


The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 15, no. 1 & 2, year 2022, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 15, no. 1 & 2, year 2022,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2022 IARIA



International Journal on Advances in Software

Volume 15, Number 1 & 2, 2022

Editor-in-Chief

Petre Dini, IARIA, USA

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Subject-Expert Associated Editors

Sanjay Bhulai, Vrije Universiteit Amsterdam, the Netherlands (DATA ANALYTICS)
Emanuele Covino, Università degli Studi di Bari Aldo Moro, Italy (COMPUTATION TOOLS)
Robert (Bob) Duncan, University of Aberdeen, UK (ICCGI & CLOUD COMPUTING)
Venkat Naidu Gudivada, East Carolina University, USA (ALLDATA)
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany (SERVICE
COMPUTATION)
Sergio Ilarri, University of Zaragoza, Spain (DBKDA + FUTURE COMPUTING)
Christopher Ireland, The Open University, UK (FASSI + VALID + SIMUL)
Alex Mirnig, University of Salzburg, Austria (CONTENT + PATTERNS)
Jaehyun Park, Incheon National University (INU), South Korea (ACHI)
Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-
German Supercomputing Alliance (HLRN), Germany (GEOProcessing + ADVCOMP + INFOCOMP)
Markus Ullmann, Federal Office for Information Security / University of Applied Sciences Bonn-Rhine-Sieg,
Germany (VEHICULAR + MOBILITY)

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland

Abdelkader Adla, University of Oran, Algeria

Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan

Marc Aiguier, École Centrale Paris, France

Rajendra Akerkar, Western Norway Research Institute, Norway

Zaher Al Aghbari, University of Sharjah, UAE

Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio

Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Giner Alor Hernández, Instituto Tecnológico de Orizaba, México

Zakarya Alzamil, King Saud University, Saudi Arabia

Frederic Amblard, IRIT - Université Toulouse 1, France

Vincenzo Ambriola , Università di Pisa, Italy

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy

Philip Azariadis, University of the Aegean, Greece



Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fabian Barbato, Technology University ORT, Montevideo, Uruguay

Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany

Gabriele Bavota, University of Salerno, Italy

Grigorios N. Beligiannis, University of Western Greece, Greece

Noureddine Belkhatir, University of Grenoble, France

Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal

Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany

Ateet Bhalla, Independent Consultant, India

Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain

Pierre Borne, Ecole Centrale de Lille, France

Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada

Narhimene Boustia, Saad Dahlab University - Blida, Algeria

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Carsten Brockmann, Universität Potsdam, Germany

Antonio Bucchiarone, Fondazione Bruno Kessler, Italy

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Dumitru Burdescu, University of Craiova, Romania

Martine Cadot, University of Nancy / LORIA, France

Isabel Candal-Vicente, Universidad Ana G. Méndez, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal

Alain Casali, Aix-Marseille University, France

Yaser Chaaban, Leibniz University of Hanover, Germany

Savvas A. Chatzichristofis, Democritus University of Thrace, Greece

Antonin Chazalet, Orange, France

Jiann-Liang Chen, National Dong Hwa University, China

Shiping Chen, CSIRO ICT Centre, Australia

Wen-Shiung Chen, National Chi Nan University, Taiwan

Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

PR

Yoonsik Cheon, The University of Texas at El Paso, USA

Lau Cheuk Lung, INE/UFSC, Brazil

Robert Chew, Lien Centre for Social Innovation, Singapore

Andrew Connor, Auckland University of Technology, New Zealand

Rebeca Cortázar, University of Deusto, Spain

Noël Crespi, Institut Telecom, Telecom SudParis, France

Carlos E. Cuesta, Rey Juan Carlos University, Spain

Duilio Curcio, University of Calabria, Italy

Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania

Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil

Cláudio de Souza Baptista, University of Campina Grande, Brazil

Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México

Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain

Giovanni Denaro, University of Milano-Bicocca, Italy



Nirmit Desai, IBM Research, India

Vincenzo Deufemia, Università di Salerno, Italy

Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil

Javier Diaz, Rutgers University, USA

Nicholas John Dingle, University of Manchester, UK

Roland Dodd, CQUniversity, Australia

Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada

Cédric du Mouza, CNAM, France

Ann Dunkin, Palo Alto Unified School District, USA

Jana Dvorakova, Comenius University, Slovakia

Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany

Jorge Ejarque, Barcelona Supercomputing Center, Spain

Atilla Elçi, Aksaray University, Turkey

Khaled El-Fakih, American University of Sharjah, UAE

Gledson Elias, Federal University of Paraíba, Brazil

Sameh Elnikety, Microsoft Research, USA

Fausto Fasano, University of Molise, Italy

Michael Felderer, University of Innsbruck, Austria

João M. Fernandes, Universidade de Minho, Portugal

Luis Fernandez-Sanz, University of de Alcala, Spain

Felipe Ferraz, C.E.S.A.R, Brazil

Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Wolfgang Fohl, Hamburg Universiy, Germany

Simon Fong, University of Macau, Macau SAR

Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy

Naoki Fukuta, Shizuoka University, Japan

Martin Gaedke, Chemnitz University of Technology, Germany

Félix J. García Clemente, University of Murcia, Spain

José García-Fanjul, University of Oviedo, Spain

Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Tejas R. Gandhi, Virtua Health-Marlton, USA

Andrea Giachetti, Università degli Studi di Verona, Italy

Afzal Godil, National Institute of Standards and Technology, USA

Luis Gomes, Universidade Nova Lisboa, Portugal

Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Pascual Gonzalez, University of Castilla-La Mancha, Spain

Björn Gottfried, University of Bremen, Germany

Victor Govindaswamy, Texas A&M University, USA

Gregor Grambow, AristaFlow GmbH, Germany

Christoph Grimm, University of Kaiserslautern, Austria

Michael Grottke, University of Erlangen-Nuernberg, Germany

Vic Grout, Glyndwr University, UK

Ensar Gul, Marmara University, Turkey

Richard Gunstone, Bournemouth University, UK



Zhensheng Guo, Siemens AG, Germany

Ismail Hababeh, German Jordanian University, Jordan

Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia

Herman Hartmann, University of Groningen, The Netherlands

Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia

Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Peizhao Hu, NICTA, Australia

Chih-Cheng Hung, Southern Polytechnic State University, USA

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia

Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania

Chris Ireland, Open University, UK

Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran

Wassim Jaziri, ISIM Sfax, Tunisia

Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia

Jinyuan Jia, Tongji University. Shanghai, China

Maria Joao Ferreira, Universidade Portucalense, Portugal

Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Nittaya Kerdprasop, Suranaree University of Technology, Thailand

Ayad ali Keshlaf, Newcastle University, UK

Nhien An Le Khac, University College Dublin, Ireland

Sadegh Kharazmi, RMIT University - Melbourne, Australia

Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan

Youngjae Kim, Oak Ridge National Laboratory, USA

Cornel Klein, Siemens AG, Germany

Alexander Knapp, University of Augsburg, Germany

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, University of Klagenfurt, Austria

Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic

Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia

Satoshi Kurihara, Osaka University, Japan

Eugenijus Kurilovas, Vilnius University, Lithuania

Alla Lake, Linfo Systems, LLC, USA

Fritz Laux, Reutlingen University, Germany

Luigi Lavazza, Università dell'Insubria, Italy

Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil

Alain Lelu, University of Franche-Comté / LORIA, France

Cynthia Y. Lester, Georgia Perimeter College, USA

Clement Leung, Hong Kong Baptist University, Hong Kong

Weidong Li, University of Connecticut, USA

Corrado Loglisci, University of Bari, Italy

Francesco Longo, University of Calabria, Italy

Sérgio F. Lopes, University of Minho, Portugal

Pericles Loucopoulos, Loughborough University, UK



Alen Lovrencic, University of Zagreb, Croatia

Qifeng Lu, MacroSys, LLC, USA

Xun Luo, Qualcomm Inc., USA

Stephane Maag, Telecom SudParis, France

Ricardo J. Machado, University of Minho, Portugal

Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

José Manuel Molina López, Universidad Carlos III de Madrid, Spain

Francesco Marcelloni, University of Pisa, Italy

Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy

Gerasimos Marketos, University of Piraeus, Greece

Abel Marrero, Bombardier Transportation, Germany

Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina

Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia

Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

Stephan Mäs, Technical University of Dresden, Germany

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Jose Merseguer, Universidad de Zaragoza, Spain

Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany

Yasuhiko Morimoto, Hiroshima University, Japan

Antonio Navarro Martín, Universidad Complutense de Madrid, Spain

Filippo Neri, University of Naples, Italy

Muaz A. Niazi, Bahria University, Islamabad, Pakistan

Natalja Nikitina, KTH Royal Institute of Technology, Sweden

Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino, Fraunhofer IESE, Germany

Rocco Oliveto, University of Molise, Italy

Sascha Opletal, Universität Stuttgart, Germany

Flavio Oquendo, European University of Brittany/IRISA-UBS, France

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Constantin Paleologu, University Politehnica of Bucharest, Romania

Kai Pan, UNC Charlotte, USA

Yiannis Papadopoulos, University of Hull, UK

Andreas Papasalouros, University of the Aegean, Greece

Rodrigo Paredes, Universidad de Talca, Chile

Päivi Parviainen, VTT Technical Research Centre, Finland

João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal

Fabrizio Pastore, University of Milano - Bicocca, Italy

Kunal Patel, Ingenuity Systems, USA

Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal

Willy Picard, Poznań University of Economics, Poland

Jose R. Pires Manso, University of Beira Interior, Portugal

Sören Pirk, Universität Konstanz, Germany



Meikel Poess, Oracle Corporation, USA

Thomas E. Potok, Oak Ridge National Laboratory, USA

Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany

Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland

Mengyu Qiao, South Dakota School of Mines and Technology, USA

Kornelije Rabuzin, University of Zagreb, Croatia

J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain

Muthu Ramachandran, Leeds Metropolitan University, UK

Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia

Prakash Ranganathan, University of North Dakota, USA

José Raúl Romero, University of Córdoba, Spain

Henrique Rebêlo, Federal University of Pernambuco, Brazil

Hassan Reza, UND Aerospace, USA

Elvinia Riccobene, Università degli Studi di Milano, Italy

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France

José Rouillard, University of Lille, France

Siegfried Rouvrais, TELECOM Bretagne, France

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Djamel Sadok, Universidade Federal de Pernambuco, Brazil

Ismael Sanz, Universitat Jaume I, Spain

M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India

Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada

Patrizia Scandurra, University of Bergamo, Italy

Daniel Schall, Vienna University of Technology, Austria

Rainer Schmidt, Munich University of Applied Sciences, Germany

Sebastian Senge, TU Dortmund, Germany

Isabel Seruca, Universidade Portucalense - Porto, Portugal

Kewei Sha, Oklahoma City University, USA

Simeon Simoff, University of Western Sydney, Australia

Jacques Simonin, Institut Telecom / Telecom Bretagne, France

Cosmin Stoica Spahiu, University of Craiova, Romania

George Spanoudakis, City University London, UK

Cristian Stanciu, University Politehnica of Bucharest, Romania

Lena Strömbäck, SMHI, Sweden

Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan

Antonio J. Tallón-Ballesteros, University of Seville, Spain

Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan

Ergin Tari, Istanbul Technical University, Turkey

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA

Pierre Tiako, Langston University, USA

Božo Tomas, HT Mostar, Bosnia and Herzegovina

Davide Tosi, Università degli Studi dell'Insubria, Italy

Guglielmo Trentin, National Research Council, Italy



Dragos Truscan, Åbo Akademi University, Finland

Chrisa Tsinaraki, Technical University of Crete, Greece

Roland Ukor, FirstLinq Limited, UK

Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria

José Valente de Oliveira, Universidade do Algarve, Portugal

Dieter Van Nuffel, University of Antwerp, Belgium

Shirshu Varma, Indian Institute of Information Technology, Allahabad, India

Konstantina Vassilopoulou, Harokopio University of Athens, Greece

Miroslav Velev, Aries Design Automation, USA

Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain

Krzysztof Walczak, Poznan University of Economics, Poland

Yandong Wang, Wuhan University, China

Rainer Weinreich, Johannes Kepler University Linz, Austria

Stefan Wesarg, Fraunhofer IGD, Germany

Wojciech Wiza, Poznan University of Economics, Poland

Martin Wojtczyk, Technische Universität München, Germany

Hao Wu, School of Information Science and Engineering, Yunnan University, China

Mudasser F. Wyne, National University, USA

Zhengchuan Xu, Fudan University, P.R.China

Yiping Yao, National University of Defense Technology, Changsha, Hunan, China

Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e

Desenvolvimento, INESC-ID, Portugal

Weihai Yu, University of Tromsø, Norway

Wenbing Zhao, Cleveland State University, USA

Hong Zhu, Oxford Brookes University, UK

Martin Zinner, Technische Universität Dresden, Germany



International Journal on Advances in Software

Volume 15, Numbers 1 & 2, 2022

CONTENTS

pages: 1 - 13
Environment Code-First Framework: Provisioning Scientific Computational Environments Using the
Infrastructure-as-Code Approach
Daniel Adorno Gomes, University of Trás-os-Montes and Alto Douro, Portugal
Pedro Mestre, Centro Algoritmi University of Minho, Guimarães, Portugal and CITAB - Centre for the Research and
Technology of Agro-Environmental and Biological Sciences University of Trás-os-Montes e Alto Douro, Portugal
Carlos Serôdio, Centro Algoritmi University of Minho, Guimarães, Portugal and CITAB - Centre for the Research and
Technology of Agro-Environmental and Biological Sciences University of Trás-os-Montes e Alto Douro, Portugal

pages: 14 - 27
Hybrid Transactional and Analytical Processing Databases - State of Research and Production Usage
Daniel Hieber, Aalen University, Germany
Gregor Grambow, Aalen University, Germany

pages: 28 - 42
A Hybrid Graph Analysis and Machine Learning Approach Towards Automatic Software Design Pattern
Recognition Across Multiple Programming Languages
Roy Oberhauser, Aalen University, Germany

pages: 43 - 53
Leveraging Gamma Corrections for an Overhead Reduced Mood Adaptive Display Coloring
Lukas Brodschelm, Aalen University, Deutschland
Felix Gräber, Aalen University, Deutschland
Daniel Hieber, Aalen University, Deutschland
Marc Hermann, Aalen University, Deutschland

pages: 54 - 64
Survey on Social Simulation and Knowledge Extraction from Simulation Results - Application for Constructing
Life Planning Support Frameworks -
Takamasa Kikuchi, Keio University, Japan
Hiroshi Takahashi, Keio University, Japan

pages: 65 - 84
Notification, Wake-Up, and Feedback of Conversational Natural User Interface for the Deaf and Hard of Hearing
Takashi Kato, Tsukuba University of Technology, Japan
Akihisa Shitara, University of Tsukuba, Japan
Nobuko Kato, Tsukuba University of Technology, Japan
Yuhki Shiraishi, Tsukuba University of Technology, Japan

pages: 85 - 93
An Extended Study of the Correlation of Cognitive Complexity-related Code Measures
Luigi Lavazza, Universita degli Studi dell'Insubria, Italy

pages: 94 - 110
Continuous Information Processing Addressing Cisco’s Pain Points by Enabling Real-Time Ad-Hoc Reporting



Capability: An Energy Efficient Big Data Approach
Martin Zinner, Center for Information Services and High Performance Computing (ZIH) Technische Universität
Dresden, Germany
Wolfgang E. Nagel, Center for Information Services and High Performance Computing (ZIH) Technische Universität
Dresden, Germany

pages: 111 - 127
An Approach for Learning Behavioural Models of Communicating Systems
Sébastien Salva, University Clermont Auvergne, LIMOS, France

pages: 128 - 140
Toward Scalable Collaborative Metaprogramming: A Case Study to Integrate Two Metaprogramming
Environments
Herwig Mannaert, University of Antwerp, Belgium
Chris McGroarty, U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC), USA
Scott Gallant, Effective Applications Corporation, USA
Koen De Cock, NSX BV, Belgium
Jim Gallogly, Cole Engineering Services Inc., USA
Anup Raval, Dynamic Animation Systems, USA
Keith Snively, Dynamic Animation Systems, USA



Environment Code-First Framework: Provisioning Scientific Computational 
Environments Using the Infrastructure-as-Code Approach

Daniel Adorno Gomes 
University of Trás-os-Montes and Alto Douro 

Vila Real, Portugal 
www.utad.pt 

e-mail: adornogomes@gmail.com 
 
 
 

Pedro Mestre and Carlos Serôdio 
Centro Algoritmi 

University of Minho, Guimarães, Portugal and 
CITAB - Centre for the Research and Technology of Agro-

Environmental and Biological Sciences 
University of Trás-os-Montes e Alto Douro 

www.utad.pt 
e-mail: pmestre@utad.pt, cserodio@utad.pt

 
Abstract— Nowadays, computational resources are vital 
practically in all areas of science. At the same time, science's 
dependence on computing is pointed to by experts as one of the 
main causes of the reproducibility crisis. Many factors have 
contributed to the low reproducibility of scientific research. 
They are related to the cultural aspects of the scientific 
software's development, the behavior of the scientist-developer, 
and technical issues. Based on these factors, the authors 
presented the Environment Code-First (ECF) framework to 
guide researchers on increasing the reproducibility of their 
works by developing computational environments that can be 
easily recreated without manual intervention. The 
framework's foundation is the Infrastructure-as-Code 
approach, and it intends to permit other researchers to 
recreate an environment only by executing a script. A real case 
is presented, demonstrating the provision of a bioinformatics 
environment by using the Prokaryotic Genomics and 
Comparative Genomics Analysis Pipeline (PGCGAP) protocol, 
and the ECF framework. The paper shows a comparison 
between these two methods in terms of time-consumption, 
manual intervention, platform-agnosticism, and portability. 
The tests perfomed on three different machines demonstrated 
that there are many benefits on using the ECF framework such 
as independency of platform, total portability, and practically 
any manual intervention. Of course, there is a cost, and it is 
related to the hard work on developing the code that generates 
the environment. Another point that needs to be highlighted is 
the time spent and efforts on achieving the necessary 
knowledge to create those programs. 

Keywords-computational environment; infrastructure-as-
code; open science; computer programming; containerization; 
virtualization; reproducible research. 

I.  INTRODUCTION 

The use of computing is essential in all sciences. Many 
areas such as biology, physics, and chemistry are dependent 
on simulations to perform experiments in silico. It is faster 
and cheaper to execute simulations than conduct actual 
experiments. In other situations, it is impossible to conduct 
an experiment without computational resources, for example, 
when it is necessary to process and analyze a large amount of 
data in a short space of time. Over the past 70 years, research 
methods have become more and more sustained by 
computational means. Nowadays, this dependency is pointed 

by specialists as one of the main factors responsible for the 
crisis of scientific reproducibility [1][2]. 

Reproducibility is one of the most important pillars of 
science, along with transparency and openness [3]. It is a 
crucial element to recreate and extend the research work 
developed by others. And this practice is critical to keep 
science evolving.  

From an economic point of view, many losses on 
investment have been reported in the last few years related to 
the reproducibility of scientific research. In [4], authors 
report that, in the United States, around 50% of the total 
amount invested every year in biomedical research, is 
supporting scientific studies that other researchers cannot 
reproduce. Recently the European Commission reported that 
the losses related to low reproducibility on clinical trials are 
estimated at 28 billion USD per year [5]. 

Besides the crisis in science related to reproducibility [6], 
there is pressure from funding institutions and publishers on 
authors to adopt open science principles like Open 
Reproducible Research (ORR) [7]. This means to provide 
access to the resources (e.g., data, source code, 
documentation) used to generate the results reported in their 
publications [8]. 

These factors increase the need to improve 
reproducibility and transparency in science, especially in 
research where computation has an important role [9]. In a 
survey published by Nature with 1576 researchers, Baker 
asked them which kind of factors contribute to the 
irreproducibility. More than 40% of respondents reported 
computational issues, such as unavailability of computational 
methods, code, and data [10]. 

Despite the absence of code and data being the most 
common issues on reproducibility, it is essential to highlight 
the problems related to the computational environments that 
support the research. Incompatibility of operating systems, 
different versions of the same compiler or interpreter, lack of 
software packages and libraries, the dependency of libraries 
of a specific software platform, are all issues related to the 
environment used to develop scientific applications. 
Accordingly with Boettiger in [11], these kind of 
computational issues related to the environment can be 
classified as dependency hell or code rot. 

It is critical for the reproducibility of any research work 
that made use of computational resources to provide the 

1

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



environment besides the code, the data, and the 
documentation [12]. As Donoho wrote in [13]: “An article 
about computational results is advertising, not scholarship. 
The actual scholarship is the full software environment, code 
and data, that produced the result.” 

As the way to share scientific knowledge is changing 
from traditional articles to this new concept based on Open 
Reproducible Research, it is necessary to change the way 
scientific applications are developed, focusing not only on 
generating results but on being reproducible and useful to the 
wider scientific community, as well [14]. 

Today, we can count on technologies (e.g., virtual 
machines, containers and cloud computing), and new 
technical approaches that permit the treatment of the 
computational infrastructure that supports scientific research 
as a software system, a method also known as Infrastructure-
as-Code (IaC). Using Infrastructure-as-Code, we can provide 
the infrastructure programmatically, having many benefits 
such as treating the infrastructure like a computer system, 
versioning it, and avoiding typical issues like dependency 
hell [15]. However, there are many cultural barriers related 
to scientific software development that contributes to 
irreproducibility, despite the technical and technological 
resources available. They are related to the purpose of the 
scientific applications, the behavior of scientists when 
developing software, the lack of use appropriate software 
engineering practices, among other factors. 

Considering the issues, particularities and characteristics 
related to the development of scientific applications, and 
having the IaC approach as a technical foundation, the 
authors present in this paper the Environment Code-First 
Framework. The goal of the framework is to help to increase 
reproducibility by reducing the time and the efforts when 
reproducing specific research, mitigating issues related to the 
availability of the computational environment created and 
used by the researchers. It guides the scientists on developing 
the infrastructure's code to make the computational 
environment available before they start to develop the 
scientific application in itself. In the end, the environment 
will be a deliverable as the others objects used and produced 
by the research, being stored and accessible in the same 
repository (e.g., Git or Github) with them. That means other 
researchers will have access to environment code, 
application code, data, and documentation, all together, 
avoiding reproducible issues. 

The framework defines an architecture based on virtual 
machines and containers, the two technologies most used by 
the scientific community in the last fifteen years to create 
self-contained computational environments. The innovation, 
in this case, is in the fact that the framework combines the 
two technologies instead of using them in an isolated way. 
This approach permits developing more homogeneous 
environments independent of hardware and software 
platforms. 

Besides increasing reproducibility and transparency of 
new scientific research works, this proposal can be helpful in 
other aspects like education and dissemination of the open 
science principles. It can help experient and future 
researchers understand and prepare to produce executable 

papers and migrate old research to this new approach. Also, 
it can help bring down cultural barriers that impede the 
advance of the open science philosophy, such as authors' 
hesitation to share their work to avoid publishing erroneous 
papers. 

The rest of the paper is organized as follows: Section 2 
presents some typical technical issues on reproducible 
research, related to scientific computational environments. 
Section 3 presents some cultural aspects of the scientific 
community that difficults the increasement of 
reproducibility. Section 4 presents some related work on IaC. 
Section 5 makes an explanation about what is this new 
approach called Infrastructure-as-Code. Section 6 presents 
the Environment Code-First framework. Section 7 describes 
a case study of a recent bioinformatics pipeline 
implementation, and compares it to the ECF framework 
implementation. Section 8 presents the discussion. Finally, in 
Section 9 it is presented the conclusion. 

II. TECHNICAL ISSUES 

In this section, the authors present some typical issues on 
reproducible research, related to computational resources, 
which have been faced by researchers. 

Collberg et al. show in [16] the technical issues that 
researchers have to deal when trying to reproduce results 
published by others. In general, considerable effort is needed 
to recreate the original computational environment and 
achieve similar results. The authors analyzed 613 executable 
papers. Only 123 applications were correctly compiled. Of 
them, 102 ran with success. Unavailability of a specific 
version of a software component and missing third-party 
packages or libraries are the reasons that caused 36% of the 
failed builds. 

In [17], Glatard et al. expose how complex pipelines that 
are composed by several parts of software from different 
sources, can have unexpected outputs or a failed execution of 
the entire workflow, due minor changes introduced in the 
computational environments, for example, when a updated is 
applied in the operating system. 

In [11] the author describes a typical issue called "code 
rot". It is a kind of issue that affects the results of the original 
code due to updates applied in the software environment to 
fix bugs, add new features, or deprecate old ones. All the 
software that composes the environment like the operating 
system, the development language, and the libraries, can be 
affected by an update generating different results from the 
original. Also, the author describes another problem known 
as dependency hell. It occurs when installed software 
packages have dependencies on specific versions of other 
software packages. It also includes platform-specific 
dependencies that are related to a software development 
platform. The most common types of dependency hell are 
DLL hell, JAR hell [18]. 

Ince et al. reported in [19] problems related to differences 
between the published and the reproduced results using the 
same source code of computer programs that were 
implemented and executed with success by non-original 
researchers. The issue, in this case, occurred when the 
programs were deployed using hardware and software 

2

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



configurations that diverged from the original. As a solution, 
the authors suggested that the source code of the programs 
should be made available along with documentation 
describing the hardware and software environment on which 
the program was developed and should be executed. 

In [20] Ben Marwick highliths how important is, in 
archaeology, the simulation studies executed by 
computationally-intensive analysis that use mathematical 
functions based on single-precision floating-point arithmetic. 
In this case, the issues are related to the variation of the 
results when executed accross different opearting systems. 
Also, the author describes the high difficulty in maintaining 
an environment reproducibly, even when using only one 
machine, due to automatic updates that software components 
sofer considering an extended period. 

III. SCIENTIFIC APPLICATIONS AND CULTURAL BARRIERS 

Besides the technical issues reported in the last topic, 
there are other factors related to scientific applications' 
purposes and the behaviors of the scientists that have 
impacted the reproducibility of scientific works. 

 Scientific applications are a special category of software 
generally developed to support comprehending a particular 
scientific domain that would be impossible to perform 
without computational resources. Also, the scientific 
application development process differs significantly from 
the development of traditional information systems.   

As shown in [21], most of the habits and behaviors of the 
scientists, when the subject is software development, had 
been adopted during more than last 60 years. Over this 
period, a culture had emerged and disseminated, creating the 
role of the scientist end-user developer, as defined by the 
authors. In this role, the scientist is responsible for planning, 
designing, developing, testing, and using the results 
generated by the application. Most of the time, the scientist 
works alone, using a PC, focusing entirely on the scientific 
problem. 

In [20], Ben Marwick highlights most scientists' primary 
computational environment is a PC (i.e., desktop or laptop) 
using one of these three operating systems, Microsoft 
Windows, MacOS, or Linux. 

Hannay et al. performed a survey with almost 2000 
respondents to investigate how scientists develop and use 
scientific software. On the computational environment, 
48.5% of the scientists reported that they use exclusively a 
desktop or a laptop when working on their scientific 
applications [22]. 

As reported in [23], a survey performed with 60 scientific 
software developers, around 80% of the respondents develop 
their applications alone. 

Related to the software engineering principles and 
practices, generally, most researchers do not test, document, 
or release their applications [24]. In [25], a systematic 
mapping study on using software engineering practices for 
scientific application development, those facts are reinforced. 
The study points to that self-education is the most common 
way adopted by researchers when learning about software 
development. Also, it highlights that the absence of training 
is one reason for the low level of knowledge of the 

researchers on software engineering practices and their 
benefits. 

IV. WHAT KIND OF SOLUTIONS HAS BEEN REPORTED? 

In this section, the authors present a set of works related 
to IaC that had applied this practice in different areas of the 
software industry and scientific applications. 

Boettiger in [11] discusses the issues of reproducible 
research with a focus on the computational environment that 
supported the research. He describes the main issues that 
impede the successful execution and extension of the code 
by other researchers. Besides, he makes a review of some 
approaches used in IaC such as containerization and 
virtualization. The author analyzes in-depth containerization 
based on Docker technology, showing the advantages of this 
approach, such as portability, reusability, versioning, and 
cross-platform, and how it can help provision computational 
environments for scientific research. 

In [26] the authors present a study on the benefits that 
could be brought by the adoption of cloud computing and 
virtualization techniques in scientific applications. They 
discuss a cultural problem that avoids using virtualization 
and cloud resources due to the idea that virtualization 
techniques hurt the results of the scientific applications in 
comparison with the execution of physical machines. Also, 
they explore the feasibility of the IaC approach to meet the 
requirements of computer science and the main issues that 
need to be addressed by cloud actors to provide the 
conditions necessary to obtain the maximum benefit from 
this type of infrastructure. 

In [27], the authors present the main characteristics of 
cloud computing technology, highlighting those that can help 
in the development of more robust applications based on 
aspects such as scalability, resilience, fault tolerance, and 
security. Besides, they discuss the low cost of adopting cloud 
computing and show how to transition from traditional 
biomedical computing workflows to cloud computing 
environments. 

In [28], the authors discuss the complexity on creating 
scientific computing environments. They discuss common 
issues in the scientific community like the inability of the 
scientists on setting up isolated and uniform computational 
environments. Abscense of best practices, software 
redundance problems, platform dependency are some of the 
situations described by the authors. To address these kind of 
issues, they present means to use DevOps concepts, practices 
and tools to improve the provision of computational 
environments and reduce the complexity. The use of 
virtualization, containerization and configuration 
management are some of the resources used by DevOps 
engineers suggested in this paper. 

Howe discusses in [29] the challenges of provisioning 
computational environments for scientific research projects 
through virtualization on cloud computing platforms. The 
author presents how a complete working environment of 
specific research containing dataset, software, notes, logs, 
and scripts, can be included in a virtual machine. Also, he 
presents a discussion on the advantages and disadvantages of 

3

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the adoption of this approach, and how it can help to increase 
reproducibility. 

Cacho and Taghva [30] present the main difficulties 
researchers face in reproducing research in the Computer 
Science field. Some of the problems they highlighted include 
missing original data, issues with the version of the data, 
deprecated dependencies, unavailable source code, and 
missing documentation. They provide a solution for 
reproducible research based on containerization. A real 
experiment is used to demonstrate the solution using the 
application OCRSpell. The authors make the provision of a 
Docker container that embeds the application by creating an 
image, uploading it, and making it available to other 
researchers that want to run the OCRSpell. From this image 
a researcher just needs to download the image and run the 
container. 

Ben Marwick in [20] demonstrates in a practical way 
how to produce an executable paper relating principles of 
reproducible research to DevOps practices and tools. The 
author describes the efforts to create a publication of 
archaeological research using resources like Docker, R 
programming language, Git, and Linux operating system. 
Also, the author explains each tool used to develop the paper 
and exposes the reasons that motivate the use of each 
resource. 

V. WHAT IS INFRASTRUCTURE-AS-CODE? 

Infrastructure-as-Code (IaC) is the management and 
provisioning of IT infrastructure using source code rather 
than manual processes. It automates the provisioning of 
infrastructure and eliminates the need to provision and 
manage servers, operating systems, database connections, 
storage, and other infrastructure elements manually, avoiding 
mistakes. 

The infrastructure is treated like a software system, 
which means development tools and agile practices such as 
Test-Driven Development (TDD), Continuous Integration 
(CI), and Continuous Delivery (CD) can be used to improve 
the quality [31]. Programmatically defining our 
infrastructure means that our environments will be more 
consistent and reliable, and identical every time. Manual 
provisioning generally has diverse interpretations of the 
same instructions, resulting in different configurations [32]. 

IaC is based on a few practices as follows [15]: 
 All the provisions and configurations related to the 

infrastructure are defined in executable files, such as 
shell scripts. The actions that need to be applied in 
the infrastructure like installing a database, 
increasing the memory of a server, and even creating 
a new server, are executed from these files. 

 The scripts contain the commands that make the 
maintenance of the infrastructure, and the 
documentation of the systems and processes. 

 The scripts are the source-code that represents the 
infrastructure. They need to be kept in a version 
control system like Git or Github. 

 Even in infrastructure source-code, tests are critical 
to finding errors. Continuous integration pipelines 

can be set up to test and guarantee the quality of the 
code, supporting practices like continuous delivery 
and deployment, which can help decrease the 
downtime of the systems on upgrades or fixes. 

There are many benefits to adopting IaC due to the 
following characteristics of this approach [33][34]: 

 Repeatability: having the infrastructure defined as 
code ensures that we can recreate it as many times as 
needed, getting the same result. 

 Automation: creating and configuring the 
infrastructure from executable scripts are tasks that 
can be automated in addition to mitigating manual 
intervention and avoiding human mistakes. 

 Agility: using resources such as source code 
management systems and version control systems to 
store the infrastructure code permits us to apply 
changes anytime, responding to defects and business 
demands faster because we can always backward the 
infrastructure to a known state. 

 Scalability: the combination of repeatability and 
automation allows us to increase our infrastructure in 
an easy and fast way. 

 Consistency: repeatability and automation also 
guarantee that we will always have the same 
environment, as defined in the source code. 

 Disaster recovery: as we have all the infrastructure 
defined as code, in case of a catastrophic event 
where we lose all the environment, it will be easy to 
recover and recreate it from our source code 
repository. 

The most common issues that IaC addresses in the 
software industry are related to environment similarity and  
scalability. Regarding environment similarity, the IaC is 
helping companies increase the similarities between 
development, testing, and production environments and 
ensuring applications have the same behavior in any of them. 
It also avoids the differences that generally are present when 
creating the infrastructure by manual intervention. In terms 
of scalability, the approach is being used by companies that 
need a high level of dynamism in their infrastructure, like e-
commerce. For example, IaC permits rapidly increasing the 
number of servers when the sales volume is growing and 
reducing them when the sales are decreasing, which is 
essential to control the costs [34]. 

The IaC approach appeared due to the evolution and 
growth of cloud computing demands. In general, this new 
approach is related to cloud-based environments, but, it can 
be used in on-premises infrastructure, as well. Even, it can be 
applied to isolated machines [35]. 

There are different ways and tools to implement IaC, 
depending on the need. The most common tools used in 
scientific environments are that related to the provision of 
virtual machines or containers, which embed the software 
environment, the dataset, and the source-code that composes 
a specific experiment [11][29].  

Using IaC, researchers can write and execute code to 
define, deploy, update, and destroy the necessary 
infrastructure for their experiments. This code will be stored 

4

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



in a version control system, making the experiment 
reproducible as many times as needed, by the originals and 
other researchers [10] [11]. 

VI. THE ENVIRONMENT CODE-FIRST FRAMEWORK (ECF) 

Based on the findings presented before, there are three 
main issues related to software environments that support 
scientific research and directly impact on their 
irreproducibility. The first is the absence of proper 
documentation providing a step-by-step on how to reproduce 
the environment, including all software like libraries, 
packages, compilers, interpreters, databases, their versions, 
and how to install and configure them. The second is the 
dependency of a specific platform of software or hardware 
due to the use of the researchers made of their personal 
computers. Creating a computational environment in a 
specific machine with a specific operating system forces us 
to use the same platform to reproduce the same environment. 
The last one is the dependency hell. When a computational 
environment is built on a specific machine by a researcher in 
a manual way, it is being created with many dependencies on 
libraries, packages, and software versions that will exist only 
on that machine. It is almost impossible to reproduce the 
same environment on other machines, especially by other 
researchers different from the original. Producing unique 
computational environments in software and configuration is 
an issue called snowflake servers [15] or snowflake systems 
[34]. 

As discussed earlier, these issues have their origins in the 
following root causes arising from the cultural and 
behavioral aspects of the scientist developer: 

 The use of the researchers made of their personal 
computers; 

 Most of the time, the scientist end-user developer 
works alone or in small teams; 

 The scientist end-user developer does not produce 
documentation; 

 Researchers are not interested in software 
engineering best practices because their focus is on 
the research. The applications developed by the 
scientist end-user developer are just tools that help 
him obtain and process the data they need to 
analyze. 

Also, some of the root causes identified have 
characteristics that contribute to the manual intervention of 
the researchers when creating the computational 
environments that support their research work. The practice 
of the installation and configuration of the environment in a 
manual way can be considered another root cause that 
aggravates the second and the third issues mentioned before. 

In this paper, a framework is being proposed to mitigate 
these issues and to conduct the researchers to create self-
contained computational environments more reproducible, 
isolated, portable, and independent of any platform of 
software and hardware. 

The framework shall drive the development of an 
environment that is: 

 Independent of hardware and software platform, 
regarding operating systems; 

 Ready to run on-premise, on a PC or more powerful 
servers, or even in the cloud; 

 Fully provisioned programmatically, with no 
installations and configurations manually performed, 
using a repository (e.g., Github or GitLab) to store 
the source code of the environment; 

 Dynamic in terms of software resources, allowing 
the addition or remotion of them from the 
environment's source code at any time, and in a fast 
way; 

 Storable in small files, in Megabyte order, not 
Gigabyte order, without the need for exhaustive 
downloads; 

 Quickly reproducible and ready to use in the order of 
minutes. 

The framework has two parts. The first part determines 
the architecture of the computational environment, and the 
second is a guide that defines a step-by-step procedure that 
must be followed by the researcher for the development and 
maintenance of the infrastructure. 

A. The ECF Architecture 

The main goal of the architecture defined by the ECF is 
to create a homogeneous environment independent of the 
hardware and software platforms used by the researcher. For 
example, a team of five researchers using various types of 
PCs (e.g., notebooks and desktops) with different operating 
systems would still have the same environment in all 
machines when following the ECF framework. 

In the last fifteen years, two main technical approaches 
had been used by the scientific community to create self-
contained computational environments proper to 
reproducibility. The first one are the virtual machines (VMs) 
and the other are the containers. Both permit us to create 
packaged computing environments composed of many IT 
elements (e.g., CPU, memory, and storage) available in file 
format. When executed inside the host machine, both isolate 
their environments from the rest of the system. But, while the 
VMs offer complete isolation from the host operating 
system, the containers offer lightweight isolation. It occurs 
due to the use of containers made of the host machine's 
resources, while VMs have their operating system, CPU, 
memory, network interface, and storage. This is an 
advantage of the VMs in terms of security and a barrier in 
terms of availability and portability, because of the size of 
their files. The size of a container image file is generally 
measured in MB, while that of a VM can take several GB 
[36]-[38]. 

Nowadays, there is a growing adoption and use of Linux 
container technology (e.g., Docker, LXC) compared to 
virtual machines by the software industry and the scientific 
community. Many scientific papers have been published 
presenting executable paper solutions based on containers to 
help grow reproducibility and transparency in science 
[11][20][30][39][40]. However, the proposal presented by 
the most of papers related to this subject is usually to use the 
containers directly on the host machine. This can be a 

5

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



challenge in terms of platform because the containers have to 
be compatible with the operating system [41]. Currently, 
Docker is considered the de facto standard for 
containerization [42]. The Linux containers based on this 
standard, only can run directly on machines that have a 
Linux distribution as the operating system. To run Docker 
Linux containers on other operating systems such as 
Microsoft Windows and MacOS, it is necessary to install and 
configure a set of software that will adapt them to support 
Linux containers, usually in a manual way [43]. 

The ECF defines an architecture composed of two 
modules to permit researchers to obtain precisely the same 
computational environment when reproducing a research 
work. The first, called Container Module (CM), is a Linux 
container with all the software, libraries, and packages 
needed to develop and run the scientific application. The 
second, called Virtual Machine Module (VMM), 
comprehends a hypervisor, a lightweight virtual machine 
based on Linux distribution, and a container engine (e.g., 
Docker). In the development phase, the modules will be 
developed separately. But, in the execution phase the CM 
will run inside the VMM, on top of the container engine 
layer. Practically, the CM will work as another layer of the 
CMM. As shown in Fig. 1, the layers in green represent the 
physical machine and the operating system installed on it. 
The other layers, that appears involved by a dotted line, are 
all part of the architecture defined by the ECF framework. 
Both modules have to be provisioned programmatically 
using IaC resources such as ad-hoc scripts, configuration 
management tools, server templating tools, orchestration 
tools, and provisioning tools. 

 
Figure 1.  The ECF architecture. 

Provisioning the computational environment based on the 
ECF architecture guarantees the container will always run on 
the same operating system, independent of the software 
platform used by the researchers on their physical machine, 
as shown in the example of Fig. 2. 
 

 
 
 
 

 
 
Figure 2.  Example of the ECF architecture running on different platforms. 

B. The ECF Guidence 

The goal of this part of the framework is to guide the 
researchers on implementing the two modules defined by the 
ECF architecture, the CM and the VMM. The CM have to be 
implemented first, as it is one of the four layers that compose 
the VMM. For both modules, the framework establishes a 
series of steps that have to be systematically followed by the 
researchers to get each of them implemented. 

1) The CM implementation guide 
The implementation of the CM can be summarized in 

five high-level guidelines:  
 Requirements identification; 
 Development of the CM source code; 
 Source code storage; 
 Container image generation; 
 Container image storage. 
Fig. 3 shows the guidelines in a diagram where we can 

see in which order researchers have to perform such actions. 
It is essential to notice the researcher will not perform these 
actions only once but in a cycled way as many times as 
needed due to the maintenance of the environment. For 
example, after the environment is ready and running, if a 
researcher identify a need to add a new library, it will 
necessary execute all the steps to get the new version of the 
container image stored and available for download. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Steps involved in the CM development. 

In the requirements identification step, the researcher will 
identify all the software, libraries, and packages necessary to 
develop and run the scientific application. The first 
requirement that has to be defined in this step is the container 
engine. It is mandatory to know what container engine will 
be used to build the environment before all the other 
requirements. The source code the researcher will write to 
define the installations and configurations to create the 
environment depends on this definition. It has to follow the 
patterns and syntax required by the chosen engine. The other 
requirements can vary from one environment to another, 
depending on the experiment's needs. The source code files 
must contain all the instructions and explanations needed to 
document the commands and configurations specified. The 
ECF framework defines a form model with a set of questions 
based on the most common types of software components 

 

 

 

6

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



used in scientific environments that have to be answered by 
the researchers when analyzing the requirements to build the 
CM. Of course, this model must be adapted for each case, 
including or removing requisites according to the situation. 
Table I shows the form with the questions defined by the 
ECF. Besides the column with the question, there are two 
more columns in the form. One for the answer in itself, and 
the other two specify the software's version. 

TABLE I.  CONTAINER MODULE  DEVELOPING FORM 

Question Answer Version 

Which container engine will be used?   

Which will be the base image of the 
containers?  

  

Which programming languages and 
compilers will be used? 

  

Which libraries, packages and third part 
software have to be installed? 

  

Which databases will be installed?   

Is it necessary to perform any configuration? 
In which files? 

  

Is it necessary to copy any files into the 
container? Which files? 

  

 
The next step consists of developing the container 

image's source code based on the requisites identified before. 
After writing the container image’s source code, the 
researcher needs to store it in a version control system like 
Github and Gitlab. In the following step, it is necessary to 
compile the source code to generate the image used to create 
the container that supports the scientific application's 
development and execution. Also, it is necessary to perform 
some tests with the image. The last step is to store the image 
in a container repository (e.g., Docker Hub). 

2) The VMM implementation guide 
Similarly to the CM, the implementation of the VMM is 

composed by three high-level guidelines: 
 Requirements identification; 
 Development of the VMM source code; 
 Source code storage. 
The sequence the steps have to be executed is shown in 

Fig. 4. Although the diagram demonstrates that the steps can 
be performed cyclically, it is not typical for the VMM 
because it will not change with as much frequency as the CM 
can change. For example, it will be necessary to change the 
VMM when we have to increase the quantity of memory or 
the number of CPUs. 
 

 
Figure 4.  Steps needed to create the VMM. 

The VMM is limited to four essential layers: the 
hypervisor, the virtual machine, the container engine and, the 
CM in itself. That means there is no need to add or remove 
any layer. In the requirements identification step, the 
researcher will have to define which hypervisor will support 
the virtual machine, how much memory it will use, how 
many CPUs it will have, and which operating system will be 
installed. At this point, the container engine is already 
known, and the CM is ready to use. The other definitions are 
related with the IaC tools the researcher wants to use to 
develop the VMM. Also, the ECF defines a form with the 
main questions to guide the researcher in this phase. It can be 
visualized in Table II. 

TABLE II.  VIRTUAL MACHINE MODULE  DEVELOPING FORM 

Question Answer Version 

Which hypervisor will be used?   

How much memory will be allocated for the 
virtual machine?  

  

How much CPUs will be dedicated to the 
virtual machine? 

  

Which operating system will be installed on 
the virtual machine? 

  

Which IaC tools will be used to automate the 
provisioning of the environment? 

  

 
At this point, the researcher has all the elements that is 

necessary to develop the source code of the VMM. The 
source code must guarantee the hypervisor installation on the 
physical machine, the provisioning of the virtual machine 
with the container engine and the CM inside it. The 
documentation about the actions performed to create the 
VMM have to be included in the source code files. The 
source code produced in this phase must be stored in a 
version control system, but the virtual machine image does 
not. It will be used only to create an instance of the container 
image that represents the scientific environment. In this way, 
the virtual machine image only has to keep stored locally, 
and it can be destroyed and recreated as many times as 
needed. During the initialization, the VMM has to check if a 
new version of the CM is on the image repository. In a 
positive case, it needs to download the new container image 
before instantiating it. Once the VMM source code covers all 
these actions and is already available in a version control 
system, any researcher can use the produced scripts to 
recreate an environment. 

In Fig. 5, a flowchart shows all the steps involved in 
running a VMM script on provisioning an entire scientific 
computational environment. 

 

 

7

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 5.  Steps performed by the VMM scripts. 

VII. CASE STUDY: THE PROKARYOTIC GENOMICS AND 

COMPARATIVE GENOMICS ANALYSIS PIPELINE (PGCGAP) 

In this section, we describe our experience in recreating a 
computational environment called PGCGAP, the Prokaryotic 
Genomics and Comparative Genomics Analysis Pipeline, 
following the guide presented by H. Liu et al. in [44]. Also, 
we describe how we recreate the same environment 
following the guidelines defined by the ECF framework. 

A. Material and Methods 

We performed both implementations on three different 
physical machines. The machine one (M1) is a PC notebook 
configured with Microsoft Windows 10 Professional Edition 
64-bit operating system, an Intel(R) Core(TM) i5-7200U 
CPU @ 2.50GHz processor, 16 GB of RAM and a hard disk 
512 GB SSD. The machine two (M2) is a PC notebook 
configured with Microsoft Windows 10 Home Edition 64-bit 
operating system, an Intel(R) Core(TM) i7-5500U CPU @ 
2.40GHz processor, 16 GB of RAM and a hard disk 512 GB 
SSD. The last one, machine three (M3), is a PC notebook 
configured with Linux Fedora v34 64-bit operating system, 
an Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz processor, 
16 GB of RAM and a hard disk 512 GB SSD. 

In [44], the authors split the paper that presents the 
PGCGAP into two parts. The first part is related to the step-
by-step defined by the protocol to provisioning the pipeline. 
The second part uses the pipeline provisioned to execute a 
bioinformatics application, processing a significant amount 
of data and generating results. As our focus is on providing 
the computational environment, we considered only the first 
part of the paper in our analysis and comparison. 

The comparison of the two implementations considered 
time consumption, efforts, manual intervention, platform-
agnosticism, and portability. 

B. Implementing the Original PGCGAP 

The PGCGAP is a protocol that guides researchers on 
implementing a scientific computational environment that 
supports applications related to genomics and comparative 
genomics analyses of microbes. This protocol comprises a 
set of genomic analysis software packages, scripts developed 
by the PGCGAP’s creators, and a guide that specifies 
configurations and software installations that have to be 
performed by the researchers in a correct sequence to 
reproduce the environment. The PGCGAP is free and open-
source software licensed under GPLv3.  All the third-party 
software packages used to create the protocol are open 
source. The source code is available on Github [45]. 

In the paper, the authors demonstrate the protocol's 
applicability on a Linux Ubuntu 18.04 operating system. But, 
they used a machine configured with Microsoft Windows 10 
and a feature called Windows Subsystem for Linux (WSL) 
[46] to create the virtual machine that supported the 
PGCGAP implementation. The Linux Ubuntu 18.04 OS was 
installed from the Microsoft Store. 

As mentioned before, we reproduced the steps of the 
paper on three different physical machines. The M1 PC 
notebook is configured with Microsoft Windows 10 x64 OS, 
and it has the version 1 of the WSL installed. The M2 is 
configured with Microsoft Windows 10 x64 OS and WSL 
version 2. On both PCs were created virtual machines with 
Linux Ubuntu 18.04 OS installed from the Microsoft Store. 
Even though the authors did not specify if they used version 
1 or 2 of the WSL, we decided to test the PGCGAP on both 
to verify if it can work adequately on any version. Regarding 
the M3 PC notebook, it is configured with Linux Fedora v34 
x64 OS. We considered testing the protocol on the M3 
machine to extend the research and check if it can work 
correctly on other Linux distributions that are not running on 
top of the Microsoft Windows Subsystem for Linux. 

The PGCGAP protocol defines twelve steps that have to 
be executed by a researcher when provisioning the 
environment. These steps include installations of the WSL, 
the Linux OS, and third-party package software like 
Miniconda and the PGCGAP in itself. Also, it includes 
configurations that have to be included in files and 
performed in a command-line terminal. The authors reported 
that all the steps were performed in around sixty minutes. 

On M1 PC, the provisioning of the PGCGAP 
environment failed. It presented a corruption error during the 
eleventh step that corresponds to the setup of the COG 
database. 

 

8

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



All the steps to provision the PGCGAP environment 
were successful on M2 PC. It was necessary 80 minutes to 
perform the entire procedure. But, it is essential to highlight 
that it was needed 30 minutes more to install and configure 
version 2 of the WSL before executing the PGCGAP steps 
[47]. This was not an action foreseen by the protocol, but if 
we consider it, the whole process took 110 minutes in total. 
In terms of portability, we exported an image of the virtual 
machine created by the WSL to a zip file around 13.60 GB. 
Using this file, we could import the virtual machine on a 
fourth PC notebook (M4), used in this part of the experiment 
only for the portability test. It was configured with Microsoft 
Windows 10 operating system, WSL version 2, an Intel(R) 
Core(TM) i7-9850H CPU @ 2.60GHz processor, 16 GB of 
RAM and a hard disk 512 GB SSD. After to import the 
virtual machine from the zip file, it was possible to initialize 
the PGCGAP environment successfully. 

The provision of the PGCGAP on M3 PC was performed 
successfully, as well. To execute all the steps on this 
machine it was needed 81 minutes. This is a very close result 
that we obtained on M2 machine for this part of the 
provision. In this case, there was no extra installations and 
configurations to be considered. The portability of the 
PGCGAP from this machine is not possible, once the 
environment was provisioned directly on a physical machine. 

The implementation of the PGCGAP protocol on the 
three machines mentioned before was performed manually, 
according to the steps presented in [44]. 

C. Implementing the PGCGAP Based on the ECF 

For the development of the CM and VMM that will be 
described in this topic, we used the M4 PC notebook, already 
mentioned and detailed before. 

As defined by the ECF framework, the first step on 
creating a computational environment is to develop the 
container module following the CM implementation guide. 

For the analysis phase, it was necessary 30 minutes to 
review and fill the form with the requirements of the 
environment once most of them are described in [44]. Table 
III shows the form with the questions and answers used to 
develop the container module for the PGCGAP environment. 

TABLE III.  PGCGAP’S CM FORM 

Question Answer Version 
Which container engine will be 
used? 

Docker and 
dependencies 

20.10 

Which will be the base image 
of the containers?  

Ubuntu Linux 18.04 

Which programming languages 
and compilers will be used? 

Python and 
dependencies 

3.7.6 

Which libraries, packages and 
third part software have to be 
installed? 

Miniconda and 
dependencies 

3 

Is it necessary to perform any 
configuration? In which files? 

Add into .bashrc: 
export 
OMPI_MCA_opal_cu
da_support=true 

N/A 

Is it necessary to copy any files 
into the container? Which files? 

pgcgap_latest_env.yml N/A 

 

Based on the form shown in Table III, we could write the 
source code that defines the infrastructure needed to develop 
and run the scientific application. Practically, we developed 
the Dockerfile, a prerequisite necessary to generate the 
Docker container that will embed all the PGCGAP 
computational environment. Also, the Dockerfile works as 
part of the documentation. For programming and 
documenting the environment, it was necessary around 60 
minutes.  

The next step consisted of generating the container image 
based on the definitions of the Dockerfile. Docker performed 
this operation in 49 minutes, and the final base image file 
had a size of 8.14 GB. With the container’s image ready to 
be used, it was necessary to execute a set of tests to ensure 
that a properly PGCGAP environment was being 
provisioned. We had to test the upload of the image to the 
Docker Hub, its download from the Docker Hub, and the 
instantiation of containers from the downloaded base image. 
Also, we ran some commands on the PGCGAP environment 
to verify that all the components were adequately installed. 
The image test operation was performed in 85 minutes. 

Considering all the phases executed in the CM 
development, achieving a successful result took around 224 
minutes. 

With the container module working correctly, we started 
to work on the virtual machine module following the VMM 
guide. Initially, we analyzed the requirements needed to 
create a virtual machine capable of supporting the PGCGAP 
container, considering the bioinformatics profile of the 
applications that will run on this environment. Despite the 
ECF framework being tool-agnostic, it was designed for 
Linux containers. In this context, we opted to use only free 
and open-source software tools commonly used by the 
scientific community, as shown in Table IV. This step was 
performed in 30 minutes. 

TABLE IV.  PGCGAP’S VMM FORM 

Question Answer Version 

Which hypervisor will be used? Virtualbox 6.1.32 

How much memory will be 
allocated for the virtual 
machine?  

8 GB N/A 

How much CPUs will be 
dedicated to the virtual 
machine? 

2 CPUs N/A 

Which operating system will be 
installed on the virtual 
machine? 

Ubuntu Linux 18.04 

Which IaC tools will be used to 
automate the provisioning of 
the environment? 

Vagrant and 
dependencies 

2.2.19 

Ansible and 
dependencies 

2.12.2 

Other resources 

Shell-scripts Linux 
(main script) 

N/A 

Shell-scripts Windows 
(main script) 

N/A 

 
For this module, the first step was to implement a script 

used to start the PGPGAP environment, the main script. As 
our intention was to perform tests on Linux and MS-

9

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Windows machines, we had to develop the main script for 
both operating systems. The script verifies if the PC has the 
Virtualbox installed. If not, the hypervisor is downloaded 
and installed on the machine. After, it verifies if Vagrant and 
Ansible are installed. In the negative case, the installation is 
performed, followed by the provisioning of the virtual 
machine configured with Ubuntu Linux. Otherwise, Vagrant 
only will start the virtual machine. In order to permit Vagrant 
to create the virtual machine, we had to specify the 
configurations and installations required in a file called 
Vagrantfile, as shown in Fig. 6. In this file, we defined the 
amount of RAM and the number of CPUs must be allocated 
for the VM. Also, we requested the installation of the Docker 
engine using Ansible. Having the VM running up, the script 
downloads the CM from the Docker Hub, if needed, and 
starts a container that embeds the PGCGAP environment.  

 

 
Figure 6.  Vagrantfile implemented for the virtul machine module. 

The codification of all parts that compose the VMM, 
considering the scripts for Linux and Windows and the 
configuration files for Vagrant and Ansible, took around 280 
minutes to be concluded. The scripts developed in this phase 
had to be tested individually and together, consuming around 
350 minutes. This time includes the tests performed with the 
CM and the VMM together. Considering the time needed to 
implement both modules, CM and VMM, the total time was 
884 minutes. 

After the implementation of the CM and the VMM, we 
were ready to start the tests on the three PC notebooks 
described before: M1, M2 and M3. We started downloading 
the main script from the repository for both operating 
systems, MS-Windows and Linux. Actually, it is the only 
file that has to be downloaded manually by a researcher that 
wants to recreate the environment. The PGCGAP 
environment was provisioned automatically and succesfully 
by running this script on the three machines. Considering a 

scenario where all the software components (e.g., 
Virtualbox, Ansible, Vagrant, CM) had to be downloaded to 
make the environment available, this operation took 92 
minutes on M1, 89 minutes on M2, and 95 minutes on M3. It 
is essential to highlight that these times can vary depending 
on the download capacity of the internet connection used to 
obtain the CM and the VMM. Both of them have to be 
downloaded, and, in this case, it was used an internet 
connection with 27 Mbps of download speed. 

VIII. DISCUSSION 

First of all, it is essential to clarify that the ECF 
framework’s primary goal is to enhance the reproducibility 
using the IaC approach. In this way, it focuses on guiding 
original researchers in providing a computational 
environment that is easily reproducible by them and other 
researchers. By them, when new members have to be 
integrated into a research team, for example. And by other 
researchers when they want to reproduce published results of 
a research papers. Of course, to enhance reproducibility and 
develop means that allow to recreate computational 
environments efficiently, a great effort from the researchers 
responsible for the provision in terms of learning and 
programming IaC tools will be necessary. The comparison 
presented in this topic can not be interpreted literally, but 
from two points of view, one from the original researcher 
that is creating the environment by programmatic ways, and 
another from the researcher that is reproducing it. The work 
presented in [44], only shows the second perspective. 

In terms of time consumption, from the point of view of 
the original researcher, it was necessary around fifteen hours 
to build the entire computational environment that supports 
the PGCGAP usinf the ECF framework. It is essential to 
highlight that it was designed to assist those directly 
involved in research development and anyone who wants 
only to run an application and verify published results. From 
this second point of view, the effort necessary would be 
simply downloading and executing only one script to get the 
computational environment ready to use. Our practical test 
on this operation consumed 92 minutes, on average, 
considering the three machines used in the tests (M1, M2, 
and M3). By following the method presented in [44], our 
provisioning of the environment took on average 80.5 
minutes, remembering that we did not have success in 
implementing it on the M1 PC notebook. The authors 
reported in [44] a total time of 94 minutes to provisioning it. 

Another concern of the ECF framework is reducing the 
manual intervention when provisioning computational 
environments. Our experience in reproducing the original 
PGCGAP environment proved that, by following this 
method, all the steps must be performed manually. From 
enabling the WSL resource on MS-Windows operating 
system, installing the Ubuntu operating system, downloading 
and installing the Miniconda platform, adding configuration 
on some specific Linux files until the installation of the 
PGCGAP, all of them were performed in a manual way. 
And, this is not a good practice when trying to produce 
reproducible environments. On the contrary, manual 
intervention is one of the leading causes of issues like the 

 

10

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



snowflake servers and snowflake systems mentioned earlier. 
Implementing the PGCGAP based on the guidelines of the 
ECF framework showed us that it is possible to provide an 
entire computational environment automatically and 
programmatically, reducing the manual intervention to a 
download and execution of only one script. 

The platform-agnosticism is another relevant topic that is 
covered by the ECF framework. The framework focuses 
mainly on the three most used operating systems by 
scientific researchers: Linux, MS-Windows and MacOS. 
But, it does not exclude other platforms like HPC and cloud 
computing. Once the framework defines a standard layer 
represented by a virtual machine, the only condition to run 
an ECF environment is to support virtualization. This 
abstraction turns different platforms in one common platform 
using the same distribution of the Linux operating system. 
The Linux container representing the computational 
environment can be instantiated from this point, permitting 
that the applications consistently produce the same results. 
The PGCGAP environment implemented by the ECF 
framework could be provisioned successfully on the three 
machines used in our experiments. Differently, the original 
PGCGAP could be provisioned only on two of the three 
machines due to an issue related to version 1 of the WSL 
resource, which is part of the MS-Windows and is a vital 
tool of this proposal. 

In terms of portability, as the ECF framework was 
designed to be tool-agnostic, one implementation can be 
more portable than another depending on the way they were 
implemented. For example, using Python instead of 
operating system scripts to develop the VMM produces a 
more portable environment. In our case, we decided to use 
shell scripts to implement the main script of the VMM due to 
our high knowledge of this subject. Choosing another 
programming language like Python would require more time 
to learn, implement and test this deliverable. In this way, we 
had to create one main script for Linux and another for the 
MS-Windows platform because the hypervisor (Virtualbox) 
installation is different on both operating systems. All the 
source code produced is common for any platform from this 
point ahead. The configuration files created for Vagrant, 
Ansible, and Docker, for example, will be the same on 
provisioning the environment for any operating system. The 
main script is the only deliverable that needs to be download 
and executed manually by a researcher that wants to reacrete 
the environment. When it is executed, all the softwares that 
compose the infrastructure (e.g., Virtualbox, Vagrant, and 
Ansible) are downloaded and installed automatically from 
official repositories. The CM is downloaded from the Docker 
Hub. That means the environment is always provisioned with 
the same components and versions obtained from the same 
sources. It can be installed on physical machines or 
infrastructures supported by cloud computing. Based on 
what we produced in our experiment, it is limited to Linux 
and MS-Windows. But, we can extend this coverage only by 
creating the main script for other platforms (e.g., MacOS, 
Solaris). Once the original researchers provided access to the 
source code of the environment, it is possible yet, for other 
researchers to reproduce it by compiling this code. This 

practice is another advantage of the ECF framework. There 
is no need to perform the portability manually, using 
traditional means like copying a file from one computer to 
another. On the other hand, this is the only way presented by 
the original PGCGAP, considering that both machines have 
MS-Windows 10 operating system and WSL version 2 
installed. In this case, it is important to remember that, in our 
experiment, WSL generated a file with 13.60 of size in the 
export operation. The container image file that represents the 
CM had 8.14 GB. A difference of  40.14% between them. 

The documentation is another positive point of using the 
ECF framework to develop the PGCGAP environment. As 
the framework uses the IaC approach, all the components of 
the environment are based on code. In this way, we 
described and explained the environment, installations, and 
configurations, into the source-code files we had created for 
Vagrant, Docker, Ansible, and the shell scripts. The 
documentation is fundamental to guide those who need to 
recreate the environment, but also for anyone that wants to 
understand how the environment was developed. 

Of course, we can not show only the benefits of the ECF 
framework. There are costs on adopting it. First of all, it is 
important to highlight the time that the original researchers 
must dedicate to programming the components of the 
environment. As mentioned earlier, it took about fifteen 
hours to develop and test the source code, given our high 
level of expertise in the programming languages and tools 
used in the experiment and the Infrastructure-as-Code 
approach. The development and test phases tend to be higher 
when researchers are not information technology specialists 
(e.g., biologists, chemists, and archeologists). This implies 
the factor that we consider to be the second higher cost: the 
time and effort needed to learn about the programming 
languages, IaC tools and software engineering practices. 

IX. CONCLUSION 

In [44], the authors presented a step-by-step on recreating 
an entire computational environment that supports scientific 
research. That is what we expect from an executable paper in 
terms of documentation. However, it is based on a manual 
intervention approach which is not good reproducibility 
practice. When recreating an environment, increasing 
reproducibility implies substituting the actions manually 
performed by automatic means. 

The framework proposed in this paper has as primary 
intention to help researchers enhance the reproducibility of 
their work regarding the provision of the computational 
environment. Our study contributes by mitigating typical 
issues such as the absence of documentation, platform 
dependency, and manual intervention. The central idea is 
provisioning the environment based on the Infrastructure-as-
Code approach instead of using traditional means. The pre-
defined homogeneous architecture permits us to have a big 
picture of the environment. And the practical guidelines 
conduct researchers on developing environments that are 
more reproducible, isolated, portable, and independent of any 
software and hardware platform. 

Our goal in proposing the ECF framework is to support 
the development of new research works and help researchers 

11

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



migrate papers already published based on traditional 
provisioning approaches to this new way easily reproducible. 

In the case study presented, the ECF framework proved 
in practice that it is possible to provide an entire 
computational environment programmatically with minimal 
intervention of the researcher who wants to recreate it. In the 
results, we can testify its benefits, especially regarding the 
behavior of the environment that was the same on the three 
machines used in our experiment. This kind of evidence 
allows us to understand how valuable it is to mitigate manual 
intervention because we will always have the same 
environment many times as we reproduce it. 

The adoption of the ECF framework has costs. Firstly, 
we have to highlight the time and effort from the scientist-
developer side when producing and testing the code that will 
generate the environment. These activities require them to 
dedicate a lot of time and attention. Besides, it is necessary a 
continuously learn behavior from the scientist-developer, 
which we consider the second cost when adopting the 
framework. Developing competence in software engineering 
practices, programming languages, and IaC tools is 
challenging and time-consuming. But, it is also a gain for 
researchers once they are preparing themselves for a new era 
based on open science principles. 

We recommend using open source software for 
researchers who desire to implement their computational 
environments following the ECF guidelines. Besides being 
aligned with the open science principles, open source tools in 
the general count with large communities supporting the 
users, accelerating the learning process, and helping them 
when they face technical problems. The use of mature tools 
already approved by the scientific community (e.g., Docker, 
Virtualbox, and Python) is also recommended. Compared 
with more recent tools, they tend to have fewer technical 
issues, and there is more documentation and forums to guide 
new users.    

We consider a significant contribution of the ECF 
framework the educational role that it can have in helping to 
prepare future generations of researchers on creating more 
transparent and reproducible research that aggregates value 
and benefits the scientific community. 

As future work, we propose implementing computational 
environments for different domains of science to help to 
improve the ECF framework.  

REFERENCES 
[1] D. A. Gomes, P. Mestre, and C. Serôdio, “Infrastructure-as-Code for 

Scientific Computing Environments,” CENTRIC 2019: The Twelfth 
International Conference on Advances in Human-oriented and 
Personalized Mechanisms, Technologies, and Services, Nov. 2019. 

[2] J. A. Papin, F. Mac Gabhann, H. M. Sauro, D. Nickerson, A. 
Rampadarath, “Improving reproducibility in computational biology 
research,” PLoS Comput Biol 16(5): e1007881, 2020, 
https://doi.org/10.1371/journal.pcbi.1007881. 

[3] B. A. Nosek et al.,  “Promoting an Open Research Culture,” Science, 
New York, N.Y.,  348, 2015. 

[4] L. P. Freedman, I. M. Cockburn, T. S. Simcoe, “The Economics of 
Reproducibility in Preclinical Research,” PLOS Biology 13(6): 
e1002165, 2015, https://doi.org/10.1371/journal.pbio.1002165. 

[5] European Commission. Reproducibility of scientifc results in the EU. 
[Online]  Available from: https://op.europa.eu/en/publication-detail/-
/publication/6bc538ad-344f11eb-b27b-01aa75ed71a1. [Accessed: 
2022.05.31]. 

[6] J. R. F. Cacho and K. Taghva, “The State of Reproducible Research,” 
in Computer Science, 17th International Conference on Information 
Technology – New Generations (ITNG 2020), Advances in 
Intelligent Systems and Computing, Volume 1134, Springer, 2020. 

[7] M. Munafò et al., “A manifesto for reproducible science,” Nat Hum 
Behav 1, 0021, 2017.  

[8] J. C. Burgelman et al., “Open Science, Open Data, and Open 
Scholarship: European Policies to Make Science Fit for the Twenty-
First Century,” Frontiers in Big Data, Volume 2, 2019. 

[9] J. R. F. Cacho and K. Taghva, “Reproducible research in document 
analysis and recognition,” in Information Technology-New 
Generations, Springer, Berlin, pp. 389–395, 2018. 

[10] M. Baker, “1500 scientists lift the lid on reproducibility,” Nature 
News 533 (7604), 452, 2016. 

[11] C. Boettiger, “An introduction to Docker for reproducible research, 
with examples from the R environment,” ACM SIGOPS Oper. Syst. 
Rev., 49, 2014. 

[12] S. M. Powers and S. E. Hampton, “Open science, reproducibility, and 
transparency in ecology,” Ecological Applications 29( 1):e01822, 
2019. 

[13] D. L. Donoho, “An invitation to reproducible computational 
research,” Biostatistics (Oxford, England), 11, 2010, pp. 385-8. 

[14] A. Brinckman et al., “Computing environments for reproducibility: 
Capturing the “Whole Tale”,” Future Generation Computer Systems, 
Volume 94, pp. 854-867, 2019. 

[15] K. Morris, “Infrastructure as Code: Managing Servers in the Cloud,” 
1st ed. O’Reilly Media, Inc., 2016. 

[16] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and A. 
M. Warren, “Measuring Reproducibility in Computer Systems 
Research,” Department of Computer Science, University of Arizona, 
Technical Report. [Online]. Available from: 
http://reproducibility.cs.arizona.edu/tr.pdf [Accessed: 2022.05.31] 

[17] T. Glatard, L. B. Lewis, R. Ferreira da Silva, R. Adalat, N. Beck, C. 
Lepage, and A. C. Evans, “Reproducibility of neuroimaging analyses 
across operating systems,” Frontiers in Neuroinformatics, 9, 12, 2015, 
doi:10.3389/fninf.2015.00012. 

[18] C. Riccomini, D. Ryaboy. “The Missing README: A Guide for the 
New Software Engineer,” 1st ed. No Starch Press, 2021. 

[19] D. C. Ince, L. Hatton, and J. Graham-Cumming, “The case for open 
computer programs,” Nature. 2012; 482(7386):485-488. Published 
2012 Feb 22. 

[20] B. Marwick, “Computational Reproducibility in Archaeological 
Research: Basic Principles and a Case Study of Their 
Implementation,” J Archaeol Method Theory 24, 424–450, 2017, 
https://doi.org/10.1007/s10816-015-9272-9. 

[21] J. Segal and C. Morris, "Developing Scientific Software" in IEEE 
Software, vol. 25, no. 04, pp. 18-20, 2008, doi:10.1109/MS.2008.85. 

[22] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl and 
G. Wilson, "How do scientists develop and use scientific 
software?," 2009 ICSE Workshop on Software Engineering for 
Computational Science and Engineering, 2009, pp. 1-8, 
doi:10.1109/SECSE.2009.5069155. 

[23] L. Nguyen-Hoan, S. Flint, and R. Sankaranarayana, “A survey of 
scientific software development,” In Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering 
and Measurement (ESEM '10). Association for Computing 
Machinery, New York, NY, USA, Article 12, 1–10, 2010, 
doi:https://doi.org/10.1145/1852786.1852802. 

[24] Z. Merali, “Computational science: Error, why scientific 
programming does not compute,” Nature 467, 7317, 2010, 
https://doi.org/10.1038/467775a. 

12

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[25] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, J. C. Carver, 
“Software engineering practices for scientific software development: 
A systematic mapping study,” Journal of Systems and Software, 
Volume 172, 2021, 110848, ISSN 0164-1212, 
https://doi.org/10.1016/j.jss.2020.110848. 

[26] Á. L. García and E. F. del Castillo, “Analysis of scientific cloud 
computing requirements,”  in Proceedings of the 7th Iberian Grid 
Infrastructure Conference, Madrid, Spain, Sep. 2013, pp. 147-158. 

[27] B. S. Cole and J. H.  Moore, “Eleven quick tips for architecting 
biomedical informatics workflows with cloud computing,” PLOS 
Computational Biology, vol. 14, issue 3, Mar. 2018. 

[28] D. Clark, A. Culich, B. Hamlin, and R. Lovett, "BCE: Berkeley’s 
Common Scientific Compute Environment for Research and 
Education," in Proceedings of the 13th Python in Science Conference, 
Austin, USA, Jul. 2014, pp. 5–12. 

[29] B. Howe, “Virtual Appliances, Cloud Computing, and Reproducible 
Research,” Computing in Science & Engineering, vol. 14, no. 4, pp. 
36-41, Jul.-Aug. 2012. 

[30] J. R. Fonseca and K. Taghva. “Reproducible Research in Document 
Analysis and Recognition,” Advances in Intelligent Systems and 
Computing: Information Technology - New Generations, Springer, 
738 389-395, 2018 

[31] Amazon Web Services. Introduction to DevOps on AWS, White 
Paper, 2014. [Online].  Available from: 
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-
code.pdf [Accessed: 2022.05.31] 

[32] Amazon Web Services. Infrastructure as Code, White Paper, 2017. 
[Online] Available from: 
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-
code.pdf [Accessed: 2022.05.31] 

[33] S. Nelson-Smith, “Test-Driven Infrastructure with Chef,” 2nd ed. 
O’Reilly Media, Inc., 2013. 

[34] K. Morris, “Infrastructure as Code: Dynamic Systems for the Cloud 
Age,” 2nd ed. O’Reilly Media, Inc., 2020. 

[35] IBM Cloud Education. Infrastructure as Code, Blog, 2019. [Online] 
Available from:  https://www.ibm.com/cloud/learn/infrastructure-as-
code [Accessed: 2022.05.31] 

[36] IBM Cloud Education. Containers vs. Virtual Machines (VMs): 
What’s the Difference?, Blog, 2021. [Online] Available from:  

https://www.ibm.com/cloud/blog/containers-vs-vms [Accessed: 
2022.05.31] 

[37] Red Hat Topics Website. Containers vs VMs, 2020. [Online] 
Available from: 
https://www.redhat.com/en/topics/containers/containers-vs-vms 
[Accessed: 2022.05.31] 

[38] Microsoft Technical Documentation Website. Containers vs. virtual 
machines, 2021. [Online] Available from: 
https://docs.microsoft.com/en-
us/virtualization/windowscontainers/about/containers-vs-vm 
[Accessed: 2022.05.31] 

[39] K. Wiebels and D. Moreau, “Leveraging Containers for Reproducible 
Psychological Research.” Advances in Methods and Practices in 
Psychological Science, Apr. 2021, doi:10.1177/25152459211017853. 

[40] X. Qiao, Z. Li, F. Zhang, D. P. Ames, M. Chen, E. J. Nelson and R. 
Khattar, “A container-based approach for sharing environmental 
models as web services,” International Journal of Digital Earth, 14:8, 
2021, 1067-1086, doi:10.1080/17538947.2021.1925758. 

[41] Red Hat Topics Website. What's a Linux container?, 2018. [Online] 
Available from: https://www.redhat.com/en/topics/containers/whats-
a-linux-container [Accessed: 2022.05.31] 

[42] J. Sparks, “Enabling Docker for HPC,” Concurrency and 
Computation: Practice and Experience, Dec. 2018, 
https://doi.org/10.1002/cpe.5018. 

[43] Docker Documentation Website. Docker Desktop overview. [Online] 
Available from: https://docs.docker.com/desktop/ [Accessed: 
2022.05.31] 

[44] H. Liu et al., “Build a bioinformatics analysis platform and apply it to 
routine analysis of microbial genomics and comparative genomics,” 
Protocol Exchange, 2020, https://doi.org/10.21203/rs.2.21224/v5. 

[45] Github of the Project PGCGAP. [Online] Available from: 
https://github.com/liaochenlanruo/pgcgap [Accessed: 2022.05.31] 

[46] Official documentation of the Windows Subsystem Linux. [Online] 
Available from: https://docs.microsoft.com/en-us/windows/wsl/ 
[Accessed: 2022.05.31] 

[47] Windows Subsystem Linux’s documentation on how to migrate from 
version 1 to version 2. [Online] Available from: 
https://docs.microsoft.com/en-us/windows/wsl/install-manual/ 
[Accessed: 2022.05.31] 

 

13

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Hybrid Transactional and Analytical Processing Databases - State of Research and
Production Usage

Daniel Hieber
Dept. of Computer Science

Aalen University
Aalen, Germany

Email: daniel.hieber@studmail.htw-aalen.de

Gregor Grambow
Dept. of Computer Science

Aalen University
Aalen, Germany

Email: gregor.grambow@hs-aalen.de

Abstract—The combination of Online Transactional Processing
and Online Analytical Processing into one system is an emerging
area in database research called Hybrid Transactional and An-
alytical Processing databases (HTAP, OLxP). Both Gartner and
Forrester Research see disruptive potential in this technology as
it provides important advantages. These include the elimination
of redundant data sets for analytical and live data as well
as the reduction of the total cost of ownership of analytics
systems. The development of HTAP databases resulted in various
advances in the database sector like the creation of new index and
data structures or improvements of existing concurrency control
implementations. However, there is a great variety regarding
many architectural aspects in different HTAP systems. Examples
include implementations of concurrency control, query handling,
or scaling paradigms ranging from scaled-up single server
systems using Multi Version Concurrency Control to scaled-
out cluster based systems using last writer wins approaches.
This contribution provides a general overview of contemporary
HTAP implementations. On the one hand, different fundamental
technical aspects are presented and compared in detail. On
the other, it goes beyond a standard literature review by also
presenting an overview of production ready HTAP systems,
including both free and commercial systems.

Keywords—Hybrid Transactional Analytical Processing; HTAP;
Database; Literature Study; OLxP.

I. INTRODUCTION

The need to analyse data in realtime and not to rely on
copies of old databases combined with the growing wish of
companies to gather all data in one database lead to the
rise of Hybrid Transactional Analytical Processing (HTAP)
Databases. In our initial systematic literature review from 2020
on this topic, we provided a comprehensive summary focused
on the research of these systems [1]. While HTAP as a term
was coined by Gartner [2] in 2014 and even before that there
had already been active research in the area these databases
are still heavily evolving and only starting to get a foothold
in production systems. Therefore, in this work, we extend
our previous literature review with the current state of HTAP,
highlighting new research conducted, but also introducing an
overview of currently available HTAP systems for use in
production use cases, including both free and commercial
systems.

Solving the problems of keeping data in two separated
databases and at the same time reducing the total cost of
ownership by introducing one unified system instead, HTAP

efficiently combines Online Transactional Processing and On-
line Analytical Processing capabilities in one system. There-
fore, both Gartner [3] and Forrester Research [4] see disruptive
potential in HTAP. A trend already projected to the industry,
e.g., with commercial solutions provided by two of the world
leaders SAPs HANA database [5] and Tableaus HyPer [6]
integration.

In this work the basics of the different fundamental ar-
chitectures for HTAP database systems like HyPer [7] and
SAP HANA [8] are explained and different approaches re-
garding the concrete implementations as well as optimization
approaches are introduced in form of a refined version of our
earlier systematic literature review. Further we provide insight
into the production implementation of HTAP databases like
SAPs HANA [5] and Tableaus HyPer [6] systems. The aim of
this paper is to reflect the current state of research in an ordered
way, as well as to highlight important decisions leading to
todays implementations and their production use.

This remainder of this paper is organized as follows: Section
2 provides background on database processing paradigms
covered in this paper. Section 3 describes the underlying
literature review process in detail. Section 4 discusses the
findings and provides a overview of the current development
and research state of HTAP.

The section is further separated into subsection ordering
findings by the area of HTAP it deals with:

IV-A Fundamental Architecture (containing scaling paradigms,
data/table structures and ways of saving/partitioning data)

IV-B Concurrency
IV-C Garbage Collection
IV-D Query Handling (containing query languages, general

optimization approaches, query processing in differently
scaling systems)

IV-E Indices
IV-F Big Data on HTAP
IV-G Recovery, Error Handling and Logging
IV-H Benchmarking of HTAP Systems
IV-I Stream Processing with HTAP Systems
IV-J HTAP as a Service

IV-K Future trends of HTAP development
IV-L Open Source and Free Versions

Section 5 then provides insights on the current sate of HTAP
databases regarding their production usage.

14

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Finally, Section 6 summarizes the provided work, supplying
all required information in a short form.

II. BACKGROUND

This section provides some background information regard-
ing the database processing paradigms covered in this paper.

A. Online Transaction Processing

Online Transaction Processing (OLTP) describes a category
of data processing that is focused on transaction-oriented tasks.
The workload is heavily write oriented, consisting of insert,
update and delete operations. The size of data involved is
usually relatively small, while the amount of transactions can
be massive.

Features like normalization and ACID are required by OLTP
to function efficiently. Besides fast processing and highest
availability, data consistency is also one of the most important
features of OLTP databases.

B. Online Analytical Processing

Online Analytical Processing (OLAP) is focused on com-
plex queries for dataset analysis. The workload is read heavy
and can include enormous datasets. In order to efficiently
analyse such big amounts of data, intelligent indexing and
fast read times are necessary. OLAP workloads are resource
heavy and require high performance systems.

C. Hybrid Transactional Analytical Processing

Hybrid Transactional Analytical Processing (HTAP) com-
bines both OLTP and OLAP in one database. Therefore,
writing and analyzing data is efficiently handled in the same
database, removing the need to run two separate systems
and thereby reducing implementation efforts, maintenance and
cost. However, the resource intensive workload of OLAP
queries and the required high availability of OLTP compete
with each other and require new solutions to work on the
same system.

III. LITERATURE REVIEW METHODOLOGY

While the term HTAP was first used 8 years ago in 2014,
many researchers still did not adopt it and use other phrases
like OLxP, HOAP or OLAP and OLTP hybrid databases. To
ensure a comprehensive and high-quality literature base for the
review, several searches were carried out with different search
therms.

In the study, Kitchenham’s systematic review procedure [9]
was employed. The following steps were pursued:

1) Determining the topic of the research
2) Extraction of the studies from literature considering

exclusion and inclusion criteria
3) Evaluation of the quality of the studies
4) Analysis of the data
5) Report of the results
As a topic the current state of HTAP databases was se-

lected, summarizing the research conducted on the topic. To
determine the best suited source and search query for the data

search of the literature review multiple data sources (including
Google Scholar, Semantic Scholar and IEEE) were tested with
a multitude search queries.

The reviewing process (Figure 1) was conducted via Google
Scholar as this search engine provided the highest quantity and
quality of research for the topic. Further the Google Scholar
searches included most of the results the other data sources
contained. Searches with other search engines and data sources
where either lacking a sufficient quantity or quality to conduct
a meaningful literature review.

To counter the aforementioned issues regarding the in-
sufficient usage of the therm Hybrid Transaction Analytical
Processing databases in the research the literature acquisition
was split into three queries using different search structure
and therms. While very similar the returned research of each
search query was mostly disjunct.

While this approach increased the number of relevant papers
found it does not provide all-encompassing literature findings.
This is mainly due to skipped keywords in the research papers
themselves. E.g., Umbra [10] only describes itself as a further
development of HyPer [7] but never mentions HTAP itself in
the paper, while its extension [11] actively mentions HTAP.
Therefore, the extension was found, while the main paper is
not included in this study.

In order to prevent the absence of relevant systems not found
by the systematic literature search itself, the sections ”Open
Source and Free Versions” as well as ”Production Ready
HTAP Databases” also contain HTAP systems not found by the
systematic literature search if they provided relevant free/open
source solutions or are used in production systems.

