

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 13, no. 1 & 2, year 2020, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 13, no. 1 & 2, year 2020,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2020 IARIA

International Journal on Advances in Software

Volume 13, Number 1 & 2, 2020

Editor-in-Chief

Petre Dini, IARIA, USA

Editorial Advisory Board

Hermann Kaindl, TU-Wien, Austria
Herwig Mannaert, University of Antwerp, Belgium

Subject-Expert Associated Editors

Sanjay Bhulai, Vrije Universiteit Amsterdam, the Netherlands (DATA ANALYTICS)
Stephen Clyde, Utah State University, USA (SOFTENG + ICSEA)
Emanuele Covino, Università degli Studi di Bari Aldo Moro, Italy (COMPUTATION TOOLS)
Robert (Bob) Duncan, University of Aberdeen, UK (ICCGI & CLOUD COMPUTING)
Venkat Naidu Gudivada, East Carolina University, USA (ALLDATA)
Andreas Hausotter, Hochschule Hannover - University of Applied Sciences and Arts, Germany (SERVICE
COMPUTATION)
Sergio Ilarri, University of Zaragoza, Spain (DBKDA + FUTURE COMPUTING)
Christopher Ireland, The Open University, UK (FASSI + VALID + SIMUL)
Alex Mirnig, University of Salzburg, Austria (CONTENT + PATTERNS)
Jaehyun Park, Incheon National University (INU), South Korea (ACHI)
Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-
German Supercomputing Alliance (HLRN), Germany (GEOProcessing + ADVCOMP + INFOCOMP)
Markus Ullmann, Federal Office for Information Security / University of Applied Sciences Bonn-Rhine-Sieg,
Germany (VEHICULAR + MOBILITY)

Editorial Board

Witold Abramowicz, The Poznan University of Economics, Poland
Abdelkader Adla, University of Oran, Algeria
Syed Nadeem Ahsan, Technical University Graz, Austria / Iqra University, Pakistan
Marc Aiguier, École Centrale Paris, France
Rajendra Akerkar, Western Norway Research Institute, Norway
Zaher Al Aghbari, University of Sharjah, UAE
Riccardo Albertoni, Istituto per la Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” Consiglio
Nazionale delle Ricerche, (IMATI-CNR), Italy / Universidad Politécnica de Madrid, Spain
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Giner Alor Hernández, Instituto Tecnológico de Orizaba, México
Zakarya Alzamil, King Saud University, Saudi Arabia
Frederic Amblard, IRIT - Université Toulouse 1, France
Vincenzo Ambriola , Università di Pisa, Italy
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Annalisa Appice, Università degli Studi di Bari Aldo Moro, Italy
Philip Azariadis, University of the Aegean, Greece
Thierry Badard, Université Laval, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan
Fabian Barbato, Technology University ORT, Montevideo, Uruguay
Peter Baumann, Jacobs University Bremen / Rasdaman GmbH Bremen, Germany
Gabriele Bavota, University of Salerno, Italy
Grigorios N. Beligiannis, University of Western Greece, Greece
Noureddine Belkhatir, University of Grenoble, France
Jorge Bernardino, ISEC - Institute Polytechnic of Coimbra, Portugal
Rudolf Berrendorf, Bonn-Rhein-Sieg University of Applied Sciences - Sankt Augustin, Germany
Ateet Bhalla, Independent Consultant, India
Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain
Pierre Borne, Ecole Centrale de Lille, France
Farid Bourennani, University of Ontario Institute of Technology (UOIT), Canada
Narhimene Boustia, Saad Dahlab University - Blida, Algeria
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Carsten Brockmann, Universität Potsdam, Germany
Antonio Bucchiarone, Fondazione Bruno Kessler, Italy
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Dumitru Burdescu, University of Craiova, Romania
Martine Cadot, University of Nancy / LORIA, France
Isabel Candal-Vicente, Universidad Ana G. Méndez, Puerto Rico

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Jose Carlos Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Alain Casali, Aix-Marseille University, France
Yaser Chaaban, Leibniz University of Hanover, Germany
Savvas A. Chatzichristofis, Democritus University of Thrace, Greece
Antonin Chazalet, Orange, France
Jiann-Liang Chen, National Dong Hwa University, China
Shiping Chen, CSIRO ICT Centre, Australia
Wen-Shiung Chen, National Chi Nan University, Taiwan
Zhe Chen, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
PR
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan
Yoonsik Cheon, The University of Texas at El Paso, USA
Lau Cheuk Lung, INE/UFSC, Brazil
Robert Chew, Lien Centre for Social Innovation, Singapore
Andrew Connor, Auckland University of Technology, New Zealand
Rebeca Cortázar, University of Deusto, Spain
Noël Crespi, Institut Telecom, Telecom SudParis, France
Carlos E. Cuesta, Rey Juan Carlos University, Spain
Duilio Curcio, University of Calabria, Italy
Mirela Danubianu, "Stefan cel Mare" University of Suceava, Romania
Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil
Cláudio de Souza Baptista, University of Campina Grande, Brazil
Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México
Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain
Giovanni Denaro, University of Milano-Bicocca, Italy
Nirmit Desai, IBM Research, India
Vincenzo Deufemia, Università di Salerno, Italy
Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Javier Diaz, Rutgers University, USA
Nicholas John Dingle, University of Manchester, UK
Roland Dodd, CQUniversity, Australia
Aijuan Dong, Hood College, USA

Suzana Dragicevic, Simon Fraser University- Burnaby, Canada
Cédric du Mouza, CNAM, France
Ann Dunkin, Palo Alto Unified School District, USA
Jana Dvorakova, Comenius University, Slovakia
Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Atilla Elçi, Aksaray University, Turkey
Khaled El-Fakih, American University of Sharjah, UAE
Gledson Elias, Federal University of Paraíba, Brazil
Sameh Elnikety, Microsoft Research, USA
Fausto Fasano, University of Molise, Italy
Michael Felderer, University of Innsbruck, Austria
João M. Fernandes, Universidade de Minho, Portugal
Luis Fernandez-Sanz, University of de Alcala, Spain
Felipe Ferraz, C.E.S.A.R, Brazil
Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Wolfgang Fohl, Hamburg Universiy, Germany
Simon Fong, University of Macau, Macau SAR
Gianluca Franchino, Scuola Superiore Sant'Anna, Pisa, Italy
Naoki Fukuta, Shizuoka University, Japan
Martin Gaedke, Chemnitz University of Technology, Germany
Félix J. García Clemente, University of Murcia, Spain
José García-Fanjul, University of Oviedo, Spain
Felipe Garcia-Sanchez, Universidad Politecnica de Cartagena (UPCT), Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Tejas R. Gandhi, Virtua Health-Marlton, USA
Andrea Giachetti, Università degli Studi di Verona, Italy
Afzal Godil, National Institute of Standards and Technology, USA
Luis Gomes, Universidade Nova Lisboa, Portugal
Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain
Pascual Gonzalez, University of Castilla-La Mancha, Spain
Björn Gottfried, University of Bremen, Germany
Victor Govindaswamy, Texas A&M University, USA
Gregor Grambow, AristaFlow GmbH, Germany
Carlos Granell, European Commission / Joint Research Centre, Italy
Christoph Grimm, University of Kaiserslautern, Austria
Michael Grottke, University of Erlangen-Nuernberg, Germany
Vic Grout, Glyndwr University, UK
Ensar Gul, Marmara University, Turkey
Richard Gunstone, Bournemouth University, UK
Zhensheng Guo, Siemens AG, Germany
Ismail Hababeh, German Jordanian University, Jordan
Shahliza Abd Halim, Lecturer in Universiti Teknologi Malaysia, Malaysia
Herman Hartmann, University of Groningen, The Netherlands
Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Peizhao Hu, NICTA, Australia
Chih-Cheng Hung, Southern Polytechnic State University, USA
Edward Hung, Hong Kong Polytechnic University, Hong Kong
Noraini Ibrahim, Universiti Teknologi Malaysia, Malaysia
Anca Daniela Ionita, University "POLITEHNICA" of Bucharest, Romania
Chris Ireland, Open University, UK
Kyoko Iwasawa, Takushoku University - Tokyo, Japan

Mehrshid Javanbakht, Azad University - Tehran, Iran
Wassim Jaziri, ISIM Sfax, Tunisia
Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia
Jinyuan Jia, Tongji University. Shanghai, China
Maria Joao Ferreira, Universidade Portucalense, Portugal
Ahmed Kamel, Concordia College, Moorhead, Minnesota, USA
Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland
Nittaya Kerdprasop, Suranaree University of Technology, Thailand
Ayad ali Keshlaf, Newcastle University, UK
Nhien An Le Khac, University College Dublin, Ireland
Sadegh Kharazmi, RMIT University - Melbourne, Australia
Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan
Youngjae Kim, Oak Ridge National Laboratory, USA
Cornel Klein, Siemens AG, Germany
Alexander Knapp, University of Augsburg, Germany
Radek Koci, Brno University of Technology, Czech Republic
Christian Kop, University of Klagenfurt, Austria
Michal Krátký, VŠB - Technical University of Ostrava, Czech Republic
Narayanan Kulathuramaiyer, Universiti Malaysia Sarawak, Malaysia
Satoshi Kurihara, Osaka University, Japan
Eugenijus Kurilovas, Vilnius University, Lithuania
Alla Lake, Linfo Systems, LLC, USA
Fritz Laux, Reutlingen University, Germany
Luigi Lavazza, Università dell'Insubria, Italy
Fábio Luiz Leite Júnior, Universidade Estadual da Paraiba,Brazil
Alain Lelu, University of Franche-Comté / LORIA, France
Cynthia Y. Lester, Georgia Perimeter College, USA
Clement Leung, Hong Kong Baptist University, Hong Kong
Weidong Li, University of Connecticut, USA
Corrado Loglisci, University of Bari, Italy
Francesco Longo, University of Calabria, Italy
Sérgio F. Lopes, University of Minho, Portugal
Pericles Loucopoulos, Loughborough University, UK
Alen Lovrencic, University of Zagreb, Croatia
Qifeng Lu, MacroSys, LLC, USA
Xun Luo, Qualcomm Inc., USA
Stephane Maag, Telecom SudParis, France
Ricardo J. Machado, University of Minho, Portugal
Maryam Tayefeh Mahmoudi, Research Institute for ICT, Iran
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
José Manuel Molina López, Universidad Carlos III de Madrid, Spain
Francesco Marcelloni, University of Pisa, Italy
Eda Marchetti, Consiglio Nazionale delle Ricerche (CNR), Italy
Gerasimos Marketos, University of Piraeus, Greece
Abel Marrero, Bombardier Transportation, Germany
Adriana Martin, Universidad Nacional de la Patagonia Austral / Universidad Nacional del Comahue, Argentina
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal
Stephan Mäs, Technical University of Dresden, Germany
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Jose Merseguer, Universidad de Zaragoza, Spain
Seyedeh Leili Mirtaheri, Iran University of Science & Technology, Iran

Lars Moench, University of Hagen, Germany
Yasuhiko Morimoto, Hiroshima University, Japan
Antonio Navarro Martín, Universidad Complutense de Madrid, Spain
Filippo Neri, University of Naples, Italy
Muaz A. Niazi, Bahria University, Islamabad, Pakistan
Natalja Nikitina, KTH Royal Institute of Technology, Sweden
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino, Fraunhofer IESE, Germany
Rocco Oliveto, University of Molise, Italy
Sascha Opletal, Universität Stuttgart, Germany
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Claus Pahl, Dublin City University, Ireland
Marcos Palacios, University of Oviedo, Spain
Constantin Paleologu, University Politehnica of Bucharest, Romania
Kai Pan, UNC Charlotte, USA
Yiannis Papadopoulos, University of Hull, UK
Andreas Papasalouros, University of the Aegean, Greece
Rodrigo Paredes, Universidad de Talca, Chile
Päivi Parviainen, VTT Technical Research Centre, Finland
João Pascoal Faria, Faculty of Engineering of University of Porto / INESC TEC, Portugal
Fabrizio Pastore, University of Milano - Bicocca, Italy
Kunal Patel, Ingenuity Systems, USA
Óscar Pereira, Instituto de Telecomunicacoes - University of Aveiro, Portugal
Willy Picard, Poznań University of Economics, Poland
Jose R. Pires Manso, University of Beira Interior, Portugal
Sören Pirk, Universität Konstanz, Germany
Meikel Poess, Oracle Corporation, USA
Thomas E. Potok, Oak Ridge National Laboratory, USA
Christian Prehofer, Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik ESK, Germany
Ela Pustułka-Hunt, Bundesamt für Statistik, Neuchâtel, Switzerland
Mengyu Qiao, South Dakota School of Mines and Technology, USA
Kornelije Rabuzin, University of Zagreb, Croatia
J. Javier Rainer Granados, Universidad Politécnica de Madrid, Spain
Muthu Ramachandran, Leeds Metropolitan University, UK
Thurasamy Ramayah, Universiti Sains Malaysia, Malaysia
Prakash Ranganathan, University of North Dakota, USA
José Raúl Romero, University of Córdoba, Spain
Henrique Rebêlo, Federal University of Pernambuco, Brazil
Hassan Reza, UND Aerospace, USA
Elvinia Riccobene, Università degli Studi di Milano, Italy
Daniel Riesco, Universidad Nacional de San Luis, Argentina
Mathieu Roche, LIRMM / CNRS / Univ. Montpellier 2, France
José Rouillard, University of Lille, France
Siegfried Rouvrais, TELECOM Bretagne, France
Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-
German Supercomputing Alliance, Germany
Djamel Sadok, Universidade Federal de Pernambuco, Brazil
Ismael Sanz, Universitat Jaume I, Spain
M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India
Idrissa Sarr, University of Cheikh Anta Diop, Dakar, Senegal / University of Quebec, Canada
Patrizia Scandurra, University of Bergamo, Italy
Daniel Schall, Vienna University of Technology, Austria
Rainer Schmidt, Munich University of Applied Sciences, Germany

Sebastian Senge, TU Dortmund, Germany
Isabel Seruca, Universidade Portucalense - Porto, Portugal
Kewei Sha, Oklahoma City University, USA
Simeon Simoff, University of Western Sydney, Australia
Jacques Simonin, Institut Telecom / Telecom Bretagne, France
Cosmin Stoica Spahiu, University of Craiova, Romania
George Spanoudakis, City University London, UK
Cristian Stanciu, University Politehnica of Bucharest, Romania
Lena Strömbäck, SMHI, Sweden
Osamu Takaki, Japan Advanced Institute of Science and Technology, Japan
Antonio J. Tallón-Ballesteros, University of Seville, Spain
Wasif Tanveer, University of Engineering & Technology - Lahore, Pakistan
Ergin Tari, Istanbul Technical University, Turkey
Steffen Thiel, Furtwangen University of Applied Sciences, Germany
Jean-Claude Thill, Univ. of North Carolina at Charlotte, USA
Pierre Tiako, Langston University, USA
Božo Tomas, HT Mostar, Bosnia and Herzegovina
Davide Tosi, Università degli Studi dell'Insubria, Italy
Guglielmo Trentin, National Research Council, Italy
Dragos Truscan, Åbo Akademi University, Finland
Chrisa Tsinaraki, Technical University of Crete, Greece
Roland Ukor, FirstLinq Limited, UK
Torsten Ullrich, Fraunhofer Austria Research GmbH, Austria
José Valente de Oliveira, Universidade do Algarve, Portugal
Dieter Van Nuffel, University of Antwerp, Belgium
Shirshu Varma, Indian Institute of Information Technology, Allahabad, India
Konstantina Vassilopoulou, Harokopio University of Athens, Greece
Miroslav Velev, Aries Design Automation, USA
Tanja E. J. Vos, Universidad Politécnica de Valencia, Spain
Krzysztof Walczak, Poznan University of Economics, Poland
Yandong Wang, Wuhan University, China
Rainer Weinreich, Johannes Kepler University Linz, Austria
Stefan Wesarg, Fraunhofer IGD, Germany
Wojciech Wiza, Poznan University of Economics, Poland
Martin Wojtczyk, Technische Universität München, Germany
Hao Wu, School of Information Science and Engineering, Yunnan University, China
Mudasser F. Wyne, National University, USA
Zhengchuan Xu, Fudan University, P.R.China
Yiping Yao, National University of Defense Technology, Changsha, Hunan, China
Stoyan Yordanov Garbatov, Instituto de Engenharia de Sistemas e Computadores - Investigação e
Desenvolvimento, INESC-ID, Portugal
Weihai Yu, University of Tromsø, Norway
Wenbing Zhao, Cleveland State University, USA
Hong Zhu, Oxford Brookes University, UK
Qiang Zhu, The University of Michigan - Dearborn, USA

International Journal on Advances in Software

Volume 13, Numbers 1 & 2, 2020

CONTENTS

pages: 1 - 15
An Explanation Framework for Whole Processes of Data Analysis Applications: Concepts and Use Cases
Hiroshi Ishikawa, Tokyo Metropolitan University, Japan
Yukio Yamamoto, Japan Aerospace Exploration Agency, Japan
Masaharu Hirota, Okayama University of Science, Japan
Masaki Endo, Polytechnic University, Japan

pages: 16 - 33
An Algorithmic Solution for Adaptable Real-Time Applications
Lial Khaluf, I am currently not working, Germany
Franz-Josef Rammig, University of Paderborn, Germany

pages: 34 - 49
The Collaborative Modularization and Reengineering Approach CORAL for Open Source Research Software
Christian Zirkelbach, Software Engineering Group, Kiel University, Germany
Alexander Krause, Software Engineering Group, Kiel University, Germany
Wilhelm Hasselbring, Software Engineering Group, Kiel University, Germany

pages: 50 - 68
An Integrated Syntax/Semantics Representational Framework for Natural Language Processing: Theory and
Applications
Carlos Seror, Independent researcher, Spain

pages: 69 - 79
Improve Operations of Real-Time Image Classification Utilizing Machine Learning and Knowledge Evolution
David Prairie, University of Massachusetts Dartmouth, United States
Paul Fortier, University of Massachusetts Dartmouth, United States

pages: 80 - 91
Industry Case Study: Design Antipatterns in Actual Implementations. Understanding and Correcting Common
Integration Design and Database Management Oversights.
Mihaela Iridon, Cândea LLC, United States

pages: 92 - 103
Coping with Technological Diversity by Mixing Different Architecture and Deployment Paradigms
Philipp Helle, Airbus Central R&T, Germany
Stefan Richter, Airbus Central R&T, Germany
Gerrit Schramm, Airbus Central R&T, Germany
Andreas Zindel, Airbus Central R&T, Germany

pages: 104 - 115
Data Science as a Service - Prototyping an integrated and consolidated IT infrastructure combining enterprise
self-service platform and reproducible research
Hans Laser, Center for Information Management, Hannover Medical School, Germany
Steve Guhr, NetApp Deutschland GmbH, Germany

Jan-Hendrik Martenson, NetApp Deutschland GmbH, Germany
Jannes Gless, Center for Information Management, Hannover Medical School, Germany
Branko Jandric, Center for Information Management, Hannover Medical School, Germany
Joshua Görner, Airbus Operations GmbH, Germany
Detlef Amendt, Center for Information Management, Hannover Medical School, Germany
Benjamin Schantze, NetApp Deutschland GmbH, Germany
Svetlana Gerbel, Center for Information Management, Hannover Medical School, Germany

An Explanation Framework for Whole Processes of Data Analysis
Applications: Concepts and Use Cases

Hiroshi Ishikawa

Graduate School of Systems Design
Faculty of System Design

Tokyo Metropolitan University
Hino, Tokyo

Email:ishikawa-hiroshi@tmu.ac.jp

Masaharu Hirota
Department of Information Science

Faculty of Informatics
Okayama University of Science

Okayama, Okayama
Email:hirota@mis.ous.ac.jp

Yukio Yamamoto
Japan Aerospace Exploration Agency

Sagamihara, Kanagawa
Email:yamamoto.yukio@jaxa.jp

Masaki Endo
Division of Core Manufacturing

Polytechnic University
Kodaira, Tokyo

Email:endou@uitec.ac.jp

Abstract- The main contribution of the paper is to address the
necessity of both macro and micro explanations for Social Big
Data (SBD) applications and to propose an explanation
framework integrating both, allowing SBD applications to be
more widely accepted and used. The framework provides both
a macro explanation of the whole procedure and a micro
explanation of the constructed model and an explanation of the
decisions made by the model. Application systems including
Artificial Intelligence (AI) or Data Mining (DM) need
reproducibility to ensure their reliability as scientific systems.
For that purpose, it is important to illustrate the procedures of
the system explicitly and abstractly (that is, macro
explanations). This paper has scientific value in that it proposes
a data model for that purpose and illustrates the possibility of
macro explanations through one use case of social science.
Scientists also need to provide evidence that the results obtained
by AI or DM are valid. In other words, this paper also has
scientific value in that it reveals how the features of the model
and concrete grounds for judgment can be explained through
two use cases of natural science.

Keywords- social big data; explanayion; data model; data
management; data mining.

I. INTRODUCTION
We are surrounded by big data, which are waiting to be

analyzed and used. Big data are real data, such as automobile
driving data and space observation data, generated from real
world measurement and observation, social data derived
from social media, e.g., Twitter and Instagram, and open data
published by highly public groups, e.g., weather data and
evacuation location data. These are generally called social

big data (SBD) [1]. Furthermore, SBD are inherently
represented by multimedia (MM). By integrating and
analyzing social big data, new knowledge can be obtained,
which is expected to bring new value to society [2] [3].

SBD can include the same type of spatially different data,
data obtained by different means for the same object, and
temporally different data for the same object as well.
Therefore, SBD applications cover not only use cases that
include social data, but also use cases that include only
engineering or scientific data generated in the real world.

Further as the horizon of applications whose main task is
data analysis spreads, the following problems have emerged:

 Application to science, e.g., lunar and planetary
science

Analytical applications in this field require strictness as
science. That is, explanation of the protocol (procedure) of
analysis and explanation of the reason for decisions are
required [1]. In addition, as to the interpretation of the
analytical model, it is necessary to explain the input data (for
learning and test) and the data manipulation on the data, and
the procedure (algorithm and program) for model
construction. In order to interpret the individual results, it is
necessary to explain the input data (actual data) and the
reasons for the decisions.

 Application to Social Infrastructure, e.g., Mobility
as a Service (MaaS)

Analytical applications in this field require consent of
practitioners. That is, the analysis result must be consistent
with the practitioners’ own experiences, and especially in the
case of applications such as ones related to human life, it is

1

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

necessary to fulfill the accountability to the concerned parties.
Interpretation of both of the model and individual results is
necessary as with science. In addition, especially if the data
about the generic users are utilized in applications,
interpretation of the model is also important in order to get
rid of the general users’ concerns.

In order for social big data to widely be used, it is
necessary to explain the user the application system. Both
microscopic description, that is, interpretation of the
analytical model and explanation of individual decisions and
macroscopic description, that is, description of the whole
process including the data manipulation and the model
construction are required.

First of all, the reason why a macro explanation is
necessary is described below. In order for social big data
applications to be accepted by users, it is necessary to ensure
at least their reliability. Since information science is one area
of science, we should guarantee reproducibility as science. In
other words, it is necessary to ensure that third parties can
prepare and analyze data according to given explanation and
can get the same results.

In addition, in order for the service to be operatable, it is
necessary for the final user of the service to be convinced of
how the service processes and uses the personal information.
In addition, if the users can be convinced of the description
of way of using the personal information, the progress of data
portability can be advanced based on the EU's GDPR
(General Data Protection Regulation) law on personal
information protection [4] and Japan-based information bank
to promote the use of personal information [5].

Next, a micro explanation is necessary for the following
reasons. In order for analysts of social big data and field
experts using the data to accept decisions made by the
constructed model, it is assumed that they must understand
the structure, actions and grounds of the model and are
satisfied with them as well.

Up to now, the authors have been involved in the
development of a wide range of social big data use cases
ranging from tourism, disaster prevention to lunar and
planetary science [6] [7]. In the course of these processes,
from the users of the use cases, we have often received
questions as to what kind of data are processed, what kind of
models are created as the core of analysis, and furthermore,
what are the grounds for the decisions. In other words, from
the development experiences of multiple use cases, we have
come to think that both the macro explanation proposed in
this paper and the micro explanation emerging in AI are
urgently needed.

To date, the authors created multiple seismic source
classifiers of the lunar quakes (i.e., moonquakes) in the field
of lunar and planetary science using the Balanced Random
Forest [8], and the features, e.g., the distance between the
moon and the earth, were calculated and studied for
extracting features strongly related to the cause of

moonquakes as a micro explanation [6]. With regard to a
macro explanation, the authors also showed that by
observing many use cases, social big data applications should
include different digital ecosystems such as data
management (database operation) and data analysis (data
mining, machine learning, artificial intelligence), we have
noticed that it is necessary to have a method to generally
describe the whole process of application consisting of such
a hybrid digital ecosystem. Therefore, as a framework to
describe processes in an abstraction level independent of a
specific programming language, we have come to think of
adopting a data model [9] developed in the field of database
and proposed a framework for its description using the
mathematical concept of family of sets [10]. As described in
the subsequent section of the related works, the research on
micro explanations is being actively carried out, whereas as
far as research on the framework for a macroscopic
description is not known except for our work.

The main contribution of the paper is to address the
necessity of both macro and micro explanations for SBD
applications and to propose an explanation framework
integrating both of them. This will allow SBD applications
to be more widely accepted and used. Although this paper
describes our research-in-progress, we propose an integrated
framework for explanation and introduce a part of its
functions through case studies.

The contributions of this paper can be detailed as follows.
First, as a science, a system that includes Artificial
Intelligence (AI) or Data Mining (DM) needs reproducibility
(How) [11] to ensure its reliability. For that purpose, it is
important to show the procedures of the system explicitly and
abstractly. We propose a dedicated data model for that
purpose. For AI or DM, scientists need to show what model
features are useful for making decisions and why the results
obtained are valid (Why) [12]. This paper has scientific value
in clarifying what features contribute more to the
classification model and what can be shown as a basis for
individual judgment through two use cases. The procedure
can be modeled using a data model approach based on the
mathematical concept family [10], using social data in the
first case related to social science. The difference method
[13] was used in the first case and the third case, related to
natural science in order to model the hypotheses. In the
explanation of the features of the analytical model in the
second case, there is a skew in the data size for moonquake
data, so we used Balanced Random Forest [8]. In the third
case, for the basis of individual judgment we used CNN
(deep learning) [14] and Grad-CAM (attention) [15] using
Digital Elevation Model (DEM) provided by the Japan
Aerospace Exploration Agency (JAXA).

This paper is of scientific value in that it demonstrates
through use cases what can be explained to scientists as a
basis for validating the results obtained by AI or DM. In other
words, moonquake classification is important in lunar and

2

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

planetary science to understand the internal structure of the
moon. This paper illustrated which features contribute most
to the classification. The crater with a central hill is also a
promising place for exploring the internal structure of the
moon. This paper could illustrate what is the basis for
judging the craters with central hills. These are also
scientifically significant in that they have shown the
possibility that AI and DM, which are IT technologies, are
accepted by scientists as scientific methods.

The differences between this paper and the international
conference paper [1] are as follows. The contribution and
scientific value of this study were described in more detail.
A description of the basic elements of the framework for
explanation and the mechanism of its processing was added.
A case of discovery of lunar craters with central hills was
added as an example of a microscopic-explanation function
(i.e., description of the grounds of judgment). The
description of each use case was summarized according to
the items such as scientific objectives, data, methods, and
results.

In Section II, we will introduce our explanation
framework. Through use case examples of macroscopic
description and microscopic description, we will describe
features of the proposed approach in Sections III, IV, and V,
respectively.

II. OUR APPROACH

A. Explanation Framework
For a macro explanation of applications, the goal is to

facilitate a data model for abstractly describing the entire
processes from data acquisition to data analysis and to
explain the processes based on the description. For the micro
explanation, we aim to show the basis of the interpretation of
the constructed model and the individual decisions made
when applying it.

Figure 1. Explanation framework

The features of the proposed framework are summarized
as follows.

Based on the SBD model introduced in Section III, the
parties who are users of the framework (application
developers) can describe the procedures (i.e., data
management and model generation) of the application
system in a more abstract manner than programming
languages. The framework outputs the described procedures
as they are as a macro explanation to the parties (e.g., tourism

operators in the tourism case). As a micro explanation, based
on the results of the actual execution of the classification
model, the framework outputs the features of the
classification model (i.e., which features contribute to the
classification) and the basis for judgment of each
classification result to the scientists in the moonquake case
and those in the moon crater case as the parties, respectively.

Figure 1 shows the framework. We specify which
function corresponds to each use case. Case One in Section
III illustrates the macroscopic-explanation function (F1) that
explains the application procedures. Case Two in Section IV
illustrates the microscopic-explanation function (F2) that
explains which features contribute to the model classification,
Case Three in Section V illustrates the microscopic-
explanation function (F3) that explains the basis for
individual judgment of the model classification.

We describe the framework in more detail as follows.
1) Construction of a theoretical foundation for integrated

explanation
For that purpose, we build a theoretical framework of the

technical foundation that integrates the following
microscopic- and macroscopic-explanatory methods.

a) Macro explanation function: The application system is
a hybrid ecosystem consisting of data management and data
mining (including machine learning and Artificial
Intelligence, or AI), and the function must be able to describe
the application seamlessly. Moreover, it must be able to
describe the application in a high level not depending on
individual environments or programming languages. For
instance, we aim to enable to describe “partition foreign
visitors’ tweets into grids based on geo-tags.” Therefore, we
first create a framework to unify the hybrid ecosystem based
on the data model approach. In other words, we develop a
method to provide macro explanations with the constituent
elements (data structure and data manipulation) of the model
based on the mathematical family of sets as a basic unit. The
explanation mechanism provided by the proposed
framework presents as a macro explanation a sequence of
operations on databases to the user based on the model of
SBD applications consisting of data management and data
mining as in a use case depicted in Section III.

b) Microscopic-explanatory function: We develop an
explanatory method independent of analytical model by
extending explanatory functions based on attributes or
constituent elements, which is an emergent approach in AI,
discussed in the related work subsection. In other words, in
model categories for structured data consisting of attributes,
such as Support Vector Machine (SVM) and decision trees,
we develop a method for systematically discovering subsets
of attributes with strong influence on analysis results based
on multiple weak classifiers. For instance, we aim to enable
to illustrate a possibility that the features of the Earth and
some of the features of Jupiter are effective for classification
of the moonquakes when the moon is the origin of the

Macroscopic-explanation function (F1)
= data management procedure + model generation

procedure
Microscopic-explanation function
= model feature explanation (F2) + judgement basis

explanation (F3)

3

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

coordinate system. Especially this function is used to
interpret the model itself. In model categories like Deep
Neural Network (DNN) suitable for non-structured data such
as images, we develop a method of explaining the analysis
result based on the constituent elements or decomposition of
the image with the use of annotation or attention. Especially
this function is used to show the basis of individual decisions.
For the micro explanation of the reasons for decisions, if the
analysis target is image data, a part of the image which leads
to the conclusion is indicated by concepts or words as its
annotations based on a heat map. For instance, we aim to
enable to illustrate that the contribution area for “central-
peak crater” on the moon has heating area inside the crater,
and the heating area is covering a central peak. If the object
is structural data, that is, it consists of attributes, the micro
explanation is presented in terms of the contribution ratios of
the attributes as in a use case depicted in Section IV.

Please also note that data management and model
construction in SBD applications are more complex than
linear model construction frequent in traditional applications.

2) Collection of use cases and verification of basic
technology

First, we collect several different kinds of use cases
(tourism, mobility service, lunar exploration). We generate
concrete explanations as targets for typical ones, using the
integrated explanatory platform developed in items a and b
and verify its feasibility

3) Implementation of Explanation generation and
presentation method

Based on the theoretical framework of the integrated
infrastructure, an automatic generation method of
explanation and a presentation function of explanations are
implemented. We evaluate their effectiveness by performing
the experiments. We also incorporate InfoGraphics [16] as a
method of presenting explanations to users since the users
are not always analysis experts.

Basically, for micro explanation, we create explanations
of individual decisions by solving partial problems that
restrict information existing in original problems.

In this research, we aim to develop both the emerging
microscopic-explanatory functions and macroscopic-
explanatory functions and to build a framework for
integrating two kinds of explanations.

B. Related Research
As a trend other than the authors' research, research

corresponding to microscopic-explanatory functions has
become active in AI, what is so called eXplainable AI (XAI)
at present.

First, there is an attempt [17] to try to give a basic
definition to the possibility of interpretation of a model in
machine learning and research [18] on the evaluation method
of interpretability.

Next, individual studies on XAI are roughly classified
into (1) description based on features, (2) interpretable model,
and (3) derivation of explanation model. Research is done to
create a classification rule for explanation by creating a
subset of features in SVM as a category of (1) [19]. In
addition, in the image classification using Convolutional
Neural Network (CNN) and Long Short-Term Memory
(LSTM), there is research to generate explanations based on
both image features and class features [20]. Further there is
research introducing the explanation vector to make explicit
the most important attributes [21]. In the category of (2),
there is research using a AND/OR tree to discover the
components of the model [22] and research to make models
that can be interpreted by considering the generation process
of features [23]. Research deriving description with
reference of any classifier of the local approximation model
falls into the category (3) [24].

In particular, the paper [25] is related to our framework.
Post-hoc global explanation introduced in this paper
corresponds to the explanation of the model features (micro
explanation F2) in the proposed framework, Post-hoc local
explanation introduced in the paper corresponds to the
explanation of the basis for the judgement (micro
explanation F3). However, the paper differs from our work
in that the former takes no account of the macro explanation
F1 (data management and model generation) in the proposed
framework.

While developing along the approaches of (1) and (3) as
a microscopic-explanatory technique, we aim to build a
comprehensive explanation basis by conducting research on
macroscopic-explanation technology.

In addition, although there is an application of
infographics to a tourism use case [26], our research aims at
basic research that can be widely used for visualization of
explanation of general analysis.

III. CASE STUDY: MACRO EXPLANATION OF
TOURISM APPLICATION

We will describe the case that explains how our data is
used in analysis application. For that purpose, an integrated
data model is introduced as a macroscopic description of an
analytical application which is a hybrid ecosystem. Thus, the
application is described using the integrated model just as a
basis for macro explanation (see Figure 1). In other words,
the data model introduced for model construction and reuse
in the previous works [3] [13] is used for different purposes,
i.e., the explanation functions for hypothesis generation.

A. Integrated Model
In the following subsections, we describe our data model

approach to SBD, which consists of both of data structures
and operations [9].

1) Data model for SBD
Our SBD model uses a mathematical concept of a family

4

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10], a collection of sets, as a basis for data structures. Family
can be used as an apparatus for bridging the gaps between
data management operations and data analysis operations.

Basically, our database is a Family. A Family is divided
into Indexed family and Non-Indexed family. A Non-Indexed
family is a collection of sets.

An Indexed family is defined as follows:

a) {Set} is a Non-Indexed family with Set as its element.

b) {Seti} is an Indexed family with Seti as its i-th element.
Here, i: Index is called indexing set and i is an element
of Index.

c) Set is {<time space object>}.

d) Seti is {<time space object>}i. Here, object is an
identifier to arbitrary identifiable user-provided data,
e.g., record, object, and multimedia data appearing in
social big data. Time and space are universal keys
across multiple sources of social big data.

e) {Indexed familyi} is also an Indexed family with
Indexed familyi as its i-th element. In other words,
Indexed family can constitute a hierarchy of sets.

Please note that the following concepts are
interchangeably used in this paper.

• Singleton family  set

• Singleton set  element
As described later in this section, we can often observe

that SBD applications contain families as well as sets and
they involve both data mining and data management. Please
note that a family is also suitable for representing
hierarchical structures inherent in time and locations as well
as matrices and tensors associated with social big data.

If operations constructing a family out of a collection of
sets and those deconstructing a family into a collection of sets
are provided in addition to both family-dedicated and set-
dedicated operations, SBD applications will be described in
an integrated fashion by our proposed model.

2) SBD Operations.
SBD model constitutes an algebra with respect to Family

as follows. SBD is consisted of Family data management
operations and Family data mining operations. Further,
Family data management operations are divided into Intra
Family operations and Inter Family operations.

