International/Journal on

Advances in Software

P72 4N .

/777 TTTYA\\\\
/7Irrrrevys\y
FFFFFFFFFF |
rrrrnrit, "
rtrrriyr v O\ A
vveeaenrranri
\ I/ |

2023 vol. 16 nr. 1&2

The International Journal on Advances in Software is published by IARIA.
ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,
staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the
content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,
providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628
vol. 16, no. 1 & 2, year 2023, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors
or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and
must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”
International Journal on Advances in Software, issn 1942-2628
vol. 16, no. 1 & 2, year 2023,<start page>:<end page>, http.//www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their
content is used.

Sponsored by IARIA
wWww.iaria.org

Copyright © 2023 IARIA

International Journal on Advances in Software
Volume 16, Number 1 & 2, 2023

Editor-in-Chief
Petre Dini, IARIA, USA
Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Subject-Expert Associated Editors

Sanjay Bhulai, Vrije Universiteit Amsterdam, the Netherlands (DATA ANALYTICS)

Emanuele Covino, Universita degli Studi di Bari Aldo Moro, Italy (COMPUTATION TOOLS)

Robert (Bob) Duncan, University of Aberdeen, UK (ICCGI & CLOUD COMPUTING)

Venkat Naidu Gudivada, East Carolina University, USA (ALLDATA)

Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany (SERVICE
COMPUTATION)

Sergio llarri, University of Zaragoza, Spain (DBKDA + FUTURE COMPUTING)

Christopher Ireland, The Open University, UK (FASSI + VALID + SIMUL)

Alex Mirnig, University of Salzburg, Austria (CONTENT + PATTERNS)

Jaehyun Park, Incheon National University (INU), South Korea (ACHI)

Claus-Peter Riickemann, Leibniz Universitat Hannover / Westfalische Wilhelms-Universitat Minster / North-
German Supercomputing Alliance (HLRN), Germany (GEOProcessing + ADVCOMP + INFOCOMP)

Markus Ullmann, Federal Office for Information Security / University of Applied Sciences Bonn-Rhine-Sieg,
Germany (VEHICULAR + MOBILITY)

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Igra University, Pakistan
Marc Aiguier, Ecole Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio
Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernandez, Instituto Tecnoldgico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Universita di Pisa, Italy

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Universita degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece

Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany
Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany
Ateet Bhalla, Independent Consultant, India

Fernando Boronat Segui, Universidad Politecnica de Valencia, Spain

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada
Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universitat Potsdam, Germany

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad Ana G. Méndez, Puerto Rico

Juan-Vicente Capella-Herndndez, Universitat Politécnica de Valéncia, Spain
Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
PR

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortazar, University of Deusto, Spain

Noél Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programacao de Sistemas Ltda. - Lambari, Brazil
Claudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonénoma de México, México
Rafael del Vado Virseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy

Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Universita di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Javier Diaz, Rutgers University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada
Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Hans-Dieter Ehrich, Technische Universitat Braunschweig, Germany
Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elgi, Aksaray University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraiba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

Jodo M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy
Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany
Félix J. Garcia Clemente, University of Murcia, Spain

José Garcia-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Universita degli Studi di Verona, ltaly

Afzal Godil, National Institute of Standards and Technology, USA
Luis Gomes, Universidade Nova Lisboa, Portugal

Pascual Gonzalez, University of Castilla-La Mancha, Spain
Bjorn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, AristaFlow GmbH, Germany

Christoph Grimm, University of Kaiserslautern, Austria
Michael Grottke, University of Erlangen-Nuernberg, Germany
Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK

Zhensheng Guo, Siemens AG, Germany

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia
Herman Hartmann, University of Groningen, The Netherlands
Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia
Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela lonita, University "POLITEHNICA" of Bucharest, Romania
Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia
Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland
Nittaya Kerdprasop, Suranaree University of Technology, Thailand
Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia
Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan
Youngjae Kim, Oak Ridge National Laboratory, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Kratky, VSB - Technical University of Ostrava, Czech Republic
Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia
Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Universita dell'Insubria, Italy

Fabio Luiz Leite Junior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK

Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina Lépez, Universidad Carlos Ill de Madrid, Spain
Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy
Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Tras-os-Montes e Alto Douro (UTAD), Portugal
Stephan Mas, Technical University of Dresden, Germany
Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran
Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Antonio Navarro Martin, Universidad Complutense de Madrid, Spain
Filippo Neri, University of Naples, Italy

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universitat Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania
Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Rodrigo Paredes, Universidad de Talca, Chile

Pa&ivi Parviainen, VTT Technical Research Centre, Finland

Jo3o Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal
Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Oscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal
Willy Picard, Poznan University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Soren Pirk, Universitat Konstanz, Germany

Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Christian Prehofer, Fraunhofer-Einrichtung flir Systeme der Kommunikationstechnik ESK, Germany
Ela Pustutka-Hunt, Bundesamt fir Statistik, Neuchatel, Switzerland
Mengyu Qiao, South Dakota School of Mines and Technology, USA
Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain
Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raul Romero, University of Cérdoba, Spain

Henrique Rebélo, Federal University of Pernambuco, Brazil

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Universita degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Riickemann, Leibniz Universitat Hannover / Westfalische Wilhelms-Universitat Munster / North-
German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Ismael Sanz, Universitat Jaume |, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada
Patrizia Scandurra, University of Bergamo, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Munich University of Applied Sciences, Germany
Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Cristian Stanciu, University Politehnica of Bucharest, Romania

Lena Stromback, SMHI, Sweden

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan
Antonio J. Tallén-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan
Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany
Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

BoZo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Universita degli Studi dell'Insubria, Italy

Guglielmo Trentin, National Research Council, Italy

Dragos Truscan, Abo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLing Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India
Konstantina Vassilopoulou, Harokopio University of Athens, Greece

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Yandong Wang, Wuhan University, China

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universitat Minchen, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China
Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China
Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigacao e
Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsg, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Martin Zinner, Technische Universitdt Dresden, Germany

International Journal on Advances in Software
Volume 16, Numbers 1 & 2, 2023

CONTENTS

pages: 1-22

A Formalism for Explaining Concepts through Examples based on a Source Code Abstraction

Mirco Schindler, Institute for Software and Systems Engineering Clausthal University of Technology, Germany
Christian Schindler, Institute for Software and Systems Engineering Clausthal University of Technology, Germany
Andreas Rausch, Institute for Software and Systems Engineering Clausthal University of Technology, Germany

pages: 23 - 35

VR-SysML+Traceability: Immersive Requirements Traceability and Test Traceability with SysML to Support
Verification and Validation in Virtual Reality

Roy Oberhauser, Aalen University, Germany

pages: 36 - 46

Hand Gesture Recognition System for the Physical Search System

Shin Kajihara, Graduate School of Science and Engineering, Saga University, Japan
Masato Okazaki, Graduate School of Science and Engineering, Saga University, Japan
Chika Oshima, Faculty of Science and Engineering, Saga University, Japan

Koichi Nakayama, Faculty of Science and Engineering, Saga University, Japan

pages: 47 - 58

Pattern Discovery and Stylometric Analysis in English Literature and Literary Translation Through State
Integration in Markovian Representations

Clement Leung, Chinese University of Hong Kong Shenzhen, China

Chenjie Zeng, Chinese University of Hong Kong Shenzhen, China

pages: 59 - 70

A Graph Matching Algorithm to Extend Software Wise Systems with Human Semantic

Abdelhafid Dahhani, Université Savoie Mont Blanc - Laboratoire d'Informatique, Systemes, Traitement de
I'Information et de la Connaissance, France

Ilham Alloui, Université Savoie Mont Blanc - Laboratoire d'Informatique, Systéemes, Traitement de I'Information et
de la Connaissance, France

Sébastien Monnet, Université Savoie Mont Blanc - Laboratoire d'Informatique, Systemes, Traitement de
I'Information et de la Connaissance, France

Flavien Vernier, Université Savoie Mont Blanc - Laboratoire d'Informatique, Systémes, Traitement de |'Information
et de la Connaissance, France

pages: 71 - 81

Preparing Students for the Software Industry New Demands

Jose Carlos Metrolho, R&D Unit in Digital Services Applications and Content, Polytechnic Institute of Castelo
Branco, Portugal

Fernando Reinaldo Ribeiro, R&D Unit in Digital Services Applications and Content, Polytechnic Institute of Castelo
Branco, Portugal

Rodrigo Batista, School of Technology, Polytechnic Institute of Castelo Branco, Portugal

Paula Graca, DEETC of Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal

Diogo Pacheco, Do iT Lean, Portugal

pages: 82 - 96

Methodological Choices in Machine Learning Applications
Kendall Nygard, North Dakota State University, United States
Mostofa Ahsan, North Dakota State University, United States
Aakanksha Rastogi, North Dakota State University, United States
Rashmi Satyal, North Dakota State University, United States

pages: 97 - 108

Heatmap Weighted A* Algorithm for NPC Pathfinding and Graph Switching
Paul Williamson, University of South Wales, United Kingdom

Christopher Tubb, University of South Wales, United Kingdom

pages: 109 - 121

Active and Cooperative Learning in a Multicultural Software Engineering Class: Impact of Switching from Offline
to Online Classroom Modality

Simona Vasilache, University of Tsukuba, Japan

pages: 122 - 131

An Optimal PID Based Trading Strategy under the log-Normal Stock Market Characterization
Vadim Azhmyakov, Prince of Songkla University, Thailand

llya Shirokov, Algorithmic Systems Corp, Thailand

Yuri Dernov, Algorithmic Systems Corp, Thailand

Luz Adriana Guzman Trujillo, Universit’e d’Angers, France

pages: 132 - 140

Toward Leveraging Code Generation Architectures for the Creation of Evolvable Documents and Runtime
Artifacts

Herwig Mannaert, University of Antwerp, Belgium

Gilles Oorts, University of Antwerp, Belgium

Jan Verelst, University of Antwerp, Belgium

Koen De Cock, NSX bv, Belgium

Jeroen Faes, NSX bv, Belgium

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

A Formalism for Explaining Concepts through
Examples based on a Source Code Abstraction

Mirco Schindler*, Christian Schindler’ and Andreas Rausch?
Institute for Software and Systems Engineering
Clausthal University of Technology
Clausthal, Germany
* Email: mirco.schindler@tu-clausthal.de
T Email: christian.schindler @tu-clausthal.de
1 Email: andreas.rausch@tu-clausthal.de

Abstract—Design and architecture patterns are proven
domain-independent solution approaches for common problems
occurring in the development of software systems. Correct
implementation of the design pattern is essential to guarantee
the problem-solving capabilities of patterns. As the developers
need to perform a context-specific adoption of the design pattern
to the software system, we argue that their comprehension
plays a crucial role in creating and maintaining such correct
implementations over the system’s lifespan. Even with migration
and integration of legacy components into an adaptive System,
where other paradigms are used, for example, must be compatible
on a conceptual level. Given a set of implementation samples,
this paper intends to separate essential syntactic information
from varying aspects. We introduce an approach that abstracts
given object-oriented implementations by semantically resolving
and splitting an Abstract Syntax Tree into small paths. The
contribution this paper provides is composed of two parts. First,
we introduce an approach to extract negligible details of given
concept examples to distill the essence of concepts, and the second
part presents a formal foundation to describe and interact with
concepts. Based on this foundation, we derive several underlying
problem statements.

Index Terms—Software Architecture; Architectural Concepts;
Design Pattern; Concept Extraction; Source Code Comprehension.

I. INTRODUCTION

This is an extended journal paper extending the work
presented in [1]. Design patterns have been established for
reusing proven solutions to a class of problems. Nevertheless,
especially for a dynamic adaptive system, the correct imple-
mentation of adaptation mechanisms is essential for the quality
of the overall system. Patterns are described informally or
semi-formally as context-independent solution concepts. As a
consequence, in order to apply a design pattern, it is necessary
to embed it into the actual implementation context; to do so, a
common understanding of the concept provided by the pattern
had to be established [2] [3].

To relate implementation and architecture, the Unified Mod-
eling Language (UML), for example, offers the mechanism of
collaborations within the context of a composition structure
diagram and the context-specific embedding in a given domain.
Here, the description is separated from the actual application
in modeling. Collaborations describe the composition of roles,

which must be linked to specific parts of the application [4]
[5].

Faulty implementations of patterns may produce function-
ally correct solutions but may lack the (mainly) non-functional
properties provided by the pattern, such as specific modularity
goals or specifications from the software architecture [6].
Inaccurate implementations can emerge not only in the initial
implementation of the pattern but also from side effects
introduced with changes, even elsewhere in the codebase
[7] [8]. In particular, in a scenario where system parts and
components are implemented and maintained heterogeneously
and by different companies and development teams, as is
unavoidable in an adaptive Software Ecosystem, for example
[9].

If a legacy system or component is to be migrated and
integrated, for example, to satisfy a specific adaptation mech-
anism, it is necessary to check the current implementation’s
compatibility. For this, it is helpful to find design patterns
in existing code to comprehend the whole system better.
Especially if it is written by other developers or not further
documented. With a focus on code comprehension, it is
necessary to extract more complex architectural patterns from
simple code patterns iteratively. As a starting point, this paper
contributes to recognizing design patterns by generating a
data-driven interpretable representation of the design pattern
from a set of implementation examples and counterexamples.
No formal specification of the design pattern beforehand is
needed. This paper addresses the following Research Ques-
tions (RQs): RQ1: Is it possible to abstract different concrete
implementations of the same architectural design pattern so
that the abstractions show a similarity? RQ2: Is it possible to
formulate what the shared concept consists of across multiple
samples? RQ3: Is it possible to classify unseen samples using
the introduced formulation mechanism?

The contribution of the extension is the provided formal
context on top of the introduced approach. On the one hand,
this is necessary to work out the underlying problems and,
on the other hand, to provide a formal foundation for further
work. First, we introduce the terms and understanding of a
Concept (Definition 1) and Context (Definition 2) in general.
Then, based on the extensional description of sets, we define

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an Architecture Concept (Definition 5) as a named Set of
semantic equivalent examples. We introduce the Abstract
Syntax Graph (ASG) (Definition 6) as an extension of the
Abstract Syntax Tree (AST). Further on, we derive the term of
an Atomic Concept (Definition 7) and a Minimal Example
(Definition 10). Concerning the compositional characteristic
of a concept, we propose a Role pattern (Definition 9). We
close by introducing a concept for instanziation (Definition
11).

Furthermore, we have derived challenges from the proposed
theory. We have outlined possible solutions to address them by
introducing the so-called Concept-Graph (Definition 14) and
deal with similarity instead of equality by defining the Fuzzy-
Hypergraph (Definition 16) as an extension of the underlying
graph representation.

Section II gives foundations on programming languages and
the construction of the ASTs. Section III introduces the source
code abstraction approach alongside two different levels of
abstraction. Section IV is the evaluation of the stated RQs with
a discussion of the results and limitations. Section V gives a
formal approach for describing concepts. Section VI presents
an overview of related work. Section VII opens challenges of
extracting architectural concepts from given implementations.
Finally, the conclusion and an outline of future work are given
in Section VIII.

II. FOUNDATION

This paper investigates the compositionality of abstract con-
cepts. The inputs for the presented approach are syntactically
correct but not executable source code artifacts. The focus is,
therefore, on the static structure of a program. This structure is
defined by the syntactic and semantic rules of a programming
language. Each programming language consists of a set of
programming concepts and specified paradigms, applying to
modern programming languages that do not strictly follow one
paradigm [10].

These concepts, defined by the programming language, are
called atomic concepts (see Definition 7) in the following
and manifest themselves in the source code by the language’s
keywords. Programming languages are formal languages be-
cause they consist of words over a given and finite alphabet
[11]. Thus, the words are well-formed concerning a fixed and
finite set of formal production rules [12]. Moreover, the lexical
grammar of a programming language is usually context-free
[13].

A grammar G consists of a four-tuple.

G(N,%, R, S) (1)

with IV : finite set of nonterminal symbols,
disjoint with the strings produced from G.
> : finite set of terminal symbols, disjoint from N.
R : finite set of production rules: N — (¥ U N)*
where * is the kleene star operator.
S : distinguished start symbol, S € N.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

We focus on object-oriented programming languages. Con-
sequently, the type-system plays an important role and can be
understood as an assurance to operations and documentation
that can not be outdated. Types predefined by the programming
language are so-called atomic types. Out of these atomic
types, abstract types are constructed. The step of abstraction,
which is also the foundation of the principle of information
hiding, of abstract types is the structure defined by fields and
an interface specified by the operations.

Since the languages considered here are formal, an au-
tomaton can be specified, which can process the character
stream of the source code artifact. This is also the first step in
compiling a program. Figure 1 shows the steps relevant to this
paper of analyzing a program by a compiler. First, a scanner
transforms the input stream into a language-specific token
stream during lexical analysis. The tokens are also significant
parts of a program, as they contain the atomic concepts of
the programming language. This step reduces complexity,
aggregates character, and identifies keywords. Then, a tree is
generated from the token stream during syntactic analysis. A
tree is a recursive data structure and a particular type of graph
structure (a formal definition can be found in Section III-D)
with a dedicated root node containing no cycles. Finally, each
recognized token is converted to a node in the tree. Then, a
semantic analysis is performed since not all rules, especially
context-dependent ones, can be checked during derivation.
This step also resolves the types, and names and annotates the
tree’s nodes to reflect this. Therefore, a symbol table is used
to map each symbol with associated information like type and
scope.

Through the instantiation of types, another kind of context-
dependencies arises, which leads to the fact that the semantic
meaning of a word derived by the grammar is no longer
unique.

The challenge in extracting higher-level concepts up to
architectural concepts is that these concepts are not included
as concepts in the programming language. Instead, these can
be understood as the composition of atomic concepts within a
respective context. For program comprehension, it is essential
to get a precise understanding of the concepts used in the
implementation. Therefore with the increasing complexity and
evolution of the program describing the essence of a concept
in a comprehensible way to humans is a critical task.

It follows directly from the chosen class of language type
that the set of generated concepts is countably infinite. Also,
the set of reference implementations is infinite, with the dif-
ficulty that the same concept can be implemented in different
ways. Thus, similarity could not be detected with a simple
comparison of source code snippets.

III. SOURCE CODE REPRESENTATION

The main objective is a way to represent object-oriented
source code samples on an abstract level compared to the raw
source code files to enable interpretability on common parts
and differences. Reducing information such as the naming
of elements (e.g., methods, variables) or the order in which

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Programming —b Syntactic Analysis

Character Stream

Concrete Syntax Tree (CST)

Semantic Analy5|s

Abstract Svntax Tree (AST) Svmbol Table

znt foo(int x) compilation unit

return x + 1;

¥

compilation unit

|“foo”| |params | | int | | {} |

|“foo”| | params | | int | | {} |

Lexical Analysis —

Token Stream

<int> <foo> <(> <int> <x> <)>

return

return

Fig. 1: First steps of a compilation process [13]

parts of the snippet (methods, variables) are declared or logic
is handled (e.g., cases in a switch statement) help in this
approach as it distracts from syntactical similarities.

We introduce two different levels of abstraction that both al-
low the expression of smaller parts reoccurring across different
valid code snippets following the language’s grammar rules.
The abstraction level High (Section III-B) is more abstract
than level Low (Section III-C). The more concrete level of
abstraction has superior expressiveness as it adds constraints
across multiple reoccurring parts and allows for the distinction
of elements (e.g., methods, variables).

We will elaborate on our general approach (Section III-A),
being identical for both levels of abstraction first, then elabo-
rating on High (Section III-B), and adding in how we use the
concept of uniquely identifying parts in Low. In Section ITII-C
we explain how such constraints are added. In Section III-D
we address how abstractions of different samples can be
compared. Section III-E introduces the shared concept and how
to construct it based on given code samples.

A. Source code abstraction approach

The approach, as illustrated in Figure 2, takes source code of
arbitrary size as an input to generate an abstract representation
in the form of a set of Strings that represent its syntax
with additional information from the semantic analysis and
aggregation. The Strings are sequences of tokens retrieved
while processing the input that does not need to be exact
sequences of the Lexical Analysis, as shown in Figure 1. A
detailed walk-through example can be found in Sections III-B
and III-C, Figure 1 contains only an illustrative one.

We analyze the code snippets AST to get a syntactic repre-
sentation of the sample. The AST tokens get resolved during
the aggregation phase constructing an Aggregated Graph. By
combining the ASTs paths and the Aggregated Graph, we
create the flattened Abstraction.

Subsequently, we formalize the required representations
(AST, Graph, and the Abstraction) and concepts (path, ag-
gregation function). Based on these definitions, we introduce
the idea of a shared concept.

We define the graph g <
signature:

GRAPH by the following

gV, E) :={V ={v1,ve,...,u,} ,ECV xV} (2

with V' :
E:

finite indexed set of nodes.
finite indexed and ordered set
of directed edges {v;,v;}

and a tree ¢ € GRAPH being a special cycle-free graph
with a root node v, and a set of leaf nodes Viear

t(‘/7 E, Uroots ‘/leaf) = {9(V7 E), Uroots ‘/leaf} (3)

With Viear C V A Voot € V
Yo eV P | {vwo, v} € E
vvleaf S ‘/leaf 397} | {U7vleaf} ek

A path p in a tree ¢ is a sequence of nodes V' connected by
edges E. The first node needs to be a leaf node and the final
node needs to be the root node v,.,,; Of t.

p(V, E) :={V, E})
with V:={v; | 1 <i < n}
v € t(‘/leaf) A Un = t(vroot)
E:={{vj1,v} [2<) <n}

In the Aggregation step, the nodes of the AST get mapped
to nodes of a resulting Aggregated Graph, by an aggregation
function faggregate(t) := Vi = V.

To construct the abstract representation a a concrete aggre-
gation function combines the information of all paths P of the
tree and the graph ¢ itself. P is the set of paths containing
each path from every leaf node of Vi, to the root node vygor.
It is defined by the following signature:

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

N

Source Code Abstract Syntax Tree (AST)

) [] [-

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Aggregated Graph Abstraction

Fig. 2: Overall approach of the source code abstraction

1 public class FooBar {

2 public void foo() {...}
3 public void bar() {...}
4}

Fig. 3: Java implementation of a class with two methods -
program 1

P ={p|p(v1) € t(Vear) A p(vn) = t(Vroo) A (5)
Vleat € t(vleaf)E”p | Vleaf € p(V)}

An abstraction is defined by the function fypsyract :

fabstract(ta faggregate(t)) = (V;EaEt) X (quEg) — P (6)

To obtain the flattened abstraction, we combine the path
information from the tree and the node information from the
aggregated graph. The structure of the flattened Strings in
the abstraction comes from the Paths P in the AST. The
information of the relevant nodes results from applying the
faggregate function to the nodes of the paths p € P. The final
abstraction is a set of all distinct flattened Strings. In the
example Figure 2, the aggregation merges the nodes 4 and
8 (from the AST). Those nodes represent the same semantic
unit (e.g., the same literal) In this case p is ”8_6_3_17, after
applying fageregare the flattened String is "4_6_3_1".

B. Abstraction level High

The nodes (tokens) in an AST have additional traits. We
utilize the type of the node, which indicates what part of the
language the node reflects (e.g., the declaration of a class or
the call of a method). In addition, we use the information
of more basic nodes (e.g., keywords, primitive operators) to
represent individual nodes per manifestation (e.g., TRUE and
FALSE for Boolean values) and one node per Modifier (e.g.,
PRIVATE, PUBLIC, and STATIC). On High, the aggregation
step summarizes all nodes of the same type (e.g., all nodes
that declare methods) into a single node.

Figure 3 shows a short code snippet that we will use for both
abstraction levels to illustrate the approach and the resulting
representations. The sample consists of a public class FooBar

containing two methods (foo and bar). The content of the
methods is left out, as it would be hard to display the resulting
ASTs and graphs. As illustrated in Figure2, we start with
traversing the AST. The resulting tree is shown in Figure4.
In the tree, we can see the individual statements reflected
by nodes and corresponding edges. Each node contains the
information of the type of the node (e.g., ClassDeclaration
for the root element) and, if available additional information
such as the reflecting values associated with the nodes (e.g.,
SimpleNames reflecting the name of the class FooBar and the
names of the methods foo and bar) or the proper modifier (in
this case PUBLIC in all instances).

The higher-level aggregation rules of nodes are: (i) resolve
keywords from the language. This includes Primitive Opera-
tors, Primitive Types, Modifiers, TRUE, FALSE, and (ii) reduce
other nodes to the assigned types.

Figure 6a shows the resulting graph by applying the aggre-
gation rules. Our abstraction aims to (i) consist of multiple
small parts (ii) likely to be contained in multiple samples.
From the tree (Figure4), the graph (Figure 6a), and the aggre-
gation rules , it is possible to construct the paths in Figure 5.
Here underscore separates the nodes in a flattened path.

Carried information High: The paths extracted carry
certain information enabling reasoning about the original
program. For example, the second path states that there is
a PUBLIC ClassDeclaration (line 1 of the code sample in
Figure 3). The third path states a PUBLIC MethodDeclaration
in a ClassDeclaration. From the information contained in the
abstraction, we cannot tell which methods foo or bar this
particular path represents.

On High, we cannot conclude across multiple paths. For
example, it is impossible to state that the MethodDeclaration
from paths 3 and 4 are part of the same Method. On the
one hand, this shows that the abstraction level is capable of
reflecting the general structures of the original code while
being able to ignore the order of appearance in the original
implementation. On the other hand, the abstraction lacks the
distinction of different elements and the ability to connect
multiple paths related to each other.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

| ClassDeclaration |

_

| MethodDeclaration |

| MethodDeclaration |

SimpleName Modifier
“FooBar”

Modifier | Retur‘nTiie | SimpleName Modifier | ReturnType | SimpleName

Fig. 4: AST of program 1

1 SimpleName_ClassDeclaration

2 PUBLIC_ClassDeclaration

3 PUBLIC_MethodDeclaration_ClassDeclaration

4 VOID_MethodDeclaration_ClassDeclaration

5 SimpleName_MethodDeclaration_ClassDeclaration

Fig. 5: Abstraction High of program 1

C. Abstraction level Low

The stated drawbacks of High get addressed at Low,
containing more information from the original sample. The
overall approach (Figure 2) still holds, with different steps in
the aggregation phase. Semantic analysis of the AST is utilized
to resolve elements. We introduce indices to those resolved
elements, allowing the distinction of multiple nodes (of the
same type and even across multiple types). The aggregation
rules are as follows: (i) exactly as the first rule on High; (ii)
identification of Classes and Methods by their signature; and
(iii) resolution (Simple)Names with an index per unique name.

According to the stated rules, aggregation of the AST leads
to the graph illustrated in Figure 6b. The indices allow the
identification of elements. For example, we can still refer to
the methods using index 1 and 2. The index is attached in the
flat representation of the paths, separated by a hash symbol.
The resulting paths of the code sample on Low are given in
Figure 7. All the information of Hegh is still contained in this
representation, as it is possible to remove all the indices and
remove the duplicated paths resulting in Figure 5.

Carried information Low: The indices allow (i) to con-
clude across multiple paths, (ii) to distinguish multiple ele-
ments of the same type (e.g., the two Methods), and (iii)
to express constraints that join different types seen in the
aggregation process to superior entities (e.g., using one index
for a specific MethodDeclaration and MethodCallExpression).

In Figure7, all the paths are in the context of the
same ClassDeclaration(#1). We can draw conclusions about
MethodDeclaration(#1) from paths 3 and 4 and state that it is
PUBLIC and has the return type (VOID). The same holds for
paths (6 and 7 respectively for the second MethodDeclaration).
To distinguish elements across multiple paths the indices can
be used similarly. We can tell that paths 5 and 6 are not
belonging to the same MethodDeclaration.

D. Abstraction alignment

In the sections above, we introduced abstraction levels High
and Low for one single code snippet, both providing a set
of paths representing the snippet. We showed how to reason
across multiple paths of one abstraction. The next step in
making use of the representation is to reason across multiple
abstractions of different snippets x and y, by considering the
sets of paths P, and P,, respectively, that they generate. We
propose a Jaccard Similarity (Formula7) based measurement,
leading to a high similarity if a lot of paths are in both sets
P, and P, and little paths only in either set P, or P,.

_ |Pmey|

jaccardSim(P,, P,) = W
z Y

(7

On High it is easy to be calculated without further steps
needed, as no instance (e.g., multiple methods) are distin-
guished. On Low, the calculated similarity will depend on
the indices assigned to the individual parts in the aggregation
step, as the following example in TableI illustrates. The table
is two parts, with the upper part containing different paths
(left-hand side) and three abstractions (P,, Py1, and Py3). An
x in the respective cell means that the path is part of the
abstraction. The lower part of the table contains the pairwise
Jaccard similarity. The similarity calculated differs between
jaccardSim(P,, Py1) and jaccardSim(P,, Py2) regardless of
both P,; and P being equally valid representations of a Class
having one PRIVATE and one PUBLIC Method.

In the presented approach (Figure 2) the indices get assigned
in order of node processing. If a node (e.g., a Method-
Declaration) has been seen before, the assigned index is
reused, otherwise, the next available index (per node type)
gets assigned. This could lead to P, or Py for the same
code sample, that are equally valid abstractions.

The idea to counteract this is by aligning the samples
to improve the similarity measured without alternating the
information contained in the abstractions. We achieve this
by looking for (sub)graph isomorphism and corresponding
permutations. In this example, a similarity-maximizing permu-
tation of Py regarding P, would be to swap the indices of the
two MethodDeclarations. An important remark is that such a
swap of indices needs to conform to the permutation rules (i)
the swap of indices needs to be done for all occurrences to not
invalidate a constraint and (ii) entities need to be respected, so
the index of such related types need to be aligned uniformly.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

ClassDeclaration#l

/

ClassDeclaration

| SimpleName#1 | | MethodDeclaration#1 |

| MethodDeclaration#2 |

| MethodDeclaration |

SimpleName

(a) Abstraction level High

PUBLIC

PUBLIC

SimpleName#2 SimpleName#3

VOID

(b) Abstraction level Low

Fig. 6: Resulting graphs by aggregating nodes and edges of the example AST

TABLE I: SAMPLE ABSTRACTIONS AND CORRESPONDING PAIR-WISE JACCARD SIMILARITIES

[paths on low abstraction level [Po [Py | P2 |
PUBLIC_ClassDeclaration#1 X X X
PUBLIC_MethodDeclaration#1_ClassDeclaration#1 X X
VOID_MethodDeclaration#1_ClassDeclaration#1 X X X
PRIVATE_MethodDeclaration#1_ClassDeclaration#1 X
PUBLIC_MethodDeclaration#2_ClassDeclaration#1 X
VOID_MethodDeclaration#2_ClassDeclaration#1 X X
PRIVATE_MethodDeclaration#2_ClassDeclaration#1 X
jaccardSim with P, 1 0.6 0.33
jaccardSim with Py 0.6 1 0.429
jaccardSim with Py | 0.33 | 0.429 1
1 SimpleName#1_ClassDeclaration#1 matrix Q:
2 PUBLIC_ClassDeclaration#1 ~ T
- g=m <= 3Q,D,, =Q x Dy x Q 9)

3 PUBLIC_MethodDeclaration#1_ClassDeclaration#1

4 VOID_MethodDeclaration#1_ClassDeclaration#1

5 SimpleName#2_MethodDeclaration#1_ClassDeclaration#1
6 PUBLIC_MethodDeclaration#2_ClassDeclaration#1

7 VOID_MethodDeclaration#2_ClassDeclaration#1

8 SimpleName#3_MethodDeclaration#2_ClassDeclaration#1

Fig. 7: Abstraction Low of program 1

The isomorphism between two graphs is a bijection (one-
to-one correspondence) between the nodes of the given graphs.
As the graphs in our case are not guaranteed to be of the same
size, we need to look into subgraph isomorphisms of the size
of the smaller graph. A subgraph m of a graph g is denoted
by:

mcCg < V,, CVsANFE,, CE; ®)

Finding such a bijection (candidate) of a subgraph consists
of two steps, (i) fixing a suitable subgraph and the (ii) one-to-
one correspondence. The verification of such a candidate can
be done with Formula9. The graphs ¢ and m are converted
to adjacency matrices (see Formula 10), and the bijection is
formulated as a permutation matrix). @ is constructed with
the nodes of one graph as rows, and nodes of the other graph
as columns, the cells representing a correspondence are filled
with 1, all others with 0. An adjacency matrix D,, contains a
row and column for each node of the graph m, the respective
cell is filled with 1 if there is an edge between those nodes,
with 0 otherwise.

Let g be a graph isomorphic to m, for some permutation

Let D,, be the adjacency matrix of m, with:

1 if {i,j} € En,

D,,ij =
mtJ 0 otherwise

(10)

After an isomorphism has been found, the indices can be
aligned according to the permutation, allowing for the final
check to see if the resulting paths match. This is needed as g
(and D,,,) do not contain the information of the original paths,
so the graph will accept possible paths not contained in the
abstraction.

E. Shared concept

We define a shared concept cghareq as the set of similarities
and differences between a set of code snippets. The abstrac-
tions of code snippets, which contain the concepts Cspareq are
elements of the set A;,, and code snippets, which are not an
implementation of the concept Cgpared, represent an element of
the set A.,.

Out of these two sets of abstractions of examples and
counterexamples, the representation of the shared concept is
derived as follows:

C(Ain;Aem) = {P’L'H;P(”t} (11)

with Py, N Py = 0
VDin € Pin AVain € Ain | Pin € Gin
Vpea € PezJter € Ace | Pea € Gea
Vpeo € PeaPain € Ain | Pex € ain

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FieldDeclaration

ClassDeclaration

CompilationUnit

MethodDeclaration

A
ConstructorDeclaration

VariableDeclaration

SimpleName |
ClassOrlinterfaceType

Fig. 8: Graph reconstructed from the P;,, paths

Related to the above definition, a shared concept is de-
scribed by two sets of paths P;,, and P,,. Each path p;,, € P;,
is included in every single abstraction of A;,. P, consists
of paths p., retrieved by the set of abstractions A.,. For
a path to be included in P., it needs to be in at least one
abstraction of A., and must not be in any abstraction of A;,.
The idea of those exclusion paths is to handle paths seen in
the programming language that have never been seen in a
positive example that is expected to include the shared concept.
By including samples from different repositories and business
domains into the sets A;, and A., we hypothesize that
the shared concept is containing business-domain-independent
overlap.

After defining the shared concept in terms of P;, and P,,,
we can now reconstruct a graph based on the set of examples.
We could obtain different graphs containing details of (i) all
examples, (ii) only the examples A;,, or (iii) only examples
Ay, or even more fine-grained graphs. To construct the graph,
we reverse the flattening step shown in Figure 2 in the overall
approach. Note, that we are now working on the common paths
of multiple examples and are constructing a graph that is not
based on a single source code sample anymore. Figure 8 shows
the newly constructed graph primarily based on P;, (Figure
9). Containing all the nodes and (solid) edges. In addition, the
graph contains (dotted) edges coming from P, (Figure 10),
which are between nodes that are present from P;, and not
already present through P;,,.

We hypothesize that the resulting graph contains the com-
mon entities and their syntactic relationships and other known
syntactic relationships of the programming language that are
not part of any example of the concept.

IV. EVALUATION

The evaluation starts with describing the data set, which
was collected and annotated by the authors. The second part
introduces the singleton design pattern, as this is the case study
through the evaluation of the paper. The rest of the section
addresses the stated RQs. We start by finding similarities
on the abstraction levels (RQ1), calculating pair-wise Jaccard

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

TABLE II: ANALYSIS OF THE AMOUNTS OF PATHS IN
THE ABSTRACTIONS

min # of paths | max # of paths avg. # of paths

low | high low | high low | high
singleton 17 17 | 2379 646 | 247.26 88.61
non singleton 6 4 | 2856 983 | 421.16 | 157.37
all samples 6 4 | 2856 983 | 334.21 | 122.99

similarities on the abstraction levels, and analyze how the
similarity compares on pairs that are both singletons, one of
the samples being a singleton and non of the samples being
a singleton. We formulate the shared concept as RQ2, by
including all paths P;,, we have seen in all samples (of the
singleton), in addition, we formulated an exclusion set of paths
P.., by specifically excluding paths that we have only seen in
non-singleton samples.

Classifying new samples on the abstraction levels using the
formulated shared concept (RQ3) is done as the last part of
the evaluation.

A. Results

1) Preprocessing of the data set: The data set (java-
singleton) collected and used to evaluate the abstraction ap-
proach consists of 230 java code samples labeled as part of
this paper, containing the singleton design pattern and 230
additional samples that do not implement the singleton design
pattern. The classes originate from different projects. The
labels were applied by two authors, only containing samples
confirmed by both authors. We chose the singleton pattern
as a concept to evaluate as it combines a few criteria we
consider beneficial as a showcase in this paper. The purpose
of the pattern is widely understood and used in practice.
The implementation is all in one place (the singleton class),
leaving aside large search spaces [14]. Making it reasonable
to identify samples in existing code but leaving room for the
implementation to vary. It introduces manageable complexity
to the task at hand while enabling us to collect a data
set to evaluate the presented work, although the presented
abstraction approach is not limited to the scope of a single
class, file, or pattern. We abstracted all the samples on both
levels of abstraction. TableII gives insights into the resulting
abstractions. The table contains the minimum, maximum, and
average amount of paths for all abstractions of a given set of
abstractions. The sets show that the range of how many paths
are in the samples varies a lot for each given set inspected. The
average is also significantly higher than the minimum amount
of paths. This indicates an overlap exists, and the samples have
something to do with each other.

2) Results RQI: As described in Section III-D we are going
to measure similarity using the Jaccard Similarity (Formula 7).
TableIII summarizes details on the calculated similarities.
Each row represents ten percent incremental thresholds, with
the corresponding amount of sample pairs that are at least as
similar as the threshold requires. The reported numbers are
broken down into how many pairs are (i) both singletons, (ii)
one of them is a singleton and, (iii) none of them is a singleton.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

TABLE III: NUMBER OF SIMILAR PAIRS ABOVE 10 PERCENT INCREMENTAL THRESHOLDS

Low High
threshold | both singleton [one singleton [none singleton | both singleton [one singleton [none singleton
0.0 26335 52900 26335 26335 52900 26335
0.1 4843 389 31 22628 21859 7950
0.2 1444 4 4 10395 1630 600
0.3 372 0 1 3737 118 73
0.4 135 0 1 1589 9 28
0.5 73 0 0 669 0 16
0.6 43 0 0 289 0 8
0.7 32 0 0 153 0 1
0.8 28 0 0 95 0 1
0.9 27 0 0 63 0 0
1.0 25 0 0 30 0 0

This is done for both abstraction levels. The comparison of the
samples with themselves is excluded from the table.

The data shown in the table support the assumption that the
abstractions embody similarities related to the singleton design
pattern. From the columns both singleton on both abstraction
levels, we take that the stated RQ1 holds and that it is possible
to abstract different concrete implementations of the same
design pattern to show a similarity. As the similarity observed
is significantly higher compared to the other columns in the
table.

3) Results RQ2: We built a shared concept as introduced
in our Definition 11. This part of the evaluation is limited
to High as no complete alignment of all samples has been
calculated, leading to inaccurate results on Low. More on this
is addressed in the limitations and future work section of the
paper.

We follow common practice in Natural Language Process-
ing (NLP) (compare stop word removal [15]) and trim the
data so that we do not rely on too (un)common paths. We
only keep paths in at least 5 percent and at most 95 percent
of the samples of the dataset.

TableIV distinguishes the (non-)trimmed abstractions. It
displays the number of paths belonging to specific subsets
of the data set. For the non-trimmed row, many paths are
exclusive to (non-)singletons (4644 + 12813) compared to
the 1996 paths shared. As the collected data set is small,
contributing to infrequently observed paths, we focus on the
trimmed column of the table. There are no paths left that
are exclusive to the singleton samples. This allows us to
ascertain, that there are no language constructs exclusively
used to implement the singletons. In addition, eight paths
are exclusive to non-singleton samples, which indicates that
they are part of the programming language but not used to
implement the singleton design pattern. No paths are seen
across all non-singleton samples. The majority of paths are
seen across both singletons and non-singletons. The shared
concept retrieved from the data set java-singleton consists of
twelve paths in P;,, and eight paths in P,,.

4) Results RQ3: To evaluate if it is possible to use the
shared concept for classification of unseen code, we use a
dataset [16] providing annotations of used design patterns.
The dataset contains annotations for the following nine java

1 STATIC_MethodDeclaration_ClassDeclaration_CompilationUnit

2 PUBLIC_MethodDeclaration_ClassDeclaration_CompilationUnit

3 SimpleName_VariableDeclarator_FieldDeclaration
_ClassDeclaration_CompilationUnit

4 SimpleName_ClassOrInterfaceType_VariableDeclarator_FieldDeclaration
_ClassDeclaration_CompilationUnit

5 SimpleName_MethodDeclaration_ClassDeclaration_CompilationUnit

6 SimpleName_ConstructorDeclaration_ClassDeclaration_CompilationUnit

7 PRIVATE_ConstructorDeclaration_ClassDeclaration_CompilationUnit

8 SimpleName_ClassOrlInterfaceType_MethodDeclaration
_ClassDeclaration_CompilationUnit

9 STATIC_FieldDeclaration_ClassDeclaration_CompilationUnit

10 SimpleName_ClassDeclaration_CompilationUnit

11 PRIVATE_FieldDeclaration_ClassDeclaration_CompilationUnit

12 PUBLIC_ClassDeclaration_CompilationUnit

Fig. 9: P, paths on abstraction High as shown in Table IV

1 SimpleName_NameExpr_MethodCallExpr_ObjectCreationExpr_ReturnStmt
_BlockStmt_MethodDeclaration_ClassDeclaration_CompilationUnit

2 SimpleName_ClassOrlnterfaceType_ClassOrlinterfaceType
_ClassDeclaration_ClassDeclaration_CompilationUnit

3 SimpleName_ClassOrlInterfaceType_ObjectCreationExpr_ReturnStmt
_BlockStmt_MethodDeclaration_ClassDeclaration
_ClassDeclaration_CompilationUnit

4 SimpleName_MethodCallExpr_MethodCallExpr_MethodCallExpr
_MethodCallExpr_ExpressionStmt_BlockStmt_MethodDeclaration
_ClassDeclaration_CompilationUnit

5 SimpleName_NameExpr_MethodCallExpr_MethodCallExpr
_MethodCallExpr_MethodCallExpr_ExpressionStmt_BlockStmt
_MethodDeclaration_ClassDeclaration_CompilationUnit

6 PUBLIC_ConstructorDeclaration_ClassDeclaration_CompilationUnit

7 PUBLIC_ConstructorDeclaration_ClassDeclaration
_ClassDeclaration_CompilationUnit

8 SimpleName_MethodCallExpr_ObjectCreationExpr_ReturnStmt
_BlockStmt_MethodDeclaration_ClassDeclaration_CompilationUnit

Fig. 10: P,, paths on abstraction High (trimmed) as shown
in Table IV

projects: QuickUML 2001, Lexi, JRefactory, Netbeans, JUnit,
MapperXML, Nutch, PMD, and JHotDraw.

The authors of this paper validated the annotations. From
the 13 annotations, we rejected seven, finding six additional
singleton implementations that were not annotated as such
before. Resulting in a total of 12 instances.

We conducted three experiments (Table. V)(i) High incl.
only looking to include all the P;, paths, (ii) High refers to
in addition looking that none of the exclusion paths P., are
present, and (iii) Low we used the inclusion paths P;, and

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

TABLE IV: SUB SETS OF THE DATA SET AND THE AMOUNT OF THEIR EXCLUSIVE PATHS

paths only in # paths in all # paths seen

singletons [non-singletons (Pez) | singletons (P;y,) [non-singletons in both sets

trimmed 0 8 12 0 279
not trimmed 4644 12813 12 0 1996

associated indices that conform to the singleton pattern. Here
we then aligned the indices of the samples (using subgraph
isomorphism).

As a given sample can be classified containing a singleton
(Positive) or not (Negative) and the ground truth label can
tell if it is a singleton or not, we end up with the resulting
combinations True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). In our context, the
classes mean: TP: prediction and ground truth agree on single-
ton; TN: prediction and ground truth agree on non-singleton;
FP: prediction says singleton but it is not a singleton; and FN:
predict says non-singleton but it is a singleton. To evaluate the
performance of our classification of unseen samples we stick
to the metrics of a confusion matrix used for the evaluation
of Machine Learning (ML) models. Table V shows the results
of the conducted experiments. Calculations of Precision also
known as Positive Predictive Value (PPV), Recall also known
as True Positive Rate (TPR), Accuracy (ACC), and FI are
also calculated. A general remark is that the files were not
changed or preprocessed. In the case of data set java-singleton,
we isolated one class per code sample, contrarily those files
used for the prediction are still untouched and possibly contain
multiple classes.

B. Discussion

We have seen that abstractions produced by samples of
various origins (different projects) carrying the same design
pattern still carry a certain degree of similarity on the different
levels of abstraction introduced in this paper. In terms of
formulating the shared concepts, we were able to formulate a
set of paths included in all samples and exclude a set of paths
that we have only seen in other implementations that do not
contain the same design pattern in the first place. The inclusion
set P;, contains twelve paths, and the minimum number of
paths seen in the set of singletons (see TableII) is only 17. This
allows drawing the conclusion that at least one sample contains
almost the bare minimum needed to implement a singleton in
Java.