The search was carried out using (1) ”htap” ”data ware-
house” OR ”OLTP” ”OLAP” (returning 183 entries), (2)
HTAP OR OLAP OLTP hybrid database (returning 200 en-
tries) and (3) hybrid transactional analytical processing (re-
turning 200 entries).

In this first search only publications from 2010 to August
2020 were considered. Queries 2 and 3 returned more papers,
but were reduced to the 200 most recommended papers,
since quality and relevance were continuously decreasing. To
provide an up-to-date overview of the current research in this
paper slightly refined versions of the search queries were exe-
cuted again for the time span from 2020 to October 2021 (cf.
Figure 1). To provide a comprehensible and reliable literature
review only publicly accessible papers or papers available
with general institutional access were taken into account. The
conducted papers were further reduced to papers using the
German or English language. These exclusion criteria left 147
(1), 178 (2) and 179 (3) papers from the first search as well
as 70 (1), 7 (2) and 37 (3) papers from the second search to
refine further. In this step, all papers already included in the
first search were also removed from the findings of the second
search.

Following a title and abstract based elimination was con-
ducted. This pruned papers lacking a combination of required
key words or only mentioning HTAP as a side note. After this
elimination step, 55 (1), 44 (2) and 56 (3) papers (first search)

15

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



HTAP "data
warehouse"
OR OLTP

OLAP

HTAP OR
OLAP OLTP

hybrid
database

hybrid
transactional

analytical
processing

Refining 
183 

papers by 
Accessibility

Refining 
200 

papers by 
Accessibility

Refining 
200 

papers by 
Accessibility

Initial Search - S1 
(till 08.2020)

1.Topic 
   Determination

3. Quality 
    Evaluation

4. Data 
    Analysis

5. Report 
    of Results

Refining 179 
papers by 

title and skim
elimination

Refining 178 
papers by 

title and skim
elimination

Refining 147 
papers by 

title and skim
elimination

Refining 94  
papers by
reading

Summarizing 
63 papers 

(41 S1, 22 S2)

Conduction of search with
Google Scholar.

Elimination of papers on
access basis. Either through
language barriers or limited
access. 
*) Also removed papers         
   already found in the original  
   search.

Elimination of papers which
titles and abstracts did not
show any information on the 
topic.

Elimination of papers based
on a quality assessment.

Data extraction on the final
papers satisfying research 
topic and quality
requirements. 
Creation of the review report.

Selection of data
source

2.Literature 
   Extraction

Evaluation of different
scientific search engines by
test searches.

Hybrid Transactional
Analytical Processing

Databases

New Search - S2 
(2020 - 10.2021)

"HTAP" "data
warehouse"
OR "OLTP"

"OLAP"

"HTAP" OR
"OLAP" "OLTP"

"hybrid
database"

"hybrid
transactional

analytical
processing"

Refining 
111 

papers by 
Accessibility*

Refining 
11 

papers by 
Accessibility*

Refining 
47 

papers by 
Accessibility*

Refining 37 
papers by 

title and skim
elimination

Refining 7 
papers by 

title and skim
elimination

Refining 70 
papers by 

title and skim
elimination

Refining 34  
papers by
reading

Figure 1. Literature Review Process.

as well as 30 (1), 4 (2) and 20 (3) papers (second search) were
left for further analysis. Removing any duplications of papers
found by two or more queries this left a total of 128 papers
combined for a final review.

Of these 128 papers, 16 were found to be of insufficient
quality (lacking evaluations or proper research procedures),
and 30 did contrary to their title and abstract not focus on
the topic of HTAP databases or on fundamental technologies
for those. The 84 papers, which were found scientifically
significant and fulfilling the quality requirements were finally
reduced to 63, deducting papers providing only outdated non-
fundamental information.

IV. FINDINGS AND DISCUSSION

The methods to create HTAP databases, their functionality
and their optimizations take many different approaches. The

contents of the papers were organized into the following
sections according to the kind of information provided.

A. Fundamental Architecture

HTAP databases build up a new database sector and there
are many databases, which were newly developed for this
workload, e.g., [7][12][13]. However, some existing databases
also have been upgraded to handle HTAP workloads like SAP
HANA [8], initially an OLAP database, and PostgreSQL [14]
(as well as multiple systems building on it, cf. [15]), initially
an OLTP database, proving that existing databases can be
extended to handle HTAP.

Comparing the reviewed database architectures, two main
storage paradigmas can be clearly identified with the reviewed
solutions: (1) heavily main memory focused databases, keep-
ing all of their (hot) data in memory like HANA [5], HyPer

16

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[7], BatchDB [13] and Hyrise [16], as well as (2) cloud/shared
disk data stores, keeping some data in memory but relying on a
persistent out of memory data store accessible by all instances,
e.g., Wildfire [17], TiDB [18] and Janus [19].

Further, a Non-Uniform Memory Access (NUMA) archi-
tecture is a base requirement for most main memory HTAP
databases like SAP HANA [5], AIM [20], BatchDB [13],
Hyrise [16] and HyPer [7] enabling multiple cores to access
each others memory.

1) Scaling out and up: Another big difference in HTAP
databases is their scaling approach. Systems like HyPer [7]
(commercialized by Tableau), Poseidon [21] or Hyrise [16] are
deployed on single servers utilizing NUMA to scale-up onto
multiple cores, thus creating multiple nodes. This approach can
reduce processing time as no data transfer between different
servers is required and all data can be accessed in memory. As
a downside however, large systems require a strong server with
a large main memory. Both HyPer and Hyrise also provide
scale-out approaches, normally keeping their OLTP processing
on the main server, e.g., ScyPer [22].

The main memory database Polynesia [23] also follows a
single server scale up approach. This happens by separating
responsibility of workloads to different OLTP and OLAP ”is-
lands”. By adding more islands the analytical and transactional
throughput can be increased.

Like Hyrise and HyPer - SAP HANA [24] keeps the OLTP
workload on one machine, utilizing NUMA to use as many
cores as required and available, but implements scaling the
OLTP workload out to other servers as a base feature. Using
HANA Asynchronous Parallel Table Replication (ATR) the
database distributes its data amongst multiple replicas enabling
a more efficient OLAP approach.

BatchDB [13] also handles the OLTP workload on the main
server. The OLAP workload can be either executed on a
different node of the same machine, or an entirely different
server.

Contrarily, Wildfire [25][26] (while initially commercialized
as IBM DB2 Event Store not all Wildfire decisions seem to
apply to Db2 Event Store anymore) utilizes a fully distributed
approach. Heavily relying on Apache Spark and Apache
Zookeeper, all requests pass Sparks API and get distributed
across multiple Spark executors. These executors delegate the
transactional and analytical requests to the Wildfire engine
daemons. All daemons use their main memory as well as SSDs
and are connected to one shared data storage, e.g., a cloud data
store. With this approach more throughput can be achieved,
but ACID on the other hand is no longer possible. One of
the more recent researches on the Wildfire system, Wildfire-
Serializable (WiSer) [27] also offers high availability besides
HTAP. It is furthermore optimized for IoT workloads.

Like Wildfire, SnappyData [28] also uses Spark as a core
component to scale out the system to a database cluster.
Therefore, the system enables more information to be kept
in memory without the need for one expensive server.

Janus [19] also uses a distributed setup but implements the
query distribution on its own with execution servers. These

delegate the query to a corresponding row partitioned server
for OLTP workloads or a column partitioned server for OLAP
workloads.

TiDB uses a refined multi Raft-Group-approach. The
database is separated into multiple regions, each having their
own Raft group. OLTP workloads are send to the group leader,
which replicates them asynchronously to other OLTP followers
and synchronously to an OLAP column store. Multiple Raft
groups can share the same OLAP optimized column store.
OLAP queries can then be executed using both, the OLTP
leader and followers, as well as the OLAP database [18]. The
primary scaling is achieved by splitting into more regions
with their own Raft groups. Each group, however, only has
one leader ingesting OLTP requests. OLAP requests can be
handled by the whole Raft group as well as a read optimized
column store. OLTP scaling is therefore only possible by
splitting groups and creating more leaders.

Another unique approach is taken by AnyDB [29]. Instead
of committing to one scheme they use servers with stateless
nodes called AnyComponents (AC). These components can
then take any required role (worker handling queries, query
optimizer creating these queries). By adding more ACs to a
server or by adding more servers they provide great scalability.
The exchange between the ACs is handled by event streams
buffered in queues.

VEGITO uses a shard-approach, distributing sets of a pri-
mary and backup OLTP stores with an OLAP store over
multiple shared-nothing machines. The primary, backup and
analytical store for the same key range however do not have
to be situated on the same machine.

The PostgreSQL based Greenplum builds a cluster consist-
ing of multiple PostgreSQL databases called segments [15].
One segment takes the role of the coordinator while the other
segments build the actual database. Scaling is possible by
simply adding more segments to the cluster.

2) Data/Table Structure: When dealing with OLTP and
OLAP workloads, finding the right table format can be dif-
ficult. HTAP databases therefore employ different table and
data structures. Wildfire [25] exclusively uses column oriented
tables since they are the most efficient solution for OLAP
workload. Db2 Event Store further heavily utilizes Apache
Parquet and its encryption implementation [26].

SAP HANA [5] implements a row-store query engine and
a column-storage engine to combine the advantages of both
technologies. Thus, it is possible to save data in row or column
tables. The column layout is the default, more optimized,
option.

HyPer [30] and Hyrise [16] both use columnar stores with
self implemented data models. Hyrise further presented a
hybrid column layout in an older version [31], combining
simple one-attribute-columns with rows. This is planned to
be implemented again in the new version, but has low priority
and is work in progress.

Opposed to this, PostgreSQL [14] continues to use its row
data storage for OLTP, but has a column store extension
for OLAP workloads, merging the delta from the row store

17

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



continuously in the column store. This is handled similarly
by VEGITO [32] and TiDB [18]. However, column and row
stores are situated on different servers for maximized query
performance and safety (required by TiDB and possible by
VEGITO).

While Greenplum also uses the default PostgreSQL row
storage for fresh data, older data is moved to a column-oriented
store and even older data can be stored in external storage
systems like Hadoop [15].

Polynesia uses a row and column approach, where trans-
actions are saved in a N-ary storage model while analytical
data is saved in a three stacked memory approach [23]. The
column data is stored in so called vault groups (consisting of
four vaults each). Each column is then spread evenly across the
vaults of a group. Following a decomposition storage model
each vault further redundantly contains a dictionary to reduce
lookup cost.

SnappyData [28] follows a hybrid approach, where the fresh
data is stored in an in-memory row-store and is moved in an
on-disk column-store after aging.

The Cloud data store Janus [19] is fully hybrid, utilizing
row partitions for OLTP and column partition for OLAP.
Via a redo-log inspired batching approach and a graph-based
dependency management, the delta from the row replicas can
be merged into the column replicas.

The Casper prototype [33] uses a tailored column layout
to support mixed read/write workloads more efficiently. With
this approach, runtime column adaptations are possible.

Flexible Storage Model (FSM) [34] presented a tile based
architecture to allow a transition from OLTP optimized tables
to OLAP optimized tables depending on the hotness of data.
The data is saved in a row oriented manner at the beginning
and, depending on the hotness, is tile-wise transitioned to an
OLAP column oriented tile structure.

3) Saving and Partitioning Data: For scale-up focused
databases, removing data from main memory to larger, more
cost efficient stores (e.g., hard drives), or efficiently compress-
ing its size, is crucial. HyPer uses horizontal partitioning and
saves its hot data uncompressed on the main memory. The cold
data can also be kept in memory. Instead of evicting data to a
disk, the data is compressed into self implemented Data Blocks
[30] and kept in main memory. However, it is possible to evict
them to secondary storage solutions if preferred (e.g., non-
volatile random-access memory) and use them as persistent
backups. The compression technique is chosen based on the
data actually saved in the Data Block.

Utilizing Small Materialized Aggregates (SMAs) including
meta data like min and max values, irrelevant compressed data
can easily be skipped in searches. If data cannot be skipped
on SMA basis, Positional SMAs (PSMAs), another lightweight
indexing structure developed by the HyPer team, can be used.
These help to determine the range of positions in the Data
Block were the relevant values are located.

Hyrise [31] solves this problem using horizontal partition-
ing and by saving data in 2 kinds of columns: Memory-
Resident Columns for hot data in memory, allowing fast

access, and uncompressed row-oriented Secondary Storage
Column Groups for cold data on hard drives. As the cold data
is saved uncompressed, the cost of accessing it is reduced in
comparison to classical compressed approaches.

Furthermore, the data is organized in so-called chunks [16]
similar to Data Blocks. Chunks can be mutable as long as
they are not full. As soon as they reach their capacity they
transition to an immutable append-only container. They also
have indexes and filters on a per chunk basis like Data Blocks,
allowing faster search and access operations.

In Poseidon, data is saved in non-volatile memory (NVM)
as well as main memory [21]. New transactions are kept solely
in main memory until the commit is conducted, then the final
data is saved on NVM. With this approach the low latency of
main memory can be used for all steps of an transaction, while
at the same time the final data object is saved in a persistent
way. Another project exploring NVM in the form of directly-
attached-NVMe-arrays (DANA) was conducted by Haas et
al. [35], optimizing LeanStore for DANA usage achieving
promising results. However, updates of traditional disk-based
systems seem to be no feasible option due to high CPU load.

Smart Larger Than Memory [36] stores cold data in files
on the hard drive decoupled from the database. Modifications
to the data are no longer possible. The entries can only be
deleted. This happens via removing the reference entry in
memory without accessing the cold data and thereby saving
time. Updating cold data is possible, but the update is a hidden
delete of the cold data index and an insert of new hot data. To
fully take advantage of SmartLTM the read operations always
check the main memory entries first. If the data cannot be
found, cuckoo filters or SMAs are used to locate the data in
the files on the hard drive.

In VEGITO data is stored in paged blocks called epochs
[32]. The epoch counter is continuously increased (around
every 15ms). Witch each new epoch the data from the old
epoch either gets copied to a new page, if a change occurred
in the block, or is simply referenced if no change occurred.
This saves copy time as well as memory.

TiDB first saves deltas in memory. When the amount of
small deltas increases they are merged to bigger deltas and
moved to on-disk storage [18]. Like in F1-Lightning, data
partitions can further be adjusted on the fly, splitting to large
partitions or merging smaller ones for optimized performance.

Like most systems Db2 Event Store utilizes an approach
were the most recent data is moved to the fastest storage and
is moved down the chain (in total three zones) as it ages [26].
In the first step fresh data is saved on NVMe SSDs, then it
is moved to a ”preShared Zone” in shared memory until it is
finally moved to the ”shared Zone” by tracking its meta data
in Zookeeper allowing the transfer of the data’s leadership
between nodes.

The Relational-Memory Approach allows native access to a
row and column format [37]. Utilizing Field-Programmable
Gate Arrays, Programmable Logic In-the-Middle relational
operations are implemented in reprogrammable hardware.
Queries get then provided with the data by the Relational

18

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Memory Engine in the optimal layout instead of accessing
the memory itself.

Finally, partitioning workloads in an intelligent manner
without extra statistical data structures is possible, too. As
presented by Boissier and Kurzynski [38], physical horizontal
data partitioning as well as the adapted aggressive data skip-
ping approach can skip up to 90% of data on OLAP queries.

B. Concurrency

Handling multiple versions of data is a crucial part of all
HTAP databases. Current OLTP and OLAP operations require
a solution to parallelize data access.

The most common approach is Multi Version Concurrency
Control (MVCC). It is utilized in combination with a delta by
PostgreSQL [14], SAP HANA [5], F1-Lightning [39], TiDB
[18], Poseidon [21] and in new versions of HyPer [40]. To
improve scan times in such MVCC systems, a first generic
effort is made by vWeaver, implementing a per record frugal
skip list to reduce lookups by smartly adding ”shortcut”-
pointers between different versions [41].

Hyrise [42] is also using MVCC, but is following a look
free commit approach, replacing the delta.

SnappyData and BatchDB [13] also use MVCC oriented
approaches. SnappyData [12] relies on GemFire to handle
concurrent access and snapshots, while BatchDB [13] uses
MVCC on its OLTP replica, while updating the isolated OLAP
replica batch-wise.

Although HyPer is now using MVCC with delta, it initially
used the fork systemcall to create multiple isolated in-memory
snapshots [43]. Utilizing a copy on write approach to reduce
memory consumption OLAP queries could be executed on
snapshots while the OLTP operations updated the main mem-
ory entries.

In addition to the MVCC on its main OLTP replica, SAP
HANA [24] further uses ATR with a replication log system to
synchronize its multiple server architecture. This synchronizes
data with sub-second visibility delay between the replicas.

Instead of using classical MVCC, Polynesia uses a snapshot
chain for each column with versions containing whole columns
rather than deltas. Following a lazy approach, versions are
marked as dirty if changes to the data occur instead of creating
a new snapshot. If a dirty column is then accessed by an
OLAP query the new snapshot with the latest data is created.
These snapshots can further be shared between multiple OLAP
queries if required. The row and column store are further
synchronized by the update shipping/application unit following
two multi component architectures. With this approach simpli-
fied transactions are added to queues, intelligently merged to
a single update buffer, and then applied to the column store.

Wildfire [25] chooses speed over concurrency as already
mentioned. Therefore, a simple last writer wins approach is
used by the Wildfire engine.

While most systems nowadays use some implementation of
MVCC, research on more efficient snapshotting techniques is
still being carried out, e.g., [44]. Inspired by earlier HyPer
implementations, another research project on snapshotting,

AnKer [45], uses a customized Linux kernel with an updated
fork system call. This updated fork, called vm snapshot,
enables high frequency snapshotting. Through vm snapshot
the researchers are able to snapshot only the used columns.
This significantly outperforms the default fork used initially
by HyPers implementation, providing a possible alternative to
MVCC systems.

In addition to PostgreSQL’s locking system, Greenplum
further introduces a Global Deadlock Detector (GDD) to
resolve deadlocks originating from the distributed server setup
[15].

Wait free HTAP (WHTAP) [46] utilizes snapshotting for
concurrency as well. In this dual snapshot engine approach
data for OLAP and OLTP are stored in different replicas, using
a five state process and two deltas. In this process, the deltas
form the OLAP and OLTP replicas are switched and the old
OLTP delta is merged into the OLAP replica, which takes
effect without slowing the analytical queries down.

In VEGITO concurrency can be handled by the epochs
utilized to save data [32]. While new updates are always
applied to the primary row store of a shard the data is
then asynchronously applied to the replica and the analytical
column store by a non-volatile write-ahead log batched in
epochs. The analytical stores save the latest epoch currently
available on all stores and analytical queries are then executed
on the epoch, rather than the current epoch used by the primary
row store.

AnyDB once again takes a unique approach to concurrency
control. By handling the communication between the ACs via
event-streams and queues concurrency control is achieved by
routing the steams intelligently, merging read requests events
on AC nodes with the write requests, only providing the query
response after the write event is received [29].

C. Garbage Collection

MVCC implementations require performant garbage collec-
tion to prevent large amounts of versions to slow down the
transactions on the database. SAP HANA [5] uses timestamps
and visibility bits to track versions of their data. Data gets
created/edited with a timestamp. When all active transactions
can see this version the timestamp is replaced with a bit
indicating the visibility. If the row is no longer visible to any
snapshot, it can be deleted with the next delta merge.

HyPers garbage collector Steam [40] follows a similar
approach. The main difference is that the garbage collector
is called with every new transaction instead of being a back-
ground task like with SAP HANA. This approach called eager
pruning removes all versions not required by any transaction.
This happens by checking every time the chain is extended
whether all versions included in the version chain are used by
a transaction. With eager pruning the version chain can only be
as long as the amount of different queries. A similar approach
is conducted by Poseidon [21] and Polynesia. In Poseidon on
each transaction, data, which is invalid (e.g., due to an aborted
transaction) or no longer visible on any version, is pruned from
the database. Polynesia deletes all unused snapshots after each

19

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



finished analytical query, which are no longer used by any
running query.

On VEGITO systems data is saved in epochs rather than
with timestamp [32]. As soon as an epoch is outdated (no
fresh data is contained in an epoch as all entries are either
updated or deleted) the epoch can be removed as a whole
from the system.

Due to its heavily distributed architecture with many data
sets saved in main memory and SSDs on the different servers,
Wildfire follows a different solution and implements a lazy
garbage collection approach [25]. When performing lazy
garbage collection, data is only deleted if there is no possibility
that a query could require it. In Db2 Event Store data is pruned
after being moved to the next zone, preventing data duplication
[26]. It is also possible to delete the persistent data in the final
zone by defining a time to live in the configuration.

D. Query Handling

The ways to access the concurrent data differ significantly
from database implementation to implementation.

1) General Query Optimization: Besides the general han-
dling of the queries, Sirin et al. [47] show the importance of
isolating the OLTP and OLAP workloads on shared hardware
systems in order to achieve optimal performance.

Tested on the Umbra SSD-based HTAP database a worst-
case optimal join processing option is introduced providing
a general improvement option for HTAP systems [11]. Im-
plementing a hybrid query optimizer a single query plan can
be build out of binary and worst-case optimal joins, greatly
increasing OLTP performance while having no effect on OLAP
workloads.

2) Query Handling in Scale-up Systems: The systems Hy-
Per [48] and Hyrise [16], primarily engineered for scale-
up solutions working on one dataset, implemented the query
operators as C++ code in their database. The missing variables
are inserted via just in time compilation. After the insertion,
the code is compiled to LLVM assembler code, allowing fast
query execution. As mentioned before, the two databases also
have prototype scale-out options, but focus on the scale-up
approach.

The LLVM approach is also utilized by Poseidon. The
primary commands are already ahead of time (AOT) compiled
and the query execution starts instantly. At the same time
the query is compiled to LLVM code. If the LLVM code
is compiled before the query finishes the query execution is
moved from the AOT code to the more optimized LLVM
code. The compiled LLVM queries are further saved in the
non-volatile memory for faster processing of repetitive queries
[21][49].

In Polynesia query operators get arranged in a tree structure
[23]. These are then further separated into sub-tasks and if
possible executed in parallel, speeding up execution time.

Another approach is to dynamically schedule memory and
computing resources actively [50]. Utilizing their algorithm
the Resource and Data Exchange engine uses a state based
approach to assign the CPU cores to the OLAP or OLTP

workload as required, always trying to maximize productivity
and the database throughput.

3) Query Handling in Scaled-out Systems: Scale-out sys-
tems are separated in two major groups: On the one hand,
systems keeping the OLTP workload on one server, scaling
only the OLAP workload to other servers, as e.g., SAP
HANA [24] or BatchDB [13]. On the other hand, systems
distributing OLTP and OLAP workloads over multiple servers,
e.g., Wildfire [17][25] and SnappyData [12][28].

BatchDB [13] and HANA [24] both handle their OLTP
workload on a single server, scaling-up via NUMA as de-
scribed earlier. For OLAP workloads they are able to scale out
onto multiple servers working on replicas of the main data.

Wildfire [17] and SnappyData [28] contrarily scale out via
Apache Spark, allowing OLTP and OLAP transactions to be
executed on a cluster of nodes dealing with big data and
streaming workloads. Wildfire [17] executes OLTP queries on
the fresh data on Wildfire daemons. OLAP workloads can be
executed via Spark Executor as requests to the daemons or
directly accessing the shared data of the Wildfire database
cluster. With this approach, old data can be consumed from
the shared file system without slowing down OLTP throughput
while the latest data can still be received if required. Db2
Event Store utilizes the Db2 BLU MPP cluster query engine
instead of Apache Spark for the sake of better low latency
query handling [26].

Greenplum handles all queries in a cluster via its central co-
ordinator [15]. The queries are then processed and handled by
workers. Via ”Motion”-nodes data can be transferred between
separated machines/segments.

In AnyDB queries can be executed on multiple servers by
simply routing the query events to the according ACs [29]. To
speed up processing even further data can be ”beamed” to ACs
in advance, before the query is available. By determining the
AC responsible for the query execution and knowing, which
data will be required by the query the data is send to the AC
before the query optimization is done, providing a great speed
up by parallelizing the two work steps.

4) Query Language: While the databases offer many new
functionalities to access and modify data, SQL is still com-
monly supported. The database systems SAP HANA [8],
Wildfire [25], Db2 Event Store [26], Hyrise [16], HyPer [7],
SnappyData [12], TiDB [18], AnyDB [29] and AIM [20]
all enable basic SQL queries to interact with the database.
However, many of them further provide new optimized ways
to interact with the data.

Wildfire [25], TiDB [18] and SnappyData [12] provide
data access via an extended version of the SparkSQL API.
SnappyData also further extends the Spark Streaming API.

SAP HANA [8] provides more specific access through
SQL Script and Multidimensional Expressions (MDX). The
database is also is natively optimized for the ABAP language
and runtime. This allows to bypass the SQL connectivity stack
by directly accessing special internal data representations via
Fast Data Access (FDA). The Native For All Entries (NFAE)

20

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



technique further modifies the ABAP runtime to allow even
more performance improvements.

Hyrise [16] provides a command-line interface, which al-
lows SQL queries but also provides additional visualization
and management functions. Furthermore, the wire protocol
of PostgreSQL allows access through common PostgreSQL
drivers and clients.

HyPer [48] uses HyPerScript as its query language. HyPer-
Script is a SQL-based query language and therefore allows
base SQL statements as well. The features consist of passing
whole tables as query parameters and providing the possibility
to use query results in a later part of the query, removing the
need to query the same value multiple times.

E. Indices

To allow efficient data access and querying on multiple
servers and/or different versions of data, the right index
structure is of special importance in HTAP databases.

Wildfire’s multi-version multi-zone index Umzi [51] em-
ploys a LSM-like structure with multiple runs. It divides
index runs in multiple zones and implements efficient evolve
operations to handle zone switches of data. Further Umzi uses
a multi-tier storage using SSDs and memory caching with self-
updating functionality for fast execution while persisting the
indexes on Wildfires shared data. Db2 Event Store’s index is
based on Umzi [26]. It is only applied to the preShared and
shared zone, as the initial zone does not support synchroniza-
tion.

A general approach to utilizes LSM-Trees for HTAP work-
loads is further presented by Saxena et al. [52]. Their prototype
LASER utilizes a Real-time LSM-Tree allowing to store data
in different formats during its lifecycle (similar to Db2 Event
Store) providing significant speed ups to traditional methods.

HyPer developed the Adaptive Radix Tree (ART) [48] based
on the radix tree. ART uses four different node types that can
handle 4, 16, 48 and 256 entries. The maximum height for
the tree is k for k-byte trees. To further reduce the tree height
and required space, the tree is build lazily, saving single leaf
branches higher in the tree. Additionally, path compression is
used to remove common paths and to insert them as a prefix
of the inner node thereby removing cache inefficient one-way
node chains.

SAP HANA [5] and Hyrise [16] both use B-Trees. Hyrise
further supports the ART index from HyPer [48] and a group-
key-index, implemented by the Hyrise project.

TiDB uses its own implementation, the DeltaTree [18]. Its
creators further built a B+-Tree on top of the delta tree, to
speed up updates on key ranges and look ups on single key
values, as well as merging of deltas.

A B+-Tree is further used as the index of Poseidon [21].
The leafs of the B+-Tree are saved in non-volatile memory,
providing persistency and recovery options, while the inner
structure of the tree is saved in memory. With this approach
only one non main memory access has to be conducted, while
still providing enough persistency for efficient recovery.

Once again utilizing its epoch system VEGITO [32] can use
a buffered tree based index. As changes to the OLAP index
tree only must be applied after an epoch finishes all changes
during an epoch are applied in parallel to buffers and the three
weights are updated. In the update step at the end of an epoch
the tree first gets optimized (also a split is possible here) and
the the buffered changes are applied. This approach evades
slowdowns by removing the need for locking with buffers.

BatchDB utilizes a simplified version of the look-free Bw-
Tree [13]. The version relies on atomic multi-word compare-
and-swap updates.

In 2019, a predictive indexing approach [53] was introduced
to cope with the dynamic demands of a HTAP database.
Predictive indexing increases the throughput by up to 5%.
In this approach, a machine learning system calculates the
optimal index structure for the data according to the workload.
A similar approach can be seen in the Multi-armed bandit
solution from 2021 [54]. With this approach even greater
improvements up to 59% speedup are possible.

The Multi-Version Partitioned B-Tree (MV-MBT) [55] is
another recent research in the indexing sector for HTAP
databases from 2019. This extension of partitioned B-Tree
creates a version aware index, able to maintain multiple
partitions within a single tree structure, sorted in alphanumeric
order.

Likewise proposed in 2019, the Parallel Binary Tree (P-
Tree) [56] is an extension of a balanced binary tree relying on
copy-on write mechanisms to create tree copies on updates.
With this approach, the indices become the version history
without requiring other data structures.

F. Big Data on HTAP Databases

Wildfire/Db2 Event Store was created with big data IoT
workloads as its primary use case [25][26]. Through the
distributed design of its big data platform, Wildfire is able
to concurrently handle high-volumes of transactions as well
as execute analytics on latest data. At the same time, the
system is able to scale onto many machines because of its close
integration of Apache Spark. The usage of an open data format
further enables compatibility with the big data ecosystem.
Nowadays, the commercial version IBM Db2 Event Store is
capable of handling more than 250 billion events per day
[57][26]. SnappyData [28] is an analogically capable big data
platform with an architecture similar to Wildfire.

The SAP HANA database can be used as part of the SAP
HANA data platform to handle big data workloads [58]. Using
a combination of different SAP products, namely SAP Synbase
ESP and SAP Synbase IQ, as well as smart data access
frameworks as Hadoop, Teradata or Apache Spark, the SAP
HANA data platform is a fully functional big data system with
SAP HANA in its core.

HyPerInsight [59] provides big data capabilities in the area
of data exploration on the HyPer database. The goal is to
minimize the required user expertise with the dataset while
simultaneously supporting the user with the formulation of
queries. The support for lambda functions in SQL queries

21

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



allows user defined code to be executed within the queries.
In combination with the HTAP HyPer system as the database,
data mining on real-time data is possible.

G. Recovery, Error Handling and Logging

As many HTAP databases rely on volatile main memory as
primary storage and the other systems utilize distributed data
sets, recovery in case of failure is of special importance. Data
loss has to be prevented and downtime must be minimized.

SAP HANA instances log data persistently on the local drive
for recovery on failure or restart purposes [8]. The logging
approach is inspired by SAP MaxDB.

As already explained, HANA works with ATR in its dis-
tributed architecture [24]. Following the store-and-forward ap-
proach, the data is replicated to multiple servers. An algorithm
then compares the record version IDs of the incoming data
and stored data, requesting the resend of lost log entries if
deviations occur.

Recovery for the latest version of Hyrise is still work in
progress [16], but recovery for older versions of Hyrise was
explained [42]. The database dumps the main partition of the
table as a binary dump on the disk and records the delta to a
log via group commits to hide the latency. At checkpoints, the
delta partitions are also saved as a binary dump on the drive.
If recovery is required, the main dump and delta dump from
a checkpoint are restored and an eventually existing delta log
is replayed on the table, restoring the old state.

BatchDB logs successful transactions on its OLTP replica
in batches via command logging on durable storage [13]. In
case of a failure, the database can recover from these logs.
The OLAP replica itself has no durable logging and has to
recover from the main OLTP replica on failure.

SnappyData [12] uses Apache Sparks logging and recovery
mechanisms, logging transformations used to build Sparks Re-
silient Distributed Datasets (RDDs). Saving RDDs to storage
is also possible. In SnappyData the combination with GemFire
however allows Spark to save the RDDs in GemFires storage
instead of the persistent storage of the server. Small recoveries
can be handled directly by GemFires eager replication, leaving
batched and streaming recovery to Spark, in combination with
the GemFire storage. Further, a peer-to-peer (p2p) approach
is used in SnappyData clusters. Any in-memory data can be
synchronously replicated from the cluster. Additional to the
replication via the p2p approach, data is always replicated to
at least one other node in the cluster.

VEGITO [32] offers a quite refined recovery system, han-
dling four failure cases. If the primary row store fails the leader
role is transferred to its backup row store and a new backup
row store is created. In case of a backup store failure it is
simply recreated from the primary row store. If the OLAP
column store fails it can be recreated from the row stores.
Finally, if both row stores fail it is possible to recreate the
primary row store on the same machine as the column store,
afterwards a backup row store is initialized.

TiDB Raft groups recover in case of a leader failure
by electing a new leader from the groups followers. OLTP

workloads are then simply redirected to the new leader and
continue there [18].

AnyDB once again introduces a new approach. As all
communication inside AnyDB is handled by event streams
these can simply be rerouted to a functional AC in case of a
failure of an AC/server [29].

IBM’s Db2 Event Store provides a catalog, which contains
meta data required for initial cache population [26]. In order
to prevent possible data loss the catalog data is saved in a
shared persistent storage and provided to the system via a
logical node. If the catalog node fails, the data can be reloaded
from this storage by another server of the cluster, which then
resumes the work of the catalog node. All data is further saved
on fast local storage of one node, as well as to the local file
system of at least two other nodes, allowing for easy recovery.

H. Benchmarking

The combination of OLTP and OLAP workloads on one
database also created the need for new benchmarks covering
this sector. In 2011, CH-benCHmark [60] was introduced. The
CH-benCHmark is based on the TPC-C and TPC-H bench-
marks. It executes a transactional and analytical workload in
parallel on a shared set of tables on the same database. The
benchmark can also be used for single workload databases.

In 2017, HTAPBench [61] was published. This benchmark
is able to compare OLTP, OLAP and hybrid workloads on
the database. Its main difference to CH-benCHmark lies in its
Client Balancer, controlling the coexisting OLAP and OLTP
workloads.

Hyrise [16] implements a special benchmark runner to
easily execute benchmarks.

Another benchmark specially designed for document ori-
ented NoSQL platforms is introduced by Tian et al. [62].

I. Stream Processing

Streaming as a special case of OLTP is an emerging use
case for HTAP database systems. In 2016 scientists from ETH
Zürich in cooperation with Huawei presented AIM [20], which
is a high performance event-processing and real time analytics
HTAP database. The three-tiered multi node system processes
events at one tier, stores the data at a central tier and finally
analyses the processed data in real time on the third tier. AIM
however, is optimized for a special streaming use case from
the telecommunications industry.

In early 2019, the research team around HyPer compared
modified versions of HyPer with AIM and Apache Flink [63]
in order to determine the current state of streaming capabilities
of main memory database systems (MMDB). While MMDBs
are still inferior to dedicated streaming frameworks like Flink,
the HyPer team was confident, that HTAP databases could
catch up with some adjustments, even implementing some
of those on HyPer. The main areas requiring improvement
are network optimization, parallel transaction processing, skew
handling and a strong distributed architecture.

SnappyData aims to solve OLTP, OLAP and streaming all
in one product [28] with their tight integration of Apache

22

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Spark and GemFire. In an evaluation, SnappyData was able to
outperform both Spark on TPC-H queries as well as MemSQL
on all kinds of throughput. The focus with SnappyDatas stream
processing lies on complex analytical queries on streams,
which are not possible with default stream processor solutions
[12].

SAPs approach for big data, SAP Big Data [58], supports
streaming as well. Since it uses other SAP products to achieve
it and is not a part of the base SAP HANA database infrastruc-
ture, but rather is built on top of it, it is not further discussed
in this paper.

J. HTAP as a Service

In the last year HTAP became more and more popular
with cloud solutions. Following this trend some of the global
players enabled ”HTAP-as-a-service” (HaaS) for their existing
could solutions. Instead of providing new databases they
introduce HTAP-like functionality with tightly coupled OLTP
and OLAP multi database setups. Still they provide some
interesting new research and provide a valid solution for
production systems.

1) F1-Lightning: F1-Lightning consists of distributed multi
actor system with data aggregation components, in memory
and on disk data storage, as well as a metadata database,
containing all required information to function. Instead of
being a fully functional HTAP database itself, it can be
selected as an addition to the Google Cloud Platform databases
F1-DB and Spanner. Either for some tables or whole databases
the analytical queries are moved to the F1-Lightning cluster,
while the transactional queries stay on the OLTP databases.
With this approach the currently used database does not have
to be exchanged and F1-Lightning can be added and removed
on the fly. While currently only F1-DB and Spanner are
supported as the base OLTP database the architecture is highly
adjustable and further databases could be supported in the
future. For the databases currently being extended F1-Query
is utilized as a query language.

Using a MVCC approach with snapshot isolation the queries
are conducted either in the OLAP improved Lightning tables
or on the OLAP F1-DB/Spanner tables, if the data was not yet
copied. Using a time-to-live (TTL) based garbage collection
approach and compaction techniques older data is deleted and
small deltas are combined to larger, more memory efficient
blocks. However, the used garbage collection approach also
deletes still valid data, if it was not changed in a certain time
span.

Due to information stored in the metadata database and the
modular architecture, partitions of data can be split and merged
on the fly as required, without disturbing the analytical queries.
If certain deltas getting to large for in-memory usage they are
moved and transformed from the row based in memory store
to on-disk storage in a read optimized column structure.

2) Azure Synapse Link: Azure Synapse Link is currently
only available as a service for Azure Cosmos DB [64]. Unlike
F1-Lightning it can only be added to the whole database.
Moreover, there is a high delay between the latest OLTP data

and the data used for OLAP queries of 2-5 minutes. In its core
functionality Azure Synapse Link synchronizes the data from
the row based Azure Cosmos DB to a column based analytical
database and provides a bridge to Azure Synapse Analytics.
Like F1-Lightning a TTL-based garbage collection is utilized.

K. Future

HTAP databases are a new sector, which has evolved
over the past 10 years. On an annual basis, companies and
researchers contribute new ideas to lift their database above
the competition. While we stated in our last work, that there
are currently three trends it seems like a fourth has emerged.

1. CPU GPU collaboration: With new hardware support-
ing heterogeneous parallelism, Heterogeneous HTAP (HH-
TAP/H2TAP) becomes a possibility. In this approach, CPUs
and GPGPUs can access shared memory and divide the
workload between both. Complex OLAP queries are solved
on the GPGPUs, leaving the OLTP workload for the CPUs.
The Caldera [65] prototype proved the feasibility for HHTAP.
Early 2020, the data store GridTables [66] was published and
affirmed the concept again. However, in their summary, the
authors of GridTables pointed out that there are still many
research issues left to be solved. Further, early in 2020, a paper
was published about GPU accelerated data management [67]
explaining how to fully exploit hardware isolation between
CPUs and GPUs and presenting a SemiLazy access method
to reduce the required data transfer. EEVEE (inspired by
and named after the highly adaptable Pokémon Evoli/Eevee)
provides an interesting approach for scheduling such HHTAP
workloads [68]. While the work was never formally published
it can provide some valuable insights for upcoming develop-
ments in this area.

2. Streaming workloads: as described in detail in the pre-
vious section, stream processing is a possible use case for
HTAP databases. Because of the optimization for high OLTP
throughput and the ability to analyse these data streams in
the same system, HTAP databases are an emerging alternative
to current stream processing solutions. While still inferior to
dedicated stream processors, the research on such solutions
saw an increase in interest over the last years, e.g., by the
HyPer team [63] and dedicated streaming HTAP databases
like SnappyData [28] and AIM [20].

3. Optimization: while the bigger part of the last decade
was spent on researching for new systems [7][8][42], the last
quarter focused on their optimization. Few new database sys-
tems were proposed and research started optimizing existing
systems even further [40][45][56]. Also research focusing on
the general improvement of HTAP systems becomes more
common, e.g., [47][41][52].

4. Over the last year the interest in NVMe storage has
greatly increased. Different research is investigating how to
efficiently utilize this kind of non volatile memory [21][35]
while production systems already started utilizing it [26].
While using NVMe instead of ordinary SSD may not seem that
interesting at first this approach offers many new opportunities
(mainly connected to way better speed than ordinary SSDs

23

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



while much cheaper than main memory) and challenges arise
(e.g., problems with upgrading traditional disk-based systems
to NVMe).

Further, solutions utilizing machine learning in combination
with HTAP are slowly emerging. These allow databases to
adapt on their own according to current workload and require-
ments. However, there is still not enough research to speak of
an own trend and it can rather be viewed as another kind of
optimization research. An example for such research is the
presented predictive indexing [53] or the Multi-armed bandit
approach [54].

Another new development is the integration of HTAP capa-
bilities into polystore databases. While polystore and HTAP
databases evolved mostly disjunct over the last years first
approaches to combine both paradigms were conducted with
Polypheny-DB [69] and [70].

Not being a trend in the HTAP database development,
because simply not being HTAP databases, more and more
solutions emerge providing HTAP capabilities to pre-existing
database systems, efficiently bridging the gap between OLTP
and OLAP systems instead of creating new combined database
systems. Examples can be found by the HTAP-as-a-Service
solutions [39][64], as well as systems like IBM Db2 Analytics
Accelerator [71].

L. Open Source and Free Versions

Some of the database systems summarized in this paper
provide open source and/or free solutions.

SnappyData [76] is available with a getting started guide
covering the basic usage. The source code can be found on
GitLab. The project is licensed with the Apache License,
Version 2.0. A comment in the GitHub Readme however
declares the project as legacy. An official statement to the
state of SnappyData could not be found.

MemSQL [77] (now SingleStore), is available, well docu-
mented and can be used for smaller projects up to 4 nodes
for free. Many extensions are available at the official GitHub
account.

Hyrise [75] is available under the MIT license. However, as
it is a research database, breaking changes may occur more
frequently.

A initial version of VEGITO is available under the Apache
License Version 2.0 on GitHub [78]. With the same license a
production ready version of TiDB is also available on GitHub
[72]. It is provided with a complete documentation, however,
32 GB+ RAM are advised for a minimal production setup
and enabling the HTAP capabilities requires further setup and
understanding of some of the underlying software solutions.

Poseidon is available via GitHub under the GPL 3.0 license
[79]. However, while the publications to this database are from
2021 the last commit is from February 2020. The git repository
therefore seems outdated.

While PostgreSQL itself is available open source and can be
modified to handle HTAP workloads [80] there are some other
open source database systems building on top of PostgreSQL.
These are most of the time more refined and easier to use

with HTAP workloads. Greenplum (Apache 2.0 License) [73]
requires linux servers with 16 GB RAM and all utilized servers
of a Greenplum cluster require the same hard- and software
configuration.

The free MemSQL version and a basic SnappyData setup
can already be used on low end systems, naming 8GB main
memory as their minimal requirement to operate efficiently.

To try a HTAP database without a setup process, HyPer and
Umbra can be used. Both research version are provided via
a simple web tool for exploration and testing [81] [82]. This
version, however, is running on a low end system and cannot
be used in production.

V. PRODUCTION READY HTAP DATABASES

While the previous part of this work is solely based on
the systematic literature review this section also highlights
databases, which were not found during the review process, if
they are a valid production ready solution. The focus lays on
technologies already mentioned in the literature review part
of this paper, which are production ready, as well as the big
players. Besides HTAP databases we further include HaaS
solutions, enabling HTAP on existing OLTP cloud systems.
Table I provides a compact overview (only links to free
versions are provided).

VI. CONCLUSION

In this paper, we have shown that HTAP databases are
nowadays serious alternatives to traditional database solutions.
The existence of a market for commercial products like SAP
HANA, IBM Db2 Event Store and Tableau further reinforces
our findings. Moreover, we have highlighted differences of
existing approaches regarding key properties like the fun-
damental architecture, concurrency, or big data capabilities.
Furthermore, we have highlighted a set of currently available
production ready HTAP implementations ranging from open
source systems to commercial products. Thus, this study
can aid both researchers and practitioners in the process of
selecting a matching HTAP solution. Finally, by providing
a comprehensive overview of current approaches, this study
helps to identify trends and point out directions for future
research. As there is a great amount of active research in
this area, this article builds upon our previous literature study
on this topic and enhances it with new alternatives as well
as production ready approaches. The following paragraphs
provide a brief summary of our findings.

Open source and free HTAP products place HTAP databases
on the same level as traditional database systems, allowing
the integration in other products and exploring this new
technology without financial risks.

The combination of OLTP and OLAP queries on one
database efficiently reduces the total cost of ownership and
allows a narrower tech stack for companies. The possibility to
analyse data in real time further validates HTAP databases as
a productive solution with a great added value compared to
conventional databases.

24

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I
PRODUCTIVE HTAP DATABASE SYSTEMS

Database Availability Pricing Core Facts
F1-Lightning - Google Cloud Platform - Spanner subscription +

- F1-DB subscription +
highly scalable; can be added and removed on the fly; extends existing
OLTP databases; (if already using F1-DB or Spanner) no initial database
migration required; only available for Spanner and F1-DB; no ”real” HTAP

Azure Synapse
Link

- Azure - requires multiple Azure
subscriptions

can be added on the fly; extends existing OLTP databases; no initial
database migration required; only available for Azure Cosmos DB; no
”real” HTAP; high delay between OLTP and OLAP store (2-5 minutes)

IBM Db2
Event Store

- local
- own Linux cluster
- IBM Cloud Pak

- free developer version
- free test, not specified
- not specified

enormous scalability; IoT optimized; free developer version; can be self
hosted (in contrast to Azure/Google Cloud); deeply integrated with other
IBM solutions; very active ongoing research

SAP HANA - self hosted
- cloud

- free test, not specified highly integrated with other SAP products; very active ongoing research;
distributed or single server scaling

IBM Db2 Ana-
lytics Acceler-
ator

- on IBM z/OS systems - not specified HTAP database extension for Db2 for z/OS systems; tightly coupled with
other IBM products; requires a Db2 for z/OS database on a mainframe;
very active ongoing research; one of the most researched systems

Amazon
Aurora

- AWS - multiple AWS subscrip-
tions

cloud only; low visibility in HTAP research; easy scalability

Tableau - hosted
- self hosted

- stating at 12$/month based on HyPer; one of the most researched systems; part of tableau
technology stack; not available as simple database

TiDB - GitHub [72] - open source
- enterprise available

highly scalable; moderate minimal hardware requirements; high fault
resistance; setup requires technical knowledge

Greenplum - GitHub [73] - open source PostgreSQL based; highly scalable; moderate minimal hardware require-
ments; integrated machine learning and analytical capabilities

Swarm64 - self hosted
- cloud

- free test version - starting
528$/month

PostgreSQL based; can be used on common clouds; not present in research

Citus - GitHub [74] - open source PostgreSQL based; great scalability; available on Azure; some research
papers; multi-node PostgreSQL cluster

Hyrise - GitHub [75] - open source very active research; active development; research system not suitable for
production

Many different implementations, providing different advan-
tages, are available and can be used as required by the cos-
tumer. Solutions using main memory as a primary/sole storage
as well as solutions relying on shared data storages exist and
are both valid options. Powerful single server database systems
allow a slim tech stack while still being faster than most
traditional OLTP and OLAP optimized databases. Distributed
multi server clusters allow more fail-safe and easier to scale
solutions, while at the same time requiring less performant ma-
chines. SnappyData and MemSQL, for example, can already
be executed on machines with 8GB of memory, scaling up
from there.

Over the last years, new indices, filters, data structures and
replication techniques were developed, optimizing performant
HTAP systems even further. The future seems to be heading in
three main directions: HHTAP - utilizing new heterogeneous
hardware to include the GPUs in HTAP databases and allow
even more efficient architectures.

Streaming - HTAP databases optimized for streaming are
making a combination with external stream processors un-
necessary, further reducing the total cost of ownership and
reducing the size of the required tech stack.

Optimization - while the bigger part of the 2010’s was spent
on developing the base technologies and databases themselves,
the last quarter was primarily spent on optimization, still
leaving much room for improvement.

Machine learning for self adapting databases also could be
an emerging sector in the future, but currently there is not
enough research in this direction to call it a trend.

There seems to be a growing interest in HTAP solutions
yielding high numbers of novel approaches and providing
innovative solutions regrading many technical aspects of
databases. Therefore, our future work will focus on further
exploring the state of research. Due to the amount of active
research it will be difficult to capture the whole area in a
comprehensive literature review. Thus, we aim at providing
in-depth overviews of different aspects of this database area.

REFERENCES

[1] D. Hieber and G. Grambow, “Hybrid transactional and analytical pro-
cessing databases: A systematic literature review,” DATA ANALYTICS
2020, The Ninth International Conference on Data Analytics, pp. 90–
98, 2020.

[2] R. Nigel, F. Donald, P. Massimo, and E. Roxane, “Hybrid
transaction/analytical processing will foster opportunities for dramatic
business innovation,” 2014, last visited: 12.06.2022. [Online]. Available:
https://www.gartner.com/en/documents/2657815

[3] U. Joseph et al., “Predicts 2016: In-memory computing-enabled hybrid
transaction/analytical processing supports dramatic digital business
innovation,” 2015, last visited: 12.06.2022. [Online]. Available:
https://www.gartner.com/en/documents/3179439

[4] Y. Noel and G. Mike, “Emerging technology:
Translytical databases deliver analytics at the speed
of transactions,” 2015, last visited: 12.06.2022.
[Online]. Available: https://www.forrester.com/report/Emerging-
Technology-Translytical-Databases-Deliver-Analytics-At-The-Speed-
Of-Transactions/RES116487

[5] N. May, A. Böhm, and W. Lehner, “Sap hana – the evolution of an
in-memory dbms from pure olap processing towards mixed workloads,”
in Datenbanksysteme für Business, Technologie und Web (BTW 2017),
B. Mitschang, D. Nicklas, F. Leymann, H. Schöning, M. Herschel,
J. Teubner, T. Härder, O. Kopp, and M. Wieland, Eds. Gesellschaft für
Informatik, Bonn, 2017, pp. 545–546.

25

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[6] A. Kemper, V. Leis, and T. Neumann, Die Evolution des Hauptspeicher-
Datenbanksystems HyPer: Von Transaktionen und Analytik zu Big Data
sowie von der Forschung zum Technologietransfer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 149–154. ISBN 978-3-662-54712-
0

[7] A. Kemper and T. Neumann, “Hyper: A hybrid oltp olap main memory
database system based on virtual memory snapshots,” in 2011 IEEE 27th
International Conference on Data Engineering, 2011, pp. 195–206.

[8] F. Färber et al., “The sap hana database - an architecture overview,”
Bulletin of the Technical Committee on Data Engineering / IEEE
Computer Society, vol. 35, no. 1, pp. 28–33, 2012.

[9] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele Univ., vol. 33, 08 2004.

[10] T. Neumann and M. J. Freitag, “Umbra: A disk-based system with
in-memory performance,” in 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org, 2020. [Online].
Available: http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[11] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann,
“Adopting worst-case optimal joins in relational database systems,”
Proc. VLDB Endow., vol. 13, no. 11, pp. 1891–1904, 2020. [Online].
Available: http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf

[12] B. Mozafari, “Snappydata,” in Encyclopedia of Big Data Technologies,
S. Sakr and A. Y. Zomaya, Eds. Springer, 2019.

[13] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “Batchdb:
Efficient isolated execution of hybrid oltp+olap workloads for interactive
applications,” Proceedings of the 2017 ACM International Conference
on Management of Data, 2017.

[14] M. Nakamura et al., “Extending postgresql to handle olxp workloads,” in
Fifth International Conference on the Innovative Computing Technology
(INTECH 2015), 2015, pp. 40–44.

[15] Z. Lyu, H. H. Zhang, G. Xiong, G. Guo, H. Wang, J. Chen, A. Praveen,
Y. Yang, X. Gao, A. Wang, W. Lin, A. Agrawal, J. Yang, H. Wu,
X. Li, F. Guo, J. Wu, J. Zhang, and V. Raghavan, Greenplum: A Hybrid
Database for Transactional and Analytical Workloads. New York,
NY, USA: Association for Computing Machinery, 2021, pp. 2530–2542.
ISBN 9781450383431

[16] M. Dreseler et al., “Hyrise re-engineered: An extensible database system
for research in relational in-memory data management,” in EDBT, 2019.

[17] R. Barber et al., “Evolving databases for new-gen big data applications,”
in CIDR, 2017.

[18] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang, W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song,
R. Sun, S. Yu, L. Zhao, N. Cameron, L. Pei, and X. Tang, “Tidb: A
raft-based htap database,” Proc. VLDB Endow., vol. 13, no. 12, pp. 3072–
3084, Aug. 2020.

[19] V. Arora, F. Nawab, D. Agrawal, and A. E. Abbadi, “Janus: A hybrid
scalable multi-representation cloud datastore,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 4, pp. 689–702, 2018.

[20] L. Braun et al., “Analytics in motion: High performance event-
processing and real-time analytics in the same database,” in
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15. New York,
NY, USA: Association for Computing Machinery, 2015. doi:
10.1145/2723372.2742783. ISBN 9781450327589 p. 251–264. [Online].
Available: https://doi.org/10.1145/2723372.2742783

[21] M. Jibril, A. Baumstark, P. Götze, and K.-U. Sattler, “Jit happens:
Transactional graph processing in persistent memory meets just-in-time
compilation,” in 24th International Conference on Extending Database
Technology (EDBT), 03 2021. doi: 10.5441/002/edbt.2021.05 pp. 37–48.

[22] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann,
“Scyper: elastic olap throughput on transactional data,” in DanaC ’13,
2013.

[23] A. Boroumand, S. Ghose, G. F. Oliveira, and O. Mutlu, “Polynesia:
Enabling effective hybrid transactional/analytical databases with
specialized hardware/software co-design,” CoRR, vol. abs/2103.00798,
2021. [Online]. Available: https://arxiv.org/abs/2103.00798

[24] J. Lee et al., “Parallel replication across formats in sap hana for scaling
out mixed oltp/olap workloads,” Proc. VLDB Endow., vol. 10, no. 12,
p. 1598–1609, Aug. 2017.

[25] R. Barber, V. Raman, R. Sidle, Y. Tian, and P. Tözün, Wildfire: HTAP
for Big Data. Germany: Springer, 2019.

[26] C. Garcia-Arellano, H. Roumani, R. Sidle, J. Tiefenbach, K. Rakopou-
los, I. Sayyid, A. Storm, R. Barber, F. Ozcan, D. Zilio, A. Cheung,

G. Gershinsky, H. Pirahesh, D. Kalmuk, Y. Tian, M. Spilchen, L. Pham,
D. Pepper, and G. Lushi, “Db2 event store: A purpose-built iot database
engine,” Proc. VLDB Endow., vol. 13, no. 12, pp. 3299–3312, aug 2020.

[27] R. Barber et al., “Wiser: A highly available HTAP DBMS for iot
applications,” in 2019 IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, December 9-12, 2019. IEEE, 2019. doi:
10.1109/BigData47090.2019.9006519 pp. 268–277.

[28] R. Jags et al., “Snappydata: Streaming, transactions, and interactive
analytics in a unified engine,” ser. SIGMOD ’16, 2016. ISBN 0-89791-
88-6/97/05

[29] T. Bang, N. May, I. Petrov, and C. Binnig, “Anydb: An architecture-
less dbms for any workload,” in 11th Conference on Innovative
Data Systems Research, CIDR 2021, Virtual Event, January 11-15,
2021, Online Proceedings. www.cidrdb.org, 2021. [Online]. Available:
http://cidrdb.org/cidr2021/papers/cidr2021 paper10.pdf

[30] H. Lang et al., “Data blocks: Hybrid oltp and olap on compressed storage
using both vectorization and compilation,” in SIGMOD ’16, 2016.

[31] M. Boissier, R. Schlosser, and M. Uflacker, “Hybrid data layouts for
tiered htap databases with pareto-optimal data placements,” in 2018
IEEE 34th International Conference on Data Engineering (ICDE), 2018,
pp. 209–220.

[32] S. Shen, R. Chen, H. Chen, and B. Zang, “Retrofitting high availability
mechanism to tame hybrid transaction/analytical processing,” in 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, Jul. 2021. ISBN 978-1-939133-22-9
pp. 219–238.

[33] M. Athanassoulis, K. S. Bøgh, and S. Idreos, “Optimal column layout
for hybrid workloads,” Proc. VLDB Endow., vol. 12, no. 13, pp. 2393–
2407, Sep. 2019.

[34] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago between
row-stores and column-stores for hybrid workloads,” in Proceedings
of the 2016 International Conference on Management of Data, ser.
SIGMOD ’16. New York, NY, USA: Association for Computing Ma-
chinery, 2016. doi: 10.1145/2882903.2915231. ISBN 9781450335317 p.
583–598.

[35] G. Haas, M. Haubenschild, and V. Leis, “Exploiting directly-attached
nvme arrays in dbms,” in CIDR, 2020.

[36] P. R. P. Amora, E. M. Teixeira, F. D. B. S. Praciano, and J. C.
Machado, “Smartltm: Smart larger-than-memory storage for hybrid
database systems,” in SBBD, 2018.

[37] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, U. Drepper,
R. Mancuso, and M. Athanassoulis, “Relational memory: Native in-
memory accesses on rows and columns,” CoRR, vol. abs/2109.14349,
2021. [Online]. Available: https://arxiv.org/abs/2109.14349

[38] M. Boissier and D. Kurzynski, “Workload-driven horizontal partitioning
and pruning for large htap systems,” in 2018 IEEE 34th International
Conference on Data Engineering Workshops (ICDEW), 2018, pp. 116–
121.

[39] J. Yang, I. Rae, J. Xu, J. Shute, Z. Yuan, K. Lau, Q. Zeng, X. Zhao,
J. Ma, Z. Chen, Y. Gao, Q. Dong, J. Zhou, J. Wood, G. Graefe,
J. Naughton, and J. Cieslewicz, “F1 lightning: Htap as a service,” Proc.
VLDB Endow., vol. 13, no. 12, pp. 3313–3325, aug 2020.

[40] J. Böttcher, V. Leis, T. Neumann, and A. Kemper, “Scalable garbage
collection for in-memory mvcc systems,” Proc. VLDB Endow., vol. 13,
no. 2, p. 128–141, Oct. 2019.

[41] J. Kim, K. Kim, H. Cho, J. Yu, S. Kang, and H. Jung, Rethink the Scan
in MVCC Databases. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 938–950. ISBN 9781450383431

[42] D. Schwalb, M. Faust, J. Wust, M. Grund, and H. Plattner, “Efficient
transaction processing for hyrise in mixed workload environments,” in
IMDM@VLDB, 2014.

[43] F. Funke, A. Kemper, T. Mühlbauer, T. Neumann, and V. Leis, “Hy-
per beyond software: Exploiting modern hardware for main-memory
database systems,” Datenbank-Spektrum, vol. 14, no. 3, pp. 173–181,
2014.

[44] L. Li et al., “A comparative study of consistent snapshot algorithms for
main-memory database systems,” ArXiv, vol. abs/1810.04915, 2018.

[45] A. Sharma, F. M. Schuhknecht, and J. Dittrich, “Accelerating analytical
processing in mvcc using fine-granular high-frequency virtual snapshot-
ting,” in Proceedings of the 2018 International Conference on Manage-
ment of Data, ser. SIGMOD ’18. New York, NY, USA: Association
for Computing Machinery, 2018. doi: 10.1145/3183713.3196904. ISBN
9781450347037 p. 245–258.

26

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[46] L. Li, G. Wu, G. Wang, and Y. Yuan, “Accelerating hybrid transac-
tional/analytical processing using consistent dual-snapshot,” in Database
Systems for Advanced Applications. Cham: Springer International
Publishing, 2019. ISBN 978-3-030-18576-3 pp. 52–69.

[47] U. Sirin, S. Dwarkadas, and A. Ailamaki, “Performance characteri-
zation of HTAP workloads,” in 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE). IEEE, Apr. 2021. doi:
10.1109/icde51399.2021.00162

[48] K. Alfons et al., “Transaction processing in the hybrid oltp&olap
main-memory database system hyper,” IEEE Computer Society Data
Engineering Bulletin, vol. Special Issue on ”Main Memory Databases”,
2013.

[49] A. Baumstark, M. A. Jibril, and K.-U. Sattler, “Adaptive query compi-
lation in graph databases,” in 2021 IEEE 37th International Conference
on Data Engineering Workshops (ICDEW). IEEE, apr 2021. doi:
10.1109/icdew53142.2021.00027

[50] A. Raza, P. Chrysogelos, A. G. Anadiotis, and A. Ailamaki, “Adaptive
HTAP through elastic resource scheduling,” in Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM,
2020. doi: 10.1145/3318464.3389783 pp. 2043–2054.

[51] C. Luo et al., “Umzi: Unified multi-zone indexing for large-scale htap,”
in EDBT, 2019.

[52] H. Saxena, L. Golab, S. Idreos, and I. F. Ilyas, “Real-time lsm-trees
for HTAP workloads,” CoRR, vol. abs/2101.06801, 2021. [Online].
Available: https://arxiv.org/abs/2101.06801

[53] J. Arulraj, R. Xian, L. Ma, and A. Pavlo, “Predictive indexing.” arXiv,
2019. doi: 10.48550/ARXIV.1901.07064

[54] R. M. Perera, B. Oetomo, B. I. P. Rubinstein, and R. Borovica-
Gajic, “No dba? no regret! multi-armed bandits for index
tuning of analytical and HTAP workloads with provable
guarantees,” CoRR, vol. abs/2108.10130, 2021. [Online]. Available:
https://arxiv.org/abs/2108.10130

[55] C. Riegger, T. Vinçon, R. Gottstein, and I. Petrov, “Mv-pbt: Multi-
version index for large datasets and htap workloads,” ArXiv, vol.
abs/1910.08023, 2020.

[56] Y. Sun, G. Blelloch, W. S. Lim, and A. Pavlo, “On supporting efficient
snapshot isolation for hybrid workloads with multi-versioned indexes,”
Proc. VLDB Endow., vol. 13, pp. 211–225, 2019.

[57] “Ibm db2 event store,” last visited: 12.10.2020. [Online]. Available:
https://www.ibm.com/de-de/products/db2-event-store

[58] N. May et al., “Sap hana - from relational olap database to big data
infrastructure,” in EDBT, 2015.

[59] N. Hubig et al., “Hyperinsight: Data exploration deep inside hyper,”
Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 2017.

[60] R. L. Cole et al., “The mixed workload ch-benchmark,” in DBTest ’11,
2011.

[61] F. Coelho, J. a. Paulo, R. Vilaça, J. Pereira, and R. Oliveira, “Htapbench:
Hybrid transactional and analytical processing benchmark,” in Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering, ser. ICPE ’17. New York, NY, USA: Association for
Computing Machinery, 2017. doi: 10.1145/3030207.3030228. ISBN
9781450344043 p. 293–304.

[62] Y. Tian, M. Carey, and I. Maxon, “Benchmarking hoap for scalable
document data management: A first step,” in 2020 IEEE Interna-
tional Conference on Big Data (Big Data), 2020. doi: 10.1109/Big-
Data50022.2020.9377937 pp. 2833–2842.

[63] A. Kipf et al., “Scalable analytics on fast data,” ACM Trans.
Database Syst., vol. 44, no. 1, Jan. 2019. [Online]. Available:
https://doi.org/10.1145/3283811

[64] B. Shiyal, “Chapter 9 - synapse link,” in Beginning Azure synapse
analytics transition from data warehouse to data lakehouse. S.l: Apress,
2021. ISBN 978-1-4842-7060-8

[65] A. Raja, K. Manos, P. Danica, and A. Anastasia, “The case for
heterogeneous htap,” 8th Binnial conference on Innovative Data Systems
Reseach (CIDR ’17), 2017.

[66] M. Pinnecke, G. Campero Durand, D. Broneske, R. Zoun, and G. Saake,
“Gridtables: A one-size-fits-most h2tap data store: Vision and concept,”
Datenbank-Spektrum, 01 2020.

[67] A. Raza, P. Chrysogelos, P. Sioulas, V. Indjic, A. C. Anadiotis, and
A. Ailamaki, “Gpu-accelerated data management under the test of time,”
in CIDR. Zenodo, Jan. 2020. doi: 10.5281/zenodo.3827490

[68] K. Agrawal, A. Balasubramanian, S. Kamat, and G. P. M. Krishnan,
“Scheduling for htap systems on cpu-gpu clusters,” 2020. [Online].
Available: https://arjunbala.github.io/wisc-cs839-ngdb20-paper177.pdf

[69] M. Vogt, N. Hansen, J. Schönholz, D. Lengweiler, I. Geissmann,
S. Philipp, A. Stiemer, and H. Schuldt, “Polypheny-db: Towards bridging
the gap between polystores and htap systems,” in Heterogeneous Data
Management, Polystores, and Analytics for Healthcare. Springer
International Publishing, 2021. ISBN 978-3-030-71055-2 pp. 25–36.

[70] P. Kranas, B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Jiménez-
Peris, and M. Patiño-Martinez, “Parallel query processing in a poly-
store,” Distributed and Parallel Databases, vol. 39, no. 4, pp. 939–977,
Feb. 2021.

[71] D. Butterstein, D. Martin, K. Stolze, F. Beier, J. Zhong, and L. Wang,
“Replication at the speed of change: A fast, scalable replication solution
for near real-time htap processing,” Proc. VLDB Endow., vol. 13, no. 12,
pp. 3245–3257, aug 2020.

[72] “Tidb - github repository,” last visited: 30.12.2021. [Online]. Available:
https://github.com/pingcap/tidb

[73] “Greenplum - github repository,” last visited: 31.12.2021. [Online].
Available: https://github.com/greenplum-db/gpdb

[74] “Citus - github repository,” last visited: 02.01.2022. [Online]. Available:
https://github.com/citusdata/citus

[75] “Hyrise github,” last visited: 12.10.2020. [Online]. Available:
https://github.com/hyrise/hyrise

[76] SnappyData. Snappydata 1.2.0 - getting started in 5
minutes or less. Last visited: 12.10.2020. [Online]. Available:
https://snappydatainc.github.io/snappydata/quickstart/

[77] MemSQL. Memsql documentation. Last visited: 12.10.2020. [Online].
Available: https://docs.memsql.com/v7.1/introduction/documentation-
overview/

[78] “Vegito - github repository,” last visited: 30.12.2021. [Online].
Available: https://github.com/SJTU-IPADS/vegito

[79] “Poseidon - github repository,” last visited: 31.12.2021. [Online].
Available: https://github.com/dbis-ilm/poseidon core

[80] “Postgresql - github repository,” last visited: 31.12.2021. [Online].
Available: https://github.com/postgres/postgres

[81] “Hyper online interface,” last visited: 12.10.2020. [Online]. Available:
http://hyper-db.de/interface.html

[82] “Umbra online interface,” last visited: 01.01.2022. [Online]. Available:
https://umbra-db.com/interface/

27

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A Hybrid Graph Analysis and Machine Learning Approach Towards Automatic 
Software Design Pattern Recognition Across Multiple Programming Languages

Roy Oberhauser 
Computer Science Dept. 

Aalen University 
Aalen, Germany 

 e-mail: roy.oberhauser@hs-aalen.de 

 
Abstract—The volume of program source code created, reused, 
and maintained worldwide is rapidly increasing, yet code 
comprehension remains a limiting productivity factor. For 
developers and maintainers, well known common software 
design patterns and the abstractions they offer can help support 
program comprehension. However, manual pattern 
documentation techniques in code and code-related assets such 
as comments, documents, or models are not necessarily 
consistent or dependable and are cost-prohibitive. To address 
this situation, we propose the Hybrid Design Pattern Detection 
(HyDPD), a generalized approach for detecting patterns that is 
programming-language-agnostic and combines graph analysis 
(GA) and Machine Learning (ML) to automate the detection of 
design patterns via source code analysis. Our realization 
demonstrates its feasibility. An evaluation compared each 
technique and their combination for three common patterns 
across a set of 75 single pattern Java and C# public sample 
pattern projects. The GA component was also used to detect the 
23 Gang of Four design patterns across 258 sample C# and Java 
projects as well as in a large Java project. Performance and 
scalability were measured. The results show the advantages and 
potential of a hybrid approach for combining GA with artificial 
neural networks (ANN) for automated design pattern detection, 
providing compensating advantages such as reduced false 
negatives and improved F1 scores. 

Keywords—software design pattern detection; machine 
learning; artificial neural networks; graph analysis; software 
engineering. 

I. INTRODUCTION 
This paper extends our previous work on automatic design 

pattern detection (DPD) [1].  
A major digitalization transformation is underway 

throughout industry and society [2], dependent on increasing 
amounts of software to drive it. For instance, Google is said to 
have at least 2bn lines of code (LOC) accessed by over 25K 
developers [3], and GitHub currently reports over 200m 
repositories and 73m developers [4]. It has been estimated that 
worldwide well over a trillion LOC exist [5] with 111b lines 
of new software code created annually [6]. This is exacerbated 
by a limited supply of programmers and high employee 
turnover rates for software companies, e.g., 1.1 years at 
Google [7]. Furthermore, the high degree of utilization in live 
business operations creates additional time pressure and stress 
for rapid turnaround, development or maintenance cycles, or 
deployment times.  

The economics of rapidly growing codebases, code 
longevity, and high turnover make program development and 

maintenance challenging programmers (herewith including 
maintainers) especially with regard to fast program 
comprehension and understanding of (legacy) codebases. 
Given limited resources and such a vast amount of code, 
~75% of technical software workers are estimated to be doing 
maintenance [8]. Moreover, program comprehension may 
consume up to 70% of the software engineering effort [9]. 
Activities involving program comprehension include 
investigating functionality, internal structures, dependencies, 
run-time interactions, execution patterns, and program 
utilization; adding or modifying functionality; assessing the 
design quality; and domain understanding of the system [10]. 
Code that is not properly understood by programmers impacts 
efficiency and reduces quality.  

For program comprehension, experts tend to develop 
efficiently organized specialized schemas or abstractions that 
contribute to efficient problem and system decomposition and 
comprehension, and macrostructures (or chunks) and beacons 
(or cues) being important elements in cognition mental 
models [11]. In the area of software engineering, software 
design patterns have been well-documented and popularized, 
including the Gang of Four (GoF) [12] and POSA [13]. The 
application of abstracted and documented solutions to 
recurring software design problems has been a boon to 
improving software design quality and efficiency. 
Discovering such common macrostructures or associated 
pattern terminology in code can serve as beacons to such 
abstracted macrostructures and may help identify aspects such 
as the author's intention or purpose.  

However, the actual detection and post-coding 
documentation of these software design patterns remain a 
challenge. As design patterns have mostly been described 
informally, their implementation can vary widely, depending 
on various factors such as the programming language, the 
natural language and keywords used, the concrete pattern 
structure, the terminology awareness of the programmer, their 
experience, and their understanding and (mis)interpretation. 
Furthermore, the pattern books referenced above were 
published over 25 years ago and not standardized with regular 
updates. Pattern variants may occur and patterns may evolve 
over time with technology. Additionally, the manual 
documentation of software design patterns usage in project 
documents such as the architecture specification may not be 
dependable due to inconsistencies with the codebase, e.g., 
prescriptive documentation of intentions, adaptations during 
development, or maintenance changes. Determining actual 
pattern usage can be beneficial for identifying which patterns 

28

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



are used where and can help avoid unintended pattern 
degradation and associated technical debt and quality issues. 
However, the investment necessary for manual pattern 
extraction, recovery, and archeology is cost prohibitive and 
not sustainable due to the high design competency and labor-
intensive code analysis effort required, especially in light of 
the aforementioned codebase sizes and high turnover. Prechelt 
et al. [14] come to the conclusion that explicit identification 
of patterns in code (here via manually place pattern comment 
lines) facilitate faster and less error-prone maintenance tasks. 

In source code, patterns may not be explicitly mentioned 
or commented at all, or they might be or inconsistently or 
incorrectly mentioned. Semantic issues due to various natural 
languages and naming differences may also cause beacons or 
keywords to differ. Since in our context we assume access to 
source code, intentional obfuscation via a tool is unlikely, but 
unintentional obfuscation is possible. One way to nevertheless 
explicitly identify patterns in code would be automated 
detection via a tool. Yet automated detection and extraction of 
software design patterns from code is not readily available 
among popular software development tools. Various research 
work has attempted to find automated techniques, yet these 
often fail to recognize or address coverage of all of the basic 
23 GoF patterns and rather emphasizing certain design 
patterns, or were not evaluated on a larger code base. They 
conclude by suggesting that a combination of techniques 
might be promising research approach.   

In our previous work DPDML (Design Pattern Detection 
using Machine Learning) [1], we showed the feasibility of our 
cross-language approach for DPD by realizing the ML core of 
our approach. Our evaluation using 75 unique Java and C# 
code projects for training and testing to detect three different 
types of GoF patterns (creational, structural, and behavioral) 
provided insights into its potential and limitations. It 
necessitated finding sufficient training sets (sample projects) 
for each pattern, and our realization, while combining metrics 
and semantic analysis, relied on a single technique, namely 
ML. 

This paper contributes our hybrid automated design 
pattern detection approach called Hybrid Design Pattern 
Detection (HyDPD) supporting multiple programming 
languages and amalgamating GA with ML to utilize the 
advantages of both techniques while decreasing their 
liabilities. Our realization of the solution approach shows its 
feasibility. An evaluation compared each technique and their 
combination for three common patterns across a set of 75 
single-pattern Java and C# public sample pattern projects. 
Furthermore, to provide insights into its potential and 
limitations, the GA component was applied on 23 GoF design 
patterns across 258 sample C# and Java projects, as well as a 
larger Java project (JUnit). 

The structure of this paper is as follows: the following 
section discusses related work. Section 3 describes our 
solution approach. In Section 4, our realization is presented, 
which is followed by our evaluation in Section 5. Thereafter, 
a conclusion is provided. 

II. RELATED WORK 
Various approaches have been used for software design 

pattern detection, and they can be categorized based on 
different analysis styles, such as structural, behavioral, or 
semantic (and some utilizing a combination of styles) [15]. 
Structural analysis utilizes static DPD based on inter-class 
dependencies, data types, and method invocations found in 
code. Behavioral analysis extracts behavior via static and/or 
dynamic analysis techniques, since structure alone may not 
suffice to differentiate patterns. Semantic analysis utilizes 
naming and annotations to distinguish patterns. Another 
categorization option is to group by detection methodologies 
or techniques (learning-based, graph-based, metric-based, 
etc). As a consequence, some work may fall into multiple 
categories. 

Graph-based approaches include: Yu et al. [16] that 
reverse engineer code to UML class diagrams and from XMI 
parse and analyze sub-patterns with class-relationship 
directed graphs. Mayvan and Rasoolzadegan [17] use a UML 
semantic graph. Bernardi et al. [18] apply a DSL-driven graph 
matching approach. DesPaD [19] extract the abstract syntax 
tree from the code, create a single large graph model of a 
project, and then apply an isomorphic sub-graph search 
method using the Subdue tool. Further isomorphic subgraph 
approaches include Pande et al. [20] and Pradhan et al. [21], 
both of which begin with UML class diagrams.  

Learning-based approaches map the DPD problem to a 
learning problem, and can involve classification, decision 
trees, feature maps or vectors, Artificial Neural Networks 
(ANNs), Convolutional Neural Networks (CNNs), Support 
Vector Machines (SVMs), etc. Examples include Alhusain et 
al. [22], Zanoni et al. [23], Galli et al. [24], Ferenc et al. [25], 
Uchiyama et al. [26][27], and Dwivedi et al. [28]. Thaller et 
al. [29] describe a micro-structure-based structural analysis 
approach based on feature maps. Chihada et al. [30] convert 
code to class diagrams, which are then transformed to graphs, 
and have experts create feature vectors for each role based on 
object-oriented metrics and then apply ML. 

Additional approaches include: reasoning-based 
approaches such as Wang et al. [31] that is based on matrices. 
Examples of fuzzy logic approaches include Alhusain et al. 
[32] and Hussain et al. [33]. Examples of rule-based 
approaches include Sempatrec [34] and FiG [35], which uses 
an ontology representation. Metric-based approaches include 
MAPeD [36], PTIDEJ [37], Uchiyama et al. [26][27], and 
Dwivedi et al. [28]. Fontana et al. [38] analyze microstructures 
based on an abstract syntax tree. An example semantic-
analysis style approach is Issaoui et al. [39]. DP-Miner [40] 
uses a matrix-based approach based on UML for structural, 
behavioral, and semantic analysis.  

The DPD styles and methodologies used are quite 
fractured and none has reached a mature and high-quality 
result with an accessible and executable implementation that 
we could evaluate. We are not aware of any approach yet that 
can automatically and reliably detect all 23 GoF design 
patterns. Most have some limitation or drawback, and the 
success rate reported among the approaches varies 
tremendously. Thus, further investigation and research in this 

29

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



area is essential to enhancing the knowledge surrounding this 
area. In contrast to the aforementioned work, our HyDPD 
solution offers a hybrid code-centric approach combining 
various promising structural, behavioral, and semantic 
analysis techniques to leverage the strengths of each. In 
contrast to others, it supports multiple popular programming 
languages. With HyDPD we show the advantages of 
combining GA, ML, metrics, and semantic analysis. 

III. SOLUTION 
Of all available artifacts for DPD, source code represents 

the reality rather than the intention, and should be readily 
available, whereas other pattern information (binaries may not 
build, and runtime instrumentation, UML models, or 
documentation may not exist). Furthermore, as UML 
diagrams can be generated by tools from the source code, the 
underlying data they utilize is also available in the source 
code. As shown in Figure 1, our solution approach thus begins 
with source code as the input and is based on the following 
principles: 

 
Figure 1.  The HyDPD solution concept. 

Programming language-independent: since patterns are 
independent of programming language, our solution abstracts 
the source code by converting it into an abstracted common 
format for further processing. For this, our realization 
currently utilizes srcML [41], which provides an XML-based 
format, currently supporting C, C++, Java, and C#. If other 
abstract syntax formats are standardized and available for 
analysis in a common format, these also can be considered. 

Semantic analysis: common pattern signal words in the 
source code can be used as an indicator or hint for specific 
pattern usage. Additional natural languages can be supported 
to detect usage of pattern names or their constituent 
components in case they were coded in other languages. Our 
realization supports German, Russian, and French. 

Static code metrics extraction: various static code metrics 
are utilized to detect and differentiate design patterns. The 
value ranges of metrics are normalized to a scale of 0-1 for 
utilization with an ANN.  

ML model: in utilizing ML to analyze sample data, a 
model can learn how to classify new unknown data, in our 
case to differentiate design patterns. Our realization may 
apply or combine any ML model that suits the situation. 
Currently, an ANN is used because we were interested in 
investigating its performance, and intend in future work to 
detect a wide pattern scope, pattern variants, and new patterns. 
From our standpoint, alternative non-ML methods such as 
creating a rule-based system by hand would require labor and 
expertise as the number of patterns increases and new 
undiscovered patterns should be detected. With an appropriate 
ML model, these should be learned automatically and be more 
readily detected. Challenges include appropriate slicing of the 
codebase for appropriate metrics and pattern comparison, and 

finding suitable and large enough training datasets for each 
pattern. 

Graph-based structural analysis: the XML-based code 
representation is converted to a BSON (Binary JSON) format 
and stored in a graph database to support graph-based 
structural analysis. In contrast to ML, the advantages include 
the ability to apply graph queries across an entire codebase 
and not requiring any training data. Liabilities include the 
need for hand-crafted detection queries that are not too 
specific (thus overlooking many with only slight variations) 
nor too general or ambiguous to be of practical use 
(identifying too many false positives). 

The underlying hypothesis driving our HyDPD 
investigation is that amalgamating additional data and metrics 
in combination with various analysis techniques such as graph 
and ML models results in better classification accuracy 
compared to any single technique or metric alone. From a 
practicality standpoint, our approach could reduce the labor 
involved in detecting and documenting patterns compared to 
finding potential patterns manually by perusing code and 
accurately classifying them (e.g., for assessing or modernizing 
an unfamiliar legacy system), and can assist developers, 
maintainers, or experts involved in various software 
archeology activities. 

IV. REALIZATION 
The realization of the HyDPD approach consists of two 

main components: HyDPD-ML that applies the ML technique 
and HyDPD-GA that applies the GA technique. Python was 
used to implement the prototype due to its versatility and large 
selection of available libraries, while a Jupyter Notebook was 
used for the DPD user interface. 

A. HyDPD-ML  
Python was used to implement the prototype due to its 

versatility and the available libraries to support the 
implementation of ANNs. TensorFlow was chosen along with 
Keras as a top-layer API.  

For ML, a sufficient dataset of different and realistic 
projects was needed to support supervised learning. While 
certain pattern examples in code can readily be found, finding 
a larger set of different ones in different project settings and 
programming languages turns out to encounter various 
practical challenges and is labor intensive. Due to resource 
and time constraints, our ML realization thus initially focused 
on having the network learn to detect one pattern out of each 
of three main pattern categories: from the structural category 
- Adapter; from the creational patterns -Factory; and from the 
behavioral patterns - Observer. Future work will expand the 
pattern scope. 

Metric-based matching: The ElementTree parser was used 
to traverse srcML and count the specific XML-tags. The 
metric values were not separated by roles or classes, but are 
merged and evaluated as a whole. The metrics used were 
inspired by Uchiyama et al. [26] and are shown in Table I. 

 

30

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I.  OVERVIEW OF METRICS 

Abbreviation Description 
NOC Number of classes 
NOF Number of fields 
NOSF Number of static fields 
NOM Number of methods 
NOSM Number of static methods 
NOI Number of interfaces 
NOAI Number of abstract interfaces 

TABLE II.  SIGNAL WORDS FOR DESIGN PATTERNS 

Pattern Signal Words 
Adapter Adapter adaptee target adapt 
Factory Factory create implements type 
Observer observer state update notify 

 
Semantic-based matching: An obvious approach to pattern 

detection is naming. If a developer already used common 
design pattern terminology in the code, then this should be 
utilized as a pattern detection indicator. For our signal word 
detection, we translated the signal words to German, French, 
and Russian to improve results for non-English code. 

Semantic variations: To determine if other signal words 
beyond the design pattern name were used in 
implementations, we analyzed several examples of 
implemented design patterns. 12 additional signal words were 
selected, four for each pattern as shown in Table II. 

Internationalization: To test internationalization, the 
Python library translate was used to translate the signal words 
to German, French, and Russian. Rather than extending the 
list of metrics passed to the ANN, a match with a translated 
word is counted in the same input parameter as the original 
English words. Applying Natural Language Processing (NLP) 
to reduce words by stemming or creating lemmas to compare 
to a defined word list would also be possible, and may 
improve or deteriorate the results, if for instance the input 
array contained further zeros when no signal words were 
found. 