First, Intra Family Data Management Operations will be
described as follows:

a) Intra Indexed Intersect (i:Index Db p(i)) returns a
singleton family (i.e., set) intersecting sets which
satisfy the predicate p(i). Database Db is an indexed
Family, which will not be mentioned hereafter.

b) Intra Indexed Union (i:Index Db p(i)) returns a
singleton family union-ing sets which satisfy p(i).

c) Intra Indexed Difference (i:Index Db p(i)) returns a
singleton family, that is, the first set (i.e., a set with
smallest index) satisfying p(i) minus all the rest of sets
satisfying p(i)

d) Indexed Select (i:Index Db p(i) sp(i)) returns an
Indexed family with respect to i (preserved) where the
element sets satisfy the predicate p(i) and the elements
of the selected sets satisfy the selection predicate sp(i).
As a special case of true as p(i), this operation returns
the whole indexed family. In a special case of a
singleton family, Indexed Select is reduced to Select (a
relational operation).

e) Indexed Project (i:Index Db p(i) a(i)) returns an
Indexed family where the element sets satisfy p(i) and
the elements of the sets are projected according to a(i),
attribute specification. This also extends also
relational Project.

f) Intra Indexed cross product (i:Index Db p(i)) returns
a singleton family obtained by product-ing sets which
satisfy p(i). This is extension of Cartesian product, one
of relational operators.

g) Intra Indexed Join (i:Index Db p(i) jp(i)) returns a
singleton family obtained by joining sets which satisfy
p(i) based on the join predicate jp(i). This is extension
of Join (a relational operator).

h) Select-Index (i:Index Db p(i)) returns i:Index of seti

which satisfy p(i). As a special case of true as p(i), it
returns all index.

i) Make-indexed family (Index Non-Indexed Family)
returns an indexed Family. This operator requires
order-compatibility, that is, that i corresponds to i-th
set of Non-Indexed Family.

j) Partition (i:Index Db p(i)) returns an Indexed family.
Partition makes an Indexed family out of a given set
(i.e. singleton family either w/ or w/o index) by
grouping elements with respect to p (i:Index). This is
extension of “groupby” as a relational operator.

k) ApplyFunction (i:Index Db f(i)) applies f(i) to i-th set
of DB, where f(i) takes a set as a whole and gives
another set including a singleton set (i.e., Aggregate
function). This returns an indexed family. f(i) can be
defined by users.

Here the operations a) to g) are extensions of
corresponding relational operators.

Second, Inter Family Data Management Operations will
be described as follows:

All are assumed to be Index-Compatible.

a) Indexed Intersect (i:Index Db1 Db2 p(i)) union-
compatible

5

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) Indexed Union (i:Index Db1 Db2 p(i)) union-
compatible

c) Indexed Difference (i:Index Db1 Db2 p(i)) union-
compatible

d) Indexed Join (i:Index Db1 Db2 p1(i) p2(i))

e) Indexed cross product (i:Index Db1 Db2 p(i))
Finally, Family Data Mining Operations will be

described as follows:

a) Cluster (Family method similarity {par}) returns a
Family as default, where Index is automatically
produced. This is an unsupervised learner.

b) Make-classifier (i:Index set:Family learnMethod
{par}) returns a classifier (Classify) with its accuracy.
This is a supervised learner.

c) Classify (Index/class set) returns an indexed family
with class as its index.

d) Make-frequent itemset (Db supportMin) returns an
Indexed Family as frequent itemsets, which satisfy
supportMin.

e) Make-association-rule (Db confidenceMin) creates
association rules based on frequent itemsets Db,
which satisfy confidenceMin. This is out of range of
our algebra, too.

Please note that the predicates and functions used in the
above operations can be defined by the users in addition to
the system-defined ones such as Count.

B. Tourist Applications
First, we will summarize this case as follows.

a) (Social scientific and explanatory objectives) In this
case related to social science, it is important for the
EBPM (Evidence-Based Policy Making) [27] parties
(tourist operators) to identify where there is a gap
between social needs (many foreigners want to use the
Internet) and the infrastructure to meet them (free Wi-
Fi access spots for foreigners are available). The
procedure to realize this consists of data management
and model generation (data mining and difference
method). In other words, it is necessary to explain to
the EBPM parties how to draw the conclusions
(results of gap detection).

b) (Data used for use case) Social media data Flickr [28]
images and Twitter [29] articles were used. We
collected 4.7 million Tweet articles (tweets) with geo
tags by using the site provided API and selected 7,500
tweets posted by foreign visitors in Yokohama. We
also collected 0.6 million Flickr images by using the
site provided API and selected 2,100 images posted by

foreign visitors in Yokohama.

c) (Methods used for use case) We used SQL to prepare
social data and used a dedicated DM technique [30]
to select only data posted by foreign visitors. We
calculated the final result by using the difference
method [3] [13] on separate results obtained from
to the different data sources.

d) (Result) As a result of social science, we could identify
the areas with the gaps between social needs and
available infrastructures. The model-based
explanation of the whole processes for obtaining the
result was found useful by talks with tourism
operators.

Next, we will describe the case in more depth.
We describe a case study, finding candidate access spots

for accessible Free Wi-Fi in Japan [31]. This case is classified
as integrated analysis based on two kinds of social data.

This section describes our proposed method of detecting
attractive tourist areas where users cannot connect to
accessible Free Wi-Fi by using posts by foreign travelers on
social media.

Our method uses differences in the characteristics of two
types of social media:

Real-time: Immediate posts, e.g., Twitter
Batch-time: Data stored to devices for later posts, e.g.,

Flickr
Twitter users can only post tweets when they can connect

devices to Wi-Fi or wired networks. Therefore, travelers can
post tweets in areas with Free Wi-Fi for inbound tourism or
when they have mobile communications. In other words, we
can obtain only tweets with geo-tags posted by foreign
travelers from such places. Therefore, areas where we can
obtain huge numbers of tweets posted by foreign travelers are
identified as places where they can connect to accessible Free
Wi-Fi and /or that are attractive for them to sightsee.

Flickr users, on the other hand, take many photographs
by using digital devices regardless of networks, but whether
they can upload photographs on-site depends on the
conditions of the network. As a result, almost all users can
upload photographs after returning to their hotels or home
countries. However, geo-tags annotated to photographs can
indicate when they were taken. Therefore, although it is
difficult to obtain detailed information (activities,
destinations, or routes) on foreign travelers from Twitter,
Flickr can be used to observe such information. In this study,
we are based on our hypothesis of “A place that has a lot of
Flickr posts, but few Twitter posts must have a critical lack
of accessible Free Wi-Fi.” We extracted areas that were
tourist attractions for foreign travelers, but from which they
could not connect to accessible Free Wi-Fi by using these
characteristics of social media. What our method aims to find
is places currently without accessible Free Wi-Fi.

6

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Our method envisaged places that met the following two
conditions as candidate access spots for accessible free Wi-Fi:

• Spots where there was no accessible Free Wi-Fi

• Spots that many foreign visitors visited
We use the number of photographs taken at locations to extract

tourist spots. Many people might take photographs of subjects,
such as landscapes based on their own interests. They might then
upload those photographs to Flickr. These locations at which
many photographs had been taken might also be interesting places
for many other people to sightsee or visit. We have defined such
places as tourist spots. We specifically examined the number of
photographic locations to identify tourist spots to find locations
where photographs had been taken by a lot of people. We mapped
photographs that had a photographic location onto a two-
dimensional grid based on the location at which a photograph
had been taken to achieve this. Here, we created individual cells in
a grid that was 30 square meters. Consequently, all cells in the grid
that was obtained included photographs taken in a range. We then
counted the number of users in each cell. We regarded cells with
greater numbers of users than the threshold as tourist spots.

[Integrated Hypothesis] Based on different data
generated form Twitter and Flickr, the following fragment as
the macro explanation for hypothesis generation discovers
attractive tourist spots for foreign visitors but without
accessible free Wi-Fi currently (see Figure 2):

DBt/visitor ← Tweet DB of foreign visitors obtained by
mining based on durations of their stays in Japan;

DBf/visitor ← Flickr photo DB of foreign visitors obtained
by mining based on their habitations;

T ← Partition (i:Index grid DBt/visitor p(i)); This
partitions foreign visitors’ tweets into grids based on geo-
tags; This operation returns an indexed family.

F ← Partition (j:Index grid DBf/visitor p(j)); This partitions
foreign visitors’ photos into grids based on geo-tags; This
operation returns an indexed family.

Index1 ← Select-Index (i:Index T Density(i) >= th1);
Density counts the number of foreign visitors per grid. th1 is
a threshold. This operation returns a singleton family.

Index2 ← Select-Index (i:Index F Density(i) >= th2);
Density also counts the number of foreign visitors per grid.
th2 is a threshold. This operation returns a singleton family.

Index3 ← Difference (Index2 Index1); This operation
returns a singleton family.

Plaese note that Partition and Select-Index are family
data management operations while Difference is a relational
(set) data management operation.

We collected more than 4.7 million data items with geo-
tags from July 1, 2014 to February 28, 2015 in Japan. We
detected tweets tweeted by foreign visitors by using the
method proposed by Saeki et al. [30]. The number of tweets
that was tweeted by foreign visitors was more than 4.7

million. The number of tweets that was tweeted by foreign
visitors in the Yokohama area was more than 7,500. We
collected more than 0.6 million photos with geo-tags from
July 1, 2014 to February 28, 2015 in Japan. We detected
photos that had been posted by foreign visitors to Yokohama
by using our proposed method. Foreign visitors posted 2,132
photos. For example, grids indexed by Index3 contain
“Osanbashi Pier.” Please note that the above description
doesn’t take unique users into consideration. The visual
comparison of the same grids with unbalanced densities can
help the decision makers to understand the proposal.

Figure 2. Differences of high-density areas of Tweets (left) and of Flickr
photos (right).

IV. CASE STUDY: MICRO EXPLANATION FOR
MOONQUAKE APPLICATION

First, we will summarize this case as follows.

a) (Scientific and explanatory objectives) In this case
related to lunar and planetary science, in order to
know the internal structure of the moon, it is necessary
to analyze the moonquake. As a preliminary study, the
classification of moonquakes based on multiple
epicenters is indispensable. However, it is not fully
understood what features are more effective for
moonquake classification. Therefore, it is necessary to
determine the features that contribute most to the
classification result as an explanation of the
classification model.

b) (Data used for use case) We used passive seismic data
regarding to the moonquakes collected by the NASA
Apollo program. The dataset [32] has 16 seismic
sources and 2,480 events as depicted in Table II.
There is a skew with respect to the size of each source.

c) (Methods used for use case) We used Balanced
Random Forest [8] to explain which features most
contribute to one-to-one classification of moonquakes
with respect to seismic sources.

d) (Result) Results of the classification performance
using orbit parameters of objects in our Solar System
(Earth, Sun, Jupiter, and Venus) suggest that the

7

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Earth orbit parameter is the most effective feature
among them. The Jupiter orbit parameter is effective
for classification of some seismic sources. The effect
was validated by discussions in our research team
consisting of IT specialist and natural scientists.

Next, we will describe the case of determining features
important for interpreting the constructed model by
reducing features with small contribution ratios. We apply
Balanced Random Forest [8], which extends Random
Forest [33], a popular supervised learning method in
machine learning, to lunar and planetary science to verify
the key features in analysis. Our verification method tries to
confirm whether the known seismic source labels can be
reproduced by Balanced Random Forest using the features
described below based on the features constructed from the
moonquakes with the seismic source label of the known
moonquake as the correct label.

A. Features for Analysis
TABLE I shows the parameters in the coordinate systems

used in this section. We use as seismic source of moonquakes
the position on the planets of the moon, the sun, the earth,
and Jupiter (X , y , z) , velocity (v x , v y , v z) , and distance
(lt). Based on the time of moonquake occurrence, we
calculate and use features using SPICE [34]. SPICE assists
scientists in planning and interpreting scientific observations
from space-borne instruments, and to assist engineers
involved in modeling, planning and executing activities
needed to conduct planetary exploration missions.

Here, sun perturbation is the solar perturbation. The IAU
MOON coordinate system is a fixed coordinate system
centered on the moon. The z axis is the north pole direction
of the moon, the x axis is the meridian direction of the
moon, the y axis is the right direction with respect to the
plane xz. The IAU EARTH coordinate system is a fixed
coordinate system centered on the earth. Here, the z axis is the
direction of the conventional international origin, the x axis is
the direction of the prime meridian, and the y axis is the right
direction with respect to the xz plane.

We also calculate the period of the perigee at the
distance of earth_from_moon, the period based on the period
of the perigee, the periods of the x coordinate and the y
coordinate of the solar perturbation. sin and cos values are
calculated from these periodic features and the phase angle
based on them. In addition, at the positions
moon_from_earth and sun_from_earth, we calculate the cos
similarity as the features of the sidereal moon. Most
importantly, as all possible combinations of these features, a
total of 55 features are used in our experiments described here.

B. Balanced Random Forest
Random Forest is an ensemble learning that combines a

large number of decision trees and is widely used in fields
such as data mining and has a characteristic that the

contribution ratio of features can be calculated. However,
Random Forest has a problem such that when there is a large
difference in the size of data to be learned depending on class
labels, the classifier is learned biased towards classes with a
large size of data. Generally, we address the problem of
imbalanced data by weighting classes with a small number
of data. However, if there is any large skew between the
numbers of data, the weight of data belonging to classes with
a small number will become large, which is considered to
cause over fitting to classes with a small number of data.
Since the deep moonquakes have a large difference in the
number of events for each seismic source, it is necessary to
apply a method considering imbalanced data.

As analysis considering imbalanced data, we apply
Balanced Random Forest [8], which makes the number of
samples even for each class when constructing each decision tree.
Balanced Random Forest divides each decision tree based on
the Gini coefficient. Gini coefficient is an index representing
impurity degree, which takes a value between 0 and 1. The
closer it is to 0, the higher the purity is, that is, the less
variance the data have. The contribution ratio of the feature
is calculated for each feature by calculating the reduction
ratio by the Gini coefficient at the branch of the tree. The
final contribution ratio is the average value of contribution
ratios of each decision tree.

C. Experiment Setting
Here, we describe experiments for evaluating features

effective for seismic source classification, together with the results
and considerations. Based on the classification performance
and the contribution ratio of the features by Balanced
Random Forest, we analyze the relationship between the
seismic sources in the features used in this paper.

The outline of feature analysis is as follows: Features are
calculated based on the time of occurrence of moonquake.
Balanced Random Forest is applied to each pair of all seismic
sources. Classification performance and the contribution
ratio of the features by Balanced Random Forest are
calculated and analyzed.

In this paper, as one-vs-one method, by constructing the
classifier for every pair of two seismic sources in the dataset,
we perform analysis paying attention to characteristics of each
seismic source and the relationship between seismic sources.
100 Random Forests are constructed for each classifier. The
number of samples used to construct each decision tree are
taken 50 by bootstrap method. Bootstrap is a test or metric
that relies on random sampling with replacement. Also,
scikit-learn [35] was used to construct each decision tree in
Random Forest. scikit-learn is a machine learning library for
the Python programming language. In this paper, we perform
the following analysis as feature selection.

• We create a classifier that learns all of the extracted 55
features.

8

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. PARAMETERS IN THE COORDINATE SYSTEMS COMPUTED USING SPICE.

Target Observer Coordinate system Parameter
EARTH BARYCENTER MOON IAU MOON earth_from_moon
SOLAR SYSTEM BARYCENTER MOON IAU MOON sun_from_moon
JUPITER BARYCENTER MOON IAU MOON jupiter_from_moon
SOLAR SYSTEM BARYCENTER EARTH BARYCENTER IAU EARTH sun_from_ earth
JUPITER BARYCENTER EARTHBARYCENTER IAU EARTH jupiter_from_ earth
SUN SOLAR SYSTEM BARYCENTER IAU EARTH sun_ perturbation

TABLE II. NUMBER OF DATA FOR EACH SEISMIC SOURCE.
Seismic source A1 A5 A6 A7 A8 A9 A10 A14 A18 A20 A23 A25 A35 A44 A204 A218

Number of data 441 76 178 85 327 145 230 165 214 153 79 72 70 86 85 74

Figure 3. Averages of F-measures for pairs of seismic sources.

Figure 4. Averages of contribution ratios for each feature.

9

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Using the Variance Inflation Factor (VIF), we construct
a classifier after reducing features. VIF quantifies the
severity of multicollinearity, that is, a phenomenon in which
one predictor variable in a multiple regression model can be
linearly predicted from the others accurately.

Here, VIF is one of the indicators used to evaluate
multicollinearity. In this paper, in order to make VIF of each
feature 6 or less, experiments were conducted on a subset
with reduced features. Based on the experimental results
using all features, we calculate VIF and delete features with
6 or more VIF. To calculate VIF, statsmodel [36] was used.

TABLE II shows the dataset in this paper. We select
events of 16 seismic sources whose observed number of
moonquake events is 70 or more.

In this paper, the precision ratio, recall ratio, and F-value
are used as indexes for evaluating the performance of
classification of seismic sources.

The precision ratio is an index for measuring the accuracy
of the classification, and the recall ratio is an index for
measuring the coverage of the classification. F-value is the
harmonic mean of recall and precision ratios and is an index in
consideration of the balance of precision and recall. The score
of the classifier in this paper is the average value of the F-
values of the two classes targeted by the classifier.

D. Experiment Results
1) Experimental results using all features
a) Classification performance
Figure 3 is the average of the F-measures of classifiers

for each seismic source. F-measure is the harmonic mean of
precision and recall in statistical analysis. The vertical axis
and the horizontal axis show seismic sources, each value is a
score of the average of F-measure of classifier. In Figure 3,
the highest classification performance is 0.96 and it is
observed in multiple pairs of seismic sources. Also, the
lowest classification performance is 0.54 as of classifier
between A9 and A25. Figure 3 shows that some classification
is difficult depending on combinations of seismic sources.
Also, the number of classifiers with 0.9 or higher as
classification performance is 20, about 17% of the total
number of the classifiers. The number of classifiers with 0.8
or more and less than 0.9 is 60, 50% of the total. The number
of classifiers with performance below 0.6 is only one. Most
of the classifiers show high classification performance and
show that the positional relationships of the planets are
effective for the seismic source classification of the deep
moonquakes.

b) Contribution ratio of features
Figure 4 shows the average value of contribution ratios for

each feature. All features with the higher contribution ratios
are those of the earth when they are calculated as the moon as
the origin of the coordinate system. In addition, it shows that
the contribution ratios of Jupiter 's features are high when the
moon is the origin. By comparing features when the moon is

the origin and when the earth is the origin, the features with
the moon as the origin has a higher contribution ratio than
the features with the earth as the origin. These observations
suggest that the tidal forces are among the causes of
moonquakes. Figure 4 indicates that relationships between the
moon and the Earth affect the classification most strongly.
However, there is a possibility that correlation between features,
then it is necessary to further analyze each feature from view
point of mutual independence. Therefore, in the following
subsection, considering the correlations between features, we
will describe the experimental results after feature reduction
using VIF.

2) Experimental results of feature reduction using VIF.
a) Classification performance
Figure 5 shows the average of the F-measures of the

classifier when the features are reduced. Similarly, as in
Figure 3, the vertical axis and the horizontal axis are seismic
sources, respectively, and each value is the score of the F-
measure of the classifier in Figure 5. In addition, the number
of classifiers whose classification performance is 0.9 or
higher is 26, about 22% of the total. 54 classifiers with 0.8 or
higher but less than 0.9 are 45% of the total. There is one
classifier whose classification performance is less than 0.6.
Compared with Figure 3, these show that the classification
performance does not change significantly.

b) Contribution ratio of features
Figure 6 shows the average value of the contribution

ratios of each seismic source after feature reduction. After
reducing features, earth features when the origin is the moon
are reduced to 4 features of the top 10 features which existed
before feature reduction. The four features between top 11 and
14 positions of the features of Jupiter when the origin is the
moon, as shown in Figure 4, are reduced to one feature. Other
parameters of Jupiter are thought to have been affected by
other features. The subset of the features after feature
reduction is considered to have small influence of
multicollinearity. Therefore, there is a possibility that the
features of the Earth and some of the features of Jupiter are
effective for classification when the moon is the origin. These
results are microscopic explanations made directly from the
model constructed by Balanced Random Forest.
E. Discussion of methods and features

By using Balanced Random Forest, contribution ratios of
features can be easily calculated in addition to classification
performance, so it is useful for feature analysis like the
scientific research described in this section. However, in this
method, there is room for consideration of parameters of
classification techniques depending on the seismic sources as
the classification targets. Moreover, in order to obtain higher
classification performance, it is necessary to consider many
classification methods. Furthermore, it is necessary to apply
a method considering waveform information simultaneously
collected by the NASA Apollo project. In addition, since the

10

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

findings obtained in this paper are only correlations, it is
difficult to directly estimate the causal mechanism of the
deep moonquakes. However, the results of this paper are
shown to be useful for further analysis and knowledge
creation by experts. If the knowledge of experts such as
the physical mechanism about moonquakes is available,
the elucidation of the causal relationships between the
seismic sources and the planetary bodies and ultimately
that of the causal mechanism of the moonquakes
(possibly related to tidal forces) can be expected. In
general, expertise in any domain is expected to increase
our understanding of the causal relationships suggested
by our correlation analysis.

Figure 5. Averages of F-measures for pairs of seismic sources after feature reduction.

Figure 6. Averages of contribution ratios for each feature after feature reduction.

V. CASE STUDY: MICRO EXPLANATION FOR

CENTRAL PEAK CRATER APPLICATION
First, we will summarize this case as follows.

a) (Scientific and explanatory objectives) In this case,
also related to lunar and planetary science, in order
to understand the internal structure and movement
of the moon, it is conceivable to use the materials
inside the moon as a clue. The central hill in the
crater is attracting attention as a place where the
materials inside the moon are exposed on the moon

surface. However, not all craters with central hills
on the moon have been identified. Therefore, it is
scientifically necessary to make the catalog.
Therefore, it is also necessary to explain to the
relevant scientists the grounds for judging the
craters included in the found candidates as craters
with central hills.

b) (Data used for use case) We used about 7,200 images
provided by both NASA and JAXA. Each image has
been resized to 512 (height) * 512 (width) * 1

11

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(normalized elevation). We divided the whole images
into equal numbers of images with three labels, that
is, craters with central hills (central-hill craters),
craters without central hills (normal craters), and
non-craters.

c) (Methods used for use case) We used RSPD [37] to
detect craters only for preparation of training data
of CNN [14][38]. Next, we applied learnt a CNN to
find central-hill craters including unknown and
known ones and used Grad-CAM [15] to know the
evidence for judging central-hill craters.

d) (Result) We could classify three classes with 96.9 %
accuracy, which was verified by the scientific
members of our research team. We also could show
the scientific members of our research team
individual evidences for judging central-hill craters
consisting of crater rims and central hills.

Next, we will describe this case in more depth for the
explanation functions although we have already introduced
it to explain the way of model construction in our previous
work [3].

A. Discovery of central peak craters
Scientific data are a kind of real-world data. By taking

an example of research conducted by our team including
JAXA researchers using scientific data which are also open
data, we explain integrated analysis [39]. We use hypothesis
generation based on differences between original data and
their rotations.

A detailed map of the surface of the moon was provided
by JAXA launched lunar orbiter KAGUYA (SELENE)
[40]. Of course, KAGUYA’s purpose goes beyond making a
map of the moon. The goal is to collect data that will help
elucidate the origin and evolution of the moon. In order to
further pursue such purposes, it is important to examine the
internal structure of the moon.

One of the methods to examine the internal structure of
the moon is to analyze the data of moonquakes (i.e.,
corresponding to earthquakes) that occur in the moon.
Research is also being conducted to classify the hypocenters
of moonquakes based on the data of moonquakes provided
by the NASA Apollo program. Among these studies are our
research which showed that it is possible to classify
moonquakes by features such as the distance between the
moon and the planet alone without using seismic waves
themselves as described in Section IV.

Another method is to launch a spacecraft to directly
explore the internal structure of the moon. However, it is not
sufficient to land the spacecraft anywhere on the moon. That
is naturally because there are limited resources such as budgets
that can be used for lunar exploration. In other words, it is
necessary to determine the effective point as the target of the
spacecraft based on the evidence. This way is an example of

EBPM, making an effective plan based on evidence under
limited resources.

On the other hand, whether large or small, a lot of craters
exist in the moon. Among them, special crater with a
structure called “central peak” (hereinafter referred to as
“central peak craters”) is present (see Figure 7). The central
peak is exposed on the moon and lunar crustal substances
are also exposed therein. Therefore, it is likely that central
peak craters scientifically have important features. In other
words, the exploration of the surface of the central peak
makes it possible to analyze the surrounding internal
crustal materials in a relatively easy way. By this, it is
expected that not only the origin of the crater and central
peak can be estimated, but also the surface environment of
the past lunar surface and the process of crustal
deformation of the moon can be estimated.

But with respect to the central peak crater as the
exploration target, conventionally the confirmation of
existence of the central peaks has been visually done by the
experts. So, the number of craters known as central peak
craters is rather small. This problem can be solved by
automatic discovery and cataloguing of central peak craters
to significantly increase the number of central peak craters
as candidate exploration points.

Thus, in this case with creating the catalog of central
peak craters as our final goal, a specific technique for
automatic discovery of central peak craters has been
proposed. This case uses DEM (Digital Elevation Model)
of the lunar surface as results observed by the lunar orbit
satellite “KAGUYA” of JAXA [40]. Paying attention to the
image characteristics of DEM, we apply CNN (Convolutional
Neural Network [14] [38]) as a popular technique for deep
learning, which is recently in the limelight as AI, to construct
the discrimination model. We evaluate discriminability of
the central peak crater by the model by experiments.

Figure 7. Example of central peak crater.

B. Integration Hypothesis
The central peak crater is identified by the following

two-step procedure.
1) Crater extraction on the moon by RPSD method

12

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Craters are extracted by using the popular and secure
method called RPSD (Rotational Pixel Swapping for DTM)
for digital terrain models. Here, DTM (Digital Terrain
Model) is a digital terrain model similar to the digital
elevation model (DEM). The RPSD method focusses on the
rotational symmetry when rotating the image of the DEM at
a certain point (i.e., central point). That is, RSPD uses the
fact that the negative gradient property from the rim of the
crater to the center in the lunar DEM does not change with
rotation of craters. In other words, we make the difference
between the original candidate crater and the rotated one
(corresponding to the difference in the observation mode for
the same object) and confirm that the feature about
rotational symmetry does not change in order to
discriminate craters. In a word, this method corresponds to
our generalized difference method in which hypotheses
(craters) are found by focusing on differences obtained by
different means for the same object (candidate craters).

2) CNN-based automatic discrimination of central peak
crater from extracted craters

In general, in the discrimination phase for each layer of
deep learning, each output node multiplies the input values
by weights, takes their sum, and adds their bias to the sum,
and then outputs the result in the forward direction.

In the learning phase of deep learning, as a problem of
minimizing the error between the output of discrimination
and the correct answer, the values of weights and biases are
updated by differentiating the error function with respect to
the weight and bias of each layer.

C. Integrated Analysis
First, using RPSD, we extract the DEM data of each

candidate crater and provide them with a label (non-crater,
non-central peak crater, and central peak crater) to create
training data. We learn CNN model thus using the training
data and discriminate the central peak craters by using the
CNN model. From recall ratios obtained by experiments
focusing on how much correct answers are contained in
the results, the possibility that CNN is an effective
technique in the central peak crater determination is
confirmed.

In order to confirm reasons for the classification results,
we visualize the contribution areas in input images which
affect the model (i.e., individual evidence).

We use Grad-CAM [15], a method for visualizing
contribution areas for each label in an input image. We use
it because it has an affinity for CNN.

The left part (see Figure 8) is an input image, the
central part is the contribution area for “central-peak crater”
label, and the right part is the contribution area for “normal
crater” label.

The contribution area for “central-peak crater” has
heating area inside the crater, and heating area is covering
a central peak. On the other hand, the central peak area

does not have heating area at the contribution area for
“normal crater.” Therefore, we think that the central peak
area contributes classification for “central-peak crater”
label. Thus, the contribution areas as the micro
explanation can help the scientists to understand the
corresponding classification results.

Figure 8. Explanation of individual evidences.

VI. CONCLUSION
In this paper, we proposed a general framework of

explanation necessary to widely promote implementation of
analytical applications using SBD. The procedure of a
tourism application based on integrated data model was
described as an example of a macro explanatory function.
In addition, we used Balanced Random Forest as a micro
explanatory function to extract features effective for the
seismic source classification of the deep moonquakes from
the temporal and spatial features of the planets. We
described another example of a microscopic-explanatory
function to explain individual evidences for discrimination
of central peak craters.

The results of social science research (i.e., an example
of macro explanation of procedures) were explained to
external travel experts to confirm their effectiveness.
Regarding to the explanation of scientific results (i.e.,
examples of micro explanations of model features and
judgements), we have positive feedbacks from the relevant
scientists in our research team based on the scientific
effectiveness.

We reiterate the whole process of the SBD application
with explanations as the summarization of the contribution
of this paper.

1. The user describes the procedure for data
management and model generation by utilizing the
data model (i.e., SBD model) and the hypothesis
generation methods (e.g., generalized difference
method).

2. The macroscopic-explanation function uses the
constructed description for the explanation.

3. The microscopic-explanation function finds the
effective model features and individual judgement
basis by executing the constructed model using the
explanation-oriented techniques (e.g., Balanced
Random Forest and Grad-CAM).

13

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We will continue to verify the versatility of the
explanatory framework by applying it to a wider variety of
use cases in the future. We will also continue to interview
the parties concerned and listen to the opinions of experts at
international conferences on the effectiveness of the
framework for explanation. In fact, we have already
presented the candidate list of central hill craters with the
micro explanations to the scientists in the related field. They
have definitely found unidentified central hill craters among
the candidates. As a result, a new project has recently been
initiated to re-estimate the quantitative relationships
holding between the radius of the central hill crater and the
height of the central hill based on our findings.

ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant

Number 16K00157, 16K16158, 20K12081 and Tokyo
Metropolitan University Grant-in-Aid for Research on
Priority Areas Research on social big data.

REFERENCES

[1] H. Ishikawa, Y. Yamamoto, M. Hirota, and M.
Endo, “Towards Construction of an Explanation
Framework for Whole Processes of Data Analysis
Applications: Concepts and Use Cases,” Proc. The
Eleventh International Conference on Advances in
Multimedia MMEDIA 2019 (Special tracks:SBDMM:
Social Big Data in Multimedia), Mar. 2019.

[2] H. Ishikawa, Social Big Data Mining, CRC Press, 2015.

[3] H. Ishikawa, D. Kato, M. Endo, and M. Hirota,
“Applications of Generalized Difference Method for
Hypothesis Generation to Social Big Data in Concept
and Real Spaces,” Proc. the 11th International
Conference on Management of Digital EcoSystems
(MEDES 2019), pp. 44–55, November 2019.
https://doi.org/10.1145/3297662.3365822 [retrieved:
May, 2020].

[4] EU GDPR, https://eugdpr.org/ [retrieved: May, 2020].

[5] J. Hemmi, “Japan's 'information banks' to let users cash in
on personal data,” NIKKEI Asian Review, May 09,
2019.

[6] K. Kato, R. Yamada, Y. Yamamoto, M. Hirota, S.
Yokoyama, and H. Ishikawa, “Analysis of Spatial and
Temporal Features to Classify the Deep Moonquake
Sources Using Balanced Random Forest,” Proc. The
Ninth International Conferences on Advances in
Multimedia (MMEDIA 2017), April 2017.

[7] T. Tsuchida, D. Kato, M. Endo, M. Hirota, T. Araki, and
H. Ishikawa, “Analyzing Relationship of Words Using
Biased LexRank from Geotagged Tweets,” Proc. ACM

MEDES International Conference, pp. 42-49, 2017.

[8] C. Chen, A. Liaw, and L. Breiman, “Using random forest
to learn imbalanced data,” University of California,
Berkeley, pp. 1-12, 2004.

[9] H. Ishikawa, “Object-oriented database systems,” (C. T.
Leondes ed.) Database and Data Communication
Network Systems Techniques and applications, vol. 1,
pp. 77-122, Academic Press 2002.

[10] D. Smith, R. St. Andre, and M. Eggen, A Transition to
Advanced Mathematics, Brooks/Cole Pub Co., 2014.

[11] R. D. Peng, “Reproducible Research in Computational
Science,” Science, vol. 334, issue 6060, pp. 1226-1227,
2011.

[12] K. McCain, “Explanation and the Nature of Scientific
Knowledge,” Sci & Educ, vol. 24, pp. 827–854 (2015).
https://doi.org/10.1007/s11191-015-9775-5 [retrieved:
May, 2020].

[13] H. Ishikawa, D. Kato, M. Endo, and M. Hirota,
“Generalized Difference Method for Generating
Integrated Hypotheses in Social Big Data,” Proc. ACM
MEDES International Conference, pp. 13-22, 2018.

[14] X.-W. Chen and X. Lin, “Big Data Deep Learning:
Challenges and Perspectives,” IEEE Access, vol. 2, pp.
514-525, 2014.

[15] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D.
Parikh, and D. Batra, “Grad-CAM: Visual Explanations
from Deep Networks via Gradient-based Localization,”
Proc. The IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 618-626
https://arxiv.org/abs/1610.02391 [retrieved: May,
2020].

[16] W. V. Siricharoen, “Infographics: The New
Communication Tools in Digital Age,” Proc.
International Conference on E-Technologies and
Business on the Web, pp. 169-174, 2013.

[17] Z. C. Lipton, “The Mythos of Model Interpretability,”
Communications of the ACM, vol. 61, no. 10, pp. 36-
43, October 2018.

[18] F. D. Velez and B. Kim, “A roadmap for a rigorous
science of interpretability,” pp. 1-13, 2017 (arXiv:
1702.08608, 2017).

[19] D. Martens, B. Baesens, T. V. Gestel, and J. Vanthienen,
“Comprehensible credit scoring models using rule
extraction from support vector machines,” Rule
extraction from support vector machines, pp. 33-63,
2008.

[20] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B.

14

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Schiele, and T. Darrell, “Generating visual
explanations,” Proc. European Conference on
Computer Vision, pp. 3-19, Springer, 2016.

[21] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe,
K. Hansen, and K.-R. Mueller “How to explain
individual classification decisions,” The Journal of
Machine Learning Research, vol. 11, pp. 1803-1831,
August 2010.

[22] Z. Si and S. C. Zhu., “Learning and-or templates for
object recognition and detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 9, pp. 2189-2205, 2013.

[23] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum,
“Human-level concept learning through probabilistic
program induction,” Science, vol. 350, issue 6266, pp.
1332-1338, 2015.

[24] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should
I Trust You?: Explaining the Predictions of Any
Classifier,” Proc. CHI 2016 Workshop on Human
Centered Machine Learning, pp. 1135-1144, 2016
(arXiv: 1602.04938v1 [cs.LG] 16 Feb 2016).

[25] M. Du, N. Liu, and X. Hu, “Techniques for Interpretable
Machine Learning，” Communications of the ACM, vol.
63, no. 1, pp. 68-77, 2020.

[26] K. W. Su, C. L. Liu, and Y. W. Wang, “A principle of
designing infographic for visualization representation
of tourism social big data.” Journal Ambient Intell.
Human Comput, pp. 1-21, 2018, doi:10.1007/s12652-
018-1104-9.

[27] OECD, “EBPM, Evidence in Education: Linking
Research and Policy.”
http://www.oecd.org/education/ceri/38797034.pdf
[retrieved: May, 2020].

[28] Flickr https://www.flickr.com/ [retrieved: May, 2020].

[29] Twitter https://twitter.com/ [retrieved: May, 2020].

[30] M. Hirota, K. Saeki, Y. Ehara, and H. Ishikawa, “Live
or Stay?: Classifying Twitter Users into Residents and
Visitors,” Proc. International Conference on

Knowledge Engineering and Semantic Web (KESW
2016), pp. 1-2, 2016.

[31] K. Mitomi, M. Endo, M. Hirota, S. Yokoyama, Y. Shoji,
and H. Ishikawa, “How to Find Accessible Free Wi-Fi
at Tourist Spots in Japan,” Volume 10046 of Lecture
Notes in Computer Science, pp. 389-403, 2016.

[32] DARTS Available: http://darts.jaxa.jp [retrieved: May,
2020]

[33] L. Breiman, “Random forests,” Machine learning, vol.
45, no. 1, pp. 5-32, 2001.

[34] NAIF, https://naif.jpl.nasa.gov/naif/ [retrieved: March,
2019].

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, A. Müller, J.
Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and É. Duchesnayet, “Scikit-learn:
Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[36] S. Seabold and J. Perktold. “Statsmodels: Econometric
and statistical modeling with python,” Proc. 9th Python
in Science Conference, pp. 57-61, 2010.

