connected to the FPGA fabric. This feature allowed the
software to be executed on a platform that is more tightly
coupled with the FPGA and removed the need to create a
PCI bus driver for the work. Figure 4 shows an overview
of the co-designed system and Table 1 shows the
benchmarking results for this implementation.

Figure 4: Co-Designed System Overview[1]

While a performance increase was realized by moving
to the co-designed system, it was found that several factors
severely limited the overall performance of the system.
The slow speed of the embedded processor running the
software portion of the system was one issue that arose.
The 200mhz clock speed of this processor simply was not
fast enough to hold pace with the faster general purpose
processors that would normally run the full software
implementation [1].

Also a major problem, more so than the slow clock
rate of the embedded processor running the software
portion of the system, is the communications between the
hardware and the software system. Communications prove
to be the Achilles heel of this work, as well as many other
co-design works [7]. The amount of data communications
that is necessary between the hardware and the software is
so great that it limits the maximum throughput of the
system, which has a huge impact on performance.

The only solution to this problem is to move the entire
system into hardware, completely eliminating the
communication channels. This will allow the system to
operate at full speed, only having to access communication
channels when retrieving jobs and reporting results.

2.4 AUTOMATED EXTRACTION OF
PARALLELISM

Identification of simple parallelism, that is sequential
blocks of hardware code that can be executed in parallel,
can have a huge impact on the performance of the
hardware system that is being designed. The tool that will
be used to apply optimizations for the purpose of this
paper can be found in [12].

Given a HandelC source file, this tool is capable of
parsing and extracting simple parallelism from the source
file. This information is then relayed to the hardware
designer who can implement the proposed changes in
order to build a more optimized version of the original
hardware design.

Figure 5 shows an overview of the operation of the
automated parallelism extraction tool. The tool operates
by taking, as input, a HandelC hardware definition file
provided by a software programmer or hardware designer.
From this source file the tool creates an abstract syntax
tree, annotated with additional information that is required
to compute the dependency graph from the source file.
Upon completion of the syntax tree, it is used to generate a
dependency graph structure for the hardware design. This
dependency graph structure is then used to determine
which individual lines of source can potentially be
executed in parallel. Currently the tool then applies a
greedy algorithm which builds as large and as many
parallel blocks as possible from the remaining available
lines of source code. This approach generates large
parallel blocks which in turn reduce the overall run time of
computations on the hardware.

Once the tool has determined where parallel blocks
may be added to the source hardware design, it produces a
report for the developer that details the necessary
modifications that must be performed in order to exploit
the available parallelism. Table 2 illustrates the report
output of the tool. After potentially several iterations with
the tool, the developer can then input their HandelC
specification into the typical tool flow starting with the
Agility DK tool suite [2].

121

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Deg
ree

SFW
@1.8GHz

(sec)

Altera
@66MHz

(sec) %

Xilinx
@80MHz

(sec) %

2 0.00004 0.00002 37.6 0.00001 24.8

3 0.00018 0.00009 46.6 0.000056 30.7

4 0.00076 0.00034 44.2 0.000228 30.0

5 0.00298 0.00145 48.6 0.001005 33.7

6 0.01495 0.00519 34.7 0.003664 24.5

7 0.04043 0.02005 49.6 0.01439 35.6

8 0.14300 0.07123 49.8 0.051788 36.2

9 0.54600 0.25595 46.9 0.188174 34.5

10 1.89800 0.89412 47.1 0.663513 35.0

11 6.24000 3.08083 49.4 2.302203 36.9

12 22.30800 10.58020 47.4 7.963267 35.7

13 74.78900 35.12896 47.0 26.53804 35.5

14 263.53600 120.09697 45.6 91.323996 34.7

15 888.30300 400.77343 45.1 306.075094 34.5

16 2985.50200 1343.56091 45.0 1049.41517 35.9

17 10192.85900 4424.87400 43.4 n/a n/a

18 32658.34090 14642.10675 44.8 n/a n/a

Table 1: Co-designed Performance Results [1]

In testing, this tool has proven that it is capable of
finding, on average, 78% of the simple straight line
parallelism that exists in a hardware design. Tables 3 and
4 shows manual and automatic optimization benchmark
results for AES encryption and LZ77 decryption hardware
circuits optimized using this tool. [12]

Figure 5: Automated Parallelism Extraction

Source Line# Source Action
* Par { Add
1 Statement 1 None
2 Statement 2 None
3 Statement 3 None
7 Statement 7 Move -
8 Statement 8 Move –
* } Add
4 While Move +
5 Statement 5 Move +
6 Statement 6 Move +
9 Statement 9 Move +

Table 2: Tool Report [12]

Test Par Blocks

LZ77 5
AES 13

Table 3: Manual Benchmark Statistics [12]

Test Par Blocks Found % of Total

LZ77 4 80%
AES 10 76%

Table 4: Automated Benchmark Statistics [12]

3. THE HARDWARE SOLUTION

In order to alleviate the performance degradation
caused by communications between the hardware and
software in the co-designed system, as well as the low
performance of the general purpose processor, a full
implementation was created in hardware. This
implementation was written in Handel-C which allowed
the hardware implementation to very closely mimic the
software algorithm wherever possible.

Much of the ANSI C code that was created for the
algorithm was capable of being directly translated into
Handel-C. The code that was directly translated required
only minimal modification to make it compatible with the
Handel-C language. Some of these changes included re-
definition of storage elements such as arrays to use static
sizes instead of being dynamically allocated. Another
trivial modification that was required in several places was
the un-nesting of function calls. Handel-C does not

Source
Parsing

Dependence
Analysis

Parallelism
Extraction

Reporting

CAD Tools

122

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

support the usage of nested function calls of the form
foo(bar(x,y),z). This necessitated rewriting some
C code to call these functions sequentially using temporary
variables to store the return value of the nested function
call.

3.1 REMOVING RECUSION FROM THE
ALGORITHM

Once the code was converted to Handel-C syntax all
that remained was removing the recursion that exists in
several of the functions in the software. The functions that
required modification to remove recursion were the Gen
and GCD functions. Both functions were translated to their
loop based variants. Example 1 shows how the recursive
function definition for the GCD was transformed into a
loop.

Poly_GF3 gcd(Poly_GF3 a, Poly_GF3 b){

if(!b.top && !b.bot) return a;

return gcd(b, mod(a, b));

}

Example 1 (a): Recursive GCD Definition

Once the recursion was removed from the software
functions they were implemented in Handel-C. Following
the implementation in Handel-C, each function required
verification to ensure that the hardware versions were
equivalent to their software counterparts.

Poly_GF3 gcdx(Poly_GF3 a, Poly_GF3 b)

{

Poly_GF3 c,zero;

zero = {0,0};

while (a.top || a.bot)

{

c = a;

modx(b,a);

a = modxResult;

b = c;

}

return b;

}

Example 1 (b): Non Recursive GCD Definition

One of the larger challenges for this project was the
removal of recursion from the Gen function. Example 2
shows the Gen function with a manual stack.

inline void Push(int *pos, int t, int
p, int j, int s) {

stack[*pos][0] = t;

stack[*pos][1] = p;

stack[*pos][2] = j;

stack[*pos][3] = s;

(*pos)++

}

void Gen(unsigned t, unsigned p) {

unsigned int j, top, state;

top = 1;

Push(top, 1, 1, 0, 0);

top--;

while (top > 0) {

top--;

t = stack[top][0];

p = stack[top][1];

j = stack[top][2];

state = stack[top][3];

if (t > N) {

if (p == N) CheckIt();

}

else {

switch (state) {

case 0: {

a[t] = a[t-p];

Push(top, t, p, 0, 1);

Push(top, t+1, p, 0, 0);

break;

}

case 1: {

j = a[t-p] + 1;

if (j <= 2) {

a[t] = j;

Push(top, t, p, j, 2);

Push(top, t+1, t, 0, 0);

}

break;

}

case 2: {

j++;

if (j <= 2) {

123

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

a[t] = j;

Push(top, t, p, j, 2);

Push(top, t+1, t, 0, 0);

}

break;

}

default: { break; }

}

}

}

}

Example 2: Non Recursive Gen Function

In order to remove recursion from the Gen function to
make it compatible with hardware it was necessary to
express the recursion in the form of a loop. One of the
issues with recursion in hardware is the requirement for
virtually unlimited memory within which the recursion can
grow. It was found through careful analysis that the depth
of the recursive calls to the Gen function was bounded by
the input value N. Because of this upper bound it became
possible to express the recursion as a loop by creating a
stack on which the state of each “recursive call” would be
saved.

Each iteration of the loop would emulate a recursive
call to the Gen function, pushing the previous state onto
the stack and then beginning computation on the new state.
Once computation is finished in the final recursive call,
the result is computed by tracing back through the states
stored on the stack to compile the final result.

This method provides a means to implement the Gen
function in hardware, but it does have some limitations. In
order for this method to work it is necessary to have a
bound on the size of the computation. In this case the input
value N is known at compile time, allowing the size of the
stack to be sufficiently large. In some cases, however, the
input size may also be limited by the available hardware
resources, as a very large input value may cause the stack
to consume all available resources, or more resources than
are actually available for the design. For this particular
application, the stack size grows to a rather small size, N,
where the algorithm is exponentially bound by the same N.
Thus, for this application we can easily fit the stack in the
dedicated memory bits that are available on the FPGA
device.

3.2 HARDWARE VERIFICATION

In order to verify that the hardware functions,
especially the functions that were transformed from
recursive to non-recursive, behaved as intended it was
necessary to perform some verification tests. Test cases
included boundary cases as well as a large number of
randomly generated inputs to the functions.

Verification of the transformed recursive functions
was performed in two stages. In the first stage, the non-
recursive algorithm was tested as a software algorithm.
Test cases were run against both the recursive and non-
recursive versions of the functions and their return values
were compared. Following running the test cases on both
the recursive and non-recursive functions it was deemed
that the recursive and non-recursive functions were both
functionally equivalent and so passed verification.

Verification of the Handel-C hardware code was
slightly more involved than testing software code against
software code. The Handel-C hardware code was again
tested using the same set of test cases used for testing the
recursive functions. These test cases were first ran in the
software version of the system, recording the results for
each test. The same tests were then performed on each
hardware function individually, running the hardware in a
simulation environment. The results were also recorded
and compared to those produced by the software for the
same tests.

Following verification of the hardware definition it
was deemed that the hardware definition is equivalent to
the software algorithm so the work could proceed to
benchmarking.

4. BENCHMARKING

In order to benchmark the hardware design of the
GF(3) algorithm, it was necessary to synthesize the
hardware definition to produce a hardware programming
file. It was decided that the hardware would not be
programmed onto a physical device for testing, but tests
would be performed in a simulation environment in order
to facilitate the gathering of statistics.

The Handel-C definition was first compiled using the
Agility Handel-C compiler to produce both an executable
simulation file as well as a synthesizable VHDL
description file [2]. The execution simulation kernel was
used to gather timing results for the hardware system and
the VHDL description file was used to gather resource
usage and clock speed statistics. Resource usage and clock
speed statistics were gathered by synthesizing the VHDL
specification in Xilinx ISE [18] targeting a Virtex II
FPGA (XC2VP100). This FPGA is the same device used
for gathering the results for the co-designed GF(3)

124

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

algorithm. The results in Table 5 show the resource usage
and clock frequency for the design.

Clock Speed Slices Flip flops

68.523 23952 14579

Table 5: Resource Usage and Clock Frequency

Runtimes for the hardware were gathered by running
the simulation kernel on different degrees ranging from 3
to 12. Cycle statistics were gathered for each run, and
using the clock rate gathered from the Xilinx synthesis
tool a run time was calculated. These run times are
compared to the runtimes of the software in Table 6.
Software run times were gathered on a 1.8 Ghz Pentium .

N Cycles HW Time
(Seconds)

SW Time
(Seconds)

3 15158 0.000212 0.061

6 899241 0.0131 0.075

8 13052272 0.1905 0.241

10 170959343 2.4949 2.102

12 2072543280 30.2495 26.603

Table 6: Runtime Comparison

On inspection of the results, it can be clearly seen that
the hardware version of the algorithm, in its current form,
does not surpass the performance of the software
algorithm. While the hardware algorithm does not perform
better than the software, the performance gap between the
two is negligible when taking into account the speed grade
difference between the hardware running at 68.523 Mhz
and the software running on a 2.8 Ghz processor.

Taking this into account it was decided to attempt to
improve the hardware design further by attempting to
optimize the design for a hardware environment. Until this
point the software had been converted to a hardware
definition almost verbatim, ignoring any of the traditional
hardware specific features such as parallelism.

5. OPTIMIZATION

The optimization that was chosen for this design was
the addition of parallelism. The software design did not
take into account any of the areas of parallelism that might
lead to greater performance for the hardware system. For
the purpose of this work, only simple optimizations were
attempted. Individual statements that were capable of
parallel execution were grouped into parallel blocks using
the Handel-C par construct.

The parallel blocks were identified using a
combination of both an automated parallelism detection
tool [12] as well as manual optimization. This tool allows
for the automatic identification of code that can potentially
be executed in parallel. Currently the tool does not modify
the Handel-C source directly and requires intervention
from the designer to take advantage of code that is
identified as parallel. The automated tool found a large
portion of the available parallel blocks, and then manual
code inspection was used to find more parallel blocks that
the tool was unable to identify.

Clock Speed Slices Flip flops

68.909 23603 14383

Table 7: Resource Usage and Clock Frequency

The design was then simulated to gather clock cycle
statistics for running the design at several different input
values. These clock cycles were used, along with the clock
rate statistic from Table 7 to generate the final runtime
statistics for the new hardware which can be found in
Table 8.

N Cycles Percent
Reduction

HW
Time
(Secs)

SW
Time
(Secs)

3 10916 27.9% 0.000158 0.061

6 581396 42.4% 0.00843 0.075

8 8319569 36.3% 0.1207 0.241

10 108497030 36.5% 1.5745 2.102

12 1312560988 36.7% 19.0477 26.603

Table 8: Parallel Runtime Comparison

In order to emphasize the impact of using automated
software for identifying parallelism optimizations in this
hardware design it should be noted that the automated
optimization process took less than a second to complete.
Even in this case where it was found that several parallel
blocks that were identified did not compile correctly the
amount of time saved from doing a completely manual
optimization is quite high. It was found in [13] that
manually optimizing this design, with no previous
knowledge of the available parallel blocks takes a skilled
hardware designer approximately 8 hours of testing and
refining. Even taking into account approximately one hour
of testing to identify the two parallel blocks that did not
behave properly after compilation, a time savings of
approximately 7 hours was achieved.

After automated optimization of the hardware
algorithm was complete, a brief manual inspection of the

125

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

remaining code was performed. This inspection yielded 8
more parallel blocks that were not found by the automated
tool for a total of 32 par blocks of two or more sequential
statements. This additional manual optimization took
approximately two hours to complete. Parallel execution
statements (par{}) were added to the design and the
design was recompiled, again producing both a simulation
kernel and a VHDL definition file for hardware synthesis.
Table 9 shows the synthesis results gathered from the
Xilinx ISE, again targeting the Virtex II FPGA
(XC2VP100).

Clock Speed Slices Flip flops

68.813 23348 14245

Table 9: Resource Usage and Clock Frequency

Using the clock speed from Table 9 and the cycle
statistics gathered from the simulation kernel the runtime
statistics for the hardware algorithm can be calculated.
Table 10 shows the new runtime statistics for the parallel
hardware design. Also shown in Table 10 is the percentage
reduction of clock cycles between the original non-parallel
design and the parallel design.

Table 9 shows that a small increase, 0.290 Mhz, in
clock speed was realized when moving from the non-
parallel to the parallel design. The number of slices and
flip flops utilized by the design was also reduced slightly.
This is explained by the manner in which the handelC
specification is synthesized. During synthesis the handelC
code is transformed into a datapath and a finite state
machine controller. By using par{} statements, states
within the FSM controller are merged, thus reducing the
size of the circuit. Contrary to some thoughts, the par{}
statement does not add redundancy, multiple
computational units, unless a shared function is used.
Thus, exploiting parallelism typically gives the benefit of
both faster computation and a smaller circuit. Figure 6
shows a comparison of the parallel and non-parallel
hardware against the software implementation.

N Cycles Percent
Reduction

HW
Time
(Secs)

SW
Time
(Secs)

3 8621 43.1% 0.000125 0.061

6 548189 39.0% 0.0079 0.075

8 8089562 38.0% 0.1176 0.241

10 106849548 37.5% 1.5527 2.102

12 1352768511 34.7% 19.6586 26.603

Table 10: Parallel Runtime Comparison

It can be seen in Figure 6 that the parallel version of
the hardware outperforms the software implementation of
the algorithm at all data points gathered for this work. It
also appears that the hardware will continue to outperform
the software even when computing orders higher than 12.
Figure 7 illustrates the trend in the percentage difference
between the hardware and software algorithms. This figure
clearly shows that the rate of convergence between the
hardware and software run times is slowing and that the
hardware will continue to outperform the software.

0

5

10

15

20

25

30

35

3 6 8 10 12

N
T

IM
E

HW (No Par) HW (Par) SW Time (Secs)

Figure 6: Results Comparison

0

20

40

60

80

100

120

3 6 8 10 12

N

%
D

if
fe

re
n

c
e

Series1

Figure 7: Execution Time Percentage Difference
Between Parallel Hardware and Software

5.1 Further Optimizations

After completion of benchmarking of the parallelized
design it was decided that an attempt would be made to
identify any other optimizations that were possible in the
design. After careful analysis of the design source code it
was determined that there were two such types of
optimizations that were suitable for this design.

The first optimization that was performed modified
the method used to return values from function calls. In
the original version of the hardware design, returns from
non-recursive functions were stored in global variables,

126

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

and then assigned to the local variables as a result upon
returning from the function call. This was done initially to
reduce the amount of logic that was required in order to
allow some functions to be called in parallel. Performing
this modification entailed simply rewriting the function to
return a value instead of writing it into a global variable.

The second optimization that was performed was also
a side effect of applying the return value optimization.
Changing the return from a global variable to an actual
return value caused many function calls that could
possibly be made in parallel to break. In order to fix this
all of these functions were changed to inline functions.
What this means is that instead of the compiler
synthesizing control logic for a single logic core for each
function, it creates a new instance of the logic for each
function every time that function is called. This
optimization has the effect of increasing the resource
usage of the design, but decreasing the overall runtime of
the design by reducing the amount of steps required to
perform a function call.

Upon completion of these new optimizations the
design was once again benchmarked, and the resource
usage and clock rate statistics shown in Table 11 were
gathered.

Clock Speed Slices Flip flops

58.998 Mhz 35991 34945

Table 11: Resource Usage and Clock Frequency

A simulation of the newly optimized hardware design
was then performed, and cycle statistics for several input
values were gathered. These cycle statistics, in conjunction
with the clock rate given in Table 11 provide the actual
runtimes shown in Table 12.

N Cycles Percent
Reduction

HW
Time
(Secs)

SW
Time
(Secs)

3 7339 14.87 0.000124 0.061

6 464256 15.31 0.00786 0.075

8 6776626 16.23 0.11486 0.241

10 88118822 17.53 1.49356 2.102

12 1089884747 19.40 18.4732 26.603

Table 12: Parallel Runtime Comparison

As can be seen in Table 12, the newly optimized
version of the hardware does indeed increase the
performance of the design by an average factor of 1% over
the parallelism only design.

Table 11 shows a comparison of the hardware run
time of all four version of the hardware. This table
illustrates the differences in performance gains along with
the large amount of performance that was gained through
the final round of optimizations.

N Original Automated
Parallelism

Manual
and

Automated
Parallelism

Final

3 0.000212 0.000158 0.000125 0.000124

6 0.0131 0.00843 0.0079 0.00786

8 0.1905 0.1207 0.1176 0.11486

10 2.4949 1.5745 1.5527 1.49356

12 30.2495 19.0477 19.6586 18.4732

Table 13: Comparison of all Designs

5.2 Comparison of Multmod Software and
Hardware

This section will show a comparison of the hardware
implemented for the Multmod function against the original
software implementation. This section is meant to support
that findings of this paper by showing that not only does
the entire system outperform the software implementation
of the GF(3) software, but also outperforms the
implementation of the Multmod function which was
implemented in hardware originally in [1].

Figure 8 shows the results that were gathered for these
benchmarks. These statistics were gathered by adding
cycle accurate counters to the final optimized version of
the Multmod function, and then rerunning all of the
simulations used previously. Statistics from these cycle
counters were then gathered.

0

5

10

15

20

25

3 4 6 8 10 12

N

T
IM

E

Software Altera FPGA @ 66 Mhz

Xilinx FPGA @ 80 Mhz Final Optimized HandelC @ 66.813 Mhz

Figure 8: Multmod Comparison

127

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 8 clearly shows that while the optimized HandelC
design runs at a slower clock rate then the Xilinx
implementation, it still outperforms this implementation.
This highlights the speed improvements that can be
achieved by applying specific optimizations to a hardware
design, as well as the speed improvements from moving
from a co-designed environment to a full hardware
implementation.

6. Conclusion

Based on the results gathered after optimizing the
Handel-C design for the GF(3) primitive and irreducible
polynomials algorithm it can be said that this work is a
success. The entire algorithm was implemented in
hardware and verified to function correctly. The results
found in Section 5 highlight the performance of the
hardware system, which outperforms the software on all
test points up to order 12. It also appears that, based on
Figure 2, the software will continue to outperform the
hardware on higher orders. Figure 9 shows a comparison
of the final results gathered. This figure clearly shows that
the final optimized version of the hardware outperforms
the original software version at all collected data points.

0

5

10

15

20

25

30

35

3 6 8 10 12

N

T
IM

E

Original Softw are

Final Manual and Automated Parallelism

Automated Parallelism

Figure 9: Final Results Comparison

Figure 10 highlights the amount of user effort that
was required to complete each stage of the optimization
process. The figure displays improvements based on the
original, un-optimized version of the hardware, based on
percentage increase in performance per minute of
development time to achieve that performance increase.

Finally Figure 11 shows the increase in logic
usage between the original and optimized versions of the
hardware. This figure highlights how, while performance
has increased, in the case of the final optimized version so
have the resource requirements to implement the design in
hardware.

0

5

10

15

20

25

30

35

40

Automated Parallelism Manual and Automated

Parallelism

Final

Method

%
Im

p
ro

v
e

m
e

n
t

p
e
r

D
e
v

e
lo

p
e
r

M
in

u
te

Figure 10: Developer Time Per Percentage
Performance Increase

0

5000

10000

15000

20000

25000

30000

35000

40000

Original Automated Automated and

Manual

Final

Method

R
e

s
o

u
rc

e
U

s
a
g

e

Slices Flip Flops

Figure 11: Resource Usage Comparison

7. Future Work

While the work can be considered a success, there is
still much work to be done to further improve the
performance of the system. At present only simple
parallelism has been identified in the system. While
parallelism between individual statements in a Handel-C
program can greatly increase performance, there can be
even greater performance gains from exploiting loop
based parallelism or parallelism between different
functional units.

Another optimization that may greatly benefit this
work is the identification and implementation of a
pipelined data path. A pipelined data path may increase
the throughput of the algorithm by increasing the amount
of work that is done per clock cycle by breaking the
algorithm down into functional units that can operate in
parallel much like an assembly line.