ANN: Based on our realization scope, since the input array 
is not multidimensional, deep neural networks (DNNs) with 
additional layers would not necessarily yield improved 
results. We thus chose to realize an Artificial Neural Network 
(ANN) with one input layer, two hidden layers, and one output 
layer as shown in Figure 2. We created the network with the 
Keras API with the TensorFlow Python library. 

The input layer size matches the data points, and as there 
are 7 metrics and 12 semantic match values, this makes 19 
input values total. The input model structure is a numpy array 
as follows: 
[NOC, NOF, NOSF, NOM, NOSM, NOI, NOAI, ASW1, 
ASW2, ASW3, ASW4, FSW1, FSW2, FSW3, FSW4, 

OSW1, OSW2, OSW3, OSW4] 
The first 7 values correspond to Table I while the rest 

indicate the number of signal word matches from Table II. 
SW=Signal Word, A=Adapter, F=Façade, and O=Observer, 
1-4 implies the corresponding table column. Only 7 metric 
values are utilized when no signal words exist. 

 
Figure 2.  ANN model overview created with Keras. 

The first hidden layer is a dense layer (with each neuron 
fully connected to the neurons in the prior layer) consisting of 
32 neurons. The activation function was a rectified linear unit 
(ReLU). The second layer is a dense layer with 16 neurons. 
This conforms with the general guideline to gradually 
decrease the neurons as one approaches the output layer. The 
output layer consists of three neurons to match the three 
design patterns that should be detected. The "Softmax" 
activation method is used, which is often used in classification 
problems and supports identifying the confidence of the 
network in its decision. The "Adam" algorithm is a universal 
optimizer that is recommended in a wide assortment of papers 
and guides. As no specialized optimizer was needed, "Adam" 
with its default values was chosen as defined in [42]. No 
regularization was applied in each layer. Adam automatically 
adjusts and optimizes the learning rate. Sparse categorical 
cross entropy was applied as the loss function for this multi-
class classification task. 

The size of the ANN should fit the size of the problem. 
Small adjustments to the ANN structure showed no significant 
performance impact, whereas significantly increasing the 
neuron count or layer count negatively impacted results. With 
two hidden layers and 48 neurons, the first layer contains 640 
parameters, the second layer 528, and the output layer 51, 
resulting in 1219 parameters that are adjusted during training. 

The network is trained in epochs, wherein the complete 
training set is sent through the network with weights adjusted. 
As the weights and metrics change per epoch, an early-
stopping callback stops the training if the accuracy of the 
network decreases over more than 10 epochs, saving the 
network that had the best accuracy. A validation dataset is 
typically used during training to monitor results on unlearned 
data after each epoch, but as our training set was limited, we 
used a prepared testing dataset with known labels. 

 
1) Training Datasets 

As to possible design pattern training sets, the Pattern-like 
Micro-Architecture Repository (P-MARt) includes a 
collection of microstructures found in different repositories 
such as Jhotdraw and JUnit. However, because these patterns 
are intertwined with each other, they do not provide isolated 
example specimens for training the ANN. The Perceptrons 

31

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Reuse Repositories could theoretically provide many 
instances of design patterns for a training dataset, but no 
results were provided on the website during the timeframe of 
our realization, and while the source code analyzer is free, the 
servers could not be reached. 

We did manage to find training data as detailed in the next 
section. Since our initial intent for HyDPD was a much 
broader scope for data pattern mining, and because we 
expected a large supply of sample data, we focused on an 
ANN realization. We were also interested in determining if we 
could train an ANN to detect these patterns with relatively few 
samples. However, due to unexpected additional resource and 
time constraints involved in finding pattern samples manually, 
we had to reduce the number of design patterns involved, and 
could not compare the ANN with alternative classification 
schemes such as Naïve Bayes, Decision Tree, Logistic 
Regression, and SVMs, but intend to in future work. 

B. HyDPD-GA 
For the GA realization, the srcML is converted to BSON 

and stored in MongoDB. A Neo4j Cypher procedure is then 
used to import the BSON from MongoDB into the Neo4j 
database. OPTIONAL MATCH is used to permit variations of 
patterns to be in the result set, while missing entities are 
notated with None. The result set is provided as a 
Dataframe structure. Figure 3 shows the Python classes 
used for the implementation. Not all methods in the Python 
project are depicted in the diagram. Some methods have been 
defined in the scope of view of the class methods. They are 
only used within the framework of the respective method and 
serve to improve the readability of the code. For example, the 
method resolve_names in the ResolveJsonTypes 
class contains another 24 methods. 

The FileStorage class is required to create the folders 
in advance in which the intermediate results of program 
execution are stored. All classes other than DPDetector use 
the Settings class to query the values of the current 
configuration parameters (e.B. Uniform Resource Locator 
(URL) of the MongoDB). The SrcmlDriver class is used 
to convert the code project into the srcML XML 
representation. The SrcmlJsonConverterMulti class 
is used to detect whether the specified code project was 
written in Java or C#. Depending on this, either the class 
SrcmlJsonConverterForCSharp or 
SrcmlJsonConverterForJava is used to convert the 
XML representation of the project to JSON. Both classes 
inherit from the abstract class SrcmlJsonConverter, 
which contains shared functionality. In addition, the 
SrcmlJsonConverter class interacts with the 
ResolveJsonTypes, which undertakes part of the 
conversion process. In addition, all classes (except 
ResolveJsonTypes) use the SrcmlUtil class, which 
supports parsing the XML representation of the project. The 
TypesNeo class interacts with the TypesMongo class to 
import a specific project from MongoDB into the Neo4j 
database. The DPDetector class uses the TypesNeo class 
when executing the DPD queries on the Neo4j database. 

 
Figure 3.  HyDPD-GA Python classes (partial view). 

For each parsed class, the full class name, available 
imported entities, and inheritance from other classes and 
interfaces are extracted. A flag indicates whether the 
respective class is abstract. For each attribute, the type, name, 
and two flags are used for indicating a static attribute or if it 
involves a collection. The parsed class contains a collection of 
methods with their implementation, abstract methods, 
constructors, and getter/setter methods taken into account. For 
each method, the following data is extracted: 

- method name; 
- static flag; 
- abstract flag; 
- constructor flag; 
- return type; 
- flag whether the method is accessible outside its class; 
- method arguments; 
- declared variables including name, type, and collection 

flag; 
- type assigned when a variable was initialized; and 
- names of other methods called from this method. 
After all relevant information has been extracted and 

stored in the form of the JSON object in the types attribute, 
the second stage of processing takes place. This consists in 
resolving the name via all possible types and methods. For 
this, the static class ResolveJsonTypes or its method 
resolve_names is utilized. All possible types refers to the 

32

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



inherited classes, class attributes, method variables, method 
arguments, and the type a method returns. Resolving methods 
considers the methods that are called as well as the methods 
that are used for initialization, and is based on the imported 
entities, the attributes and methods of existing and inherited 
classes, and the local variables. Moreover, the relationship of 
overriding a parent method via a method in the class being 
analyzed is included. In addition, the attributes and methods 
of the parent class are added to the inheriting class. 

The method is then executed transform_types to 
convert the obtained JSON format to the mongoDB BSON 
format. The result is returned by the convertToJson 
method in the SrcmlJsonConterverMulti class. To 
store the BSON object in MongoDB, a new object of the 
TypesMongo class is instantiated. It then calls the method 
transformed_types and passes the BSON object as 
input to that method. Finally, the code project is saved in 
BSON format in MongoDB. 

The class DPDetector performs pattern recognition. 
The method dpd_on_one_testcase in this class 
removes any preexisting Neo4j entities and searches for a 
single pattern in the specified project. It instantiates a new 
object of the class TypesNeo, importing the corresponding 
collection from MongoDB into the Neo4j database using a 
Cypher query. The detect_pattern method uses a 
Cypher query to search for a designated design pattern. If 
matches with the query exist, the result records are grouped 
by the main participant of the pattern, and the correctness of 
the match is calculated as a proportion of the matching nodes 
relative to the total number of nodes searched for (e.g., 0.70 
would indicate a 70% query match). The resulting records are 
then returned as a DataFrame. 

An example Cypher query for the Chain of Responsibility 
(CoR) pattern is shown in Figure 4. First, the type handler 
is defined that has two methods: handle_op and set_op. 
The set_op has at least one argument of type handler. 
Furthermore, two types c_handler and c_handler2 
that inherit from the handler are defined. In addition, both 
classes must have a handler attribute and a method that 
overrides the parent class's method. 

There should also be a client type with a method 
client_op. The client_op method should call either 
handle_op or c_handle_op. In the following, negative 
conditions are defined that further refine the query and 
distinguish it from other patterns. The client type cannot 
inherit from the handler type. The type 
clientc_handler and c_handler2 must not have a 
collection of the type handler. 

The Cypher query for each pattern was tuned as follows: 
For each pattern, a test dataset of at least six Java and C# 
examples from an internet search of GitHub and other sources 
was used to tune the Cypher query in such a way that it detects 
the expected pattern (true positives or TPs). In case it did not, 
the code was analyzed to determine the underlying cause and, 
if possible, the query or, if appropriate due to a faulty 
implementation of the pattern, the code adjusted until it is 
detected. If not, the underlying cause was identified; reasons 

included for instance 1) a non-compliant application of the 
pattern that violate core structural rules of the pattern 
(intentionally or unintentionally due to an author's 
misunderstanding), 2) referencing external classes (missing) 
that were not contained in the source code and required to 
fulfill the pattern, 3) the use of functional programming 
constructs. 

 
Figure 4.  Cypher query for the Chain of Responsibility pattern. 

Thereafter, each query was executed on all 22 other 
patterns to determine what should not belong to the query 
result with regard to FPs. If a positive in an unexpected pattern 
was detected, it was analyzed to determine if 1) the query must 
be further tuned, 2) something in the target code example is 
inappropriate (abstract method, a participant is not allowed in 
an inheritance hierarchy, optional pattern elements), etc. 

An example excerpt from the result output of a Jupyter 
Notebook is shown in Figure 5.  

 
Figure 5.  Example Jupyter Notebook result output excerpt. 

33

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. HyDPD 
To enhance DPD, the HyDPD realization combines both 

HyDPD-ML and HyDPD-GA components, with each 
component supplying a probability P as shown in (1) about 
the likelihood of a certain pattern being detected, where w is 
the weighting.  w is currently equal and set to 0.5 until further 
empirical insights are gathered as to which approach is 
typically more accurate.  

   R  = wML *RML + wGA *RGA (1) 

Weight Tailoring: The weightings can be tailored across 
all patterns or on a per pattern basis, for instance based on 
empirical accuracy rates if one technique is determined to 
have better accuracy for a specific design pattern. 

V. EVALUATION 
Since the primary contribution in this paper is the new GA 

component and its hybrid combination with ML, this 
evaluation focused primarily on investigating the potential of 
GA and its utilization in combination with ML. Our research 
questions (RQs) are adjusted to the limitations of our 
available datasets and time and resources.  

The first three RQs utilize three common GoF patterns for 
analyzing and comparing the HyDPD components and the 
hybrid approach, since HyDPD-ML requires larger pattern-
specific datasets for training:  
RQ1. How does HyDPD-ML perform against three common 

GoF patterns? 
RQ2. How does HyDPD-GA perform against three common 

GoF patterns, and how does it compare with HyDPD-
ML? 

RQ3. How does the hybrid HyDPD perform against three 
common GoF patterns, and how does it compare with 
HyDPD-ML and HyDPD-GA? 

The next four RQs focus on analyzing HyDPD-GA's 
capabilities:  
RQ4. Can HyDPD-GA detect more abstract architectural 

patterns, in particular the Model-View-Controller 
(MVC) pattern? 

RQ5. How does HyDPD-GA perform against the 23 GoF 
patterns and in comparison to related work? 

RQ6. How does HyDPD-GA and HyDPD-ML perform 
against a large project in comparison to related work? 

RQ7. What performance latency and scalability can one 
expect with using HyDPD-GA and how does it 
compare with HyDPD-ML? 

The evaluation consisted of seven parts, each addressing a 
research question: A) HyDPD-ML with three common design 
patterns, B) HyDPD-GA with three common design patterns, 
C) hybrid HyDPD with the same patterns, D) HyDPD-GA to 
probe its ability with an architecture pattern: MVC, E) 
HyDPD-GA across all 23 GoF patterns, and F) HyDPD-GA 
performance latency and scalability  

The software configuration used in the evaluation 
consisted of srcML v1.0, Python 3.8, MongoDB v4, and 
Neo4j 4.2. Python libraries included: simplejson 3.17.4, 
pymongo 3.12.0, neo4j 4.2.0, tensorflow 2.6.0, googletrans 

3.1.0a0, scikit-learn 0.24.2, keras 2.6.0, beautifulsoup4 4.9.3, 
numpy 1.19.5, matplotlib 3.4.3, conda 4.10.3, dpd 0.0.1, 
dpdml 0.0.1, scipy 1.7.1, pip 21.2.4, pandas 1.3.2, jupyter-
client 6.1.12, jupyter-core 4.7.1, jupyter-server 1.10.2. The 
hardware configuration consisted of a PC with an i5-
10210U@1.6GHz CPU, 8GB RAM, 1TB SSD running W10 
Home. Docker v20.10.8 was used to containerize the services: 
jupyter-notebook, neo4j, mongo, and mongo-gui. 

Dirty datasets: While it would be feasible to only involve 
both pure training and pure test datasets (manually removing 
or fixing all incorrectly implemented or mislabeled projects) 
and thus boost the accuracy numbers, we instead chose to 
include the real-world datasets as they were labeled by the 
authors of the projects we found, even though the authors may 
have incorrectly implemented or labeled the patterns. Thus, 
we intentionally include real-world impurity and our 
calculated accuracies reflect this, rather than achieving the 
100% accuracy possible had we manually precleaned training 
and test datasets. 

A. HyDPD-ML Evaluation (Three Patterns) 
To address RQ1 and serve as a basis for comparison, the 

HyDPD-ML evaluation consisted of three steps: 1) dataset 
acquisition, 2) supervised training, and 3) testing.  

1) Dataset Acquisition 
It remains a challenge to procure sufficient code projects 

with implemented pattern datasets in different programming 
languages and various patterns for both training and testing an 
ANN. Due to resource constraints, we thus focused on three 
common patterns from each of the major pattern categories: 
from the creational patterns, Factory; from the structural 
category, Adapter; and from the behavioral patterns, 
Observer. We then found 25 unique single-pattern code 
projects per pattern small single-pattern code projects from 
public repositories, 49 in Java and 26 in C# (mostly from 
github and the rest from pattern book sites, MSDN, etc.), 
evenly distributed into as shown in Figure 6. They were 
specifically labeled as examples of these patterns and 
manually verified. These popular programming languages are 
supported by srcML, and the mix of languages permits us to 
demonstrate the programming language independent 
principle. Language inequalities between available pattern 
examples is likely attributable to the popularity and longevity 
of a language and interest in patterns in that community.  

Training data: Applying hold-out validation, of the 75 
projects available, we selected 60 (20 per pattern category) for 
training the ANN, with between 60-75% of the code projects 
being in Java (green) and the remainder in C# (blue) as shown 
in the upper section of Figure 6. 

Test data: The remaining 15 projects of the 75 total (five 
per pattern category with three in Java and two in C#) were 
used for the test dataset. In order to test whether signal word 
pattern matching significantly impacts the ANN results, these 
projects were duplicated and their signal words removed or 
renamed, resulting in six Java (orange) and four C# (purple) 
projects per pattern/category as shown in the lower section of 
Figure 6. This resulted in 10 test projects per pattern or 30 total 
test projects. 

34

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 6.  Pattern-specific datasets in columns with programming language 
specific training sets on the top rows and test sets on the bottom. 

2) Supervised Training 
As shown in Figure 7, during training the accuracy 

improves from 47% to 95% in the first seven epochs, 
thereafter fluctuating between 85-95% with a peak of 96.7% 
in the 27th epoch. The network loss metrics are shown in 
Figure 7. The loss value drops from an initial 1.0841 to 0.2816 
in epoch 17 before small fluctuations begin, with the trend 
continuing downward. The loss value of 0.1995 in epoch 27 
is an adequate prerequisite for detecting patterns in unknown 
code projects, and we saw little value in increasing the training 
epochs. The early stopping callback was not triggered since 
the overall accuracy of the network is still increasing despite 
the fluctuations, indicating a positive learning behavior and 
implying that with the given data points, it is finding structures 
and values that allow it to differentiate the three design 
patterns from each other. We thus chose to stop the training at 
30 epochs, which took 2-45 seconds depending on the 
underlying hardware environment (any Graphical Processing 
Unit (GPU) with CUDA support will improve processing 
times). 

  
Figure 7.  Network accuracy and loss over 30 epochs of training. 

Considering that the worst case of random guessing would 
result in an accuracy of 33%, the accuracy result of 97% is 
significantly better and shows the potential of the approach.  

The training results show that not only is the ANN 
learning to differentiate the patterns, its confidence for these 
determinations increases during the training. By epoch 27 
with an accuracy of 96.7% and a loss of 0.1995, only two out 
of the 60 total training projects spread evenly across the three 
design patterns are incorrectly classified.  

3) Testing 
For the test dataset, 15 unique code projects were selected 

(five unique projects per pattern), and these were then 
duplicated and their signal words removed, resulting in 30 
code projects. By removing the signal words, we can 
determine the degree of dependence of the network on these 
signal words. 

During testing, the reported accuracy dropped to 83.3%, 
meaning 25 of the 30 patterns were correctly identified. 
Furthermore, the loss went to 0.4060, meaning a loss in 
confidence of its determination. A deterioration in these 
values is to be expected when working with unfamiliar data. 

The resulting confusion matrix is shown in Table III, 
showing that the network was able to use its learned 
knowledge in training to correctly classify a majority of 
unknown projects (25 out of the 30 test projects). The 
precision column indicates how many of the predicted labels 
are correct, while the recall row indicates how many true 
labels were predicted correctly. Fewer false positives (FPs) 
improve the precision, while fewer false negatives (FNs) 
improve the recall value. All the code projects predicted to be 
Factory were correct (a precision of 100%), while the 
remaining 30% of the Factory pattern projects were 
incorrectly classified as another pattern, resulting in a recall of 
0.70. This indicates that the Factory is more easily confused 
with the other patterns, a possible explanation being that the 
metrics we used may better differentiate more involved (i.e., 
more complex) patterns. The other patterns had less precision 
(0.81 or 0.75), but a better recall of 0.90. The overall accuracy 
is 88.9% with an F1 score of 0.83. In one Observer testcase, 
HyDPD-ML was evenly split with Factory Method (0.46 vs. 
0.46) and thus categorized as a FP. 

As to the influence of signal words, our hypothesis that 
signal words would improve the results proved hitherto 
unfounded. The classification precision was not affected by 
signal words, with 12 projects with signal words and 13 
without being correctly classified. Additional test runs 
showed similar results (+/- one project).  

TABLE III.  CONFUSION MATRIX: ML TEST 10 PROJECTS PER PATTERN 

Predicted 
Labels 

True Labels Accur. Precision Recall F1 Score 
Factory Adapter Observer     

Factory 7 0 0 90.0% 1.00 0.70 0.82 
Adapter 1 9 1 90.0% 0.81 0.90 0.86 
Observer 2 1 9 86.7% 0.75 0.90 0.82 
Overall    88.9% 0.83 0.83 0.83 

Accur. = Accuracy 

TABLE IV.  CONFUSION MATRIX: ML CROSS-TESTING 90 PROJECTS  

Predicted 
Labels 

True Labels Accur. Precision Recall F1 Score 
Factory Adapter Observer     

Factory 24 0 1 92.2% 0.96 0.80 0.87 
Adapter 0 24 0 93.3% 1.00 0.80 0.89 
Observer 6 6 29 85.6% 0.71 0.97 0.82 
Overall    90.7% 0.87 0.86 0.86 

Accur. = Accuracy 

Since HyDPD-GA requires no training set, and we will be 
comparing HyDPD-ML with HyDPD-GA and the 
combination as HyDPD, it is pragmatic to utilize the entire 

35

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



dataset of 90 projects for our testing. Hence, we also applied 
ML across the entire dataset (including the training set) to 
serve as a reference for comparison and to ensure that DPD 
did not get worse when the training set is also used for testing. 
This result, which includes the training dataset, is shown in 
Table IV, showing that overall accuracy increased to 90.3%, 
with precision and recall increasing to 0.86 with an overall F1 
score of 0.86. 

B. HyDPD-GA Evaluation (Three GoF patterns) 
To answer RQ2 and to be able to compare HyDPD-GA 

with HyDPD-ML for the three GoF patterns, we utilized the 
entire ML dataset (both the training and test data) as the test 
dataset at 30 test projects per pattern and 90 total. The results 
are shown in Table V-VII below, where for this section we are 
focused on the columns HyDPD-GA and its comparison to 
HyDPD-ML (the column HyDPD will be discussed in the 
following section). The Testcase ID is unique only within a 
specific pattern (for internal tracking), so the ID may reoccur 
within another pattern and refers to a different test case.  

TABLE V.  DPD COMPARISON: FACTORY PATTERN 

Testcase HyDPD-ML HyDPD-GA HyDPD 
1 1.00 0.00 0.50 
10 1.00 0.70 0.86 
11 1.00 0.70 0.86 
12 1.00 1.00 1.00 
13 0.98 0.70 0.85 
14cs 1.00 1.00 1.00 
15cs 1.00 1.00 1.00 
16cs 1.00 1.00 1.00 
17cs 0.99 0.00 0.49 
18 1.00 1.00 1.00 
19cs 1.00 1.00 1.00 
2 1.00 1.00 1.00 
20 0.99 1.00 1.00 
21 1.00 0.70 0.86 
22 0.04 1.00 0.52 
23 0.98 1.00 0.99 
24cs 0.99 1.00 0.99 
25cs 1.00 1.00 1.00 
26 0.02 0.70 0.37 
27 0.03 1.00 0.51 
28 0.02 1.00 0.51 
29cs 0.03 1.00 0.51 
3 1.00 0.70 0.86 
30cs 0.05 1.00 0.53 
4 0.99 0.70 0.85 
5 1.00 0.70 0.86 
6 0.67 0.70 0.69 
7 1.00 0.70 0.86 
8 0.86 0.70 0.78 
9 0.99 0.70 0.85 
FN* 6 2 2 

*False Negatives marked in bold above 

In applying GA to the test datasets, certain testcases 
returned less than the ideal value of 1.0 (e.g., 0.75 would 
indicate a partial match and 0 no match). Since GA works 
differently than ML and can identify a specific node involved 
in a pattern, we can utilize the results to analyze the cause. A 
manual analysis found the following explanations for the 

discrepancies (non 1.0 values) in the HyDPD-GA column in 
Tables V-VII:  

TABLE VI.  DPD COMPARISON: ADAPTER PATTERN 

Testcase HyDPD-ML HyDPD-GA HyDPD 
1 0.06 0.75 0.40 
10 1.00 1.00 0.87 
11 1.00 1.00 1.00 
12 1.00 1.00 1.00 
13cs 1.00 1.00 1.00 
14cs 1.00 1.00 1.00 
15cs 1.00 0.75 0.87 
16cs 1.00 1.00 1.00 
17cs 1.00 1.00 1.00 
18cs 1.00 0.75 0.87 
19cs 1.00 1.00 1.00 
2 1.00 0.00 0.50 
20cs 1.00 1.00 1.00 
21cs 1.00 1.00 1.00 
22cs 0.89 1.00 0.95 
23 1.00 1.00 1.00 
24 1.00 1.00 1.00 
25 0.71 1.00 0.86 
26cs 0.07 1.00 0.54 
27cs 0.04 1.00 0.52 
28 0.05 1.00 0.52 
29 0.06 1.00 0.53 
3 1.00 1.00 1.00 
30 0.04 1.00 0.52 
4 0.64 0.00 0.32 
5 1.00 1.00 1.00 
6 1.00 1.00 1.00 
7 1.00 0.00 0.50 
8 1.00 1.00 1.00 
9 1.00 1.00 1.00 
FN* 6 3 2 

* False Negatives marked in bold above 

Factory pattern: 1) missing either an abstract Factory, an 
abstract Factory Method, or both, 2) using Builder and 
functional programming, 3) Factory Method does not return a 
Product (offers a getter call to retrieve it).  

Adapter pattern: 1) client missing or call of target method 
missing, i.e., code just shows a possible implementation 
without invoking the pattern 2) Adaptee calls the Adapter's 
method – but an Adaptee should not have to know about the 
adaptation (GA returns 0) 3) two different methods are used, 
one method overrides the target method and another method 
calls the Adaptee's method, 4) the Adapter does not actually 
call the Adaptee (GA returns 0). 

Observer pattern: 1) missing abstract Subject or abstract 
methods for notification, 2) missing methods to add or remove 
Observers from the internal list, 3) an external iterator, events, 
or delegation was used (GA returns 0). 

The results show no overlap of FNs occurred across all 90 
test cases - an indication of how each component differs and 
how they can be used together to complement one another. 
HyDPD-GA performed as good or better than HyDPD-ML for 
each pattern with the exception of the Observer pattern with 2 
FNs (False Negatives) versus 1 FN for HyDPD-ML.  

Table VIII shows the result for cross-testing the three 
patterns across the 90 test cases resulting in 270 tests in total 
(TN = true negative). HyDPD-GA had a total of 7 FNs and 1 

36

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



FP across the testcases, which compares well against the 13 
FNs and 13 FPs for HyDPD-ML. Overall HyDPD-GA shows 
as good or better recall, precision, accuracy, and F1 scores than 
HyDPD-ML, with the exception of the single FP for the 
Adapter pattern resulting in 96.4% vs. 100% precision, and 
the additional FN in the Observer pattern resulting in a recall 
of 93.3% vs. 96.7%. 

TABLE VII.  DPD COMPARISON: OBSERVER PATTERN 

Testcase HyDPD-ML HyDPD-GA HyDPD 
1 1.00 0.70 0.85 
10 1.00 1.00 1.00 
11 1.00 1.00 1.00 
12 1.00 1.00 1.00 
13cs 0.99 0.00 0.49 
14cs 1.00 1.00 1.00 
15cs 1.00 1.00 1.00 
16cs 1.00 1.00 1.00 
17 1.00 0.70 0.85 
18cs 1.00 0.00 0.50 
19cs 1.00 1.00 1.00 
2 1.00 1.00 1.00 
20cs 1.00 1.00 1.00 
21cs 1.00 1.00 1.00 
22cs 0.95 1.00 0.97 
23 1.00 1.00 1.00 
24 0.95 1.00 0.97 
25 1.00 1.00 1.00 
26cs 0.91 1.00 0.95 
27cs 0.95 1.00 0.97 
28 0.94 1.00 0.97 
29 0.95 1.00 0.97 
3 0.46 0.70 0.58 
30 0.94 1.00 0.97 
4 1.00 1.00 1.00 
5 1.00 0.70 0.85 
6 1.00 1.00 1.00 
7 1.00 1.00 1.00 
8 1.00 1.00 1.00 
9 1.00 0.70 0.85 
FN* 1 2 1 

* False Negatives marked in bold above 

C. HyDPD Evaluation (Three GoF Patterns) 
To answer RQ3, for all three patterns corresponding to 

Table V through Table VII, the hybrid probability (1) was 
calculated from the HyDPD-ML and HyDPD-GA results, 
with the result shown in column HyDPD. Across all three 
patterns, every single FN from either of the techniques was 
compensated by a partial or full detection by the other 
technique, with 0.32 for Adapter testcase 4 being the lowest 
combined score. the combination often compensates for a FN 
from another component as can be seen in the tables with the 
bold FNs. Furthermore, in practical use perhaps a threshold 
such as 0.3 instead of 0.5 could be used to trigger detection.  

Thus, the resulting combination as HyDPD provides a 
recall as good or better than any single component. Thus, 
HyDPD improves DPD by compensating for a FN of any 
isolated HyDPD-ML or HyDPD-GA value, since one may not 
detect a pattern that the other component can. While this may 
result in more FPs, we are of the opinion that the benefits of 
automation improve efficiency sufficiently that one would 

rather manually quickly verify a detection as false (FP) rather 
than misleading FNs. Thus, we prefer to minimize the miss 
rate or false negative rate (FNR).  

TABLE VIII.  270 CROSS-TEST DPD SUMMARY 

Component Result Factory Adapter Observer Total 
HyDPD-ML FP 0 0 12 13 

FN 6 6 1 13 
TP 24 24 29 77 
TN 60 60 48 167 
Recall 80.0% 80.0% 96.7% 85.6% 
Precision 100.0% 100.0% 70.7% 85.6% 
Accuracy 93.3% 93.3% 85.6% 90.4% 
F1 Score 88.9% 88.9% 81.7% 85.6% 

HyDPD-GA FP 0 1 0 1 
FN 2 3 2 7 
TP 28 27 28 83 
TN 60 59 60 179 
Recall 93.3% 90.0% 93.3% 92.2% 
Precision 100.0% 96.4% 100.0% 98.8% 
Accuracy 97.8% 95.6% 97.8% 97.0% 
F1 Score 96.6% 93.1% 96.6% 95.4% 

HyDPD FP 0 1 0 1 
FN 2 2 1 5 
TP 28 28 29 85 
TN 60 59 60 179 
Recall 93.3% 93.3% 96.7% 94.4% 
Precision 100.0% 96.6% 100.0% 98.8% 
Accuracy 97.8% 96.7% 98.9% 97.8% 
F1 Score 96.6% 94.9% 98.3% 96.6% 

 
HyDPD results in Table VIII show improved results, with 

only 5 FNs and 1 FP out of the 270 test cases, resulting in 
94.4% recall, 98.8% precision, 97.8% accuracy, and an F1 
score of 96.6%. In all cases, HyDPD provided as good or 
better results than either HyDPD-ML or HyDPD-GA alone. 

D. HyDPD-GA Evaluation (MVC Architectural Pattern) 
With regard to RQ4, 20 MVC test pattern examples (16 in 

Java and 4 in C#) were acquired and HyDPD-GA applied. The 
results were 16 TPs, 4 FNs, and 10 FPs. Recall is 0.80, 
precision 0.62, accuracy 0.53, with an F1 score of 0.70. The 
FNs were due to alternative implementations that deviated 
from the formal pattern expectation, while the high number of 
FPs was due to keeping the Cypher query abstract in order to 
maximize DPD given the numerous possibilities the 
architectural pattern could be implemented. We are of the 
opinion that we would rather verify a positive and determine 
a FP than miss a DPD due to a FN. Thus, we prefer to 
minimize the miss rate or FNR. Despite the worse results in 
comparison to the three GoF patterns, we believe HyDPD-GA 
to be a potentially promising technique for architectural 
pattern detection as well, and intend to investigate this further 
in future work. 

E. Evaluation of HyDPD-GA with all GoF Patterns  
RQ5 focuses on the 23 GoF patterns. Due to resource and 

time constraints, it was not feasible to train and evaluate the 
HyDPD-ML component (both alone and in conjunction with 
GA) against all remaining 20 GoF patterns at 25 sample 
projects per pattern, which would require the manual 
acquisition of an additional 500 code project samples. As 

37

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



HyDPD-GA performed well with relatively good accuracy for 
the three patterns evaluated previously in sections B and C, 
and since it requires no training sets, our GoF evaluation only 
utilized HyDPD-GA. For the remaining 20 GoF patterns, from 
GitHub and further sources we acquired at least 6 pattern 
examples (3 in Java und 3 in C#) per GoF design pattern as a 
test dataset. 

1) Testdata 
The Cypher query for each pattern was applied to its own 

pattern test data and tuned as described in the previous section 
IV.B to maximize its TP and TN. Then the queries were 
applied to the entire GoF pattern test set consisting of 258 
tests. The cross-testing resulted in 5934 tests being executed. 
A result of 1 was treated as positive, 0 negative, and in-
between values manually analyzed. Table IX shows the GoF 
DPD results, where X stands for Cross-pattern detection and 
indicates the number of unexpected detections of that pattern 
in a different pattern test set. These deviations were then 
manually analyzed to determine if that pattern did indeed 
occur in the other test set or if it was a FP, shown in the 
corresponding column.  

TABLE IX.  HYDPD-GA GOF DPD. 

  TC FN X FP TP TN A P R F1 
Abstract Factory 6 0 1 0 7 251 1.00 1.00 1.00 1.00 
Builder 9 0 2 2 9 247 0.99 0.82 1.00 0.90 
Factory Method 40 2 26 2 62 192 0.98 0.97 0.97 0.97 
Prototype 12 1 0 0 11 246 1.00 1.00 0.92 0.96 
Singleton 8 0 0 0 8 250 1.00 1.00 1.00 1.00 
Adapter 33 3 15 15 30 210 0.93 0.67 0.91 0.77 
Bridge 7 0 1 0 8 250 1.00 1.00 1.00 1.00 
Composite 10 0 10 0 20 238 1.00 1.00 1.00 1.00 
Decorator 14 0 6 6 14 238 0.98 0.70 1.00 0.82 
Façade 6 1 1 1 5 251 0.99 0.83 0.83 0.83 
Flyweight 14 1 0 0 13 244 1.00 1.00 0.93 0.96 
Proxy 6 1 6 6 5 246 0.97 0.45 0.83 0.59 
CoR 6 0 0 0 6 252 1.00 1.00 1.00 1.00 
Command 6 0 1 0 7 251 1.00 1.00 1.00 1.00 
Interpreter 6 1 3 3 5 249 0.98 0.63 0.83 0.71 
Iterator 6 1 0 0 5 252 1.00 1.00 0.83 0.91 
Mediator 6 1 0 0 5 252 1.00 1.00 0.83 0.91 
Memento 6 0 0 0 6 252 1.00 1.00 1.00 1.00 
Observer 30 3 3 3 27 225 0.98 0.90 0.90 0.90 
State 7 0 5 5 7 246 0.98 0.58 1.00 0.74 
Strategy 6 1 6 3 8 246 0.98 0.73 0.89 0.80 
Template Method 7 0 5 0 12 246 1.00 1.00 1.00 1.00 
Visitor 7 1 0 0 6 251 1.00 1.00 0.86 0.92 
Total 258 17 91 46 286 5585 0.99 0.86 0.94 0.90 

X = Cross-pattern detection; A=Accuracy; P=Precision; R=Recall 

A brief explanation of the FNs and FPs in Table IX: 
Builder: FPs were detected in Memento, whereby an 

Originator instantiates the Memento object based on its own 
state, resulting in similar behavior. 

Factory, Adapter, and Observer: the FNs are described 
above in Section B. One FP each in Composite and Façade. 

Prototype: FN: a clone method calls a Dictionary object, 
resulting in an incomplete graph mapping.  

Decorator: FPs: the DPD confusion occurs since 
Decorator, Adapter, Proxy, Interpreter, and State have 
structural similarities and primarily behavioral differences or 
differences of intent. Also, the main participant inherits 

functionalities from an abstract interface and has a reference 
to an object with this interface. 

Façade: FN: the Cypher query required that the Façade 
class use at least 3 independent classes, but the test case uses 
an inheritance hierarchy, an atypical realization of the pattern. 

Flyweight: FN: missing abstract Flyweight class. 
Proxy: FN: the Proxy class inherits the Service, a non-

compliant pattern. FPs: see Decorator explanation. 
Interpreter: FN: Interpreter method does not use the 

Context object for accumulating results. FPs: see Decorator 
explanation. 

Iterator: FN: an external class was used as an abstract 
iterator; thus the overwriting of the abstract method could not 
be detected. 

Mediator: FN: using functional programming; separating 
Listener and Handler classes rather than a common class for 
both purposes. 

State: FPs: see Decorator explanation. 
Strategy: FN: the client does not create specific strategies 

and does not define which strategy to use; decision made in 
the Context class, which does not reflect the classic pattern 
definition. 

Visitor: FN: The Visitor methods, which apply different 
logic depending on the type of argument, are missing; there is 
only one method with the type of the parent class. This 
violates the pattern definition. 

To summarize, out of 258 testcases there were 286 TPs, 
17 FNs, 46 FPs, and 5585 TNs, resulting in 0.99 accuracy, 
0.86 precision, 0.94 recall, and an F1 score of 0.90. We believe 
this rate to be relatively good for application on this real-world 
sampling. 91 cross detections triggered a manual analysis with 
half of them being FPs. Due to their similarities, certain 
patterns remain challenging to differentiate based only on GA. 
Note that, despite being labeled as such on the internet, a 
number of the FNs were non-compliant or atypical 
implementations, affecting the accuracy rate. While these 
could have been culled beforehand, we wanted to utilize a 
dataset with real-world labeling. Having a larger benchmark 
dataset prepared or approved by experts in the future would 
be helpful for tuning. We note that the four lowest F1 scores 
are for Proxy, Interpreter, State, and Adapter.  

F. HyDPD-GA Evaluation (JUnit) 
To evaluate DPD for a larger project, for RQ6 we 

analyzed the latest version of JUnit source code version 5.8. 
The 1170 Java source files contained 83595 NCLOC (non-
commented LOC) out of 143440 total lines. Since we do not 
presume to be familiar with the architecture of JUnit, we used 
a manual case-independent partial keyword search that 
included all the signal words used to train HyDPD-ML as well 
as certain other terms the GoF book contains with that pattern, 
including "also known as" or component or method names.  

The results for the three GoF patterns to compare HyDPD-
GA and HyDPD-ML are shown in Table X. Since the term 
"factorymethod" was found 137 times in 21 files, the range of 
HyDPD-GA and HyDPD-ML results seem probable. As 
adapter-related terms also occur relatively frequently, the 
range of results for HyDPD-GA and HyDPD-ML also seem 
probable. For Observer, since HyDPD-ML had the worst F1 

38

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



score with a precision of only 70.7%, in our opinion the high 
number of 689 hits are unlikely related to an actual 
implementation of the pattern and we would tend to see the 
HyDPD-GA results as more likely. If proved empirically true 
by further large project testing, one could, for example, tailor 
the HyDPD weightings of (1) for the Observer pattern more 
heavily towards HyDPD-GA. 

TABLE X.  DPD COMPARISON FOR JUNIT (THREE GOF PATTERNS) 

Pattern HyDPD-GA 
Hits [p<1] 

HyDPD-ML 
Hits 

Lexical Search 
Keyword* Hits(Files) 

[raw]** 
Factory 
Method 

33 
[24@0.71] 

150 factory 972(185) 
create 1099(202) 

implements 417(267) 
type 3455(367) 

factorymethod 137(21) 
Adapter 102 

[13@0.75] 
15 adapter 88(23) 

adaptee 8(3) 
target 538(145) 
adapt 100(24) 

wrapper 307(27) 
Observer 0 689 observer 0 

state 204(39) 
update 0 [6(3)] 
notify 17(7) 

publish 222(58) 
subscribe 0 
subject 0 
attach 0 [3(2)] 
detach 0 
register 706(109) 

unregister 14(4) 
deregister 0 

setstate 0 
getstate 0 

* partial any case code search; ML signal words in italics **[raw] values revised where obvious 

For small results where it was obvious, raw values 
sometimes were adjusted if the search result context made it 
clear the pattern was not involved, e.g., the use of the word 
outside of a pattern context in a comment or in error handling 
code for a different purpose. This was in no way a systematic 
analysis of each search result. 

HyDPD-GA was used for checking all 23 GoF patterns 
and provided various pattern detections that lexical analysis 
also found indicators for. Table XI compares our results with 
those of other work we found that published GoF DPD for 
JUnit, which utilized much older versions of JUnit. 
Nevertheless, we can compare the reported results by GoF 
pattern to see the relative extent of detection for such a project. 
Additionally, we performed a lexical search of JUnit v5.8 to 
determine if the pattern name as a keyword indicates possible 
usage, and this was marked next to our HyDPD-GA numerical 
result. While related work used only older JUnit versions, in 
comparison it does not seem to be completely off track in the 
detections, except for the high number of Adapter detections. 
As an explanation, for the three GoF patterns, HyDPD-GA 
had its lowest DPD scores for the Adapter and for all GoF its 
precision was 0.67 with an F1 score of 0.77. Thus, the Adapter 
pattern is possibly confused and not necessarily as high, yet 
the lexical results in Table X may make the higher number 
possible relative to what related work had found. 

TABLE XI.  FULL GOF DPD COMPARISON FOR JUNIT 

  H
yD

PD
-G

A
 

 D
w

iv
ed

i [
28

] 

M
ay

va
n 

[1
7]

 

O
ru

c 
[1

9]
 

 Y
u 

[1
6]

 

nr
p 

[3
4]

 

Se
m

pa
tr

ec
 [4

3]
 

SS
A

 [4
4]

 

Year 2022 2018 2017 2016 2015 2014 2014 2006 

Version v5.8 - 
v3.8, 
v4.1 v3.8 v4.1 v3.8   v3.7 v3.7 

Abstract 
Factory 0* 6 0     0 0 0 na 

Builder 11*         0       
Factory 
Method 33*   1     2 0 0 0 

Prototype 1         0       
Singleton 7*   0 0 4 0 0 0 0 
Adapter 102* 11 4     9 6 1 6 
Bridge 3* 9   2 4 0       
Composite 0*   1 1 2 0 1 1 1 
Decorator 1*   1 1 1 2 1 1 1 
Façade **          0       
Flyweight 1         0       
Proxy 1*         0       
CoR 0*         0       
Command 3*         0       
Interpreter 3         0       
Iterator 8*         0       
Mediator 1         0       
Memento 0         0       
Observer 0   3     1 3 1 1 
State 0*   3     0 3 4 3 
Strategy 0*         0       
Template 
Method 8* 38 1 12 22 1 1 1 1 

Visitor 0*   0     0 0 0 0 
*Manual lexical search indicates possible usage (may just use/extend Java API) **Memory issue 

The results indicate that HyDPD-GA can be utilized on a 
larger project and potentially find or detect patterns. As the 
HyDPD-GA accuracy rates for GoF as shown in Section E 
above were relatively good, we expect the results for JUnit to 
be comparable. However, we note the issues mentioned in that 
previous section, where similar patterns that are mostly 
differentiated by intention can result in a different labeling to 
a similar pattern (e.g., Decorator, Adapter, Proxy, Interpreter, 
and State being similar in structure), being thus more easily 
confused and having lower F1 scores. Detection would require 
a more in-depth analysis to determine if there are issues. 

G. HyDPD Performance Evaluation 
DPD performance was measured as depicted in Table XII 

for small projects (50 to 400 LOC from the test data sets) as 
well as for JUnit 5.8 (to exemplify a large project). The values 
are depicted on a log scale in Figure 8. The differences in 
latency are due to the varying number of positive (required) 
elements (nodes and relations) that need to be matched in a 
Cypher query while ensuring that negative unwanted elements 
are not in the structure. The queries thus vary in complexity 
and in turn affect latency. For instance, Interpreter has many 
conditions as well as negative conditions, whereas Singleton 
requires one class as a participant and has no negative 
conditions. The effects become more noticeable when 
analyzing larger projects.  

39

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE XII.  HYDPD-GA LATENCY 

Pattern Small project average 
(seconds) 

JUnit 5.8 
(seconds) 

Abstract Factory 0.04 0.09 
Builder 0.02 9.77 
Factory Method 0.02 0.10 
Prototype 0.02 0.21 
Singleton 0.02 0.05 
Adapter 0.04 183.71 
Bridge 0.04 0.26 
Composite 0.02 0.04 
Decorator 0.02 23.81 
Façade 0.02 error 
Flyweight 0.02 1.41 
Proxy 0.03 0.14 
CoR 0.08 1.90 
Command 0.03 12.60 
Interpreter 0.02 692.98 
Iterator 0.02 0.23 
Mediator 0.02 0.07 
Memento 0.03 1.59 
Observer 0.03 3.23 
State 0.02 3.01 
Strategy 0.05 58.34 
Template Method 0.02 0.21 
Visitor 0.02 0.31 
Total 0.63 994.06 
Average 0.03 43.22 

 

 
Figure 8.  HyDPD-GA per-pattern latency: small project average vs. JUnit 
(log scale). 

The total processing time needed for conversion, import, 
and DPD was measured as depicted in Table XIII. As one 
might expect for larger code bases, preparation processing 
time plays a more significant role, notably vector conversion 
for HyDPD-ML and Neo4j import for HyDPD-GA. During 
DPD execution, however, HyDPD-ML is not significantly 
impacted in contrast to HyDPD-GA. 

To address performance for larger projects, one 
workaround might be to apply HyDPD-GA selectively for 
only certain pattern searches, or to apply HyDPD-ML initially 
since it executes much more quickly, and then selectively 
apply HyDPD-GA to certain patterns or only to certain 
modules to confirm those that HyDPD-ML detected. 

TABLE XIII.  TOTAL PROCESSING LATENCY 

Process step Small project 
average (sec.) 

JUnit 5.8 
(sec.) 

 ML GA ML GA 
scrML conversion 0.11 0.10 29.2 29.24 
Training 5.90  5.90  
Vector conversion 16.75  22385.25  
MongoDB import  0.01  1.91 
Neo4j import  0.08  948.48 
Total preparation 22.74 0.19 22420.36 979.62 
DPD execution 0.01 0.63 0.11 994.06 
Total  22.75 0.82 22420.47 1973.69 

 

H. Evaluation Discussion 
The discussion of the evaluation results follows the RQs: 
RQ1: HyDPD-ML did demonstrate its feasibility, 

showing practical DPD results in cross-testing three common 
GoF patterns, with overall 90.7% accuracy, 87% precision, 
86% recall, and an F1 score of 0.86. 
RQ2: HyDPD-GA showed its feasibility, and performed 

relatively well against the three common GoF patterns, 
finding fewer but different overall fewer FNs and FPs than 
HyDPD-ML. Overall HyDPD-GA shows as good or better 
recall, precision, accuracy, and F1 scores than HyDPD-ML, 
with the exception of the single FP for the Adapter pattern 
resulting in 96.4% vs. 100% precision, and the additional FN 
in the Observer pattern resulting in a recall of 93.3% vs. 
96.7%. 
RQ3: For the three common GoF patterns, the hybrid 

HyDPD demonstrated its feasibility, performing well with 
results of 94.4% recall, 98.8% precision, 97.8% accuracy, and 
an F1 score of 96.6%. In all cases, HyDPD provided as good 
or better results than either HyDPD-ML or HyDPD-GA alone. 
RQ4: While HyDPD-GA can be useful for detecting more 

abstract architectural patterns, these are more challenging for 
GA to reliably detect due to their more abstract nature, 
enabling various implementation strategies. Testing the MVC 
pattern resulted in 0.80 recall, 0.62 precision, 0.53 accuracy, 
and an F1 score of 0.70. 
RQ5: For checking HyDPD-GA against all 23 GoF 

patterns, cross-testing our 258 GoF testcases resulted in 5934 
tests. It performed well, providing 0.99 accuracy, 0.86 
precision, 0.94 recall, and an F1 score of 0.90. It thus appears 
to provide quite useable results by itself. This could be 
especially suitable when larger datasets necessary for training 
(which HyDPD-ML would require) are unavailable.  
RQ6: Based on the relatively large project JUnit (83K 

NCLOC), when comparing HyDPD-GA to HyDPD-ML for 
the three GoF patterns, a range difference in hits was 
observed, which correlates with our previous analysis that 
FNs of one component are often compensated as TPs by the 
other, or in other words, one DPD technique is better than 
another in certain circumstances. A lexical analysis of the 
code provided insights into the likelihood of the pattern usage, 
and the low precision of 70.7% for HyDPD-ML for the 
Observer pattern and the lack of clear lexical evidence would 
indicate it has a high FP rate for this pattern. HyDPD-GA 
performed relatively well. HyDPD-GA was used for checking 
all 23 GoF patterns and provided various pattern detections 

40

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



that lexical analysis also found indicators for. While related 
work used only older JUnit versions, in comparison it does not 
seem to be completely off track in the detections, except for 
the high number of Adapter detections. As an explanation, for 
the three GoF patterns, HyDPD-GA had its lowest DPD 
scores for the Adapter and for all GoF its precision was 0.67 
with an F1 score of 0.77. Thus, the Adapter pattern is possibly 
confused and not necessarily as high, yet the lexical results in 
Table X may make the higher number possible relative to 
what related work had found. 
RQ7: HyDPD-GA performance latency and scalability 

showed that for simpler queries its DPD performance in 
relative magnitude is on par with HyDPD-ML (for JUnit 5.8 
a few seconds or less), but that particular patterns (in particular 
Builder, Adapter, Decorator, Command, Interpreter, Façade, 
Strategy) do require much longer query times. Preparation 
processing time plays a significant role before DPD can be 
executed, especially vector conversion for HyDPD-ML and 
Neo4j import for HyDPD-GA. 

To summarize the evaluation, HyDPD has shown that it is 
viable for DPD for multiple programming languages. While 
combining the different strengths of HyDPD-ML and 
HyDPD-GA, HyDPD can also compensate for certain 
weaknesses of the other and improves the overall DPD 
capability (e.g., fewer FNs and improved F1 score) while 
allowing for tailoring in weighting. More abstract 
architectural patterns such as MVC, while more challenging 
due to their abstract nature, can also be detected. For situations 
where insufficient training data is available for HyDPD-ML, 
HyDPD-GA can also be used alone and showed relatively 
good DPD results. Additionally, if performance and 
scalability are a primary factor, one alone can be chosen to 
lessen the impact on preparation or execution. 

VI. CONCLUSION 
This paper presented our HyDPD solution, a hybrid 

approach for generalized DPD utilizing graph analysis (GA) 
and Machine Learning (ML) and programming-language-
agnostic approach to automate the detection of design patterns 
via source code analysis. Its realization demonstrates its 
feasibility, using srcML as a common markup language to 
support multiple programming languages, and its generalized 
approach works for many different patterns. The HyDPD-ML 
component was realized with TensorFlow using static code 
metrics and semantic analysis, while the HyDPD-GA 
component uses Cypher queries on the graph database Neo4j. 

The evaluation compared each component and their 
combination for three common patterns across a set of 75 
single pattern Java and C# public sample pattern projects. 
HyDPD-GA was also used to detect the 23 Gang of Four 
design patterns across 258 sample C# and Java projects as well 
as in a larger Java project JUnit. By applying the hybrid, 
HyDPD can compensate for certain weaknesses of the other 
component and improves the overall DPD capability (e.g., 
fewer FNs and improved F1 score) while allowing for per-
pattern or per-technique tailoring in probability weighting. 
More abstract architectural patterns such as MVC, while more 
challenging due to their abstract nature, were also detected. 
While HyDPD-ML requires sufficient initial training data for 

a pattern, HyDPD-GA can also be used alone without training 
and showed relatively good DPD results. Performance and 
scalability measurements showed the differences between 
components, which can be considered as to which technique 
to apply, with HyDPD-GA showing high performance-
sensitivity for certain patterns due to the large number of 
matching and negative conditions that must be met. 

Future work will investigate the inclusion of additional 
pattern properties and key differentiators to improve the 
results even further. This includes analyzing the network 
classification errors in more detail to further optimize the 
network accuracy, adding support for the remaining GoF 
patterns, utilizing semantic analysis with NLP capabilities on 
the code for additional natural languages, supporting 
additional programming languages such as C++. Also, we 
intend to evaluate pattern detection when they are intertwined 
with other patterns and address accuracy, performance, and 
scalability on large code bases. We will also investigate the 
detection of additional design and architectural patterns and 
implementation variants and integration with maintainer and 
developer tooling. Furthermore, to address the risk of 
overfitting, we intend to apply cross-validation and consider 
alternative classification schemes. Thereafter, we intend to do 
a comprehensive empirical industrial case study. 

ACKNOWLEDGMENT 
The author thanks Anna Kazakova, Florian Michel, and 

Christian Leistner for their assistance with the design, 
implementation, evaluation, and diagrams. 

REFERENCES 
[1] R. Oberhauser, "A Machine Learning Approach Towards 

Automatic Software Design Pattern Recognition Across 
Multiple Programming Languages," Proc. of the Fifteenth 
International Conference on Software Engineering Advances 
(ICSEA 2020), IARIA XPS Press, 2020, pp. 27-32. 

[2] M. Muro, S. Liu, J. Whiton, S. Kulkarni, "Digitalization and 
the American Workforce," Brookings Institution Metropolitan 
Policy Program, 2017. [Online] Available from 
https://www.brookings.edu/wp-
content/uploads/2017/11/mpp_2017nov15_digitalization_full
_report.pdf 2022.02.10 

[3] C. Metz, "Google Is 2 Billion Lines of Code—And It’s All in 
One Place." [Online] Available from 
http://www.wired.com/2015/09/google-2-billion-lines-
codeand-one-place/ 2022.02.10 

[4] [Online] Available from https://en.wikipedia.org/wiki/GitHub 
2022.02.10 

[5] G. Booch, "The complexity of programming models," Keynote 
talk at AOSD 2005, Chicago, IL, Mar. 14-18, 2005. 

[6] [Online] Available from 
https://cybersecurityventures.com/application-security-report-
2017/ 2022.02.10 

[7] [Online] Available from 
https://web.archive.org/web/20210314184254/https://www.pa
yscale.com/data-packages/employee-loyalty/least-loyal-
employees 2022.02.10 

[8] C. Jones, "The economics of software maintenance in the 
twenty first century". 2006. [Online] Available from 
https://web.archive.org/web/20160308070720/http://www.co
mpaid.com/caiinternet/ezine/capersjones-maintenance.pdf 
2022.02.10 

41

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[9] R. Minelli, A.Mocci, and M. Lanza, "I know what you did last 
summer: an investigation of how developers spend their time." 
In: Proceedings of the 2015 IEEE 23rd International Conference 
on Program Comprehension (pp. 25-35). IEEE Press, 2015. 

[10] M.J. Pacione, M. Roper, and M. Wood, "A novel software 
visualisation model to support software comprehension." In: 
Proc.. 11th Working Conference on Reverse Engineering. (pp. 
70-79). IEEE, 2004. 

[11] A. von Mayrhauser and A.M. Vans, "Program comprehension 
during software maintenance and evolution," Computer, 28(8), 
pp. 44-55, 1995. 

[12] E. Gamma, Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995. 

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. 
Stal, Pattern-oriented software architecture: a system of 
patterns, Vol. 1. John Wiley & Sons, 2008. 

[14] L. Prechelt, B. Unger-Lamprecht, M. Philippsen and W. F. 
Tichy, "Two controlled experiments assessing the usefulness 
of design pattern documentation in program maintenance," in 
IEEE Transactions on Software Engineering, vol. 28, no. 6, pp. 
595-606, June 2002, doi: 10.1109/TSE.2002.1010061. 

[15] M.G. Al-Obeidallah, M. Petridis, and S. Kapetanakis, "A 
survey on design pattern detection approaches," International 
Journal of Software Engineering (IJSE), 7(3), pp.41-59, 2016. 

[16] D. Yu, Y. Zhang, and Z. Chen, "A comprehensive approach to 
the recovery of design pattern instances based on sub-patterns 
and method signatures," Journal of Systems and Software, vol. 
103, pp. 1-16, 2015.  

[17] B. Mayvan and A. Rasoolzadegan, "Design pattern detection 
based on the graph theory," Knowledge-Based Systems, vol. 
120, pp. 211-225, 2017.  

[18] M.L. Bernardi, M. Cimitile, and G. Di Lucca, "Design pattern 
detection using a DSL‐driven graph matching approach," 
Journal of Software: Evolution and Process, 26(12), pp.1233-
1266, 2014. 

[19] M. Oruc, F. Akal, and H. Sever, "Detecting design patterns in 
object-oriented design models by using a graph mining 
approach," 4th International Conference in Software 
Engineering Research and Innovation (CONISOFT 2016), pp. 
115-121, IEEE, 2016. 

[20] A. Pande, M. Gupta, and A.K.Tripathi, "A new approach for 
detecting design patterns by graph decomposition and graph 
isomorphism," International Conference on Contemporary 
Computing, pp. 108-119, Springer, Berlin, Heidelberg, 2010. 

[21] P. Pradhan, A.K. Dwivedi, and S.K. Rath, "Detection of design 
pattern using graph isomorphism and normalized cross 
correlation," Eighth International Conference on 
Contemporary Computing (IC3 2015), pp. 208-213, IEEE, 
2015. 

[22] S. Alhusain, S. Coupland, R. John, and M. Kavanagh,  "Design 
pattern recognition by using adaptive neuro fuzzy inference 
system," 2013 IEEE 25th International Conference on Tools 
with Artificial Intelligence, pp. 581-587, IEEE, 2013. 

[23] M. Zanoni, F. A. Fontana, and F. Stella, "On applying machine 
learning techniques for design pattern detection," J. of Systems 
& Software, vol. 103, no. C, pp. 102-117, 2015. 

[24] L. Galli, P. Lanzi, and D. Loiacono, "Applying data mining to 
extract design patterns from Unreal Tournament levels," 
Computational Intelligence and Games. pp. 1-8, IEEE, 2014.  

[25] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, "Design pattern 
mining enhanced by machine learning," 21st IEEE Int'l Conf. 
on Softw. Maintenance (ICSM'05), IEEE, pp. 295-304, 2005. 

[26] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo, 
"Design pattern detection using software metrics and machine 
learning," First International Workshop on Model-Driven 
Software Migration (MDSM 2011), pp. 38-47, 2011. 

[27] S. Uchiyama, A. Kubo, H. Washizaki, and Y. Fukazawa, 
"Detecting design patterns in object-oriented program source 
code by using metrics and machine learning," Journal of 
Software Engineering and Applications, 7(12), pp. 983-998, 
2014. 

[28] A.K., Dwivedi, A. Tirkey, and S.K. Rath, "Software design 
pattern mining using classification-based techniques," 
Frontiers of Computer Science, 12(5), pp. 908-922, 2018. 

[29] H. Thaller, L. Linsbauer, and A. Egyed, "Feature maps: A 
comprehensible software representation for design pattern 
detection," IEEE 26th international conference on software 
analysis, evolution and reengineering (SANER 2019), pp. 207-
217, IEEE, 2019. 

[30] A. Chihada, S. Jalili, S.M.H. Hasheminejad, and M.H. 
Zangooei, "Source code and design conformance, design 
pattern detection from source code by classification approach," 
Applied Soft Computing, 26, pp. 357-367, 2015. 

[31] Y. Wang, H. Guo, H. Liu, and A. Abraham, "A fuzzy matching 
approach for design pattern mining," J. Intelligent & Fuzzy 
Systems, vol. 23, nos. 2-3, pp. 53-60, 2012.  

[32] S. Alhusain, S. Coupland, R. John, and M. Kavanagh,  
"Towards machine learning based design pattern recognition," 
In: 2013 13th UK Workshop on Computational Intelligence 
(UKCI 2013), pp. 244-251, IEEE, 2013. 

[33] S. Hussain, J. Keung, and A.A. Khan, "Software design 
patterns classification and selection using text categorization 
approach," Applied soft computing, 58, pp.225-244, 2017. 

[34] A. Alnusair, T. Zhao, and G. Yan, "Rule-based detection of 
design patterns in program code," Int'l J. on Software Tools for 
Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014.  

[35] M. Lebon and V. Tzerpos, "Fine-grained design pattern 
detection," IEEE 36th Annual Computer Software and 
Applications Conference, IEEE, pp. 267-272, 2012.  

[36] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection 
approaches," Innovations in Systems and Software 
Engineering, vol. 11, no. 1, pp. 39-53, 2015. 

[37] Y. G. Guéhéneuc, J. Y. Guyomarc’h, and H. Sahraoui,  
"Improving design-pattern identification: a new approach and 
an exploratory study," Software Quality Journal, vol. 18, no. 1, 
pp. 145-174, 2010. 

[38] F. A. Fontana, S. Maggioni, and C. Raibulet, "Understanding 
the relevance of micro-structures for design patterns 
detection," Journal of Systems and Software, vol. 84, no. 12, 
pp. 2334-2347, 2011. 

[39] I. Issaoui, N. Bouassida, and H. Ben-Abdallah, "Using metric-
based filtering to improve design pattern detection approaches. 
Innovations in Systems and Software Engineering," vol. 11, no. 
1, pp. 39-53, 2015.  

[40] J. Dong, Y. Zhao, and Y. Sun, "A matrix-based approach to 
recovering design patterns," IEEE Transactions on Systems, 
Man, and Cybernetics-Part A: Systems and Humans, vol. 39, 
no. 6, pp. 1271-1282, 2009. 

[41] M. Collard, M. Decker, and J. Maletic, "Lightweight 
transformation and fact extraction with the srcML toolkit," 
IEEE 11th international working conference on source code 
analysis and manipulation, IEEE, 2011, pp. 173-184. 

[42] D. Kingma and J. Ba, "Adam: A method for stochastic 
optimization," arXiv preprint arXiv:1412.6980, 2014. 

[43] G. Rasool and P. Mäder, "Flexible design pattern detection 
based on feature types," In 2011 26th IEEE/ACM International 
Conference on Automated Software Engineering (ASE 2011), 
pp. 243-252, IEEE, 2011. 

[44] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T: 
Halkidis, "Design pattern detection using similarity scoring," 
IEEE transactions on software engineering, 32(11), pp. 896-
909, 2006

42

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Leveraging Gamma Corrections for an Overhead Reduced Mood Adaptive Display
Coloring

Lukas Brodschelm, Felix Gräber, Daniel Hieber and Marc Hermann

Dept. of Computer Science
Aalen University
Aalen, Germany

Email: firstname.lastname@hs-aalen.de

Abstract—Humans can recognize a wide range of colors and
interpret them in many different ways. Besides obvious effects
like highlight and beautification, these colors can influence the
emotional state of humans in a significant way. While this is no
new information and color psychology is a heavily discussed topic
in the psychological area, little research has been conducted in
the human-computer interaction area of this topic. We presented
a mood adaptive display coloring prototype in a previous paper,
in this work the second iteration of the prototype is introduced.
The second version extends the previous implementation, which
utilizes psychological studies and state of the art machine learning
technologies, with a new gamma shift-based coloring approach
we present a greatly overhead reduced coloring service. The
focus of using gamma shifting instead of overlays is to optimize
the software for use on low-performance computers. To obtain
equivalent results an approach is introduced, how to calculate
a gamma-based shift, that is similar to alpha blend overlays.
In order, that the overhead reduced version is still able to have
the same influence effects on the emotion of human users as the
previously presented prototype.

Keywords—Advanced Human Computer Interaction; Mood
Adapting Coloring; Adaptive Display Coloring; Color Psychology;
Emotion Recognition.

I. INTRODUCTION

Colors have been an important part of Human-Computer-
Interaction (HCI) since the introduction of multi color dis-
plays. Nowadays, it is impossible to imagine software without
them, the old default black and white is only used as a stylistic
instrument. Even hardware is often produced with ambient
lighting as a selling point. Unconsciously perceived colors,
like ambient lights or screen taints, can have impact on the
users. In our previous work, we introduced a novel approach
using these effects to influence the users’ mood [1].

Colors are used as an important part of designs for Graphical
User Interfaces (GUIs) in software like games, operating
systems (OS) and business applications, either to help users to
get the required overview or leading workers through complex
procedures with intelligent coloring.

However, the possibilities of colors do not end with high-
lighting certain things and improving the quality of life;
therefore, they can also be used to directly affect the user.
Understanding the influence of color on the human user, clever
coloring can also be used to change the users attitude, e.g., to
get the users trust on a website [2].

That colors can have a quantifiable effect on the human
behavior on special aspects is claimed in several publications

[2]–[5]. The effect of colors on the mood of a person have also
been studied but studies have not yielded clear results [6]. This
is why color psychology is not only a highly disputed topic
but also an an arguable research area. A possible reason for
this might be, that the association and effect of color highly
depends on the subject’s background not only age and gender
but also cultural aspects and probably many more have to be
considered [3], [7]–[9].

However, thanks to the popularity of the topic much re-
search is conducted in this area, allowing a solid foundation
for further research in the HCI environment. Depending on this
knowledge we introduced an approach to interact with users
through decent adaptive coloring, providing emotional support
and the best conditions to successfully master their current task
in a preceding paper [1]. The software we developed for this is
called MAD Coloring (Mood Adaptive Display Coloring), it
is a display overlay framework, which taints the display color
using an overlay, that is applied to the screen using an alpha
blend algorithm.

The provided MAD prototype exposes a generic API for
clients to control the color according to the mood of the user.
Further two simple clients were implemented. One of them
provides a minimal boilerplate for further implementations,
the second one utilizes state of the art machine learning
techniques to recognize mood changes and provide the best
suited coloring solution for the detected mood state.

Using state of the art technologies, like facial recognition
systems or intelligent devices such as smartwatches, the mood
of a user can already be recognized and measured quite
precisely. The resulting information can be used to classify
the emotions and start processes to reinforcing or combating
these.

In this paper, we introduced an alternative implementation
to our last Coloring Service, replacing the overhead heavy
Hudkit service with an overhead reduced gamma shift im-
plementation. This includes, but is not limited to an updated
configuration file handling, the connection to the X.Org dis-
play server and a transformation from RGBA based alpha
blend to gamma correction, that ensures compatibility with
already existing configuration files. Furthermore, we show the
differences between the first, alpha blend overlay and the
gamma based version.

The remainder of this paper is structured as follows: Section

43

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



II provides background information for a better understanding
of the work and introducing required secondary research.
Section III highlights the general concept of MAD-Coloring,
while Section IV explains the currently implemented state
of MAD-Coloring. Following Section V compares the newly
introduced gamma shift Coloring Service with the old Hudkit
service. In Section VI we introduce a possible Case Study to
empirically evaluate our prototype. Section VII provides an
overview of related works. Finally, Section VIII concludes the
paper and lists further research options.

II. BACKGROUND

This section outlines the elementary information about color
psychology and display coloring frameworks, as well as face
recognition basics and a survey about the emotional effect of
color, conducted during this work.

A. Color Theory and Psychology

While color is often accepted as an omnipresent thing
without further questioning, it is a well-defined construct
which can be described accurately with its three components:
hue, value, and chroma [10]. The emotional effect of color is
closely linked to all three of those; therefore, an adjustment of
one of its values can lead to a completely different emotional
reaction. This means, e.g., a green with high brightness and
saturation has a different emotional effect than a green with
the same hue and saturation but low brightness.

Even though color psychology is highly disputed down to its
fundamental theories, it is possible to elaborate some general
statements that are used in this work. While many animals
only see different shades of grey and some can even see
with infrared or ultraviolet vision, humans have settled in the
middle with complex color perception. This has lead to the
development of a society where colors play an important role
in the day to day life, religion, work, and free time. Most
people have a favorite color, and every kid, regardless of their
origin, knows the red cross, star or moon provides them with
help if needed.

While most humans see color the same way, it has quite
different meanings for them. The context in which a color is
experienced and from whom is fundamental for its interpreta-
tion. Age is an important factor, as studies prove, that children
have different associations with certain colors than adults or
elder people. Gender can also play a decisive role [8][3][9].

Elliot and Maier laid the theoretical base for contextual
color psychology with their work in 2012 [8], highlighting
six key properties of the psychological impacts of color:

• There might be psychological relevant associations with
a color.

• Presentation colors might influence psychological opera-
tions, including but not limited to basic impulses such as
attraction and avoidance.

• Associations with colors might trigger affective, cognitive
or behavioral reactions. This happens subconsciously or
without intention.

• Color meanings and associations are influenced by both
trained and inherited behavior.

• The relation between color perception and association is
bidirectional. color perception has an impact on psycho-
logical processes and psychological processes have an
impact on the way color is perceived.

• The psychological effect of color heavily depends on the
context. The context is so important, that the influence
of the same color might result in opposite effects for
different contexts.

Those core statements are used by other research (e.g., [3]) in
the field of color psychology and should be considered when
targeting a psychological effect utilizing colors.

Li [9] gives a detailed overview of the preferences and
effects with different groups of people in a medical context,
more precisely during hospital stays. Children prefer brightly
saturated colors and overall very colorful environments. These
provide distraction from the tense situation and a calming
effect, connected to the coloring, could be proven. Adults on
the other hand tend to favor clean, cool colors like white, blue,
and grey. They associate these with a professional environment
and thus a higher chance of successful treatment. There is also
a connected calming effect. However, the effect is achieved
through the impression of a professional environment, that
evokes the feeling of a qualified treatment when seeking
medical care. Therefore, it is only partially connected to the
color and already an effect of the original feeling emitted by
the color: professionalism. The author further states, that elder
people tend to prefer warmer colors, although not as bright and
less saturated than children. These colors help them to relax
and effectively reduce anxiety. The professional, cool colors
like white or grey even provide a negative effect on elders and
sometimes children. This originates from the partly occurring
associated with anxiety, loneliness, and fear. The phenomenon
is known in color psychology as ”white scare”.

Focusing on the target-context oriented effect of color,
Maier et al. outline how the psychological impact of color
changes with the task domain [5]. Stated are the findings
of different studies which point out that colors provide a
performance-enhancing effect in physical competitions. An
example of this can be found in sports, where teams wearing
red tricots win more games than those wearing any other hue.
However, when it comes to an intellectual target-context the
color red seems to have no, or even a negative effect, on the
performance.

B. Emotion Recognition

Facial and Image Recognition is currently one of the most
popular fields of machine learning. Elementary face detection
is not a technical challenge anymore and a camera input can
be analyzed in realtime, with only a few dozen lines of code
(e.g., [11]).

The popularity of such use cases provides us with the base
for emotion recognition through feature detection in the mimic
of people’s faces. Combining this technology with display
coloring frameworks allows us to design systems that are

44

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



capable of autonomously detecting emotions and correctly
using different color overlays to improve and reinforce them.

Several models have been trained with fairly high accuracy
to detect emotion from images. These models focus on a
combination of facial features to detect the emotional state
behind pictures of faces. The model of Yang et al. [12] relies
on the extraction of the mouth and eyes, achieving successful
detection rates of up to 93% for certain emotions and a mean
of 87%.

As emotions have a broad impact on the users’ behavior the
detection is not only limited to image recognition. For precise
detection of emotions, multiple sources of information can be
used. Ghosh et al. suggest an approach to determine emotion
based on speech recognition [13]. By combining multiple ways
of emotion recognition detection accuracy can be improved
even further. However, background software with recording
capabilities is rather problematic from a privacy point of
view. Therefore, the improved recognition accuracy does not
outweigh the privacy violation.

Other possibilities to increase the accuracy and therefore
the value of automatic emotion detection could be provided
by smart wearables like smartwatches or fitness trackers.
Measurements like the pulse could then be used to determine
the stress level and provide other valuable insights. However,
as the prototype should be as lean as possible this approach
is not further considered in this work. The required multi ma-
chine solution with means of communication between devices
would cause a too excessive codebase for the aspired simple
prototype.

C. Emotional Effects of Colors - a Survey

As our excessive study of related research projects and
studies could not provide a common interpretation of the
concrete connection between emotions and colors, a simple
survey was conducted. This survey, however, is only used
to generate a default profile for the prototype, it is not
scientifically representative. In the survey, 522 people were
asked to think of color if confronted with an emotion. Multiple
answers were allowed, this should allow the detection of
patterns, e.g., all warm colors are connected with emotion
X. The emotions which could be chosen in the survey were
(Ca)lm, (V)italising, (Sa)fety, (Co)ncentrated, (M)elancholy,
(St)ressed and (H)appieness. The possible answers consisted
of colors which can easily be displayed on a display and
provide strong contrasts to each other, allowing a meaningful
implementation.

The survey’s findings match well with the general state-
ments from Rider [3]. While warmer colors (orange, yel-
low) have an arousing effect, cooler colors (blue, green)
have a relaxing, calming effect. Rider further mentions the
widespread of possible emotions connected to green depending
on brightness, saturation, and context. As we only asked for
the hue the subjects could not differentiate between different
types of green. Therefore, green is strongly connected with

TABLE I. EMOTIONAL CONNECTION TO COLORS SURVEY,
RESPONDENTS = 522, VALUES IN %

Color Ca V Sa Co M St H
red 3,79 14,86 13,38 7,32 9,37 35,20 8,45
orange 8,24 19,41 18,09 6,02 3,02 16,94 13,49
yellow 3,53 21,15 7,21 8,95 3,78 14,31 17,53
green 22,09 18,34 15,44 15,49 2,27 2,96 24,72
blue 25,23 9,64 16,32 28,74 7,55 4,77 14,25
violet 11,37 3,35 11,32 5,34 11,48 5,76 6,56
grey 11,11 0,40 5,44 13,08 27,49 3,95 2,27
black 12,81 2,68 10,29 13,43 29,61 6,74 4,41
pink 1,83 10,17 2,50 1,72 5,44 9,38 8,32

the most positive emotions, which, however, most likely refer
to different types of green.

The survey results also concur with the findings of Kido [4],
reinforcing the calming effect of green and blue. The deafening
effect of red, determined by Kido, also matches the very strong
association with stress by our survey.

The strong association of orange with safety, which cannot
be found in other studies or surveys, most likely is caused by
a bias of our survey. The poll was conducted on a group of
people from the same community, where orange is a frequent
and positively interpreted color, which could explain this
behavior.

D. Display Overlays

Display overlays are no new research topic and many
refined products are available. In the gaming area, they are
omnipresent with the most popular example being steam’s
in-game-overlay, other popular examples being the Nvidia
Geforce Experience overlay, the Discord overlay or Overwolf.
However, these are all limited to the gaming use cases and
only Overwolf allows great modification freedom.

Overlays might either display solid colors or transparent
graphics on top of other applications. When using unicolored
transparent images, defined by a red, green, blue, and alpha
channel (RGBA), the screen is tinted with the defined color.
This procedure, of combining two images, is known as alpha
blending or alpha compositing [14]. However, there is not just
one but many ways to combine two images. Therefore, there
are several formulas, which might be used to calculate the
resulting color for the alpha blend.

The pqiv image viewer can display transparent pictures and
can easily be placed on top of other windows [15]. Due to
its implementation in Python, cross platform capabilities are
provided. However, the lack of click-through support requires
extensive extension work to create a functional, non-blocking
overlay.

OnTopReplica, a C# project, supports the display of selected
windows on top of others on Windows systems [16]. While it
supports click-through and adjustable opacity, it is limited to
Windows and requires an additional overlay-window. This not
only decreases the compatible systems but also increases the
overhead significantly.

Hudkit is a C based framework with an exposed JavaScript-
API [17]. The framework supports all Linux X-desktops and
some OS X systems. Its main HTML page can be modified like

45

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Overwolf overlays using HTML and JavaScript. The page can
then receive new input via established APIs like Websocket or
WebGL and change the display accordingly. Multiple monitors
and click-through events are supported by default. Providing
a powerful small footprint framework.

E. Gamma Correction
Gamma correction is a luminance adjustment technique,

designed to provide color genuine images on common
computer monitors. The gamma(γ), which is added to the
luminance of the displayed image relies on an exponential
scale, the resulting color value is usually calculated for every
pixel using the formula from Equation (1) (cf. [18] Advanced
Lighting → Gamma Correction).

C⃗RGB =

 Pixelred
1

γR

Pixelgreen
1

γG

Pixelblue
1

γB

 (1)

Where gamma might be any floating point value between 0
and 10. This exponential approach is chosen as the human eye
senses changes in the lower brightness spectrum more than
those for bright colors (cf. Foley et al. [19] pp. 448-449).

Gamma corrections are freely available to the user on the
major operating systems. On Microsoft Windows via DXGI
[20] and on Linux Systems via the X.Org display service uti-
lizing APIs like Xlib [21]. Apple’s macOS also provides some
methods to manipulate gamma, however, they lack sufficient
public documentation. The gamma correction is configured
within the display settings and is applied to the visible screen
by the display service or operating system without the need
to run any additional third party software.

On X.Org based Linux desktops this gamma correction
might be configured via the Xlib API or one of its cor-
responding bindings, providing programmatic access to the
X11 display service. However, the library interface itself is
quite extensive and tools like Xrandr, which provides the
functionality of the Xlib and its libXrandr extension as a
command line tool provide a much more simplified interface
[22].

Xrandr allows the user to adjust the gamma correction
for every color channel via the command line option: -
gamma R:G:B. By applying values larger than 1 the luminance
is increased, by applying smaller values the luminance is
decreased. When setting different luminance values for the
different channels a color shift is applied to the screen.

III. CONCEPT

This section provides insights into the architecture and
concept for the current MAD-Coloring prototype. The modular
architecture approach is shown in Fig. 1.

The architecture is separated in 3 sections. The Coloring
Service, the clients accessing and controlling the coloring and
the interface, enabling communications between the clients
and the display coloring.

The display coloring has to be able to project a color
adjustable overlay on top of all connected monitors. While we

User Client

Face Recognition

Coloring Service

...

Interface

User Profiles

Figure 1. MAD-Coloring modular architecture concept.

stated in our previous work [1] that gamma corrections are not
sufficient we have to stand corrected. While linear gamma or
brightness adjustments are not enough to fully leverage the
psychological effects of the overlay, a calculated vector based
gamma shift as introduced in this paper is capable of producing
promising results. The display must not reduce the productivity
and therefore has to enable all actions which are possible
without an overlay, e.g., right/left clicking or text selection.
Further, the vision quality and readability of displayed content
must not be reduced any further than necessary. This will
be compared against the light constraints coming with night
lights, e.g., reduced contrast and slightly changed colors. The
Coloring Service further gets supplied with at least one user
profile file. This allows users to adjust the color optimally for
themselves and maximize the effect of MAD-Coloring.

The communication between clients and coloring should be
kept as simple as possible to fit into the modular approach.
This should enable easy access to the Coloring Service for
new clients as well as the replacement of the Coloring imple-
mentation itself, e.g., if required by a change of the OS. To
achieve this a simple interface should be created, supplying
all required functionality for the coloring and client programs.
New implementations could then simply use this interface
and would be able to be used with the old clients/Coloring.
This further enables the exchange of the communication
framework with changes to only the interface itself. Clients
and coloring would not be affected and could be used with-
out any changes. The underlying communication framework
should be chosen OS specific and use existing infrastructure
rather than implementing something new. Therefore, reducing
the implementation effort, requirements and overhead caused
by MAD-Coloring, compared to an out-of-the-box solution
shipped with a communication framework.

Due to the interface, client programs and Coloring Services
can be created with minimal restrictions. For the prototype
two client applications are planned. A manual user client,
allowing the selection of moods by the user via text input,
and a face recognition background service, detecting the mood
via a webcam and changing the display coloring accordingly.
Further, for the current prototype two Coloring Services are
planned. Additionally to the already existing Hudkit-Coloring-

46

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Service from our previous work a Gamma-Shift-Coloring-
Service is planned, utilizing a vector based gamma shift. Fol-
lowing our modular architecture approach, the configuration
files/user profile from one service can be used in the other
service.

Thanks to the highly adjustable user profiles, changes or
fine tuning of the color mapping in the implementation are
always possible with little to no programming experience. This
allows interested psychologists, therapists, and doctors to use
the MAD-Coloring on their own. Enabling them to adjust the
system according to their knowledge and research in the area
of color psychology, highly tailored to their target group needs.
Further, users trying the prototype on their own can adjust their
profile as they most see fit, according to their preferences.

IV. MAD-COLORING

This section gives insight in the implemented MAD-
Coloring prototype for Linux systems, including the different
clients and Coloring Services. While some parts of it are Linux
specific, like the specific D-Bus interface or gamma handling
via Xrandr, the solution can easily be ported to Windows or
macOS systems with small changes to the specific modules.

A. Interface

The interface is built on top of the D-Bus, as it represents
the default solution for inter-process communication of most
Linux desktop environments and therefore already is available
on the system. This removes the need to install new software
frameworks, perfectly fitting into the low overhead architecture
of the concept.

The interface itself is separated into two parts. The main
(top level) interface, providing simple python functions and
a bottom level interface consisting of a D-Bus service and a
corresponding client.

To ease the use of the interface and allow easy interchange-
ability of the underlying system the top level interface has been
implemented only exposing the core functionality to client de-
velopers. It can be considered as a wrapper around the bottom
level interface, providing the two required functionalities to
implement new clients or a Coloring Service. These are a
getter and setter functions for communication with the clients.

While the top level interface is rather simple, the bottom-
line D-Bus communication is more extensive. The D-Bus
service specified by it exposes an interface with three methods
on the D-Bus session bus. However, only one of the three
methods is currently used in the top level interface, a function
to set the mood. The other methods provide interfaces for
the currently active color code and the possibility to change
the user profile on the fly, providing a boilerplate for more
extensive clients. For the top level interface setter function, a
connection to the exposed D-Bus interface is opened and the
provided bottom level interface setter method is used to send
the color change via the D-Bus.

It is up to the client if the communication is done via
interface provided in this work or directly via the D-Bus. On
the one hand, the baseline D-Bus service provides a richer

API and might be used with any programming language or
due to some universal command line interface tools. However,
on the other hand, using the Python interface instead is less
complex and allows an easy exchange of the underlying D-
Bus framework, which might be required due to the change
of the OS. Requiring only the getter and setter pair at the top
level interface allows an easy exchange of the base interface,
as the new framework must only realize these two functions.
When sticking to Linux Desktops the D-Bus provides more
extensive functionality and grants the exchange of the pro-
gramming language, but the provided python interface grants
interchangeability of OS and base interface. Choosing the
right interface is up to the developer and should be decided
individually according to the needs of the implementation.

B. User Profiles

The profiles are implemented as .conf configuration files.
Using this well known and easy to use standard allows
the modification of these files without any knowledge of
programming. This is important, as for now, the prototype
provides no GUI to edit the user profiles and the users have
to edit their profiles with a text editor on their own.

In the scope of the prototype, the emotions and their
respective coloring in the default profile are defined according
the survey in Section II, which is shown in Listing 1. If
the users want to change the color of an emotion they can
either change the default profile or create a new user profile.
Following an override approach, the Coloring Service will
always check the specific user profile first. If the emotion
is not defined in this profile, the service will fall back to
the default profile. This makes it quite comfortable to specify
some custom mood/color pairs while keeping default settings
for most.