[37] S. Yamamoto, T. Matsunaga, R. Nakamura, Y. Sekine,
N. Hirata, and Y. Yamaguchi, “An Automated Method
for Crater Counting from Digital Terrain Model Using
Rotational Pixel Swapping Method,” Proc. 49th Lunar
and Planetary Science Conference, 2 pages, 2018.

[38] Y. LeCun, Y. Bengio, and Geoffrey Hinton, “Deep
learning,” vol. 521, pp. 436-444, 2015.
doi:10.1038/nature14539

[39] S. Hara H. Inoue, M. Yamamoto, Y. Yamamoto, M.
Otake, H. Otake, T. Araki, M. Hirota, and H. Ishikawa,
“Automatic Extraction of Lunar Central Peak Craters by
Deep Learning,” 16th AOGS Annual Meeting, 2019.

[40] JAXA, KAGUY(SELENE) Data Archive
https://darts.isas.jaxa.jp/planet/pdap/selene/ [retrieved:
May, 2020].

15

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Algorithmic Solution for Adaptable Real-Time Applications

Lial Khaluf
Email: lial.khaluf@googlemail.com

and

Franz-Josef Rammig
Email: franz@upb.de

University of Paderborn
Paderborn, Germany

Abstract — Most real-life facilities nowadays belong to real-time
systems. E.g., airplanes, trains, cars, medical machines, alarming
systems and robotics, etc. Some of these systems behave on their
own, separately or in cooperation. Some of them interact with
humans. Operating and interaction is done under conditions
defined inside the systems and the environment. However, these
systems and environments might grow or change over time. In
order to develop safe and high-quality real-time applications, we
need to make them highly self-adaptable systems. In this paper,
we describe the detailed steps of a real-time aware adaptation
algorithm and we go through the boundedness proof of each step.
The algorithm mimics the behaviour of organic cells. It introduces
a new kind of real-time tasks. This kind enables tasks to change
their behaviour at run time according to internal changes inside
the system and external changes in the environment, preserving
all real-time constraints. This includes real-time constraints for
the adaptation process itself. Following this concept, real-time
tasks are turned to be real-time cells.

keywords – adaptation array; genetic optimization; organic
behavior; boundedness.

I. INTRODUCTION

Current trends of adaptation mechanisms have been applied
in traditional software systems as well as real-time (RT)
systems. RT systems, however, lack the required flexibility for
adapting themselves to changes being unpredictable at design
time. In this paper, we try to overcome this limitation by
providing an adaptation solution at run time. The problem
we solve assumes a system that has to fulfil a set of hard-
deadline periodic and aperiodic tasks. Aperiodic tasks might
have dependencies between each other. Modifications to the
current set of tasks may happen at run time as, e.g., a result
of environmental changes. Modifications may include adding
a new task or a set of dependent tasks, updating a task or a set
of dependent tasks, and deleting a task or a set of dependent
tasks. We assume that by updating dependent tasks, no new
tasks are added to the dependability graph, and no existing
tasks are deleted. The goal of the approach presented in this
paper is to adapt the newly arrived modifications at run time
without breaking any of the stated RT constraints.

In [1], we have introduced a summary of the adaptation
algorithm. In this paper, we go through details of it, and
prove the boundedness of each step. In our solution, we
assume a bounded, but online expandable, ecosystem of RT

tasks. Each RT task may exist by means of a bounded, but
online expandable, set of variants. All variants of a task
share the same principal functionality, however, at different
quality levels. Whenever activated, the algorithm tries to find a
solution that can accept all currently requested modifications.
For this reason, it tries to find a selection of task variants
such that all RT constraints are satisfied and at the same
time the overall quality over all tasks is maximized. The
underlying ecosystem is represented by a two-dimensional data
structure called RTCArray [2]. It is divided into classes.
Each class is represented by a column. A class represents a
unique functionality. Each variant within a column provides
the same principal functionality as the other variants, but with
different time and quality characteristics. We model quality
by a cost function where cost is defined as the inverse of
quality, i.e., highest possible quality is modelled by cost 0.
We call a variant an RT cell. The reason is that the structure
and behaviour of variants can change at run time following
the environment of the system. Modification requests may
arrive at any time. According to their priority, they are put
into a queue with a predefined capacity. The queue is handled
by a central cell called the Engine-Cell (EC). EC tries to
find a best combination of variants such that the arrived
modifications can be accepted. The problem of selecting a
best combination of variants is mapped on solving a Knapsack
problem, executed on a so-called AdaptationRTCArray.
This is a subset of RTCArray restricted on currently running
cells that have to continue execution and augmented by newly
arriving modifications. As this Knapsack problem has to be
solved under RT constraints, an “anytime algorithm” is needed
to solve it. We decided for a genetic algorithm with a trivial
initial population. The individuals of populations are evaluated
concerning their respected overall cost under the constraint
that all RT constraints have to be satisfied. It is assumed that
the RT system is running under Earliest Deadline First (EDF)
algorithm [16] as principal scheduling algorithm. EDF is used
to schedule a set of independent tasks by always giving the
priority to the task with earliest absolute deadline [16]. As
the challenge we are aiming to overcome in our approach
considers also the case of dependent tasks, Earliest Deadline
First with Precedence Constraints algorithm (EDF*) [5] is
used. EDF* transforms a set of dependent tasks into a set of
independent tasks by recalculating the timing parameters of the

16

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tasks. The resulting independent tasks can then be scheduled
by EDF. The dependent set is schedulable if and only if
the independent set can be schedulable [16]. For considering
aperiodic tasks, we use the Total Bandwidth Server (TBS)
[6]. TBS calculates new absolute deadlines of aperiodic tasks,
so that the server can behave as a periodic task, which is
schedulable with the other periodic tasks in the system under
EDF. In our approach, the RT constraints of all periodic tasks
can be calculated using a utilization bound 1 and those for
aperiodic tasks by checking that deadlines calculated by TBS
are less or equal than specified hard deadlines.

In Section II, we present the related work. Section III
presents the definitions of some basic concepts. Section IV
includes a scenario example of an RT application, in which our
approach can be applied. Section V describes the algorithm and
boundedness proof of each step. In the last section, we present
a conclusion and future work.

II. RELATED WORK

In this paper, we are solving an optimization problem. The
goal is to provide enough processor capacity for the current
requests and the currently running cells while minimizing the
costs. The problem can be modelled by a multidimensional
multiple-choice knapsack problem (MMKP). Many approaches
were defined for solving this problem. In [7] a metaheuristic
approach is developed. It simplifies the MMKP into multiple-
choice knapsack problem (MCKP) by applying a surrogate
condition for cost. In the MCKP, there are several groups of
items. It is required that one item is selected from each group,
so that the total benefit is maximized without exceeding the
capacity of the knapsack. For finding a feasible solution and
enhancing it in a short time, the algorithm in [7] is considered
to be a good choice. In our approach, however, we use a
genetic algorithm. It can decide already in the first step whether
a feasible solution exists or not. Enhancing the solution is
bounded by a specific time.

In [8] a heuristic algorithm is used for solving the MMKP
by using convex hulls. The idea is to simplify the MMKP into
MCKP. This is done by multiplication of a transformation vec-
tor. Once the MCKP is constructed, each group of items can be
represented on X-Y Axes. X represents the resources used by
the items. Y represents the benefit that should be maximized.
An initial solution is found by selecting an item from each
group. The selected item is the one with lowest benefit. After
that, three iterations are done. In each iteration, the penalty
vector is used to turn each of the resource consumption vectors
into a single dimension vector. The frontier segments of the
items are calculated. “A segment is a vector with two items
representing a straight line.” [8]. According to the angle of the
segment, it is ordered within the list of segments. The segments
should be put in a descending order. For each segment, P1 and
P2, the items associated with the segment, are considered. A
current solution is calculated by selecting the item associated
with P1 and the same is applied for P2. If utility of the current
solution is smaller than the utility of the saved solution, the
saved solution is kept. Penalty is adjusted for the next iteration.
After iterations are done, if the current solution is not feasible,
then no solution is found, else the current solution is set to be
the final solution. Following this method requires the values
and weights to be known before penalty vectors and convex
hulls are constructed. In our approach this is not possible

because a pre-knowledge of members to be selected in each
group are required to calculate values of weights. The reason is
that one of the considered weights requires for its calculation
the deadline, which can be calculated according to TBS [6].
The calculation of a deadline, which belongs to a selected item
in a group depends on the deadlines of selected members in
previous groups.

In [10], a reduce and solve algorithm is used for solving
MMKP. The approach depends on group fixing and variable
fixing to reduce the problem. Then it runs CPLEX [14] to
solve the reduced problem. Also here it is required to know
the benefits and weights before start solving. In our approach
this is not possible.

In [9], three algorithms are introduced to solve MMKP. The
first algorithm tries to find an initial solution for the guided
local search. It is applied by assigning a ratio for each item in
the groups. The ratio is the value divided by the Scala Product
of the weight of the item, and total capacity of the knapsack.
Items, which own best ratios are selected. If a feasible solution
is not reached, then an item with heaviest ratio is chosen to be
swapped with another item from the same group. If this does
not result in a feasible solution, then the lightest item from the
same group is selected. This iteration continues until a feasible
solution is found. The initial solution can be enhanced by
applying the second algorithm, a complementary constructive
procedure (CCP). It consists of two stages. The first stage
swaps selected items with other items within their groups to
enhance the already found feasible solution. If the resulting
solution is feasible then the swapping is considered to be valid.
The second stage replaces the old item by the newly selected
one. The third algorithm is the derived algorithm. It starts by
applying the constructive procedure of the first algorithm in
order to get an initial feasible solution. If the solution cannot be
improved by CCP, a penalty parameter is applied to transform
the objective function, and a new solution is acquired by CCP.
If the new solution achieves improvement, then a normalization
phase is applied to get the original values of profits. If it does
not achieve any improvement, then a normalization phase is
applied and a penalty is applied again. The iteration continues
until a stopping condition is reached. In the previously three
described algorithms, it is required to know the benefits and
weights before start solving. In our approach this is not the
case.

In [11], a reactive local search algorithm to solve MMKP is
presented. A constructive procedure (CP) and a complementary
procedure CCP are used to acquire an initial solution. CP
uses a greedy procedure to acquire the initial solution. CCP
enhances the solution acquired by CP. The enhancement is
done by following an iterative approach that swaps elements
in the same class (group). The reactive local search (RLS) is
applied to enhance the solution acquired by CCP. RLS consists
of two procedures. The first one is called degrading strategy,
and the second one is called deblock procedure. The degrading
strategy consists of three steps. It selects an arbitrary class,
changes arbitrary elements inside it if this exchange will result
a feasible solution, repeats steps 1 and 2 several times, and
terminates with a new solution. The deblock strategy starts by
constructing a set of elements. Each element consists of two
classes. The strategy runs a loop on the set until no element
exists in it. In each run of the loop, it investigates if there is
a couple of items in both chosen classes, so that the objective

17

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

value of resulting feasible solution is better than the previous
solution value. The resulting feasible solution considers the
couple of items in chosen classes, in addition to the fixed items,
which belong to the classes other than the chosen ones. The
deblock strategy exits with the best solution. [11] describes
also the modified reactive local search algorithm (MRLS). It
replaces the deblock procedure by a memory list to enhance
computation time. In RLS and MRLS, again it is required
to know the benefits and weights before start solving. In our
approach this is not the case.

Evolutionary algorithms have been studied in a couple
of previous works for solving different kinds of knapsack
problems. For example, in [12], a general approach of using
genetic algorithm to solve MMKP is described. It starts by
selecting an initial population. This can be done randomly.
The fitness of the population is evaluated according to the
fitness function. The fitness function is defined according to the
objective function of the knapsack problem. Then a loop runs
until a predefined condition is satisfied. In each iteration, a new
population is selected from the previous one using the roulette
wheel selection [15]. Crossover and mutation are applied. The
resulting population is evaluated. The current generation is
combined with previous one. Finally, the resulting individuals
are ordered to find a best solution. The algorithmic principle in
[12] is similar to our approach, however, the selection process
differs from the selection process in our approach. In our
approach, we can determine if a feasible solution exists once
we construct the first individual. Further steps work only on
optimizing the solution. In [12], it is not explained if one can
recognize the existence of a feasible solution once the first
individual is constructed.

In [13], an evolutionary algorithm is used to solve MMKP.
The idea is to solve a manufacturing problem. Operators should
be distributed among machines to process components of
products. This has to be done in an efficient way to keep work
hours within a predefined limit. Operators differ regarding their
experience or working ability. To model this situation, binary
coded chromosomes are constructed. Each chromosome has
three dimensions: machines, operators and components. Chro-
mosomes are transferred into two dimensional chromosomes.
A first generation of chromosomes is chosen. It should contain
only feasible solutions. A loop is run on generations. In each
run, a new generation is generated by applying selection and
mutation on the previous generation. The loop continues until
a predefined condition is satisfied. The algorithmic principle in
[13] is similar to our approach, however the principle of setting
the fitness function and the principle of the selection process
differ from our approach. In our approach, we can determine if
a feasible solution exist once we construct the first individual.
Further steps work only on optimizing the solution. In [13], it
is not explained if one can recognize the existence of a feasible
solution once the first individual is constructed.

The comparison in this section between our approach and
the previously introduced approaches points out that our ap-
proach provides more flexibility in terms of solving a broader
set of problems where parameters can be calculated at runtime,
and the existence of a feasible solution can be known in a very
early stage of the algorithm.

In the next section, we present the basic concepts of RT
operating systems, the knapsack problem, and the genetic
algorithms.

III. BASIC CONCEPTS

RT systems are computing systems, in which the correct-
ness of behavior depends not only on the computation results
but also on the response time. “Examples of RT systems could
be automotive applications, flight control systems, robotics,
etc” [16].

- A real-time task: is characterized by many properties. In
the following, we mention some of them:

1) Arrival time (a): it is the time at which the task is
released and becomes ready for execution, called also
release time. [16]

2) Execution time (C): is the time required to execute
the task without interruption. [16]

3) Absolute deadline (d): is the time that the task exe-
cution should not exceed. [16]

4) Relative deadline (D): is the time difference between
the absolute deadline and the arrival time. [16]

5) Start time (s): is the time of starting the execution of
a task. [16]

6) Finishing time (f): is the time of finishing the execu-
tion of a task. [16]

7) Criticalness: is a parameter that indicates whether the
task is hard or soft. [16]

- A soft RT task: is a task that does not cause a catastrophic
result when its deadline is not met, but might cause a decrease
in the performance. [16]

- A hard RT task: is a task that may cause catastrophic
results in the system environment if its deadline is not met.
[16]

- A periodic task: is a task that is activated in regular time
periods, where each activation is called an instance of the task.
[16]

- An aperiodic task: is a task that is activated in irregular
time periods, where each activation is called an instance of the
task. [16]

- Precedence constraints: represent the precedence order
that tasks might have to respect concerning the order of their
execution. Precedence constraints are normally represented by
a directed acyclic graph (DAG) [16]. DAG has no directed
circles [17].

The knapsack problem is an NP-hard problem. In this
problem, there is a set of items, where each item has a benefit
and a weight. A subset of items should be selected, so that
the sum of their benefits is maximized, and the capacity of
the knapsack is not exceeded [18]. There are several types of
knapsack problems [18]:

1) 0-1 Knapsack problem: There is a set of items. We
want to put the items into a knapsack of capacity W.
We should pick a set of mutually different items, so
that the total value is maximized and the capacity of
the knapsack is not exceeded.

2) Bounded Knapsack problem: Same as 0-1 knapsack
problem. However, we can select more than one
instance from each item. The number of selected
instances is limited by a certain bound specified for
each item.

3) Multiple knapsack problem: Same as 0-1 knapsack
problem. However, here we have more than one knap-
sack. Each knapsack has a capacity. The knapsacks

18

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should be filled with the items, so that the total value
is maximized, and the capacity of each knapsack is
not exceeded.

4) Multiple-choice knapsack problem: Same as 0-1
knapsack problem. However, the items should be
chosen from different disjoint classes. Only one item
is chosen from each class.

5) Multidimensional multiple-choice knapsack problem:
Same as multiple-choice knapsack problem. How-
ever, the knapsack may have a vector of capacities.
Each capacity represents the availability of different
resources (dimensions) that the knapsack provides.
The weight of each item is represented by a vector.
Each weight in the vector reflects the weight of a
unique resource. When a set of items is chosen by
solving the knapsack problem, the sum of weights
for a specific resource should not exceed the resource
capacity provided by the knapsack.

Evolutionary algorithms are heuristics that aim to find a
best solution. An evolutionary algorithm starts with an initial
population. The population consists of several individuals.
Each individual is characterized by a fitness value. The individ-
uals with best values are selected to reproduce new individuals,
as illustrated by Figure 1. [19]

A genetic algorithm is a type of evolutionary algorithms. It
consists of the following steps: Initial population, evaluation,
fitness assignment, selection, and reproduction. [25]

1) Initial population: In this step the initial population is
chosen. The initial population consists of individuals.
[25]

2) Evaluation: Evaluates the current population accord-
ing to an objective function. [25]

3) Fitness assignment: Determines the fitness of the
population. [25]

4) Selection: Selects the fittest individuals for the repro-
duction process. [25]

5) Reproduction: Applies crossover and mutation to
generate new individuals. [25]

The principle is to reach an optimal solution. Reaching
this solution is done by searching the design space to find an

Figure 1. Evolutionary Algorithms. [19]

initial population. The individuals of this population are tested
according to an objective function. New generations are then
produced from the current generation by applying selection,
crossover and mutation. An individual may be a number, set
of integers, two dimensional or three dimensional variable,
etc. Finding the initial population could be done randomly,
by going through an algorithm, or other methods.

Boundedness is equivalent to the fact that the algorithm
terminates after a finite time whenever being started. To
guarantee boundedness, the following conditions should be
satisfied:

1) There must be no external influences which are not
under control of the algorithm.

2) There must be no deadlocks and no unbounded
blocking.

3) There must be no while/until loops which are not
terminating: A classical test in this case is checking
whether the function to be calculated is bounded,
monotonic and not asymptotic. If these three con-
ditions are true then we are sure that the respective
loop will terminate.

In the following, we present the definition of bounded,
monotonic and asymptotic functions:

Bounded functions: “A function is bounded from below if
there is k such that for all x, f(x) ≥ k. A function is bounded
from above, if there is K such that, for all x, f(x) ≤ K.” [20]

Monotonic functions: “ A function is monotonically in-
creasing if for all x and y, such that x ≤ y one has
f(x) ≤ f(y), so f preserves the order. Likewise a function
is called monotonically decreasing if whenever x ≤ y then
f(x) ≥ f(y), so it reverses the order ” [21]

Asymptotic functions: “A function that increases or de-
creases until it approaches a fixed value, at which point it
levels off,” (when x tends versus infinity). [22]

In the next section, we introduce the robotic surgical system
as an appropriate example for an RT application, where our
approach can be applied.

IV. SCENARIO

Let us assume a telerobotic surgery system [23], where the
surgeon is performing the surgical operations remotely with the
help of a robotic surgery system, a set of surgical instruments, a
set of endoscopic tools, a set of medical, technical, and energy
resources, and a deterministic network. The surgical operations
are taking place online, where the surgeon deals with the
digital extension of the patient and the patient is operated by
the digital extension of the surgeon. The surgeon side is the
Master side. The patient side is the Slave side. See Figure
2. On the Master side, the robotic surgical system provides a
vision system that translates the information coming from the
Slave side. On the Slave side, the system provides a controller
which translates the decisions coming for the Master side into
instructions to be applied by the robotic arms, endoscopic
tools and other instruments which will in turn act as a digital
extension of the surgeon. The ability of the system to adapt
itself to the evolutions of surgical actions is limited by the
surgeon ’s ability to react to these evolutions with the required
speed so that the operation is performed successfully.

To overcome this limitation, we assume that the surgeon
is only responsible for deciding which surgical actions should

19

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

take place during the operation. However, the actions steps and
characteristics are predefined and performed by the system and
according to the system parameters. The previous assumption
defines the surgical operation to be a set of surgical actions that
are triggered online and must be accomplished in real-time.
This set should be able to change its structure and behavior at
run-time to enable the system to adapt itself to environmental
changes on the Slave side. The adaptation process should
preserve all RT constraints. Here, the overhead imposed by
the adaptation process itself has to be considered as well. To
perform the surgical operation successfully, the robotic surgical
system collects all internal and external parameters that reflect
the environment state on the Slave side. The parameters are
then analyzed by the system on the Master side and represented
using a vision system. This enables the surgeon to read the cur-
rent state of the patient and to decide if a new surgical action
should take place or a currently running surgical action should
be updated. The decision is then studied by the system to see
whether it has influence on meeting the real-time constraints
of the surgical operation. If no negative influence exists, the
decision is applied to the Slave side. However, if this is not the
case, an adaptation algorithm is run to check whether there is a
possibility to change the structure and behavior of the current
surgical actions set in a way that enables to apply the decision
and preserves all real-time constraints. If this succeeds, the set
is modified and the decision is applied. Otherwise, the surgeon
is informed about the necessity to make another decision. The
measurements of the patient as e.g. pressure, temperature, view
of the surgical field, etc. represent the internal parameters. The
measurements of the environmental factors as e.g. the energy
sources including light, temperature, etc. of the surgical room,
and the measurements of other resources as e.g. number and
kinds of surgical instruments, endoscopic tools, medical equip-
ment, etc, represent the external parameters. This scenario is
an example for an RT system, where our approach can be
applied. Here, we define a task to be a surgical action which
is set to handle a specific surgical state characterized by a
primary range of internal parameters. In this sense, the task
consists of the required positioning and movement actions of
the robotic arms, instruments and tools. The primary range
is the range of parameters that define an initial status of the
patient. A task update is a resulting task defined to handle
a specific contingency of a surgical state characterized by a
range of internal parameters different from the primary range
of the original task.

In the next section, we describe our solution. First, we
introduce the concept of RT cells and their properties. Af-

Figure 2. Telerobotic Surgery. [2]

terwards, we list the steps of the algorithm, and proof of
boundedness for each step.

V. SOLUTION

We assume a RT system, which consists of periodic
and aperiodic tasks. The scheduling technique to be applied
is EDF with relative deadline equal to the period. The
aperiodic tasks are served by TBS. All tasks are augmented
by additional properties, enabling them to be adapted online.
Such an augmented task is denoted by the term “Cell”.

We define the Hyperperiod to be an amount of time,
that is initially calculated according to the periodic
and aperiodic load in the system. The Hyperperiod
guarantees a point of time, at which all periodic
instances can start their execution. This point of time
is the end of current hyperperiod and the beginning
of next hyperperiod. The Hyperperiod might change
each time the adaptation algorithm takes place. NHP
is the point of time at which a hyperperiod ends.

We assume that an adaptation can take place only once
per hyperperiod and becomes effective not earlier than the
next hyperperiod. The adaptation algorithm is executed by a
periodic task with a period equal to the Hyperperiod. We
define two types of RT cells, the controlling RT cells, and the
controlled RT cells. The first one should be able to change the
structure and behaviour of the second one. In our approach,
we define the EC as the only controlling RT cell in the system.
It exists before the system starts. Any other cell in the system
is a controlled RT Cell, and abbreviated as RTC. EC becomes
an Active Engine-Cell (AEC) once it is activated. An RTC
becomes an Active RTC (ARTC) when it is accepted for
execution. Each cell inherits the characteristics of RT tasks,
and has an additional set of properties. This set enables the
organic behaviour to be applied.

A. EC

EC is a periodic cell with period initially calculated as
under paragraph 4 in the properties of EC. In the following,
we list the properties of the EC:

1) EC− ID: the ID of the EC. Each cell in the system
has a unique ID.

2) WorstCaseExecutionT ime (WCETEC): is the
worst-case execution time of the AEC.

3) WorstCasePeriod (WCTEC): is the worst-case
period of the AEC.

4) Hyperperiod: The initial hyperperiod is calculated
as the initial NHP (see the calculation of initial
NHP on page 7).

5) NumOfPARTCs: is the number of periodic
ARTCs in the system.

6) NumOfAARTCs: is the number of aperiodic
ARTCs in the system.

7) Cost: is the cost that AEC is assumed to consume.
The cost is seen as a function of quality factors.

8) Active: is a Boolean variable. It is set to true when
the system starts. Whenever the system stops execut-
ing, EC becomes not active, and the variable is set to
false.

20

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

9) RTCArray: is the data structure that holds the
different cells that exist on the local node and their
variants. New cells can be added to the RTCArray
at run time. Also, current cells can be updated. Each
column is called an RTClass. Each RTClass holds
a number of variants, which are RTCs dedicated to
fulfil the same principal functionality, with different
cost and time characteristics. All periodic variants,
which belong to the same class, have the same period.
The upper bounds of RTCArray dimensions may
change online, according to system resources.

B. RTC
An RTC has the following properties:

1) RTClassID/V ariantID: is a unique ID that dif-
ferentiates an RTC from other RTCs in the system.
Here, RTClassID is the ID of a class of RTCs. In
the RTCArray, a different RTClassID is assigned
to each column. The V ariantID differentiates the
different RTCs in the same class (column).

2) V ariantsAllowed: is a Boolean property that ex-
presses if an RTC is mandatory or not when it should
be tested for acceptance by the system. When it is
equal to true, all variants that belong to the class
of respective RTC should be examined to select the
most appropriate variant in the adaptation algorithm.
If the property, however, is equal to false, the RTC
is considered mandatory to be processed by the
adaptation algorithm without considering additional
variants of its class.

3) UpdatingPoints(UP): is a set of points in the code
of the RTC routine. At these points, the RTC can be
substituted by another variant from the RTCArray.
The substitution has no influence on the functional-
ity of the RTC. All variants, which have the same
RTClassID, have a set of updating points with
the same number of points, where each point in a
specific set has a counterpart point in all the other
considered sets. In case of periodic cells, we make a
restriction to natural updating points, i.e., the release
time of the next instance [4]. Aperiodic RTCs may
have a sequence of updating points. The first updating
point of an aperiodic cell is its arrival time. The end
of the execution of an RTC does not represent an
updating point. An xth updating point is represented
as UP [x, y] : x ∈ {0, 1, 2, ..}, y is the computation
time between the starting point of the task and the
updating point. When introducing the concept of
updating points, we assume that an updating point
always has a context switch operation. In this context
switch, the AEC has to replace the address of the
old variant to the address of the respective location
of the new variant. In case of aperiodic variants, we
assume the current aperiodic variant just disappears
after execution if not explicitly reactivated at some
later time. Under this assumption the old variant of
the aperiodic RTC just disappears automatically and a
potential reactivation automatically relates to the new
variant.

4) ETexecuted : is the time that has been spent in exe-
cuting an aperiodic RTC before starting the current

hyperperiod. We assume that this value is always
provided by the underlaying RT operating system
(RTOS). ETexecuted is set initially to 0.

5) NextUpdatingPoint: a variable that saves the next
updating point, which has not been yet reached by
the executed code of the RTC.

6) Triggered: is a Boolean property that reflects the
status of an RTC. If it is equal to true, this means
that the RTC is triggered for execution (selected to
construct an insertion or deletion request). Otherwise,
it is not triggered. Whenever a decision is taken about
an RTC to be accepted or not, this property turns to
be false. In this case, we assume that the property is
turned to false by the AEC.

7) TriggeringT ime: is the time, at which an RTC is
triggered (chosen from the RTCArray to construct a
request). Here, we differentiate the arrival time from
the TriggeringTime, by defining the arrival time as the
time, at which the cell becomes ready for execution.

8) TriggeringRange: is the range of time, within
which the arrival time of an RTC could be set. It
starts at the triggering time. TriggeringRange pro-
vides flexibility in choosing arrival times of requests.
It is used, in case arrival times are not identical with
the next point, at which the hyperperiod of periodic
cells is completed (NHP). Our goal is always to set
the arrival time of periodic requests equal to NHP ,
because at this point, we assume that all accepted
periodic requests are simultaneously activated (i.e.,
we assume that all phases to be 0). Our goal is also
to set the arrival time of aperiodic requests greater or
equal to NHP .

9) Deletion: a Boolean property, set to true if the
request should be deleted. It is set to false, otherwise.

10) DeletionT ime: is the time, at which the RTC should
to be deleted, if its Deletion property is equal to true.

11) Active: is a Boolean variable set to true when the
cell is accepted for execution.

12) ImportanceFactor: is a number, which represents
the expected importance of the RTC, regarding its use
in the system. The importance increases by increasing
the number. All variants that belong to a specific
RTClass have the same ImportanceFactor. The
ImportanceFactor is considered for filtering the
RTCArray when a newly deployed RTC adds a
new RTClass. The filtering process ensures that the
upper bound on the number of RTClasses is not
exceeded. Only most important RTClasses are kept.

13) Essential: is a Boolean property set to true, when
the process of the RTC is essential for the system
to operate. Implicitly this means that its importance
factor is infinitely high.

14) Cost: is an abstract concept. It includes a variety
of possible constituents, e.g., memory demand or
provided quality like precision of computation. For
simplicity reasons, we assume that the cost of the
various constituents in a system, which is consumed
by any cell is represented by one factor “Cost”. This
factor is a function of several system parameters.
Each parameter represents a constituent.

15) StaticParameters: is a list of static parameters used
in calculating the cost of the RTC. Each parameter

21

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

has a name, amount, and a weight.
16) Type: the type of an RTC could be periodic or aperi-

odic. All variants, which have the same RTClassID
have the same value of property Type.

17) Cost Update: the updated cost, which should be
calculated for an RTC, when it replaces another
executing RTC.

C. Complexity variables
The algorithm is bounded if each step needs a bounded

time. Time complexity depends on a set of variables.
The variables are:

1) h: The upper bound of the number of columns in the
RTCArray (number of RTClasses).

2) f : The upper bound of the number of RTCs in an
RTClass.

3) b: The upper bound of the newly deployed RTCs.
4) PN : an upper bound of number of parameters in the

system.
5) QB: The upper bound of requests that can be received

in each execution of the EC.
6) SC: The upper bound of the dependent cells, which

may construct a request.
7) m1:The sum of utilization factors (execution time /

period) for the periodic load and AEC (assuming that
period of AEC is least common multiple of periods
of periodic RTCs), approximated to the next integer
number.

8) n: The upper bound of the number of updating points
in a cell.

9) GRP : The value of the greatest period available
among the periods in the RTCArray, and the ex-
pected period of the EC.

10) NInd: Number of individuals in a generation within
the genetic algorithm solving the Knapsack problem.

All parameters have a predefined upper bound, which
guarantees boundedness of computation time.

D. Adaptation Algorithm
The following terms are used in the algorithm:

- ExpPARTCs: is the set of periodic ARTCs exclud-
ing deletion requests.
- ExpAARTCs: is the set of aperiodic ARTCs ex-
cluding deletion requests.

Calculating an initial NHP is carried out either offline or
when starting the system. The initial NHP is calculated as
follows:

WCTEC is initially set to the least common multiple of
periods of periodic cells in the system. Let sum1 denote the
sum of initial periodic RTCs utilizations. Initial periodic RTCs
are RTCs, which initially are in the system and let lcm initial
denote the least common multiple of the respective periods.
Let Us Initial denote the server utilization to handle the
aperiodic RTCs, which initially are in the system with respect
to their deadlines. Then, the utilization, which can be spent
for EC can be calculated by:

WCETEC/(lcm initial × factor) = 1 − Sum1 −
Us initial.

By resolving this equation for factor we obtain

factor

= d(WCETEC/lcm initial × (1− Sum1− Us initial))e
(1)

The initial NHP is equal to lcm initial × factor. This
value is set as a period of the EC.

Calculating the initial NHP shows a trade-off. A system,
which is highly utilized by its ”normal” load suffers from
low adaptability as only a small part of the processing power
can be assigned to the EC. A high utilization consumed by
EC may serve more requests but with longer reaction time.
The execution time of the EC depends on b and QB. For
this reason, setting b and QB by the system administrator
plays a role in this trade off. The execution time increases as
these parameters increase. The WCETEC of the EC depends
on a couple of parameters. The respective function will be
presented at the end of this paper. It is assumed that based
on this function and an appropriate model of the underlying
hardware the resulting WCETEC can be estimated with
sufficient precision.

Each time the EC is executed, following steps take place:
Step 1: Gathering and Filtering the newly deployed

RTCs:
The first step of the AEC is to collect the newly deployed

RTCs. It stores them in a WorkingRTCArray (a copy of
RTCArray) following a procedure that ensures to keep the
upper bound of the WorkingRTCArray dimensions pre-
served. Newly deployed RTCs enlarge the solution space when
applying the adaptation algorithm. Let b be the upper bound of
newly deployed RTCs that can arrive at this step. For the pur-
pose of providing predictability we restrict ourselves to fixed
upper bounds in both dimensions of the WorkingRTCArray.
Let us assume that f is the upper bound of the different variants
in each class of the WorkingRTCArray, and h is the upper
bound of the different RTClasses that can be stored in the
WorkingRTCArray. If the newly imported RTCs may cause
exceeding the upper bound of variants in a column, or the
upper bound of columns, the EC preserves the upper bounds
by applying a filter procedure. In this context, we discuss
following different cases:

1) If the upper bounds of influenced dimensions in
WorkingRTCArray will not be exceeded, the
RTCs can be added to the WorkingRTCArray. See
Figure 3, Figure 5 and Figure 6.
If upper bound of classes is exceeded, one pos-
sible heuristic for replacing RTClasses is the
ImportanceFactor-based approach. The RTClasses
that could be chosen to be replaced by the newly
arrived ones are the classes that are not essential or
activated. We exclude the classes with the smallest
ImportanceFactor. For example, let us suppose that
there exists in WorkingRTCArray 20 RTClasses.
All RTClasses have an ImportanceFactor equal
to 3, except the third RTClass. It has an
ImportanceFactor equal to 1. The upper bound of

22

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

classes is 20. If we have to add a newly deployed
RTClass with an ImportanceFactor equal to 5,
and the third RTClass is not essential and not
activated, then we can replace the third RTClass
by the newly arrived one.
If RTC adds a new periodic variant to an existing
column and the upper bound of variants in the column
is exceeded, then a decision should be taken, which
RTC to drop. One option may be to examine the
RTC with the highest Ci/Ti. If it does not result
in a successful schedulability test together with the
AEC, we exclude it. If it results in a successful
schedulability test, we exclude the RTC with the
highest cost. For example, let us suppose that there
exists 90 variants in the column, where the newly
deployed RTC should be added. The upper bound of
variants in the column is 90. If the utilization needed
by the newly deployed RTC is 0.3, and the highest
utilization needed by the variants in the column is
0.7. If the utilization needed by the AEC is 0.6, then
we exclude the RTC, which needs the utilization of
0.7. If, however, the highest utilization needed by the
variants in the column is 0.2, then we exclude the
variant with the highest cost among variants in the
column and the newly deployed RTC. If the cost of
the newly deployed RTC is 15, and highest cost of
variants in the column is 20, we exclude a variant
that has the cost 20.
In case the newly deployed RTC adds a new aperiodic
variant to an existing column, and this will cause
exceeding the upper bound, we exclude the RTC that
consumes the highest cost. An arbitrary exclusion can
also take place.

2) If a newly arrived column should update a specific
existing column, and no variant is active in the
existing column, we substitute it by the newly arrived
one. See Figure 3 and Figure 4. If there is an active
variant in the existing column, we add the newly
arrived RTClass to a queue to be considered later.
This UpdateQueue may be ordered by the arrival
times or an arbitrary other criterion. The upper bound
of its capacity is equal to QB. Each element of the
UpdateQueue is an array. The array includes the
newly deployed RTClass, in case this RTClass
does not have dependencies. In case a set of de-
pendent RTClasses arrives, the array includes more
than one column, the newly deployed RTClass and
the other RTClasses in the dependency graph.

Boundedness proof:
- Transmitting the newly deployed RTCs is bounded by

b and time for transmission. As we assume a deterministic
communication channel between the remote node where newly
deployed RTCs reside and the local one, the transmission
time is bounded. - The EC applies a filter procedure to
preserve upper bounds of the WorkingRTCArray. The filter
procedure is bounded by one of the WorkingRTCArray
dimensions. The formal proof of the boundedness of this step
and the next steps is clear when looking at Nassi-Schneiderman
diagrams which represent the steps. In [2], time complexity
appears on each diagram, and this in turn points out that the
step specified by the diagram is done in a bounded time, and

the bound depends only on the parameters, which participate
in the time complexity formula.

Step 2: Triggering and handling the newly arrived
requests:

In the previous step, an UpdateQueue has been con-
structed, including update requests. In this step, another queue

Figure 3. Nassi-Schneiderman Diagram for gathering and filtering the
newly deployed RTCs [2].

Figure 4. Nassi-Schneiderman Diagram for the arrival of an updating
list of RTCs [2].