128

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

References

[1] K. Kent, B. Iaderoza, and M. Serra. Codesign of a
Computationally Intensive Problem in GF(3), International
Workshop on Rapid System Prototyping, pp. 10-16, May
2007.
[2] Agility Design Solutions, Handel-C Reference Manual,
Website: www.agilityds.com. Accessed: May 2008
[3] G. Birkhoff, and S. Mac Lane. A Survey of Modern
Algebra, 5th ed. New York: Macmillan, 1996.
[4] D. Page and N. P. Smart, "Hardware Implementation
of Finite Fields of Characteristic Three". Proceedings of
the Workshop on Cryptographic Hardware and Embedded
Systems, pp. 529-539, 2002.
[5] G. Lee, and F. Ruskey, Listing All Irreducible and
Primitive Polynomials in GF(3),. Technical Report
(University of Victoria, Canada), unpublished, 2006.
[6] AP1000 FPGA Development Board User Guide. User
Guide Manual Version 2. AMIRIX Systems Inc, Halifax,
Nova Scotia, Canada. 2005.
[7] M. Moazeni, A. Vahdatpour, K. Gururaj, and M.
Sarrafzadeh, Communication Bottleneck in Hardware-
Software Partitioning. In Proceedings of the 16th
International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, pp. 262, 2008.
[8] R. Andraka, A Survey of CORDIC Algorithms for
FPGA based Computers, 1998 ACM/SIGDA 6th
International Symposium on Field Programmable Gate
Arrays, pp. 191-200, 1998.
[9] M. Mylona, D. Holding, and K. Blow, DES Developed
in Handel-C, London Communications Symposium, 2002.
[10] M. Serra, and K. B. Kent, Using FPGAs to Solve the
Hamiltonian Cycle Problem, International Symposium on
Circuits and Systems, pp. 228-231, vol. III, May 24-28,
2003.
[11] T. G. Noll, Application Specific eFPGAs for SoC
Platforms, 2005 IEEE VLSI-TSA International
Symposium on VLSI Design, Automation and Test. April
2005.
[12] J. C. Libby, and K. B. Kent, Automatic Identification
of Concurrency in Handel-C, International Symposium on
Digital Systems Design, pp. 660-664, August 2008.
[13] J. C. Libby, and K. B. Kent, A Methodology for
Rapid Optimization of HandelC Specifications, submitted
to the 20th IEEE/IFIP International Symposium on Rapid
System Prototyping, June 2009.
[14] J. C. Libby, J. P. Lutes, and K. B. Kent, A Handel-C
Implementation of a Computationally Intensive Problem in
GF(3), International Conference on Advances in
Electronics and Micro-electronics, ENICS 2008, pp. 36-
41, October 2008.
[15] APEX 20KC Programmable Logic Device. Data
Sheet Version 2.2., Altera Corporation, 2002.

[16] APEX PCI Development Board Data Sheet. Data
Sheet Version 2.1. Altera Corporation, 2002.
[17] J. Hannula, “Is High-Level Design Representation
Worthwhile?”, M.Sc thesis, University of Victoria,
Canada, 2004.
[18] Xilinx Incorporated, Website: http://www.xilinx.com/
, Accessed: 1/29/2009.

129

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

How to compare and exploit different techniques for unit-test generation

Alberto Bacchelli

bacchelli@cs.unibo.it

Paolo Ciancarini

ciancarini@cs.unibo.it

Department of Computer Science

University of Bologna, Italy

Davide Rossi

rossi@cs.unibo.it

Abstract

The size and complexity of software is continuously

growing, and testing is one of the most important strate-

gies for improving software reliability, quality, and design.

Unit testing, in particular, forms the foundation of the test-

ing process and it is effectively supported by automated

testing frameworks. Manual unit-test creation is difficult,

monotonous and time-consuming. In order to reduce the ef-

fort spent on this task, several tools have been developed.

Many of them can almost automatically produce unit tests

for regression avoidance or failure detection.

This paper presents a practical comparison methodol-

ogy to analyze different unit-testing creation tools and tech-

niques. It validates the effectiveness of tools and spots their

weaknesses and strengths. The validity of this methodol-

ogy is confirmed through a real case experiment, in which

both the manual implementation and different automatic

test generation tools (based on random testing) are used.

In addition, in order to integrate and exploit the benefits of

each technique, which result from the comparison process,

a testing procedure based on “best practices” is developed.

Keywords: testing; comparison methodology; failure

detection; regression testing; automatic test generation tools

1 Introduction

Testing is an important and widely-accepted activity to

verify a software at runtime. It can be performed at three

different stages with increasing granularity: single class (or

module) testing, classes (or modules) group testing, whole

system testing [35]; which are usually referred to as: unit

testing, integration testing and system testing. Each stage

has its own difficulties and strategies, and different tech-

niques are available. In this paper, we decided to con-

centrate our efforts on unit testing, which constitutes the

foundation for other testing levels. In particular, we con-

sider object-oriented software and the Java programming

language, but our results could be easily transposed to be

useful for different programming languages and paradigms.

The xUnit testing [2] framework was created in order to

improve object-oriented programmer productivity in devel-

oping and running unit-test cases. Through it, it is possible

to easily write unit tests that exercise and make assertions

about the code under test. Each test is independent of each

other and it is usually written in the same language as the

code they test. The xUnit framework is intentionally sim-

ple to learn and to use, and this was a key design criteria:

the authors wanted to be sure that it “was so easy to learn

and to use that programmers would actually use it” [28].

The developer, with a simple command, could automati-

cally run all the xUnit tests he created and then, after the

execution, receive the report generated by the framework

with the number of successes and the details of any failures.

In this article, we consider JUnit [1], which is the Java

flavor of the xUnit framework. Although it is the “de-facto”

standard tool to automatically execute Java unit tests, there

are other interesting alternatives that could be effectively

used (e.g., [10]).

In industry, testing is used for quality assurance, because

it provides a realistic feedback on system behavior, reliabil-

ity and effectiveness. At the same time, testing -especially

unit testing- can be tedious and difficult, and it often con-

sumes a considerable amount of time [31]. For this rea-

son, research is now highly active in producing testing tech-

niques capable of automatically creating unit tests. The us-

age of these tools is not already equally standardized as JU-

nit usage.

In a previous article [7], we compared the effectiveness

of unit-test cases which were automatically created with

manually written ones. We used various automatic test cre-

ation tools, based on random testing, and we proved that

they can produce trustworthy and useful test cases, and can

improve and speed-up testing engineers’ tasks. We also

showed the advantages which result from the manual cre-

ation of unit tests, that cannot yet be achieved by automatic

tools. Finally, we noted that the success rate of this kind of

testing depended to a great degree on proper planning and

proper use of these testing tools. Thus, we briefly outlined

130

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

some “best practices” for integrating the manual and auto-

mated test processes, in order to effectively produce unit-

test cases and obtain benefits from all the techniques.

As scientific research is highly active and motivated in

this particular field, the tools we examined and compared in

[7] have since been further enhanced [33], studied in more

detail [32] or replaced with more effective tools [15, 39].

Also the only commercial software we included [5], which

was highly experimental, was replaced with a more stable

version [4] in order to address the company’s business.

These automatic unit-test generation tools evolve ex-

tremely quickly, and thus we consider it significant to out-

line a comparison methodology to help the test engineer to

analyze the capabilities of different tools, which can thus be

exploited and fit into the correct testing “best-pratices”.

In order to effectively extract this methodology, we use

the real-world case study we conducted in [7]. We show,

in detail, the comparison method we used and its validity.

Then, we see what its advantages and shortcomings are, and

how it could be usefully extended. Finally, we outline how

the results obtained could be used in “best practices” ca-

pable of exploiting and integrating the different techniques

which were analyzed.

In Section 2 we introduce unit testing and we show its

main objectives. Then, in Section 3, we present the exper-

imental study showing the environment in which we con-

ducted it, describing which unit testing techniques and tools

we used, and discussing its validity. Later (Section 4), we

point out the comparison we adopted to study this real world

case and we explain how we analyzed the different facets of

the results which we obtained through the different testing

approaches. Consequently, we outline the abstract com-

parison methodology. Finally in Section 5, we propose

the “best practices” to effectively exploit the different tech-

niques used.

2 Unit testing

Ideally tests are implemented in the flow of the software

development process, which means at increasing granular-

ity. Only when we have some module/class implemented

and their unit test cases ready, can we advance creating in-

tegration tests or new features. For example, it is possible to

proceed in a cyclical manner by first writing unit tests for a

few classes, then developing the necessary integration tests

for those classes, then restarting again with new classes and

their unit tests, which leads to further integration testing,

and restarting the cycle again until the system is completed.

Within this process unit test cases fill the foundation of the

whole testing system and other testing parts can rely on first

checking.

The principal aims of unit testing are the same as func-

tional testing: verify the behavior of the tested component

and help in finding implementation defects. The difference

consists in their target: unit testing is mainly focused on

small source code parts which are separately testable. Unit

test cases input small functions or methods with specific

values and check the output against the expected results,

verifying the correct code behavior.

2.1 Failure detection and regression avoidance

Unit testing is mainly used to achieve two objectives:

searching for defects in new -or not previously tested- code

and avoiding regression after the evolution of code already

under test. In the first instance, through test cases, the test

engineer tries to check if the code is correctly implemented

and does what it is expected to do; in the second situation

failing tests warn that a software functionality that was pre-

viously behaving correctly stopped working as intended.

For this reason, in literature and industry we find unit-

test generation tools that address those two different issues:

failure detection and regression avoidance. In the former

case tools try to spot unwanted or unexpected behavior,

which could lead to a detection of failure. In the latter case

they generate “tests that capture, and help you preserve, the

code’s behavior” [4]. They will “pass”, if the code behaves

in the same way that it did at the moment of their creation,

but will “fail” whenever a developer changes the code func-

tionalities, highlighting unanticipated consequences.

As we focus essentially on tools which are based on ran-

dom testing, the main difference between tools that create

unit tests for failure detection purposes and tools that gen-

erate regression tests is how they deal with the oracle prob-

lem. “An oracle is any (human or mechanical) agent which

decides whether a program behaved correctly in a given test,

and accordingly produces a verdict of “pass” or “fail” [...]

oracle automation can be very difficult and expensive” [3].

When automatic generation tools produce regression

tests, the source code which is provided is supposed to be

without defects. For this reason, those tools generally con-

sider the system itself as a sort of oracle: everything it out-

puts in reply to an input is the expected and correct answer.

Thus, they will create only not failing tests, and, in this way,

they take a “snapshot” of the tested system state.

On the other hand, tools that generate unit tests that re-

veal bugs in code cannot consider the tested system as the

oracle, because it could provide both right and wrong an-

swers to inputs, as it is not supposed to be without defects.

For this reason, these tools need another way to know if the

received output is the expected one or not (i.e. to solve the

oracle problem). The tools we examined in [7], use a differ-

ent approach to tackle this issue. One of them [14] considers

unexpected exceptions that are raised as evidence of a possi-

ble failure. It does not need the test engineer to provide any

additional information before submitting the source code to

131

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the tool. Another software [33] requires more information

about the tested class, such as class invariants. These prop-

erties will be used as the oracle: if the tool discovers an

instance in which the submitted code does not respect the

requested invariants, a failing unit test will be created. If

the test engineers want to use this tool, they have to spend

time preparing a more detailed input, which actually consti-

tutes the oracle.

Finally, it is important to underline that failure detection

tests and regression tests have different targets and for this

reason they are mainly created in a different way. However,

from the moment unit tests are implemented, they become

part of the same unit test suite. A test that is used now to

reveal a defect, can be incorporated later in the test suite and

used as a regression test. A regression test that is not failing

now, could be an effective failure detection test in the future

or in a different implementation.

This already gives a hint of “best practices” which ex-

plain how to exploit and integrate both tests which are auto-

matically generated by tools with different targets and tests

which are manually implemented.

3 The experimental study

In [7] we wanted to show which approach was the best

one when the test engineer had to decide whether to use

tools which automatically generate unit tests and how. We

chose to apply both manual and automatic techniques to a

real case study, to have the chance of showing authentic

data.

3.1 The Freenet Project

The Freenet Project [13] peer-to-peer software (hence-

forth Freenet) was chosen as subject for experiment, be-

cause it had all the features which we were interested in and

which we considered relevant for our experiment validity.

Freenet is free software which allows the publishing and

obtaining of information over the Internet, avoiding censor-

ship. To achieve this, the network it creates is completely

decentralized and publishers and consumers of information

are anonymous. Communications between network nodes

are encrypted and are routed through other peers to make

communication tracking extremely difficult.

The software was subject to three drastic changes which

caused important modifications of Freenet functionalities

and its development team. For this reason, Freenet as-

sumed, over time, many of the characteristics that allows

us to equate it with legacy software [36].

Like with legacy software, many of the developers who

created Freenet are not working on the project anymore,

even though much of the source code they implemented is

still in use and form an important part of the application.

Then there is a crucial lack of documentation both for old

source code and for new pieces of it; furthermore this is

an issue for both high and low level documentation. For

this reason, to fully understand Freenet functioning, or even

only little parts of it, it is necessary either to read the cor-

responding source code or to interact with the developers

community. As with many legacy software, the few active

developers are constantly busy and they put most of their ef-

fort into developing new functionalities rather than revising

the existing codebase.

Tests are so important that “the main thing that distin-

guishes legacy code from non-legacy code is tests, or rather

a lack of comprehensive tests” [18]. Also in this sense,

Freenet is a legacy software: when we started the experi-

ment it had only 14 test cases for the whole source code,

which included more than 800 classes.

The main difference between legacy software and

Freenet lies in the fact that the latter is still under heavy

development and evolution. This aspect, however, does not

have any relevance to our study, so we have chosen Freenet

to represent not only software without a pre-existing signif-

icant test suite, but also legacy software in general.

Positively, Freenet is open source code and was devel-

oped in Java, which is a language that is fully supported by

the majority of automatic unit test generation tools. In this

way, we had the possibility of comparing the most and lat-

est relevant examples of industry and academic research in

this field.

Furthermore, even though the software had many aspects

related to legacy software, the developing structure was

modern and efficient. It had effective mailing lists and an

active IRC channel populated by the most important project

developers. The code was maintained in a functional Sub-

version repository and we were granted full privileges to it.

Finally the infrastructure to insert JUnit tests was already

prepared and there was also support for continuous integra-

tion and test.

The changes we described earlier correspond to release

0.3, release 0.5 and release 0.7. During our experiment we

used the last release which was the official one.

3.2 Development environment

The development environment for the experiment has

been the GNU/Linux operating system provided with SUN

Java 5 SE, Eclipse Europa IDE, Ant build tool version 1.7,

JUnit version 3.8. During manual tests implementation

hardware performance has not been an issue, whereas we

got serious benefits in computational time using a dedicated

workstation (dual Intel Xeon 2.8Ghz processor, with 2GB

of Ram) when generating tests with the automatic tools and

calculating the value of some of the metrics.

The developer who implemented unit tests manually was

132

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

a graduate student with a reasonable (about three years) in-

dustrial and academic experience in Java programming. He

also had a basic knowledge of xUnit, previously developed

using SUnit (the SmallTalk xUnit dialect) [2].

3.3 Procedure

In order to gain a better knowledge of the Freenet source

code, environment and community, we began the experi-

ment dedicating three full-time working months (which cor-

responded to almost 500 hours) to the manual implementa-

tion of unit tests. Then we started studying automatic test

generation tools and we created tests using them. At the end

we performed the comparison between each test suite that

was generated using different techniques.

The decision to start with the manual implementation of

tests made it easier to decide which and how many classes

to put in our study domain. We decided to concentrate our

efforts on support “leaf” classes (i.e. without outgoing ref-

erences), because they offer two important advantages: they

do not have significant references to other classes in the

project -which means they are easier and faster to study

and comprehend- and they are support classes, very sim-

ilar to library classes, so they are often referenced through

the whole code, and this allowed us to see the testing effects

spread as broadly as possible across the system.

At the end of the creation of manual unit tests, we had

two different “snapshots” of the Freenet system, that we

used as a basis for further testing. First we had the source

code which was present at the beginning (i.e. without unit

tests), in which we found certain bugs through manual test-

ing; and we had the source code after manual testing, which

was modified to remove bugs and included the regression

tests which we had manually implemented.

In order to successfully compare manual unit test imple-

mentation and automatic unit test generation tools, we used

these two source code snapshots in a different manner. The

first “snapshot” (i.e. without any manual modification) was

useful for comparing failure detection capabilities. Using

the source code as it was before the manual work, we were

able to compare the bugs which had been found throughout

manual implementation with the bug set that was detected

by automatic tools. This comparison was possible only by

working on the same source code basis, and allowed us to

effectively spot similarities, advantages or faults of different

the techniques.

On the other hand, we used the second “snapshot” to

compare regression tests, manually and automatically gen-

erated. We already had manually implemented regression

tests for this snapshot (which result from the manual test-

ing), so it was more appropriate to use tools to generate

regression tests over the same code, to see if their regres-

sion avoidance capability was less effective, similar or even

better than the manual implementation.

It is still possible to checkout the source code we used as

a basis for our tests, using the official Freenet Subversion

repository.

3.4 Manual unit test implementation

To manually create unit tests, we first had to understand

what was expected from the code we wanted to test. A rea-

sonable approach to achieve this understanding is to read

the documentation that was accompanying the code. Unfor-

tunately, as already mentioned, very often it was not present

or very poor and outdated. For this reason, we usually had

to directly study the source code under test. It is not a good

practice to understand what the code is supposed to do by

reading it, because if the code contains defects or the devel-

oper had a wrong understanding of the requirement, study-

ing only the code does not help in finding the problem. In

addition, often we were unable to understand the function-

alities supported by the analyzed code. So we had to search

external documentation to clarify well-known problems that

were addressed by the code (e.g., the DSA algorithm imple-

mentation), or -even worse- we had to contact the Freenet

developers for further explanations. For this reason, the lack

of documentation we encountered created important prob-

lems in the speed of manual testing, which we could not

correctly estimate at the beginning of our work.

When we finally achieved full and correct knowledge of

the classes that we wanted to test, we started writing test

cases. Even though there is some research addressing the

issue [41], there is not any widely accepted method of con-

ducting the manual implementation of unit test cases. For

this reason we decided to follow well-known and broadly

used non-formal testing principles [24, 36].

First of all, when implementing tests, we tried to adopt a

different point of view from the one which was used by the

original code developers. We created a series of test cases

that were intended to “break” rather than confirm the soft-

ware under test. We also deeply analyzed all data structures

that were created or used in each tested class. We created

test cases to verify that data did not lose its integrity when

using classes’ methods or algorithms.

We also performed boundary-value analysis, because it

has been statistically proven to be capable of detecting the

highest number of defects [24]. We checked the code using

the highest and lowest possible values, and we also tried to

use values slightly outside the boundaries. Confirming the

statistics, we found relevant bugs using this technique.

Our tests also performed control-flow path execution,

which consists of trying to execute the code in every pos-

sible path to check the behavior of functions when dealing

with inputs from different subsets. We usually created one

test case for each possible code branch, to improve tests

133

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

readability and facilitate future source code debugging.

We also did exception handling checking to verify if

source code correctly deals with wrong inputs and methods

usage.

Finally we created mock objects [42] to replace the ob-

jects used by the methods under test. This offered a layer

of isolation and allowed us to check the code when dealing

with specific results from external objects which we created

the mock object for.

The failures we gradually found during the manual cre-

ation of unit tests formed a basis of knowledge that was

useful when trying to find bugs in new tested classes.

At the end of this manual activities, we had defined the

Freenet classes that formed the domain of our experiment.

As mentioned earlier, their number was below our and

Freenet developers’ expectations. We supposed that it was

possible to test at least all the classes in the freenet.support

package, however the documentation problems consider-

ably slowed the manual testing process.

As mentioned before (Section 3.3), after the manual test-

ing process we obtained two different “snapshots” of the

source code. The former, which was the source code ba-

sis without any testing, is used to compare the bugs that

were manually found with the ones found through auto-

matic tools, in order to see if they are complementary or

overlapping. The latter, which was the source code after

the manual testing phase (that is after the removal of de-

fects and the creation of the manual unit-test suite), is used

to compare the regression avoidance quality of the different

techniques.

3.5 Automatic generation tools selection

We based automatic unit test generation tools selection

on two criteria. First of all, we wanted to analyze the results

of automatic tools both when dealing with regression avoid-

ance and failure detection, because we supposed that their

effectiveness would be different. Then we chose tools that

were simple for developers to learn or use, as they would be

more easily adopted in an industrial context.

For these reasons, we focused our attention on JUnit Fac-

tory [5] which addresses regression tests creation, JCrasher

[14] which deals with failure detection and Randoop [31]

that can be used for both problems.

JCrasher and Randoop, and presumably also JUnit Fac-

tory, are based on random testing, which consists of provid-

ing well-formed but random data as arguments for meth-

ods or functions and checking whether the results obtained

are correct. This random approach has a few advantages

[14]: it requires low or no user interaction (except when an

error is found), and it is cost-effective. However, one of

the major flaw of random testing is that very low probabil-

ity sub-domains are likely to be disregarded by it [25]. To

deal with this issue, the chosen tools are designed to easily

cover shallow boundary cases, “like integer functions fail-

ing on negative numbers or zero, data structure code failing

on empty collections, etc.” [14]. Finally, we decided not

to use tools that rely on formal specification of the system

under testing (e.g., model-based testing [34, 43]), because

such systems are not common in practice [9], especially for

legacy systems. In addition, in our real case study even an

external model (based on requirements, documentation or

other sources) was not available.

3.6 JUnit Factory

JUnit Factory was developed at AgitarLabs, the research

division of Agitar Software, and it was freely usable upon

registration.

JUnit Factory was different from the other tools we used

because it was proprietary and was only offered as a service.

This means that the user can neither see the software source

code nor download and use the binaries on his computer.

To use the JUnit Factory service, we had to download

a specific Eclipse [17] plugin (the web interface version

was not suitable for a large project, as it was only use-

ful for quickly seeing JUnit Factory results on very small

independent classes). This plugin allowed us to choose

the classes which we wanted to automatically generate unit

tests for. When the selection was completed, the whole

Eclipse project was uploaded to Agitar server and put in a

queue. Some minutes after (the waiting time was influenced

by tested class characteristics, such as lines of code and

complexity) the resulting unit tests were ready and down-

loaded into our Eclipse project and became part of it. JU-

nit Factory creates unit-test cases with a clear variable and

method naming, in order to increase their readability . How-

ever, those tests still remain terse, as depicted in Listing 1.

public void

testBytesToBitsThrowsNullPointerException1()

throws Throwable {

byte[] b = new byte[2];

b[0] = (byte)75;

try {

HexUtil.bytesToBits(b, null, 100);

fail(’’Expected

NullPointerException to be thrown’’);

} catch (NullPointerException ex) {

assertNull(

"ex.getMessage()",ex.getMessage());

assertThrownBy(

HexUtil.class, ex);

}

}

Listing 1. JUnit Factory-generated test case

134

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

From that moment, JUnit Factory tests could be easily

run using the Agitar’s executor. Even though they were very

similar to JUnit tests, they could not be executed using the

standard JUnit framework, because they made use of Agitar

proprietary libraries.

This usage description shows two major shortcomings

of this tool: the user, through a non-secure communication

channel, must upload the code to remote server, where it

could be stored and used for unspecified purposes; and the

service does not generate fully compatible JUnit tests, and

for this reason proprietary libraries and a binary program

must be included in the tested software in order to run them.

In our experiment we used an open source software, so

we had no security issues, but when dealing with the auto-

matic creation of unit tests for a proprietary software, these

are problems that could mean that it is may impede the use

of JUnit Factory.

Finally, due to its proprietary nature, it was not possi-

ble to study JUnit Factory internal functioning, but we had

to rely on Agitar public articles [11]: which stated that it

was based on the same research which formed the basis for

Randoop (see Section 3.8).

3.7 JCrasher

JCrasher generates tests which target failures in the

tested code. It produces type-correct inputs in a random

fashion and attempts to detect bugs by “causing the program

under test to crash, that is, to throw an undeclared runtime

exception” [14]. It is almost completely automatic: no hu-

man supervision is required except for the inspection of the

test cases that have caused an error.

JCrasher is based on C. Csallner and Y. Smaragdakis

academic research and its source code is completely avail-

able under the MIT license. The binary executable and its

results could be used freely by a test engineer without any

restriction.

The usage of this tool is straightforward, even though

it requires to be familiar with Apache Ant [6], the popular

Java-based software build system. The user must prepare an

Ant makefile with a specific target to invoke JCrasher [14]

and a simple text file containing the list of classes for which

it must create failure detection tests. Then the tool will cre-

ate JUnit test cases, in a directory specified in a property of

the Ant makefile. Even though the JCrasher target is fail-

ure detection only, it produces both passing and failing unit

tests.