Listing 1. Example color definition

[Colours]
tired = #ede35a33
stressed = #5aeded20
sad = #35e85620
angry = #49d2fc20
unconcentrated = #a4f6fc20
anxious = #e8a63533
frustrated = #5aeded33
bored = #e8413555

It is also possible to define new emotion/color pairs in the
user profiles, which are not defined in the default profile.
However, to be used by the clients, the emotions have to be
added to their codebase as well.

With the Gamma-Shift-Coloring-Service the user profiles
were extended to also handle gamma shift values rather than
only RGB values. This is detailed further in the Gamma-Shift-
Coloring-Service section.

C. Hudkit-Coloring-Service

In the first version of our Coloring Service a combination
between a modified version of Hudkit, introduced in Section

47

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Interface

Coloring Service

User ProfileDefault Profile

hudkit

color server

Figure 2. MAD-Coloring color service.

II, and a Python Color server is being used (Fig. 2).
Hudkit completely handles the display coloring. This hap-

pens by blending an RGBA colored image over the screen
to taint it in the required shade. The alpha(α) blend of the
display overlay is done via a linear calculation for every pixel
on the screen. We define the tainting colors in the user specific
color profile in hexadecimal encoded RGBA values. The color,
which is displayed on the monitor is calculated using the
”normal” color and the blend of the overlay, cf. Equation (2).

C⃗RGB =

 Pixelred
Pixelgreen
Pixelblue

 ∗ (1− α) +

 Taintred
Taintgreen
Taintblue

 ∗ α

(2)
The color server provides the color services interface and

control unit. This is achieved by implementing the earlier
introduced Python interface and accessing the user profiles.
Utilizing the Python interface, the server listens to changes
of the mood send by a client. If a mood change is detected
the server resolves the color according to the used profile.
First, the user specific configuration is read, if no entry for
the specific mood is found the default configuration is read.

After resolving the color, the server sends a signal with the
determined color to the Hudkit web server. Should a mood not
be defined in the configuration files, the color server defaults to
black with low saturation and displays an error. With this error
handling a missing emotion does not lead to further problems
during the runtime, but clearly signals the user that a problem
with the used client has occurred. This error color will not
be interpreted as an emotion by the user, as black is not
used by the default configuration and we highly discourage
the usage of black as it is mostly related to negative emotions
(cf. Table I). To counter possible negative emotions associated
with black, the low saturation and higher brightness creates a
grey overlay in the Hudkit server. This can be interpreted by
users as boring, but will not trigger negative emotions.

D. Gamma-Shift-Coloring-Service

In this paper, we introduce a second kind of Coloring
Service for our prototype where the display overlay Hudkit is
exchanged against color shifting implementation utilizing the
X.Org gamma correction via Xrandr, introduced in Section II.
By doing so, we omit the display overlay software and reduce
the performance overhead of the prototype.

The X.Org display service is handling the configured
gamma correction. In our scenario, this gamma is configured
via the Xrandr API. It is called from within the Python
Coloring Services color server, after calculating the gamma
correction for the configured color shift. We chose to use the
binary Xrandr for the prototype rather than LibXOrg itself or
its corresponding Python bindings, as the refined API provided
by Xrandr greatly reduces the implementation complexity.

In order to follow the modular exchangeable architecture of
MAD-Coloring and keep the same configuration files, an con-
version from RGBA values to a gamma adjustment is required
when using gamma correction instead of alpha blending. The
major difficulty here is, that alpha blending is perceived
linearly, while gamma correction is perceived exponentially
by the human eye. Further, while alpha blending is displayed
as an overlay, independent of the colors behind it, the gamma
correction is highly dependent of its actual background. This
means, that it is not possible to compute an overall gamma,
which has the same effect for every background color as the
corresponding alpha blend.

However, it is possible to calculate a gamma correction,
which has the same effect as a RGBA alpha blending on a
fixed background color via a RGB vector shift. The general
formula for a vector based gamma shift on a single pixel can
be seen in (3). The derivation for this equation can be found
in Equation (8) (Appendix).

γ⃗RGB =


1

logPixelR
(PixelR+(TaintR−PixelR)∗α)

1
logPixelG

(PixelG+(TaintG−PixelG)∗α)
1

logPixelB
(PixelB+(TaintB−PixelB)∗α)

 (3)

Calculating the correct gamma value for each pixel and
coloring it accordingly would be absurdly resource intensive,
anyhow it is possible to compute a general approximate γ
value by using a fixed color vector. Determining the optimal
base color vector for this use-case still needs further work,
however, using the neutral grey (50% grey) color vector as
displayed in Equation (4) provides an interim solution with
adequate results.

C⃗50%−grey =

128
128
128

 (4)

While using a fixed color vector as a base is no perfect
solution, it is the most resource saving and yet functional
approach. Resolving Equation (3) with Equation (4) we receive
the formula used for the calculation of our vector based gamma

48

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



shift, introduced in Section III, which can be seen in Equation
(5)

γ⃗RGB =


1

log128(128+(TaintR−128)∗α)
1

log128(128+(TaintG−128)∗α)
1

log128(128+(TaintB−128)∗α)

 (5)

When looking up a color, the Hudkit-Coloring-Service
transmits the color via the color server directly from the
user profile to the display overlay. The Gama-Shift-Coloring-
Service newly implemented in this paper first has to calculate
the corresponding gamma shift value using the formula defined
above.

In X.Org based systems the gamma correction is by default
set to 1.0. For the Gamma-Shift-Coloring-Service we assume,
that no changes were made to this default gamma correction
by the user via system settings. However, we extended the
color server and user profile with an option to define a default
gamma correction value (red/blue/green-pre) which will then
be taken into account for the calculation of the vector based
gamma shift. Under the premise that the gamma shift from
the Coloring Service is applied before any gamma correction
defined in the system settings, the resulting screen color may
be computed via the formula from Equation (6) representing
the final formula of the Gamma-Shift-Coloring-Service. This
formula is derived by inserting the resulting vector based
gamma shift from Equation (5) as the pixels color value in
the color vector formula for gamma from Equation (1). For
better readability, a vector free display form was chosen.

γred =
1

log128((128 + (Taintred − 128) ∗ α)
1

γred−pre )

γgreen =
1

log128((128 + (Taintgreen − 128) ∗ α)
1

γgreen−pre )

γblue =
1

log128((128 + (Taintblue − 128) ∗ α)
1

γblue−pre )
(6)

In the context of the Gamma-Shift-Coloring-Service it
might be confusing to set RGBA values in the user profile
configuration file since they are not applied directly as with
the alpha blend method from the Hudkit-Coloring-Service. We,
therefore, added the option to define the emotion-color pair in
the user profile with a gamma shift instead of a RGBA value.
To extend the new usability feature with full compatibility
to our old user profiles, we enhance the color server with a
detection mechanism. The algorithm recognizes if an entry in
the user profile configuration file contains an RGBA value or
a gamma correction shift and accordingly handles the value.
The Hudkit-Coloring-Service, however, still requires RGBA
values and does not work with gamma shift values. Further
extensions to the user profiles and coloring servers are planned,
to overcome the current limitations.

Figure 3. Face detection symbol image - feature highlighting.

E. Clients

The prototype includes two clients. A simple user client
and an intelligent emotion detection client. The simple client
provides a basic GUI to enter the current emotion and change
the display coloring accordingly. It is implemented in Python
and directly accesses the D-Bus instead of the Python wrapper
interface.

The second client is an emotion recognition client, detecting
the current emotional state of the user via image processing
of a webcam feed. As a foundation the work of Rovai was
used, creating a face recognition system utilizing a webcam
with Python and OpenCV [11].

However, the final implementation differs fundamentally,
as the client was extended to enable emotion recognition
and connected to the Python interface to communicate with
the Coloring Service. Further, a multi face detection was
implemented, preventing a flickering color change if two or
more faces are detected. As a result the client will not send
emotional changes to the Coloring Service, until only one face
is left in its field of view. A simplified version of the used
feature detection can be found in Fig. 3. The eyes are clearly
detected in white and the mouth in green. This allows the
usage of the features in the neural network to determine the
mood.

Due to the clean interfaces, between client and service,
both clients are fully compatible with both Coloring Services
versions. Therefore, no changes to the clients were necessary.

V. COMPARISON OF FIRST AND SECOND PROTOTYPE

This section provides a quick overview between our current
prototype and the version introduced in our previous work [1].
The focus is therefore centered around the new Gamma-Shift-
Coloring-Service and the required introduced changes.

When comparing the first version of the prototype, which
provided a display overlay utilizing alpha blending (Hudkit-
Coloring-Service), with the second version, major graphical
differences are visible. Since gamma correction is an expo-
nential scaling algorithm the impact on the result depends
strongly on the underlying colors. Figure 4 highlights the

49

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(a) No Coloring Service - baseline

(b) Hudkit-Coloring-Service - good effect on light and dark background

(c) Gamma-Shift-Coloring-Service - good effect on light background, minimal
effect on dark background

(d) Gamma-Shift-Coloring-Service double opacity - extrem effect on light
background, small effect on dark background

Figure 4. Comparison of different MAD-Coloring Color-Service effects for
sad mood

comparison between applying alpha blending and using a
gamma correction shift on dark and bright background images.
In the images, it becomes clear, that the alpha blend takes
much more effective to black areas than the vector based
gamma shift approach does.

Considering the implementation aspects of both prototype
versions, the technical differences are limited to the Coloring
Service, which defines how the color adjustment is displayed
and the configuration reader, as well as the connected user
profiles. On the one hand, the configuration files and their
parsing has become slightly more complex in the second
version of the prototype, to enable the configuration and
usage of gamma values. On the other hand, the inter-process
communication procedure of the displaying interface as well
as the overhead of the Coloring Service has been greatly

reduced, making the whole MAD-Coloring application more
lightweight. As a downside the calculations for the vector
based gamma shift are significantly more complex, however,
this only concerns the implementation of the prototype and
has no negative effect on the end user.

Taking the technical and visual changes into account the
vector based gamma shift provides a solid option for com-
puters with lower tech-specs, allowing a more resource-
conserving execution of MAD-Coloring. To counteract the
weaker coloring effects of the gamma shift on dark back-
grounds, compared to the alpha blend method, the usage
should be limited to applications in light-mode, e.g., Excel, Of-
fice or browser usage. Summarizing, the vector based gamma
shift Coloring Service provides a great solution for weak office
machines, while the alpha blend Coloring service is the all-
rounder with higher overhead, e.g., for gaming use-cases.

VI. CASE STUDY

Our current team solely consists of researchers from the IT
domain, we have not yet consulted any psychological/medical
experts. Thus, we conducted a technical case study instead of
a psychological evaluation of our prototype. The study was
conducted on a Lenovo ThinkPad with 14GB RAM, an AMD
onboard graphic chip, using a GNU/Linux operating system
with a gnome X.Org desktop. During the test runs checks
regarding usability impairments were conducted.

To pre-empt ethical concerns without the approval of
an ethic-committee our test user simply controlled MAD-
Coloring and rated possible concerns regarding the readability
and usability of the desktop with activated MAD-Coloring.
However, he was not exposed to the software for longer
periods. The face recognition was triggered with prepared
photos instead of live images of the test user.

As a scenario, a computer science student with no prior
experience of MAD-Coloring was instructed to start the MAD
coloring client and conduct a manual color change via the
simple user client. Afterward the face recognition client had
to be started. He was supplied with a computer that had a
preinstalled MAD-Coloring Service and the MAD-service’s
Linux manual page.

The user was able to activate the service, change the color
and start the face recognition client in less than a minute.
All color changes and emotion detections worked without any
problems. The user did not experience any problems regarding
reduced readability, yet the usability in color sensitive applica-
tions like image editing was highly impaired because of MAD-
Coloring’s color overlay. However, this was an expected side
effect as mentioned in our concept (cf. Section III). The effect
of MAD-Coloring for some emotions can be seen in Fig. 5.

Following, we suggest a method for measuring the effects
of MAD-Coloring in coming evaluations, which still needs to
be reviewed by psychological experts. Since MAD-Coloring
is designed to be used in daily routines and any kind of test
scenario might cause discrepancies, we strongly recommend
to evaluate MAD-Coloring integrated into the daily life of
subjects.

50

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. MAD-Coloring in effect for moods A) neutral B) mad C) bored.

To quantify MAD-Coloring, we introduce the concept of a
mood diary where subjects record their emotional condition,
and whether they are able to concentrate for work or not.
The subjects might write this mood diary for a reasonable
period (2-4 weeks). Afterwards, based on these diaries, basic
emotional profiles can be created for all subjects.

In the second phase we recommend to split up the sub-
jects into three groups. Group A will be working with our
MAD-Coloring and the pre-configured color profile (based on
scientific work from the color psychology domain and our own
survey). Group B is working with MAD-Coloring as well, but
with ”anti”-colors, which have been associated to be negative
according to a specific mood (e.g., red if the subject is already
mad). Group C is the control group, which continues working
without any influence from MAD-Coloring. This phase should
be conducted over a larger time period (2-4 months or longer),
as most likely some time is required to get used to the color
changes. Especially at the beginning these changes could have
a negative impact on the subjects.

By comparing the deltas of the three groups the essential
effects of MAD-Coloring can be determined and whether the
effect depends on specific colors or just generally on shifting
these. Afterwards further evaluations can be planned targeted
on the existing data.

VII. RELATED RESEARCH

While the idea of color psychology is not new, there is to
our best knowledge no closely related research in the HCI
context. However, some other research topics in the context
can be viewed as relevant.

A. Blue Light Filtering

At the first sight blue light filtering software seems to differ
quite significantly from our solution, but the fundamental ideas
are quite similar. Both software solutions modify the color
shade of the display to obtain effects on the human user.
However, blue light filtering is based on different medical ef-
fects (cf. [23]) and in most cases it is implemented completely
different than MAD-Coloring.

While MAD-Coloring is based on the psychological effect
of colors and the emotions triggered by colors, the idea of
blue light filtering, as described in [24] is based on physical
and bio-chemical effects [25]. They determine that blue light
emitted by screens contains more energy than any other color.
Further, it is more exhaustive for the human eye than other

colors. In addition to the physical aspects blue light suppresses
the production of the sleeping hormone melatonin which can
cause sleeplessness.

As aforementioned, blue filtering software is often imple-
mented completely different than our solution. Its common
among blue filters to adjust the alpha channel to suppress
parts of the blue light. The resource costs for this approach
can be expected to be less than those for overlay based
filters. This is due by the fact, that the graphics card is not
required to compute a translucent overlay in. However, for
our MAD-Coloring system an alpha shift approach does not
fit the requirements since the software needs to display tints
in various colors.

B. Colors and Trust in User Interface Design

Hawlitschek et al. [2] thematize the influence of colors on
trustworthiness of user interfaces. They analyzed the moods
and meanings associated to different colors via an experiment.

In this experiment, the probands had to pass a finance based
trust experiment. They were provided with GUIs in different
hues and small amount of money was handed to each proband.
Then, by transferring money to other probands, they where
able to increase the value of their sum by trading between
each other. The experiment tried to determine if the color of
their GUI had an impact on the trust they have in the other
probands. However, they where not able to gain meaningful
results from this experiment.

C. Effect of Colors on Emotions in Games

Joosten et al. [26] empirically studied the emotional effect
of color on players of a video game. As a foundation they
used a subset of the color⇒emotion arrangements of Plutchik
[27], allocating the emotional effect of colors to an emotion
as following; dark green ⇒ fear, light blue ⇒ surprise, red ⇒
anger, and yellow ⇒ joy.

The evaluation was conducted on 60 participants which
all had to play five levels of a video game programmed for
this evaluation. The first level acted as a control level, being
the same for all players, while the following four levels had
24 possible deviating color arrangements. These were evenly
distributed on the players, leaving 2-3 players per arrangement.

With this setup the expected negative arousing effect of red,
as well as the positiv effect of yellow could be confirmed,
while the other two colors did not had a meaningful effect on
the players emotional state.

51

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VIII. CONCLUSION

In this paper we presented the second version of our
novel MAD-Coloring framework, highlighting a Hudkit-free
Coloring Service. Respecting the basics of color psychology
a second, more lightweight, Coloring Service prototype was
implemented, providing a transparent, color adjustable overlay
for Linux X-desktop systems utilizing a vector based gamma
shift approach. This new service was tested with our two
earlier clients. A simple input client, allowing the manual
change of the display color and an emotion recognition client,
detecting the users current emotional state via a webcam and
adjusting the display color accordingly. We also extended our
user profiles with options to directly enter gamma values, to
increase the ease of use with the new Coloring Service.

MAD-Coloring, in combination with this clients, is capable
to display a decent, transparent overlay over multiple desktops
according to the users current emotion. The new gamma based
version of the Coloring Service provides similar results as the
initial alpha blend version. However, the coloring over dark
backgrounds is harder to notice, potentially reducing the effect.
Then again, the technical footprint of MAD-Coloring was
greatly reduced with the new gamma shift approach, removing
the overhead introduced by Hudkit.

While this version of the Coloring Service provided overall
slightly worse coloring effects it can provide a great alternative
for low spec computers, especially for office work with bright
backgrounds and dark fonts, e.g., Excel or Word tasks.

While fully functional, further work is required to refine
and improve the system. On the one hand, medical studies are
required to evaluate the psychological impact of the system
and therefore confirming its usefulness. Following this further
studies are required to find optimal color profiles to maximize
the effect. On the other hand, further technical improvements
can be conducted. The support of more desktop environments
could be realized and more clients should be implemented,
allowing more specific use cases and optimal support for more
kinds if needs. These clients could also use smart devices like
watches or fitness tracers, allowing the integration of blood
pressure into the emotion recognition.

ACKNOWLEDGMENTS

We want to express our gratitude towards Andrea Steiner for
her contribution towards the displayed mathematical content
of this paper, providing guidance and corrections.

Further we want to thank Jakob Loskan for his advice con-
cerning the technical details behind alpha blend and gamma
shift, as well as the mathematics involved.

REFERENCES

[1] L. Brodschelm, F. Gräber, D. Hieber, and M. Hermann, “Mood adaptive
display coloring - utilizing modern machine learning techniques and
intelligent coloring to influence the mood of pc users,” in ACHI 2021,
The Fourteenth International Conference on Advances in Computer-
Human Interactions, 07 2021, pp. 48–54.

[2] F. Hawlitschek, L.-E. Jansen, E. Lux, T. Teubner, and C. Weinhardt,
“Colors and trust: The influence of user interface design on trust and
reciprocity,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS). IEEE, jan 2016, pp. 590–599.

[3] R. M. Rider, “Color psychology and graphic design applications.”
Liberty University, 2010.

[4] M. Kido, “Bio-psychological effects of color,” Journal of International
Society of Life Information Science, vol. 18, pp. 254–268, 2000.

[5] M. A. Maier, A. J. Elliot, and R. A. Barton, “Color in achievement
contexts in humans,” in Handbook of Color Psychology, A. J. Elliot,
M. D. Fairchild, and A. Franklin, Eds. Cambridge University Press,
pp. 568–584.

[6] R. A. Ainsworth, L. Simpson, and D. Cassell, “Effects of three colors
in an office interior on mood and performance,” Perceptual and Motor
Skills, vol. 76, no. 1, pp. 235–241, Feb. 1993.

[7] I. Kondratova and I. Goldfarb, “Color your website: Use of colors
on the web,” in Usability and Internationalization. Global and Local
User Interfaces, N. Aykin, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 123–132.

[8] A. J. Elliot and M. A. Maier, “Color-in-context theory,” in Advances in
Experimental Social Psychology. Elsevier, 2012, pp. 61–125.

[9] C. Li and H. Shi, “Medical space oriented color psychology perception
model,” Applied Mechanics and Materials, vol. 587-589, pp. 461–467,
07 2014.

[10] K. R. Alexander and M. S. Shansky, “Influence of hue, value, and
chroma on the perceived heaviness of colors,” Perception & Psy-
chophysics, vol. 19, no. 1, pp. 72–74, Jan. 1976.

[11] M. Rovai, “Real-time face recognition: An end-to-end
project,” 2018, last visited: 2021.06.14. [Online]. Avail-
able: https://towardsdatascience.com/real-time-face-recognition-an-end-
to-end-project-b738bb0f7348

[12] D. Yang, A. Alsadoon, P. Prasad, A. Singh, and A. Elchouemi, “An
emotion recognition model based on facial recognition in virtual learning
environment,” Procedia Computer Science, vol. 125, pp. 2 – 10, 2018,
the 6th International Conference on Smart Computing and Communica-
tions.

[13] S. Ghosh, E. Laksana, L.-P. Morency, and S. Scherer, “Representation
Learning for Speech Emotion Recognition,” Interspeech 2016, pp. 3603–
3607, Sep. 2016.

[14] A. R. Smith, “Image compositing fundamentals,” Tech. Rep., 1995.
[15] P. Berndt and other, “Pqiv git repository,” 2021, last visited: 2022.05.24.

[Online]. Available: https://github.com/phillipberndt/pqiv/
[16] L. C. Klopfenstein and other, “Ontopreplica git repos-

itory,” 2021, last visited: 2022.05.24. [Online]. Available:
https://github.com/LorenzCK/OnTopReplica

[17] (2021) The hudkit-projekt github page. Last visited: 2021.06.14.
[Online]. Available: https://github.com/anko/hudkit

[18] J. de Vries, Learn OpenGL - Learn Modern OpenGL Graphics Pro-
gramming in a Step-by-step Fashion. Kendall & Welling, 2020.

[19] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips,
Introduction to Computer Graphics, 1st ed. Addison-Wesley, 1994.

[20] “Microsoft documentation - using gamma correction,” 2021, last
visited: 2021.10.25. [Online]. Available: https://docs.microsoft.com/en-
us/windows/win32/direct3ddxgi/using-gamma-correction

[21] “Xorg - lib documentation,” 2021, last visited: 2021.10.25.
[Online]. Available: https://x.org/releases/current/doc/libX11
/libX11/libX11.html#Introduction to Xlib

[22] “Freedesktop - xrandr,” 2021, last visited: 2021.10.25. [On-
line]. Available: https://xorg.freedesktop.org/archive/current/doc/man
/man1/xrandr.1.xhtml

[23] (2020, jul) Harvard health letter - blue light has a dark side. Last visited:
2021.06.14. [Online]. Available: https://www.health.harvard.edu/staying-
healthy/blue-light-has-a-dark-side

[24] S. Mitropoulos, V. Tsiantos, A. Americanos, I. Sianoudis, and A. Sk-
ouroliakou, “Blue light reducing software applications for mobile phone
screens: measurement of spectral characteristics and biological parame-
ters.” in RAP 2019 Conference Proceedings. Sievert Association, 2020,
pp. 220–224.

[25] R. Sutherland, “What is in a color? the unique human health effects of
blue light,” in Envirionmental Healt Perspectives volume 118. News
Focus, 2010, pp. 23–27.

[26] E. Joosten, G. Lankveld, and P. Spronck, “Colors and emotions in
video games,” 11th International Conference on Intelligent Games and
Simulation, GAME-ON 2010, 01 2010.

[27] R. Plutchik, “The nature of emotions: Human emotions have deep
evolutionary roots, a fact that may explain their complexity and provide
tools for clinical practice,” American Scientist, vol. 89, no. 4, pp. 344–
350, 2001. [Online]. Available: http://www.jstor.org/stable/27857503

52

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



APPENDIX

SINGLE CHANNEL SHIFT GAMMA EQUATION

The color/γ-vector is only used for the ordered display of
the color, while mathematically only the skalar product is used.
Therefor, the vectors can be separated into its components and
be compared pairwise. Equation (7) shows this for the red
channel from Equations (1) and (2).
In the following Pixel is abbreviated with P and Taint with T.

PR

1
γR = PR ∗ (1− α) + TR ∗ α

⇔ PR

1
γR = PR − PRα+ TR ∗ α

⇔ PR

1
γR = PR + (TR − PR) ∗ α

⇔ 1

γR
= logPR

(PR + (TR − PR) ∗ α)

⇔ γR =
1

logPR
(PR + (TR − PR) ∗ α)

(7)

GAMMA SHIFT VECTOR EQUATION

This equation provides the basis for the vector based gamma
shift. It can be derived by equating Equations (1) and (2).
In the following Pixel is abbreviated with P and Taint with T.

PR

1
γR

PG

1
γG

PB

1
γB

 =

PR

PG

PB

 ∗ (1− α) +

TR

TG

TB

 ∗ α

⇒ Applying Equation (7) for all 3 channels

⇒

γR
γG
γB

 =


1

logPR
(PR+(TR−PR)∗α)

1
logPG

(PG+(TG−PG)∗α)
1

logPB
(PB+(TB−PB)∗α)


(8)

53

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Survey on Social Simulation and Knowledge Extraction from Simulation Results 
- Application for Constructing Life Planning Support Frameworks - 

Takamasa Kikuchi 
Graduate School of Business Administration 

Keio University 
Yokohama-city, Japan 

e-mail: takamasa_kikuchi@keio.jp 

Hiroshi Takahashi 
Graduate School of Business Administration 

Keio University 
Yokohama-city, Japan 
e-mail: htaka@keio.jp

 
 
Abstract—Asset formation for the retirement generation is a 
common issue around the world and has been widely discussed 
in various countries. We begin this paper by surveying the 
research on asset formation and life planning. Then, we show a 
data-driven life planning support framework based on social 
simulation. Based on the data and simulation results, this 
framework is intended to run simulations based on customer 
attribute data and to evaluate and validate measures for 
customers’ retirement assets. The social simulation model is 
constructed based on finance theory. Machine learning 
methods are used for the analysis of customer features and 
evaluation of the policy measures. Moreover, the simulation 
results are represented by experience mapping techniques. The 
following are the key findings: our framework 1) allows for 
effective discussion of measures to avoid the depletion of 
retirement assets and 2) allows simulation results to be widely 
interpreted and shared not only by model developers and 
analysts but also by decision-makers and frontline personnel. 

Keywords- social simulation; knowledge extraction; financial 
retirement planning; experience mapping techniques 

I.  INTRODUCTION 
In this paper, we first survey the research on asset 

formation and life planning. Then, we show a life planning 
support framework built based on data and social simulation. 
This paper extends our prior paper presented at eKNOW 
2021 [1]. 

Asset formation for the retirement generation is a common 
issue around the world and has been widely discussed in 
various countries [1; 2]. As national, individual, and social 
measures, various measures are being discussed, such as 
raising the retirement age, establishing assets at a young age, 
and reducing spending. There has been little discussion, 
however, about asset withdrawal, and there is room to 
expand and modernize basic research and analysis to better 
consider current issues. To address this issue, it is important 
to have a simulation framework that enables effective 
discussion of measures to avoid depletion of retirement 
assets. In addition, it is desirable to have a method that 
allows simulation results to be widely interpreted and shared 
not only by model developers and analysts, but also by 
decision makers and those in charge in the field as shown in 
the survey section later. 

Our framework is designed to run simulations based on 
data of customer attributes and to evaluate and validate 

measures for customers’ retirement assets based on the data 
and simulation results. The social simulation model is built 
on finance theory [3]. Machine learning methods are also 
used for the analysis of customer characteristics and the 
evaluation of policy measures [4; 5]. Furthermore, we use 
experience mapping techniques to represent the simulation 
results extending prior research [6]. 

Here, this framework is intended to be used by financial 
planners and retail strategy planners who create life plans for 
their customers. 

As a exemplification of the proposed framework, this 
paper presents a specific case study that focuses on customer 
asset formation and withdrawal for the retirement generation. 

The structure of this paper is as follows: Section II 
introduces related work, Section III describes the proposed 
methodology, and Section IV explains the social simulation 
model we used. Section V provides applications, and in 
Section VI, we summarize the results. 

II. RELATED WORK 
In this section, we begin with a survey of asset formation 

and life planning (A). We begin by discussing portfolio 
selection theory among households, which is relevant to the 
issues addressed in this paper. Then, we examine surveys 
and research on asset formation and withdrawal in the 
postretirement period. Next, we introduce previous research 
on social simulation methods, the computer simulation 
methods used in this paper (B). There have been reports of 
research using social simulation to solve problems in social 
science. Finally, we mention the experience mapping 
techniques (C). The formal description of those techniques 
will be oriented in this paper for knowledge extraction from 
simulation results. 

A. Asset Formation and Life Planning 
1) Lifetime portfolio selection 
Under several assumptions, the optimal ratio of risky 

asset holdings in the classical theory of household portfolio 
selection is determined by the expected rate of return on 
risky assets, the interest rate on safe assets, the variance of 
the rate of return on risky assets, and the relative risk 
aversion [7; 8]. On the other hand, it has been pointed out 
that many households do not hold any risky assets [9], 
suggesting the existence of mechanisms that cannot be 
explained by classical theory alone. 

54

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 Bodie et al. [10] argued that the optimal risk asset ratio is 
high for young people with large human assets because they 
can cope with risks such as falling prices by increasing labor 
supply and working extra hours. Chen et al. [11] considered 
life insurance in addition to human asset allocation and 
investigated the optimal allocation of safe assets and life 
insurance when investment opportunities change over time. 

On the other hand, empirical approaches suggest that 
households’ investment in risky assets increases with age 
and then declines. Ameriks & Zeldes [12] showed that the 
allocation to equities over the life cycle follows a 
“mountainous” trend, using the United States (U.S.) as an 
example. This trend is common not only in the U.S. but also 
in other developed countries. In Japan, the stock allocation 
ratio peaks later than in the U.S. and Europe: 1) it reaches 
its maximum in the late 50s and 60s and 2) investment in 
stocks does not decrease substantially even after retirement. 
This implies that many Japanese households enter the stock 
market only after they get their retirement money [13]. 

 
2) Asset Formation and Withdrawal focused on 

Postretirement 
Asset formation for the retirement generation is a common 

issue around the world [2] and has been widely discussed in 
various countries [14]. In the U.S., the empirical benchmark 
is a fixed withdrawal rate of 4% of initial assets [15]. On the 
contrary, some critics argue that a fixed withdrawal rate is 
inefficient [16] and that “rules” should be set to vary the 
withdrawal rate and amount [17; 18]. 

In Japan as well, various surveys, studies, and calculations 
have been conducted regarding the formation and withdrawal 
of assets after retirement [19; 20; 21]. The Financial System 
Council’s estimate [20] calculated the required amount of 
funds to be withdrawn for an elderly couple and unemployed 
household in a simplified manner as follows: 

 
Monthly net income and expenditure (−55,000 yen/month) 

× 30 years ≒ △20 million yen 
 
This estimation was easy to understand and drew national 

attention. On the other hand, it is based on the average 
household income and expenditure (deficit of approximately 
55,000 yen per month) of an unemployed elderly couple 
whose only source of income is the pension and does not 
take into account each individual’s income and expenditure 
situation and lifestyle. Other studies have focused on 
investment strategies in asset formation and estimated the 
probability of depletion using annual time series paths of 
asset prices by Monte Carlo simulation [21]. While this 
study takes into account the risky asset investment strategy 
as well as the macroenvironment (inflation rate), it does not 
explicitly address various individual characteristics. 
Furthermore, there is a study that simulates the future 
depletion rate of financial assets in real terms using 
macroeconomic data such as the amount of financial assets 
and disposable income of individuals [19]. While this study 
takes into account an individual’s income and asset class, it 
does not address risky asset investment or inflation rates. 

Kikuchi and Takahashi constructed a social simulation 
model that expresses asset formation and withdrawal before 
and after retirement [3]. They presented a simulation of the 
customer’s asset situation at a future point in time, taking 
into account asset succession and price fluctuations of risky 
assets based on individual questionnaire data concerning 
asset formation and withdrawal before and after retirement 
[4; 5]. In this paper, we construct a life planning support 
framework based on the simulation model. 

B.  Social Simulation Method 
A social simulation is an approach in the social sciences 

that uses computer simulation to analyze social phenomena 
[22; 23]. In recent years, many studies have been grounded 
in real data in the field of social simulation [24; 25]. 

Yamada et al. [24] proposed a method that utilizes actual 
data and agent simulation to solve problems in business and 
industry. They classified various types of airport behavior 
using real-world data, and they used agent-based simulation 
to successfully reproduce congestion conditions when new 
equipment was installed at Fukuoka Airport in Japan [25]. 
Many such analyses have also been reported, e.g., corporate 
behavioral analysis via modeling based on finance theory 
[26; 27]. 

Detailed analyses such as Yamada et al.’s can facilitate 
onsite decision-making and are expected to greatly 
contribute to efficient decision-making in both social and 
economic activities. Understanding and interpreting the 
model structure and simulation results, on the other hand, 
are not limited to model developers and analysts but may be 
conducted widely by decision-makers and field staff related 
to management and administration. As a result, having a 
methodology for extracting knowledge and insights from 
simulation log data as well as a framework for sharing the 
extracted knowledge and insights among stakeholders is 
critical. 

C. Experience Mapping Techniques 
In the design of products and services, “design thinking” 

has been attracting attention [28; 29; 30]. As observational 
methods, experience mapping techniques such as persona–
scenario technique [31], customer journey map [32], 
empathy map, and so on [33] are used to uncover users’ 
latent needs. 

It is believed that the use of the experience mapping 
techniques has the effect of standardizing the perceptions 
among stakeholders, such as developers and marketers of 
products and services. This method may be an effective 
means of facilitating communication among stakeholders, 
which is a problem in the analysis of social simulation 
results, as discussed in the previous section. 

1) Persona–scenario technique 
In the field of marketing, human–computer interaction, 

and interaction design, “persona” is widely used as a 
method to support customer-oriented product and service 
design [6; 31; 34]. Persona marketing refers to the creation 
of an image of a person based on clear and specific data 

55

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



about that real person. The use of personas leads to 
improving the quality of decision-making regarding the 
design of products and services. 

Table I provides a sample of a persona comparison 
poster [34]. In this paper, referring to the previous literature 
[6], we analyze and write down the results of our social 
simulation in the form of the persona comparison poster. 
 

TABLE I. EXAMPLE OF PERSONA COMPARISON POSTER [34] 
Name Tanner Colbi Austin Preston 
Age 9 7 12 3 
Tagline The 

tenacious 
tinkerer 

The creative 
child 

The active 
competitor 

The 
precious 
preschooler 

Personal 
Computer 
(PC) 
location 

PC in 
family 
room only 

Uses a PC in 
the family 
room and 
sometimes her 
brother’s PC, 
when he lets 
her 

Has a PC in 
his 
bedroom, 
rarely uses 
the PC in 
the family 
room 

Uses the PC 
in the office 
with Mom 

Internet 
Connection 

Dial-up Broadband Broadband Dial-up 

PC/Internet 
Activity 

Gaming, 
web 
surfing, 
some 
school 
work/re-
search 

Chatting with 
friends, 
surfing the 
web, school 
work/research
, arts/crafts 

Gaming, 
web 
surfing, 
tracking 
sports 
schedules, 
tracking 
favorite 
athletes, 
some 
school 
work/re-
search 

Educational 
games and 
light 
entertainme
nt deemed 
worthy by 
Mom 

 
2) Other experience mapping techniques 
Other experience mapping techniques include empathy 

map, customer journey map, service blueprint, and so on 
[33] (Fig. 1). The customer journey map [32] is the most 
basic and widely used visual description method in service 
design, and it is used in this paper. We write down the 
results of our social simulation in the form of a customer 
journey map, as we did with the previous persona–scenario 
technique. 
 

 
Figure 1. Various experience mapping techniques [33] 

III. METHODOLOGY 
In this section, we outline our proposed life planning 

support framework for retirees based on data and social 
simulation. This framework is based on our previous studies 
[3; 4; 5; 6]. 

A. Outline 
Our framework is designed to run simulations based on 

real data of customer attributes and to evaluate measures for 
customers’ retirement assets based on the data and 
simulation results. Fig. 2 depicts an overview of the 
proposed framework, which corresponds to the concept of 
cyber-physical systems. Our framework consists of the 
following two procedures: 

1) Data augmentation by social simulation: Real data and 
simulation logs/paths are integrated and treated as 
augmented customer attribute data (See I in Fig. 2). 

2) Knowledge extraction: From the above-augmented 
data, knowledge about the sustainability of assets for each 
customer is extracted using machine learning methods and 
experience mapping techniques (See II in Fig. 2). 

 
In detail, the real data is a large survey data containing 

various attributes of customers (Section V-A). In this paper, 
we use cross-sectional data from individual questionnaires. 
Then, the social simulation model is constructed based on 
finance theory [36; 37] (Section IV). The model addresses 
asset formation in retirement, taking into account asset 
succession and risky asset price fluctuations. Based on the 
model, simulations are run to perform what-if analysis of 
the customer’s asset’s sustainability (Section V-D). The 
proportion of asset depletion in future, as obtained from the 
simulation results, is treated as augmented data for the 
original questionnaire data. Moreover, machine learning 
methods [38; 39] are used for the analysis of customer 
features (Section V-C) and evaluation of the policy 
measures (Section V-E). Finally, the results are represented 
using experience mapping techniques [34; 32] (Section V-F 
and G). 
 

 
Figure 2. Basic Architecture of the proposed Life Planning Support 

framework 

Ⅱ) Knowledge
Extraction

Individual
Attributes

＜Physical Space＞

＜Cyber Space＞

Dataset (Ⅴ-A.)

Machine
Learning
Methods

Simulation
Model (Ⅳ)

Ⅰ) Data Augmentation
By Social Simulation

Feature 
Analysis (Ⅴ-C.)

Scenario Analysis
Simulation-logs,
Simulation-paths

(Ⅴ-D.)

・Persona (Ⅴ-F.)
・Customer
Journey Map (Ⅴ-G.)

Machine
Learning
Methods Estimate Impact of

Decision-making(Ⅴ-E.)

Finance
Theory

(Risk/Return/
Asset Allocation etc.)

56

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Here, this framework is intended to be used by financial 
planners and retail strategy planners who create life plans for 
their customers. 

 

B. The Usefulness of the Proposed Framework 
a) Perspectives on the advanced analysis of the 

sustainability of personal assets: 
Regarding asset depletion, many studies have analyzed 

macrostatistical data, e.g., the amount of financial assets and 
disposable income [19]. Furthermore, based on market data, 
the effect of price fluctuations on owned assets and asset 
depletion has been examined [21]. However, previous 
studies only used actual data to express some of the 
characteristics of individuals. In short, traditional analysis 
has frequently focused on people with specific characteristics 
to simulate asset depletion scenarios. Additionally, in those 
studies, ad hoc analysis was required for each person to 
examine possible measures to be taken. 

On the other hand, the proposed framework is capable of 
handling various attributes of individuals. Individual 
investment preferences and the amount of assets they will 
inherit in the future, for example, have rarely been addressed 
in previous studies. In addition, our framework can 
comprehensively and semiautomatically specify potential life 
planning measures for each customer. The framework will 
allow for effective discussion of measures to avoid the 
depletion of retirement assets. 

 
b) Perspectives on visualization of simulation results 
As mentioned in Section II-B, it is important to have a 

methodology for extracting knowledge and insights from 
simulation log data and a framework for sharing the 
extracted knowledge and insights among stakeholders. 

In the proposed method, simulation paths and logs, which 
are simulation results, are classified using machine learning 
methods and then visualized using experience mapping 
methods. By describing the results using those methods, a) 
the results can be compared in a graphical format, and b) the 
perspectives of customers and users can be expressed. This 
will allow the results to be widely interpreted and shared, not 
just by model developers and analysts, but also by decision-
makers and frontline personnel. Furthermore, it has the 
potential to improve communication among stakeholders 
during the analysis and sharing of simulation results. 

 

C. Limitation of the Proposed Framework 
One of the limitations of this analysis is that there is 

arbitrariness on the part of the modeler as to which attributes 
of the targeted individuals are reflected in the simulation 
model. Furthermore, in the process of extracting knowledge 
from simulation results, the analyst’s discretion in selecting 
which results to focus on and describe formally may exist. 
Of course, the social simulation model used must be an 
accurate representation of the real world. 
 

IV. SOCIAL SIMULATION MODEL 
In this section, we describe the social simulation model 

used in this paper. This model is based on our previous 
studies [3; 4; 5]. 

A. Outline 
As an example of the proposed framework, we show a 

simulation of the customer’s asset situation at a future point 
in time, taking into account asset succession and price 
fluctuations of risky assets based on individual 
questionnaire data concerning asset formation and 
withdrawal in old age. 

We constructed a computer simulation model that 
expresses asset formation and withdrawal before and after 
retirement (Fig. 3). 

Each actor in the model has a specific asset balance at a 
certain age. According to the actor’s status, each actor has 
both regular income and expenditure (cash inflow and 
outflow) and unexpected income and expenditure 
(depending on life events) (before and after retirement). 
Each actor’s characteristics are expressed statistically. In 
addition, by manipulating the attributes of the actors, what-
if analysis can be performed to examine responses to the 
implementation of a particular policy or decision-making． 

 

 
Figure 3. Conceptual diagram of a simulation model 

 
The assets held by each actor include cash, deposits, and 

risk assets. Risk assets are fully invested in a portfolio of 
traditional assets and provide returns according to the risk of 
the portfolio. Furthermore, regular income and expenditure 
are adjusted to account for inflation. The external 
environment is comprised of the portfolio’s risk–return 
profile, the inflation rate, and the variance of each, as 
described further below. 

B. Actor 
Let A be the set of actors and let #A = Nall. Actor ai has 

the following attributes in step t of the simulation and 
inflation scenario m: age agei,t, retirement age ageiretired, cash 
and deposit balance CAi,t, risk asset balance RAi,t, cash 
inflow CFIni,t,m, cash outflow CFOuti,t,m, cash flow from life 
event LEi,t, and total asset balance ASi,t = CAi,t + RAi,t. 

A = {ai = (i, agei,t, ageiretired, CAi,t, RAi,t, CFIni,t,m, CFOuti,t,m, 
ASi,t, LEi,t)} 

Here, age is expressed as follows. 
agei ∈ {agei,0, agei,0 + 1, …, ageiretired,… } 

# of Actors:
Nall

…

Actor ai

step t-1

ASi,t-1

CFIni,t,m , CFOuti,t,m∝ Rinflation t,m
Regular Cash In/Out Flow

ASi,t
Asset Amount Investment by portfolio  

*(1+Rinvestt)

LEi,t Sudden Cash In/Out 
Flow

step t

…

ai

Inflation Ratio

57

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Then, the simulation time step, a single step represents 
one year in real-time. 

C. External Environment 
The return and inflation rate of portfolio j are generated 

in time series by Monte Carlo simulation as follows, where 
the number of trials is K. 

The portfolio return (annual) is expressed as 
Rinvestt = X1,t σ + μ. 

The inflation rate (annual) is given as 

Rinflationt,m = (ρX1,t + √(1−ρ2) X2,t) σinflation + μinflationm. 
Here, σ is the risk of portfolio, μ is the expected return 

rate of portfolio, σinflation is the standard deviation of the 
inflation rate, μinflationm is the expected inflation rate at 
scenario m, ρ is a correlation coefficient between portfolio 
and the inflation rate. X1, X2 ~ N (0,1), and cov [X1, X2] = 0. 

The cumulative value IRC of the inflation rate referred 
to as cumulative inflation rate, is expressed as 

IRCt,m = IRCt-1,m(1 + Rinflati°nt,m), IRC0,m = 1. 

D. Cash Inflow/Outflow 
Retirement cash inflows and outflows CF in step t are 

determined by considering the asset class to which actor i 
belongs and the cumulative inflation rate as follows: 

CFIni,t,m = CFIni,0,m (1 + IRCt,m), 
CFOuti,t,m = CFOuti,0,m (1 + IRCt,m) 

To keep the estimated possibility of withdrawal 
conservative, the net cash flow before retirement is set to 
zero. 

E. Asset Formation and Withdrawal Rules 
The cash and deposit balance and risk asset balance in 

each simulation step are varied according to the following 
rules. This expresses the preferential withdrawal of highly 
liquid cash and deposits at the asset withdrawal stage. 

if CAi,t + CFIni,t,m – CFOuti,t,m >= 0 
then 
 CAi,t+1 = CAi,t + CFIni,t,m – CFOuti,t,m + LEi,t 

RAi,t+1 = RAi,t (1 + Rinvestt) 
else 

CAi,t+1 = CAi,t + LEi,t 
 RAi,t+1 = RAi,t (1 + Rinvestt) + CFIni,t,m – CFOuti,t,m 

F. Asset Depletion Rate 
For the K trials, the number of times the asset balance 

becomes negative at age τ and inflation scenario m is 
denoted Kshortage, and the asset depletion rate, hereafter 
referred to as the depletion rate, is expressed as 

Ri,m,τshortage = Ki,m,τshortage/K. 
 
 
 
 

V. APPLICATIONS 
In this section, we show applications of our framework. 

A. Dataset: Individual Attributes 
We use the individual questionnaire data from the 

“Awareness Survey on Life in Old Age for Before and After 
Retirement Generations” conducted by the MUFG Financial 
Education Institute [40]. The survey was aimed at men and 
women aged 50 and up. The survey area was Japan, and 
there were 6,192 valid responses. This questionnaire 
thoroughly investigated each individual’s asset status 
(current asset balance and expected income/expenditure in 
old age), planned asset inheritance amount, investment 
stance, and outlook for old age, and so on. 

The basic statistics of the questionnaire on age, current 
asset balance, asset balance to be inherited, and percentage 
of risky assets held are shown in Table II [5]. 

 
TABLE II. BASIC STATISTICS OF QUESTIONNAIRE (abstract)  

 
 

B. Model Implementation and Simulation Environment 
The social simulation model presented in Section IV was 

implemented using the python language; the versions of 
python and jupyter notebook are 3.8.5 and 6.1.4, 
respectively. The simulation environment was MacBook Air 
(13-inch, 2017), processor: Intel Core i7 2.2GHz dual core, 
memory: 8GB 1600 MHz DDR3, OS: macOS Big Sur ver 
11.4. 

C. Feature Analysis of Individual Questionnaire Data 
Based on the above individual questionnaire data, we 

established several patterns of “possible person attributes” 
through segmentation by feature analysis [4; 5]. 

 
TABLE III. QUESTIONNAIRE ITEMS USED FOR FEATURE 

ANALYSIS 

 
 

For the individual data, the following items were targeted 
(Table III), and clustering was performed using the k-means 
method [38]. The number of clusters was set to five in this 

Age
Asset Balance

Current
Asset Balance
to be Inherited

Risk Asset
Holding Ratio

Mode 70 30-50 m yen 0 m yen 0%

Median 64.5 15-20 m yen 0 m yen 0%

Max 91 100- m yen 100- m yen 90%-

Min 50 0-1 m yen 0 m yen 0%

First Quartile 57 7-8 m yen 0 m yen 0%

Third Quartile 71 30-50 m yen 0 m yen 20-30%

# of Samples 6,192 6,192 5,342 6,068

Statistics

Question matters (extract)

Item Question matters

Attributes Age, Sex, Household composition, etc.

Stock data: Asset Balance(Current)，Asset Balance(to
be Inherited), etc.

Flow data: Regular Cash In/Out Flow, etc.

Risk Preference Investment Experience, Risk Asset Holding Ratio, etc.

Financial Statue

58

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



case based on the results of the elbow chart and silhouette 
analysis, which are frequently used to determine the number 
of clusters. There were 4,592 samples available for all items 
in the data. 
 

 
Figure 4. (a) Distribution of Age Groups for Each Cluster 

 

 
Figure 4. (b) Distribution of Risk Assets Holding Ratio for Each Cluster 

 

 
Figure 4. (c) Distribution of Current Financial Asset Balances for Each 

Cluster 
 

 
Figure 4. (d) Distribution of Financial Assets to be Inherited for Each 

Cluster 
 

From the obtained clustering results (clusters #1–#5), 
Figs. 4(a)–4(d) show the distribution of the answers to 
typical questionnaire items for each cluster as a box plot. 

The median age group age was 55–59 years for clusters 
#1 and #4, 65–69 years for cluster #3, and 70–74 years for 
clusters #2 and #5, as shown in Fig. 4(a). 

The median holding ratio of risk assets Rrisk was 0% for 
clusters #2 and #3, 0%–10% for cluster #4, 20%–30% for 
cluster #1, and 40%–50% for cluster #5, as shown in Fig. 
4(b). 

The median current balances of financial assets FAn°w 
was 2–3 million yen for cluster #3, 15–20 million yen for 
clusters #2 and #4, and 30–50 million yen for clusters #1 
and #5, as shown in Fig. 4(c). 

The median balance of financial assets to be succeeded 
FAfuture was zero for clusters #2–#5 and 20–30 million yen 
for cluster #1, as shown in Fig. 4(d). 

Risk asset holding ratio, i.e., investment preferences of 
individuals and the amount of assets they will inherit in the 
future have rarely been addressed in previous studies. So, 
our proposed framework is capable of handling various 
attributes of individuals. 

D. Asset Formation Simulation: Depletion Rate Based on 
Individual Questionnaire Data 
Using the social simulation model referred to in Section 

IV, we performed computer simulations of asset formation 
and withdrawal based on the cluster set described in the 
previous section (Table IV). Then, we estimated the asset 
depletion status of representative people who were typified 
by the individual questionnaire data [4; 5]. 

Here, the annual income and expenditure CFnet for each 
asset class was set from macro statistics data [41] according 
to the current balance of financial assets. The 
correspondence with the model described in Section IV is 
expressed as follows. 
Nall = 5 (cluster#1–#5), CAi,0 = FAnowi * (1–Rriski), RAi,0 = 

FAnowi * Rriski, CFOuti,0,m − CFIni,0,m = CFneti 
 

TABLE IV. Setting Attributes for Each Cluster  
 
 
 
 
 
 
 
 

 
We also define the parameters as follows: ageiretired = 60, 

the actor’s age at which a life event occurs: agei,t’ = 70, LEi, 

t’ = FAfuturei * Rfuture. Here Rfuture is the ratio of asset 
succession (representing the ratio of the actual balance of 
financial assets to be succeeded). And t' is the age at which 

#4 57 17.5 m yen none 5%
#1 57 40.0 m yen 25.0 m yen 25%
#3 67 2.5 m yen none 0%
#2 72 17.5 m yen none 0%
#5 72 40.0 m yen none 45%

# of
cluster

Attributes

age FA now FA future R risk

59

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a life event (asset succession) occurs. In this paper, the 
above parameters are called “Case of Making Basic 
Decisions.” 

Other parameter settings, e.g., the portfolio’s risk–return 
profile and inflation rate, are shown in Table V. Note that 
the risk–return of the portfolio was set assuming a portfolio 
comprising foreign stocks and bonds [3]. The expected 
inflation rates were according to three patterns, i.e., (1) no 
inflation (0%), (2) moderate inflation (actual results for the 
past 30 years in Japan [42]: 0.53%), and (3) 2% inflation 
(monetary easing target). Here, the standard deviation of the 
inflation rate was the same as pattern (2), which is the actual 
result for the past 30 years in Japan. 

 
TABLE V. Parameter Settings: Case of Making Basic Decisions 

 
 
 
 
 

 
 
 

 
The depletion rate at age 90 and age 100 by cluster and 

inflation scenario is shown in Table VI [4]. 
 
TABLE VI. SIMULATION RESULT: DEPLETION RATES IN CASE OF 

MAKING BASIC DECISIONS 
 

 
 
 
 

 
 
The depletion rate of cluster #4 increases according to 

the high inflation scenario, and the depletion rate of cluster 
#1 is zero in all scenarios. However, keep in mind that the 
simulation was based on the assumption that financial assets 
are inherited expectedly. In all scenarios, the depletion rate 
of cluster #3 was 100%. Cluster #2, similar to cluster #4, 
exhibits a high depletion rate in a high inflation scenario. 
Asset depletion was observed with a low probability in the 
limited case of high inflation at the age of 100 for cluster #5. 

 

E. Estimate of Impact of Various Decisions on Depletion 
Rates 

We conducted a what-if analysis in which the actors made 
various decisions to control asset depletion. By calculating 
feature importance using machine learning methods, we 
examined the effectiveness of these decisions [4]. 

We analyzed decisions that have a large effect on the 
depletion rate for the clusters set shown in Table IV. We 
considered the following decisions: 1) portfolio’s risk–
return profile, 2) retirement age, 3) curbing of expenditure, 
and 4) asset succession. 
• What-if analysis and calculating feature importance 
The parameter settings are shown in Table VII. Here, the 

assumed decision-making patterns are as follows. The 
annual income and expenditure CFnet by asset class has two 
patterns, i.e., with and without curbing of expenditure. The 
retirement ages are 60, 65, and 70 years. There are three 
asset succession patterns, i.e., 100%, 50%, and 0%, and four 
portfolio risk setting patterns, i.e., 18%, 12%, 6%, and 0% 
(returns are set according to the corresponding figures, i.e., 
6.37%, 4.68% 2.87%, and 0.01%; see reference [3]). For 
each cluster set, 72 decision-making patterns were generated. 
Note that the other parameters were the same as those 
shown in Table V. In this paper, the above parameters are 
called “Case of Making Various Decisions.” 

 
TABLE VII. Parameter Settings: Case of Making Various Decisions 

 
 
 
 
 
 
   
 

 
Here, we focus on the status of asset depletion and 

nondepletion at the specific age for each cluster. The 
importance of variables that classify depletion and 
nondepletion for each cluster was calculated using the 
random forest method [39] (Fig. 5). 

For cluster #4, the importance of the portfolio risk setting 
was relatively high. Cluster #1 showed the highest 
importance in order of asset succession ratio, portfolio risk 
settings, and curbing of expenditure. For clusters #3 and #2, 
the importance of curbing expenditure was extremely high. 
In addition, cluster #5 had the highest importance in order of 
portfolio risk setting and curbing of expenditure. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. (a) Variable Importance for Each Cluster (#4) 

Age: 90 (%) Age: 100 (%) Age: 90 (%) Age: 100 (%) Age: 90 (%) Age: 100 (%)
#4 34 75 60 86 93 98
#1 0 0 0 0 0 0
#3 100 100 100 100 100 100
#2 0 34 0 94 0 100
#5 0 0 0 1 0 5

(1) No inflation (2) Moderate inflation (3) 2% inflation
Depletion rates by inflation scenario

# of cluster

Item Value
Curbing of Expenditure Without
age retired 60
R future 100%
μ j , σj (6.37%，18.0%)
μ inflation { 0.0%, 0.53%, 2.0%}
σ inflation 1.26%
K 10,000

Item Value
Curbing of Expenditure {Without，With}
age retired {60, 65，70}
R future {100%, 50%, 0%}
μ j , σj {(6.37%，18.0%), (4.68%, 12.0%),

(2.87%, 6.0%), (0.01%, 0.0%)}
μ inflation { 0.0%, 0.53%, 2.0%}
σ inflation 1.26%
K 10,000

60

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
 
 
 
 
 
 
 
 
 
 

Figure 5. (b) Variable Importance for Each Cluster (#1) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. (c) Variable Importance for Each Cluster (#3) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. (d) Variable Importance for Each Cluster (#2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. (e) Variable Importance for Each Cluster (#5) 
 
 

• Possible Effective Decisions for Each Cluster 
Next, from the results shown in Table VII and Fig. 5, 

we considered measures each individual can take to reduce 
the depletion rate (Table VIII).  
Cluster #4: High depletion rate in the high inflation 

scenario. Appropriate risk-taking for inflation hedging and 
increasing retirement age could be effective measures [Fig. 
5(a)]. 
Cluster #1: The depletion rate is low in all scenarios. 

However, this simulation assumed that financial assets are 
inherited as expected. Regarding variable importance, the 
ratio of asset succession was the highest [Fig. 5(b)], and 
appropriate and steady asset succession is important. 
Cluster #3: The depletion rate was extremely high in all 

scenarios. Note that curbing expenditure was the only option 
among the decisions compared in this paper [Fig. 5(c)]. For 
cluster #3, drastic measures are required, e.g., curbing 
expenditure and expanding social security. 
Cluster #2: The depletion rate was high in the moderate 

and high inflation scenario at age 100. Here, curbing 
expenditure is considered an effective action [Fig. 5(d)]. 
Cluster #5: Here, the depletion rate was high in a limited 

scenario. As a countermeasure, it is conceivable to take 
appropriate risks [Fig. 5(e)]. This cluster showed a high 
proportion of risk assets (Table IV), and it is important to 
avoid excessive risk to prevent price fluctuations (decreases) 
of the held risk assets. 

Table VIII summarizes examples of actions each cluster 
could take to reduce the depletion rate. In addition to the 
results of the previous section (Table VI), our framework is 
capable of comprehensively and semiautomatically 
specifying possible life planning measures for each 
customer [4]. 
 

TABLE VIII. ASSUMED COUNTERMEASURES FOR EACH 
CLUSTER 

 
 

F. Knowledge Extraction Using Experience Mapping 
Techniques: Persona–scenario Technique 
From this section onward, the above simulation results 

are formally described using the experience mapping 
techniques. First, we use the persona–scenario technique [6; 
34]. 

Table IX describes the contents of Tables IV, VI, and 
VIII. in the form of a persona comparison poster. Here, we 
exemplify Table IX (a) showing the moderate inflation 
scenario and Table IX (b) showing the 2% inflation scenario. 

# of cluster Countermeasures (example)

#4 Appropriate risk taking for inflation hedging,
increase retirement age

#1 Appropriate and steady asset succession
#3 Curbing expenditure, expanding social security
#2 Curbing expenditure
#5 Avoid excessive risk to prevent price fluctuations

61

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



From the original questionnaire, attributes “Age group,” 
“Current balances of financial assets,” “Holding ratio of risk 
assets,” and “Financial assets to be succeeded” were 
selected and entered as the attributes obtained by feature 
analysis. Furthermore, the statuses “Depletion rate at age 
90” and “Depletion rate at age 100” were chosen and 
entered from the simulation results. In addition, effective 
measures to reduce the rate of depletion are described for 
each cluster. 

The benefit of using the persona–scenario method for 
formal description is that it allows you to see and compare 
the differences in attributes and states between clusters for 
each simulation scenario. This limits the ability of 
stakeholders other than modelers and analysts to interpret 
simulation results. 

 
TABLE IX. (a) PERSONA COMPARISON POSTER:  

MODERATE INFLATION SCENARIO 
Cluster # #4 #1 #3 #2 #5 

Age group 55–59 55–59 65–69 70–74 70–74 
Current 

balances of 
financial 

assets 

15–20 
m yen 

30–50 
m yen 

2–3 
m yen 

15–20 
m yen 

30–50 
m yen 

Holding 
ratio of 

risk assets 

0%–
10% 

20%–
30% 0% 0% 40%–

50% 

Financial 
assets to be 
succeeded 

0 
m yen 

20–30 
m yen 

0 
m yen 

0 
m yen 

0 
m yen 

Depletion 
rate at age 

90 
60% 0% 100% 0% 0% 

Depletion 
rate at age 

100 
86% 0% 100% 94% 1% 

 
TABLE IX. (b) PERSONA COMPARISON POSTER:  

2% INFLATION SCENARIO 
Cluster # #4 #1 #3 #2 #5 

Age group 55–59 55–59 65–69 70–74 70–74 
Current 

balances of 
financial 

assets 

15–20 
m yen 

30–50 
m yen 

2–3 
m yen 

15–20 
m yen 

30–50 
m yen 

Holding 
ratio of 

risk assets 

0%–
10% 

20%–
30% 0% 0% 40%–

50% 

Financial 
assets to be 
succeeded 

0 
m yen 

20–30 
m yen 

0 
m yen 

0 
m yen 

0 
m yen 

Depletion 
rate at age 

90 
93% 0% 100% 0% 0% 

Depletion 
rate at age 

100 
98% 0% 100% 100% 5% 

 

G. Knowledge Extraction Using Experience Mapping 
Techniques: Customer Journey Map 
This section provides a formal description of the 

simulation results using the customer journey map. Figure 6 
describes the contents of Tables IV, VI, and VIII in the form 
of the customer journey map [32]. Here, the cases of both 
clusters # 4 and # 1 are illustrated. 

 The attributes obtained by feature analysis from the 
original questionnaire are described in the “User profile” 
section. In addition, the “Scenario and Goal” section 
describes simulation scenarios and results (future state for 
each cluster). Furthermore, the entire period was divided 
into four phases based on the state of the actors in the 
simulation. Following that, we included a summary of the 
changes in the balance of assets held as well as the status of 
actors in each phase. 

The state of the actor is described in the balloon in the 
figure and is based on the simulation result. Discussions 
between stakeholders, on the other hand, can be used to 
describe the thoughts and feelings of expected customers 
and users. Thus, the formal description of simulation results 
using a customer journey map has the advantage of allowing 
the customer or user’s perspective to be expressed as well. 
 

 
Figure 6. (a) Customer Journey Map: Cluster #4  

 

 
Figure 6. (b) Customer Journey Map: Cluster #1 

 

n User profile: Cluster #4
• age： 55-59，Current Financial Asset Balances: 15-20 million Yen
• Financial Assets to be Inherited： None，Risk Assets Holding Ratio： 0%-10%

n Scenario and Goal
• （Scenario）Price fluctuation：Conventional assets，Inflation：Moderate scenario
• （Goal） Depletion rate at age 90： 60%，at age 100： 86%

Phase1:
Before Retirement

Phase2:
Retirement

Phase3:
After Retirement: Withdrawal of assets, succession

Phase4:
Asset Depletion

・Not very interested in asset 
management, with only about 5% 
of assets held in risky assets

・Retirement at age 60
・Worsening of net cash 
flow

・Asset formation during 
working years: Middle
(Comparison with 
peers)

・No inheritance of 
assets from relatives

・Relatively high asset 
depletion at age 90 and 
age 100 (60%, 86%)
・Depletion rate worsens 
further under high 
inflation scenario

n User profile: Cluster #1
• age： 55-59，Current Financial Asset Balances: 20-30 million Yen
• Financial Assets to be Inherited： None，Risk Assets Holding Ratio： 20%-30%

n Scenario and Goal
• （Scenario）Price fluctuation：Conventional assets，Inflation：2% scenario
• （Goal） Depletion rate at age 90： 0%，at age 100： 0%

Phase1:
Before Retirement

Phase2:
Retirement

Phase3:
After Retirement: Withdrawal of assets, succession

Phase4:
Asset Depletion

・Interested in asset management 
and hold about 20-30% of assets 
held in risky assets

・Retirement at age 60
・Worsening of net cash 
flow

・Asset formation during 
working years: High
(Comparison with 
peers)

・Asset inheritance from 
relatives at age 70:
20-30 million Yen

・Extremely low asset 
depletion at age 90 and 
age 100 (0%, 0%)

62

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VI. CONCLUDING REMARKS 
In this paper, we first surveyed the research on asset 

formation and life planning. Then, we showed a life 
planning support framework built based on data and social 
simulation.  

This framework was designed to run simulations based 
on data of customer attributes and to evaluate and validate 
measures for customers’ retirement assets based on the data 
and simulation results. The social simulation model was 
built using finance theory. Machine learning is also used for 
customer feature analysis (k-means method) and policy 
measure evaluation (random forest method). Furthermore, 
the simulation results were represented using experience 
mapping techniques (persona-scenario technique and 
customer journey map).  

As a exemplification of the proposed framework, we 
showed a specific case study that focuses on customer asset 
formation and withdrawal for the retirement generation. As 
the data source of customer attributes, we used large-scale 
individual questionnaire data. 

The main findings are as follows: 1) our framework could 
effectively discuss measures to avoid the depletion of 
retirement assets. In addition, our framework is capable of 
dealing with a wide range of individual characteristics (Fig. 
4) and specifying comprehensively and semiautomatically 
possible life planning measures for each customer (Tables 
VI and VIII). 2) Using our framework, simulation results 
can be widely interpreted and shared not only by model 
developers and analysts but also by decision-makers and the 
frontline personnel. By describing the simulation results 
using experience mapping techniques, a) the results could be 
compared in an overview (Table IX), and b) the viewpoints 
of customers and users can be expressed (Fig. 6). 

Limitation of the proposed framework are: 1) there is 
arbitrariness on the part of the modeler as to which 
attributes of the targeted individuals are reflected in the 
simulation model, 2) in the process of extracting knowledge 
from simulation results, the analyst’s discretion in selecting 
which results to focus on and describe formally may exist, 
3) the social simulation model used must be an accurate 
representation of the real world. 

By using the proposal system, financial planners and 
retail strategic planners could obtain knowledge feedback 
directly related to life planning. It is expected that financial 
institutions will also be able to provide detailed advice and 
counsel. 

Future work would be to examine formal description 
methods for interpreting and sharing simulation results. 

 
 

ACKNOWLEDGMENTS 
 

This work is supported in part by the Grant of Foundation 
for the Fusion Of Science and Technology. The authors 
would like to thank Enago (www.enago.jp) for the English 
language proof. 

REFERENCES 
[1] Kikuchi, T. and Takahashi, H., “Survey and Application: 

Constructing Life Planning Support System for Retirement 
Planning using Social Simulation,” The Thirteenth 
International Conference on Information, Process, and 
Knowledge Management (eKNOW 2021), In proc., pp. 27-28, 
2021. 

[2] Investing in (and for) Our Future, World Economic Forum 
White Paper (2019)  
http://www3.weforum.org/docs/WEF_Investing_in_our_Futur
e_report_2019.pdf, last accessed 2022/5/29. 

[3] Kikuchi, T. and Takahashi, H., “Policy Simulation on 
Retirement Planning Considering Individual Attributes,” 
Journal of the Japan Society for Management Information, 
Research Note, vol. 30, no. 2, pp. 105-119, 2021. (in 
Japanese) 

[4] Kikuchi, T. and Takahashi, H., “Policy Simulation for 
Retirement Planning Based on Clusters Generated from 
Questionnaire Data,” In: Jezic G., Chen-Burger J., Kusek M., 
Sperka R., Howlett R.J., Jain L.C. (eds) Agents and Multi-
Agent Systems: Technologies and Applications 2021. Smart 
Innovation, Systems and Technologies, Springer, Singapore, 
vol. 241, pp. 285-298, 2021. 

[5] Kikuchi, T. and Takahashi, H., “Life Planning Support 
System for Older Generations using Social Simulation Log 
Analysis,” Transactions of the Society of Instrument and 
Control Engineers, vol. 57, issue 12, pp. 552-562, 2021. (in 
Japanese) 

[6] Kikuchi, T. and Takahashi, H., “A Persona Design Method 
Based on Data Augmentation by Social Simulation,” The 
IEEE/ACIS 21st International Fall Conference on Computer 
and Information Science (ICIS 2021-Fall), In proc., 2021. 

[7] Merton, R. C., “Lifetime Portfolio Selection under 
Uncertainty: The Continuous-Time Case,” Review of 
Economics and Statistics, vol. 51, no. 3, pp. 247-257, 1969. 

[8] Samuelson, P. A., “Lifetime Portfolio Selection by Dynamic 
Stochastic Programming,” Review of Economics and 
Statistics, vol. 51, no. 3, pp. 239-246, 1969. 

[9] Mankiw, N. G. and Zeldes, S. P., “The Consumption of 
Stockholders and Nonstockholders,” Journal of Financial 
Economics, vol. 29, no. 1, pp. 97-112, 1991. 

[10] Bodie, Z., Merton, R. C. and Samuelson, W., “Labor Supply 
Flexibility and Portfolio Choice in a Life-Cycle Model,” 
Journal of Economic Dynamics and Control, vol. 16, no. 3-4, 
pp. 427-449, 1992. 

[11] Chen, P., Ibbotson, R. G., Milevsky, M. A. and Zhu, K. X., 
“Human Capital, Asset Allocation, and Life Insurance,” 
Financial Analysts Journal, January/February, 2006. 

[12] Ameriks, J. and Zeldes, S. P., “How Do Household Portfolio 
Shares Vary with Age?,” TIAA-CREF Institute, TIAA-CREF 
Working Paper, 2004. 

[13] Iwaisako, T., “Household asset allocation,” Securities analysts 
journal, vol. 44, no. 8, pp. 6–14, 2006. (in Japanese) 

[14] Fujibayashi, H., “Individual assetmanagement and retirement 
income securing-life cyclemodel and asset reversal strategy,” 
Securities analysts journal, vol. 52, no. 10, pp. 50–55, 2014. 
(in Japanese) 

[15] Bengan, W. P., “Determining Withdrawal Rates Using 
Historical Data,” Journal of Financial Planning, pp. 767-777, 
1994. 

[16] Scott, J.S., Sharpe, W.F. and Watson, J.G., “The 4% Rule – 
At What Price ?,” Journal of Investment Management, Third 
Quarter, 2008. 

[17] Guyton, W.T. and Klinger, W., “Decision rules and maximum 
initial withdrawal rates,” Journal of Financial Planning, vol. 
19, article 6, 2006 

63

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[18] Spitzer, J.J., “Retirement withdrawals: an analysis of the 
benefits of periodic “midcourse” adjustments,” Financial 
Services Review, vol. 17, pp. 17-29, 2008. 

[19] Yokoyama, et al., “Future forecast/policy simulation analysis 
on private asset formation,” MURC report, 2018. (in 
Japanese). 
https://www.murc.jp/report/rc/policy_rearch/politics/seiken_1
80112_2/, last accessed 2022/5/29. 

[20] The Financial System Council (2019) (in Japanese) 
https://www.fsa.go.jp/singi/singi_kinyu/tosin/20190603/01.pd
f, last accessed 2022/5/29. 

[21] Kato, Y., “Post-retirement asset management framework,” 
Securities analysts journal, vol. 56, no. 8, pp. 19–28, 2018. (in 
Japanese) 

[22] Gilbert, N. and Doran, J., (eds.) “Simulating Societies: The 
Computer Simulation of Social Phenomena,” University 
College of London Press, 1994. 

[23] Carley, K. M. and Prietula, J. (eds.) “Computational 
Organization Theory,” Lawrence-Erlbaum, 1994. 

[24] Yamada, H., Ohori, K., Iwao, T., Kira, A., Kamiyama, N., 
Yoshida, H. and Anai, H., “Modeling and managing airport 
passenger flow under uncertainty: A case of Fukuoka Airport 
in Japan,” 9th International Conference on Social Informatics 
(SocInfo), LNCS 10540, pp. 419-430, 2017. 

[25] Ohori, K., “Systems Science Approaches Toward Social 
Implementation of AI,” Journal of the Japanese Society for 
Artifical Intelligence, vol. 35, no. 4, pp. 542-548, 2020. (in 
Japanese) 

[26] Takahashi, H., Takahashi, S. and Terano, T., “Analyzing the 
validity of passive investment strategies employing 
fundamental indices through agent-based simulation,” In KES 
International Symposium on Agent and Multi-Agent Systems: 
Technologies and Applications, Springer, Berlin, Heidelberg, 
pp. 180-189, 2011. 

[27] Kikuchi, T., Kunigami, M., Yamada, T., Takahashi, H. and  
Terano, T., “Agent-based Simulation of Financial Institution’s 
Investment Strategy under Easing Monetary Policy on 
Operative Collapses,” Journal of Advanced Computational 
Intelligence and Intelligent Informatics, vol. 22, no. 7, pp. 
1026-1036,  2018. 

[28] Kelley, T. and Litterman, J., “The art of innovation: Lessons 
in creativity from IDEO, America’s leading design firm,” 
Doubleday, 2001. 

[29] Moggridge, B., “Designing Interactions,” The MIT Press, 
2006. 

[30] Brown, T., “Design Thinking,” Harvard Business Review, 
June, 2008. 

[31] Cooper, A., “The inmates are running the asylum: Why high 
tech products drive us crazy and how to restore the sanity,” 
Macmillan, 1999. 

[32] Kalbach, J., “Mapping Experiences: A Complete Guide to 
Creating Value through Journeys, Blueprints, and Diagrams,” 
1st edn, O’Reilly Media, 2016. 

[33] Gibbons, S., “UX Mapping Methods Compared: A Cheat 
Sheet,” Nielsen Norman Group, 2017. 
https://www.nngroup.com/articles/ux-mapping-cheat-sheet/, 
last accessed 2022/1/7. 

[34] Pruitt, J. and Adlin, T. “The Persona Lifecycle: Keeping 
People in Mind Throughout Product Design (Interactive 
Technologies),” Morgan Kaufmann, 2006. 

[35] Goodwin, K., “Designing for the Digital Age: How to Create 
Human-Centered Products and Services,” Wiley, 2009. 

[36] Ingersoll, J. E., “Theory of Financial Decision Making,” 
Row- man & Littlefield Publishers, 1987. 

[37] Duffle, D., “Dynamic Asset Pricing Theory,” Princeton 
University Press, 2001. 

[38] MacQueen, J., “Some Methods for Classification and 
Analysis of Multivariate Observations,” Proc. 5th Berkeley 
Symp. on Math. Stat. and Prob. 1, Univ. of California Press, 
Berkeley and Los Angeles, pp. 281-297, 1967. 

[39] Breiman, L., “Random Forests,” Machine Learning, vol. 45, 
no. 1, pp. 5–32, 2001. 

[40] “Awareness Survey on Life in Old Age for Before and After 
Retirement Generation,” MUFG Financial Education Institute, 
2019. (in Japanese) 
https://www.tr.mufg.jp/shisan-
ken/pdf/kinnyuu_literacy_04.pdf, last accessed 2022/5/29.  

[41] Statistics Bureau of Japan, Natl. Survey of Family Income 
and Expenditure, 2014.  
https://www.stat.go.jp/data/zensho/2014/index.html, last 
accessed 2022/5/29. 

[42] Statistics Bureau of Japan, Consumer Price Index: 
https://www.stat.go.jp/data/cpi/index.html, last accessed 
2022/5/29. 

 

64

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Notification, Wake-Up, and Feedback of Conversational Natural User Interface
for the Deaf and Hard of Hearing

Takashi Kato∗, Akihisa Shitara†, Nobuko Kato∗, and Yuhki Shiraishi∗
∗Tsukuba University of Technology, Japan

Email: {a203101,nobuko,yuhkis}@a.tsukuba-tech.ac.jp
†University of Tsukuba, Japan

Email: theta-akihisa@digitalnature.slis.tsukuba.ac.jp

Abstract—Most voice-based conversational natural user inter-
faces (NUIs), such as Amazon Alexa and Google Assistant, rely
on speech input and output, posing an accessibility barrier for
the deaf and hard of hearing (DHH). For example, DHH users
may not be aware of notifications from the system, may not
receive response information, and the system may have difficulty
recognizing their wake-words. In designing a conversational
NUI for DHH users, we consider that simply replacing speech
information with sign language information does not suffice to
create an accessible, comfortable user experience. In this study,
we conducted an experiment with 12 DHH users to determine
whether luminous notifications and text display methods showing
sign language in place of the standard text output were effective,
as well as whether gazing was effective as a wake-up method.
The second experiment was conducted with 24 DHH users to
identify better wake-up and feedback presentation methods. We
propose conversational NUI guidelines for DHH users based
on the results of these experiments. We examined accessibility
options for DHH users at each step of the conversation with the
voice user interface (VUI), and expect this work to serve as a
basis for future conversational NUI design.

Keywords—Deaf; hard of hearing; hearing impaired; sign lan-
guage; accessibility.

I. INTRODUCTION

In this study, to propose design guidelines for a conver-
sational natural user interfaces (NUIs) for dead and hard of
hearing (DHH) users, we examined accessibility methods at
each step of a conversation with voice user interfaces (VUIs).
This study builds on and extends our previous work [1], in
which we first introduced a conversational NUI for DHH users.

User interfaces (UIs) are a necessary medium for passing
information between computers and humans. Research on
NUIs designed to enable natural and intuitive operation by
humans has progressed in recent years. Applications include
touch panels, gesture control systems, and VUIs. For greater
convenience and ease of use, “conversational” interaction with
users is required to enable intuitive operation and mental
support [2]. Advances in speech recognition, speech synthesis,
and natural language processing have enabled humans to
interact naturally with UIs [3] However, it remains difficult
for DHH users to use and converse with VUI systems due to
their inability to receive speech information as audio and high
word error rate (WER). WER is a criterion used to evaluate
speech recognition technology, which indicates the probability
of words that could not be heard over the total number of
words uttered by a human. The WER of a speech recognition

system developed by Google averaged less than five percent
in 2017 [4]. However, Bigham and others reported a WER for
DHH users of 40% [5]. Abraham showed that current speech
recognition technology is not yet usable by DHH users [6].
Moreover, he also reported that low WER could be overcome
if more speech data from DHH individuals could be collected.
However, collecting large amounts of speech data from DHH
individuals would require considerable time and expense. As
a result of the widespread use of Amazon Alexa and Google
Assistant, voice control is becoming a ubiquitous interface
technology. As this trend continues, an increasing need to
address accessibility issues for DHH users in this technology
is evident.

Accessibility studies on conversational user interfaces
(CUIs) for DHH users have reported that sign language is
more suitable than gestures and text as an alternative input
method to replace speech [7]. It has also been reported that
the use of sign language is preferable to touchscreens as an
input method [8], and DHH users are interested in interacting
with a system in sign language [9]. As a result, researchers
in human-computer interaction (HCI) have begun to consider
user interfaces that can interact with sign language [10], and
the design and construction of sign language interfaces have
been recognized as a notable research topic [11]. In recent
years, researchers have begun to evaluate technologies for sign
language recognition, generation, and translation from an inter-
disciplinary perspective [12], and this topic was addressed at a
workshop on UIs [11]. Various calls to action were presented,
including “develop user interface guidelines for sign language
systems”. However, basic research on how sign language users
interact with computational systems remains relatively rare
in the relevant literature. Although many systems have been
developed for sign language users, most studies have focused
on evaluating the systems themselves and did not outline the
interaction principles between the user and system. As a result,
each team developing a new system must design the interface
almost from scratch, without the benefit of general design
guidelines based on research. Therefore, design guidelines for
NUIs should be developed, especially sign language-based
NUIs, which have been the subject of considerable research.

In this study, we investigate whether graphical user interface
(GUI) and VUI design guidelines can be used as a reference
when developing guidelines for conversational NUI from the
perspective of DHH users. The main GUI design guidelines

65

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



include “10 Usability Heuristics for User Interface Design”
by Nielsen [13] [14], “Seven user-centered design principles”
by Norman [15], and “Eight Golden Rules of Interface De-
sign” by Shneiderman [16]. GUIs have long used heuristics
as a key to implementing successful designs and avoiding
usability problems. GUI design guidelines cannot be directly
applied to VUIs [17]. VUIs and NUIs, including sign language
conversations, use touchless interaction and natural language
to interact with users. Therefore, it is challenging to devise
NUI guidelines based on GUI design guidelines, including for
sign language. Next, Alexa [18] and Google Assistant [19]
are mainly considered in terms of VUI design guidelines. It
has been reported as essential to establish a foundation of
VUI principles to guide future designers in developing spoken
conversation systems [20]. In addition, guidelines for VUIs
are designed to assume speech-based interactions. The author
believes that simply replacing speech information, mainly used
when conversing with VUIs, with sign language information is
not sufficient to create a comfortable user experience for DHH
individuals. Therefore, to create conversational NUI guidelines
from the perspective of DHH users, we consider alternative
access methods for DHH users at each step of a conversation
with a VUI. Based on the above, we propose guidelines for
conversational NUI that are most suitable for DHH users based
on the existing conversation steps with VUI.

From the conversational process between a listener and a
conversational NUI (referred to herein as “the system”), we
clarify the elements necessary to create a comfortable user
experience for DHH users. Figure 1 shows the conversion
process. At the beginning of the conversation, the user must
invoke the system with a wake-word. A wake-word is a
simple spoken phrase that triggers the AI assistant to accept
speech input, such as “Alexa.” for Alexa, “OK, Google.” for
Google Assistant, and “Hey, Siri” for Siri. The system then
detects the user’s wake-up command and provides feedback
that the system is ready to accept commands. For example,
Alexa displays a blue bar at the bottom of the screen,
and Google Assistant displays a bar at the top to provide
feedback to the user’s command. The user then commands
the system to access weather, news, alarms, etc. The system
then executes the task according to the user’s commands.
Other conversational situations include “alarm notifications”
and “video calls” in situations where the system calls the
user. We believe that simply substituting sign language for
voice input is not sufficient to create a comfortable user
experience for DHH users who mainly use visual information.
Therefore, in addition to sign language, more optimal means of
notification, information transmission, wake-up, and feedback
presentation for DHH users must be identified.

First, we consider the notification method. Hearing persons
can obtain audio information from the system without con-
stantly looking at the system. For DHH users who cannot
acquire audio information, it may be challenging to catch a
response from the system when they are not looking at the
display, even if they use a device with a display (Echo Show
or Nest Hub). That is, the best output method of the system

Hearing System

Wake-Word

Becoming command
acceptable state

Commanding

Executing the task

Calling to users

Replying

“Hello.”

“What’s the news today?”

“Today's weather is fine. 
Percent chance of rain is...”

“It's 8:00 in the morning.”

“Okay, stop.”

“How is the weather today?”

Commanding

Voice

Voice

Voice

Voice

Figure 1. Activity of the conversation process between the Hearing and the
system.

for DHH users should be investigated to identify an alternative
to voice output provided by CUIs. By contrast, luminous
notifications are familiar in Deaf culture. For example, DHH
users use intercoms, alarms, and fire alarms with luminous
notification functions in their daily lives [21]. In addition,
a luminous device that transmits the direction of the sound
source of the surrounding alarms to DHH users with light
has been developed [22]. Figure 2 shows that we investigated
whether luminous notifications could improve usability for
DHH users.

Next, we consider the method of information transmission.
Subtitling has recently become an accessibility feature for
CUIs with displays [23]. Even if DHH users use this feature,
there is a concern that the user experience may be worse
if the system outputs subtitles, because an interaction will
mainly be in sign language if sign language input from the
user is enabled. With devices such as Alexa entering common
usage in homes, there have been reports of increased hands-
free interaction with devices placed in the kitchen or living
room [24]. Therefore, it is conceivable that people may be
more likely to interact with computational agents while doing
other things. Therefore, DHH users should also be able to
capture responses from CUIs while doing other things.

66

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



It's 8:00 in
the morning.

DHH

personal assistant device

It's 8:00 in
the morning.

DHH

Conventional Luminous Notification

It's 8:00 in
the morning.

Figure 2. Hypothesis in light notification.