Figure 5. Nassi-Schneiderman Diagram for adding a new column [2].

23

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is constructed. It is called the TriggeredQueue, ordered by
arrival time or any other criterion. Requests, that are added
to this queue, are chosen from the WorkingRTCArray.
Triggered requests may add or delete RTCs. Triggered requests
are chosen according to the necessities of the system. The
upper bound of the TriggeredQueue capacity is QB. The
EC makes an iteration over items in the UpdateQueue and
the TriggeredQueue in parallel. It selects by an arbitrary
criterion either an update request or a triggered request. For
simplicity, the decision can be made arbitrarily. This selection
process is iterated until the number of requests is equal to the
upper bound or until no further requests exist. See Figure 7 and
Figure 8. Selected requests will be stored in a RequestQueue
of bounded size.

If the arrival time of the periodic requests in
the RequestQueue is not equal to NHP , their
TriggeringRange is examined. If TriggeringT ime ≤
NHP ≤ TriggeringT ime + TriggeringRange, then the
arrival time is set to NHP . Otherwise the requests, which do
not satisfy the previous condition, are not accepted and deleted
from the RequestQueue. After that a notification is sent to
the system administrator. For example, if NHP = 10. The
arrival time of the request is equal to 9. Its triggeringRange
is equal to 5, and the request has been triggered at time 8,
we notice that the arrival time of the request is not equal to
NHP. For this reason, we examine if TriggeringT ime ≤
NHP ≤ TriggeringT ime + TriggeringRange. We notice
that 8 ≤ 10 ≤ 8 + 5, so we set the arrival time to 10. The
DeletionT ime of periodic requests that have to be deleted is
set to next natural updating point. If arrival times of aperiodic
requests are greater than NHP , they stay the same. If they
are smaller than NHP , we set their arrival times the same
way as for periodic requests.

If the request includes a set of dependent cells, we assume
that their modified arrival times and deadlines are calculated
offline by EDF*. If one of the modified arrival times is smaller
than NHP , then a fixed offset is applied to all arrival times

Figure 6. Nassi-Schneiderman Diagram for adding an RTC to an
existing column [2].

and deadlines to keep them greater or equal to NHP . See
Figure 9.

An update request is represented by an array of RTCs
that constructs the RTClass of the update. Updating a set
of dependent cells is done under the same rules as updating a
cell.

When requests in the RequestQueue proceed for
processing by the AEC, the buffers (UpdateQueue,
TriggeredQueue, and RequestQueue) become empty.

Boundedness proof:
- A queue of triggered requests (add/delete requests) is

constructed in a time bounded by QB.
- The first and second iteration over UpdateQueue and
TriggeredQueue is bounded by QB.
- Setting the arrival time of requests is bounded by a constant
time.

Step 3: Calculating the cost of quality factors for the
system:

A part or the whole set of local parameters might influence
the overall quality of the system. This set of parameters
includes both parameters of the underlying computing system
and of the RT system under consideration. Parameters of the

Figure 7. Nassi-Schneiderman Diagram for triggering a request.

Figure 8. Nassi-Schneiderman Diagram for choosing between an
update and a triggered request.

24

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system should be read in each execution of the EC because
they might change. This change may affect the result of the
adaptation process. E.g., adding new resources may allow
accepting a set of requests, which cannot be accepted with less
resources. The result of calculating the total cost depending on
quality parameters available is called Costtotal. For example,
let us assume that in a remote surgical system, only the
following set of parameters are considered: number of cameras,
number of robotic arms and number of endoscopic tools. Let
us assume that each of these parameters has a weight. Number
of cameras is equal to 3. Number of robotic arms is equal to
10. Number of endoscopic tools is equal to 8. The weight of
the first parameter is 1. The weight of the second parameter
is 4. The weight of the third parameter is 2. Let us assume
that Costtotal is given by the following function: t Costtotal =
first parameter × weight of first parameter + second parameter
× weight of second parameter + third parameter × weight of
third parameter = 3 × 1 + 10 × 4 + 8 × 2 = 3 + 40 + 16 =
59.

Boundedness proof: Under the assumption that an arith-
metic operation can be carried out in bounded time, and
number of system parameters is bounded by PN, the entire
calculation can be carried out in bounded time.

Step 4: Adaptation algorithm:
In this step, we calculate the lowest cost feasible

solution over the entire set of RTClasses stored in
AdaptationRTCArray. The AdaptationRTCArray is con-
structed as follows:

Constructing AdaptationRTCArray:
1) We copy the variants of the WorkingRTCArray

into a temporary array AdaptationRTCArray. The
WorkingRTCArray is essential for enabling a
transaction concept. If the adaptation process turns
out to be successful, the WorkingRTCArray will
replace the RTCArray. If the adaption fails, the
WorkingRTCArray will be neglected and the sys-
tem returns to the previous version.

Figure 9. Nassi-Schneiderman Diagram for setting time
characteristics of triggered requests [2].

2) We reduce AdaptationRTCArray to contain
only the variants, which RTClassID exists
in the ExpPARTCs and ExpAARTCs with
absolute deadlines exceeding NHP . For each
ExpPARTC or ExpAARTC, which has the
property V ariantsAllowed set to false, we do not
consider variants that hold the same RTClassID
in AdaptationRTCArray, other than the ARTC
itself.

3) For each aperiodic ARTC that should be deleted, and
has absolute deadline exceeding NHP , we add a
column including the ARTC as the only variant. If
a next possible updating point exists, its execution
time is set to yUpdatingPoint. The reason is that
updating points are the most suitable points to apply
deletion, as partial results are delivered on these
points. Deleting a cell suddenly on an arbitrary point
may cause errors.

4) We then add a column that includes the AEC.
5) We also add the newly triggered requests. If their

properties V ariantsAllowed are set to true, we
add columns that represent RTClasses of the
newly triggered variants. If, however, their prop-
erties V ariantsAllowed are set to false, we add
only columns containing the newly triggered vari-
ants (a column for each RTC). The value of
V ariantsAllowed might be different among the dif-
ferent requests.

6) In case there is an update request for an RTC: Adding
an aperiodic update is done (only if there exists an
updating point after NHP in the aperiodic variant
that is running) by adding the updating RTClass
that includes the triggered updating variant. In the
following, we summarize how to check the exis-
tence of an updating point after NHP (only in this
case, the updated variant should be excluded when
constructing ExpAARTCs), and how to set the
time characteristics for the variants in the updating
column:
First: Determining the set of ARTCs that can be
updated: First, we check whether in the current
hyperperiod there is capacity left to execute
aperiodic ARTCs with deadlines that exceed
NHP . This capacity is called ”Amount”.

Amount = Hyperperiod −
[(
∑NumofPARTCS

i=1 ((Hyperperiod/Ti) × Ci)) +

WCETEC +
∑NumofAARTCS−NumOfANHP

i=1 (Ci−
ETexecutedi)]

NumOfANHP : refers to the number of aperiodic
ARTCs with deadlines that exceed NHP . Based on
the value of Amount we now can identify those
ARTCs, which definitely result in a completion
time later than the current hyperperiod and hav-
ing an update point after NHP .
Amount1 = Amount.

/* We construct a vector of the running aperiodic
ARTCs, which deadlines exceed NHP . In the
following loop i indicates the ith item in the

25

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vector.*/

If (Amount1 > 0) then {
For (i = 1 to NumofANHP) {
If (Ci − ETexecutedi ≤ Amount1) then {
Amount1 = Amount1− (Ci − ETexecutedi)
}
else {
Ci,new = (Ci − ETexecutedi)−Amount1.

If there exist an updating point in Ci,new,
add this ARTC to the set of variants that can
be updated
}
}
}

else {
For (i = 1 to NumofANHP) {
Ci,new = Ci − ETexecutedi

If there exists an updating point in Ci,new,
add this ARTC to the set of variants that can be
updated
}
}

Second: Calculation of time characteristics for the
updates: If the found updating point is UP [x, y],
the arrival time of the jth variant in the updating
RTClass is set to the arrival time of the updated
variant. The execution time for the jth variant
is set to (y + Cj - ỳ), where ỳ is the relative
updating point time for the counterpart updating
point. The specified absolute deadline for the jth
variant is set to max[((Dj - ỳ) + (Arrival time of
the running variant + y)), Absolute Deadline of
the running variant that should be updated]

7) Adding a periodic update is done by adding
the arrived RTClass, which includes the trig-
gered updating variant to AdaptationRTCArray.
If V ariantsAllowed is equal to false, only the
triggered updating variant should exist in the column.
Otherwise, all variants, which belong to the update
exist in the column. The updated variant has to be
excluded when constructing ExpPARTCs, because
executions of periodic instances are completed in
each hyperperiod. This means, when a periodic up-
date is applied in the next hyperperiod, no execution
of the updated variant can take place.

8) In case there is an update request for a set of aperiodic
dependent RTCs, modified arrival times and dead-
lines are calculated offline. When calculating time
characteristics of the variants in the columns that are
supposed to update dependent variants, same rules of
updating one variant are applied.

In this way, we can use the reduced array in the next
step for the adaptation algorithm as each column represents
a participant in the selection process. The columns in the
array are reordered, so that periodic columns comes first, then
AEC, and finally aperiodic columns.

Let us assume that: 1

the number of columns in AdaptationRTCArray = 2

Num. 3

Ǹ is the number of columns, which represent the 4

newly triggered aperiodic requests. They are placed as last 5

columns in AdaptationRTCArray. 6

If (NumOfANHP > 0) then { 7

/*In the following, we calculate arrival times, execution 8

times, and Cost−Update for the running aperiodic ARTCs 9

that are stored in AdaptationRTCArray, with deadlines 10

exceeding NHP .*/ 11

If (Amount > 0) then { 12

/* Amount as calculated under part “First” is the time 13

left in the current hyperperiod, after excluding the time 14

that should be spent in executing the periodic ARTCs, 15

and aperiodic ARTCs, which deadlines that do not exceed 16

NHP .*/ 17

/*We construct a vector of the running aperiodic 18

ARTCs, which deadlines exceed NHP . We order the 19

elements of this vector according to the increasing 20

absolute deadlines. In the following loop i indicates the 21

ith item in the constructed vector.*/ 22

23

For (i = 1 to NumOfANHP){ 24

If (Ci − ETexecutedi ≤ Amount) then { 25

Amount = Amount - (Ci − ETexecutedi) 26

Exclude the column of the ith aperiodic variant from 27

AdaptationRTCArray. Decrease Num by 1. 28

} 29

else{ 30

Ci,new = (Ci − ETexecutedi)−Amount. 31

Set execution time of the variant in 32

AdaptationRTCArray that is equal to the ith variant to 33

Ci,new. 34

Set the arrival time of the variant in 35

AdaptationRTCArray that is equal to the ith variant to 36

Arrival time = NHP , if Arrival time < NHP 37

Amount = 0. 38

} 39

} 40

} 41

else{ 42

For (i = 1 to NumofANHP){ 43

Ci,new = Ci − ETexecutedi 44

Set the execution time of the variant in 45

AdaptationRTCArray that is equal to the ith variant to 46

Ci,new. 47

Set the arrival time of the variant in 48

AdaptationRTCArray that is equal to the ith variant to 49

Arrival time = NHP , if Arrival time < NHP 50

} 51

} 52

Cost− Update = the cost of the RTC 53

54

/*The following iteration is done over the aperiodic 55

RTCs in AdaptationRTCArray, which do not belong to 56

26

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the newly triggered requests.*/ 57

58

For (k=Number of periodic columns+1..Num-Ǹ){ 59

If (V ariantsAllowed = true) && (there exists an 60

updating point in the part of the running variant dedicated 61

for Ci,new (after NHP)) then{ 62

/*The following calculations are done to include the 63

possible alternatives for the active aperiodic cells in the 64

knapsack problem.*/ 65

/*A new arrival time, execution time, cost and 66

absolute deadline are calculated for the variants of the kth 67

column in AdaptationRTCArray, excluding the running 68

variant in the kth column.*/ 69

Arrival time = Arrival time of the active variant in 70

the kth column. 71

New execution time is assigned to each variant in the 72

kth Column, excluding the running variant: 73

C̀k,new = (C̀ − ỳ) + (Ck,new − (Crunning,variant − y)) 74

C̀ is the execution time of the jth variant, for which 75

we are calculating the attributes, in the kth column. 76

Ck,new is the calculated execution time of the running 77

variant in the kth column. 78

Crunning,variant: is the original execution time of the 79

running variant in the kth column. 80

y is the relative updating point time of the next 81

updating point in the running variant. 82

ỳ is the relative updating point time of the counter- 83

part updating point in the jth variant. 84

Cost−Updatej = Maximum of (Cost of the running 85

variant, cost of the jth variant). 86

Specified absolute deadline = max (Specified absolute 87

deadline for the running variant, NHP + (Ck,new − 88

(Crunning,variant − y)) + specified relative deadline). 89

} 90

else We choose the running variant in the kth column. 91

} 92

} 93

Up to know we have prepared the current ecosystem
of RTCs, within which we have to find a valid solution
with minimized overall cost by making a proper selection of
variants.

To find the solution, we solve the following multiple-
choice multidimensional knapsack problem:

/*The fist constraint of the knapsack guarantees
minimizing the cost of the solution. The second constraint
of the knapsack guarantees the schedulability of periodic
and aperiodic cells with hard deadlines.*/

max
∑Num

i=1

∑ni

j=1−Costijxij

Subject to:
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk

Where:
∑ni

j=1 xij = 1; i = 1..m & xij ∈ {0, 1}; i = 1..m
and j = 1..ni, k = 1:3

W 1
ij = Factor1/Factor2

For any of the periodic RTCs: Factor1 = Cij ,
Factor2 = Tij

For the AEC, Factor1 = WCETEC ,
Factor2 = WCTECtemp

For any of the aperiodic RTCs: Factor1 = 0, Factor2
= 1

WCTECtemp is calculated as follows:

The expected hyperperiod is calculated as the least
common multiple of periods of periodic ExpPARTCs in
AdaptationRTCArray, and periods of the newly triggered
periodic requests in AdaptationRTCArray. The resulting
value is set as initial value for the expected period of
AEC. If the resulting utilization of the RTCs is below 1
then, we examine the total utilization (AEC and RTCs).
If it is smaller or equal to 1, we have found the shortest
possible expected period for AEC, which at the same time
by definition is the hyperperiod. If the total utilization
is beyond 1 then the expected hyperperiod has to be
extended by a harmonic multiple until the total utilization
is no longer beyond 1. If the resulting utilization of the
RTCs is 1, the set of chosen RTCs results in a non-
feasible solution. In each hyperperiod, only one execution
of the AEC is assumed. For this reason, we finally update
WCTECtemp, the expected period of the AEC, to be equal
to the expected hyperperiod.
W 2

ij is calculated here in a way different from [1]. In [1], W 2
ij

is negative if there is an aperiodic lateness. The sum of weights
as stated in the knapsack problem is defined as the aperiodic
lateness. If this lateness is smaller than zero (the related
knapsack constraint succeeds), the aperiodic lateness indicates
a deviation from optimal case of meeting hard deadlines of
aperiodic RTCs.

In this paper, we set W 2
ij to be zero if hard deadlines

are met (dCalculated,ij ≤ dSpecified,ij). Otherwise it will be
equal to a positive value expressing the aperiodic lateness.
The sum of weights as stated in the knapsack problem is
defined as the aperiodic lateness. If the related knapsack
constraint succeeds, hard deadlines of aperiodic RTCs are

27

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

met.

W 2
ij = Factor1 − Factor2 if Factor1 > Factor2,

otherwise W 2
ij = 0.

For any of the periodic RTCs and the AEC: Factor1
= 0, Factor2 = 0.

For any of the aperiodic RTCs:

Factor1 = dCalculated,ij , Factor2 = dSpecified,ij .

Where:

dSpecified,ij : The specified absolute deadline for any
aperiodic variant, which belongs to an aperiodic variant
in AdaptationRTCArray. It is equal to its arrival time +
relative deadline of the variant.

dCalculated,ij = max{dCalculated(i−1)ji−1
, ArrivalT imeij}+

Cij,new/Us.

dCalculated(lpl) = 0.

Where;

p = j

l = Number of periodic columns in
AdaptationRTCArray +1

Us = 1− Up.

Depending on the different kinds of RTCs to be
considered in solving the Knapsack problem, W 3

ij is
defined as follows:

W 3
ij = Cost for periodic RTCs stored in

AdaptationRTCArray

W 3
ij = Cost−Update for running aperiodic RTCs that

are stored in AdaptationRTCArray

W 3
ij = Cost for added aperiodic RTCs stored in

AdaptationRTCArray

R1 = 1.

R2 = 0.

R3 = Costtotal.

The limit Costtotal is optional. If it is set to infinity,
then the optimization process tries just to find the lowest
cost solution. If the limit is set to a finite value, then the
solution space is further limited. If a solution is found, the
newly arrived requests are accepted.

The algorithm we are applying to solve the knapsack
problem is a genetic algorithm. See subsection E for further
details.

If the newly arrived requests are accepted by the
system, the ARTCs set or subset, which is represented
in AdaptationRTCArray is substituted by the chosen
alternatives. Replacing a periodic ARTC means deleting
the periodic ones that should be substituted and loading
the periodic alternatives at NHP . Replacing an aperi-
odic ARTC means, the replaced RTC can be treated as
a deletion request. When the deletion takes place, the
information necessary for replacing the ARTC (transferred
from replaced RTC to the replacing one) should be stored.
The chosen alternatives are stored in a ready queue. At
the NHP , the Active property of the alternatives and for
the newly triggered requests is set to true. The Active
property of the alternated cells is set to false once they
are replaced (deleted). In the aperiodic case, the part of
the updated cell that follows the first updating point after
NHP is to be replaced. At the replacement point for
aperiodic cells, any data of the altered cells or updated cells
that might be necessary for the alternatives or updating
variants is stored. The Active property becomes true for
the alternatives. After that, step 5 is applied.

E. Genetic Algorithm
The algorithm we are applying to solve the knapsack

problem is a genetic algorithm. In the algorithm, an in-
dividual contains exactly one variant for each column in
AdaptationRTCArray. And a generation may contain one or
more individuals. In total there exist up to fh individuals. Each
of them is a potential solution of the Knapsack problem. In
the genetic algorithm, we select smaller subsets of individuals
and call them Generations. The lowest cost individual of a
generation is a preliminary solution of the Knapsack problem.
A generation is constructed from a previous one by applying
selection and mutation. This process is iterated until no im-
provement can be observed or a given time limit is reached.
We set the first generation to include at least two individuals.
The first one is given by selecting from each periodic RTClass
the variant with the lowest respective utilization, and from
each aperiodic RTClass the variant with lowest respective
execution time. The low utilization of a periodic RTC rises
the chance of making the sum of all periodic utilizations
smaller or equal to 1. The low execution time of an aperiodic
RTC rises the chance that the calculated absolute deadline,
which is calculated according to TBS, becomes small. As a
result, the chance of meeting the hard deadlines of periodic
and aperiodic RTCs becomes higher. The second individual is
given by the current selection of variants for all RTClasses,
which are not affected by the adaptation together with all
adaptation requests included in the first individual. The first
initial individual allows a simple decision whether a solution
exists, as if this individual does not fulfil the constraints then
there cannot exist any solution. The reason is that we choose
the variants in the first individual in a way that reaches the
highest chance of satisfying the schedulability test because
the periodic utilization is at lowest amount and the calculated
aperiodic deadlines according to TBS are at lowest values.
The second initial individual is a promising one in the first
generation under the assumption that before adaptation we had
an optimized system.

28

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let us assume that the number of individuals in a gener-
ation ≤ upper bound of number of variants in a class in the
WorkingRTCArray. The remaining individuals of the first
generation may be chosen by any procedure, e.g., by randomly
exchanging the selected variants in the columns.

After that WCTECTemp, server utilization, and absolute
deadlines for aperiodic load are calculated for each individual
according to TBS [6]. The individuals of a generation are
sorted by increasing total costs. This implies that the first
individual of this list, provided that the constraints are satisfied,
constitutes the preliminary optimum.

If the knapsack constraint
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk has

no solution for the first generation, even under the assumption
of R3 = infinite, then the adaptation has to be rejected. Other-
wise, if it has a solution for a set of individuals, we choose as
an intermediate solution the individual, which minimizes the
accumulated cost of the chosen RTCs.

In order to potentially improve the solution with the ob-
jective to minimize the accumulated cost, we iterate to choose
different generations by applying selection and mutation on
the individuals, until we either have no further improvement
or we reach our predefined time limit.

As an example we assume that the selection process is
done by rejecting all constraint-violating individuals and a
certain amount of the worst individuals of a generation and
that the mutation process is done by replacing an arbitrary
RTC in the remaining individuals by another arbitrary RTC
from the same column. Selection also implies that the
size of the generations may vary (remains bounded). The
improvement of the solution is guaranteed by keeping the
fittest individuals in the next generation. Choosing an arbitrary
variant when applying the mutation may enhance the solution
more than choosing a variant with specific characteristics,
because there is no characteristic that can guarantee enhancing
the solution. We did not apply recombination in our approach.
Applying it is a possible option. However, in this case, we
should ensure to keep a specific number of individuals in each
generation after the selection process, which may enforce
keeping a number of constraint-violating individuals in the
next generation. This is necessary for the recombination
process to take place, because we should assume to have at
least two individuals in the previous generation. Figure 10,
Figure 12 and Figure 13 describe the solution. Figure 11 is
part of the process in Figure 12.

Boundedness proof:
- Operations Step 4 other than the genetic algorithm are

bounded by f , h, or f and h.
- The genetic algorithm is bounded because of the follow-

ing reasons:

1) The operations dedicated to calculate WCTECTemp,
server utilization, and absolute deadlines for the
aperiodic load in each individual are bounded by
NInd, upper bounds of RTCArray dimensions.

2) We can decide whether there exists a feasible
solution or not in bounded time. Feasibility can be
decided already based on the first generation.

3) The individuals of a generation are sorted by
increasing total costs. Sorting is bounded by NInd.

4) The optimization is done in bounded time as
well. The reason is that we loop from generation
to generation until we either have no further
improvement or we reach our predefined time
limit. The latter termination condition guarantees
boundedness.

Step 5: Activate the accepted requests, and update the
AEC:

If the newly triggered requests are accepted, the Active
property of their RTCs becomes true. They are put into the
ready queue of the underlying RTOS. The AEC schedules
the first arrival of each request to be at NHP . This is done
by loading the accepted RTCs into the memory (transforming
them into ARTCs). The scheduler is responsible for loading
the accepted RTCs at NHP . The AEC updates its properties,
e.g., WCTEC is set to the temporary value WCTECtemp.

Figure 10. Nassi-Schneiderman Diagram for choosing the initial
generation [2].

29

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hyperperiod = WCTEC .

The AEC updates then its properties according to the
changes that will take place. NumOfAARTCs is increased
by number of accepted aperiodic RTCs, if the newly
triggered RTCs are aperiodic, or the NumOfPARTCs
is increased by number of accepted periodic RTCs, if the
newly triggered RTCs are periodic. NumOfAARTCs is
decreased by number of aperiodic RTCs that are deleted.
NumOfPARTCs is decreased by number of periodic RTCs
that are deleted. WCTEC is set to the temporary value, which
is calculated in step 4 as follows:

WCTEC = WCTECtemp.

The hyperperiod is updated according to step 4.

Hyperperiod = WCTEC .

In case the request is an update for one or sev-
eral active RTCs, it replaces the RTClasses in the

Figure 11. Nassi-Schneiderman Diagram for evaluating an individual
[2].

WorkingRTCArray, which includes the RTC/RTCs that
should be updated by the RTClass/RTClasses of the newly
arrived request. We set the Active property of the triggered
elements in the newly arrived RTClasses to true. After that,
AdaptationRTCArray is set to empty. See Figure 14.

Boundedness proof:

Figure 12. Nassi-Schneiderman Diagram for evaluating a generation
[2].

30

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

- Activating each accepted request is done in constant
time by turning the Active property into true.

- Iterating over newly arrived requests is bounded by QB.

- Updating each of the AEC properties
(NumOfAARTCs, NumOfPARTCs, period of the
EC) is also done in constant time.

Step 6: Turning the triggered requests into non-
triggered:

The Triggered Property of requests RTCs is
turned into false. If the arrived requests are accepted,
WorkingRTCArray is copied to RTCArray, and then it
is set to empty.

Boundedness proof:
- The Triggered property of each request RTC is turned

to false in constant time.

- Iterating over the requests in WorkingRTCArray is
done in time bounded by h ,f and QB.

- Copying WorkingRTCArray to RTCArray is done
in time bounded by f and h. Resetting WorkingRTCArray
is done in constant time.

Step 7: Notify the system, in case the requests are not
accepted:

If the set of proceeded requests cannot be accepted,
then a notification is sent by the AEC to the system

Figure 13. Nassi-Schneiderman Diagram for the genetic algorithm
[2].

for substituting the proceeded set of requests by another
set. Costtotal, WCTECtemp, The expected hyperperiod,
AdaptationRTCArray, ExpPARTCs and ExpAARTCs
are reset to their initial values. WorkingRTCArray is set to
empty.

Boundedness proof:
- A notification is sent to the system administrator in

constant time. Costtotal, WCTECtemp.

- The expected hyperperiod, AdaptationRTCArray,

Figure 14. Nassi-Schneiderman Diagram for activating the accepted
requests and updating the AEC [2].

Figure 15. Example from extracting time complexity from a pseudo
code.

31

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ExpPARTCs and ExpAARTCs are reset in constant time.

- Resetting WorkingRTCArray is done in constant time.

As shown above, the adaptation process takes place in
bounded time. Part of this process, however, is the calcula-
tion of the WCETEC of the EC. This value depends on a
couple of parameters that may vary by each application of the
adaption. The following complexity function has been derived
in [2] to express the influence of all relevant parameters on
time complexity. It is assumed that based on this complexity
function and an adequate model of the underlying hardware the
resulting WCETEC can be estimated with sufficient precision.
The reason is that the complexities, which construct the
function can be derived from a pseudo code of the adaptation
algorithm. [24] points out how time complexity can be derived
from a pseudo code. In [2], the pseudo code was not described,
but an estimation was done on Nassi-Schneiderman diagrams.
Each diagram points out the step, which is specified by that
diagram, by breaking it into smaller steps. One can estimate
the complexity of these small steps, as if they were reflecting
parts of a pseudo code. In Figure 15, we present an example
for extracting the time complexity from a pseudo code.

We find that the algorithm is solved by a quadratic time
complexity.

Complexity of the algorithm [2]: Complexity of
step 1 + Complexity of step 2 + Complexity of step
3 + Complexity of step 4 + Complexity of step 5
+ Complexity of step 6 + Complexity of step 7 =
O(b∗h∗f)+O(QB∗h∗f∗SC+SC2)+O(PN)+O(QB∗SC∗
f ∗h+h2∗f+QB∗n+h∗n+f2∗h+f ∗m1+f ∗logGRP)+
O(QB ∗SC ∗h ∗ f +h2 ∗ f) +O(h ∗ f ∗QB ∗SC) +O(1) =
O(b ∗ h ∗ f + PN + f ∗m1 + f ∗ logGRP + f2 ∗ h + h2 ∗
f + QB ∗ n + h ∗ n + h ∗ f ∗QB ∗ SC + SC2)

In Section V, we have first pointed out how to transform
the traditional RT tasks into RT cells. For this purpose, we
defined the new properties that have to be added to the structure
of RT tasks in order to allow executing the tasks as cells.
Cells can change their structure an behavior at runtime. In
our approach, there is two kinds of cells. EC belongs to one
kind, and RTCs belong to the other kind. In this section, we
have listed the properties of EC and RTCs. Then we listed all
parameters, which may play a role in time complexity of the
adaptation algorithm. We defined the parameters. Afterwards,
we went through the steps of the algorithm. In each step, we
explained how the step is performed. Then, we presented the
boundedness proof of the step. Finally, we presented the time
complexity of the algorithm.

In the next section, we summarize the content of the paper,
and introduce potential future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provided the details of the algorithmic
solution described in [1]. We have showed the proof of
boundedness for each step in the algorithm. The solution tries
to evolve the system at run time. Each time the EC executes,
and new requests exist, there is a possibility to change the
RTCs, which construct the system. The EC executes a genetic

algorithm, to solve a knapsack problem. The conditions of the
problem aim to provide more processor capacity and to mini-
mize the costs by choosing best combination of cells variants.
Every individual that results from the genetic algorithm acts
as a possible input for the knapsack. The genetic algorithm
runs until a best individual is found, or a predefined time limit
is reached. The time complexity of the algorithm has been
deduced depending on abstract code. Code statements have
been modelled by Nassi-Schneiderman diagrams [3]. In [2],
time complexities are listed in the diagrams. In the future,
we may apply different approaches including different genetic
algorithms to solve the knapsack problem. This may provide
different optimization output [2]. The problem might also be
modelled by means different from the knapsack. Considering
communication between cells is an additional aspect that may
expand the scope of RT applications, where the algorithm can
be applied [2]. The solution is designed for a local node and
one remote node, where newly deployed cells can be installed.
Later we may design a solution for more than one remote
node. Each one is dedicated for a different type or sort of RT
cells. By applying this enhancement, we can save costs because
nodes can stay where appropriate developers exist [2].

VII. ACKNOWLEDGEMENT

This work is based on a PhD thesis done at University of
Paderborn, Germany [2].

REFERENCES

[1] L. Khaluf and F. Rammig, “Organic Self-Adaptable Real-Time Ap-
plications,” In the fifteenth international conference on Autonomic
and Autonomous Systems (ICAS), pp. 65-71, 2019.

[2] L. Khaluf, “Organic Programming of Dynamic Real-Time Applica-
tions,” a PhD thesis, University of Paderborn, 2019.

[3] I. Nassi and B. Schneiderman, “Flowchart Techniques for Structured
Programming,” Technical Contributions, Sigplan Notices, pp. 12-26,
1973.

[4] L. Khaluf and F. Rammig, “Organic Programming of Real-Time Op-
erating Systems,” In the ninth international conference on Autonomic
and Autonomous Systems (ICAS), pp. 57-60, 2013.

[5] H. Ghetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of
real-time tasks under precedence constraints,” Journal of Real-Time
Systems, 2, pp. 181-194, 1990.

[6] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service under
Earliest Deadline Scheduling,” Real-Time Systems Symposium, pp.
2-11, 1994.

[7] S. Htiouech, S. Bouamama and R. Attia, “OSC: solving the mul-
tidimensional multi-choice knapsack problem with tight strategic
Oscillation using Surrogate Constraints,” International Journal of
Computer Applications (0975 8887), Volume 73 - No. pxc3889883,
2013.

[8] M. M. Akbar, M. S. Rahman, M. Kaykobad, E.G. Manning and
G.C. Shoja, “Solving the Multidimensional Multiple-choice Knap-
sack Problem by constructing convex hulls,” Journal Computers and
Operations Research archive, pp. 1259-1273, 2006.

[9] M. Hifi, M. Michrafy and A. Sbihi, “Algorithms for the Multiple-
Choice Multi-Dimensional Knapsack Problem,” In: Les Cahiers de
la M.S.E : série bleue, Vol. 31, 2003.

[10] Y. Chen and J-K Hoa, “A ”reduce and solve” approach for
the multiple-choice multidimensional knapsack problem,” European
Journal of Operational Research, pp. 313-322, 2014.

[11] A. Sbihi, M. Mustapha and M. Hifi, “A Reactive Local Search-
Based Algorithm for the Multiple-Choice Multi-Dimensional Knap-
sack Problem,” Computational Optimization and Applications, pp.
271–285, 2006.

32

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] Shubhashis K. Shil, A. B. M. Sarowar Sattar, Md. Waselul Haque
Sadid, A. B. M. Nasiruzzaman and Md. ShamimAnower, “Solving
Multidimensional Multiple Choice Knapsack Problem By Genetic
Algorithm & Measuring Its Performance,” International Conference
on Electronics, Computer and Communication (ICECC), 2008.

[13] A. Duenas, C. D. Martinelly, and G. Tütüncü, “A Multidimensional
Multiple-Choice Knapsack Model for Resource Allocation in a
Construction Equipment Manufacturer Setting Using an Evolutionary
Algorithm,” APMS (1), IFIP AICT, Volume 438, pp. 539-546, 2014.

[14] IBM ILOG CPLEX Callable Library version 12.6.2.
[15] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and

Machine Learning,” 1989.
[16] G. C. Buttazzo, “Hard Real-Time Computing Systems, Predictable

Scheduling Algorithms and Applications,” Third Edition, Springer,
2011.

[17] H. Rosen, “Handbook of Graph Theory,” Series Editor Kenneth, CRC
Press, edited by Jonathan L. Gross, Jay Yellen, 2004.

[18] D. Pisinger, “Algorithms for knapsack problems,” Dept of Computer
Science, University of Kopenhagen, PhD thesis, February, 1995.

[19] F. Streichert, “Introduction to Evolutionary Algorithms,” University
of Tuebingen, 2002.

[20] http://math.feld.cvut.cz/mt/txtb/3/txe3ba3c.htm. Last visited on
30.05.2020.

[21] https://en.wikipedia.org/wiki/Monotonic˙function. Last visited on
30.05.2020.

[22] http://www.nlreg.com/asymptot.htm. Last visited on 30.05.2020.
[23] J. E. Speich and J. Rosen, “Medical Robotics, Encyclopedia of

Biomaterials and Biomedical Engineering,” 2004.
[24] https://en.wikipedia.org/wiki/Analysis˙of˙algorithms. Last visited on

31.05.2020.
[25] T. Weise, “Global Optimization Algorithms - Theory and Applica-

tion”, Self-Published, second edition, 2009.

33

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Collaborative Modularization and
Reengineering Approach CORAL

for Open Source Research Software

Christian Zirkelbach
Software Engineering Group

Kiel University
Kiel, Germany

czi@informatik.uni-kiel.de

Alexander Krause
Software Engineering Group

Kiel University
Kiel, Germany

akr@informatik.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University
Kiel, Germany

wha@informatik.uni-kiel.de

Abstract—Software systems evolve over their lifetime. Changing
requirements make it inevitable for developers to modify and
extend the underlying code base. Especially in the context of open
source software where everybody can contribute, requirements
can change over time and new user groups may be addressed.
In particular, research software is often not structured with a
maintainable and extensible architecture. In combination with
obsolescent technologies, this is a challenging task for new
developers, especially, when students are involved. In this paper,
we report on the modularization process and architecture of our
open source research project ExplorViz towards a microservice ar-
chitecture. The new architecture facilitates a collaborative devel-
opment process for both researchers and students. We explain our
employed iterative modularization and reengineering approach
CORAL, applied measures, and describe how we solved occurring
issues and enhanced our development process. Afterwards, we
illustrate the application of our modularization approach and
present the modernized, extensible software system architecture
and highlight the improved collaborative development process.
After the first iteration of the process, we present a proof-of-
concept implementation featuring several developed extensions
in terms of architecture and extensibility. After conducting the
second iteration, we achieved a first version of a microservice
architecture and an improved development process with room
for improvement, especially regarding service decoupling. Finally,
as a result of the third iteration, we illustrate our improved
implementation and development process representing an entire,
separately deployable, microservice architecture.

Keywords–collaborative software engineering; software modu-
larization; software modernization; open source software; microser-
vices.

I. INTRODUCTION

Software systems are continuously evolving during their
lifetime. Changing contexts, legal, or requirement changes
such as customer requests make it inevitable for developers
to perform modifications of existing software systems. Open
source software is based on the open source model, which
addresses a decentralized and collaborative software develop-
ment. In this paper, we report on the iterative modularization
process of our open source research project ExplorViz towards
a more collaboration-oriented development process featuring a
microservice architecture based on our previous work [1].

Open research software [2] is available to the public and
enables anyone to copy, modify, and redistribute the underlying

source code. In this context, where anyone can contribute
code or feature requests, requirements can change over time
and new user groups may appear. Although this development
approach features a lot of collaboration and freedom, the re-
sulting software does not necessarily constitute a maintainable
and extensible underlying architecture. Additionally, employed
technologies and frameworks can become obsolescent or are
not updated anymore. In particular, research software is often
not structured with a maintainable and extensible architec-
ture [3]. This causes a challenging task for developers during
the development, especially when inexperienced collaborators
like students are involved. Based on several drivers, like
technical issues or occurring organization problems, many
research and industrial projects need to move their applica-
tions to other programming languages, frameworks, or even
architectures. Currently, a tremendous movement in research
and industry constitutes a migration or even modernization to-
wards a microservice architecture, caused by promised benefits
like scalability, agility, and reliability [4]. Unfortunately, the
process of moving towards a microservice-based architecture
is difficult, because there a several challenges to address from
both technical and organizational perspectives [5]. We later call
the outdated version ExplorViz Legacy, and the new version
just ExplorViz. Our main contributions in this paper are:

• Identification of technical and organizational problems
in our monolithic open source research project
ExplorViz.