The test creation is a heavy task from a computa-

tional point of view, and this caused memory issues (i.e.

java.OutOfMemory exception raising) leading us to move

our development to the dedicated workstation we described

previously. In addition, resulting JUnit test cases are ex-

tremely terse (e.g., Listing 2) and they are generated in the

same directory as the tested source code.

public void test121() throws Throwable {

try{

java.lang.String s1 = "";

java.lang.String s2 =

"\"\n\\.‘’@#$%ˆ&/({<[|\\n:.,;";

HTMLNode h3 =

new HTMLNode("", "", "");

h3.addAttribute(s1, s2);

} catch (Throwable throwable) {

throwIf(throwable);}

}

Listing 2. JCrasher-generated test case

For these reasons we decided to produce tests for one

class at a time and this also allowed us to separate tests in

different meaningful subdirectories.

The number of test cases which were created varied from

class to class, but it was usually extremely high. For exam-

ple it outputs 100.000 test cases for a single class, many of

which were almost identical. The execution time for such

a vast quantity of tests was not acceptable even for a very

fast system (it took about twelve minutes to check only one

class). For this reason we reduced the number of tests be-

fore integrating them into our Eclipse project, deleting tests

that used inputs from the same subset.

Finally we decided to keep the JCrasher tests which past

in order to verify whether passing tests could be effectively

used as regression tests.

3.8 Randoop

Randoop (Random Tester for Object-Oriented

Programs) is the practical result of research by Dr.

M.D. Ernst and C. Pacheco and, like JCrasher, it is dis-

tributed under the MIT License. Randoop can generate unit

tests to do both regression avoidance and failure detection.

In the first case the generation requires only a very low

human interaction: in order to obtain the regression test

suite, it is sufficient to specify which classes have to be

tested, and their helper classes. Helper classes are needed

because the tool will only generate tests using the specified

classes. For example, in order to effectively test Collec-

tions, it is necessary to input a class (e.g., java.utils.TreeSet)

that allows the tool to instantiate concrete collections. This

class is defined as helper class.

Randoop then accepts a time limit which is an upper

bound for the time it uses for its computations. We found

that ten seconds was long enough to generate meaningful

regression tests. We noted that longer time limits did not

result in enhanced tests, but only lead to a higher number of

tests, which are more expensive when carried out. Finally,

135

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

as Randoop is based on random input generation, its de-

veloper also offers the possibility of feeding Randoop with

different random seed in order to obtain different random

inputs. We note, however, that this possibility did not sig-

nificantly change the produced tests, even though we tried a

lot of different seeds. It is an issue that was also later noted

by Randoop creator in [32], when he was trying to use it

in another real world case. Randoop produces succinct test

cases, where could even be difficult to spot the tested class

(e.g., Listing 3).

public void testclasses15()

throws Throwable {

boolean v0 = false;

freenet.support.SimpleFieldSet v1 =

new SimpleFieldSet((boolean)v0);

String v2 = "";

double v3 = (double)1.0;

double v4 =

v1.getDouble((String)v2,(double)v3);

String v5 = "hi!";

long v6 = (long)100L;

v1.put((String)v5,(long)v6);

assertEquals(

(double)1.0,

(double)(Double)v4);

}

Listing 3. Randoop-generated regression test

On the other hand, Randoop failure detection functional-

ity requires more time to prepare its input, because the user

must write contracts. A contract is the way in which the

programmer defines which are the properties that should re-

main the same in the class under examination. In practice, a

contract is the implementation of a Java interface in which

the developer makes some assertions about the tested object

state. These assertions have to be always true. If during

class checking, Randoop finds a sequence of method calls

and inputs that make a check fail, then the test case which

caused the failure is displayed.

We chose Randoop because we believe that a tool is more

useful for developers, if they can express themselves using

constructs they already know. In fact with this tool, they can

write contracts in Java language. Other solutions [29], on

the contrary, require the learning of a new formal language

to express tested class properties and invariants. Randoop

authors admit that this approach could be less expressive

than using a specific formalism [31], but in our experience

this did not turn out as a limiting factor.

Randoop performances were increased using the dedi-

cated workstation, but its impact was less evident than when

creating tests using JCrasher. Randoop did not suffer the

same memory problem as JCrasher and it was reasonable

to use it on the computer which we also used for standard

programming. This implies that a single developer could

benefit from using it, without the need of a powerful hard-

ware.

As with JCrasher, we keep the tests that found failures

to use them as regression tests. However, there were only a

few of them and their influence was irrelevant.

3.9 Validity

The procedure we used to conduct the experiment led to

relevant results [7], however since we are trying to outline

an abstract method for unit tests comparison, we would like

to suggest some enhancement that could be adopted to in-

crease both validity of results and efficacy of comparisons.

In our experiment the same individual implemented

manual unit tests and produced tests throughout automatic

tools usage. To reduce the possibility of any influence be-

tween these two experiment phases, we first conducted the

manual implementation then the automatic tools usage. In

this way, we avoided bugs that were found by automatic test

generation tools suggesting which tests the engineer could

manually implement. What is more, the fact that we first

conducted the manual part did not influence the automatic

generation (and the experiment results confirmed this), be-

cause the human interaction was extremely low in the au-

tomatic phase. The only exception was when writing Ran-

doop contracts. However, in this case the programmer did

not have to directly write unit tests or give suggestions to

the tool about how to write them. He only had to express

class properties from a higher level of abstraction. For this

reason, the fact that the manual part was done first, influ-

enced only the time necessary to write contracts. The de-

veloper already knew the intended behavior of classes, so it

was sufficient to express this in a more formal way.

In addition, by assigning the same individual to do both

the tasks, we were able to see to what extent his normal abil-

ities could be overcome or helped by the usage of automatic

test generation tools. If we had assigned two different peo-

ple, one for the manual task and one for the automatic tools

usage, we would not have been able to be sure whether their

personal programming abilities had influenced their results.

For this reason, the only way we could suggest improv-

ing the procedure of comparing different testing technique

results, is to use a double-blind trial where professional de-

velopers are asked to implement manual and automatic tests

to a set of representative software components. In this case

a high number of developers is suggested, in order to lower

differences caused by their respective testing abilities. It

would be even better to ask each developer to test differ-

ent parts of the software, using a different technique for

each piece of code. In this way it would be possible to see

the results of different testing techniques (without any in-

136

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

fluence from previous testing of the same code with other

techniques) and not to be concerned about different devel-

opers abilities.

4 Comparison

After we obtained the unit tests through manual imple-

mentation and automatic tools usage, we proceeded to com-

pare the effectiveness of each technique. Here we present

the criteria we used to conduct the comparison and the re-

sults. In this way we attempt to show how these criteria can

be enhanced and extended in order to outline an abstract

methodology to perform a practical unit test effectiveness

comparison.

We needed universal metrics capable of showing differ-

ences in a deterministic manner, in order to perform a cor-

rect empirical comparison and link each testing technique

with its costs. In addition, such metrics are not only useful

for comparisons, but also to help the test engineer to define

the quality standard that the tests must achieve.

The quality of tests depends on many facets, for this rea-

son we present the different metrics we used to capture as

many characteristics as possible.

4.1 Time metrics

The first metric that we used to compare unit test creation

techniques was generation time. As testing can consume

more than fifty percent of software development time [9],

this metric is crucial, especially considering the fact that the

first target of automatic test generation techniques is often

to dramatically reduce tests production time.

In this generation time metric we combine the time

which is necessary to perform various aspects of tests gen-

eration. When considering the generation time of manually

implemented tests, we also included the hours that were

needed to correctly understand the classes we wanted to

test and the amount of time we spent on them in order to

perform source code refactoring or to improve the existing

documentation. We decided to consider the time which was

required to understand classes under test only for the man-

ual implementation, even though it was also useful for Ran-

doop contracts implementation. In the latter case only a

high level class knowledge was necessary, which was faster

and easier to achieve than the deep knowledge required to

implement manual tests.

The generation time for automatic tools also includes the

hours of effort required to learn their correct and most effec-

tive usage. JUnit Factory learning time was really short: it

had an efficient documentation and it was straightforward to

use. JCrasher had some useful examples which illustrated

its usage in a easy way, for this reason it is quite simple to

understand how to generate tests through it. Finally, Ran-

doop required the longest learning time, because its docu-

mentation was not complete and the user had to learn what

contracts are and how to write them. Fortunately Randoop’s

author replied to our questions in a very short time and has

since improved the documentation.

Automatic tools generation time also includes the

amount of time we spent interacting with them, both be-

fore they generated tests, and afterwards when we were in-

specting them. Randoop generation time includes the time,

which we spent before creating tests, to find helper classes

and to write contracts, and the time -after the test case

generation- to verify if error revealing tests reported real

failures. JCrasher generation time includes the little effort

required to prepare tests and to check error-revealing tests

after their generation. Finally JUnit Factory generation time

does not include preparation or inspection time, because the

Eclipse plugin did all the necessary preparation and the re-

sulting tests were not failing.

Another metric which is time related is test execution

time. Tests are run frequently, unit tests in particular should

be executed every time the tested code is modified, in order

to verify that new errors are not introduced. This is one

of the core extreme programming practice [8] and is also

used in continuos integration and testing techniques. The

majority of unit tests should be fast enough to be executed

very often on a common development computer. For this

reason execution time is an important metric when dealing

with unit tests.

Although this metric could be improved simply by using

a faster hardware, if the number of test cases is exponential

the resulting benefits are less important. In order to deal

with this issue, various strategies -mainly based on running

only a subset of the regression tests- are studied and sug-

gested [37, 30].

In the case study, even though some test cases could take

longer to execute, we noted that the average execution time

of a single test case was almost the same. This also reflects

the fact that each unit test case should only check a small

portion of the tested class [24], and this is usually a fast

task. For this reason, we decided not to report execution

time, but the number of unit test cases created using the

different techniques. This gives a more correct suggestion

of actual test execution time in general.

Table 1 shows these two metrics (generation time and

number of unit tests) by different approaches. We split the

Randoop metrics in two in order to reflect its different us-

ages. The number of unit tests generated with the regression

avoidance feature is much higher than the number unit tests

generated when performing failure detection. In addition,

the latter phase required more work to prepare the test cre-

ation.

137

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Approach time (hours) test case

Manual 490 160

JUnit Factory 15 1,076

Randoop (failure) 115 12

Randoop (regression) 50 5,928

JCrasher 35 10,000+

Table 1. Tests # and generation time, by ap-

proach

4.2 Regression tests metrics

One of the target of automatic test generation tools is the

creation of reliable regression tests, capable of creating a

sort of safety net which could warn of possible errors intro-

duced while modifying the tested code.

The most popular metric used to measure regression tests

“quality” is code coverage, which is also the easiest metric

to use. The main idea is to measure how much of the source

code is exercised by unit tests during their execution. This is

a white-box metric because it examines the internal cover-

age of the source code, rather than considering it as a black

box.

There are different code coverage types [10], and the

main difference between them is the basic unit they use for

coverage. Class coverage measures the number of classes

that are visited by the test suite; method coverage is the

percentage of methods executed, without considering the

method size; block coverage considers code blocks as the

basic unit; statement coverage (also known as line cover-

age) tracks the invocation of single code statements. Branch

coverage, which can also be found as decision coverage, has

a slightly different functioning because it performs its calcu-

latations measuring which code branches are executed. That

is, it shows whether the boolean value of a control structure

is set to both true and false.

Even though these code coverage flavors show different

and complementary information about the test suite.

public int foo(int a, int b) {

if (a > b) {

//many lines of code

...

return 1; }

else {

//only a few lines of code

return 2; }

}

Listing 4. Line code coverage

For example if we prepare a test that exercises only the

first branch of Listing 4, the corresponding line coverage

will be quite high, because of the relative length of that part.

freenet.support Code Coverage (%)

class Manual JU.F Rand JCrash

Base64 79.5 90.7 93.2 64.6

BitArray 71 97.3 87.7 39.8

HTMLDecoder 55.9 94.6 26.7 91.4

HTMLEncoder 71.1 100 85.8 100

HTMLNode 96.6 100 80.9 29.9

HexUtil 73.9 91.4 68.3 35.7

LRUHashtable 83 100 74.2 55.8

LRUQueue 83 100 88.9 74.2

MultiValueTable 84.8 100 73.9 10.5

SimpleFieldSet 53.8 99.8 64.6 10.1

SizeUtil 82.6 96.9 53.4 53.4

TimeUtil 94.8 100 55.2 45.9

URIPreEncoder 78.7 100 46.1 0.0

URLDecoder 67.5 100 46.5 62.4

URLEncoder 85.7 100 88.8 93.9

Average 77.5 98.0 68.9 51.2

Table 2. Line code coverage

However, in the same situation block and branch coverage

will report a mediocre result. When they calculate it, they

do not consider branch or block length.

At the beginning of this subsection we put the word

quality in quotation marks, because there is much research

[10, 40] explaining that code coverage cannot be considered

as a serious metric to measure unit tests quality. Through

code coverage we can only see which part of the source

code is used during test execution, but not how it is actually

exercised (i.e. meaningfully or not). In [7] we empirically

proved that code coverage is not a correct quality metric

for regression tests. In addition, the results of the analysis

on “code coverage and defect density (defect per kilo-lines

of code) show that using coverage measures alone as pre-

dictors of defect density (software quality/reliability) is not

accurate” [40].

However, code coverage can be used as a “negative met-

ric”: through it we can correctly see which parts of the

source code are not executed by tests. For this reason, it can

be used to help selecting and prioritizing tests, especially

when dealing with a big software, where the test engineer

must be selective about what to test.

We showed that code coverage is not a reliable quality

metric, thus we decided not to put much effort into finding

and using exotic code coverage flavors. We decided to use

the most simple one (i.e. line coverage) to actually see what

we could expect, in terms of code coverage, from different

testing techniques.

Table 2 shows the code coverage that was achieved by

each technique. The highest coverage is obtained by JUnit

Factory, with an average value of 98% and a standard devi-

138

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

ation of 3%. The other techniques results have a decreasing

code coverage average value, but also an increasing stan-

dard deviation value. It is relevant to note that the average

code coverage reached by JCrasher is more than 50%, even

though the tool only produced failure detection tests.

The target of regression tests is to inform the software

developer when a change in the tested code also produced

unexpected side-effects. For this reason, the best way to

verify regression test accuracy is to demonstrate whether

they can spot a change in source code functioning. And

this is what mutation analysis does. The idea of this met-

ric is to introduce mutations in the tested code, for example

changing operators (e.g., substitute “- -” with “++”), vari-

ables (e.g., reset them, invert boolean values) and in other

parts that could be changed without affecting the code exe-

cution. A first practical implementation of this analysis was

proposed in [12] and [26].

When a mutation is introduced and it changes the ex-

pected code behavior, we define the resulting source code

as a mutant. If this behavior change is detected by a test

case, it is said that the test killed the mutant.

A change in the code could produce a functioning that is

not different from the original one, in this case the mutation

creates an equivalent mutant.

public class Mutable() {

public static int aMethod() {

int counter, returnValue;

counter = 0;

while (true) {

//some operations on returnValue

counter++;

if (counter==12)

return returnValue; }

}

}

Listing 5. A not mutated class

For example in Listing 5 we show the original class and

in Listing 6 one of its equivalent mutant.

public class Mutable() {

public static int aMethod() {

int counter, returnValue;

counter = 0;

while (true) {

//some operations on returnValue

counter++;

if (counter>=12)

return returnValue; }

}

}

Listing 6. An equivalent mutant

The effort needed to check if mutants are equivalent or

not, can be very big even for small programs [19]. However,

we only want to compare the results of different techniques

applied on the same source code basis. For this, the same

equivalent mutants will appear in the mutation analysis for

each technique, influencing the results in the same manner

for each technique, without introducing any bias towards

our comparison validity. For this reason, we did not con-

sider necessary to find equivalent mutants produced during

the mutation analysis.

The mutation analysis process first considers the source

code and the corresponding test suite that is not failing (i.e.

it is a suite of regression tests). Later, it creates a single

mutation inside the source code, increasing by one the to-

tal number of mutations created, then it runs the tests again

to verify if the mutant is correctly spotted and killed. If it

is, the number of killed mutants is increased by one. Then

the process restores the starting source code and restarts the

cycle again creating another mutation. It loops until the last

possible mutation is applied and checked. At the end we ob-

tain a percentage which is the the number of mutants killed

divided by the total number of mutants produced. This

value is known as mutation score. The mutation analysis

is an extremely long and repetitive task, and it is not rea-

sonable to conduct it manually. It is necessary to have an

effective tool to automate the process. In our real case study,

we used Jester [23] which can perform the mutation analy-

sis on Java code and creates effective and readable reports.

In these reports it not only summarizes the mutation score

reached, but it also shows the mutants created and which of

them were killed by the chosen test suite.

Using Jester it is also possible to choose which mutations

to perform in order to obtain mutants. It is sufficient to setup

a configuration file, in which the user can specify how a

piece of code could be mutated.

...

%==%!=

%++%--

...

Listing 7. A part of Jester configuration

For example, in Listing 7 we read that each “==” check

will replaced with a “!=” check, and each “++” operator will

be replaced with a “- -” operator. Using this possibility, we

can avoid turning Jester into “a very expensive way to ap-

ply branch testing” [27]. In fact, Offutt explained that “the

power of mutation depends on the mutation operators that

create mutants of the program [...] Experimental research

has found that exchanging 0s and 1s turns out to be almost

useless because any input will find them. This is known as

an “unstable” operator. Replacing predicates gets branch

testing, no more no less” [27]. In our experiment we tried

a mix of different mutations to obtain the best results from

this analysis.

139

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

freenet.support mutation score (%)

class Manual JU.F. Rand. JCrash.

Base64 73 58 49 0

BitArray 46 76 82 7

HTMLDecoder 37 37 14 6

HTMLEncoder 28 59 32 6

HTMLNode 94 98 70 10

HexUtil 59 73 57 0

LRUHashtable 91 91 87 0

LRUQueue 58 100 79 0

MultiValueTable 75 96 59 0

SimpleFieldSet 49 84 48 3

SizeUtil 57 97 24 0

TimeUtil 93 99 17 0

URIPreEncoder 19 82 19 0

URLDecoder 71 86 19 10

URLEncoder 67 87 54 7

Average 61 82 47 3

Table 3. Mutation Score

Table 3 shows the mutation score for each technique. JU-

nit Factory confirms the first position which it also reached

in the code coverage comparison, with a significant score

of 82. Other techniques follow in the same order as in the

code coverage comparison. We want to stress that JCrasher

tests have no value as regression tests: even though the code

coverage that was reached was decent, those tests were not

capable of correctly characterize the system. They did not

notice any significant source code change and thus were not

capable of killing the mutants introduced. In fact, JCrasher

tests are generated to identify only failures, and cannot rec-

ognize wrong behavior in the semantic of the tested class.

This result still confirms that code coverage must not be

used as a quality metric for regression tests. Finally, when

working with JCrasher, the test engineer could discard the

large amount of unit tests that are not revealing faults, be-

cause they are not even useful as regression tests.

4.3 Failure detection tests metrics

In [7] we commented that it is really difficult to deter-

mine an objective method to measure the ability of tests to

detect defects. The number of failures that were found is not

a complete metric to asses test quality, because it is evident

that different defects could have a different impact on the

system. However, in [38] it is shown that it is impossible to

generally classify the severity of a defect without knowing

the context in which the application was used.

Usually “many programmers might say that a null deref-

erence is worse than not using braces in an if statement”

[38]. On the other hand, a logical error caused by a lack of

Approach Found bugs

Manual 14

Randoop 7

JCrasher 4

Table 4. Number of bugs found, by approach

braces could be more severe, and harder to track down, than

a null reference.

For this reason, in [7], we considered the Freenet devel-

opers’ opinion as a further metric. They evaluated the de-

fects detected by the different techniques and they explained

that they had almost the same relevance for the system in-

tegrity.

This opinion allowed us to show table 4, in which we di-

rectly compared the number of defects found to show how

the different techniques handled this task. In the manual

approach, we also considered the semantic bugs we found,

even though they could not be found through automatic

tests. They were errors in the semantic of the tested classes

that could only be discovered by accurately reading and un-

derstanding the source code that was under test.

As a future work it would be interesting to make use of

a static bug finding tool, such as FindBugs [20]. This tool,

which uses syntactic bug pattern detection and a dataflow

component, statically inspects the code to warn about possi-

ble defects. These warnings have different levels of priority,

and this classification could be useful to give a suggestion

about the importance of bugs that automatic unit test gener-

ation tools could find. The process should be this: we run

FindBugs to classify the warnings in the source code, then

we use tools to generate tests and we remove the bugs they

reveal. Then we inspect the code again, using FindBugs,

to see whether the tools were capable of spotting the same

defects and what their relevance was. In this manner we

obtain a sort of classification of the bugs that were found.

However, the most effective way of classifying defects

relevance is still to study the context and rely on developers

opinion. Fortunately, the number of bugs detected is usu-

ally not so high that they cannot be manually inspected and

evaluated.

4.4 Side effects

The last aspect we considered in [7] when we performed

the comparison, was the presence of testing side effects.

During the manual test implementation, the test engineer

was forced to completely understand the tested classes and

methods. In our case, as the documentation was extremely

poor, he had to deeply analyze the source code in order to

create effective tests. This necessity was highly time con-

suming, but also led to important side effects.

140

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

During manual tests, the engineer noticed and fixed some

class performance issues, he increased class readability by

removing code duplication and by using better variable

naming, and he even split one class into two classes in order

to enhance the code reuse.

Moreover, the documentation was improved, not only

because of the comments the engineer added, but also be-

cause he tried to keep his unit tests as clear as possible. In

this way, each unit test was an efficient and updated exam-

ple of the piece of code they tested.

Only Randoop forced the developer to obtain at least a

higher knowledge of the tested code. Instead, the other tools

could be used without knowing anything about the system

under test. For this reason, all the important testing side ef-

fects were not present when using automatic test generation

tools. This means losing an important part of the testing

benefits and is an aspect that must be taken into account

when comparing different testing methodologies.

4.5 A comparison methodology

After detailing how we did the experiment we conducted

in [7], it is now possible to abstract a comparison method-

ology to effectively compare test suites generated through

different techniques, and thus compare the techniques them-

selves.

The first point is to consider failure detection and regres-

sion avoidance as two different tasks that cannot be com-

pared because they have completely different targets. A

failure detection test could be later used as a regression test,

and vice-versa, but in order to compare them we must use

different approaches.

It is even possible to use two different systems to create

failure detection tests. However, the approach we suggest is

the same we used in our experiment. The idea is to use the

same system to compare both failure detection and regres-

sion avoidance ability.

We suggest starting by using the techniques that generate

tests to find defects, and to use them separately but always

on the same source code basis. In this manner, we can see if

there are overlapping detected faults and, at the same time,

we are not influenced by other technique results. In addi-

tion, at the end of this phase, we definitively obtain a more

correct source code, that we can use later to check tools

which generate regression tests.

If the test engineer were able to interact with the devel-

opers of the tested code, they might find agreement on a

common scale to classify the severity of failures. Then the

test engineer should submit the defects he found with dif-

ferent techniques to the developers (in a blind trial manner).

They must return the failures classified. This is the best way

to classify the relevance of errors, otherwise if it is not pos-

sible to interact with developers, the test engineer could use

Approach MS/#(Test cases) Code Cov. MS

Manual 0.38 77.5 61

JU.F. 0.08 98.0 82

Randoop 0.01 68.9 47

Table 5. Test case accuracy, by approach

a tool like FindBugs and proceed as we depicted in Section

4.3.

After having classified the detected errors, it is straight-

forward to compare the different test suites: it is sufficient

to use the number and relevance of failures.

Then the regression tests comparison could take place.

It is reasonable to use the source code that was used for

the preceding phase, but only after having removed all the

errors revealed. Usually tools that create regression tests

consider the code base as bug-free, and, for this reason, it

is useful to try to remove them before with failure revealing

techniques.