Here, clarifying whether the system’s sign language or text
output method affects the user experience of DHH users based
on the difference between sign language flowing and text
shown for a given time is essential. A study was conducted
on the impact of sign language interpretation, subtitling, and
the two together on the support of deaf students in secondary
and higher education settings [25]. The study reported that
the performance of the DHH students was significantly higher
when only subtitles were used compared to the other two
conditions. One study evaluated subtitles and sign language’s
combined effect in understanding television content [26]. Here,
it was reported that providing subtitles and sign language was
very helpful in improving the accessibility of TV content
to more DHH individuals than providing each of the two
alone. In addition, a study investigated whether incorporating
sign language video into text-based web pages improved
accessibility for DHH users [27]. The authors reported that
information presented through sign language videos increased
the interest of DHH users on the Web. However, all these
studies were conducted for one-way media.

Conversational NUIs with two-way interaction require input
from the user, and clarifying the preferences of users for sign
language or text display methods is essential in such cases.
Moreover, whereas designers must translate speech into the
speaker’s language in the case of television and the Web,
CUIs are transmitted by a computer, so the language can be
adjusted to suit the recipient. In other words, the designer
should consider output methods using sign language or text
along with users preferences in terms of attributes. Therefore,
we investigate the necessity of sign language and subtitles for
DHH use3rs under the condition of parallel work when CUIs
provide both.

Then, we consider the wake-up method. DHH individuals
need to make eye contact with a person they intend to talk to
in order to start a conversation with them, and they do this
by tapping their shoulder or waving [28] [29]. The preferred
wake-up techniques of DHH users in descending order of
preference include the use of the ASL sign name of the
device, waving in the direction of the device, clapping, using
a remote control, using a phone app, and fingerspelling the
English name of the device [30]. Here, user preference for the
sign name exceeded that of waving owing to the concern that
the system would recognize unintended waving as a wake-up

command. However, the use of eye contact, which is essential
in starting a conversation in interpersonal communication
with DHH individuals, has not been examined. ”Eye contact”
evokes and facilitates others’ behavior and is involved in the
initiation and progression of conversational interaction. We
believe that gaze allows for a natural interaction without an
explicit wake-up and increases user satisfaction. Based on the
above, the possibility of using gazing in a system for DHH
users should be considered, and the optimal wake-up method
should be selected from among signing a name, waving, and
eye gazing.

Finally, we consider how feedback is presented. In contrast
to those with hearing, interpersonal communication with a
DHH individual requires their attention when calling out to
them. This suggests that hearing people need not confirm
the feedback presented by the system compared to DHH
individuals. It is becoming more common for listeners to enter
commands in succession after a wake-word when operating
such systems by voice. Hearing people assume that they
are constantly being listened to by others, whereas DHH
individuals typically believe they are only being listened to
when others are looking. As for how Alexa devices present
feedback, Echo Show 5 shows a blue bar, and Echo Show
10 shows a shaking head motion. It remains unclear whether
these feedback methods will improve the user experience for
DHH users. Therefore, investigate feedback presentation for
DHH users should be investigated to consider better feedback
methods.

To create a comfortable user experience for DHH users,
this study examined the following research questions, and we
propose guidelines based on the results.

• RQ1: Does the light-based response of the CUI improve
usability for DHH users?

• RQ2: What is the best sign language/text display method
for CUI for DHH users?

• RQ3: Is gaze tracking an effective method of waking up
a CUI for DHH users?

• RQ4: Would DHH users prefer to see an indication from
the system that it is ready to accept commands before
giving them?

• RQ5: What might be a better way for DHH users to wake
up a system?

• RQ6: Is there a better way for the system to indicate that

67

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



it is ready to accept a command when it detects DHH
users’ wake-up commands?

We surveyed students at the Tsukuba University of Technol-
ogy [33] to investigate these research questions. The Tsukuba
University of Technology is a university for the visually and
hearing impaired. The hearing level of the DHH students is
generally 60dB or higher in both ears. Tsukuba University of
Technology students include not only deaf but also hard of
hearing students.

This study contributes empirical knowledge regarding the
preferences and concerns of DHH users regarding features
such as notification, information transmission, wake-up, and
feedback presentation, aiming to provide useful guidance for
future system designers.

The remainder of this study is organized as follows. In
Section II, we describe related studies on smart speakers and
gesture interfaces and the Wizard of Oz method. In Section III,
we investigate whether a sign language conversation system
using luminous notification and gaze tracking can improve
usability for DHH users to address RQ1–RQ3. In Section IV,
we examine wake-up and feedback methods for DHH users to
address RQ4–RQ6. In Section V, we propose design guide-
lines for conversational NUIs for DHH users based on our
investigation of these six research questions. In Section VI, we
describe the limitations of this work and suggest some avenues
for future research. Finally, in Section VII, we provide some
concluding remarks.

II. RELATED WORK

To demonstrate the effectiveness of sign language-based
conversational NUIs, we focus on two other NUIs that allow
human-computer conversations: smart speakers and gesture
interfaces. Then, we describe the Wizard of Oz method used
to construct our experimental environment.

A. Diffusion Status and Challenges of Smart Speaker

In the latter half of the 2010s, with the improvement of voice
recognition performance and AI technology, various compa-
nies released smart speakers to be used in the home [34].
Conversational AI agents that play music, news, and weather
forecasts in response to natural language questions from the
user have become widely popular. Using these devices, a
user can perform a task by speaking a wake word into a
nearby microphone or speaker unit and then continuing with
a question or request. The reasons for the widespread use
of smart speakers include improvements in voice recognition
and natural conversation technology as well as their hands-
free operation, which allows users to avoid interrupting other
activities [35]. According to a Canalys survey, worldwide
shipments of smart speakers were expected to reach 320
million units in 2020 and 640 million units by 2024 [36].

However, smart speakers are limited in that they cannot be
used in offices or public spaces and are difficult to understand
in noisy environments. The former is the case because hearing
is a passive and unconscious stimulus compared to vision [37].
Therefore, as long as others are nearby, the sound of a voice

may be heard in any direction. Therefore, based on sign
language conversation, NUIs are expected to solve the privacy
problem in offices and public spaces. The latter does not
require speech recognition, and thus does not cause recognition
problems in noisy environments.

B. Application Examples and Challenges of Gestural Inter-
faces

Gestural interfaces use visual and bodily functions such as
arms, fingers, and facial expressions. Examples of applications
include Motion Sense on the Google Pixel 4 and several
such methods to control drones. Motion Sense allows users to
operate their phones by holding their hands over them without
directly touching them, such as moving forward or backward
in list of tracks playing music or stopping incoming calls or
alarms. It is also equipped with a motion-sensing function that
lights up the screen when the user places their hand near the
phone. In combination with face recognition, users can quickly
unlock the phone.

In this context, there are three challenges with gestural
interfaces. The first is the “cognitive load” [39] [40] [41]. As
gesture input is not linguistic, it is necessary to memorize
commands, as in a command-line interface (CLI). Although
there is a possibility that the object or situation can be
suggested to some extent compared by the CLI, the more it
relies on gesture operations, the more gestures the user must
remember. Therefore, the gestures used as commands tend to
be inconsistent. The second is “distinction of intention” [42].
One of the selling points of gesture manipulation is the
intuitive and natural behavior that humans often perform.
However, this intuition and naturalness overlap with our daily
behavior. The problem arises when a gesture is mistakenly
recognized as a command and executed without distinguishing
between the actual operation and the everyday behavior. The
third problem is “physical fatigue” [43]. The human body may
be burdened by the movements used to perform gestures, such
as moving the arm up and down, left and right, or raising the
arm for a long time.

Therefore, NUIs based on sign language conversations are
expected to overcome the challenges of gesture UIs, such as
reduced expressive power and increased memory load, because
they use natural languages for interaction. It is also suggested
that for native signers, conversing in sign language is inde-
pendent of the physical fatigue issues inherent in gestural
interfaces.

C. Wizard of Oz

The recognition rate of a real-life continuous sign language
recognition system developed in 2019 was 39.6% [44]. There-
fore, it was impossible to conduct experiments incorporating
sign language recognition technology to interact with a user
interface using sign language. We used the Wizard of Oz
method is a solution to this problem [45] [46]. With this
method, a human referred to as a wizard pretends to act as
a computational system and interacts with the user. In the
Wizard of Oz method, even if the entire system is not yet

68

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I
LINGUISTIC MODALITIES OF HEARING AND DEAF INTERACTIONS WITH

CUIS. ”*” :RQ1,”**” :RQ2,”***” :RQ3

System→User User → System System→ User User →System 

Hearing

DHH Luminous * Eye Gaze ***

                 Type
Useraaaaaaaaa

Conversation Call

Voice Voice

Sign Language/Text **

“*” :RQ1, “**” :RQ2, “***” :RQ3.

complete, the wizard can complement the undeveloped parts
of the system and allow it to seem to perform these functions
for the users. In this study, we use this approach to experiment
with the behavior of a sign language recognition system to
extract data generated in situations where people are speaking
with sign language.

III. SIGN LANGUAGE CONVERSATIONAL USER
INTERFACES USING LUMINOUS NOTIFICATION AND GAZE

DIRECTION

A. Research Questions

In Section III, we consider the research questions RQ1-
3. As shown in Table I, RQ1–RQ3 address the mutual input
and output modalities that DHH users may prefer to achieve
when interacting with CUIs. DHH users use sign language/text
modalities when interacting with CUIs (RQ2). They use the
luminous notification modality when calling from CUIs to
DHH users (RQ1). In contrast, when DHH users call to (wake-
up) a CUI (RQ3), they use the gaze modality. We investigate
whether using these mutual input/output modalities in CUIs
can improve the user experience of DHH users. To answer
RQ1 to RQ3, we constructed a sign language conversation
system with optical notifications based on the Wizard of Oz
method and conducted an experimental evaluation (Experiment
1).

B. Methodology

1) Participants: Using a mailing list, we solicited the
cooperation of DHH students in their 20s to participate in
the Experiment 1. 12 students ultimate participated.

We also investigated the characteristics of the participants
to analyze the effect of their attributes on the results of the
experiment. Specifically, we conducted a preliminary question-
naire survey on the age, gender, and cochlear implant/hearing
aid use of the participants to determine whether they use
their voices when communicating, whether they mainly use
auditory or visual communication, and whether they use both,
as well as their experience with learning sign language and
their experience using VUIs. Figure 3 shows the results.
The age of our participants, 8 males and 4 females, ranged
between 20 and 24. We asked the participants to rate their
experiences with using VUIs on a 4-point Likert scale (1
= usually, 2 = sometimes, 3 = rarely, and 4 = never). The
results showed that the response of one participant was 2,
four participants responded with 3, and seven participants

1

2

What's your gender?

Male 58%, 
7 people

Female 42%, 
5 people

1

2

Do you use a hearing aid / 
cochlear implant?

Yes

No

67%, 
8 people

33%, 
4 people

1

2

3

4

5

What is your experience of 
learning JSL?

All the time after birth

15 years or more and 
less than 20 years

10 years or more and 
less than 15 years

5 years or more and 
less than 10 years

Less than 5 years

33%, 
4 people

17%, 2 people

8%, 1 people

8%, 1 people

1

2

Do you use your voice in 
conversation?

Yes

No 25%, 
3 people

75%, 
9 people

1

2

What Perception information 
do you rely ?

Auditory 
and visual

1

2

3

What is your experience 
with VUIs?

Sometimes

Rarely

Never

8%, 
1 people

34%, 
4 people

58%, 
7 people

50%, 
6 people

50%, 
6 people

25%, 
3 people

25%, 
3 people

50%, 
3 people

1

2

3

What is your JSL level?

Visual

Can read JSL
without voice

Can read Pidgin JSL
with voice

Can read Pidgin JSL
without voice

33%, 
4 people

Figure 3. Characteristics of Participants (N=24) in Experiment 1.

responded with the value 4. The majority of the participants
commented that “their voices could not be recognized” or that
“they lived without speaking verbally.” Research mentioning
that a minimal number of DHH users use personal-assistant
devices [47] indicates a similar trend to that exhibited by the
participants in this experiment.

Experiment 2 was approved by the Research Ethics Review
of the Tsukuba University of Technology, where the experi-
ment was conducted. The duration of the Experiment 2 was
90 min, and the honorarium paid to the participants was 1,305
yen (approximately $12).

2) System Architecture: The basic configuration of the
system constructed in Experiment 1 comprised an iPad, a
Meross Smart Wi-Fi LED Bulb (LED Bulb), and a GoPro
HERO9 camera. Figure 4 shows the appearance and operation
of the system. We set four tasks that the system can perform:
“Phone call,” “Alarm settings and notifications,” “Checking
the Weather,” and “Checking the News.” An Apple iPad
simulated Alexa, and the display was created using Microsoft
PowerPoint 2019 and combined with the signer’s video. To
switch screens remotely, the remote function of Keynote was
used. We included LED bulbs that could be set to any color
(16 million RGB colors) and a blink cycle, and controlled the
system remotely from a smartphone app. An LED bulb flashes
yellow when the system notifies the user of a “Phone call” or
“Alarm notification” and emits a light green when the system
provides “Weather” or “News” to the user. In addition, the

69

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



GoPro HERO9

Yellow / Flashing

Green / Lighting

Meross 
Smart Wi-Fi LED Bulb

“Alarm” task

“Weather” task

iPad display

Call

Response

Figure 4. System Prototype in Experiment 1.

System
Camera

45º

Participant

Work PC

PC

Wizard

Partition

Instruction
display

Figure 5. Experiment 1 Setup.

GoPro camera was used to view the sign language input from
the user.

3) Procedure: Figure 5 shows the Experiment 1 environ-
ment. In the environment of Experiment 1, we assumed that
the participants interacted with the system while working on
their PCs. Therefore, we placed the system on the left side of
the desk in front of the participants at 45 degrees, with a work-
station PC in front of them. We tried to make the participants
aware of the system response while the system was operating
so that they did not have to constantly look at the system. We
also aligned the system at the eye level of the participants. The
instruction device prompted the participant to issue commands
to the system at certain times. We incorporated a program in
PsychoPy (v2021.1) [48] to display numbers and/or English
letters at random positions on the screen. In addition, the frame
rate of the installed camera was 50 FPS.

The critical points for the participants and the experimenter
(Wizard) in this environment were as follows.

Participant
1) Owing to the nature of the Wizard of Oz method,

the participants assumed that aa computational sign
language recognition system was being used, and did not
know that a person (wizard) was operating the system.

2) During the experiment, the participant were asked to
continuously work on the task of “entering numbers
and English letters displayed at random positions on the
screen of a workstation PC with the keyboard as they
appear.”

3) The participants commanded the system using sign
language commands for “Setting the alarm,” “Checking
the weather,” and “Checking the news.” The participant
pressed the button as soon as they noted the end of the
description of “Weather” or “News” from the system.

4) During the work, the participants used sign language
commands to stop the “Alarm notification” and “Phone
call” sent by the system.

5) During the experiment, the users wore a GoPro attached
to a head strap mount.

Experimenter (Wizard)
1) Owing to the nature of the Wizard of Oz method, the ex-

perimenter was required to avoid letting the participants
know that the experimenter is operating the system when
performing the sign language recognition system.

2) During the experiment, the experimenter operated the
system and the LED bulb.

3) When we asked the participants to conduct a specific
task at an arbitrary time, we showed them the content
of the task and an example of the command to be
performed, and we immediately turned off the screen
after confirming that the participants understood the task.

Before the experiment, we explained how to use the system
and how the system was designed to behave for each of
the four tasks. In addition, to familiarize the participants
with command execution using sign language, we asked them
participate in a practice session to perform a task equivalent
to the real one before the actual experiment was conducted.
The participants conducted each of the four tasks once and
repeated them twice. To eliminate order effects, the order
of the tasks for each participant and the two conditions,
“Luminous/Conventional,” were counterbalanced.

4) Analysis Method: For a time analysis using video, we
applied the ELAN [49] tool.

For RQ1, we used the system usability scale (SUS) [50], a
widely applied evaluation index for a quantitative evaluation
of usability, to examine the usability of “Luminous” and
“Conventional.” In addition, we believe that improved usability
is also related to awareness. To evaluate the awareness of
the notifications from the system, we measured by video
the time between the notifications were provided and when
the participant noticed and reacted to them. We defined the
reaction time for a “Call” as the time between the change
in the display screen as the reaction starting point and the
users turning their eyes to the screen as the reaction endpoint.
However, if the light turned on before the screen changed,
the reaction starting point was when the light turned on. We
defined the reaction time for a “Response” as the time between
the change in the display screen and the user pressing the
button. However, if the light turned off before the screen
changed, the reaction starting point was defined as the time
when the light turned off.

For RQ2, we examined the participants’ need for sign
language/text. After the experiment, we administered a ques-
tionnaire to determine the need for sign language/text using

70

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a five-point Likert scale (1 = agree, 2 = agree a little, 3 =
neutral, 4 = disagree a little, and 5 = disagree).

For RQ3, we examined whether the participants gazed at the
system before giving a command in sign language. For this
purpose, we measured the percentage of the total number of
times the participants gazed at the system at least once in the
5 s before the sign language command and the time between
the start of the gazing and sign language using video. For the
data to be analyzed, there was a scene during the experiment
in which the system responded to an “Alarm notification”
or “Phone call,” and the user issued a command to stop the
system. The users looked at the response screen before making
a sign language command, we did not collect analysis data
to investigate whether they gazed at the screen before the
sign language command. The three tasks for which the user
actively gave a sign language command were used as data for
analysis, i.e., “Setting the alarm,” “Checking the weather,” and
“Checking the news.”

C. Results

1) System Usability Scales: Figure 6 shows the results of
the SUS investigated after the experiment. The mean SUS
value of “Luminous” was 80.67 (SD 7.62), and that of “Con-
ventional” was 68.96 (SD 14.6). As a result of the Wilcoxon
signed-rank test, “Luminous” was found to be significantly
higher (p < .05).

2) Reaction Time: Figure 7 shows the results of the reaction
time. The mean reaction time to “Alarm notification” and
“Phone call” of “Luminous” was 0.91 s (SD 0.35), and
the mean value of “Conventional” was 1.19 s (SD 0.57).
The Wilcoxon signed-rank test showed that the reaction time
was significantly shorter for “Luminous” (p < 0.01). The
mean reaction time to the end of “Weather” and “News”
for “Luminous” was 1.37 s (SD 0.50) s, and the mean
value of “Conventional” was 1.91 s (SD 1.22). The Wilcoxon
signed-rank test showed no significant differences between
“Luminous” and “Conventional” (p > 0.05).

3) Necessity of Sign Language/Text: Figure 8 shows the
results of a 5-point Likert scale used to assess the need for
sign language and text for the 12 participants, respectively. In
terms of sign language, we found the following. 1: “Agree”
was reported by four participants. 2: “Agree slightly” was
reported by two participants. 3: “Neutral” was reported by

Participants
1 2 4 6 8 123 5 7 9 10 11

0

20

40

60

80

100

Sc
or

e

Luminous Conventional

Figure 6. SUS score for each participant (N = 12).

Luminous Conventional* : p < 0.05

0

2

3

4

5

Ti
m

e 
[s

]

1

CALL RESPONE

*

*: p<0.05, **: p<0.01

Figure 7. Reaction time for each feedback from the system.

three participants. 4: “Disagree slightly” was reported by two
participants. 5: “Disagree” was reported by one participant.
There were three participants who did not need sign language
(4,5), and their sign language experience was, in order of
shortest to longest, three years (1st), five years (2nd), and
fifteen years (5th). By contrast, for text, “1 = Agree” was
reported by nine of the participants, and “2 = Agree slightly”
was reported by three of the participants.

4) Gaze Direction: During the experiment, a pattern oc-
curred in which the experimenter turned off the screen of the
instructional device late, indicating the task to be performed,
and the participant gave a sign language command while
reading. We removed these data from our analysis because
they were unsuitable for examining whether the participants
were gazing at the system. The participants (N = 12) input sign
language commands into the system 69 times: 23 times for
“Setting the alarm,” 24 times for “Checking the weather,” and
22 times for “Checking the news.” Table II lists the percentage
of the total number of times the participants gazed at the
system at least once during the 5 s before the sign language
command and the average time from the start of gazing to the
start of the sign language, as well as the standard deviation
and minimum and maximum values. A high percentage of
the total number of users gazed at the system before using the
sign language commands.

Three participants, P3, P8, and P9, waved before using
sign language. These three participants had experience using

1
Agree DisagreeNeutral

2 3 4 5

Percentage(%)

Figure 8. Necessity of “Sign language” / “Text”.

71

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II
PERCENTAGE OF EYE GAZE, MEAN AND STANDARD DEVIATION OF TIME

OF EYE GAZE

Task Percentage (%) Mean±SD (s) Min (s) Max (s)

Alarm 100 0.76±0.61 0.20 3.18
Weather 100 0.43±0.23 0.10 1.08

News 86.4 0.59±0.44 0.20 2.08
Total 93.4 0.59±0.47 0.10 3.18

VUIs and knew that they should use a waking command. The
interviews also revealed that they thought it was necessary to
take explicit action before talking to the system during this
experiment.

D. Discussion

1) RQ1: Efficacy of Luminous Notification: The results
described in Section III-C1 suggest that luminous notification
improved usability for DHH users in noticing notifications
from the system. In addition, the reaction times to “Alarm
notification” and “Phone call” were significantly shorter when
using a luminous notification, suggesting that it is easier to
notice such notifications from the system.

Participants commented, “I am familiar with luminous
notification methods, such as the intercom system in my
house, which notifies me by light, so it would be more
impressive to add light to the system as well. I can notice
the light notification even when I am concentrating on my
work.” However, there were also comments such as “I feel
uncomfortable with the luminous notification because I live
my life relying on sound. Therefore, the system may not be
suitable for people who use their daily hearing functions.

From Figure 6, we can see that the usability of P3 and
P7 decreased with a luminous notification. The participants
commented that they did not feel the need to use a luminous
notification because they only noticed the change in the system
screen. This may have occurred because there were cases in
which DHH users could respond to conventional methods [51].
In this experimental environment, the system was placed on
the left side of the desk in front of the user at a 45-degree
angle within their peripheral vision. During this experiment,
we placed the system within the peripheral vision of the front
of the user, and thus some of the subjects noticed changes in
the screen without looking at the system.

In contrast, there were no significant differences in the
reaction time to the end of the “Weather” and “News” re-
sponses when using the luminous notification, as described in
Section III-C2. However, some of the participants commented
positively that “it was convenient to know when the response
ended without having to look at the system.” By contrast,
others commented negatively that “luminous notification was
not necessary for the information (weather and news) that I
wanted,” and “the light was too bright.” As a result, we found
that the usability of the system could be improved by reducing
the light exposure and improving the luminous notification
method, although the noticeability remained the same.

A participant commented that it would be preferable to
increase the brightness of the display, as in ON AIR, instead of
directly informing the user with LED bulbs. For a luminous
notification, we used LED bulbs, which were initially used
as lighting fixtures. Therefore, a way to change or vary the
brightness of the display directly should be considered instead
of using external LEDs.

2) RQ2:How to Display Sign Language/Text Suitably:
From Section III-C3, it may be observed that all of the
participants needed to display text regardless of the user
attributes. By contrast, the necessity for the sign language
display varied from participant to participant. In addition, it
may be observed that those who had not signed for a long
time tended not to believe that sign language was necessary.

The participants who did not need sign language commented
that they did not understand sign language and had trouble
processing information when both sign language and text
were output simultaneously. By contrast, the participants who
needed to use sign language commented that the sign language
display made it easier for them to remember the system
responses. Some of the participants commented, “When I look
at the task screen while working, the remaining text is better
than the flow of the sign language.”

For hearing users, interaction with VUIs has the advantage
of being eyes-free [52]. Therefore, users frequently inter-
act with conversational NUIs while performing other tasks.
However, in the case of DHH users, the advantage of eyes-
free interaction is lost because they cannot acquire audio
information and instead gaze at the screen. To complement
this, we anticipate that DHH users would need text information
that they can recognize, even if they look away for a moment.
One possible solution to this problem is to stop the sign
language flow when the user looks away and resume when
the user returns their gaze to the screen.

3) RQ3:Efficacy of Gaze Direction: Section III-C4 shows
that the participants tended to gaze at the screen before
speaking in sign language.

During this experiment, we did not provide instructions
on how to wake-up the device. Nevertheless, the participants
naturally gazed at the system with a high probability.

By contrast, 3 of the 12 participants did not gaze at the
system but waved instead. When DHH users use waving as
a wake-up method, there is a concern that signs made while
talking to another person may be recognized as waving at
unexpected times, such as during a “Phone call” or “Alarm
notification.” In addition, we believe that gazing is a more
natural manner of interacting than waving each time a com-
mand is used. These results suggest that directing one’s gaze
to a device may be considered a compelling wake-up method.

When Alexa waits for a response from the user, there is a
time limit of 8.0 s [53]. From Table II, the maximum time
between gazing at the system and the start of sign language
was 3.18 s. That is, when DHH users used gazing as a wake-up
method, they could use commands within the system’s waiting
time.

72

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



IV. CONSIDERATION OF WAKE-UP METHOD AND
FEEDBACK METHOD

A. Research Questions

In Section IV, we consider research questions RQ4–RQ6,
which cover the input and output methods for DHH users at
the beginning of a conversation with the conversational NUIs.
First, we investigated the need for feedback on the system for
DHH users (RQ4). Then, we investigated the best method to
wake up the system from DHH users (RQ5). We investigated
the best way to present the feedback to the user to indicate that
the system has detected the user’s wake-up command and is
ready to accept commands (RQ6). To answer RQ4–RQ6, we
constructed a conversational system that presented a variety of
feedback based on the Wizard of Oz method and conducted
an evaluation experiment (Experiment 2).

B. METHODOLOGY

1) Participants: Using a mailing list, we solicited the
cooperation of DHH students in their 20s to participate in
Experiment 2. 24 students participated.

We also investigated the characteristics of the participants to
analyze the effect of their attributes on the results of the exper-
iment. Specifically, we conducted a preliminary questionnaire
survey on the age, gender, and cochlear implant/hearing aid
use of the participants to determine whether they used their
voices when communicating, whether they used both, and their
experience of learning sign language, their identity, and their
experience using VUIs. Figure 9 shows the results. The age
of our participants, 14 males and 10 females, ranged between
20 and 23. We asked the participants to rate their experience
of using VUIs on a 5-point Likert scale (1 = everyday, 2 =
several times a week, 3 = several times a month, 4 = less than
once a month, and 5 = never). As a result, the most significant
number of 20 participants answered ”5:Never,” accounting for
83% of the total. Research mentioning that a minimal number
of DHH users use personal-assistant devices [47] has indicated
a similar trend to that of the participants in this experiment.

Experiment 2 was approved by the Research Ethics Review
of the Tsukuba University of Technology, where the experi-
ment was conducted. The duration of Experiment 2 was 90
min, and the honorarium paid to the participants was 1,500
yen (approximately $13).

2) Experimental conditions: Wake-up
We compared the gaze-based method validated in Section IV
with other wake-up conditions and identify the preferences of
DHH users.
I1: Eye Gaze
In the reports of studies on wake-up commands for DHH users,
signing a name was rated as the highest condition. However,
the authors did not consider gaze direction in their comparison.
Therefore, in Experiment 2, we investigate whether adding
gaze tracking to the wake-up method changed the preferences
of DHH users.
I2: Sign-name
Assuming that the system installed was Alexa, and referring to

1

2

3

4

What is your experience 
with VUIs?

14

10

1

2

What's your gender?

42%, 
10 people

58%, 
14 people

Male

Female

1

2

Do you use a hearing aid / 
cochlear implant?

75%, 
18 people

25%, 
6 people

1

2

3

What is your JSL level?

46%, 
11 people

33%, 
8 people

21%, 
5 people

Yes

No

Can read JSL
without voice

Can read Pidgin JSL
with voice

1

2

3

4

5

What is your experience of 
learning JSL?

25%, 
6 people

33%, 
8 people

12%, 3 people

12%, 3 people

17%, 4 people

1

2

Do you use your voice in conversation?

83%, 
20 people

17%, 
4 people

All the time 
after birth

15 years or more and 
less than 20 years

10 years or more and 
less than 15 years

5 years or more and 
less than 10 years

Less than 5 years

Yes

No

1

2

3

What is your identity?

Deaf

Hard of Hearing

Hearing impaired

33%, 
8 people

25%, 
6 people

38%, 
9 people

4%, 
1 people

Never

Every day

Several times a month

Less than once a month

83%, 
20 people

9%, 2 people

4%, 1 people

4%, 1 people

Can read Pidgin JSL
without voice

Never thought
about it

Figure 9. Characteristics of Participants (N=24) in Experiment 2.

the previous research, the method of signing a name involved
using an “A” handshape used to draw an “X.”
I3: Waving
A wake-up wave is a left-right-forth motion in which the user
holds their palm toward the system. According to reports on
wake-up research [30], the evaluation of the wake-up was
lowered due to the concern that the system would recognize
unintentional waving as a wake-up gesture. Therefore, we
thought we could gain new insights by comparing the results
with the gaze-based system, in which the user’s intention to
wake up the system is clearer.

Feedback method
O1: Blue bar and low-intensity
The Echo Show recognizes a wake word and displays a blue
bar at the bottom of the screen. The screen’s brightness is
lowered to make the blue bar stand out to show that the
device is ready to process the user’s request [54]. We added
a baseline condition to explore whether these conventional
response presentation methods are desirable for DHH users.
O2: Sign language added to O1
As DHH users mainly use sign language in their conversations,
we believe it would be optimal for DHH users to have the
system respond in sign language. For this reason, we added a
sign language response.
O3: Shaking head motion added to O1
To investigate whether a head-shaking motion, like the Echo

73

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



O1

O2

O3

O4

Blue bar and 
low-intensity

Shaking head 
motion add to O1

No change
Sign language

display add to O1

4 patterns of feedback

Figure 10. System Prototype in Experiment 2.

Show10 [55], could improve usability by DHH users, we
added a response with a head-shaking motion.
O4: No change
To investigate the need for feedback for DHH users of RQ4,
we added a condition of not presenting feedback, indicating
no change to the system, in contrast to O1–O3.

3) System Architecture: The basic configuration of the
system constructed in Experiment 2 comprised an iPad and
an electric rotary table. Figure 10 shows the appearance and
operation of the system. The screen size of the iPad was 10.2
inches, and that of the Echo Show10 was 10.1 inches, which
was almost identical. For the system’s design, Echo Show
10 was simulated, the display was created with Microsoft
PowerPoint 2019, and the cover around the iPad display was
created with a FlashForge Adventure 3 FFA-103 3D printer.
In addition, the remote function of Keynote was used to
switch the screen remotely. For the sign language display,
we synthesized a sign language movie called “What’s up?”.
To add the function of the head-shaking motion, we used an
electric rotary table with a diameter of 20 cm and a load
capacity of 20 kg manufactured by BAOSHISHAN. A remote
controller was used to remotely control the rotation speed and
direction angle of the table.

4) Procedure: Figure 11 shows the Experiment 2 environ-
ment. In the Experiment 2 environment, we assumed that
the participants interacted with the system while working.
Therefore, we placed the system on the right side of the desk
in front of the participants at a 45-degree angle, the work
iPad in front of them, and the iPad with the questionnaire
and instruction screens split on the left side of the desk in
front of the participants at a 45-degree angle. Question on user
satisfaction for both the wake-up and feedback conditions, the
ranking of satisfaction for each, and the need for feedback
were created in Forms using a 7-point Likert scale. The
instruction screen was created in Keynote to show the wake-up
procedure to be performed by the participant and the feedback
to be provided by the system. In addition, the frame rate of
the installed camera was 50 fps.

The critical points for the participants and the experimenter
(Wizard) in this environment are summarized as follows.

System

Camera

Participant

PC

Wizard

Partition

iPad1

Rotary table
remote

Work
iPad

1. Two screens:
the survey screen and
the instructions screen.

Figure 11. Experiment 2 Setup.

Participant
1) Owing to the nature of the Wizard of Oz method, the

participants assumed that a sign language recognition
system was in use, and did not know that a person
(wizard) was operating the system.

2) During the experiment, the participants were asked to
continuously work on the task of “entering numbers
and English letters displayed at random positions on the
screen of a workstation PC with the keyboard as they
appear.”

3) The participants confirmed the wake-up procedure and
the feedback provided by the system on the instruction
screen.

4) After the participant typed about three words, they woke
up the system, and as soon as the system feedback was
presented, they selected one of the commands, “Check
weather” or “Check news”, and commanded the system
in sign language.

5) After confirming that the system had finished answering
the “weather” and “news” questions, the user completed
the “satisfaction with both the wake-up method and the
system feedback” questionnaire.

Experimenter (Wizard)
1) Owing to the nature of the Wizard of Oz method, the ex-

perimenter was required to avoid letting the participants
know that the experimenter was operating the system
when performing the sign language recognition system.

2) During the experiment, the experimenter controlled the
system.

3) When we asked the participants to conduct a specific
task at an arbitrary time, we showed them the content
of the task and an example of the command to be
performed, and we immediately turned off the screen
after confirming that the participants understood the task.

Before the experiment, we explained to the participants how
to use the system and how the system behaved. In addition, to
familiarize the participants with wake-up and command exe-
cution using sign language, we provided a practice session in
which they performed a task equivalent to the real one before

74

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the actual experiment was conducted. Participants performed
each of the 12 conditions once, for 12 repetitions, combining
the three wake-up conditions and the four feedback conditions.
The order of the 12 conditions was determined using a Latin
square design to eliminate order effects.

5) Analysis Method: To investigate the optimal combi-
nation conditions from the three conditions of the wake-
up method (I1–I3) and the four conditions of the feedback
method (O1–O4), we used a questionnaire with a Likert
scale of 7 levels of satisfaction (3. very satisfied, 2. satisfied,
1. slightly satisfied, 0. neither satisfied nor dissatisfied, -1.
slightly dissatisfied, -2. dissatisfied, -3. very dissatisfied). We
asked the participants to respond to a questionnaire based
on the Likert scale. From the response data (N=24), better
wake-up conditions and feedback conditions were clarified.
After completing the 12 conditions, the participants were asked
to rank their satisfaction with the wake-up method (I1–I3)
and the feedback method (O1–O4). The reasons for their
satisfaction were investigated in an interview. To evaluate
the effectiveness of the system in conversations with the
participants, we conducted a video analysis of their behavior
using the ELAN [49] tool. The minimum video measurement
time was 0.02 s.

1) Time between the beginning and end of the wake-up
action

2) Duration of gaze during waving
3) Time from the end of the wake-up operation to the

beginning of command input
Then, to investigate the necessity for the presentation of
feedback in RQ4, we asked the participants to respond to
a questionnaire with seven levels of necessity (1. strongly
agree, 2. agree, 3. agree a little, 4. neutral, 5. disagree a
little, 6. disagree, 7. strongly disagree). The questionnaire was
administered using a 7-point Likert scale. To investigate the
effectiveness of gazing in the wake-up method of RQ3, we
asked the participants whether they would like to perform I1
(eye gaze) together with I2 (sign name) and I3 (waving) in the
wake-up method. We categorized the participants’ responses
into three patterns (1. like, 2. limited like, 3. dislike).

C. Results

1) Effect of the feedback: Figure 12 shows a summary
of the mean and standard deviation of satisfaction of each
feedback method (O1–O4). The mean satisfaction values were
1.90 (SD 1.16) in O1, 1.67 (SD 1.21) in O2, 1.67 (SD 1.55) in
O3, and -0.18 (SD 1.64) in O4. Multiple comparisons using the
Tukey’s test were conducted to determine whether there was
a significant difference in satisfaction between the four levels
(O1–O4). The results showed that the level of satisfaction in
O4 (no change) was significantly lower than that in the other
feedback presentations (O1–O3, change) (p < 0.01).

Figure 13 shows a summary of the mean and standard
deviation of the time from the end of wake-up to the beginning
of command input for each feedback presentation condition
(O1–O4). The times of the mean and standard deviation
were 2.60 s (SD 1.06) for O1, 2.92 s (SD 1.31) for O2,

-3
-2
-1
0
1
2
3

O1 O2 O3 O4

**
**

**

Sa
tis

fa
ct

io
n

*: p<0.05, **: p<0.01

Figure 12. Mean and standard deviation of individual satisfaction with
feedback.

0

1

2

3

4

5

O1 O2 O3 O4

Ti
m

e 
(s

)

**
**

**

*: p<0.05, **: p<0.01

Figure 13. Mean and standard deviation of time from the end of wake-up to
the beginning of command input for each feedback.

2.57 s (SD 1.17) for O3, and 1.79 s (SD 1.14) for O4. We
conducted multiple comparisons using Tukey’s test to check
for a significant difference in time between the four levels
(O1–O4). The results showed that the time in O4 (no change)
was significantly shorter than the time in the other feedback
presentation (O1–O3, with change) (p < 0.01).

2) Satisfaction: Figure 14 shows a summary of the mean
and standard deviation of the satisfaction for each of the nine
conditions combining the wake-up and the feedback methods.
The highest mean satisfaction of the input and output methods
was 2.13 (SD 1.08) for the combination of I3 (waving) and O1
(blue bar and low-intensity). The lowest was 1.21 (SD 1.41)

75

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



-3

-2

-1

0

1

2

3

I1 I2 I3 I1 I2 I3 I1 I2 I3

O1 O2 O3

Sa
tis
fa
ct
io
n

Figure 14. Satisfaction for each 12 conditions(N=24).

for the combination of I1 (eye gaze) and O2 (sign language
add to O1) (SD 1.41).

We conducted a two-way analysis of variance (ANOVA)
using the wake-up method (I1–I3) and the feedback method
(O1–O3) as factors. The results showed that the main effect
for satisfaction with the wake-up method was significant
(p < 0.05), but the main effect for satisfaction with the
feedback method was not significant (p > 0.05). In addition,
the interaction between the satisfaction of the wake-up method
and the feedback method was not significant (p > 0.05). For
the wake-up method for which the main effect of satisfaction
was significant, the mean satisfaction values were 1.49 (SD
1.32) in I1 (gazing), 1.79 (SD 1.13) in I2 (signing a name),
and 1.96 (SD 1.13) in I3 (waving). Multiple comparisons of
the Tukey’s test were conducted to examine the difference
in the mean satisfaction values among the three levels of
the wake-up method. The results showed that the satisfaction
level was significantly higher for I3 (waving) than I1 (gazing)
(p < 0.05).

We conducted a two-way ANOVA of satisfaction using the
wake-up method (I1–I3) and the feedback method (O1–O3) as
factors for each characteristic. Table III shows a summary of
the significance probabilities of the wake-up method, feedback
method, and interaction for each characteristic. Four attributes
were analyzed: “Whether the user was using hearing aids
or cochlear implants,” “Japanese sign language (JSL) level,”
“Whether the user was using voice in the conversation,”
and “Identity.” The interaction was not significant for all
characteristics (p > 0.05). The main effect characteristic for
“other using aids/cochlear implants” was the wake-up method
for participants who answered “no.” These participants had the
characteristic of “not relying on auditory information.” The
mean satisfaction values were 0.78 (SD 1.40) in I1 (gaze),
1.83 (SD 0.99) in I2 (sign name), and 2.06 (SD 1.00) in I3
(waving). We conducted multiple comparisons of the Tukey’s
test to examine the difference in the mean satisfaction values
among the three levels of the wake-up method. As a result,
we found that the satisfaction level of I2 (sign name) was
significantly higher than that of I1 (gazing) (p < 0.05),
and the satisfaction level of I3 (waving) was significantly

TABLE III
RESULTS OF ANALYSIS OF VARIANCE FOR TWO FACTORS OF

SATISFACTION WITH WAKE-UP METHOD AND FEEDBACK PRESENTATION
METHOD AS INDEPENDENT VARIABLES BY CHARACTERISTICS.

higher than that of I1 (gaze) (p < 0.01). For the “JSL
level,” the characteristic that showed the main effect was
the wake-up method for participants who answered, “I can
read JSL without voice.” These participants had a “high sign
language level” characteristic. The mean satisfaction scores
were 1.18 (SD 1.38) in I1 (gazing), 1.94 (SD 0.97) in I2
(signing a name), and 2.21 (SD 1.02) in I3 (waving). Multiple
comparisons of the Tukey’s test were conducted to examine
the difference in the mean satisfaction values among the three
levels of the wake-up method. As a result, we found that the
satisfaction level was significantly higher for I2 (sign name)
than for I1 (gaze) (p < 0.05), and the satisfaction level
was significantly higher for I3 (waving) than for I1 (gaze)
(p < 0.01). Concerning “Whether the user was using voice in
conversation,” the characteristic that showed the main effect
for participants who answered “No voice,” was the wake-up
method. This participant had the characteristic of “not using
voice information.” The mean satisfaction scores were 0.25
(SD 1.22) for I1 (gazing), 1.50 (SD 0.90) for I2 (sign name),
and 1.67 (SD 0.98) for I3 (waving). To examine the difference
in the mean level of satisfaction among the three groups of
the wake-up method, multiple comparisons using the Tukey’s
test were conducted. The results showed that the satisfaction
level was significantly higher for I2 (signing name) and I3
(waving) than for I1 (gazing) (p < 0.05). For the “Identity,”
the main effect characteristics were the wake-up method and
the feedback method within the participants who answered
“Deaf.” These participants were raised in a school for the

76

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



5 people

6 people

13 people

3

14 people

7 people

16 people

4

4

0% 20% 40% 60% 80% 100%

I1
注視

I2
サインネーム

I3
手振り

1位 2位 3位

*

1st 2nd 3rd

*: p<0.05, **: p<0.01

Eye Gaze

Sign-name

Swing

Percentage(%)

Figure 15. Ranking result of wake-up(N=24).

Deaf, came from a Deaf family, and belonged to the Deaf
community. For the wake-up method, the mean satisfaction
level was 1.00 (SD 1.38) for I1 (gaze), 1.67 (SD 1.17) for
I2 (sign name), and 1.96 (SD 1.00) for I3 (waving). Multiple
comparisons of the Tukey’s test were conducted to examine
the differences in the mean satisfaction values among the three
levels of the wake-up method. The results showed that the
satisfaction level of I3 (waving) was significantly higher than
that of I1 (gazing) (p < 0.05). For the feedback methods, the
mean satisfaction values were 2.08 (SD 1.10) for O1 (blue
bar and low-intensity), 1.42 (SD 1.10) for O2 (sign language
added to O1), and 1.13 (SD 1.36) for O3 (head-shaking motion
added to O1). Multiple comparisons of the Tukey’s test were
performed to examine the differences in the mean values
of satisfaction among the three levels of feedback methods.
The results showed that O1 (blue bar and low-intensity) was
significantly more satisfactory than O3 (head-shaking motion
added to O1) (p < 0.05).

3) Ranking: Ranking results by overall participants Fig-
ure 15 shows the results of the ranking done by the participants
(N=24) for each wake-up condition (I1–I3). The mean rank
was 2.46 (SD 0.82) for I1 (gazing), 1.92 (SD 0.64) for I2
(signing name), and 1.63 (SD 0.75) for I3 (waving). From
these results, the Friedman test was used to investigate whether
the mean rank varied with different wake-up methods, and the
results showed a significant difference (p < 0.05).

For I1 (gazing), the participants who ranked it first mainly
commented, “It was an easy calling action because it was
hands-free,” “It was the same feeling as using face recognition
on a smartphone,” “I was concerned that the system would
recognize the user when they glanced at the system uninten-
tionally. Therefore, it might be better to design the system to
respond only after two seconds.” In contrast, participants who
ranked it third mainly commented, “I felt uncomfortable when
I gazed at the screen when calling out,” “I thought it would
be better to call out using hands from the beginning if I gave
a command in sign language afterward because I was unsure
if the system would recognize me if I simply gazed at it. So
it might be better to set a two-second rule to let the system
react to gaze.”

For I2 (sign name), the participants who ranked it first

14 people

4

5 people

1

3

13 people

8 people

7 people

6 people

10 people

1

1

1

22 people

0% 20% 40% 60% 80% 100%

O1
青いバー表示+明度低

O2
O1に手話表示追加

O3
O1に首振り運動追加

O4
変化無し

1位 2位 3位 4位

**

1st 2nd 3rd 4th

Blue bar and low-intensity

Sign language display add to O1

Shaking head motion add to O1

No change

*: p<0.05, **: p<0.01Percentage(%)

Figure 16. Ranking result of feedback (N=24).

mainly commented, “I thought that the system would easily
recognize the name-signing operation because it is a system-
specific name,” “Because it is a system-specific name and
the system can easily recognize the name-signing operation, I
felt comfortable with signing the name,” “I feel closer to the
system because it uses names.” In contrast, the participants
who ranked it third mainly commented, “I felt uncomfortable
because I rarely call people by their names in my daily life,”
“I am not used to sign language, so I am not used to calling
people by their sign name,” “Compared to gazing and waving,
I think that sign names are challenging to recognize.”

For I3 (waving), the participants who ranked it first mainly
said, “Because I can perform the action immediately,” “Be-
cause it is the same action as calling out in daily conversation,”
“It is easy to call out even for the first time.” In contrast, the
participant who ranked it third commented, “Because the target
of the name is not so clear compared to a sign name,” “Because
there was a possibility that my friends around me would
misunderstand if I called out to the system with waving.”

Figure 16 shows the results of the ranking done by the
participants (N=24) for each feedback condition (O1–O4). The
mean rankings were 1.71 (SD 0.91) in O1 (blue bar and low-
intensity), 2.17 (SD 0.76) in O2 (sign language add to O1),
2.29 (SD 0.86) in O3 (shaking head motion add to O1), and
3.83 (SD 0.64) in O4 (no change) condition. (SD 0.64) in
O4 (No change). We investigated the mean rank change with
different feedback methods using the Friedman test from these
results. We found a significant difference (p < 0.01).

For O1 (blue bar and low-intensity), the participants who
ranked it first mainly commented, “I could immediately see
that the system responded to my call,” “The response was
similar to Siri on my smartphone, so it was easy to get
used to,” “I felt that the other reactions were too much, and
the blue bar was enough for me.” In addition, there was a
low evaluation comment, “It was too simple and difficult to
understand compared to the sign language display and the
head-shaking motion.”

For O2 (sign language added to O1), the participants who
ranked it first mainly commented, “I wanted the other person
to respond in sign language because I spoke to them in sign

77

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1

3 people

7 people

1

2 people

5 people

3 people

1

1

1

7 people

3 people

1

5 people

2 people

1

2 people

2 people

9 people

1

1

6 people

1

1

1

2 people

2 people

1

2

3

1

2

3

1

2

3

I1
I2

I3

Frequency 

1位 2位 3位I1:Eye gaze, I2:Sign-name, I3:Swing

1185

I1
I2
I3

I1
I2
I3

I1
I2
I3

Can read JSL 
without voice

(N=11)

Can read 
Pidgin JSL 

without voice
(N=8)

0

**

1st 2nd 3rd

Can read 
Pidgin JSL 
with voice

(N=8)

*: p<0.05, **: p<0.01

Figure 17. Ranking results for Wake-Up divided by JSL level attributes.

language,” “I felt relieved that the other person responded
in sign language” “It was easy to understand their facial
expressions and what they were asking.” In contrast, there were
comments such as “It would have been better if the system had
used an avatar instead of a human,” “I felt that it was sufficient
to display text information instead of sign language,” “It would
be better if the system displayed the signer as an avatar instead
of a human being, and if the signer was displayed from the
default state, such as the home screen, instead of appearing
only when I wake-up.”

For O3 (shaking head motion added to O1), the participants
who ranked it first mainly commented, “I could see that the
system worked and responded clearly, and it gave me a cute
impression,” “It was straightforward to understand that the
system responded to the shaking head.” In contrast, there were
comments on improving the head-shaking motion, such as, “I
felt uncomfortable when the system turned to the outside. To
wake-up the system without gazing, we would have preferred
vertical to horizontal waving,” “It was good in terms of
visibility, but I was concerned that it would become difficult
to see if more text information was added,” “The head-shaking
motion takes a little time, so the evaluation is lowered.”

For O4 (no change), the participants who ranked it first
commented, “No change was better because I can say what
I want to say without pausing from the calling motion.” In
contrast, there were many comments with low evaluation, such
as “When should I issue a command?,” “I felt uneasy because
I did not know when to give the command,” “I want visible
changes.”

Ranking on sign language level characteristics Figure 17
summarizes the ranking data of the wake-up method for the
sign language level attributes of the participants. We performed
the Friedman test, and then we analyzed whether there was a
significant difference in the level of satisfaction for each of
the wake-up conditions (I1–I3) for each attribute. As a result,
the only participant characteristic that showed a significant
difference in satisfaction was the participants who answered
“I can read JSL without voice” (p < 0.01). There was no
significant difference in the level of satisfaction among the
participants who answered “I can read Pidgin JSL without

7 people
3 people

1

4 people
1

3 people

3 people

1
1

1
6 people

4 people

2 people
3 people

3 people

3 people
2 people

3 people
2 people

6 people

2 people
4 people

2 people

2people
1
1

1

11 people

8 people

1
1

3 people

Frequency 

1位 2位 3位 4位

11850

O1
O2
O3
O4
O1
O2
O3
O4
O1
O2
O3
O4

O1: Blue bar and low-intensity
O2: Sign language display add to O1
O3: Shaking head motion add to O1
O4: No change

**

**

Can read JSL 
without voice

(N=11)

Can read 
Pidgin JSL 

without voice
(N=8)

Can read 
Pidgin JSL 
with voice

(N=8)

1st 2nd 3rd 4th

*: p<0.05, **: p<0.01

Figure 18. Ranking results for feedback divided by JSL level attributes.

voice,” “I can read Pidgin JSL with voice”(p > 0.05).
Figure 17 summarizes the ranking data of the feedback

method for the sign language level attributes of the partici-
pants. We performed the Friedman test, and then we analyzed
whether there was a significant difference in the level of
satisfaction for each feedback condition (O1–O4) for each
attribute. As a result, the participant characteristics that showed
significant differences in satisfaction were those who answered
“I can read JSL without voice” (p < 0.01) and those who
answered “I can read Pidgin JSL without voice” (p < 0.01).
There was no significant difference in the level of satisfaction
among the participants who answered “I can read Pidgin JSL
with voice” (p > 0.05).

4) Participant behavior: Time between the beginning and
end of the wake-up action We conducted multiple compar-
isons using the Tukey’s test to see significant differences in the
mean values of waving in each feedback condition (O1–O3).
As a result, no significant difference was found (p > 0.05).
Table IV summarizes the characteristics that reduced the time
of waving compared to other attributes for each attribute of
the participants. We analyzed four attributes: “whether the
participant had hearing aids or cochlear implants,” “JSL level,”

TABLE IV
PARTICIPANT CHARACTERISTICS FOR WHICH THE TIME OF WAVING WAS

SIGNIFICANTLY SHORTER THAN THE OTHER CHARACTERISTICS.

Do a hearing

aid/cochlear implant?
What is your JSL level?

Do you use your voice

in conversation?
What is your identity?

Yes

(N=14)

Can read JSL

without voice *

(N=11)

Yes

(N=20)

 Deaf *

(N=8)

No

(N=10)

Can read Pidgin JSL

without voice

(N=8)

No *

(N=4)

Hard of Hearing

(N=6)

Can read Pidgin JSL

with voice

(N=5)

Hearing impaired

(N=9)

*：Characteristics with significantly shorter swing time compared to other characteristics (p < 0.05)

78

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE V
COMPONENT RATIO AND DIFFERENCE IN START TIME FOR EACH OF EYE

GAZE AND WAVING

First Component Difference in start time (s)
behavior ratio % Mean (SD) Min Max
Eye Gaze 81.9 0.37 (0.35) 0.04 1.60
Waving 15.3 0.30 (0.32) 0.04 1.12
Same 2.8 n/a n/a n/a

TABLE VI
TIME OF SIMULTANEOUS EYE GAZE AND WAVING BEHAVIOR

Behavior Time (s)
Mean (SD) Min Max

Eye gaze and waving 1.07 (0.52) 0.20 2.46

“whether participant voiced in conversation,” and “Identity.”
To compare whether there was a significant difference between
the levels, we performed Tukey’s test of multiple comparisons
for “JSL level” and “Identity” (three levels), and Welch’s t-
test for multiple comparisons for “whether the participants
used hearing aids or cochlear implants” and “whether the
participants used voice in conversation” (two levels). We
found no significant difference in time for the former. For
the attribute “JSL level,” the time required for waving was
0.99 s (SD 0.35) for participants who answered “I can read
JSL without voice” and 0.99 s (SD 0.35) for participants who
answered “I can read Pidgin JSL with voice.” We observed
that the time taken for the waving was significantly shorter
at higher sign language levels (p < 0.01). For the attribute
“Using voice in the conversation,” the time for waving was
1.17 s (SD 0.52) for participants who answered “Not at all”
and 0.87 s (SD 0.41) for those who answered “Using voice.”
The time required for waving was significantly shorter for
those who did not use their voices (p < 0.05). For the
“Identity” attribute, the waving time was 0.93 s (SD 0.35) for
participants who answered “Deaf” and 1.26 s (SD 0.61) for
participants who answered “hearing-impaired.” The time was
significantly shorter for participants with a “Deaf” identity
than for those with a “hearing-impaired” identity (p < 0.01).

Eye gaze in waving Table V shows the ratio of gaze
initiation and waving first, the time from gaze initiation to the
beginning of the waving motion, and the time from starting a
waving gesture to beginning to gaze at the display. For the
remaining 2.8% of the data, the difference between the starting
times of the two behaviors were within 0.02 s. Table VI shows
the times when both gazing and waving were performed.

We conducted multiple comparisons of the Tukey’s test
determine whether the difference in feedback methods affected
the time spent performing both gazing and waving (O1–O3).
The results showed that there were no significant differences
between the two methods.

The time from the end of the wake-up to the beginning
of command input Figure 19 shows the mean values and
standard deviations of the time from the end of the wake-up
to the start of command input for each of the nine conditions
combining the wake-up method and the feedback method. We

0

1

2

3

4

5

I1 I2 I3 I1 I2 I3 I1 I2 I3

O1 O2 O3

Ti
m

e 
(s

)

Figure 19. Mean of time from the end of wake-up to the start of command
input for each 9 conditions.

1

2

3

4

5

Would you like to check the response from system with a pause
rather than you consecutively do Wake-Up and command input?

Agree

Strongly Agree

Agree a little

Neutral

Disagree a little

29%
7 people

17%
4 people

33%
8 people

13%
3 people

8%
2 people

Figure 20. Necessity for feedback.

conducted a two-way ANOVA with the wake-up method (I1–
I3) and feedback presentation method (O1–O3) as factors. The
results showed that the main effect for the time of the wake-up
method was significant (p < 0.01), but the main effect for the
time of the feedback method was not significant (p > 0.05).
In addition, the interaction of time for each of the wake-up
and feedback methods was not significant (p > 0.05). For
the wake-up method for which the main effect of time was
significant, the mean time values were 3.45 s (SD 1.28) in
I1 (eye gaze), 2.52 s (SD 1.20) in I2 (sign name), and 2.12
s (SD 1.20) in I3 (waving). To examine the difference in the
mean satisfaction values among the three levels of the wake-up
method, we conducted multiple comparisons using the Tukey’s
test. I3 (waving) was significantly shorter (p < 0.01) than I2
(sign name) (p < 0.05).

5) Subjective Evaluation: Necessity for feedback presen-
tation Figure 20 shows the results of whether the participant
preferred to check the response from the system with a pause
rather than consecutively performing wake-up and command
input. Participants who answered “1. strongly Agree” mainly
said, “I can say what I want to say without anxiety if I can
check system’s response,” “I was concerned that the system
would have difficulty recognizing my sign language if I did
not pause to check the system’s response,” “When I use sign

79

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Would you like to perform gazing as well 
during sign-name or swing?

79% 
19 people

8%
2 people

13%
3people

like

Limited
like

Dislike

Figure 21. Necessity for gazing during sign name and waving.

language in my daily life, it is natural for me to pause every
time I speak, and I would like to do so even if the other party
is a system.”

Participants who answered “2. agree” mainly commented,
“I would like to input commands after I have confirmed that
the system responds to my wake-up gesture,” “I wanted to
check the system’s response, and I was concerned that if I
didn’t pause, it would be difficult for the system to recognize
my sign language,” “I don’t think the pause is so necessary
between hearing people. However, I want to be sure that the
machine will respond to me before I say what I want.”

Participants who answered “3. agree a little” mainly com-
mented, “With voice control devices such as Alexa, I think I
can talk without pauses. However, I would prefer to give the
wake-up command and see the response from the system, as
well as feedback before issuing further commands,” “When
I am cooking, I don’t think I need a pause,” “I believe that
the system’s recognizing of my sign language would be more
stable if there was a pause. I thought that if the reading
accuracy was as good as a human’s, it might not need a pause.”

Participants who answered “4. neutral” mainly commented,
“It depends on the accuracy of the system’s sign language
recognition. If the system can recognize the sign language
properly, it is not necessary to pause,” “I am busy, and I want
to send commands immediately after wake-up, considering
situations where I have to multi-task.”

Participants who answered “5. disagree a little” mainly
commented, “Even in interpersonal communication, there is
no time between the wake-up and the request. Rather, as the
system can see me from the beginning, it should be able to
notice my call immediately,” “I am impatient, and I wanted to
say what I wanted to say right after I woke up the system.”

Necessity for gazing when performing wake-up with
the hands Figure 21 shows the results of the question as to
whether the participants preferred to perform gazing as well
during wake-up movements using their hands, such as sign
name and waving. Participants who answered “1. like” mainly
commented, “I am concerned about the possibility of being
mistakenly recognized when I wake-up the system without
gazing at it me when talking with others, so I would like
to gaze at the system as well,” “I’m not used to calling out

to people without looking at them because, in interpersonal
communication in daily life, we call out with our eyes,” “I
tend to look at people with my eyes when I talk to them,
so I feel safer when I add gazing,” “By adding gazing, I can
bidirectionally know that the target of the call is the system,” “I
want to add gazing so that I can check the system’s response.”

Participants who answered “2. limited like” mainly com-
mented, “I thought that we don’t need to gaze at the target of
the call because the target of the call can be clearly identified
just by signing the name, which is a system-specific way of
calling,” “If waving is used to call out to the people around
me, I would like to gaze at them as well to clarify the target
of the call,” “If you are busy at work, you may be able to call
out without gazing.”

Participants who answered “3. dislike” mainly commented,
“I don’t think gazing is necessary with the possibility of
signing the name and waving. If the system can read my sign
language, then there is no problem,” “I don’t feel like calling
out while looking at the screen when I envision using the
system after coming home. I don’t want to be tied to gazing
at the screen. I want to look at the screen when the system
responds, not to wake it up.”

D. Discussion

1) RQ4:Need for feedback: Usability is defined in ISO
9241-11, a standard of the International Organization for Stan-
dardization, as “the degree of effectiveness, efficiency, and user
satisfaction in which a given user uses a product to achieve a
specified goal under specified conditions of use” [56]. From
Figure 12, it may be observed that the participants’ satisfaction
was significantly higher when the system provided feedback,
indicating that the usability of the system in terms of “de-
gree of user satisfaction” was improved. However, Figure 13
shows that the time between the call to the system and the
command’s input was significantly shorter when the system
did not provide feedback than when it did do so, indicating
that the usability improved in terms of “efficiency”. From
Figure 16, it may be observed that the ranking of satisfaction
was lower when feedback was not provided. In addition, as
there were many comments about feeling uneasy, safety could
not be ensured, and therefore, the usability decreased in terms
of “effectiveness”. This suggests that it is more important for
usability improvements to obtain a proper response from the
system than to speed up the command input in the conversation
between a DHH user and the system. In addition, Figure 20
shows that DHH users tended to prefer to check the response
from the system by leaving some time between the wake-up
action and the command input. These results suggest that the
system must provide DHH users with feedback for their wake-
up actions.

2) RQ5:Optimal wake-up method: From Figure 14 and
Figure 15, it is clear all DHH users preferred wake-up with
waving to eye gaze or signing a name. From Section IV-C3,
a comment was made by a participant, “waving is often used
for calling out in interpersonal communication, so it was easy.”
This is because it has been reported that Deaf people mainly

80

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



wave their hands when they try to contact a physically distant
person [29]. From these findings, we can say that the wake-
up of the system partner showed behaviors similar to Deaf
people’s conversations. From Section IV-C3, the participants
commented that the waving was immediately transferable.
From Figure 19, the time between the end of the wake-up
action and the start of the command input was significantly
shorter for the waving than for the other wake-up conditions.
This suggests that waving is practical for a smooth transition
to the command input.

Table V shows that 97.2% of the time, the participants were
gazing when they performed the waving. Figure 21 shows that
even when participants performed wake-up actions using their
hands, such as sign name and waving, they tended to perform
them in conjunction with gazing. These results suggest that
using gaze and waving is an optimal wake-up method for DHH
users.

From Table III, participants whose physical characteristics
and identity were “Deaf”, such as “not relying on auditory
information,” “high sign language level,” and “not using audio
information,” were significantly more satisfied with waving
than with the other wake-up methods. Figure 17 shows that
they greatly preferred waving in the satisfaction ranking. In
addition, from Table IV, the time required for waving was
significantly shorter for participants whose physical char-
acteristics and identities were “Deaf”, such as “high sign
language level” and “not relying on auditory information,”
than for the participants with other characteristics. Deaf people
have been learning sign language since they were young and
are used to communicating with their hands, including sign
language, because they belong to the Deaf community. It
has been reported that DHH individuals have better visual
senses and are more aware of their surroundings than ordinary
people [57]. Therefore, if the person you call out to is Deaf, the
other person is more likely to notice even if the waving time
is short. This suggests that participants who have the physical
characteristics of the Deaf are more likely to be accustomed
to such situations and therefore prefer hand movements such
as waving.

In contrast, from Table III, participants whose physical
characteristics and identity were Hard of hearing (hearing
impaired), such as “relying on auditory information,” “low sign
language level,” and “using audio information,” did not show
a preference for waving compared to other wake-up methods.
From Table IV, the time required for waving was significantly
longer than that of participants whose physical characteristics
and identity were “Deaf”. This suggests that DHH participants
are resistant to using waving as a wake-up movement because
such movements are time-consuming. Figure 17 shows that
three of the five participants (66% of the total) with a low sign
language level preferred gazing. This suggests that hearing-
impaired users may prefer not to use their hands, and simply
use gaze instead.

3) RQ6:Optimal feedback method: From Figure 14, there
was no way to present the system’s feedback that resulted in a
significantly higher level of satisfaction among all DHH users.

However, it is clear from Figure 16 that for all DHH users,
the blue bar display was preferred over other feedback.

Regarding the characteristics of DHH users, Figure 18
shows that participants whose identity was “Deaf” were sig-
nificantly more satisfied with the blue bar display only than
with the system’s head-shaking motion, and participants with
a higher sign language level especially preferred the blue bar
display only. In Section IV-C3, there were comments from
participants such as “Blue bar display alone is enough,” so we
suggest that the short time it took for the system to show a
response improved the usability of the system.

However, the blue bar display was asymmetrical in that the
participants’ input method was sign language, but the output
method was text or the blue bar display. The blue bar display
is asymmetrical from the text and blue bar display. Figure 18
shows that no participants with a low sign language level
ranked the sign language display first. Still, many participants
with a high sign language level ranked the sign language
display as their first or second preference. As for why the
satisfaction level of the sign language display was lower than
that of the blue bar-only display, based on the participants’
comments on the sign language display in the Section IV-C3,
it is possible that improving the specifications of the sign
language display, such as “displaying the signer as an avatar”
or “displaying the signer from the default state, such as the
home screen, so that it responds to the user’s input,” could
improve the satisfaction level. These results suggest that the
feedback of the system needs to be further studied.

V. DESIGN GUIDELINES FOR A
CONVERSATIONAL NATURAL USER INTERFACE
FOR THE DEAF AND HARD OF HEARING USERS

From Section III and Section IV, based on the experimental
investigation of the research questions, Figure 22 shows the
style of the process that DHH users should realize when
conversing with a conversational NUI. We propose five design
guidelines for conversational NUI for DHH users.

1. Allow wake-up to be performed on a directed gaze
For DHH users, it is natural to gaze at the system
and then enter commands (RQ3). However, it should
be noted that the preferred wake-up method differed
depending on user characteristics (RQ5). For users
who are Deaf, waving can be used as an option to
personalize the system. In this case, the designer
can use the Table VI data as a reference to create
a recognition system for waving and eye gaze.

2. Provide feedback for wake-up
DHH users prefer confirmation before entering com-
mands to the system after wake-up (RQ4). To make
DHH users feel secure, the system should provide
feedback such as a sign language display.

3. Command input should be in sign language
There is some research on alternative input methods
to speech for DHH command input, such as sign
language [7] [8]. As DHH users are interested in
interacting with the system using sign language [9],

81

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



DHH

Wake-UP

Commanding

“How is the weather today?”

Commanding

Luminous/
vibration

Replying

“Okay, stop.”

System

Becoming command
acceptable state

Executing the task

Calling to users

“Today's weather is fine. 
Percent chance of rain is...”

“It's 8:00 in the morning.”

“What’s the news today?”

Eye Gazing
+α Swing

Sign Language

Sign Language/
Text

Feedback

Figure 22. Activity of the conversation process between the DHH user and
the system.

they should be able to provide input to the system
using sign language.

4. System outputs sign language and text
Text output is the best form of interaction with
the system in multi-tasking. For users who mainly
use sign language input, sign language is the best
output mode for the system (RQ2). However, the sign
language output may not be satisfactory for users
who are not accustomed to sign language, so the
display method needs to be personalized.

5. Use illumination or vibration to notify the user
There are times when the DHH user is not looking at
the system, so they are called by it and do not notice.
To avoid this, the system outputs a luminous notifi-
cation (RQ1). In addition, the use of vibrations for
notifications was considered following the guidelines
for mobile applications (applications that run directly
on devices such as smartphones and tablets), which
were developed with the DHH user experience in
mind [58]. Therefore, we can expect vibration-based
notification methods in conversational NUIs.

VI. LIMITATIONS AND FUTURE WORK

In this study, the age range of the participants was low (20-
24), with all participants being university students, and the
sample size was small, with a maximum of 24 participants.
Therefore, it was impossible to investigate the preferences
and behavior patterns of a wide range of age groups. It
has been reported that there are differences in preferences
between younger and older people for CUIs equipped with
AI assistants [59]. Therefore, evaluation experiments should
be conducted with a more diverse range of people in future
research.

In addition, 92% of the participants in Experiment 1 and
83% of the participants in Experiment 2 had little or no ex-
perience using VUIs. In other words, as the participants were
not used to the system, the system’s behavior was not very
predictable, and their evaluation of the system may change
with more regular use. Therefore, an evaluation experiment
should be conducted after participants are entirely accustomed
to using the system. In addition, issues and comfort levels in
daily life should be explored, and fieldwork over extended
periods of time should be considered.

In this study, we incorporated a luminous notification as a
means of responding to DHH users. However, some partici-
pants commented, “I think it would be easier to notice if there
was a notification method using vibration as well as light.” In
the future, we intended to conduct an experiment that includes
a vibration notification. In addition, because we placed the
system in front of the participants in this experiment, we need
to find a way to make them aware of the notifications from
behind.

Avatar display functions must also be extended for sign lan-
guage display and the user face-tracking function for system
rotation motion. It is also necessary to investigate usability by
participants.

In addition, we examined the system’s sign language/text
display method and the method of presenting feedback for
wake-up, but we did not review feedback for failure to
recognize a user’s command. When interacting with the system
using sign language, experiments should be conducted on
possible innovations such as making the signer on the system
appear to be asking a question.

When designing a CUI, conventional approaches often con-
sider only a one-time task [52]. However, human conversation
rarely involve only a single exchange. Therefore, in the future,
it is desirable to design CUIs that allow conversations to
continue further. Here, a study reported that in Deaf interper-
sonal communication, whether a conversation is interrupted is
mainly due to the end of mutual gaze [29]. Therefore, it is
expected that the gazing modality can be used to determine
how to end a conversation. Therefore, it is necessary to
conduct experiments on conversational termination method in
the future as well.

VII. CONCLUSION

In this study, we have proposed design guidelines for
conversational NUIs for DHH users. We have investigated

82

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



optimal accessibility methods for DHH users at each step
of a conversation with VUIs. To this end, we conducted two
experiments. In Experiment 1, we asked for responses from
DHH users (N=12) to investigate whether a sign language con-
versation system using luminous notification and gazing could
improve usability. In Experiment 2, we collected responses
from DHH users (N=24) to investigate optimal wake-up and
feedback presentation method.

The main empirical contributions of this work are summa-
rized as follows.
(1) We have provided evidence showing that output with

luminous notifications increased DHH users’ satisfaction.
(2) We have also demonstrated the necessity of sign lan-

guage/text output for DHH users.
(3) We have provided evidence that gaze can serve as a

natural wake-up method for DHH users, but some users
prefer waving.

(4) We have also provided evidence of a high need for DHH
users to be provided feedback on wake-up.

(5) Finally, we have developed guidelines for conversational
NUIs best suited for DHH users.

This study serves as a design guideline for future conversa-
tional NUIs to improve accessibility for DHH users.

REFERENCES

[1] T. Kato, A. Shitara, N. Kato, and Y. Shiraishi, “Sign Language Con-
versational User Interfaces Using Luminous Notification and Eye Gaze
for the Deaf and Hard of Hearing,” Proceedings of ACHI’21: The 14th
International Conference on Advances in Computer-Human Interactions,
pp. 30–36, Nice, France, 2021.

[2] R. Byron, N. Clifford, “The Media Equation: How People Treat Com-
puters, Television, and New Media Like Real People and Places,”
Bibliovault OAI Repository, the University of Chicago Press, pp. 18–36,
1996.

[3] H. Candello et al., “CUI@CHI: Mapping Grand Challenges for the
Conversational User Interface Community,” CHI EA ’20: In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1–8, New York, USA, April 2020.

[4] TECH DRIVERS, (February 15, 2022), “Making sense of Google CEO
Sundar Pichai’s plan to move every direction at once,” https://www.cnbc.
com/2017/05/18/google-ceo-sundar-pichai-machine-learning-big-data.
html

[5] J. P. Bigham, R Kushalnagar, T. K. Huang, J. P. Flores, S. Savage, “On
How Deaf People Might Use Speech to Control Devices,” ASSETS
’17: In Proceedings of ASSETS ’17: The 19th International ACM
SIGACCESS Conference on Computers and Accessibility, New York,
USA, pp. 383–384, October 2017.

[6] A. Glasser, “Automatic Speech Recognition Services: Deaf and Hard-
of-Hearing Usability,” In Extended Abstracts of CHI EA ’19: The 2019
CHI Conference on Human Factors in Computing Systems, No. SRC06,
New York, USA, pp. 1–6, May 2019.

[7] G. Evan, K. Raja S., R. Jason, V. Christian, W. Brittany, “Accessibility
of voice-activated agents for people who are deaf or hard of hearing,”
In Proceedings of CSUN ’19: The34th Annual Assistive Technology
Conference Scientific/Research, Vol. 7, pp. 144–156, San Diego, 2019.

[8] W. Gilmore et al., “Alexa, Can You See Me?” Making Individual
Personal Assistants for the Home Accessible to Deaf Consumers,”
Proceedings of ASSETS ’19: The 35th Annual Assistive Technology
Conference Scientific/Research, Vol. 8, pp. 16–31, San Diego, USA,
2020.

[9] A. Glasser, V. Mande, M. Huenerfauth, “Understanding deaf and hard-
of-hearing users’ interest in sign-language interaction with personal-
assistant devices,” In Proceedings of W4A ’21: The 18th International
Web for All Conference, Association for Computing Machinery, pp. 1–
11, New York, USA, 2021.

[10] A. Glasser, V. Mande, M. Huenerfauth, “Accessibility for Deaf and Hard
of Hearing Users: Sign Language Conversational User Interfaces,” In
Proceedings of CUI ’20: The 2nd Conference on Conversational User
Interfaces, New York, USA, No. 55, pp. 1–3, July 2020.

[11] D. Bragg et.al., “Sign Language Interfaces: Discussing the Field’s
Biggest Challenges,” In Extended Abstracts of CHI EA ’20: The 2020
CHI Conference on Human Factors in Computing Systems, pp. 1–5,
New York, USA, April 2020.

[12] D. Bragg et.al., “Sign Language Recognition, Generation, and Transla-
tion: An Interdisciplinary Perspective,” In Proceedings of ASSETS ’19:
The 21st International ACM SIGACCESS Conference on Computers
and Accessibility, pp. 16–31, New York, USA, October 2019.

[13] Nielsen Norman Group, (February 15, 2022), “10 Usability Heuris-
tics for User Interface Design,” https://www.nngroup.com/articles/
ten-usability-heuristics/

[14] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” In
Proceedings of CHI ’94: The SIGCHI Conference on Human Factors in
Computing Systems, Association for Computing Machinery, pp. 152–
158, New York, USA, 1994.

[15] D. Norman, “The design of everyday things,” Basic Books, 1988.
[16] B. Shneiderman, C. Plaisant, “Designing the User Interface: Strategies

for Effective Human-Computer Interaction,” Addison Wesley, 2010.
[17] C. Murad, C. Munteanu, L. Clark, B. R. Cowan, “Design guidelines

for hands-free speech interaction,” In Proceedings of MobileHCI ’18:
The 20th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct, Association for Computing
Machinery, pp. 269–276, New York, USA, 2018.

[18] Alexa, (February 15, 2022), “Design Principles,” https://developer.
amazon.com/en-US/alexa/alexa-haus/design-principles

[19] Google Assistant, (February 15, 2022), “Conversational Actions,
Guides Design guidelines,” https://developers.google.com/assistant/
interactivecanvas/design

[20] C. Murad, C. Munteanu, “‘I don’t know what you’re talking about,
HALexa’: the case for voice user interface guidelines,” In Proceedings
of CUI ’19: The 1st International Conference on Conversational User
Interfaces, Association for Computing Machinery, No. 9, pp. 1–3, New
York, USA, 2019.

[21] J. Berke, (February 15, 2022), “Assistive Listening Devices
for the Deaf and HOH,” https://www.verywellhealth.com/
assistive-listening-devices-1046105

[22] A. Matsuda, M. Sugaya, H. Nakamura, “ Luminous device for the deaf
and hard of hearing people. In Proceedings of the second international
conference on Human-agent interaction,” In Proceedings of HAI ’14:
The second international conference on Human-agent interaction, pp.
201–204, October 2014.

[23] Amazon, (February 15, 2022), “Hearing Communicate and stay con-
nected with Alexa,” https://www.amazon.com/b/ref=ods\ afe\ hop\
hp?node=21213721011

[24] F. Bentley et al., “Understanding the Long-Term Use of Smart Speaker
Assistants,” In Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, Vol. 2, No. 3, pp 1–24, September 2018.

[25] M. Marschark et al., “Benefits of Sign Language Interpreting and Text
Alternatives for Deaf Students’ Classroom Learning,” The Journal of
Deaf Studies and Deaf Education, Vol. 11, pp. 421–437, Fall 2006.

[26] S. Deepika, R. Rangasayee, “The Combined Effect of Captioning and
Sign Language in Understanding Television Content in Deaf,” Journal
of Communication Disorders, Deaf Studies & Hearing Aids, Vol. 6, No.
1, pp. 1–7, 2018.

[27] M, Debevc, P. Kosec, A. Holzinger, “Improving multimodal web acces-
sibility for deaf people: sign language interpreter module,” Multimed
Tools Appl Vol. 54, pp. 181–199, April 2010.

[28] SignGenius, (February 15, 2022), “Do’s & Don’ts - Getting Attention
in the Deaf Community,” https://www.signgenius.com/info-do’s&don’
ts.shtml

[29] U. Bartnikowska, “Significance of touch and eye contact in the Polish
Deaf community during conversations in Polish Sign Language: ethno-
graphic observations,” Hrvatska Revija za Rehabilitacijska Istraživanja,
Vol. 53, pp. 175–185, 2017.

[30] V. Mande, A. Glasser, B. Dingman, M Huenerfauth, “Deaf Users’ Pref-
erences Among wake-up Approaches during Sign-Language Interaction
with Personal Assistant Devices,” In Extended Abstracts of CHI EA ’21:
The 2021 CHI Conference on Human Factors in Computing Systems,
Vol. 370, pp 1–6, May 2021.

83

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[31] C. Heath, K. Nicholls, Body Movement and Speech in Medical Interac-
tion, Studies in Emotion and Social Interaction, Cambridge University
Press, 1986.

[32] A. M. Lieberman, “Attention-getting skills of deaf children using Amer-
ican Sign Language in a preschool classroom,” Applied psycholinguis-
tics, Vol. 36, No. 4, pp. 855–873, July 2016.

[33] National University Corporation, Tsukuba University of Technology,
(February 15, 2022), “About,” https://www.tsukuba-tech.ac.jp/english/
index.html

[34] I. Lopatovska et al., “Talk to me: Exploring user interactions with the
Amazon Alexa,” Journal of Librarianship and Information Science, Vol.
51, No. 4, pp. 984–997, 2019.

[35] S. Ahire, A. Priegnitz, O. Önbas, M, Rohs, W. Nejdl, “How Compatible
is Alexa with Dual Tasking? — Towards Intelligent Personal Assis-
tants for Dual-Task Situations,” In Proceedings of HAI ’21: The 9th
International Conference on Human-Agent Interaction, Association for
Computing Machinery, pp. 103–111, New York, USA, 2021.

[36] Canalys, (February 15, 2022), “Global smart speaker
market 2021 forecast,” https://canalys.com/newsroom/
canalys-global-smart-speaker-market-2021-forecast

[37] National Institutes of Health (US); Biological Sciences Curriculum
Study, “NIH Curriculum Supplement Series,” Bethesda (MD): Informa-
tion about Hearing, Communication, and Understanding, 2007.

[38] Pixel Phone Help, (February 15, 2022), “Control your Pixel without
touching it,” https://support.google.com/pixelphone/answer/9517454?
hl=en

[39] F. Donna, “The Use of waving as Self-Generated Cues for Recall of
Verbally Associated Targets,” The American journal of psychology, Vol.
115, No. 1, pp. 1–20, 2002.

[40] F. Donna, R. E. Guttentag, “The Effects of Restricting waving Produc-
tion on Lexical Retrieval and Free Recall,” The American Journal of
Psychology, Vol. 115, No. 1, pp. 1–20, 2002.

[41] M. Henschke, T. Gedeon, R. Jones, “Touchless Gestural Interaction with
Wizard-of-Oz: Analysing User Behaviour,” In Proceedings of OzCHI
’15: The Annual Meeting of the Australian Special Interest Group for
Computer Human Interaction, Association for Computing Machinery,
pp. 207–211, New York, USA, 2015.

[42] J. Schwarz, C. C. Marais, T Leyvand, S. E. Hudson, J. Mankoff, “Com-
bining body pose, gaze, and gesture to determine intention to interact
in vision-based interfaces,” In Proceedings of CHI ’14: The SIGCHI
Conference on Human Factors in Computing Systems, Association for
Computing Machinery, pp. 3443–3452, New York, USA, 2014.

[43] W. Yee, “Potential Limitations of Multi-touch Gesture Vocabulary:
Differentiation, Adoption, Fatigue,” In Proceedings of the 13th Inter-
national Conference on Human-Computer Interaction, Part II: Novel
Interaction Methods and Techniques. Springer-Verlag, pp. 291–300,
Berlin, Heidelberg, July 2009.

[44] R. Cui, H. Liu, C. Zhang, “A Deep Neural Framework for Continuous
Sign Language Recognition by Iterative Training,” in IEEE Transactions
on Multimedia, Vol. 21, No. 7, pp. 1880–1891, July 2019.

[45] N. Crook, (February 15, 2022), “Wizard of Oz testing
– a method of testing a system that does not yet
exist,” https://www.simpleusability.com/inspiration/2018/08/
wizard-of-oz-testing-a-method-of-testing-a-system-that-does-not-yet-exist/

[46] N. Fraser, N. Gilbert, “Simulating speech systems. Computer Speech &
Language,” Vol. 5, pp. 81–99, January 1991.

[47] A. Pradhan, K. Mehta, L. Findlater, “”Accessibility Came by Accident”:
Use of Voice-Controlled Intelligent Personal Assistants by People with
Disabilities,” In Proceedings of CHI ’18: The 2018 CHI Conference on
Human Factors in Computing Systems, No. 459, pp. 1–13, New York,
USA, 2018.

[48] J. Peirce, J. R. Gray, “Simpson, S. et al. PsychoPy2: Experiments in
behavior made easy,” Behavior Research Methods, Vol. 51, pp. 195–
203, February 2019.

[49] The Language Archive, (June 5, 2021), “ELAN,” https://archive.mpi.nl/
tla/elan

[50] J. Brooke, “SUS: A quick and dirty usability scale,” Usability Eval. Ind..
189. pp. 1–7. November 1995.

[51] D. Bavelier et al., “Visual attention to the periphery is enhanced in
congenitally deaf individuals,” The Journal of neuroscience : the official
journal of the Society for Neuroscience, Vol. 20, No. 17, pp. 1–8.
September 2000.

[52] C. Pearl, “Designing Voice User Interfaces: Principles of Conversational
Experiences,” O’Reilly Media, 2017.

[53] Developer documentationamazon alexa, (February 15, 2022), “Alexa
Design Guide. Be Avaiable,” https://developer.amazon.com/en-GB/docs/
alexa/alexa-design/available.html

[54] Amazon, (February 15, 2022), “What Do the Lights on Your Echo De-
vice Mean?,” https://www.amazon.com/gp/help/customer/display.html?
nodeId=GKLDRFT7FP4FZE56

[55] Amazon, (February 15, 2022), “Echo Show 10 (3rd Gen) — HD smart
display with motion and Alexa — Charcoal,” https://www.amazon.com/
echo-show-10/dp/B07VHZ41L8

[56] Online Browsing Platform(OBP), (February 15, 2022), “ISO 9241-
11:2018(en)” https://www.iso.org/obp/ui/\#iso:std:iso:9241:-210:ed-2:
v1:en

[57] D. Bavelier, W.G. Matthew, P. C. Hauser, “Do deaf individuals see
better?,” Trends in Cognitive Sciences, Vol. 10, No. 11, pp. 512–518,
2006.