• An iterative modularization and reengineering process
focusing on collaborative development applied on our
project moving towards a microservice architecture in
three iterations.

• A proof-of-concept implementation, followed by an
evaluation based on several developed extensions, as
the result of the first iteration.

• An improved software architecture based on microser-
vices and development process after our second iter-
ation.

• Finally, after our third iteration, an entire and sepa-
rately deployable microservice architecture.

The remainder of this paper is organized as follows.
In Section II, we illustrate our problems and drivers for a

34

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modularization and architectural modernization. Afterwards,
we present the initial state our software system and underlying
architecture of ExplorViz Legacy in Section III. Our employed
modularization and modernization process as explained in Sec-
tion IV. The following first iteration of this process as well
as the target architecture of ExplorViz are described in Sec-
tion V. Section VI concludes the first iteration with a proof-
of-concept implementation in detail, including an evaluation
based on several developed extensions. The second iteration
of our process in terms of achieving a first microservice
architecture is presented in Section VII. As there was still
room for improvement, we describe how we further improved
our microservice architecture and development process in Sec-
tion VIII. Section IX discusses related work on modularization
and modernization towards microservice architectures. Finally,
the conclusions are drawn, which includes a summary, depicts
lessons learned, and gives an outlook for future work.

II. PROBLEM STATEMENT

The open source research project ExplorViz started in
2012 as part of a PhD thesis and is further developed and
maintained until today. ExplorViz enables a live monitoring and
visualization of large software landscapes [6], [7]. In particular,
the tool offers two types of visualizations – a landscape-
level and an application-level perspective. The first provides
an overview of a monitored software landscape consisting of
several servers, applications, and communication in-between.
The second perspective visualizes a single application within
the software landscape and reveals its underlying architecture,
e.g., the package hierarchy in Java, and shows classes and
related communication. The tool has the objective to aid the
process of system and program comprehension for developers
and operators. We successfully employed the software in
several collaboration projects [8], [9] and experiments [10],
[11]. The project is developed from the beginning on Github
with a small set of core developers and many collaborators
(more than 40 students) over the time. Several extensions have
been implemented since the first version, which enhanced the
tool’s feature set. Unfortunately, this led to an unstructured
architecture due to an unsuitable collaboration and integration
process. In combination with technical debt and issues of
our employed software framework and underlying architecture,
we had to perform a technical and process-oriented modu-
larization. Since 2012, several researchers, student assistants,
and a total of 31 student theses as well as multiple projects
contributed to ExplorViz. We initially chose the Java-based
Google Web Toolkit (GWT) [12], which seemed to be a
good fit in 2012, since Java is the most used language in
our lectures. GWT provides different wrappers for Hypertext
Markup Language (HTML) and compiles a set of Java classes
to JavaScript (JS) to enable the execution of applications in
web browsers. Employing GWT in our project resulted in a
monolithic application (hereinafter referred to as ExplorViz
Legacy), which introduced certain problems over the course
of time.

A. Extensibility & Integrability

ExplorViz Legacy’s concerns are divided in core logic
(core), predefined software visualizations, and extensions.
When ExplorViz Legacy was developed, students created new

Git branches to implement their given task, e.g., a new feature.
However, there was no extension mechanism that allowed
the integration of features without rupturing the core’s code
base. Therefore, most students created different, but necessary
features in varying classes for the same functionality. Further-
more, completely new technologies were utilized, which intro-
duced new, sometimes even unnecessary (due to the lack of
knowledge), dependencies. Eventually, most of the developed
features could not be easily integrated into the master branch
and thus remained isolated in their created feature branch.

B. Code Quality & Comprehensibility

After a short period of time, modern JS web frame-
works became increasingly mature. Therefore, we started to
use GWT’s JavaScript Native Interface (JSNI) to embed JS
functionality in client-related Java methods. For example, this
approach allowed us to introduce a more accessible JS-based
rendering engine. Unfortunately, JSNI was overused and the
result was a partitioning of the code base. Developers were
now starting to write Java source code, only to access JS,
HTML, and Cascading Style Sheets (CSS). This partitioning
reduced the accessibility for new developers. Furthermore, the
integration of modern JS libraries in order to improve the
user experience in the frontend was problematic. Additionally,
Google announced that JSNI would be removed with the
upcoming release of Version 3, which required the migration
of a majority of client-related code. Google also released a
new web development programming language, named DART,
which seemed to be the unofficial successor of GWT. Thus,
we identified a potential risk, if we would perform a version
update. Eventually, JSNI reduced our code quality. By code
quality, we understand the maintainability of the source code,
which includes the concepts of analyzability, changeability,
and understandability [13]. Our remaining Java classes further
suffered from ignoring some of the most common Java conven-
tions and resulting bugs. Students of our university know and
use supporting software for code quality, e.g., static analysis
tools such as Checkstyle [14] or PMD [15]. However, we
did not define a common code style supported by these tools
in ExplorViz Legacy. Therefore, a vast amount of extensions
required a lot of refactoring, especially when we planned to
integrate a feature into the core.

C. Software Configuration & Delivery

In ExplorViz Legacy, integrated features were deeply cou-
pled with the core and could not be easily taken out. Often,
users did not need all features, but only a certain subset of the
overall functionality. Therefore, we introduced new branches
with different configurations for several use cases, e.g., a live
demo. Afterwards, users could download resulting artifacts,
but the maintenance of related branches was cumbersome.
Summarized, the stated problems worsened the extensibility,
maintainability, and comprehension for developers of our
software. Therefore, we were in need of modularizing and
modernizing ExplorViz Legacy.

III. ExplorViz Legacy

In order to understand the modularization process, we
provide more detailed information about our old architecture
in the following. The overall architecture and the employed

35

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Server

Monitored Server

Application

Monitoring

Client

Feature

Filesystem

TCP HTTPVisualization

Analysis

Figure 1: Architectural overview and software stack of the monolithic ExplorViz Legacy.

software stack of ExplorViz Legacy is shown in Figure 1.
We are instrumenting applications, regardless whether they
are native applications or deployed artifacts in an application
server like Apache Tomcat. The instrumentation is realized
by our monitoring component. The component employs in
the case of Java AspectJ, an aspect-oriented programming
extension for Java [16]. AspectJ allows us to intercept an
application by bytecode-weaving. Thereby, we can gather
necessary monitoring information for analysis and visualiza-
tion purposes. Subsequently, this information is transported
via Transmission Control Protocol (TCP) towards a server,
which hosts our GWT application. This part represents the two
major components of our architecture, namely analysis and
visualization. The analysis component receives the monitoring
information and reconstructs traces. These traces are stored in
the file system and describe a software landscape consisting
of monitored applications and communication in-between. Our
user-management employs the H2 database [17] to store related
data. The software landscape visualization is provided via
Hypertext Transfer Protocol (HTTP) and is accessible by
clients with a web browser. GWT is an open source framework,
which allows to develop JS front-end applications in Java. It
facilitates the usage of Java code for server (backend) and
client (frontend) logic in a single web project. Client-related
components are compiled to respective JS code. The com-
munication between frontend and backend is handled through
asynchronous remote procedure calls (ARPC) based on HTTP.
The usage of ARPC allows non-professional developers, in our
case computer science students, to easily extend our existing
open source research project. ARPC enables a simple exchange
of Java objects between client and server. In ExplorViz Legacy,
the advantages of GWT proved to be a drawback, because
every change affects the whole project due to its single
code base. New developed features were hard-wired into the
software system. Thus, a feature could not be maintained,
extended, or replaced by another component with reasonable
effort. This situation was a leading motivation for us to look
for an up-to-date framework replacement. We intended to take

advantage of this situation and modularize our software sys-
tem. The plan was to move from a monolithic to a distributed
(web) application divided into separately maintainable and
deployable backend and frontend components.

Our open source research project is publicly accessible
since the beginning on Github and is licensed under the Apache
License, Version 2.0. The development process facilitated the
maintainability and extensibility of our software by means of
so-called feature branches. Every code change, e.g., a new
feature or bugfix, had to be implemented in a separated feature
branch based on the master branch. This affected not only
the core developers (researchers), but also student assistants,
or students during a thesis or project. After performing a
validation on the viability and quality of the newly written
source code, the branch needed to be merged into the master
project and thus permanently into the project. This fact often
led to an intricate and time-consuming integration process,
since all developers worked on a single code base. For that
reason, we had to improve our development process to perform
a modularization and technical modernization.

The previously mentioned drawbacks in ExplorViz Legacy
were our initial trigger for a modularization and moderniza-
tion. Additionally, recent experience reports in literature were
published about successful applications of alternative technolo-
gies, e.g., Representational State Transfer (REST or RESTful)
Application Programming Interfaces (API) [18], [19]. In the
following, we describe our employed, iterative modularization
and reengineering approach CORAL, which guided us through
this process.

IV. THE MODULARIZATION AND REENGINEERING
APPROACH CORAL

Our Collaborative Reengineering and Modularization Ap-
proach (CORAL) addresses problems regarding the modern-
ization and modularization of open source research projects
in technical and organizational aspects. This collaborative,

36

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Manual Analysis

Software Architecture Evaluation

Development Process
Assessment

Tool-based Analysis

System and Program
Comprehension based on

Software Visualization

Recommendation

Software Architecture

Technologies and Frameworks

Development Process

Execution

Recommendation Plan
Execution

Evaluation

Software Quality Improvements

Software Architecture
Comparison

Manual Analysis
Result Document

Recommendation
Plan

Tool-based
Analysis Result

Document

result sufficient?

[true][false]

Figure 2: UML activity diagram illustrating our iterative modularization and reengineering approach CORAL.

tool-employing approach supports developers and operators
in modularizing and modernizing their software systems in
an iterative manner. Basically, the approach consists of five,
consecutive activities to support the modularization and reengi-
neering of existing software projects and involved systems.
Figure 2 gives an overview of the approach in form of an
UML activity diagram. The five activities (colored in gray)
are Manual Analysis, Tool-based Analysis, Recommendation,
Execution, and Evaluation. In the following, the activities are
briefly described.

A. Manual Analysis

An existing software project and involved systems, which
are in need of modularization and modernization, have to be
analyzed first (by the developers). Therefore, we need to take
a look at the underlying architecture, employed technologies,
and tools. This task includes a software architecture and mod-
ernization evaluation, in order to identify and reassess legacy
source code, frameworks and utilized libraries, and execution
environments. The software architecture evaluation task is
divided into four parts – (i) a software architecture review, (ii)
the application of the software architecture evaluation method
ATAM [20], (iii) the identification of technical debt, and (iv)
the examination of employed technologies and frameworks.
For guidelines and approaches for evaluating software architec-
tures, we refer to [21]–[23]. Additionally, the developers need
to contribute their knowledge of known technical debt, existing
documentation, and their current development process. For
assessing and evaluating software development processes, we
refer to [24], [25]. The results of this activity are summarized
in form of a result document.

B. Tool-based Analysis

Afterwards, the system is analyzed with tools, which aid
the modularization process by detecting (technical) flaws,
possible shortcomings, and optimization potential. In detail,
we focus on the aspect of understanding the software system.
We address this aspect by employing the software visualization
tool ExplorViz itself in order to aid the system and program
comprehension process. We employ ExplorViz to achieve a

better understanding of the software systems we want to
modularize and modernize within our approach. ExplorViz
was already successfully utilized for comprehension purposes
in several scientific [8], [9] and industrial collaborations. By
utilizing ExplorViz for the program comprehension process, we
take advantage of software visualizations instead of software
artifacts like source code or documentation. Thus, we can
enhance our previously obtained knowledge about the software
systems from discussions and interviews with the software
developers. Finally, we document our findings in form of a
result document.

C. Recommendation

In this activity, we take a look into the analysis result
documents of the Manual Analysis and Tool-based Analysis
activities, and design a recommendation plan in collaboration
with the developers. The recommendation plan is based on
the results and examines possible (target) architectures, tech-
nologies, and frameworks. Thereby, we also take the employed
development process into account. The purpose is to facilitate
synergy effects between the software system and the corre-
sponding development process. In the best case, we achieve a
collaborative development process, which supports the planned
modularization and modernization from the beginning.

D. Execution

After discussing the presented options leading towards a
recommendation plan in the last activity, we need to prepare
the execution of it. More precisely, we work out a proof-
of-concept implementation of the recommendation plan first.
Thus, we can verify the necessary technical adaptions in
general and are able to perform the reengineering and modu-
larization process afterwards on a solid basis.

E. Evaluation

Once we executed our recommendation plan, we need to
evaluate its impact on the software system. Therefore, we
focus on comparing the software quality based on metrics
provided by software quality tools on one hand and the

37

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software architecture through visual comparison on the other
hand. Typically, the results of the evaluation are not sufficient
after only one execution. Thus, it is likely, that the overall
approach needs to be conducted multiple times in order to
achieve an acceptable state.

V. FIRST ITERATION: MODULARIZATION PROCESS AND
ARCHITECTURE OF ExplorViz

Within ExplorViz Legacy, we applied the above mentioned
process, which guided us through our modularization process
from performing a first requirement analysis and defining goals
towards our actual state. Summarized, we performed multiple
iterations of the process until we reached an entire, maintain-
able, and especially extensible microservice architecture. In the
following, the first iteration of the process is described.

A. Requirement Analysis and Goals

We no longer perceived advantages of preferring GWT over
other web frameworks. During the modularization planning
phase, we started with a requirement analysis for our modern-
ized software system and identified technical and development
process related impediments in the project. We kept in mind
that our focus was to provide a collaborative development
process, which encourages developers to participate in our
research project [26]. Furthermore, developers, especially inex-
perienced ones, tend to have potential biases during the devel-
opment of software, e.g., they make decisions on their existing
knowledge instead of exploring unknown solutions [27].

As a result, we intended to provide plug-in mechanisms
for the extension of the backend and frontend with well-
defined interfaces. We intended to encourage developers to
try out new libraries and technologies, without rupturing
existing code. According to [28], the organization of a software
system implementation is not an adequate representation of a
system’s architecture. Thus, architectural changes towards the
implementation of a software system have to be documented
before or at least shortly after the realization. If this aspect is
not addressed, the architecture model has a least to be updated
based on the implementation in a timely manner. Thus, we
took this into account in order to enhance our development
process. Architectural decay in long-living software systems
is also an important aspect. Over time, architectural smells
manifest themselves into a system’s implementation, whether
they were introduced into the system from the beginning or
later during development [29]. For the modularization process
of our software system it was necessary to look for such smells
to eliminate them in the new system. In the end, we identified
the following goals for our modularization and modernization
process:

• The project needs to be stripped down to it’s core,
anything else is a form of extension.

• We need to focus on the main purpose of our project
– the visualization of software landscapes and ar-
chitectures. Thus, we need to look for a monitoring
alternative.

• The backend and frontend should be separately de-
ployable and technologically independent. The latter

goal allows us to replace them with little effort.
Additionally, they store their own data and use no
centralized storage or database.

• Scaffolds or dummy-projects are provided for the
development of extensions.

• We stick to the encapsulation principle and provide
well-defined interfaces.

• The overall development process needs to be en-
hanced, e.g, by using Continuous Integration (CI) and
quality assurance (QA), like code quality checks.

In general, there exist many drivers and barriers for mi-
croservice adoption [30]. Typical barriers and challenges are
the required additional governance of distributed, networked
systems and the decentralized persistence of data. After we
applied the two activities Manual Analysis and Tools-based
Analysis within our iterative CORAL approach, we agreed
within the Recommendation activity to build our recommenda-
tion plan upon an architecture based on microservices. This ar-
chitectural style offers the ability to divide monolithic applica-
tions into small, lightweight, and independent services, which
are also separately deployable [4], [31]–[33]. However, the
obtained benefits of a microservice architecture can bring along
some drawbacks, such as increased overall complexity and data
consistency issues [34]. Adopting the above mentioned goals
lead us finally to the microservice-based architecture shown
in Figure 3.

B. Extensibility & Integrability

In a first step, we modularized our GWT project into
two separated projects, i.e., backend and frontend, which
are now two self-contained microservices. Thus, they can
be developed technologically independent and deployed on
different server nodes. In detail, we employ distinct technology
stacks with independent data storage. This allows us to replace
the microservices, as long as we take our specified APIs
into account. We tried to evaluate how we can facilitate the
development for our main collaborators, i.e., our students.
Therefore, our selection of technologies was driven by the
students’ education at the Kiel University. The backend is
implemented as a Java-based web service based on Jersey [35],
which provides a RESTful API via HTTP for clients. We chose
Jersey, because of its JAX-RS compliance. In our opinion,
Jersey is a mature framework and due to its HTTP roots it
is easy to understand for developers, especially collaborators
such as students. Jersey implements the Servlet 3.0 specifi-
cation, which offers javax.servlet.annotations to define servlet
declarations and mappings. We assume that the usage of the
Servlet 3.0 specification eases the development process in the
backend, especially for students. Furthermore, we replaced
our custom-made monitoring component by the monitoring
framework Kieker [36]. This framework provides an extensible
approach for monitoring and analyzing the runtime behavior
of distributed software systems. Monitored information is sent
via TCP to our backend, which employs the filesystem and H2
database for storage. Kieker employs a similar monitoring data
structure, which fits our replacement requirements perfectly.
The frontend uses the JS framework Ember.js, which enables
us to offer visualizations of software landscapes to clients with

38

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a web browser [37]. Ember.js was chosen, since its core idea of
using addons to modularize the application, i.e., the frontend
of ExplorViz is a good practice in general. Furthermore, the
software ecosystem of Ember.js with community-driven addons
is tremendous and their developer team frequently updates
the framework with new features. Since Ember.js is based
on the model-view-viewmodel architectural pattern, develop-
ers do not need to manually access the Document Object
Model and thus need to write less source code. Ember.js uses
Node.js as execution environment and emphasizes the use of
components in web sites, i.e., self-contained, reusable, and
exchangeable user interface fragments [38]. We build upon
these components to encapsulate distinct visualization modes,
especially for extensions. Communication, like a request of a
software landscape from the backend, is abstracted by so-called
Ember.js adapters. These adapters make it easy to request or
send data by using the convention-over-configuration pattern.
The introduced microservices, namely backend and frontend,
represent the core of ExplorViz. As for future extensions,
we implemented well-defined extension interfaces for both
microservices, that allow their integration into the core.

C. Code Quality & Comprehensibility

New project developers, e.g., students, do not have to
understand the complete project from the beginning. They
can now extend the core by implementing new mechanics
on the basis of a plug-in extension. Extensions can access
the core functionality only by a well-defined read-only API,
which is implemented by the backend, respectively frontend.
This high level of encapsulation and modularization allows us
to improve the project, while not breaking extension support.
Additionally, we do no longer have a conglomeration between
backend and frontend source code, especially the mix of Java
and JS, in single components. This eased the development
process and thus reduced the number of bugs, which previously
occurred in ExplorViz Legacy. Another simplification was the
use of json:api [39] as data exchange format specification be-
tween backend and frontend, which introduced a well-defined
JavaScript Object Notation (JSON) format with attributes and
relations for data objects. This minimizes the amount of data
and round trips needed when making API calls. Due to its
well-defined structure and relationship handling, developers
are greatly supported when exchanging data.

D. Software Configuration & Delivery

One of our goals was the ability to easily replace the
microservices. We fulfill this task by employing frameworks,
which are exchangeable with respect to their language do-
main, i.e., Java and JS. We anticipate that substituting these
frameworks could be done with reasonable effort, if neces-
sary. Furthermore, we offer pre-configured artifacts of our
software for several use cases by employing Docker images.
Thus, we are able to provide containers for the backend
and frontend or special purposes, e.g., a fully functional live
demo. Additionally, we implemented the capability to plug-in
developed extensions in the backend, by providing a package-
scanning mechanism. The mechanism scans a specific folder
for compiled extensions and integrates them at runtime.

VI. PROOF-OF-CONCEPT IMPLEMENTATION

In order to execute and afterwards evaluate the recom-
mendation plan we designed before, we realized a proof-of-
concept implementation and split our project as planned into
two separate projects – a backend project based on Jersey,
and a frontend project employing the JS framework Ember.js.
Both frameworks have a large and active community and
offer sufficient documentation, which is important for new
developers. As shown in Figure 3, we strive for an easily
maintainable, extensible, and plug-in-oriented microservice
architecture. Since the end the first iteration of our modulariza-
tion and modernization process in early 2018, we were able to
successfully develop several extensions both for the backend
and the frontend. Four of them are described in the following.

A. Application Discovery

Although we employ the monitoring framework Kieker,
it lacks a user-friendly, automated setup configuration due to
its framework characteristics. Thus, users of ExplorViz experi-
enced problems with instrumenting their applications for mon-
itoring. In [40], we reported on our application discovery and
monitoring management system to circumvent this drawback.
The key concept is to utilize a software agent that simplifies
the discovery of running applications within operating systems.
An example visualization of the extension’s user-interface
is shown in Figure 4. The figure shows three discovered
applications on a monitored server. Furthermore, this extension
properly configures and manages the monitoring framework
Kieker. More precisely, the extension is divided in a frontend
extension, providing a configuration interface for the user, and
a backend extension, which applies this configuration to the
respective software agent lying on a software system. Then,
the software agent is able to apply the chosen configuration
towards Kieker for the application monitoring.

Finally, we were able to conduct a first pilot study to
evaluate the usability of our approach with respect to an easy-
to-use application monitoring. The improvement regarding the
usability of the monitoring procedure of this extension was a
great success. Thus, we recommend this extension for every
user of ExplorViz.

B. Virtual Reality Support

An established way to understand the complexity of a
software system is to employ visualizations of software land-
scapes. However, with the help of visualization alone, ex-
ploring an unknown software system is still a potentially
challenging and time-consuming task. In the past years, Virtual
Reality (VR) techniques emerged at the consumer market.
Starting with the Oculus Rift DK1 head-mounted display
(HMD), which was available at the end of 2013, the VR
devices constituted a major step towards the consumer market.
Based on this development, modern VR approaches became
affordable and available for various research purposes. A
similar development can be observed in the field of gesture-
based interfaces, when Microsoft released their Kinect sensor
in 2010 [41]. A combination of both techniques offers new
visualization and interaction capabilities for newly created
software, but can also improve reverse engineering tasks of
existing software by means of immersive user experience.

39

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Frontend

Monitored
Server

Backend

Application
TCP

Client

HTTPHTTP

Filesystem

VisualizationAnalysis

Frontend-ExtensionBackend-Extension

Figure 3: Architectural overview and software stack of the modularized ExplorViz (after the first iteration).

Figure 4: Screenshot of the application discovery extension of ExplorViz.

Based on an in-depth 3D visualization and a more natural
interaction, compared to a traditional 2D screen and input de-
vices like mouse and keyboard, the user gets a more immersive
experience, which benefits the comprehension process [42].
VR can offer an advantage in comparison to existing devel-
oper environments to enable new creative opportunities and
potentially result in higher productivity, lower learning curves,
and increased user satisfaction [43]. For this extension, five
students followed a new approach using VR for exploring

software landscapes collaboratively based on our previous
work [44]. They employed severals HMDs (HTC Vive, HTC
Vive Pro, and Oculus Rift) to allow a collaborative exploration
and comprehension of software in VR. A screenshot of the
VR extension featuring the application-perspective and visu-
alized VR controllers is shown in Figure 5. The collaborative
VR approach builds upon our microservice architecture and
employs WebSocket connections to exchange data to achieve
modular extensibility and high performance for this real-time

40

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5: Screenshot of the VR extension of ExplorViz showing
the application perspective and visualized VR controllers.

multi-user environment. As a proof of concept, they conducted
a first usability evaluation with 22 subjects. The results of
this evaluation revealed a good usability and thus constituted
a valuable extension to ExplorViz. Recently, we performed a
second evaluation focusing on the applicability of the approach
for system and program comprehension tasks in teams. With
24 subjects, grouped into physically separated teams of two
persons, they solved comprehension tasks collaboratively. First
results indicated an efficient usage of the approach, which
could offer an alternative to traditional 2D displays and in-
teraction devices.

C. Architecture Conformance Checking

Software landscapes evolve over the time, and conse-
quently, architecture erosion occurs. This erosion causes high
maintenance and operation costs, thus performing architecture
conformance checking (ACC) is an important task. ACC
allows faster functionality changes and eases the adaptation
to new challenges or requirements. Additionally, software
architects can use ACC to verify a developed version against a
previous modeled version. This can be used to check whether
the current architecture complies with the specified architec-
ture and allows to reveal constraint violations. An example
architecture conformance visualization of a monitored software
landscape against a modeled one is shown in Figure 6. The
visualization illustrates missing or modified (colored in red),
and additional (colored in blue) nodes and applications and
related communication in-between for a software landscape.
In this extension, a student developed an approach to perform
ACC between a modeled software landscape consisting of ap-
plications using an editor and a monitored software landscape.
This allows us to perform a visual comparison between both
versions on an architectural level. In order to evaluate the
extension, the student conducted a usability study with five
participants, applying the model editor for a desired software
landscape and performing ACC of a modeled software land-

scape against a monitored one. The results indicated a good
user experience of the approach, although the usability of the
editor could be improved.

D. Visualizing Architecture Comparison

Identifying architectural changes between two visualiza-
tions of a complex software application is a challenging task,
which can be supported by appropriate tooling. Although
ExplorViz visualizes the behavior and thus the runtime archi-
tecture of a software system, it is not possible to compare
two versions. In this extension one student developed an
approach to perform a visual software architecture comparison
of two monitored applications, e.g., indicating removed or
changed components or classes. This facilitates a developer
to see at a glance which parts of the architecture have been
added, deleted, modified, or remained unchanged between the
two versions. Finally, an evaluation based on a qualitative
usability study with an industrial partner was conducted. Five
professional software engineers participated in the study and
solved comparison tasks based on two different versions of
their own developed software. The evaluation showed that the
extension is applicable for solving architecture comprehension
tasks with different versions within ExplorViz.

VII. SECOND ITERATION: RESTRUCTURED
ARCHITECTURE AND NEW PROCESS

As the evaluations at the end of the first iteration revealed
some drawbacks, we decided to perform a second iteration
of our modularization and modernization approach. After
evaluating the first iteration we identified, among others, four
major drawbacks, which are presented in the following.

• Extensibility & Integrability: Higher services had to
perform several HTTP requests to obtain necessary
information from variety of services.

• Code Quality & Comprehensibility: The coding qual-
ity was on a low level due to the lack of employed
QA tools and rules.

• Software Configuration & Delivery: We needed to
provide compiled Java files of all available backend
extensions.

• Software Architecture Erosion & Accessibility: The
configuration of the monitoring was still too difficult.

Our modularization approach started by dividing the old
monolith into separated frontend and backend projects [26].
Since then, we further decomposed our backend into several
microservices to address the problems stated in Section II. The
resulting, restructured architecture is illustrated in Figure 7
and the new collaborative development process is described
below. As reported in Section VI, the new architecture already
improved the collaboration with new developers who realized
new features as modular extensions.

A. Extensibility & Integrability

Frontend extensions are based on Ember.js’s addon mecha-
nism. This approach works quite well for us as shown in Sec-
tion VI. The backend, however, used the package scanning
feature of Jersey to include extensions. The result of this

41

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: Screenshot of the architecture conformance checking extension of ExplorViz.

procedure was again an unhandy configuration of a monolithic
application with high coupling of its modules. Therefore, we
once again restructured the approach for our backend plug-in
extensions. The extensions are now decoupled and represent
separated microservices. As a result, each extension is respon-
sible for its own data persistence and error handling. Due to
the decomposition of the backend, we are left with multiple
Uniform Resource Identifiers (URI). Furthermore, new exten-
sions will introduce additional endpoints, therefore more URIs
again. To simplify the data exchange handling based on those
endpoints, we employ a common approach for microservice-
based backends. The frontend communicates with an API
gateway instead of several single servers, thus only a single
base Uniform Resource Locator (URL) with well-defined,
multiple URIs. This gateway, a NGINX reverse proxy [45],
passes requests based on their URI to the respective proxied
microservices, e.g., the landscape-service. Furthermore, the
gateway acts as a single interface for extensions and offers
additional features like caching and load balancing. Extension
developers, who require a backend component, extend the
gateway’s configuration file, such that their frontend extension
can access their complement. Some extensions must read data
from different services. In the past, we used HTTP requests
to periodically obtain this data. Each request was processed
by the providing service, therefore introducing unnecessary
load. The inter-service communication is now realized with the
help of Apache Kafka [46]. Kafka is a distributed streaming
platform with fault-tolerance for loosely coupled systems. We
use Kafka for events that might be interesting for upcoming
microservices. For example, the landscape-service consumes
traces from the respective Kafka topic and produces a new
landscape every tenth second for another topic. Microservices
can consume the topic, obtain, and process the data in their
custom way. As a result, the producing service does not have to
process unnecessary HTTP requests, but simply fires its data
and forgets it. Simple Create Read Update Delete (CRUD)
operations on resources, e.g., users and their management,
are provided by means of RESTful APIs by the respective
microservices. The decomposition into several independent mi-
croservices and the new inter-service communication approach
both facilitate low coupling in our system.

B. Code Quality & Comprehensibility

The improvements for code quality and accessibility, which
were introduced in the first iteration of our modularization
approach, showed a perceptible impact on contributor’s work.
For example, recurring students approved the easier access
to ExplorViz and especially the obligatory exchange format
json:api. However, we still lacked a common code style in
terms of conventions and best practices. To achieve this and
therefore facilitate maintainability, we defined compulsory rule
sets for the quality assurance tools Checkstyle and PMD.
In addition with SpotBugs [47], we impose their usage on
contributors for Java code. For JS, we employ ESLint [48], i.e.,
a static analysis linter, with an Ember.js community-driven rule
set. The latter contains best practices for Ember.js applications
and rules to prevent programming flaws. In the future, we are
going to enhance this rule set with our custom guidelines.
Another aspect are CI tools. CI systems and tools are used
to automate the compilation, building, and testing of software
(systems). Software projects that employ CI, release twice as
often, accept pull requests faster, and have developers who are
less worried about breaking the build, compared to projects
that do not use CI [49]. Therefore, employing CI tools is
a good method to improve our development process even
more. Consequently, we integrated the previously mentioned
tools into our continuous integration pipeline configured in
TravisCI [50]. More precisely, we employ TravisCI for Ex-
plorViz’s core and any extension to build, test, and examine the
code. Integrating the quality assurance tools allows us to define
thresholds within the pipeline. If a threshold regarding quality
assurance problems is exceeded, the respective TravisCI build
will fail and the contributor is notified by mail. A similar build
is started for each pull request that we receive on Github for
the now protected master branch. Therefore, contributors are
forced to create a new branch or fork ExplorViz to implement
their enhancement or bug fix and eventually submit a pull
request.

C. Software Configuration & Delivery

One major problem of ExplorViz Legacy was the necessary
provision of software configurations for different use cases.
The first iteration of modularization did not entirely solve
this problem. The backend introduced a first approach for an

42

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Processes

Message Broker

Monitored
Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords

Landscape

Filesystem

Traces Landscapes

API-Gateway / Reverse Proxy

DiscoveryAuthentication
& Authorization

Backend-
Extension

Processes Data

Frontend
HTTP

Visualization

Frontend-Extension

HTTP

Figure 7: Architectural overview and software stack of ExplorViz (after the second iteration).

integration of extensions, but their delivery was cumbersome.
Due to the tight coupling at source code level we had to
provide the compiled Java files of all extensions for download.
Users had to copy these files to a specific folder in their
already deployed ExplorViz backend. Therefore, configuration
alterations were troublesome. With the architecture depicted
in Figure 7 we can now provide a jar file for each service
with an embedded web server. This modern approach for
Java web applications facilitates the delivery and configuration
of ExplorViz’s backend components. In the future, we are
going to ship ready-to-use Docker images for each part of our
software. The build of these images will be integrated into our
CI pipeline. Users are then able to employ docker-compose
files to achieve their custom ExplorViz configuration or use a
provided docker-compose file that fits their needs. As a result,
we can provide an alternative, easy to use, and exchangeable
configuration approach that essentially only requires a single
command line instruction. The frontend requires another ap-
proach, since (to the best of our knowledge) it is not possible
to install an Ember.js addon inside of a deployed Ember.js
application. We are currently developing a build service for
users that ships ready-to-use, pre-built configurations of our
frontend. Users can then download and deploy these pre-
built packages. Alternatively, these configurations will also be
usable as Docker containers.

D. Software Architecture Erosion & Accessibility

One of our initial problems was the partitioning of our code
base and the resulting software architecture erosion. We think

that both employed frameworks, Ember.js and Jersey, matter
when it comes to this problem. Ember.js is well documented
and there are many examples on how to solve a problem with
the framework. Due to its JS nature, we can easily introduce
and use modern features in web development. Furthermore,
Ember.js introduces recognizable and reusable structures which
facilitate the development. For the Jersey backend, we again
provide a sample project that contributors can use for a start.
The project is runnable and shows how to use Kafka and the
HTTP client for different needs. ExplorViz uses the monitoring
framework Kieker to obtain monitoring data. These so called
Records are then processed by the analysis component of
our software. The setup of Kieker is extensive, but also
quite complex for untrained users. Since we are dealing with
many students, we were in need of a solution to circumvent
this drawback. We developed an external component with a
frontend and backend extension that simplifies the monitoring
setup for users. The so called discovery agent searches for
running Java processes in the encompassing operating system
and sends its data to the related discovery backend extension.
The frontend discovery extension visualizes the gathered data
and provides Graphical User Interface (GUI) forms for users
to start and stop the monitoring of found processes. Ultimately,
the resulting discovery mode was successful in internal tests
and we integrated it as a core feature.

43

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. THIRD ITERATION: ACHIEVING AN ENTIRE
MICROSERVICE ARCHITECTURE

The second iteration of our modernization process intro-
duced multiple microservices for different backend logic. For
example, each backend extension was build as a separate
source code project and deployed as Java jar file. This in-
troduced advantages, among others, for the configuration of
ExplorViz as described in Section VII. Since then, we further
refined our microservice decomposition. The current architec-
ture, after performing a third iteration of our modularization
approach, is illustrated in Figure 8. Additionally, we revised the
ubiquitous problems revealed within the evaluation, as we did
in the previous iterations. Thus, we identified, among others,
three major drawbacks, which are presented in the following.

• Extensibility & Integrability: Implementing extensions
against specific backend or frontend versions was
difficult.

• Code Quality & Comprehensibility: Collaborators like
students, did not have enough documentation to effi-
ciently contribute to our project.

• Software Configuration & Delivery: The testing and
release management was still cumbersome due to a
vast number of artifacts.

A. Extensibility & Integrability

Both previous iterations shared the problem that collab-
orators had to implement their feature or extension against
the latest version of ExplorViz. To circumvent this drawback,
we now push the backend build artifacts of the TravisCI
build pipeline as snapshots to Sonatype [51], i.e., an online
maven repository for unsigned artifacts. Furthermore, we use
Github releases to version ExplorViz. These releases follow a
documented release management process. As a result, release
descriptions and names share a common theme. In general,
Github releases use Git tags to reference the specific Git
commit that represents the release. We use these resulting Git
tags for versioning. The tags are picked up by our CI pipeline
and are used to name the Sonatype snapshots. As a result,
contributors can now select specific (intermediate) versions to
implement against.

After employing the second iteration of our modernization
for some time with different configurations, we observed per-
formance issues regarding the landscape-service. This service
continuously built our hierarchical landscape model, provided
the latest snapshot of the model via a HTTP API, and
returned previous snapshots upon incoming HTTP requests.
We identified that we could decompose these functionalities
into separated microservices to distribute the load on one
hand and gain a better performance on the other hand. The
decoupling of the landscape-service can be seen in Figure 8.
Frontend extensions now register at the broadcast-service to
receive server-sent events (SSE), which contain the latest
landscape model snapshot. Furthermore, specific snapshots
can be requested at the history-service. This microservice is
responsible for storing landscape model snapshots.