As for the preceding phase, the different techniques

should be used separately but always on the same source

code basis. The first metric to calculate is code coverage,

which is useful to get a fast overview of created tests. It

would also be interesting to use coverages other than line

coverage, to see if some techniques are less capable of cre-

ating particular scenarios. Finally, mutation analysis has to

be performed to obtain the correct mutation score for each

test suite. This part is the most important for comparing

regression tests, as it is based on a true quality metric.

After these two phases (failure detection and regression

test quality comparison), we should continue considering

the time metrics. For the generation time it is important to

include every aspect that consumed time during test genera-

tions -from technique learning to code inspection-. Because

there are techniques that greatly improves some of those

parts, and this must be taken into account for a valid com-

parison. For execution time we still suggest not directly

calculating it, for example checking the run time, since a

faster hardware could dramatically change the values. On

the contrary, we suggest considering the number of gener-

ated tests, which is a better metric to have a realistic idea

of test execution time for every kind of computer. Usually

unit tests check a little part of code and for this reason, on

average, they take almost the same time to be executed.

Finally, side effects should be considered. Techniques

that force the engineer to study the source code he wants

to test take a longer time to be used, but they can produce

enormous benefits other than the tests themselves. At the

end of a comparison which is conducted in this way, the

developer has enough information and data to consciously

decide which technique is the best for his particular situa-

tion. He can also decide to use more than one technique. In

the next section we will try to explain what we consider the

141

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

“best practices” in order to integrate and exploit different

techniques with different targets.

5 Best practices

As testing is expensive and time consuming, it is highly

desirable to specify successful procedures for doing so [9].

For this reason, after having shown how to compare dif-

ferent testing techniques in order to become aware of their

strengths and weaknesses, we here outline a procedure to

exploit them so as to improve the testing process.

It is generally agreed that the most effective approach

is to combine different testing techniques [9, 15, 16, 39],

because each technique could spot different types of faults,

and could suffer from a saturation effect [22].

When dealing with a legacy system or a modern system

which is not yet tested (like the one we used in [7]), we sug-

gest starting with tests for leaf classes or functions (see 3.3).

[18] interestingly advises starting from inflection points in

order to spread testing effects both to classes that use the

tested classes and those that are used by them. An inflection

point is a narrow interface to a set of classes. Any change in

a class behind an inflection point is either detectable at the

inflection point, or inconsequential in the application. How-

ever, in [7] we confirmed that finding and understanding in-

flection points is a hard task when dealing with systems that

are not well documented, because the test engineer has to

learn the functioning of many parts of the system and might

have to read a large amount of the source code. That is the

reason why we suggest starting from “leaf classes”, as they

are simple to understand and the benefits from their testing

are spread across each class that uses them.

When creating unit tests for a not yet tested class, it is

reasonable to start from the detection of failure in order to

remove all defects and only then create regression tests. The

first technique to use should be the easiest one, which does

not require the test engineer knowing class functioning in-

ternals. For example, considering the techniques we used in

[7], JCrasher would be the best choice to start testing with.

It requires no test preparation and it can easily find inter-

esting bugs in the code. What is more, the only task that

the test engineer needs to do is to check whether failing unit

tests that JCrasher generated are correctly reporting real er-

rors. By doing this the test engineer starts to gradually learn

what the internal functioning and the meaning of the tested

class are.

After this part, the developer should continue using tech-

niques that only need a high level of knowledge of the class

under test. For example, from our past experiment, we sug-

gest Randoop, because in order to write contracts it is not

necessary to know what the little details of the tested class

are, but only to have understood the general meaning of it.

In this way, more defects could be revealed and the test en-

gineer further improves his knowledge of the class when he

has to verify and remove them.

In [7] we did not use any automatic test generation tech-

nique which required a low level knowledge of the tested

class, but they could be effective if used in this phase as they

could help the engineer in writing test cases. Otherwise, he

could directly move to manual implementation of tests. It

is evident that this manual work is made much easier by the

automatic phases. Here we suggest not only checking for

implementation defects but also verifying code documen-

tation and searching for semantic errors. These are testing

side-effects that are not produced by automatic tool usage,

but they are a fundamental result of testing.

All the unit tests generated in this first “detection of fail-

ures” phase could be kept to be used later as regression

tests. In the case of automatic tools we suggest keeping only

unit tests that revealed errors, because the comparison also

proved that not failing tests were useful as regression tests.

For example in [7] it was absolutely useless to maintain the

thousands of not failing tests that JCrasher produced, be-

cause they were completely useless regression tests (as de-

picted by the very low mutation score they reached).

The second part should be dedicated to “regression

avoidance”. During the preceding phase we accurately

checked the class we wanted to test, and thus we could be

confident enough about its correctness. For this reason, we

can move to generate regression tests for it. To integrate

the tests we created during the preceding phase, there are

two possibilities: integrating them only by manually writ-

ing regression tests, or by creating regression tests automat-

ically using appropriate tools and then eventually complet-

ing them manually. At the time of writing, and taking into

consideration the tools that are available, the choice should

be based on a trade-off between test creation time and test

execution time.

As depicted in the comparison in [7], the manual creation

is much more time consuming, but has the advantage of re-

quiring less unit test cases than automatic tools to reach a

good mutation score. This implies a shorter time to execute

the whole test suite.

On the other hand, automatic generation tools need a

greater amount of unit tests than the manual implementation

to reach a high score in the mutation analysis. This means

that automatically generated tests will require a longer time

to be executed, and this could create problems when using

continuous testing and integration. In addition, the number

of tests could be so high that it would be a problem to run

them in a common development computer. Fortunately the

research in this field is extremely active and tools are be-

coming more and more effective. For example Randoop,

which is more modern than JCrasher, is able to automati-

cally remove useless unit tests, and JUnit Factory -which is

a commercial software with a bigger team working on it- is

142

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

capable of reaching a higher mutation score than Randoop

with half the tests. Finally, it is always necessary to manu-

ally create unit tests to integrate specific scenarios that were

not exercised by automatically generated tests.

When describing these “best practices”, we assumed the

existence of a program to be tested, but they can also be

easily adapted for adoption in a test driven development

(TDD) [21] process. TDD suggests writing automated unit

tests before developing the corresponding functional code,

in short and rapid iterations. For each small function of the

production code, the developer must first implement a test

which clearly identify and validates what the code should

do. Then the code is only developed to make the test pass,

without adding any additional functionality not exercised by

the test. The last part of every TDD iteration is the refactor-

ing of both the production code and the test code.

The automatic unit test generation tools, that are now

available, can only be used with a preexisting production

source code to test. For this reason, when using a TDD pro-

cess, the first phase is to manually write unit tests defining

the expected functionalities. It is not worth writing many

unit tests, but just concentrate on the few cases that can ex-

actly exercise the purpose of the production class that will

be later implemented. Then, the class could be created fol-

lowing the TDD procedure correctly. Later, the first few

tests that have already been created must be integrated us-

ing tools to generate failure detection tests, in order to check

whether the class implementation is without defects. In this

phase, as the TDD process requires a prior knowledge of

the class to be tested, the developer could take advantage of

any kind of failure detection tools, even though they require

familiarity with the class they must create tests for. After

all the detected bugs are removed, the user must create re-

gression tests. This can be performed manually or using

appropriate tools, and the decision must be based on the

trade-off between execution time and creation time, which

we introduced before in this section. This stage makes the

final refactoring phase easier and faster to accomplish.

By using the procedures we outlined in this section, the

practitioner will receive all the benefits that the different

unit test generation techniques supply. It will be easier to

take decisions about how to schedule time dedicated to the

different techniques.

6 Conclusions and Future Work

This paper outlines a novel comparison methodology

that can be used to analyze the effectiveness of different

unit-test creation techniques. We first explained what unit

testing is and that failure detection and regression avoid-

ance are the two issues that it mainly addresses. Then, we

showed a real case study in which we created different unit-

test suites whose advantages, shortcomings and effective-

ness we wanted to assess . In order to do this compari-

son, we used a methodology that was able to quantitatively

give information about test quality. Consequently, we used

this practical example to abstract a comparison methodol-

ogy that could be used not only in this case, but with unit-

test suites produced through any technique.

For example, in the real case we studied, we realized

that the automatic unit-test generation tools which we chose

are really fast, and that they can produce test cases for a

large number of classes in a very short time, and that they

scale much better than a manual implementation. We also

proved that those tools can create trusthworthy regression

tests, which reach a high code coverage and, more impor-

tantly, a significant mutation score. Moreover, they can help

the test engineer find defects, by the creation of unexpected

scenarios or by adding a further abstraction level to test cre-

ation.

At the same time, the comparison was capable of also

spotting the serious disadvantages that these tools suffer

when compared to the manual testing approach. First, they

do not force the developer to study the code under test. This

means not getting the benefits of an accurate analysis of the

source code: which could result in finding semantic defects,

performing source code refactoring and improving the doc-

umentation. In addition, manually created tests are much

more readable and are clear examples of the code they test.

Moreover, to characterize classes, automatic unit-test cre-

ation tools produce at least ten times more test cases than

the manual implementation, and even more when finding

defects. This could be a problem when employing conti-

nous integration and testing, especially if they are used in

common development computers.

It emerged, from the real case study, that the comparison

methodology was able to richly characterize all the tech-

niques it analyzed. However, in this paper, we also pro-

posed some additional improvements to this procedure, in

order to obtain a further effectiveness enhancement and to

make it possible to use it for any kind of system that needs

a high-quality unit-test suite.

At the end, we also outlined an efficient procedure based

on “best practices”, that can be used by test engineers to ex-

ploit the benefits of different unit-testing techniques. Using

the results from the comparison, they can determine every

tools advantage, and they can thus follow the “best prac-

tices” which explains how inserting each technique in the

testing process can obtain a positive integration and rele-

vant improvements.

A future work can involve the creation of a tool which

automatizes the measurement of regression test quality

(based on code coverage and mutation score) and helps inte-

grate regression tests from different suites. The tool should

report not only the scores, but also all the mutants created,

with the unit-test cases -from all the different techniques-

143

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

that are able to kill them. In this way, the test engineers can

adopt the most effective test suite as a basis, and they can

integrate it with specific test cases from other techniques,

which spot mutants that were not killed by the chosen main

suite. Consequently, the effectiveness of the main regres-

sion test suites receive a significant improvement, without

adding redundant unit-test cases.

Another area of future work is to investigate to what ex-

tent the human factor hinders the full potential of automatic

unit-test generation tools, especially when the user has to

inspect the results of the tool (e.g., in order to verify the

failing unit-test cases) or to provide some input to further

assist it (e.g., writing the class contract).

References

[1] JUnit. http://junit.org/. Accessed May 2009.

[2] SUnit. http://sunit.sourceforge.net. Accessed May 2009.

[3] A. Abran and J. W. Moore. Guide to the Software Engineer-

ing Body of Knowledge (SWEBOK). IEEE, USA, 2004.

[4] Agitar Technologies. AgitarOne JUnit Generator.

http://www.agitar.com/pdf/ AgitarOneJUnitGenerator-

Datasheet.pdf. Accessed May 2009.

[5] Agitar Technologies. JUnit Factory.

http://www.agitar.com/news/pr/20071015.html. Accessed

May 2009.

[6] Apache Software Foundation. Apache Ant.

http://ant.apache.org/. Accessed May 2009.

[7] A. Bacchelli, P. Ciancarini, and D. Rossi. On the effective-

ness of manual and automatic unit test generation. In ICSEA

’08: Proc. of The Third Int’l Conf. on Software Engineering

Advances, pages 252–257. IEEE Computer Society, 2008.

[8] K. Beck. Embracing change with extreme programming.

Computer, 32(10):70–77, 1999.

[9] A. Bertolino. Software testing research: Achievements,

challenges, dreams. In FOSE ’07: 2007 Future of Software

Engineering, pages 85–103. IEEE Computer Society, 2007.

[10] C. Beust and H. Suleiman. Next Generation Java Testing.

Addison-Wesley Professional, October 2007.

[11] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to

Agitator: lessons and challenges in building a commercial

tool for developer testing. In ISSTA ’06: Proc. of the 2006

int’l Symposium on Software testing and analysis, pages

169–180. ACM, 2006.

[12] T. A. Budd. Mutation analysis of program test data. PhD

thesis, New Haven, CT, USA, 1980.

[13] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wi-

ley. Protecting free expression online with Freenet. IEEE

Internet Computing, 6(1):40–49, 2002.

[14] C. Csallner and Y. Smaragdakis. JCrasher: An automatic ro-

bustness tester for Java. Software – Practice & Experience,

34(11):1025–1050, 2004.

[15] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combin-

ing static checking and testing. In ICSE ’05: Proceedings of

the 27th international conference on Software engineering,

pages 422–431. ACM, 2005.

[16] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.

Ernst. An empirical comparison of automated generation

and classification techniques for object-oriented unit test-

ing. In ASE ’06: Proceedings of the 21st IEEE/ACM Inter-

national Conference on Automated Software Engineering,

pages 59–68. IEEE Computer Society, 2006.

[17] Eclipse Foundation. What is Eclipse and the Eclipse Foun-

dation? http://www.eclipse.org/org/#about, May 2009. Ac-

cessed May 2009.

[18] M. C. Feathers. Working Effectively with Legacy Code.

Prentice Hall, USA, September 2004.

[19] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs muta-

tion testing: an experimental comparison of effectiveness. J.

Syst. Softw., 38(3):235–253, 1997.

[20] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN

Not., 39(12):92–106, 2004.

[21] D. Janzen and H. Saiedian. Test-driven development: Con-

cepts, taxonomy, and future direction. Computer, 38(9):43–

50, 2005.

[22] M. R. Lyu, editor. Handbook of software reliability and sys-

tem reliability. McGraw-Hill, Inc., Hightstown, NJ, USA,

1996.

[23] I. Moore. Jester – a JUnit test tester. In Proc. of the

2nd Int’l Conf. on Extreme Programming and Flexible Pro-

cesses, pages 84–87, 2001.

[24] G. J. Myers. The Art of Software Testing. Wiley & Sons,

USA, June 2004.

[25] S. C. Ntafos. On comparisons of random, partition, and pro-

portional partition testing. IEEE Transactions on Software

Engineering, 27(10):949–960, 2001.

[26] A. J. Offutt. A practical system for mutation testing: Help

for the common programmer. In Proc. of the IEEE Int’l Test

Conf. on TEST: The Next 25 Years, pages 824–830. IEEE

Computer Society, 1994.

[27] A. J. Offutt. Jester analysis. http://cs.gmu.edu/ offutt/jester-

anal.html, April 2005. Accessed May 2009.

[28] A. Oram and G. Wilson. Beautiful Code: Leading Program-

mers Explain How They Think. O’Reilly Media, Inc., June

2007.

[29] C. Oriat. Jartege: A tool for random generation of unit tests

for Java classes. In Proc. of 2nd International Workshop of

Software Quality - SOQUA’05, pages 242–256, September

2005.

[30] A. Orso, N. Shi, and M. J. Harrold. Scaling regression test-

ing to large software systems. SIGSOFT Software Engineer-

ing Notes, 29(6):241–251, 2004.

[31] C. Pacheco and M. D. Ernst. Randoop: feedback-directed

random testing for Java. In OOPSLA 2007 Companion,

Montreal, Canada. ACM, October 2007.

[32] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in

.NET with feedback-directed random testing. In ISSTA ’08:

Proc. of the Int’l symposium on Software testing and analy-

sis, pages 87–96. ACM, 2008.

[33] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In Proc. of the 29th Int’l

Conf. on Software Engineering, 2007.

[34] M. Pezzé and M. Young. Software Testing and Analysis:

Process, Principles, and Techniques. John Wiley & Sons,

2008.

144

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[35] S. L. Pfleeger. Software Engineering: Theory and Practice.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[36] R. S. Pressman. Software Engineering: A Practitioner’s Ap-

proach. McGraw Hill Higher Education, USA, June 2001.

[37] G. Rothermel and M. J. Harrold. A safe, efficient regression

test selection technique. ACM Trans. Softw. Eng. Methodol.,

6(2):173–210, 1997.

[38] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of

bug finding tools for Java. In ISSRE ’04: Proc. of the 15th

Int’l Symposium on Software Reliability Engineering, pages

245–256. IEEE Computer Society, 2004.

[39] Y. Smaragdakis and C. Csallner. Combining static and dy-

namic reasoning for bug detection. In Proc. Int’l Conf. on

Tests And Proofs (TAP), volume 4454 of LNCS, pages 1–16.

Springer, February 2007.

[40] K. Stobie. Too darned big to test. Queue, 3(1):30–37, 2005.

[41] D. Stotts, M. Lindsey, and A. Antley. An informal formal

method for systematic JUnit test case generation. In Proc.

of the 2nd XP Universe and 1st Agile Universe Conf. on

Extreme Programming and Agile Methods, pages 131–143,

2002.

[42] D. Thomas and A. Hunte. Mock objects. IEEE Software,

19(3):22–24, 2002.

[43] M. Utting and B. Legeard. Practical Model-Based Testing.

Morgan Kauffman, November 2006.

145

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Incremental verification of consistency properties of large-scale workflows from
the perspectives of control flow and evidence life cycles∗

Osamu Takaki, Izumi Takeuti, Takahiro Seino, Noriaki Izumi and Koichi Takahashi
National Institute of Advanced Industrial Science and Technology (AIST)

2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
{o-takaki, takeuti.i, seino-takahiro, n.izumi, k.takahashi}@aist.go.jp

Abstract

We investigate consistency properties of workflows from
the perspectives of control flow and evidence life cycles
for incremental verification for large-scale workflows. For
modeling complicated business processes in developing
large-scale information systems, it needs to develop large-
scale workflows that consist of a lot of small workflows. As
a workflow becomes larger and larger, it becomes harder
and harder to verify the workflow. Therefore, it is useful
to verify large-scale workflows “incrementally”, that is, to
verify small workflows before they are integrated to form the
large-scale workflows. However, in order to verify a work-
flow incrementally, it is necessary to consider consistency
properties of not only a whole workflow but also a subgraph
of the whole workflow. Thus, we extend the correctness
property of acyclic workflows to that of acyclic workflows
with multiple starts and/or ends. Correctness of workflows
is one of the most important consistency properties for im-
proving workflow quality from the control flow perspective.
Extended correctness is a natural extension of the original
correctness property and is preserved in the vertical com-
position and vertical division of workflows. We also define
a consistency property for evidence life cycles in workflows
with multiple starts. Moreover, in order to validate the con-
sistency properties above for incremental verification, we
investigate real workflows and explain how to verify the
consistency properties by using an example.

Keywords: workflow, verification, correctness, evidence
life cycle, incremental verification

∗This work was supported by ’Service Research Center Infrastructure
Development Program 2008’ from METI and Grant-in-Aid for Scientific
Research (C) 20500045.

1. Introduction

For developing large-scale information systems, it needs
to model business processes that the systems support. A
workflow, or a workflow diagram, is one of the most well
known specifications for modeling of business processes.
As business processes become more and more complicated,
the workflows for modeling them become larger and larger.
In the requirements analysis stage of developing large-scale
information systems, for example, a number of engineers
are needed for developing the workflows, which are divided
into a number of smaller workflows. As a result, it has be-
come harder for an engineer to verify the overall workflow
in one operation. A method is thus needed for verifying
large-scale workflows. One approach is to develop and ver-
ify workflows in parallel. We call such an approach “in-
cremental verification”. For incremental verification, small
workflows should be verified before they are integrated to
form a large scale workflow. However, in order to verify
a workflow incrementally, it is necessary to consider con-
sistency properties of not only a whole workflow but also
a subgraph of the whole workflow, that can not completely
satisfy the definition of a usual workflow. Thus, it needs to
re-consider conventional consistency properties of a work-
flow from several perspectives.

Verifying the consistency of workflows from the control
flow perspective is important, and several consistency prop-
erties have been defined and several verification methods
have been developed. Correctness is one of the most stan-
dard consistency properties of acyclic workflows from the
control flow perspective [10] (also [6] and [17]). However,
these properties and methods can only be used to verify the
overall workflow as a whole, not to incrementally verify
workflows.

In this paper, we extend the correctness property to en-
able us to verify workflows incrementally. We consider
workflows with multiple starts and/or multiple ends and ex-
tend the correctness of existing workflows to that of the ex-
tended workflows. A workflow in standard workflow lan-

146

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

guages, such as XPDL [23] and YAWL [19], has a sin-
gle start and a single end. Verification of the consistency
properties of workflow subgraphs requires consideration of
workflows that may have multiple starts and/or multiple
ends.

Extended correctness is a natural extension of the orig-
inal correctness. Extended correctness is preserved in the
vertical composition and division of the workflows. Ex-
tended correctness is a necessary and sufficient condition
for obtaining a workflow with a single start and a single
end. The workflow is correct in the sense of the original cor-
rectness property. It is obtained from a workflow satisfying
extended correctness by appending appropriate workflows.

This paper is based on a previous one [13]. The main
difference between them is the definition of a consistency
property of evidence life cycles in a workflow with mul-
tiple starts and/or multiple ends. Here “evidence” means
an annotation on a workflow, which denotes a document
on which information is written, and/or with which some-
thing is approval, during the process of an operation. In
[12] and [14], this property for a workflow with a single
start is defined, based on “instances” of the workflow. We
define the property for a workflow with multiple starts, by
using “closed” subgraphs of the workflow. We define closed
subgraphs of a workflow in this paper, while instances of a
workflow are defined elsewhere [9]. Given this consistency
property, one can incrementally check evidence life cycles
in a workflow with multiple starts.

This paper also generalizes preservation theorems of ver-
tical composition and workflow division (see Theorem 4.2
in this paper or ([13], Theorem 4.2)). This generalization,
which is described in Theorem 4.4 in this paper, is easier to
understand than that previously presented ([13], Appendix
B).

The remainder of this paper is organized as follows. We
define workflows with multiple starts and/or multiple ends
and define vertical composition and workflow division in
Section 2. We give a definition of an extended version of the
original correctness property over acyclic workflows with a
single start and a single end in Section 3. We refer to this
correctness property as “extended correctness”. We show
the fundamental theorems of extended correctness in Sec-
tion 4. We also give a definition of consistency of evidence
life cycles in a workflow with multiple starts and/or multiple
ends in Section 5. The definition is based on the previous
one for a workflow with a single start [12]. We discuss the
validity of extended correctness, consistency of evidence
life cycles and incremental workflow verification based on
the consistency properties in Section 6. Using an example,
we investigate real workflows and explain how to incremen-
tally verify control flow consistency for a large workflow.
We discuss related work in Section 7 and summarize the
key points in 8.

Figure 1. Shapes of nodes in workflows

2. Workflows

In this section, we define workflows. Moreover, we de-
fine certain composition and division of workflows. Work-
flows in this paper are essentially the same as those in pre-
vious studies such as [10], [6] and [17], except the point
that a workflow in this paper may have multiple starts and
ends. There are several languages of workflows with multi-
ple starts and ends (see Section 7).

In this paper, we discuss workflows only on the control
flow perspective. Therefore, we omit notions that are not
relevant to control flow of workflows. For example, in this
paper we do not consider data flow or actors in workflows.

Definition 2.1 (Workflows) A workflow denotes a directed
graphW := (node,arc) that satisfies the following prop-
erties.

1. node is a non-empty finite set, whose element is
called a node inW .

2. arc is a non-empty finite set, whose element is called
an arc inW . Each arcf is assigned to a node called a
source off and another node called a target off .

3. Each node is distinguished, as follows: trigger, ter-
minal, input, output, activity, XOR-split, XOR-join,
AND-split and AND-join.

We employ the symbols in Figure 1 to describe nodes
in a workflow in this paper.