[58] R. P. Schefer, M. S. Bezerra, L. A. M. Zaina, “Supporting the De-
velopment of Social Networking Mobile Apps for Deaf Users: Guide-
lines Based on User Experience Issues,” In Proceedings of DSAI
2018: The 8th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Info-exclusion,
Association for Computing Machinery, pp. 278—285, New York, USA,
2018.

[59] D. Gollasch, G. Weber, “Age-Related Differences in Preferences for
Using Voice Assistants,” In Proceedings of MuC ’21: In Mensch und
Computer 2021, Association for Computing Machinery, pp. 156–167,
New York, USA, 2021.

84

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



An Extended Study of the Correlation of Cognitive
Complexity-related Code Measures

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

email:luigi.lavazza@uninsubria.it

Abstract—Several measures have been proposed to represent
various characteristics of code, such as size, complexity, co-
hesion, coupling, etc. These measures are deemed interesting
because the internal characteristics they measure (which are not
interesting per se) are believed to be correlated with external
software qualities (like reliability, maintainability, etc.) that are
definitely interesting for developers or users. Although many
measures have been proposed for software code, new measures
are continuously proposed. However, before starting using a new
measure, we would like to ascertain that it is actually useful
and that it provides some improvement with respect to well
established measures that have been in use for a long time
and whose merits have been widely evaluated. In 2018, a new
code measure, named “Cognitive Complexity” was proposed.
According to the proposers, this measure should correlate to code
understandability much better than traditional code measures,
such as McCabe Complexity, for instance. However, hardly any
experimentation proved whether the “Cognitive Complexity”
measure is better than other measures or not. Actually, it was
not even verified whether the new measure provides different
knowledge concerning code with respect to traditional measures.
In this paper, we aim at evaluating experimentally to what
extent the new measure is correlated with traditional measures.
To this end, we measured the code from a set of open-source
Java projects and derived models of “Cognitive Complexity”
based on the traditional code measures yielded by a state-of-
the-art code measurement tool. We found that fairly accurate
models of “Cognitive Complexity” can be obtained using just
a few traditional code measures. In this sense, the “Cognitive
Complexity” measure does not appear to provide additional
knowledge with respect to previously proposed measures.

Keywords–Cognitive complexity; software code measures;
McCabe complexity; cyclomatic complexity; Halstead mea-
sures; static code measures

I. INTRODUCTION

In [1], the correlation between “Cognitive Complexity,” a
measure proposed with the aim of representing the complexity
of understanding code [2], and “traditional” measures was
studied.

In fact, many measures of the internal characteristics of
code, such as size, complexity, cohesion or coupling, have
been proposed in the past (for instance, Chidamber and
Kemerer proposed a suite of metrics that are suitable for
representing the characteristics of object-oriented code [3])
and new ones are continuously proposed. However, code
measures are of little interest per se, since they address internal
properties of software. In general, developers, managers and

users are more interested in external software qualities, like
faultiness or maintainability. Therefore, it is necessary that
internal property measures are correlated to some external
property of interest. Such correlation makes it possible, among
other things, to predict interesting external qualities, which
are unknown, based on measures of internal code properties,
which can be easily collected.

In 2018, a new code measure was proposed with the aim
of representing the complexity of understanding code [2]. The
measure is a code measure, which accounts exclusively for
internal code properties. However, according to the author, it is
expected to be strictly correlated with code understandability,
which is an external code property. This measure is named
“Cognitive Complexity,” however, in the remainder of this
paper we shall refer to this measure as “CoCo,” to avoid
confusion with the concept of cognitive complexity, i.e., the
external property that CoCo is expected to measure.

Some initial work has been done to evaluate whether
CoCo is actually correlated with code understandability [4]:
preliminary results do not support the claim that CoCo is better
correlated to code understandability than previously proposed
measures.

At any rate, whatever the goal that a new code measure is
supposed to help achieving, the new measure should provide
some “knowledge” that existing code measures are not able
to capture. If a new measure is so strongly correlated with
other measures that the latters can be used to predict the
new measure with good accuracy, it is unlikely that the new
measure actually conveys any new knowledge.

CoCo is receiving some attention, probably because it is
provided by SonarQube, which is a quite popular tool.
Therefore, it is time to look for evidence that CoCo provides
additional knowledge with respect to well established code
measures. To this end, the following two research questions
were addressed by a previous paper [1]:

RQ1 How strongly is CoCo correlated with each of the
code measures that are commonly used in software
development?

RQ2 Is it possible to build models that predict the value of
CoCo based on the values of commonly used code
measures? If so, how accurate are the predictions that
can be achieved?

85

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



These research questions were addressed by analyzing the
code from nine open source Java projects. It was found that
CoCo appears strongly correlated to McCabe’s complexity and
slightly less strongly correlated to several other code measures.
Several regression models of CoCo as a function of traditional
measures were also found. Based on these findings, it was
concluded that—at least for the considered software projects—
CoCo does not appear to convey additional information with
respect to traditional measures.

In this paper, we first report in some detail the work
described in [1], then we look for further evidence that may
confirm (or challenge) previous findings. To this end,

1) We selected two large open source Java projects, whose
code we used in the following activities.

2) We evaluated the correlation between CoCo and tradi-
tional measures in the two selected open source Java
projects.

3) We used two models found in [1] to predict the CoCo of
the two projects’ methods. We then evaluated the accu-
racy of the prediction.

4) Finally, we used machine learning techniques to verify
whether it is possible to estimate CoCo based on tradi-
tional measures with an even greater accuracy than via
regression.

The paper is structured as follows. Section II provides
some background, by introducing CoCo and describing the
traditional code measures used in this study. Section III
describes the empirical study that was carried out to answer the
research questions. Section IV discusses the results obtained
by the original study [1] and answers the research questions.
Section V describes a second empirical study, which provides
further evidence that confirms previous findings. Section VI
explores whether it is possible to uncover even stronger
relationships by means of machine learning, or if the usage of
ML just confirms the previous findings obtained via ordinary
least squares regression. Section VII discusses the threats to
the validity of the study. Section VIII accounts for related
work. Finally, in Section IX some conclusions are drawn, and
future work is outlined.

II. CODE MEASURES

In this paper we deal with measures of the internal attributes
of code. Internal attributes of code can be measured by looking
at code alone, without considering software qualities (like
faultiness, robustness, maintainability, etc.) that are externally
perceivable.

Several measures for internal software attributes (e.g., size,
structural complexity, cohesion, coupling) were proposed [5]
to quantify the properties of software modules. These measures
are interesting because they concern code properties that are
believed to affect external software qualities (like faultiness
or maintainability), which are interesting for developers and
users.

Since CoCo is computed at the method level, in what
follows, we consider only measures at the same granularity
level, i.e., measures that are applicable to methods.

A. “Traditional” Code Measures

Since the first high-level programming languages were
introduced, several measures were proposed, to represent the
possibly relevant characteristics of code. For instance, the
Lines Of Code (LOC) measure the size of a software module,
while McCabe Complexity (also known as Cyclomatic Com-
plexity) [6] was proposed to represent the “complexity” of
code, with the idea that high levels of complexity characterize
code that is difficult to test and maintain. The object-oriented
measures by Chidamber and Kemerer [3] were proposed to
recognize poor software design: for instance, modules with
high levels of coupling are supposed to be associated with
difficult maintenance.

In this paper, we are interested in evaluating the correla-
tion between CoCo and traditional measures. Since CoCo is
defined at the method level, here we consider only traditional
measures addressing methods; measures defined to represent
the properties of classes or other code structures are ignored.

We used SourceMeter [7] to collect code measures. The
collected method-level measures are listed in Table I.

Here we provide just a brief description of the collected
measures; readers can find complete specifications and addi-
tional information in the documentation of SourceMeter.

The measures listed in Table I include Halstead mea-
sures [8], several maintainability indexes, including the origi-
nal one [9], McCabe complexity, measures of the nesting level
(i.e., how deeply are code control structures included in each
other), logical lines of code (which are counted excluding
blank lines, comment-only lines, etc.).

TABLE I
THE MEASURES COLLECTED VIA SOURCEMETER.

Metric name Abbreviation
Halstead Calculated Program Length HCPL
Halstead Difficulty HDIF
Halstead Effort HEFF
Halstead Number of Delivered Bugs HNDB
Halstead Program Length HPL
Halstead Program Vocabulary HPV
Halstead Time Required to Program HTRP
Halstead Volume HVOL
Maintainability Index (Microsoft version) MIMS
Maintainability Index (Original version) MI
Maintainability Index (SEI version) MISEI
Maintainability Index (SourceMeter version) MISM
McCabe’s Cyclomatic Complexity McCC
Nesting Level NL
Nesting Level Else-If NLE
Logical Lines of Code LLOC
Number of Statements NOS

B. The “Cognitive Complexity” Measure

In 2017, SonarSource introduced Cognitive Complexity [2]
as a new measure for the understandability of any given
piece of code. This new measure was named “Cognitive
Complexity” because its authors assumed that the measure was
suitable to represent the cognitive complexity of understanding
code. To this end, CoCo was proposed with the aim “to remedy

86

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Cyclomatic Complexity’s shortcomings and produce a mea-
surement that more accurately reflects the relative difficulty of
understanding, and therefore of maintaining methods, classes,
and applications” [2].

Rather than a direct measure, CoCo is an indicator, which
takes into account several aspects of code. Like McCabe’s
complexity, it takes into account decision points (conditional
statements, loops, switch statements, etc.), but, unlike Mc-
Cabe’s complexity, CoCo gives them a weight equal to their
nesting level plus 1. So, for instance, in the following code
fragment

void firstMethod() {
if (condition1)

for (int i = 0; i < 10; i++)
while (condition2) { x+=a[i]; }

}

the if statement at nesting level 0 has weight 1, the for
statement at nesting level 1 has weight 2, and the while
statement at nesting level 2 has weight 3; accordingly CoCo=
1+2+3=6. The same code has McCabe complexity = 4 (3
decision points plus one).

Consider instead the following code fragment, in which the
control structures are not nested.

void secondMethod() {
if (condition1) { x=0; }
for (int i = 0; i < 10; i++) { x+=2*i; }
while (condition2) { x=x/2; }

}

This code has CoCo = 3, while its McCabe complexity is still
4. It is thus apparent that nested structures increase CoCo,
while they have no effect on McCabe complexity.

CoCo also accounts for Boolean predicates (while Mc-
Cabe’s complexity does not): a Boolean predicate contributes
to CoCo depending on the number of its sub-sequences of
logical operators. For instance, consider the following code
fragment, where a, b, c, d, e, f are Boolean vari-
ables

void thirdMethod() {
if (a && b && c || d || e && f) { ... }

}

Predicate a && b && c || d || e && f contains
three sub-sequences with the same logical operators, i.e.,
a && b && c, c || d || e, and e && f, so it adds
3 to the value of CoCo.

Other aspects of code contribute to increment CoCo, but
they are much less frequent than those described above. For a
complete description of CoCo, see the definition [2].

III. THE EMPIRICAL STUDY

The empirical study involved a set of open-source Java
programs. The Java code was measured, and the collected data
were analyzed via well consolidated statistical methods. The
dataset is described in Section III-A, while the measurement

and analysis methods are described in Section III-B. The
results we obtained are reported in Section III-C.

A. The Dataset

The code to be analyzed within the study was a convenience
sample: data whose code was already available from previous
studies concerning completely different topics was used. In
practice, this amount to a random choice.

The projects that supplied the code for the study are listed in
Table II, where some descriptive statistics for the most relevant
measures are also given (for space reasons, statistics are given
only for a subset of representative measures). Methods having
CoCo=0 (i.e., with no decidion points, no complex boolean
expressions, etc.) or NOS=0 (i.e., having no statements) are
clearly uninteresting, therefore their data were excluded, so
Table II does not account for such methods. Overall, the initial
dataset included data from 13,922 methods. The dataset is
available on demand for replication purposes.

B. The Method

The first phase of the study consisted in measuring the code.
We used SourceMeter to obtain the traditional measures listed
in Table I, and a self-constructed tool to measure CoCo. The
data from the two tools were joined, thus obtaining a single
dataset with 8,214 data points.

The second step consisted in selecting the data for the study.
We excluded from the study all the methods having CoCo <5,
since those methods would bias the results, because of ‘built-
in’ relationships. For instance a piece of code having CoCo =
0 also has McCabe complexity = 1; similarly, CoCo = 1
implies that McCabe complexity = 2 for all but a few very
peculiar cases, etc. In addition, low-complexity methods are
of little interest: CoCo is meant to represent the complexity
of understanding code, and CoCo is less than 5 for methods
that are so simple that understanding them is hardly an issue.
Therefore, by excluding only methods having CoCo < 5 we
are sure to exclude only ‘non-interesting’ code.

We also excluded methods having CoCo > 50, because our
dataset contains too few methods having CoCo > 50 to support
reliable statistical analysis. Besides, CoCo > 50 indicates
exceedingly complex methods; in practice, it is hardly useful
knowing if, say, CoCo = 60 or CoCo = 70, just like it is hardly
useful knowing that McCabe’s complexity is 60 or 70. In these
cases, we just have “too complex” methods.

After removing the exceedingly simple or complex methods,
we got a dataset including 3,610 data points, definitely enough
to perform significant statistical analysis. In this dataset the
mean value of CoCo is 12, while the median is 9.

The third step consisted in performing statistical analysis.
We started by studying the correlation between CoCo and
each one of the other code measures. Since the data are not
normally distributed, we used non-parametric tests, namely
we computed Kendall’s rank correlation coefficient τ [10]
and Spearman’s rank correlation coefficient ρ [11]. Since the
correlation analysis gave encouraging results, we proceeded to
evaluate correlations via both linear and non-linear correlation

87

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II
DESCRIPTIVE STATISTICS OF THE DATASETS.

Project num. Measure mean st.dev. median min max
methods

CoCo 3.1 4.3 2.0 1 79
HPV 32.3 17.1 28.0 0 211

MI 100.3 14.7 102.2 0 135
hibernate 2532 McCC 3.3 2.4 2.0 1 33

NLE 1.3 0.8 1.0 0 7
LLOC 15.2 12.3 12.0 3 201
CoCo 3.3 4.0 2.0 1 34
HPV 35.0 18.4 29.0 10 120

MI 100.3 14.0 102.5 56 132
jcaptcha 317 McCC 3.5 2.2 3.0 2 18

NLE 1.3 0.8 1.0 0 5
LLOC 14.6 10.6 11.0 3 80
CoCo 4.0 7.2 2.0 1 84
HPV 30.6 22.9 28.0 0 280

MI 101.7 20.6 104.0 0 135
jjwt 205 McCC 4.3 4.6 3.0 2 46

NLE 1.3 0.8 1.0 0 4
LLOC 13.5 14.9 11.0 3 169
CoCo 5.6 8.7 3.0 1 73
HPV 38.3 21.1 32.0 14 145

json MI 96.4 15.3 99.0 45 131
iterator 379 McCC 4.6 3.9 3.0 1 28

NLE 1.6 1.0 1.0 0 7
LLOC 18.0 15.1 13.0 3 110
CoCo 5.7 15.8 2.0 1 203
HPV 41.0 36.9 31.5 11 413

JSON- MI 95.7 18.2 97.4 32 133
java 260 McCC 5.0 5.8 3.0 2 50

NLE 1.5 1.1 1.0 0 7
LLOC 21.5 26.5 13.0 3 255
CoCo 4.6 6.4 2.0 1 61
HPV 36.6 21.4 30.0 8 163

MI 98.1 15.2 100.4 44 135
log4j 798 McCC 4.1 3.4 3.0 1 34

NLE 1.6 1.0 1.0 0 8
LLOC 16.9 13.4 12.0 3 115
CoCo 4.4 5.5 3.0 1 37
HPV 33.7 20.0 28.0 0 122

netty- MI 97.7 20.8 101.4 0 132
socketio 136 McCC 4.1 2.8 3.0 1 19

NLE 1.6 0.9 1.0 0 5
LLOC 15.0 12.3 11.0 3 84
CoCo 5.2 8.2 2.0 1 118
HPV 39.3 25.7 32.0 0 326

MI 93.7 17.2 96.4 0 128
pdfbox 3587 McCC 4.5 4.5 3.0 1 58

NLE 1.6 1.1 1.0 0 10
LLOC 22.3 21.8 15.0 3 330
CoCo 5.6 10.1 3.0 1 186
HPV 38.7 28.5 31.0 0 740

jasper MI 93.4 18.1 96.5 0 132
reports 6415 McCC 4.9 5.6 3.0 1 117

NLE 1.6 1.1 1.0 0 10
LLOC 23.5 26.0 15.0 3 383

analysis. Namely, we performed ordinary least squares (OLS)
linear regression analysis and OLS regression analysis after
log-log transformation of data. In both cases, we identified
and excluded outliers based on Cook’s distance [12].

In all the performed analysis, we considered the results
significant at the usual α = 0.05 level.

C. Results of the Study

The results of Kendall’s and Spearman’s correlation tests
are given in Table III. All the reported results are statistically
significant, with p-values well below 0.001.

After the evaluation of correlations between CoCo and
other measures, we proceeded to building regression models.
We obtained 65 statistically significant models after log-log

TABLE III
RESULTS OF CORRELATION TEST.

Measure τ ρ
HCPL 0.45 0.62
HDIF 0.38 0.52
HEFF 0.47 0.63
HNDB 0.47 0.63
HPL 0.50 0.67
HPV 0.46 0.62
HTRP 0.47 0.63
HVOL 0.50 0.66
MI −0.56 −0.73
MIMS −0.56 −0.73
MISEI −0.41 −0.57
MISM −0.41 −0.57
McCC 0.71 0.85
NL 0.50 0.61
NLE 0.50 0.60
LLOC 0.55 0.72
NOS 0.52 0.68

transformation of measures. Table IV provides a summary
of the most accurate models we found. For each model, the
adjusted R2 determination coefficient is given (obtained after
excluding outliers). We also give a few indicators of the
accuracy of the models (computed including outliers): MAR
is the mean of absolute residuals (i.e., the average absolute
prediction error), MMRE is the mean magnitude of relative
errors, while MdMRE is the median magnitude of relative
errors. MMRE and MdMRE are considered biased indicators:
we report them here only as a complement to MAR, which
we considered the indicator of accuracy to be taken into
account [13].

Note that in addition to the measures listed in Table I, we
used also MCC/LLOC, i.e., McCabe’s complexity density.

IV. DISCUSSION OF THE RESULTS FROM THE EMPIRICAL
STUDY

The results of the correlation tests given in Table III show
that CoCo is correlated with all the traditional code measures
we considered. Specifically, CoCo is strongly correlated with
McCabe’s complexity: this is quite noticeable, considering that
CoCo was proposed to improve McCabe’s complexity.

We can thus answer RQ1 as follows:
Our study shows medium to strong correlations between
CoCo and each of the commonly used code measures that
we considered. Specifically, CoCo appears most strongly cor-
related with McCabe’s complexity.

The results given in Table IV let us answer RQ2 as follows:
Our study shows that it possible to build models that predict
the value of CoCo based on commonly used measures, as well
as using Halstead measures and maintainability indexes. Many
of the obtained models feature quite good accuracy.

Noticeably, the independent variables that support the most
accurate models are McCabe’s complexity, the nesting level
and the number of logical lines of code. This is hardly
surprising, given that elements of MCC and NLE are used in
the definition of CoCo. As to LLOC, it is clear that the longer
the code, the more decision points it contains (on average),

88

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV
MODELS FOUND.

Measures adjusted R2 MAR MMRE MdMRE
MI, NL 0.81 3.60 0.28 0.20
MIMS, NL 0.81 3.60 0.28 0.20
NLE, LLOC 0.79 3.08 0.25 0.20
HCPL, MI, NLE 0.84 2.96 0.24 0.18
HCPL, MIMS, NLE 0.84 2.96 0.24 0.18
HCPL, NLE, LLOC 0.81 3.04 0.25 0.20
HDIF, MI, NL 0.82 3.65 0.28 0.19
HDIF, MI, NLE 0.84 2.96 0.24 0.19
HDIF, MIMS, NL 0.82 3.65 0.28 0.19
HDIF, MIMS, NLE 0.84 2.96 0.24 0.19
HEFF, MI, NL 0.82 3.72 0.28 0.20
HEFF, MI, NLE 0.84 3.01 0.24 0.19
HEFF, MIMS, NL 0.82 3.72 0.28 0.20
HEFF, MIMS, NLE 0.84 3.01 0.24 0.19
HNDB, MI, NL 0.82 3.72 0.28 0.20
HNDB, MI, NLE 0.84 3.01 0.24 0.19
HNDB, MIMS, NL 0.82 3.72 0.28 0.20
HNDB, MIMS, NLE 0.84 3.01 0.24 0.19
HPL, MI, NLE 0.84 3.03 0.24 0.19
HPL, MIMS, NLE 0.84 3.03 0.24 0.19
HPL, NLE, LLOC 0.82 3.03 0.25 0.20
HPV, MI, NL 0.82 3.77 0.28 0.20
HPV, MI, NLE 0.84 2.95 0.24 0.18
HPV, MIMS, NL 0.82 3.77 0.28 0.20
HPV, MIMS, NLE 0.84 2.95 0.24 0.18
HTRP, MI, NL 0.82 3.72 0.28 0.20
HTRP, MI, NLE 0.84 3.01 0.24 0.19
HTRP, MIMS, NL 0.82 3.72 0.28 0.20
HTRP, MIMS, NLE 0.84 3.01 0.24 0.19
HVOL, MI, NLE 0.84 3.04 0.24 0.19
HVOL, MIMS, NLE 0.84 3.04 0.24 0.19
HVOL, NLE, LLOC 0.82 3.03 0.25 0.20
MI, MIMS, NLE 0.81 3.59 0.26 0.19
MI, NL, NLE 0.81 2.89 0.23 0.18
MI, NLE, LLOC 0.83 3.25 0.25 0.19
MIMS, NL, NLE 0.81 2.89 0.23 0.18
MIMS, NLE, LLOC 0.83 3.25 0.25 0.19
McCC, NLE, LLOC 0.95 1.77 0.15 0.11
McCC, NLE, MCC/LLOC 0.95 1.77 0.15 0.11
NL, NLE, LLOC 0.78 2.99 0.24 0.20
NLE, LLOC, MCC/LLOC 0.95 1.77 0.15 0.11

hence we can expect also LLOC to contribute to CoCo. In
fact, the relationship between CoCo and lines of code was
already observed [14].

In conclusion, our study shows that CoCo does not seem
to convey more knowledge than sets of properly chosen
traditional code measures, like MCC, NLE and LLOC.

V. EXPERIMENTAL VERIFICATION OF FORMER RESULTS

In this section we report the results of a second empiri-
cal study, which provides further evidence that confirms the
findings given above.

A. The verification dataset

To verify the results from [1] we selected two large open
source Java projects, namely ant 1.10.12 and tomcat
10.0.0-M10. The descriptive statistics of the two projects’
code are given in Table V.

B. Verifying correlation of CoCo with traditional measures

The first verification activity we carried out consisted in test-
ing the correlation between CoCo and traditional measures. To
this end, we computed Kendall’s rank correlation coefficient

TABLE V
DESCRIPTIVE STATISTICS OF THE NEW DATASETS.

Project num. Measure Mean st.dev. Median Min Max
methods

CoCo 4.73 7.60 2 1 107
HPV 34.22 23.07 27 0 188

ant 3505 MI 101.20 17.91 104 0 136
McCC 4.40 4.30 3 1 53
NLE 1.44 1.06 1 0 9
LLOC 16.19 16.30 11 3 162
CoCo 6.47 14.44 3 1 413
HPV 39.64 30.42 31 0 651

tomcat 8050 MI 96.75 18.76 100 -14 150
McCC 5.12 6.77 3 1 154
NLE 1.69 1.12 1 0 13
LLOC 19.78 24.59 12 1 612

τ [10] and Spearman’s rank correlation coefficient ρ [11], as
was done in [1].

TABLE VI
RESULTS OF THE NEW CORRELATION TESTS.

Measure τ ρ
HCPL 0.47 0.63
HDIF 0.41 0.56
HEFF 0.49 0.66
HNDB 0.49 0.66
HPL 0.52 0.69
HPV 0.47 0.64
HTRP 0.49 0.66
HVOL 0.52 0.69
MI −0.58 −0.75
MIMS −0.58 −0.75
MISEI −0.43 −0.58
MISM −0.43 −0.58
McCC 0.71 0.86
NL 0.50 0.61
NLE 0.50 0.61
LLOC 0.58 0.75
NOS 0.55 0.72

The results we obtained are given in Table VI. In all cases,
the p-value was less than 10−3.

The results in Table VI fully confirm the previous results
reported in Table III. Specifically, in ant and tomcat, the
correlation between CoCo and traditional measures appears
just a bit stronger. However, the differences in both τ and
ρ are so small that they fully confirm the reliability of the
correlation coefficients given in [1].

C. Evaluation of the accuracy of CoCo models

As we mentioned in Section III-C, several models of
CoCo as a function of traditional measures were found. A
selection is given in Table IV, where accuracy indications
obtained via classical 10-time 10-fold cross-validation are also
reported.

We can now use the new dataset containing measures from
ant and tomcat to test the accuracy of those models. If
we achieve accurate predictions, that means that the models
obtained from the original dataset represent a fairly general
relationship between CoCo and traditional measures.

The results from the original analysis suggest that the
following two models are the most accurate ones:

89

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



CoCo = 0.6408McCC0.8105NLE0.6404LLOC0.1552 (1)

CoCo = 0.6515

(
McCC

LLOC

)0.8440

NLE0.6392LLOC0.9651

(2)
So, we used models (1) and (2) to estimate the CoCo of ant

and tomcats methods, based on McCC, NLE and LLOC of
those applications’ methods.

When using model (1) we obtained the absolute error
illustrated by the boxplot in Figure 1 (outliers not shown).
The blue diamond represents the MAR.

Fig. 1. Distribution of absolute errors of estimates obtained via (1), without
outliers.

Figure 2 shows the distribution of absolute relative errors
(including outliers). It can be seen that the greatest majority
of estimates is within 5% of the actual CoCo.

Fig. 2. Distribution of absolute relative errors of estimates obtained via (1),
with outliers.

Figure 3 compares actual CoCo values with estimates ob-
tained via (1). The blue straight line represents the perfect
prediction.

Fig. 3. Comparison of actual CoCo with estimates obtained via (1).

When using model (2) we obtained the absolute error
illustrated by the boxplot in Figure 5 (outliers not shown).

Fig. 4. Distribution of absolute relative errors of estimates obtained via (2),
with outliers.

Figure 4 shows the distribution of absolute relative errors
(including outliers). It can be seen that also in this case the
greatest majority of estimates is within 5% of the actual CoCo.

Figure 6 compares actual CoCo values with estimates ob-
tained via (2).

Overall, the evaluation of models (1) and (2) via the ant
and tomcat dataset yielded results extremely close to those
obtained with the 10-times 10-fold cross validation, as shown
in Table VII, where column “10-times 10-fold Xval” reports
the data already given in Table IV, concerning the accuracy
evaluated on the original dataset, while column “ant and
tomcat prediction” provides the accuracy indicators for the
predictions obtained applying (1) and (2) to the ant and
tomcat dataset.

In conclusion, the models of CoCo confirm that there is
a strong correlation between CoCo and traditional measures,
and that it is possible to get a quite accurate estimate of
CoCo based on models that have traditional measures as
independent variables.

90

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 5. Distribution of absolute errors of estimates obtained via (2), without
outliers.

Fig. 6. Comparison of actual CoCo with estimates obtained via (2).

VI. COCO ESTIMATION USING MACHINE LEARNING

Previous sections showed that CoCo does not seem to
add much information with respect to traditional measures
(especially McCabe complexity, NLE and logical LOC). In
this section we explore whether it is possible to uncover even
stronger relationships by means of machine learning (ML), or
if the usage of ML just confirms the previous findings obtained
via ordinary least squares (OLS) regression.

We proceeded through the following steps:
1) We used the original dataset to build a model of

CoCo vs. McCC, NLE and LLOC. To this end, we used
Support Vector Regression (SVR) with radial kernel.
The computations were carried out via the R language

TABLE VII
ACCURACY OF MODELS (1) AND (2).

10-times 10-fold Xval ant and tomcat prediction
model MAR MMRE MdMRE MAR MMRE MdMRE

(1) 1.77 0.15 0.11 1.98 0.16 0.13
(2) 1.77 0.15 0.11 2.03 0.16 0.14

and programming environment [15], using the e1071
library. Parameters γ, ε and cost were trained to mini-
mize the MAR (Mean Absolute Residual) via repeated
application of a 5-fold cross validation sampling method
(to this end, the tuning function of the e1071 library
was used).

2) We used the resulting model to estimate CoCo for each
method of ant and tomcat.

3) We evaluated the accuracy of the obtained estimates,
and compared then with the estimates obtained via OLS
regression (as described in Section V-C).

Figure 7 shows the distribution of estimation errors (without
outliers). It is easy to see that the greatest majority of estimates
is quite correct; namely over 50% of the estimation errors are
in [-1, +1] range.

Fig. 7. Distribution of errors of estimates obtained via ML (no outliers).

Figure 8 shows the distribution of absolute estimation errors
(without outliers). The blue diamond represents the MAR. It
is easy to see that over 75% of the estimation errors have
magnitude less than 2.5.

Fig. 8. Distribution of absolute errors of estimates obtained via ML (no
outliers).

91

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 9 compares the estimates with the actual CoCo val-
ues. In can be seen that most estimates are very close to
the corresponding actual values. However, in a few cases, the
estimates are relatively far from the actual value.

Fig. 9. Comparison of actual CoCo measures and estimates.

The summary of accuracy indicators is:
• MAR= 1.8
• MMRE= 0.145
• MdMRE= 0.115

So, the accuracy of ML models is quite close to the accuracy
of OLS models, as is apparent by comparing the values above
with those in Table VII.

VII. THREATS TO VALIDITY

Concerning the application of traditional measures, we used
a state-of-the-art tool (SourceMeter), which is widely used
and mature, therefore we do not see any threat on this side.
CoCo was measured using an ad-hoc tool that was built based
on the specifications of CoCo [2]. This tool was thoroughly
tested using SonarQube [16] as a reference, therefore we are
reasonably sure that it provides correct measures. However,
when joining the data from SourceMeter with the data from
our tool, we were not able to always match methods identifiers,
because the two tools reported slightly different descriptions
of methods’ names, parameters, etc. We just dropped the
methods’ data for which no sure match could be found: in
this way, we lost less than 2% of the measures. Since the
lost measures depend on characteristics that have nothing to
do with the properties of code being measured, they can
be considered a random subset, which can hardly affect the
outcomes of the study.

Concerning the external validity of the study, as with
most empirical studies in the Software Engineering area,
we cannot be completely sure about the generalizability of
results. However, the dataset used was large enough, and the
selected software projects represent a reasonable variety of
application types. In addition, the verification performed using
a new dataset fully confirmed the original results [1]. Also
the usage of SVR to evaluate the correlation of CoCo with

traditional measure confirmed the original findings. We can
thus conclude that the presented results appear reliable and
reasonably general.

VIII. RELATED WORK

Campbell performed an investigation of the developers’
reaction to the introduction of CoCo in the measurement
and analysis tool SonarCloud [17]. In an analysis of 22
open-source projects, she assessed whether a development
team “accepted” the measure, based on whether they fixed
code areas indicated by the tool as characterized by high
CoCo. Around 77% of developers expressed acceptance of
the measure.

An objective validation of the CoCo measure was performed
by Muñoz Barón et al. [4]. They retrieved data sets from pub-
lished studies that measured the understandability of source
code from the perspective of human developers. They collected
the data concerning various aspects of understandability, as
well as the code snippets used in the experiments. They
used SonarQube [16] to obtain the CoCo measure for each
source code snippet. Then, they computed the correlation of
CoCo with the measures of various aspects of understand-
ability. Muñoz Barón et al. computed the correlation between
CoCo and various aspects of understandability for each of
the 10 experiments reported in the selected papers, as well
as a summary obtained via meta-analysis. Muñoz Barón et al.
concluded that CoCo correlates moderately with some of the
considered understandability aspects.

The paper mentioned above dealt with evaluating the effec-
tiveness of CoCo (a measure of internal code properties) as
an indicator of understandability (an external code property).
To our knowledge, nobody performed an analysis dealing with
how internal code properties only are correlated with CoCo.

Nonetheless, CoCo has been used in some evaluations.
CoCo is provided by SonarQube [16] together with many
other measures and indicators, so some researchers that
used SonarQube to collect code measures ended up using
CoCo together with other measures. Among the papers that
have used CoCo are the following.

Kozik et al. [14] developed a framework for analyzing
software quality dependence on code measures and other
data. Using the framework they found that CoCo affects the
analyzability and adaptability of code.

Papadopoulos et al. [18] investigated the interrelation be-
tween design time quality metrics and runtime quality metrics,
such as cache misses, memory accesses, memory footprint and
CPU cycles. Papadopoulos et al. observed a trade-off between
performance/energy consumption and cognitive complexity.
However, having used CoCo as the only design time quality
metric, it is unknown whether the same kind of trade-off
would be observed with respect to other design-time metrics,
like McCabe’s complexity, for instance. Our study suggests
that this doubt is well funded, i.e., a trade-off involving
performance/energy consumption and design-time metrics like
McCabe’s complexity could very well exist.

92

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Crespo et al. [19] used both the Cognitive complexity rate
(defined as CoCo/LOC) and the Cyclomatic complexity rate
(defined as McCabe complexity/LOC) as part of an assessment
strategy concerning technical debt in an educational context.
They found that the Cognitive complexity rate and the Cy-
clomatic complexity rate provide the same results, or lack of
results, actually. Given the strong correlation that we observed
between CoCo and McCabe’s complexity, the result by Crespo
et al. is not surprising.

IX. CONCLUSIONS

The “Cognitive Complexity” measure (CoCo throughout the
paper) was introduced with the aim of improving the ability
to detect code that is difficult to understand and maintain [2].
Rather than a direct measure, CoCo is an indicator, whose
definition accounts for a few characteristics of source code.
Among these characteristics are the number of decision points
(e.g., if, for, while and switch statements) and the level of
nesting of control statements.

When CoCo was proposed, no evaluations were published
concerning the relationship between CoCo and traditional
measures that directly address the aforementioned character-
istics of code. In this paper, we have reported about empirical
studies aiming at evaluating the correlation between CoCo and
several traditional measures, including those addressing the
same characteristics of code taken into account by CoCo. To
this end, we measured a few open source projects’ code, ob-
taining the measures of 3,610 methods. We then performed sta-
tistical analysis using both correlation tests (namely, Kendall’s
and Spearman’s rank correlation coefficients), regression anal-
ysis and machine learning.

We found that CoCo appears strongly correlated to Mc-
Cabe’s complexity and slightly less strongly correlated to
several other code measures. We found several regression
models of CoCo as a function of traditional measures. Not
surprisingly, one of the most accurate models involves Mc-
Cabe’s complexity, NLE (Nesting Level Else-If) and LLOC
(the number of logical lines of code) as independent variables.
Considering that the most accurate models have MAR=1.7,
while the mean CoCo is 12, we may conclude that—at least
for the considered software projects—CoCo does not appear
to convey additional information with respect to traditional
measures.

Cross-dataset validation confirmed the initial results, as did
the models obtained using Support Vector Regression.

In conclusion, the study reported here casts the doubt
that CoCo does not provide appreciable new knowledge with
respect to the measures of code that are traditionally associated
with the notion of complexity.

Concerning future work, it can be noticed that the work re-
ported here concerns exclusively relationships among internal
measures. It could be interesting to evaluate how well the stud-
ied internal measures (CoCo and traditional complexity and
size measure) correlate with external qualities. Specifically, we
plan to repeat previous studies [20], [21] using CoCo together
with (or alternatively to) other code measures.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per
la Ricerca di Ateneo, Università degli Studi dell’Insubria.
The author thanks Anatoliy Roshka for developing the tool
that was used to measure CoCo.

REFERENCES

[1] L. Lavazza, “An Empirical Study of the Correlation of Cognitive
Complexity-related Code Measures,” in Proceedings of The Sixteenth
International Conference on Software Engineering Advances – ICSEA,
2021.

[2] G. A. Campbell, “Cognitive complexity - a new way of measuring under-
standability,” https://www.sonarsource.com/docs/CognitiveComplexity.
pdf, 2018, [Online; accessed 7-September-2021].

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, 1994,
pp. 476–493.

[4] M. M. Barón, M. Wyrich, and S. Wagner, “An empirical validation of
cognitive complexity as a measure of source code understandability,”
in Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2020, pp.
1–12.

[5] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

[6] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[7] “SourceMeter,” https://www.sourcemeter.com/, [Online; accessed 7-
September-2021].

[8] M. H. Halstead, Elements of software science. Elsevier North-Holland,
1977.

[9] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in Proceedings Conference on Software Maintenance
1992. IEEE Computer Society, 1992, pp. 337–338.

[10] M. G. Kendall, “Rank and product-moment correlation,” Biometrika,
1949, pp. 177–193.

[11] C. Spearman, “The proof and measurement of association between two
things,” The American journal of psychology, vol. 100, no. 3/4, 1987,
pp. 441–471.

[12] R. D. Cook, “Detection of influential observation in linear regression,”
Technometrics.

[13] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, 2012, pp. 820–827.

[14] R. Kozik, M. Choraś, D. Puchalski, and R. Renk, “Q-rapids framework
for advanced data analysis to improve rapid software development,”
Journal of Ambient Intelligence and Humanized Computing, vol. 10,
no. 5, 2019, pp. 1927–1936.

[15] R core team, “R: a language and environment for statistical computing,”
2015.

[16] “SonarQube,” https://www.sonarqube.org/, [Online; accessed 7-
September-2021].

[17] G. A. Campbell, “Cognitive complexity: An overview and evaluation,”
in Proceedings of the 2018 International Conference on Technical Debt,
2018, pp. 57–58.

[18] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A. Chatzi-
georgiou, and D. Soudris, “Interrelations between software quality met-
rics, performance and energy consumption in embedded applications,”
in Proceedings of the 21st International Workshop on software and
compilers for embedded systems, 2018, pp. 62–65.

[19] Y. Crespo, A. Gonzalez-Escribano, and M. Piattini, “Carrot and stick
approaches revisited when managing technical debt in an educational
context,” arXiv preprint arXiv:2104.08993, 2021.

[20] V. Del Bianco, L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, “An inves-
tigation of the users’ perception of OSS quality,” in IFIP International
Conference on Open Source Systems. Springer, 2010, pp. 15–28.

[21] ——, “The QualiSPo approach to OSS product quality evaluation,” in
Proceedings of the 3rd International Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, 2010, pp.
23–28.

93

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Continuous Information Processing Addressing Cisco’s Pain Points by Enabling
Real-Time Ad-Hoc Reporting Capability:
An Energy Efficient Big Data Approach

Martin Zinner∗, Wolfgang E. Nagel∗
∗ Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

E-mail: {martin.zinner1,wolfgang.nagel}@tu-dresden.de

Abstract—Aggregation is a special type of association, in
which objects are assembled/composed together to create a
more complex object. Unfortunately, a considerable part of data
aggregation during information processing in industry is still
carried out in nightly batch mode, taking into account all its
negative side effects. In particular, before starting aggregation,
all data required for computation must be available and acces-
sible. In contrast, our method termed Continuous Information
Processing Methodology (CIPM), does not assume that the data
to be aggregated is fully retrieved, the aggregation can be
started as soon as the data collection is initiated. During the
data collection process, partial aggregated values are calculated,
such that, after the data collection phase has been completed,
the final aggregated values are available for real-time ad-hoc
evaluation. The existing aggregation methods apply only the
usual aggregation functions such as sum(), avg(), max(), min(),
count() as build in functions, on the contrary, the most common
aggregation functions used in various field of industry and
business can be easily adapted and used within CIPM. The
major benefit of our method is the elimination of the extra
time necessary for batch computation, as well as reduced and
spread aggregation effort over the whole collection period and
tightened and straightforward computational design strategies.
To conclude, the CIPM supports a paradigm shift from more or
less subjectively designed individualistic conceptions in software
design and development towards objectively established optimal
solutions.

Index Terms—Continuous information processing; Continuous
aggregation; Energy efficient computation; Real-time capability;
Real-time capabilities; Data Analytics; Data processing; Stream
processing; Batch processing; Business Intelligence; Ad-hoc re-
porting; Big Data.

I. I NTRODUCTION

Initially, within this section, the core of our aggregation
theory is succinctly addressed, some definitions such as that
of Big Data are tightened up and subsequently, the principal
motivation of our paper, i.e., increased real-time requirements
in the industry, is presented. Aggregation is a special type of
association, in which objects are in general assembled/com-
posed together to create a new and a more complex object.
The aim of aggregating data is to create new knowledge and
to hide useless information. For example, by aggregating data
delivered in millisecond to cycles of minutes and by calculat-
ing the sum(), avg(), max(), min(), count(), and other statistical
functions like the standard deviation, new information regard-
ing the smoothness of the data delivery or their homogeneity,
can be generated. In the mean time, useless information such

as the initial information tracked in milliseconds cannot be any
more referenced. Usually, data from multiple data sources and
different domains are aggregated, for example equipment and
production-line data can be combined in order to deliver useful
information to engineers regarding production bottlenecks, but
also reports for the upper management. Commonly, in the
industry, the aggregation is performed on daily bases, using
batch jobs. Usually, the batch jobs are started at night, after
all data has been collected.

Cisco Systems, Inc. identified the deficiencies of the classi-
cal nightly batch jobs aggregation strategy, disclosed and sum-
marised them within five Pain Points in the White Paper “BI
and ETL Processes Management Pain Points; Understanding
the most pressing pain points and strategies for addressing
them”. All Pain Points, except for Pain Point 3 regarding ad-
hoc reporting, have been addressed in a conference paper [1].
Within this paper, the theoretical background presented in [1]
is extended, such that it equally covers the ad-hoc reporting
functionality. Ad-hoc reporting is aBusiness Intelligence (BI)
process used to quickly create reports on an as-needed basis.
Ad-hoc reports are generally created for one-time use to find
the answer to a specific business question and offers a wealth
of values to business across industries. Ad-hoc reports assures
the required flexibility to be able to follow and adapt to the
continually changing business environment. Furthermore, ad-
hoc evaluation strategies enable the users to autonomously
create new reports without involving highly qualified IT per-
sonnel.

In order to illustrate our methodology, we will present a
typical adjustment regarding the statistical functionStandard
Deviation (SD), such that it can be used within the continuous
aggregation strategy. The standard deviation is simple enough
to gain a good overview concerning the difficulties that arise
in practice, but it is not trivial and exemplifies the immanent
problem of the continuous information processing method-
ology. The usual representation of the standard deviation is
adapted to fit our needs.

Aggregation is an operation to obtain summarised infor-
mation by using aggregate functions. A new approach for
information aggregation based on a very simple and straight-
forward starting point is formulated in this paper – namely,
that within the information flow,the process of information
aggregation should be started as early as possible, best as

94

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



soon as the collection phase is initiated. This strategy assumes
a strict and clearly defined architectural design strategy of
the computational framework and enables real-time capability
of the system, therefore, the new methodology is termed
Continuous Information Processing Methodology(CIPM). In
order to be able to in-depth analyse the CIPM, a formal,
mathematical model is set up, the conversion of the underlying
structure is defined and the pros and cons of CIPM, as opposed
to the classical batch jobs strategy, are discussed.

As defined in [2] “Big Data is the information asset
characterised by such ahigh volume, velocity and variety
to requirespecific technologyand analytical methodsfor its
transformation into value”. According to the definition above,
Big Data is much more that high volume of data and needs
unconventional methods to be processed.

At the same time, a cultural change should accompany the
process of investing in interdisciplinary Business Intelligence
and Data Analyticseducation [2], involving the company’s
entire population, its members to “efficiently manage data
properly and incorporate them into decision making pro-
cesses” [3].

A. Motivation

1) Rapidly increasing data amount:The total amount of
data created, captured, and consumed globally is forecast to
increase rapidly, reaching more than 180 Zettabytes in 2025,
as opposed to 64.2 Zettabytes in 2020 and 15.5 Zettabytes
in 2015 [4]. Real-time information processing has become
a significant requirement for the optimal functioning of the
manufacturing plants [5]. Worldwide by 2022, over 50 bil-
lion Internet of Things(IoT) devices including sensors and
actuators are predicted to be installed in machines, vehicles,
buildings, and environments and/or used by humans.

2) Real-time requirements:Demand is also huge for the
real-time utilisation of data streams, instead of the current
batch analysis of stored Big Data [6]. The operations of a real-
time system are subject totime constraints(deadlines), i.e., if
specified timing requirements are not met, the corresponding
operation is degraded and/or the quality of service may suffer
and it can lead even to system failure [7]. In a real-time
system deadlines must always be met, regardless of the system
load. Usually, a system not specified as real-time cannot
guarantee a response within any time frame. There are no
general restrictions regarding the magnitude of the values of
the time constraints. The time constraints do not need to be
within seconds or milliseconds, as often they are understood.
There is a general tendency that real-time requirements are
becoming crucial requisites.

Travellers require current flight schedules on their portable
devices to be able to select and book flights; in order to
avoid overbooking, the flight plans and the filled seats must
be kept reasonably current. Similarly, people expect instant
access to their business-critical data in order to make informed
decisions. Moreover, they may require up-to-date aggregated
data or even ad-hoc requests. This instant access to critical

information may be crucial for the competitiveness of the
company [8].

B. Aim

Cisco [9] identified a couple ofPain Pointsin the Business
Intelligence (BI) area, but these Pain Points carry a more
general validity:

1) the race against time; managing batch window time
constraints,

2) cascading errors and painful recovery; eliminating errors
caused by improper job sequencing,

3) ad hoc reporting; managing unplanned reports in a plan-
based environment,

4) service-level consistency; managing service-level agree-
ments,

5) resources; ETL resource conflict management.

Our approach is addressing all five Pain Points.
In conclusion, continuous information processing enables

a new perspective on aggregation strategies, such that aggre-
gation is performed in parallel to the data collection phase.
Preliminary aggregated values corresponding to the current
state of the retrieved data are available for ad-hoc evaluation,
nightly batch aggregation becomes obsolete.

C. Outline

The remainder of the paper is structured as follows: sec-
tion II gives an overview regarding existing work related
to the described problem. An informal presentation of the
continuous aggregation strategy is presented in sectionIII ,
whereby sectionIV introduces the mathematical model and
describes the methodology to transform the batch aggregation
into continuous aggregation. The presentation of the main
results and discussions based upon these results constitute
the content of sectionV, whereas sectionVI summarises our
contributions and draws some perspectives for future work.

II. RELATED WORK

Primarily, the focus of this section is on algorithmic ap-
proaches regarding the state of the art. The analysis of different
one-pass algorithms [10] and their efficient implementation
is beyond the scope of this paper as well as pure technical
solutions based on database technologies.

A. SB-trees

A B-tree is a balanced tree data structure, that keeps data
sorted and allows searches, sequential access, and deletions
in logarithmic time; the tree depth is equal at every position,
whereas the SB-tree is a variant of a B-tree such that it offers
high-performance sequential disk access [11], [12]. Zhang [12]
outlines the key challenges of spatio-temporal aggregate com-
putation on geo-spatial image data, focusing primarily on data
having the form of raster images. Zhang gives a very detailed
overview of the state of the art regarding efficient aggregate
computation. Zhang’s approach is based onaggregate queries
common in the database community, including data cubes,
whereas our approach (CIPM) does not focus on database

95

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



technology when calculating the aggregation functions. For
example, the improved multi-version SB-tree [12] consumes
more space than the size of raw data. Other approaches use
only a small index, reducing the space needed, but supporting
only count and sum aggregate functions. The main idea behind
the SB-trees is to provide through a depth-first search, –
by accumulating partial aggregate values – a fast look-up of
computed values [12], [13].

B. Scotty

Scotty [14] is an efficient and general open-source operator
for sliding-window aggregation for stream processing systems,
such as Apache Flink, Apache Beam, Apache Samza, Apache
Kafka, Apache Spark, and Apache Storm. It enables stream
slicing, pre-aggregation, and aggregate sharing including out-
of-order data streams and session windows [15]. The aggregate
window functions are: avg(), count(), max(), min(), sum().
Being a toolkit, the out-of-the-box aggregate functions are
restricted to the above. Implementation details are disclosed
in a preprint paper [16]. Scotty can be extended with user-
defined aggregation functions, however, these functions must
be associative and invertible. Since Scotty is open source,
additional user extensions are always possible.

Sliding window aggregation is also a main topic regarding
this paper, even if sliding windows are not used for report-
ing/evaluation. There is always the possibility that erroneous
data is captured and cannot be corrected automatically. This
cannot be avoided, since a data set may look formally correct,
but may be wrong with regard to its content. Such anomalies
can be detected hours after the data has been processed and
should be corrected.

According to [17] research on sliding-window aggrega-
tion has focused mainly on aggregation functions that are
associative and on FIFO windows. Much less is known for
other nontrivial scenarios. The question arises, whether is it
possible to efficiently support associative aggregation func-
tions on windows that are non-FIFO? Besides associativity
and invertibility, what other properties can be exploited to
develop general purpose algorithms for fast sliding-window
aggregation? Tangwongsan et al. [18] present the Finger B-
tree Aggregator (FiBA), a novel real-time sliding window
aggregation algorithm that optimally handles streams of vary-
ing degrees of out-of-orderness. The basic algorithms can be
implemented on any balanced tree, for example on B-trees.

C. Holistic functions

The median, which is the middle number in an ordered list
of items, is a holistic function, i.e., its results have to rely
on the entire input set, so that there is no constant bound
on the size of the storage needed for the computation. An
algorithm suitable for continuous aggregation based on heap
technology can be found in [8]. For the sake of completeness,
the main idea is presented hereafter. In order to store the data,
two heaps are used, one for the higher part and one for the
lower part of the data. The newly collected dataset is inserted
into the corresponding heap; if the case arises, the heaps are

balanced against each other, such that the two heaps contain
the same number of items, etc. Hence, in some cases, holistic
aggregation functions can be used with continuous aggregation
techniques, they should however satisfy the foreseen time
constraints.

Unfortunately, even such common functions as min() or
max() have a holistic behaviour in some circumstances. If used
for example in a sliding-window aggregation environment or
if retrospectively data corrections are allowed, then all of the
values have to be stored in order to determine the minimal or
the maximal value of the stream. Similarly, a heap of sorted
values can be used in order to implement real-time capability.

D. Quantile

A survey of approximate quantile computation on large-
scale data is given by Chen [19]. In streaming models, where
data elements arrive one by one, algorithms are required to
answer quantile queries with only one-pass scan. Formulas
for the computation of higher-order central moments or for
robust, parallel computation of arbitrary order of statistical
moments can be found here [20], [21], some of them are one-
pass incremental approaches.

In conclusion, the main focus of the existing research has
been to develop aggregate queries for efficient retrieval and
visualisation of persisted data. However, with Scotty a general
open-source operator for sliding-window aggregation in stream
processing systems, – such as, for example, the Apache family
– has been developed. Scotty incorporates the usual aggregate
functions like avg(), sum(), etc., and it has the possibility
to include special user defined functions. Tangwongsan [17]
points out that much less is known for nontrivial scenarios, i.e.,
functions that are not associative and do not support FIFO
windows. Our approach, however develops the strategy and
technology for continuous information processing, abbreviated
CIPM and shows that functions, which allow efficient one-pass
implementations are suitable for CIPM. Moreover, holistic
functions allowing appropriate implementation, for example
median [8], can be used with CIPM.

III. PROBLEM DESCRIPTION

The technical terms “information function” and “aggrega-
tion function” [22] are used synonymously within this paper.
They highlight the same topic from different perspectives.
Corporate reporting aims to provide all of the counterparties
with the information they need in order to transact with a
company. This can be termed theinformation functionof
corporate reporting [23]. Within this paper, we assume that
the data collection and the subsequent data transformation
are continuous processes, aggregation being the process that
succeeds transformation. The terms “continuous information
processing” and “continuous aggregation” are used alterna-
tively, emphasising that within the continuous information
processing, the continuous aggregation is the challenging part.

According to Cisco [9] “One of the biggest challenges
facing an IT group is how to complete extract, transform,
and load (ETL) and subsequently aggregate the traditional

96

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Starting daily collection & aggregation;
Current day

00:00:00 Starting data
collection; Current day.

23:59:59 Ending data
collection; Current day

00:x:00 Starting
transformation of the data
collected the day before.

00:x+y:00 Starting
aggregation of the
transformed data.

The next day

Figure 1: Simplified flow diagram exemplifying the batch job strat-
egy(x is the time gap due to the collection delay; y is the time gap
due to transformation).

batch-based Business Intelligence (BI) processes within the
constraints of an ever shrinking batch window.” Although there
is a trend toward real-time BI, the vast majority of BI today
relies heavily on batch processing [9]. Cisco identified several
factors which contribute to the difficulty in managing these
processes in the foreseen time frame.

Firstly, there is a severe lack of visibility into the various
processes themselves, which are very complex. This means
there will always be bottlenecks, and it is very difficult to
predict where they will occur.

Secondly, data streams are expected to arrive in a defined
time window, if they are late or corrupted, then errors may
occur. Thus, in these cases, the nightly aggregation routines
have to be (re)started later, including also during the usual
working hours. But Cisco does not identify two major factors
that impact the time frame of the batch jobs, namely the
impossibility to anticipate all the patterns of data to be
processed and the imperfection of the executions plans, which
can lead to performance degradation. Thus, the most accurate
testing covers only the patterns of data retrieved in the past or
anticipated. Accordingly, even the most accurate design and
testing strategy cannot guarantee the time constraints of the
batch jobs.

A. Overview of the CIPM

Following, the fundamental aspects of the continuous ag-
gregation strategy are outlined by using two simple flow dia-
grams, Figure1 depicts the principles of the classical nightly
jobs aggregation strategy, whereas Figure2 describes very
succinctly the continuous aggregation strategy. It is assumed
within these examples, that reporting is based on daily aggre-
gated data. Data collection starts at 00:00:00 for the current
day (i.e., the considered day) and it ends, retrieving data
generated till 23:59:59 of the same day. Whenever applying
the classical batch jobs strategy as depicted in Figure1, the
transformation/aggregation is started only after the data is fully
retrieved/collected for the considered day. Considering this use
case, the transformation/aggregation for the current day can be
started only on the subsequent day.

On the other hand, the CIPM (exemplified in Figure2)
is carried out on small chunks of data, for example

Starting daily collection & aggregation;
Current day

00:00:00 Starting data
collection; Current day.

Collecting data of
chunkC1; Current day.

00:00:00 Starting transf.
& aggreg.; Current day.
Waiting for chunk data

Collecting data of
chunkC2; Current day

Collecting ...

Collecting data of
chunkCn; Current day

Start transf. &
aggreg. chunkC1.

23:59:59 Ending data
collection; Current day.

Start transf. &
aggreg. chunkC2.

Start transf.
& aggreg. ...

Start transf. &
aggreg. chunkCn.

23:59:59 Ending
almost all transf. &
aggreg.; Current day

The next day:

00:00:00 Starting data
collection; Current day.

00:00:00 Starting transf.
& aggreg.; Current day.
Waiting for chunk data

Remaining transf.
& aggreg. of data

collected the day before;

Post-aggregation of data
collected the day before;

Figure 2: Simplified flow diagram exemplifying the continuous
aggregation strategy. The arrow with three heads signifies that the
aggregation phase waits till the respective chunk data has been
collected. The post-aggregation phase of the previous day is not
depicted.

C1, C2, ..., Cn, usually such that the transformation/aggrega-
tion is performed on data loaded into memory during the
collection phase. This way, reloading data into memory for
aggregation purposes is obsolete.

The continuous aggregation strategy is quite straightfor-
ward: after midnight, the collection phase for the current day is
started, i.e., the chunksC1, C2, ..., Cn are retrieved one after
another in chronological order. While the second chunkC2

is retrieved, transformation and aggregation are performed on
the first chunkC1, and so on and so forth. At the end of
the current day, most of the collected data is aggregated. At
the beginning of the subsequent day, the remaining chunk(s)
are transformed/aggregated and a post-aggregation phase is
started, during which the final calculations are performed. In
the end, soon after midnight, the aggregated values are ready

97

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



for reporting. Similarly, after midnight, the collection/transfor-
mation is resumed for the current day.

In order to keep the presentation simple and accessible
and to avoid technical complications, it is assumed that the
time to perform the transformation/aggregation of a chunk is
slightly lower than the corresponding time of the collection
phase. In real-world systems, under some circumstances, this
is obviously not necessary. Let us suppose that the time to
retrieve a chunk ist, but the time to transform/aggregate the
values of a chunk is slightly lower than3t and letAi be the
aggregation phase of chunkCi. Then, the start ofAi is phase-
shifted byt with regard toCi, i.e.,A1 is started simultaneously
with C2, etc. As a consequence,Ai completes beforeC(i+4)

is started. Hence, in this example there are three instances
of the aggregation algorithm running in parallel. Possibly,
information between the aggregation instances running in
parallel need to be exchanged.

Additionally, it is assumed within this paper, that the chunks
are of the same size and the time to retrieve them is indepen-
dent of the particular chunk. Of course, this assumption is not
necessary in real-world systems.

B. Exemplification using Standard Deviation (SD)

Next, the complexity of our approach is illustrated by
exemplifying the technology on thestandard deviation of the
sample. It shows how much variation (dispersion, spread) from
the mean exists. The SD has been chosen for exemplification,
since the adaptations in order to be used within CIPM are
straightforward to be presented without being trivial.

Let {x1, x2, . . . , xN} be the observed values of the sample

items, let x̄ := 1/N

N∑

i=1

xi be the mean value of these

observations. The common representation of the (uncorrected
sample) standard deviation is:

SDN :=

√√
√
√ 1

N

N∑

i=1

(xi − x̄)2. (1)

At first glimpse, the above representation of the standard
deviation cannot be applied using continuous computing tech-
niques. The impediment is the term̄x. In order to be able
to apply the formula (1), all the data involved has to be first
collected. Chan et al. [24], [25] called the above representation
two-pass algorithm, since it requires passing through the data
twice; once to computēx and again to computeSDN . This
may be unwanted if the sample is too large to be stored in
memory, or when the standard deviation should be computed
dynamically as the data is collected.

Regrouping the terms in the formula above, the well known
representation is obtained:

SDN =
1
N

√√
√
√
∣
∣
∣
∣
∣
N

N∑

i=1

x2
i −

( N∑

i=1

xi

)2
∣
∣
∣
∣
∣
. (2)

The alternative representation (2) of the standard deviation
is suitable to be used within the continuous computation
approach.

Let 1 ≤ n ≤ N , let An :=
n∑

i=1

x2
i , let Bn :=

n∑

i=1

xi, and

let Sn := n ∙ An − B2
n.

During the data collection phase, the values ofAn andBn

are updated, either after each itemxn is collected and known
to the system, or considering small batches. Thus, at each
point in time, during the data collection phase, the values of
A(n+1) andB(n+1) can be easily calculated by adding up the
corresponding value of the new item. Hence,

A(n+1) = An + x2
(n+1).

Similar results hold forB(n+1).
Accordingly, at each point in time, the standard deviation

can be easily calculated, if needed, as a function ofAn, Bn

andSn. It follows:

S(n+1) = Sn + An + n ∙ x2
(n+1) − 2x(n+1) ∙ Bn.

Hence, intermediary results and trend analysis are possible
during the data collection phase .

For example, almost allKey Performance Indicators(KPIs)
used in the semiconductor industry can be adapted to be
applied within CIPM [26]–[29]. The same is true in other areas
of the industry or business.

C. Reasons for choosing SD

The considerations above were drafted merely to illustrate
the continuous computation technology, in real-world systems
the representation (2) without using absolute values in the
square root function can lead to negative values. WhenAN and
BN are calculated in the straightforward way, especially when
N is large and all of x-values are roughly of the same order
of magnitude, rounding or truncation errors may occur [30].
Please note that the representation (2) using absolute values,
has been adopted in order to avoid negative values under the
square root. Using double precision arithmetic can possibly
avoid the occurrence of anomalies as above.

D. Counterexample

Unfortunately, there are also some simple and well known
functions, such as theAverage Absolute Deviation (AAD),
which, generally speaking, cannot be used with continuous
computing techniques; AAD is calculated as the mean of the
sum of the absolute differences between a value and the central
point of the group:

AADN =
1
N

N∑

i=1

|xi − M |.

The central pointM can be a mean, median, mode, etc. For
some distributions, including the normal distribution, AAD can
be related to or approximated with the corresponding standard
deviation [31]–[33].

Under some circumstances holistic functions, such as the
AAD presented above, can be used within real-time applica-
tions. As already mentioned, there is no constant bound on the
size for the storage needed to compute holistic functions. If the

98

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



task is to convert the nightly batch aggregation to continuous
aggregation and real-time constrains are only required for the
data of the last 24 hours or the current day, then obviously the
size of the required storage is bounded, since the number of
items expected during 24 hours can be very well estimated.
Hence, if the time required to calculate the value of AAD is
within the time constraints imposed, then real-time capability
of the application is given. On the contrary, if real-time
capability is required for example for streaming data, then this
depends heavily on the size of the streamed data comprising
the time interval required and the possibility to predict the
size of the data. In such cases, approximations can help, see
[31]–[33] for approximations based on standard deviation.

E. Flow Factor

Next, in order to illustrate the power and significance of the
continuous aggregation strategy, a real-world example from the
semiconductor industry [27], [29], [34] is presented. For the
sake of completeness, a slightly modified part of the model is
taken over from [29]; the model has been originally described
for data centres. In order to be able to understand and follow
the presentation, some basic data structures are introduced.

1) Description of the data structure for WIP-data:In sim-
plified terms, the lot/wafer enters the production line and it is
processed consecutively on (different) operations/equipments
according to the production plans (i.e., routes) and leaves
the frontend area to be systematically examined/tested in the
backend area. Afterwards, the wafers are cut into segments,
also called dies, which are packaged as chips and are ready
to be shipped. There are two major data structures, Work
in Progress (WIP)-data and Equipment-data. The WIP-data
models the successive processing of the lot/wafer at different
operation in the frontend area and the Equipment-data models
the data associated to an equipment.

A simplified data structure for WIP-data is: ("unit-ID",
"step", "next-step", "track-out-TS", "trans-code", "equipment",
"product", "unit-type", "unit-desc", "unit-value", "route"). The
unit is the manufactured item, which is tracked by the
Manufacturing Execution System (MES). It can be a lot,
a wafer or a die/chip. This information is tracked by the
attribute "unit-desc". The attribute "unit-type" is an additional
distinction between the material units, such that the units are
Productive, Development, Test, Engineering, etc. The transac-
tion code ("trans-code") denotes the event that is performed
at a specific "step" and "equipment" during the production
process. Common transaction codes in the semiconductor
industry areTrInT, TrOutT, Create a Lot, Ship a Lot, etc. The
attribute "product" characterizes the manufactured item, (like
technical specifications, etc.), which can be tracked within
the production process. The "step" is the finest abstraction
of the processing level, which is tracked by the reporting
system. It is usually the operation [8]. The attribute "next-
step" denotes the succeeding "step" (i.e., operation) to which
the item is transferred. Additionally, the attribute "track-out-
TS" stores the time stamp of the item when it left the "step" to
be processed at the "next-step". This is triggered through the

transaction code TrOutT. The attribute "unit-value" contains
the number of items processed at the considered "step",
whereas the "route" contains the processing specification for
the "product" involved.

2) Description of the aggregation functions:The following
definitions are taken from [29]. Let u be a unit. We denote by
TrInT s(u) the track in timeof u, i.e., the point in time when
the processing of unitu is started at "step"s. Analogously,
TrOutT s(u) is the track out timeof u, i.e., the point in time
when the processing of unitu has been finished at "step"s.

The Raw Process Time (RPT)of a unit u related to "step"
s is the minimum processing time to complete the "step"s
without considering waiting times or down times. We denote
the raw process time of unit u related to "step" s byRPTs(u).
We assume that for a "step" s, the functionsuccs(u), which
identifies the succeeding "step" of s for the unit u is well
defined. Analogously, we assume that the history of the
production process is tracked, so the predecessor function
preds(u) of each "step" s is well defined.

By Cycle Time (CT)we denote the time interval a unit or
a group of material units spent in the system or subsystem.
The cycle time of a unitu ∈ U spent at a "step"s ∈ S in the
system can be represented as:

CT s(u) := TrOutT s(u) − TrOutT preds(u)(u). (3)

In order to simplify the notation to be used within the
Transact-SQL syntax for SQL Server we set

PrevTrOutT = TrOutT preds(u)(u).

Hence, using the above notation, we have the expression for
the cycle-time corresponding to a unit:

CT = Datediff (ss, TrOutT, PrevTrOutT ). (4)

whereDatediff (ss, TrOutT, PrevTrOutT ) returns in sec-
onds the specified time difference.

Algorithm 1 Sample search query for the calculation of the
flow factor - standard method

Input : WIP-data-table_name;
Output : Flow factor;
Result: Compound aggregated value of the flow factor ready for

reporting on week 6 of 2022;
/ * Retrieving the Flow Factor(FF) * /
select sum(CT)/sum(RPT) as FF
from from WIP-data-table_name
where TrOutT > ’06.02.2022 00:00:00’
and TrOutT <= ’13.02.2022 00:00:00’
group by "step", "equipment", "product", "unit-type", "unit-desc"

Figure 3: SQL-code based algorithm retrieving the flow factor and
exemplifying the standard method for ad-hoc reporting strategy by
enabling real-time capability. For this purpose, the representation (4)
of the cycle time has to be used, whereas the representation (3) is
inefficient.

99

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



3) Description of the problem:The SQL-query based on
the representation in Figure3 and representation (3) is ineffi-
cient due to the fact that the chronological order of the steps is
not fully specified by the "route". The human operator has the
possibility to determine the subsequent "step", for example
to perform some additional measurements or not. Hence, to
determine the previous "step", i.e., the attribute notated as
"prev-step", appropriate joints have to be set up, such that in
the end the value of the attribute "PrevTrOutT" is determined.
Due to the fact that processing can be done in a loop for
rework processes, the item with the greatest time-stamp has
to be selected. In conclusion, using suboptimal data structures
for reporting can do the task of retrieving the specified data
to be very difficult or impossible.

4) Solving the problem:In order to circumvent the problem
as above, the data structures have to be adapted according to
our guiding principle such that within the information flow,
the process of information setup should be started as early as
possible. Two new attributes, "prev-step" and "prev-track-out-
TS" are added to the structure of WIP-data and these attributes
are filled during the collection phase. The attribute "prev-step"
identifies the previous step with regard to the actual "step" and
"prev-track-out-TS" holds the corresponding time stamp when
the item left the previous step. Since data is collected chunk-
wise, the cartesian product due to the corresponding joints is
relatively small and the initialisation of those attributes can be
done during the collection phase.

The aggregated structure may look like this: ("step", "equip-
ment", "product", "unit-type", "unit-desc", "cycle-time", "raw-
process-time"). During the small scale aggregation phase, the
values of the attributes "cycle-time" and "raw-process-time"
are summed up according to the corresponding grouping. For
example, if an aggregated daily table is set up, then the
flow factor for the lowest granularity can be calculated by
just dividing two numbers. As a consequence, the query to
calculate the flow factor is reduced to a simple select on a
single aggregated table, see algorithm Figure3.

5) Example for the data structure for RTC-data :For the
Equipment-data an oversimplified structure is: ("equipment-
ID", "chamber-ID", "work-station", "time-stamp", "current-
state"). Real Time Clock (RTC) systems record the current
state of the equipment [35], hence the equipment data as above
is also termed RTC-data. The current-status of the equipment
can be among others [36]: Scheduled-downtime, Unscheduled-
downtime, Non-scheduled-time, Productive-time, Engineering-
time, etc. For reporting purposes, the structures of WIP-data
with RTC-data are combined, for example to determine the
standard deviation of the cycle time concerning an equipment
or group of equipments, since a certain operation can be
performed on different equipments.

In conclusion, the principles of the CIPM as opposed to
the classical batch jobs strategy are presented in this section.
For this purpose, two representations of the standard deviation
are discussed The first representation is not suitable to be
applied within CIPM, whereas on the second representation
the principles of the CIPM are exemplified. For the sake of

completeness, a holistic function is presented which cannot
be generally applied within CIPM. Nevertheless, under some
circumstances, holistic functions can be used in real-time
environment, the strategy to be used depends on the use case.
Lastly, a real-world problem from a semiconductor company is
presented. Using some principles of CIPM such as redesigning
the calculation methodology, a more energy efficient, less
time consuming solution is presented, which can also be used
within CIPM.

IV. T HE FORMAL MODEL

We further formalise the description of our methodology [1]
by developing a mathematical model, in order to be able to
use the advantages of the rigour of a formal approach over
the inaccuracies and the incompleteness of natural languages.
In order to keep our model simple, transparent, and easily
comprehensible, some assumption are made, for example
equal length of the chunks, etc. These assumptions are not
strictly necessary in a real-world environment. Hence, within
the continuous information processing strategy, ensuring the
continuity of data collection phase and the continuity of
the transformation phase within the CIPM are more or less
straightforward. Hence, the terms continuous information pro-
cessing and continuous aggregation are used synonymously
within this paper.

A. General considerations

Assumption 1 (Finite streams) We suppose that the streams
are finite, i.e., there are two points in time,ts, the starting
and te, the ending point, such that within this time interval,
the data is collected/transformed and aggregated. �

Assumption 2 (Synchronous data delivery)We suppose
that each stream delivers data at the same points in time
{1, 2, . . . , T }. �

Definition 1 (Large scale aggregation)If the aggregation

a) occurs after the entire raw data has been previously
collected,

b) involves technologies that process all of the collected data
at once,

then the process is termed batch aggregation mode or large
scale aggregation. �

Definition 2 (Small scale aggregation)If:

a) the collected data within the interval[ts, te] can be split
into k ≥ 2 smaller units, also termed chunks,

b) partial aggregationis performed on these units, such that
the final aggregation values are calculated out of the
corresponding partial values of the chunks,

then the process is termed small scale aggregation. �

Assumption 3 (length of the chunks)We suppose that data
within the interval [ts, te] can be split intok ≥ 2 dis-
junct equal units of lengthl > 1, i.e., [ts, te] = [ts, ts+l],
[ts+l+1, ts+2l], ...,[ts+(k−1)l+1, te]. �

100

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Remark 1 Some authors specify the terms large scale ag-
gregation or small scale aggregation regarding their ability to
perform the computation in memory. Within this paper, a more
algorithmic than a technical approach is followed. �

The term “transformation” has been introduced for the seek
of completeness. In simplified terms, it is the process of
harmonisations of the data structures of the raw data from
different sources, such that it is best finalised for aggregation.
Moreover, during transformation, the initial streams can be
combined to new ones, in order to facilitate the aggregation
process. During the transformation phase, the data is also
verified for accuracy. In principle, the granularity of the data is
not altered during the transformation phase. In order to avoid
technical complications, the concept of data transformation is
not considered within the formal model, but formally, it can
be considered a part of the data retrieval. Assuring continuous
computation during the transformation phase is more or less
straightforward.

Assumption 4 (Aggregation time) In order to be able to
continuously compute – i.e., retrieve/collect and aggregate –
the time to aggregate a particular small batch does not exceed
the collection time of the same batch. �

Remark 2 Obviously, if Assumption (4) is not met, the ag-
gregation cannot be performed in all circumstances during
the data collection phase. �

Notation 1 (Streams) Let lX ∈ N be the number of streams
and let

X := {X(1), X(2), . . . , X(lX)}

be the set of streams.
Let {1, 2, . . . , T } be the points in time when the data is

collected and known by the system, let1 ≤ t ≤ T and let
1 ≤ l ≤ lX . The value of the streamX(l) collected at timet
is denoted byx(l)

t . �

Representation 1 The streamed values can be represented as
a matrix

(xtl)1≤t≤T ;1≤l≤lX such thatxtl = x
(l)
t .

�

Notation 2 (Grouping, bundle of streams) Let lF ∈ N be
the number of the aggregation functions.

In order to perform the computation of the streams –
the aggregation functions are in general functions of several
variables – a grouping

B := {B(1), B(2), . . . , B(lB)}

is defined on the space of the streams, such that

B(l) := {X(l1), X(l2), . . . , X(li)}.

and lF = lB .
Accordingly:

b
(l)
t := x

(l1)
t × x

(l2)
t × ∙ ∙ ∙ × x

(li)
t

is the value of the groupingB(l) at time t. �

This way, new compound streams are created.

Assumption 5 (No. of grouping = No. of functions) In or-
der to keep our model as simple as possible, it is supposed –
without limiting the generality – that the number of groupings
is equal to the number of aggregation functions.

Notation 3 Let

F := {F (1), F (2), . . . , F (lF )}

be the set of the aggregation functions, such that
for 1 ≤ l ≤ lF

F (l) : B(l) → R.

�

Remark 3 (Aggregation strategy) In order to keep the
model as general as possible, small scale aggregation is
considered as the overall approach. �

This means especially, that data is collected and aggregated
in small batches.

Notation 4 (Disassembling the standard deviation)Let
1 ≤ l ≤ lF and letF (l) : B(l) → R be the standard deviation,
see representation (2) and let x ∈ B(l) a particular stream.
Let 1 ≤ t ≤ T and let:

f
(l,1)
t (x) :=

t∑

i=1

x2
i ,

f
(l,2)
t (x) :=

t∑

i=1

xi,

f
(l,3)
t (x) := t

t∑

i=1

x2
i −

( t∑

i=1

xi

)2

= t ∙ f (l,1)
t (x) − (f (l,2)

t (x))2. (5)

Let F
(l)
t (x) be the value of the functionF (l) applied on the

values subscripted by1 ≤ t ≤ N . �

Proposition 1 (Calculation of the standard deviation)
The valueF

(l)
t (x) of the functionF (l) can be calculated

out of the values off (l,1)
t (x), f (l,2)

t (x), i.e., by considering
f

(l,3)
t (x), namely:

F
(l)
t (x) =

1
t

√∣
∣
∣f

(l,3)
t (x)

∣
∣
∣. (6)

�

B. Information processing

In the following, it is considered that the data is retrieved
and aggregated in chunks, and that before performing aggre-
gation, the chunks are not altered.

101

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Notation 5 (Chunk-wise processing)Let j, q ≥ 1, such that
j is the index andq is the length of the chunks and let us
suppose that the streams are retrieved in small chunks:

Cj := {C(1)
j , C

(2)
j , . . . , C

(lX)
j }

of q items, i.e., the chunkC(l)
j of the streamx ∈ B(l) consists

of the values:

C
(l)
j := {x(l)

((j−1)q+1), x
(l)
((j−1)q+2), . . . , x

(l)
(jq)}.

�

The information is processed chunk-wise, firstC1 is retrieved.
As long as the next chunkC2 is retrieved, aggregations is
performed onC1 simultaneously, then chunkC3 is retrieved
by simultaneously aggregating chunkC2, and so on and so
forth.

During the chunk-wise processing, the values off
(l,1)
(j+1)q and

f
(l,2)
(j+1)q corresponding to the subsequent chunk, can be easily

calculated out off (l,1)
jq andf

(l,2)
jq , for example:

f
(l,1)
(j+1)q(x) = f

(l,1)
jq (x) +

q∑

i=1

x2
jq+i.

The valueF (l)
jq corresponding to the standard deviation at time

t = jq can be calculated at each “step” corresponding to
the points in time{1, 2, ..., T }, or alternatively, after having
reached the end of the collection phase. This phase is termed
post aggregation phase.

Definition 3 (Post aggregation phase)The additional cal-
culation, which is performed after all chunks have been
retrieved and aggregated, is termed post aggregation phase.

Since the small scale aggregation should be as fast and
effective as possible, the functionsf

(l,3)
jq , F

(l)
jq must not neces-

sary be calculated for each chunk, as it is retrieved – if there is
no requirement in this direction – they can also be calculated
on a case by case basis by the tool that visualises intermediary
results.

C. Truncation errors

A discussion regarding the truncation errors is beyond the
scope of this paper. As already mentioned, whenN is large and
all of x-values are roughly of the same order of magnitude,
rounding or truncation errors may occur whenf

(l,1)
t and/or

f
(l,2)
t for 1 ≤ t ≤ T are evaluated in the straightforward

way [30]. A greater accuracy can be achieved by simply
shifting some of the calculation to double precision, see [24],
[25] for a discussion on rounding errors and the stability of
presented algorithms. Barlow presents anone-pass-through
algorithm [37], which is numerically stable and which is also
suitable for parallel computing.

The scope of the presentation in this paper is merely to
illustrate the technology. Of course, if a function does not
allow an one-pass algorithm, it cannot be used directly for
continuous computation. A classical example in this direction

is the average absolute deviation, as mentioned before, in some
cases there are approximate one-pass implementation of the
algorithms.

D. General case

So far, the standard deviation was considered as exemplifica-
tion. Now, let us formalise the continuous aggregation strategy
and consider the general case:

Proposition 2 (Reassembling the partial functions)

Let 1 ≤ l ≤ lF , let j, q ≥ 1, such thatj is the index and

q is the length of the chunks. Let

F (l) : B(l) → R

be an aggregation function such that:

a) there existslf real valued functions

f (l,1), f (l,2), . . . , f (l,lf ) defined onB(l)

such that for each chunkC(l)
j , the values of

f
(l,i)
(j+1)q (1 ≤ i ≤ lf )

can be calculated out of the values off
(l,i)
jq and C

(l)
j ,

b) F (l) is a function off (l,i) for all 1 ≤ i ≤ lf .

Then intermediary results, such as the value ofF
(l)
(j+1)q can

be calculated out off (l,i)
(j+1)q (1 ≤ i ≤ lf ). �

Assumption 6 Let jf be the index of the final chunk to
be processed. Obviously, the composition algorithms should
ensure that the valueF (l)

jf ∙q does not depend on the size of the
chunks. �

E. Reprocessing

In practical systems, in general, there should be a tech-
nology in place that allows recalculation of the aggregated
values. This is necessary if for any reason whatsoever, some
stream values are erroneous. Sometimes, it takes time to
correct them, since not all wrong values can be detected and
corrected automatically. Regarding the standard deviation, two
new functionsdf (l,1)

t anddf
(l,2)
t can be introduced, such that

df
(l,1)
jq (x) :=

q∑

i=1

x2
jq+i

and

df
(l,2)
jq (x) :=

q∑

i=1

xjq+i.

Thus, correct and updated computed values can be achieved,
for example by adding tof (l,3)

T the new value ofdf (l,1)
jq

and subtracting the corresponding old valuedf
(l,1)
jq , similar

considerations are valid fordf (l,2)
jq . This means especially,

that the corresponding values for the initial chunk and the
corrected chunk have to be (re)calculated. In the end, the
value F

(l)
jf ∙q has to be recalculated. As already mentioned,

the above considerations are included in order to illustrate

102

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the methodology. In practice, better suited algorithms can or
should be used instead.

F. Pseudo-code algorithm exemplification

In the following, a simplified algorithm to exemplify our
continuous aggregation strategy is sketched. It is based on
disassembling the standard deviationF

(l)
t using the functions

f
(l,1)
t , f

(l,2)
t , f

(l,3)
t , see equation (5) and (6). In order to keep

the representation of the algorithm simple, it is supposed
that the chunks have the same length equal tolchunk, see
Assumption3. The corresponding algorithm is presented in
Figure 4. In real-world systems, the data collection may
involve also time limitstMax, such that these time limits
restrict the length of the chunks.

1) Ad-hoc reporting including request for up-to-date data:
Granularity defines the level of detail of information. The
finer (higher) the level of granularity, i.e., smaller grains, the
deeper the level of detail. In time-series data, for example,
the granularity of the data might be at a millisecond, second,
minute or hour level, the higher the level of granularity, the
more information is available for analysis. The lowest level
of granularity is the granularity of the raw data, i.e., of
the data collected by the streams. For analysing purposes,
in real-word systems, the lowest level of granularity may
be to fine grained, for example, the streams deliver data
within milliseconds and with the highest precision, but this
low level of detail is pointless for reporting. In this case, a
pre-aggregationis performed by calculating the average or
similar of the numeric values. We suppose that the streams
do not contain calculated or aggregated data. Coarser level of
granularity can be achieved by aggregation.

2) Term ad-hoc:According to Merriam-Webster entry 1,
the term ad-hoc means “for the particular end or case at
hand without consideration of wider application”. Ad-hoc
reporting is a model of Business Intelligence (BI), in which
reports are build and distributed by non-technical BI-users to
meet individual and department information requirements. The
perception in the industry is that ad-hoc reporting refers to the
capability to develop reports by dragging and dropping query
items from the meta-model onto a design surface [38]. This
means especially that ad-hoc reporting is not an “improvised”
or unplanned reporting, as the definition entry 2 of Merriam-
Webster for the term ad-hoc would suggest, but a very well
thought out reporting environment set up by BI experts,
such that the corresponding tools can be also used by non-
specialists.

3) Example from the industry:Generally speaking, in the
semiconductor industry, the lowest level of granularity, which
characterises the production item (wafer or integrated circuits),
is the product. The next level of hierarchy is theproduct-
group, succeeded by theproduct-class, by thetechnology, and
in the end by theproduction-line. The usual/standard reporting
summarises the aggregated values on product, product-group,
product-class, technology, or production-line level.