The exclusion set P., serves another important purpose,
as it helps to explicitly describe what should not be part
of the concept. In the case of the conducted evaluation, we
reduced the exclusion set by trimming all paths that were in
less than five percent of the samples, which allowed us to

TABLE V: RESULTS OF THE PREDICTION TASKS

| [TP [TN [FP | FN | TPR | PPV | ACC | FI |
Highincl | 12 [1914 | 13 | 0] 10 [48 | 993 [.649
High 8 (1919 [8| 4] 6| 5| 994 | 571
Low 2] 13| 0] 0] 10| 10| 10 10

reduce the set from 12813 to only eight paths. We argue that
this is useful because of the rather small sample size. We have
not found another approach that similarly describes a concept
by explicitly stating what is not part of the desired concept.
Paths contained in P,., were contrary to the definition of a
singleton, as they contain paths for Public Constructors, and
paths for creating new objects in the return statement of a
method (which would bypass the singleton object, if it would
be the getlnstance method).

Also, the approach of the formulation of such a shared
concept is flexible and adapts to the considered samples, and
the more the samples share, the more is included. As the paths
are interpretable, the abstraction levels introduced in this work
also allow a formulation of such shared concepts from scratch,
or to use only one example as a template to start with.

Both run on High have a PPV around 0.5, while the TPR is
higher, not making use of the exclusion paths P.,. The ACC
of both approaches is also nearly identical at 0.99. Caused
by the data having a lot of Negative cases, in which both
approaches are good at predicting. By comparing both runs, it
is indicated that High lowers the prediction of singleton (TP
and FP) while introducing FN. The last part of the evaluation
has been performed on Low. In this case, we introduced
indices to the paths in P;,,. We then aligned the indices of the
samples, according to a valid permutation. The results have a
PPV, TPR, and ACC of 1. This classification task was only
performed on the 25 samples predicted as TRUE on the most
permissive other approach (High incl.). For two main reasons,
(i) the computation needed to find a subgraph isomorphism is
NP-complete [17], and (ii) the previous check on High for
all P;, excludes all the other samples for not having all the
needed paths. By knowing not all paths are present in the other
samples (regardless of indices) it is not possible to find indices
for those samples so that all paths are included afterward.

In terms of the classification performed, we have shown
predictions with simple models, checking the exact inclusion
and exclusion of specific paths on the High and the same
thing (after the computational intense subgraph isomorphism
checking) on Low, with a perfect result as a reward. The
prediction on High is prone to overestimate the concept to be
included, which is indicated by a precision around 0.5 for the
not preprocessed unseen samples. Nevertheless, High serves
a valuable purpose in filtering the relevant samples to further
look at Low.

C. Limitations

Although the approach introduced gives promising results in
terms of the stated RQs, we have encountered some limitations
on which we want to elaborate.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The design pattern chosen is rather simple in terms of the
variety the implementation offers. Looking at more complex
structures (e.g., using general parts and specific refined parts
could implement those as interfaces or (abstract) classes), in
terms of the shown abstraction levels this would lead to not
being reflected in P;, as of the current approach on building
the inclusion set.

Assigning index-values to the shared concept Low was the
only time (except the labeling) we relied on understanding the
concept (of the singleton). To address that, the indexing can be
seen as the maximum common subgraph problem [18] (being
NP-Hard [17]). We do not have an implementation of this in
our prototype.

V. A FORMAL APPROCH FOR DESCRIBING CONCEPTS

In this section, we discuss the term concept in general, and
then a definition is derived for an architectural concept, which
forms the foundation for this paper. The “correct” naming of
concepts is a very critical aspect. Therefore, first, the difficulty
of naming “things” from the perspective of natural language
is discussed. Finally, the relation between the challenges of
natural language, set theory, and graph theory is established.

A. Introduction of Concepts

The word concept is part of everyday language usage. It is
applied in different contexts and domains. The term concept is
generally defined as “An idea or a principle that is connected
with something abstract” [19]. The term concept comes from
the Latin word concipere: to put together, to formulate, to
comprehend. From these definitions, essential characteristics
that make up a concept can be derived.

The essential characteristic properties of a concept are:

1y

2)

3)

made by people for people.

does not have to be realizable.

describes something abstract with the aim of compre-
hending a fact.

is context-independent and can therefore be applied in
different contexts.

can be described in different ways.

can arise from concepts by hierarchical composition.
does not have to be explicit.

4)

5)

0)

7)

A concept has in common with a software architecture that
people set it up as a communication instrument to create a
shared understanding. Abstraction is an essential characteristic
of a concept, as it is for software architectures. A realization,
an example existing in reality, does not have to be present. A
concept description is incomplete and limited to the essential
elements of the concept. Whereby a concept, in contrast to the
architecture of a software system, can be considered context-
independent and has, therefore, more of the character of a
reusable pattern. Although concepts can be applied in different
contexts/architectures, they must be refined and adapted to the
context.

Another common feature between architecture and a con-
cept is the variety of description techniques. Everything is

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

present, from natural language texts to complex, even exe-
cutable description techniques. In the Latin origin of the word,
it is already clear that a concept is something composed.
Accordingly, the components of a concept play an essential
role in the description and creation of shared knowledge. If
a concept is compositional, it follows that there are different
levels of abstraction, which have no global but only a relative
reference. Implicit in the word definition, expressed by the
synonyms plan, sketch, and draft is the intention to accomplish
a task or solve a problem. Detached from any domain and
referring to the previously listed characteristics, the term
concept is defined as follows:

Definition 1 (Concept): A concept is a context-independent,
abstract description of a schematic solution to a class of
problems generated by people for people.

A concept can be described in two ways. On the one hand,
by the description of the partial concepts and their composition
or on the other hand by giving an example in the form of a
sketch or an exemplary structure for concepts, which have
an implementation in the real world. Both approaches have
advantages and disadvantages and a direct correspondence to
the extensional and the intensional definition of mathematical
sets [20]. Describing by example is generally easier to un-
derstand but does not guarantee that the concepts’ intention
in all its manifestations has also emerged. However, a concept
specification may result in a lack of reference to the real world
and make it challenging to apply the concept. To understand
the concept, an awareness of how it ”works” must be created.
This can be done either through a clever selection of examples
or an appropriate specification. Generally, these properties
only come into play during composition and application in
a concrete system (cf. [21] [22]).

In mathematics, the underlying principle is called concep-
tualism. According to this, mathematical terms are not fixed;
they develop. The handling of the definitions in practice,
the interaction with other mathematical concepts, and the
exchange between people influence this development. This
evolution of terms and mathematical concepts can lead to an
increasingly uniform usage and, as in the case of set theory,
to axiom systems. (cf. [23])

The definition and thus also its representatives can therefore
change over time. How does a concept arise? — According
to the identified characteristics, it arises by an extensional or
intensional set definition, exactly when elements are composed
in such a way that they contribute in at least one context to
a problem solution. A set is intensionally described by the
specification of a property that can be assigned to that set.
An intensional definition in the context of free and arbitrary
choice of property, antinomies, can be induced; an example
is Russel’s antinomy [24]. Such antinomies are met with an
appropriate axiomatization so that the underlying universe
is well-defined. An axiomatization for sets is the Zermelo-
Fraenkel set theory [20]. In this, predicates are represented
by sets, namely subsets of the powerset, constructed via the
scheme of the axiom of elimination. If properties construct sets
and concepts can be defined over sets, then properties must

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

10

exist which represent concepts. Consequently, subsets of the
power set exist with elements that fulfill a specific property
and represent a concept.

It is easy to see that the essence of the concept must result
from the semantic interpretation of its elements. Regarding the
definition, a characteristic feature of a concept is schematic
problem-solving. This is something that is not fundamentally
true for properties. For a property, according to Platonic logic
and as for the symbol €, it is true that any object of a well-
defined universe has a property or not. Additionally, the nature
of a property does not change over time. From an epistemolog-
ical point of view, this does not apply to concepts, as described
earlier, for the principle of conceptualism. Because of this and
the problem-oriented character, a concept can be understood
as an embedding in an element to fulfill a particular property.

If elements are related to other elements, new properties can
arise through emergence, attributed to the composed element.
If a property becomes significant, then a property becomes
a concept exactly if this property is additionally attributed
to a problem-solving character. Both the significance and the
solution of a problem are in the eye of the beholder and thus
depend not only on the individual but also on the context.

According to the definition, a concept is a context-
independent description. Thus, the application of a concept is
its embedding in a concrete context. The word context comes
from the Latin word contextus, close linkage, and relationship
and can be generally defined as follows.

Definition 2 (Context): A context represents a technical
or situational setting that is meaningful for purposes and
comprehension.

B. The Difficulty of Naming Things

Another aspect that comes into effect when people interact
with each other is verbalization, which becomes even more
critical through context-sensitive embedding. This section
explains why it is difficult to name things unambiguously
so that communication partners have a shared, and equal
understanding. It also discusses the differences and similarities
between natural and formal languages, such as programming
languages.

In linguistics, the term concept is used as the cognitive
representation of an object or a cognitive category and is
closely related to the meaning of a word [25]. This often makes
it difficult to separate the concept from the context. It is not
uncommon for words in a natural language to have different
meanings. The meaning of a word arises from the context
in which it is used. From this context, not only the meaning
arises, but consequences are also connected, which are valid
only in this context. In linguistics, the context is understood
as the surrounding text of a linguistic unit, although it is not
excluded that certain meanings remain open.

For most natural languages, words are formed by con-
catenation over an alphabet, given the construction rules of
a concrete grammar. In a formal language, the language is
entirely described by the grammar. However, natural languages
are generally not formal languages. In this case, meaning is

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

created only by combining letters to form words. Hence words
are also referred to in linguistics as the atomic concepts of a
language [26]-[28].

Definition 3 (Atomic Concept): An atomic concept is a
concept that is part of the language used to name realizations
of the concept.

It follows that atomic concepts can be clearly identified as
part of language, as they can occur directly in the rules of
grammar but are defined in dictionaries, especially in the case
of natural languages. In linguistics and psychology, the mean-
ing of complex expressions is attributed to the compositional-
ity of concepts of language [28]. Thomas Ede Zimmermann
describes the ordinary principle of compositionality as follows:
”The meaning of a complex expression functionally depends
on the meanings of its immediate parts and the way in which
they are combined.” from [29], p.3 This definition goes back
to the teachings of Aristotle and is known as the semantic
compositionality principle (Frege principle). Named after the
German mathematician Gottlob Frege (after [30] [31]).

The only fundamental assumption underlying this principle
is that the atomic parts, which cannot be further decomposed,
have a lexical meaning. Atomic concepts, like properties, have
a stable meaning. For complex, i.e., composed concepts, the
mere naming of real existing things or those of the imagination
is sufficient to produce a lexical meaning.

In practice, this has its limitations, at least the same or
similar naming, as Martin Fowler expresses in his article on
the role pattern [32], which can lead to misunderstandings and
misinterpretations. In the article Dealing with Roles, Fowler
addresses the fact that just because a pattern is called a role
pattern, this does not translate into the exact implementation
and certainly does not intend the same semantics. However, if
these implementations are conceptual, i.e., semantically identi-
cal, then the implementations can be substituted for each other.
But he identifies about ten different patterns that are similar
but not semantically identical. Furthermore, he lists the various
advantages and disadvantages of these patterns, provided that it
finally becomes apparent that a clear distinction of the pattern
is necessary at the latest during the implementation.

What is the reason for the misinterpretation? — The cognitive
scientist Lera Boroditsky investigated these phenomena and
continued the theory about the relativity of language [33].
Boroditsky studied the influence of atomic concepts of a
language on people’s understanding and behavior in [34] [35].
She found in various experiments that different concepts of
numbers, time, space, or of objects result in a generally
different understanding of these concepts.

These and other experiments support the hypothesis that
even the most basic concepts of human experiences, such as
space, time, causality, and related objects, influence language
and the nature of communication. The atomic concepts of
language, its use, specific technical language, regional and
even local differences, and the experience an individual has
cause ways of thinking to be shaped by communication.
This was investigated experimentally by selectively using
metaphors that did not match the concepts of the language.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

11

After multiple repetitions, corresponding changes in thinking
styles were observed in non-linguistic implicit association
tasks [36].

One challenge of software engineering is the duality be-
tween understanding programming as creative creation on the
one hand and the structured approach on the other. Suppose
this is viewed from the perspective of linguistics and cognitive
science. In that case, this explains the choice of variable names
and identifiers and the phenomenon observed by Dahl, Dijk-
stra, and Hoare. They describe in [37] that with experienced
programmers, a programming style similar to a style with
artists in a painting is to be recognized, and the higher the
understanding of the structured programming is, the more
clearly higher-level structures are formed.

The aspects considered so far are mainly reflected in the
identifiers and the more abstract structures, wherein a simi-
larity between formal and natural languages exists. What is
the practical difference between a formal and a natural lan-
guage, except for the complete mapping in the corresponding
grammar? — Marcus Kracht investigated the emergence of
syntactic structures [31] [38], for which he used concepts of
programming languages and set theory in particular. His work
is based on a well-founded theory, which he summarized in the
monograph, The Mathematics of Language [39]. He also con-
cludes that the following three features are underrepresented
in any semantics of a natural language: Indexing, Multiplicity,
and Order.

To pick out just one aspect, we take a look at the concept
of indexing. The idea behind it is the well-ordering of a set.
This exists according to Cantor’s well-ordering theorem for
any set [40]. Although the ordering is not always obvious,
the distinction between two objects is essential if they are,
in fact, different. This becomes clear when we look at the
AST. Each use of a variable is linked to the declaration
of that variable via the symbol table. In a specific program
context (visibility), a variable name always designates the
same variable. Therefore, a new name and an index must
be assigned when a new variable is declared. So, in a “text”
written in a formal language, we know about the identity of
each object.

As essential for formalism, the meaning must be indepen-
dent of the naming. By indexing and distinguishing multiplici-
ties, as is necessary for programming languages, the semantics
result from the fact that different things can be identified.
Kracht’s motivation for his work stems from understanding
the notion of compositionality. For natural language texts,
almost everyone has an intuition about which constructs are
compositional and which are not. The mother tongue can be
mentioned here as an example. Children do not use complex
composition operators to determine which words should be
combined in which way. Instead, they develop a sense for this
over time, which results in an intuition for new compositions.
However, these notions are based on something other than
a formal foundation. He, therefore, calls for meaning to be
defined without mention of syntax. From his point of view, it
is not part of semantics to specify how things are composed in

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

syntax [38]. This follows from the fact that the functionality of
a program does not change if variables are named differently.

Kracht therefore defines a concept as described in Definition
4 as set R, of semantic equivalent relations. By a relation we
understand in the mathematical sense a set of ordered pairs. We
write if it holds that the relation R; and R, are semantically
identical: Ry ~ Ry

Two relations are considered semantically identical if they
can be transformed into each other by the operations given
in Definition 3. The operation OPr-1 is also called type
extension because a new element of the universe is added to
the relation. On the other hand, with the operation O P-4, the
relation is extended by an argument already contained. Even
if after the operation always, only the last one is appended,
the operation OPp-3 can be applied before in such a way
permuted as long as the desired argument stands in the last
place.

Definition 4, relations and thus orderings are described, but
the definition of the concept itself is independent of it and,
therefore, its semantics. According to Kracht, a concept is
defined by a set of relations. This means that the order is
only reflected in the concrete realization, which corresponds
to the intuitive understanding. It is also easy to regard an active
and passive sentence construction as semantically equivalent,
although the order is fundamentally different. On the semantic
level, concepts thus describe a linkage. Concepts can therefore
be regarded as equivalent, even if they use different relations
for representation.

Kracht, in his article Using Each Other’s Words [41] states,
similar to Boroditsky’s findings, that for any two people,
even if they use syntactically exact words, they do not assign
the same meaning to them. In summary, naming things,
especially complex composed constructs, is difficult because
the composed meaning is derived from how certain parts are
put together and the individual meanings of those same parts.
The meaning of the atomic parts is learned individually and
is thus preassigned an individual understanding. Based on
this learned understanding, emergent meaning is composed.
In other words, a shared understanding of a complex concept
can only emerge if a shared understanding of its parts exists.
If there is none or if there is a different one, misunderstanding
is inevitable.

C. The Description of Concepts through Examples

If we take realizable concepts to be sets of implementations
of that concept, they can be described in two ways, intensional
and extensional. We refer to the exemplars of these sets as
Examples. Under the term architecture concept, we subsume
architecture patterns as well as design and implementation
patterns. In this paper, we concentrate on the extensional
description of concepts. However, even if concepts cannot
be described thoroughly, it is nevertheless the better choice,
related to the use case of the detection and extraction of so
far unknown concepts.

1) The Concept as a Set of Examples: The definition
of the architecture concept described as a named set (see

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

12

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Definition 4 (Concept (Linguistics), after ([31]p. 17 and [38], p.65)): A concept is a set of relations R~ with

R~ ={R' |R~ R}

13

12)

Let © be the universe of a structure of first level predicate logic, then a relation R is a subset of Q™, R C Q™. R =~ R’ then means that R’ can be derived

from R by any number of the following operations. Let @ := (ag, a1, . .

.,an) and @ € R, that is, an element from the relation R.

e (OPp-1) Addition of an element from the basic set R+— R’ X Q = {(@,m) | d € P,w € Q}

e (OPr-2) Removing an element R x R — R
o (OPr-3) Permuting the arguments R — 7(R)
o (OPp-4) Extension R+ {(@,a) | @ € R} = {(ao,a1,--

.y 0n,ant1) | (a0,01,...

70477.) € R» an+41 = an}

Definition 5 (Architecture Concept C' (as named set)): Let CONCEPT be the universe of all known concepts. An architectural concept C' is a named set of

examples of the form
C := (id, R)

id a finite string for which an injective mapping f exists,
with ¢d € CONCEPT and f : CONCEPT — N

it applies VC;, Cy, f(Ci) = f(Cj) = C; = C;

R a finite indexed set of semantically identical examples of the concept C

C
R :={r; | Vr; € R it follows r; = r;}

Cid

i . Cig
As short notation it is defined Cq := R = {r; | ¥r; € R gilt r; = r;}. The notation r; =~

identical with respect to the concept C'; .

Definition 5), is done via the duple (id, R) and not directly by
a typical set-notation, to account for the special meaning of
the id, i.e., the name of the concept. By naming the set and
choosing an identifier from the words of a natural language,
this set, and thus the concept, acquires an induced meaning
for humans. However, this simplicity is countered by the com-
plexity and diversity of the descriptive examples, which are
context dependent. This means that each example represents
the concept within its own context. A (shared) understanding
exists when the context-free identifier and the set of contextual
examples have generated a context-independent understanding
in the observer.

The context, therefore, reflects the area of application in
which the concept is embedded. It describes a refinement and
concretization of the concept within this context. At this point,
a further principle of software engineering comes into action
— the principle of domain orientation. With the application of
a concept, a mixture and a fusion with elements of the domain
inevitably occur.

Similar to a design pattern, a concept can be described by
the triplet of problem, context, and solution. As introduced
in the section before (Section V-B) the name is not a unique
identifier for the equality of two concepts. In general, two
sets are equal if they contain the same elements. Though,
under what criteria are two elements, i.e., examples? — This
depends on the way the examples are represented. At this
point, therefore, we can only refer to semantic equality, but not
to structural equality. The semantic equality of two concepts is
given as. If C and Cs are each concepts, and if R, NRe, = 0
holds, which means that the set of examples of the two
concepts is disjoint, then these two concepts are semantically
identical, iff.

C
Vr; € Re, /\V?“j € Rc, | T ~ T (14)

d

This leads directly to the following equivalences:

Cl CVl

Co
Ty RT) ST %Ti@Tl'%Tj@CHQCQ@RClURCQ

It must be remarked that this form of equality cannot be
used to make a statement about the structural equality of two
examples of a concept. In linguistics, two concepts that are
equal in this sense would be called synonymous.

Suppose the examples are concrete implementations, i.e.,
idioms, so programming language-dependent descriptions. In
that case, the context consists of the specific language and the
parts of the business logic contained in the respective example.
In addition, for more complex concepts, the locality principle
does not apply. Instead, the pattern, more precisely, the roles
of the pattern, are distributed among different system artifacts.
It follows that it is legitimate for concrete source code excerpts
to appear in examples of different concepts.

2) Example Representation and Atomic Concepts: In Sec-
tion III, an example of a concept — the Singelton pattern — was
examined. As a representation, a graph representation based
on the AST was introduced. In this case, it was used to provide
concrete instances of an example. Since this representation is
a semantically identical model transformation, no abstraction
occurs.

But is the structure of a graph suitable to represent higher-
level concepts? — Basically, such a structure is suitable to
represent any objects and their relations among each other.
Moreover, the set of elements (nodes) and the set of relations
(edges) can be extended freely, including aspects that cannot
be extracted directly from the source code. The subject of
this work is the semantic relations, not the syntactic ones.
This means that a back transformation into source code is not
required. Therefore, any extension of the graph is also allowed
at this point. In the previous section, linguistic concepts were
assumed to be understood as a set of semantically equivalent
relations. In principle, however, only two-digit relations are
represented by edges in a graph. However, David Hilbert and

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(13)

r; means that the two examples 7; ans r; are semantically

Wilhelm Ackermann found that any n-digit predicate can also
be reduced to a less-digit one [42].

Generally, it is up to the modeling and thus the intended
semantics of how the predicates are defined, thus also their
rarity. This applies in this form only to the calculus of first-
level predicate logic, but this is the object of investigation
of Hilbert and Ackermann as well as of Kracht [31] [38].
A model based exclusively on triples, thus equivalent to a
representation by a graph, is exemplified by the ontology [43].

We introduce the ASG to describe a more general formal-
ism. In contrast to the concrete syntax tree, in which the nodes
represent symbols of the grammar, the abstract syntax tree
nodes represent concepts of the programming language and
their hierarchical relationships. The structure is a simplification
of the underlying grammar of the programming language. The
edges represented in the AST are called syntactic edges Esy,
because they represent the syntax of the language. The edges
constructed in the semantic analysis using the symbol table
are called semantic edges Esey. By unifying these two sets
of edges (Esyn U Esem), the AST is extended from a tree to a
directed graph, while it cannot be excluded that it is cycle-free.

The combination of syntactic and semantic edges is called
Abstract Syntax Graph [44] and is specified in Definition 6. At
this point, however, we must emphasize that this term is not a
fixed term. The same applies to labeled AST, extended AST,
or attributed AST, and it must also not be mixed up with the
so-called term graph. Term graphs are often used in rewriting
and automated refactoring and are often acyclic [45] [46].

The aggregated graph described in Section III-A and vi-
sualized in Figure 2 can be understood as a method-specific
graph. The ASG here would be an intermediate representation
between AST and aggregated graph. Compared to the ASG,
the aggregated graph additionally has a node fusion operation
performed. Like natural languages, atomic concepts exist for
formal languages (cf. Definition 3). With respect to the rep-
resentation of ASG, the notion of atomic concept is extended
as follows:

Definition 7 (Atomic Concept): An atomic concept is
a concept defined by the syntax, i.e., by terminal or non-
terminal symbols of the programming language grammar, and
represented by a node or edge type in ASG.

3) The Minimal Example: In this section, the reduction
aspect of an example is discussed. From the definition for
graphs, the following can be said in general about the features
of a graph g.

1) It is directed,

2) can be a multi-graph (A multi-graph is a graph with
more than one edge between two nodes),

3) has in general cycles (Cycle-free minimal examples
exist, but they are trivial examples of atomic concepts)
and

4) is connected.

In the previous sections, any graph was considered an

example of a concept. It was only required that in the graph,
at least once in the underlying program code, the named
concept was applied. If several examples of a concept are

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

compared, these may have a different number of nodes and
edges. Therefore, it is not only possible to determine a minimal
example among the existing ones, but a minimal example
exists for each example. To illustrate this, the atomic concept
Class is considered. If a method is added to a class, it remains
an example of a class; even if this is repeated several times,
the truth of the statement does not change. Even a class that
has no methods can be considered an example of a class.
This example illustrates two perspectives. From the context-
sensitive view of the respective example, it can be examined
which elements are not essential for the concept. From the
context-independent view of the concept, the requirements
for the example can be defined. If, for example, the concept
ClassWithMethod is described, we expect at least one class
with one method. The so-called minimum concept can be
described as follows.

Definition 8 (Minimal Example of an Architectural Con-
cept):

A minimal example of an architectural concept is an ex-
ample, i.e., a piece of program code for which holds: if any
character is removed from this piece of program code, then
this is no longer an element of the set of examples of the
respective concept.

What results for the ASG of a minimal example? — For
an atomic concept, as in the example of the Class, this is
defined by the programming language, namely by the minimal
syntactically correct root tree where the root is of type class
declaration. In this concrete case, it depends on the parser
and grammar, different designations of the type are very
likely. For non-atomic concepts, i.e., those that satisfy the
compositionality principle, structures must exist that allow this
concept to be decomposed. In the context of design patterns,
which are widely accepted as architectural concepts, proven
description templates have been discussed, as exemplified in
[2] and [47].

One aspect of these description templates are the partici-
pants, also roles, of which the pattern is composed. Complex
composed concepts are thus ascribed the existence of roles.

Definition 9 (Role (according to [48])): A role is a observ-
able behavioral aspect of an object in a concrete context.

For a graph ¢g(V, F) representing an example of the concept
C, it follows from conclusion 2 that there can be nodes that
are not elements of a role, and thus not part of a behavioral
aspect of the concept.

If we consider the collaborations of the UML as a descrip-
tion technique, then the parts, which are named collaboration
roles, serve as a structural element [49]. In addition, other
elements in UML are called roles in simple association, for
example, as in the class diagram. In Figure 11, two classes
and a binary association are shown. In such an association,
the association ends are called roles. Here, the name of the
association describes the semantics of the association, and the
name of the role describes the meaning of the class related
to this association [50]. We claim that a formalism should
be independent of naming. This holds also for the naming of
associations if we understand them as concepts. Moreover, we

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

14

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

15

Definition 6 (Abstract Syntax Graph gasc (tAST(VS,.,,, Esy), Esem, P, ‘r)): Let tast(Vsyn, Esyn) be the AST (see Section III) of a program, then the abstract
syntax graph is the extension corresponding to a tuple with the following signature:

gasc(V, E) := (tast(Vsyn, Byn), Esem, P, T)

Vsyn a finite Set of nodes.

Esyn a set of syntactic edges.

FEsem a set of semantic edges.

P a finite set of edge-terminals (15)
T a relation that maps each edge from Esm maps to an edge terminal.

7= Fern > P

Ve € Esem ‘ 9p € P/\T(e) =P

It holds that the node set of the ASG is equal to that of the AST:

Vi=Ven=AUTUZ

Only the set of edges is extended, so that the following is true:

E:=FEsnU Eem=v U wU T

speak in this case about associations, which are an object of
subjective consideration since they no longer belong to the
atomic concepts of the language; instead, they are composed
concepts.

0.* association 0.*

Class A Class B

role role

Fig. 11: Elements of a binary association according to [49],
p- 135

Transferred to concepts according to Definition 5 results:

Conclusion 1 (Roles in Concepts):

A concept consists of a finite non-empty set of roles mani-
fested in the examples or an atomic concept.

This conclusion is consistent with the role pattern, a widely
used pattern of object-oriented analysis (OOA) [50] [51] [32].
A description of this pattern is given in the Figure 12. Three
main features emerge from this description.

1) The item is role independent. In [47] this is also called
the core class. It contains static, immutable functionality.

2) The item can take on different roles in any number of
contexts.

3) The assignment can change dynamically and the item
thereby aggregates the contexts to itself and thus dy-
namically receives its role-dependent properties and
functionalities via the roles, which are described as
association classes.

At this point, the variant Role-Relationship according to
[32] was selected on purpose. According to the same paper,
this variant is suggested if an item-object can take more than
one role concerning another object, as is the case in this work
if the system is chosen as context. However, this can also be
true for an example of a concept. In the further course, this
notion of role is further restricted to minimal examples.

The choice of modeling the role as an association class
is also made on purpose. Other variants and especially per-
spectives in which the context is not explicitly modeled are
given in [47] and [50]. The association class clarifies the mem-
bership of role-specific attributes and operations. It describes

(16)

an

plays role o

0.*
Context

ConcreteRole

Fig. 12: The role pattern as UML class diagram and modeled
as association class

properties that result from the relationship between the object
and the context and cannot be meaningfully assigned to either
class. The property of whether an object fills a particular role
is no longer well-defined because the same class can occupy
different roles in different contexts. The application of the role
pattern destroys the well-definedness of the concept.

Conclusion 2 (Roles as Subgraphs):

With respect to the chosen representation, roles manifest
themselves in subgraphs of a graph g of the conceptual
example. Let hy and hy be roles, thus two real subgraphs
of g, hi,ha C g, then the following statements follow from
the definition of role (Definition 9): (i)

1) hl,hzcg#hlﬂhgzw

2) g\ g #0mit ¢ :=

h;Cg
Roles do not define an equivalence relation on a concept.

In general, a complex concept consists of more than one
behavioral aspect; at this particular step, only their existence
is assured. The concrete roles are assumed to be unknown in
the paper if not stated otherwise.

Therefore, for a minimal example, each node of the asso-
ciated graph belongs to at least one role. All other nodes can
therefore be removed from the graph. Furthermore, all nodes
not essential for the concept can be removed; the same applies
to the edges.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This results in a minimal example of architectural concept
defined in Definition 10.

Conclusion 3 (Connection of minimal Examples):

However, deletion operations may cause a minimal example
to no longer be connected. For an example, since it is
constructed from the ASG, it follows that it is connected. There
may be dependencies which only arise dynamically at runtime,
if such a link is the only one connecting two nodes, then this
link is a bridge in the sense of graph theory and the graph
decomposes into more than one component.

Another case represents the removal of the root element
when the AST is considered as the spanning tree of the ASG.
In many compilers, a parent node describing the combining
unit is introduced as the root node, and in most cases, this is
not essential to the concept and can therefore be removed.

In addition to removing, adding a node or an edge in an
example is possible, also. The above example with the atomic
concept of the Class could lead to the impression that these
operations are possible without any problems. This is not
true in general. For example, there are concepts where these
operations can be repeated any number of times for particular
nodes or edges, but there are also those for which this is not
true. In the later part of the paper, the singleton pattern will
be examined. If a public constructor is added to some variants
of this pattern, it is no longer a valid example of this concept.
This addition has destroyed the concept.

However, by introducing the minimal example, the instance
term can be defined.

Definition 11 (Instance of a Concept):

Let S € SYSTEM be any system, g the associated ASG, then
the subgraph h C g is an instance of the concept C(id, R)
iff. h is a minimal example of C, so h € R holds.

This also corresponds to the instance concept of object ori-
entation. The correct formulation for a non-minimal example
is that it contains an instance and does not represent it directly.

If an architectural concept C' contains only minimal ex-
amples in its set of examples, then this is called a minimal
architectural concept C' as described in Definition 12.

Furthermore, it follows directly from Definitions 5 and 12
for architecture concepts:

Cia C Ciq | id = id (19)

This means that there is a real subset relationship between
the set of examples of an architectural concept and the set
of examples of the associated minimal example. The size of
the set of examples of a concept is countably infinite. A real
subset of this set is formed by the minimal examples. Also for
natural language concepts Kracht describes, relations which
are minimal with respect to their length and thus in a certain
sense even special. If R; and Rj are two minimal relations of
a linguistic concept (Definition 4), then Rj is a permutation of

R; and it holds [38]:
F(Rj) = Rl (20)

Applied to architectural concepts, this would mean that two
minimal examples #; and 7; of a concept are isomorphic

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

to each other, #; = #;. As a result, not only would there
be a bijective mapping between these graphs, but the graph
invariants, such as the number of edges or nodes, should not
change. Nevertheless, this cannot be guaranteed in general.
This is caused by operations such as fusion and contraction. As
a result, the problem can be written as a partial graphisomophy
problem Subgraph-Isomorphism (SGI) [52] [17], which is
assigned to the complexity class of NP-complete problems.
These aspects are discussed in more detail in the following
chapter, where identification and extraction use cases are
examined.

VI. RELATED WORK

A similar approach to the one we propose is code2vec [53]
[54], also working with an abstraction based on a set of paths.
The main difference is the structure of the extracted path.
All pairwise paths between the leaf nodes are examined and
limited to a maximum number and length. They define the
path-context by a triplet < x,,p,x; >, where x, is the start
leaf, x; is the target leaf, and p the path between these nodes
with the additional information whether a traversal takes place
upwards towards the root element or downwards in the tree.
The approach is presented here all paths from each leaf to the
root are taken into account. Another limitation of code2vec
is the abstraction context, which is one method. They argue
that the order of source code statements is not relevant, or
valid for this scope and the defined task. But as shown in [55],
the relation between source code elements for higher concepts
(like classes) is essential to perform structural or behavioral
related tasks. As shown in [56] another limitation of code2vec
is its sensitivity to naming. For tasks like those described in
code2vec, where names of methods are predicted, names are
of course essential, but for the extraction of abstract concepts,
the uncertainty of the correct name is too high.

Yarahmadi et al. [55] have conducted an extensive and
systematic literature review on how design patterns can be
detected in code and therefore abstract the code to perform this
task. The main findings of this study relevant to this paper are:
Many of the approaches have been tested and evaluated only
on small data sets or on limited code samples. The principle
in almost all approaches that were reviewed is to reduce the
search space by abstraction. Most approaches were limited in
their ability to recognize different types of patterns. Another
problem of many approaches is detecting different variants
of a pattern. To make this possible, ML methods are often
used. However, these methods require good data preprocessing
because it is not possible to decide in a general way which
parts should be selected for learning. A common approach
to this problem is, as implemented in [57], a semi-automatic
approach in which a human takes over feedback or labeling.

Another principle often used in addition to using the syn-
tactic concepts of programming languages is to analyze the
identifiers (e.g., classes, methods, or variable names) using
natural language processing techniques [58] [59]. Schindler et
al. [59] demonstrated that these methods are well suited for
project-specific domain models but not for identifying general

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

16

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Definition 10 (Minimum Example + (formal)): Let C be a concept and r an example in which it is applied, then this is called minimal, written 7,iff. 7 is a

minimal subgraph of r satisfying the following conditions. (i)
) g\¢g =0with ¢’ := () with H := {hq,..
hiCg
2) VUEV;‘V;\{U}éﬁ%RC
3) YVe€ Ep | Ex\{e} =7 ¢ Re
4) Yve Vi YVmeN | 1<m S‘ Pe ‘ A fv(’U) — (Ei’j)m
5) Ye € Bp, Vm €N | 1< m <[Be | A fe(e) — (Fi,j)m

Definition 12 (Architecture Concept C (minimal)):

., hn} the set of all roles of C'

Let CONCEPT be the universe of all known concepts. By Definition 5, an architecture concept C' is a named set of examples. If all examples of this set are

minimal, then this is denoted by the notation C' and is defined as:

C := (id, R)

id a finite string for which an injective mapping f exists,
with ¢d € CONCEPT and f : CONCEPT — N

it holds VC;, Cj, £(Cy) = f(Cy) = C; = C

(18)

R a finite indexed set of semantically identical minimal examples with respect to the concept C.

. A c
R:={#; | V7; € R gilt #; = 7; A 7; is minimal}

patterns. Natural language identifiers can be an indication but
not a robust criterion. An example of how the AST is able
to be enriched by additional features, e.g., by using ML, is
described in [60] and [61].

In addition, tools and frameworks should also be mentioned,
which could also be applied, though in part with restrictions.
For example, jQAssistent [62] is a tool that transfers the AST
into a Neo4j graph database, offers the possibility of manually
enriching this graph with further information, and then using
the query-language Cypher to define concepts and identify
them in the graph. In contrast to the approach presented in this
paper, a query needs to be formulated covering the concept for
which the sample should be retrieved.

ArchUnit [63], Structurel01 [64], and Dependometer [65]
are based on the same principle of formulating rules that are
checked automatically afterward. However, the creation and
management of rules is costly with the increasing complexity
of the concept, and require substantial expert knowledge. All
of the mentioned approaches do not assist in expressing rules
applying to a given set of samples.

The major problem in this kind of approach and any other
approach based on a specific formal language is that it is
difficult to define the concrete rules describing a pattern
correctly. Rasool et al. [66] describe it as a lack of standard
specification for design patterns.

The field of code clone detection is related to the approach
presented in this paper since the input data is identical. In
[67], four types of code clone detection are characterized,
(i) syntactically identical code fragments, (ii) syntactically
identical except names and literal values, (iii) syntactically
similar fragments that differ in some statements but can
be transformed to each other by simple operations and (iv)
syntactically dissimilar code fragments but sharing the same
functionality. In contrast to code clone detection, we do neither
want to find syntactically identical fragments (i)-(iii) nor
functionally identical ones (iv). Because of the domain-specific
adaptation, we are not interested in finding direct copies.

VII. CHALLENGES OF EXTRACTING ARCHITECTURAL
CONCEPTS

In Section V, a formal description of general concepts was
derived based on set theory, graph theory, and linguistics. This
description can only be understood as part of a higher-level
methodical approach, described in, for example, in [61] [68]
[69]. In this context, we are confronted with practical applica-
tion challenges which arise in the exchange between program-
mer and architect. The cause of this tension is based on the
different perspectives on the system, i.e., the architecture de-
scription on the one hand and the implementation on the other
hand. The following four aspects are examples of this: (I.) How
can a continuous mapping between an architectural concept
as part of an architectural description and its implementation
be created? (11.) How to ensure semantic correctness between
concepts in the architectural description and concepts in
the implementation? (111.) How can the completeness of the
concepts in the architecture documentation be ensured with
respect to the concepts implemented in the implementation?
(IV.) How can the maximum possible conceptual knowledge
be extracted from minimal data?

A. Continuous Mapping

Due to the selection of the considered challenges, marking
arbitrary concepts in the ASGs is necessary. The highlighting
must be possible so that different instances of the same concept
and parts of the concept that do not manifest themselves
according to the locality principle can be mapped, and the
compositionality of concepts is considered.

A metaphor introduced for this purpose is the concept of
Color. In graph theory, the concept of coloration is used for
various questions [70]. Nevertheless, Color is also suitable as
a metaphor independently of any mathematical structure since
aspects such as nuances in the form of brightness and satu-
ration, or even the creation of new colors by mixing primary
colors, for example, can be easily imagined. Moreover, it can
be applied to the composition of concepts. Color highlighting
is also a very well-understood concept in different contexts.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 13 (Color p): Let COLOR be the universe of all
known colors. A color p € COLOR is a label which a node or
an edge of a graph may possess. A color is uniquely identified
by its name, that is, there exists an injective mapping f :
COLOR — N, where holds.

Vp1,p2 € COLOR | f(p1) = f(p2) = p1 = P2

If colors are to be used to mark both atomic and complex
concepts, then it is easy to see that not only nodes and edges
must be marked, but also entire subgraphs must be able to be
assigned a color. In order to allow multiple applications of a
concept as well, a mechanism of instantiation of colors con-
cerning a concrete graph must be introduced. A corresponding
indexing of colors in the following implements this.

Let g be a graph and 8 C COLOR where P := {p1,p2, p3}
is the finite set of colors to be used for marking in the graph
and

21

By = P1,1,P1,2,P1,3,P2,1P2,2,P3,1}

the concrete instances of the colors.

Conclusion 4 (System Boundary of Instances): The graph
is a system boundary with regard to the instances of a color.
Given two color instances p; , € By and ;. € By, then
holds: (i)

1) pi,p; € COLOR | p; =p,;, =i=]

2) pin €PBgs Pim EPrli=JAn=m= pin=pjm

As a result of the described gap between implementation
and architecture, there is no direct injective mapping between
these two artifacts. The implementation always represents a
contextual application of architectural concepts. This makes
setting up this mapping in particular difficult. Related to the
coloring of the abstract syntax graph, continuous mapping
exists precisely when all nodes and edges belonging to an
instance of a concept are marked. Of course, this also assumes
that if the example is according to Definition5, all aspects
of the concept have already been fully implemented in the
implementation. Otherwise, it is possible to speak of a marking
of the concept but not of an example.

The labeling principle is formulated in such a general way
that even new concepts can be mapped intuitively in the
sense of previously unknown. According to the definition of
an architectural concept (Definition5) and that of a color
(Definition 13), a bijective mapping can be formulated between
concepts and colors. In the form that the concept which is
mapped to n € N is represented by the color, which is
also mapped to n. Defining a new concept is equivalent to
creating a new color. However, what does it mean that a new
color/concept is created? — Two cases must be distinguished:
(i.) introduction of a new atomic concept and (ii.) introduction
of a new composed concept.

The universe of colors is extended in both cases. One
difference is that in case (i.) an extension of the underlying
programming language takes place and is a cross-system
concern. This is not true for case (ii.). The trigger for case
(ii.) consists of the fact that a concept is to be selected,
which is not yet named in the form. Accordingly, there is

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

no color and no example yet for this concept. This labeling of
a concept instance has the character of an annotation and is
initially only valid for the system under consideration. Thus
the ASG is extended by information that cannot be derived
directly from the program code. For this reason, the so-called
Concept-Graph is introduced for a conceptual separation. We
define that an abstract syntax graph (Definition 6), which is
colored accordingly, is called Concept-Graph. This graph
may furthermore be extended by so-called Concept-Nodes
Vioncept I Concept-Edges Econcept- A concept graph is thus
defined as follows.

Definition 14 (Concept-Graph): Let gasq(V,E) be
an abstract syntax graph of a program with node set
V. = Vsyn of AST and edge set E := Fgy, U FEgep,
of ASG). A colored directed Concept-Graph
g € GRAPH is represented by the following signature:

g(gASG’; ;‘BATOM; VConcepta EConcepta sq:gc'oncepta fV7 fE)

V' a finite indexed set of nodes.
V =Vase U Veooncept, V i= {v1,v2,...,0,}

E a finite indexed set of directed edges
ECV XV, E:={ej,ea,..
E = FEasc U Econcept

B a finite indexed set of color instances
B = Parom U Pconcept
PBr={p11,P1.2,- -, P1is-- -, Pn1s--
mit {p1,p2,...,pn} € COLOR

fv Coloring function for nodes fy : V — ng

., em} mit e; = (v, vg)

. 7pn,j}

fE Coloring function for edges fr:V — ngl
(22)
Even if the node types are represented by colors concerning
the programming language’s grammar, in general, we should
no longer speak of typed nodes and edges, only of colored
ones, because it is now possible to assign several colors to
each node or edge. However, this is contrary to the definition
of the type. On this basis, now arbitrary architecture concepts
can be represented, and further operations on these can be
defined.

B. Semantic Correctness

Suppose a named set of examples exists, validated in that the
contained examples are semantically equivalent. In that case,
it holds that the given examples are context-independent, as
well as an interpretation of the name in the form of these
examples is possible. Nevertheless, no complete description
of the concept exists in the form of a specification. Further-
more, the examples are semantically equivalent but structurally
different. This is caused by the embedding in an application
context. In the Limitations (see Section IV-C), the maximum
common subgraph problem has already been pointed out. One
is confronted with the same NP-hard problem if we want to
answer the question of whether a graph g should be included

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

18

as an example in the set of examples of a concrete concept
C(id,R)?
geRorg¢ R

We can define the concept of a Dector as follows:

Definition 15 (Detector d¢): A detector do € DETECTOR
classifies a graph g if the graph is an example of a given
concept C(id, R) or not.

de @ g — [true, false]

0o (G) = true,g € R
T N false,g ¢ R

The goal is to develop a methodology to identify known
concepts (identified by identifiers and described by examples)
in a given program using a heuristic to derive suggestions for
new concepts from the extracted information. Since this is an
NP-hard or partly an NP-complete problem, it is reasonable
to modify the concept of semantic correctness so that we
can refer to a semantic similarity instead. The consequence
of this is that there must be an expert who takes over the
validation related to the correctness. However, this can also be
an advantage, as it makes it possible to create specific concept
variants, including project or domain-specific implementations
of a concept.

A corresponding adaptation can be achieved by fuzzifying
the edges to hyperedges and the coloring functions of the
concept graph. If these are fuzzified, then the binary vector
becomes real in the interval O to 1. In this case, it is a
so-called Fuzzy-Hypergraph as described in Definition 16
and would have to be considered accordingly in the example
representation.

The idea behind the Fuzzy-Hypergraph is that nodes can be
grouped with a given membership function o, i, and a given
degree a. Each hyperedge here represents exactly one aspect
or parts of a hierarchical aspect. This allows us to express for
a concrete instance which influences specific nodes have in
this context. Fuzzy-Hypergraphs are suitable for partitioning
tasks and pattern recognition, among other things. Since this
is an analytical approach, the quality of the results is strongly
dependent on the modeling of the membership functions.