B. Code Quality & Comprehensibility

Introducing static analysis tools to our CI pipeline showed
improvements of ExplorViz’s code style. The automatic CI
build for Github pull requests highlights flaws and allows us
to impose refactoring before merging the code. This is also
used for collaborators’ extensions. Now, the remaining part to
improve the overall code quality was testing the source code
and the integration of components. We observed that collabo-
rators had less problems with testing frontend extensions than
with testing the related backend project. We think that is due
to the Ember.js documentation and the huge number of already
existing open source projects, which already show how one can
comprehensively test Ember.js projects. Therefore, we wrote
sample unit, integration, and API tests for our microservices,
which students can use as foundation to test their own written
code. By choosing these three categories of tests, we now
cover testing at source code and API level. All these tests are
automatically executed as part of our CI pipeline. Furthermore,
when a tests requires other running services, e.g., the reverse
proxy, these services are (if necessary) build and executed by
means of a Docker container.

To ease the development for collaborators, we wrote sup-
plemental guides on best practices, design ideas, and specifica-
tions. These can be found in our public Github documentation
wiki [52]. Furthermore, our CI pipeline now automatically
builds the latest API documentation (JavaDoc for the backend
and YUIDoc for the frontend). The resulting websites are
deployed by means of Github pages, i.e., public websites based
on the content of Git repositories. We additionally employ
Swagger [53], an interactive API development editor and UI,
to document our HTTP APIs. The tool is automatically started
when a microservice is started in development mode.

C. Software Configuration & Delivery

ExplorViz enables users and developers to use extensions
on demand by providing the build artifacts for every (release)
version. We now facilitate ExplorViz’ configuration with the
help of Docker images. After pushing the build artifacts to
Sonatype in the CI pipeline, we subsequently build a Docker
image for each service and push it to Docker Hub. Therefore,
users and collaborators can use the publicly hosted Docker
images to easily create their custom deployment environment
with Docker.

We build upon this process and now provide ready-to-
use docker-compose files for release versions of ExplorViz.
These configurations allow users to start the core features
of ExplorViz with only a single command. This approach is
also used in the development phase. Since ExplorViz requires
auxiliary software, i.e., database management systems, Apache
Kafka, and the reverse proxy NGINX, we now provide a
docker-compose file to start the mandatory, already configured
software stack for development. As a result, collaborators do
not need to read different instructions on how to start specific
software, but only need to start a set of Docker containers with
the help of the docker-compose file.

Figure 8 shows that we replaced our employed reverse
proxy NGINX with Traefik [54]. The reverse proxy NGINX
uses a static configuration file to define its routing. As a result,
ExplorViz users needed to update this configuration or use a

44

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Processes

Message Broker

Monitored Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords

API-Gateway / Reverse Proxy

Backend-
Extension

Data

HTTP

HTTP

Frontend

Visualization

Frontend-Extension

Settings Broadcast History

LandscapesLandscapesUser Lifecycle
events

Landscape

Traces Landscapes

DiscoveryUser

ProcessesUser Lifecycle
events

Figure 8: Current architectural overview and software stack of ExplorViz (after the third iteration).

provided version to enable an installed or developed extension.
This was quite cumbersome and potentially deterred users to
try out extensions. With Traefik we can now use labels, i.e.,
metadata for Docker objects, to define the routing at docker-
compose level. Therefore, the routing of the reverse proxy can
be easily extended or changed.

IX. RELATED WORK

In the area of software engineering, there are many papers
that perform a software modernization in other contexts. Thus,
we restrict our related work to approaches, which focus on the
modernization of monolithic applications towards a microser-
vice architecture. Compared to frequently performed software
modernizations, we did not reconstruct the underlying software
architecture, since it was not our goal to keep the obsolete
monolithic architecture provided by GWT. Furthermore, we did
not need to apply multiple refactoring iterations to modernize
our software system. Instead, we successfully performed three
iterations of our modularization and modernization process
CORAL in order to continuously improve our software archi-
tecture and collaborative development process.

Villamizar et al. [55] evaluate monolithic and microservice
architectures regarding the development and cloud deployment
of enterprise applications. Their approach addresses similar
elements to our modernization process. They employed mod-
ern technologies for separating microservices, e.g., Java in
the backend and JS in the frontend, like we did. Contrary to
their results, we did not face any of the mentioned problems
during the migration, like failures or timeouts. In [56] an
approach regarding the challenges of the modernization of
legacy J2EE applications was presented. They employ static
code analysis to reconstruct architectural diagrams, which then
can be used as a starting point during a modernization process.
In contrast to our approach there was no need to reconstruct the
software architecture, because we wanted to modernize it from
the beginning due to previously mentioned drawbacks. Thus,
we split our application based on our knowledge into several
microservices and developed a communication concept based
on a message broker. Carrasco et. al [34] present a survey

of architectural smells during the modernization towards a mi-
croservice architecture. They identified nine common pitfalls in
terms of bad smells and provided potential solutions for them.
ExplorViz Legacy was also covered by this survey and cate-
gorized by the “Single DevOps toolchain” pitfall. This pitfall
concerns the usage of a single toolchain for all microservices.
Fortunately, we addressed this pitfall since their observation
during their survey by employing independent toolchains by
means of pipelines within our continuous integration system
for the backend and frontend microservices.

Knoche and Hasselbring [31] present a migration pro-
cess to decompose an existing software system into several
microservices. Additionally, they report from their gained
experiences towards applying their presented approach in a
legacy modernization project. Although their modernization
drivers and goals are similar to our procedure, their approach
features a more abstract point of view on the modernization
process. Furthermore, they focus on programming language
modernization and transaction systems. In [4], the authors
present an industrial case study concerning the evolution of
a long-living software system, namely a large e-commerce
application. The addressed monolithic legacy software system
was replaced by a microservice-based system. Compared to
our approach, this system was completely rebuilt without
retaining code from the (commercial) legacy software system.
Our focus is to facilitate the collaborative development of
open source software and also addresses the development
process. We successfully developed our pipeline towards CI
for all microservices mentioned in Section VII to minimize
the release cycles and offer development snapshots.

A different approach to perform a modernization of a
monolithic application is presented in [57]. They employed
a Domain-Driven Design (DDD) based approach to decom-
position their software system into services. Afterwards, they
integrated the services with an Enterprise Bus and orchestrated
the services on the basis of Docker Compose and Swarm. In
contrast to their approach, we did not perform a decomposition
of our monolithic application based on DDD. Instead, we
performed a decomposition based on backend and frontend

45

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logic within our first iteration and refined it later. Additionally,
we employ Docker images for the deployment of ExplorViz
and do not use Docker swarm. Chen et. al [58] present a top-
down based dataflow-driven approach as an alternative decom-
position method. More precisely, they developed a dataflow-
driven decomposition algorithm, which operates on the basis
of a constructed dataflow diagram modeling the business logic
of the software system. In the next step, the dataflow diagram
is compacted based on similar operations with the same type of
output data. Finally, microservice candidates are identified and
extracted. In comparison, our approach does not facilitate the
usage of an algorithm which aids the decomposition process
and identifies microservice candidates. In detail, we propose a
collaborative-oriented, iterative process, which contains multi-
ple steps and also addresses the involved development process.

X. CONCLUSION

In the following, we conclude our paper and present a
summary, depict lessons learned, and give an outlook for future
work.

A. Summary

In this paper, we reported on our modularization and
modernization process of the open source research software
ExplorViz, moving from a monolithic architecture towards a
microservice architecture with the primary goal to ease the
collaborative development, especially with students. We de-
scribed technical and development process related drawbacks
of our initial project state until 2016 in ExplorViz Legacy
and illustrated our modularization process and architecture.
The process included not only a decomposition of our web-
based application into several components, but also a technical
modernization of applied frameworks and libraries. Driven by
the goal to easily extend our project in the future and facilitate
a contribution by inexperienced collaborators, we offer a plug-
in extension mechanism for our core project, both for backend
and frontend. On the basis of ExplorViz Legacy, we employed
our iterative, collaborative modularization and reengineering
process CORAL as a guidance through our modularization and
performed three successful iterations to ExplorViz Legacy until
we reached a sufficient state.

After our first iteration, we realized our modularization
process and architecture in terms of a proof-of-concept im-
plementation and evaluated it afterwards by the development
of several extensions of ExplorViz. Each of these extensions
was developed by students and evaluated afterwards, in each
case by at least a usability study. The results showed an overall
good usability of each extension. In the case of our developed
application discovery extension, we integrated it into our core
project based on the high-quality of the extension in addition
to the good usability and time saving aspect when instru-
menting applications with Kieker. As the results of the the
modularization process were not sufficient yet, we performed
a second iteration featuring a first microservice architecture.
More precisely, the iteration led to several independent de-
ployable services bundled with inter-service communication
handled via the message broker Kafka and requests from the
frontend towards the backend are passed through our reverse-
proxy in form of NGINX. Furthermore, we enhanced our
development and build process towards a more collaborative

manner. Unfortunately, we were not satisfied with the results
of the second iteration, because some services were still very
large and poorly maintainable. Thus, we needed to perform
a further decoupling of them. Additionally, we recognized
that our release management and CI processes, as well as
our documentation, still needed to be improved. Consequently,
with these drawbacks in mind, we performed a third iteration,
after which we achieved a fully decoupled microservice archi-
tecture, consisting of a set of self-contained systems and well-
defined interfaces in-between. The inter-service communica-
tion is still handled through Kafka. Additionally, we replaced
our reverse-proxy with Traefik for handling requests from the
frontend towards the backend. For the release management and
documentation, we further optimized our CI pipeline regarding
Docker images and supplemental (API) documentation for
both developers and users.

B. Lessons Learned

The lessons learned while applying our CORAL approach
to ExplorViz within three successfully performed iterations are
summarized in the following. Performing software develop-
ment for research is a challenging task, especially when a
large number of inexperienced students is involved. In our
experience, providing an extensible software architecture is a
crucial task for open source (research) projects. Furthermore,
extension points, i.e., interfaces, should be well-documented to
ease the development of extensions. Additionally, the overall
software development process should base on accessible docu-
mentation for all stages during the development for all collabo-
rators. This includes documentation of the employed software
architecture and the extension mechanisms, but should also
cover best practices, hints, or lessons learned.

Regarding software quality, especially with respect to
maintainability, we recommend the usage of software quality
tools. Static analysis tools such as Checkstyle or PMD in
combination with configured common code styles support
developers directly while they code. This way, common pro-
gramming flaws can be avoided in the committed source code
and thus result in less bugs and required bug fixes. Also,
we suggest the setup and usage of CI pipelines that allow
a project to automate their testing, code quality checking, and
software building. Thereby, the complete build cycle can be
tested periodically. If the building is triggered by commits,
developers also get an early feedback if something went wrong.

Providing Docker images of ExplorViz provides great
value. Developers and users are able to use pre-configured
images of our software for specific use cases, which may
be based on different versions. This approach also eases the
release management process and facilitates developers to test
and adapt their extension to upcoming versions.

C. Future Work

In the future, we are planning to evaluate our finalized
project, especially in terms of developer collaboration. Ad-
ditionally, we plan to move from our CI pipeline towards a
continuous delivery (CD) environment. Thus, we expect to
further decrease the interval between two releases and allow
users to try out new versions, even development snapshots,
as soon as possible. Furthermore, we plan to use architecture

46

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recovery tools like [59] for refactoring or documentation pur-
poses in upcoming versions of ExplorViz. Recently, we applied
ExplorViz within case study, where we successfully performed
a microservice decomposition with static and dynamic analysis
of a monolithic application [60]. As a result, we plan to
investigate, if we could enhance our CORAL approach with
the applied decomposition process for future projects.

REFERENCES

[1] C. Zirkelbach, A. Krause, and W. Hasselbring, “Modu-
larization of Research Software for Collaborative Open
Source Development,” in Proceedings of the The Ninth
International Conference on Advanced Collaborative
Networks, Systems and Applications (COLLA 2019),
Jun. 2019, pp. 1–7.

[2] C. Goble, “Better Software, Better Research,” IEEE
Internet Computing, vol. 18, no. 5, pp. 4–8, Sep. 2014.

[3] A. Johanson and W. Hasselbring, “Software engineer-
ing for computational science: Past, present, future,”
Computing in Science & Engineering, vol. 20, no. 2,
pp. 90–109, Mar. 2018. DOI: 10 . 1109 / MCSE . 2018 .
021651343.

[4] W. Hasselbring and G. Steinacker, “Microservice Ar-
chitectures for Scalability, Agility and Reliability in E-
Commerce,” in Proceedings of the IEEE International
Conference on Software Architecture Workshops (IC-
SAW), Apr. 2017, pp. 243–246. DOI: 10.1109/ICSAW.
2017.11.

[5] P. D. Francesco, P. Lago, and I. Malavolta, “Migrat-
ing Towards Microservice Architectures: An Industrial
Survey,” in Proceedings of the IEEE International Con-
ference on Software Architecture (ICSA), Apr. 2018,
pp. 29–38.

[6] F. Fittkau, A. Krause, and W. Hasselbring, “Software
landscape and application visualization for system com-
prehension with ExplorViz,” Information and Software
Technology, vol. 87, pp. 259–277, Jul. 2017. DOI: doi:
10.1016/j.infsof.2016.07.004.

[7] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: Vi-
sual runtime behavior analysis of enterprise application
landscapes,” in Proceedings of the 23rd European Con-
ference on Information Systems (ECIS 2015 Completed
Research Papers), AIS Electronic Library, May 2015,
pp. 1–13. DOI: 10.18151/7217313.

[8] R. Heinrich, C. Zirkelbach, and R. Jung, “Architectural
Runtime Modeling and Visualization for Quality-Aware
DevOps in Cloud Applications,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 199–201.

[9] R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring, and
R. Reussner, “An Architectural Model-Based Approach
to Quality-aware DevOps in Cloud Applications,” in
Software Architecture for Big Data and the Cloud, I.
Mistrik, R. Bahsoon, N. Ali, M. Heisel, and B. Maxim,
Eds., Cambridge: Elsevier, Jun. 2017, pp. 69–89.

[10] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical
software landscape visualization for system comprehen-
sion: A controlled experiment,” in Proceedings of the
3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015), IEEE, Sep. 2015, pp. 36–45. DOI: 10.
1109/VISSOFT.2015.7332413.

[11] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller,
“Comparing Trace Visualizations for Program Com-
prehension through Controlled Experiments,” in Pro-
ceedings of the 23rd IEEE International Conference
on Program Comprehension (ICPC 2015), May 2015,
pp. 266–276. DOI: 10.1109/ICPC.2015.37.

[12] Open Source Software Community, Google Web Toolkit
Project (GWT), version 2.8.2, last accessed: 2020.05.31.
[Online]. Available: http://www.gwtproject.org.

[13] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use
and usefulness of the iso/iec 9126 quality standard,” in
Proceedings of the International Symposium on Empir-
ical Software Engineering, 2005., 2005, pp. 126–132.

[14] Open Source Software Community, Checkstyle, ver-
sion 8.10, last accessed: 2020.05.31. [Online]. Avail-
able: http://checkstyle.sourceforge.net.

[15] ——, PMD, version 6.10.0, last accessed: 2020.05.31.
[Online]. Available: https://pmd.github.io.

[16] Eclipse Foundation, AspectJ, version 1.8.5, last ac-
cessed: 2020.05.31. [Online]. Available: https:/ /www.
eclipse.org/aspectj.

[17] Open Source Software Community, H2, version 1.4.177,
last accessed: 2020.05.31. [Online]. Available: http : / /
www.h2database.com.

[18] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau,
“Migration of SOAP-based services to RESTful ser-
vices,” in Proceedings of the 13th IEEE International
Symposium on Web Systems Evolution (WSE), Sep.
2011, pp. 105–114.

[19] S. Vinoski, “RESTful Web Services Development
Checklist,” IEEE Internet Computing, vol. 12, no. 6,
pp. 96–95, Nov. 2008, ISSN: 1089-7801.

[20] R. Kazman, M. Klein, and P. Clements, “Atam: Method
for architecture evaluation,” Carnegie-Mellon Software
Engineering Institute, University Pittsburgh, PA, Tech.
Rep., 2000.

[21] H. Koziolek, “Sustainability evaluation of software ar-
chitectures: A systematic review,” in Proceedings of the
Joint ACM SIGSOFT Conference – QoSA and ACM
SIGSOFT Symposium – ISARCS on Quality of Software
Architectures – QoSA and Architecting Critical Systems
– ISARCS, ser. QoSA-ISARCS ’11, Boulder, Colorado,
USA: ACM, 2011, pp. 3–12, ISBN: 978-1-4503-0724-6.
DOI: 10.1145/2000259.2000263.

[22] J. Knodel and M. Naab, “Software architecture evalua-
tion in practice: Retrospective on more than 50 architec-
ture evaluations in industry,” in 2014 IEEE/IFIP Confer-
ence on Software Architecture, Apr. 2014, pp. 115–124.
DOI: 10.1109/WICSA.2014.37.

[23] J. Knodel and M. Naab, Pragmatic Evaluation of Soft-
ware Architectures. Springer, 2016.

[24] M. Dick and S. Naumann, “Enhancing software engi-
neering processes towards sustainable software product
design,” in Integration of Environmental Information in
Europe, K. Greve and A. B. Cremers, Eds., Aachen:
Shaker Verlag, 2010.

[25] P. Clarke and R. V. O’Connor, “An approach to eval-
uating software process adaptation,” in Software Pro-
cess Improvement and Capability Determination, R. V.
O’Connor, T. Rout, F. McCaffery, and A. Dorling, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 28–41, ISBN: 978-3-642-21233-8.

47

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[26] C. Zirkelbach, A. Krause, and W. Hasselbring, “On the
Modernization of ExplorViz towards a Microservice Ar-
chitecture,” in Combined Proceedings of the Workshops
of the German Software Engineering Conference 2018,
vol. Online Proceedings for Scientific Conferences and
Workshops, Ulm, Germany: CEUR Workshop Proceed-
ings, Feb. 2018.

[27] A. Tang, M. Razavian, B. Paech, and T. Hesse, “Human
Aspects in Software Architecture Decision Making: A
Literature Review,” in Proceedings of the IEEE Inter-
national Conference on Software Architecture (ICSA),
Apr. 2017, pp. 107–116.

[28] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A.
Shahbazian, and N. Medvidovic, “An Empirical Study
of Architectural Change in Open-Source Software Sys-
tems,” in Proceedings of the IEEE/ACM 12th Working
Conference on Mining Software Repositories (MSR),
May 2015, pp. 235–245.

[29] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic,
“An Empirical Study of Architectural Decay in Open-
Source Software,” in Proceedings of the IEEE Interna-
tional Conference on Software Architecture (ICSA), Apr.
2018, pp. 176–17 609.

[30] H. Knoche and W. Hasselbring, “Drivers and barriers for
microservice adoption – a survey among professionals
in Germany,” Enterprise Modelling and Information
Systems Architectures (EMISAJ) – International Journal
of Conceptual Modeling, vol. 14, no. 1, pp. 1–35, 2019.
DOI: 10.18417/emisa.14.1.

[31] H. Knoche and W. Hasselbring, “Using Microservices
for Legacy Software Modernization,” IEEE Software,
vol. 35, no. 3, pp. 44–49, May 2018, ISSN: 0740-7459.

[32] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microser-
vices: Yesterday, Today, and Tomorrow,” in Present and
Ulterior Software Engineering. Springer International
Publishing, 2017, pp. 195–216.

[33] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic
Mapping Study in Microservice Architecture,” in Pro-
ceedings of the 9th International Conference on Service-
Oriented Computing and Applications (SOCA), Nov.
2016, pp. 44–51.

[34] A. Carrasco, B. v. Bladel, and S. Demeyer, “Migrat-
ing Towards Microservices: Migration and Architec-
ture Smells,” in Proceedings of the 2nd International
Workshop on Refactoring, ser. IWoR 2018, Montpellier,
France: ACM, 2018, pp. 1–6.

[35] Oracle, Jersey Project, version 2.27, last accessed:
2020.05.31. [Online]. Available: https://jersey.github.io.

[36] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:
A Framework for Application Performance Monitoring
and Dynamic Software Analysis,” in Proceedings of
the 3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), ACM, Apr.
2012, pp. 247–248.

[37] Ember Core Team, Ember.js, version 3.6.0, last ac-
cessed: 2020.05.31. [Online]. Available: https:/ /www.
emberjs.com.

[38] Joyent, Node.js, version 10.15.0, last accessed:
2020.05.31. [Online]. Available: https://nodejs.org.

[39] Open Source Software Community, json:api, ver-
sion 1.0.0, last accessed: 2020.05.31. [Online]. Avail-
able: https://jsonapi.org.

[40] A. Krause, C. Zirkelbach, and W. Hasselbring, “Simpli-
fying Software System Monitoring through Application
Discovery with ExplorViz,” in Proceedings of the Sym-
posium on Software Performance 2018: Joint Developer
and Community Meeting of Descartes/Kieker/Palladio,
Nov. 2018.

[41] L. Garber, “Gestural Technology: Moving Interfaces in a
New Direction,” Computer, vol. 46, no. 10, pp. 22–25,
2013, ISSN: 0018-9162. DOI: 10.1109/MC.2013.352.
[Online]. Available: http://dx.doi.org/10.1109/MC.2013.
352.

[42] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring
Software Cities in Virtual Reality,” in Proceedings of the
3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015), 2015, pp. 130–134. DOI: 10 . 1109 /
VISSOFT.2015.7332423. [Online]. Available: http://dx.
doi.org/10.1109/VISSOFT.2015.7332423.

[43] A. Elliott, B. Peiris, and C. Parnin, “Virtual Reality in
Software Engineering: Affordances, Applications, and
Challenges,” in Proceedings of the 37th IEEE Interna-
tional Conference on Software Engineering, vol. 2, May
2015, pp. 547–550. DOI: 10.1109/ICSE.2015.191.

[44] C. Zirkelbach, A. Krause, and W. Hasselbring, “Hands-
On: Experiencing Software Architecture in Virtual Re-
ality,” Kiel University, Research Report, Jan. 2019.
[Online]. Available: http://oceanrep.geomar.de/45728/.

[45] NGINX, NGINX, version 1.15.8, last accessed:
2020.05.31. [Online]. Available: http://nginx.org.

[46] Apache Software Foundation, Apache Kafka, last ac-
cessed: 2020.05.31. [Online]. Available: https://kafka.
apache.org.

[47] Open Source Software Community, Spotbugs, ver-
sion 3.1.10, last accessed: 2020.05.31. [Online]. Avail-
able: https://spotbugs.github.io.

[48] ESLint Team, ESLint, version 5.12.0, last accessed:
2020.05.31. [Online]. Available: https://eslint.org.

[49] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig, “Usage, costs, and benefits of continuous inte-
gration in open-source projects,” in Proceedings of the
31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), Sep. 2016, pp. 426–437.

[50] Open Source Software Community, TravisCI, last ac-
cessed: 2020.05.31. [Online]. Available: https://travis-
ci.org.

[51] ——, Sonatype, last accessed: 2020.05.31. [Online].
Available: https://oss.sonatype.org.

[52] ExplorViz Team, ExplorViz Developer and User Doc-
umentation Wiki, last accessed: 2020.05.31. [Online].
Available: https://github.com/ExplorViz/Docs/wiki.

[53] Open Source Software Community, Swagger, last ac-
cessed: 2020.05.31. [Online]. Available: https://swagger.
io.

[54] ——, Traefik, last accessed: 2020.05.31. [Online].
Available: https://containo.us/traefik/.

[55] M. Villamizar, O. Garcés, H. Castro, M. Verano, L.
Salamanca, R. Casallas, and S. Gil, “Evaluating the
monolithic and the microservice architecture pattern to
deploy web applications in the cloud,” in Proceedings

48

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the 10th Computing Colombian Conference (10CCC),
Sep. 2015, pp. 583–590.

[56] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K.
Garcés, C. Parra, and R. Casallas, “Towards the un-
derstanding and evolution of monolithic applications
as microservices,” in Proceedings of the XLII Latin
American Computing Conference (CLEI), Oct. 2016,
pp. 1–11.

[57] J. Gouigoux and D. Tamzalit, “From Monolith to Mi-
croservices: Lessons Learned on an Industrial Migration
to a Web Oriented Architecture,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 62–65. DOI: 10 .
1109/ICSAW.2017.35.

[58] R. Chen, S. Li, and Z. Li, “From Monolith to Microser-
vices: A Dataflow-Driven Approach,” in Proceedings of
the 24th Asia-Pacific Software Engineering Conference
(APSEC), 2017, pp. 466–475.

[59] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Mala-
volta, L. Iovino, and A. D. Salle, “MicroART: A
Software Architecture Recovery Tool for Maintaining
Microservice-Based Systems,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 298–302.

[60] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga,
and D. Kröger, “Microservice Decomposition via Static
and Dynamic Analysis of the Monolith,” in Proceedings
of the IEEE International Conference on Software Ar-
chitecture (ICSA 2020), Mar. 2020. [Online]. Available:
https://arxiv.org/abs/2003.02603.

49

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Integrated Syntax/Semantics Representational Framework for Natural

Language Processing: Theory and Applications

Carlos Seror

Independent researcher

Valencia, Spain

email: serorcarlos@gmail.com

Abstract—Language can be described as a set of

encoding/decoding rules whereby a receiver is prompted to

locally reconstruct a relevant part of a sender’s representation,

intended as an update of the receiver’s representation. In this

paper, a representational framework is proposed for such

description, based on (a) the cognitive feature of spontaneous

categorization, which leads to a formal description of data

referencing as a disambiguation process, (b) the identification

of a number of irreducible structures underlying perceptual

categories, consistent with the notion of semantic primitives.

The general algebra describing data referencing could be seen

as a universal syntax from which conventional languages can

be derived and, conversely, into which conventional languages

can be parsed. On the other hand, the semantic structures

identified will be formalized into a denotational algebra

reminiscent of, but not identical to, the topology of open sets.

Both formalisms will be shown to converge into a

representational framework having the two-way capability to

generate language and encode meaning. The framework thus

proposed reflects a qualitative approach to language, and

therefore radically differs from Shannon’s quantitative

approach to communication. As a demonstration of its

potential, the last sections will sketch two practical

applications, i.e., (i) a representational interpretation of

databases, and (ii) a tool to enhance deafblind people’s

cognitive world.

Keywords-data representation; categories; natural language;

syntax; semantic structures; data referencing; databases;

deafblind people

I. INTRODUCTION

A list of previous attempts to decode and/or generate
human language would be huge. However, aside from their
generally remarkable intellectual merit, none of those
attempts seems to have fully succeeded to date [6][23].
Furthermore, a focus on the structural aspects of syntax
tends to overlook the nature of language as an information
tool, and more specifically as a conveyor of meaning [30].
Besides, there seems to be a remarkable polysemy between
information as static data content (for example, [44] along
the lines of concept theory) and Shannon's dynamic
interpretation, based on the transmission and acquisition of
data streams.

Shannon’s classical paper [41] explicitly disregards
meaning as irrelevant to a quantitative approach to
communication. Shannon’s information theory is about
symbol strings, and views communication merely as a

quantifiable streaming of symbols, i.e., a succession of
elementary information events. It does not, however,
explicitly formalize the notion of information event, which
should arguably be considered a first essential step to
comprehend the nature of language as a communication
tool. In this paper, a general definition of an information
event will be proposed, and shown to lead to a
comprehensive description of language, both in terms of
syntax and semantics. That description will be derived from
a representational approach to data structures based on (a)
the cognitive feature of spontaneous categorization,
implicitly used by conventional languages’ users, and (b)
the identification of structures underlying perceptual
categories, which can be formally described and
generalized, thereby opening the way to an objective theory
of semantics.

Section II will discuss Shannon’s quantitative approach
from the standpoint of meaning, and propose a
representational definition of an information event. In
Section III, the concept of data aggregate will be introduced,
and endowed with a simple structure based on the logical

connectives , .A string syntax derived from the resulting
expressions will be shown to be consistent with
conventional languages. In Section IV, the scope of the
connectives will be enlarged to derive more general
structures. Based on such structures, the two key
components of an information event will be formally
described in Section V. As a practical application, a parser
will be sketched in Section VI, followed in Section VII by a
formal description of the spontaneous categorization feature.
Sections VIII and IX will deal with the relations between
representations and meaning, based on the spatial adjacency
relation. The identification of denotational structures
underlying perceptual categories will be the subject of
Sections X and XI, illustrated in Section XII with three
elementary semantic structures. Section XIII will propose an
interpretation of databases as category clusters. Finally,
Section XIV will assess the potential of the proposed
framework to facilitate the communication and/or enhance
the cognitive universe of deafblind users.

II. INFORMATION EVENTS

Parrots can speak, but cannot really talk. This difference
is arguably the key to what we understand as language.
Parrots are able to send and receive information as a
sequence of vowels and consonants, which is strictly

50

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sufficient to reconstruct a message, but hardly the
information a human would expect from an act of
communication. Therefore, a key question is: what do we
precisely mean when we say ‘information‘?

Surprisingly, there seems to be no generally agreed
definition of information [31]. In 1948, Shannon’s classic
paper addressed information as the “signature” of
communication, but Shannon was an engineer and his basic
concern was to ensure that two parties located at either end
of a telephone line could convey their messages with an
acceptable degree of noise. Even if one of the parties was a
parrot.

At the beginning of his paper, Shannon stated:
“Frequently the messages have meaning; that is, they refer
to or are correlated according to some system with certain
physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem
[i.e., reproducing at one point more or less accurately a
message selected at another point]” [41]. To Shannon,
information reaches its destination when the message
unequivocally does. The messenger’s mission is to deliver
messages, not understand them. However, if my parrot and I
are in the living room and in the kitchen somebody shouts
“Fire!”, it can hardly be argued that both the parrot and I
have received the same information. Therefore, the key
issue to be addressed in human communication is: how do
we convey meaning?

A formal definition of the communication process
should be a key starting point to answer that question. A
communication event could be described as a process
whereby a sender encodes a number of instructions intended
to replicate some part of its data repository. Communication
could be said to succeed when the replication succeeds and
results in an enlargement of the receiver's data repository.

We may think of a communication process as an
assembling process: first, we point to some location in a
data aggregate, then we assign some new item to that
location. The item to be assembled is the information item
the sender wants to convey, based on the conjecture that the
item is missing in the receiver’s repository. Such
assembling operation can be formally expressed as a
definition of an information event. For a communication
event to take place, a sender and a receiver should
previously agree on some set of —possibly implicit—
conventions in order to (a) identify a location in their
respective data repositories; (b) identify the data item to be
incorporated. Thus, a communication event could be
described as

→ # α b (1)

where # is a specific data item in a data repository, is an
assembling instruction, and b is a data item to be attached.
The arrow denotes the transition between the two states in a
data repository. A simple example of a communication
event is a binary message, where # is the last bit received, b
is the bit to be assembled, and α is an instruction to
assemble b to # by using the one-dimensional adjacency
relation.

As a further example, if H0 is a binary string

representing a specific horizontal line on a display and  is
the adjacency relation between a line and the one
immediately above, then the following expression would
describe the assembling of a new line, represented as H1, on
top of the extant H0, i.e.,

H0 → H0  H1

In yet another example, if T represents a specific triangle

and Z represents the shape of a zebra, then a receiver could
implement the information event

T → T  Z

where the symbol  indicates that the shape Z is to be
embedded in the shape T. The information conveyed in this
example would be unacceptably vague for an engineer, but
in most practical situations people are usually content to
learn that a frog is inside a pond, and will not ask for the
precise coordinates of the frog.

A fourth example involves a house as made up of
identifiable parts. The expression

roof → roof  chimney

would describe the assembling of a chimney on top of the
house’s roof by means of the three-dimensional adjacency

relation . Again, this kind of information is largely
imprecise, yet fairly acceptable in practice.

The actual identification in a data repository of the
location # in (1) would require the existence of a referencing
system shared by both the sender and the receiver. A
referencing system could be implemented by introducing a
structure in a data repository. In the following section, a
possible such structure will be defined.

III. DATA AGGREGATES

Data items could be arranged in a variety of ways,
including representational (e.g., labels on a map), encoded
(e.g., data streams), physical (e.g., material items in
drawers), etc. From an abstract standpoint, any such
arrangement could be described as a number of symbol
aggregates endowed with a particular structure in the form
of tables, graphs, objects or other ways of organization
[28][14]. Natural Language (NL), being a means to deliver
information, could also be argued to use data but, except in
specific, explicitly structured subject areas, its users are
usually unaware of the structure of such data. Describing a
data structure consistent with NLs would therefore be a first
step to characterize the nature of language as a tool to
convey information.

For a general approach to a diversity of data
arrangements, the term ‘data aggregate’ will be adopted
here. A data aggregate is defined as a number of data items
that could be represented as points on a surface. A data
aggregate is arguably the minimal structure that can be
conceived of, and it does not exclude other additional

51

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

structures. Thus, a number of colors could be considered as
a data aggregate, irrespective of whether they can be
synoptically represented as points across a rainbow or on a
painter’s palette. In a data aggregate, items can be pointed to
but do not have to be distinctly labelled —you may know
nearly everything about a wood and not have a name for any
of its trees—. Also, a data aggregate could be indefinitely
updated, as long as any new item could be represented as an
additional point on the same surface. Goats in a herd, or
symbols on a paper sheet, are simple examples of data
aggregates.

Items in a data aggregate could be discriminated by
applying criteria to them. A criterion is a notion more
general than a property, because it encompasses properties
as well as fancy choices and algorithms. Two of the simplest
criteria that could be applied to a data aggregate are the ones
associated to intension and extension. Aggregations of items
in a data aggregate do not have any extension or intension
connotation per se, and are therefore objects more general
than sets. Extension and intension could be implemented on

them by means of resp. the logical connectives , , e.g.,

blue  red  yellow  ... extension [colors]
blue  red  yellow  ... intension [color]

In general, therefore, a number of items u1, u2, u3, ... in a
data aggregate could be discriminated in two alternate ways,
i.e.,

u1  u2  u3  ... (2)
u1  u2  u3  ... (3)

Because mathematical sets are said to be describable
both in extensional and intensional terms, we shall rather
not mix things up and separately discern either description
instead. Hence, any expression in the form (2) will be
referred to as a combination, while any expression in the
form (3) will be referred to as a category. This difference
reflects the use of plural resp. singular in human language.
Thus, ‘colors’ could be associated to a combination, while
‘color’ could be associated to a category. When the scope of
the criteria is not specified, the expressions (2) and (3) could
also be interpreted as reflecting the difference between resp.
‘every’ and ‘any’.

Any item u encompassed by a category C —i.e.,
complying with the criteria that define C— will be referred
to as an instance of C. A category C encompassing the
instances u1, u2, u3, ... will therefore be expressed as

C ≡ u1  u2 u3  ...

The definitions of category and instance could be used
as a means to locally refer to an item in a data aggregate.
Indeed, in a data aggregate E where a category C has been
identified, any instance of C could be expressed as a
disambiguation of C. That is, if we denote a category as C()
and an instance u of that category as C(u), we could refer to
u as

C() → C(u)

The expression above may be interpreted as a path in E,
i.e., “select C, then select the instance u of C”, where u
could be identified by means of either a label or a number of
instructions. In the following sections, an enlarged notion of
disambiguation will be shown to be a powerful device to
refer to data items in a data aggregate —arguably, the basic
addressing device used by natural language users—.

A data item in a data aggregate could also be referred to
through a disambiguation of a number of categories it might
be ascribed to. For example, the word ‘green‘ may denote
either a color or a political affiliation. In the absence of any
additional cues, they could be disambiguated resp. as either
color(green) or political_affiliation(green). In formal terms,
if M is a category having the category C as an instance, then
the instance C(u) could be referred to as

M(u) → C(u)

The notation used thus far, based on symbols such as
connectives or arrows, will be referred to as symbol syntax.
An alternative syntax, which shall be referred to as string
syntax, would express categories and instances as single
words, and disambiguations as strings, as follows:

symbol syntax string syntax
C() C
C() → C(u) C [δ u]

where the symbol  denotes the relation linking a category
with any of its instances, i.e., the fact that u complies with
the criterion that defines C. The correspondence between
symbol expressions and string expressions will be denoted
as >>, e.g.,

color() >> color
color() → color(blue) >> color [ blue]

Note that, in practice, if we deem it obvious that, e.g.,
the word ‘blue‘ refers to a color, we will not precede it with
the word ‘color’, which will have to be guessed by the
receiver. This data compression feature reflects an implicit
operation that pervades human language —and arguably
also human thought—, i.e., spontaneous categorization. The
feature of spontaneous categorization will be further
elaborated in Section VII.