Let us suppose that an equipment owner, who processes
a new product on his equipment, would like to report the

Algorithm 2 Sample code exemplifying the continuous ag-
gregation strategy

Input : Streamx
Output : F

(l)
t (x) at each retrieval point in timet

Result: Aggregated value of the standard deviation ready for report-
ing at any retrieval point in timet

double precisionf (l,1)(x) = 0 ; // component function

double precisionf (l,2)(x) = 0 ; // component function

double precisionF (l)(x) = 0 ; // value of the standard
deviation corresponding to the state of collection
int lchunk = 10, 000 ; // number of items of a chunk
float [lchunk] c ; // retrieved values of a chunk
float [lchunk] cprev ; // data of the previous chunk
int Lcol = 0 ; // length of the collection

// -------------------------------------------------
/ * data of the length of a chunk is collected * /
procedure collection() {
int lcur = 0 ; // length of the collected data
repeat

collect data intoc ; // collect data into the chunk
lcur + +; // until the chunk is full

until lcur = lchunk ;
for i = 1 to lchunk by 1 do cprev[i] := c[i] ; // copy c to cprev

} // -------------------------------------------------

/ * data of the length of a chunk is collected * /
procedure aggregation() {
float[lchunk] x ; // contains data of the previous chunk
for i = 1 to lchunk by 1 do x[i] := cprev[i]; // copy cprev to x

/ * calculation of the functions composing the
standard deviation * /

f (l,1)(x) := f (l,1)(x) +

lchunk∑

i=1

(x[i])2;

f (l,2)(x) := f (l,2)(x) +

lchunk∑

i=1

x[i];

Lcol := Lcol + lchunk; // number of items collected

F (l)(x) :=
1

Lcol

√
|Lcol ∙ f (l,1)(x)− (f (l,2))2(x)|;// only if

required
} // -------------------------------------------------

/ * final calculation of the standard deviation * /
procedure post-aggregation() {

F (l)(x) :=
1

Lcol

√
|Lcol ∙ f (l,1)(x)− (f (l,2))2(x)|;

} // -------------------------------------------------

/ * start aggregation in parallel to data collection
phase * /
procedure void main() {
collection();
repeat

start in parallel the threads: collection() & aggregation()
wait until both threads have finished

until collection phase is over;
aggregation(); // due to the phase shift
post-aggregation(); // final aggregated values
}

Figure 4: Pseudo-code based algorithm using standard deviation
exemplifying the continuous aggregation strategy.

103

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



standard deviation for the cycle time or waiting time for the
last week. The standard reporting system does not cover this
case, since for example, the first three days of the week the
old product is processed, then the equipment is adjusted for
the new product, which is processed afterwards. The standard
reporting covers the first three days of the week for the old
product and the remaining days for the new product. Hence,
mixed reporting, covering more products should be set up. The
task is not trivial, since the standard deviation corresponding
to the mixed week cannot be calculated out of corresponding
values of the standard deviation of each product. The example
as above illustrates also the inherent difficulties of ad-hoc
reporting, it may imply substantial effort on the BI side.

G. Model extension

Next, we extend our formal model in order to cover the
difficulties as above by exemplifying the methodology on the
standard deviation, see algorithm Figure5. Similar to the
continuous aggregation strategy:

Proposition 3 (Calculation of compound streams)
• let t be a point in time when streams are collected,
• let x and y be streams such thatx contains data for the
productp and y contains data for the productq,
• let nx

t be the number of items of the streamx corresponding
to time t,
• similarly, let ny

t be the number of items of the streamy
corresponding to the same point in timet,
• let f

(p,1)
t (x) and let f (q,1)

t (y) be the corresponding values
for the streamx and y respectively.

Set

f
((p+q),1)
t (x + y) := f

(p,1)
t (x) + f

(q,1)
t (y)

and

f
((p+q),2)
t (x + y) := f

(p,2)
t (x) + f

(q,2)
t (y).

Let

f
((p+q),3)
t (x + y) := (nx

t + ny
t ) ∙ f ((p+q),1)

t (x + y)−
(
f

((p+q),2)
t (x + y)

)2

and

F
(p+q)
t (x + y) :=

1
(nx

t + ny
t )

∙

√∣
∣
∣f

((p+q),3)
t (x + y)

∣
∣
∣. (7)

Then F
(p+q)
t (x + y) determines the values of the standard

deviation corresponding to the compound streamx+y at time
t ∈ {1, 2, ..., N}. �

The calculation of the standard deviation relying on the
formula (7) should be applied by a reporting tool within the
ad-hoc reporting strategy. A closer look at the relation (7)
reveals that all components likef (p,1)

t (x), f
(q,1)
t (y), etc., are

precalculated during the continuous aggregation period.

Remark 4 (Calculation time is stream size independent)
Hence, the calculation time for the standard deviation does

not depend on the size of the stream or the point in time
when the calculation is performed.

Conclusion 1 (Real-time capability of ad-hoc reporting)
Thus, ad-hoc reporting set up as in the example above in a
real-time environment has real-time capability. �

Algorithm 3 Sample code exemplifying the ad-hoc reporting
strategy

Input : Streamx; Streamy;
Output : F

(l)
t (x + y) at each retrieval point in timet;

Result: Compound aggregated value of the standard deviation ready
for reporting at thelast point in time t ∈ {1, 2, . . . , T} for
which data has been collected;

double precisionf (l,1)
t (x) = 0 ; // component function

double precisionf (l,1)
t (y) = 0 ; // component function

double precisionf (l,2)
t (x) = 0 ; // component function

double precisionf (l,2)
t (y) = 0 ; // component function

double precisionf (l,1)
t (x + y) = 0 ; // calculated

double precisionf (l,2)
t (x + y) = 0 ; // calculated

double precisionF (l)
t (x + y) = 0 ; // value of the standard

deviation
int nt(x) = 0 ; // number of items belonging
to Stream x collected till the point in time of the
ad-hoc reporting; corresponds to the last time-stamp
of the collected data
int nt(y) = 0 ;
int nt(x + y) = 0 ;

ad-hoc-retrieval() {
/ * calculation of the functions composing the
standard deviation * /
nt(x)⇐ retrieve the value from database
nt(y)⇐ retrieve the value from database

f
(l,1)
t (x)⇐ retrieve the value from database;

f
(l,1)
t (y)⇐ retrieve the value from database;

f
(l,2)
t (x)⇐ retrieve the value from database;

f
(l,2)
t (y)⇐ retrieve the value from database;

f
(l,1)
t (x + y)← f

(l,1)
t (x) + f

(l,1)
t (y);

f
(l,2)
t (x + y)← f

(l,2)
t (x) + f

(l,2)
t (y);

nt(x + y)← nt(x) + nt(y);
F

(l)
t (x + y) :=

1

nt(x + y)

√∣
∣
∣nt(x + y) ∙ f (l,1)

t (x + y)− (f
(l,2)
t )2(x + y)

∣
∣
∣;

}

Figure 5: Pseudo-code based algorithm using standard deviation
exemplifying the principle of the ad-hoc reporting strategy and
enabling real-time capability.

H. Parallel execution of the continuous aggregation routines

So far, in order to keep the algorithms simple and trans-
parent, simplified algorithms were presented. The aim was to
exemplify the principle, such that they could be easily adapted
to solve real-world situations. Next, load balancing techniques
are presented. The advantage of these techniques is that it can
bypass Assumption (4), which limits the aggregation time and
it supposes that it does not exceed the retrieval time of the
chunks.

104

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Let j be the number of parallel instances of the aggregation
routine that calculates components of the standard deviation,
see procedure “aggregation” in Figure4. This procedure has to
be adapted such that it calculates partial values corresponding
to the functionf (l,1) and f (l,2). The implementation is quite
straightforward, hence only some hints are given. Define the
header as: “procedure aggregation (float[lchunk] x)” Define
the corresponding local variableδf (l,1)(x) and set

δf (l,1)(x) :=
lchunk∑

i=1

(x[i])2; (8)

Add the statement

f (l,1) := f (l,1) + δf (l,1)(x) (9)

for the global variablef (l,1). Thus, by callingj parallel in-
stances of the procedure “aggregation”,j chunks are processed
in parallel. We assumed in this example that statement (8) is
the time consuming one.

I. Benefits in the software development process

1) Transparent software development:One of the outstand-
ing advantages of the continuous aggregation strategy is the
possibility to simplify and align/harmonise the set-up process
of aggregation, thus leading to faster, modularised and more
effective and transparent software development. This involves
improved maintenance possibilities due to its conceptual unity.
Moreover, people can be trained much easier on maintenance,
since the software developed is not the outcome of individual
abilities and unique skills, but of very well specified me-
thodologies.

2) Paradigm shift: Lewis [39], [40] stated thatsoftware
construction is an intrinsically creative and subjective activity
and as such has inherent risks. Lewis added:the software
industry should value human experience, intuition, and wisdom
rather than claiming false objectivity and promoting entirely
impersonal “processes”.

Our contribution is a “step” in setting up objective cri-
teria regarding software developing processes, such that it
can be a science, not just an art, paraphrasing Roetzheim’s
statement [41] regarding software estimate. This way, our
approach facilitates theparadigm shift from a subjective
software construction activity, towards objectively verifiable
straightforward strategies. Our approach does not claim that
the overall effort of the transition from large scale aggregation
to small scale aggregation is diminishing, the complexity
of converting multi-pass algorithms to one-pass algorithms
should not be underestimated. It does requireintrinsically
creative and subjective activityas formulated by J.P. Lewis,
but merely on the algorithmic side.

J. Real-time capability

1) Real-time systems:The term continuous information
processinginvolves incessant data collection and steady aggre-
gation, such that preliminary aggregated results corresponding
to the current status of the collected data are available for

evaluation purposes. Continuous processing of large amounts
of data is primarily an algorithmic problem [42].

Real-time systems are subject to time constrains, i.e., their
actions must be fulfilled within fixed bounds. The perception
of the industry of real-time is first of all fast computation [43].
Moreover, TimeSys [44] requires the following features for a
real-time system:

a) predictably fast response to urgent events,
b) high degree of schedulability: the timing requirements of

the system must be satisfied at high degrees of resource
usage,

c) stability under transient overload: when the system is
over-loaded by events and it is impossible to meet all the
deadlines, the deadlines of selected critical tasks must still
be guaranteed.

The characterisation above exemplifies the different require-
ments in some fields of the industry. A real-time system
requires real-time capability of the underlying components,
including the operating system, etc. These considerations show
the immanent difficulties of the industry to cope with the
complexity of real-time requirements of opaque and incom-
prehensible systems.

2) Real-time capability of CIPM:In order to point out the
real-time capability of a continuous information processing
system, its behaviour is analysed and it is shown that it satisfies
the given time limits. In real-world systems, it is supposed that
the maximum size of the streaming dataand thestreaming
speedare known and these thresholds are not exceeded.

With the aim to keep the argumentation simple and straight-
forward, it is assumed that the streaming speed is constant,
i.e., the same amount and type of data is collected within
equal time intervals. Hence, it is appropriate to setup chunks
of data of the same size collected within equal time spans,
such that the aggregation time of different chunks is equal.
The aggregation timetagg of a particular chunk should not
exceed its retrieval timetret, i.e., tagg ≤ tret, else data to be
aggregated will accumulate, see Assumption4.

The strategy to achieve real-time behaviour based on con-
tinuous stream computing is straightforward.

Remark 5 (Condition for achieving real-time capability)
Let tC be the time constraint such that within the time
interval specified accordingly, aggregated data should be
available. In order to have real-time capability, the condition

tret + tagg ≤ tC

should be satisfied.

Obviously, to achieve this goal, some fine tuning should be
performed by choosing the appropriate size of the chunks.
Hence, continuous computation including small scale aggre-
gation, pave the way for real-time capability.

In conclusion, within this section a formal model has been
introduced in order to best describe the concepts of the
continuous information processing strategy. The focus is on the
terms of one-pass algorithm, small scale aggregation, continu-
ous computing, and real-time capability. One-pass algorithms

105

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



enable small scale aggregation, which can pave the way for
real-time capability, on the condition that the timely constrains
can be satisfied by the underlying computing environment.
Actually, the one-pass requirement of the algorithms is not
necessary, it suffices that the partial results of the computation
of the chunks can be merged such that the expected aggregated
values can be calculated.

V. OUTLINE OF THE RESULTS; DISCUSSIONS

Our objective has been to work towards developing practical
solution to overcome the difficulties related to batch jobs,
identified by Cisco in a white paper [9] as Pain Points. The
pros and cons of the newly developed continuous information
processing strategy versus the traditional batch jobs approach
are outlined in this section and additional weak points of each
technique are identified.

A. Cisco’s Pain Points

1) Toughest challenge:The main challenge – which led to
the outcome of this paper – was to investigate, whether it is
possible to give satisfactory answers to the Pain Points raised
by Cisco [9] concerning batch aggregation on data streams.
Except Pain Point No. 3 regarding ad hoc reporting, to all other
Pain Points, such as batch window time constraints, painful
recovery, service-level agreements, etc., methods of resolution
have been previously established [1]. In order to be able to
properly present our methodology, a formal model has been
set up and it has been shown that under some circumstances
(for example, if the aggregation functions can be processed
efficiently in one-step) the data collection and data aggregation
can be performed continuously, and thus comprise real-time
capability.

2) Sticking point – additional implementation effort:The
one-pass implementation (or alternatively using small scale
aggregation technology) of aggregation functions, can be
meticulous, and may require additional effort. Most of the
aggregation functions, also termedmeasures,used in the
industry, permit such implementations; one of the well-known
counterexample is the average absolute deviation. Since the
computation is continuous and final results are available soon
after the data collection has been completed, the Pain Point
No. 1 regarding the question of batch window time constraints
is obsolete.

3) Energy efficiency due to simplified recovery and to load
distribution: Painful recovery (Paint Point No. 2) is less
painful if there is a well thought-through recovery algorithm in
place, such that only the erroneous parts are recalculated. Since
there is a much better control of the computation/aggregation
flow, a better service-level and resource conflict management
can be achieved by using the continuous aggregation strategy.

It is true, that usually, batch jobs are performed during
nighttime hours, when the workload on the computer is lower
than during working hours. Unfortunately, due to computation
errors or erroneous raw data, the batch aggregation has to
be restarted also during normal working hours. Hence, the
computer capacity should support the extended load due to

recomputing the batch jobs during working hours. On the con-
trary, by using continuous computation, the load is distributed
uniformly over the whole duration of the data collection and
as a result, peak loads remain manageable. Moreover, due to
our aggregation strategy – such that calculation is performed
during the collection phase as early as possible, best when
the data is still in memory – reloading the persisted data into
memory is reduced to a minimum. Besides, the small scale
aggregation can be optimised by identifying the optimal size
of the chunks, such that the time constraints are met with
minimal computational effort. This way, smaller computers
can be used, especially since the energy efficiency of the
batch aggregation is in general significantly worse than the
correspondent computation regarding small scale aggregation.

B. Continuous aggregation versus batch jobs

1) Our fundamental computational strategy in a nutshell:
According to the long time experience of the first au-
thor, the best performance in the field of Business Intelli-
gence/Data Warehousing is obtained if the data is pro-
cessed/transformed/precalculated as soon as possible; best,
as soon as the data is known to the system. This includes
also multiple storage strategies of the same raw/transformed
data. Sometimes, it is advantageous to pursuit adual strategy.
On the one hand, try to follow the continuous computation
strategy as long as possible i.e., as long as the implementation
of the corresponding aggregation functions is possible with
reasonable effort and run-time performance, and on the other
hand, precalculate as much as possible by maintaining the
batch jobs strategy.

2) Executions plans as the weak point of the batch jobs
strategy: The main challenge of the batch jobs strategy, when
using general purpose database management systems, is a tech-
nical one and it relates to the optimisation throughexecution
plans. In highly simplified terms, the execution plans attempt
to establish the most efficient execution of statements (queries)
out of a summary of pre-calculated statistics. Unfortunately,
the execution plans do not always generate the optimal (fastest,
most efficient) query; performance can also degrade if the
execution plans are updated. Hence, if the streams are not
steady, performance degradation of the batch jobs may occur.
There are methods to overcome the automatic generation of
the execution plans, but the problem in principle remains.

On the contrary, by using small scale aggregation, the size
of data sets on which computation is performed is more
or less constant, and data is in memory, hence less prone
to fluctuations due to the executions plans. It is therefore
reasonable to assume some upper bounds, enabling real-time
capability of the system.

C. Enhanced system modelling

One of the most important side benefits of the continuous
information processing strategy is the straightforward system
modelling. In this way, the design of the architecture, data
flow, aggregation strategy, database schema design, etc., is
given by the structure of the streaming data, the aggregation

106

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



functions and the algorithms of their implementation. Thus, the
more individualistic design, heavily based on the experience
of the application developer is converted into a predefined set
of well founded modelling strategies, sustaining a paradigm
switch from more or less subjectively individualistic concep-
tions in software design and development towards objectively
established optimal solutions. Quantitative estimations show
that many Data Warehouse projects fail at a concerning rate,
wasting all the time, money, and effort spent on them [45].

D. Broadening the tasks of the classical reporting strategy

1) Supporting production control:The essence of the con-
tinuous information processing strategy is that it enables the
calculation of the aggregation functions during the collection
phase. For example, for reporting purposes, the data for a full
day is collected. The classical batch jobs strategy envisaged
the generation of the data pool for reporting only after the data
has been fully collected. Hence, calculated/aggregated values
for reporting were available on the next day, depending on the
execution time of the batch jobs. Thus, the scope of classical
reporting strategy was to capture, survey and review the pro-
duction status of the previous day. On the contrary, based on
the data already collected, the continuous aggregation strategy
enables the calculation/generation of preliminary reports at
various points in time. This way, for example, soon after 12:00,
the daily reports show the production figures corresponding to
the time frame [0:00, 12:00]. Therefore, if these figures are not
optimal, corresponding measures to boost production could
be taken. Thus, modern reporting based on our technology
enablesproduction control.

2) Reducing ramp-up time:In some cases, optimisation can
be substantial, saving time and costs. For example, in the
semiconductor manufacturing, there are optional production
steps, where the material is measured. The number of measure-
ments can be in the range of hundreds, and the measurement
time can last for several hours. The common aggregation
technology assumes that all measurement data is collected
before starting the aggregation. By adopting our continuous
computation technology, preliminary measurement results can
be calculated. This way, faulty processed material can be
identified earlier, since there is no need for full calculation
in order to identify faulty processing, and hence, the ramp-
up time of a new product can be substantially reduced, thus
giving the company decisive advantage over his competitors.

E. Additional issues

1) Hardware upgrade vs. performance improvement:Next,
two issues are addressed, which are decisive from technical
point of view:

1) absence of optimal Data Warehouse design methodology,
2) performance problems due to the high complexity, re-

quirements on expandability, and the low scalability of
the existing complex solutions.

According to the experience of the first author at Qimonda in
the Business Intelligence and Data Warehouse environment,
increasing the processing capability of the computers does not

always lead to improved performance of the Data Warehouse
applications. By doubling the computing capacity, roughly
20% in performance improvement has been achieved. Using
high performance racks produced the best results. In the
end, when the effort for performance improvement is greater
than the effort to redesign the Data Warehouse, appropriate
measures should be taken.

2) Improving data quality:Furthermore, due to our mod-
ular straightforward design strategy, the flow of data can be
much closely monitored, hence superiordata qualitycan be
achieved. Moreover, enhancedmaintenanceand straightfor-
ward implementationcan be reached due to the harmonised
approach.

In conclusion, the price for achieving continuous aggrega-
tion may be high, the build in functions like standard deviation
cannot be used any more, and as the case may be, new one-
pass or similar algorithms for the aggregation functions have
to be set up, hence algorithmic and programming effort may
increase. The benefits are obvious, a straightforward design
strategy, up-to-date aggregated values during data collection,
a uniform computational effort over the data collection period
and an efficient recalculation strategy, which lead in the end
to a much efficient utilisation of computational resources.
Improving the performance of batch jobs is tedious, if the
redesign strategy is not an option, sophisticated data base
technologies or costly high performance racks can overcome
the problem.

VI. CONCLUSION AND FUTURE WORK

In the following, the advantages of the CIPM are sum-
marised and the future work, we are concerned with, is
sketched.

A. Conclusion

Satisfactory solutions to the problems caused by the nightly
batch aggregation – as pointed out by Cisco [9] – are given.
To ensure an accurate presentation of our methodology, a
formal model has been set up and it has been shown that
for a specific type of aggregation functions – including those
that support efficient one-pass implementation – the data
aggregation can be performed continuously and thus allows
real-time capability.

1) Advantages CIPM - Résumé:Continuous aggregation
strategy:

1) supportsreal-time capability; if time constraints can be
met,

2) supportsaggregated values corresponding to the captured
data; i.e., reporting capability at any point in time during
data collection,

3) supportsenhanced production controldue to up-to-date
aggregated data at any point in time during data collec-
tion,

4) supportsstraightforward design strategiesdue to clear,
easy understandable architectural and implementation
principles,

107

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



5) supports easy maintenancedue to transparent and
straightforward software development process,

6) supportshigher quality of aggregated datadue to the
simplified architectural and implementation principles,

7) supportsuniform load of the underlying database system
due to the continuous aggregation principles,

8) supportsad-hoc real-time reporting capabilitydue to the
principles of the continuous aggregation as elaborated by
us,

9) supportshigher degree of reporting flexibility than the
MOLAP technologydue to the fact that the action of
slicing and dicing is not bound to a hierarchical tree
model,

10) avoidscomplicated SQL-queries for data retrieval or data
aggregation using large cartesian productsdue to the new
architectural principles,

11) supports more accurate“Knowledge Discovery in
Databases” capabilitydue to the much detailed data
analysis capacity,

12) supportsearly detection of erroneous data setsdue to
the continuous aggregation principles, avoiding panic
situations as in the case of nightly batch jobs,

13) supports straightforward performance improvement
strategiesdue to the simplified architectural principles,

14) avoids or reduces “hot working phases” at night for the
IT personneldue to the absence of nightly jobs,

15) reducesthe risk of incomplete or missing standard re-
porting – “race against time”, as termed by Cisco – due
to the enlarged aggregation window,

16) reducesthe complexity of the database administrationdue
to the new streamlined environment versus a database
pushed to its limits, as in case of batch jobs,

17) supports improvedload balancingdue the modularised
aggregation strategy,

18) supportslower memory requirements, since the data to be
aggregated is already uploaded into memory during the
data collection phase,

19) supportsstreamlined SQL-statements,since the data to be
aggregated is preserved in small chunks,

20) avoidsregular performance improvement tasksdue to the
streamlined architecture of the aggregation strategy,

21) avoidsperformance bottlenecksdue to the recalculation
of the nightly aggregation during business hours,

22) ensuresvery good scalability, both for the small scale
aggregation and for the ad-hoc reportingdue to much
better performance control,

23) avoidsperformance fluctuationdue to imperfect execu-
tion plans,

24) supportsefficient recalculation of aggregated values, in
case erroneous data is collected,

25) supportsparallelisation beyond the built-in facilities of
the underlying database system,

26) supportsindependency of the underlying database system,
such as Relational, No-SQL, etc., and last but not least:

27) ensuresenergy efficiency, since smaller hardware can be
used due to the fact that aggregation is performed during

the whole data collection period.

2) Difficulties CIPM - Résumé:

1) somepredefined formulas, e.g., STDEV, cannot be used
directly, since the function above is not cumulative,

2) difficult architectural set-up, i.e., new algorithms have to
be designed and implemented,

3) longer development timesdue to the new architectural
design strategy,

4) IT staff has to be additionally traineddue to unconven-
tional architectural and maintenance strategies,

5) heterogeneous team including mathematicians and data
scientistneed to be used, i.e., the algorithmic part of the
development may be sophisticated,

6) increased development costsdue to the unconventional
development strategies, and last but not least:

7) strong management commitment to overcome the difficul-
ties due to the anticipating challenges.

We have not experienced major difficulties in implementing
the CIPM approach in database applications, implementation
from the scratch is pretty straightforward, porting to CIPM
an existing legacy database application using batch jobs, can
be quite cumbersome. For sophisticated legacy applications,
the most efficient method is to try to improve performance as
long as possible by applying database technologies, and/or by
using high performance racks, etc.

3) Final considerations:The price of the advantages as
above depends on the structure of the aggregation function.
Most of the key performance indicators used in the industry
permit an incremental representation, i.e., as functions of
different representation of sum(), avg(), count(), similar to the
standard deviation, as presented in this article. The effort in
this cases is manageable. Generally speaking, the aggregation
functions should permit efficient one-pass calculation, or in
the case of holistic functions, an algorithm, such that the time
constraints can be satisfied.

In conclusion, for small applications, where real-time con-
straints are not an issue, batch jobs (large scale aggregation)
will deliver satisfactory results, whereas for large applications,
even if real-time capabilities are not required, the advantages
of CIPM may prevail.

B. Future Work

The Pain Point No. 3 of Cisco’s white paper [9]: “ad
hoc reporting; managing unplanned reports in a plan-based
environment”, has been handled in this paper. The question
still remains, as to what extent “unforeseen” reports can be
meaningfully set up. Furthermore, one asks oneself, what is
the optimal strategy regarding volatile versus persistent aggre-
gation, i.e., aggregation within a query set up by a visualisation
tool versus aggregation persisted in a data storage. From
an algorithmic perspective, persistent aggregation offers more
advantages if the query is often invoked. Moreover, the results
can be much better validated if the data is persisted. On the
other hand, sporadic queries should remain volatile, i.e., the
result of the queries should not be persisted for further reuse.

108

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Tangwongsan [17] points out that “much less is known for
nontrivial scenarios”, i.e., “functions that are not associative
and do not support FIFO windows”. Within this paper satis-
factory answers are given for those aggregation functions that
can be reduced to additive functions, and/or allow one-pass
algorithm. For example, it has been shown that the median [8]
can successfully be used within CIPM.

Generally speaking, the integration of the holistic functions
within CIPM remains an outstanding challenge. Commonly,
for data warehouse applications, the raw data is always stored
for a certain period of time in order to be able to retrace the
computation. Hence, improving the speed of the computation
by using distributed algorithms, etc., can ensure real-time
capabilities. On the contrary, when dealing with long time
and high amount of streaming data, storing the data even
temporarily is not possible. In such cases, developing suitable
algorithms for approximate calculations could help. Each
holistic function should be handled on a case-by-case basis.
A general strategy seems improbable for the time being. In
conclusion, in general, for non-holistic functions (including the
usual KPIs used in business and industry) satisfactory results
can be given. The problem regarding the holistic functions is
still open, some of them can be used under some circumstances
in real-time environment.

ACKNOWLEDGMENT

We appreciate the information and insightful comments
provided by the anonymous reviewers, which significantly
improved the quality of this paper. Last, but not least, we
acknowledge the assistance and helpful comments provided
by Prof. Dini.

REFERENCES

[1] M. Zinner, K. Feldhoff, and W. E. Nagel, “Continuous Information
Processing Enabling Real-Time Capabilities: An Energy Efficient
Big Data Approach,” ICSEA 2021 : The Sixteenth International
Conference on Software Engineering Advances, pp. 155–165, 2021,
Retrieved: June 2022. [Online]. Available:https://www.thinkmind.org/
articles/icsea_2021_2_180_10095.pdf

[2] A. De Mauro, M. Greco, and M. Grimaldi, “A formal
definition of big data based on its essential features,”
Library Review, 2016, Retrieved: June 2022. [Online]. Avail-
able: https://www.researchgate.net/publication/299379163_A_formal_
definition_of_Big_Data_based_on_its_essential_features

[3] H. U. Buhl, M. Röglinger, F. Moser, and J. Heidemann, “Big
Data,” Business & Information Systems Engineering, vol. 5, no. 2,
pp. 65–69, 2013, Retrieved: June 2022. [Online]. Available:https:
//doi.org/10.1007/s12599-013-0249-5

[4] Statista, “Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2025,” 2021, Retrieved: June
2022. [Online]. Available: https://www.statista.com/statistics/871513/
worldwide-data-created/

[5] R. Sousa, R. Miranda, A. Moreira, C. Alves, N. Lori, and J. Machado,
“Software tools for conducting real-time information processing and
visualization in industry: An up-to-date review,”Applied Sciences,
vol. 11, no. 11, p. 4800, 2021, Retrieved: June 2022. [Online].
Available: https://www.mdpi.com/2076-3417/11/11/4800

[6] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of real-time
processing technologies of iot data streams,”Journal of Information
Processing, vol. 24, no. 2, pp. 195–202, 2016, Retrieved: June 2022.
[Online]. Available:https://doi.org/10.2197/ipsjjip.24.195

[7] I. Sommerville, “Software engineering 9th edition,”ISBN-10, vol.
137035152, p. 18, 2011.

[8] Zinneret al., “Real-time information systems and methodology based on
continuous homomorphic processing in linear information spaces,” 2015,
Retrieved: June 2022. [Online]. Available:https://patentimages.storage.
googleapis.com/ed/fa/37/6069417bdcc3eb/US20170032016A1.pdf

[9] Cisco, “BI and ETL Process Management Pain Points,”
White Paper, pp. 1–9, 2010, Retrieved: June 2022. [On-
line]. Available: http://download.101com.com/tdwi/ww29/cisco_bi_etl_
process_management_pain_points.pdf

[10] N. Schweikardt, “One-pass algorithm.” 2009, Retrieved: June
2022. [Online]. Available:http://www.tks.informatik.uni-frankfurt.de/
schweika/downloads/EncycDBS_OnePassAlgos.pdf

[11] P. E. O’Neil, “The sb-tree an index-sequential structure for
high-performance sequential access,”Acta Informatica, vol. 29,
no. 3, pp. 241–265, 1992, Retrieved: June 2022. [Online].
Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
55.9482&rep=rep1&type=pdf

[12] J. Zhang, “Spatio-temporal aggregation over streaming geospatial data,”
in Proceedings of the 10th International Conference on Extending
Database Technology Ph. D. Workshop. Citeseer, 2006, Retrieved:
June 2022. [Online]. Available:https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.84.8746&rep=rep1&type=pdf

[13] J. Yang and J. Widom, “Incremental computation and maintenance
of temporal aggregates,”The VLDB Journal, vol. 12, no. 3,
pp. 262–283, 2003, Retrieved: June 2022. [Online]. Available:
http://ilpubs.stanford.edu:8090/482/1/2000-6.pdf

[14] TU-Berlin-DIMA, “Scotty: Efficient window aggregation for
out-of-order stream processing,”Generated by GitHub Pages, 2021,
Retrieved: June 2022. [Online]. Available:https:21:3103.09.202121:
3103.09.202121:3103.09.202121:3103.09.202121:3103.09.2021//tu-
berlin-dima.github.io/scotty-window-processor/

[15] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl, “Scotty: Efficient window aggregation for out-of-
order stream processing,” in2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE, 2018, pp. 1300–1303, Retrieved:
June 2022. [Online]. Available:https://hpi.de/fileadmin/user_upload/
fachgebiete/rabl/publications/2018/ScottyICDE2018.pdf

[16] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß,
A. Katsifodimos, T. Rabl, and V. Markl, “Scotty: General and
efficient open-source window aggregation for stream processing
systems,” ACM Transactions on Database Systems (TODS),
vol. 46, no. 1, pp. 1–46, 2021, Retrieved: June 2022.
[Online]. Available:https://www.redaktion.tu-berlin.de/fileadmin/fg131/
Publikation/Papers/Traub_TODS-21-Scotty_preprint.pdf

[17] K. Tangwongsan, M. Hirzel, and S. Schneider, “Sliding-window
aggregation algorithms.” 2019, Retrieved: June 2022. [Online].
Available: http://hirzels.com/martin/papers/encyc18-sliding-window.pdf

[18] ——, “Optimal and general out-of-order sliding-window aggregation,”
Proceedings of the VLDB Endowment, vol. 12, no. 10, pp. 1167–1180,
2019, Retrieved: June 2022. [Online]. Available:https://www.scott-a-
s.com/files/vldb2019_fiba.pdf

[19] Z. Chen and A. Zhang, “A survey of approximate quantile
computation on large-scale data,”IEEE Access, vol. 8, pp. 34 585–
34 597, 2020, Retrieved: June 2022. [Online]. Available:https:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9001104

[20] P. P. Pebay, T. Terriberry, H. Kolla, and J. C. Bennett, “Formulas
for robust, parallel computation of arbitrary-order, arbitrary-variate,
statistical moments with arbitrary weights and compounding.” Sandia
National Lab.(SNL-CA), Livermore, CA (United States); The Xiph.
Org , Tech. Rep., 2015, Retrieved: June 2022. [Online]. Available:
https://www.osti.gov/servlets/purl/1504207

[21] P. Pébay, T. B. Terriberry, H. Kolla, and J. Bennett, “Numerically stable,
scalable formulas for parallel and online computation of higher-order
multivariate central moments with arbitrary weights,”Computational
Statistics, vol. 31, no. 4, pp. 1305–1325, 2016, Retrieved: June 2022.
[Online]. Available:https://www.osti.gov/servlets/purl/1426900

[22] C. Labreuche, “A formal justification of a simple aggregation function
based on criteria and rank weights,” inProc. DA2PL2018, From
Multiple Criteria Decis. Aid Preference Learn., 2018, pp. 1–1,
Retrieved: June 2022. [Online]. Available:http://da2pl.cs.put.poznan.pl/
programme/detailed-programme/da2pl2018-abstract-14.pdf

[23] R. Eccles and G. Serafeim, “Corporate and integrated reporting: A
functional perspective,[w:] corporate stewardship: Achieving sustainable
effectiveness, red,”E. Lawler, S. Mohrman, J. OToole, Greenleaf, Posted:

109

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



2 Feb 2014 Last revised: 24 May 2018, Retrieved: June 2022. [Online].
Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2388716

[24] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for
computing the sample variance: Analysis and recommendations,”The
American Statistician, vol. 37, no. 3, pp. 242–247, 1983, Retrieved:
June 2022. [Online]. Available:http://www.cs.yale.edu/publications/
techreports/tr222.pdf

[25] ——, “Updating formulae and a pairwise algorithm for computing
sample variances,” inCOMPSTAT 1982 5th Symposium held at
Toulouse 1982, 1982, pp. 30–41, Retrieved: June 2022. [Online].
Available: https://apps.dtic.mil/sti/pdfs/ADA083170.pdfP

[26] W. Hopp and M. Spearman,Factory Physics: Third Edition. Waveland
Press, 2011.

[27] W. Hansch and T. Kubot, “Factory Dynamics Chapter 7 Lectures
at the Universitaet der Bundeswehr Muenich,” p. 68, Retrieved:
June 2022. [Online]. Available:https://fac.ksu.edu.sa/sites/default/files/
Factory%20Dynamics.pdf

[28] C.-F. Lindberg, S. Tan, J. Yan, and F. Starfelt, “Key performance
indicators improve industrial performance,”Energy procedia, vol. 75,
pp. 1785–1790, 2015, Retrieved: June 2022. [Online]. Available:
https://doi.org/10.1016/j.egypro.2015.07.474

[29] M. Zinner et al., “Techniques and Methodologies for Measuring
and Increasing the Quality of Services: a Case Study Based on
Data Centers,” International Journal On Advances in Intelligent
Systems, volume 13, numbers 1 and 2, 2020, vol. 13, no. 1
& 2, pp. 19–35, 2020, Retrieved: June 2022. [Online]. Available:
http://www.thinkmind.org/articles/intsys_v13_n12_2020_2.pdf

[30] W. Kahan, “Pracniques: further remarks on reducing truncation errors,”
Communications of the ACM, vol. 8, no. 1, p. 40, 1965.

[31] T. Pham-Gia and T. Hung, “The mean and median absolute
deviations,” Mathematical and Computer Modelling, vol. 34, no.
7-8, pp. 921–936, 2001, Retrieved: June 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0895717701001091

[32] R. C. Geary, “The ratio of the mean deviation to the standard deviation
as a test of normality,”Biometrika, vol. 27, no. 3/4, pp. 310–332, 1935.

[33] J. K. Patel and C. B. Read,Handbook of the normal distribution. CRC
Press, 1996, vol. 150.

[34] G. Laipple, S. Dauzère-Pérès, T. Ponsignon, and P. Vialletelle, “Generic
data model for semiconductor manufacturing supply chains,” in2018
Winter Simulation Conference (WSC). IEEE, 2018, pp. 3615–3626,
retrieved: June 2022. [Online]. Available:http://simulation.su/uploads/
files/default/2018-laipple-dauzere-peres-ponsignon-vialletelle.pdf

[35] F. Biebl, R. Glawar, A. Jalali, F. Ansari, B. Haslhofer, P. de Boer, and
W. Sihn, “A conceptual model to enable prescriptive maintenance for
etching equipment in semiconductor manufacturing,”Procedia CIRP,
vol. 88, pp. 64–69, 2020, retrieved: June 2022. [Online]. Available:
https://doi.org/10.1016/j.procir.2020.05.012

[36] K. Hilsenbeck, “Optimierungsmodelle in der Halbleiterproduktions-
technik,” Ph.D. dissertation, Technische Universität München, 2005,
retrieved: June 2022. [Online]. Available:http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:bvb:91-diss20050808-1721087898

[37] J. L. Barlow, “Error analysis of a pairwise summation algorithm
to compute the sample variance,”Numerische Mathematik, vol. 58,
no. 1, pp. 583–590, 1990, Retrieved: June 2022. [Online]. Available:
https://de.booksc.eu/book/6543977/98912d

[38] GSA, “Cognos Ad-Hoc Reporting (Basics),”ePM Quick Reference
Guide 75, 2016, Retrieved: June 2022. [Online]. Available:https:
//www.gsa.gov/cdnstatic/QRG.075_Ad_Hoc_Reporting_6.0.pdf

[39] J. Lewis and T. Disney, “Large limits to software estimation,”ACM
Software Engineering Notes, vol. 26, no. 4, pp. 54–59, 2001, Retrieved:
June 2022. [Online]. Available:http://scribblethink.org/Work/Softestim/
kcsest.pdf

[40] J. Lewis, “Mathematical limits to software estimation: Supplementary
material,” Stanford University, 2001, Retrieved: June 2022. [Online].
Available: http://scribblethink.org/Work/Softestim/softestim.html

[41] W. H. Roetzheim and R. A. Beasley,Software project cost schedule
estimating: best practices. Prentice-Hall, Inc., 1998.

[42] B. Evgeniy, “Supercomputer beg with artificial intelligence of optimal
resource use and management by continuous processing of large
programs,” Glob Acad J Econ Buss, vol. 1, pp. 21–26, 2019,
Retrieved: June 2022. [Online]. Available:https://gajrc.com/media/
articles/GAJEB_11_21-26_zOIbTWD.pdf

[43] E. A. Lee, “What is real time computing? a personal view.”
IEEE Des. Test, vol. 35, no. 2, pp. 64–72, 2018, Retrieved: June
2022. [Online]. Available:https://ptolemy.berkeley.edu/projects/chess/
pubs/1192/Lee_WhatIsRealTime_Accepted.pdf

[44] TimeSys Corporation, “The concise handbook of real-time systems,”
TimeSys Corporation Pittsburgh, PA, Version 1.3, pp. 1–65, 2002,
Retrieved: June 2022. [Online]. Available:https://course.ece.cmu.edu/
~ece749/docs/RTSHandbook.pdf

[45] D. Asrani, R. Jain, and U. Saxena, “Data Warehouse Development
Standardization Framework (DWDSF): A Way to Handle Data
Warehouse Failure,” IOSR Journal of Computer Engineering
(IOSR-JCE), vol. 19, pp. 29–38, 2017, Retrieved: June 2022.
[Online]. Available: http://www.iosrjournals.org/iosr-jce/papers/Vol19-
issue1/Version-2/E1901022938.pdf

110

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



An Approach for Learning Behavioural Models of
Communicating Systems

Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Abstract—This paper is concerned with recovering formal
models from event logs collected from communicating systems.
We refer here to systems made up of components interacting
with each other by data networks and whose communications can
be monitored, e.g., Internet of Things (IoT) systems, distributed
applications or Web service compositions. Our approach, which
we call CkTailv2, aims at generating, from en event log, one Input
Output Labelled Transition System (IOLTS) for every component
participating in the communications and one graph illustrating
the directional dependencies with the other components. These
models can help engineers better and quicker understand how a
communicating system behaves and is structured. They can also
be used for bug detection or for test generation. Compared to
other model learning approaches specialised for communicating
systems, CkTailv2 improves the precision of the generated models
by integrating algorithms that better recognise sessions in event
logs. CkTailv2 revisits and extends a first approach by simplifying
the set of requirements and assumptions in order to increase its
applicability on communicating systems. It now integrates two
new trace extraction algorithms: the former segments event logs
into traces by trying to detect sessions; the latter assumes event
logs to include session identifiers and allows to quicker generate
models. We report experimental results obtained from 10 case
studies and show that CkTailv2 has the capability of producing
precise models in reasonable time delays.

Index Terms—Reverse engineering; Model learning; Event Log;
Communicating systems.

I. INTRODUCTION

Model learning is a software reverse engineering approach,
which is receiving growing attention as a solution to help device
models as state machines. These models, which capture system
behaviours, can be considered as documentation or exploited in
some software engineering stages, e.g., robustness or security
testing. Over the last decade, there has been an extensive body
of work in this field, making emerge two main categories
of approaches called active and passive model learning. Such
approaches infer behavioural models of systems seen as a black-
boxes, either by analysing a set of execution traces resulting
from monitoring (passive approaches, e.g., [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]) or by interacting with them (active approaches, e.g.,
[11, 12, 13, 14, 15, 16, 17]).

We however observed that a few works [9, 18, 19] focused
on the learning of models for communicating systems. Yet,
these systems are more and more omnipresent in our daily
life, especially with the emergence of Internet of Things (IoT)
systems. Model learning would greatly ease the understanding
and analysis of communicating systems. For instance, the

generation of models expressing the behaviours of every
component could help engineers to quicker understand the
functioning of the whole system and would assist them in the
bug or vulnerability detection. We also noticed that several
issues remain open in the previous approaches. For instance,
the active technique given in [18] requires to know the system
topology in advance and only supports accessible and testable
components to build models. But, we have often observed that
many communicating systems integrate untestable components.
For instance, an autonomous component that continuously
delivers messages is uncontrollable and hence cannot be
experimented to get observations. The two other papers propose
passive approaches, which do not rely on these requirements.
Instead, they analyse execution traces to recover behaviours.
In order to build precise models, one key point is to be able
to recognise sessions in event logs, i.e., a temporary message
interchange among components forming a behaviour of the
whole system from one of its initial states to one of its final
states. Unfortunately, these approaches cannot extract sessions.
These observations motivated us to present a first approach and
tool called Communicating system k-Tail, shortened CkTailv1
[2]. To design it, we choose to extend the k-Tail learning
algorithm [3] with the capability to build one model called
Input Output Labelled Transition System (IOLTS) for every
component of a communicating system under learning. k-Tail
is well-known to quickly build generalised models from traces,
but it is unable to take into account the notion of component
and to construct models from event logs. We showed that
CkTailv1 builds more precise models than the two previous
passive approaches, but we also concluded that its requirements
and assumptions are still too restrictive to be practical.

In [1], we also proposed a passive model learning approach
for recovering models as IOLTSs from event logs. We however
assumed that correlation mechanisms, e.g., execution trace
identifiers, are employed to propagate context IDs in event logs.
The major contribution of this approach is its capability to
automatically retrieve conversations from event logs, without
having any knowledge about the used correlation mechanisms.
Our algorithm is based upon a formalisation of the notion of
correlation patterns and is guided towards the most relevant
conversation sets by evaluating conversation quality.

Contributions: this paper presents an extension of [1] and [2],
simply called CkTailv2, and the related tool. This new approach

111

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



aims at relaxing some requirements of CkTailv1 for targeting
more communicating systems. CkTailv2 indeed accepts event
logs having communication and non-communication events,
the latter being often used to keep track of debug outputs or
errors. Event logs can now integrate requests followed by an
unlimited amount of responses. Besides, CkTailv2 relies on two
session extraction algorithms. The former segments event logs
by trying to detect sessions with respect to constraints related to
the request-response pattern, the recognition of nested requests,
time delays and data dependency among components. The latter
assumes event logs to include session identifiers and uses the
trace extraction algorithm presented in [1]. CkTailv2 also infers
dependency graphs, which show in a simple way the directional
dependencies observed among components. We believe that
this kind of graph completes the behavioural models and will
be helpful to evaluate different kinds of model properties, e.g.,
testability or security.

This paper also provides a detailed empirical evaluation,
which investigates the precision of the models derived by
CkTailv2 and its performance in terms of execution times. This
empirical evaluation was carried out on event logs collected
from 10 case studies and compares our implementation of
CkTailv2 against three other tools namely CSight, the algorithm
given in [19] and CkTailv1. This evaluation shows that
CkTailv2 infers more precise models than the three previously
approaches, in reasonable time delays.

In summary, the major contributions of this paper are:
• the presentation of the CkTailv2 tool and approach, which

generates behavioural models and dependency graphs for
every component of a communicating system from event
logs,

• the design of two new algorithms allowing to better
recognise sessions in event logs, and hence to build more
precise models,

• the implementation of the approach publicly available
in [20] and an evaluation that compares CkTailv2 with
CSight, the approach proposed in [19] and CkTailv1.

Paper organisation: Section II discusses related work and
presents our motivations. We provide an overview of our tool
along with its capability of inferring models of communicating
systems with a concrete example of IoT system in Section
III. Our algorithms are detailed in Section IV. We recall some
basic definitions about the IOLTS model and we describe the
four steps of the approach. Section V examines experimental
results and discusses about the threats to validity. Section VI
summarises our contributions and draws some perspectives for
future work.

II. RELATED WORK

Model learning can be defined as a set of methods that
recover a specification by gathering and analysing system
executions and concisely summarising the frequent interaction
patterns as state machines that capture the system behaviour
[21]. Model learning algorithms can be organised into two main
categories: active and passive approaches. Both categories are
discussed below.

A. Active Model Learning

In this first category, systems are repeatedly queried (often
with tests) to collect positive or negative observations, which
are analysed and generalised to produce models [11, 12, 13, 14,
15, 16, 17]. Most of the active techniques have been conceived
upon two concepts, the L∗ algorithm [11] and incremental
learning [12]. This model learning category is actively studied
to make the approaches more effective and efficient. Among
the possible research directions, some works recently proposed
optimisations to reduce the query number [22], while others
tackled systems having specific constraints [17].

Some active model learning approaches have been proposed
for communicating systems. Groz et al. introduced an algorithm
to generate a controllable approximation of components through
active testing [23]. This kind of active technique implies that
the system is testable and can be queried. The learning of
the components is done in isolation. A recent work lifts this
constraint by testing a system with unknown components by
means of a SAT solving method [18]. Tappler et al. also
proposed a model-based testing technique for IoT systems
[24]. This technique is based on the generation of models
from multiple implementations of a common specification,
which are later pair-wise cross-checked for equivalence. Any
counterexample to equivalence is flagged as suspicious and
has to be analysed manually.

B. Passive Model Learning

The second category includes the techniques that passively
recover models from a given set of samples, e.g., a set of
execution traces. These are said passive as there is no direct
interaction with the system under learning. Models are often
generated by encoding sample sets with state diagrams whose
equivalent states are merged. For instance, the k-Tail approach
[3] merges the states having the same k-future, i.e., the same
event sequences having the maximum length k, which all are
accepted by the two states. k-Tail has been later enhanced with
Gk-tail to generate Extended Finite State Machines encoding
data constraints [4]. Other approaches also enhance k-Tail to
build more precise models [5, 7, 8]. kBehavior [6] is another
kind of approach that generates models from a set of traces
by taking every trace one after the other and by completing
a finite-state automaton in such a way that it now accepts
the trace. These previous passive algorithms usually yield big
models, which may quickly become unreadable.

Some passive approaches dedicated to communicating sys-
tems have also been proposed. Mariani et al. proposed in
[19] an automatic detection of failures in log files by means
of model learning. This work extends kBehavior to support
events combined with data. It segments an event log with two
strategies: per component or per user. The former, which can
be used with communicating systems, generates one model
for each component. CSight [9] is another tool specialised
in the model learning of communicating systems, where
components exchange messages through synchronous channels.
It is assumed that both the channels and components are
known. Besides, CSight requires specific trace sets, which are

112

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



segmented with one subset by component. CSight follows five
stages: 1) log parsing and mining of invariants 2) generation
of a concrete Finite State Machine (FSM) that captures the
functioning of the whole system by recomposing the traces
of the components; 3) generation of a more concise abstract
FSM; 4) model refinement with invariants that must hold in
FSMs, and 5) generation of Communicating FSM.

C. Key Observations and Motivations

After having studied the literature, we have firstly observed
that few papers and tools tackled the model generation of
component based systems or communicating systems. As stated
in the introduction, the main concerns of the active model
learning techniques are that the component topology must
be known in advance, and that all the components must be
reachable, testable and resettable many times. As a consequence,
active learning can be currently applied on a limited amount of
systems. As for passive techniques, the approaches [9, 19] have
paved the way, however, there is still room of improvements
to relax the approach requirements and to infer precise models.
Besides, we have observed that the generation and use of
invariants to make models more precise also limits learning
to small trace sets only in practice. For instance, the invariant
mining and satisfiability checking used in CSight are both
costly and prevent the tool from taking as input medium to
large trace sets.

We have proposed in [25] a passive model learning algorithm
for component-based systems, which builds one model per
component to avoid the generation of large and unreadable
models. This approach is specialised to IoT systems with an
algorithm called Assess [26]. The requirements considered in
these approaches are different from those of CkTail or CSight.
The main difference lies in the fact that the communications
among components are assumed hidden (not available in event
logs). Therefore, Assess tries to detect implicit component calls
and adds new synchronisation actions in models. Its algorithm
is hence specific to this assumption. Then, we have proposed
CkTailv1 [2] to generate models of communicating systems. In
short, the novelty proposed by CkTailv1 lies in its capability of
detecting sessions in event logs. Indeed, CSight needs sessions
put in separate sets but does not provide a way to generate
them from event logs. The work proposed in [6] offers the
possibility to segment event logs with several strategies. One
of them allows to extract the session of every component on
condition that the events include component identifiers.

We showed that CkTailv1 builds more precise models than
the other approaches by better recognising sessions, but we
also concluded that its requirements are too restrictive to be
widely used. Indeed, CkTailv1 requires event logs comprising
communication events only in such a way that each request
has to be followed by one response only. CkTailv2 aims at
relaxing some of these assumptions and integrates two new
trace extraction algorithms to support more communicating
systems.

III. CKTAILV2 TOOL AND APPROACH PRESENTATION

CkTailv2 is implemented in Java and is released as open
source in [20]. The tool takes as inputs an event log collected
from a communicating system and a file including regular
expressions used to format the event log. It returns two kinds of
models. The behaviours of each component of the system under
learning are encoded with one IOLTS. Intuitively, an IOLTS
expresses here the interactions of one component c with the
others along with the non-communication actions of c. Besides,
CkTailv2 generates dependency graphs, given under the form
of Direct Acyclic Graphs (DAGs). Each component has its own
DAG capturing its dependencies towards other components.
Such graphs help better comprehend the architecture of the
whole system. They complement the IOLTSs by offering
another viewpoint of the component interactions and they might
be used to different purposes, e.g., testability measurement, or
security analysis. Once generated, CkTailv2 stores these models
into two folders containing files saved in the DOT format. We
chose this format since it is based upon a well-known plain text
graph description language that can be translated into graphics
formats, e.g., PDF.

We provide below the requirements of CkTailv2, an over-
view of its architecture and functioning along with an example
of model generation.

A. CkTailv2 Requirements

The capability of CkTailv2 of inferring models depends on
several realistic assumptions made on a system under learning
denoted SUL:
• A1 Event log: we consider the components of SUL as

black-boxes (no access to firmware, code, data stored
on the device, etc.). The communications among the
components can be monitored, e.g., on components, on
servers, gateways, or by means of wireless sniffers. Event
logs are collected in a synchronous environment made
up of synchronous communications. Besides, these events
are ordered by means of timestamps given by a global
clock. At the end of the monitoring process, we consider
having one event log;

• A2 Event content: components produce communication
events or non-communication events. Both kinds of
events include parameter assignments allowing to identify
the source and the destination of each event. For non-
communication events, both the source and the destination
refer to the same component that has produced the event.
Besides, a communication event can be identified either
as a request or a response;

• A3 Device collaboration: components can run in parallel
and communicate with each other. To learn precise models,
we want to recognise sessions of the system in event logs.
We consider two exclusive cases:

– A31: the components of SUL follow this strict be-
haviour: they cannot run multiple instances; requests
are processed by a component on a first-come, first
served basis. Besides, components follow the request

113

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



–response exchange pattern (a response is associated
to one request, a request is associated to one or more
responses), or

– A32: the events that belong to the same session are
identified by a parameter assignment.

The session recognition mentioned in A3 helps extract
traces expressing complete behaviours of SUL, i.e., disjoint
action sequences starting from one of its initial states and
ending in one of its final states. A32 represents the classical
assumption stating that messages include an identifier allowing
to observe whole collaborations among components. Usually,
the session identification strongly facilitates the trace extraction.
Unfortunately, we have observed that this technique is seldom
adopted with communicating systems. When it is not used,
we restrict the functioning of SUL with A31 to be able to
recognise sessions. We have observed that this assumption can
be applied with many wireless or IoT systems.

B. CkTailv2 Overview

CkTailv2 is organised into four-steps, illustrated in Figure
1. Initially, the user gives as inputs an event log collected
from SUL along with regular expressions. The latter are
used to format the event log into a sequence S of actions
of the form a(α) with a a label and α some parameter
assignments. In accordance with the assumptions A1-A3, the
event log formatting allows to highlight some information such
as timestamps, or the sources and destinations of the messages
(request or response).

Execution traces are extracted from S by means of two
algorithms, which rely either on the assumption A31 or A32.

In short, if the actions include session identifiers, allowing
to directly recognise sessions in S (A32), The first algorithm
which aims at recognising sessions in S with respect to
constraints derived from the assumptions A1-A31. The second
one extracts traces by using session identifiers. When these
identifiers are provided, the algorithm simply extracts traces
by covering actions and their respective identifiers. When the
latter are unknown, the event log is analysed w.r.t. session
patterns and quality metrics to recover these identifiers first.
Both algorithms return a trace set denoted Traces(SUL) and
detect dependencies among the components of SUL. Then,
the third step of CkTailv2 derives dependency graphs from
Deps(SUL). In its last step, CkTailv2 generates one IOLTS
for every component of SUL with three sub-steps called “4A
Trace partitioning”, “4B IOLTS Generation” and “4C IOLTS
Generalisation”. The latter calls the k-Tail approach, which is
a model learning technique used to reduce IOLTSs by merging
equivalent states.

C. Model Learning Example

Before describing the CkTailv2’s steps, let us illustrate them
with a motivating example of model generation. Figure 2
shows a part of an event log collected from an IoT system
made up of devices and of two gateways. The events are
formatted by means of regular expressions to produce actions.
The regular expression example of Figure 2 extracts from

HTTP requests a label equals to the URI along with some
parameters. Figure 3 depicts an example of sequence of 15
actions obtained after the first step of CkTailv2. The first four
actions are derived from the HTTP messages of Figure 2. As
required, these actions indicate the sources and destinations
of the messages with the parameters from and to. The other
parameter assignments capture acknowledgements or sensor
data, e.g., a temperature value with svalue:=68 or a level of
luminance with svalue:=1000. We can observe from these
actions that the IoT system SUL is made up of 6 components.
But interpreting their interactions and what they do is still
tricky because of lack of readability.

Traces are now extracted from the action sequence S of
Figure 3 by the second step of CkTailv2. It covers and segments
S while trying to recognise sessions. In our example, no session
identifier is found in the actions. As a consequence, CkTailv2
uses an algorithm that tries to recover sessions with respect
to the assumption A31. To be integrated in the algorithm, we
formulated this assumption with five constraints expressing
what a session is and when keeping an action to a current
session. These constraints are detailed in Section IV-C and
summarised as follows: C1: a response is always associated
to the last observed request sharing the same communicating
components; C2: successive responses are always associated
to the related request; C3: nested requests (a request to a
component that also performs another request before giving a
response) are always kept together in a session; C4: a session
gathers messages exchanged between components interacting
together in a limited time delay and all the messages capturing
a data dependency between two components; C5: a non-
communication event is kept is the current session also with
respect to time delay and data dependency. Figure 4 gives
the trace set Traces(SUL) obtained from the action sequence
of Figure 3 with this algorithm. For sake of readability, the
parameter assignment are concealed in the figure. We observe
that it has kept together the related requests and responses, and
the nested requests req6 req7. Here, our algorithm has only
detected one distinctive longer time interval between the two
actions resp5 req6, which implicitly shows that a session ends
at resp5 and that a new one begins at req6.

While actions are covered to extract traces, the component
interactions are also analysed by CkTailv2 for detecting
component dependencies. These dependencies are given under
the form of component lists c1c2 . . . ck expressing that a
component c1 depends on a component c2, which itself depends
on another component and so on. The set Deps(SUL) gathers
these component lists. The component dependency is defined
in Section IV-E. Figure 4 shows the set Deps(SUL) inferred
from our example. Most of the dependencies between pairs
of components stem from requests. The component sequence
G1G2d3 is detected from the nested requests req6 req7. Four
data dependencies are also detected between d2d1, G2d1,
d4d1, (with the data svalue:=68) and d3G1 (with the data
cmd:=status).

The CkTail’s third step generates dependency graphs. It
derives DAGs from the set Deps(SUL) and computes their

114

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 1. Model learning of communicating systems with the CkTail approach

Jan 20, 2020 09:56:24.225
CET;Host=d1;Dest=G1;Protocol=HTTP;Verb=GET
Uri=/req1?svalue=68.00 HTTP/1.1;

Jan 20, 2020 09:56:24.682
CET;Host=G1;Dest=d1;Protocol=HTTP;HTTP/1.1
status=200 response=OK;

Jan 20, 2020 09:56:25.153
CET;Host=G1;Dest=d2;Protocol=HTTP;Verb=GET
Uri=/req2?svalue=68.00 HTTP/1.1;

Jan 20, 2020 09:56:25.318
CET;Host=d2;Dest=G1;Protocol=HTTP;HTTP/1.1
status=200 response=OK data=done;

Example of regular expression:
ˆ(?<date>\w{3} \d{2}, \d{4} \d{2}:\d{2}:\d{2}.\d{3})
\s(CET);(?<param1>(\w+=\w\d));(?<param2>(\w+=\w\d));
(?<param3>[ˆ;]+);(?<param4>[ˆ=]+=[A-Z]{3,4})\s(Uri=)
(?<label>[ˆ?]+)[?](?<param5>(\w+=\d{2}\.\d{2}))\s
HTTP/1.1;$

Fig. 2. Example of 4 HTTP messages collected from an IoT system. The
regular expression retrieves a label and 5 parameters here. The label expression
will be the label of the action in the action sequence S

transitive closures. Figure 5 illustrates the dependency graphs
obtained in our example.

The fourth step of CkTailv2 lifts traces to the level of
IOLTSs. In the step 4A Trace partitioning, CkTailv2 builds one
trace set for every component of SUL. It begins by doubling
every communication action to give a pair of output/input
actions by separating the notion of source/destination. The non-
communication actions are marked as outputs. Traces(SUL)
is then partitioned into as many trace sets as components found
in SUL. Each trace set Tc gathers only the traces related to
the component c. If we take back our example, Figure 6 gives
the new trace sets composed of sequences of input and output
actions derived from the set Trace(SUL) of Figure 4. As
this system is made up of 6 components, Traces(SUL) is
partitioned into 6 subsets.

The step 4B IOLTS Generation transforms every trace set
Tc into an IOLTS by converting traces into IOLTS path cycles,
which are joined on the initial state only. In our example, as
we have 6 trace sets, we obtain 6 IOLTSs Ld1-Ld4, LG1, LG2,
illustrated in Figure 7. Finally, CkTailv2 applies the k-Tail
algorithm to reduce the IOLTS sizes in the step 4C IOLTS
Generalisation. More precisely, it merges the states sharing

req1(from:=d1,to:=G1,svalue:=68,time:=
09:56:24.225)
resp1(from:=G1,to:=d1,content:=ok, time:=
09:56:24.682)
req2(from:=G1,to:=d2,svalue:=68, time:=
09:56:25.153)
resp2(from:=d2,to:=G1,content:=done,
time:=09:56:25.318)
req3(from:=G1,to:=G2,svalue:=68, time:=
09:56:26.267)
req1(from:=d1,to:=G1,svalue:=68, time:=
09:56:27.369)
resp3(from:=G2,to:=G1,content:=ok, time:=
09:56:27.371)
resp1(from:=G1,to:=d1,content:=ok, time:=
09:56:27.720)
req5(from:=G2,to:=d4,svalue:=68, time:=
09:56:27.859)
log(from:=d4,to:=d4,content:=heat-off,
time:=09:56:28.909))
resp5(from:=d4,to:=G2,content:=done,
time:=09:56:28.982)
req6(from:=G1,to:=G2,udevice:=12, cmd:=
status,time:=09:56:35.962)
req7(from:=G2,to:=d3,cmd:=status,GPIO:=1
time:=09:56:35.974)
resp7(from:=d3,to:=G2,svalue:=1000,
time:=09:56:36.846)
resp6(from:=G2,to:=G1,svalue:=1000, time:=
09:56:36.958)

Fig. 3. Action sequence of an IoT system. These actions have the form
<label><parameter assignments>, the latter expressing the components
involved in the communications and data

Traces(SUL)={req1resp1req2resp2req3req1resp3
resp1req5logresp5, req6req7resp7resp6}

Deps={ d1G1, G1d2, d2d1, G1G2, G2d4, G2d1,
d4d1, G1G2d3, G2d3, d3G1 }

Fig. 4. Step 2: Traces of SUL and dependency set Deps(SUL). The parameter
assignments are concealed for readability

115

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 5. Step 3: Dependency Graph Generation. Each component has its
own dependency graph expressing its directional dependencies with the other
components of SUL

$T_{d1}$={ !req1 ?resp1 !req1 ?resp1 }
$T_{d2}$={ ?req2 !resp2 }
$T_{d3}$={ ?req7 !resp7 }
$T_{d4}$={ ?req5 !log !resp5 }
$T_{G1}$={ ?req1 !resp1 !req2 ?resp2 !req3

?req1 ?resp3 !resp1, !req6 ?resp6 }
$T_{G2}$={ ?req3 !resp3 !req5 ?resp5, ?req6

!req7 ?resp7 !resp6 }

Fig. 6. Step 4A: Trace Partitioning. Traces(SUL) is prepared before the
IOLTS generation. Traces(SUL) is segmented to produce one trace set for
every component of SUL

the same k-future, i.e., the same action sequences having the
maximum length k. In our example, with k := 2, only the
states in white of the IOLTS Ld1 are merged by k-Tail, which
produces the IOLTS Ld11.

With these IOLTSs and DAGs, it becomes easier to interpret
the behaviour of SUL. In our example, the IOLTSs bring out
that the central devices of SUL are G1 and G2, which are
the two gateways. The component d1 is an active sensor that
provides temperature values. These values are sent to two
actuators d2 and d4 through the gateways G1 and G2. d3 is a
passive sensor (an illuminance light meter) that is queried by
G1 through G2, as d3 is directly connected to G2. d4 seems
to control a heating system, which is turned off when the
temperature reaches 68◦F.

Furthermore, as we now have formal models, different
kinds of activities may be automatically or semi-automatically
conducted to document SUL, to discover defects or more
generally to audit SUL. For instance, the European Telecom-
munications Standards Institute (ETSI) has proposed a general
method dedicated to audit large scale, networked systems by
undertaking testing and risk assessments [27]. One of the stages
of this method corresponds to establishing the context of SUL,
which can be partially performed with our tool from event
logs. Besides, quality metrics such as testability degrees can be
computed from our models [28, 29]. We provide another tool
for computing Observability, Controllability and Dependability
in [30]. These metrics can be used to deduce which component

is testable, or testable in isolation. Other approaches can take
these models or transition systems to audit the security of SUL
[24, 31, 32, 33].

After this overview of CkTailv2, we will develop its
theoretical background along with its algorithms in the next
section.

IV. THE CKTAILV2 APPROACH

Before going to the CkTailv2 step description, we will briefly
recall some basic definitions and notations used in the remainder
of the paper.

A. Preliminary Definitions

As in many works dealing with the modelling of atomic
components, e.g., [34, 35], we express the behaviours of
components with the well established Labelled Transition
System (LTS) model. A LTS is defined in terms of states
and transitions labelled by actions, themselves taken from a
general action set L, which expresses what happens. The Input
Output LTS is an extension of the LTS allowing to better
express behaviours with inputs and outputs.

Definition 1 (IOLTS) An Input Output Labelled Transition
System (IOLTS) is a 4-tuple 〈Q, q0,Σ,→〉 where:
• Q is a finite set of states;
• q0 is the initial state;
• Σ ⊆ L is the finite set of actions. ΣI ⊆ Σ is the countable

set of input actions, ΣO ⊆ Σ is the countable set of output
actions, with ΣO ∩ ΣI = ∅;

• →⊆ Q×Σ×Q is a finite set of transitions. A transition
(q, a, q′) is denoted q a−→ q′.

We also use the following notations on action sequences.
The concatenation of two action sequences σ1, σ2 ∈ L∗

is denoted σ1.σ2. ε denotes the empty sequence. We de-
note that σ1 is a subsequence of another sequence σ2 with
σ1 � σ2. final(σ) denotes the action ak(αk) of the sequence
σ = a1(α1) . . . ak(αk) or ε if σ = ε. A trace is a finite
sequence of observable actions in L∗. The trace of an IOLTS
is a sequence a0 . . . ak such that ∃qi−1, qi, ai, (1 ≤ i ≤ k) :
q0

a1−→ q1 . . . qk−1
ak−→ qk ∈→∗. Traces(L) denote the trace

set of the IOLTS L.
Furthermore, to better match the functioning of commu-

nicating systems, we assume that an action has the form
a(α) with a a label and α an assignment of parameters in
P , with P the set of parameter assignments. For example,
!switch(from := c1, to := c2, cmd := on) is an output action
composed of the label ”switch” followed by a parameter assign-
ment expressing the components involved in the communication
and a parameter of the switch command.

We will finally use the following notations on actions to
make our algorithms more readable:
• from(a(α)) = c denotes the source of the action;
• to(a(α)) = c denotes the destination;
• components(a(α)) = {from(a(α)), to(a(α))};

116

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 7. Steps 4B & C: IOLTS Generation and generalisation with the k-Tail algorithm. Each component has its own IOLTS.

• time(a(α)) = t returns the timestamp value identifying
when a(α) occurred, time(ε) = +∞;

• isReq(a(α)), isResp(a(α)) are boolean expressions ex-
pressing the nature of the message;

• session(a(α)) = id denotes the session identifier when
available. Otherwise, session(a(α)) = ∅.

• data(a(α)) = α \ {from := c1; to := c2, time :=
t, session := s};

The dependencies among the components of a communicat-
ing system are captured with a Directed Acyclic Graph (DAG),
where component identifiers are labelled on vertices.

Definition 2 (Directed Acyclic Graph) A DAG Dg is a 2-
tuple 〈VDg, EDg〉 where V is the finite set of vertices and E
the finite set of edges.
λ denotes a labelling function mapping each vertex v ∈ V to
a label λ(v).

B. CkTailv2 Step 1: Trace Formatting

Keeping in mind the assumption A1, CkTail takes as input
an event log gathering events that are totally ordered by means
of their time-stamps. These events are parsed to retrieve the
actions performed by SUL and their related data. These actions
must have the form a(α) with a a label and α an assignment
of parameters and must be compliant with the assumption A2.
This formatting is achieved by means of regular expressions
given to CkTailv2. Their writing may be performed manually
with small to medium event logs, but this activity may quickly
become laborious as the log size grows. A way to eliminate or
assist users in this intervention is to consider the approaches
and tools that automatically mine patterns from log files [19,
36, 37, 38, 39, 40]. These patterns may be used to quickly
derive regular expressions.

As events are usually too detailed or specific to their related
executions, regular expressions are also a good mean to lift
the abstraction level by filtering out some useless actions, or
some concrete values in actions.

At the end of this step, we hence assume having a sequence
S ∈ L∗ of actions on the form a1(α1) . . . ak(αk). The next
step of CkTailv2 covers the action sequence S to extract the
sub-sequences that capture some sessions of SUL. This step

TABLE I
CONSTRAINTS DERIVED FROM THE ASSUMPTIONS A1, A2, A31. WHEN

ONE OF THESE CONSTRAINTS HOLD, THE CURRENT ACTION ai(αi) IS KEPT
IN A SESSION σ.

C1 A response ai(αi) is always associated to the last request previously
observed in σ such that the replier returns the response to the requester
which has sent the request.

C2 All the responses associated to the same request are kept in σ.
C3 A request ai(αi) that belongs to a chain of nested requests must be

kept in the session σ. Two requests req1 and req2 are nested iff the
action sequence S includes this form of sequence: req1(from:=c1, to:=c2)
req2(from:=c2, to:=c3) resp2(from:=c3, to:=c2) resp1(from:=c2, to:=c1).

C4 A component, which already participated to the session σ, can send a new
request ai(αi) to another component. This request is kept in σ if C4.1:
the session is not timed out, or if C4.2: this request shares data with some
previous actions of σ

C5 A non-communication action ai(αi) is kept in σ if C5.1: the session is
not timed out, or if C5.2: ai(αi) shares data with some previous actions
of σ

relies either on the assumption A31 or A32 and is hence
implemented with two different algorithms presented in the
two next sections.

C. CkTailv2 Step 2: Trace Extraction Without Session Identifier

The first trace extraction algorithm is founded on the
assumptions A1, A2, A31 to interpret communications and
to recover sessions in event logs. In particular, with A31, we
suppose that sessions are not identified in event logs.

To devise this algorithm, we derived a list of constraints
from these assumptions giving the conditions for a sub-sequ-
ence of S to be a session. As our algorithms cover the actions
of S one after the other, we have formulated these constraints
to express whether an action ai(αi) of the action sequence
S = a1(α1) . . . ak(αk) ∈ L∗ belongs to a session denoted
σ. Table I gathers the five constraints used in our algorithms.
C1 and C2 focus on responses, while C3 and C4 deal with
requests. C4 is a special constraint expressing when a new
request ai(αi), sent from a component that has previously
participated in the current session, belongs to σ. The choice
of keeping this new request in the session depends on two
other factors, i.e., time delay and data dependency, with the
constraints C4.1 and C4.2. C5 addresses non-communication
actions and restricts the session participation as in C4.

117

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II
FORMALISATION OF THE CONSTRAINTS C1-C5 USED IN THE TRACE

EXTRACTION ALGORITHM

C1 ∃!σr ∈ Lreq(σ) : response(ai(αi), final(σr))}
C2 ∃!σr ∈ OLreq(σ) : response(ai(αi), final(σr))}
C3 isReq(ai(αi)) ∧ Lreq′ = {σ1 ∈ Lreq(σ) | from(ai(αi)) =

to(final(σ1))} 6= ∅∧ ¬pendingRequest(from(ai(αi)))
C4 isReq(ai(αi))∧

from(ai(αi)) ∈ KC∧(∀σ1 ∈ Lreq(σ) : from(ai(αi)) 6=
to(final(σ1)))∧ (ontime(ai(αi), σ) ∨ dataDependency(
ai(αi), S, σ))∧ ¬pendingRequest(from(ai(αi)))

C5 ¬isReq(ai(αi))∧ ¬isResp(ai(αi))∧ from(ai(αi)) ∈ KC∧
(ontime(ai(αi), σ)∨ dataDependency(ai(αi), S, σ))

To use these constraints in our algorithms, we formulated
them with boolean expressions written with the notations given
in Section IV-A completed by these ones:
• KC stands for the set of known components involved in

the session σ so far;
• response(a1(α1), a(α)) is the boolean expression
isResp( a1(α1))∧ from(a1(α1)) = to(a(α))∧ to(a1(
α1)) = from(a(α));

• Lreq(σ) denotes the set of sequences of pending requests
i.e., the sequences of requests a1(α1) . . . ak(αk)
� σ for which responses have not yet been received.
Lreq(σ) =def {a1(α1) . . . ak(αk) � σ | isReq(ai(
αi))1≤i≤k, ∀a(α) ∈ L∗ : response(a(α), ai(αi)) =⇒
ai(αi)a(α)ai+1(αi+1) � σ};

• OLreq(σ) denotes the set of requests for which a least
one response has been received;

• ontime(a(α), σ) is a boolean expression that returns true
if the action a(α) may belong to the session σ with regard
to the session duration or session time-out;

• data-dependency(a(α), S, σ) is a boolean expression that
returns true if the request a(α) shares some data with
other requests of the session σ � S. The data dependency
is defined in Section IV-E;

• pendingRequest(c) is the boolean expression (∃σ1 ∈
Lreq(σ), a(α) ∈ σ1 : c ∈ components(a(α))) that eval-
uates whether the component c has sent (resp. received) a
request and has not yet received (resp. sent) the response.

From these notations, we formulated the above constraints,
listed their boolean terms and studied their possible permuta-
tions. We finally kept the constraints expressing that an action
ai(αi) belongs to the current session when they hold. These
are listed in Table II.

Algorithms 1 and 2 implement the trace extraction. Al-
gorithm 1 calls the procedure Keep-or-Split with an action
sequence initialised to S. It returns Traces(SUL), the final
component set C along with the set of component dependencies
Deps(SUL).

The procedure Keep-or-Split covers an action sequence
a1( α1) . . . ak(αk) to extract a session σ. The set of known
components KC is initialised with the components of the
first action a1(α1). Then, every action ai(αi) is covered to
decide whether it is kept in σ (line 8) or not. Given an action
ai(αi), the procedure updateOLreq (Algorithm 2 lines (1-5))
is called to update the set of pending requests OLreq w.r.t. the

Algorithm 1: Trace Extraction with A31
input :Action sequence S
output :Traces(SUL), Component set C, Component dependency set

Deps(SUL)
1 C := Deps(SUL) := ∅;
2 Keep-or-Split(S);
3 Procedure Keep-or-Split(a1(α1) . . . ak(αk)) is
4 σ := σ2 := ε;
5 Lreq(σ) := OLreq(σ) := ∅;
6 KC := components(a1(α1));
7 i := 1;
8 while i ≤ k do
9 updateOLreq(ai(αi));

10 case C1 true do
11 σ := σ.ai(αi); Trim(σr);
12 KC := KC∪components(ai(αi));

13 case C1 false and C2 true do
14 σ := σ.ai(αi);
15 KC := KC∪components(ai(αi));

16 case C3 true do
17 σ := σ.ai(αi);
18 Extend(σr, ai(αi));
19 KC := KC∪components(ai(αi));

20 case C3 false and C4 true do
21 σ := σ.ai(αi);
22 Extend(ε, ai(αi));
23 KC := KC∪components(ai(αi));

24 case C5 true do
25 σ := σ.ai(αi);
26 KC := KC∪components(ai(αi));

27 otherwise do σ2 := σ2.ai(αi) ;
28 i++;

29 Traces(SUL) := Traces(SUL) ∪ {σ};
30 C := C ∪KC;
31 if σ2 6= ε then
32 Keep-or-Split(σ2);

33 END;

assumption A31. More precisely, if ai(αi) is a new request
coming from a component c, then all the previous requests that
involve c are removed from OLreq to meet A31 (first come,
first served). In the same way, if ai(αi) is a response, only the
request associated to this response is kept.

Then, the procedure Keep-or-Split processes the action ai(αi)
with the constraints C1-C5. When one of them holds, the action
ai(αi) is added to the session σ. Besides, the set of known
components KC is updated to include the components involved
in ai(αi). For any other case, the action ai(αi) is put into a
new action sequence σ2 (line 27). Once all the actions have
been covered, σ is added to Traces(SUL) and C is updated
with the set of components KC built with this session. If σ2
is not empty, the procedure Keep-or-Split( σ2) is recursively
called to recover other sessions in σ2 (line 31).

The main difference among the cases C1 to C5 lies in
the update of the set of pending requests Lreq(σ), with the
procedures Trim and Extend. The former is called with C1:
receipt of a response associated to a list of pending requests
σr in Lreq(σ). Trim is called to remove the last request
of σr, final(σr), because a response has been received to
this request. final(σr) is shifted to OLreq(σ). The procedure
Extend is called with C3 and C4. C3 corresponds to the
receipt of a request that belongs to a chain of nested requests
σr ∈ Lreq(σ). Extend is here called to update Lreq(σ) with

118

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the nested request list σr.ai(αi). C4 stands for the receipt
of a new request from a known component. Extend is now
called to add the new request ai(αi) in Lreq(σ). Furthermore,
Extend builds the set Deps(SUL) of component lists. This
part is detailed in Section IV-E.

Algorithm 2:
1 Procedure updateOLreq(ai(αi)) is
2 if isReq(ai(αi)) then
3 OLreq(σ) := OLreq(σ) \ {a(α) ∈ OLreq |

from(ai(αi)) ∈ components(a(α))};

4 else if isResp(ai(αi)) then
5 Lr := {a(α) ∈ OLreq(σ) | from(ai(αi) = to(a(α))}

OLreq(σ) := OLreq(σ) \ {a(α) ∈ OLreq(σ) |
from(ai(αi) ∈ components(a(α))} ∪ Lr;

6 Procedure Trim(σr) is
7 σ′ := remove(final(σr));
8 Lreq(σ) := Lreq(σ) \ {σr} ∪ {σ′};
9 OLreq(σ) := OLreq(σ) \ {a(α) ∈ OLreq(σ) |

from(final(σr)) ∈ components(a(α))};
10 OLreq(σ) := OLreq(σ) ∪ {final(σr)};

11 Procedure Extend(σr, a(α)) is
12 σ′ := σr.a(α) = a1(α1) . . . ak(αk);
13 Lreq(σ) := Lreq(σ) \ {σr} ∪ {σ′};
14 //Component dependencies
15 lc := c1 . . . ckck+1 such that ci = from(ai(αi))(1≤i≤k),

ck+1 = to(ak(αk));
16 Deps(SUL) := Deps(SUL) ∪ {lc};

17 Procedure ontime(ai(αi), σ) is
18 return (time(ai(αi))− time(final(σ)) < T );

19 Procedure data-dependency(ai(αi), S, σ) is
20 if ∃σ1 = a1(α1)a2(α2) . . . ai(αi) � S : to(ai(αi))

data−−−→
σ1

from(a1(α1)) then
21 Deps(SUL) := Deps(SUL)∪{to(ai(αi)).from(a1(α1))};

22 if σ1 � σ.ai(αi)) then
23 return true;

24 return false;

The boolean expression ontime(a(α), σ), used in C4 and
C5, is implemented with the procedure ontime. As stated
previously ontime allows to limit the session duration. Several
implementations are possible. We provide an example in
Algorithm 2, line (17). This procedure checks whether the
time delay between the last received action ai(αi) and the
previous one in the session σ is lower than a time duration T .

The boolean expression data-dependency (ai(αi), S, σ), also
used in C4 and C5, is implemented by the procedure given
in Algorithm 2. It checks whether a data dependency exists
between the request ai(αi) and some requests of the session
σ. The notion of dependency among components and this
procedure shall be discussed in Section IV-E.

The action sequence of Figure 3 has been converted into
Traces(SUL) by means of this algorithm, as no session
identifier is available within actions. Here, the trace extraction
algorithm has detected that C4 does not hold with the request
req6. It has indeed detected, by means of the timestamps,
a distinctive longer time interval between the actions resp5
req6, which implicitly suggests that the session timed out. The
algorithm has detected two nested requests req6 req7. Besides,
several data dependencies have been identified between the

requests req1,req2 req3,req5. These requests along with their
responses are hence kept together in the same session.

D. CkTailv2 Step 2: Trace Extraction With Session Identifiers

Algorithm 3: Trace Extraction with A32
input :Action sequence S
output :Traces(SUL), Component set C, Component dependency set

Deps(SUL)
1 C := Deps(SUL) := ∅;
2 ID := {session(a(α)) | a(α) ∈ S};
3 Traces(SUL) :=

⋃
id∈ID{σid} with

σid = S \ {a(α) | session(a(α)) 6= id};
4 foreach σ = a1(α1) . . . ak(αk) ∈ Traces(SUL) do
5 S := σ;
6 Keep-or-Split2(S);

7 END;
8 Procedure Keep-or-Split2(a1(α1) . . . ak(αk)) is
9 Lreq(σ) := OLreq(σ) := ∅;

10 KC := components(a1(α1));
11 i := 1;
12 while i ≤ k do
13 C := C ∪ components(ai(αi));
14 case C1 true do
15 Trim(σr);

16 case C3 true do
17 Extend(σr, ai(αi));

18 case C3 false and C4 true do
19 Extend(ε, ai(αi));

20 i++;

The previous trace extraction algorithm relies on the as-
sumption A31 to extract traces. This second trace algorithm
now relies on A32. This assumption involves that the session
identifiers should be given to the algorithm. Nonetheless,
we observed that establishing an identifier list is a strong
assumption especially when SUL is a composition of external
items, e.g., services or IoT, whose functioning is not known.

To solve this issue, we presented in [1] an algorithm for
extracting session identifiers from event logs. In short, this
algorithm explores the trace set space that can be derived from
an event log along with the respective identifiers. Furthermore,
it is guided toward the most relevant solutions by means of
session invariants and trace quality metrics. The algorithm
either provides a first session identifier set that meets quality or
returns a sorted list w.r.t. quality. More details were presented
in [1].

With a given set of session identifiers and A32, the trace
extraction is quite simpler to perform. Algorithm 3 begins to
build Traces(SUL) by extracting from S the sub-sequences
of actions having the same session identifier (lines 2-3).
Afterwards, it calls the procedure Keep-or-Split2 for every
trace of Traces( SUL) to detect component dependencies as
previously (lines 4-6). To this end, this procedure updates the
set of pending requests Lreq( σ) as previously for every trace
σ with the constraints C1, C3, C4 (only these constraints are
needed to build Lreq(σ)). Lreq(σ) is updated by means of
the procedures Trim and Extend, which disclose component
dependencies and build the set Deps(SUL).

119

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



E. CkTailv2 Step 3: Dependency Graph Generation

The notion of component dependency is formulated by means
of the three expressions given below. We write c1 depends on
c2, when at least one of these expressions holds.

Definition 3 (Component dependency) Let c1, c2 ∈ C, c1 6=
c2, and S ∈ L∗. We denote c1 depends on c2 iff (c1

r−→
σ
c2) ∨

(c1
nr−→
σ

c2) ∨ (c1
data−−−→
σ

c2) with:

1) c1
r−→
σ
c2 iff ∃σ � S, a(α) � σ : isReq(a(α)),

from(a(α)) = c1, to(a(α)) = c2;
2) c1

nr−→
σ

c2 iff ∃σ � S, a1(α1) . . . ak(αk) � σ :

from(a1(α1)) = c1, to(ak(αk)) = c2, a1(α1) . . .
ak(αk) ∈ Lreq(σ);

3) c1
data−−−→
σ

c2 iff ∃σ � S, α ∈ P : DS(σ, c1, c2, α) and
∀σ′ = a′1(α′1)a′2(α′2) . . . ak(αk) � S : DS(σ′, c1, c2, α)
=⇒ σ′ � σ, with DS(a1(α1) . . . ak(αk)c1, c2, α) the
boolean expression from(a1(α1)) = c2∧ to(ak(αk))
= c1∧ isReq(ak( αk))∧ to(ai(αi)) = from(ai+1(

αi+1) )1≤i<k)∧
⋂

(1≤i≤k)
αi = α.