C. Complettness of Extraction

The documentation of a system’s architecture is always an
incomplete system description. This is, on the one hand, be-
cause only those aspects are listed which have relevance from
the point of view of the architect and, on the other hand, due
to the fact that programmers establish concepts during their
development but do not communicate this. The completeness
concept is dependent on the extraction of subjective feeling.
We can say, therefore: The list of the implemented concepts
is complete if the architect sees all the concepts known to him
or concepts, which are already present in the knowledge base,
are not proposed anymore and validated as positive. If other
concepts are present in the implementation, and they will be,

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

then they are not significant at the current time or dedicated
as such.

The more interesting case, however, is the one where the
programmer implements concepts that are not known to the ar-
chitect. A case in extracting new concepts is when the previous
knowledge consists only of atomic concepts. Here, no other
coloring can be performed. Finding new concepts (colors)
for nodes and edges can be traced to a clustering problem.
Outlier detection, i.e., frequencies, outliers, or neighboring /
overlapping graphs, must be searched for. Here, methods can
be used as described in Section III-A. Given the formalization,
it can be assumed that different methods must be combined
for different aspects.

Having a procedure that is open to new concepts means
that an integration mechanism must exist to incorporate them
into a knowledge base. For example, higher-level concepts
are formed from the programming language’s atomic language
concepts (colors) and their relationships to each other. In other
words, relationships exist between the colors, and precisely
these relationships must now be extracted. Thus also, the
integration mechanism can be specified in the introduction of
new colors as well as the way of assigning colors to nodes,
edges, and graphs. This poses particular challenges to the
methodology, not only for the one-time extraction but also
for the evolution of the system under investigation over time.

This question highlights once again that the architecture of
a system cannot be considered invariant, even if an archi-
tecture should rather be stable over the system’s life cycle
and represent a default for the implementation [72]. During
implementation, situations may arise that require a change
of concept. But such an architectural decision must be made
consciously for all and ideally documented and justified.

D. Data Challenge

The more complex a concept grows, the fewer examples
exist for this concept; as an example for the evaluation of the
presented method (see Section III-A and IV), the Singelton
pattern was used. With this pattern, it was possible to build
up a corresponding dataset. However, this had to be validated
manually because in the result set, despite the name Singel-
ton pattern, there were examples that were not semantically
equivalent to the chosen specification. The reason for this is
explained in detail in Section V-B. Therefore, expert checking
should always be considered.

Considering patterns that are more system-wide concepts,
such as Pipes-And-Filters [73] or a Layered architecture, it
is common for this concept to manifest itself only once in
the system. This means that hundreds of systems with this
corresponding architecture are needed for a similar number of
examples as the extraction was performed for the Singelton
pattern. On the other hand, the concept behind layered archi-
tecture, for example, can be described in a fraction of the size
of the examples.

As a result, methods must be constructed that can work
with a small amount of data, address the compositional aspect
of a concept, and construct results that humans can easily

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

20

Definition 16 (Fuzzy-Hypergraph i (V,E,ae,0, 1), see [71]): A Fuzzy-Hypergraph ﬁ is represented by the following signature:

h (V,€ a,0,1)

V a finite indexed set of nodes, V' := {v1,v2, ..

- :Un}

£ a finite indexed set of Hyper-Edges. £ C P(V)\ 0

€= {By, Ba, ..

s En}

o a Fuzzy-Set Vo, 0 : V — [0, 1]

Vo i ={v; €V |o(v;) > aNa#0}
1 a set of membership functions p := {1, p2, . . .

(23)

Hu'|€‘}

Ei ={v; € V| (vj, pi(vj)) > a Ao # 0}

€] i
(J supp(B:) =V
=1

Where supp(A) is the support of the set and is defined as:

supp(A) == {z € A| pa(z) > 0}

interpret. For example, the approach described in this article.
Moreover, a possible approach could be to investigate logic-
based representations as described in Herold [74] and Deiters
[21] [22]. In this way, an approach could be developed based
on extensional and intensional concept descriptions.

VIII. CONCLUSION AND FUTURE WORK

Starting from the approach, which was introduced in [1], an
extension was made in this article. We derived a comprehen-
sive theory and formalism, which makes it possible to establish
holistic approaches as they are described in Herold etal. [75],
Knieke etal. [68] and Schindler [61]. All of these approaches
try to mitigate architecture degradation using ML. Focusing
on extracting concepts from existing implementations, most
common approaches like code2vec, for example, rely on large
amounts of data, so they are unsuitable for this kind of
problem. Because, on the one hand, these data have to be
acquired and validated, and on the other hand, the results have
to be interpretable by humans.

We have shown an approach to extract the essence of
a shared concept driven by available implementations so
that the formulation is interpretable by humans. Moreover,
we formulate expressions that explicitly be not part of an
implementation of the concept. In other words, if such a path
were added to any concept example, it would destroy it.

Future work planned includes two directions, on the one
hand addressing the way the semantics of a concept is de-
scribed and, on the other hand, using the introduced repre-
sentation and abstraction technique as a preprocessing step
in the direction of ML techniques. For example, to train
a classifier or cluster samples to identify variants or the
inner parts of a pattern, e.g., roles. Including the addressed
limitations and collecting a high quality and high quantity data
set of different design patterns, including different variants
of a pattern. We choose an extensional description for the
semantics. Experiments have shown that if a set of examples
of a concept is known and validated, describing them inten-
sionally using predicate logic formulas could be possible. The
question of describing and interpreting a composition operator

(24)

for architectural concepts can be seen as essential and still
open at the current research stage.

REFERENCES

[1] C. Schindler, M. Schindler, and A. Rausch, “Negligible details -
towards abstracting source code to distill the essence of concepts,” in
ADAPTIVE 2022, M. Kurz, Ed. Wilmington, DE, USA: IARIA, 2022,
pp. 22-31. [Online]. Available: https://www.thinkmind.org/index.php?
view=article&articleid=adaptive_2022_2_20_50009

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of reusable object-oriented software, 2nd ed., ser. Addison-
Wesley professional computing series. Boston: Addison-Wesley, 1997.

[3] J. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.

[4] K. Bergner, A. Rausch, and M. Sihling, Using UML for Modeling
a Distributed Java Application. TUM, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.6797

[5] G. Sunyé, A. Le Guennec, and J.-M. Jézéquel, “Design patterns applica-
tion in uml,” in European Conference on Object-Oriented Programming,
2000, pp. 44-62.

[6] S.Hussain, J. Keung, and A. A. Khan, “The effect of gang-of-four design
patterns usage on design quality attributes,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS). 1EEE,
2017, pp. 263-273.

[7]1 C. Deiters and A. Rausch, “Assuring architectural properties during com-
positional architecture design,” in International Conference on Software
Composition. Springer, 2011, pp. 141-148.

[8] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 95-105.

[9] M. Schindler and S. Lawrenz, “Community-driven design in software

engineering,” in Proceedings of the 19th International Conference on

Software Engineering Research & Practice, Las Vegas, NV, USA, 2021.

M. L. Scott, Programming language pragmatics, 4th ed. Amsterdam

and Boston and Heidelberg and London and New York and Oxford and

Paris and San Diego and San Francisco and Singapore and Sydney and

Tokyo: Morgan Kaufmann/Elsevier, 2016.

N. Chomsky and D. Lightfoot, Syntactic structures, 2nd ed., ser. A

Mouton classic. Berlin: Mouton de Gruyter, 2002.

N. Chomsky, “Three models for the description of language,” IEEE

Transactions on Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

techniques, & tools, 2nd ed. Boston: Pearson Addison Wesley, 2007.

[14] J. Niere, J. P. Wadsack, and L. Wendehals, “Handling large search

space in pattern-based reverse engineering,” in //th IEEE International

Workshop on Program Comprehension, 2003. 1EEE, 2003, pp. 274—

279.

A. Rajaraman and J. D. Ullman, “Data mining,” in Mining of Massive

Datasets, A. Rajaraman and J. D. Ullman, Eds. Cambridge: Cambridge

University Press, 2011, pp. 1-17.

[10]

(11]

[12]

[13]

[15]

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

P-mart pattern-like micro-architecture repository. [retrieved: 03, 2023].
[Online]. Available: https://www.ptidej.net/tools/designpatterns/index_
html

M. R. Garey and D. S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, ser. A series of books in the
mathematical sciences. New York u.a: Freeman, 1979.

V. Kann, “On the approximability of the maximum common subgraph
problem,” in Annual Symposium on Theoretical Aspects of Computer
Science. Springer, 1992, pp. 375-388.

“Concept,” 2022, [retrieved: 03, 2023]. [Online]. Available: https://www.
oxfordlearnersdictionaries.com/definition/english/concept?q=concept

E. Zermelo, “Uber grenzzahlen und mengenbereiche,” Fundamenta
Mathematicae, vol. 16, no. 1, pp. 29-47, 1930. [Online]. Available:
https://eudml.org/doc/212506

C. Deiters and A. Rausch, “Assuring architectural properties during
compositional architecture design,” in Software composition, ser. Lecture
Notes in Computer Science / Programming and Software Engineering,
S. Apel, Ed. Berlin and Heidelberg: Springer, 2011, vol. 6708, pp.
141-148.

C. Deiters, Beschreibung und konsistente Komposition von Bausteinen
fiir den Architekturentwurf von Softwaresystemen, 1st ed., ser. SSE-
Dissertation. Miinchen: Dr. Hut, 2015, vol. 11.

H.-D. Ebbinghaus, Einfiihrung in die Mengenlehre, Sth ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2021. [Online]. Available:
http://nbn-resolving.org/urn:nbn:de:bsz:31-epflicht- 1878742

B. Russell, The philosophy of logical atomism, ser. Routledge
Classics. Abingdon, Oxon: Routledge, 2009. [Online]. Available:
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10330922

D. Gutzmann, Semantik: Eine Einfiihrung, ser. Lehrbuch J.B. Metzler.
Berlin and Heidelberg: J.B. Metzler Verlag, 2020.

W. Hodges, “Formalizing the relationship between meaning and syntax,”
in The Oxford handbook of compositionality, ser. Oxford handbooks in
linguistics, M. Werning, W. Hinzen, and E. Machery, Eds. Oxford:
Oxford Univ. Press, 2012.

D. Hillert, Ed., Die Natur der Sprache: Evolution, Paradigmen und
Schaltkreise. Wiesbaden: Springer, 2017.

J. A. Hampton and Y. Winter, Eds., Compositionality and Concepts
in Linguistics and Psychology, ser. Language, Cognition, and Mind.
Cham: Springer International Publishing, 2017, vol. 3.

T. E. Zimmermann, “Compositionality problems and how to solve them,”
in The Oxford handbook of compositionality, ser. Oxford handbooks in
linguistics, M. Werning, W. Hinzen, and E. Machery, Eds. Oxford:
Oxford Univ. Press, 2012.

B. H. Partee, A. T. Meulen, and R. E. Wall, Mathematical Methods
in Linguistics, 1st ed., ser. Studies in Linguistics and Philosophy Ser.
Dordrecht: Springer Netherlands, 1990, vol. v.30.

M. Kracht, “Compositionality: The very idea,” Research on Language
and Computation, vol. 5, no. 3, pp. 287-308, 2007.

M. Fowler, “Dealing with roles.”

B. L. Whorf and P. Krausser, Eds., Sprache, Denken, Wirklichkeit:
Beitrige zur Metalinguistik und Sprachphilosophie, 25th ed., ser.
Rowohlts Enzyklopddie. Reinbek bei Hamburg: Rowohlt, 2008, vol.
55403.

L. Boroditsky, “Linguistic relativity,” in Encyclopedia of cognitive
science, L. Nadel, Ed. Chichester, West Sussex Eng. and Hoboken,
N.J: Wiley, 2005.

——, “How language shapes thought,” Scientific American, vol. 304,
no. 2, pp. 62-65, 2011.

R. K. Hendricks and L. Boroditsky, “New space-time metaphors
foster new nonlinguistic representations,” Topics in Cognitive Science,
vol. 9, no. 3, pp. 800-818, 2017. [Online]. Available: https:
/lonlinelibrary.wiley.com/doi/full/10.1111/tops.12279

O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured programming,
11th ed., ser. APIC studies in data processing. London: Academic Press,
1972, vol. 8.

M. Kracht, “The emergence of syntactic structure,” Linguistics and
Philosophy, vol. 30, no. 1, pp. 47-95, 2007.

——, The Mathematics of Language. UCLA, 2003. [Online]. Avail-
able: https://linguistics.ucla.edu/people/Kracht/courses/compling2-2007/
formal.pdf

Cantor, “Ueber unendliche, lineare punktmannichfaltigkeiten. 5.
fortsetzung: Fortsetzung des artikels in bd. xxi, pag 51.
Mathematische Annalen, vol. 21, pp. 545-591, 1883. [Online].
Available: https://eudml.org/doc/157080

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

M. Kracht, “Using each other’s words,” in The Road to Universal
Logic. Birkhduser, Cham, 2015, pp. 341-349. [Online]. Available:
https://rd.springer.com/chapter/10.1007/978-3-319-10193-4_15

D. Hilbert and W. Ackermann, Grundziige der Theoretischen Logik,
6th ed., ser. Grundlehren der Mathematischen Wissenschaften Ser.
Berlin, Heidelberg: Springer Berlin / Heidelberg, 1972, vol. v.27.

T. Berners-Lee and M. Fischetti, Weaving the Web: The original design
and ultimate destiny of the World Wide Web by its inventor, 1st ed. San
Francisco, Calif.: HarperCollins, 2000.

R. Koschke, J.-F. Girard, and M. Wurthner, “An intermediate representa-
tion for integrating reverse engineering analyses,” in Proceedings / Fifth
Working Conference on Reverse Engineering. Los Alamitos, Calif.:
IEEE Computer Society Press, 1998, pp. 241-250.

H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R.
Kennaway, M. J. Plasmeijer, and M. R. Sleep, “Term graph rewriting,”
in PARLE, ser. Lecture Notes in Computer Science, J. W. de Bakker,
A. J. Nijman, P. C. Treleaven, and J. W. de Bakker, Eds. Berlin:
Springer, 1987, pp. 141-158.

D. Plump, “Term graph rewriting,” in Applications, languages and
tools, ser. Handbook of graph grammars and computing by graph
transformation / /managing ed, H. Ehrig, G. Engels, H.-J. Kreowski,
G. Rozenberg, H. Ehrig, and G. Rozenberg, Eds. Singapore: WORLD
SCIENTIFIC, 1999, pp. 3-61.

J. Goll, Architektur- und Entwurfsmuster der Softwaretechnik: Mit
lauffihigen Beispielen in Java, 2nd ed. Wiesbaden: Springer Vieweg,
2014.

D. Bdumer, D. Riehle, W. Siberski, and M. Wulf, “The role object
pattern,” in Washington University Dept. of Computer Science, 1998.
C. Rupp and S. Queins, UML2 glasklar: Praxiswissen fiir
die UML-Modellierung, 4th ed. Miinchen: Hanser, 2012.
[Online]. Available: http://www.hanser-elibrary.com/action/showBook?
doi=10.3139/9783446431973

H. Balzert, Lehrbuch der Objektmodellierung: Analyse und Entwurf ;
mit CD-ROM, ser. Lehrbiicher der Informatik. Heidelberg and Berlin:
Spektrum Akad. Verl., 1999.

P. Coad, “Object-oriented patterns,” Communications of the ACM,
vol. 35, no. 9, pp. 152-159, 1992.

S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing -
STOC ’71, M. A. Harrison, R. B. Banerji, and J. D. Ullman, Eds. New
York, New York, USA: ACM Press, 1971, pp. 151-158.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 404-419.

——, “code2vec: Learning distributed representations of code,” Pro-
ceedings of the ACM on Programming Languages, vol. 3, no. POPL,
pp. 1-29, 2019.

H. Yarahmadi and S. M. H. Hasheminejad, “Design pattern detection
approaches: a systematic review of the literature,” Artificial Intelligence
Review, vol. 53, no. 8, pp. 5789-5846, 2020.

R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java
classes with code2vec: Improvements from variable obfuscation,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 243-253.

G. Rasool, I. Philippow, and P. Méder, “Design pattern recovery based
on annotations,” Advances in Engineering Software, vol. 41, no. 4, pp.
519-526, 2010.

P. Warintarawej, M. Huchard, M. Lafourcade, A. Laurent, and P. Pom-
pidor, “Software understanding: Automatic classification of software
identifiers,” Intelligent Data Analysis, vol. 19, no. 4, pp. 761-778, 2015.
M. Schindler, A. Rausch, and O. Fox, “Clustering source code ele-
ments by semantic similarity using wikipedia,” in Proceedings of 4th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), 2015, pp. 13-18.

J. He, C.-C. Lee, V. Raychev, and M. Vechev, “Learning to find
naming issues with big code and small supervision,” in 2021 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI "21). ACM, 2021, pp. 1-16.

M. Schindler and A. Rausch, “Architectural concepts and their evolu-
tion made explicit by examples,” in ADAPTIVE 2019, The Eleventh
International Conference on Adaptive and Self-Adaptive Systems and
Applications, vol. 11, 2019, pp. 38—43.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

21

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

[62

jqassistant — your software . your structures . your rules. [retrieved:

03, 2023]. [Online]. Available: https://jqassistant.org

[63] Unit test your java architecture - archunit. [retrieved: 03, 2023].
[Online]. Available: https://www.archunit.org

[64] StructurelO1 software architecture development environment (ade).
[retrieved: 03, 2023]. [Online]. Available: https://structure101.com

[65] Dependometer. [retrieved: 03, 2023]. [Online]. Available: https:
//github.com/dheraclio/dependometer

[66] G. Rasool and D. Streitfdert, “A survey on design pattern recovery
techniques,” International Journal of Computer Science Issues (IJCSI),
vol. 8, no. 6, p. 251, 2011.

[67] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 1EEE, 2020, pp. 261-271.

[68] C. Knieke, A. Rausch, and M. Schindler, “Tackling software architecture
erosion: Joint architecture and implementation repairing by a knowledge-
based approach,” in 2021 IEEE/ACM International Workshop on Auto-
mated Program Repair (APR). 1EEE, 6/1/2021 - 6/1/2021, pp. 19-20.

[69] C. Knieke, K. Marco, A. Rausch, M. Schindler, A. Strasser, and
M. Vogel, “A holistic approach for managed evolution of automotive
software product line architectures,” in ADAPTIVE 2017, A. A. Enescu
and A. Rausch, Eds. Wilmington, DE, USA: IARIA, 2017, pp. 43-52.

[70] B. Bollobds, Modern Graph Theory. New York, NY: Springer New
York, 1998, vol. 184.

[71] H. Lee-Kwang and K.-M. Lee, “Fuzzy hypergraph and fuzzy partition,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 1,
pp. 196-201, 1995.

[72] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed., ser. Safari Tech Books Online. Upper Saddle River, NIJ:
Addison-Wesley, 2013.

[73] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Objects,
1st ed., ser. Wiley Software Patterns Series. s.1.: Wiley, 2013. [Online].
Available: http://gbv.eblib.com/patron/FullRecord.aspx?p=699910

[74] S. Herold, Architectural compliance in component-based systems: Foun-
dations, specification, and checking of architectural rules, 1st ed., ser.
SSE-Dissertation. Miinchen: Verl. Dr. Hut, 2011, vol. 5.

[75] S. Herold, C. Knieke, M. Schindler, and A. Rausch, “Towards improving

software architecture degradation mitigation by machine learning,” in

ADAPTIVE 2020, The Twelfth International Conference on Adaptive

and Self-Adaptive Systems and Applications, 2020, pp. 36-39.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

VR-SysML+Traceability: Immersive Requirements Traceability and Test
Traceability with SysML to Support Verification and Validation in Virtual Reality

Roy Oberhauser!

0000-0002-7606-8226]

Computer Science Dept.
Aalen University
Aalen, Germany
e-mail: roy.oberhauser@hs-aalen.de

Abstract - As systems grow in complexity, the interdisciplinary
nature of systems engineering makes the visualization and
comprehension of the underlying system models challenging for
the various stakeholders. This, in turn, can affect validation and
realization correctness. Furthermore, stakeholder collaboration
is often hindered due to the lack of a common medium to access
and convey these models, which are often partitioned across
multiple 2D diagrams. This paper contributes VR-SysML, a
solution concept for visualizing and interacting with Systems
Modeling Language (SysML) models in Virtual Reality (VR).
Our prototype realization shows its feasibility, and our
evaluation results based on a case study shows its support for
the various SysML diagram types in VR, cross-diagram element
recognition via our Backplane Followers concept, and depicting
further related (SysML and non-SysML) models side-by-side in
VR.

Keywords - Systems Modeling Language (SysML); virtual
reality; systems modeling; systems engineering; requirements
traceability; test traceability; system testing; verification and
validation.

I. INTRODUCTION

This paper extends the immersive Systems Modeling
Language (SysML) model visualization and interaction
capabilities in VR-SysML [1]. Towards supporting immersive
software (SW) verification and validation (V&V), it
contributes semi-automated requirements traceability and test
tracing capabilities visualized in VR.

Systems engineering (SysE) is an interdisciplinary
collaborative engineering field dealing with the design,
integration, and management of complex system solutions
over their lifecycle. The field faces a continuous challenge of
growing system complexity, an increasing share of
functionality shifted to software, system resource constraints,
while coping with compressed development timeframes and
project budget and resource constraints. Furthermore, the
interdisciplinary nature of SysE means that diverse
stakeholder types and groups with their specialty
competencies and concerns are involved and who may not be
readily acquainted with the model types and modeling
languages involved. Any models may be digitally isolated or
practically inaccessible to all stakeholder types, "hidden"
within "cryptic" modeling tools that certain modeling
specialists may understand. Due to the interdisciplinary nature
of SysE, the inaccessibility and lack of model comprehension

can hamper collaboration and affect overall system validity
and correctness with regard to requirements. Visualized
requirements traceability can help support validity checking.
Furthermore, visualizing test traceability can help with the
analysis of the testing effort and support V&V.

While SysE can involve various models including
physical, mechanical, electrical, thermodynamic, and
electronic, the focus of this paper is on the Systems Modeling
Language [2]. SysML is a dialect of the Unified Modeling
Language (UML®) and defined as a UML 2 Profile. Views
and their associated diagrams can help reduce cognitive
overload, yet their divided nature also risks overlooking a
relation or element and comprehending the overall model.
Ideally, a model should be whole and complete to the
appropriate degree for the reality it is depicting and
simplifying. Yet the modeling languages and associated
tooling typically assumes a 2D display and portrays portions
of models sliced onto 2D diagrams. Although 3D models can
be portrayed on 2D displays, they lack an immersion quality.

VR is a mediated visual environment which is created and
then experienced as telepresence by the perceiver. VR
provides an unlimited immersive space for visualizing and
analyzing a growing and complex set of system models and
their interrelationships simultaneously in a 3D spatial
structure viewable from different perspectives. Lacking a
proper 3D system modeling notation, in the interim we
propose retaining the well-known SysML notation and
interconnecting 2D SysML diagrams in VR, which can suffice
for depicting the relations between elements across diagrams
and assist with navigating and validating complex models. As
system models grow in complexity and reflect the deeper
integration and portrayal of their system reality and
environment, an immersive digital environment provides an
additional visualization capability to comprehend the “big
picture” model for structurally and hierarchically complex
system models via interconnected diagrams and associated
digital elements.

As to our prior work in visualizing architecture in VR, VR-
UML [3] provides VR-based visualization and interaction
with UML models. VR-EA [4] visualizes Enterprise
Architecture (EA) ArchiMate models in VR. Extending VR-
SysML [1], this paper contributes VR-SysML+Traceability, a
VR-based solution concept for visualizing and interacting
with SysML while adding additional SysML automated
requirements traceability and test tracing capabilities to
support SW V&V. Our prototype realization shows its

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

23

feasibility, and a case-based evaluation provides insights into
its capabilities.

The remainder of this paper is structured as follows:
Section 2 discusses related work. In Section 3, the solution
concept is described. Section 4 provides details about the
realization. The evaluation is described in Section 5 and is
followed by a conclusion.

II. RELATED WORK

As to visualization approaches with SysML, Nigischer and
Gerhard [5] proposed a lightweight 3D visualization for
SysML models in Product Data Management. They describe
an approach and concept, but no prototype is shown. Barosan
et al. [6] describes a 3D SysML digital-twin-in-loop virtual
simulation environment of a distribution center for truck
driving test scenarios integrating IBM Rhapsody with
Unity3D; VR and immersion are not considered. Mahboob et
al. [7] describe a model-based approach to generate VR object
collision simulation scenes from SysML behavior models.

Besides our own VR-UML [3], VR features are not yet
commonplace in UML tools: Ozkaya [8] analyzed 58 different
UML tools without any mention of VR, and Ozkaya and Erata
[9] surveyed 109 practitioners to determine their UML
preferences without any mention of VR. Non-VR 3D-based
UML visualization includes X3D-UML [10], VisAr3D [11],
and the case study by Krolovitsch and Nilsson [12].

Work related to requirements traceability visualization
includes Li & Maalej [13], which found traceability matrices
and graphs preferrable for management tasks. Matrices were
preferred for an overview, while graphs were preferred for
navigating linked artifacts. They noted that users were not
always capable of choosing the most suitable traceability
visualization. Abad et al. [14] performed a systematic
literature review on requirements engineering visualization.
Madaki & Zainon [15] performed a review on tools and
techniques for visualizing SW requirement traceability. None
of the above literature mentioned immersive or VR
techniques; our literature search did not find similar work.

With regard to test traceability, we found no VR work
directly addressing this topic. VR-related work regarding
software analysis includes VR City [16], which applies a 3D
city metaphor. While it briefly mentions that its work might
be used for test, it shows no actual results in this regard and in
this regard only a trace mode visualization is depicted.

In contrast, VR-SysML+Traceability provides an
immersive visualization and experience with SysML models,
providing automatic layout of views as stacked 3D
hyperplanes, visualizing the reality of inter-view relations and
recurrence of elements, and enabling interactive modeling in
VR. Furthermore, it provides traceability of requirements and
test status to immersively support V&V. Hypermodeling
support enables SysML, UML, and other relevant models to
be simultaneously visualized in the same virtual space,
supporting cross-model analysis across various diagram types
and stakeholder concerns.

III. SOLUTION CONCEPT

Our solution concept is based on VR. In support of our
view that an immersive VR experience can be beneficial for

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

model analysis, Miiller et al. [17] compared VR vs. 2D for a
software analysis task, finding that VR does not significantly
decrease comprehension and analysis time nor significantly
improve correctness (although fewer errors were made).
While interaction time was somewhat less efficient than the
common daily 2D interactions one is used to and has been
trained in for years, it is important to note that VR improved
the user experience, was more motivating, less demanding,
more inventive/innovative, and more clearly structured.

(('VR-EA+TCK [KIVIS | [ECMS

VR-MF

Data Retrieval VR-EAT VR-EA
Archimate

Visualization
Navigation

Enterprise
‘—]M" €ls | "yR-BPMN

Enterprise
I Vie\?vs l BPMN

+hracehbiliy

IS
Y _ VR-Git)

Figure 1. Conceptual map of our various VR solution concepts.

SysML is a general-purpose architecture modeling
language for systems and systems-of-systems, supporting
their specification, analysis, design, verification, and
validation. Out of UML 2’s diagrams, it reuses seven
(modifying four of these) while adding two additional ones.
Thus, for VR-SysML (Figure 1) we chose to extend our VR-
UML [3] solution concept, which is based on our generalized
VR Modeling Framework (VR-MF) (detailed in [4]). VR-MF
provides a VR-based domain-independent hypermodeling
framework addressing four aspects requiring special attention
when modeling in VR: visualization, navigation, interaction,
and data retrieval. Our other VR architectural modeling
solutions include VR-BPMN [18], VR-ProcessMine [19],
VR-EA [4], and VR-EAT [20], which integrates the EA tool
Atlas to provide dynamically-generated EA diagrams in VR.
VR-EA+TCK [21] adds additional capabilities, integrating
enterprise Tool, Content, and Knowledge such as a
Knowledge Management Systems (KMS) and/or Enterprise
Content Management Systems (ECMS). While SysML is
popular for embedded and model-based systems, it is also
applicable to domains such as EA. In the Software
Engineering (SE) area, which we group under VR-SE,
whereby VR-TestCoverage [22] and VR-Git [23] address test
coverage and code repository aspects in VR.

A. Visualization in VR

Our concept attempts to leverage the best of 2D and VR:
to support diagram comprehension, we chose not to diverge
significantly from the SysML notation. Yet placing 2D
SysML images like flat screens in front of users would provide
little added value in the 3D VR space. A plane is used to
intuitively represent a diagram. Stacked hyperplanes are used
to support viewing multiple diagrams at once, while
permitting a user to readily have an overview of the number
and types of diagrams. Furthermore, hyperplanes serve a
grouping function and allow us to utilize the concept of a
common transparent or invisible backplane to indicate
common elements across diagrams via multi-colored inter-

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

24

diagram followers. Versus side-by-side, stacked diagrams are
a scalable approach for larger projects since the distance to the
VR camera is shorter. Multiple stacks can be used to group
diagrams or delineate heterogencous models. Diagrams of
interest can still be viewed side-by-side by moving them from
the stack via an anchor sphere affordance on a diagram corner,
which is also used to hide or collapse diagrams to reduce
visual clutter. To distinguish SysML elements types, 2D icon
images can be placed on generic (e.g., block) model elements,
in order to reduce the effort of modeling each SysML element
type as a separate 3D form for VR.

B. Navigation in VR

One navigation challenge arising from the immersion VR
offers is supporting intuitive spatial navigation while reducing
potential VR sickness symptoms. Thus, we incorporate two
navigation modes in our solution concept: the default uses
gliding controls for fly-through VR, while teleporting
instantly places the camera at a selected position. Although
potentially disconcerting, it may reduce the likelihood of VR
sickness induced by fly-through for those prone to it.

C. Interaction in VR

As VR interaction has not yet become standardized, in our
concept user-element interaction is supported primarily
through VR controllers and a Virtual Tablet. The VR-Tablet
provides detailed element information with context-specific
Create, Retrieve, Update, Delete (CRUD) capabilities
including a virtual keyboard for text entry via laser pointer key
selection. The aforementioned corner anchor sphere
affordance supports moving / hiding / displaying diagrams.
Inter-diagram element followers can be displayed, hidden, or
selected (emphasized).

D. Traceability

A modeling tool such as Sparx Systems Enterprise
Architect can be used to provide requirement and test
traceability information via SysML. Our solution then extracts

traceability-related information from relevant SysML
diagrams (Requirements and/or Use Case diagrams),
including elements such as Requirement (stereotype

«requirement») and Test Case, and relations such as «satisfy»,
«verify», and «deriveReqty, etc.

Parent
Requirement

L l

Child
Requirement

Figure 2. Depicting (sub/super)-requirement dependencies, with degree of
implementation on the left and test implementation on the right edge.

For tracing requirements with their dependent code
implementation status, annotations are placed in the code to
indicate with requirement IDs are addressed. These are
extracted by a tool that parses all (test) code files and generates
a report. The result is then visualized on the relevant

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

requirement element edges in the diagram in VR (e.g., red
means that requirement ID was not found in the (test) code,
green if at least one reference was found, and for parent
requirements yellow if partially addressed based on some
child element(s) missing a reference (see Figure 2). Also, a
total degree of implementation considering the elements on
that diagram level is also provided on the side of a diagram.

To trace test results to their requirements, the test results
are extracted from a test tool report, e.g., in the JUnit XML
format used by pytest and JUnit. The test result is then
visualized on the relevant requirement diagram elements in
VR (e.g., red if no test was found, yellow if not all passed, and
green if passed). Also, a total degree of test implementation
considering the elements on that diagram level is also
provided on the diagram side.

Connectors can be followed to trace these to the actual
artifacts, the content of which can be shown in the VR-Tablet.

Note that while the traceability model utilizes information
from SysML in addition to other sources, we chose to
visualize it in VR independent of SysML conformant
constraints, opting for a more intuitive visual depiction of
traceability for the stakeholder. Placing a VR-SysML model
next to a traceability model is intended and supported. That
way, the VR-SysML expresses the exact model it does in a
SysML tool, while the traceability model can include the
additional automatically extracted implementation and test
features without encumbering the SysML model.

For our traceability visualization, we thus chose to layer
the information ordered by degree of abstraction as shown in
Figure 3. The top layers are SysML model-related: Use cases
being the highest abstraction and thus on top, requirements
being more concrete and a level below, and test cases being
used to verify requirements and thus below requirements but
shifted to the side to indicate they relate to testing. The lower
layers consist of file trees that visualize the test source code
files implementing test cases, and the implementation layer
consisting of source code files that implement the
requirements.

E

EA
Diagram

Requirements

!

Layer
Depth

E

E

File Trees

Implementation

v [] \4

Figure 3. VR-SysML visual layering for traceability.
In general, a backplane is used with colored trace lines to

show all the traces, thus indicating the total available traces
and the degree of traceability. This avoids a spider web-like

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

25

tracing of lines across all elements. However, when an
element of interest is selected, then direct trace lines specific
to that element are also depicted (analogous to a spotlight).

IV. REALIZATION

The realization of the solution focused on two aspects: 1)
realizing a correct portrayal of the various SysML diagrams
and providing a way to trace the same element to its
occurrence in other diagrams (which we name VR-SysML),
and 2) the extraction and visualization of requirements
traceability information from SysML diagrams and
implementation files and test code files.

A. VR-SysML Realization

The logical architecture for our VR-SysML prototype
realization is shown in Figure 4.

Unity Data Hub
3D Environment MongoDB

Laser Pointer Selection
via Controller Menu
3D Object Structure
Visualization

[Enterprise Architect]

Python

SysML
Collection1 «1 ’W‘ i XMI Format

Export

Selection
m Collection2
L

Figure 4. VR-SysML logical architecture.

SysML models are imported in XMI format to our Data
Hub that is implemented in Python. Xmitodict is used to
convert the XMI to a key-value dictionary and the built-in
JSON package is used for JSON conversion. Pymongo is used
to store the JSON (as BSON) in the NoSQL document
database MongoDB. The scripts in the Unity environment
utilize json.NET. SysML XMI files produced from
SparxSystems Enterprise Architect were used. Our prototype
currently does not consider the Allocation Table (relationship
matrices).

B. Requirements Traceability Realization

The logical architecture for our traceability realization is
shown in Figure 5.

| VR Unity
Code Analyzer -JSON-File—{ Application
Py/X?.:L\XML
|
§ Enterprise
Code S Architect
P SysML File

Source Code
Files

‘ Test Code Files

Figure 5. VR-SysML logical architecture for traceability realization.

Start
‘impor‘terpy H core.py |<—>| lang.py ‘ ‘ helper.py ‘

Figure 6. Python modules contained in the Code Analyzer tool.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

The Code Analyzer tool has a Command Line Interface
(CLI) and is implemented in Python. Based on input
parameters, it scans the given files and extracts information
such as requirements IDs from code, test reports in JUnit
XML, and SysML Enterprise Architect XMI files, producing
a JSON file as output that is then imported by the VR
application running on the Unity platform. Its modular
realization is shown in Figure 6.

Within SysML models, a diagram element with the
property “id” serves as the reference for identifying and
differentiating requirements as shown in Figure 7 and for test
cases as shown Figure 8. The Python library
xml.dom.minidom is used to extract the ID, element types,
element position and size, relations between elements, and
properties, comments, or annotations.

«requirement»
Requirement B

id ="124"

Figure 7. Requirement “id” as property in SysML.

«testCase»
test_string

id = tc532 ’

Figure 8. Test case “id” as property in SysML.

1 def test_method(): # REQID: 312 TESTID: tcl232 TESTTARGET:
— network.py

2 pass

123,

Figure 9. Traceability annotation example: associating a test method in
test code to a requirement and test target (the implementation).

"MNTagt File"""
REQID: 123

1
2
3
4 def test_method() :

5 pass

Figure 10. Traceability annotation example: associating all methods in a
test source file to one (or more) requirement(s).

Source
Folder
Folder Folder
A B
File File Folder File
Cc D E F
File File
G H

Figure 11. Example file tree with folders.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

26

Since almost all programming languages support
comments, the annotations are provided as comments and can
thus be utilized in any programming language. For this,
lang.py must be extended for each additional language.
Within source code, the keyword “REQID” indicates the
unique identifier (ID) of a requirement, and can be associated
with a (test) method, as shown in Figure 9. When a (test)
method satisfies multiple requirements, multiple IDs can be
separated via commas. The keyword "TESTID" is used to
associate a SysML diagram. Finally, “TESTTARGET” is
only used within test files to indicate the test target. Multiple
references are possible separated by commas. Some
requirements are overarching and it would be arduous to
associate each method separately. Thus, for the case when all
methods in a file address one (or more) requirement(s),
“REQID” can be placed at the top of the file (separate from
method declarations or definitions), thus implicitly indicating
it is associated with all methods in that file, as exemplified in
Figure 10.

To build balanced file trees to portray the test source and
implementation source, with each tree consisting of folders
and files (see Figure 11), an implementation of Reingold-
Tilford algorithm [24] was adapted.

V. EVALUATION

We base the evaluation of our solution concept on design
science method and principles [25].

A. VR-SysML Evaluation

A case study is used with an emphasis on SysML diagram
type support, how these are visualized in VR, and additional
capabilities in VR. A sample SysML project with all 9 SysML
diagram types is used to compare the visualization in
Enterprise Architect to that in VR-SysML, grouped as
requirement, behavior, or structure diagram types.

As shown in Figure 12, the various diagrams of the SysML
model are mapped to stacked hyperplanes that provide an
anchor affordance (black sphere) with which to expand,
collapse, or move a diagram. Planes and elements have a
shallow 3D depth with labeled edges to support recognition
from different viewing angles. The colors of the planes can be
configured to help with differentiation or grouping.
Furthermore, our backplane concept creates followers that
allow one to quickly find the same element across different
diagrams in the same model, to readily see in which diagrams
that element participates, or to determine that the element is
only shown on one diagram (it not having a follower). The
colored followers can be selected (made bold) and the other
followers can be hidden if desired to reduce visual clutter for
larger models.

1) SysML Requirement Diagram. SysML extends UML
with an additional diagram type, the Requirement diagram. It
can be used to specify functional and non-functional
requirements for the model. An example viewed in EA is
shown Figure 13 and in VR in Figure 14. In VR, elements are
labeled on edges to support reading from different angles.
The VR Tablet can provide more details or interaction
capabilities for a selected element, and while support for

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

modeling capabilities is shown on the interface, these are
currently placeholders and have not yet been fully
implemented in the prototype (create, modify, delete, export).

Figure 12. VR-SysML backplane with inter-diagram followers.

«requirement»
Requirement A

id="identifierone"
text ="[Text details of Requirement AJ"

«requirements
Requirement A.1

id="identifierTwo"
text = "[Text details of Requirement A1"

«requirements «requirements
irement A.1. Requirement A.2.1

f—— id = “identifierSeven
text = "[Text details of Requirement A2.1"

b——{ id = "identifierfive"
text = "[Text details of Requirement A.1.1"

arequirements «requirements
Requirement A.1.2 Requirement A

L— id="identifiersix"
text = *[Text details of Requirement A.1.2"

L id="identifiereight”
text = [Text details of Requirement A2.2"

Figure 13. Requirement Diagram in EA.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

27

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Initial

Action A

Figure 14. Requirement Diagram in VR.

[Guard B]
Decision A

2) SysML Use Case Diagram. As a behavior diagram,

SysML includes the Use Case Diagram from UML as shown (Guard A]
from EA in Figure 15 and VR in Figure 16. In order to more
readily recognize and differentiate the diagram type, an oval
shape was used for the use cases. However, the actors utilize P
our generic cube concept with notation symbols placed on the

various sides. This provides a flexible mechanism for quickly
supporting various notation element types and tailoring or
extending model element types using any icons or images.

O,

Final

% System Actor E Figure 17. Activity Diagram in EA.
—_— Use Case A Use Case D
Actor A

_ Use Case B — %5
Actor B Actor D
Actor C

Figure 15. Use Case Diagram in EA.

Subject A

Figure 18. Activity Diagram in VR.

4) SysML Sequence Diagram. Sequence diagrams
(unmodified from UML) provide a further dynamic behavior
diagram, showing interactions via message sequences, from
EA in Figure 19 and VR in Figure 20.

% ObjectA Object B

Actor A
|

Subject A

|
|
1
Figure 16. Use Case Diagram in VR. “
|
|

Message One() |

Message Two()

R

[
[
< - ———————— :

3) SysML Activity Diagram. Another dynamic behavior
diagram type that can be used to specify dynamic system
behaviors, such as control flow and object flows, is the
Activity diagram in SysML from EA in Figure 17 and VR in
Figure 18. It is slightly modified from that in UML, adding
additional semantics for Continuous Flow and Probability.

Figure 19. Sequence Diagram in EA.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

28

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

«block»
Block One

vto: Value Type One vit: ValueTypeTwo

«block» «block» «block» «blockn

Block Two Block Three Block Four Block Five
Portd Portd Ports Port6 Port7 Port8 Port9 Port10
«valueType» avalueType»
. . . Value Type One ValueTypeTwo
Figure 20. Sequence Diagram in VR.

5) SysML State Machine Diagram. State machine
diagrams (unmodified from UML) are a dynamic behavior
diagram showing states transitions that occur in response to
events, from EA in Figure 21 and VR in Figure 22.

o st e
entry / Action A(typeOne)

do/ Action B
exit / Action C

Figure 23. Block Definition Diagram (BDD) in EA.

entry / Action A(typeOne)
do/ Action B
exit / Action C

Initial

Trigger Two [Guard
Twol /Effect Two

Trigger Three [Guard Three]

Trigger Four [Guard Four] [Effect Three

[Effect Four

entry / Action A(typeOne)
do/ Action B
exit / Action C

Figure 21. State Machine Diagram in EA.

Figure 24. Block Definition Diagram (BDD) in VR

)
eql : Constraint Block A.1
b : Integer [y fa=pb*a
¢ Integer D . R
eq2 : Constraint Block A.2
{g=a+d}
] eomeger
Figure 22. State Machine Diagram in VR. e M)
g3 : Constraint Block A.3
. . . o iteger M. et
6) SysML Block Definition Diagram (BDD). A BDD is a e B)
static structural diagram, analogous to the UML Class

diagram type with certain modifications, and shows system
components, their contents (as properties, behaviors,
constraints), interfaces, and relationships. See Figure 23 for
an example from EA and Figure 24 for VR. It can be used for
describing the system structure as a hierarchy of relations
between systems and subsystems typically consisting of
“black-box™ blocks. As a possible specialization, it can be
useful to explicitly model constraints separately, referred to
as Constraint Block diagrams (see Figure 25 for an EA
example and Figure 26 for VR), which can be referenced by
Parametric diagrams.

Figure 25. Constraint Block Diagram in EA.

Figure 26. Constraint Block Diagram in VR.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7) SysML Internal Block Diagram (IBD). An 1BD is a
static structural diagram that depicts the internal
(encapsulated) composition (structural contents) of a Block
in a BDD, i.e., a “white-box” view. This includes properties,
parts, interfaces, connectors, and ports, and can be used to
depict the flow of inputs and outputs between them. See
Figure 27 for an example in EA and Figure 28 for VR.

«block»
Block One

namespace

Part2: Block Three

Part1: Block Two

R Portd

[T vaern
Type One ValueTypeTwo

[] porta:
Integer

Part3: Block Four Partd: Block Five

[]re7 pons Ports

Figure 27. IBD in EA.

Figure 28. IBD in VR.

8) SysML Parametric Diagram. A static structural
diagram type, Parametric diagrams (see Figure 29 for EA and
Figure 30 for VR) are a specialization of IBD to model
equations with parameters and can be used to enforce
mathematical rules or constraints defined via Constraint
Blocks.

«constraint»
Constraint Block A

parameters
¢ : Integer
b : Integer
e :Integer
f: Integer
g : Integer

constraints
eq2 : Constraint Block A.2
eql : Constraint Block A.1
€q3 : Constraint Block A.3

oo

1
+eq +eq2| +eq3
I

«constraint»
Constraint Block A.3

«constraint»
Constraint Block A.1

«constraint»
Constraint Block A.2

constraints
{d=e* f/2}

constraints constraints
a=b*q) g=a+d)

parameters
b : Integer
a :Integer
¢ : Integer

parameters
a :Integer
d :Integer
g : Integer

parameters
d : Integer
e :Integer
f: Integer

Figure 29. Constraint Parametric Diagram in EA.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Consiraint Block A2

Figure 30. Constraint Parametric Diagram in VR.

9) SysML Package Diagram. A SysML Package diagram
(see Figure 31 for EA and Figure 32 for VR) is further static
structural diagram based on the equivalent UML type (with
minor modifications). Packages provide a general-purpose
mechanism for grouping model elements and diagrams, and
the diagram can be used to show their contents and the
relationship between them.

Package A

Package A.1 Package A.2 Package A3

Figure 31. Package Diagram in EA.

Figure 32. Package Diagram in VR.