4. Whenever an arcf has a nodex as the target (or the
source) off , x hasf as an incoming-arc (resp. an
outgoing-arc) ofx. The numbers of incoming-arcs and
outgoing-arcs of a node are determined by the type of
the node. We itemize them in the following table.

incoming-arcs outgoing-arcs
trigger, input 0 1

terminal, output 1 0
activity 1 1

XOR-, AND-split 1 = 2
XOR-, AND-join = 2 1

Table 1. Numbers of incoming- and outgoing-
arcs of a node

5. W has at least one start and at least one end.

147

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

6. For a nodex in W , there exists a trigger or an input
s and a path onW from s to x, where a pathπ from
s to x denotes a sequenceπ = (f0, . . . , fn) of arcs in
W such that the source off0 is s, the target offn is x
and that the target offi is the source offi+1 for each
i < n. Moreover, there exists a terminal or an outpute
and another path onW from x to e.

Remark 2.2 In the previous paper [13], a workflowW is
restricted to be aconnectedgraph. That is, [13] assumes
that, for each nodesx andy in W , there exists a sequence
(x0, . . . , xn) consisting of nodes ofW such thatx0 = x,
xn = y and that there exists an arc inW betweenxi and
xi+1 for eachi < n. However, in this paper, we also
consider a workflow which is not connected. The reason
why we consider some unconnected graphs as workflows is
only because we have to consider unconnected workflows
in Theorem 4.4 in Section 4. Actually, one can regard a
workflow as a connected graph when they do not consider
the theorem above.

Remark 2.3 In what follows, triggers and inputs are called
“start nodes” or “starts”. Moreover, terminals and outputs
are called “end nodes” or “ends”.

WF(n,m) denotes the set of all workflows withn starts
andm ends andWF :=

∪
n,m WF(n,m). For a subgraph

V of a workflowW , arc(V) denotes the set of all arcs in
V , start(V) the set of all starts inV andend(V) the set
of all ends inV .

We next define vertical composition and division of
workflows.

Definition 2.4 (Vertical composition of workflows) Let
W1,W2 ∈ WF, E ⊂ end(W1) andS ⊂ start(W2).
Moreover, assume that there exists a bijectionf from E to
S. Then,W1 ∗f W2 denotes the workflow obtained from
W1 andW2 by executing the following procedures.

(1) Remove all ends ofE and their incoming-arcs.

(2) Remove all starts inS and their outgoing-arcs.

(3) For the sourcex of the incoming-arc of each ende in E
and the targety of the outgoing-arc of each startf(e)
in S, add the arc fromx to y.

W1 ∗f W2 is called the vertical composition ofW1

andW2 by f , and the arcs made in (3) above are called
connecting-arcs fromW1 toW2 by f .

For simplicity, in the remainder of this paper, we omit
“f ” in W1 ∗f W2 and identify eache ∈ E with f(e) ∈ S.

Example 2.5 The workflow in Figure 2 is the vertical com-
position of workflowsW1 andW2, where the bijection
function is expressed by two dot-lines in Figure 2, which
mapse1 to s1 ande3 to s2.

Figure 2. Vertical composition of workflows

Remark 2.6 In fact, all elements ofE should be output
nodes and those ofS input nodes. However, it is not im-
portant to distinguish terminal nodes and output nodes (or
trigger nodes and input nodes). Therefore, for simplicity, in
the remainder of this paper, we assume that a start node de-
notes an input node only and an end node denotes an output
node only, respectively.

Definition 2.7 (Vertical division of workflows) For a
workflow W , if there exist workflowsW1 andW2 with
W = W1 ∗ W2, thenW is said to be vertically divided
intoW1 andW2.

3. Correctness and extended correctness

In this section, we explain correctness of workflows with
a single start, which is defined in [10], and define an ex-
tended version of correctness, which we call extended cor-
rectness, and which is defined on workflows with multiple
starts and multiple ends. Several basic theorems of extended
correctness is shown in Appendix A.

In the remainder of this paper, we consider only acyclic
workflows, which have no loop. In what follows, a work-
flow denotes an acyclic workflow.

Definition 3.1 For a workflowW and a starts in W , an
instance ofW from s denotes a subgraphV of W that sat-
isfies the following properties.

(1) V containss but does not contain any start excepts.
Moreover, for eachx ∈ V , there is a path onV from s
to x.

(2) If V contains an XOR-splitc, thenV contains a single
outgoing-arc ofc.

(3) If V contains a nodec other than XOR-split, thenV
contains all outgoing-arcs ofc.

For a workflowW , INS(W) denotes the set of all in-
stances ofW andINS(W, s) the set of all instances ofW
from s.

148

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 3. Four workflows

Example 3.2 We explain instances of workflows, by using
the four workflows in Figure 3.

(1) The workflowWI has three instancesU I
1, U I

2 andU I
3,

whereU I
1 is the path from the starts1 to the ende1, U I

2

is the path froms2 to e1 andU I
3 is the path froms2 to

e2.

(2) The workflowWII has similar instancesU II
1 , U II

2 and
U II

3 to those inWI.

(3) The workflowWIII has two instancesU III
1 andU III

2 ,
whereU III

1 is the path froms1 to e1, andU III
2 consists

of the path froms2 to e1 and that froms2 to e2.

(4) The workflowWIV has similar instancesU IV
1 andU IV

2

to those inWIII.

Definition 3.3 LetW be a workflow.

(1) A subgraphV of W is said to be deadlock free if, for
every AND-join r in V , V contains all incoming-arcs
of r.

(2) A subgraphV of W is said to be lack of synchroniza-
tion free if, for every XOR-joinm in V , V contains a
single incoming-arc ofm.

Correctness is a consistency property of workflows in the
viewpoint of control flow of them (cf. [10] or [17]). This
property was defined on workflows with a single start and
a single end in [10] and [17]. One can easily extend cor-
rectness into that over workflows with a single start and
multiple ends by using instances ofW . So, we consider
correctness as a consistency property of a workflow that has
a single start but may have multiple ends.

Definition 3.4 (Sadiq and Orlowska [10]) A workflowW
with a single start is said to be correct if every instanceV
of W is deadlock free and lack of synchronization free.

From now, we extend the correctness property above for
workflows with multiple starts and/or multiple ends. In or-
der to define the extended correctness, we introduce some
basic concepts.

Definition 3.5 For a workflowW and a non-empty sub-
graphV of W , V is said to be closed if each nodex in
V satisfies the following properties.

(1) If x is an XOR-split, thenV contains a single outgoing-
arc ofx and the incoming-arc ofx.

(2) If x is an XOR-join, thenV contains a single incoming-
arc ofx and the outgoing-arc ofx.

(3) Otherwise, V contains all incoming-arcs and all
outgoing-arcs ofx.

For a workflowW and a set of starts inW , CL(W)
denotes the set of all closed subgraphs ofW andCL(W,S)
the set of all closed subgraphsV ofW with start(V) = S.

Note that, unlike instances of workflows, a closed sub-
graph of a workflow may not be connected as a graph.

Example 3.6 We explain closed subgraphs of workflows,
by using the previous four workflows in Figure 3.

(1) All instancesU I
1, U I

2 andU I
3 of WI are also closed sub-

graphs ofWI. Moreover,U I
1 ∪ U I

3 is an unconnected
closed subgraph ofWI.

(2) The workflowWII has two closed subgraphsU II
1 ∪U II

2

andU II
3 in Example 3.2.2.

(3) All instancesU III
1 andU III

2 ofWIII are also closed sub-
graphs ofWIII.

(4) WIV has a single closed subgraph, that isWIV itself.

Definition 3.7 LetW be a workflow.

(1) For U1, U2 ∈ INS(W), U1 andU2 are said to con-
flict on an XOR-splitc if U1 andU2 sharec but the
outgoing-arc ofc in U1 differs from that inU2.

(2) LetU be a set of some instances ofW andc an XOR-
split. Then,U is said to conflict onc if there exists a
pair (U,U ′) onU that conflicts onc.

Definition 3.8 LetW be a workflow andS be a non-empty
subset{s1, . . . , sn} of start(W). Then,S is called an in-
port ofW if S satisfies the following properties: for each
Ui ∈ INS(W, si) (i = 1, . . . , n), if {U1, . . . , Un} is not
conflict on any XOR-split inW , thenU1∪· · ·∪Un is closed.

149

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Example 3.9 We explain in-ports of workflows, by using
the previous four workflows in Figure 3.

(1) There are three non-empty subsets ofstart(WI): {s1},
{s2} and {s1, s2} (= start(WI)). INS(WI, s1) =
{U I

1} andU I
1 is a closed subgraph by Example 3.6.1.

So,{s1} is an in-port ofWI. Similarly, {s2} is also an
in-port of WI. However,{s1, s2} is not an in-port of
WI, since{U I

1, U
I
2} is not conflict on any XOR-split in

WI, butU I
1 ∪ U I

2 is not closed (cf. Examples 3.2.1 and
3.6.1).

(2) WII, too, has three non-empty subsets{s1}, {s2} and
{s1, s2} of start(WII). However,{s1} is not an in-
port ofWII, since{U II

1 } is not conflict on any XOR-
split in WII, but U II

1 is not closed (cf. Examples
3.2.2 and 3.6.2). Similarly,{s2} is not an in-port of
WII. Moreover,{s1, s2} is not an in-port ofWII, since
{U II

1 , U
II
3 } is not conflict on any XOR-split inWII, but

U II
1 ∪ U II

3 is not closed.

(3) WIII has two in-ports{s1} and {s2}. However,
{s1, s2} is not an in-port ofWIII, since{U III

1 , U III
2 }

is not conflict on any XOR-split inWII, butU III
1 ∪U III

2

is not closed (cf. Examples 3.2.3 and 3.6.3).

(4) WIV has a single in-ports{s1, s2} (cf. Examples 3.2.4
and 3.6.4).

Definition 3.10 LetW be a workflow andI a subset of the
power set ofstart(W). Then,W is said to satisfy extended
correctness forI if the following properties hold.

(1) I is a set of some in-ports ofW .

(2) start(W) is covered with I, that is, everys ∈
start(W) is contained in some element ofI.

We call theI above a covering in-port family ofW .

Definition 3.11 A workflow W is said to satisfy extended
correctness ifW satisfies extended correctness for some
covering in-port family.

Definition 3.12 LetW be a workflow.

(1) For an in-port I of W , the set {end(V)|V ∈
CL(W, I)} is called the out-port family ofW for I and
denoted byO(W, I).

(2) For an in-port familyI ofW , the set{(I,O(W, I))|I ∈
I} is called the out-port assignment ofW to I and de-
noted byO∗(W, I).

For the assignmentO∗(W, I) of a workflowW to an in-
port family I,

∪
O∗(W, I) denotes

∪
I∈I O(W, I), that is

the set of all out-ports ofW for all in-ports inI. That is,∪
O∗(W, I) = {end(V)|V ∈ CL(W, I) & I ∈ I}.

Example 3.13 We explain extended correctness of work-
flows and out-port assignments of them, by using the previ-
ous four workflows in Figure 3.
(1) By Example 3.9.1,WI satisfies extended correctness for
{{s1}, {s2}}. Moreover,

O∗(WI, {{s1}, {s2}}) =
{({s1}, {{e1}}), ({s2}, {{e1}, {e2}})}.

(2) By Example 3.9.2,WII does not satisfy extended cor-
rectness.
(3) In the same way asWI, WIII satisfies extended correct-
ness for{{s1}, {s2}}. Moreover,

O∗(WIII, {{s1}, {s2}}) =
{({s1}, {{e1}}), ({s2}, {{e1, e2}})}.

(4) By Example 3.9.4,WIV satisfies extended correctness
for {{s1, s2}}. Moreover,

O∗(WIV, {{s1, s2}}) = {({s1, s2}, {{e1, e2}})}.

4. Fundamental theorems of extended correct-
ness

In this section, we show fundamental theorems of ex-
tended correctness. These theorems are utilized for incre-
mental verification for large-scale workflows. Proofs of the
theorems in this section are shown in Appendix A.

The first theorem shows that extended correctness is a
conservative extension of original correctness.

Theorem 4.1 For a workflowW with a single start,W is
correct if and only ifW satisfies extended correctness.

Theorem 4.1 insures that extended correctness adequate
property to be a natural extension of original correctness.

We next show that extended correctness is preserved by
vertical composition and division of workflows. For sim-
plicity, we fix workflowsW1,W2, a non-empty subsetE0

of end(W1), a non-empty subsetS0 of start(W2), and as-
sume that there exists a bijectionf : E0 → S0. We also
identifyE0 with S0 and abbreviate the vertical composition
W1 ∗f W2 toW1 ∗W2.

We first show the theorem above in a special case (The-
orem 4.2), and then show that in the general case (Theorem
4.4).

Theorem 4.2 Assume thatend(W1) = E0(= S0) =
start(W2) and letI be a covering family ofstart(W1).
Then, the vertical compositionW1 ∗W2 satisfies extended
correctness forI if and only if
(1)W1 satisfies extended correctness forI, and
(2)W2 satisfies extended correctness for

∪
O∗(W1, I).

150

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 4. Obvious extension of a workflow

Definition 4.3 LetW be a workflow, and fori = 1, . . . , n,
let fi be an arc with source a start node and with tar-
get an end node. Then, theobvious extensionof W by
{f1, . . . , fn}, which is described byW [f1, . . . , fn], denotes
the unconnected workflow obtained fromW by adding arcs
f1, . . . , fn.

We illustrateW [f1, . . . , fn] by Figure 4.

Theorem 4.4 LetS2 := start(W2)− S0
1 andI be a cov-

ering family of start(W1) ∪ S2. Then, the vertical com-
positionW1 ∗W2 satisfies extended correctness forI if and
only if
(1)W1 satisfies extended correctness for

{I ∩ start(W1)|I ∈ I & I ∩ start(W1) 6= ∅}.

(2)W2 satisfies extended correctness for

{O ∩ start(W2) | O ∈
∪

O∗(W1[f1, . . . , fk], I)

& O ∩ start(W2) 6= ∅},

wheref1, . . . , fk denote arcs with source a start node and
with target an end node (see Figure 5).

Theorems 4.2 and 4.4 claim that one can verify extended
correctness of a workflowW := W1 ∗ · · · ∗Wn by calcu-
lating of the in-port families and the out-port assignments
of W1, . . . ,Wn. In the usual case, the calculation is not so
complicated since most workflows have at most three start
nodes (see Section 6).

Example 4.5 Consider WI, WIII and WIV in Figure
3. Then, by the functionf : {e1, e2} → {s1, s2}
with f(e1) = s1 and f(e2) = s2, one can con-
sider nine vertical compositionsWX ∗ WY , where
X and Y are I, III or IV, respectively. By Exam-
ple 3.13,

∪
O∗(WI, {{s1}, {s2}}) = {{e1}, {e2}},∪

O∗(WIII, {{s1}, {s2}}) = {{e1}, {e1, e2}} and∪
O∗(WIV, {{s1, s2}}) = {{e1, e2}}. Therefore, by

Theorem 4.2,WI ∗WI, WI ∗WIII andWIV ∗WIV satisfy
extended correctness, but there is no other composition that
satisfies extended correctness.

1For setsX andY , “X − Y ” denotes the difference set{x ∈ X|x 6∈
Y }.

Figure 5. W1[f1, . . . , fk]∗W2[g1, . . . , gm] (= W1 ∗
W2)

Figure 6. Another type of composition

On the other hand, sinceWII does not satisfy extended
correctness (see Example 3.13.2), one can obtain no work-
flow satisfying extended correctness by composingWII and
any workflow.

Remark 4.6 It is not a trivial problem whether a consis-
tency property of workflows is preserved in certain compo-
sition or division of them. As an example, we give another
compositionWA]WB of workflowsWA andWB in the way
of Figure 6. Note that there exists control flow betweenWA

andWB in both directions. WhileWA does not satisfy ex-
tended correctness,WA]WB satisfies extended correctness.
Therefore, the composition does not satisfy a property sim-
ilar to Theorem 4.2 (or Theorem 4.4).

As the last part of this section, we define “extensible
property” of workflows and show that the property is equiv-
alent to extended correctness.

Definition 4.7 For a workflowW , W is said to be exten-
sible if there exists a workflowW0 such thatW0 ∗ W is
correct.

Theorem 4.8 For a workflowW , W is extensible if and
only if W satisfies extended correctness.

151

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

If a workflowW is extensible, it is possible that one can
complete a correct workflow (with a single start) fromW
by extendingW “vertically”. On the other hand, Theorem
5.1 in [4] assures that one can modify a correct workflow
W with a single start and multiple ends to that with a sin-
gle start and a single end, which is essentially equivalent to
W . So, Theorem 4.8 assures that, ifW satisfies extended
correctness, one can complete a correct workflow with a
single start and a single end by extendingW vertically and
modifying the extended workflow in the way in the proof of
Theorem 5.1 in [4].

Theorem 4.8 also assures that, if a workflowW does not
satisfy extended correctness, one can not complete any cor-
rect workflow fromW by extendingW vertically. For ex-
ample, sinceWII in Figure 3 does not satisfy extended cor-
rectness, one can not complete any correct workflow from
WII by extending it vertically. This means that, if one likes
to complete a correct workflow fromWII, one has to modify
WII itself. So, it is useful to check extended correctness of
an incomplete workflow (= a workflow with multiple starts
and/or multiple ends) in the making of a correct workflow,
since one may have an opportunity to modify structure of
the incomplete workflow before it grows too large to mod-
ify the structure easily.

5. Consistency of evidence life cycles in a work-
flow with multiple starts

In the previous papers [12] and [14], we define a consis-
tency property of life cycles of “evidences” in a workflow
with a single start. We here define a similar consistency
property for a workflow with multiple starts.

“evidence” is a technical term which means an annota-
tion on a workflow, which denotes a document on which
information is written, and/or with which something is ap-
proval, during the process of an operation. For simplicity,
we often call such documents themselves “evidences”. In
large organizations such as large governments, evidences
such as order forms, estimate sheets, invoices, and receipts
play significant roles for purposes of feasibility, account-
ability, traceability, or transparency of business. Numerous
actual operations are currently based on evidences even if
they are carried out with information systems. Therefore, it
is important to consider workflows in which one can con-
cretely and precisely describe the life cycles of evidences to
analyze requirements in developing large-scale information
systems.

Roughly, the life cycles of evidences mean a series of
states of the evidences, and consistency of evidence life cy-
cles in a workflow means that the workflow has no incon-
sistent life cycles of evidences. In [12] and [14], we define
a consistent property of evidence life cycles in a workflow
with a single start, by usinginstancesof the workflow. We

here define that in a workflow with multiple starts, by using
closedsubgraphs of the workflow.

We precede the definition of the consistency property by
that of evidences in a workflow.

5.1. Evidence

This subsection refers to [14]. We here regard an ev-
idence as a paper document, which is composed, referred,
re-written, judged, stored or dumped in some activities. Un-
like data files, an evidence does not increase. Though one
can make a copy of it, the copy is regarded not to be the
same thing as the original evidence. Moreover, unlike data
in a system multiple people can access simultaneously, an
evidence can not be used by multiple people at the same
time.

In the technical perspective, a list of evidences with
length at least 0 is assigned to an activity, and an evidence
E is defined to be a triple(e, created , removed), wheree
is a label, andcreated andremoved are boolean values. In
what follows, we fix a non-empty setE.

Definition 5.1 Evidenceis a triple (e, created , removed),
wheree is an element ofE andcreated andremoved are
boolean values, that is, they are elements of{true, false}.
For each evidenceE := (e, created , removed), we calle
theevidence labelof E.

Remark 5.2 For simplicity, we abbreviate evidences by the
following ways.

(i) (e, false, false) is abbreviated to “e”.

(ii) (e, false, true) is abbreviated to “(−)e”.

(iii) (e, true, false) is abbreviated to “(+)e”.

(iv) (e, true, true) is abbreviated to “(+)(−)e”.

For a workflowW , we consider an allocation which as-
signs to each activity inW a string of evidences. Note that
such an allocation may assign to some activities the empty
string, i.e., the string with length 0. By using workflows,
one can express a lot of workflows. In order to explain ev-
idences, we give an example of a workflow which explains
how to submit a paper, as follows.

For each workflowW , each activityA inW and for each
evidenceE in the string assigned toA, we callE an evi-
denceonA and callA an activityhavingE.

Remark 5.3 In what follows, we assume that, for each
workflow diagramW and each activityA in W , A does
not have multiple evidences sharing the same evidence la-
bel. We call the conditionthe basic evidence condition.

152

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 7. Workflow of paper submission

Since each workflow diagramW is assumed to satisfy
the basic evidence condition, if an activityA in W has an
evidence labele, A has just one evidenceE with label e.
So, we often say thate is created (or removed) onA if A
has an evidenceE having the(+)-mark (or the(−)-mark,
respectively).

Example 5.4 In the workflow in Figure 7, a paperP is cre-
ated on the activity “Make a paperP ”, and it is removed on
the activity “Submit the paper and the registration form”.
The evidence also appears on the activities “Revise the pa-
per” and “Explain the content ofP to your boss”.

5.2. Consistency property of evidence life
cycles in a workflow with multiple
starts

We here define a consistency of evidence life cycles in
a workflow with multiple starts. This subsection also refers
to [14].

Roughly, the “life cycle” of an evidence means that a
series of states of the evidence. In order to define consistent
life cycles of evidences in workflow in a rigorous manner,
we introduce some new concepts.

Definition 5.5 For a workflowW , aline inW is a sequence
of arcs inW

L = (A1 −−→f1 A2 −−→f2 · · · −−→fn−1 An)

which satisfies the following properties.

(i) A1 is an activity or the start inW .

(ii) An is an activity or an end inW .

(iii) A2, . . . , An−1 are nodes inW , each of that is not any
activity, the start, nor any end.

For a lineL above,A1 is called thesourceof L, An the
target of L andfn−1 thetarget arcof L.

Definition 5.6 A line L is said to beequivalentto another
lineL′ if L andL′ share the source and the target.

Example 5.7 The workflow in Figure 7 has 10 lines, as
follows: (f1), (f2f3), (f2f7), (f4), (f5), (f6f13),
(f8f9f12f13), (f8f10), (f11f12f13) and(f14).

Definition 5.8 A sequenceπ of lines is said to beequiv-
alent to another sequenceπ′ of lines if there exist lines
L1, . . . , Ln andL′

1, . . . , L
′
n such that

π = (A1 −−→L1 A2 −−→L2 · · · −−→Ln−1 An)

π′ = (A1 −−→L′
1 A2 −−→L′

2 · · · −−→L′
n−1 An)

and that, for eachi = 1, . . . , n, Li is equivalent toL′
i.

L ∼ L′ (or π ∼ π′) denotes thatL is equivalent toL′

(π is equivalent toπ′, respectively). Note that every line is
equivalent to itself, and so is every sequence of lines.

Definition 5.9 LetW be a workflow,V a closed subgraph
of W and lete be an evidence inW . Then, theconsistent
life cycleof e onV is the sequenceπ of lines inV

π := (A0 −→L0 A1 −→L1 · · · −−→Ln−1 An)

which satisfies the following properties.

(i) Every activityAi hase.

(ii) If A0 is not the target of any line with source an input
node, thene is created onA0.

(iii) e is not created onAi for anyi with 0 < i 5 n.

(iv) If An is not the source of any line with target an output
node, thene is removed onAn.

(v) e is not removed onAi for anyi with i < n.

Definition 5.10 A workflow W is said tohave consistent
evidence life cyclesif, for each closed subgraphV of W ,
each activityA in V and for each evidencee onA, there is
an essentially unique consistent life cycleπ of e onV which
containsA.

The statement “there is an essentially unique consistent
life cycle π of e on V containingA” means that there is
a consistent life cycleπ of e on V containingA and that
π ∼ π′ for each consistent life cycleπ′ of e containingA.

153

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Example 5.11 The workflow in Figure 7 has two closed
subgraph. The first closed subgraph (calledU) consists of
all nodes except the activity “Explain the content ...” and
all arcs exceptf10 andf11. The second one (calledV)
consists of all nodes and all arcs exceptf9.

For an evidenceP in Figure 7,U has just one con-
sistent evidence life cycle ofP : ((f2f7)(f8f9f12f13)).
V also has just one consistent evidence life cycle ofP :
((f2f7)(f8f10)(f11f12f13)). For another evidenceR,
U andV share the same consistent evidence life cycle ofR:
((f5)(f6f13)). Moreover, they have no other consistent
evidence life cycle ofR. Therefore, the workflow in Figure
7 has consistent evidence life cycles.