IV. COMBINED CATEGORIES AND CATEGORY CLUSTERS

The connective  could also be used to discriminate
combinations of categories in a data aggregate. For
example, from the categories

mass, electric_charge, spin

a combined category could be derived, which in turn would
give rise to a number of objects, e.g.,

52

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mass  electric_charge  spin >> particle
mass  electric charge  spin >> observable
mass(9.1×10−31 kg)  electric_charge(−1.6×10−19 C)  spin(1/2) >>

particle [ electron]

As the latter example shows, a combination of categories
is itself a category, having as instances combinations of
instances of its component categories. The latter example
unequivocally describes the item ‘electron’ as a full
disambiguation of the category ‘particle’. However,
combined categories could also be partially disambiguated
by specifying just some instances of its component
categories, e.g.,

bearing()  altitude(7000 ft.)  No._of_passengers(80)

Component categories in a combined category could

also be discriminated by means of the connective . The
resulting object could be used to identify a path within the
data aggregate individually leading to them. For example,
the category ‘color’ could also be construed as an attribute,
i.e., it could be referred to as an instance of the category

color  shape  size  ...

Categories pervade language, a fact which is obscured
by the spontaneous categorization mechanism, of which
language users are usually unaware. In human languages,
spontaneous categorization is a run-of-the-mill feature,
associated not only to adjectives such as ‘blue’ or ‘big’, but
to virtually any kind of meaningful component. Thus, the
sentence ‘birds fly’ could be misleadingly categorized as
implying that hens fly, or meaningfully categorized by
instead interpreting ‘birds’ as an instance of some category,

e.g., birds  mosquitos  bats  ... having ‘fly’ as an
attribute. Similarly, the meaning of ‘a through person’ could
only be captured by evoking a category of concepts having
‘through’ as an instance.

In general terms, a combined category G

 will be

defined as the general expression

G

 = O1  O2  O3  ... (4)

where O1, O2, O3, ... are categories, whether they have

been disambiguated or not, and  uniquely identifies that
particular combination of categories. The definition (4) is
consistent with a number of concept theories [45][47], that
describe concepts as n-tuples of symbols representing
attributes.

An n-tuple is just a one-dimensional combination of
categories, and therefore a particular case of the more
general concept of category cluster, where complex spatial
relations could be incorporated as additional discrimination
criteria in a data aggregate. A data form is a familiar
example of category cluster. In general terms, therefore, a
representation can now be defined as a data aggregate
together with any number of category clusters.

V. REFERENCE AND UPDATING WITHIN A CATEGORY

CLUSTER

Given a category cluster G and one of its component
categories C, any set of instructions r to uniquely identify C
within G will be referred to as a relation r(G, C). As in the
one-dimensional case, specific category clusters could also
be referred to by specifying one or more of its component
categories. For example, an employee’s record might be
uniquely identified by specifying just the employee’s name,
or his age and height. This could be formally described as
follows. Let G be a category cluster, r a set of instructions to
identify C within G, and Gk a copy of G where the data item
u has been specified for the category C. The category cluster
Gk could therefore be referred to as

Gk = G | r(G, C(u)) (5)

i.e., Gk can be interpreted as a partial disambiguation of G.
In string syntax, this will be expressed as

G | r(G, C(u)) >> G [r u]

For example,

ball = shape(round)  color()  size()
ballk = shape(round)  color(red)  size(big) >> ball

[r2 red] [r3 big]

where r1, r2, r3 would represent resp. the sets of instructions
to locally identify each of the component categories ‘shape’,
‘color’, ‘size’. If a reference would not result in a full
disambiguation, further disambiguating [r u] legs could be
appended until a unique reference is achieved. In the general
case, therefore, the disambiguation of a category cluster G
will be expressed in string syntax as

G rj uj] (6)

where  denotes a string made up of [rj uj] pairs, uj denotes
an instance of the component category Cj, and rj denotes the
relation rj(G, Cj). The possibility to uniquely identify a
category cluster even when only some of its component
categories have been specified is a feature heavily used by
natural language users as a data compression device. Indeed,
if there is only one red ball in the room, you would hardly
want to refer to it as “the big red expensive air-filled ball on
the sofa”.

Any set of rules to convert string syntax expressions into
different strings will be referred to as a conventional
syntax. For example,

String syntax Conventional syntax

ball [r2 red] [r3 big] big red ball (English)
boule [r2 rouge] boule rouge (French)
bam [r ug] bugam (imaginary)
 [r2 ] [r3 ]     (non-word)

53

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The notion of category cluster, plus the relations it
entails, endow data aggregates with powerful structures that
could be used to semantically represent a vast number of
concepts, e.g., ontologies, verbs, or semantic representations
of space-time concepts, together with a local mechanism to
refer to them [37][1][40]. A few basic semantic clusters will
be described in Section XII.

The definition of the cluster-category relation also
implies that categories could be referred to in terms of the
cluster or clusters they are part of. This stems from the
definition of the converse relation. Given a relation r(G, C),
the expression

C → C | r(G, C) (7)

describes the constriction of the general category C to the
range of instances allowed in G. In string syntax, (7) will be
expressed as

C [r’ G] (8)

and r’ will be referred to as the converse relation of r.
Example:

color | r2(ball, color) >> color [r’2 ball]

If we now substitute (6) into (8), the general expression
will therefore be

C [r’ G rj uj]] (9)

When G rj uj] describes a full disambiguation, the
expression (9) will point to the unique content of C in G,
i.e., it could be used to indirectly refer to a specific
component instance in a category cluster. For example, the
expression

color [r’2 ball [r1 big] [ron sofa]]

might uniquely refer to the color of the ball on the sofa
without directly using its name. The expressions (6) and (9)
may be seen as a formalization of the Fregean concept of
sense (Sinn) [21], which would interpret the notions of Sinn
and Bedeutung as part of a wider picture. Thus, in Fregean
terms the category-instance expression C(John) would be
the meaning of ‘John’, while the indirect references ‘the tall
man’ or ‘the man with my hat’ could be used to express two
of the multiple possible senses of the referent ‘John’.

The expressions (6) and (9), used to refer to resp.
category clusters and component categories, could be used
not only to refer to data items in a structured data aggregate,
but a sender could also used them to update the receiver’s
presumed representation. For example, if the receiver is
believed to ignore that there is a ball on the sofa, then that
information could be sent by means of (6), i.e.,

!ball [r4 sofa]

where the symbol ! denotes a new category cluster to be
included in the receiver’s representation. Such updating is a
commonplace device used in natural language exchanges, to
indicate, e.g., that a new character has appeared in a film, or
a new guest has arrived at a party. If the receiver were
presumed to know that there is a ball on the sofa but not its
size, then that information could be conveyed by means of
the expression

ball [r4 sofa] [r3 big!]

where ! now denotes an instance intended to fill a category
presumed to be empty at the receiver. In a converse
situation, where the sender ignores some information item
supposedly known by the receiver, the expressions (6) and
(9) could also be used for querying purposes, by pointing to
the required item by means of a different symbol, e.g.,

? [r4 sofa]
? size [r’3 ball [r4 sofa]]

where the symbol ? points to resp. an category or instance
unknown by the sender. The referencing and active/passive
updating uses of (6) and (9) could be summed up as follows

reference G [r u], C [r’ G] (10)
updating !G [r u], G [r !u] (11)
querying ? [r u], ?C [r’ G] (12)

Depending on the rules devised to derive specific
syntaxes from the general expressions (6) and (9), a large
number of unfamiliar grammars could be built, whether or
not in use by any communities of users. This should make it
possible to test the validity of the approach developed
above. Indeed, that validity would be challenged if some
grammar in use were found whose syntax rules could not be
derived from (6) and (9). Conversely, a weak confirmation
could be obtained by checking whether a number of ‘exotic’
syntaxes could be derived from (6) and (9). Amazonian
pirahã [18] and Australian warlpiri [35], among others,
would seem to be good candidates [17].

VI. PROPOSAL FOR A PARSER

Based on the general expressions (6) and (9), a variety of
parsers from conventional syntaxes into string syntax could
be devised by expressing lexical/morphological components
in terms of categories, instances, and relations. Although
any such component is potentially susceptible to be
categorized —the atypical syntax of ‘a through person’,
mentioned above, provides a telling example—, a basic list
of usual category/instance values could be established as
follows:

adjective u
preposition r
noun G
verb G [r u]

54

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where u denotes an instance, G denotes a category cluster
(or, in the simplest cases, a category), and r denotes a
relation. Note that verbs have been expressed as tense-
carrying items, where G denotes the verb root and the u in
[r u] denotes an instance of the tense category
‘past/present/future/...’ Based on the list above, qualifying
pairs, such as 'big ball', 'car wheel', 'take book', or 'run fast'
would be expressed as disambiguations in the form G [r u].
Therefore, as a first step a number of string segment types
could be identified, i.e.,

SL noun rj uj] verb
SR verb rj uj]
W noun rj uj]
M preposition noun rj uj]
A adjective rj uj]
v verb [r tense]
n noun/verb root
 adjective

where each individual leg [r u] would express a qualification
of the preceding component. A few English examples may
illustrate this, i.e.,

SL birds [] fly, a book [on the shelf] fell
SR ran, saw [her] [with a telescope]
W the book [from the shelf], happiness []
M under the [milk] wood
A [nearly] perfect
v [would] hope
n wheel, pampering
 big, unthinkable

Based on such components, the following prolog-like
basic rules could be stated, together with their output:

is(x v, SL) :- is(x, W) → v [b x] *1
is(v x, SR) :- is(x, W) → v [b x] *2
is(v x, SR) :- is(x, W M) → v [b x] M *3
is(v x, SR) :- is(x, W M M) → v [b x] M M *4

is(x, A) :- is(x, ) →  *5
is(x n, W) :- is(x, A) → n [b x] *6
is(x n, W) :- is(x, n) → n [b x] *7

is(x b y, W M) :- is(x, W), is(y, W) → x [b y] *8

is(x r y, W) :- is(x, W), is(y, SR) → x [r y] *9
is(x r y, W) :- is(z, W), is(y, SL) → x [r y] *10

is(b x, M) :- is(x, W) → [b x] *11

Example: S ≡ the book on the shelf fell

is(S, SL) :- is(book on shelf, W) → fell [b book on shelf] *2
is(book on shelf, W) :- is(book on, ) → fail! *5
is(book on shelf, W) :- is(book on, A) → fail! *6
is(book on shelf, W) :- is(book on, n) → fail! *7
is(book on shelf, W) :- is(book, W), is(shelf, W) → book [on shelf] *8

Output: fell [b book [on shelf]]

An educated guess based on a number of partial
implementations by the author suggests that a few hundred
rules would probably suffice to process most sentence types.

VII. SPONTANEOUS CATEGORIZATION

Parsing is a way to convert NL strings into combinations
of (6) and (9), but cannot always be used to decide whether
such expressions are to be interpreted as (10), (11) or (12),
i.e., whether they are intended as reference, updating or
querying. Querying purposes are usually denoted in various
ways, including characteristic sentence structures, question
marks, and/or prosodic patterns, but updating purposes (i.e.,
predication) may not always be obvious, at least in written
form. For example, in Maya language the written expression
keel winik can be interpreted as either the man is cold or the
cold man [43]. In such cases, deciding whether a NL
message is meant as (8) or (9) should be the job of
spontaneous categorization.

Spontaneous categorization has been identified and
studied from the standpoint of language use [15][40], but
also in children [26][7][32], nonhuman primates [24] and
even distantly related species [25]. Interestingly, a comment
in Shannon’s seminal paper [41, op. cit.] hints at the role of
categories in NLs: “The significant aspect [of
communication] is that the actual message is one selected
from a set of possible messages” [emphasis added].

In the binary case, the set of possible messages is easy to
determine, since it can be derived from the category 0/1.
The information conveyed by Beethoven’s Ninth
Symphony, though, may be harder to determine, because
one category of possible messages is the category of all
possible symphonies. Fortunately, however, some partial
information can be extracted from it. For example, we can
determine that it consists of four movements, what kind of
movements they are, how many instruments are playing it
and, ultimately, each of its notes.

NL strings can similarly be decomposed in different
ways, which is particularly apparent from the use of
questions. As an example, the questions

who left at eight?
when did Joan leave?
what did Joan do at eight?

refer to different categories, i.e., person, time, and action, all
of them implicit in the expression ‘Joan left at eight’. Thus,
depending on the part of the message that may be selected
and the category inferred from it, one single expression
could be used to refer to different information items. In most
cases, the categories would be implicit, and its identification
would be left to the receiver through a spontaneous
categorization of the message received.

The following example might help to clarify this.
Suppose that you are at home, sitting in front of your TV
screen, when suddenly the telephone rings. You answer the
call. It’s your friend Zoe.

"Hi, Zoe. No, I didn’t feel like going out tonight. I’m
watching a film."

55

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is 9:15 PM on a Monday, so your friend is not
surprised. Now imagine that you and her have instead
decided to go to the movies that day so that, at some point,
the two of you are watching a film together. Suddenly, you
move closer to Zoe and whisper:

"I’m watching a film."

Of course, this is no news for Zoe, who, puzzled at first,
faces subsequently a critical decision: either you have
become mad, or you were meaning something. Apparently,
your statement has not provided her with any information.
She already knows that you are watching a film. Her mind
works frantically. What could you have possibly meant?

Zoe comes up with a number of possibilities. Perhaps it
has been a long time since you last watched a film, and you
are just expressing joy. Or you might happen to work in the
archives of a film library and are usually busy handling
films without ever getting to watch any of them. Or perhaps
you are a fanatic of theatre and tonight, exceptionally, have
condescended to go to the movies. Thus, what Zoe’s mind
would be doing is to construct a background against which
to extract information from your message. As she might find
out, any of the following constructions would be apt to
provide plausible information from your message:

"For a long time, I have not watched a film. Now I
am watching a film"

"Usually, I handle films. Now I am watching a film"
"Usually, I watch theatre plays. Now I am watching

a film"

Each of these interpretations conveys the information
that something is happening that did not use to happen. To
extract information from your message, Zoe has had to
mentally construct resp. the categories

not watch / watch
handle / watch / ...
a play / a film / ...

In more abstract terms, she has constructed the
ambiguous messages:

I am X
I am X a film
I am watching X

and, based on a single instance taken from your message,
has subsequently let the categories X spontaneously form in
her mind. The information she will eventually extract from
your message will depend on what those categories actually
encompass and how their contents fit into the information
she already has about you. The ability to infer a category
from one of its instances, i.e.,

b ···> C(b)

is what has been referred to as spontaneous categorization,
and would thus seem to be a prerequisite to process a NL
message, and possibly a distinctive feature of human brains.
It should be noted that some categories may not have a
name themselves, thereby exposing a lexical gap. Thus,
‘green’, ‘red’ and ‘blue’ could be ascribed the category
‘color’, but there is no single word in English for the
category that encompasses the states green, ripe and
intermediate ones as applied to a fruit (although the derived
noun ‘ripeness’ is sometimes remedially used, as in ‘degree
of ripeness’).

If you and Zoe had instead talked on the phone, the
process would have been simpler but, essentially, not
different. Upon hearing your reply, Your friend Zoe would
simply have evoked a category of actions to be expected
from you in your place on a Monday at 9:15 PM, i.e.,

I am X

where X = eating / sleeping / reading / watching a film / ...
From the moment she had you on the phone, Zoe was
predisposed to wonder what you might be doing at the other
end of the line, and the words “watching a film” would be a
good answer to that. However, in the presence of an obvious
context, like the film the two of you were watching, the
effort required from Zoe is paradoxically far more
demanding. The key to Zoe's clairvoyance on the phone is
that she had a much smaller number of choices as to what
your message could be referring to.

Depending on the communication context, spontaneous
categorization makes it even possible to dispense with
grammar rules. Spontaneous categorization is what enables
us to understand ill-formed expressions in colloquial
utterances, or due to some lapsus linguae, or uttered by a
foreigner with a non-standard syntax. For example, a
sentence assembled with the words “place”, “cheap”, “eat”
and pronounced by a likely hungry foreigner could be easily
interpreted as

?place [r1 eat [r2 cheap]]

VIII. CODE VS. MEANING

In Section IV it has been shown that category clusters
can be used to generate syntax. However, neither the nature
of categories, nor of the relations that ‘glue’ them into
category clusters, have been addressed. Thus stated, the task
looks to be huge, but might be at least partially manageable.
While the structure of a data form, or a database table, is
usually designed for convenience, ontologies and other
spatial layouts tend to be representational, i.e., are intended
to express meaning in a more direct way. Therefore, it may
be worth exploring to what extent category clusters could be
used to directly express meaning.

Parsing —and, more generally, message decoding— is a
rather convoluted way to extract meaning. It is based on the
capability to identify groups of symbols connected to each
other by the one-dimensional spatial adjacency relation. The
actual relations that those symbols are intended to reflect are

56

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only accessible through a number of conventions on how to
group them up and translate them into meaningful
representations. However, symbol strings could also be used
to directly express meaning, i.e., as representations
themselves. For example, the string

Su Mo Tu We Th Fr Sa (13)

is intended to directly represent temporal relations, i.e., it
reflects a semantic intent, and to that effect the way it has
been constructed —and therefore its information content as
a message— is of little relevance. Ironically enough,
whereas for Shannon’s purposes the semantic aspects of a
symbol string are irrelevant, for semantic purposes it is the
information content of a symbol string which is irrelevant.
In representational terms, the string (13) is a category
cluster and, as such, it already reflects a key advantage of
the representational approach, i.e., unlike messages, which
are updated through the rigid process of streaming, category
clusters can be updated locally. A simple illustration of this
potential can be derived from binary strings.

A binary string can be seen as a category cluster
consisting of a single category, i.e., 0/1, and a single
relation, i.e., the spatial adjacency relation linking each
binary digit to the next one. A binary information event
could be described by the general expression (1), where #
denotes an existing binary string, b denotes a bit to be

assembled, and  denotes the one-dimensional adjacency
relation between any two consecutive bits. The location
where each new bit is to be assembled is referred to by
means of a meta-reference, i.e., ‘the last bit received’.
However, if the final purpose is to reconstruct a bit string
rather than assemble it in a sequential way, it might be more
convenient to make use of local referents. Once we have put
the chimney in place, we may want to install the front door,
and to do that the reference to the last item installed would
be useless.

In a bit string, a simple way to refer to a local
component is to identify a unique feature in the string. For
example, let M be the following message:

1 1 0 1 0 1 1 1 0 1

The string above includes a number of unique
substrings, e.g.,

1 1 1
1 0 1 1
1 1 1 0 1

The sender could not refer to the last bit received as '1',
which would be ambiguous at the receiver, but it could refer
to the unique substring ‘1 1 1 0 1’ instead, and instruct the
receiver to append the bit b by means of the adjacency
relation α, i.e.,

1 1 1 0 1 → 1 1 1 0 1 α b

Thus, by using unique substrings as referents, the sender
could choose to instruct the receiver to construct just parts
of M, instead of sending the whole M. For example:

1 0 1 1 → 1 0 1 1 α 1
1 0 1 0 → 1 α 1 0 1 0

This would be a local approach, insofar as each event
would describe only a partial reconstruction of M. It may
not sound very appealing as an alternative to the good old
'next-after-last' convention. But if our source were a two-
dimensional matrix instead of a one-dimensional string,
things would start to look different. For example, on a
display described by a digital matrix M, any solid image of
an object will be described by a subarray of M, and the
general expression (1) could be used to describe the
assembling of a subarray u to the subarray # by means of the
two-dimensional adjacency relation r. Thus, if # represents
the image of a rug and u represents the image of a ball, then
a mutually agreed definition of r would make it unnecessary
to transmit a whole matrix M describing a room just to
indicate that there is a ball on the rug. Such local approach
dispenses with the need to describe any parts of a data
aggregate that the sender deems irrelevant. It may entail the
use of ‘vague’ descriptions, as with ‘the frog in the pond’.
However, the gain in nimbleness is huge.

IX. DENOTATIONAL COMPRESSION

The mention of ‘vague’ descriptions points to an
additional feature of representations, i.e., the fact that they
can compress information by making use of objective
relations such as the spatial adjacency relation. Not
unreasonably, the human mind tends to simplify things. If
you live in Paris, you will probably be able to lay out a
mental map of the town and then locate the Mona Lisa on it.
But if you have always lived in an Amazonian tribe, isolated
from the external world, and one day you hear about Nessie,
described to you as some unspecified monster that lives in
some faraway lake, could you still be expected to mentally
represent Nessie? Most likely, your representation will
hardly be good enough for you to reach Scotland. But, even
so, you might be capable of mentally representing the Earth
as a sphere (maybe simply as a plane!) having an island
somewhere on its surface, in the island a lake, and in the
lake an animal whose shape you cannot tell. As long as you
do not assign a specific shape to the island, the lake, and the
monster, your representation of them would somehow
‘float’ in some vague —but certainly structured— territory
of your mind.

This seems to suggest that the human mind makes use of
preexisting configurations, or ‘structures’, to lay out the
information derived from perceptions, a topic that has
already been addressed from different perspectives [19][4].
Short of additional data, we are often content to know that
an island is a surface inside another surface, or that Nessie is
some three-dimensional volume inside a volume. Or, most
simply perhaps, a dot somewhere on a surface. The point
here is that a perceptual representation is alright as long as it
is made up of territories and borders and these do not break

57

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

up. Subject to those rules, perceptual concepts are largely
malleable.

This is probably not by chance. Imprecise
representations happen to be a good way to compress
information. For example, the image of a lake surrounded
by land could be roughly emulated by means of 0s and 1s:

... 0 0 0 0 0 ...
... 0 0 1 1 1 1 0 0 ...
... 0 0 1 1 1 1 0 0 ...

... 0 0 0 0 0 ...

that is, as an ‘area’ made up of adjacent 1s (water) and
surrounded by an ‘area‘ made up of adjacent 0s (land).
Now, denotationally speaking it would have sufficed to
write:

0
0 1 0

0

where the symbol 1 represents a connected surface, and the
four 0s represent a surrounding open surface externally
adjacent to it. If needed, the compressed figure above could
be expanded into the uncompressed one by ‘unfolding’ (i.e.,
replicating) the 1s and 0s as wished, in all directions, as
long as the adjacency relations do not get breached. This is
to say that the 1s and 0s would unfold into themselves, and
an unfolding such as

... 0 0 0 ... -> ... 0 1 0 ...

would be a violation.
Actually, the representation above could be as useful to

denote a lake as an island —or, for that matter, a stain of
spaghetti sauce on someone’s shirt—. From such abstract
representation, specific denotations could be derived by
associating to the 0s and 1s the symbols ‘water’ and ‘land’,
or ‘land’ and ‘water’, as the case may be. The underlying
structure, however —that is, the conglomerate of adjacency
relations— will stay unchanged.

The implication is that there exist denotational
representations that are independent from the denoted
object. Such representations may or may not be maximally
compressed. If it were not possible to further compress one
such representation, then we would be in the presence of an
irreducible concept —i.e., a semantic primitive—. Certainly,
it is not possible to compress a line into a dot, a tree into a
line, etc. without altering their adjacency relations.

This would suggest that the structures human brains use
to ‘interpret’ perceptions stem from a more abstract reality.
Might such structures be a repertoire of topological
configurations? That would be really good news. If the
meaning of words were ultimately irreducible denotational
configurations, human language would be based on an
absolute referent: geometry. Meanings could be
systematized, studied and compared according to objective
criteria. Concepts could be handled by means of symbols
and, consequently, would be computer-processable.

X. CATEGORY STRUCTURES

Spontaneous categorization has been described as an
operation whereby categories are evoked to accommodate
symbols received, presumably in such a way that those
symbols could be subsequently retrieved. Therefore, it
seems legitimate to wonder if such categories have some
identifiable structure that makes them readily accessible for
both storage and retrieval. Furthermore, our neuronal system
cannot be impervious to the reality that space can be
decomposed into three dimensions, that colors form a
continuum, or that musical notes sound one after another.

The role of space and time structures in perceptual and
cognitive processes has been extensively addressed in the
literature from both the theoretical and experimental
standpoints [22][50]. The precise relation between
perceptual and cognitive structures is still being delved into
[10], but the recent encompassing notion of cognitive
architecture [36] opens the door to a functional approach to
cognitive processes that is rather independent from their
biological basis.

Therefore, if it would be possible to formally
characterize category structures in terms of spatial and
temporal relations, such relations would naturally give rise
to objective category clusters of a semantic nature, and
hence to at least some building blocks of meaning.

In fact, a close look at categories does reveal substrates
that are intrinsically different in nature, and where the
spatial adjacency relation plays a key role. In the preceding
Section, the role of adjacency relations in spatial
representations has already been noted. As it happens, a
number of perceptual categories could also be shown to
reflect underlying structures involving adjacency relations.
Consider, for example, the different categorizations the
undefined word splack elicits in the following sentences:

The sauce tasted too splack, so I added some garlic

I waited for you from noon to splack

The stripes blue, splack and yellow on her skirt

Bugs Bunny turned into a splack, then into a donkey

He pointed to the splack of the triangle

The categories that could be evoked from the examples
above entail different underlying structures, i.e., resp.

 A number of individual, fuzzily connected concepts
(tastes)

 A 1D continuum of concepts spanning from noon to
splack (time values)

 A 1D, rainbow-like continuum of concepts (colors)

 A continuum of concepts spanning from splack to
donkey (shapes)

 A finite number of spatial features
(vertices/sides/areas)

The structures thus evoked are characteristically
different in nature. The taste ‘salty’ could become ‘sweet’

58

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by progressively adding salt and removing sugar, and a
similar transition could be devised between any two other
tastes. Intermediate tastes, however, are fuzzy, i.e., there
seems to be no referent to precisely locate them with
relation to others. No matter how many new intermediate
tastes we identify, the structure will reappear, and any two
tastes will always be separated by a conceptually blurred
territory.

Time events do not have the same properties as tastes.
We tend to think that an event is farther in time the more
events can be piled up between it and now, but we cannot
foresee how soon the next shooting star will show up in the
sky. However, we can locate along time —e.g., on a clock’s
face, or in a calendar— any event that happens between two
other identifiable events. And we can do it unequivocally,
i.e., we cannot conceive of two different time paths
connecting one event to another.

Color ranges are categories familiar to those who work
with spectrometers, or check a catalog in a cloth shop. Color
ranges have a one-dimensional structure, and share a
number of features with time spans. But, unlike time, which
is unlimited towards both the future and the past, a color
wheel can be constructed that closes upon itself, and
therefore colors are consistent with a circular structure.

Unlike time or color, the category that encompasses
Bugs Bunny’s and other intermediate shapes is two-
dimensional. Bugs’ shape could turn into almost any two-
dimensional shape, and there are uncountable ways for it to
turn into a donkey. While we can mentally ‘travel’ from
noon to splack to midnight in the same way as a point would
travel along a one-dimensional line, Bugs Bunny’s shape
could evolve through an infinite number of shapes before
appearing as a splack. Even so, that evolution could be
decomposed into three different steps. During a first stage,
the intermediate shapes between Bugs and e.g., a donkey
will remind us of Bugs for a while, then will seem
unrecognizable for some time and, in the final stage, will
remind us ever more vividly a donkey’s shape. In
representational terms, those three stages are not unlike
transitions between tastes or colors.

Lastly, in the ‘splack of the triangle’ example, any
categories that could be evoked from a triangle are
inherently finite, and no two of them will be connected by a
fuzzy territory. A vertex is immediately adjacent to two
sides, a side is immediately adjacent to two vertices, and the
inner and outer area of the triangle are immediately adjacent
to the triangle’s contour and any of its components. Unlike
tastes, time values, colors, or shapes, which could be
indefinitely updated, none of those categories could possibly
be updated and still be thought of as making up a triangle.

Similarly, a data form made up of delineated cells is
usually laid out as a two-dimensional structure. As long as
its cells’ borders are kept from merging or breaking, its
structure could be deformed at will without essentially
altering its functionality. In other words, what characterizes
a data form with relation to other conceivable forms is,
precisely, its specific adjacency relations.

All of these structures and their properties strongly
remind of a branch of Mathematics known as Topology.

With a few intriguing differences, though. Broadly
speaking, Topology characterizes objects based on their
potential to transform into each other without breaking or
merging at any point. It conceptually groups geometric
objects in terms of features such as the lines, surfaces or
volumes they are adjacent to.

However, open-sets Topology differs from denotational
topology in a few respects. Thus, if a circle gets broken at
one of its points, the breaking point can only stay adjacent
to one, not both, of the free ends, and the resulting object
will be a stretch of line lacking one accumulation point.
From a cognitive perspective, though, both ends will be
equally denotable, irrespective of the fact that one of the
ends is, in mathematical terms, a missing accumulation
point. Conversely, for a segment to be made into a circle the
names of its two ends would have to merge into one,
thereby dropping one denoting symbol. In sum, for
denotational purposes whenever you change the adjacency
you have to add or remove labels —i.e., switch to a different
denotational structure—.

Topology, on the contrary, is not concerned with labels.
Topology is about open sets, not representations. Therefore,
we will not be concerned here with the mathematical
continuity of a representation, but with whether and how a
spatial configuration can be consistently denoted (i.e.,
structurally identified and labelled), as well as with the
characteristic properties inherent to it. This is to say that the
human mind compresses sensory information by retaining
only discontinuities, i.e., the adjacency relations between
regions of different dimensions (points to lines/surfaces,
lines to surfaces/volumes, etc.). Which makes sense,
because where there is no discontinuity there is nothing to
denote. As was the case with the unnamed trees in a wood,
denotability does not mean that a symbol should be
automatically attached to each identifiable feature, but only
that these can be used as symbol holders, whether we decide
to ‘fill’ them or not.

The characteristic structures that the spatial adjacency
relation gives rise to could be formalized by introducing the
concept of denotational jigsaw.

XI. DEFINITION OF A DENOTATIONAL JIGSAW

A denotational jigsaw is defined as a number of objects

z1, z2, z3, ... together with a number of adjacency relations

kmn(zp, zq), where m is the dimension of zp, n is the

dimension of zq, and m  n, so that for any two objects u, v

in the jigsaw there is always a ‘path’ connecting u to v, i.e.,

in a simplified notation:

k(u, w) k’(w, b) k’’(b, c) ... k
(j)

(y, v)

In this simplified notation, the symbols k, k’, ... k
(j)

denote the corresponding adjacency relations. Note that an
adjacency relation is symmetrical:

kmn(u, w) = knm(w, u)

but not identical nor transitive:

59

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B1, B2, B3, B4

k21(B2, B1), k12(B1, B3)
k02(B4, B2), k02(B4, B3)
k01(B4, B1)

B1

B3

B4 ·
B2

B1

B3 B2

B1, B2, B3

k21(B2, B1), k12(B1, B3)

kmm(u, u)  m  m
kmn(u, w), knr(w, z) ≠> kmr(u, z)

Thus, a surface containing a circle B1 with an inner area
B2 and an outer area B3 could be described as the jigsaw
(Figure 1).

Figure 1. Circle-within-an-area jigsaw

In this configuration, the inner area B2 is adjacent to the
circle B1, but not to the outer area B3, and no adjacency
relation between B2 and B3 can be transitively inferred from
k21(B2, B1), k12(B1, B3).

The identification of a point B4 within B1 would
transform the circle B1 into a closed segment, thereby
creating a more complex set of adjacency relations
(Figure 2).

Figure 2. Point-within-a-circle-within-an-area jigsaw

For different values of m, n, the following simple paths
can be identified:

k10(line, point)
k20(area, point)
k30(volume, point)
k21(area, line)
k31(volume, line)
k32(volume, area)

which could be assembled into more complex ones, e.g., a
triangle, a polyhedron, or a category cluster. Insofar as
dimensions are themselves irreducible, the above paths are
irreducible, and are not incompatible with each other.

Some of those complex configurations, e.g., a triangle,
can be described in terms of a finite number of adjacency
relations. Unlike finite configurations, however, towns on a
map, or events along time, are open configurations, i.e., they
can be indefinitely updated. New elements could be added
to them without altering its denotational nature, and
therefore they can be described as a self-similar structure,
based on a finite number of updating rules.

For example, if we denote as  the adjacency relation
k30(v, i) between a point i and its surrounding volume v, the
same relation  could be used to describe any number of
additional points j, k, ... within that same volume, i.e.,

v  i, v  j, v  k, ...

and the identification of a new point n could be described by
means of the rule

where

v{i, j, k, ...} ≡ v  i, v  j, v  k, ...

Events along time, or towns along a railway, however,
fail to be describable by means of the updating rule (S0),
and their description requires a different set of rules. If we

denote as  the adjacency relation k10(line, point), any two
points i, i will be adjacent to a one-dimensional stretch e
separating them, i.e.,

i  e  i

Therefore, the identification of a new point, e.g., a new
event along time, or a new town along a railway, could be
described as

where

e i e ≡ e  i  e

Actually, the structure described by (S1) is a dual
structure, since it concurrently generates two different
collections of elements, i.e.,

... i, i, i ...

... e, e, e, ...

Rather counterintuitively, the rule (S1) does not describe
the structure of events along time as the result of assembling
additional events from the present into the future, but rather
as the result of nesting new events within time spans. This is
what makes it possible for a receiver to identify and store
previously unidentified events in the past. It implies a
construal of time not as a repeated realization of future
events —as the physicist Eddington put it, “events do not
happen: they are just there, and we come across them”
[16]—, but as a pre-existing blank stretch into which events
can be indefinitely inserted [27].

The rules (S0) and (S1) provide a means for a sender to
describe a representation by means of symbols and rules in
such a way that, however the sender updates it, the
receiver’s description will be consistent with it. Short of any
geometric referents, the receiver may have no way to know
what the received symbols refer to, but could nonetheless
make use of a number of agreed rules to reconstruct their
configuration.

The structures just described are based on intrinsic
features of the geometry of things as we perceive them, and

e → e i e ·
e e i

(S1)

(S0) v{...} → v{... n} ·
·

j

l
k · m

n
·

60

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are indeed characteristic and irreducible. You can pick one
olive with a toothpick or two with a fork, but no matter what
you do you will never be able to simultaneously pick more
than one olive with a toothpick.

The configurations described by the rules (S0) and (S1)
are irreducible, but not incompatible with each other. For
example, on a map where towns have been represented as
dots and the remaining surface as U, the items Vienna and
Rome could be connected through the denotational path

k02(Vienna, U) k20(U, Rome)

If those towns happened to be linked by a railway R,
then they could alternatively be connected as:

k01(Vienna, R) k10(R, Rome)

In both cases the category of towns would be the same,
but the structure used to represent that category would be
different.

XII. SEMANTIC CLUSTERS

Interestingly, a particular kind of category clusters can
be derived by combining (S0) and (S1), resulting in
expressions consistent with evolution verbs. The following
example describes the concept of movement, but the same
configuration could also be used to describe color change,
or growing/shrinking (Figure 3).

Figure 3. Category cluster describing movement

Similarly, a combination of the configuration above and
the configuration described in Figure 1 would result in a
semantic cluster from which a number of syntax expressions
related to entering/exiting could be derived, i.e., see
Figure 4.

Figure 4. Category cluster describing entering-exiting

The potential for data items to be represented as components

of category clusters, and therefore to generate syntax based

on their semantic relations, opens the way to a number of

practical applications. A few examples may illustrate this.

1. N-tuple concepts

In Section IV, n-tuple concepts have been described as a
particular case of category clusters. They constitute a major
part of NLs lexical inventory, mostly as nouns, verb roots,

or, depending on the specific language, their
lexical/morphological equivalents.

Two kinds of n-tuple concepts are of particular interest:
(i) standalone items that can move freely, i.e., having a
location that may change along time, and (ii) items that can
only move with the terrain (i.e., through deformation of the
surface or volume they are part of), e.g., features of a
landscape. A mountain’s location, for example, might
change relative to other features in the landscape, but the
landscape’s denotational relations should not be expected to
change.

Fixed location n-tuples and movable location n-tuples
have intrinsically different properties, and therefore they
have to be described as intrinsically different combinations
of categories. If we denote them as resp. fixedQ and looseQ,
then

fixedQ q0  (qtime)  loc
looseQ q0  (qtime)  (loctime)

where loc denotes an S0 spatial location, q denotes a
combination of categories that may or may not evolve along
time (e.g., color, or size), and q0 denotes an instance that
unequivocally characterizes the n-tuple it is part of. For
material objects, q0 is usually a shape, and generally does
not have a specific label, e. g.

duck duckY (qtime)  loc
hill hillY (qtime)  loc

The labels duckY and hillY have been used to label two
instances of the category shape that do not have a lexical
correlate in English, i.e., to fill a lexical gap. In a number of
languages, such instances can only be indirectly referred to,
e.g., as ‘the shape of a duck’.

The above description means that, in static terms, the
concept ‘duck’ could be decomposed into a number of
attributes (e.g., the categories color, shape, size, etc.), while
each instance of a duck, i.e., each combination of those
attributes, could be associated to a point in space. If those

attributes are in turn combined with a spacetime
configuration, i.e.,

duck duckY (qtime)  (loctime)

then the duck will be able not only to evolve, but also move
and have a history. Concepts like hill, construed as fixed
objects, could not move independently from their location,
so they could only be described in static terms. Insofar as
denotational configurations can be combined, a dynamic
description of a hill would always be possible, which of
course would be no news for a cartoonist.