10) Multi- and Heterogeneous Model Depiction in VR.
VR’s unlimited virtual space provides the potential to view,
compare, and analyze multiple SysML (left and center
models in Figure 33) or heterogeneous models side-by-side,
exemplified with an ArchiMate enterprise architecture model
on the right in Figure 33. For SysE, this immersive approach
also has the potential to support interdisciplinary
collaboration between specialization experts for complex
systems.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

30

Figure 33. Multiple and heterogeneous side-by-side models in VR.

B. Traceability Scenario: Requirements and Tests

To evaluate the traceability scenario, an example project
is used, consisting of a various source and test files with a
SysML requirements diagram in EA (see Figure 34). As can
be seen in the diagram, use cases related to requirements via
satisfy, and further child requirements via derived relations,
and test cases having a verify relation to the requirements.

Tealpeciag e remar Traceas I e 7o

Figure 34. Example requirements diagram in EA.

Output of the code analysis tool is shown in Figure 35. A
separate JSON file (not shown) with this information is
generated for VR to process the information for visualization.
The output shows the scanned use cases, derived
requirements, test cases, test files, and implementation source
files, and their relations.

The visualization of the traceability layers (Figure 36) and
relations backplane (Figure 37) are shown in VR. Use cases
(biege) are the most abstract at the top (Figure 38), with satisfy
relations following requirements. The number of requirements
layers (dark grey) (Figure 39) are variable, depending on the
depth of derivation hierarchy, in this case two additional
layers. The test cases layer (Figure 40) is shown in (blue) and
offset to the right of the stack. File trees for the
implementation and the tests (shifted to the right) are depicted
on the lowest purple planes as seen in Figure 41.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

25-3an-22 12:51:52 - INFO: Start requirelyzer.
25-3an-22 12:51:52 - INFO: Inporting Projects. ..

25-Jan-22 12:51:52 - INFO: Start parsing project: 'Enterprise Architect' (Parser: python)
25-3an-22 12:51:52 - WARNING: Testfile 'test_exanplel.py’
25-0an-22 12:51:52 - WARNING: Testfile 'test_exanplel.py’
© and conpare it with the analyzed test cases.
jone 1n 0.037439099999999955

already added to ‘Requirenent D' (126)
already added to 'Requis ¢ (128)

Use Case C
Use Case A
Use Case B
Dependencies

Annotation Testfiles

test_exanplel.py
Foo bar

Requirenent C Hediun
Requirenent & Hediun
Requirement 8.2 Hign

Requirenent 8.1 Hediun 126.1.1

test_exanplel.py, test_footar.py
test_bar.py

Loren ipsun test_fail.py
test_exanplel.py

124.2, 126.1

124.1.1 Requirenent 8.1.1 Hediun test_bar.py
————— DIAGRAN TESTCASES -----=-=--
o Nene Requirenents Has Testfile
te238 testags 126 False
te9s2 test.ads2 126 True
rrrrrrrrrr TESTCASES ----------
D Name Failed Requirements Testtargets
952 test.add False 124.1, 126, 125 network.py
test.adi False 126, 125
test_fai 126.2
126, 124.1.1
s core. oy
Testcases Failed Testcases
test_exanplel.py D: Jekt\21-p: P Ject\tests\test_exanplel.py 2 False test.add, test.ada2
test_fail.py B P ject\tests\test_fail.py 1 Tree test_failed
_bar.py 1 False test.string
_foobar.py 1 False test.string
_fo0.py 1 False testmath
Requirenents
core.py Di\Projekte\SE-projekt\21n-pa-greiner\test-projects\python-project\sre\core.py 124

netuork.py D:\Projekte\SE-Projekt\21u-pa-greiner\test-projects\pytnon-project\src\netnork.py 125,124
25-3an-22 12:51:53 - INFO: Exporting project file: Enterprise Architect.json
(venv) Ps D:\Proj Jekt\21n-pa-gr

Figure 35. Code analyzer output.

pre——————EEEE
Usecases -->

<-- Requirements

Figure 36. Annotated traceability layers and relations backplane in VR
(without element selected).

| I | |

Figure 37. Traceability relations on backplane.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

31

Figure 39. Requirements layers (one element selected showing direct
spotlight relations).

Figure 40. Test cases layer (one element selected).

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Figure 41. Test files layer showing tree (faintly in grey) of folders and files
(with one element selected).

Requirements elements are colored on the edges (see
Figure 42): the left side for implementation status and the right
side for test case implementation status. The status is colored
in three segments: red indicates the percentage of a (product
or test) implementation missing, green the percentage
completed, and yellow partial fulfillment. Thus, from the
perspective of one side of all layers one can get a quick
impression of the overall requirements implementation status
or from the right side the test implementation status on a per-
layer basis.

A e i Izs.g,.,u,,.m

124 - Requirement B @

Figure 42. Use case layer.

The requirements layer shows a total fulfillment degree on
the diagram edges: left for implementations and right for test
cases. For example, in Figure 43 on that requirements layer
three requirements are unimplemented while one is, so on the
left edge 25% is shown for green and 75% in red, while in
Figure 44 since three out of four requirements have tests, on
the right edge red shows 25% and green shows 75%. This
might be the case if the test team is ready with tests before the
implementation has made progress, e.g., as with Acceptance
Test-Driven Development (ATDD).

Figure 44. Requirements layer right side (test fulfillment).

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

32

Figure 45. Selected requirement highlights the verifying test cases.

Figure 45 shows the traceability between a requirement to
its associated verification test cases.

As to the VR-Tablet, additional detailed information about
an object is shown. In Figure 46 for the selected requirement
ID 126 the name (Requirement D) is shown, the number of
test files (1) that exist, the test cases covered (2), and that no
implementation was found. Also note no downward trace to
the left towards the implementation is shown, only to the right
towards tests. In contrast, Figure 47 shows test files and
implementations exist for ID 125 (with downward traces in
both directions), which is why both its edges are green, while
Figure 48 shows a requirement with neither tests nor
implementation.

> €= e — —

Usecases

Figure 46. VR-Tablet shows detailed information about selected object.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Figure 48. VR-Tablet shows detailed information about selected object.

To determine use case satisfaction, the VR-Tablet
indicates if a selected use case is satisfied (Figure 49) or not
(Figure 50).

Usecases

Figure 49. VR-Tablet shows selected use case satisfied since requirement
implemented.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

33

e e

Figure 50. VR-Tablet shows selected use case unsatisfied since requirement
not fulfilled.

When viewing test files, the VR-Tablet indicates the
number of test targets that exists (the target can be found by
following the trace), and if the test passed (Figure 51) or failed
(Figure 52).

Figure 51. VR-Tablet shows associated test implementation name as
test_examplel.py with a single test target.

Figure 52. VR-Tablet showing test case status Failed as “True” and this test
case having no associated test target information.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

C. Discussion

The case-based evaluation of VR-SyML showed its ability
to depict the various SysML diagram types in VR.
Furthermore, the backplane supports the ability to quickly find
the same elements across the various diagram types. As
systems grow in complexity, these permits one to quickly find
an element of interest in its various contexts. VR-SysML
enables an immersive experience in the model, with the
unlimited VR space supporting for larger models, multiple
diagrams, prior or legacy model versions for comparison, and
even heterogenous models displayed simultaneously.

Our traceability evaluation showed the code analyzer was
able to automatically scan source code, test files and SysML
diagram files and automatically ascertain traceability relevant
information. The evaluation showed the ability of VR to
provide an intuitive way to simply portray (via layers, the
backplane, spotlights, and the VR-Tablet) the relevant
artifacts and trace the relations between requirements, tests,
and implementation to support V&V activities. This allows
independent stakeholders who may not be system experts to
evaluate the implementation and testing fulfillment without
being inundated with perhaps irrelevant details in typical
developer documentation.

VI. CONCLUSION

VR-SysML+Traceability contributes a VR-based solution
concept for visualizing and interacting with SysML while
adding automated requirements traceability and test tracing
capabilities to support SW V&V. An immersive SysML
model experience is provided for visually depicting and
navigating SysML diagrams of models in VR. The solution
concept was described, a VR prototype realized, while an
evaluation using case studies showed its capabilities. Using
VR hyperplanes, SysML diagrams are enhanced with 3D
depth, color, and automatically-generated inter-diagram
element followers based on our back-plane concept.
Interaction is supported via a virtual tablet and keyboard. The
unlimited space in VR facilitates the depiction and visual
navigation of large models, while relations within and
between elements, diagrams, and models can be analyzed.
Furthermore, additional related (SysML or non-SysML)
models can be visualized and analyzed simultaneously in VR,
benefiting complex systems-of-systems architectures or
collaboration. The sensory immersion of VR can support task
focus during model comprehension and increase modeling
enjoyment, while limiting the visual distractions that typical
2D display surroundings incur. The semi-automated
traceability capability enhances the V&V opportunities by
creating a simple and intuitive way to navigate and readily
determine the degree of implementation and test progress and
requirement fulfillment, even for quality assurance personnel
who are not deeply acquainted with the project.

Future work includes support for creating models directly
in VR, integrating further SysML tooling and simulation
capabilities, supporting tighter and more comprehensive
model verification and validation within the SysML diagrams,
and conducting a comprehensive empirical study to evaluate

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

34

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

usability with various stakeholder groups in collaborative
situations.

ACKNOWLEDGMENT

The author would like to thank Shadrach Arulrajah, Marie

Bahre, and Christian Greiner for their assistance with the
design, implementation, figures, and evaluation.

(1]

[10]

(1]

[12]

[13]

REFERENCES

R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), TARIA, 2022, pp. 59-64.

OMG, “OMG Systems Modeling Language Version 1.6,
Object Management Group, 2019.

R. Oberhauser, R., “VR-UML: The unified modeling language
in virtual reality — an immersive modeling experience,”

International Symposium on Business Modeling and Software
Design (BMSD 2021), Springer, Cham, 2021, pp. 40-58.

R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Shishkov, B. (ed.) BMSD 2019.
LNBIP, vol. 356, Springer, Cham, 2019, pp. 170-187.

C. Nigischer and D. Gerhard, “Lightweight visualization of
SysML models in PDM systems,” DS 87-3 Proc.eedings of the
21st International Conf. on Engineering Design (ICED 17) Vol
3: Product, Services and Systems Design, 2017, pp. 61-70.

I. Barosan, A. Basmenj, S. Chouhan, D. Manrique,
“Development of a Virtual Simulation Environment and a
Digital Twin of an Autonomous Driving Truck for a
Distribution Center,” Software Architecture (ECSA 2020).
CCIS, vol 1269, Springer, Cham, 2020, pp. 542-557.

A. Mahboob, S. Husung, C. Weber, A. Liebal, and H. Kromker,
“SYSML behaviour models for description of Virtual Reality
environments for early evaluation of a product,” In DS 92:
Proc. 15th Int’1 Design Conf. (DESIGN), 2018, pp. 2903-2912.

M. Ozkaya, “Are the UML modelling tools powerful enough
for practitioners? A literature review,” IET Software, vol. 13,
2019, pp. 338-354. https://doi.org/10.1049/iet-sen.2018.5409

M. Ozkaya and F. Erata, “A survey on the practical use of UML
for different software architecture viewpoints,” Information
and Software Technology, Vol. 121, 106275, 2020.

P. McIntosh, “X3D-UML: user-centered design,
implementation and evaluation of 3D UML using X3D,” Ph.D.
dissertation, RMIT University, 2009.

A. Krolovitsch and L. Nilsson, “3D Visualization for Model
Comprehension: A Case Study Conducted at Ericsson AB,”
University of Gothenburg, Sweden, 2009.

C.S.C. Rodrigues, C.M. Werner, and L. Landau, “VisAr3D: an
innovative 3D visualization of UML models,” In 2016
IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), IEEE, 2016, pp. 451-460.

Y. Li and W. Maalej, “Which Traceability Visualization Is
Suitable in This Context? A Comparative Study,” In: Regnell,

B., Damian, D. (eds) Requirements Engineering: Foundation
for Software Quality (REFSQ 2012), LNCS, vol 7195.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

Springer, Berlin, Heidelberg, 2012.

https://doi.org/10.1007/978-3-642-28714-5 17

Z. S. H. Abad, M. Noaeen and G. Ruhe, "Requirements
Engineering Visualization: A Systematic Literature Review,"
2016 IEEE 24th International Requirements Engineering
Conference (RE), Beijing, China, 2016, pp. 6-15, doi:
10.1109/RE.2016.61

A.A. Madaki and W.M.N.W. Zainon, “A Review on Tools and
Techniques for Visualizing Software Requirement
Traceability,” In: Mahyuddin, N.M., Mat Noor, N.R., Mat
Sakim, H.A. (eds) Proceedings of the 11th International
Conference on Robotics, Vision, Signal Processing and Power
Applications, Lecture Notes in Electrical Engineering, vol 829,
Springer, Singapore, 2022. https://doi.org/10.1007/978-981-
16-8129-5 7.

J. Vincur, P. Navrat, and 1. Polasek, “VR City: Software
analysis in virtual reality environment,” In 2017 IEEE
international conference on software quality, reliability and
security companion (QRS-C), IEEE, 2017, pp. 509-516.

R. Miiller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36.

R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) BMSD 2018. LNBIP, vol. 319, Springer, Cham, 2018,
pp. 83-97. https://doi.org/10.1007/978-3-319-94214-8 6

R. Oberhauser, “VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality,” International
Conference on Information, Process, and Knowledge
Management (e KNOW 2022), IARIA, 2022, pp. 29-36.

R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Shishkov B. (eds) Business Modeling and
Software Design. BMSD 2020. LNBIP, vol 391, Springer,
Cham, 2020, pp. 221-239. doi: 10.1007/978-3-030-52306-
0 14

R. Oberhauser, M. Baehre, and P. Sousa, “VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality,” In: Shishkov, B. (eds) Business Modeling
and Software Design. BMSD 2022. LNBIP, vol 453, pp. 122-
140. Springer, Cham. doi:10.1007/978-3-031-11510-3 8

R. Oberhauser, "VR-TestCoverage: Test Coverage
Visualization and Immersion in Virtual Reality," The
Fourteenth International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2022), TARIA,
2022, pp. 1-6.

R. Oberhauser, “VR-Git: Git Repository Visualization and
Immersion in Virtual Reality,” The Seventeenth International
Conference on Software Engineering Advances (ICSEA 2022),
TARIA, 2022. To be published.

E.M. Reingold and J.S. Tilford, “Tidier drawings of trees,”
IEEE Transactions on software Engineering, (2), 1981, pp.223-
228.

A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

35

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Hand Gesture Recognition System for the Physical

Search

1% Shin Kajihara

Graduate School of Science and Engineering

Saga University
Saga, Japan
email: 20634002 @edu.cc.saga-u.ac.jp

3™ Chika Oshima
Faculty of Science and Engineering
Saga University
Saga, Japan
email: sj5872@edu.cc.saga-u.ac.jp

Abstract—In this paper, we proposed a hand gesture recog-
nition system for searching for lost objects using a physical
search system (PSS). The PSS detects all displaced objects in
a physical space using two cameras and a computer based on
image differences-detection technology. When users tell the PSS
what the lost object is, using hand gestures to describe it, such as
its size and location, may be useful, as may words that describe
the object’s name, color, and the time it was last seen. The hand
gesture recognition system was developed and experiments were
conducted to examine how accurately the system can estimate
the size indicated by the width between the user’s hands. Also,
to allow users to register various gestures as the commands
they want to use, we investigated the recognition rate of finger
gestures. As a result, the system could measure the width between
users’ hands with almost no errors, based only on the image taken
by the camera and a marker. Moreover, the finger gestures could
be recognized with high accuracy, unless it was difficult for users
to reproduce the gestures that had been pre-registered. In the
PSS, the displaced object’s images are grouped into clusters that
contain the same objects’ images and data about their features.
When a user tells the PSS the features of what they want to find,
using their hand gestures, the PSS can present to the user images
of the object in an appropriate folder (cluster) that matches the
request. Finally, once the user identifies the lost object’s image,
the PSS displays where and when the object was last seen/lost.

Index Terms—Hand gesture; physical search system; MediaPipe.

I. INTRODUCTION

Keyword and image searches are often used to search for
data online. By contrast, the physical search system (PSS)
[1], [2] looks for objects in physical space without requiring
any sensors, other than a camera or data for pre-learning, and
enables the retrieval of any object that has moved within a
given physical space.

We sometimes use hand gestures when telling someone
about a lost object; “a board about this size” with our hands
outstretched, or “the remote control was over there,” while
pointing with the index finger. Even when using the PSS, it
is desirable to be able to input information about the object’s

System

2" Masato Okazaki
Graduate School of Science and Engineering
Saga University
Saga, Japan
email: 22726005 @edu.cc.saga-u.ac.jp

4™ Koichi Nakayama
Faculty of Science and Engineering
Saga University
Saga, Japan
email: knakayama@is.saga-u.ac.jp

size and an approximate location in physical space using hand
gestures.

Hand gesture recognition can be broadly divided into wear-
able and non-wearable types. In wearable types, there are an
acceleration sensor [3], [4] and optical markers, such as color
and reflective markers [5], [6]. However, for daily use, it is
inconvenient to wear devices and markers on the hands and
fingertips.

In non-wearable types, Leap Motion [7] can recognize hands
and fingers by irradiating infrared rays with a small device,
but they can only be detected up to a distance of about 0.5m
from the device. OpenPose [8] can acquire the position and
posture of fingers only based on camera images. With a high-
resolution zoom camera, even far-distant hand gestures can
be recognized, but the positions of photographed fingers can
only be acquired two-dimensionally. Users do not always make
gestures toward the camera because they tend to point in the
direction where they think the lost object is, or they express
the shape of the object in three dimensions. Therefore, a hand
gesture recognition system needs to work not only in a non-
wearable format, but also to acquire three-dimensional (3D)
positions in physical space (hereinafter “the world coordinate
system”).

MediaPipe Hands [9], [10], a non-wearable type, acquires
the estimated Z coordinate, in addition to 2D coordinates
(X, Y) from a camera image. In this paper, we propose a
system that can indicate features of a lost object based on
hand gestures. Users can command the system with the hand
gestures they determine to search for the lost object with the
PSS, such as indicating a size of the lost object, pointing to
the approximate location of the object before it was lost. No
sensors, other than a camera in a real space and MediaPipe,
are required.

In the next section, the PSS is introduced; the experiment’s
results are explained in Section II. Then, in Section III, a hand
gesture recognition system is proposed. Two experiments are

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

36

conducted to examine how accurately the system can estimate
the length between a user’s hands and interpret their finger
gestures. The paper concludes in Section IV.

II. PHYSICAL SEARCH SYSTEM (PSS)
A. Overview

This section explains the overall structure of the proposed
PSS [1] [2]. Figure 1 shows the PSS’ hardware configuration.
The PSS consists of two cameras that constantly capture
the target area and a computer that processes the images
photographed by the cameras. The PSS’ software configuration
consists of a displaced object detection unit that extracts the
displaced objects from images photographed by each camera,
a displaced object image-clustering unit that creates clusters,
and a search results display unit that retrieves and displays the
displaced objects.

In the displaced object detection unit [2], the photographed
images are processed in the order in which they are pho-
tographed. The image at a certain time is then compared at
the pixel level with the image photographed at a previous
time. When a pixel with a difference of a certain standard
or more is detected, it is determined that something has
been displaced. The PSS can also detect people, and the
photographs can define areas in which no one or nothing is
present. In other words, the PSS does not yet detect objects
that are moving/rotating around of the center of gravity, but it
can detect displaced objects by comparing sets of images.

When objects overlap, we can obtain expected results, if
they are displaced in order. For example, Object A is placed at
a certain place. After the system has photographed an image
near Object A, Object B is placed on top of Object A. If
the PSS photographs the place again before each object is
moved, both Objects A and B will be detected correctly. When
two overlapping objects move together, Objects A and B are
detected as a single object, so if Object A is pulled out from
under Object B, Object A will not be detected. However, if
Object A is placed elsewhere, it will be detected as a displaced
object.

Figure 2 shows the differences between the two images
in white. The target area is cropped as a rectangle [11].
The cropped image is called a “displaced object image.” As
described in Section II-B, in the displaced object images
clustering unit, the displaced objects’ images are grouped into
clusters that contain the images of the same objects in each
location and stored in the PSS. In the search result display
unit, as shown in Figure 3, when a PSS user searches for a
lost object (a displaced object), the search results are displayed
in an application that displays augmented reality (AR) using
an AR marker and an AR display terminal [2].

B. Two-step Feature Clustering Algorithm

This section describes a two-step feature clustering algo-
rithm (TFA [2]). At first, the displaced object images are
processed with the x-means clustering algorithm [18]. Then,
the PSS user manually deletes a few folders (clusters) in

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

/ Web camera] [Web cameraJ

Augmented reality
display on the terminal

Show search
results

Z ® L
TR

PC for image
processing

Augmented
reality marker

Fig. 1. Construction of the PSS hardware [2].

Background Glasses placed

in camera sight

Difference

Cropped out as a rectangle

Fig. 2. How to crop out a displaced object [11].

which only noisy images are included. The reason why x-
means was employed is that x-means is a method of clustering
while automatically estimating the number of clusters k of
k-means [19]. Therefore, the x-means clustering is a type
of unsupervised learning like the k-means, wherein the data
points (the features of the displaced object images) are grouped
into different clusters based on their degree of similarity.

Next, a method of generating displaced object images with
the feature are explained. ResNet50 [12], [13] is applied to the
displaced object images to quantify their features. ResNet50 is
a convolutional neural network that is pre-trained on ImageNet
[14], an image database. Therefore, the user does not need to
prepare any image-learning data.

ResNet is a residual network designed to alleviate the van-
ishing/exploding gradient problem caused by stacking residual

Fig. 3. Icons displays where and when the object was last seen/lost [2].

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

blocks. In ResNet-50, one residual block consists of three
convolution layers. The size of the convolution kernel, which
is the element of convolution operation in the convolutional
layer, should be smaller than the size of the input image [15].
The stacked layers in the residual blocks have 1 x 1,3 x 3, and
1 x 1 convolution layers. The 1 x 1 convolution first reduces
the dimensions. In the next layer, the bottleneck 3 x 3 layer,
the features of the images are calculated. Then, the dimension
of depth is again added in the next 1 x 1 layer (bottleneck)
[16]. The final convolutional layer outputs 2048 feature maps
of size 7 x 7.

In the PSS, the images of the displaced object are resized
to 224 X 224 pixels and entered into ResNet50. Then, each
resized image is flattened into the 100352-dimentional vector
(1 x 7 x 7 x 2048, which is a tensor: depth(none) x width x
height x channel) [17]. We call these “image features” in
this paper.

Then, the displaced object images with the feature are
processed with the x-means clustering algorithm [18]. A
cluster number is assigned to each cluster, as determined by
the x-means method. All displaced object images are stored
in folders according to their cluster number.

There are a few folders (clusters) in which only noisy
images are included. The PSS user manually deletes these.
Then, the same processing protocol as used in the first stage
is performed again for all images in the remaining clusters
(the second step).

However, some noisy images will remain in a few folders
[2], so there is room for improvement in accuracy. Therefore,
a linking method (LM) was proposed to improve the accuracy
of the TFA clustering [1].

C. Linking Method

This section describes the LM [1]. LM eliminates noisy
images by creating pairs of images of highly similar displaced
objects based on photographs taken simultaneously by two
cameras [1].

In the PSS [2], two cameras (Cameras A and B) usually take
pictures of the same displaced object at the same time from
different angles. However, noisy images are photographed by
only one of the two cameras, because noisy images are a result
of misrecognition due to light rays or mistakes in cropping out
the object parts of the images. Therefore, as shown in Figure
4, in the LM, pairs of the displaced object images with high
degrees of similarity are created from the displaced object
images derived from the photographs taken simultaneously by
Cameras A and B. This process is called “linking” in this
paper. In other words, a pair combination is created with a
displaced object image derived from Camera A’s photograph
and another displaced object image derived from Camera B’s
photograph. Displaced object images obtained from only one
of the cameras cannot be paired.

Next, the method for calculating the similarity between
the displaced object images is explained. “imgsim [20]” is a
library for computing perceptual hashes of images. The “dis-
tance” between images can be calculated using the imgsim li-

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

brary. The distances between the displaced object image, “al,”
derived from Camera A’s photograph and the displaced object
images, “bl to bx,” derived from Camera B’s photograph,
are calculated. The higher the degree of image similarity,
the smaller the distance between them. The distance between
identical images is O.

As shown in Figure 5, pairs are created in order, starting
from those with the smallest distance value (the highest degree
of similarity) between two images. For example, when two
displaced object images are obtained from Cameras A and B’s
photographs taken at a certain time, there are four possible pair
combinations. The image that is paired with another image is
excluded from the candidate images for the other pairs. In
addition, combinations with distance values exceeding 23 are
not considered pairs. A gathering of the pairs is called a “pair
group.”

D. Brush up TFA Clustering Results with Pair Groups Created
Using LM

This section explains a method for combining the TFA and
the LM. Figure 6 shows that the displaced object images are
updated by comparing the TFA results with that of LM; then,
the clusters (folders) are reorganized. The displaced object
images in the clusters that do not overlap with the displaced
object images of the pair group are deleted. In this process, the
noisy images and the images for which one camera has failed
to detect a displaced object can be deleted from the folders.

Finally, the clusters created by TFA are reorganized. If two
displaced object images that are paired belong to different
clusters, they are processed as follows: the similarity (distance)
between each of two images and other images that belong to
the same cluster of each of two images is calculated using
the imgsim library. Next, the averages of the distances in each
cluster are calculated. The one with the larger average value
moves to the cluster that includes the other displaced object
image with the smaller average value. For example, Image_p,
which belongs to Cluster_P, is paired with Image_q, which
belongs to Cluster_Q. The distance values are calculated be-
tween Image_p and each of the other images in Cluster_P, and
between Image_q and each of the other images in Cluster_Q.
Then, the averages of the distance values are calculated for
both Cluster_P and Cluster_Q. If the average of distances
between Image_p and the other images in Cluster_P is larger
than that of Cluster_Q, Image_p is moved to Cluster_Q.

E. Experiments for the usefulness of LM

1) Aim: In this section, we detail an experiment conducted
to compare the accuracy of clustering between the combination
of LM with TFA and TFA alone [1].

2) Method: Figure 7 shows ten objects on a table. The
objects were a red pen, a green pen, a smartphone tripod, a
box of tissues, a cup of coffee, a black smartphone, a box of
darts, a dart, a plastic bag of replacement dart feathers, and
gum tape. Two cameras were located so that the entire table
could be photographed from two different directions. Even if

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

38

Camera A

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Cropped moving
object images

)

Noise
images

The same
objects

Fig. 4. Noisy images cannot be paired with another image.

21

25

28

Pair group
Camera A Camera B

e

The left image has been
paired with the other image.

—_—

| The distance values
exceed 23.

Fig. 5. Create a pair based on the similarity between two images.

the PSS is running, when there are people present, nothing
will not be photographed.

During the experiment, one of the authors moved one of
the objects on the table and then moved beyond the ranges
of the cameras. After confirming that the PSS recognized the
displaced object, they moved the next object on the table. This
method was applied to the ten objects. They moved each object
10 times in two conditions, “LM with TFA” and “TFA.”

This process was repeated twice on two different tables
in two different rooms, Rooms C and D. In Room C, the
ten objects were on a desk, as shown in Figure 8. This is a
dimly lit space because three displays are lined up, and the
fluorescent lamp is not directly overhead. In Room D, a large

table was placed in the center of the room, with fluorescent
lights directly above it. There was nothing around it to block
the light, as shown in Figure 9.

The PSS created clusters in both conditions. The accuracy
of the clustering is indicated in precision values, recall values,
and F-measures. All displaced object images showing one of
the ten objects are regarded as an “actual positive.” The cluster
in which the most images is included is considered to be a
correct cluster, and the displaced object images of the correct
cluster are regarded as a “predicted positive.” In the predicted
positive images, the actual positive images are considered to
be true positives (TP), and the others are considered false
positives (FP). In the actual positive images, the images that

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

39

< Images —~ _ Replaced
Cutera Object Images

Linking

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Method

Camera

il e=

Creates pairs
=]

S B

/3

Two-step Feature clustering

ResNet50
ImageNet

x-means method

Folders with
pdated images

Algorithm

2md step
clustering

A B
o 2
[~
p—
. & 15t step
— - clustering
— ‘ .
S I S
U =

Remove
noise images

Final
clustering

Fig. 6. Combine the results of the linking method (LM) with the two-step feature clustering algorithm (TFA) to update the images; then, reorganize the

clustering.

are not in the correct cluster are considered false negatives
(FN).
The recall is calculated using the following formula.

TP
Recall = ————= 1
T TPYFN W
The precision is calculated using the following formula.
TP
Precision = TP+ FP 2

The F-measure is calculated using the following formula.
The F-measure represents the harmonic mean of precision and
recall.

2Precision x Recall
F — measure =

3)

Precision + Recall

Fig. 8. Desk in Room C.

Fig. 7. Ten kinds of objects for the experiment.

Fig. 9. Table in Room D.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

40

Fig. 10. Images that missed a part of the gum tape.

3) Results:

Comparison of the Results of TFA and LM with TFA
The PSS created 11 clusters in both conditions. Each
displaced object image was grouped into one to five
clusters, depending on the type of displaced object.
For example, all images of the smartphone tripod
were grouped into Cluster_3 in the LM with TFA
condition. The images of the green pen were grouped
into five kinds of clusters in the TFA condition.
Table I shows the recall values, precision values,
and F-measures to compare the results of the two
conditions in both Rooms C and D [1]. For eight
out of ten objects, the recall values were higher in
the LM with TFA condition than in the TFA alone
condition. In particular, the recall value of the gum
tape under the LM with TFA condition was improved
by 17%, compared to the TFA alone condition, and
it became even closer to 100%.
For all objects, the F-measures were higher in the LM
with TFA condition than in the TFA alone condition.
However, the precision values of the LM with TFA
condition were almost the same as that of the TFA
alone condition. The displaced object images, the
smartphone, the box of darts, and the dart remained
around 30%.

Comparison of the Results of Rooms C and D

Table II shows the precision values, recall values,
and F-measures to compare the results of Rooms C
and D [1]. The number of images is less than Table I
because of the results for each room. Therefore, the
number of clusters was different, and these evaluated
values between Tables I and II are different. The F-
measures of all displaced object images in Room D
were higher than that of Room C.

F. Discussion

The results showed that LM with TFA improved the clus-
tering over TFA alone. As an example of improvement, the
images of the gum tape were grouped into four clusters in
the TFA alone condition because there were some images that
missed a part of the gum tape, as shown in Figure 10. However,

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

in the LM with TFA condition, most images of gum tape could
be grouped into one cluster.

The F-measures for the red and green pens were not high,
even in the LM with TFA condition. Since the shapes of
these pens are similar, it was difficult to group them into
one cluster using these algorithms. An algorithm using color
features should be applied to such objects [2].

For the smartphone tripod and the cup of coffee, the
precision values in the LM with TFA condition were lower
than in the TFA alone condition. In the LM process, contrary
to our expectations, the images of the smartphone tripod and
the cup of coffee were paired with noisy images. Something
similar to these objects was photographed as noisy images.

There were differences in accuracy depending on the room.
The table in Room D was brighter than the desk in Room C. It
can be suggested that the brighter space led to higher accuracy
in detecting the displaced objects.

III. HAND GESTURE RECOGNITION SYSTEM
A. Overview

In this section, a hand gesture recognition system is pro-
posed. It consists of a registration mode, which corresponds
to the initial settings when starting to use the system, and
a recognition mode, which recognizes hand gestures by ac-
tually using the system. Section III-B describes the camera
registration phase and its coordinate system, while Section
III-C describes the gesture registration phase for defining
the gestures to be discriminated. Section III-D describes the
position acquisition phase, which obtains finger positions, and
Section III-E describes the gesture recognition phase, which
determines to which gesture the shape created by fingers
corresponds.

B. Registration Mode: Camera Registration Phase

An augmented reality marker (AR marker) printed in an
arbitrary size is placed at an arbitrary location that can be seen
by all cameras. The experiment detailed in this paper used an
ArUco marker [21] printed in a 570 mm X 570 mm square,
as shown in Figure 11. The center of the marker was set as
the origin of the world coordinate system. Each camera reads
the marker and then calculates and stores its own position
and orientation (camera parameters) in the world coordinate
system.

C. Registration Mode: Gesture Registration Phase

In this phase, gestures to be discriminated are registered
with the proposed system. The position and orientation of each
finger are estimated by MediaPipe Hands [9], [10]. Figure 12
shows the numbered coordinates of 21 parts of each finger
that MediaPipe Hands can acquire from each camera based
on its images [10]. The coordinates are two-dimensional (X,
Y) in the camera image, and the depth coordinates (Z) are
estimated by MediaPipe Hands. Since the video is processed
as time-series data at 10 frames per second, the coordinates of
the hand gesture video for 1 second are registered in the system
as real values of 21 points x 3 axes (X, Y, Z) x 10 frames.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

41

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

TABLE I
ACCURACY OF CLUSTERING IN THE CONDITIONS TFA ALONE AND LM WITH TFA.
Recall Precision F-measure
Displaced objects TFA | LM with TFA TFA | LM with TFA TFA | LM with TFA
Red pen 0.50 0.53 0.63 0.64 0.56 0.58
Green pen 0.38 0.43 0.47 0.43 0.42 0.43
Tripod 0.93 1.00 1.00 0.95 0.96 0.98
Box of tissues 0.49 0.63 1.00 1.00 0.65 0.77
Cup of coffee 0.01 1.00 1.00 0.94 0.95 0.97
Smartphone 0.42 0.58 0.23 0.29 0.30 0.39
Box of darts 0.44 0.69 0.30 0.30 0.36 0.42
Dart 0.75 0.75 0.24 0.27 0.36 0.40
Plastic bag 0.66 0.63 0.48 0.57 0.56 0.60
Gum tape 0.76 0.93 1.00 1.00 0.86 0.96
Average 0.62 0.72 0.64 0.64 0.60 0.65
TABLE II
ACCURACY OF CLUSTERING IN THE CONDITIONS OF ROOMS C AND D.
Recall Precision F-measure
TFA LM with TFA TFA LM with TFA TFA LM with TFA
Displaced objects C D C D C D C D C D C D
Red pen 1.00 | 0.88 | 1.00 0.75 043 | 045 | 043 0.55 0.60 | 0.60 | 0.60 0.63
Green pen 0.87 | 0.81 | 0.95 0.63 0.48 | 0.81 | 0.50 0.45 0.62 | 0.55 | 0.66 0.53
Tripod 0.76 | 1.00 | 0.90 1.00 0.90 | 0.90 | 1.00 0.90 0.83 | 095 | 0.95 0.95
Box of tissues 0.50 | 1.00 | 0.50 1.00 0.50 | 0.80 | 1.00 1.00 0.50 | 0.89 | 0.67 1.00
Cup of coffee 093 | 1.00 | 0.71 1.00 0.87 | 0.86 | 1.00 1.00 090 | 092 | 0.83 1.00
Smartphone 0.64 | 0.81 | 0.76 0.63 0.20 | 0.39 | 1.00 0.50 0.31 | 0.53 | 0.86 0.56
Box of darts 0.53 | 0.81 | 0.47 0.63 0.22 | 039 | 0.57 0.48 0.31 | 0.53 | 0.52 0.63
Dart 0.69 | 0.56 | 1.00 1.00 0.09 | 090 | 0.12 0.95 0.17 | 0.69 | 0.22 0.97
Plastic bag 1.00 | 0.80 | 0.95 0.93 0.82 | 092 | 1.00 0.93 0.90 | 0.86 | 0.98 0.93
Gum tape 0.78 | 1.00 | 0.78 1.00 1.00 | 0.95 | 1.00 1.00 0.88 | 0.97 | 0.88 1.00
Average 0.77 | 0.87 | 0.80 0.86 0.55 | 0.74 | 0.76 0.78 0.60 | 0.75 | 0.72 0.82
{]
57cm ge 12 *16 0. WRIST 11. MIDDLE_FINGER_DIP
r L . 11T d 1. THUMB_CMC 12. MIDDLE_FINGER_TIP
7 e |15 2. THUMB_MCP 13. RING_FINGER_MCP
62 10 ¢, /20 3 THUMBIP 14. RING_FINGER_PIP
15cm o - £19 4. THUMB_TIP 15. RING_FINGER_DIP
4 519 13 18 5. INDEX_FINGER_MCP 16. RING_FINGER_TIP
— 3® 17 6. INDEX_FINGER_PIP 17. PINKY_MCP
15¢cm . 7. INDEX_FINGER_DIP 18. PINKY_PIP
57cm | 2 8. INDEX_FINGER_TIP 19. PINKY_DIP
T 9. MIDDLE_FINGER_MCP ~ 20. PINKY_TIP
Yo 10. MIDDLE_FINGER_PIP
E m Fig. 12. 21 hand landmarks (quoted from [10]).

Fig. 11. A marker for determining the orientation and position of the camera
on the world coordinate system.

However, this coordinate is the value in the coordinate system
for each camera. As shown in Section III-D, the coordinate
values are converted to values in the world coordinate system
based on the camera’s unique parameters (see Section III-B).

D. Recognition Mode: Position Acquisition Phase

This section shows how to convert the coordinates of
the hand in the camera’s coordinate system to the world
coordinate system. First, 0: WRIST (Figure 12) (hereinafter,
“wrist coordinate”) is used as the representative value of the
hand position. When only one camera is used, there is a large
error in the depth coordinate (Z-axis) in the camera coordinate

system; therefore, the 3D position (coordinate) of the hand in
the world coordinate system cannot be determined uniquely.
With this system, however, since the camera parameters are
obtained using AR markers, the position and orientation of
each camera in the world coordinate system can be calculated.
Then, since the positions of the hands are detected simulta-
neously with two cameras, their 3D positions in the world
coordinate system can be calculated.

To explain in detail, the coordinates in the world coordinate
system are obtained from the perspective projection transfor-
mation matrix, which indicates the position and orientation
of the two cameras and the wrist coordinate in the screen
obtained by each camera. The wrist coordinate is estimated to
lie on a straight line passing through the camera in 3D space,
calculated from the position and orientation of one camera and

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

42

the wrist coordinate estimated from the images taken by that
camera. Similarly, based on the image of the other camera,
the wrist coordinate is estimated to lie on another straight line
passing through the camera in 3D space. The midpoint of the
line segment representing the shortest distance from these two
straight lines is the wrist coordinate in 3D space.

E. Recognition Mode: Gesture Detection Phase

The time-series data of each recognized finger position
(hand gesture) is coordinate-transformed so that the positions
and orientations match the registered hand gestures (see Sec-
tion III-C). As shown Figure 13, the position and orientation of
the hand gesture is transformed to overlap with the positions
and orientations of the registered gestures at Positions 0, 5,
and 17 (see Figure 12). Then, the similarity between the
hand gesture captured by the camera and the registered hand
gesture is determined. If the registered hand gesture has 10
frames, the similarity is continuously determined for the latest
10 frames of the obtained data. Three similarities are used:
cosine similarity for position, Euclidean distance of position of
each part, and velocity of wrist position. When each similarity
is higher than the threshold value, it is determined that the
corresponding hand gesture was performed.

Fig. 13.
gestures.

The hand gesture is transformed to overlap with the registered

F. Evaluation of Size Expressions by Hand Gestures

1) Aim: This section verifies how accurately the system can
estimate the size indicated by the user’s hand gesture in real
space.

2) Setting: As shown in Figure 14, four cameras [22] with a
height of 2600 mm facing the direction of a square table were
placed at the four corners of a square with a side of 3200 mm.
The height of the table was 660 mm, and each side was 800

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

mm long. The ArUco marker [21] was placed in the center of
the table as the origin of the world coordinate system.

Camera 1 Camera 2
Q © 2000mm . O
C
2000mm B | table D 2000mm
A
v 2000mm M
O « »O
Camera 4 Camera3

Fig. 14. A Table and Four Cameras.

3) Method: Participants were five males in their twenties.
The space between their left and right hands was fixed using
a wristband with a string attached. As shown in Figure 15,
the wristbands were made of Velcro with 300-, 600-, or 900
mm-long strings. First, the participants separated their arms
to the full length of the wristband string while they clenched
their fists. Then, the participants turned their palms upwards.
In this experiment, the system regarded the palm-up action as
a gesture indicating length and measured the width between
the hands.

The first author preregistered in the system these palm-
up gestures with lengths of 300, 600, and 900 mm. Each
participant stood facing the center of the table in an assigned
position, A-D (see Figure 14). Then, the participant was in-
structed to perform the palm-up gesture with the 300 mm wrist
band. After the length between their hands was recognized,
they moved clockwise and performed the palm-up gesture with
the same wrist band again. After they completed it for all four
positions, they performed it with the remaining two length
wristbands, again moving to each of the four positions. A total
of 60 measured values (5 participants, 4 positions, 3 length
wristbands) was acquired.

The absolute and relative errors for each measurement value
were calculated as follows:

AE = |d; — d| “4)

RE = |di — d] x 100

&)

where AF means the absolute error and RE means the relative
error. d; means the measurement value and d means the length
of each wrist band (300, 600, or 900 mm).

Then, means, standard deviations (SD), and coefficients of
variation (CV) were calculated for each condition (300, 600,

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

43

_{)ﬁg

/ \ L AAA&-.

Fig. 15. Wristbands

and 900 mm). Because the means were drastically different
from one another, the CV was calculated as follows:

g
d

s and d indicate the standard deviation and means of the width
measurements, respectively. CV is the ratio of the standard
deviation to the mean.

4) Results: Table III shows the width measurements be-
tween the hands using the system, AE, and RE. The mean,
SD, and CV are shown at the ends of the columns.

The means of AE were 14.5, 40.2, and 48.6 mm in each
condition, respectively. The average error was less than 5 cm.
The means of RE show that the error rate was smallest under
the 300 mm condition.

By contrast, the CV results show that the measurement
values while wearing the 300 mm wristband had the greatest
variation among the three conditions (see Table III).

5) Discussion: In this section, the participants wore wrist-
bands connected by 300, 600, and 900 mm strings on both
hands. They were asked to make a gesture of fully spreading
their hands. The error between the actual spreading length and
the length measured by the system was investigated. Because
the average errors were small, the results showed that it is
possible to convey the length of a search object to the system
using this hand gesture.

cV = 6)

G. Recognition of Finger Gestures’ Accuracy

1) Aim: In addition to hand gestures that indicate the size of
objects, various gestures can be registered as commands that
users want to use. In this section, 10 kinds of finger letters
were used to examine the recognition rate of detailed finger
gestures.

2) Setting: Figure 16 shows the setup for the experiment.
Four seats (A-D) with different angles of 90 degrees were
prepared around a square table. The height of each seat was
440 mm, the size of the seat was about 400 mm square, and the
height of the highest point of the backrest was 800 mm from
the floor. Two web cameras [22] were set on the diagonal
extension of the desk. One of the cameras had a horizontal

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

distance of 300 mm, while the other had a horizontal distance
of 600 mm from the desk.

Table

fo) Qﬁ' Camera 1 |

Camera 1

B

Fig. 16. Four Seats and Two Cameras Around the Table.

3) Method: Participants were 11 males in their twenties
who had never used finger gestures. Each participant sat in
Seats A-D in turn. The participants were presented with a
list of finger letters, as shown in Figure 17. The “a, i, u,
e, o’ are the Japanese vowels. The “ka, ki, ku, ke, ko”
show five consonant and vowel combined pronunciations. The
participants were asked to spell the following five words with
their fingers: “a-ka,” “i-ku,” “u-ki,” “o-ke,” and “ko-e.” These
finger letters were preregistered in the system by the second
author. However, these were not intended to be recognized as
“characters.” These finger letters were used to examine how
recognizable the finger gestures were.

Each participant was seated facing the center of the table
in an assigned seat, from A—D. Then, they was instructed to
perform the first finger letter, a-ka, with his right hand until the
camera recognized it. The orientation of the hands and fingers
was arbitrary. If a gesture was not recognized after repeating it
10 times, it terminated as a recognition failure. After a-ka was
recognized, they moved clockwise and performed the same
finger gesture again. After completing this in all four seats,
they performed the remaining four words’ finger gestures,
again, sitting in each of the four seats. A total of 220 types of
finger gesture data (11 participants, 4 seats, 5 types of hand
gestures) were acquired.

When the first author piloted the recognition of the finger
letters using this method, the recognition rate was almost 100%
for any gesture and any seat. The participants were asked
to examine the list of finger letters at the beginning of the
experiment and then performed the finger letters without prior
practice.

4) Results: A total of 199 of the 220 finger letter trials
(90.5%) were recognized in fewer than 10 trials. The average
number of trials for 199 was 1.98 times.

Table IV shows the recognition rate and average number
of attempts per finger gesture. The gestures for o-ke and i-ku
had both a high recognition rate and a low average number
of trials. O-ke moves from “o0,” with all fingers curled, to “e,”
with four fingers extended. I-ku moves from “i,” with only the
little finger upright and the others curled, to “ku,” with four
fingers extended horizontally.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

44

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

TABLE III
WIDTH INDICATED BY HAND GESTURE AS MEASURED BY THE SYSTEM.