For the consistency property of evidence life cycles in
a workflow with multiple starts, one can also have similar
theorems to those in Section 4. Actually, one can easily
show the following theorems.

Theorem 5.12 For a workflow with a single start, the origi-
nal consistency property of evidence life cycles in the work-
flow (cf. [14], Definition 3.10) is equivalent to that in Defi-
nition 5.10.

Theorem 5.13 Let W1 and W2 be workflows, E0 :=
{A1, . . . , An} ⊂ end(W1), S0 := {B1, . . . , Bn} ⊂
start(W2), andf a bijectionE0 → S0 with f(Ai) = Bi.
Then,W1 ∗f W2 has consistent evidence life cycles if and
only if so doW1 andW2 and, for any lineA → Ai in W1

and another lineBi → B in W2, the following properties
hold.

(i) For an evidenceE onA, if E is not removed onA and
if B is not any end node, thenB also hasE andE is
not created onB.

(ii) For an evidenceE onB, if E is not created onB and
if A is not any start node, thenA also hasE andE is
not removed onB.

The consistency of evidence life cycles in a workflow
does not need extended correctness of the workflow. How-
ever, it is meaningless to define the consistency of evidence
life cycles in a workflow which does not satisfy extended
correctness. We show this claim by using a workflowW ∗

II

in Figure 8.
W ∗

II has two closed subgraphs, both of which satisfies the
conditions in Definition 5.10. So,W ∗

II has consistent evi-
dence life cycles. However, the structure ofW ∗

II is the same
as that ofWII in Figure 3, and hence,W ∗

II does not sat-
isfy extended correctness. Actually, if the director returns
the proposalP , the secretary can not receive it nor send it
to the administration division. This example claims that,
for a workflow which does not satisfy extended correctness,

Figure 8. Wrong workflow

the semantics of the consistency of evidence life cycles in
the workflow becomes ambiguous. Conversely, extended
correctness of a workflow assures that the consistency of
evidence life cycles in the workflow has the semantics we
expect if one do not have to consider any set of start nodes
which is not contained in the in-port family of the workflow.

6. Discussion

In this section, in order to validate extended correctness,
consistency of evidence life cycles and their fundamental
theorems in Sections 4 and 5, we investigate real workflows
and explain how to verify the consistency properties of a
workflow by incremental verification.

6.1 Observations

We first investigate 154 workflows, which have been de-
veloped in requirement analysis for a real information sys-
tem that helps one to manage personnel affairs. Each work-
flow has 10 to 30 nodes.

The observations are shown in the previous work [13].

Observation 1 Among the 154 workflows above, there
are 101 workflows that have connections to other work-
flows. For example, there exists a large workflow that con-
sists of 12 small workflows.2 We describe the large work-
flow in Figure 9, whereW1, . . . ,W12 describe the small
workflows in the large workflow. In this figure, we simplify
the small workflows. Especially, we omit all activity nodes
in the small workflows.

We also classify 154 workflows on the numbers of their
start nodes. Then, we have the following result. The result
claims that, in most cases, the maximal in-port family and
its out-port assignment of a workflow are not very large.

2We often consider a “large workflow” to be a set of workflows that
have connections to one another.

154

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 9. Large workflow W

number of start nodes 1 2 3 4 5 6 16
number of workflows 121 24 5 1 1 1 1

Table 2. Classification of 154 workflows on
the numbers of start nodes

Observation 2 In most cases, even if two workflows are
connected to each other, there is only one-way control flow
between the two workflows. For example, while there is
control flow fromW2 toW3 in Figure 9, there is no control
flow fromW3 toW2. As far as the 154 workflows above,
there are about 80 connections of two workflows, but, there
are only 2 connections that have control flow between work-
flows in both directions (one can see an example of such a
connection in Figure 6). Therefore, at least as far as the 154
workflows, vertical composition sufficiently covers connec-
tions between workflows.

Observation 3 As far as the 154 workflows, the order of
development of the small workflows does not completely
correspond to the direction of control flow of large work-
flows that consist of the small workflows. Moreover, there
are some large workflows that plural engineers work to-
gether to develop. In fact,W in Figure 9 has been devel-
oped by two system engineers. In a case like this, incre-
mental verification is especially useful, since it is possible
that one of the engineers can obtain only an incomplete set
of workflows inW .

Summary of the observations The first observation
claims that about two thirds of the 154 workflows are con-
nected to other workflows and that about one fifth of the
154 workflows have multiple starts. The second observation
claims that, while there are about 80 pairs that are vertically
composed, only two pairs are composed but not vertically
composed. This means that 97.5 percent of all pairs that

Figure 10. Workflows U and V

are composed are vertically composed. The last observa-
tion claims that the order of development of small work-
flows does not completely correspond to the direction of
control flow of a large workflow consisting of them. By the
observations, one can claim that it is meaningful to consider
incremental verification for a large-scale workflow that con-
sists of small workflows with multiple starts or vertically
composed.

6.2 Application

In order to validate extended correctness, consistency of
evidence life cycles of a workflow and the fundamental the-
orems of them, we here explain how to verify the consis-
tency properties by incremental verification, by using two
workflowsU andV in Figure 10, that are vertically com-
posed.

As we explained in the third observation in the previ-
ous section,U andV have been developed regardless of the
control flow ofU ∗V . For example, assume that onlyV has
been developed. Dislike original correctness, one can verify
control flow consistency ofV based on extended correct-
ness. LetV do not satisfy extended correctness. Then, by
Theorems 4.2 and 4.4, whatever one developsU ,U ∗V will
never satisfy extended correctness. This means that he/she
should modifyV at this point whenV turn out not to satisfy
extended correctness. Similarly, one can verify consistency
of evidence life cycles ofV even ifV has multiple starts.
He/She should also modify evidence life cycles ofV at this
point whenV turn out not to have consistent evidence life
cycles.

Moreover, assume thatV has been modified to satisfy
extended correctness (and to have consistent evidence life
cycles) and thatU has been developed additionally. If the
workflow U does not satisfy extended correctness or con-
sistency of evidence life cycles, then neither doesU ∗ V .
Therefore, he/she should modifyU at this point. If the
workflowU satisfies extended correctness, he/she can know
whether or notU ∗ V satisfies extended correctness, by
checking conditions of the in-port families ofV and the
out-port assignments ofU (see the comment immediately
after Theorem 4.2). Similarly, If the workflowU has con-
sistent evidence life cycles, he/she can know whether or not

155

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

U ∗ V has consistent evidence life cycles, by checking the
conditions (i) and (ii) in Theorem 5.13.

As above, one can develop and verify the large workflow
U ∗ V in parallel. Incremental verification is a useful ap-
proach, especially in the case of development of large-scale
workflows.

7. Related work

The definition and fundamental theorems of extended
correctness are based on the previous work [13]. In this
paper, we show Theorem 4.4 by a simpler way than that of
the similar theorem in [13].

There are a lot of researches of consistency properties of
workflows in the viewpoint of control flow of them such as
Aalst [15], Sadiq and Orlowska [9], Aalst [16], Sadiq and
Orlowska [10], Verbeek et al. [21], Lin et al. [6], and Aalst
et al. [17]. However, these researches deal with verification
for a workflow with a single start and a single end as a com-
plete workflow. In fact, a workflow in standard workflow
languages such as XPDL [23] and YAWL [19] has a single
start and a single end.

An open workflow net by Aalst et al. [18] can be con-
sidered to be a workflow with multiple starts and ends, and
their “weak termination” essentially corresponds to sound-
ness (correctness). Another well known workflow language
EPC [3] has workflows with multiple starts and ends. By
Mendling and Aalst [8], a semantics of EPC is given. Based
on the notions above, one can obtain another extended cor-
rectness over (acyclic and cyclic) workflows with multiple
starts and ends. However, the important point in this paper
is that our extended version of correctness is a conservative
extension of original correctness and it is preserved in verti-
cal composition and division of workflows. These theorems
are important for incremental verification based on the ex-
tended correctness. Since [18] and [8] have different pur-
poses from ours, they do not show similar results about their
extended correctness properties to our properties above. It
is expected to show similar theorems based on correctness
properties in [18] and [8].

By Dehnert and Aalst [2], Dongen et al. [20], and
Mendling et al. [7], verification systems of consistency
properties of workflows in EPC are developed. However,
in order to verify consistency of workflows in EPC with the
systems, users have to set start nodes which are fired at the
initial point or the systems have to check all combinations
of start nodes fired at the initial point. So, these approaches
differ from ours.

A standard workflow model by Kiepuszewski et al. [4]
also may have multiple starts and/or multiple ends. How-
ever, the semantics of the workflows in [4] is based on an
assumption that a petri net modeling a workflow has a token
on each initial place in every initial marking. Therefore, the

correctness property of workflows defined in [4] is essen-
tially the same as original correctness.

Kindler et al. [5] investigate “local soundness” for each
sub-workflow in a workflow and “global soundness” for
the whole workflow. The verification approach in [5] uses
“scenario” that are used to verify global soundness of a
workflow W from verification of local soundness of sub-
workflows constitutingW . So, the approach verifies a
workflow based on necessary data for the workflow instead
of the set of all sub-workflows of the workflow. Moreover,
the ways to divide or compose workflows differ from ours.

Siegeris and Zimmermann [11] also investigate cor-
rectness properties of workflows to verify consistency of
a whole workflow based on verifications of that of sub-
workflows of the workflow. The verification approach for
a workflow is based on verification for all sub-workflows
constituting the workflow. Moreover, the ways to divide or
compose workflows in [11] differ from ours, too.

On the other hand, in the previous papers [12] and [14],
we investigate consistency of evidence life cycles in a work-
flow with a single start. We extend the previous work for a
workflow with multiple starts.

Wang and Kumar [22] investigate document-driven
workflow systems, where “documents ” are essentially the
same concept as evidences. They propose a framework
for designing and managing workflows based on struc-
tures and states of documents. While our framework man-
ages control-flow based workflows with evidences, their
framework manages document-driven workflows. Thus, the
meaning of the verification for their workflows differs from
that of consistency of evidence life cycles in control-flow
based workflows.

8. Conclusion

In this paper, we extend the results in our previous work
[13], by adding consistency property of evidence life cycles
in a workflow with multiple start nodes. The consistency
property of evidence life cycles is based on that in a work-
flow with a single start node in [12].

The purpose of this paper is to develop an incremental
verification methodology for large-scale workflows. As a
basis for the verification methodology, we have defined ex-
tended correctness of an acyclic workflow with multiple
starts and multiple ends. Extended correctness is a con-
servative extension of original correctness property over an
acyclic workflow with a single start (Theorem 4.1). We also
consider vertical composition and division of workflows,
and show that extended correctness is preserved in these
operations on workflows (Theorems 4.2 and 4.4). We also
characterize extended correctness of a workflow as extensi-
ble property (Theorem 4.8).

156

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

In Section 5, we define a consistency property of evi-
dence life cycles in a workflow with multiple starts, and
show two fundamental theorems of the consistency (Theo-
rems 5.12 and 5.13).

In Section 6, we investigate real 154 workflows in order
to validate incremental verification for a large-scale work-
flow that consists of small workflows with multiple starts
and/or vertically composed. Moreover, in order to validate
extended correctness, consistency of evidence life cycles of
a workflow and the fundamental theorems of them, we ex-
plain how to verify the consistency properties by using an
example.

Since the workflow language in this paper is simple and
conventional, one can apply the definitions and the theo-
rems of the consistency properties in this paper for incre-
mental verification for acyclic workflows in other languages
such as BPMN [1] and XPDL.

Extended correctness, consistency of evidence life cy-
cles and their theorems in this paper enable us to develop a
concrete method to the consistency properties of large-scale
workflows incrementally. Our next challenge is to develop
a tool that helps one to verify large-scale workflows by the
incremental methodology.

References

[1] Business Process Management Initiative (BPMI).Business
Process Modeling Notation (BPMN) Version 1.0. Technical
report, BPMI.org, 2004.

[2] J. Dehnert and W. M. P. van der Aalst. Bridging the gap
between business models and workflow specifications.In-
ternational Journal of Cooperative Information Systems,
13(3):289–332, 2004.

[3] G. Keller, M. Nuttgens, and A. W. Scheer.Semantische
Prozessmodellierung auf der Grundlage Ereignisgesteuerter
Prozessketten (EPK). Technical Report 89, Institut fur
Wirtschaftsinformatik Saarbrucken, Saarbrucken, Germany,
1992.

[4] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P.
van der Aalst. Fundamentals of control flow in workflows.
Acta Informatica, 39(3):143–209, 2003.

[5] E. Kindler, A. Martens, and W. Reisig. Inter-operability
of workflow applications: Local criteria for global sound-
ness. InBusiness Process Management: Models, Tech-
niques, and Empirical Studies (BPM), LNCS 1806, pages
235–253. Springer, 2000.

[6] H. Lin, Z. Zhao, H. Li, and Z. Chen. A novel graph reduction
algorithm to identify structural conflicts. InProceedings of
the 35th Annual Hawaii International Conference on System
Science (HICSS). IEEE Computer Society Press, 2002.

[7] J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek,
B. F. van Dongen, and W. M. P. van der Aalst. Faulty epcs
in the sap reference model. InInternational Conference on
Business Process Management (BPM), LNCS 4102, pages
451–457. Springer, 2006.

[8] J. Mendling and W. M. P. van der Aalst. Formalization and
verification of epcs with or-joins based on state and con-
text. InProceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAiSE), LNCS
4495, pages 493–453. Springer, 2007.

[9] W. Sadiq and M. E. Orlowska. On correctness issues in con-
ceptual modeling of workflows. InProceedings of the 5th
European Conference on Information Systems (ECIS), pages
943–964, 1997.

[10] W. Sadiq and M. E. Orlowska. Analyzing process mod-
els using graph reduction techniques.Information Systems,
25(2):117–134, 2000.

[11] J. Siegeris and A. Zimmermann. Workflow model compo-
sitions preserving relaxed soundness. InProceedings of 4th
International Conference on Business Process Management
(BPM), LNCS 4102, pages 177–192. Springer, 2006.

[12] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Verification algorithm of evidence life cycles in extended
UML activity diagrams. InProceedings of The 2nd Interna-
tional Conference on Software Engineering Advances (IC-
SEA 2007). IEEE Computer Society Press, 2007.

[13] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Incremental verification of large scale workflows based on
extended correctness. InProceedings of the 3rd Interna-
tional Conference on Software Engineering Advances (IC-
SEA 2008). IEEE Computer Society Press, 2008.

[14] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Verification of evidence life cycles in workflow diagrams
with passback flows.International Journal On Advances
in Software, 1(1), 2008 (to appear).

[15] W. M. P. van der Aalst. Verification of workflow nets. InAp-
plication and Theory of Petri Nets 1997, LNCS 1248, pages
407–426. Springer, 1997.

[16] W. M. P. van der Aalst. The application of petri nets to
workflow management.The Journal of Circuits, Systems
and Computers, 8(1):21–66, 1998.

[17] W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Verbeek.
An alternative way to analyze workflow graphs. InProceed-
ings of the 14th International Conference on Advanced In-
formation Systems Engineering (CAiSE), LNCS 2348, pages
535–552. Springer, 2002.

[18] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl,
and K. Wolf. From public views to private views:
Correctness-by-design for services. InInformal Proceedings
the 4th International Workshop on Web Services and Formal
Methods (WS-FM), LNCS 4937, pages 139–153. Springer,
2007.

[19] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL:
Yet another workflow language. Information Systems,
30(4):245–275, 2005.

[20] B. F. van Dongen, W. M. P. van der Aalst, and H. M. W. Ver-
beek. Verification of epcs: Using reduction rules and petri
nets. InProceedings of the 17th Conference on Advanced In-
formation Systems Engineering (CAiSE), LNCS 3520, pages
372–386. Springer, 2005.

[21] H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Di-
agnosing workflow processes using woflan.The Computer
Journal, 44(4):246–279, 2001.

157

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[22] J. Wang and A. Kumar. A framework for document-driven
workflow systems. InProceedings of 3rd International Con-
ference on Business Process Management (BPM), LNCS
3649, pages 285–301. Springer, 2005.

[23] Workflow Management Coalition (WfMC).Workflow Man-
agement Coalition Workflow Standard: Workflow Process
Definition Interface - XML Process Definition Language
(XPDL). (WfMC-TC-1025), Technical report, Workflow
Management Coalition, Lighthouse Point, Florida, USA,
2002.

A. Basic theorems and proofs of theorems

In this section, we show some basic theorems of ex-
tended correctness and theorems in Section 4.

Definition A.1 Let W be a workflow andC the set of all
XOR-splits onW . Then, a phenomenon onW denotes
a functionψ : C → arc(W) satisfying thatψ(c) is an
outgoing-arc ofc for eachc ∈ C.

Lemma A.2 For a starts and a phenomenonψ, there exists
a unique instance forψ from s, that is, there exists a unique
instanceV from s such that for every XOR-splitc in V the
outgoing-arc ofc in V isψ(c).

Proof. Trivial. �

Lemma A.3 LetW be a workflow,s a start inW , π a path
onW from s andψ a phenomenon onW . Moreover, as-
sume that, for an XOR-splitc in W , if c is the source of an
arc inπ, thenψ(c) is contained inπ. Then, the instance of
W for ψ from s containsπ.

Proof. By induction on the length ofπ. �

Lemma A.4 For a workflow W , W is covered with
INS(W), that is, every arcf in W is contained in some
instance ofW .

Proof. Let f be an arc inW . Then, there exists a pathπ
with first element the outgoing-arc of some starts ofW and
last elementf . So, by Lemma A.3,π is contained in some
instance inINS(W, s). �

Lemma A.5 For a workflowW , every closed subgraph of
W is deadlock free and lack of synchronization free.

Proof. Trivial. �

Proposition A.6 LetW be a workflow and{U1, . . . , Un} a
set of some instances inW that is not conflict on any XOR-
split inW . Then,U := U1 ∪ · · ·U2 is closed if and only if
U is deadlock free and lack of synchronization free.

Proof. By Lemma A.5,U is deadlock free and lack of syn-
chronization free ifU is closed. So, we assume thatU is
deadlock free and lack of synchronization free and show
thatU is closed.
(1) Let x be an XOR-split. Then, sincex is contained
in some instanceUi, the incoming-arc ofx and some
outgoing-arc(s) ofx are contained inU . Moreover, since
{U1, . . . , Un} is not conflict on any XOR-split inW , the
outgoing-arc ofx that is contained inU is single.
(2) Let x be an XOR-join. Then, sincex is contained
in some instanceUi, the outgoing-arc ofx and some
incoming-arc(s) ofx are contained inU . Moreover, since
U is lack of synchronization free, the incoming-arc ofx in
U is single.
(3) Let x be an AND-join. Then, sincex is contained in
some instanceUi andU is deadlock free, the outgoing-arc
of x and all incoming-arcs ofx are contained inU .
(4) Let x be another type node. Then, sincex is contained
in some instanceUi, all incoming-arcs and outgoing-arcs of
x are contained inU . �

Lemma A.7 LetW be a workflow andI an in-port ofW .
(1) For everys ∈ I andU ∈ INS(W, s), there exists a
closed subgraphV with V ⊇ U .
(2) For everys ∈ I andU ∈ INS(W, s), U is lack of
synchronization free.

Proof. (1) Letψ be a phenomenon such thatU is the in-
stance forψ from s. Then, for eachsi ∈ I there exists the
instanceUi for ψ from si. Since{U1, . . . , Un} does not
conflict on any XOR-split,U1 ∪ · · · ∪ Un is closed. More-
over, for somei 5 n, s = si and henceU = Ui by Lemma
A.2.
(2) By (1) above, there is a closed subgraphV with V ⊃ U .
Thus, we have the result sinceV is lack of synchronization
free by Lemma A.5.�

Lemma A.8 For a workflowW satisfying extended cor-
rectness and a covering in-port familyI of W , W is cov-
ered with

∪
I∈I CL(W, I). Especially,W is covered with

CL(W).

Proof. By Lemmas A.4 and A.7.(1).�

Lemma A.9 LetW be a workflow satisfying extended cor-
rectness andI a covering in-port family ofW . Then,
end(W) is covered by

∪
O∗(W, I) :=

∪
I∈I O(W, I).

Proof. By Lemma A.8.�

Lemma A.10 For a workflowW with a single start, ifW
satisfies extended correctness, thenW is correct.

Proof. Let W have only a single starts. Then,W has a
single in-port{s}. So, by Def.3.8, every instance is a closed
subgraph. Thus, by Lemma A.5, we have the result.�

158

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Lemma A.11 Every correct workflow satisfies extended
correctness.

Proof. Every instance of a correct workflowW is a closed
subgraph ofW . So, for the starts of W , {s} is the in-port
of W . �

Proof of Theorem 4.1 By Lemmas A.10 and A.11.�

Definition A.12 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l).
(1) Let V be a subgraph ofW1 ∗ W2. Then,V dW1 de-
notes the subgraph ofW1 uniquely obtained fromV ∩
W1 by adding all possible ends inW1 that correspond
to connecting-arcs contained inV . Similarly, V dW2 de-
notes the subgraph ofW2 uniquely obtained fromV ∩W2

by adding all possible starts inW2 that correspond to
connecting-arcs contained inV .
(2) For a subgraphV1 of W1 and a subgraphV2 of W2, if
there exists a subgraphV of W1 ∗ W2 with V dW1 = V1

andV dW2 = V2, thenV1 andW2 are said to be able to be
composed, andV1 ∗ V2 denotes the subgraphV above.

Lemma A.13 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l).
(1) For eachS ⊂ start(W1 ∗W2) and eachV ∈ CL(W1 ∗
W2, S), V dW1 is a closed subgraph inCL(W1, S) and
V dW2 is that inCL(W2, end(V dW1)).
(2) Conversely, for eachV1 ∈ CL(W1) and for eachV2 ∈
CL(W2, end(V1)), if V1 andV can be composed inW1 ∗
W2, thenV1 ∗ V2 is a closed subgraph ofW1 ∗W2.

Proof. Trivial. �

Lemma A.14 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l). If W1 satisfies extended correctness for a cover-
ing in-port familyI and ifW2 satisfies extended correctness
for

∪
O∗(W1, I) :=

∪
I∈I O(W1, I), thenW1 ∗W2 satisfies

extended correctness forI.

Proof. We show that eachI ∈ I is an image ofW1∗W2. Let
I := {s1, . . . , sn} ∈ I andUi ∈ INS(W1 ∗W2, si) (i =
1, . . . , n), and assume that{U1 . . . , Un} is not conflict on
any XOR-split inW1 ∗W2. Then,UidW1 ∈ INS(W1, si)
for eachi 5 n, and{U1dW1 . . . , UndW1} is not conflict
on any XOR-split inW1. SinceI is an image ofW1, U1 :=
U1dW1 ∪ · · · ∪ UndW1 is a closed subgraph ofW1.

On the other hand,U2 := U1dW2∪· · ·∪UndW2 consists
of instances inW2, that have elements ofend(U1) as the
starts. Moreover, the set of all the instances inW2 above
is not conflict on any XOR-split inW2. Therefore, since
end(U1) ∈ O(W2, I) ⊂

∪
O∗(W2, I), U2 is a closed sub-

graph ofW2. SinceU = U1 ∗ U2, by Lemma A.13.2,U is
a closed subgraph ofW1 ∗W2. So, we have the result.�

Lemma A.15 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l). If W1 ∗W2 satisfies extended correctness for
a covering in-port familyI, then so isW1 andW2 satisfies
extended correctness for

∪
O∗(W1, I).