The two first expressions illustrate that a component c1
depends on another component c2 when c1 queries c2 with
a request or by means of successive nested requests of the
form req1(from := c1, to := c)req2(from := c, to := c2).
The last expression deals with data dependency. We say that
c1 depends on c2 if there is a chain of actions from c2 ended
by a request to c1 sharing the same data α. More precisely,
the third expression holds if a component c2 has sent an
action a1(α1) with some data α, if there is a unique sequence
a1(α1) . . . ak(αk) sharing this data and if ak(αk) is a request
whose destination is c1. An immediate consequence of this
expression is that we do not consider component dependencies
when there are several chains of actions all sharing the same
data and addressed to the several components. Yet, we can
observe that there is a data dependency among components,
but we are unable to establish the dependency relations as
several options among the components are possible. Because
of this ambiguity that may bring false relationships, we prefer
to not consider this case.

The component dependencies are detected by the second step
of CkTailv2 and are given under the form of component lists
c1 . . . ck in Deps(SUL). Component dependencies are detected
while Algorithms 1 or 3 build traces by means of the procedures
Extend and data-dependency. The procedure Extend detects
the two first component dependency cases of Definition 3.
It uses the set of pending requests Lreq(σ) to complete the
set Deps(SUL). Indeed, the procedure Extend constructs a
sequence of Lreq(σ) in such a way that it is either one request
(Case C4) or a list of nested requests (Case C3). The procedure
covers the component sequences lc = c1 . . . ckck+1 of Lreq(σ)
and adds the dependency lists in Deps(SUL) (Algorithm 2,
line 15). The procedure data-dependency(ai(αi), S, σ) checks

whether the last expression of Definition 3 holds. If there is
a unique sequence a1(α1) . . . (ai(αi) sharing the same data
α ∈ data( ai(αi)) and finished by the request ai(αi) then the
dependency to(ai(αi)).from(a1(α1)) is added to Deps(SUL)
(line 21). If this sequence is a subsequence of the current session
σ.ai(αi), then the procedure also returns true to Algorithms 1
and 3 to indicate that this request must be kept in the current
session.

It is worth noting that Algorithms 1 and 3 slightly differ
in the data dependency detection. Given two components c1
and c2, Algorithm 1 checks whether c1

data−−−→
σ

c2 holds on the
initial action sequence S. It checks that there is a unique chain
of actions from c2 to c1 in S as it does not know the sessions
in advance. Algorithm 3 does the same verification but on
every trace σ of Traces(SUL), which represent sessions. As
a trace σ is usually much shorter than the action sequence S,
c1

data−−−→
σ

c2 may be satisfied more frequently. In other terms,
Algorithm 3 may detect more component dependencies because
the sessions are already given and known.

Figure 4 shows the set Deps(SUL) derived from the action
sequence of Figure 3. Most of the component dependencies
stem from requests. For instance, the component sequence
G1G2d3 is detected from the nested requests req6 req7. Four
data dependencies are detected between d2d1, G2d1 d4d1,
(with the data svalue:=68) and d3G1 (with cmd :=status).

CkTailv2 implements the generation of dependency graphs
from Deps(SUL) with Algorithm 4. The latter partitions
Deps( SUL) to group the dependency lists starting by the
same component into the same subset. This partitioning is
performed with the equivalence relation ∼c on C∗ given by
∀l1, l2 ∈ Deps(SUL), with l1 = c1 . . . ck, l2 = c′1 . . . c

′
k,

l1 ∼c l2 iff c1 = c′1. Given a partition Ci and a component list
l ∈ Ci, Algorithm 4 builds a path of the DAG Dgi such that
the nth state is labelled by the nth component of l. Algorithm
4 finally computes the transitive closure of the DAGs to make
all component dependencies visible.

The dependency graphs, which are generated from the set
Deps(SUL) of Figure 4, are depicted in Figure 5. They reflect
another window on the architecture of SUL. Indeed, these
graphs show in a readable manner how the components interact
together. They also help identify central components that might
have a strong negative impact on SUL when they integrate
faults.

Algorithm 4: Device Dependency Graphs Generation
input :Deps(SUL)
output :Dependency graph set DG

1 foreach Ci ∈ Deps(SUL)/ ∼c do
2 foreach c1c2 . . . ck ∈ Ci do
3 add the path sc1 → sc2 . . . sck−1

→ sck to Dgi;

4 Dg′i is the transitive closure of Dgi;
5 DG := DG ∪ {Dg′i};

F. CkTailv2 Step 4: IOLTS Generation
This last step, implemented by Algorithm 5, generates one

IOLTS for every component in C. The algorithm starts by

120

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Algorithm 5: IOLTS Generation
input :Traces(SUL)
output : IOLTSs Lc1 . . . Lck

1 T := {};
2 foreach σ = a1(α1) . . . ak(αk) ∈ Traces(SUL)) do
3 σ′ := ε;
4 foreach ai(αi) � σ do
5 σ′ := σ′.!ai(αi ∪ {id := from(ai(αi))} \ {time :=

t, session := s});
6 if isReq(ai(αi)) ∨ isResp(ai(αi))) then
7 σ′ := σ′.?ai(αi ∪ {id := to(ai(αi))} \ {time :=

t, session := s});

8 foreach c ∈ C do
9 Tc := Tc ∪ {σ′ \ {a(α) ∈ σ′ | (id := c) /∈ α}

10 foreach Tc with c ∈ C do
11 Generate the IOLTS Lc from Tc;
12 Merge the equivalent states of Lc with kTail(k = 2, Lc);

transforming the traces to integrate the notions of input and
output. Given a trace a1(α1) . . . ak(αk), every action is doubled
by separating the component source and destination. The source
and the destination are identified by a new assignment on the
parameter id added to each action. Besides, the timestamps
and session identifiers are removed from the assignments to
improve the model generalisation. For a communication action
ai(αi), this step produces a new trace σ′ composed of the
output !ai(αi1) sent by the source of the message, followed
by the input ?ai(αi2) received by the destination (lines 5-7).
Non-communication actions are marked as outputs. Then, this
new trace σ′ is segmented into sub-sequences, each capturing
the behaviours of one component only (lines 8, 9). The trace
set Tc gathers the traces of the component c.

Every trace set Tc is now lifted to the level of IOLTS.
A trace t = a1(α1) . . . ak(αk) ∈ Tc is transformed into the

path q0
a1(α1)−−−−→ q1 . . . qk−1

(ak(αk)−−−−−→ q0 such that the states
q1 . . . qk−1 are new states. These paths are joined on the state
q0 to build the IOLTS Lc:

Definition 4 (IOLTS generation) Let Tc = {t1, . . . , tn} be
a trace set. Lc = 〈Q, q0,Σ,→〉 is the IOLTS derived from Tc
where:
• q0 is the initial state.
• Q,Σ,→ are defined by the following rule:

ti=a1(α1)...ak(αk)

q0
a1(α1)−−−−→qi1...qik−1

ak(αk)−−−−→q0

Finally, Algorithm 5 applies the kTail algorithm to generalise
and reduce the IOLTSs by merging the equivalent states having
the same k-future. We use k = 2 as recommended in [4, 41].

V. EMPIRICAL EVALUATION

The experiments presented in this section aim to evaluate
the capabilities of our algorithms to build models in terms
of precision and performance, compared to the approaches
allowing to learn models of communicating systems. Prior
to this work, we evaluated CkTailv1 along with the tools
CSight [9], Assess [26], and the tool suite proposed in [19]

based upon the tool kbehavior, which we denote LFkbehavior.
Our experimental results, given in [2], showed that Assess
requires assumptions that are strongly different than those
required by the other tools. The main difference for Assess
lies in the fact that the communications among components
are assumed hidden (not available in event logs). Assess tries
to detect implicit calls of components instead, and completes
models with synchronisation actions to express them. When
this assumption does not hold, i.e., when we feed Assess with
event logs including communication messages, we showed that
it builds high imprecise models. Consequently, for this new
evaluation, we have chosen to conduct several experimentations
on CSight, LFkbehavior, CkTailv1 and CkTailv2 (source code
and explanations available in [20]). As our approach uses
two distinct trace extraction algorithms, we have chosen to
differentiate them with the notations CkTailv2-w/oS (Algorithm
1 without session identifier) and CkTailv2-w/S (Algorithm 3
with session identifiers).

This evaluation aims at investigating the capabilities of our
algorithms through the following four questions:

• RQ1: can CkTailv2 infer models that capture correct
behaviours of SUL? This question studies the capability
of CkTailv2 to build models that accept valid traces of the
system compared to CSight, CkTailv1 and LFkbehavior.
The valid traces correspond to traces extracted from event
logs but not used for the model generation;

• RQ2: do the models inferred by CkTailv2 reject abnormal
behaviours? RQ2 studies the capability of CkTailv2 to
generate models that reject invalid traces, compared to
CSight, CkTailv1 and LFkbehavior. Invalid traces express
abnormal behaviours of the system;

• RQ3: is CkTailv2 able to detect accurate dependencies
among components? RQ3 investigates the recall and
precision of CkTailv2 to detect component dependencies.
Recall is here the percentage of the real dependencies that
are detected, and precision is the percentage of detected
dependencies that are correct;

• RQ4: what is the performance of CkTailv2 to infer models
compared to the other tools? How does CkTailv2 scale
with the size of the event log?

A. Empirical Setup

To generate models, the considered tools impose different
assumptions, which we examined before our experiments to
avoid any bias. We ran LFkbehavior with the strategy that
segments event logs w.r.t. component identifier, as this is the
only one that can be applied with communicating systems to
build one model per component. CSight does not take event log
as input but trace sets such that every component is associated
to its own trace set. CkTailv1 is more restrictive on the event
log content than LFkbehavior and CkTailv2. For CkTailv1, an
event log must be exclusively composed of communication
events and a request must be associated to one response only.

As a consequence, we have taken into consideration all
these differences through experiments conducted on several

121

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



configurations. We firstly assembled and configured 6 com-
municating systems from a set of 7 commercial devices (3
sensors, 2 gateways, 2 actuators). Each of these systems
contains at least one gateway using the home automation
system Domoticz 1, connected to at least two sensors and
one actuator. The behaviours of the gateway(s) after the receipt
of data from the sensors differ in each configuration. We
monitored these systems and collected event logs of about
2200 events. We denote them Conf1 to Conf6. We also
considered 2 other systems made up of other components to
avoid giving conclusions on similar systems. The first one has
8 sensors (4 are commercial devices and the others are based
upon the open source framework EspEasy 2) that periodically
send data to a Cloud server. The second one corresponds to
an IP security camera, which is interconnected to NTP, SMTP
and FTP servers. The corresponding event logs are denoted
Conf7 and Conf8 and respectively include 2206 and 1310
events. All these event logs do not include session identifiers.
Hence, we manually modified them to compare our algorithms
CkTailv2-w/oS and CkTailv2-w/S. The modifications consisted
in adding a session identifier in every action with regard to the
functioning of the systems. We denote these new event logs
Conf9 to Conf16.

All the tools except CSight take event logs as input. We
experimented CSight after having manually segmented Conf1
to Conf8 into trace sets, but we were unable to get any result
after 5 hours of computation, which was our limit for each
experiment. We observed that the first steps of CSight were
achieved, but these were always followed by time-outs. The
last steps of Csight call a model-checker to refine models
with invariants, and we suspect that the model-checker was
unable to check invariant satisfiability on large trace sets.
Therefore, to compare CSight with the other tools, we took
back two trace sets given with the CSight implementation.
The first one, denoted Tcp contains 8 traces (46 events)
collected from two components exchanging TCP messages.
The second trace set denoted AltBit contains 15 traces (246
events) expressing message exchanges between two components
over the Alternating Bit Protocol, which belongs to the family
of reliable transport protocols.

In summary, we considered 18 configurations. Conf1, 3, 5,
8, Tcp and AltBit are event logs that meet the requirements
of all the tools, and are particularly interesting for comparing
CSight, CkTailV1, LFkbehavior and CkTailv2-w/oS. Conf2,
4, 6, 7 are more general event logs (composed of requests
associated to multiple responses and of non-communication
events) and are used to confront CkTail- v2-w/oS with
LFkbehavior. Finally, Conf9 to 16 allow to compare our
algorithms CkTailv2-w/oS and CkTailv2-w/S.

Furthermore, CkTailv1 and CkTailv2 use the procedure
ontime to check whether an action belongs to a current session
with regard to the session duration. The same procedure, which
is given in Section IV-C, was used for both tools.

1https://www.domoticz.com/
2https://www.letscontrolit.com/

Tcp AltBit Conf1 Conf2 Conf3 Conf4 Conf5 Conf6 Conf7 Conf8 Mean
0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

90,00 %

100,00 %

LFkbehavior CkTailv1 CkTailv2-w/oS CSight

Fig. 8. Percentage of valid traces accepted by the models with the
configurations Tcp, AltBit, Conf1 to 8

B. RQ1: can CkTailv2 infer models that capture correct
behaviours of SUL?

To answer RQ1, we measured the rate of valid traces
accepted by all the behavioural models generated from the 18
configurations. Given a valid trace σ and an IOLTS L, IOLTS
acceptance means here that σ ∈ Traces(L). To get valid traces,
we chose to follow a Hold Out method, which partitioned each
event log in one training log for the model generation and
one testing log for the extraction of valid traces. We manually
segmented event logs into two parts with an approximative
ratio of 80% and 20%, taking care not to separate actions that
belong to the same session to avoid the generation of incorrect
models.

Afterwards, still to avoid any bias, we extracted valid
trace sets from the testing logs. This trace extraction was
automatically performed for the event logs including session
ids. But for the other event logs, as there is no information
allowing to recognise valid traces, we manually extracted them
by leveraging our knowledge of the case study functioning.

We obtained around 35 to 200 valid traces for Conf1 to 16.
For the configurations Tcp and AltBit we respectively used
75% of the traces to generate models, the remaining being
used as valid traces.

a) Results: The percentages of valid traces accepted by
the models generated by each tool are illustrated in the bar-
diagrams of Figures 8 and 9. With the configurations Conf1
to 8, the models that accept the most of valid traces are always
those generated by CkTailv2-w/oS. In our experiments, these
models accept an average of 96.43% of valid traces. The
models given by CkTailv1 and LFkbehavior provide close
results with 66.47% and 63.23%. If we focus on the results
given by CkTailv2-w/oS and CkTailV1, we have the same
rate of valid traces accepted by the models with Conf1, 3,
5 and 8. These similarities come from the fact that these
configurations meet the assumptions of both tools. The trace
segmentation along with the model generation are hence
performed in a similar manner. As expected, with the other
configurations, we observe that CkTailv1 produced less correct

122

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Conf9 Conf10 Conf11 Conf12 Conf13 Conf14 Conf15 Conf16 Mean
0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

90,00 %

100,00 %

LFkbehavior CkTailv1 CkTailv2-w/oS CkTailv2-w/S

Fig. 9. Percentage of valid traces accepted by the models with the
configurations Conf9 to 16

models as it eliminated some actions during the trace extraction.
LFkbehavior outperforms CkTailv1 with Conf2, 4 and 6 for
the same reason.

Figure 8 also shows that the models generated from the
configurations Tcp and AltBit accept all the valid traces,
whatever the approach used. These results tend to reveal that
the sizes of the event logs used with these configurations are
not large enough to make distinctions among the approaches.
Therefore, we prefer to not give any conclusion here. As stated
earlier, we were unable to apply CSight on larger trace sets.

Figure 9 shows that when the event logs include sessions
identifiers, LFkbehavior and CkTailv1 infer models accepting
the same ratio of valid traces. The interesting observation is
that CkTailv2-w/oS and CkTailv2-w/S provide close results,
i.e., the models given by CkTailv2-w/oS accept slightly less
valid traces only. We recall that CkTailv2-w/S extracts traces
from event logs by means of session identifiers (the trace
extraction is always correct) whereas CkTailv2-w/oS tries to
detect sessions for extracting traces. Hence, Figure 9 tends
to show that the trace extraction algorithm of CkTailv2-w/oS
(Algorithm 1) is very effective.

C. RQ2: do the models inferred by CkTailv2 reject abnormal
behaviours?

This research question targets the capability of our algorithms
to infer models that reject incorrect behaviours of the system.
Incorrect behaviours are expressed by means of invalid traces,
which are here derived from valid traces by injecting one of the
following errors: repetition of actions (random addition of 2 to
6 actions), inversion of a request with its associated response(s),
permutation of one request in a sequence of nested requests, and
suppression of one response when several responses associated
to the same request are found.

We generated 16 sets having 43 to 100 invalid traces for each
configuration Conf1 to 16, and two sets of 20 invalid traces
for Tcp and for AltBit. Then, we measured the proportions
of invalid traces accepted by the range of models inferred from
the same configurations and training sets used for RQ1.

Tcp
AltB

it
Conf1

Conf2
Conf3

Conf4
Conf5

Conf6
Conf7

Conf8
Conf9

Conf10

Conf11

Conf12

Conf13

Conf14

Conf15

Conf16
M

ean
0,00 %

2,00 %

4,00 %

6,00 %

8,00 %

10,00 %

12,00 %

14,00 %

LFkbehavior CkTailv1 CkTailv2-w/oS CkTailv2-w/S CSight

Fig. 10. Percentage of invalid traces accepted by the models for each
configuration

a) Results: The bar-diagram of Figure 10 shows the
proportions of invalid traces accepted by the models given
by each tool in each configuration. This figure reveals that all
the tools performed well in the sense that the inferred models
reject most of the incorrect behaviours. CkTailv1, CkTailv2
and CSight outperform LFkbehavior with some configurations
though. For instance, LFkbehavior produced models that accept
13.3% of invalid traces with Conf5.

As previously, it remains difficult to compare CSight and
CkTailv2 because only two configurations Tcp and AltBit
are considered in this evaluation. As CSight uses invariant
satisfiability to increase the model precision and not CkTailv2,
we believe that CSight should return more precise models, but
only with small trace sets.

The results given with RQ1 and RQ2 tend to indicate that
the models produced by CkTailv2 offer the best precision: not
only they accept the highest ratio of valid traces, but also reject
all the invalid ones (as CSight).

D. RQ3: can CkTailv2 detect accurate dependencies among
components?

This research question investigates the capability of our
algorithms to find component dependencies during the event
log analysis. Among the range of tools considered in this
evaluation, only CkTailv1, CkTailv2-w/oS and CkTailv2-w/S
are able to infer dependency graphs, but CkTailv1 and CkTail-
v2-w/oS use the same dependency detection. As a consequence,
we chose to study RQ3 by comparing the DAGs returned
by CkTailv2-w/oS and CkTailv2-w/S to the real dependency
graphs we manually built from the dependency schemes that
we devised for Conf1 to 8, Tcp and AltBit. We evaluated
the recall and precision of both algorithms. A good component
dependency detection is characterised by a high recall and high
precision, where high recall also relates to a low false negative
rate and high precision relates to low false positive rate.

a) Results: Table III shows the number of real component
dependencies for each configuration and the bar-diagram of
Figure 11 depicts the recalls and precisions achieved by

123

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III
# REAL DEPENDENCIES FOR EACH CONFIGURATION

C
on
f
1

C
on
f
2

C
on
f
3

C
on
f
4

C
on
f
5

C
on
f
6

C
on
f
7

C
on
f
8

T
cp

A
lt
B
it

8 8 9 6 8 7 4 10 2 2

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Conf1 Conf2 Conf3 Conf4 Conf5 Cong6 Conf7 Conf8 Tcp AltBit
Recal l CkTailv2-w/oS Precision CkTailv2-w/oS

Recal l CkTailv2-w/S Precision CkTailv2-w/S

Fig. 11. Recall and precision of CkTailv2 to detect component dependencies.
Recall is the percentage of the real dependencies that are detected; precision
is the percentage of detected dependencies that are correct

CkTail- v2-w/oS and CkTailv2-w/S. On average, CkTailv2-
w/oS detected 88% of the real dependencies and CkTailv2-w/S
97.5%. No wrong component dependency is returned by both
algorithms. After inspection, we observed that the undiscovered
dependencies correspond to some data dependencies that can be
observed among several chains of messages sharing the same
data addressed to several components at the same time. We have
chosen in Definition 3 to not consider them to avoid returning
false dependencies. This case of having chains of messages
sharing the same data addressed to several components is more
frequent with CkTailv2-w/oS as it detects data dependencies on
the action sequence S, while CkTailv2-w/S does it on traces,
which are smaller sequences. As a consequence, the recall of
CkTailv2-w/oS is lower than the one of CkTailv2-w/S.

E. RQ4: what is the performance of CkTailv2 to infer models
compared to the other tools? How does CkTailv2 scale with
the size of the event log?

a) Procedure: To answer RQ4, we firstly studied how
the tools scale with the size of the event logs. We collected
40 event logs from Conf3 by varying the number of events
between 500 to 10000 events. Then, we measured execution
times to produce models. As CSight did not complete on
Conf3, we considered LFkbehavior, CkTailv1, CkTailv2-w/oS
and CkTailv2-w/S. Besides, ss CkTailv2-w/S has two modes,
i.e., trace extraction with session identifiers provided by the
user, and extract of identifiers when these are not provided, we
applied both modes on Conf3. For readability, this is denoted
as CkTailv2-w/S and CkTailv2-w/US. To include CSight in our
evaluation, we measured the execution times of all the tools on
Tcp and AltBit. Experiments were carried out on a computer
with 1 Intel R© CPU i5-6500 @ 3.2GHz and 32GB RAM.

Fig. 12. Execution times vs. number of events

Tcp AltBit
0

2

4

6

8

10

12

14

16

18

20

Ex
ec

ut
io

n 
tim

es
 in

 s
ec

on
ds

LFkBehaviour CkTailv1 CkTailv2-w/oS CkTailv2-w/S Csight

Fig. 13. Execution times of the tools with the configurations Tcp and AltBit

b) Results: Figure 12 depicts the execution times in
seconds of the tools w.r.t. the event log sizes. CkTailv2-w/S
offers the best performance as it produces models in less than 1
second. These results are not surprising as the algorithm splits
event logs quickly thanks to the known session identifiers.
LFkbehavior offers close results as it never took more than 2
seconds to produce models. On the other hand, CkTailv1 and
CkTailv2-w/oS required less than 33s and 89s, respectively.
The curve for CkTailv2-w/oS follows a quadratic regression.
The difference between CkTailv1 and CkTailv2-w/oS comes
from the fact that CkTailv2-w/oS uses two set of pending
requests to check if the constraints C1-C5 hold while CkTailv1
needs one set only. The last curve shows execution times with
CkTailv2-w/US. In this case, the curve also follows a quadratic
regression but reveals that our tool does not scale well. Most of
the execution times are consumed by the analysis of the event
logs to recover session identifiers. These are indeed retrieved by
testing whether combinations of parameter assignments identify
execution traces w.r.t. the satisfiability of session patterns and
the evaluation of trace quality metrics.

The bar-diagram of Figure 13 illustrates the execution times
of all the tools on the configurations Tcp and AltBit. These
results tend to show that CSight is significantly slower than the
other tools, it is around 30 times slower than CkTail- v2-w/oS.
Besides, as stated earlier, CSight were unable to return models
after 5 hours with Conf1 to 8.

124

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



These experiments show that CkTailv2 can be used in
practice to infer models of communicating systems even with
large event logs, but it suffers from insufficient scalability, on
account of its feature of detecting sessions for extracting traces.

F. Threat to Validity

Some threats to validity can be identified in our evaluation.
The first factor, which may threaten the external validity of our
results, applies to the case studies used in the experimentations.
Most of them indeed are IoT systems using the HTTP protocol.
We also considered two other event logs collected from
components exchanging messages by means of the TCP and
Alternating bit protocols. But many communicating systems
rely on other kinds of protocols, from which it may be more
difficult to identify senders, receivers, requests or responses.
Hence, our results cannot be generalised to all communicating
systems. This is why we deliberately avoid drawing any
general conclusion. We chose to mainly concentrate our
experimentations on IoT systems that we devised to be able
to appraise the capability of CkTailv2 of inferring correct
dependency graphs. This threat is somewhat mitigated by the
fact that our results can be easily generalised to communicating
systems based upon the HTTP protocol, and that the latter is
used by numerous communicating systems.

The generalisation of our approach is also restricted by the
requirements A1-A3. The event logs have to include timestamps
given by a global clock and must be formatted by means of
regular expressions so that the event types can be identified.
Although we have observed that this task is not too difficult
to carry out on HTTP messages, it is manifest that this is
not generalisable to any kind of protocols, especially those
encrypting some parts of the message contents. We need to
investigate how these requirements could be relaxed in future
work.

There are also some threats to internal validity. Firstly, like
all the other passive model learning approaches, the larger
the event log, the more complete and precise the models will
be. Furthermore, our approach uses one parameter denoted
T , in the procedure ontime, to limit the session duration.
We set this parameter to 1 or 2 seconds in our experiments
as the session durations was lower than these values in our
case studies. Changing this parameter impacts the precision
of the models though. We assume that the user has some
knowledge about SUL and that he/she can set this parameter
correctly. Otherwise, we suggest to generate several models
while modifying this parameter. We evaluated the precisions
of the models generated from Conf2 with T taking values
between 0 and 150 seconds. Figure 14 illustrates the ratios of
valid and invalid traces accepted by the inferred models. The
ratio of invalid traces remain unchanged. But, the ratio of valid
traces evolves with T . Although the figure does not allow to
directly deduce the best parameter value as several ones are
possible, it helps avoid choosing the bad ones.

0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

90,00 %

100,00 %

0 20 40 60 80 100 120 140

ra
tio

 o
f a

cc
ep

te
d 

tra
ce

s

T in secondsValid traces Invalid traces

Fig. 14. Impact of the session duration on the model precision

VI. CONCLUSION

This paper has proposed the design and evaluation of a
tool called CkTailv2, which is specialised into the learning of
behavioural models along with dependency graphs from event
logs, themselves collected from of communicating systems.
Compared to other model learning algorithms, CkTailv2
increases the precision of the generated models by integrating
an algorithm that better recognises sessions in event logs with
respect to constraints related to the request-response pattern,
the recognition of nested requests, time delays and component
dependency. Besides, when sessions are explicitly identified
in event logs, CkTailv2 provides another algorithm to quicker
generate models.

CkTailv2 is simple to use. A user only has to give an event
log and a set of regular expressions as inputs to produce one
IOLTS and one DAG per component of the communicating
system. These models are stored in DOT files and varied
tools can process them to graphically represent how the
communicating system behaves and is structured. These models
may be then used to detect defects or security vulnerabilities.
Besides, our evaluation showed that CkTailv2 is effective, as
it provides precise models, and that it can be used in practice
on large event logs.

Nevertheless, several aspects need to be investigated and
improved in the future. We firstly plan to evaluate CkTailv2 on
further kinds of systems to confirm our experimental results.
The latter show that CkTailv2 does not scale well with the
size of the event logs. We believe that the performance can be
improved by devising parallel algorithms. But another way is to
get rid of some requirements, such as the need to have events
that encode senders and receivers. We believe that an additional
event log analysis step could perform this task automatically.

Another direction of future work is to make use of these
models to assist developers in the analysis and test of com-
municating systems. More precisely, we intend to propose an
approach combining this model learning technique with the
generation of mocks, i.e., fake components that simulate real
components and that behave in a predefined way. These mock
components could make test development easier by replacing

125

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



complex dependencies (e.g., infrastructure or environment
related dependencies [42]). Besides, mock components could
increase test efficiency by replacing slow-to-access components.
We finally believe that the models produced by CkTailv2
could be analysed to automatically generate executable mock
components.

VII. ACKNOWLEDGEMENT

Research supported by the French Project VASOC
(Auvergne-Rhône-Alpes Region) https://vasoc.limos.fr/

REFERENCES

[1] S. Salva, “Reverse Engineering Models of Concurrent
Communicating Systems From Event Logs,” in Sixteenth
International Conference on Software Engineering
Advances ICSEA 2021, Barcelona, online, Spain,
Oct. 2021, pp. 37–42. [Online]. Available: https:
//hal.uca.fr/hal-03444549

[2] S. Salva and E. Blot, “Cktail: Model learning of
communicating systems,” in Proceedings of the 15th
International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2020,
Prague, Czech Republic, May 5-6, 2020, R. Ali,
H. Kaindl, and L. A. Maciaszek, Eds. SCITEPRESS,
2020, pp. 27–38. [Online]. Available: https://doi.org/10.
5220/0009327400270038

[3] A. Biermann and J. Feldman, “On the synthesis of
finite-state machines from samples of their behavior,”
Computers, IEEE Transactions on, vol. C-21, no. 6, pp.
592–597, June 1972.

[4] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic
generation of software behavioral models,” in Proceed-
ings of the 30th International Conference on Software
Engineering, ser. ICSE’08. New York, NY, USA: ACM,
2008, pp. 501–510.

[5] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail:
Automatic inference of timed automata,” in 2017 IEEE
International Conference on Software Testing, Verification
and Validation (ICST), March 2017, pp. 401–411.

[6] L. Mariani and M. Pezze, “Dynamic detection of cots
component incompatibility,” IEEE Software, vol. 24, no. 5,
pp. 76–85, 2007.

[7] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and
M. D. Ernst, “Leveraging existing instrumentation to
automatically infer invariant-constrained models,” in Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software
Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
ACM, 2011, pp. 267–277.

[8] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,
I. Beschastnikh, and Y. Brun, “Behavioral resource-aware
model inference,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engi-
neering, ser. ASE ’14. New York, NY, USA: ACM,
2014, pp. 19–30.

[9] I. Beschastnikh, Y. Brun, M. D. Ernst, and
A. Krishnamurthy, “Inferring models of concurrent
systems from logs of their behavior with csight,” in
Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014, pp. 468–479. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568246

[10] L. Mariani, M. Pezzè, and M. Santoro, “Gk-tail+ an
efficient approach to learn software models,” IEEE
Transactions on Software Engineering, vol. 43, no. 8,
pp. 715–738, Aug 2017.

[11] D. Angluin, “Learning regular sets from queries and
counterexamples,” Information and Computation, vol. 75,
no. 2, pp. 87–106, 1987.

[12] P. Dupont, “Incremental regular inference,” in Proceedings
of the Third ICGI-96. Springer, 1996, pp. 222–237.

[13] H. Raffelt, B. Steffen, and T. Berg, “Learnlib: A library for
automata learning and experimentation,” in Proceedings
of the 10th International Workshop on Formal Methods
for Industrial Critical Systems, ser. FMICS ’05. New
York, NY, USA: ACM, 2005, pp. 62–71.

[14] R. Alur, P. Černý, P. Madhusudan, and W. Nam, “Synthe-
sis of interface specifications for java classes,” SIGPLAN
Not., vol. 40, no. 1, pp. 98–109, Jan. 2005.

[15] T. Berg, B. Jonsson, and H. Raffelt, “Regular inference
for state machines with parameters,” in Fundamental
Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, L. Baresi and R. Heckel, Eds.
Springer Berlin Heidelberg, 2006, vol. 3922, pp. 107–
121.

[16] F. Howar, B. Steffen, B. Jonsson, and S. Cassel, “Infer-
ring canonical register automata,” in Verification, Model
Checking, and Abstract Interpretation, ser. Lecture Notes
in Computer Science, V. Kuncak and A. Rybalchenko,
Eds. Springer Berlin Heidelberg, 2012, vol. 7148, pp.
251–266.

[17] K. Hossen, R. Groz, C. Oriat, and J. Richier, “Automatic
model inference of web applications for security testing,”
in Seventh IEEE International Conference on Software
Testing, Verification and Validation, ICST 2014 Workshops
Proceedings, March 31 - April 4, 2014, Cleveland, Ohio,
USA, 2014, pp. 22–23.

[18] A. Petrenko and F. Avellaneda, “Learning communicating
state machines,” in Tests and Proofs - 13th International
Conference, TAP 2019, Held as Part of the Third World
Congress on Formal Methods 2019, Porto, Portugal,
October 9-11, 2019, Proceedings, ser. Lecture Notes in
Computer Science, D. Beyer and C. Keller, Eds., vol.
11823. Springer, 2019, pp. 112–128. [Online]. Available:
https://doi.org/10.1007/978-3-030-31157-5

[19] L. Mariani and F. Pastore, “Automated identification of
failure causes in system logs,” in Software Reliability
Engineering, 2008. ISSRE 2008. 19th International Sym-
posium on, Nov 2008, pp. 117–126.

[20] E. Blot and S. Salva, “The cktailv2 tool,” 2020. [Online].
Available: https://github.com/sasa27/CkTailv2

126

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[21] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining speci-
fications,” SIGPLAN Not., vol. 37, no. 1, pp. 4–16, Jan.
2002.

[22] B. K. Aichernig and M. Tappler, “Learning from faults:
Mutation testing in active automata learning - mutation
testing in active automata learning,” in NASA Formal
Methods - 9th International Symposium, NFM 2017,
Moffett Field, CA, USA, May 16-18, 2017, Proceedings,
2017, pp. 19–34.

[23] R. Groz, K. Li, A. Petrenko, and M. Shahbaz, “Modular
system verification by inference, testing and reachabil-
ity analysis,” in Testing of Software and Communicat-
ing Systems, K. Suzuki, T. Higashino, A. Ulrich, and
T. Hasegawa, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 216–233.

[24] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-based
testing iot communication via active automata learning,” in
2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), March 2017, pp. 276–
287.

[25] S. Salva and E. Blot, “Model generation of component-
based systems,” Software Quality Journal, vol. 28, no. 2,
pp. 789–819, June 2020.

[26] ——, “Reverse engineering behavioural models of
iot devices,” in 31st International Conference on
Software Engineering & Knowledge Engineering (SEKE),
Lisbon, Portugal, July 2019. [Online]. Available: https:
//hal-clermont-univ.archives-ouvertes.fr/hal-02134046

[27] ETSI, “Methods for testing & specification; risk-based
security assessment and testing methodologies, euro-
pean telecommunications standards institute, technical re-
port, https://www.etsi.org/deliver/etsi eg/203200 203299/
203251/01.01.01 50/eg 203251v010101m.pdf,” 2015.

[28] R. Dssouli, K. Karoui, A. Petrenko, and O. Rafiq,
“Towards testable communication software,” in Protocol
Test Systems VIII: Proceedings of the IFIP WG6.1 TC6
Eighth International Workshop on Protocol Test Systems,
September 1995, A. Cavalli and S. Budkowski, Eds.
Boston, MA: Springer US, 1996, pp. 237–251.

[29] S. Salva, H. Fouchal, and S. Bloch, “Metrics for timed
systems testing,” in Procedings of the 4th International
Conference on Principles of Distributed Systems, OPODIS
2000, Paris, France, December 20-22, 2000, 2000, pp.
177–200.

[30] E. Blot and S. Salva, “Testability measurments on
inffered models,” 2020. [Online]. Available: https:
//github.com/Elblot/testability

[31] L. Gutiérrez-Madroñal, I. Medina-Bulo, and
J. Domı́nguez-Jiménez, “Iot–teg: Test event generator sys-
tem,” Journal of Systems and Software, vol. 137, pp. 784–
803, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121217301280

[32] A. Ahmad, F. Bouquet, E. Fourneret, F. Le Gall, and
B. Legeard, “Model-based testing as a service for iot
platforms,” in Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination,

Applications, T. Margaria and B. Steffen, Eds. Cham:
Springer International Publishing, 2016, pp. 727–742.

[33] S. Salva and E. Blot, “Verifying the application of security
measures in iot software systems with model learning,”
in Proceedings of the 15th 15th International Conference
on Software Technologies, ICSOFT 2020, Paris, France,
july, 2020, 2020, pp. 1–12.

[34] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and
S. Bensalem, “Runtime Verification of Component-
Based Systems,” in SEFM 2011 - Proceedings
of the 9th International Conference on Software
Engineering and Formal Methods, ser. Lecture Notes in
Computer Science (LNCS), G. Barthe, A. Pardo, and
G. Schneider, Eds., vol. 7041. Montevideo, Uruguay:
Springer, Nov. 2011, pp. 204–220. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00642969

[35] M. van der Bijl, A. Rensink, and J. Tretmans, “Com-
positional testing with ioco,” in Formal Approaches to
Software Testing, A. Petrenko and A. Ulrich, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 86–100.

[36] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly
detection in distributed systems through unstructured log
analysis,” 2009 Ninth IEEE International Conference on
Data Mining, pp. 149–158, 2009.

[37] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A
lightweight algorithm for message type extraction in sys-
tem application logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 11, pp. 1921–1936,
Nov 2012.

[38] R. Vaarandi and M. Pihelgas, “Logcluster - a data
clustering and pattern mining algorithm for event logs,”
in 2015 11th International Conference on Network and
Service Management (CNSM), Nov 2015, pp. 1–7.

[39] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand,
and R. Sasnauskas, “A search-based approach for
accurate identification of log message formats,” in
Proceedings of the 26th Conference on Program
Comprehension, ser. ICPC ’18. New York, NY,
USA: ACM, 2018, pp. 167–177. [Online]. Available:
http://doi.acm.org/10.1145/3196321.3196340

[40] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.
Lyu, “Tools and benchmarks for automated log parsing,”
CoRR, vol. abs/1811.03509, 2018. [Online]. Available:
http://arxiv.org/abs/1811.03509

[41] D. Lo, L. Mariani, and M. Santoro, “Learning extended
fsa from software: An empirical assessment,” Journal
of Systems and Software, vol. 85, no. 9, pp. 2063 –
2076, 2012, selected papers from the 2011 Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA
2011). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121212001008

[42] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli,
“Mock objects for testing java systems,” Empirical Softw.
Eng., vol. 24, no. 3, p. 1461–1498, Jun. 2019. [Online].
Available: https://doi.org/10.1007/s10664-018-9663-0

127

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Toward Scalable Collaborative Metaprogramming:
A Case Study to Integrate Two Metaprogramming Environments

Herwig Mannaert

University of Antwerp
Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Chris McGroarty

U.S. Army Combat Capabilities Development
Command Soldier Center (CCDC SC)

Orlando, Florida, USA
Email: christopher.j.mcgroarty.civ@mail.mil

Scott Gallant

Effective Applications Corporation
Orlando, Florida, USA

Email: Scott@EffectiveApplications.com

Koen De Cock

NSX BV
Niel, Belgium

Email: koen@nsx.normalizedsystems.org

Jim Gallogly

Cole Engineering Services Inc.
Orlando, Florida, USA

Email: james.gallogly@cesicorp.com

Anup Raval and Keith Snively

Dynamic Animation Systems
Fairfax, Virginia, USA

Email: araval,ksnively@d-a-s.com

Abstract—The automated generation of source code, often
referred to as metaprogramming, has been pursued for decades in
computer programming. Though many such metaprogramming
environments have been proposed and implemented, scalable col-
laboration within and between such environments remains chal-
lenging. It has been argued in previous work that a meta-circular
metaprogramming architecture, where the the metaprogramming
code (re)generates itself, enables a more scalable collaboration
and easier integration. In this contribution, an explorative case
study is performed to integrate this meta-circular architecture
with another metaprogramming environment. Based on a de-
tailed description of the architectures of both metaprogramming
environments, the various technical aspects and issues concerning
this integration are analyzed. Some preliminary results from
applying this approach in practice are presented and discussed.

Index Terms—Evolvability; Normalized Systems; Simulation
Models; Automated programming; Case Study

I. INTRODUCTION

This paper extends a previous paper which was originally
presented at the Fifteenth International Conference on Soft-
ware Engineering Advances (ICSEA) 2020 [1].

The automated generation of source code, often referred
to as automatic programming or metaprogramming, has been
pursued for decades in computer programming. Though the
increase of programming productivity has always been an
important goal of automatic programming, its value is of
course not limited to development productivity. Various dis-
ciplines like systems engineering, modeling, simulation, and
business process design could reap significant benefits from
metaprogramming techniques.

While many implementations of such automatic program-
ming or metaprogramming exist, many people believe that au-
tomatic programming has yet to reach its full potential [2][3].

Moreover, where large-scale collaboration in a single metapro-
gramming environment is not straightforward, realizing such
a scalable collaboration between different metaprogramming
environments is definitely challenging.

In our previous work [4] [5], we have presented a meta-
circular implementation of a metaprogramming environment,
and have argued that this architecture enables a scalable col-
laboration between various metaprogramming projects. In this
contribution, we perform an explorative case study to perform
a first integration with another metaprogramming environment.
To remain generic, the two metaprogramming environments
are aimed at generative programming for completely different
types of software systems, and based on totally different meta-
models. At the same time, they are well suited for this study,
as they both pursue a more horizontal integration architecture.
The case study aims to serve as an architectural pathfinder for
such integrations, and to identify remaining issues that hamper
the scalability of the approach.

The remainder of this paper is structured as follows. In
Section II, we briefly present some aspects and terminology
with regard to metaprogramming, and argue the relevance of
two related concepts: meta-circularity and systems integration.
Based on this concept of systems integration, we argue for
more horizontal integration architectures to enable scalable
collaboration. The next two sections present the architec-
ture and meta-model of both metaprogramming environments
whose integration is explored in this contribution. Section III
discusses the Normalized Systems metaprogramming environ-
ment and refers rather extensively to previous work. Section IV
offers a detailed architectural description of the generative
programming environment for simulation models. Based on
these architectures, Section V elaborates on the integration of
these metaprogramming environments, detailing the various

128

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



technical aspects, the achieved progress, and the remaining
issues. Finally, we present some conclusions in Section VI.

II. METAPROGRAMMING AND SYSTEMS INTEGRATION

In this section, we give an overview of the main concepts
and terminology regarding metaprogramming, and discuss
the related concept of meta-circularity. Based on the basic
charasteristics of metaprogramming, we propose to leverage
the technique of systems integration to pursue collaborative
and scalable metaprogramming. We also argue that the two
selected metaprogramming environments are well suited for a
representative case study.

A. Metaprogramming Concepts and Meta-Circularity

The automatic generation of source code is probably as old
as software programming itself, and is in general referred
to by various names. Automatic programming, stresses the
act of automatically generating source code from a model or
template, and has been called ”a euphemism for programming
in a higher-level language than was then available to the
programmer” by David Parnas [6]. Generative programming,
”to manufacture software components in an automated way”
[7], emphasizes the manufacturing aspect and the similarity to
production and the industrial revolution. Metaprogramming,
sometimes described as a programming technique in which
”computer programs have the ability to treat other programs as
their data” [8], stresses the fact that this is an activity situated
at the meta-level, i.e., writing software programs that write
software programs.

Academic papers on metaprogramming based on interme-
diate representations or Domain Specific Languages (DSLs),
e.g., [9], focus in general on a specific implementation.
Also related to metaprogramming are software development
methodologies such as Model-Driven Engineering (MDE) and
Model-Driven Architecture (MDA), requiring and/or implying
the availability of tools for the automatic generation of source
code. Today, these model-driven code generation tools are
often referred to as Low-Code Development Platforms (LCDP)
or No-Code Development Platforms (NCDP), i.e., software
that enables developers to create application software through
configuration instead of traditional programming. This field is
still evolving and facing criticisms, as some question whether
these platforms are suitable for large-scale and mission-
critical enterprise applications [2], while others even question
whether these platforms actually make development cheaper or
easier [3]. Moreover, defining an intermediate representation
or reusing DSLs is still a subject of research today. We
mention the contributions of Wortmann [10], presenting a
novel conceptual model for the systematic reuse of DSLs, and
Gusarov et al. [11], proposing an intermediate representation
to be used for code generation.

Concepts somewhat related to metaprogramming are ho-
moiconicity and meta-circularity. Both concepts refer to some
kind of circular behavior, and are also aimed at the increase of
the abstraction level, and thereby the productivity of computer

Fig. 1. Representation of the duplication of metaprogramming silos.

programming. Homoiconicity is specifically associated with a
language that can be manipulated as data using that language,
and traces back to the design of the language TRAC [12],
and to similar concepts in an earlier paper from McIlroy
[13]. Meta-circularity, first coined by Reynolds describing his
meta-circular interpreter [14], expresses the fact that there is
a connection or feedback loop between the meta-level, the
internal model of the language, and the actual models or
code expressed in the language. Such circular properties have
the potential to be highly beneficial for metaprogramming
through a reduction of complexity for the metaprogrammers.
Indeed, metaprogrammers are forced to deal on a continuous
basis with both the generative programming code and the
generated code. A unified view on both the metaprogramming
code and the source code being generated could potentially
reduce the cognitive load for the metaprogrammers. Moreover,
advancements in programming techniques could be applied
simultaneously to both the generative and generated code.

B. Systems Integration and Scalable Metaprogramming

Based on a generic engineering concept, systems integration
in information technology refers to the process of linking
together different computing systems and software applica-
tions, to act as a coordinated whole. Systems integration is
becoming a pervasive concern, as more and more systems
are designed to connect to other systems, both within and
between organizations. Due to the many, often disparate,
metaprogramming environments and tools in practice, we
argue that systems integration should be explored and pursued
more at the metaprogramming level. Just as traditional systems
integration often focuses on increasing value to the customer
[15], systems integration at the metaprogramming level could
provide value to their customers, i.e., the software developers.

Something all implementations of automatic programming
or metaprogramming have in common, is that they perform
a transformation from domain models and/or intermediate
models to code generators and programming code. In general,

129

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 2. Instantiating a coding template with model parameters.

metaprogramming or code generation environments also ex-
hibit a rather straightforward internal structure. This structure
is schematically represented for a single metaprogramming
environment at the left side of Figure 1, and consists of:

• model files containing the model parameters.
• reader classes to read the model files.
• model classes to represent the model parameters.
• control classes selecting and invoking the different gen-

erator classes.
• generator classes instantiating the source templates, and

feeding the model parameters to the source templates.
• source templates containing the parameterised code.

Figure 2 provides a schematic representation of a very ele-
mentary code generation. An instance of a model entity, with
name Invoice and belonging to a package net.palver.invoice,
is fed into a coding template for a base class. In this template,
the values of the model entities are represented as parameters.
The generator code will resolve these parameters and replace
them with the actual values of the model entity, resulting in
real source code for that domain entity.

Another metaprogramming environment will have a similar
internal structure, as schematically represented at the right
side of Figure 1. Such similar but duplicated architectures
exhibit a vertical integration architecture. In this architec-
ture, the functional entities are also referred to as silos, and
metaprogramming silos entail several significant drawbacks.
First, it is hard to collaborate between the different metapro-
gramming silos, as both the nature of the models and the
code generators will be different. Second, contributing to the
metaprogramming environment will require programmers to

learn the internal structure of the model and control classes
in the metaprogramming code. As metaprogamming code is
intrinsically abstract, this is in general not a trivial task.
And third, as contributions of individual programmers will
be spread out across the models, readers, control classes, and
actual coding templates, it will be a challenge to maintain a
consistent decoupling between these different concerns.

We have argued in our previous work that in order to achieve
productive and scalable adoption of automatic programming
techniques, some fundamental issues need to be addressed
[16][4]. First, to cope with the increasing complexity due to
changes, we have proposed to combine automatic program-
ming with the evolvability approach of Normalized Systems
Theory (NST) providing (re)generation of the recurring struc-
ture and re-injection of the custom code [16]. Second, to avoid
the growing burden of maintaining the often complex meta-
code and continuously adapting it to new technologies, we
have proposed a meta-circular architecture to regenerate the
metaprogramming code itself as well [4]. We will go into some
more detail on NST and the corresponding metaprogramming
environment in the next section.

As this meta-circular architecture establishes a clear decou-
pling between the models and the code generation templates
[4], it allows for the definition of programming interfaces at
both ends of the transformation. This should remove the need
for contributors to get acquainted with the internal structure
of the metaprogramming environment. It also enables a more
horizontal integration architecture, by allowing developers
to collaborate on both sides of the interface. Modelers and
designers are able to collaborate on models, gradually im-
proving existing model versions and variants, and adding on
a regular basis new functional modules. (Meta)programmers
can collaborate on coding templates, gradually improving
and integrating new insights and coding techniques, adding
and improving implementations of cross-cutting concerns, and
providing support for modified and/or new technologies and
frameworks. Moreover, an horizontal integration architecture
could facilitate collaboration between different metaprogram-
ming environments. Though many trade publications and
academic papers on metaprogramming exist, they focus in
general on specific implementations and not on the integration
of different implementations. Exploring such a collaborative
integration is the purpose of the case study in this paper.

C. An Explorative Case Study as a Proof of Concept

Our goal is to investigate the use of an horizontal integration
architecture for the collaboration between different metapro-
gramming environments through an explorative case study.
To serve as a representative case study and a valid proof of
concept, two metaprograming environments were chosen that
exhibit several key characteristics. First, these environments
themselves are no mere prototypes. They have been developed
for years and have been used in practice by many users in
many different use cases. Second, these environments target
the automatic programming of two totally different types of

130

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



software systems: multi-tier web-based information systems,
and executable (army) models for simulation systems. Con-
sequently, the two metaprogramming environments have a
completely different meta-model. Third, these environments
use different technologies at both sides of the horizontal
integration architecture, i.e., both the front-end technologies
capturing the models, and the target programming languages
—even the code templating engines— are different. At the
same time however, both metaprogramming environments
share a structured decoupling between the definition of models
and the generation of code, providing a starting point for an
horizontal integration effort.

III. NORMALIZED SYSTEMS ELEMENTS
METAPROGRAMMING

In this section, we present the structure of the metapro-
gramming environment for web information systems. Its meta-
circular architecture explicitly aims to facilitate and realize
horizontal integration and scalable collaboration.

Normalized Systems Theory (NST), theoretically founded on
the concept of stability from systems theory, was proposed
to provide an ex-ante proven approach to build evolvable
software [16][17][18]. The theory prescribes a set of theorems
(Separation of Concerns, Action Version Transparency, Data
Version Transparency, and Separation of States) and formally
proves that any violation of any of the preceding theorems will
result in combinatorial effects thereby hampering evolvability.
As the application of the theorems in practice has shown to
result in very fine-grained modular structures, it is in general
difficult to achieve by manual programming. Therefore, the
theory also proposes a set of design patterns to generate the
main building blocks of (web-based) information systems [16],
called the NS elements: data element, action element, workflow
element, connector element, and trigger element.

An information system is defined as a set of instances of
these elements, and the NST metaprogramming environment
instantiates for every element instance the corresponding de-
sign pattern. This generated or so-called expanded boiler plate
code is in general complemented with custom code or craft-
ings to add non-standard functionality, such as user screens
and business logic. This custom code can be automatically
harvested from within the anchors, and re-injected when the
recurring element structures are regenerated.

While the NST metaprogramming environment was origi-
nally implemented in a traditional metaprogramming silo as
represented in Figure 1, it has been evolved recently into a
meta-circular architecture [4][5]. This meta-circular architec-
ture, described in [5] and schematically represented in Fig-
ure 3, enables both the regeneration of the metaprogramming
code itself, and allows for a structural decoupling between the
two sides of the transformation, i.e., the domain models and
the code generating templates.

In the following subsections, we briefly summarize the
different parts of this metaprogramming environment.

Fig. 3. Closing the meta-circle for expanders and meta-application.

A. Systems Modeling

The domain models for the web-based information systems
are specified as sets of instances of the various types of NS
elements. As the NS elements, e.g., data and task elements, are
closely aligned to traditional primitives in information systems
modeling and analysis, their definition and design is similar
as well. To this purpose an NS Modeler was developed [19],
allowing system analysts and designers to enter NS models
graphically, in much the same way as traditional modeling and
design tools do. Data elements can be modeled in a graphical
interface similar to most ERD (Entity Relationship Diagram)
visualizations and data modeling tools, allowing the designer
to define and manipulate data entities, their attributes, and
relationships. Task and flow elements can be identified in a
graphical interface similar to most BPM (Business Process
Modeling) visualizations, with the exception that designers are
only allowed to define flows as state machines operating on a
single target data element [19].

The various NS elements or models can also be designed
and manipulated in a dedicated meta-application, called the
Prime Radiant, using a table-based interface. This meta-
application is a regular NS web application that can be gen-
erated and rejuvenated based on its own model, being the NS
meta-model. Unlike the NS Modeler, the Prime Radiant allows
the designers and developers to specifiy various application
and technology settings [5], and to directly invoke both code
generation and rejuvenation, and building and deployment of
NS web applications.

The domain models of the various NS web applications
are stored in XML files specifying the various NS elements,
e.g., a data element with its attributes, relationships, and finder
queries. The underlying structure of those XML files, i.e., the
NST meta-model, is formally defined in corresponding XSD
(XML Schema Definition Language) schema files. The XML
models can be stored both locally and in central repositories,
and can be exchanged between between different designers and
developers, and between various instances of the NS Modeler

131

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and Prime Radiant. The actual code generation can be invoked
from the Prime Radiant meta-application, or from a command
line interface accessing the XML files.

B. The NST Meta-Model

As the NS meta-model is just another NS model [4][5], the
various elements of the meta-model can be specified in XML
files, just like any other instance of a data element. Aimed at
the automatic programming of multi-tier web-based informa-
tion systems, the meta-model of the NST metaprogramming
environment is a model for web-based information systems.
The core part of the data model of this metaprogramming
environment is represented in Figure 4 using a screenshot from
the NS Modeler tool. It is, as mentioned above, similar to most
ERD (Entity Relationship Diagram) visualizations, but uses
colors to distinguish between different types of data entities
[19], e.g., light blue for primary data entities and light red for
taxonomy entities.

By looking at the NS meta-model, we can browse through
the structure of a regular NS model. The unit of an NS domain
model is a component, and within such a component model,
we distinguish the various types of NS elements [16], such
as Data elements, Task elements, and Flow elements. These
elements, colored light blue and located in the top row, can
have options, e.g., Task options. Both the entities representing
elements and their corresponding options, are accompanied by
a typing or taxonomy entity, e.g., Task element type or Task
option type, represented in light red. The data elements contain
a number of attributes or Fields, where a field can be either a
data attribute or a relationship link, and provide a number of
Finders. Both fields and finders can have options characterized
by corresponding option types.

Apart from being more elaborate than the representation of
Figure 4, the NS metaprogramming environment also defines a
meta-model for the specification of technology settings, such
as specific frameworks implementing cross-cutting concerns
to be used in the generated code, and build or deployment
parameters. In this way, web applications can be generated
and deployed using different underlying technologies, while at
the same time allowing developers to exchange models with
corresponding technology settings to ensure repeatable code
generation and deployment of application models.

C. Code Generation

As explained in detail in [5], the NST metaprogramming
environment is highly modular and uses a declarative control
mechanism. The code generation environment for web-based
information systems consists of 182 individual code generators
or expanders. Every individual code generator or artifact
expander is declared in an Expander XML file. Such an
expansion control file specifyies for instance the type of
element it belongs to, the application layer it belongs to, the
technology that it uses, and the various properties of the source
artifact that it generates. In this way, the metaprogramming
environment can be extended with alternative variations of

expanders that provide another implementation and/or use
another underlying technology or programming language.

For every declared artifact expander, one needs to provide a
coding Template, based on the StringTemplate (ST) templat-
ing engine library. For the NS metaprogramming environment
for web applications, the various templates contain currently
source code in Java, JavaScript, HTML, XML, and SQL. A
template for an individual expander is in general modularized
or hierarchically structured itself. To avoid duplication and
in accordance with the strategy of of single sourcing [20],
a template for a DTO (Data Transfer Object would use for
instance subtemplates for the variable declarations and the get-
and set-methods. Other basic coding units like logging or error
throwing are also defined in a single template. The templates
also contain so-called anchors, enabling developers to write
additional custom code that can be harvested and re-injected
during consecutive (re)generations.

To access the various attributes and parameters from the
elements in the domain models, an XML expander Mapping
file needs to be defined for every individual expander. Such
a mapping file specifies the various parameters that are made
available to the template in terms of Object-Graph Navigation
Language (OGNL) expressions. These expressions are evalu-
ated on the object instances representing the elements of the
domain model, e.g., dataElement.name [5].

IV. GENERATIVE PROGRAMMING OF SIMULATION
MODELS

In this section, we present the structure of the metapro-
gramming environment for simulation models. This second
metaprogramming environment is concerned with a com-
pletely different application domain, i.e., models for simulation
systems, and is based on a totally different meta-model.
However, by clearly separating the modeling in the front-end
from the generative programming in the back-end, it is also
pursuing a more horizontal integration architecture.

The United States Army has developed and documented
hundreds of approved models for representing behaviors and
systems, often separate from the simulation environments
where they are to be implemented. The manual translation of
these models into actual simulation environments by software
developers, leads to implementation errors and verification dif-
ficulties, and is unable to avoid the workload of incorporating
these models into other simulation environments.

In order to address these potential drawbacks, a generative
programming approach is being pursued, aiming to capture
military-relevant models within an executable systems engi-
neering format, and to facilitate authoritative models to operate
within multiple platforms. The goal of this work is to be able to
capture authoritative conceptual models and then to generate
software to implement those representations/behaviors. This
generated software can be quickly integrated into multiple
simulations regardless of their programming language thereby
saving development cost and improving the consistency across
simulation systems.

132

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 4. A graphical representation of the core part the NS (data) meta-model.

The architecture of this metaprogramming environment,
schematically represented in Figure 5, divides the problem
into two domains, i.e., the front-end and the back-end. In
the front-end, corresponding to the conceptual models at the
left column, the Subject Matter Experts (SME), scientists,
and software model developers are able record the model
definitions and behaviors or algorithms. In the back-end,
represented in the three other columns, those model defini-
tions and algorithms are transformed through templating and
metaprogramming into executable code, targeted at specific
architectures and implementations. To properly decouple these
parts, an Interchange Format (IF) was created that allows one
or more front-ends to be created to record models in a way that
suits the needs of the front-end user community, and to pass
those models to be used for code generation in the back-end.

In the following subsections, we describe the different parts
of this generative programming architecture in more detail.

A. Front-End Visual Programming

The Generative Programming environment allows experts
to create models using a flow-based programming tool. Flow-
based programming [21] has become popular in game engines
as well because it allows level designers, artists, and other
non-programmers to create some complex business logic. The
metaprogramming tool is based on the open-source project
PyFlow [22], but with many improvements that allow modelers
to represent structures and workflows most common within
modeling and simulation. The goal of the project is to have
a visual tool that allows subject matter experts to author their
models without having to know how to develop software

within a certain simulation system. The project was initially
based on Blockly [23], a tool aiming to help non-programmers
create software visually. As the structures used in Blockly
resemble software logic puzzle pieces that fit together in
specific ways, the users are fundamentally creating logic in a
similar form to software, but without having to know syntax.
This mechanism quickly became cumbersome with the more
complex models and meant that the authors had to understand
some basic software constructs. It was therefore decided to
move towards flow-based programming because it was easier
to create models as the visual representation of the business
logic was based on the flow of data rather than using software
constructs. Figure 6 represents a sample node that depicts a
function that takes in two variables and outputs the maximum
value. An inExec pin shows the execution coming into the
node along with two other inputs seen on the left, value1
and value2. The line going outwards from the outExec pin
shows where execution is to go next, while the max line will
go to whichever future function that will use that value.

A major concern was to make sure that the selected tool
was representation complete, i.e., allowed one to represent any
business logic that could be constructed in software, provided
a rigid structure for inputs and outputs, and was easy to
read and write. The selection of PyFlow for the flow-based
programming tool allowed us to start with an open-source tool
that could be improve upon for the simulation domain. Many
additions were made to PyFlow, most notably we have made it
more performant for large-scale graphs, added data querying
capabilities that are most often used in our simulations, and
added the ability for the user to write documentation within

133

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 5. Schematic representation of the generative programming architecture for simulation models.

Fig. 6. A flow-based programming node.

the tool and associate that documentation to the nodes and
data structures. We have also added an automated capability
of exporting a Word document with the documentation and
imagery of the graphs, keeping the models self-documenting.
By keeping the explanation of how the model is supposed
to work within the model development tool (like comments
within software), there is more of a chance that the documen-
tation keeps up to date rather than having documents separate
from software implementations of the model. In addition to
the Word document that gets generated, we also put the
documentation text within comments in the generated software
making it easier for integration software developers to under-
stand what is being implemented. A screenshot impression
of the integrated development environment is represented in
Figure 7, showing a standard development environment around
the central graph representation.

An important capability of the tool is to allow models to
reference data. Datastores are a way to lookup data from a
file, database, or potentially a data service. The goal is to
make testing with the datastore easy for the user developing the
graph, but allow the code generation and developers flexibility
in how that data is queried. We created an editor for Datastore
definitions in the Types editor, which allows the user to specify
what data is available in the data store, what those types are,
and to name and describe them in a typical user interface. The
user can also specify Queries for that data, specify what the
keys are for the lookup, and what values should be returned.
Queries result in nodes that can be used in the graph to get
results from the datastore as seen in Figure 7.

Once the model developers have created their model and
described their data, they can use the visual programming
tool to generate software, execute the software, and see the
results return from a set of defined inputs. This allows the

model developers to ensure that the model is working as
they expect before involving simulation developers. Results
can be graphed in many ways to visualize outputs. The test
results are displayed in the bottom portion of Figure 7. There
is a graph of the results that shows two strange oddities in
the data. The model developer could recognize these oddities
early in the development process and take corrective action
before software developers even get involved. Issues can be
found in the logic or data while developing the model which
results in more accurate models, easier development, and better
maintenance of models as logic changes or new data is used.

Finally, the logic and graphs developed in PyFlow can be
exported to an intermediate format, that can be used to transfer
the model from the front-end to the back-end.

B. STE Canonical Universal Format

The interchange format between the front-end and the back-
end is based on XML documents, whose structure is defined
by an XML Schema or XSD (XML Schema Definition Lan-
guage). This format structure is called the Synthetic Training
Environment (STE) Canonical Universal Format (SCUF).

This meta-model is not intended to support a full program-
ming language, but rather to focus on the domain elements
used within the U.S. Army’s canonical descriptions of the sim-
ulation models. Nevertheless, it represents most concepts of
a traditional procedural programming language. Specifically,
these include the data type declarations, datastores, and various
elements of algorithms, such as conditions, expressions and
iterators. Moreover, the XML nature of the format means that
it is easily extensible over time as long as the code generation
tool is modified accordingly to handle any extended portions.

The logic and graphs developed in PyFlow are represented
in the SCUF interchange format, and will ultimately be used
by the code generation capability to create software. The aim
was to provide an intermediary format between the visual
development tool and the back-end code generation, in order
to separate the two capabilities and to allow other future tools
to output SCUF and still take advantage of the code generation
capability without having to be compatible with PyFlow.

The SCUF meta-model is broken into two parts for ease
of depiction. Figure 8 represents the elements related to

134

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 7. A screenshot representing the PyFlow-based integrated development environment.

TypeDefinition and are static elements such as classes
and types. The elements represented in Figure 9 are dy-
namic elements that describe modeling logic such as inputs,
software structures, variables, and outputs. The structure and
representation of the SCUF data models is similar to most
standard ERD (Entity Relationship Diagram) visualizations.
An example SCUF output is represented in Figure 10, where
you can see the types, including type definitions, enumerations,
classes, and datastores at the top of the file and then the
dynamic logic in the bottom half of the XML document.

C. Back-End Code Generation

The code generation tool, the Model To Code Tool (MTCT)
reads the SCUF model files into Java class representations
in accordance with the meta-model above. Using the Visitor
pattern [24] to process the model classes, it traverses the
ingested model performing functions without impacting the
model classes themselves. Once it is ensured that all depen-
dencies are present and that the model is verified to be correct,
the MTCT then uses a templating system to generate software.
Currently, the Apache Velocity templating engine [25] is used.

Templates have been developed for three different program-
ming languages: C++, C#, and Java. Each meta-model element
corresponds to a template which handles the generation for that
element. For instance, ClassType model elements use the class-
template.vm to generate code. To simplify the implementation
of these templates, the code generated from any contained ele-
ments is referenced in the template using a modular structure.
For instance, zero or more Declare elements can be contained
in a ClassType. The code for Declare is generated using
declare-template.vm and passed into the class-template.vm. In
addition to simplifying the containing element template, this
allows changes to low level elements to be implemented in a

single location and take effect throughout the generated code.
This approach is in accordance with the strategy of of single
sourcing [20], similar to the NST approach, and reduces the
number of templates that need to be implemented to support
new languages or simulation environments. As the output from
one template feeds into the input of another, we refer to this as
a set of cascading templates. Figure 11 illustrates a simplified
example of this process.

Reuse of existing templates allows us to simplify the process
of adding support for new languages. For example, the pro-
cessing of creating expressions with basic operators or making
function calls is the same across multiple languages. MTCT
utilizes a search path for locating the individual template files.
It will look through the directories in the search path and
use the first template it finds with the matching name. Many
low-level templates, such as expression-template.vm can be
reused across languages while specializing those that contain
differences, such as class-template.vm. The search path for
templates also allows users to override certain templates by
pre-pending this path with the location of the customized
version. In this way, a user could customize how enumerations
or even enumerators are generated while reusing all the other
existing templates.

Control files determine how the generated code is placed
into files and a directory structure. The control files, along
with the template search path and cascading templates allow
the user to completely control the code generation to create
Architecture Specific Templates (AST) without modifying the
MTCT core functionality. ASTs reduce the amount of in-
tegration work and code the developer must write to adapt
generated models into a particular simulation system. ASTs
are implemented by using Control Files for users to control
how source code files are generated from the templates. They

135

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 8. A graphical representation of the part of the SCUF meta-model related to type definitions.

Fig. 9. A graphical representation of the part of the SCUF meta-model related to modeling logic.

allow the user to specify what parts of the SCUF model should
be generated and how those parts will be generated. The
Control File itself is distinct from the templates and specified
in JSON format. The file contains a list of sections, each
of which can generate code for specific parts of the SCUF.
These parts are the enumerations, classes, datastores, and the
model. Each section can also use its own template search
path. This allows for multiple passes over the meta-model,
each potentially with its own configuration. For example,
our default implementation for the datastores uses two main

templates: one for an interface for the datastore and one for
the implementation. The control files specify that the datastore
should be passed over twice by the code generator, once with
a template for the interface class and once with a template
for the implementation class. The cascading template sets
simplify this by only requiring the main datastore template to
be overridden in this case. Control files also control whether
the output for of all model classes of a certain type should
be written to a single file or multiple files. A benefit of
this approach is allowing for the differences in programming

136

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 10. A sample of a SCUF XML file.

Fig. 11. An example of cascading templating.

languages for how data types and classes may or may not be
collocated in the same file. For example, in Java, the classes
are expected to be in their own file with the name of the
file matching that of the class. As opposed to C++ where the
classes can all be included in the same file if the developer
chooses to design it that way.

One of the other capabilities of control files are to include
external files or project files into the code generation process.
These files can be whatever the user needs to include in their
project such as utility classes or build files. The contents of
the file should just be added to a velocity template and then
the template and file name just need to be added to the project
control section of the control files. These templates also get a
default set of information provided by velocity that includes
things like the model’s name, the list of enumerations, the list
of datastores and more. This provides the user with complete
flexibility to do anything that they need to do with the project
files. The control files simplify the creation of custom template

sets for a particular language and simulation environment,
allowing adaptation of models to new platforms. Within a
control file, the user can specify the initial template search
path to be appended to the cascading template search. This
allows the user to choose what template set they want to use
for each pass over the meta-model. Using control files, external
function libraries, and custom template sets, users can write
variation of these files to generate code specific to their own
architecture, in the same way MTCT customizes generated
code for the languages C++, Java, and C#.

Two additional use cases for code generation have been
explored: generating a Unity MonoBehavior [26] as well as
generating behaviors for RIDE, the Unity-based simulation
simulation environment. To do this, a custom template needs
to be written for the main model class, as well as Unity
or RIDE specific configuration files in the project control
section of the control file. A major challenge related to both
architectures is that the models follow a component structure.
This means that the models have an internal state that the
model itself interacts with and updates. The current generated
code supports a more static architecture where all of the inputs
are provided as parameters, and it produces the output from
a static context. A solution is being investigated where the
MTCT would automatically detect which class members in
the model need to be included in the component state. This
can be done by looking at which variables are being passed
into the functions with the Init and Update tags. These tagged
methods represent the methods to initialize a component and
to update a component. Doing this will automatically create
a component with internal state. These class members will
be part of the component and can be handled or used within
the glue code as needed. The state of the model would be
controlled and customized through the custom template sets.

Another challenge posed by the component modeling in
Unity and RIDE are the methods that are meant to handle
specific events within the framework. For example, Unity
has a start method that runs during the initialization of the
component and an update method that runs during each frame.
The MTCT needed a way to be aware of these types of
methods so that they are customizable and so that they can be
handled differently compared to other methods in the model.
We are currently looking into a solution where we introduce
method tagging within the SCUF. This would allow users to
tag certain methods as Update, Start, etc. Doing this would
let the MTCT know what type of method it is, and the
code generator would be able to handle the different cases.
A method having a tag would also let the MTCT know that it
is a component style model which would potentially change
how the code generation is executed.

V. TOWARD INTEGRATING THE
METAPROGRAMMING ENVIRONMENTS

We have argued in Section II-C that both selected metapro-
gramming environments are well suited to be used as part of a
representative case study for the horizontal integration of such

137

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



metaprogramming environments, and that the structured de-
coupling between the definition of models and the generation
of code, a common characteristic of both models, is a good
starting point for this integration. Moreover, the interchange
format of the models in both environments is based on XML
documents, whose structure is defined by an XML schema.

As the creation of a more horizontal integration architec-
ture to facilitate the collaboration between metaprogramming
environments [5] was one of the original goals of the NST
metaprogramming environment, it seems logical to initiate
this integration effort based on the NST environment archi-
tecture. This means that we attempt to map the generative
programming environment for simulation models onto the
collaboration architecture represented in Figure 3. In this
section, we discuss some progress and remaining challenges.

A. Embracing the SCUF Meta-Model

The NST meta-circular metaprogramming environment [5]
allows for the structural generation of all reader, writer, and
model classes of any model —or meta-model— that can be
expressed as a set of NST data elements. The SCUF meta-
model, based on XML and defined by an XML Schema,
satisfies this requirement. Based on the definition of the SCUF
data entities (as represented in the class diagrams of Figures 8
and 9, e.g., TypeDefinition, DatastoreType, ConditionalBlock,
Expression, Declare, Statement, etcetera), NST data elements
can be created. For instance, Input needs to be defined as an
NST data element with a name field which is a string, a type
field that is a link to the TypeDefinition data element, and an
isArray field that is a boolean. These data elements can be
specified in XML, or in the user interface of the NST meta-
application, or even directly generated from the XML Schema.
For every data element, the various classes of the NST stack
in the left part of Figure 3 can be generated. These include:

• Reader and writer classes to enable reading and writing
the XML-based SCUF model files, e.g., InputXmlReader
and InputXmlWriter.

• Model classes to represent and transfer the various SCUF
entities, and to make them available as an object graph,
e.g., InputDetails and InputComposite.

• View and control classes to perform CRUDS (create,
retrieve, update, delete, search) operations in a generated
table-based user interface.

This implies that the various existing SCUF models, represent-
ing instances of the SCUF data entities and therefore instances
of the NST data elements, can be read and made available as
an object graph, allowing to evaluate model parameters using
Object-Graph Navigation Language (OGNL) expressions at
the templating engine. Moreover, a NS web application with
a table-based user interface can be generated to create, view,
manipulate, and write SCUF models.

B. Integrating Modeling and Expansion

The meta-circular architecture of [5] enables the definition
of alternative meta-models such as SCUF, and the development

of new expanders based on the values and parameters of in-
stances of these new models. Such alternative meta-models can
be specified as any regular NS model, both in the NS Modeler
and in the Prime Radiant. Upon defining an alternative meta-
model such as SCUF, we are currently investigating two modes
to provide integrated support for entering actual models based
on the new meta-model and expanding these models.

• Based on the new meta-model, a slightly modified NS
application is generated, dubbed Secondary Radiant, that
allows to import/export the actual models from/to XML,
and to pass them to the Prime Radiant. Importing ex-
panders based on this new meta-model into the Prime Ra-
diant then enables developers to invoke these expanders
from the Prime Radiant.

• A runtime kernel, dubbed Runtime Radiant, is provided
that allows regular NS applications to invoke the tem-
plating engine and to evaluate OGNL expressions for
arbitrary trees of data objects. In this way, a regular NS
application generated based on the new meta-model is
able to perform expansion from its actual model data.

Both types of tooling are currently being tested in β-version,
and will possibly merge into one solution.

Though conceptually agnostic with respect to different
meta-models, a bias toward the web information systems was
discovered in the NST metaprogramming environment. Both
the invocation of expansion and deployment, and the various
technology settings were implicitly linked to the entities
Application and Component. As these enities are specific to
web-based information systems, they have been generalized
to ProgramType and ModuleType in the NST environment.
At the same time, dedicated meta-elements to specicy various
technologies, such as PresentationLogicSettings, have been
generalized to a generic list of TechnologyStackSettings.

C. Streamlining the Control Files

Having defined the SCUF data entities as NST data el-
ements, the NST metaprogramming environment allows to
evaluate SCUF model parameters through OGNL expressions
in SCUF model graphs, and to make them available to
coding templates. In order to simply activate the existing
coding templates of the simulation models, and to use the
NST metaprogramming environment as a piece of evolvable
middleware to pass the SCUF models to the code templates
for the simulation models, two tasks remain to be performed
at the level of the declarative control.

• Every coding template needs to be declared in a separate
XML Expander definition.

• For every coding template, the appropriate OGNL expres-
sions to evaluate the relevant model parameters, need to
be defined in an XML Mapping file.

As the generative programming environment for simulation
models has control files as well, they are a solid starting point
to create these declarative control files. It is probably even
possibe to write software that automates the conversion of

138

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



these JSON control files into the XML control files of the
NST metaprogramming environment.

D. Supporting the Templating Engine

The fact that both metaprogramming environments use
different templating engines causes a final integration issue.
A first option would be to convert the Velocity templates of
the simulation software to the StringTemplate format supported
by the NST environment. In this scenario, the required effort
would be proportional to the template base of the simulation
models, and would need to be repeated for integration ef-
forts with other environments using this templating engine.
Moreover, Velocity templates allow more logic that would
have to be ported to Java helper classes in the StringTemplate
environment.

A second and preferable option is to include support in
the NST metaprogramming environment for the Velocity tem-
plating engine. Considering the limited amount of templating
engines being used by metaprogrammers, this scenario seems
both manageable and worthwhile. Moreover, the effort would
not be proportional to the size of the template base. As there is
virtually no logic in the current NST templates, i.e., all model
parameters are combined and processed in the software that
feeds the templating engine, it is reasonable to say that we
expect no major blocking issues.

Important to note is that both metaprogramming envi-
ronments use modular or so-called cascading templates in
accordance with the strategy of single-sourcing. This means
that the modular structures of the templates could be preserved
identically across the different templating engines.

VI. CONCLUSION

The automated generation of source code, often referred
to as metaprogramming, has been pursued for decades in
computer programming, and is considered to entail significant
benefits for various disciplines, including software develop-
ment, systems engineering, modeling, simulation, and business
process design. However, we have argued that metaprogram-
ming is still facing several issues, including the fact that it
is challenging to realize a scalable collaboration within and
between different metaprogramming environments, largely due
to the often vertical integration architecture.

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture enables a scalable collaboration,
both within this environment and possibly with other metapro-
gramming environments. In this paper, we have explored such
a collaborative integration with another metaprogramming
environment. This second environment for metaprogramming
targets the generation of a different type of software sys-
tems, and is based on a different meta-model, but exhibits a
more horizontal integration architecture as well. This second
metaprogramming architecture has been described in detail.

We have shown in this contribution how both metapro-
gramming environments can be integrated within the pro-
posed meta-circular architecture. We have explained how the
generation of the meta-code, i.e., the code that makes the
actual parameter models available to the coding templates, can
be extended to the second metaprogramming environement,
resulting even in tooling that provides integrated support both
modeling and expansion or code generation. We have also
explained that the only reason that the actual code genera-
tion of this second metaprogramming environment cannot be
seamlessly integrated yet, is the different format of the gen-
eration control files and the use of another templating engine.
However, we have also indicated that it should be relatively
straightforward to support, possibly even in an automated way,
such an alternative control format and/or templating engine.

This paper is believed to make some contributions. First, we
show in a constructive way that it is possible to perform an
horizontal integration of two metaprogramming environments,
and to enable collaboration and re-use between these envi-
ronments. Such integrations could significantly improve the
collaboration and productivity at the metaprogramming level.
Moreover, we show that this integration is possible between
metaprogramming environments that are based on completely
different meta-models, are significant in size, and are being
developed and used by application developers on a continuous
basis. Second, we explain how the horizontal integration of a
second metaprogramming environment with the meta-circular
architecture, could largely remove the burden of maintaining
the internal classes of such a metaprogramming environment.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. It consists of a single case
of integrating a second metaprogramming environment with
the meta-circular architecture, although the case deals with
two realistic and comprehensive development environments.
Moreover, the presented results are still preliminary, and the
second metaprogramming environment is not yet operational
in the meta-circular architecture, as its control mechanism and
templating engine is not yet fully supported in this architec-
ture. Therefore, neither the complete horizontal integration,
nor the productive collaboration between the two environments
has been completely proven. However, this explorative but
nevertheless representative case study can be regarded as an
architectural pathfinder, and we have identified some remain-
ing issues that hamper the scalability of the approach.

To further enhance the scalability of the approach, it is
imperative to streamline and support the automated exchange
of domain models and the corresponding meta-models. We
are therefore working on enhanced tooling to allow metapro-
grammers to easily define their existing meta-models. Based
on these definitions of meta-models, the tooling should be
able to extend itself, and to include support for the actual
models that are based on these meta-models. The goal is to
enable entering, manipulating and viewing these models, and
to provide the automatic creation of standardized model data
trees and/or control files that can be fed into the various tem-

139

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



plating engines. Besides addressing the issues that currently
hamper the scalability of the approach, we have also initiated
a collaboration with a third metaprogramming environment.

REFERENCES

[1] H. Mannaert, C. McGroarty, K. De Cock, and S. Gallant, “Integrating
two metaprogramming environments: An explorative case study,” in
Proceedings of the Fifteenth International Conference on Software
Engineering Advances (ICSEA) 2020, 2020, pp. 166–172.

[2] J. R. Rymer and C. Richardson, “Low-code platforms deliver customer-
facing apps fast, but will they scale up?” Forrester Research, Tech. Rep.,
08 2015.

[3] B. Reselman, “Why the promise of low-code software platforms is
deceiving,” TechTarget, Tech. Rep., 05 2019.

[4] H. Mannaert, K. De Cock, and P. Uhnak, “On the realization of meta-
circular code generation: The case of the normalized systems expanders,”
in Proceedings of the Fourteenth International Conference on Software
Engineering Advances (ICSEA) 2019, 2019, pp. 171–176.

[5] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[6] D. Parnas, “Software aspects of strategic defense systems,” Communi-
cations of the ACM, vol. 28, no. 12, 1985, pp. 1326–1335.

[7] P. Cointe, “Towards generative programming,” Unconventional Program-
ming Paradigms. Lecture Notes in Computer Science, vol. 3566, 2005,
pp. 86–100.

[8] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,
tools, and applications. Reading, MA, USA: Addison-Wesley, 2000.

[9] L. Tratt, “Domain specific language implementation via compile-time
meta-programming,” ACM Transactions on Programming Languages
and Systems, vol. 30, no. 6, 2008, pp. 1–40.

[10] A. Wortmann, “Towards component-based development of textual
domain-specific languages,” in Proceedings of the Fourteenth Interna-
tional Conference on Software Engineering Advances (ICSEA) 2019,
2019, pp. 68–73.

[11] K. Gusarovs and O. Nikiforova, “An intermediate model for the code
generation from the two-hemisphere model,” in Proceedings of the
Fourteenth International Conference on Software Engineering Advances
(ICSEA) 2019, 2019, pp. 74–82.

[12] C. Mooers and L. Deutsch, “Trac, a text-handling language,” in ACM
’65 Proceedings of the 1965 20th National Conference, 1965, pp. 229–
246.

[13] D. McIlroy, “Macro instruction extensions of compiler languages,”
Communications of the ACM, vol. 3, no. 4, 1960, pp. 214–220.

[14] J. Reynolds, “Definitional interpreters for higher-order programming
languages,” Higher-Order and Symbolic Computation, vol. 11, no. 4,
1998, pp. 363–397.

[15] M. Vonderembse, T. Raghunathan, and S. Rao, “A post-industrial
paradigm: To integrate and automate manufacturing.” International Jour-
nal of Production Research, vol. 35, no. 9, 1997, p. 2579–2600.

[16] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[17] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[18] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[19] P. De Bruyn, H. Mannaert, J. Verelst, and P. Huysmans, “Enabling
normalized systems in practice : exploring a modeling approach,”
Business & information systems engineering, vol. 60, no. 1, 2018, pp.
55–67.

[20] K. Ament, Single Sourcing: Building Modular Documentation. Nor-
wich, NY, USA: William Andrew Publishing, 2003.

[21] J. P. Morrison, Flow-Based Programming: A New Approach to Appli-
cation Development. Van Nostrand Reinhold, 1994.

[22] M. Senthilvel and J. Beetz, “A visual programming approach
for validating linked building data,” URL: https://publications.rwth-
aachen.de/record/795561/files/795561.pdf, 2022, [accessed: 2022-06-
15].

[23] B. Rearick, Blockly. Cherry Lake Publishing, 2017.
[24] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.
[25] “The Apache Velocity Project,” URL: https://velocity.apache.org/, 2022,

[accessed: 2022-06-15].
[26] “How to make a video game without any coding experience,” URL:

https://unity.com/how-to/make-games-without-programming, 2022, [ac-
cessed: 2022-06-15].

140

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