String length
300mm 600mm 900mm
Measured Measured Measured
Participant | value(mm) | AE (mm) | RE (%) | value(mm) | AE (mm) | RE (%) | value(mm) | AE (mm) | RE (%)

1 275.4 24.6 8.2 617.1 17.1 2.8 895.3 4.7 0.5
1 286.9 13.1 4.4 603.1 3.1 0.51 889.6 10.4 1.2
1 282.6 174 5.8 618.8 18.8 3.14 960.4 60.4 6.7
1 286.8 13.2 4.4 650.7 50.7 8.45 957.7 57.7 6.4
2 316.7 16.7 5.6 659.4 59.4 9.9 990.5 90.5 10.1
2 329.3 29.3 9.8 647.4 47.4 7.9 994.9 94.9 10.6
2 317.2 17.2 5.8 629.7 29.7 5.0 998.5 98.5 11.0
2 317.1 17.1 5.7 614.8 14.8 2.5 982.7 82.7 9.2
3 307.2 7.2 24 605.0 5.0 0.8 938.7 38.7 4.3
3 298.4 1.6 0.5 649.8 49.8 8.4 967.3 67.3 7.5
3 301.5 1.5 0.5 626.2 26.2 44 966.0 66.0 7.3
3 298.6 1.4 0.5 650.2 50.2 8.4 956.7 56.7 6.3
4 276.3 23.7 7.9 656.3 56.3 94 880.2 19.8 2.2
4 3224 224 7.5 654.7 54.7 9.1 910.7 10.7 1.2
4 274.3 25.7 8.6 668.1 68.1 114 888.1 11.9 1.3
4 288.0 12.0 4.0 661.6 61.6 10.3 897.5 2.5 0.1
5 312.8 12.8 43 631.7 31.7 5.3 899.8 0.2 0.0
5 296.8 32 1.1 641.9 41.9 7.0 965.0 65.0 7.2
5 316.2 16.2 5.4 652.5 52.5 8.8 971.1 71.1 79
5 312.6 12.6 4.2 664.6 64.6 10.8 962.5 62.5 7.0
Mean 300.9 14.5 4.8 640.2 40.2 6.7 943.7 48.6 54
SD 17.0 - - 20.3 - - 39.8 - -
CV 0.06 - - 0.03 - - 0.04 - -

W@@%@@
@Mﬂé@@

ki ku ke ko
Fig. 17. Finger letters for Japanese phonetics.

“ ER)

Ko-e moves from “ko,” with all fingers extended, to
with all fingers curled. The overall images of the hands are
similar to one another, since the fingers are not extended
upward; however, the recognition rate was not so low.

The recognition rate for a-ka was the lowest, even though
the recognition rate seemed to be high, because a-ka moves
from “a,” with the thumb extended to “ka,” with the index and
middle ﬁngers extended upward.

Table V shows recognition rate and average number of
attempts per seat. The recognition rates for Seats A and C, in
which the participants’ right hands were photographed from
behind, were slightly lower, but all recognition rates exceeded
80%, and the average number of trials was less than 2.27 times,
regardless of the direction of the hand gesture.

Table VI shows recognition rate and average number of
attempts per participant. Although there were differences in the

recognition rates among participants, all achieved at least 80%.
Participants looked at pictures of the finger letters and imitated
them, but there were differences in their accuracy, which is
thought to have led to the differences in their recognition rates.

TABLE IV
RECOGNITION RATE AND AVERAGE NUMBER OF ATTEMPTS PER FINGER
GESTURE.
Finger letter | Recognition rate (%) | Average number of attempts
a-ka 72.7 1.84
i-ku 97.7 1.58
u-ki 93.2 2.20
o-ke 100.0 1.59
ko-e 88.6 2.74
TABLE V
RECOGNITION RATE AND AVERAGE NUMBER OF ATTEMPTS PER SEAT.
Seat | Recognition rate (%) | Average number of attempts
A 89.1 2.20
B 94.5 1.71
C 80.0 2.27
D 98.2 1.80

5) Discussion: Based on the experiment’s results, the finger
gestures performed within the range captured by the two
cameras can be generally recognized from any direction and
by all participants. However, if the gesture itself includes an
action that is difficult for the participant, the recognition rate
declined. Therefore, it is important to set finger gestures that
are easy for system users to operate.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

45

TABLE VI
RECOGNITION RATE AND AVERAGE NUMBER OF ATTEMPTS PER
PARTICIPANT.

Participant | Recognition rate (%) | Average number of attempts
P1 100.0 1.60
P2 100.0 1.45
P3 80.0 2.50
P4 95.0 1.47
P5 80.0 1.63
P6 100.0 1.90
P7 90.0 2.56
P8 80.0 2.75
P9 100.0 1.65
P10 85.0 2.29
P11 85.0 2.29

IV. CONCLUSION

The physical search system (PSS) was developed to search
for lost objects in physical space. The PSS detects all objects
displaced in a physical space using two cameras and a com-
puter. Besides voice and text input, it would be useful to use
hand gestures to tell the PSS what to look for. In this paper, we
investigated the accuracy rate of hand gestures to indicate the
size of an object. The participants wore wristbands connected
by 300, 600, and 900 mm strings on their hands. They spread
their hands to the full length of the wristband strings, 300, 600,
and 900 mm, while they clenched their fists, and the system
measured the width between them. The results showed average
absolute errors of 14.5, 40.2, and 48.6 mm in the conditions of
300, 600, and 900 mm, respectively. The system could measure
the widths between users’ hands with little error. Then, the
recognition rates of five kinds of finger gesture series were
examined. The recognition rates were from 72.7-100.0%. The
finger gestures could be recognized with high accuracy if the
participants could easily imitate the gestures the system had
learned in advance.

In the future, a series of flow: a user inputs the features of
a lost object into the PSS using hand gestures, then, the PSS
finds images of the object with these features in the database,
and presents where it is, will be evaluated from the aspects of
the system’s function and interface.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 20H04470 and 22K00211.

REFERENCES

[1] S. Kajihara, M. Okazaki, C. Oshima, and K. Nakayama, “Improving a
Physical Search System that Detects Even Unknown Displaced Objects
Using Image Differences,” EMERGING 2022, The Fourteenth Inter-
national Conference on Emerging Networks and Systems Intelligence,
IARIA, pp. 13-18, 2022.

S. Kajihara, M. Okazaki, K. Kawabata, H. Furukawa, C. Oshima, et
al., “Proposal and verification of a physical search system that does
not require pre-learning data and sensors other than cameras,” IPSJ
Transactions on digital practices, vol. 3, no. 2, pp. 76-92, 2022. (in
Japanese)

K. Muraoka and T. Terada: A Motion Recognition Method by Constancy
Decision, IPSJ Journal, vol. 52, no. 6, pp. 1968-1979, 2011.

[2]

[3]

[4]

[5]
[6]
[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

D. Kim, O. Hilliges, S. Izadi, A. D. Butler, J. Chen, et al., “Digits:
freehand 3D interactions anywhere using a wrist-worn gloveless sensor,”
Proceedings of the 25th annual ACM symposium on user interface
software and technology, pp. 167-176, 2012.

Vicon Motion Systems Ltd., VICON. Available: https://www. vi-
con.com/ (accessed May 20, 2023)

NaturalPoint Inc., OptiTrack. Available: https://optitrack. com/ (accessed
May 20, 2023)

Leap Motion, Inc., Leap Motion Controller.
https://www.ultraleap.com/ (accessed May 20, 2023)

Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields,”
In arXiv preprint arXiv:1812.08008, 2018.

F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C. Chang,
and M. Grundmann, “MediaPipe Hands: On-device Real-time Hand
Tracking,” Fourth CVPR Workshop on Computer Vision for Augmented
and Virtual Reality, rXiv:2006.10214, 2020.

Google, “MediaPipe.” Available: https://google.github.io/mediapipe/ (ac-
cessed May 20, 2023)

R. Hamasaki and K. Nakayama, “A deep learning system that learns
a discriminative model autonomously using difference images,” Pro-
ceedings of the Genetic and Evolutionary Computation Conference
Companion, ACM, pp. 1683-1685, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

ResNet50. Available: https://jp.mathworks.com/help/deeplearning/ref/
resnet50.html;jsessionid=c2d1fcfb1eb58ff18ab9a8beffOc (accessed May
20, 2023)

ImageNet. Available: https://www.image-net.org/ (accessed May 20,
2023)

B. Li and D. Lima, “Facial expression recognition via ResNet-50,”
International Journal of Cognitive Computing in Engineering, vol. 2,
pp. 57-64, 2021.

S. Bhattacharyya, “Understand and Implement ResNet-50
with TensorFlow 2.0, Towards Data Science. Available:
https://towardsdatascience.com/understand-and-implement-resnet-
50-with-tensorflow-2-0-1190b9b52691 (accessed May 20, 2023)

C. Chen, W. Zhu, J. Steibel, J. Siegford, J. Han, et al., “Classification
of drinking and drinker-playing in pigs by a video-based deep learning
method,” Biosystems Engineering, vol. 196, pp. 1-14, 2020.

D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” Proceedings of ICML 2000, vol. 1,
pp. 727-734, 2000.

P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means
clustering,” Proceedings of ICML 1998, vol. 98, pp. 91-99, 1998.
imgsim. Available: https://github.com/Nr90/imgsim (accessed May 20,
2023)

S. Garrido-Jurado, R. Muiioz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marin-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280-2292, 2014.

Logicool, “C270 web camera.” Available: https://www.logitech.com/en-
eu/products/webcams/c270-hd-webcam.960-001063.html (accessed May
20, 2023)

Available:

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

46

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

47

Pattern Discovery and Stylometric Analysis in English Literature and Literary
Translation Through State Integration in Markovian Representations

C.H.C. Leung

School of Science and Engineering &
Guangdong Provincial Key Laboratory of Future
Networks of Intelligence
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China
clementleung@cuhk.edu.cn

Abstract—In analysing English literary work, the distinct aims
and objectives are to determine the authorship, period, style,
motif, and purpose. Here, the proper evaluation of results in
English Literature is: first, place the known literary work in a
machine learning model and discover their patterns and styles;
second, compare the corresponding metrics with an unknown
literary work. Since obtaining such knowledge from human
experts is laborious and highly subjective, we align a data analysis
method with extensions of the Markovian representations, which
can be generalized to more versatile descriptions as the context
develops. In particular, we consider the simple Markovian model
and more elaborate generalisations that aim to remove the
limitations of the memoryless properties of the basic Markovian
representations. The first generalisation extends the state space by
using the Cartesian product to form the composite state space,
while the second approach exploits the stanza structure to
integrate the states. The first approach can incorporate arbitrary
long-time steps but leads to a high-dimension transition matrix. In
contrast, the second more preferable approach yields a relatively
small dimension matrix, which is computationally much more
efficient. In addition, the latter approach also leads itself to further
state integration by judiciously analysing the purpose of each line
of a passage and provides the scope for analysing much larger
corpora. Through the appropriate use of Markovian
representation generalisations, examining the pattern of
probability entries in the transition matrix, and applying this
characterisation to the vast body of English literature, much more
scientific, objective, and reliable decisions can be arrived at
concerning proper authorship, writing style and other literary
qualities.

Keywords - Victorian novels; English poems; multi-step Markov
chain; Shakespearean plays; Bronté&; Sparse Matrix.

. INTRODUCTION

This paper extends our previous paper [1] that analysed
English literature by using a Markov model from a pragmatic
aspect, namely, defining authorship. Still, computer-aided
authorship attribution can be divided into two approaches,
pragmatic and philosophical, which are related [9]. To have
additional contributions, this paper uses both pragmatic and
philosophical approaches to further analyse English literature
and its Chinese translation by using multi-step Markov chains
and expanding memory through state integration. The additional
contributions of this paper comprise a new philosophical
approach, a second language in literary work, and a new
integration method. The analysis of vast English poems and their

C.J. Zeng

School of Humanities and Social Science
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China
chenjiezeng@link.cuhk.edu.cn

Chinese translation aims to determine several attributes. Such
tasks may be viewed from a machine learning perspective [11]
[12] [16] [17] [20], where one learns the quantitative features of
known passages and uses these to determine obscure passages’
attributes.

Historically, a manual approach to determining authorship
primarily relied on human experts. However, it could sometimes
be faulty as experts must systematically process the vast volume
of literary data. For example, one poem, ‘Stanzas’, supposedly
written by Emily Bronté, beginning ‘Often rebuked, yet always
back returning’, is of uncertain authorship. Although Emily’s
sister, Charlotte Bronté& included it with the seventeen poems by
Emily that she published in her selection of ‘Literary Remains’
that accompanied her 1850 edition of ‘Wuthering Heights and
‘Agnes Grey’ [23].

Fortunately, unsolvable problems can be identified using
machine learning. One positiveness brought by technological
development is that a Machine learning approach could interplay
and assist humans in a more complicated and challenging
synthesis of ascertainable attributes: authorship, style, pattern,
purpose, theme, and function. Stylometric analysis may indicate
that a particular author’s works are structurally distinct.

By using stochastic analysis, more efficient and reliable
decisions can be made. Here, we shall use the Markov model’s
most straightforward form of dependency. The advantage of the
Markov model is that introducing some dependency allows the
styles to be much more richly represented than the simple
independent model.

The rest of the paper is organised as follows. Section Il
provides a literature review, limitations, and achievements. Then
using English literature examples, Section 111 motivates studying
literary work through Markov chains. In Section 1V, we explain
the expansion of memory through state integration. Experiments
on English passages and their Chinese translations are carried
out in Section V. Finally, the paper concludes in Section VI.

Il. RELATED WORKS

Previously, scholars in many fields have argued and studied
the authorship issue. The historical record shows that William
Shakespeare of Stratford-upon-Avon was identified as the
person who was a player, a Globe shareholder, and the author of
the plays and poems that carried his name. No evidence indicates

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that anyone from the Elizabethan and Jacobean periods doubted
this attribution [35].

On the other hand, several studies focused on authorship
analysis of English literature using Markov chain models. The
following studies demonstrate the effectiveness of Markov chain
models in authorship analysis of English literature and suggest
that more complex models, such as multi-step Markov chains or
neural networks, may lead to even better performance.
Specifically, Koppel et al. [36] used statistical markers, complex
multivariate methods, and machine learning-based classification
methods to examine the authorship. The analysis shows that two
of the most sophisticated machine learning methods, SVM and
Bayesian regression, offer an effective and efficient solution to
the problem of authorship attribution. Also, Malyutov [37]
looked at the near-optimal method based on Kolmogorov
conditional complexity, attributing the discovered works of
Shakespeare and those allegedly written by M. Twain, as well as
binary discrimination of the Federalist papers by using Naive
Bayes and other classifiers. Segarra, Eisen, and Ribeiro [38]
introduced a method of authorship attribution called function
word adjacency networks (WANS), which uses function words
as nodes and directional edges to represent the likelihood of
finding one function word in proximity to another. These WANSs
can be interpreted as transition probabilities of a Markov chain
and are compared using relative entropies. Since function words
are independent of content, their use tends to be specific to an
author, making a good summary of stylometric fingerprints. Our
previous papers [1] [2] used iambic pentameter to characterize
these dimensions using Markov chains. We adopt a machine
learning approach, processing and extracting known passages to
create a signature transition matrix. Then we use a multi-step
Markov chain to characterize the evolution of stress levels over
time. The model can incorporate an amount of previous stress
level memory, making it a flexible approach.

While Markov chains have been effective in authorship
analysis of English literature, several limitations and challenges
are associated with using Markov models. First, Markov chain
models assume that the underlying data follows a stationary
probability distribution, meaning that the statistical properties of
the data do not change over time. However, in real-world
scenarios, authors’ writing styles may change over time for
various reasons, such as personal experiences, age, or exposure
to literature. Second, Markov chain models rely on selecting
appropriate features and parameters to accurately represent an
author's writing style. Choosing the right features and
parameters can be challenging and time-consuming, requiring
domain expertise and experimentation. Moreover, most of the
previous studies focused on monolingual literature work in
English. This paper not only analyses the monolingual literature,
but also compares bilingual texts and the Chinese translation of
English literature using a multi-step Markov model. Lastly,
Markov chain models may struggle to differentiate between
multiple authors who have similar writing styles or who have
collaborated on a piece of writing. Additional techniques, such
as stylometry or deep learning algorithms, may need to be
employed in such cases. Therefore, while Markov chain models
have been helpful in authorship analysis of English literature,
they are not without their limitations and further research is
required to overcome these challenges.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

48

We mainly went through the following steps to achieve
authorship analysis of English literature using multi-step
Markov chain models. First, we collected data collection and
gather a corpus of written works from multiple authors, such as
William Shakespeare, the Bronté& sisters, and W.B. Yeats.
Second, we clean and preprocess the data to remove unwanted
elements such as punctuation, numbers, or the last words. Then
we select the representative data and extract its feature that can
be used to represent the writing style of the author. For example,
one or two authors could use the same rhythming patterns as
features. Third, we train the model using multi-step Markov to
identify each author’s writing style. Fourth, to test the Markov
model on a validation dataset, we evaluate its ability to correctly
identify unknown texts” authorship. Therefore, we conduct two
lingual experiments with the Markov chain to optimise the
performance of the model in both monolingual and bilingual
literature. Finally, we can use the trained model to attribute
authorship of unknown texts with similar features to the data and
texts we test and analyse in this paper.

I1l. BASIC MARKOV REPRESENTATION

Here, we illustrate the use of our approach by making use of
some well-known poems, which are typical of similar poems.
Charlotte Bronté& has written more than 200 extant English
poems, which remain of great interest as evidence of her
developing ability to express emotion, her fascination with
exotic characters and scenery, and her absorption of the
techniques, images, and vocabulary of the poets whose work
excited her. The poets that inspired Charlotte Bront&include but
are not limited to William Wordsworth, William Shakespeare,
and Samuel Taylor. Thus, Charlotte Bronté’s poems almost
always have a rich verbal texture, but her control of their style
and structure is often insecure, except when she fair-copies or
revises them [23]. Fortunately, among the five poems that were
written or edited in 1847, two were used in ‘Jane Eyre’ [26]: ‘My
feet they are sore” (p. 22) and ‘The truest love’ (pp. 265-266).

English literature and poems could be differentiated from
poetic devices, rhyme patterns, themes, and motifs. Still, the
works written by the Bronté& sisters share a lot of common
grounds. For instance, we can see a common theme at the heart
of all of Emily Bront&s poetry: the desire for a unified sense of
the self and a simultaneous awareness and fear of the self’s
diffusion and fragmentation [24]. Likewise, ‘Jane Eyre’, written
by Charlotte Bronté& is a story of enclosure and escape of ‘self’
and a story of the movement for freedom within the economic-
social and cultural context in the Victorian era [23] [25].

Such a literary theme is rather hard to capture through a
machine-learning approach. For example, in the first chapter
[26], little Jane is scolded by Mrs Reed, who labels Jane’s
actions as ‘cavillers or questioners’ and demands Jane sit and
remain silent until Jane can ‘speak pleasantly’. To quietly
perform the rebellious act and not be submissive, upset as little
Jane is, she buries herself in the book entitled Bewick’s History
of British Birds. In the introductory pages of Bewick’s book,
little Jane finds comfort through pictures that portray the sea
fowl inhabited by “the solitary rocks and promontories” of the
Norway coast.

However, it will become attainable if we break down human
experts’ complicated and intuitive judgement into small
elements that comprise an overall appreciation of a poem and

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

literature to improve. Among all the attributes, iambic
pentameter, rhythm pattern, and phonetic stresses could be
computer-friendly and play a key role in analysing poetry using
a machine-learning approach. lambic pentameter consists of ten
syllables per line, stressing every second syllable. This creates a
rhythmic pattern of one unstressed syllable followed by one
stressed syllable in each pair. The rhythm pattern of iambic
pentameter can be compared to the sound of a heartbeat, with
each stressed syllable acting as a ‘beat’ in the poem. Phonetic
stresses emphasise a particular syllable or word, typically due to
tone, pitch, or volume. In iambic pentameter, the stress is
determined by the natural accentuation and pronunciation of the
words.

“Where the Northern Ocean’, the first poem in ‘Jane Eyre’,
occurs here. This poem’s imaginative world of literature allows
Jane’s mind to escape confinement [27].

A DA DA D AD AD
A AR AT A BN
Where the Northern Ocean, in vast whirls,
A D ADA DACAD

A AN AN AN AN

Boils round the naked, melancholy isles
A DA DA DA DAD
S DA RN AR B
Of farthest Thule; and the Atlantic surge
A DA D ADADAD

A A A IR B
Pours in among the stormy Hebrides.
a. ‘Where the Northern Ocean’ in ‘Jane Eyre’, written by Charlotte Bronté& [26]

Stressed syllables vary in strength, while unstressed syllables
vary in weakness [4]. In this paper, we notate the stressed sound
with a “|” marking ictic syllables and a “/*” marking unstressed
syllables. In this notation, a standard line of iambic pentameter
would look like “~ |~ |~ |~ |~ |7, where each line of verse is
made up of five two-syllable iambs for a total of ten syllables.
As the meter is mainly about sound, not spelling, scansion adds
numbers to indicate various stress levels to realize beats and
offbeats (A = lightest stress, D = heaviest stress). Scansion is the
analysis of regular patterns of accented, unaccented syllables.

The arrangement of words and phrases in poetic lines reflects
our custom of speaking, and of hearing each other speak, in a
succession of rhythmic units; if the lines are metrical, if they
make patterns out of series of lightly or firmly stressed syllables,
they reflect the fact that when we speak — we speak stressed
syllables with greater and lesser degrees of stress [4]. It is
possible to represent the stress structure by means of a Markov
chain and so provide a characterization of the literary work. The
Markov matrix of the above situation, when used as a sample,
can be constructed as where the four states indicate the stress
levels of A, B, C, and D, respectively,

0 0 02 08
0 0 O 0
1 0 O 0
1 0 O 0

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

49

Although the English syllables we speak can be spoken with
many degrees or shades of emphasis on loudness, sharpness,
duration, and other ways of signalling importance, it seems
likely that in most English speech, we perceive mainly two
significant levels of stress, and that we hear a continuous series
of relatively stressed and relatively unstressed syllables [4].
Similarly, the following

A D ADAD A D AD
A A I EATE B
His sparkling eyes, repleat with wrathfull fire.

b. The Sonnets by William Shakespeare. [22]

can be constructed simply as

= =)
o O O o
oS O OO
O O O

Another form of counter-lauré&te authorship emerges in a
more prominent place, Theseus’s speech in the mid-1590s
romantic comedy A Midsummer Night’s Dream. Noticeably,
Shakespeare’s self-reflexive revision, such as inserting
discourse about the ‘poet’ as a company for ‘lunatic’ and ‘lover’,
turns a speech about the madness of love into one about the
poet’s role in forming an eternising state of consciousness [7].

A D ADADAD A D
" L A AR .

More strange than true. | never may believe

A DADA D A DAD
" A IR IR

These antic fables, nor these fairy toys.

A DA D ADADAD
A R A L

Lovers and madmen have such seething brains,

A D A DA D ADAD
" I I A B
Such shaping fantasies, that apprehend

c. The Sonnets by William Shakespeare. [22]

Most of the poems written by the Bronté& are ended with
the rhythm of ‘abab’ pattern, such as, ‘My Feet They are Sore’
(p. 22) written by Charlotte Bront&in her novel ‘Jane Eyre’ [26].
These two poems are fair copies or revised by Charlotte Bronté&s
[26], thus we can see regular poetic patterns in them.
Specifically, in the first stanza, the last words of each line are
‘weary, wild, dreary, child’. If each of the last words is given a
name using alphabetic order, we name the word of the same
rhythm with the same alphabetic letter. Here in this stanza,
‘weary’ and ‘dreary’ are given a random letter ‘a’ because they

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

end with the same pronunciation of ‘-eary’, whereas ‘wild” and
‘child’ are given another name ‘b’ for ending with the ‘-ild’
sound. The same logic applies to the remaining stanza of this
poem: cdcd (the second stanza); efef (the third stanza). ghgh (the
fourth stanza), ijij (the fifth stanza).

Stanza 1:
My feet they are sore, and my limbs they are weary; (a)
Long is the way, and the mountains are wild; (b)
Soon will the twilight close moonless and dreary (a)
Over the path of the poor orphan child. (b)

d. ‘My Feet They are Sore’ in ‘Jane Eyre’, written by Charlotte Bront& [26]

To further analyse the poem with attributes, we can now look
at the stresses of each word in each line. In a line of a poem, a
foot refers to either a stressed syllable or an unstressed syllable.
Both syllables then form distinct pairs, as a musical measure
consists of a certain number of beats. Delimitation of the spoken
chain sounds can be based on auditory impressions, but
describing these sounds is an entirely different process.
Description can be carried out based on the articulatory act, for
it is impossible to analyze the sound units in their chain [16].

Stanza 2:
A B AC ADA B AD
N N | N | N N

I I
Why did they send me so far and so lonely, (c)

A B A C A B A C A C

N N N | N N

Up where the moors spread and grey rocks are piled? (d)
A B A D A C A D

N N A N

Men are hard-hearted, and kind angels only (c)
A B AC A D C D

N | AN | AN | AN

Watch o’er the steps of a poor orphan child. (d)

Stanza 3:
A D A CA C A B AC
N N | N N | N |

|
Yet distant and soft the night breeze is blowing, (e)

A B AC A B ACB C

N | A | AN | A | A

Clouds there are none, and clear stars beam mild, (f)
A BA C A C AD

N N | N N
God, in His mercy, protection is showing, (e)
A B AC A D C D

A | A | AN | A

Comfort and hope to the poor orphan child. (f)

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

50

Stanza 4:
A D AD A D A D
AN A | A | N |
Ev’n should | fall o’er the broken bridge passing, (g)
A D A D A D A D
AN A AN AN |
Or stray in the marshes, by false lights beguiled, (h)
A DADADAD A D
R PR AR R o
Still will my Father, with promise and blessing, (g)
A DADAD A DA D
AN | AN | AN | AN AN
Take to His bosom the poor orphan child. (h)
Stanza 5:
A D AD A D A D
AN | AN | AN | AN
There is a thought that for strength should avail me, (i)
A D AD A D A D
AN AN AN A |
Though both of shelter and kindred despoiled; (j)
A DA D A D A DAD
AN AN | AN AN /\.
Heaven is a home, and a rest will not fail me; (i)
A DAD A D A D
AN A AN AN
God is a friend to the poor orphan child. (j)
e. ‘My Feet They are Sore’ in ‘Jane Eyre’, written by Charlotte Bronté& [26]

The advantage of Markov models [13] [18] for analysing
sequential data is that segmentation and classification are
performed simultaneously in an integrated procedure. Using
efficient and robust training and decoding algorithms, Markov
model recognition systems can effectively be realized for large-
scale classification systems [3].

The poem reappears in a different context when Jane and
Rochester declare their love for each other on Midsummer Eve
[26]. It serves a new purpose: to symbolise the to-be Mrs
Rochester’s potentialities for freedom and happiness, as well as
the natural affinity between her and Rochester. The poem that
starts with ‘the truest love that ever heart’ is narrated from
Rochester’s perspective, indicating a potential marriage and
freedom afterwards.

Stanza 1:
ADA D AD AD

N A B I
The truest love that ever heart
ADAD AD

AN AN N

Felt at its kindled core,

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

A D A D A D A D Stanza 4:

N AN N I AN
Did through each vein, in quickened start, A DADAD A D

" [B
A DADAD And haunted as a robber-path
A AR B
The tide of being pour. f Ilj,'\AD f ?
A DA DA D A D Through wilderness or wood;
(A A AR B
. A D A D A D A D
Her coming was my hope each day, A | A N
A DA D AD For Might and Right, and Woe and Wrath,
A AR A
Her parting was my pain; f IT ﬁ‘? f‘ IlD
A D ACADAD Between our spirits stood.
N AN N AN
The chance that did her steps delay
A DADAD Stanza 5:
AU A I
Was ice in every vein. A DA D AD A D
AN I AN I A | AN
| dangers dared; I hindrance scorned;
Stanza 2: A DA DAD
A D AD A DA AD (A A A
A A A I omens did defy:

| dreamed it would be nameless bliss, A DADA D A D

A DA D AD A |~] A | A
A [" Whatever menaced, harassed, warned,
As | loved, loved to be; AD A D AD

A DA D A D A | "
A |~ I passed impetuous by.
And to this object did | press

A D ADAD

A A1 A Stanza 6:
As blind as eagerly. A D ADADAD
AN | A | N | A
On sped my rainbow, fast as light;
Stanza 3: ADADAD
A DA DAD AD A I A
A [~ 1 ~ |1 "~ | | flew as in a dream;

But wide as pathless was the space A DADADAD
| A

A D AD AD A A B I

" [~ 1 "~ For glorious rose upon my sight
That lay our lives between, A b AD A D

A D ACADAD A | ~ A

" [~~~ That child of Shower and Gleam.
And dangerous as the foamy race

A DADA D .

O I Stanza 7:

Of ocean-surges green. A D A D A D AD

AN AN N I AN |

Still bright on clouds of suffering dim

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A DA D AD

n [~ 1 "~

Shines that soft, solemn joy;

A DAD A D A D

N | JAN | N N
Nor care | now, how dense and grim
ADADAD

L

Disasters gather nigh.

Stanza 8:
AD ADADA D

N | N | N | N
| care not in this moment sweet,
A DADAD A D

" (R I I
Though all I have rushed o’er
A D ADA D A D

A AN | A AN
Should come on pinion, strong and fleet,
A DA D A D

A L

Proclaiming vengeance sore:

Stanza 9:
A D AD A D AD
N N N N

Though haughty Hate should strike me down,

A D AD AD

AN AN AN |

Right, bar approach to me,
A DA D A DA D

A A A A

And grinding Might, with furious frown,
ADADA D

A A A

Swear endless enmity.

Stanza 10:
A D ADAD A D
N N | N | N

|
My love has placed her little hand
A DAD AD

N | A | N |
With noble faith in mine,
A D A D A DA D

N AN AN AN |

And vowed that wedlock’s sacred band

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

52

A DADAD
n [~ 1~
Our nature shall entwine.
Stanza 11:
A D A D A D AD
N N N N
My love has sworn, with sealing kiss,
A DAD AD
" |~ 1~
With me to live—to die;
ADADAD AD
N N N N |
I have at last my nameless bliss.
A DA DAD
A (A
As | love—loved am I!
f. ‘The Truest Love’ in ‘Jane Eyre’ by Charlotte Bront& [26]

The above passage may be characterized by the following matrix
0 0 0 1

0 0 0 O
0 0 0 O
1 0 0 O

Thus, the authorship may be evaluated by examining the pattern
of entries in the transition matrix.

IV. EXTENDING MEMORY THROUGH STATE INTEGRATION

The basic Markovian representation, while useful, suffers
from the limitations that plague all basic Markovian models in
that the memory of any previous states is completely erased.

However, it is possible to inject limited memory by forming
the Cartesian product of the basic states, but this tends to be
computationally prohibitive. In our situation above,
incorporating one-step memory requires augmenting the state
space to 16, and incorporating two-step memory requires
augmenting the state space to 64, resulting in a 64 X 64
transition matrix. Thus, incorporating k-step memory requires
augmenting the state space to 4<** with a rather unwieldy 4%** X
41 transition matrix:

€11 €12 €13 . €1p
€i1 € €in
enl enz enn

1)

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where each ej; > 0, and

n -
Z}.zle”sL i=1,2,...,n.
Here, we allow the possibility of
n
Zj=1 el'j < 1,

which can sometimes occur, especially when absorbing states
may be suitably identified [34]. Techniques for dimension
reduction of the above matrix have been proposed in [1], where,
for example, a 16 X 16 transition matrix may be reduced to a 6
X 6 matrix.

Instead of the above approach, however, we shall exploit the
line structure in each stanza. Consider Stanza 4 of ‘My Feet They
Are Sore’ in ‘Jane Eyre’, written by Charlotte Bronté above. We
observe that line 1 and line 2 have the same structure, which we
can represent by &, while line 3 and line 4 have the same structure,
which we can represent by (. Thus, in Stanza 4, we have the
transition structure

&— & (probability /3)
&—((probability 15)
{—C (probability ¥3)
£— & (probability 0).

This gives the 2 X 2 transition matrix

(6 =)

where the first state corresponds to &, and the second state
corresponds to .

Applying the same framework to the first stanza of
Rochester’s poem, we introduce a further state A corresponding
to the second line of Rochester’s poem, which then yields the
transition structure

A — & (probability 3/7)
E— & (probability 0)
&— L (probability 4/7)
L — L (probability 0)
A — { (probability 0)
{— X (probability 0).

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

53

{— & (probability 0)
&— ({ (probability 0)
{—{ (probability 0)

This will give a 3 X 3 transition matrix with all diagonal

elements equal to 0.
0 0 4/7
(0 0 0)
3/7 0 0

While this is a more complete representation, it will be
computationally less efficient and is only necessary when we
need to combine the above two passages. In analyzing individual
passages, using a 2 X 2 transition matrix may sometimes suffice,
which on suitably defining the states, yields the following
simpler transition matrix

(57 %)

Following the simplified approach, the second stanza of the
same poem Yyields the transition structure

{— & (probability %5)
§—& (probability 0)
& — { (probability ¥5)
—{ (probability 0).

This gives the transition matrix

(5 o)

Another way to avoid dealing with large transition matrices,
judgment can be exercised to integrate the states further. In this
way, considering large passages will be less unwieldy. From the
recital perspective, it may be possible to merge the states { and
A and regard them as serving the same purpose. Let us map both
states to 1. Then we have the states § and . In so combining the
two stanzas will yield the following transition structure

n—& (probability 6/11)
&— & (probability 0)
&—mn (probability 5/11)
n—n (probability 0),

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which yields the combined transition matrix

<6/011 5/011)
(2

Evidently, this matrix is computationally much more efficient
than the matrix (1), while the amount of memory in the
underlying Markovian model (2) is no less substantial.

V. EXPERIMENTATION

In this section, we conduct two experiments: monolingual and
bilingual experiment. In a monolingual experiment, we analyse
English stanzas written by Emily Bront& Whereas in a bilingual
experiment, we first analyse an English poem, ‘Leda and the
Swan’ written by W. B. Yeats, then compare its Chinese
versions translated by Mu Yang and Guangzhong Yu.

A. Monolingual Experiment

Ranked with Elizabeth Barrett Browning, Christina Rossetti,
and Emily Dickinson, Emily Bront&is one of the pre-eminent
women poets of the Victorian period [23]. As mentioned in the
introduction of this paper, the poem, ‘Stanzas’ beginning ‘Often
rebuked, yet always back returning’, is of uncertain authorship.
Supposedly, it was written by Emily Bront& Charlotte
substantially revised and retitled most of these poems, and
editors now print Emily’s version from her manuscript (except
in the case of ‘Often rebuked’). Charlotte clarified in her
prefatory note to ‘Selections from the Poems by Ellis Bell’ that
‘it would not have been difficult to compile a volume out of the
papers left by my sisters’ [23].

Stanza 1:
Often rebuked, yet always back returning (a)
To those first feelings that were born with me, (b)
And leaving busy chase of wealth and learning (a)
For idle dreams of things which cannot be: (b)

Stanza 2:
To-day, I will seek not the shadowy region; (c)
Its unsustaining vastness waxes drear; (d)
And visions rising, legion after legion, (c)
Bring the unreal world too strangely near (d)

Stanza 3:
I'll walk, but not in old heroic traces, (€)
And not in paths of high morality, (f)
And not among the half-distinguished faces, (e)

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

54

The clouded forms of long-past history. (f)

Stanza 4:
I'll walk where my own nature would be leading: (g)
It vexes me to choose another guide: (h)
Where the grey flocks in ferny glens are feeding; (g)
Where the wild wind blows on the mountain side. (h)

Stanza 5:
What have those lonely mountains worth revealing? (i)
More glory and more grief than I can tell: (j)
The earth that wakes one human heart to feeling (i)
Can centre both the worlds of Heaven and Hell. (j)

g. ‘Stanzas’ begins with ‘Often rebuked’ by Emily Bront& edited by Charlotte Bronté& [28]

Then, before a further elaboration of the remaining poem,
Charlotte writes, ‘The following are the last lines my sister
Emily ever wrote.” [28]

No coward soul is mine,

No trembler in the world's storm-troubled sphere:
| see Heaven's glories shine,

And faith shines equal, arming me from fear.

O God within my breast,

Almighty, ever-present Deity!

Life—that in me has rest,

As I—undying Life—have power in thee!

Vain are the thousand creeds

That move men's hearts: unutterably vain;
Worthless as withered weeds,

Or idlest froth amid the boundless main,

To waken doubt in one
Holding so fast by thine infinity;
So surely anchored on
The stedfast rock of immortality.

With wide-embracing love

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thy spirit animates eternal years,
Pervades and broods above,

Changes, sustains, dissolves, creates, and rears.

Though earth and man were gone,
And suns and universes ceased to be,
And Thou were left alone,

Every existence would exist in Thee.

There is not room for Death,

Nor atom that his might could render void:
Thou—THOU art Being and Breath,

And what THOU art may never be destroyed.

h. ‘Stanzas’ begins with ‘Often rebuked’ by Emily Bront& edited by Charlotte Bronté& [28]

The above poem is claimed to be written by Emily Bronté&
and edited by Charlotte Bront& Nevertheless, the authorship is
uncertain [26]. We analyse this piece of work as the dataset for
comparison and evaluation. There is a possibility that the writers’
writing style varies from time to time. Therefore, the loose
verification of late Bront& may be significantly different from
their early works [9].

Given a close look at the poem ‘Stanzas’, we can spot a
similar pattern and rhythm in it. For example, the number of
lines and the rhythm pattern in the above ‘Stanzas’ that begins
with ‘Often rebuked’ written by Emily Bront& edited by
Charlotte Bronté&is akin to the poem ‘My Feet They are Sore’ in
‘Jane Eyre’ written by Charlotte Bront& They end with the
‘abab, cded, efef, ghgh, ijij” pattern. More specifically, in the
first stanza of the poem ‘Stanzas’, the rhythm of the first and
third lines ends with ‘-ning’, which is labelled by a random ‘a’,
and the rhythm of the second and fourth lines end with ‘-¢’,
which is marked as a sequential letter ‘b’. The following rhythm
in the ‘Stanzas’ edited by Charlotte Bront&is aligned with the
pattern in her poems included in ‘Jane Eyre’. Such identical
authorship features can be easily found through Markov Model.

B. Bilingual Experiment

W. B. Yeats’s poem ‘Leda and the Swan’ is based on a Greek
story in which the god Zeus swooped down and hit Leda in the
form of a swan, a human and ancient Greek queen. Consequently,
such misconduct led to the Trojan War. Seemingly ironic, the
poem could allude to the colonial relationship between Great
Britain and lIreland, more specifically, to the Irish War for
Independence.

Stanza 1:
Line 1: A sudden blow: the great wings beating still (k)
Line 2: Above the staggering girl, her thighs caressed (I)
Line 3: By the dark webs, her nape caught in his bill, (k)

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

55

Line 4: He holds her helpless breast upon his breast. (I)

Stanza 2:
Line 5: How can those terrified vague fingers push (m)
Line 6: The feathered glory from her loosening thighs? (n)
Line 7: And how can body, laid in that white rush, (m)
Line 8: But feel the strange heart beating where it lies? (n)

Stanza 3:
Line 9: A shudder in the loins engenders there (0)
Line 10: The broken wall, the burning roof and tower (p)
Line 11: And Agamemnon dead.
Line 12: Being so caught up, (q)
Line 13: So mastered by the brute blood of the air, (0)
Line 14: Did she put on his knowledge with his power (p)
Line 15: Before the indifferent beak could let her drop? (q)

i. ‘Leda and the Swan’ by W. B. Yeats. [31]

Analysing Yeats’s poem through a human’s close reading
from a literature perspective, the poem consists of three concepts:
defamiliarisation, paradox, and textual indeterminacies. The
world would become strange due to the act of defamiliarisation.
In the first stanza, ‘sudden, still, staggering’ suggests that the
story takes place in medias res, defamiliarising the familiar.
Through the angle of the third party, Yeats creates an impression
to the readers who are not notified of anything that suddenly,
everything is happening from nowhere. Because of the
unawareness, audiences like the blind, who can only touch a part
of an elephant at once, feel unfamiliar with this pornographic
scene. Such a defamiliarised act “presents objects or experiences
from an unusual perspective or in unconventional and self-
conscious language that our habitual, ordinary, rote perceptions
of those things are disturbed [30]’. The estranging lines in the
last stanza also indicate defamiliarisation that the poetic form
and language are intentionally made strange after the
‘Agamemnon dead’, indicating the tragedy of such an
irresponsible act of sexuality.

Power imbalance, id est who overpowers whom, remains an
unsolved and ambiguous question for readers. The textual
indeterminacy could lie in ‘Leda’s profound and provocative
dramatisation of the ambiguities of sexual encounters’ [29].
Conventionally speaking, ‘helpless, terrified” could possibly
imply Leda’s despair because Zeus, in the form of a swan, rapes
Leda. However, without pinpointing commas, it is not absolutely
clear who is helpless. We may read that ambiguity as the basis
of assuming interchangeable roles, both Leda and the swan
being potentially the rapist [29]. Another indeterminacy
example in stanza two leads to a question: whose ‘body’ feels
whose ‘strange heart beating’, which resulting audiences’
imagination of what suits their habitus.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The by-product of textual indeterminacy is the paradox
regarding the definition of and separation between rightness and
wrongness in Yeats’ poem. The sexual intercourse between the
helpless and the powerful may suggest the intertwining essence
of the paradox between rightness and wrongness. The
presumably mighty ‘glory’ and helpless Leda would never
foresee that their sexual affairs would ‘engender’ the ‘broken
wall, burning roof’ causing ‘dead, blood’. By asking three
questions (two questions begin with how’ in lines 5-8, and one
begins with ‘did’ in lines 14-15), Yeats implies that the natural
bond and sexual desire from both parties are intertwined and
inseparable, and so do the paradoxical rightness and wrongness
in Zeus and Leda. As a human, Leda sees Zeus as an animal;
thus, sex with such a ‘feathered glory’ is prohibited. She intends
to ‘push’ him from ‘her loosening thighs’. However, her feeling
and, more importantly, Zeus’s power takes over Leda, who is
therefore subordinated by power, emotion, and sexuality.

From a machine learning perspective, the above-mentioned
three key concepts can be captured and simplified by analysing
the form of the original and translated texts. Here we provide
two different versions in Chinese for the bilingual experiment.

The original English version of ‘Leda and the Swan’ (also
called source text) has distinct machine-learning-friendly
features, especially rhythming. For example, in stanza one, the
ending rhythm for lines one and three is -ill’, which we name
the ‘k’ line; in contrast, the second and fourth lines end with ‘-
ssed/st’, which we call it the ‘I’ line. We can see the pattern
regularly goes in the ‘klk1’ pattern. A similar pattern and feature
can be seen in the second and third stanzas, which end with the
thythm of ‘mnmn’ and ‘opqopq’, respectively. The random
letter ‘m’ represents the rhythm of ‘-ush’ in lines five and seven;
‘n’ refers to the identical ending rhythm of ‘-ighs/ies’.

Using the Markov model, if such a feature can be primed,
detected, and memorised, then this model can be used to predict
the translated text (also known as the target text). In other words,
such rhythming features in the English source text should ideally
be translated by a faithful translator to achieve the same effect in
Chinese-translated poems.

BERNTELE : FIPIIATTI
BRI L T2 L, HHT
WERCHIIEEHETF 2RI
MhFEAAE I HIIG AL FAINANE

A LER [PIHE R F-75. 5 EE 1] g

AETTIEHG I T PR I Je] THE B 7
28, EWEEHSTEZ T

U A —af O tE A BB ?

NER— A 17 5 -

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

56

ARETERIWIE, ETEIR 5 TSt
TN IER o
WAL ETES,

U BB —TERG T 1 7T IR
2 1T B R 1119 1 A 9 e
AR LR ST SE SR 7T 2

j. ‘Leda and the Swan’ translated by Mu Yang. [32]

However, in the first piece of Chinese translation written by
Yang [32], it is unlikely to see such features of rhythming if we
look at the last words of each line. For example, in the first stanza,
we have to end words pronounced respectively ‘yu, gu, qin,
huai’, which do not comply with the source text’s rules and
writing convention, largely distinct from Yeats’s writing habits.
In the second stanza, the ending pronunciations are ‘neng, kai,
xia, dong’, which are significantly different from the rhythm
format in the source text. As the different rhythms cannot be
memorized by a simple step of the Markov chain, the
undetectability of the rhythm in Yang’s translation could fail and
an undesired translation from a machine learning perspective.