Proof. We first show thatW1 satisfies extended correctness
for I. Let I := {s1, . . . , sn} ∈ I andUi ∈ INS(W1, si) for
i 5 n. Moreover, assume that{U1, . . . , Un} is not conflict
on any XOR-split inW1. Then, there exists a phenomenon
ψ1 onW1 such that eachU is the instance forψ1 from si.
So, we can have a phenomenonψ on W1 ∗ W2 such that
the restriction ofψ to W1 is ψ1. Thus, for eachi 5 n,
there exists the instanceU∗

i of W1 ∗W2 for ψ from si. So,
U∗

i dW1 = Ui for eachi 5 n, and{U∗
1 , . . . , U

∗
n} is not

conflict on any XOR-split onW1 ∗W2. So, sinceI is an
image ofW1 ∗W2, U∗

1 ∪ · · · ∪ U∗
n is a closed subgraph of

W1 ∗W2. Therefore, by Lemma A.13.1,U1 ∪ · · · ∪Un is a
closed subgraph ofW1. So,I is an image ofW1.

We next show thatW2 satisfies extended correctness
for

∪
O∗(W1, I). Let E is an element{e1, . . . , em} of∪

O∗(W1, I) andUi ∈ INS(W2, ei) for i 5 m. More-
over, assume thatU := {U1, . . . , Um} is not conflict on
any XOR-split inW2. Then, there exists a closed subgraph
V1 in W1 such thatstart(V1) ∈ I and thatend(V1) = E.
So, we can have instancesU1

1 , . . . , U
1
k in W1 such that

V1 = U1
1 ∪ · · · ∪ U1

k . For eachj 5 k, we have the subset
Uj of U by Uj := {U ∈ U : start(U) ∈ end(U1

j)}.
Then, for eachj 5 k, U∗

j := U1
j ∗ (

∪
Uj) is an in-

stance ofW1 ∗ W2, and{U∗
1 , . . . , U

∗
k} is not conflict on

any XOR-split onW1 ∗ W2. So, sinceW1 ∗ W2 satisfies
extended correctness forI, U∗

1 ∪ · · · ∪U∗
k is a summation in

W1 ∗W2. Therefore, by Lemma A.13.1,U1 ∪ · · · ∪ Um =
(U∗

1 ∪ · · · ∪ U∗
k)dW2 is a summation inW2, and hence,E

is an image ofW2. �

Proof of Theorem 4.2 By Lemmas A.14 and A.15.�

Proof of Theorem 4.4 By the definition of a vertical
composition (Definition 2.4),W1 ∗ W2 is the same as
W1[f1, . . . , fk] ∗W2[g1, . . . , gm] in Figure 5 (see also Fig-
ure 2). So, the extended correctness ofW1 ∗ W2 for I is
equivalent to that ofW1[f1, . . . , fk] ∗W2[g1, . . . , gm] for I.
So, by Theorem 4.2, it is equivalent to the following prop-
erties (i) and (ii).

(i) W1[f1, . . . , fk] satisfies extended correctness forI

(ii) W2[g1, . . . , gm] satisfies extended correctness for∪
O∗(W1[f1, . . . , fk], I).

Now we first show that the property (i) above is equiv-
alent to (1) in Theorem 4.4. For a subgraphV of
W1[f1, . . . , fk], V is closed inW1[f1, . . . , fk] if and only
if V ∩W1 is closed inW1. Thus, for an elementI of I with

159

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 11. Workflow W0

I ∩start(W1) 6= ∅, I is an in-port ofW1[f1, . . . , fk] if and
only if I ∩ start(W1) is that ofW1. Therefore, sinceI is a
covering family ofstart(W1[f1, . . . , fk]), the property (i)
is equivalent to (1) in Theorem 4.4.

The property (i) implies that
∪

O∗(W1[f1, . . . , fk], I) is
a covering family ofstart(W2[g1, . . . , gm]). Therefore,
when (i) holds, one can show that the property (ii) is equiv-
alent to (2) in Theorem 4.2 in the similar way to the case of
(i) above. Thus, the extended correctness ofW1 ∗W2 for
I is equivalent to the properties (1) and (2) in Theorem 4.4.
�.

Lemma A.16 For a non-empty finite setS and a subsetS
of the power set ofS with S =

∪
S, there exists a cor-

rect workflowW that has a single starts and thatS =
O(W, {s}).

Sketch of the Proof. Instead of showing this lemma
directly, we give an exampleS := {s1, s2, s3} and
S := {{s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}, S}
(=the power set ofS), and illustrate a workflowW0 sat-
isfying the properties in this lemma for theS andS above
by Figure 11. (All workflows satisfying the properties in
this lemma can be constructed in similar forms toW0.)

Each outgoing-arc of the XOR-splitc in W0 (see Figure
11) corresponds to an element ofS. Moreover, the numbers
of outgoing-arcs of AND-splitsx1 ∼ x4 in W0 correspond
to the numbers of elements of{s1, s2}, {s1, s3}, {s2, s3}
andS, respectively. Note that outgoing-arcs corresponding
to {s1}, {s2} and{s3} do not have any AND-split, since
{s1}, {s2} and{s3} have a single element, respectively.

Obviously,W0 is correct, and the ex-port family ofW0

for the in-port{s} is S. �

Proof of Theorem 4.8 By Theorem 4.2 and Lemma A.16.
�

160

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Crucial Service-Oriented Antipatterns

Jaroslav Král and Michal Žemlička
Charles University, Faculty of Mathematics and Physics

Department of Software Engineering
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

kral@ksi.mff.cuni.cz, zemlicka@ksi.mff.cuni.cz

Abstract

Service-oriented architecture is now the most popular
software engineering concept. Software related antipat-
terns – commonly used seemingly good but in fact wrong
solutions – can have adverse consequences of varying im-
portance. It implies that the use of an antipattern can and
should be viewed as a risky event. It follows that some
principles of risk management can be used. We propose
a method based on slightly simplified procedures of risk
management and assessment. Using the procedures we
give a short list of the most risky antipatterns, i.e., antipat-
terns occurring very often and having crucial consequences
and present principles of antipattern refactoring. We dis-
cuss the following crucial antipatterns: No Legacy (de-
velopment from scratch), Standardization Paralysis, Busi-
ness Process for Ever (Full Automation), Sand Pile (too fine
grained services), On-Line Only (No Batch Systems). The
discussion of antipatterns is based on a long-term experi-
ence with service-oriented and service-oriented like (e.g.,
process control) systems and on the analysis of practice.
Contributions of the paper: evaluation of antipatterns as
risky events, specification the properties of service-oriented
systems in small firms and in e-government, differences be-
tween object-oriented and service-oriented antipatterns, re-
quirements on service interfaces, and the list of the service-
oriented antipatterns being the most important ones accor-
ding to the evaluation.

Keywords: antipattern, risk management, SOA type,
confederations, antipattern evaluation.

1. Introduction

We will discuss the antipatterns (wrong practices) in
service-oriented architecture (SOA). We say that a sys-
tem has service-oriented architecture if it is a virtual peer-
to-peer network of loosely related software components

having properties mirroring the behavior of real-world
services. Technically such systems consist of compo-
nents/services and middleware. The details and effects of
such system vary. We will discuss this point in details.

Typical SOA systems are formed by a ”kernel” network
of services providing main system capabilities. In enter-
prises they are often the services supporting manufactur-
ing like inventory control, machine floor supervision, etc.
The components can be for different SOA types of differ-
ent sizes. They can be large legacy systems, large third-
party products, or they can be almost all quite small soft-
ware components (redeveloped) from scratch. The used in-
terfaces and communication protocols can vary. The basic
communication mode is asynchronous message exchange.
Message formats can be programming oriented (based on
remote procedure call technique and fine grained) or user
domain oriented (e.g., XML-based messages mirroring us-
er domain languages).

Service orientation and service-oriented architecture
(SOA) are the leading edge of contemporary software engi-
neering. Service orientation is a new paradigm for business-
oriented software. In the area of real-time (process con-
trol) systems, the main principles of SOA are used for
decades. Business is, however, different from technology,
so business-oriented SOA systems have specific aims, users,
and development practices. As such they require specific
good practices and turns – patterns – that can be different
from the ones known from object-oriented philosophy.

The paper is organized as follows: Basic facts on an-
tipatterns, antipatterns as risks and risk management pro-
cedures, SOA architecture types called confederations and
unions, list of most risky antipatterns in unions and confe-
derations and their solution, differences between SOA anti-
patterns and object-oriented antipatterns.

2. Backgrounds

The practitioners collected an impressive collection of
”SOA wrong practices” and wrong solutions called antipat-

161

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

terns (compare [5, 4]).
A pattern [8] is a solution of some problem/task known

to work properly.
There can be various types or roles of patterns ([2]), e.g.:

business patterns supporting the interactions of users,
business, and data,

architecture patterns supporting the construction of a
software architecture – for example integration of sev-
eral business patterns;

application patterns used to implement interaction of ap-
plication components and data in business patterns or
architecture pattern.

An antipattern is according to [5] a seemingly good solu-
tion that is commonly (repeatedly) used but often failing to
provide satisfactory results. The specification/description
of an antipattern should specify why the antipattern looks
to be a recommendable solution. To describe an antipattern
it is recommended to specify its symptoms, root causes of
the antipattern and consequences of the use of the antipat-
tern [5]. The crucial part of the antipattern description is its
(refactored) solution – a way of modifying the antipattern
to avoid its wrong consequences; i.e., how to convert it to a
good solution.

According to [5] we have in object-oriented environment
Software Development Antipatterns, Software Architecture
Antipatterns, and Software Project Management Antipat-
terns. We will see that SOA antipatterns can be of sim-
ilar types but with different consequences. Some object-
oriented antipatterns are patterns in SOA and vice versa
(compare the object-oriented antipattern Islands of Automa-
tion; it is a crucial SOA pattern). Some SOA solutions
solve issues of several problem domains at once (e.g., soft-
ware development and software management)1. The rela-
tion between SOA systems and business is tighter than in
the object-oriented systems. It leads to yet SOA-specific
antipattern: Specification Antipattern referring to wrong at-
titudes used during the requirements specification phase.
Under these circumstances the user involvement in require-
ment specification as well as in system development [17] is
crucial. Users as well as IT professionals should therefore
apply some attitudes of agile business and agile software
development.

The SOA-related research and experience with SOA in
practices produced lists of SOA-related antipatterns [4, 12,
24, 6]. The lists do not attempt to depict the importance of
individual antipatterns: how often they occur and how criti-
cal losses they cause. Such an evaluation depends, however,
on the variant of SOA in which the antipattern is applied.

1All these facts indicate that the service-oriented philosophy is substan-
tially different from the object-oriented one. It can be one of the reasons
why SOA is not easy to apply although it seems to be intuitively clear.

We attempt to evaluate these issues applying the principles
of risk management.

2.1. Service-Oriented Software Systems

SOA in our understanding is a virtual peer-to-peer net-
work of software entities called (software) services having
many properties common with real-world services. Such
systems are formed by the services and a middleware en-
abling asynchronous communication between the services.
The capabilities provided by the middleware vary depend-
ing on different conditions. The middleware can include
Enterprise Service Bus (ESB, [7]) but the use ESB can be
sometimes contraproductive. This issue will be discussed
below.

Technically are the services implemented as permanent-
ly active service processes communicating asynchronously
(batch services are in this case permanently active but ha-
ving a long latency). We do not exclude systems based on
the tools like MessageQueue (MQ) and its descendants. Our
concept of service-oriented systems is broader than the one
proposed by large software vendors. It is, however, appro-
priate for many systems supporting, e.g., small-to-medium
enterprises or e-government. So the extension of SOA con-
cept we propose is appropriate for many (if not the majority
of) systems occurring in practice. For example the integra-
tion of existing software items is of the highest priority. It
is often denounced not to be good solution. We must under-
stand that the broader treatment of service orientation and
service-oriented architecture implies substantially different
properties of the resulting systems.

According [15] we can recognize two basic types of
service-oriented systems: confederations and alliances. Al-
liances are collections of components able to search or
ask for their cooperating partners. Typical alliances are
e-business systems based on web services in the sense of
W3C. Confederations are systems where individual compo-
nents are aware of their cooperating partners. Their commu-
nication need not be based on international standards. Ty-
pical examples are e-government, information systems sup-
porting global enterprises, or health care systems or some
process control (soft real-time) systems.

3. Evaluation of Antipatterns and Risk Man-
agement

The research and study of the antipatterns collected a list
of (possible) antipatterns occurring in practice. There are
risks of loses related to (caused by) each antipattern. From
the management’s point of view an application of an an-
tipattern usually (with some probability) leads to a project
failure. It is therefore a risk. So it is meaningful to apply
(adapt) some techniques of risk management [10].

162

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

P \ L low high
low low high
high low very high

Table 1. Evaluation of E

According to [10] the risk management consists of the
following stages:

1. Risk identification. The construction of the list of an-
tipatterns.

2. Risk assessment. Estimate the expected (i.e., mean)
risk loss E(i.e., risk related to the application of an an-
tipattern). It is recommended to estimate E as a prod-
uct E = p · L where p is the probability that the an-
tipattern will cause the loss L. As we have only rough
estimates of p and L, we can use fuzzy estimates (we
use the experience of a software developer [27]). It
usually suffices to estimate p as low and high and L as
low, high and set E = very high for p = high and L =
high; E = high for L = high and p = low; and E = low
in other cases. So we have three classes of antipatterns
with E = low, high, and very high, see Tab. 1.

3. Risk ordering. We order the antipatterns according the
expected loss E. We will discuss the antipatterns ha-
ving the largest E. It is therefore meaningful to look
for the solution of the antipattern having the assess-
ment very high (we call such antipatterns critical) and
sometimes for the antipatterns with assessment high.
The assessment should be the part of the description
of the antipatterns in a given environment. We shall
discuss mainly the critical antipatterns in confedera-
tions. Many conclusions hold for all service-oriented
systems.

The above assessment can be felt to be rough. In this
case we can use for p the degrees low, rather low, rather
high, high. If necessary, we can extend the scale further.
The experience shows that in situations we are discussing
the rough assessment is better than the fine one [28]. Some-
times it is good enough to estimate only the level of E di-
rectly – without referring to p.

4. What SOA for What Purpose

Simple/small process control systems (real-time sys-
tems) were the first systems applying the crucial principles
of SOA (see, e.g., [13]). Components (services) were soft-
ware components driving/supervising rather intelligent de-
vices of real world. Typical example were operation sys-
tems of minicomputers and systems controlling manufac-
turing like flexible manufacturing systems [13] or computer
integrated manufacturing (CIM).

The middleware (transport tier) were mainly supported
by tools of operating systems like mailbox, the system need
not be distributed. The number of components was small
and the components were known so the communication pro-
tocols and message formats can be agreed. The components
were usually written from scratch and they as a rule used in-
terfaces based on a variant of remote procedure call format.
The format is ”programmer oriented” – i.e., designed main-
ly to cover the needs of developers.

To summarize – real-time systems have the following
features:

• small components developed form scratch,

• mainly known components (we call such SOA confe-
derations),

• simple middleware using communication protocols, e-
specially message formats, that need not be user ori-
ented as they are not used by users,

• interfaces tend to be fine grained, procedural, develo-
per oriented,

• not too opened, limited reuse.

Note that communication partners need not be looked for at
the start of their dialog.

4.1. Alliances

In e-commerce the communication partners can be
looked for all over the world. The implementation of such
systems is usually based on web services. It follows that
world-wide networks and open standards must be used and
the interfaces are difficult to be adapted to specific needs of
a given system – it is especially a difficult problem in the
situation when immature standards only are available.

Such systems have the following features:

• The communication partners must be looked for at
the beginning of communication, possibly all over the
world,

• Internet is usually used as (the kernel of) middleware
and web services are a good solution,

• almost all the aspects of implementation is based on
open standards,

• highly open systems,

• quite frequent use by different users, reuse possible.

We call such systems alliances for short [15]. Alliances are
typically used in e-commerce.

163

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

4.2. Confederations

The majority of service oriented systems contain a virtu-
al kernel being a subnetwork of software services provid-
ing the basic capabilities of the whole system. The net-
work contains a limited number of well known services.
The communication protocols of the services can be a-
greed. We call such systems confederations. Examples are
e-government, information systems of municipalities, orga-
nizations with professional bureaucracy, ERP systems, etc.

The development of confederations strongly depends on
the fact whether the service requirement process is super-
vised by a quite strong central authority or not. The first
case is typical for the ERP systems of large enterprises, es-
pecially if they have division structure and machine bureau-
cracy [22].

In the second case the services in the kernel are almost
independent, like the states in the European Union. We call
therefore such confederations unions. It follows from the
above list, that software unions occur quite often. They are
even typical for the ERP of small firms being often induced
to integrate various legacies and third party products.

4.3. Unions

It is crucial to decide what SOA type is to be developed.
We can distinguish the following cases:

• Alliances. Highly open systems where communica-
ting services must be looked for. They are typical for
e−commerce.

• Confederations. Systems where communicating ser-
vices in the system kernel knows each other. It is typi-
cal for a wide spectrum of SOA systems. There are the
following main variants of confederations (Figure 1):

– Soft real-time systems. Almost closed systems
with quite small components and typically fine
grained interfaces. The interfaces are not inten-
ded to be used by users. It is typical for some soft
real-time process control systems.

– Enterprise confederations. Semi-open systems
supporting large enterprises having machine bu-
reaucracy [23, 22]. The enterprise has enough
resources to develop or buy the whole system at
once. Architecture is typical for the information
systems known as Enterprise Resource Planning
(ERP) of global enterprises. Typical is the use of
Enterprise Service Bus (ESB, [7]). The core of
the confederation is so large that it is meaningful
or necessary to use ESB.

– Unions. Almost open SOA systems. Their ker-
nels are built of a quite small number of almost

independent services knowing each other. It is
the SOA variant typical for the information sys-
tems of the large organizations with profession-
al bureaucracy (e-government, schools, etc.) or
small or medium-sized enterprises (SME). SME
have organization near to ad-hoc-cracy.

The SOA patterns and antipatterns are different for dif-
ferent SOA types. We mainly will discuss the case of uni-
ons. Unions rarely use ESB as they integrate a quite small
number of applications or systems. Compare the systems
of particular offices of a local administration. Unions are
typical not only for system having professional bureaucra-
cy but also for also for small and medium-sized enterprises
as these enterprises usually do not have enough resources
to rebuild their systems completely. Their organization is
moreover specific.

In e-government, enterprises (compare [21, 18]), health
care systems, etc. the resulting system is built from lega-
cies, third-party products and newly developed systems. It
is preferable to wrap the systems such that they have prop-
erties mirroring the behavior of real-world services, e.g.,
asynchronous communication protocols and user-oriented
(usable) interfaces. The middleware can and often must use
Enterprise Service Bus [7]. It is good when services like da-
ta stores and service adapters are used. We call such com-
ponents architecture services.

Unions are formed by a core network of complex ap-
plication services (mainly legacy systems and third-party
products), architecture services, and a middleware. The
number of application services is small and the services are
known. So their interfaces with the help of architecture ser-
vices can be agreed – such systems are therefore confede-
rations with large application components connected with
help of architecture services and middleware. Some ser-
vices can communicate with the ”peripheral” or ”foreign”
services using the principles used in alliances.

Features of unions in practice:

• large permanently used components that can be inte-
grated into SOA together with their local interfaces
(e.g., client tiers) without putting them out of opera-
tion for a longer time;

• sophisticated middleware enhanced by architecture
services;

• quite large application services – often reused legacy
and third-party systems;

• user-oriented coarse-grained interfaces of application
services;

• based mainly on the use of open standards but some
solutions or their parts (e.g., interfaces) can be propri-

164

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

SOA systems
»»»»»»»»9

XXXXXXXXz
alliances confederations

³³³³³³) ?

PPPPPPq
enterprise confederations unions soft real-time

©©©©¼

HHHHj
professional bureaucracy small-to-medium enterprises

Figure 1. Hierarchy of SOA systems

etary, if appropriate; it is the case when we need the
user-oriented declarative coarse-grained interfaces.

• the application services are almost independent (like
states in the European Union).

Unions can be used in the development and maintenance
of large systems and they can also effectively support the
modernization of information systems for small-to-medium
enterprises (SME). We will discuss mainly the unions. The
reason for it is that we have enough experience with uni-
ons and that unions occur frequently. We believe that be-
low given antipattern list is common for all confederations.
The evaluation can be different for some antipatterns. Possi-
ble candidates for it are ”No Legacy”, and ”Standardization
Paralysis”.

The situation in alliances is different and will be a topic
of further research. In alliances it is more necessary to use
open standards, agile business processes are therefore more
difficult to apply.

5. Architecture Antipattern: Mis-Selection of
SOA Type

SOA is in fact a concept covering multiple technologies.
Improper selection of SOA type is therefore an improper
selection of a technology to be used.

Symptoms and Consequences

The fact that there are several SOA types, is often ig-
nored. In practice semi-SOA systems are frequently used by
wrapping constituent software entities using various mes-
sage queuing tools like MQ or even low-level tools provided
by operating systems.

The different SOA types have different patterns and anti-
patterns. The proper solutions for different SOA types differ
as well. The improper choice or missing choice of proper

SOA type leads as a rule to project failure or to substantial
losses.

The antipattern is ”applied” already in the vision and
requirement specification phases – if the requirements are
hard to be mapped to possible solutions, or if the used tech-
nology restricts the expected features of the system, it is
likely that an improper SOA type has been chosen. It can be
induced by the application of improper standards or by the
marketing of software vendors The typical consequence is
failed or too effort consuming a poorly maintainable project
often also missing some of the project requirements.

Assessment

The fact that there are several significantly different SOA
types is quite unknown. The needed knowledge is blocked
by strict standardization effort and by the marketing of large
software vendors. p is therefore high. The consequences –
completely failed project or project fulfilling the goal only
partially mean very high loss. L is therefore also high to
very high. Hence E is o very high.

Solution

To prevent this antipattern it is good to make the require-
ments specification precisely and without preselecting the
solution type. When the antipattern is already detected, it
is necessary to return to the requirements specification and
analysis and try to map the requirements to potential solu-
tions. Typical tasks and solutions are discussed below.

Note

It is crucial that SOA in our understanding is any system
being a virtual peer-to-peer network of software artifacts
behaving like real-world services. This concept is broader
than the concepts adopted in SOA related standards, com-

165

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

pare the standards by OASIS or W3C or the concept sup-
ported by large software vendors.

Too narrow definitions can limit the use of SOA princi-
ples and benefit from SOA advantages. It may be one reason
of the falling popularity of SOA in the last year, compare the
study of Gartner Group from January 2008.

In practice we must integrate batch system, build SOA in
bottom up manner etc. It is not difficult to implement it we
properly wrap integrated applications and eventually treat
them as services communicating in bulk mode and having a
great latency. We can occasionally integrate batch applica-
tions wrapped by tools like MQ to behave like services.

The techniques developed for service oriented systems
can often be used outside SOA. Missing to use it is itself an
antipattern. The solution of the discussed antipattern facil-
itates or implies the solution of several known antipatterns.
Examples are: ”SOA = Web Services” and ”Big Bang” an-
tipatterns.

6. Methodological Antipattern: Fine-Grained
Interfaces

Fine-grained interfaces cannot mirror the coarse-grained
interfaces of real-world services properly. Fine-grained in-
terfaces have substantial technical drawbacks.

Symptoms and Consequences

People trained to design object-oriented code as a large
structured collection of methods and classes being in fact
a big collection of procedures each doing almost nothing.
It leads in service-oriented framework to the development
of systems consisting of services having fine-grained inter-
faces and being themselves fine-grained. This antipattern
was firstly described in [4]. The corresponding communi-
cation protocols usually use formats based on the remote
procedure call (RPC). Such an attitude is induced also by
the fact that RPC is a straightforward way to ”reuse” the
fine-grained interfaces of software components being in fact
wrapped components based on object-oriented methodolo-
gy.

It all together leads to services being ”talkative” and e-
quipped by interfaces that are not user-oriented. The first
property leads to the overloading of communication links,
the second in fact implies a difficult development of agile
business processes, a lot of user discomfort, and a more
complex implementation of some management operations
like insourcing and outsourcing.