Stanza 1:
Line 1: 548 —1#: EHPILHNE). (k)
Line 2: g ZALLENT P 400 M/HEEE ()
Line 3: BEE I, FHHIZ RS S, (k)
Line 4: A AEMFZ (EHIA LR ITGRE. (1)

Stanza 2:
Line 5: #4217 & Mg FH5EREHEH, (m”)
Line 6: 4TI, AFIEHIFERE? (n”)
Line 7: 72T #) T, LT ML (m”)
Line 8:. & GE A/ Z) S ERBIHIHZNT L7 (n°)

Stanza 3:
Line 9: /% —FEERFL, 1EULIEFE T (0°)
Line 10: 42751, J& TR IR, (')
Line 11: /77 a2)1 B 1AL 2
Line 12: FLELRHEI ()
Line 13: #% L7 K Il IFHT R I JIrZ# (o)
Line 14: 4, 7] E7 5L # 77 R AT £ (p°)
Line 15: FEH /.2 IG A ASHIK T2 (q°)

k. ‘Leda and the Swan’ translated by Guangzhong Yu. [33]

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the contrary, Yu’s version of translation [33] aligns with
Yeats’s rhythming format. Such rhythming features in Yu’s
translation could be memorized by the Markov model. For
instance, in stanza one of Yu’s translation, lines one and three
end with the rhythm -ong’, and the rhythm of lines two and four
are identical ‘pu’. Likewise, the rhythming pattern in stanza two
goes ‘u’ (lines five and seven) and ‘xin’ (lines six and eight),
which suggests that Yu has captured the structure feature and
beauty in Yeats’s poem and then strategically and equivalently
translated them into Chinese.

VI. CONCLUSION

In carrying out the analysis of the works in English and other
literature, there are definite requirements, which include
determining the authorship, dating the period of the work, and
establishing the passage’s style, theme, and purpose. We have
placed such tasks in a machine-learning context, where a
learning phase involving known passages is followed by a
testing phase involving unknown passages.

Since obtaining such knowledge from human experts is time-
consuming, subjective, and error-prone, we combine a data
analysis approach with Markov models. The Markov model can
represent and encapsulate the sequential flow of writing
characteristics in passages. In addition, we also proposed two
strategies to overcome the memoryless properties of the Markov
model. The first involves augmenting the state space of the
Markovian representation by repeatedly forming the Cartesian
product of the underlying space. However, while this is a
mathematically versatile approach, it will lead to high
computational costs. The second approach exploits a poem’s
stanza and line structure, which has shown to be much more
efficient, yielding a much smaller dimension transition matrix.
In addition, the latter approach also lends itself to further state
integration by judiciously analysing the purpose of each line of
a passage and providing the scope for analysing much larger
corpora. Through the appropriate use of Markovian variants,
examining the pattern of probability entries in the transition
matrix, and applying this characterisation to the vast body of
English literature, more scientific, objective, and reliable
decisions can be made concerning proper authorship, writing
style, and other literary qualities.

REFERENCES

[1] C. H. C. Leung and C. Zeng. The Use of Multi-Step Markov
Chains in the Characterization of English Literary Works. In
Procedings of the 11™ International Conference on Data
Analytics, Valencia, Spain, pp. 43-48, 2022.

[21 C. Zena and C. Leuna, The Use of Stochastic Models in the
Analysis of Vast English Literary Data Corpora, 2020 6th
International Conference on Bia Data and Information Analytics
(BigDIA), Shenzhen, China, pp. 282-288, 2020.

[31 T. Plotz and G. A Fink, Markov Models for Handwriting
Recognition. London: Springer London, 2011.

[41 G. T. Wright, Shakespeare’s Metrical Art. Berkeley: University
of California Press, 1988.

[5] W. Shakespeare and P. Alexander, William Shakespeare; the
complete works. London: Collins, 1964.

[6] G. Taylor, Shakespeare and Others: The Authorship of "Henry the
Sixth, Part One". Medieval & Renaissance Drama in England,

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

57

Vol. 7 pp. 145-205. Rosemont Publishing & Printing Corp DBA
Associated University Presses, 1995.

[71 C. Patrick, Shakespeare's literary authorship. Cambridge:
Cambridge University Press, 2008.

[8] P. Edmondson and S. Wells, Shakespeare Beyond Doubt.
Cambridge: Cambridge University Press, 2013.

[9]1 G. Taylorand G. Egan, The New Oxford Shakespeare: Authorship
Companion. Oxford: Oxford University Press, 2017.

[10] E. Martina, The Use of Dialects and Foreign Languages in
Shakespeare’s King Henry V—Characteristics of the Fool
Explored. English Studies, vol. 100, pp. 767-784. Colchester,
Informa UK Limited, June 2019.

[11] D. Berend and A. Kontorovich, A Finite Sample Analysis of the
Naive Bayes Classifier. Journal of Machine Learning Research,
16(1), pp. 1519-1545, 2015.

[12] C. M. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, 2006.

[13] W. Feller, Introduction to Probability Theory and Its
Applications, Volume 1, 3. Ed. Wiley, 2008.

[14] T. Fawecett, “An introduction to ROC analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861-874, 2006.

[15] D.D. Lewisand W. A. Gale, A Sequential Algorithm for Training
Text Classifiers. In Proceedings of the Seventeenth Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 3-12, 1994.

[16] N. L. J. Kuang and C. H. C. Leung, Analysis of Evolutionary
Behavior in Self-Learning Media Search Engines, in Proceedings
of the IEEE International Conference on Big Data, Los Angeles,
USA, pp. 643-650, 2019.

[17] N. L. J. Kuang and C. H. C. Leung, Performance Dynamics and
Termination Errors in Reinforcement Learning - A Unifying
Perspective. In Proceedings of the IEEE International Conference
on Atrtificial Intelligence and Knowledge Engineering, pp. 129-
133, 2018.

[18] E. Parzen. Stochastic Processes. Dover, 2018.

[19] R. Snow, B. O'Connor, D. Jurafsky, and A. Y. Ng, Cheap and Fast
- but is It Good? Evaluating Non-expert Annotations for Natural
Language Tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 254-263, 2008.

[20] N. L. J. Kuang and C. H. C. Leung, Leveraging Reinforcement
Learning Techniques for Effective Policy Adoption and
Validation. in Misra S. et al. (eds) in Computational Science and
Its Applications — ICCSA 2019, 311-322, Lecture Notes in
Computer Science, Vol. 11620. Springer, 2019.

[21] N.L.J. Kuangand C. H. C. Leung, Performance Effectiveness of
Multimedia Information Search Using the Epsilon-Greedy
Algorithm, in Proceedings of the IEEE International Conference
on Machine Learning and Applications, Florida, USA, pp. 929-
936, 2019.

[22] W. Shakespeare, The Sonnets. London: Macmillan Collector’s
Library, 2016.

[23] C. Alexander and M. Smith The Oxford Companion to the
Brontés. Oxford University Press, 2006.

[24] L. Pykett, Emily Bronté. Rowman & Littlefield Publishers, 1989.

[25] S. M. Gilbert and S. Gubar, The madwoman in the attic: the
woman writer and the nineteenth-century literary imagination.
Yale University Pres, 1979.

[26] C. Bronté& Jane Eyre, Oxford University Press, 2019.

[27] L. Judith and P. Christopher, From the Red Room to Rochester's
Haircut: Mind Control in ‘Jane Eyre’. ESC: English Studies in
Canada, 32(4), pp. 169-188, 2008.

[28] A. Bronté& C. Bront& and E. Bront& Poems by Currer, Ellis, and
Acton Bell. Project Gutenberg, 1997.

[29] WC. Barnwell, The Rapist in "Leda and the Swan". South Atlantic
Bulletin, 42.1, pp. 62-68, 1977.

[30] J. Rivkin and R. Michael, Literary Theory. Blackwell
Anthologies. 3rd ed. New York:Wiley, 2017.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] W. B. Yeats, Leda and the Swan. Modern English Literature, p.8,

5
. Yang (#2450, Translated poem of 'Leda and the Swan' 32{E(
EAX$E). Yi Shi (3£%). Cosmos Books Ltd. (RHEIZH R
), p. 26, 2007.
[33] G. Yu (5RFH), Translated poem of 'Leda and the Swan' FZ{E
(B4 B X $B8) . Songs of Innocence: An Anthology of
Guangzhong Yu's Translated Poems (REMER : AR HICHER
#E:555). Jiangsu Phoenix Literature and art publishing, Ltd. (T
FRBLELSCEH RAL), p. 76, 2019.
[34] R. A. Howard, Dynamic Probabilistic Systems, VVolume I, Dover,
2017.

[N
Lo
w

[32]

J:i%
=

o

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

58

[35] T. Reedy and D. Kathman, How We Know That Shakespeare
Wrote Shakespeare: The Historical Facts. Kathman & Ross,
Shakespeare Authorship Page, 2005.

[36] M. Koppel, J. Schler, and S. Argamon, Computational methods
in authorship attribution. Journal of the American Society for
Information Science and Technology, 54(4), pp. 9-26, 2009.
[37] M.B. Malvutov, Authorship attribution of texts: A
review. General Theorv of Information Transfer and
Combinatorics, pp.362-380, 2006.

[38] S. Seaarra, M. Eisen, and A. Ribeiro, Authorship attribution
throuah function word adjacency networks. IEEE Transactions
on Signal Processing, 63(20), pp. 5464-5478, 2015.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

A Graph Matching Algorithm to Extend Software
Wise Systems with Human Semantic

Abdelhafid Dahhani
LISTIC
Université Savoie Mont Blanc
Annecy, France
email: abdelhafid.dahhani @univ-smb.fr
0000-0001-6314-662X

ITham Alloui

Université Savoie Mont Blanc
Annecy, France
email: ilham.alloui @univ-smb.fr
0000-0002-3713-0592

Sébastien Monnet
LISTIC
Université Savoie Mont Blanc
Annecy, France
email: sebastien.monnet@univ-smb.fr
0000-0002-6036-3060

LISTIC

Flavien Vernier

LISTIC

Université Savoie Mont Blanc
Annecy, France
email: flavien.vernier @univ-smb.fr
0000-0001-7684-6502

Abstract—Wise systems refer to distributed communicating
software objects, which we termed Wise Objects, able to au-
tonomously learn how they are expected to behave and how
they are used. Wise Objects are designed to be associated either
with software or physical objects (e.g., home automation) to
adapt to end users while demanding little attention from them.
This last requirement obeys to the principle of calm technology
introduced by Mark Weiser and John Seely Brown in 1995. Wise
Objects are endowed with autonomous computing capabilities
as they implement the notion of IBM’s 4 state loop Monitor-
Analyze-Plan-Execute over a shared Knowledge. However, they
suffer from a lack of semantic, which prevents them from
communicating effectively with a human. The work presented
in this paper aims at extending Wise Objects with the ability to
use human semantic to communicate with a user. Construction
of such systems requires at least two views: (i) a conceptual view
relying on knowledge given by developers to either control or
specify the expected system behavior; and (ii) an auto-generated
view acquired by wise systems during their learning process.
The problem is that, while a conceptual view is understandable
by humans (i.e., developers, experts, etc.), a view generated by
a software system contains mainly numerical information with
mostly no meaning for humans. In this paper, we address the issue
of how to relate both views using two state-based formalisms:
Input Output Symbolic Transition Systems for conceptual views
and State Transition Graphs for views generated by the wise
systems. Our proposal is to extend the generated knowledge with
the conceptual knowledge using a matching algorithm founded
on graph morphism. Target results are twofold: (i) make wise
systems’ generated knowledge understandable by humans, (ii)
enable human evaluation of wise systems’ outputs. To illustrate
the overall process, the construction of two samples of graph
matching on a roller shutter and a light bulb are considered.

Keywords—statecharts; monitoring systems; adaptive system and
control; knowledge-based systems; discrete-event systems; graph
matching; semantic.

I. INTRODUCTION

In recent years, software technology has exponentially un-
dergone a huge evolution increasing the development of intelli-
gent applications using Al models and techniques, in particular

machine learning techniques. Examples of Al-based systems
are home-automation and software network traffic analysis.
Artificial intelligence (AI) and software engineering (SE) are
old interdependent and mutually beneficial fields that came
into the spotlight with the advent of deep learning. The chal-
lenges for SE are linked to modeling, implementing and testing
software and systems that integrate AI. When Al provides soft-
ware with ability to adapt to their environment, designing such
software requires dedicated approaches and tools to manage
this ability leading to a non predictable software behavior.
Hence, the idea underlying the Wise Systems (WS) [1] is
to provide developers with software support, to help them
design and build intelligent systems and applications. Indeed
the availability of machine learning libraries and off-the-shelf
solutions sometimes gives the illusion that developing Al-
based software applications is easy, but the reality is that
developing viable and trusted Al systems requires significant
effort [2]-[5] and combination of AI and SE.

Wise systems refer to distributed communicating software
objects, which we termed Wise Objects (WOs), able to au-
tonomously learn how they are expected to behave and how
they are used. A desirable feature of a WS is self-adaptation:
the WS should be able to autonomously adapt according
to their use. It can be seen as a particular Multi-Agent
System [6][7] that monitors only its internal changes and does
not directly observe its external environment. Concretely, a
WO is a piece of software able to monitor itself: the way it is
used and the way it could be used (through introspection). The
main specificity of a WO is that it is able to learn about itself
in an autonomous way: it monitors its method invocations
and their impact, it can also simulate method invocations
to envision possible use and explore/discover new states. A
method implements a service or functionality to be provided
by a WO Then, the collected monitoring data can feed a
learning process to be able to determine usual and unusual

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

59

behavior (for instance), this learning process is implemented
by experts through plugins [8]. Let us note that a plugin
is software that adds new abilities or extends existing ones.
We have developed several plugins for WOs, e.g., Analyzers,
Planners, Graph Matchers, Al Models, etc. An example is
a home-automation system that collects someone’s behavior
within a place and analyzes it to be able to act “silently” when
necessary. Such systems should require the minimum attention
from their end users while being able to adapt to changes in
their behavior.

To meet those requirements and as the development of
such systems is non-trivial, we developed an object based
framework named Wise Object Framework [9] (WOF) to
help developers design, deploy and evolve WSs. Generally,
knowledge in Al-enabled systems can be provided according
to two ways: describing a priori the arrangement of activities
to be performed by the system, or, letting the system acquire
the required knowledge using learning mechanisms.

In the former case, ontologies and/or scenarios are usually
used to describe the arrangement of activities to achieve a goal
as in [10][11]. In [10], functional behavior as well as inter-
operation of system entities are described a priori using state-
diagrams. Reference [11] goes a step forward by combining
ontologies to design ambient assisted living systems with
specifications based on logic and analyzers to check in logic
clauses before system deployment to create relevant scenarios.
In those approaches, the end user is at the heart of the
scenario creation process, as described in [12][13]. In the
second case, knowledge is provided by the Al-enabled system
in representations and views not necessarily understandable by
humans. This relates to the wide problem of comprehensibility
of Al and to the distance between the business domain and
technological domain views [14].

In this context, the WO acquires by itself knowledge about
its capabilities — services to be provided — and its use to
moderate attention from the end-users [15] (Calm technol-
ogy [16]). Mark Weiser and John Seely Brown [17] describe
calm technology as “that which informs but does not demand
our(users) focus or attention”. The WO also analyzes this
knowledge to generate new one. As a result, it produces a State
Transition Graph (STG) of the WO behavior. We consider
STGs as the most natural way to model system dynamics.
More precisely, this graph is built by iteration, i.e., step-
wise construction, during a process called introspection. This
process is launched during a phase called dream phase in
which the WO discovers all its states (configurations) [18]. The
downside of an STG generated by a WO is that numeric data
provided has no meaning for humans. In the literature [19][20],
other graphs like Input Output Symbolic Transition Systems
(IOSTSs) are often used by developers/experts to model the
behavior of systems to manage them using oracle or controller
synthesis. Since this type of graph enables conceptual models
understandable by humans, it can increase the knowledge of
WOs and bring semantic to STGs.

This paper extends [1], which consists in enhancing the
generated knowledge with the conceptual knowledge using

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

a matching algorithm based on graph morphism [21][22].
This provides the ability to make WSs’ generated knowledge
understandable by humans and to enable human evaluation
of WSs’ outputs. Explicitly, the contribution presented in this
paper attempts to relate both views, consequently enabling
machine-human communication: (a) a conceptual view relying
on knowledge given by developers to either describe or control
the system behavior, and, (b) behavior-related knowledge
acquired during WS’s learning process. In this way, we use
two state-based formalisms:

e STGs for representing behavior-related knowledge gen-
erated by the WSs.

e IOSTSs for modelling conceptual views of develop-
ers/experts,

The rest of the paper is organized as follows. Section II is
dedicated to the context, it presents the basic idea, describes
the architectural overview and gives the definition of important
terms. Section IIT presents STG and IOSTS formalisms and
illustrates them through examples. Finally, Section IV presents
our graph matching algorithm and the construction of two
samples of graph matching, one on a roller shutter and the
other one on a light bulb to illustrate the algorithm. Section V
is devoted to related work before concluding the paper in
Section VI.

II. CONTEXT & PROBLEMATIC

Reusability and evolution in a wide architectures are two
major problems faced when developing applications based
on Al The main challenge is then to provide support for
the development of Al-based applications in a way similar
to the development of “classical” software using software
engineering methods [23][24], tools and languages [25]. We
sketch in this section an overall view of how we designed the
WO concept and the WOF to support such evolution.

As software systems play an important role in our daily
life, their usage may vary depending on the end user and
may evolve in time. Our research work is centred on Al-
based applications, which are able to acquire data from their
environment, to manipulate and to analyze them either to help
users take decisions or to autonomously adapt their behavior
to users’ needs resulting the WOs concept.

A. Basic idea & definitions

The basic idea underlying the WO concept is to give
a software entity (object, component, subsystem, etc.) the
core mechanisms for learning behavior through introspection
and analysis. Our aim is to go further by enabling software
to execute ‘“Monitoring”, “Analyze”, “Plan” and “Execute”
loops based on “Knowledge”, called MAPE-K [9]. Around
this concept, we built the WOF [26] with design decisions
mainly guided by reusability and genericity requirements:
the framework should be maintainable and used in different
application domains with different strategies (e.g., analysis
approaches).

Seeking clarity, we have adopted some terms used for
humans to refer to abilities a WO possesses. Awareness

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

60

and wisdom both rely on knowledge. Inspired by [27], we
give some definitions of those terms commonly used for
humans [28] and present those we chose for WOs.

Data, it is a raw measurement, typed or not. The data
are values obtained from a device or a software component.
They represent a quantifiable observation. Generally, collected,
stored, processed, transmitted and analyzed, the data have
no meaning taken individually. To be relevant, they must be
associated with a specific context. In this case, they become
information [29].

Information The information provides the data with its con-
text for analysis and processing. The information then becomes
understandable by both humans and machines and gives a
particular meaning to each data. Information is meaningful
and allows us to better answer the questions When? Where?
Who? What? etc. The answers to these simple questions do
not allow us to make deductions. To do so, it is necessary to
go up in abstraction towards knowledge [29]. i.e., placing your
hand on a hot stove.

Knowledge: refers to information, inference rules and infor-
mation deduced from them, for instance: “Turning on a heater
will cause temperature change”.

Awareness: represents the ability to collect - to provide
internal data - on itself by itself. For instance, when an
entity/object/device collects information and data about its
capabilities (what is intended to do) and its use (what it is
asked to do). Capabilities are the services/functionalities the
WO may render. They are implemented by methods that are
invoked by the WO itself during the “dream” phase or from
outside during the “awake” phase.

Wisdom: is the ability of WOs to analyze collected infor-
mation and stored knowledge related to their capabilities and
usage to output useful information. It is worth noticing that
a WO is highly aware, while the converse is false (an aware
object is not necessarily wise).

Semantic: is the subtle shades of meaning given to some-
thing so that it can be understood by humans as mentioned
in [28]. This definition also applies to objects/devices, as
semantic is used to communicate with humans. The value
“100” of a variable “data” means nothing to an end user if
we do not give her/him the information that it represents a
percentage of humidity.

B. WO from an architectural view

From an architectural perspective, according to the target
application, a WO may be considered as [9]:

« a stand-alone software entity (object, component, etc.),

o a software avatar designed to be a proxy for physical
devices (e.g., a heater, vacuum cleaner, light bulb) [30],

o a software avatar designed to be a proxy for an existing
software entity (object, component, etc.).

A WO is characterized by its:

e autonomy: it is able to operate with no human interven-
tion,

« adaptability: it changes its behavior when its environment
evolves,

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

« ability to communicate: with its environment according

to a publish-subscribe paradigm.

In addition to the implementation of the MAPE-K loop,
another concept, “phase transition”, is used to separate the
actions performed with a real-world impact (awake phase)
from those without (dream phase). As illustrated in Figure 1,
three different phases/super-states [8] of the WO [30][26] are
defined, the “awake phase”, the “dream phase” and the “idle
phase”.

During the awake phase, a WO responds to different ser-
vices and requests, i.e., executes its methods called by other
objects, monitors its execution and its usages (MAPE-K). Once
the WO has finished, it switches to the idle phase. If a part
of WO knowledge (e.g., a generated STG: Figure 2) requires
analysis or if an Al plugin (see Figure 3) wants to analyze the
WO itself, the WO can switch to dream phase. This phase is
actually defined as a sub-phase of the idle phase, pushing the
WO closer to the human, in other words, when it has nothing
to do, it can dream.

Throughout this dream phase, a WO introspects its behavior
and analyzes its knowledge without any effect on other objects
of the system/real world. The ability of WOs to disconnect
from the real world is a strong feature that distinguishes WSs
from other self-adaptive systems such as multi-agent systems
(MASSs) [6]. Furthermore, within this phase, the WO switches
from the MAPE-K feedback loop to IAPE-K feedback loop,
this latter is nothing more than a technical adaptation of the
MAPE-K feedback loop. Thus, rather than monitoring (M) its
activity, the WO uses the “introspection” (I) mechanism to
discover its behavior and any unusual operation of its use. We
will not go into further detail as this topic is beyond the scope
of this article.

C. Wise system & the framework

A WS is a set of WOs that communicate their states to the
system as illustrated in Figure 3. It highlights a classical WS: a
set of instantiated WOs (i.e., Application features, Managers,
Als at the system level) that contains the core (Figure 2) where
the basic mechanisms for monitoring are defined. Each WO
has three associated components:

e an event communication medium to publish its state to

the system,

o a data Logger to log every interaction in/with the object,

« one or more Al plugins to provide the developer with the
ability to add objects with different policies of introspec-
tion, monitoring, decision and action.

In addition, two kinds of WOs are defined in the system:

o manager: the WS may hold one or more managers (in
Orange) that store the peering action/reaction among
WOs, using for example Event-Condition-Action (ECA)
rules,

o system Al: it manages the whole AI of the system,
provided through WOs’ Al plugins. Al denotes all ac-
tivities needed for problem resolution, supervision, learn-
ing, analysis. We refer to those activities as Introspect-
Monitor-Analyze-Decide-Act (IMADA-activities).

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

61

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

TRANSITION BETWEEN PHASES

i.e. Its behavior splits into
three phases we named Awake, Idle and Dream

V=

Figure 1. Three different phases/super-states of a WO.

DREAM (&

Introspection, learning,

Delivering a service to an
end-user or answering an
action request from the
environment

knowledge analysis and
management

Integrated
mechanisms
to ensure adaptiveness

Regarding the core of the WO, it is designed to be connected
to physical devices (e.g., heater, vacuum cleaner, light bulb)
or logical entities [9]. It also contains an advanced mechanism
to proxify each software entity to make it wise. In addition,
the core contains the basic code expressing the two feedback
loops (MAKE-k and IAPE-K) accessible to extend by experts
depending on the domain/case in which the WO is used.

WO SYSTEM

APPLICATION

APPLICATION

'WISE OBJECT
CORE

'WISE OBJECT
CORE

Ve N

4 y \ AR SN S \
2 (A2) () &)
communication Al plugins @ communication Al plugins Data Logger

WISE OBJECT

'WISE OBJECT
CORE

PN\
_

%mmu",caue) KAI plugins) Data Loggen

()(HE)|

Qmmumcauon/ Al plugins / \Dﬂ‘a L“ES“

Figure 3. Global view of a WO system composed of a set of WOs, a manager
and a system Al

In order to build WSs, we developed in Java the WOF that
provides all the WO mechanisms [31]. It provides the devel-
opers with “awareness”, “knowledge” and “wisdom” concepts,
that are the core. From a system development perspective, the
design behind WOF is driven by the following requirements:

Knowledge WO
(STG)

WISE OBJECT CORE

To collect data @
on itself o .

Generates
—

This plugin analyses data to
generate an STG, it is also
called an analyser.

Behavioral
Graph
generator plugin

Are used

Figure 2. Generic functional architecture of a WO and its relation with an
STG.

« the separation of concerns between the business and Al
features,

o minimum intrusion in the business code.
More specifically, the WOF separates the business logic layer
from the Al layer, without change in the business layer. Thus,
the designers and developers can focus on one hand on the
business logic and on the other hand on the Al logic. Details
about the WOF is beyond the scope of this article, for more
details on the architecture used within the WOF, see [8].

D. The target problem

When designing a WS, developers provide a conceptual
model describing, specifying the way they view the behavior
of the system’s entities associated to WOs. Such models are
represented using IOSTS and contain the semantic given by
developers to WOs (Section III-B). The IOSTS formalism is
mostly known in simplifying system modelling by allowing
symbolic representation of parameters and variable values
instead of concrete data values enumeration [32]. In addition,
and as mentioned in Section II-B, the introspection mechanism
helps the WO discover its behavior by using awareness to
collect data about itself. These data will be used by the
analyzers, for example by the STG generator plugin to build
the STG that is a new WO knowledge. This new knowledge
can be used by other analyzers like a graph matcher plugin that
improves the STG through semantic, using the IOSTS given
by an expert or a developer to the WO. This enhancement is
based on the graph matching algorithm (Section IV), which
will be the main focus of this paper.

This subsection is an implicit description of what is illus-
trated in Figure 4.

III. BEHAVIORAL MODELS, DEFINITIONS AND
ILLUSTRATIONS

Modeling the behavior of a system is enabled by tools and
languages that result in informal, semi-formal (e.g., UML) or
formal representations based on already proven theories [33]
like graph theory. We have chosen STG and IOSTS graph-
based theories to WO’s behavior representation, respectively

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

62

WISE OBJECT
FRAMEWORK

To collect data @
on itself o o

Conceptual

Given to Model (I0STS)

Created by
Graph Matcher developer

plugin

Based on graph
‘morphism

Behavioral
Graph
generator plugin

Knowledge WO
(STG)

Generates
—_—

Figure 4. The matching algorithm and the WOF.

at the WO level (i.e., WO’s generated view) and the conceptual
level (i.e., developer’s view).

A. Definition of an STG

An STG is a directed graph where vertices represent the
states of an object and transitions represent the execution of
its methods. Let us consider an object defined by its set of
attributes A and its set of methods M. According to this
information (A and M) on the object, the STG definition is
given in Definition 1.

Definition 1: An STG is defined by the triplet G(V, E, L)
where V' and E are, respectively, the sets of vertices and edges,
and L a set of labels.

o V is the set of vertices, with |V'| = n where each vertex
represents a unique state of the object, and conversely,
each state of the object is represented by a unique vertex.
Therefore v; = v; < 1 = j with v;,v; € V and ¢,j €
[0, n].

o FE is the set of directed edges where Ve € E, e is defined
by the triplet e = (v;,v;, my), such that v;,v; € V and
my € M. This triplet is called a transition labeled by
my. The invocation of method my from state v; switches
the object to state v;.

e L is a set of vertex labels where any label I; € L is
associated to v;.

A label [; is the set of pairs (att;,value; ;) Vatt; € A,
with value; ; the value of att; in the state v; and
Dom(att;) the value domain of att;, ie., the set of
value; ; for all i. By definition, 2 states v; and v; are
different v; # vy, if f Jatty € A, such that value; , #
valuej . Conversely, if Yk € [0,|A|] value;r =
value; i, the states v; and v; are considered the same,
ie., v; = vj, thus ¢ = j.
The matching algorithm we propose in Section IV takes as
input an STG with a specific property we name exhaustiveness.
The definition of “exhaustive STG” is given in Definition 2.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Definition 2: An exhaustive STG is an STG such that from
each vertex v; there exist |M| transitions, each labeled by a
method my, in M:

Yo, € V,Vmy, € M, 3v; € V|(vi, v, my) € E.

It is worth noting that v; and v; may be different or same
states (v; # v; Or v; = vj).

Consequently, an exhaustive STG is deterministic, i.e., from
any state, on any method invocation, the destination state
is known. Moreover, the number of transitions |E| in an
exhaustive STG depends on the number of vertices |V| and
methods |M | such that:

VI x |M| = |E|.

open()

close() *

level = 100
Figure 5. Example of an exhaustive STG.

Figure 5 illustrates an exhaustive STG for an object’s
behavior, defined by the attribute “level” (A = {level}) and
2 methods “open” and “close” (M = {open(),close()}).
The methods “open” and “close” increase and decrease the
level by 50, respectively. In the STG generated by an object
for the shutter, except the methods that give semantic to the
transitions, the states have no semantic. Considering the level
is initialized to 0O, the corresponding STG has 3 states and its
exhaustive form has 6 transitions.

B. Definition of an 10STS

An IOSTS is a directed graph whose vertices, called local-
ities, represent different states of the system (in our case, the
system is a software object) and whose edges are transitions.
The localities are connected by transitions triggered by actions.
In graph theory, an IOSTS allows us the definition of an
infinite state transition system in a finite way, contrary to
an STG where states are defined by discrete values. IOSTS
are used to verify, test and control systems. Verification and
testing are formal techniques for validating and comparing two
views of a system while control is used to constrain the system
behavior [20].

The definition of IOSTS given in Definition 3 is taken
from [34][20] and especially from the use case given in [32].

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

63

Definition 3: An I0STS is a sixfold (D,0,Q,q, X, T)

such as:

e D is a finite set of typed data consisting of two disjoint
sets of: variables X and action parameters P. The value
domain of d € D is determined by Dom(d).

e O : an initial condition expressed as a predicate on
variables X.

o () is a non-empty finite set of localities with ¢y € @ being
the initial locality. A locality g is a set of states such that
q € Dom(X), with Dom(X) being the cartesian product
of the domains of each z € X:

X
Dom(X) = H Dom(z).
VeeX
A state is defined by a tuple of values for the whole
variables.

e X is the alphabet, a finite, non-empty set of actions.
It consists of the disjoint union of the set ¥° of input
actions, the set X! of output actions, and the set »7
of internal actions. For each action a in %, its signature
sig(a) = (p1,...,pr)|p; € P is a tuple of parameters.
The signature of internal actions is always an empty tuple.

e T is a finite set of transitions, such that each transition
is a tuple t = {q,,a,G, A, qq) defined by:

— alocality g, € @, called the origin of the transition,

— an action a € X, called the action of the transition,

- a boolean expression G on X U sig(a) related to
the variables and the parameters of the action, called
the transition guard. Transition guards allow us to
distinguish transitions that have the same origin and
action but disjoint conditions to their triggering.

— An assignment of the set of variables, of the form
(x := A%)zex such that for each x € X, A” is an
expression on X Usig(a). It defines the evolution of
variable values during the transition,

— a locality qq, called the transition destination.

According to Definition 3, each variable has a subdomain
in each locality. Thus, let us define the function dom(q,)
that returns the definition domain of the variable x € X in the
locality ¢ € @; consequently dom(q, z) C Dom(x).

Figure 6 shows an example of an IOSTS given by a
developer to control a roller shutter. This IOSTS expresses
that the roller shutter expects an input up?/down? € %°
carrying the parameter step €]0,100], the relative elevation
to respectively increase or decrease the shutter level. Let us
note that the shutter elevation is between 0 and 100.

There are 2 localities:

o The locality where the system is closed (i.e., height =
0). If the system receives the up?(step) command, the
transition will be made from the Closed to Open locality
by increasing the value of the height variable by step,
but if the system receives the down?(step) action, it will
not perform any operation (NOP).

o The locality where the system is open (i.e., height €
10, 100)). If the system receives the action up?(step), the

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

transition will be reflexive from Open to itself and will
compute the value of the variable height by executing

this assignment height min(height + step,100),

the shutter elevation cannot be increased more than the
maximum of elevation. If it receives the down?(step)
action and the action closes the shutter less than it is
open (step < height), height is decreased by step,
otherwise the transition will be from the locality Open to

the locality Close by assigning O to the variable height.
According to Definition 3, this IOSTS is composed of the
sets of variables X = {height} with Dom(height) € [0,100]
and parameters P = {step} with Dom(step) €]0, 100], the
set of localities @ = {Open, Closed} and the set of actions
¥ = {up?,down?} where the signatures of the actions are

sig(up?) = sig(down?) = (step). This IOSTS models an
infinite state system based on 5 guarded transitions in 7"
T= < tClose—Opem
tOpen—C’losm
11
gpen—Opefw
tOpen—Open7
tClasefc'lose
such as:
tClose—Open = < Opena up?(Step)a

True, height := height + step,
Open,)

Open, down?(step),

step > height, height := 0,
Close)

Open, down?(step),

step < height, height := height
—step, Open),

Open, up?(step),

True, min(height 4+ step, 100),
Openy),

Close, down?(step),

True, NOP,

Close).

As can be noticed, there exists an infinity of paths and states
represented by the variable height since its domain is the
interval [0, 100].

tOpenfclose

tl
Open—Open

t2
Open—Open

tClose—Close

IV. GRAPH MATCHING ALGORITHM

In this section, we introduce the matching algorithm we
propose to relate WO’s generated STG to developers’ semantic
expressed in an IOSTS. In the example of Figure 5, the
generated STG is composed of states automatically labelled
by the object: 0, 1 and 2 according to the value of attribute
level: 0, 50, 100. The main challenge is how to match states
0, 1 and 2 to the localities defined by developers in the IOSTS
of Figure 6.

A. Matching algorithm

Constraint: The STG and IOSTS must meet certain criteria
to properly apply the algorithm.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

64

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

IOSTS step €]0,100]
up?(step) height € [0, 100] .
True { Closed,up?(step), True,height:=height+step,Open) :
height := height + step
up?(step)
down?(step) ‘ -
rue
Thue Open « ™ ;
NOP height = 0 height € 10, 100}/ height := min(height + step, 100)
down?(step) |
?
step > height A dovvn‘(st'ep)
height = 0 step < height
height := height - step
Figure 6. IOSTS representation of a roller shutter.
1) There are two equivalent characteristics: a variable . implies:
belonging to the set of variables X of the IOSTS and
an attribute att. belongs to the set of STG attributes A. Sp: E =T, Sp((vi,v5)) = (S(v:),S8(v;)) C T o)

Moreover, to simplify the problem in this paper, let us
consider they are unique:

Az, € X, atte € Alze = atte, (1

. = att, means that both represent the same informa-
tion, thus:

Dom(att.) € Dom(z,). (2)

Let us note that Dom(att.) is a subset of Dom(x.) due
to the fact that z. is theoretically defined into the IOSTS
and att. is partially discovered by the WO at runtime.
The domains of z. in the different localities in the
IOSTS are disjoint:

Va,q € Q,q# ¢
==

dom(q,ze) Ndom(q',z.) =0
Algorithm: According to the definitions of STG and IOSTS,
and both constraints, a vertex v; € V matches a locality ¢; €
@ (noted v; = ¢;) if and only if value; . € dom(q;, x.),
with value; . the value of att. in the vertex v;:

2)

Y, €V, E”qj €eQ
value; . € dom(qj, x.) & v; = ¢j.

3)

As the matching algorithm is a graph morphism, this latter
needs to respect the structure of the matched graphs [35]. In
our context, each vertex matches one locality and a locality
is matched by at least one vertex. Moreover, the adjacency
relations must be respected by the matching; if 2 vertices are
linked by a transition in the STG, their matched localities
are the same or linked by an equivalent transition in the
IOSTS. The STG — IOSTS matching is a surjective S
homomorphism, i.e., epimorphism [35] as illustrated in the
formulas below:

S§:STG — 10STS

Vo s S(V) =0, “)

For any transition (v;,v;) € E of STG, then (S(u;),S(v;)) €
T is a transition of the IOSTS.

B. Stepwise matching algorithm

In this section, the matching algorithm will be presented
step by step, as illustrated in Figure 7, to understand deeply
how it works. The algorithm is divided into two steps, the
first matches the attribute-variable according to their domain
definition and defined by Function ‘“compatible Domain”.
The second step is devoted to compute the matching between
states and localities, which implementation is described in
Algorithm 1 (main algorithm). Furthermore, Algorithm 2 is the
implementation details of the “compatible Domain” function
whose result will be part of the inputs to the main algorithm.

In detail, equations (1) and (2) are developed in the
“compatible Domain” function, which is exposed in algo-
rithm 2. And Equation (3) is exposed in algorithm 1. This
pseudo-code is the first version of the matching algorithm
we have developed and tested as a first step towards human
semantic.

C. First matching illustration

In the previous examples: the STG in Figure 5 is auto-
matically generated by a WO and the IOSTS in Figure 6 is
provided by a developer. Both represent the same roller shutter
behavior. The STG uses discrete values with a level of opening
of 50%, while the IOSTS uses continuous intervals, without
any constraint on the step that is a real value.

Figure 8 illustrates the result of matching both graphs using
our graph matcher implemented with Python. Localities in
the IOSTS are Closed and Open, each containing variables
with disjoint domains, in our example, a single variable named
height that takes different values depending on its locality.

According to the constraints of the matching algorithm:

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

65

Conceptual Compatible domaine
Model (IOSTS) 1'um:ti(m
: GMA
Matching
attribute-variable Compatible
............. o——> attribute-variable e——>
5 pair
Step 1

Knowledge WO
(STG)

Inputs Generate

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Matching

states-localities Algorithm result of the

graph matching (GMA)

Step 2

Output

Figure 7. Illustration of stepwise matching algorithm applied on roller shutter (output in Figure 8).

1) there are equivalent characteristics between the STG
and the IOSTS, the attribute “level” and the variable
“height”, respectively,

the domains of “height” in the different localities are
disjoint from the others: in C'losed locality, the variable
can only take the value 0 and in Open locality, the
variable can take any value in the range]0, 100].

2)

On the STG side, there are three vertices, each one labeled
with a set of attribute-value pairs (att, value). In our case, the
unique attribute level takes the values (0, 50, 100) respectively
for (vg,v1,v2). Therefore, to establish a correspondence be-
tween the two graphs, a comparison between the definition
domain of the attribute level in each vertex of the STG with
the definition domain of the variable height in each locality
of the IOSTS must be done.

Those comparisons lead us to a correspondence of state vg
with locality Closed meaning that the roller shutter is closed,
and a correspondence of states v; and vy with locality Open
meaning that the roller shutter is open.

D. Second matching illustration

The second illustration concerns a connected light bulb
with RGB colours. To simplify the illustration, only two
colors are considered and the off state of the light bulb is
not considered. Figure 9 shows both simplified behavioural
graphs of the light bulb: STG and IOSTS. The former is
defined by the attribute “specter” (A {specter}) and
2 methods “upFrequence” and ‘“downFrequence” (M
{upFrequence(), downFrequence()}). The “upFrequence”
and “downFrequency” methods increase and decrease the
specter by 40nm, respectively. The second graph contains
two localities Green and Blue, each containing variables
with disjoint domains, in our example, a single variable
named wavelength that takes different values depending on
its locality.

The constraints of the matching algorithm are respected:

1) there are equivalent characteristics between the STG
and the IOSTS, the attribute “specter” and the variable
“wavelength”, respectively,

the domains of “wavelength” in the different localities
are disjoint from the others: in Green locality, the
variable can take any value in the range]495,570] and
in Blue locality, the variable can take any value in the
range [450,495].

The algorithm lead us to a correspondence of states vg, v;
with locality Blue meaning that the bulb is in blue color, and
a correspondence of states vo, v with locality Green meaning
that the bulb is in green color.

2)

V. RELATED WORK

For many years, graphs have been used in several fields
to represent complex problems in a descriptive way (e.g.,
maps, relationships between people profiles, public trans-
portation, scene analysis, chemistry, molecular biology, and
so on) for various purposes: analysis, operation, knowledge
modeling, pattern detection, etc. Although initiated in the
18th century with Euler’s work on the famous problem of
Konigsberg bridges [36], graph theory remains a powerful tool
for software-intensive system development and an effective
way of representing objects as proved in [37]. Since then,
several approaches of graph matching have been developed
and the first formulation of the graph matching problem was
proposed by [38] and dates back to 1979. Several formulations
appeared afterwards like convex-concave programming formu-
lation, maximum common subgraph (MCS), the use of the
Frobenius norm based on graph adjacency matrices to express
the maximization or the minimization of non-overlapping
edges between two graphs. In general, there exist two major
formulations for the graph matching problem [39][40]:

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

66

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

~ close()

level = 50

level = 100

step €]0,100]
up?(st'ep) height € [0, 100]

True

height := height + step

up?(step)
Open True

height € 10, 1001/ height := min(height + step, 100} :

down?(step)

Closed

height = 0

True
NOP

down?(step) down?(step)

step > height

step < height
height := 0 P g

height := height - step

Figure 8. Algorithm result of the graph matching (roller shutter) [1].

o Exact Matching which is divided into two categories, edges through the use of the Frobenius norm for
(a) graph isomorphism, checks whether two graphs are instance [41].
the same. (b) subgraph isomorphism, checks whether the — graph edit distance, used to find in a low cost the
smallest graph is a subgraph of the biggest one. Both sequence of operations (i.e., deletion, insertion and
techniques are overly complex whether or not they check substitution of vertices and edges) that transform
the one-to-one or many-to-one matching. one graph into another [42]. As this procedure is

« Inexact Matching which is a term used in the case a hard combinatorial problem, another alternative
where it is impossible to find an isomorphism between called “beam search” is explained in details in [43].
two graphs. This form of matching is based on several In real applications, we often wish to match graphs of
approaches: different sizes, which results in new techniques and norms as

— the maximum common subgraph, used in searching depicted in [39]. Moreover, as many formalisms have emerged
the similarity between graphs to know how different so far, the correspondence between different representations of
they are instead of a binary answer [41]. knowledge such as STGs and IOSTSs, has not been addressed

— least-squares formulation, used in the case of yet at the best of our knowledge. Until now, the most well-
weighted graphs to search for a matching that known operation on graphs is the comparison of two or
minimizes the total difference between all aligned more graph representations that requires many theoretical

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

68
. STG upFrequence()
specter = 530 9
< downFrequence()
3
9
S ‘
Y N\
S &
g Q
| N
g 0N
s /&
S | R
specter = 570
% |
P \
[STRN \
AN \
% downFrequence() \._
SY,
—Pp» : Match to
IOSTS length € [495,570]
change?(length) wavelength € [495,570]
(length €& 1495, 570])A(length € 1450, 495))
wavelength := length
change?(length) change(length) :
length € 1450, 495] : :

length € 1495, 570]

Green

wavelength

Blue

wavelength

€ [450, 495]

wavelength := lengthé

wavelength := length
; € 1495, 570]

change?(length)
length € 1495, 570]

change?(length)
(length € 1450, 495])A(length € 1495, 570])
wavelength := length

change?(length)
length €& 1450, 495]
NOP

Figure 9. Algorithm result of graph matching (light bulb).

and complex concepts [21], like graph matching, a noisy
version of graph isomorphism that is at the basis of our
proposal in this paper. Finally, we mention that graph/sub-
graph isomorphism is considered the most complex problem
in graph matching as it has been proven to be NP-complete
in [44][45][46] Moreover, for certain types of graphs under
given constraints, the complexity of the isomorphism has been
proven of polynomial type with a huge cost [47].

Using the constraints presented in Section IV to match
two knowledge representations (STG - IOSTS) lead us to the
exact matching problem. To understand the situation, we need
to consider the matching from both perspectives: software
(i.e., numerical and structural) and human (i.e., semantic).
According to the software, and since the matching preserves
the structure and the transitions between both formalisms, the
matching is always exact between “states” and “localities”,
which gives an epimorphism (Equations (4) and (5)). From a
human perspective, we will always have an exact matching

based on semantic as illustrated in Figures 8 and 9. The
question is how to match STGs and IOSTs when constraints
are expanded to include more than one equivalent attribute-
variable. In this case, we should adopt an inexact matching
approach so that the algorithm generates more than one result
(see future work for more details).