Fine-grained interfaces tend to disclose too much on the
technical details of the services. It implies that the interfaces
are too much influenced by the changes of the interiors of
the services. It is generally known to be an unpleasant pro-
perty.

Assessment

The antipattern is quite common for all SOA types. p
is therefore high for all SOA types. The losses L are quite
large for unions, especially for the unions for SME. In large
enterprises having enough resources to decrease L using ap-
propriate means the problems is not so severe.

For unions p is high, L is low – high. E is therefore high
– very high.

For enterprise confederations is L quite low. E is in this
case low – high.

coarse-grained
messages

fine-grained
messages

Outer
processes

-¾
-¾
-¾ FEG

»»»»:»»»»9
-¾

XXXXzXXXXy

S1

S2

S3

S

Figure 2. Refactored antipattern Fine-Grained
Interfaces

Solution

We can use sophisticated forms of enterprise service bus
connectors in the case of enterprise confederations. The
second, and may be better, solution is the use of specific
architecture services acting as service adaptors. Such ser-
vices in [20] called front-end gates (FEG).

FEG transform n-tuples of fine-grained messages into
declarative complex messages having rich semantics, and
vice versa. The solution with FEG is applicable for unions
as well as for enterprise confederations.

7. Specification and Architecture Antipattern
”No Legacy”

Insufficient reuse of legacy systems and third-party pro-
ducts limits substantially the benefits of SOA – especially
for small and middle-sized enterprises or for e-government.

Symptoms and Consequences

It is often required that the developed system should not
contain any ”obsolete” parts – e.g., legacy systems. Com-
pare the antipattern ”Lava Flow” [5] known from object-
oriented methodology. The reuse of existing software is,
however, the most important opportunity of service orien-
tation. In the service-oriented setting it is a very costly an-
tipattern as the main advantage of service orientation is that

166

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

GLS

GA ©©

HH
Middleware

Portal
¢A

g

system interface

HHHH
log file

GLS1

¢A

g
Old (local)
interface of LS1

if appropriate

Portal

XML

HTML

¢A

g
system interface

Figure 3. Union integrating legacy systems L-
S and LS1.

it enables the integration of autonomous systems, especial-
ly legacy systems. Throwing out of legacy systems causes
superfluous immense additional investments into develop-
ment and implementation of new systems. Very large sys-
tems would not be then implementable at all. In other cases
it can cause unnecessary testing expenses and retraining of
end users.

Assessment

This antipattern occurs very often. The reason is that
in the object-oriented world this antipattern is a strongly
recommended pattern, compare the object-oriented antipat-
terns like Island of Automation. Software vendors are not
happy that they should integrate and guarantee foreign soft-
ware. So for unions p is high and L is very high. The as-
sessment of the antipattern is for unions therefore very high.

The consequences of the antipattern bearable for soft-
ware confederations. In this case p is high, L is high and E
is therefore only high.

Solution

At first the project management should accept that it is
good to leave some older parts (legacy systems) in a new
system as the old parts have useful capabilities and can be
very stable. Then we should choose the candidates for in-
tegration. The candidates must be then equipped with user-
oriented interfaces (portals) to be used by their communi-
cation partners. Let us repeat that user-oriented interfaces
are based on formalized text straightforwardly mirroring the
languages of the users’ world. We can use front-end gates
[14] to equip the legacy systems with user-oriented inter-
faces. User-oriented interfaces enables a very powerful im-
plementation of the software engineering principle of infor-
mation hiding.

If designed carefully, the integration of the systems does
not imply any change of ”existing” or ”old” interfaces of
the legacy system LS (Figure 3). Moreover, the local users
need not lose their feeling of ownership to ”their” system

and can bear the responsibility for its data and functions.
There can be some political (feeling of power and influence)
and organizational (autonomy of divisions/departments or
offices in e-government) reasons.

Service orientation is the best way of refactorization of
Stovepipe Systems and Stovepipe Factory antipatterns (see
[5]). Well working legacy systems simplify outsourcing and
reduce the necessity to retrain the end users to work with the
new system. Last but not least the use of wrapped legacy
systems enables large investment savings – well behaving
legacy systems need not be redeveloped, users do less errors
and need not be retrained. Note that FEG and portals are
from technical or development point of view similar.

Service orientation is the best known way of supporting
decentralization of enterprises.

A proper solution of the ”No Legacy” antipattern is a
precondition of the solution of ”Big Bang” antipattern and
enables a smooth application of incremental development.

Notes

This antipattern is often a consequence of the antipat-
tern ”All From Scratch” and can be also a consequence of
the SOA-variant ”Vendor Lock-In” antipattern known also
from the object-oriented world. In fact the antipattern ”No
Legacy” is the SOA-variant of the object-oriented antipat-
tern ”Reinvent the Wheel” [5].

We have experienced several projects failing due the ap-
plication of the antipattern ”No Legacy”. The proposed so-
lution of the antipattern is typically blocked by the antipat-
tern ”Standardization Paralysis” attempting to apply cum-
bersome, complex, and often immature standards every-
where.

8. Management and Design Antipattern ”Stan-
dardization Paralysis”

The overuse of many (especially immature) standards is
contraproductive and can cause some known antipatterns
like ”Vendor Lock-In” or ”Technology Bandwagon”.

Symptoms and Consequences

XML enables an easy development of languages trans-
formable very quickly into standards. Many people believe
that the standardization based on (quickly changing and ob-
soleting) standards is a proper solution. The result is that
the developers often strongly depend on software vendors
and that any solution based on legacies is therefore almost
impossible. These effects can be according to [12] known
as Technology Altar Antipattern. It often leads to SOA an-
tipatterns like ”SOA = Web Services” [4].

167

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

The psychological roots of the antipattern has a lot of
common with the object-oriented antipatterns ”Continuous
Obsolence” and ”Lava Flow” [5]. An example of this an-
tipattern is the e-government of one country where all the
newly incorporated systems must be certified for compati-
bility with a very quickly changing set of interface rules. It
blocks the e-government development.

Assessment

The requirement to standardize all system details is very
strong and common. So p is high. An improper standard-
ization can induce the use of the antipattern ”No Legacy”
and limit agile methods of development. It implies the de-
pendency on the product of large software vendors. It im-
plies something like the object-oriented antipattern ”Vendor
Lock-In”. It in fact creates an unnecessary initial barrier
for the application of SOA for unions. This consequence is
more important for unions where L is therefore high to very
high and E is therefore high to very high too.

For other SOA types E is low.

Solution

In the case of unions and probably in other types of
service-oriented systems as well we can at first specify local
(private) interface standards, test them for usefulness and
other quality aspects in practical applications. Then we can
lately transform them into public (ISO) standards after they
are available.

9. Specification Antipattern ”Business Process
for Ever”

It is often believed that the processes are defined so well
that no more changes will be necessary. It is in long-term
not true even for large enterprises. For smaller companies or
institutions in dynamic environment it is not true in almost
always.

Symptoms and Consequences

The antipattern can be also called ”No Businessmen In-
volvement” or ”Full Automation”. It is based on the con-
viction that well-defined business processes should not be
modified easily, if ever. The changes of the process can
be implemented by a highly specialized people or teams.
It, however, assumes that there are business data of a good
quality (i.e., accurate enough, accessible, timely, trustable,
not changing quickly, in volumes that are large enough, etc.
– compare [29]).

Such assumptions are correct for stable business environ-
ments and for large firms having repeatable business pro-
cesses not too influenced by globalization. Such enterpri-
ses have enough resources and enough data to develop pro-
cesses of a very good quality. It definitely does not hold
for small- and medium-sized firms especially in small e-
conomies. The books like [9] on the theory of constraints
indicate that the assumptions need not hold even for large
firms as the business process philosophy must be substan-
tially changed quite often.

If, however, a businessman responsible for the process
cannot change the process structure, then he/she cannot be
responsible for business consequences of the process. The
businessmen cannot even commit business steps if he/she
does not know all relevant business information – e.g.,
trustability of some data that were available to process de-
signer. The situation can be characterized as ”fully com-
puterized business processes – no agile user involvement
allowed”. Such a solution is often unacceptable. Adverse
properties of fixed (non-modifiable or modifiable with dif-
ficulties) business processes are the following:

1. We can require almost no responsibility of process u-
sers (business process owners) for the business pro-
cess consequences. They can act only as observers and
wrong in long term perspectives. It can be fatal in e-
mergency situations.

2. In small and medium firms the data and information
are not good enough to enable the definition of stable
business processes. This issue is often important for
large firms too.

3. The business environment changes, and, e.g., due
globalization, the art of business is changing.

4. The detailed specification of business processes is very
expensive and time consuming. It cannot be imple-
mented on-line.

5. It is good to train people to cope with unexpected
events or changing conditions. We can therefore con-
clude that it can be often good to allow the users:

(a) to supervise business processes,

(b) to commit the business steps if necessary,

(c) to redefine/change on the fly (in agile style) some
parts of the business processes,

(d) to save/remember the changes of the processes as
a part of business intelligence,

(e) to develop the process from scratch via logging
process owner commands.

Note that a) provides the tools allowing customers and
other processes to observe the progress of the process.
Similar requirement can be found in [25].

168

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Assessment

There is a widespread conviction that business processes
are too important and too difficult to develop to allow busi-
ness people to change them. The probability of the ”use” of
the antipattern is therefore high. The business consequences
tend to be very high for unions as agility is there highly de-
sirable. So the assessment of the antipattern is for unions
very high, i.e., extreme. The antipattern Business Process
for Ever is therefore in business environment critical.

The consequences for enterprise confederations are usu-
ally bearable (L is low to high) and as the processes are well
designed, p is low. We have therefore for this case E = low .

Risk evaluation of this antipattern for other SOA types
requires further research.

Solution

Any refactoring of the antipattern should enable the on-
line user involvement of the user into process execution (it is
the responsible user must be able to supervision and on-line
modify its processes). The service is defined (e.g., in BPEL
[3] or in Aris [11] or UML Action Diagram notation [26])
as a network of actions (operations) provided by software
services (we shall call them application services). In order
to enable the user involvement in business processes it is
practically necessary to make application service interfaces
user oriented. It is to make the interfaces to mirror user
domain professional language, and to mirror (if possible)
requests of real-world services (e.g., generate an invoice,
bill, consignment/remittance). From the point of view of
developer such interfaces are rather declarative (i.e., saying
what to do rather than how to do it) and coarse grained.

Using pattern called in [18] Front-End Gate (FEG) the
interfaces not being user oriented can be usually trans-
formed into user-oriented ones and vice versa.

FEG of an application service S is technically a peer in
a peer-to-peer network. Logically it accepts sequences of
possibly fine-grained messages from S and transforms them
into coarse-grained messages for communication partners
of S and vice versa.

The use of FEG can solve the antipattern Chatty Service
[4] the assessment of which is high to very high as L for it is
not fatal. FEG can avoid the necessity to use the messages
being too developer oriented. It can be called Cyberspace
Antipattern. This antipattern usually implies that the service
interfaces are not user oriented and it implies the antipattern
Business Process for Ever.

The Cyberspace Antipattern occurs quite often, so it
should be assessed as critical. FEG can be used to solve an-
tipattern Grey Services when interfaces disclose some im-
plementation details (i.e., services are not used as absolutely
black boxes).

Note that user-oriented interfaces simplify the develop-
ment as they enable the development of powerful screen ser-
vice prototypes with almost no additional effort [16, 19].

The business services should be implemented such that
the implementation fulfills all the conditions a) through
e) and additionally enabling the use of business con-
trol/modeling data of different types can be based on the
pattern Process Manager.

Process Manager

Business processes must admit on-line involvement and su-
pervision of process owners into their execution. According
[18] the reasons are:

1. The process model/definition is based on data that need
not be timely, accurate, or complete.

2. The business conditions changed or some conditions
are not valid any more.

3. The process owner can be obliged to agree with some
risky process steps.

4. The information on the process should be understand-
able for experts (not necessarily IT ones), e.g., at trial.

5. The process model M should be stored as a part of
business intelligence.

6. It is desirable to be allowed to have process models
in different languages, e.g., in BPEL [3], Aris, [11],
workflow [30], or in a semistructured text. The rea-
son is that business process models can be as a part
of business intelligence collected during a long time.
It is, they must be able to take into account the whole
collected experience, e.g., various business documents
like manufacturing logs, old business process descrip-
tion documents based on different methodologies. The
requirement is especially important for SME where it
must be even possible to enable process owners to con-
trol business processes having no definition at all or a
very informal one. It in fact enables the use of other-
wise blocked knowledge of process owners.

As it is not desirable to have much centralized services in
peer-to-peer systems (compare experience with UDDI [4])
we can use the following hints:

1. When a process is enacted (typically on the request of
its owner O), generate a new service P called Process
Manager. During the generation a process model M
(if any) is transformed into a process control data C
parametrizing M using parameters provided by O. O
can generate C directly without M , if appropriate. M
can be copied from a data store.

169

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

2. The process P during its execution generates using C
service calls. The calls can be synchronous (call and
wait for answer) or asynchronous (just send a mes-
sage). C can be on-line modified.

3. It is important that if the process owner can supervise
the process run and the process run is understandable
by non IT experts then the services should have in-
terface based on the languages of user knowledge do-
mains – we say that such interfaces are user oriented.
User orientation implies some limitations in the use
of classical web services in service-oriented systems.
User-oriented interfaces have many software engineer-
ing advantages – stability, conciseness, ability to hide
implementation details. They enhance reusability of
the services. The user-oriented messages are seman-
tically rich, so the communication channels are less
loaded.

Using Process Managers to handle business processes is
not only refactoring of the antipattern ”Business Process for
Ever”, it is even itself a pattern [20].

10. Design Antipattern ”Sand Pile”

The orchestration of lots of small services is sometimes
a hopeless issue.

Symptoms and Consequences

This antipattern is also known as ”Fine-Grained Ser-
vices”. A frequent implementation of SOA is the technique
”one elementary service (e.g., pay-a-bill) per one software
component”. The result is a large number of small compo-
nents sharing common data stores. It causes inefficiencies
and big maintenance problems. Similar properties are by
the antipattern Atomic Services [24] but we think that the
crucial problem is a wrong grouping of ”atomic” capabili-
ties. It is like to have many highly specialized car service
workshops working separately – it is no enterprise provid-
ing all repairs at one spot.

Assessment

The antipattern occurs rarely for enterprise confedera-
tions as well as for unions (p is low) but its consequences
are fatal (L = very high). So the assessment is in both cases
high.

Solution

Group related ”elementary” services into a composite
service with common interface provided by an architecture

Outer
processes

-¾
-¾
-¾ H

S1

6
?

S2

S3

HHjHHY

©©*©©¼ HHjHHY

©©*©©¼

Figure 4. Refactored antipattern Sand Pile

service H called head of composite service. For example
the composite service can be a collection of services sup-
porting activities of a department. To be more specific: let
S = {S1, ..., Sn} be the collection of the services suppor-
ting the department. It is required that all the messages ad-
dress S or from S must pass through H (see Figure 4 and
[20]).

11. Antipattern ”On-Line Only”

Symptoms and Consequences

Practice indicates that there are frequent situations when
some parts of the system must or should be run in batch
mode. The main reasons are:

• Some legacy systems are batch systems.

• Some activities have a long latency (as they are com-
putationally complex) or need real-world (e.g., user)
responses.

• There can be software engineering reasons to use batch
systems (reduction of development effort, security,
etc.).

So the integration of batch systems is necessary. The in-
tegration can be via data stores implemented as services.
There is a prejudice that it is an obsolete technique. The
antipattern results into expensive and unstable solutions.

The importance of the combination of batch and on-line
applications is discussed in a case study of a flexible manu-
facturing system [18].

Assessment

The antipattern occurs not too frequently as the integra-
tion of batch systems are not frequently used but conse-
quences of it can be very high. So p is low, L is very high.
The assessment E is therefore high to very high for all con-
federation types. Note, however, that with growing size of
information systems the frequency of the cases when batch
systems must be used will grow. Although the pattern may
occur also in alliances, risk evaluation of this case has not
been done yet.

170

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Solution

It is sometimes good to implement a classical data store
but wrap it as a service communicating in bulk mode with
batch services being wrapped batch systems. The data store
is the filled by batch subsystems in batches and used inter-
actively by other services of the system [18] or vice versa.

The data store can be also used to support the enhance-
ment of communication protocol. In this case the data store
contains messages. We call such a data store message data
store service (MDS). Sometimes a file transfer communica-
tion can be used instead data store services.

Note

MDS can be used as a service implementing sophisticat-
ed variants of inter-service communication [18]. It can be
used for the resolving of, e.g., the antipattern Point-to-Point
Service [4] or to implement a very sophisticated commu-
nication schemas being more complex than, e.g., publish-
subscribe protocol. Data stores and MDS substantially in-
crease the flexibility of SOA using them.

12. Conclusion

The main goal of the research of SOA antipatterns is
often aimed on the extension of the list of known antipat-
terns. The importance of individual antipatterns is seldom
discussed.

We have shown that the evaluation the antipatterns has
many common features with the stage of risk identification
in standard processes of risk management. In fact, there is a
risk related to every antipattern. So we should apply conse-
quent stages of risk management for the assessment of an-
tipatterns in order to select and manage the most important
risks (antipatterns).

The techniques we have used are very useful as they help
to find and properly evaluate the antipatterns being the most
important ones from the point of view of risk management.
The most critical (meta)antipattern is Mis-Selection of SOA
Type.

The further most critical antipatterns are ”Software Pro-
cesses for Ever” not allowing agile business processes, ”No
Legacy”, and ”Standardization Paralysis”. These antipat-
terns have many links to other SOA antipatterns and even
to the antipatterns known from the object-oriented world.
In the future we will assess risks of the antipatterns known
from the lists mentioned in the references.

Note that the most critical SOA antipatterns are the an-
tipatterns not occurring among the object-oriented antipat-
terns ([5]). The examples are: ”Mis-Selection of SOA
Type” and ”Standardization Paralysis”. Some SOA antipat-
terns are patterns in object-oriented philosophy (”No Lega-

cy”), and vice versa (”Fine-Grained Interfaces”). The as-
sessment of service-oriented antipatterns has different re-
sults for different SOA types. We have discussed some cas-
es of it.

The overall structure of SOA is mainly implied by com-
munication disciplines. They are almost not controlled by
any explicit tools, so their use is only the matter of attitude.
It substantially increases the flexibility of the SOA systems.
If, however, not used properly, it makes the system mainte-
nance a hopeless issue.

Note that the marketing of service-oriented standards
have resulted into the situation when there is, according to
our meaning, a wrong conviction that SOA requires sub-
stantial initial effort and investments. A less dogmatic atti-
tude can allow building systems having no SOA in the strict
sense of OASIS and W3C but offering substantial amount
of benefits typical for SOA.

It is open whether the differences of unions in small-to-
medium enterprises and in large organizations with profes-
sional bureaucracy like e-government are not more funda-
mental than we assumed up to now. It is a very interesting
topic for further research.

We applied our evaluation process of antipatterns on the
atnipatterns listed in [4, 12]. The results were the following:
The evaluation were low except the cases when the antipat-
terns were special instances of the antipatterns from our list.
It is important that the majority of the evaluated antipatterns
cannot take place or can be solved easily provided that all
the antipatterns from our list are solved properly.

Acknowledgement This research was partially support-
ed by the Program ”Information Society” under project
1ET100300517 and by the Grant Agency of Czech Repub-
lic under project 201/09/0983.

References

[1] J. Král and M. Žemlička. The most important service-
oriented antipatterns. In International Conference on Soft-
ware Engineering Advances (ICSEA’07), page 29, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[2] J. Adams, S. Koushik, G. Vasudeva, and G. Galambos. Pat-
terns for e-Business: A Strategy for Reuse. MC Press, 2001.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. K-
lein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. Specification: Business
process execution language for web services version 1.1,
2003. http://www-106.ibm.com/developerworks/library/ws-
bpel/ 2009-05-14.

[4] J. Ang, L. Cherbakov, and M. Ibrahim. SOA an-
tipatterns, Nov. 2005. http://www-128.ibm.com
/developerworks/webservices/library/ws-antipatterns/
2009-05-14.

171

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[5] W. J. Brown, R. C. Malveau, H. W. S. McCormick, III, and
T. J. Mowbray. AntiPatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. John Wiley & Sons, New
York, 1998.

[6] S. Carter. The top five SOA don’ts, Mar. 2007.
http://www.ebizq.net/topics/soa/features/7780.html?related
2009-05-14.

[7] D. A. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA, 1993.

[9] E. M. Goldratt. Critical Chain. North River Press, Great
Barrington, MA, 1997.

[10] E. M. Hall. Managing Risks, Methods for Software Systems
Development. Addison Wesley Longman, Reading, MA,
USA, 1998.

[11] IDS Scheer. Aris process platform.
[12] S. Jones. SOA anti-patterns, 2006. http://www.infoq.com

/articles/SOA-anti-patterns 2009-05-14.
[13] J. Král and J. Demner. Towards reliable real time software.

In Proceedings of IFIP Conference Construction of Quality
Software, pages 1–12, North Holland, 1979.

[14] J. Král and M. Žemlička. Component types in software con-
federations. In M. H. Hamza, editor, Applied Informatics,
pages 125–130, Anaheim, 2002. ACTA Press.

[15] J. Král and M. Žemlička. Software confederations and al-
liances. In CAiSE’03 Forum: Information Systems for a
Connected Society, Maribor, Slovenia, 2003. University of
Maribor Press.

[16] J. Král and M. Žemlička. Service orientation and the quality
indicators for software services. In R. Trappl, editor, Cy-
bernetics and Systems, volume 2, pages 434–439, Vienna,
Austria, 2004. Austrian Society for Cybernetic Studies.

[17] J. Král and M. Žemlička. Systemic of human involvement
in information systems. Technical Report 2, Charles Uni-
versity, Faculty of Mathematics and Physics, Department of
Software Engineering, Prague, Czech Republic, Feb. 2004.

[18] J. Král and M. Žemlička. Implementation of business pro-
cesses in service-oriented systems. In Proceedings of 2005
IEEE International Conference on Services Computing, vol-
ume II, pages 115–122, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[19] J. Král and M. Žemlička. Software architecture for evolving
environment. In K. Kontogiannis, Y. Zou, and M. D. Pen-
ta, editors, Software Technology and Engineering Practice,
pages 49–58, Los Alamitos, CA, USA, 2006. IEEE Com-
puter Society.

[20] J. Král and M. Žemlička. Crucial patterns in service-oriented
architecture. In Proceedings of ICDT 2007 Conference,
page 24, Los Alamitos, CA, USA, 2007. IEEE CS Press.

[21] J. Král and M. Žemlička. Software for small-to-medium en-
terprises. In M. M. Cruz-Cunha, editor, Enterprise Infor-
mation Systems for Business Integration in SMEs: Techno-
logical, Organizational and Social Dimensions. IGI Global,
2009. To appear.

[22] H. Mintzberg. Mintzberg on Management. Free Press, 1989.
[23] H. Mintzberg. Structure in Fives: Designing Effective Or-

ganizations. Prentice Hall, 1992.

[24] T. Modi. SOA antipatterns, Aug. 2006. http://www.ebizq.net
/hot topics/soa/features/7238.html 2009-05-14.

[25] OASIS. Asynchronous service access protocol (AS-
AP). http://www.oasis-open.org/committees/download.php
/14210/wd-asap-spec-02e.doc 2009-05-14.

[26] OMG. Unified modeling language, 2001. Available at
http://www.omg.org/technology/documents/formal/uml.htm.

[27] Z. Stanı́ček. Private communication, 2007.
[28] Z. Stanı́ček and J. Hajkr. Project management for im-

plementing is into organizations. In T. Hruška, editor,
DATAKON 2005, pages 173–197, Brno, Czech Republic,
2005. Masaryk University.

[29] Y. Wand and R. Y. Wang. Anchoring data quality dimensions
in ontological foundations. Commun. ACM, 39(11):86–95,
1996.

[30] Workflow Management Coalition. Workflow specification,
2004. available at http://www.wfmc.org/standards/docs/Wf-
XML-11.pdf.

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