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of relating numeri-
cal representations generated by WSs to developers’ semantic.
The contribution is a matching algorithm that computes a
morphism between two behavioral graphs:

1) an STG generated by a WO along its learning process,
2) an IOSTS representing a developer conceptual view.
The algorithm extends a WO’s view with semantic that al-
lows it to communicate with humans. From the developer’s
perspective, the resulted matching may help him/her discover
errors and/or inconsistencies between the conceptual view and

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1 Main algorithm: Graph matching algorithm

1: Inputs:
iosts: 10STS,

stg: Exhaustive STG
2: Outputs:

match: Dictionary<state, locality >
3: Locales:

Set of possible attribute/variable pairs

E: Set Of Tuples< (attribute, variable) >

Possible matches for each possible

equivalent pair

M: Dictionary< (attribute, variable), <state,

locality >>
4: Initialize:

Build possible equivalent attribute/variable

pairs, such that dom(a) C dom(x)

(Algorithm 2)

E + compatibleDomain(stg.A,iosts.X)
5. for (a,z) € E do

for v; € stg.V do
7: # Get the locality where the domain of variable x contains
the value of a in v;, according to the second constraint,
q; 1s unique

qi < tosts.get Locality(x, v;.getValue(a))

M((a,2))(vs) g

end for
11: # As the matching is a surjective application, remove the
pair if it does not generate surjective matching
if M((a,x)).getKeys() # stg.V

13: or M((a,x)).getValuesAsSet() # iosts.Q then

14: E.remove((a,x))

15: M.remove((a,x))

16: else

17: # If the application is surjective (Equation (4)), check the
transitions’ consistency (Equation (5))

18: for e € stg.FE do

19: vy e.getSource()

20: vy e.getDestination()

21: g1 = M((a,z))(v1)

. 42 = M((a,))(v2)

23: if iosts.getTransition(q1, g2) is null then

24: E.remove((a,x))

25: M.remove((a,x))

26: end if

27: end for

28: end if

29: end for

30: # Checking that just only one matching exists according

to constraints defined in Section IV-A
31: if M.getKeys().size() == 1 then
32: match < M.getValues()[1]
33: else
34: exception(“Required conditions not satisfied”)
35: end if
36: return match

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Algorithm 2 Variable matching algorithm (“‘compatibleDo-
main” function)
1: Inputs:
1osts: IOSTS,

stg: Exhaustive STG
2: Outputs:

Set of possible attribute/variable pairs such
that Dom(attribute) C Dom(variable)

E: Set Of Tuples< (attribute, variable) >
3: # Build all possible equivalent attributes-variables using

the cartesian product between A and X

4: for cartesian € product(stg.A,iosts. X) do

5. # Keep attribute-variable pairs, such that Dom(a) C
Dom(z)

6: if Dom(cartesian.get Attribute())
Dom(cartesian.getVariable()) then

7: E.add(cartesian)

: end if
9: end for
10: return E

N

the system implementation. In its first version, the algorithm
has obviously several limitations, the strongest being over
the number of equivalent attributes/variables in STG/IOSTS.
Another limitation is the constraint on the existence of only
one matching between an STG and an IOSTS, without omit-
ting the problem of inexact matching. Ongoing work is being
done to gradually generalize the algorithm and raise those
restrictions. The graph matching algorithm being an NP-
complete problem, we envisage the use of ontologies in a
matrix form through two main matrices, termed “Semantic
Matrix” and “Graph Matching Matrix”. Moreover, we initiated
a France-Canada innovation project to apply our approach to
help create assistive scenarios [10][11] for elderly people, in
the context of smart home.

ACKNOWLEDGMENT

This research was supported by French National Research
Agency (ANR), AI Ph.D funding project.

REFERENCES

[1] A. Dahhani, I. Alloui, S. Monnet, and F. Vernier, “Towards a semantic
model for wise systems: A graph matching algorithm,” Proceedings
of the Sixteenth International Conference on Advanced Engineering
Computing and Applications in Sciences (ADVCOMP 2022), IARIA,
2023, pp. 27-34.

E. Nascimento, A. Nguyen-Duc, 1. Sundbg, and T. Conte, “Software
engineering for artificial intelligence and machine learning software: A
systematic literature review,” 2020.

R. Feldt, F. G. D. O. Neto, and R. Torkar, “Ways of applying artificial
intelligence in software engineering,” 2018 IEEE/ACM 6th International
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE), pp. 3541, 2018.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagap-
pan, B. Nushi, and T. Zimmermann, “Software engineering for machine
learning: A case study,” in International Conference on Software
Engineering (ICSE 2019) - Software Engineering in Practice track, May
2019. ICSE 2019 Best Paper Award.

[2]

[3]

[4]

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

69

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

[5]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]
[29]

E. Kusmenko, S. Pavlitskaya, B. Rumpe, and S. Stiiber, “On the engi-
neering of ai-powered systems,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering Workshop (ASEW),
pp. 126133, 2019.

R. A. Flores-Mendez, “Towards a standardization of multi-agent system
framework,” XRDS, vol. 5, pp. 18-24, jun 1999.

A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
IEEE Access, vol. 6, pp. 28573-28593, 2018.

S. Lejamble., I. Alloui., S. Monnet., and F. Vernier., “A new software
architecture for the wise object framework: Multidimensional separation
of concerns,” in Proceedings of the 17th International Conference on
Software Technologies - ICSOFT, pp. 567-574, INSTICC, SciTePress,
2022.

I. Alloui and F. Vernier, “WOF: Towards Behavior Analysis and Rep-
resentation of Emotions in Adaptive Systems,” Communications in
Computer and Information Science, vol. 868, pp. 244-267, 2018.

D. Bonino and F. Corno, “Dogont - ontology modeling for intelligent
domotic environments,” in The Semantic Web - ISWC 2008, pp. 790—
803, Springer Berlin Heidelberg, 2008.

H. Kenfack Ngankam, H. Pigot, M. Frappier, C. H. Souza Oliveira, and
S. Giroux, “Formal specification for ambient assisted living scenarios,”
UCAmI, pp. 508-519, 2017.

J.-B. Woo and Y.-K. Lim, “User experience in do-it-yourself-style smart
homes,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pp. 779-790, 2015.

R. Radziszewski, H. Ngankam, H. Pigot, V. Grégoire, D. Lorrain, and
S. Giroux, “An ambient assisted living nighttime wandering system
for elderly,” in Proceedings of the 18th International Conference
on Information Integration and Web-Based Applications and Services,
iiWAS 16, pp. 368-374, Association for Computing Machinery, 2016.
R. S. Michalski, “A theory and methodology of inductive learning,”
in Machine Learning: An Artificial Intelligence Approach, pp. 83-134,
Springer Berlin Heidelberg, 1983.

M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 6675, 1991.

M. Weiser and J. S. Brown, “Designing calm technology,” PowerGrid
Journal, vol. 1, pp. 75-85, 1996.

A. Tugui, “Calm technologies in a multimedia world,”
vol. 2004, pp. 1-5, 2004.

I. Alloui and F. Vernier, “A Wise Object Framework for Distributed
Intelligent Adaptive Systems,” in ICSOFT 2017, the 12th International
Conference on Software Technologies, pp. 95-104, 2017.

C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Validation of Reactive
Systems,” in Modeling and Verification of Real-TIME Systems -
Formalisms and software Tools, pp. 51-76, Hermes Science, 2008.

C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating Formal
Verification and Conformance Testing for Reactive Systems,” IEEE
Transactions on Software Engineering, vol. 33, no. 8, pp. 558-574, 2007.
M. R. Garey and D. S. Johnson, “Computers and intractability. a guide
to the theory of np-completeness.,” Journal of Symbolic Logic, vol. 48,
no. 2, pp. 498-500, 1983.

V. A. Cicirello, “Survey of graph matching algorithms,” technical report,
Geometric and Intelligent Computing Laboratory, Drexel University,
1999.

B. Kitchenham, “A methodology for evaluating software engineering
methods and tools,” in Experimental Software Engineering Issues:
Critical Assessment and Future Directions (H. D. Rombach, V. R. Basili,
and R. W. Selby, eds.), (Berlin, Heidelberg), pp. 121-124, Springer
Berlin Heidelberg, 1993.

B. W. Boehm, “Software engineering - as it is,” IEEE Trans. Computers,
vol. 25, no. 12, pp. 1226-1241, 1976.

D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency
is handled in model-driven software engineering and UML: an expert
opinion survey,” Software Quality Journal, pp. 1-53, Apr. 2022.

I. Alloui, D. Esale, and F. Vernier, “Wise objects for calm technology,”
in Proceedings of the 10th International Conference on Software
Engineering and Applications - ICSOFT-EA, (ICSOFT 2015), pp. 468—
471, INSTICC, SciTePress, 2015.

T. Davenport and L. Prusak, Working Knowledge: How Organizations
Manage What They Know, vol. 1. Harvard Business School Press, 1998.
“Cambridge Dictionary Online,” 2022.

H. K. Ngankam, Modele Sémantique d’Intelligence Ambiante pour le
Développement Do-It-Yourself d’Habitats Intelligents. Theses, Faculté
des sciences, université de sherbrooke, 2019.

Ubiquity,

(30]

(31]

[32]

[33]

[34]

[35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

I. Alloui, E. Benoit, S. Perrin, and F. Vernier, “Wise objects for IoT
(WIoT): Software framework and experimentation,” Communications
in Computer and Information Science, pp. 349-371, 2019.

1. Alloui, E. Benoit, S. Perrin, and F. Vernier, “Wiot: Interconnection
between wise objects and iot,” in ICSOFT 2018, the 13th International
Conference on Software Technologies, 2018.

P. Moreaux, F. Sartor, and F. Vernier, “An effective approach for home
services management,” in 20th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 47-51, 2012.
M. N. Nicolescu and M. J. Matari¢, “Extending behavior-based systems
capabilities using an abstract behavior representation,” in AAAI 2000,
pp- 27-34, 2000.

V. Rusu, H. Marchand, and T. Jéron, “Automatic verification and
conformance testing for validating safety properties of reactive systems,”
in Formal Methods 2005 (FMO0S5), vol. 3582 of Lecture Notes in
Computer Science, pp. 189-204, Springer-Verlag, 2005.

G. Hahn and C. Tardif, “Graph homomorphisms: structure and symme-
try,” in Graph Symmetry: Algebraic Methods and Applications, pp. 107—
166, Springer Netherlands, 1997.

H. Sachs, M. Stiebitz, and R. Wilson, “An historical note: Euler’s
konigsberg letters,” Journal of Graph Theory, vol. 12, pp. 133 — 139,
2006.

M. A. Eshera and K.-S. Fu, “An image understanding system using
attributed symbolic representation and inexact graph-matching,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
8, pp. 604-618, 1986.

W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed
relational graphs for pattern analysis,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 9, no. 12, pp. 757-768, 1979.

M. Zaslavskiy, L’alignement de graphes : applications en bioinforma-
tique et vision par ordinateur. Theses, Ecole Nationale Supérieure des
Mines de Paris, Jan. 2010.

E. Bengoetxea, Inexact Graph Matching Using Estimation of Dis-
tribution Algorithms. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, Paris, France, Dec 2002.

J. R. Ullmann, “An algorithm for subgraph isomorphism,”
vol. 23, pp. 3142, jan 1976.

H. Bunke and G. Allermann, “Inexact graph matching for structural
pattern recognition,” Pattern Recognition Letters, vol. 1, no. 4, pp. 245—
253, 1983.

M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algorithms
for the computation of graph edit distance,” in Structural, Syntactic,
and Statistical Pattern Recognition, (Berlin, Heidelberg), pp. 163—-172,
Springer Berlin Heidelberg, 2006.

D. A. Basin, “A term equality problem equivalent to graph isomor-
phism,” Information Processing Letters, vol. 51, no. 2, pp. 61-66, 1994.
M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of NP - completeness. W.H. Freeman and Co., 1979.

M. A. Abdulrahim, Parallel algorithms for labeled graph matching.
Colorado School of Mines1500 Illinois St. Golden, CO, 1998.

J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism
of planar graphs (preliminary report),” in Proceedings of the Sixth
Annual ACM Symposium on Theory of Computing, STOC ’74, (New
York, NY, USA), pp. 172-184, Association for Computing Machinery,
1974.

J. ACM,

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

70

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Preparing Students for the Software Industry New Demands

José Carlos Metrolho'?, Fernando Reinaldo Ribeiro'?,
Rodrigo Batista®

'R&D Unit in Digital Services, Applications and Content
ZPolytechnic Institute of Castelo Branco
Castelo Branco, Portugal
e-mail: metrolho@ipcb.pt, fribeiro@ipcb.pt,
rodrigo.batista@ipcbcampus.pt

Abstract—A solid preparation in terms of soft skills and state-
of-the-art technical skills in Software Engineering (SE) is a goal
for the academy. It also contributes to reducing the gap between
Software Engineering education and the software industry's
new demands. Generally, in computer science or computer
engineering courses, there are separate subjects to teach
requirements engineering, analysis, design, coding, or
validation. However, integrating all these subjects usually
requires experience in developing a complete project. This
article describes aspects of an active and collaborative learning
approach involving academia and industry actors. The
approach presented in this article involved staff from a software
company in collaboration with staff from an academic
institution. It resulted in a student being involved in an entire
software development project. The student was involved in an
agile team of faculty and Information Technology (IT)
professionals. The Scrum agile framework was followed, and the
product was developed using a Low-code development
platform. This article presents the approach, details of the
project design and implementation, results achieved, lessons
learned, and guidelines for the future. The results show that this
agile, full-stack approach allows students to develop cutting-
edge technical and non-technical skills.

Keywords- agile software development; cognitive services; form
recognizer; Scrum; software engineering; software industry.

I. INTRODUCTION

Preparing students' performance and technical skills for
the software industry's new demands is challenging. If, on the
one hand, they must have deep knowledge of specific
technical subjects (databases, programming languages,
requirements analysis, Web development, mobile
development.), it is also increasingly important that they have
the skills to integrate or explore features in more complex
systems. This broader view of specific software ecosystems
requires a well-prepared new generation of engineers using
new approaches and a more holistic experience of modern
software development activity. These approaches can
accelerate development performance and obtain better-
designed and high-quality software products.

In the software industry, many advances are also
happening to speed up development. Examples of this are the

Paula Graca

DEETC of Instituto Superior de Engenharia de Lisboa
Instituto Politécnico de Lisboa
Lisbon, Portugal
e-mail: paula.graca@jisel.pt

Diogo Pacheco
Do iT Lean
Leiria, Portugal
e-mail: diogo.pacheco@doitlean.com

low-code development platforms, which provide an
abstraction layer that allows the developers to handle more of
the inherent complexity of application development and
simultaneously explore reuse and integrate different
frameworks. They allow fast learning development
processes, enable a more systemic view of software projects,
and provide easy integration with other application
endpoints. However, SE gains importance here because its
inherent abstraction requires following good development
practices.

Another essential aspect nowadays is the high possibility
of integration and interconnection between various systems.
This aspect makes it increasingly crucial for new IT
professionals to know the services available and what
mechanisms to integrate them into their applications. This
holistic knowledge can be acquired in theory, but nothing is
better than consolidating it through developing projects that
use this integration and other technologies. Cloud service
providers (Amazon Web Services, Microsoft® Azure Cloud
Platform, or Google Cloud Platform) are cases in point.

In a previous article [1], we share a case study that aims
to prepare students for this reality, still in the academic
environment, and close collaboration with partners from the
software development industry. We described an overview of
our approach to prepare better students for the labor market
in collaboration with software industry members. In this
work, we also approached the importance of full-stack
development and preparing students for the entire spectrum
of full-stack technologies. The job market needs more
technically well-prepared graduates with good soft skills.
Thus, preparing the new generation of engineers requires
training not only in the technical subjects that are the
knowledge base but also the vision and more holistic
experience about the paths followed today by software
companies and soft skills. These aspects can be tackled with
strategies and case studies like the one presented in this
article. The product developed in this case was an application
for household accounting, automatically recognizing data
from existing invoices in digital format (pdf, photo) using
cognitive services.

In this article, we extend our description of the approach,
including more detailed technical issues considered in this

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

71

case study, to foster an embracing and holistic preparation of
the students in this learning ecosystem. To achieve this goal,
we went beyond the usual development of an academic
project. We included issues about security, UI/UX,
performance, data synchronization, or integration with
external cognitive services.

In this case study, an important fact was that a company
that develops software for the international market was
involved. This collaboration helps to prepare students for the
software industry demands, and with a holistic point of view
about SE, involving several aspects that are important to
foster effective implementations of active learning (allowing
students to acquire knowledge in a practical way) and
collaborative learning (creating environments that emulate as
much as possible future work environments, whereas
software engineers will work together to produce software
products). The company defined the product/goal. A student
from a higher education institution (academy), integrated into
a distributed team, developed it, using Scrum [2] as a
software development process. This combination of several
contributions and developing a full-stack project using an
agile software development process allows the student to
acquire the knowledge and preparation necessary for today's
challenges in the modern competitive software development
market. The main goal is to contribute to reducing the gap
that sometimes exists between what is learned in academia
and what is needed in the industry. In this article, based on
the experience observed in a successful case, we share an
approach to prepare students for the software industry
competently. The results were very positive, both in technical
terms (software product and scope of the student's technical
skills) and SE terms (student preparation in terms of useful
soft skills for the labor market).

The remainder of this article is organized as follows.
Section II presents a background and related work. In Section
III, the case study is presented. In Section IV, results and
discussion about lessons learned are presented. Finally, some
conclusions are presented in Section V.

II. BACKGROUND

Developers often do not just play a single role in software
development; they must be multifaceted, often taking on the
role of designers, coders, and database specialists. Therefore,
having this knowledge and multi-tasking skills is essential
and allows the developer to use them to complete a project or
software development independently. This is also an
advantage because it will enable the developer to be more
familiar with all stages of the development process, making
cooperation inside and outside the team more optimized and
contributing to reducing software development costs. These
professionals should be able to work both on Web and mobile
platforms with also knowledge of design through the Web,
like Hyper Text Markup Language (HTML) and Cascading
Style Sheets (CSS). In addition, they should be able to use
software development tools and techniques that allow the
development team to be at its highest level of productivity.

However, higher education institutions face challenges in
preparing students to work proactively in these high-
performance teams. Many approaches have been proposed to

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

teach and learn SE subjects. Some attempt to motivate
students to take a more active role in their training and
provide them with more realistic experiences by replicating
the settings used in the software development profession has
been made. Project-based Learning (e.g., [3]), flipped
classroom (e.g., [4]), and gamification (e.g., [5], [6]) are some
of these strategies that are frequently used to teach SE. Some
other strategies promote a closer involvement of software
companies to reduce the gap between SE education and the
needs and practice in the software industry. For instance, in
the approach described in [7], the industry actively supervises
software product development. Another approach is to create
additional training programs that aid in screening qualified
candidates, as presented in [8]. These approaches are
essential for students because they provide real challenges,
more realistic experiences, and recreating industry software
development environments. Nevertheless, they are also
crucial for companies. For them, potential advantages are
networking with students and other corporate sponsors,
building ties with faculty, and promoting their business and
products among college students.

From a different perspective, SE teaching has adapted to
new developments and trends, namely agile methodologies.
Frequently, teaching agile methodologies has focused on
teaching a specific framework like Scrum (e.g., [9]-[11]) or
Extreme Programming (e.g., [12], [13]). A study on using
Agile Methods in SE Education [14] concluded that using
Agile practices would positively influence the teaching
process, stimulating communication, good student
relationships, active team participation, and motivation for
present and future learning.

Besides the good results of several of these strategies, SE
teaching and learning can still benefit from a more
participative and closer involvement of software
development companies in the training process. This
participation and involvement enable students to join
distributed teams, enhance their non-technical skills, and
engage in the practices used in these companies.

III. THE CASE STUDY

A. Context

The work described here was done by a student who
attended a computer engineering course's third curricular
year (fifth and sixth semesters). In parallel, the student had to
attend other curricular units, which are part of the course. The
final evaluation of the work done by the student, in academic
terms and for diploma purposes, was done by a jury
composed of a supervisor (one of those who followed the
work) and two teachers external to the project. As for the role
of the others involved in this approach, information
concerning this is presented in section C.

B. The Elicitation Stage

At the beginning of the course/project, the start of the first
semester, the student was guided to be prepared for research
and analysis skills. This guidance happened briefly before
Sprint 1 (as presented in the timeline in section D). He was
led to research and analyze the results of a search in scientific

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

72

citation libraries and online sources related to the focus of the
application/product goals. This way, the student
experimented with the demands and techniques of searching
and citing relevant information, and he was challenged and
guided to analyze the results. In this case study, state of the
art was built based on the following two crucial sources of
information:

Systematic Review of Scientific Publications

For analysis of the related work, articles addressing
automatic data extraction from invoices and receipts were
studied. The Scopus platform was used as a data source.
Scopus is one of the most complete databases in several areas
and provides an advanced search that allows to configure
search words in different fields such as titles, keywords, and
full text, among others. It also allows the addition of logical
operators: AND, OR, and NOT. This way was possible to
access a significant number of scientific articles in computer
science related to the theme of this project.

To collect the first sample of articles, the following
keywords were defined for the Scopus search fields:
"Extraction,” "Recognition," "Invoice," "Invoice fields,"
"Algorithm," "Software," "Application," and "Program." The
search was applied to the fields, title, keywords, and abstract:
("extraction" OR '"recognition") AND ("Invoice*" OR
"Invoice fields") AND (algorithm* OR software OR
application OR program*).

Applying this query and the restriction to consider articles
published after 2010 (inclusive) led to a total of seventy-one
results.

After reading the title and abstract of each article, the
articles that did not fit were eliminated, obtaining, in the end,
a total of eleven articles.

With the full reading of the resulting eleven articles, they
were further divided into two groups, mainly because the
focus of some was not what was desired. In the end, of the
eleven articles selected, four shared the same focus as the
proposed project, and seven carried out only part of the
proposal to be implemented. These seven articles that
correspond only to a part of the implementation perform data
extraction or comparisons between the algorithms used to do
the extraction. That is, they only try to show various plausible
algorithms, and afterward, the information is not allocated to
any system.

In summary, we are left with four articles to analyze
whose focus is equivalent to the application intended in this
work.

Each of the four selected articles was analyzed and
described considering the following criteria:

e Year of publication.

e Brief description of the objective of the work.

e What are the most common problems or scenarios
intended to be solved by extracting data from
invoices?

e What is the application's target audience (domestic,
industrial, commercial)?

e What is the form of user interaction (web, mobile,
web + mobile)?

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

o What is the detection algorithm (proprietary, how it
learns, gives to various types of invoices, external
API, Azure, among other considerations)?

e What is the result of the work (accuracy, types of

invoices (several or just one), among other aspects)

e Main conclusions identified.

An analysis of the four resulting articles considering these
criteria was then performed. This allowed all team members
to clearly view related works and position the desired goals
within those scopes.

Online APPs Overview

Also, the analysis of existing applications/systems whose
purpose is identical to this work was carried out. The
applications were found based on searches in the Google and
Apple stores by applying filters such as keywords ("expense
management”, "expenses" and "financial control") or by
selecting a particular category in which these applications fit
(Ex. Finance). Here five applications were selected based on
the following criteria: the platforms where it is possible to run
these applications and the cost of acquiring them. Besides the
five applications selected from the stores, three other
applications were also considered available on the Internet
but outside the stores. These applications were found by
searching on the Google search engine using two strings:
"capture data from invoice software" and "capture data from
invoice."

All eight selected apps were analyzed and summarized.
This, as done in the case of articles, allowed us to know better
what products already exist for similar purposes and the most
important features of related works.

Main Conclusions for the Design of the New
Application

The four articles, the five applications selected from
stores, and the three applications selected from additional
searches allowed, at an early stage of the project, the
identification of relevant functionalities, some of which were
incorporated in the design and implementation of the
Household Accounting project. In addition, it was possible to
observe through the analysis of the article's different types of
technologies and algorithms for invoice information
recognition that could have been used to implement the new
application and to understand better how necessary it is to
have applications whose purpose to automate the reading of
invoice information both at a business and personal level.

All this research work allowed the student, and the team,
to have a better view of the state of the art. One of the main
contributions of this project stage was to prepare the student
for research and stimulate analysis and criticism skills. This
allowed a clear and deep understanding of possible paths for
the solution and opened a pathway for a better definition of
the functional requirements. This led to a better definition of
the functional and non-functional requirements defined after
that by the product owner (explained below) also. In addition,
it was essential to contribute to the team's cohesiveness from
an early stage. The student showed interest in the subject, in
knowing about it, and understood that the objectives were
open and that everyone could contribute with improvement

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

73

proposals whenever this added more value to the product and
aligned with the objectives defined by the company.

C. People/Team

In this case, the agile team was composed of 6 members,
following the recommendations of Scrum [2]. Regarding the
role of each one: 1 member of the company acted as product
owner; 2 members of the company (with vast experience in
terms of development using the adopted platforms) acted as
coaches/development technical support; | member was the
student that acted as a developer; 2 teachers acted as Scrum
masters and, for some tasks, as coaches (involved in
documentation, timeline, among others). In this process, the
student, the central element of the approach, interacted with
other people. Besides getting support for developing the
project/product, he also gained experience in teamwork (soft
skills), realizing the difficulties and aspects common in
business projects of this type. The members' posture was
demanding and methodical, continually adopting practices
equal to what is done in the day-to-day business activity.

D. Process

Tools were adopted for this purpose to carry out the
development process. Thus, Jira [15] was used to manage all
stages so that details of the evolution of the project and its
rhythm could be adequately monitored in an articulated
manner. This choice requires everyone to follow good
communication practices and compliance with activity logs
and user stories in this case.

Figure 1 presents the timeline of one of the semesters.

15/11
sprint1 712 4
12/10 Planning Sprint2 Sprint3
Start Project (bay) Planning Planning
13/10 6/12 31 /2 15/2/22
Start 2810 i i i End
worials Start Sprintl sprintz Sprint3 Project

Implementation
15/11-6/12 7/12-3/1 a/1-2a1 1-3: 1/2-152
Sprint1: Backoffice Sprint2: Backoffice Sprint3: Backoffice [Tosts & Write Report &
s aluati Project
Presentation

01/12/2021 01/01/2022 01/02/2022

01/11/2021

18/02/2022

Figure 1. Timeline.

Scrum's artifacts [2] were all met, such as having a
product backlog, sprint backlog, etc. In addition, there were
daily meetings between the student and his mentors and
checkpoints to clear any impediments to progress. The sprints
were 2-4 weeks long, but every week there was a meeting
(weekly meeting) between all the team members to review
the progress of the work. There were sprints for development,
but there were also periods when the goal was to learn how
to develop or optimize the project; for example, how to
integrate Azure [16] cognitive services into the product under
development. In addition, the definition of the sprint periods
was separate from the academic activity, which took place in
parallel so that the student could also fulfill the academic
requirements in his other subjects. Thus, there were different
sprint periods as there were also different workloads.

E. Project

Since an agile approach was adopted, it followed the
value [17]:

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

"Working software over comprehensive documentation."

In terms of requirements documentation and modeling,
the requirements were documented using user stories, and in
addition, we used wireframes and the Entity-Relationship
(ER) model. The team did not follow an extensive and deeper
documentation approach because the student knew it from
previous work in other curricular units. However, taking
advantage of this knowledge, the student also represented the
use cases and the ER model for the final report.

The research work was demanding for the student and the
other members involved. New challenges were posed that
required research, pre-experimentation, and analysis. For
example, to implement the synchronism between the mobile
application and the backend, it was necessary to analyze
several patterns and adjust them to the concrete objective of
this new product. The same happened in relation to security
aspects of the application or the use of Azure cognitive
services. In other words, the fact that it is an application with
ambitious goals also posed interesting challenges to all team
members. The product owner defined and documented the
initial requirements in the product backlog. The user stories'
acceptance criteria were defined, which helped design the test
cases and thus contributed to a robust application.

Although the student had general knowledge about
Artificial Intelligence (Al), it required them to be prepared to
take advantage of the resources provided by Azure in terms
of parameterization and integration and in training to get the
best performance. This is important because what was at
stake in this challenge was to implement the functional
requirements and user stories and obtain a final product with
the highest possible accuracy in terms of automatic detection
of fields of interest present in invoices.

Thus, the project involved research, development,
software integration, application synchronization (Web and
mobile), security, agile Scrum framework, teamwork, new
tools (low-code platform, integration with cloud Azure,
cognitive services, Jira, etc.). A detailed report of all phases
and details of each aspect covered during the implementation
process was also made. In the final stage of the project,
acceptance tests were done to determine if the implemented
features were useful and satisfied the users’ needs.

This work covered many aspects of a software project,
which could hardly be contemplated in a purely academic
project. In addition to the technical-scientific coverage
evidence, the agile methodology was chosen, and the fact that
there was permanent communication between all its members
was central. This leads us to verify in practice that one more
value of the agile manifesto followed results in a successful
path [17]:

"Individuals and interactions over processes and tools"

All these aspects mentioned above were considered, and
the project includes documentation on user stories, database
modeling, wireframes, and systems software architecture,
among other valuable and necessary documentation.

Figure 3 shows the general architecture of the
implemented system.
This work involved full-stack Web and mobile

development using the OutSystems low-code platform [18].

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

74

This choice, teamwork, and adopting the agile framework
(Scrum) allowed us to design from scratch and implement
and test a complex and challenging software product during
the standard school year.

Household
! Accounting
Web

Household
Accounting
Mobile

OutSystems

Figure 2. Systems Architecture.

F. Product

The recognition and automatic extraction of data from
documents (invoices, receipts, etc.) are complex to
implement and require various aspects to make it work
successfully. With this project, we apply mechanisms to
recognize and extract data from invoices and store, organize,
and manage these data.

Using the OutSystems platform to develop the current
project was also a requirement from the company. The
company proposed this product idea to develop a Web and
mobile application using the OutSystems low-code platform,
allowing users to manage their expenses in a digital format,
independently of the users receiving the documents digitally
or on paper. One of the characteristics of this platform is the
speed of development and the integration with other
necessary tools for the implementation of the objectives of
this work (e.g., integration with Azure services). It allows to
build and deploy full-stack Web and mobile applications
[18].

The product owner proposed the product backlog.
However, in each sprint review meeting, there were
adjustments to the user stories. A sprint retrospective was
always carried out to keep the improvement process constant
from sprint to the next sprint, fostering a continuous pace.
This demonstrates to the student the importance of the third
and fourth values of [17]:

“Customer collaboration over contract negotiation”
and

"Responding to change over following a plan"

The final product was developed on time, and all goals
were achieved. In other words, at the end of the project, the
resulting product was an application (Web and mobile) that
was developed in OutSystems with the integration of Azure
cognitive services (Azure form recognizer [19]) that allows
(among other functionalities) the user to:

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

o Register invoices automatically.
Process invoices (recognize and extract) data from
pdf or an image captured by a smartphone.
e See spending statistics of a specific type and period.
The mobile application was implemented to be used even
when it is offline. Because of that, mechanisms to
synchronize both applications (Web and mobile) were
implemented.
Figures 3, 4, and 5 show the final layout of the Web portal
User Interface (UI) and one of the mobile application's UL

PAg— v oo e+ Sabrenis °s

Faturas Ativas

P — Totues Atvas haPosod v Sobrenis o9
Histérico de Faturas

Sn hoshottznrirs B WV — o

Fatura - Fatura EDP 11/05

.....

Figure 3. Examples of portal Web Uls (On top: active invoices, middle:
Invoice's historical view, Bellow: Output of automatically processed
invoice view).

Figure 3 (top) presents a dashboard with the active
invoices (due to be paid). In Figure 3 (middle), we can see a
dashboard to consult invoice's historic, with filters, charts
presenting the collected data of different service providers
(Telecommunications companies, electricity suppliers, etc.)
and the list of stored invoices by designation, date, service
provider, and monetary value. In Figure 4 (below), we can

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

75

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

see the result of an automatically processed invoice view,
presenting the invoice's file and the automatically captured
fields.

Users can consult their invoices that are due to be paid.
They can choose to visualize it through a graph organized
according to the value and entities of the invoices (Figure 4-
left) or to visualize it in the form of a list (Figure 4 - right).

= householdaccounting = householdaccounting

Faturas Ativas

Histérico de Faturas

® eoP @ Gascan ® Meo

@ Repsol @ Vodafone ° °

Figure 4. Examples of mobile app Uls (Left: active invoices- graph view
Right: active invoices- list view).

In Figure 5, you can see the functionalities related to
selecting the method to insert a new invoice (left) and a
visualization of the user's expenses (right).

v 003 snmioss]
< householdaccounting

Fatura - Fatura EDP 11/05

@

® Eletricidade
@ SERVIGOS
TAXAS IMPOSTOS

Tirar Fotografia

Esolher imagem

Escolher,PDF

Liquidar

Figure 5. Examples of mobile app Uls (Left: select new invoice; Right:
expenses).

Invoice templates can be configured in the administration
portal for different service providers. The training and
configuration of the recognition algorithms, using Azure
cognitive services, can be configured through a dedicated
Web portal.

The company's representatives validated the visual
aspects (Ul/User Experience (UX)), the synchronization
between the Web and the mobile applications, and security
issues. The performance results obtained with the recognition
of invoices were also analyzed and improved.

In technical terms, several aspects have been studied from
scratch and implemented for this software application,
demonstrating a real and active learning implementation.
Some of the aspects that evidence these practices are:

Security

The constant demand to ensure the security of
information and infrastructures is recurrent and essential. In
this project, some measures were considered to ensure a
higher level of se curity for users and the information
associated with using the mobile application.

The security mechanisms implemented in the mobile
application follow the Top 10 Mobile Risks identified by the
OWASP organization [20] in 2016. The ten risks identified
by the organization were as follows: M1: Improper Platform
Usage; M2: Insecure Data Storage; M3: Insecure
Communication; M4: Insecure Authentication; MS5:
Insufficient Cryptography; M6: Insecure Authorization; M7:
Poor Code Quality; M8: Code Tampering; M9: Reverse
Engineering; M10: Extraneous Functionality.

Local Data

Creating a local database becomes mandatory once it is
decided to allow the user to use the application without an
Internet connection (offline). As such, using the application
offline requires that some of the user data and associated data
be stored on the device itself. Using the application offline
does not allow using all the features that the concept
promises; however, it ensures most of them, such as viewing
active expenses.

The information stored in this application includes data
from the invoices and their respective expenses (information
from the logged-in user's invoices and the expenses
associated with those invoices), from the support messages
(associated with the logged-in user), from the notifications
(associated with the logged-in user), from the logged-in user,
from the proposals of new types of invoices (information
from the proposals made by the logged-in user and from the
user who generated the proposals) and data related to the
application itself (properties for running the application).

The information stored in local storage at the login stage
usually does not correspond to all the data stored in the server
database. The amount of data stored in the server database
can be huge, and it is necessary to filter the amount of data to
be stored on the end device, namely by how recent the data
is.

The structure of the proposed local database was based on
non-relational modeling, i.e., NoSQL modeling. NoSQL
modeling is used to process large volumes of unstructured

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and ever-changing data. This type of modeling is very
efficient in data processing and fast in querying information
[21]. NoSQL modeling on mobile devices is highly important
because devices do not have the same computing power as a
server. This type of constraint has repercussions on the use of
the mobile application, such as an increase in the application's
response time to the user. The relationships between tables
require more computational power and, consequently, more
time. That said, the structure of each table stores specific
information and associated information, possibly relevant
when accessing the primary information.

Although two structures are used to store the
authenticated user information, the server database is the
main structure that guarantees data fidelity.

Synchronization

Synchronism becomes necessary when the mobile
application allows users to use features without (offline) and
with an Internet connection.

For the user to use the application without being
connected to the Internet, saving some user information and
some associated data is necessary. Given this, the user will
use the application the usual way regardless of whether he
has an Internet connection, causing the data/records to
change.

In offline mode, it is necessary to ensure that the
data/records that have changed in the device's local memory
while using the mobile application without an internet
connection will be updated in the server database when
reconnecting to the Internet. In short, synchronization is
based on ensuring that the data in the server database and the
data in local storage are always up to date with the latest
version of the data that has been manipulated and ensuring
that the navigation is automated so that it is not dependent on
a constant Internet connection. The concept and methods
inherent to synchronization can be quite complex to
understand and implement, and synchronization is achieved
through implementing platform-specific patterns called
Offline Data Sync Patterns [22]. The data synchronization
patterns used in the mobile application were the following:

e Read-Only Data [23];
e Read/Write Data Last Write Wins [24].

The Read-Only Data pattern is essential for storing
auxiliary information, such as filling dropdowns.

The use of the pattern Read-Write Data Last Write Wins
is important, in turn, for synchronizing the changed
information in the server database and the local database.
This implementation makes it possible to use the mobile
application without the user being connected to the Internet.

Data synchronization is performed when a given user logs
into the mobile application (the essential data is loaded at this
stage), on-demand (as the application is used continuously),
and when the user uses the PullToRefresh feature
implemented on almost every screen.

8] 74 9).¢

The development of mobile applications also requires a
special concern with the design of interfaces and the
experience that affects the end user. In this project, there was

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

a constant concern with the interface design and providing
the users with the best usability experience. Some of the
details (easily visible using the mobile application) that were
considered were the following: Size of the buttons; Button
position; Color of the buttons; Representative icons; Contrast
between colors; Always keeping the user informed. However,
some programming logics are implemented to provide the
best user experience; for example, the OnScrollEnding
mechanism is used to load more data on pages that list
information. The algorithm implemented loads only some
information at a time to load the page as fast as possible and
does not immediately make reading the data exhausting for
the user. As such, the data is loaded in blocks of fixed size
according to the user's wishes.

Performance

The performance of mobile applications has, over time,
increased with technological advancement. However, this
advancement does not evolve in only one direction. While
hardware evolves, the amount of data that users manipulate
and generate has also been increasing, in addition to the
resources used by the applications.

The application solutions were implemented throughout
the development to provide a better user experience. Some of
the solutions identified and implemented to improve the
performance of the application were the following:

e Restrictions on the amount of data to be stored in the

local database.

e Restrictions on the amount of data to display to the

user when loading certain screens.

e Image compression.

The amount of data associated with a given user can be
immense, and one must restrict the amount of data to be
stored in the local database without compromising the normal
operation of the application without the device being
connected to the Internet. A practical example implemented
in the Household Accounting application corresponds to the
information on outstanding invoices and the respective
expenses stored in the local database.

The main page of the mobile application lists the
outstanding invoices of the authenticated user; however, the
invoices are not displayed all at once so as not to cause
significant delay when building the page. That said, fixed-
sized blocks are loaded at a time (depending on the user's
willingness to scroll the page). First, the page is filled with
data in local storage, and if all the data in local storage has
already been loaded, it is checked to see if there are any new
records in the server database that do not exist in the local
database. If there are new records, they are shown on the
screen.

The main functionality implemented in the mobile
application is the automatic reading of relevant information
from an invoice. Reading this information from invoices can
be done by uploading PDF files, uploading gallery images
taken previously from invoices in physical format, and taking
a picture of the pages of a physical invoice at the time. Using
this functionality in the last-mentioned format caused some
inconvenience regarding the size of the files being generated,

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

77

which would have to be handled by the application and the
resource. In the first prototypes, the usage of the application
without performing any "treatment" on the generated files led
to the closing of the application after a waiting period (3-4
minutes) for the application's response to the reading of the
invoice by the resource. The application generated files with
about 8 MB (for each page of an invoice). This made the
application unable to handle such a large amount of data and
sending data to the Azure resource with a size exceeding 15
MB (in the case of an invoice consisting of two pages)
because analyzing the invoice information takes time, taking
up to 4 minutes and/or even closing the application suddenly.
Considering this, it was necessary to implement some
compression mechanisms to solve this problem. In the first
instance, a comparison was made between two methods
provided by two different OutSystems components to
proceed with the compression of the generated files. To do
this, several factors were considered, such as the time of
performance, the size of the files obtained because of the
methods, and the image quality lost with each one. The
comparison was made between the following methods
provided by the following OutSystems components:
e Image Utils Reactive.
o ImageCompress.

To select the most appropriate method, some initial
experiments were done. Table 1 presents the results of the
experiments using these two methods applied in the same file.

TABLE L OUTSYSTEMS COMPONENTS COMPRESSION.
Image Utils Reactive Image Utils Reactive
Before (original) After (60% quality)
Size 8§ MB Size 629 KB
Width 2268 Width 2268
Height 3024 Height 3024
ImageCompress ImageCompress
Before (original) After (60% quality)
Size 8§ MB Size 739 KB
Width 2268 Width 2268
Height 3024 Height 3024

Initial experiments start by compressing the captured
image to 60% of its initial quality. These experiments showed
that the images compressed through the
Image Utils Reactive component are smaller than those
compressed by the ImageCompress component (Table 1 up-
right/down-right). It was also verified that the use of the
component did not result in such a long delay for the final
insertion of a new invoice.

However, although the component generated a smaller
file size, it was noticed that the algorithm's accuracy had been
compromised when the file was compressed too much. Then,
more experiments with distinct compression rates
(considering 70% and 80% of the image's original quality)
were performed with the Image Utils Reactive component.
These experiments made it possible to realize that file
compression below 70% is the threshold for correctly
understanding invoice information.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Integration with Azure Services

Azure Form Recognizer [25] is an artificial intelligence
(AI) service provided in the cloud that uses Al models to
extract information from documents such as text and tables
from our documents. In this case, the documents are invoices,
and extracting the desired information from the invoices was
possible.

The configuration of the template to be used in this
system involved the use of a tool called Form OCR Testing
Tool [26]; however, the template's configuration required the
existence of some previously obtained keys because of the
configuration on the Azure side. Invoices uploaded to Azure
containers (in various formats) appear in the editor
automatically, ready to be configured. It is then necessary to
run a function on each document to highlight which fields are
possible to select to be identified by the template.

Afterward, it is necessary to create tags (as you can see
on the right side of Figure 6) for each piece of information
you want to extract from the invoices. The tags considered in
this implementation were 14.

@ B e e

El G @EcEE @ =

Figure 6. OCR Testing Tool GUL

the

Finally, the model was trained based on
configurations performed previously. It required the
configuration of at least five invoices to be able to be
performed, and obviously, the more invoices inserted and
configured, the better the training results.

The results of the training vary, considering the number
of files inserted and configured on the platform, the concern
with the tags that are created and how general they can be to
respond to all types of invoices, and, finally, the insertion of
files of various types and obtained in various ways. PDF files
and PNG files were used and converted from invoices in PDF
format. PNG images obtained from photographs of paper
invoices were also inserted.

During the study stage, it was noticed that the resource's
accuracy in analyzing invoice photographs is lower than in
analyzing PDF invoices. For example, when using a PDF file
consisting of photographs taken from the camera of an end
device, information near the edges of the pages was identified
with flaws. This pattern is easily justified by the fact that the
focus of the devices' cameras is by default on the center, so
the quality of the remaining areas of the photos will be lower.

Integration with OneSignal
Another deployed issue was using OneSignal [27], which
provides push notifications for mobile devices and web,

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

78

messages within the application, SMS, and email. The use of
these services is possible through the free consumption of the
API by REST. Despite being the free version, the version of
OneSignal used in our application guarantees the data
protection imposed by the General Data Protection
Regulation (GDPR). However, they use some statistical
values for personal marketing purposes, among others. This
tool was useful in integrating the native notifications of users'
end devices with our application, providing further rigor to
the mobile application.

Above all, it was another tool to integrate into our
application that, consequently, led to learning how it works
and how it is possible to integrate it into the most diverse
systems. Furthermore, it was also important to demonstrate
how the functionality works and observe the intended goal
with the integration of OneSignal.

These are some of the several (others exist like database
modeling and implementation or learning new tools (ex.
balsamic)) aspects involved in this project's preparation,
design, and implementation. This demonstrates the wide
range of software aspects and tools involved throughout the
project and at various levels (in terms of technical knowledge
and soft skills). The project's success was due to the student's
commitment and dedication and to the entire collaborative
environment that was present from the beginning. We believe
it was clearly a success story that we intend to replicate in
subsequent editions and with other students.

IV. RESULTS AND LESSONS LEARNED

According to the opinion of all those involved, the result
of the project was very positive. In addition to completing the
entire system within the planned period of 2 semesters, a
high-quality software product was developed (all
requirements implemented and good acceptance from
potential external end-users). In other words, in addition to
providing all the intended features identified throughout the
project, the software developed also performs with good
performance results. After several tests with invoices from
various service providers, the performance was excellent in
all cases. As in any of these cases, the better organized the
information on the invoice is (input), the easier it will be to
train the system and, obviously, the better the accuracy of the
data obtained (output). In the tests carried out, in most cases,
all data was recognized automatically from the original pdf
invoices received by email from the service providers (e.g., a
gas company, an energy company, or a telecommunications
provider). A lower accuracy rate was achieved if the invoices
were digitized using the smartphone camera (even so, in the
performed experiments, at least 46.5% of the fields were well
recognized, and the user manually entered the remaining
fields). After having the first version of the system available
(Web and mobile), several potential users were asked to
install and use the application and to respond to a survey. The
survey included 14 questions. Twelve questions were
answered using the Likert Scale (1-5), and one question
asked for a numerical answer. The other question was an
optional free-response question where respondents could
include any information. The results obtained at this stage

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

serve three crucial goals: 1) to provide a better insight into
the platform, which may identify novel issues/problems to
consider; 2) to obtain initial feedback on potential users'
acceptance and perception of the platform’s key features and
3) to evaluate the usefulness of the proposed system. Twelve
users completed the survey. To exclude the outliers, the
survey with the best evaluation and the survey with the worst
evaluation were excluded. This resulted in 10 valid answered
questionnaires.

The analysis of the responses shows that 90% of
respondents rated the application as useful or very useful, and
80% rated it as easy or very easy to use. As shown in Figure
7, all the respondents were satisfied or very satisfied with the
automatic reading of invoice information.

6(60%)

4 (40%)

0 0%)

1 2 3 4 5

0(0%) 0(0%)

Figure 7. Users’ satisfaction related to automatic reading of invoice
information.

The functionalities that allow the import of invoices from
PDF files or photos are among the most relevant in the
application. Regarding these features, user opinions were
very positive (see Figure 8). Importing invoices in PDF
format was considered very important by 80% of respondents

(Figure 8).

1 (10%)

1 2 3 4 5

Figure 8. Importance of the "importing invoices in pdf format" feature.

Users recognize that the feature import of invoices from
a photo was important or very important by 60% (Figure 9).
However, despite the recognition of the importance of this
feature, user opinions are more divided. Only 40% of them
recognize this functionality as important or very important.

4 (40%)

3(30%) 3 (30%)

1 2 3 4 5

Figure 9. Importance of the "importing invoices from photo" feature.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

79

How data is identified (extracted from the invoice) and
presented to users was also to the liking of respondents, as
can be seen in Figure 10. All respondents rated how the data
are presented as good or very good.

7 (70%)

0 (0%) 0(0%) 0(0%)

1 2 3 4 5
Figure 10. How the data extracted from the invoice is presented.

In the open-answer question, it was possible to obtain
some feedback on usability improvements and the reporting
of some bugs.

In terms of lessons learned, this approach requires a
dedication of at least one hour/week (average) from the
teachers and the company's members. In the case of the
mentor, this period was longer due to all the daily meetings.
The dedication paid off because the result (resulting product,
preparation of the student (technical and non-technical
skills)) was very positive. The fact that everyone was
engaged in developing a comprehensive project that involved
all stages and components of the proposed architecture was
challenging, motivating, and clearly beneficial for all parties,
including teachers, students, and staff involved from the
partner company.

This approach has been successfully carried out in this
case study and it was also implemented in previous editions
with other students with different characteristics [28]. In both
scenarios very positive results were achieved which suggest
that this approach can contribute to overcome the gap
academia-industry, mentioned in the introduction of this
article. This approach fosters students to develop state-of-the-
art technical and non-technical skills. However, these case
studies also showed that this is a demanding approach that
depends on the availability of all participants: teachers,
industry partners and students. Scaling up the application of
this methodology to a large number of students will be a
challenge as it will require availability and a lot of work on
the part of teachers and professionals from the companies
involved. In this sense, to ensure the success of this
methodology, an important aspect is that all parties (industry
and academia) should be committed to apply this approach
and to guarantee the necessary time availability. Also,
students enrolled in this approach must be aware that they
must maintain a constant pace and commitment with the
established goals.

V. CONCLUSIONS

In this work, we presented a case study that shares an
agile approach to preparing students for the job market
regarding SE practices. The main goal of this approach was
to prepare students' performance and technical skills for the
software industry's new demands and thus contribute to

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

reducing the gap between SE education and practice in the
software industry. We followed an approach that promotes
active and collaborative learning to achieve this goal. The
case study presented illustrates the work methodology, the
approach, details of the project design and implementation,
the results achieved, including the resulting product, some
lessons learned, and some guidelines for the future. And the
resulting product.

The student was involved in a distributed team with
teachers and IT professionals from a software house to
develop a product that demanded full-stack development and
agile best practices. These industry-academia partnerships
help students become better and more quickly prepared to
work in high-performing teams. They raise students'
employment opportunities by preparing them in cutting-edge
fields and improving their soft skills to perform better in
software development teams. These partnerships are also
advantageous for the other partners involved. Hiring
qualified human resources is good for the companies, as well
as for the participating higher education institutions
(contributes to improving their employability rate).

In this case study, an Agile methodology was followed. It
allows closer and more frequent monitoring of all members
of the team and therefore has advantages for student learning.
In situations where companies use other methodologies or
development tools, the involvement of companies in the
student's teaching/learning process will always benefit the
student. However, to assess these benefits or to compare the
benefits when different methodologies are followed, further
studies will be needed.

ACKNOWLEDGMENT

We thank the members of the company Do iT Lean, who
were also involved in this case study providing technical
support.

REFERENCES

[1] J. Metrolho, F. Ribeiro, and P. Graga, “Prepare Students for
Software Industry. A case study on an agile full stack project,”
in Seventeenth International Conference on Software
Engineering Advances, 2022, pp. 75-80.

[2] K. Schwaber and J. Sutherland, “The Scrum Guide. The
Definitive Guide to Scrum: The Rules of the Game.,” 2016.
https://www.scrum.org (accessed Jul. 20, 2022).

[3] R. Brungel, J. Ruckert, and C. M. Friedrich, “Project-Based
Learning in a Machine Learning Course with Differentiated
Industrial Projects for Various Computer Science Master
Programs,” in 2020 IEEE 32nd Conference on Software
Engineering Education and Training, CSEE and T 2020,
2020, pp. 50-54, doi: 10.1109/CSEET49119.2020.9206229.

[4] L. Gren, “A Flipped Classroom Approach to Teaching
Empirical Software Engineering,” I[EEE Trans. Educ., vol. 63,
no. 3, pp. 155-163, 2020, doi: 10.1109/TE.2019.2960264.

[5] P. Rodrigues, M. Souza, and E. Figueiredo, “Games and
gamification in software engineering education: A survey
with educators,” in 2018 IEEE Frontiers in Education
Conference, 2018, vol. 2018-Octob, pp. 1-9, doi:
10.1109/FIE.2018.8658524.

[6] R. Malhotra, M. Massoudi, and R. Jindal, “An innovative

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

80

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

approach: Coupling project-based learning and game-based
learning approach in teaching software engineering course,”
in Proceedings of 2020 IEEE International Conference on
Technology, Engineering, Management for Societal Impact
Using Marketing, Entrepreneurship and Talent, TEMSMET
2020, 2020, pp- 1-5, doi:
10.1109/TEMSMET51618.2020.9557522.

W. E. Wong, “Industry Involvement in an Undergraduate
Software Engineering Project Course: Everybody Wins,” in
120th ASEE Annual Conference and Exposition, 2013, pp.
23.742.1-23.742.12, doi: 10.18260/1-2--19756.

E. Tuzun, H. Erdogmus, and 1. G. Ozbilgin, “Are Computer
Science and Engineering Graduates Ready for the Software
Industry? Experiences from an Industrial Student Training
Program,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering: Software Engineering Education
and Training (ICSE-SEET), 2018, pp. 68—77.

A. Heberle, R. Neumann, I. Stengel, and S. Regier, “Teaching
agile principles and software engineering concepts through
real-life projects,” in 2018 IEEE Global Engineering
Education Conference (EDUCON), 2018, pp. 1723-1728,
doi: 10.1109/EDUCON.2018.8363442.

G. Wedemann, “Scrum as a Method of Teaching Software
Architecture,” in Proceedings of the 3rd European
Conference of Software Engineering Education, 2018, pp.
108-112, doi: 10.1145/3209087.3209096.

L. Bosnié, F. Ciccozzi, I. Cavrak, E. Di Nitto, J. Feljan, and R.
Mirandola, “Introducing SCRUM into a Distributed Software
Development Course,” in Proceedings of the 2015 European
Conference on Software Architecture Workshops, 2015, pp.
1-8, doi: 10.1145/2797433.2797469.

J. J. Chen and M. M. Wu, “Integrating extreme programming
with software engineering education,” in 38th International
Convention on Information and Communication Technology,
Electronics and Microelectronics, 2015, pp. 577-582, doi:
10.1109/MIPRO.2015.7160338.

B. S. Akpolat and W. Slany, “Enhancing software engineering
student team engagement in a high-intensity extreme
programming course using gamification,” in 27th Conference
on Software Engineering Education and Training, 2014, pp.
149-153, doi: 10.1109/CSEET.2014.6816792.

S. Al-Ratrout, “Impact of using Agile Methods in Software
Engineering Education: A Case Study,” in 2019 6th
International Conference on Control, Decision and

Information Technologies (CoDIT), 2019, pp. 1986-1991,
doi: 10.1109/CoDIT.2019.8820377.

ATLASSIAN, “Jira Software.”
https://www .atlassian.com/br/software/jira (accessed Oct. 13,
2022).

Microsoft ~ Corporation, “AZURE. INVENT WITH
PURPOSE. Learn, connect, and explore.”
https://azure.microsoft.com/en-us/ (accessed Oct. 13, 2022).
“Manifesto for Agile Software Development,” 2001.
https://agilemanifesto.org (accessed Jul. 20, 2022).
OutSystems, “OutSystems Developers: Develop more. Ship
more. Get more done.”
https://www.outsystems.com/developers/ (accessed Jul. 26,
2022).

Microsoft ~ Corporation, “Azure Form Recognizer.”

(20]

(21]

(22]

(23]

(24]

(25]

(26]
(27]

(28]

https://azure.microsoft.com/en-us/services/form-recognizer
(accessed Jul. 20, 2022).

OWASP, “Top 10 Mobile Risks - Final List 2016,” 2016.
https://owasp.org/www-project-mobile-top-10/2016-risks
(accessed Mar. 21, 2023).

Microsoft Corporation, “Base de Dados NoSQL — O que ¢é
NoSQL?” https://azure.microsoft.com/pt-pt/overview/nosql-
database/ (accessed Mar. 21, 2023).

OutSystems, “Offline Data Sync Patterns,” 2023.
https://success.outsystems.com/Documentation/1 1/Developin
g an_Application/Use_Data/Offline/Offline Data Sync Pat
terns (accessed Mar. 20, 2023).

OutSystems, “Read-Only Data,” 2023.
https://success.outsystems.com/Documentation/1 1/Developin
g an_Application/Use_Data/Offline/Offline_Data Sync Pat
terns/Read-Only_Data (accessed Mar. 20, 2023).
OutSystems, “Read/Write Data Last Write Wins,” 2023.
https://success.outsystems.com/Documentation/1 1/Developin
g an_Application/Use_Data/Offline/Offline Data Sync Pat
terns/Read/Write Data Last Write Wins (accessed Mar. 20,
2023).

OutSystems, “Get started with the Form Recognizer Sample
Labeling tool,” 2023. https://docs.microsoft.com/en-
us/azure/applied-ai-services/form-recognizer/quickstarts/try-
sample-label-tool (accessed Mar. 20, 2023).

Microsoft, “Microsoft, “Editor - Form OCR Testing Tool.”
https://fott-2-1.azurewebsites.net/ (accessed Jun. 22, 2022).
OneSignal, “OneSignal.” https://onesignal.com (accessed Jun.
13, 2022).

J. Metr6lho, F. Ribeiro, P. Graga, A. Mourato, D. Figueiredo,
and H. Vilarinho, “Aligning Software Engineering Teaching
Strategies and Practices with Industrial Needs,” Computation,
vol. 10, no. 8, 2022, doi: 10.3390/computation10080129.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

81

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Methodological Choices in Machine Learning Applications

Kendall E. Nygard
Department of Computer Science
North Dakota State University
Fargo, ND, USA
Email: kendall.nygard@ndsu.edu

Abstract—Machine learning is a subset of artificial intelligence
in which a machine has an ability to learn and employ complex
algorithms to impersonate human behavior. Development of a
machine learning model involves careful preparation and
management of data and selection and features to produce
meaningful results. The data issues are often challenging due to
availability, characteristics, properties, categorization, and
balance. We report on relevant literature, case studies and
experiments surrounding the data issues. We describe
alternative machine learning methodologies and emphasize
supervised learning, including treatment of experimental
procedures. Procedures and challenges in the collection,
quantity, distribution, quality, sampling, of and relevancy of
data are included. Applications of machine learning models are
presented, including classification models for self-driving cars.
These models introduce anti-autonomy trust modeling. We also
describe intrusion detection models that can detect malicious
activity in computing systems. These applications also provide
insight into overfitting and underfitting training data. Feature
engineering and feature selection issues are presented, including
approaches to identifying, combining, and eliminating
attributes and features to determine which are needed and their
significance. Approaches for treating class imbalances in data
management are discussed. Comparisons among categorical
encoding techniques are presented. The work provides
perspective and insight into resolving multiple issues that must
be addressed in utilizing machine learning models in practice.

Keywords- Machine Learning; Data Management; Feature
Engineering; Feature Selection; Self-Driving Cars; Intrusion
Detection.

l. INTRODUCTION

Machine Learning (ML) is a rapidly emerging area of
artificial intelligence. Many types of applications have been
successfully developed and new successes are regularly
reported. The famous Turing award winner Jim Gray referred
to data science as a “fourth paradigm,” taking a rightful place
among empirical, theoretical, and computational sciences [2].

Often viewed as interdisciplinary, data science involves
mathematics, statistics, and computer science as well as other
related areas. In many applications, the availability of large
and relevant datasets, and the methods of data science
provide the lifeblood of machine learning problem-solving
approaches. Analyses and decision support in nearly every
area of human endeavor today are related to machine
learning.

Mostofa Ahsan, Aakanksha Rastogi,
Rashmi Satyal
Department of Computer Science
North Dakota State University
Fargo, ND, USA
Email: {mostofa.ahsan, aakanksha.rastogi,
rashmi.satyal}@ndsu.edu

The example machine learning studies that we describe
are in the areas of self-driving cars and intrusion detection [1]
[31[34]1[37][38]. Self-driving cars are a real-world example of
a system that requires machine learning, since they involve
complex computations, algorithms, computing systems,
mechanics, and behavioral aspects that endanger human life
if automated decisions or controls go awry. Automated cars
have features such as remote engine start, advanced
information systems, moving object detection (MOD), lane
change assist, anti-lock braking system (ABS), to name just
a few. These systems can create vulnerabilities to cyber-
attacks from things like bugs introduced in their core software
code, remote access to the onboard diagnostic system (OBD)
of the vehicle, or controller area network (CAN) bus [77].

For a self-driving car study focused on classification, we
utilized available multi-attribute data about specific
collisions. The data contained many features and attributes of
the vehicle itself, the damage incurred, roadway conditions,
etc. The objective of the study was to build a classification
model that could translate the detailed data into collision
predictions and to drive an anti-autonomy trust model. There
were several important and difficult choices made related to
scale and balance within the available dataset, and in feature
engineering. A linear sequential supervised machine learning
model was employed.

The intrusion detection study used supervised learning
techniques to build a model for identifying outside threats
initiated by malicious actors who wish to breach or
compromise a system. Among other datasets, the study
examined the famous dataset that originated in the KDD
(Knowledge Discovery and Data Mining) competition and
was later modified to form the now publicly available NSL
(Network Security Laboratory) KDD dataset [7][8].

Data management and feature engineering are important
steps in the cybersecurity domain to prepare data for machine
learning algorithms and build effective models for detecting
security threats and anomalies. Data analysis involves
exploring, visualizing, and understanding the data to identify
patterns, trends, and anomalies [48]. This may include
statistical analysis, correlation analysis, time series analysis,
and other techniques to gain insights into the data. In the
cybersecurity domain, data analysis may also involve
extracting features that are relevant to the security domain,
such as network traffic flow, packet size and content, system

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

82

logs, user behavior, and other indicators of security threats
[49]. Feature engineering is the process of selecting,
transforming, and creating features that are relevant and
informative for the machine learning model. This may
involve selecting features that are correlated with the target
variable, transforming features to make them more
informative or meaningful, and to create new features from
existing ones [50]. Feature engineering in the cybersecurity
domain may also involve domain-specific knowledge and
expertise to select and create features that capture the specific
characteristics of security threats and anomalies [51][52].
Feature engineering techniqgues may also involve
dimensionality reduction, feature scaling, and other
preprocessing techniques to improve the performance of the
machine learning model. All these methods have their
strengths and weaknesses, and their effectiveness may
depend on the specific dataset and classification problem at
hand. In the cybersecurity domain, they can be useful to
improve the performance of machine learning models that
aim to detect and classify security threats, anomalies, or
attacks [53]. We describe some of the data analysis and
feature engineering techniques used in cybersecurity in the
data management section of this paper.

The rest of the paper is structured as follows. In Section
I1, we describe supervised machine learning with illustrations
of the flow of a machine learning model and data splits for
cross validation. In Section 111, we present a self-driving cars
example illustrating an implementation of a linear sequential
supervised learning artificial neural network model utilizing
multiple pre-processed complex attributes. In Section IV, we
present the intrusion detection example, explaining how a
machine learning model can be tuned to predict and identify
attacks. In Section V, we describe data management and
feature engineering issues that are ubiquitous in machine
learning practice. This section also includes several
categorical encoding techniques for preprocessing data for a
machine learning algorithm. Finally, we conclude our work
in Section V1. An abbreviated version of the work is available
in [1].

Il. MACHINE LEARNING EXPERIMENTS

Machine learning methods are of four distinct types.
Supervised learning models are trained using datasets with
known labels, then used to make predictions on new data.
Unsupervised learning models work with unlabeled data and
seek clusters or patterns in the data. Semi-supervised learning
is a hybrid approach that uses both unsupervised and
supervised learning techniques. Reinforcement learning uses
no labeled data, but instead is based upon evaluation of
rewards or punishments of behaviors. We have conducted
extensive experiments using supervised learning in
applications concerning circumstances under which
collisions occur in self-driving cars and in detecting
intrusions into computer platforms.

Supervised machine learning (SML) methods are very
effective in addressing classification problems. When applied
to classification tasks, a SML method has a set of available

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

data for which their correct classifications are known. Such a
data set can be represented as shown below.

(x1,Y1), (X2,2), -+ (Xn,Yn)

Here, the x; shown in bold are vectors that capture a data
instance or situation, and the corresponding yi values are
discrete labels for the available classifications.

The initial task in a supervised learning experiment is to
computationally train the machine learning model to accept
the known data instances as input and to produce the correct
target as output. Many types of SML methods can be used in
training, including decision trees, neural networks, support
vector machines, and logistic regressions [78]. For some
methods, training can be a computationally intensive process.
Once trained, the model is available to accept new data
instances and predict their target classification. The model is
successful if it has high values of performance measures such
as percentage of accuracy in correctly classifying the new
data instances, called the ability to generalize. There are
multiple issues surrounding the characteristics of the
available data, the classes into which they fall, their attributes
and features, and the learning models charged with producing
the predictions. Concerning baseball, Coach Yogi Berra
famously said, “It's tough to make predictions, especially
about the future.” This aphorism is equally true in machine
learning [46].

Figure 1 illustrates the general flow of a machine learning
technique. Several tasks are included. The overall task of the
DEVELOP phase shown at the top is to produce a Final
Model that is fully specified, trained and feeds into the
PREDICT phase shown below the dotted line, where it is
available for generalization use on new data. Starting from
the top, the data is shown as partitioned into splits for
Training, Validation and Test. The full data is divided into
the Training Split and the Test Split. A good way to perform
training is to withhold a portion of the data while training is
done. It is viewed as a mistake to train and test a machine
learning model on the same data. So, doing that would result
in the model memorizing all the data/target pairs, resulting in
the model perfectly knowing all of the answers, leaving no
ability to generalize. The result is known as overfitting. For
validation purposes, the Training Split is typically divided
into pieces called folds. Called k-fold cross validation, Figure
2 illustrates basic logic for splitting the data. In this example,
k=5 so there are five equal parts. This corresponds to the
Validation Split and Model Tuning blocks in Figure 1. In
Figure 2, shown in bold italics on the diagonal, there is a
designated fold in each row that is specified for testing, with
the other four used for training. The key idea is to find the
best set of meta-level parameters for a model being
developed. All major machine learning models have
parameters. For example, an ML that utilizes an Artificial
Neural Network (ANN) in some way, will be parameterized
with settings like Learning Rate (governs weight
adjustments), topology (number of hidden layers, nodes

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

83

within layers, and
functions.

In cross validation, when a model is trained on the folds,
a performance metric, such as classification accuracy, can be
calculated on the testing fold. After all the fold splits are
evaluated in this way, an average is calculated, which yields
a score for the parameter settings. Various optimization
methods can be employed to explore the parameter space in
a quest to identify the best settings. Viewed more generally,
the Model Tuning block can also be viewed as exploring
various types of models in a quest to not only optimize the
use of one type of model, but to also choose among
competing models.

In multiple places of the ML process, there is a need to
evaluate the quality of the predictions using a metric. The
empirical accuracy of a method is simply the percentage of
the predictions made that are correct. Other metrics are
available. More details are provided later in this paper.

Raw data is rarely available in a form that is suitable for
direct use by an ML model. Pre-processing of data is typically
necessary to deal with such things as null or missing values,
outliers, transforming or reconciling numeric and categorical
values, rescaling, and standardizing. We expand on the data-
centric issues, for the example applications reported in this
article.

Feature Engineering also appears in Figure 1. Features
are those characteristics that are present in the data that are
potentially useful in predicting a target outcome.

interconnectedness), and activation

DEVELOP Data - Input &
Target
3 3
Training Split Validation Split Test Split
+ :
Pre-Processing Evaluation
] [}
. ’ Model)
Feature Engineering |+ Tuning Final Model
]
Model Refinement
PREDICT
Data — New Predict
Input
+

Target

Figure 1. Flow of a Machine Learning Model [3].

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

| Data — Input & Target |

| Training Split |Test Split|
[Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | | ¢ »
i a
[Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | '
[[Fold1 | Fold2 | Fold3] Folda [Folds | | . T
[Fold1 | Fold2 | Fold3 | Fold4 | Folds | | ° :
r
| Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | | s

Figure 2. Data Splits for Cross Validation.

It is often effective in ML to modify or combine features in

some way to produce a new feature that can improve the
prediction accuracy of the method. Called Feature
Engineering, the operations that can be carried out include
things like mathematically transforming a single feature or
applying a functional calculation on multiple features.
Feature Selection refers to reducing the number of features
employed by the model while retaining acceptable results.
Reducing the features needed can ease the data collection task
and reduce the computational load of running the model.
Feature Selection typically follows Feature Engineering. We
provide details related to the examples discussed in this
paper.

Unsupervised Learning is different than supervised
learning in many ways. Some of the most known algorithms
are, k-means clustering, hierarchical clustering, principal
component analysis, and a priori algorithm [45]. The need for
unsupervised models is increasing in the cybersecurity
domain since attacks are being modified every day [47].

We have discussed multiple machine learning techniques
in this section. The primary concern is to make proper choice
of methods to optimize the solution of a problem. We discuss
the criteria we need to adopt to address a machine leaning
problem in the following sections.

I1l. SELF-DRIVING CARS APPLICATIONS

A self-driving car underway must adhere to laws and rules
of the road, like adhering to speed limits, stopping at red
traffic lights, turning from an appropriate lane, etc. In
addition, the vehicle must carry out control actions in
response to sensor and communication information that
provides information regarding things like conditions of the
roadway (such as snow, rain, deteriorated pavement);
construction zones; presence of bicycles, pedestrians, other
cars, or obstacles; or visibility issues like glare, fog, snow,
rain, darkness, or any type of impaired lighting.

When addressing how a self-driving car can be trained to
carry out an appropriate action under circumstances that it
encounters, we draw an analogy with how positive

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

84

reinforcement can work efficiently when a person or animal
learns a new skill or behavior. This vehicle training need
lends itself naturally to Reinforcement Learning (RL), a
powerful machine learning technique that rewards good
behaviors, and as needed, punishes bad behaviors. A RL
training method proceeds iteratively and is illustrated in
Figure 3 [76]. While undergoing learning in a simulated
environment, the vehicle is an agent that carries out actions,
receives their consequences in the form of positive or
negative feedback, and adjusts their model of actions
accordingly. When complete, experience gained in this way
can maximize rewards. With acceleration, deceleration and
steering as the primary actions, a self-driving car (agent) aims
at maximizing short-term rewards (like safe driving) and
long-term rewards (like fast arrival at the destination) using

the RL approach.
: W
state reward action

S, | |R A
R. [
_S,.. | Environment]4—

\.

Figure 3. Reinforcement Learning illustration.

We carried out extensive experiments using supervised
learning for analyses of collisions that occur with self-driving
cars. Official collision reports basically map data items that
describe driving conditions into a collision classification. We
used these reports to help determine circumstances under
which self-driving cars carry out actions that cause collisions
or fail to avoid them. These harmful actions are referred to as
anti-autonomy traits and factors on the part of the vehicle that
cause collisions and diminish trust [3][39]. Data availability
was a challenge since jurisdictions of different states, federal
traffic agencies and motor vehicle departments often do not
make their data publicly available. Data used in this study
was submitted by the manufacturers of autonomous vehicles
to the California Department of Motor Vehicles for collisions
that occurred with other cars, pedestrians, bicyclists, and
other objects during their test drives on roads and freeways in
the state. All data applied to collisions that occurred while the
cars were being driven in autonomous driving mode. The
collisions occurred between October 2014 and March 2020
[3]1[39]. The attributes of this dataset are listed in Table |
below. All attribute names are feature type categorical and
data type object.

TABLE I. COLLISION DATA ATTRIBUTES [3]

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

Attribute Type

Attribute Names

Accident Details

Date of Accident, Time of

Accident
Involved in Autonomous vehicle | Involved in Autonomous Vehicle
accident Accident

(Pedestrian/Bicyclist/Other),
Number of vehicles involved with
Autonomous Vehicle

Autonomous vehicle damage

Vehicle Damage, Damaged Area

Details of other vehicle involved
in accident

Vehicle 2 Year, Vehicle 2 Make,
Vehicle 2 Model, Vehicle 2 was
(stopped in traffic/moving)

Involved in other vehicle
accident

Involved in Vehicle 2 Accident
Pedestrian, Involved in Vehicle 2
Accident Bicyclist, Involved in
Vehicle 2 Accident Other,
Number of vehicles involved with
Vehicle 2

Injuries

Injured, Injured Driver, Injured
Passenger, Injured Bicyclist

Vehicle driving mode

Vehicle Driving Mode

Weather conditions for both

Clear, Cloudy, Raining, Snowing,

vehicles Fog/Visibility, Other, Wind
Lighting conditions for both Daylight, Dusk-Dawn, Dark
vehicles Street Lights, Dark-No Street

Lights, Dark-Street Lights Not
Functioning

Roadway surface for both
vehicles

Dry, Wet, Snowy-Icy,
Slippery/Muddy/Oily/etc., Holes-
Deep-Rut, Loose Material on
Roadway, Obstruction on
Roadway, Construction/Repair
Zone, Reduced Roadway Width,
Flooded, Other, No Unusual
Conditions

Preceding Movement of
Autonomous Vehicle before
collision

Stopped, Proceeding Straight, Ran
Off Road, Making Right Turn,
Making Left Turn, Making U

Turn, Backing, Slowing/Stopping,

Passing Other Vehicle, Changing

Lanes, Parking Maneuver,

Entering Traffic, Unsafe Turning,

Xing into Opposing Lane, Parked,

Merging, Travelling Wrong Way,

Other

Preceding Movement of Other
Vehicle before collision

Stopped, Proceeding Straight, Ran
Off Road, Making Right Turn,
Making Left Turn, Making U

Turn, Backing, Slowing/Stopping,

Passing Other Vehicle, Changing

Lanes, Parking Maneuver,

Entering Traffic, Unsafe Turning,

Xing Into Opposing Lane, Parked,

Merging, Travelling Wrong Way,

Other

Type of Collision

Head On, Side Swipe, Rear End,
Broadside, Hit Object,
Overturned, Vehicle/Pedestrian,
Other

Attribute Type Attribute Names

Autonomous vehicle details Manufacturer Name, Business
Name, Vehicle Year, Vehicle

Make, Vehicle Model, Vehicle

Other

CVC Sections Violated Cited,
Vision Obscurement, Inattention,
Stop and Go Traffic,
Entering/Leaving Ramp, Previous
Collision, Unfamiliar with Road,
Defective WEH Equip Cited,
Uninvolved Vehicle, Other, Non-
Apparent, Runaway Vehicle

was (stopped in traffic/moving)

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

85

This data was extracted from PDF files and converted into
CSV format with 256 rows of data in 140 columns. As is
often the case in machine learning, data cleaning was a
significant effort, and included pre-processing steps for
augmenting, labeling, and classifying the data [3][39]. Data
was augmented to 5256 rows with the goal of yielding a
model with minimal noise. Details of data augmentation
criteria is described in [3]. The core purpose of the study was
to associate conditions into a level of trust that people had in
a self-driving car. The values of attributes in the data that
describe conditions and circumstances that are present when
a collision occurs provide a handle to model a mapping
between data and trust level. After pre-processing the data, a
linear sequential supervised learning ANN model called
NoTrust was devised, validated, and tested to classify the
target data, using the basic approach illustrated in Figure 1.

The model used the libraries provided by Keras with the
Tensorflow backend [40][41][42]. Python was used for
programming since it integrates with Keras to access the
neural network Application Programming Interface. The
deep learning libraries of Keras support fast prototyping,
modularity, and smooth computation.

There are multiple challenges concerning data, features,
and metrics in applying the ML methodology to the self-
driving car application. First, there were only 256 collision
reports available, which is arguably a small number to use in
a ML method. This was mitigated by augmenting the data to
produce a larger set to develop a model with higher accuracy.
Also, in the context of alternative target value possibilities,
the data is unbalanced in that the number of samples across
the distinct classes differs widely. Section V describes
methods, such as oversampling, to deal with unbalanced data.
Second, there are 140 attributes, a large number relative to
sample size, as shown in Table I. Thus, the possible
permutations and combinations that could be evaluated in the
ANN model are explosive. Fortunately, with initial analyses
of the data and evaluation runs, it was possible to identify a
subset of attributes and features that were mandatory to
include. This analysis was done by systematically
configuring sets with and without specific attributes,
evaluating each combination, and comparing the outcomes.
Using this search method, we identified certain categorial
features that were closely correlated with the anti-
autonomous traits of the vehicles. This supported dropping
the features related to date/time of accident, vehicle
manufacturer, weather conditions, lighting conditions,
roadway conditions, vehicle movement and type of collision.
Ultimately, we arrived at the five attributes shown below to
form the mandatory set.

e Vehicle driving mode = autonomous

e Vehicle damage = moderate and major

e First vehicle involved = Pedestrians/Bicycle/Other
e Second vehicle involved = Bicycle/Other

e Injuries sustained = Pedestrians/Bicyclists/Others

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

While keeping the model simple and still retaining
accuracy, the mandatory feature set performed well in
making trust and do not trust predictions for autonomous
vehicles. However, when anti-autonomous traits of the self-
driving car itself were incorporated into the model it became
apparent that more attributes had to be utilized.

Anti-autonomy refers to decisions and actions taken by
a self-driving car that are in some way inappropriate in terms
of increasing risk, diminishing safety, causing potential harm,
or lowering trust. It entails from an unexpected,
unconventional, and abnormal decisions that self-driving car
makes in the event of unfavorable surrounding driving
conditions related to weather, roadway surface conditions,
drivability of other vehicles and, pedestrians or bicyclists
sharing the road. Autonomous vehicles have been known to
have certain technological shortcomings in terms of Lidar
failing when the weather conditions are rainy or foggy with
limited visibility. Extensive study and analysis of the
collision data revealed the following anti-autonomous
behavior of self-driving cars [3]:

e In 50.22% of collisions, a pedestrian was involved

while the vehicle was driving autonomously.

e In 52.08% of collisions, a pedestrian was involved
while vehicle was driving autonomously and was
moving in traffic.

e In55.13% of the collisions, a bicyclist was involved
while the vehicle was driving autonomously and
was about to slow down or stop. These statistics
illustrate the confusing behavior of a self-driving
car, its mechanical functioning and decision making
at the second when a bicyclist appears in front of

them.
e In 55.84% of the collisions, a pedestrian was
involved while the wvehicle was driving

autonomously and was attempting to make a parking
maneuver. These statistics reveal a potential
malfunction of vehicle operation in terms of gauging
pedestrian behavior and hitting the breaks just in
time.

o 54.28% of the collisions happened when the vehicle
was driving autonomously during foggy weather
with limited visibility. These statistics depict the
malfunctioning of the sensors, camera, and Lidar
Sensors.

e In 51.71% of the collisions, a pedestrian was
involved while the wvehicle was driving
autonomously during foggy weather with limited
visibility.

e In50.68% of the collisions, a bicyclist was involved
when the vehicle was driving autonomously at night
when streetlights were on.

e In 53.18% of the collisions, a pedestrian was

involved when the wvehicle was driving
autonomously at night when streetlights were on.

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

86

The anti-autonomous traits that were incorporated into the
model include vehicle driving mode, type of collision,
weather conditions, roadway surface conditions and injuries
sustained by pedestrian/bicyclists/others. In addition to the
linear sequential ANN, evaluation of Recurrent Neural
Networks (RNN) models with Long Short-Term Memory
(LSTM) were available for possible comparison purposes.
The primary reason for choosing a sequential ANN model
was that the classification sought is binary, predicting
whether the autonomous vehicles could be trusted. A
sequential ANN model utilizes a stack of layers with each
layer having exactly one input tensor and one output tensor.
This contrasts with a Functional API with shared layers, non-
linear topology, and multiple inputs/outputs. This study uses
an input stack of layers of selective features that have a single
output to model affirmation or denial of trust. Thus, we
avoided layer sharing, non-linear topologies, multiple
inputs/outputs, or creation of a directed acyclic graph or
graph of layers. These properties favor the choice of
sequential ANN. Also, this model was chosen over RNN
because the data utilized for model processing was not a time
series or natural language sequence data. When the additional
attributes are included, along with measures of severity of
damage sustained by vehicle, the imbalance of the data
increases. More specifically, the larger number of predictors
added more noise, redundancies, increased overfitting, and
decreased the quality of the predictions. A related study by
Meiri and Zahavi [4] used simulated annealing to search the
attribute space.

Combinatorial problems often have issues related to model
accuracy, performance, and optimizer bias. Also, the model
solutions offered by machine learning include approximation
errors, which further exacerbates issues related to differences
between training and validation data [5]. This can be solved
by two approaches — active learning and passive learning.
Active learning involves updating the model itself to assure a
convergence between training and validation curves, in turn
improving model accuracy and optimization bias. Passive
learning involves the training set providing a uniform and
sufficient coverage of the search space [5]. In a similar
context, Charikar, Guruswami, Kumar, Rajagopalan, and
Sahai [6] defined and studied combinatorial feature selection
problems, presented a theoretical framework, and provided
algorithms on approximation and hardness results of these
combinatorial problems [6].

IV. INTRUSION DETECTION APPLICATIONS

In today’s world of connected devices, security of the
network is of critical importance. Unauthorized access and
malicious activities are a great threat to confidentiality,
integrity, and availability that form the information security
triad. The role of an Intrusion Detection System (IDS) is to
detect abnormalities caused by an unauthorized reach into the
network and send alerts. An IDS is an element of support for
a wall of defense between cyber-attacks. Supervised ML

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

techniques in an IDS can provide high detection accuracy,
particularly against known types of attacks.

The NSL-KDD is an update and improvement to the
KDD’99 dataset that was developed for the KDD Cup
competition in 1999 [7]. These datasets are publicly available
and are very widely used for IDS experiments. The data is
primarily internet traffic consisting of 43 features per record,
of which the last two are class (attack or normal) and score
(severity of traffic input) [8]. The class column provides
information on whether the record is considered normal or is
a member of one of four attack classes - Denial of Service
(DoS), Probe, Remote-to-Local (R2L) or User-to-Root
(U2R). There arel4 attack types under these 4 classes:
Apache2, Smurf, Neptune, Back, Teardrop, Pod, Land,
Mailbomb, Processtable, UDPstorm, WarezClient,
Guess_Password, WarezMaster, Imap, Ftp_write, Named,
Multihop, Phf, Spy, Sendmail, SmpGetAttack, AnmpGuess,
Worm, Xsnoop, Xlock, Buffer_Overflow, Httptuned,
Rootkit, LoadModule, Perl, Xterm, Ps, SQLattack, Satan,
Saint, Ipsweep, Portsweep, Nmap, Mscan [43][44]. A
mixture of categorical (nominal), binary and numeric
variables are in the feature set. Each record has basic,
content-related, time-related, and host-based features [9].
The attributes of this dataset are listed in Table I1.

TABLE Il NSL-KDD DATASET ATTRIBUTES [9]

Attribute Type | Attribute Names

Basic Duration, Protocol_type, Service, Flag, Src_bytes,
Dst_bytes, Land, Wrong_fragment, Urgent

Content Hot, Num_failed_logins, Logged_in,

related Num_compromised, Root_shell, Su_attempted,
Num_root, Num_file_creations, ~ Num_shells,
Num_access_files, Num_outbound_cmds,
Is_hot_login, Is_guest_login

Time related Count, Srv_count, Serror_rate, Srv_serror_rate,
Rerror_rate, Srv_rerror_rate, Same_srv_rate,
Diff_srv_rate, Srv_diff_host_rate

Host based | Dst_host_count, Dst_host_srv_count,

traffic Dst_host_same_srv_rate, Dst_host_diff_srv_rate,
Dst_host_same_src_port_rate,
Dst_host_srv_diff_host_rate, Dst_host_serror_rate,
Dst_host_srv_serror_rate, Dst_host_rerror_rate,
Dst_host_srv_rerror_rate

The study also used the UNSW-NB15 dataset. This
dataset has 49 features categorized into 6 groups: basic, flow,
time, content, labelled and additional generated features [10].
There are 9 attack types: fuzzers, analysis, back-doors, DaoS,
exploits, generic, reconnaissance, shell code and worms [11].
This dataset has a mixture of categorical, binary, and
numerical datatypes. The attributes of this dataset are listed
in Table 111 below.

TABLE IlI. UNSW-NB15 DATASET ATTRIBUTES [16]
Attribute Type Attribute Names
Basic state, dur, sbytes, dbytes, sttl, dttl, sloss, dloss,
service, sload, dload, spkts, dpkts
Flow srcip, sport, dstip, dsport, proto

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

87

Content swin, dwin, stcpb, dtcpb, smeansz, dmeansz,
trans_depth, res_bdy len
Time sjit, djit, stime, Itime, sintpkt, dintpkt, tcprtt,

synack, ackdat

is_sm_ips_ports, ct_state_ttl,
ct flw_http_mthd, is_ftp _login, ct ftp_cmd
ct_srv_src, ct_srv_dst, ct_dst_Itm, ct_src_Itm,
ct_src_dport_Itm, ct_dst_sport_Itm,
ct_dst_src_Itm

attack_cat, attack _cat

Additional generated
(general purpose)
Additional generated
(connection)

Labelled

The target attribute either identifies records as ‘normal’ or
‘attack’ or distinguishes the record as a particular attack type.
Depending on the desired goal of an intrusion detection
system, the machine learning model is tuned to identify a
particular attack, which is a challenge. It is thus essential to
understand the requirement thoroughly and preprocess input
data accordingly.

As an illustration of evaluation metrics, at a high level in
the IDS study, for each input vector we have exactly one of
the following outcomes:

TP = True Positive = Correct predication that the input
vector is an Attack

TN = True Negative = Correct prediction that the input
vector is not an Attack

FN = False Negative = Incorrect prediction the input
vector is not an Attack

FP = False Positive = Incorrect prediction the input vector
is an Attack

The most widely reported metric is Basic Accuracy of the
model, which simply reports the proportion of attack reports
that are correct.

Accuracy = (TP + TN)/(TP = TN = FP +FN)

Basic Accuracy is notoriously deceptive when the classes are
unbalanced, as in the case of intrusion detection studies,
where most input vectors are not attacks. False reports are of
interest. This gives rise to the need for metrics such as
Precision and Recall, which can be calculated from
information in the confusion matrix given below.

Prediction
Attack | Not an Attack
Actual Attack TP FN
Not an Attack FP TN

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

Precision measures the proportion of the vectors reported
by the IDS as attacks that are real attacks. Recall measures
the proportion of the vectors that are real attacks and do get
reported as such. This means that when Recall is high the IDS
does not misclassify many true attacks.

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

In Intrusion Detection applications, false negatives can be
very deadly, which favors high Recall. However, dealing
with false positives also has a cost. Unfortunately,
experiments that improve Precision typically reduce Recall.
The reverse is also often true. For this reason, the harmonic
mean of the two, called the F1 score is often calculated.

F1 = (2*(Precision * Recall))/(Precision + Recall).

The effect of the F1 score, which falls between 0 and 1, is to
punish extreme values.

The NSL-KDD and UNSW NB-15 datasets are used for
training machine learning models by several researchers. In
[34] researchers trained the KDD-99 dataset with a mutation
of a convolutional neural network and Long Short Term
Memory (LSTM) network. The machine learning algorithm
test accuracy was 99.7% , which outperformed other models,
including DenseNet, CNN (Convolutional Neural Network),
GRU (Gated Recurrent Unit), BiLSTM, and Auto Encoder.
The experiment was multilabel and nearly all the individual
target variables had f1-score, precision and recall exceeding
98%. Work reported in [54] and [55] took similar steps for
setting up a machine learning model experimental design to
train the NSL KDD and UNSW NB-15 datasets and were
able to improve accuracy in both cases.

The NSL-KDD data set has 49 attributes of 6 types and 9
types of intrusions. We considered possibilities for reducing
the number of attributes without eliminating information
critical to the classifications. Principal Component Analysis
(PCA) is a time-honored statistical method for identifying
high correlations and ranking the relative importance of the
attributes. Although we considered PCA, we alternatively
chose to implement an autoencoder neural network. In brief,
an autoencoder is a multiple layer neural network in which
the input and output layers are identical, and a middle layer
is of smaller dimensionality. An autoencoder is a deep
learning unsupervised learning method in that the labels for
the known data play no role, and after training, the middle
layer becomes a compressed version of the input data. The
middle layer serves as a pattern that is a discrete model of the
data in a compact form. The approach requires
experimentation that searches through alternative topologies
and tuning parameters of the neural network, including
number of layers, nodes within layers, learning rate, and
number of epochs. Results of the autoencoder experimental
work are given in Table IV below.

TABLE IV. PERFORMANCE EVALUATION OF IDS CLASSIFICATION
Algorithm Accuracy | Precisio | Recall | F1_sc
(%) n ore
Autoencoder | 88.76 0.852 0.971 0.908
SVM 86.54 0.824 0.913 0.901
Logistic 82.12 0.808 0.921 0.893
Regression

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

88

The results show that the model performs well as a binary
classifier for threat detection. After applying auto encoder,
the accuracy reaches 88.76%, False positives occur at a low
rate, so that the method flags only a few normal network
inputs as attacks, , which is useful in keeping a focus on real
threats. Importantly, recall at a high level of 97.1% means
that nearly all real attacks are correctly identified and flagged.
This is a must-have feature of an IDS since undetected attacks
can be very damaging. SVM with RBF kernel (Radial Basis
Function) competes with the Autoencoder with a good F1
score. The simple logistic regression works well for binary
classification but fails to achieve better results for the NSL
KDD dataset. These experiments are a baseline for machine
learning methodologies and their proper application. We did
not perform any parameter tuning for this experiment, which
might have improved the accuracy and performance metrics.

V. DATA AND FEATURE ENGINEERING

We provide descriptions of data management and feature
engineering issues that are pervasive in ML practice and were
of importance in our applied studies.

A. Data Management

Class imbalance in a dataset means that the relative
numbers of instances within the classes vary significantly in
number [17]. The magnitude of the discrepancies will also
vary. Class imbalance is common in most important data
domains, including detection of things like fraudulent
activities, anomalies, oil spills, and in medical diagnoses. The
imbalance of classes occurs in both binary class and multi-
class classification [18]. In binary classes, the smaller and
larger cardinality classes are called minority and majority
classes respectively [17][19]. Class imbalance can influence
the training process of ML techniques and lead to ignoring
the minority class entirely. We discuss some of the
approaches to treat class imbalances. Figures 4 — 10 illustrate
the results of applying each technique.

Random oversampling of a minority class. In this approach
data instances in minority classes are duplicated at random to
induce a balance of membership between classes. Due to
randomness of the oversampling, the method is naive in that
it makes no assumptions about the classes and their members
[20][21]. Since exact copies of some data instances are
included in training, there is a risk of overfitting. Classifier
accuracy may also be influenced, and computational effort
may be increased.

Random undersampling of a majority class. This approach
discards data instances from majority classes to induce
balancing [22]. As in the case of the oversampling method,
the discarded data is chosen randomly and naively. The
method applies to both binary and multiclass data. The
approach can make it difficult to distinguish boundaries

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

between classes, with an inimical impact on performance
measures [23].

Synthetic Minority Oversampling Technique (SMOTE).
This technique was introduced in 2002 to address the
shortcomings of the oversampling and undersampling
approaches [24][25]. The technique generates synthetic data
by calculating feature space similarities between minority
class data instances. The K-nearest neighbors of each data
instance in a minority class are calculated, then randomly
selected one by one. The method then calculates linear
interpolations among the data and uses them to create
synthetic data instances.

Borderline SMOTE. The SMOTE approach encounters
issues when minority class data instances occur in the vicinity
of majority class data instances, creating undesirable bridges.
The Borderline SMOTE variation addresses this drawback by
oversampling only minority class instances near the
borderline. Data points are called border points if they are
incident to both minority and majority classes and called
noise points otherwise [26]. Border points are then utilized to
balance the data between classes.

K-Means SMOTE. This technique generates minority class
samples in safe and crucial borders of input spaces and thus
assists performance in classification. The method begins by
clustering the dataset using the K-means procedure, then
selects the clusters that have higher numbers of minority
samples [27]. Additional synthetic samples are then assigned
to clusters where minority class samples are sparsely
distr