2. Geolocation

Geolocation data could be represented as a category
cluster by using the category structures derived from its
components, e.g., see Figure 5.

u

j

France

· ·
14.20 22.35

u

exit / enter:

i e i (location)

 i e i (time)

· ·
Rome e Paris

· ·
14.20 e 22.35

move:

i e i (location)

i e i (time)

61

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Geographical map categorization

For example, from the categories

Lisbon / Madrid / Rome / ...
Lisbon / Porto / Coimbra / ...
Portugal / UK / Austria / ...

a number of spatial relations could be identified. For
example, if a point in a map is denoted as x, then the
adjacency relation k20 could be associated to the English
preposition ‘in’, e.g.,

in(x, Lisbon)
in(x, Portugal)
in(x, Europe)
in(Lisbon, Portugal)
in(Portugal, Europe)

The expression in(x, Lisbon) above is based on the fact
that a town can be represented either as a one-dimensional
point or as a two-dimensional area.

Spatial concepts potentially used by geolocation
applications could be additionally defined based on
quantitative-range labelling (e.g., near, far, distance) or on
specific configurational features (e.g., North, South,
latitude, equator). As has been shown, movement concepts
could also be incorporated by means of the (S1) updating
rules.

Similarly, time concepts could also be categorized in
different ways, i.e., represented by means of different
configurations, e.g., see Figures 6 and 7.

Figure 6. Time categorization (a)

Figure 7. Time categorization (b)

Concepts such as before, after, during, yesterday, etc.
would naturally emerge from such representations, and
could then be used, together with spatial and/or movement

representations, to derive syntax expressions with querying
and/or updating purposes.

3. Meteorology

Representations describing movement could also be used
to describe the evolution of meteorological variables, just by
replacing spatial categories with categories derived from
meteorological variables, e.g., see Figure 8.

Figure 8. Evolution of meteorological variables

Expressed as category clusters, the values of the
different variables would be represented as, e.g., Figure 9.

... v1 v1 V v2 ...

... T t1 T t2 ...

Figure 9. A category cluster representing the evolution of meteorological
variables

where v1, v2 would denote individual, point-like values of
the relevant variable, while V, T would generically denote
resp. value ranges and time spans. Thus, in Figure 9 the
value v1 would not change during a time span T until the
time t1, after which it would evolve to v2 along a range of
values V during a time span T.

As has been noted, both time and value ranges could be
quantified, but for the purposes of generating syntax
expressions that would not necessarily be a requirement.

The above examples show that there are a number of
domains where data items —whether concept attributes or
measured values— can be categorized and represented as
category clusters. By means of the expressions (6) and (9),
such category clusters have the potential to generate as
many syntax constructions as could possibly be derived
from them, even if some of their elements may not have
been labelled and/or conceptually identified. The filling of
lexical gaps, and the development of novel theoretical
frameworks, are just natural consequences of that potential.

Since the advent of smartphones, we are surrounded by
data. We can wirelessly access GPS and geographical data
practically anywhere anytime, as well as train/flight/bus
timetables, food recipes, health tips, weather forecasts, etc.
By structuring and combining those data in terms of
category clusters, they could be endowed with a potential to
exchange (i.e., generate and decode) information through
possibly any existing NL. Furthermore, their basic
components would be derived from objective and
irreducible properties of space and time, and would
therefore neatly fit into the definition of semantic primitives.

town

country / region / ...

day

morning

temperature / humidity / wind / cloudiness / rain / sunshine

time divisions, e.g., days, hours

week

monthh

day

62

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

XIII. DATABASES AS CATEGORY CLUSTERS

A variety of approaches to communication through
different arrangements of data have been described [3][11],
including based on ontologies [49][5], the Semantic Web
[34], and even neural networks [38]. However, neither
ontologies nor databases or, for that matter, n-tuple concepts
are explicitly conceived as category clusters [12]. They may
contain symbols denoting categories, but in general they do
not acknowledge the fine structure provided by semantic
clusters, whether by identifying irreducible relations or by
decomposing extant relations into irreducible ones.
Furthermore, some of the categories identified are only
implicitly based on spontaneous categorization, and their
updating structure is not formally acknowledged and,
consequently, often not used.

An interpretation of databases as category clusters, i.e.,
reflecting category structures and semantic relations, would
make it possible to directly generate and decode a much
larger and richer repertoire of string syntax —and hence,
conventional syntax— expressions. It would therefore
provide a more natural way to exchange information with
conventional language users by using string syntax as an
intermediary. This can be summarized as follows.

Figure 10. Two alternative data arrangements for information exchange

with conventional language users

The expressions (11) and (12) provide a means to resp.
update and query a communicating party through string
syntax, provided that the sender’s and the receiver’s data
arrangements are consistent with each other. Therefore,
whatever the spatial configuration of a database, string
syntax communication will be possible whenever the
database’s content can be interpreted in terms of categories
and category clusters.

In a database D, an empty table T consisting of the
columns C1, C2, ... could be interpreted as a combination of
the associated categories C1, C2, ..., and any instantiation of
that combined category would describe a row (or potential

row) in T. For example, let the table Tk consist of the
columns ‘name’, ‘age’, and ‘address’. Because each of these
can take any value within its respective scope, they can also
be construed as categories, i.e.,

name()  age()  address() >> G

where G would be a category cluster associated to T. By
specifying values for those columns, a number of rows
would be obtained, e.g.,

name(Oz)  age(39)  address(7th Av.) >> row1
name(John)  age(54)  address(97 St.) >> row2
name()  age(33)  address(221B St.) >> row3

Now, if we use the connective  to link the rows above,

then the table T could be interpreted as a category
ambiguously referring to any of its rows. If we use the

connective  instead, then T could be interpreted as a
combination of rows, i.e.,

row1  row2  row3  ... >> employee
row1  row2  row3  ... >> employees

In string syntax, both rows and cells within a row could
be referred to by means of (6) and (9), e.g.,

employee [r2 age(33)]
age [r’2 employee [r3 221B St.]]

where the relations r2, r’2, r3 would be defined according to
(4) and (5). In the general case, communication between a
database and a user could be established in either direction
as follows:

A. User to database

By reversing the rules used to derive conventional
syntaxes, messages sent by users to a database D for
updating or querying purposes could be expressed in string
syntax by means of resp. (9) or (10). Such messages could
be processed at D insofar as its tables could be interpreted as
category clusters and those clusters would be consistent
with the sender’s. When that is the case, updating and
querying could be interpreted in D as follows

String syntax Database operation
G [rm !u] N1(u1)  ...  Nm(u ←) (13a)
!G [rm u] N1(u1)  ...  Nm(u) ← Nm(u) (13b)
?G [rm u] Nm(u) → N1(u1)  ...  Nm(u) (13c)
?Cm [r’m G] N1(u1)  ...  Nm(→ u) (13d)

where the symbols ← and → denote resp. the incorporation
of a new item and the identification of an extant item. The
updating operation would add resp. a value or a row to D,
while the query would prompt D to identify resp. an item or
a table, and then send the result to the querying party.

Therefore, to be able to process string syntax
expressions, a database should be configured so that either
(a) the column headers in its tables reflect categories
potentially referred to by the user, or (b) a sub-table could
be identified in D for each category cluster that might be
referred to by a user.

This is not uncommon. Meteorological and geolocation
databases usually record data expected to be of interest for
the general user, and databases containing spatial/temporal
data most often lend themselves to semantic interpretation.
As an example, let us define the category cluster G as in
Figure 11:

Category
clusters

String

syntax

(DB)

Conventional syntax

(e.g., English)
Data

items

Databases

63

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

... h1 h1 H h2 ...

... T t1 T t2 ...

Figure 11. Space-time category cluster

This could be interpreted as describing a stay at the
location h1 for an indefinite time T until the time t1, then
some movement along some distance H during an indefinite
time span T, and then the presence on a fixed location h2 at
the time t2. From that cluster, the subclusters

h1 H H h2

t1 T T t2

could be denoted resp. as Gdepart, Garrive, implying the
relations

from(Gdepart, loc)
at(Garrive, time)

The above relations could be used to construct a number
of useful string syntax expressions, e.g.,

Gdepart [from Rome]
Garrive [at 09:23]

and therefore also updating and querying expressions, e.g.,

?time [r’2 Garrive [to Rome]]

For a database to be able to interpret such expressions,
the adjacency relations in the sub-table

origin destination departure arrival

Bonn Rome 20:15 22:30

should be reconfigured so as to reflect the semantic relations
in G, e.g.,

[origin] H [destination]

[departure] T [arrival]

so that, e.g., the sub-table

H h2

T t2

could be associated to the category cluster

Garrive(loc, time)

The reconfigured table in D is actually a three-
dimensional table, where the original columns are now
arranged differently, i.e., only the topology of the table has
been changed.

B. Database to user

The correspondences (13a-b) could reciprocally be used
by D to derive reports expressed in string syntax, i.e.,

Database operation String syntax
N1(u1)  ...  Nm(→u) G [rm !u]
Nm(u)→N1(u1)  ...  Nm(u) !G [rm u]

that would prompt the receiver to update its representation
in response to the query previously sent, or by, e.g., a
geolocation algorithm intended to keep a user updated on
his surroundings.

An example would hopefully illustrate the reporting
process. In a meteorological database M, the column
headers ‘temp’, ‘humidity’, ‘loc’, and ‘time’ could be
associated a combined category that a user would interpret
as a number of variables describing different weather states,
i.e.,

Column headers Combined category
temp humidity loc time temp  humidity  loc  time

A query intended to find out, e.g., the temperature in
Paris at 22:05 would be expressed in string syntax as

?temp [r1 Paris] [r2 22:05]

In response to that query, the database would locate the
row R having ‘Paris’ under the header ‘loc’ and ‘22:05’
under the header ‘time’. It would then retrieve from that row
the cell under the header ‘temp‘, and express the resulting
value in string syntax as

R [r3 !33ºC] [r1 Paris] [r2 22:05] (14)

If we use English words for the subindices, then we can
write

r1 rin
R Ra-row-in-this-database
r2 rat

A few translation rules, together with (7), would convert
(14) into the conventional syntax expression

the temperature from a row in this database in Paris
at 22:05 is 33ºC

However, the receivers need not even know that the data
has been retrieved from some table in the source database.
They have chosen to ask the source because they trust it to
output reliable data. Therefore, the source might safely
decide to just translate

the temperature in Paris at 22:05 is 33ºC

This omission might seem like a trick shrewdly devised
to get the desired result. On the contrary, it is an information

64

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compression device routinely used by natural language
speakers. Consider just a few examples.

- the kitchen [of our house] is in the ground floor
- I can see the airport [of Beijing] now
- the book [you expressed an interest to buy three

minutes ago] is Finnegans Wake

XIV. POTENTIAL TOOLS FOR DEAFBLIND USERS

One sector of the population that could potentially
benefit from this framework are deafblind users. DeafBlind
People (DBP) are affected by different degrees of
visual/auditive impairment. They communicate through a
surprisingly wide —and quite imaginative— diversity of
languages and communication media [42][46], and have a
severely limited access to the perceptual world [33]. Their
access to information is generally limited to communication
with other human beings through various, often non-
standard, languages. Therefore, they generally require a
human intermediary to communicate with the external
world, as well as to find their way around. Attempts to
facilitate DBP communication have been described,
including based on gesture recognition [2][29], tactile
messages [8], human-robot interaction [39], and many
others. However, deafblind people’s familiarity with
abstract concepts is limited, which poses a formidable
challenge [9].

In that respect, the potential benefits of the ideas
presented in this paper are threefold, i.e., (a) string syntax
could be used as a bridge between databases and DBP
languages, which could give DBP users access to a wealth
of external information otherwise inaccessible to them; (b)
because semantic clusters can be used to generate and
decode syntax expressions, the recognition of such
structures, and the knowledge of the rules to deal with them,
could facilitate DBP language learning and comprehension,
and enhance their conversational skills; and (c) the
possibility to spatially represent semantic relations could
provide DBP with an invaluable tool to enhance their
cognitive universe in a more systematic way than what has
been achieved to date [13][48]. The first two benefits could
be attained resp. through parsing and training. The third one
will be discussed below.

The structure of perceptions plays a key role in the
formation of concepts. As an example, people who have
experienced long-term visual deprivation and are given
access to retinal perceptions initially fail to see those
perceptions in a structured way [20]. Nonetheless, insofar as
perceptions can be represented in terms of spatial adjacency
relations, they might be accessible anyway. No blind person
can perceive colors, but a structural description of a rainbow
or, for that matter, of the color spectrum could be
apprehended by them and labelled in a way consistent with
non-visually impaired people’s. Such possibilities open the
door to a number of tools aimed at a cognitive enhancement
of DBP. While DBP lack the input to construct some
sensory representations, such representations could possibly
be taught to them, thereby helping them not only to find

their way around without human assistance, but also to
enhance their knowledge about the world they live in.

Actually, language learning and cognitive enhancement
would go hand in hand. Both would rely on three
components dealing with the aspects of resp. cognition,
output, and input, namely: (a) recognizing the structure of
basic categories, as well as a number of elementary category
clusters; (b) learning to associate lexical tokens to semantic
representations or parts thereof; (c) recognizing the basic
components of string syntax, i.e., categories, instances, and
relations, as well as the spontaneous categorization
mechanism.

The realization that a number of categories can be
updated and assembled, and of how it can be done, should in
turn lead to the realization that semantic gaps can be filled,
and that more complex concepts can be envisioned, whether
they have a material correlate or are a personal creation.
This should make DBP aware that the both the material and
mental worlds are ever larger and, with the right tools at
hand, it can be explored.

A roadmap along those lines could only be sketched
within the scope of this paper. In the examples below, the
teaching methods suggested appear in italics, while the
teacher’s prompts are shown between asterisks, and lexical
tokens are enclosed in angle brackets. The symbol :: denotes
the expected association between the prompts and the
corresponding lexical tokens.

Category animal (e.g., toys)
Tactile recognition
<animal><x>
where <x> :: *duck*/*bird*/*turtle*/...

Category shape
Tactile recognition
<shape><x>
where <x> :: *duck*/*square*/*circle*/...

Category size
Tactile recognition
<large><x>/<small><x>
where <x> :: *duck*/*square*/*circle*/...

Category up/down
Hand position
<x><up>/<x><down>
where <x> :: *duck*/*box*/*hand*/...

Spatial updating
Tactile recognition
<y><next to><x>
where <x>,<y> :: *me*,*table*/*table,*you*/...

Time updating
Tactile exploration (e.g., on a clock face)
<y><then><x>
where <x>,<y> :: *<sleep>*,*<wake up>*/...

Category still/moving

65

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Tactile recognition
<x><still>/<x><moving>
where <x> :: *<rabbit>*,*<car>*/...

Having identified space and time concepts and their
respective updating structure, a possible course of action
could be for the DBP learner to be presented the semantic
cluster in Figure 11. From that cluster, a number of
subclusters representing concepts, e.g., move, stay, before,
from, at, etc. could be identified, and their lexical correlates
could be used to assemble a number of syntax string
expressions, as described in Section XIII.

Regarding the possible implementations, a portable
device with a haptic interface, which could physically
change hands to send and receive messages by other human
parties, would arguably provide a higher degree of
autonomy than garments or other wearable devices.
Furthermore, the interface provided by a portable device
would facilitate a more sophisticated interaction,
particularly for the purposes of language exchange, and
language and concept learning. It could also be a means, or
at least provide a stimulus, for the users to replace their
sign/haptic language or dialect with string syntax as a user-
friendly, universal language. Its three basic elements, i.e.,
categories, instances and relations, could be readily
expressed by means of haptic icons, and its syntax rules are
simplest and intuitive.

Human language is a vast field, encompassing all kinds
of conceivable concepts. Therefore, any communication
project could only be realistic if constrained to a specific,
clearly delimited concept domain. In view of this, a possible
plan aimed to learning and communication should initially
consist of a number of basic semantic fields plus a roadmap
to expand such fields to other semantic domains. Actually, a
significant problem might be the identification of clear
boundaries, considering the all-pervading nature of semantic
notions.

A number of tools to be initially developed to implement
such an interface would be as follows:

COST: A parser to translate [simple] conventional syntax
(CO) expressions into string syntax (ST) expressions

STCO: A translator from string syntax (ST) to conventional
syntaxes (CO)

LESE: A dictionary associating lexical tokens (LE) to
semantic configurations (SE)

META: A dictionary of metalanguage signs to instruct the
recognition of semantic tokens and their association to
string syntax components

DASE: A module to rearrange database data (DA) into
identifiable semantic configurations (SE)

LEX: A number of limited lexicons from different domains.
Initially, they might include meteorology (MET), and
geolocation (GEO). As a potential further addition, static
and dynamic in-out concepts (IOC) could also be
explored

The author has already designed an interface along those
lines. However, a detailed description of that interface
would be beyond the scope of this paper.

CONCLUSION

A representational approach to data, together with the
categorial structure implicit in natural languages, can be
seen as the components of a formal framework that
integrates syntax and semantics under a single theoretical
construct. Within that novel syntax/semantics integrated
framework, human communication could be achieved by
structurally representing either internal thoughts or external
perceptions/data as category clusters. In such a
representation, the category-instance relation could be used
to locally refer to individual components through a
disambiguation process, which could be expressed in a
particular string form.

The syntax informing such strings has been shown to be
consistent with conventional languages, as well as databases
and various representational implementations. Furthermore,
the identification of formal structures underlying categories
lends category clusters an objective semantic quality, and
endows them with the potential to generate syntax
expressions.

This unification of syntax and semantics into one single
model could be the basis for an interface to be designed,
among other purposes, to: (a) operate as a universal
translator; (b) derive language expressions from spatial
representations, and conversely, extract representations from
syntax strings; (c) rearrange databases in a representational
format; and (d) give sensory impaired people a more
extensive access to the external world.

Future work along those lines would include the
implementation of a number of interactive database-user
interfaces, e.g., for geolocation purposes, flight/train data
querying at resp. airports/train stations, etc., with the aim of
progressively enlarging their scope and incorporating ever
more complex data sources. The optimization of such
interfaces would also be interactive, and essentially not
different from the dispelling of misunderstandings in
colloquial language.

The development of an interactive methodology along
the lines sketched in Section XIV would also be a promising
tool to enhance the cognitive universe of deafblind people.

ACKNOWLEDGEMENTS

Some notions presented in this paper, and specifically
the formalization of the concept of denotational jigsaw,
might not have materialized without the critical comments
of Ernesto Sánchez de Cos, who forced me to delve deeper
into ideas that initially were rather vaguely expressed. The
patience and kindness of Sándor Darányi, always willing to
pay attention to my ramblings, rain or shine, were also
invaluable to me, as well as his critical comments and his
emotional support during the long and painstaking mental
process that led to the completion of this paper. My sincere
thanks to both.

REFERENCES

[1] C. Seror, “A Data Referencing Formalism for Information
Exchange between Deafblind People and Databases,”
SEMAPRO 2019, The Thirteenth International Conference on
Advances in Semantic Processing, 2019.

66

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] G. Airò Farulla et al., “Real-Time Single Camera Hand Gesture
Recognition System for Remote Deaf-Blind Communication,”
International Conference on Augmented and Virtual Reality
AVR 2014: Augmented and Virtual Reality, pp. 35-52, 2014.

[3] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural
language interfaces to databases - An introduction,” Natural
Language Engineering, 1(1), pp. 29–81, 1995.

[4] L. W. Barsalou, “Perceptual symbol systems,” Behavioral and
Brain Sciences 22, 577–660, Cambridge University Press,
1999.

[5] J. A. Bateman et al. “A linguistic ontology of space for natural
language processing,” Artificial Intelligence, 174.14: 1027-
1071, 2010.

[6] R. J. Bobrow and R. M. Weischedel, “Challenges in Natural
Language Processing,” Cambridge University Press, 1993.

[7] M. H. Bornstein and C. Mash, “Experience-Based and On-Line
Categorization of Objects in Early Infancy,” Child
Development, Vol. 81, Issue 3, pp. 884-897, 2010.

[8] S. Brewster, and L. Brown, “Tactons: Structured tactile
messages for non-visual information display,” in 5th Conf. on
Australasian User Interface, ACM, pp. 15-23, 2004.

[9] S. M. Bruce, “The Impact of Congenital Deafblindness on the
Struggle to Symbolism,” International Journal of Disability,
Development and Education, 52:3, 233-251, 2005.

[10] A. Cahen and M. C. Tacca, "Linking perception and
cognition," Frontiers in Psychology, 2013.

[11] N. Caporusso et al., “Enabling touch-based communication in
wearable devices for people with sensory and multisensory
impairments,” in: 1st International Conference on Human
Factors and Wearable Technologies, pp. 149-159, 2017.

[12] E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” IBM Research Laboratory, San Jose, California,
1970.

[13] W. S. Curtis, E. T. Donlon and D. Tweedie, “Learning
behavior of deaf-blind children. Education of the Visually
Handicapped,” 7(2), American Psychological Association, pp.
40-48, 1975.

[14] M. E. D'Imperio, “Data structures and their representation in
storage,” Annual Review in Automatic Programming,
Volume 5, Part 1, 1969, pp. 1-75, ISSN 0066-4138.

[15] J. Davidoff, “Language and perceptual categorisation,” Trends
in Cognitive Sciences, Volume 5, Issue 9, 1 September 2001,
pp. 382-387.

[16] A. S. Eddington, “Space, Time and Gravitation. An outline of
the general relativity theory,” Cambridge University Press,
1920.

[17] N. Evans, “Dying Words: Endangered Languages and What
They Have to Tell Us,” Wiley-Blackwell, 2009.

[18] D. L. Everett, “Cultural Constraints on Grammar and
Cognition in Piraha,” Current Anthropology, Volume 46,
Number 4, 2005.

[19] G. Fauconnier, E. Sweetser (eds.), “Spaces, Worlds, and
Grammar,” The University of Chicago Press, pp. 1-28, 1996.

[20] I. Fine et al., “Long-term deprivation affects visual perception
and cortex,” Nature Neuroscience, Volume 6, No. 9, 2003.

[21] G. Frege, “Über Sinn und Bedeutung,” in: Zeitschrift für
Philosophie und philosophische Kritik. Vol. 100, pp. 25–50,
1892.

[22] C. Freksa, “Spatial and temporal structures in cognitive
processes,” Lecture Notes in Computer Science, Vol. 1337.
Springer, 1997.

[23] A. Gatt and E. Krahmer, “Survey of the State of the Art in
Natural Language Generation: Core tasks, applications and
evaluation,” Journal of Artificial Intelligence Research 61,
65-170, 2018.

[24] G. W. Gifford III, K. A. MacLean, M. D. Hauser and Y. E.
Cohen, “The Neurophysiology of Functionally Meaningful
Categories: Macaque Ventrolateral Prefrontal Cortex Plays a
Critical Role in Spontaneous Categorization of Species-
Specific Vocalizations ,” Journal of Cognitive Neuroscience,
Volume 17, Issue 9, pp. 1471-1482, 2005.

[25] N. Giret, F. Péron, L. Nagle, M. Kreutzer, D. Bovet,
“Spontaneous categorization of vocal imitations in African
grey parrots (Psittacus erithacus),” Behavioural Processes,
Volume 82, Issue 3, pp. 244-248, 2009.

[26] A. Gopnik and A. Meltzoff, “The Development of
Categorization in the Second Year and Its Relation to Other
Cognitive and Linguistic Developments,” Child
Development, Vol. 58, No. 6, pp. 1523-1531, 1987.

[27] U. Hasson, E. Yang, I. Vallines, D. J. Heeger and N. Rubin,
“A Hierarchy of Temporal Receptive Windows in Human
Cortex,” Journal of Neuroscience, 28 (10) 2539-2550, 2008.

[28] E. Horowitz and S. Sahni, “Fundamentals of Data Structures,”
Computer Science Press, 1983.

[29] J. Kramer and L. Leifer, “The talking glove,” SIGCAPH
Comput. Phys. Handicap 39, pp. 12–16, 1988.

[30] R. K. Logan, “What Is Information?: Why Is It Relativistic
and What Is Its Relationship to Materiality, Meaning and
Organization,” Information 2012, 3(1), 68-91, 2012.

[31] R. M. Losee, “A Discipline Independent Definition of
Information,” Journal of the American Society for
Information Science, 48 (3) 1997, pp. 254-269, 1997.

[32] D. Mareschal and P. C. Quinn, “Categorization in infancy,”
TRENDS in Cognitive Sciences Vol.5 No. 10, pp. 443-450,
2001.

[33] B. Miles, “Overview on Deaf-Blindness,” Helen Keller
National Center, Revised October 2008.

[34] B. Munat, “The lowercase semantic web: using semantics on
the existing world wide web,” Evergreen State College,
Olympia, 2004.

[35] D. G. Nash, “Topics in Warlpiri Grammar,” Massachusetts
Institute of Technology, 1980.

[36] S. E. Petersen and O. Sporns, “Brain Networks and Cognitive
Architectures,” Neuron, 88(1): 207–219, 2015.

[37] M. Petruck, “Frame semantics,” Handbook of pragmatics, pp.
1-13, John Benjamins Publishing Company, 1996.

[38] P. Z. Revesz and R-R. K. Veera, “A Sign-To-Speech
Translation System Using Matcher Neural Networks,”
https://cse.unl.edu/~revesz/papers/ANNIE93.pdf 2020.05.26.

[39] L. O. Russo et al., “PARLOMA – A Novel Human-Robot
Interaction System for Deaf-Blind Remote Communication,”
https://journals.sagepub.com/doi/10.5772/60416 2020.05.26.

[40] C. Seror, “Human language and the information process,”
https://zenodo.org/record/3263753#.XRmuceszaUk
2020.05.26.

[41] C. E. Shannon, “A Mathematical Theory of Communication,”
Bell System Technical Journal, Vol. 27, pp. 379–423, 1948.

[42] W. C. Stokoe, Jr., “Sign Language Structure: An Outline of
the Visual Communication Systems of the American Deaf,”
The Journal of Deaf Studies and Deaf Education, Vol. 10,
Issue 1, pp. 3–37, 2005.

[43] A. M. Tozzer, “A Maya Grammar, with bibliography and
appraisement of the works noted,” Papers of the Peabody
Museum of American Archaeology and Ethnology, Vol. IX,
p. 55, 1921.

[44] R. Vigo, “Representational information: a new general notion
and measure of information,” Information Sciences 181,
4847–4859, 2011.

[45] R. Vigo, “The GIST of concepts,” Cognition, Vol. 129, Issue
1, Elsevier, pp. 138-162, 2013.

67

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[46] YouTube, “Sistemas de Comunicación para Personas
Sordociegas,”
https://www.youtube.com/watch?v=SpcsbgM1TIc 2020.05.26

[47] R. Wille, “Formal Concept Analysis as Mathematical Theory
of Concepts and Concept Hierarchies,” Formal Concept
Analysis: Foundations and Applications. Ganter, B., Stumme,
G., Wille, R. Eds. Springer, pp. 1-33, 2005.

[48] K. Wolff Heller, P.A. Alberto, and J. Bowdin, “Interactions of
communication partners and students who are deaf-blind: A
model,” Journal of Visual Impairment & Blindness, 89(4), pp.
391-401, 1995.

[49] M. Zerkouk, A. Mhamed, and B. Messabih, “A user profile
based access control model and architecture,”
http://www.airccse.org/journal/cnc/0113cnc12.pdf
2020.05.26.

[50] F. Mesquita Carvalho and N. Kriegeskorte, “The Arrow of
Time: How Does the Brain Represent Natural Temporal
Structure?,” Journal of Neuroscience, 28 (32) 7933-7935,
2008.

68

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Improve Decision Support System Operations of Real-Time Image Classification

Utilizing Machine Learning and Knowledge Evolution

David Prairie

Electrical and Computer Engineering Dept.

University of Massachusetts Dartmouth

Dartmouth, Massachusetts United States

Email: dprairie@umassd.edu

Paul Fortier

Electrical and Computer Engineering Dept.

University of Massachusetts Dartmouth

Dartmouth, Massachusetts United States

Email: pfortier@umassd.edu

Abstract—This paper delves into the generation and use of

image classification models in a real-time environment utilizing

machine learning. The ImageAI framework was used to

generate a list of models from a set of training images and also

for classifying new images using the generated models.

Through this paper, previous research projects and industry

programs are analyzed for design and operation. The basic

implementation results in models that classify new images

correctly the majority of the time with a high level of

confidence. However, almost a quarter of the time the models

classify images incorrectly. This paper attempts to improve the

classification accuracy and improve the operational efficiency

of the overall system as well.

Keywords-component; Machine Learning; Tensor Flow;

Image Classification.

I. INTRODUCTION

Presented in this research paper is a new and novel
approach to machine learning design that maximizes the
balance between accuracy, efficiency, solution justification,
and rule evolution. This paper is a more complete and
informative description of the research presented at the
IARIA Data Analytics conference [1]. This research
improves four factors of machine learning within a single
design. During this research, traditional open source machine
learning methodologies were altered to improve different
aspects of machine learning, tested against a single
application. These traditional methodologies were integrated
using ensemble methods for enhancing the performance
along with providing justifications for the classification
results. This paper discusses the results, data used, the
analysis, and validation methodologies used.

This research attempted to find an optimal balance
between maximizing a system's accuracy and minimizing a
system's time and space requirements. As shown in Figure 1,
these three attributes are directly correlated with each other
and the system integrator needs to determine the trade-off
required for the implemented system.

During this research the Identifiable Professionals
(IdenProf) Dataset was used for training and validating
models. The dataset contains ten image sets of
distinguishable professions, each set containing 900 images

for training and 200 images for validation per profession.
The expected outcome of this research is a two part system
capable of analyzing a real-time feed and perform profession
classification based on a remotely generated model.

Figure 1: System Efficiency Tradeoffs

This research aimed at answering the following four

questions based upon improved decision support system
operations. Investigations and implementations conducted
comprised of different components of the Decision Support
System (DSS). This research reviewed prior research in the
machine learning technical field and built upon previous
research to answer the following hypothesis:

1. Utilizing a knowledge base, can a DSS be

implemented to minimize the time and space
requirements, while maximizing the accuracy of the
suggested solutions?

2. How can a knowledge base be implemented to
improve the overall accuracy of the system?

3. Is a DSS able to provide solution justification to the
user, enabling users to have trust in the answers
being provided?

69

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4. Is it possible to improve rule evolution without
needing to store locally all previous cases for doing
rule re-validations?

This paper is broken up into a Background section, where

high-level aspects of machine learning and knowledge-bases
are discussed. The Methodology is discussed following the
Background section. Following the Methodology section the
preliminary results are discussed in the Data Analytics and
Results sections. Finally, the conclusion discusses planned
future work and recommended further work.

II. BACKGROUND

Knowledge base systems enable problems to be quickly
and accurately solved based on previous cases. Knowledge
base systems also allow for problem solving of very complex
situations at speeds humans alone would not be able to
achieve at such accuracies. Throughout the last 20 years,
knowledge bases have grown in applications to assist in
everyday tasks. More recently, IBM’s Watson, an Artificial
intelligence supercomputer, is in the limelight through its
uses in the medical arena and in personal taxes with H&R
Block. Other applications of machine learning have been
completed or are being developed include detecting insider
threats, big data analytics, market analysis for proposals,
condition-based maintenance, and diagnostics in the medical
field.

In the medical industry, Watson has proven capable of
making the same recommended treatment plans as doctors
99% of the time. Unlike traditional human doctors, Watson
can use all available medical resources when making a
patient's diagnosis. By having such vast amounts of
knowledge, Watson can provide treatment options doctors
may miss. Watson utilizes powerful algorithms and immense
computing resources to analyze all medical relevant data to
find “…treatment options human doctors missed in 30
percent of the cases” [3]. Since Watson has so much
computing power it is able to determine treatment plans for
patients faster than human doctors could, allowing doctors to
put patients on treatments faster with the intervention of
Watson. Watson is one example of how knowledge base
systems positively benefit society by efficient and accurate
problem solving of complex problems. Additional research
into knowledge bases will allow them to problem solve
faster, with more accuracy, and with less compute power
requirements.

Condition-Based Maintenance, shown in Figure 2, is the
method of monitoring a system’s components to determine
what level of maintenance is required for the system to
remain functioning. Using a Condition-Based Maintenance
system for managing maintenance events allows
professionals to be proactive with performing maintenance
activities versus being reactive. Reactive maintenance
involves replacing components after they already failed,
causing system downtime. When a system goes down for
unscheduled maintenance or repairs, many different
repercussions can occur depending on the affected system’s
role. Using air traffic control centers as an example, any
unplanned downtime has the potential to disrupt hundreds of

flights and cost a significant amount of money due to flight
delays [12]. Machine learning can be used to assist
professionals to determine optimal maintenance schedules
while minimizing system down time.

Figure 2: Condition Based Maintenance [2]

Although some of the described applications may not be

as drastic as life or death medical decisions, all still can
greatly affect society. Utilizing machine learning allows
organizations to detect threats, conduct predictive
maintenance, and perform many repeatable decision-making
tasks consistently and efficiently. By allowing a machine to
learn over time through historical cases and building a
knowledge base, the machine allows operators to make
informed decisions by providing every available piece of
information. Systems are able to make decisions in a fraction
of the time compared to a human expert attempting to come
to the same decision, however additional advancement is
needed to make machine learning more accurate and
efficient. Areas needing additional inquiries include indexing
algorithms, storage solutions, and finally the decision-
making algorithms themselves. Machine learning is
important because of the wide range of applications and
benefits provided through the decision making and
predictions capable. As the field advances, machines will
create predictions and perform decision making faster and
more completely.

A. Watson

Watson originally became well-known for competing in

Jeopardy. Watson is a knowledge base altered for various

applications including Jeopardy, medical field, and taxes.

Breaking down questions from a complex human language

was required for Watson to compete at the Jeopardy game

[3]. The analysis of the Jeopardy questions and identifying

the correct answer needed to happen almost instantaneously

to compete on a high caliber level.

With the Jeopardy Challenge, Watson needed to break

down questions out of human language to a format Watson

could understand. The questions needed to break down into

the main statement and then separate supporting statements

out. “…decompose the question into these two parts and ask

for answers to each one, we may find that the answer

common to both questions is the answer to the original clue”

[3].

In recent years, IBM altered Watson to handle taxes by

collaborating with H&R Block. Although there is not much

technical information available discussing the design of

70

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Watson's work with taxes, there are a few assumptions that

can be made. We would assume Watson uses a rule and

case-based design. The rules would take in data on a new

client, which determine what tax actions could take place.

Watson would compare the new client to all previous clients

allowing for more accurate and consistent tax evaluation.

B. Deep Learning Frameworks – Tensor Flow

Tensor Flow is a deep learning framework built on the

first generation framework called DistBelief. Both

frameworks were developed by Google to advance

technology for the public and for use in Google’s wide

range of data products [4]. One of TensorFlow's major

improvements over DistBelief is its ability to scale up onto

large distributed hardware platforms utilizing multiple

CPUs and GPUs. Tensor Flow utilizes a master orchestrator

to distribute work across the number of hardware platforms

available, each individual platform then breaks the work

down to be solved across each system’s available CPUs and

GPUs.

Benchmarks conducted by Google researchers showed

the Tensor Flow framework performs, as well as other

popular training libraries. However, Tensor Flow did not

have the best performance statistics as other libraries in the

study when tested on a single machine platform [9].

Researchers at Google are continuing development in the

Tensor Flow framework to incorporate additional

optimization and automation to improve the performance of

the framework.

C. Rule Evolution IB1 & IB2 Algorithms

The IB1 and IB2 algorithms are used to evolve a

system's rules used for classification by incorporating new

cases. The addition of more instances over time causes the

machine to alter its rules to improve the probability of

giving a correct prediction on future instances. Instances can

either enforce existing rules or go against existing rules.

Over the course of a training period, the IB1 algorithm will

converge to the actual results based on altering its rules. IB1

requires data to have specific attributes, making cases

distinct enough for the algorithm to learn over time. If the

data does not have distinct attributes then the machine will

not learn, since no strong points of comparison are available

between cases [5].

A downside of the IB1 algorithm is the need to store all

correct and incorrect classifications over the lifetime of the

machine. The IB2 algorithm is a branch of the IB1

algorithm that does not require the storage of all

classifications, only the incorrect classifications. The

tradeoff of saving storage space is the increase in time

required for the IB2 algorithm to learn to predict with strong

accuracy [5].

During the evaluation of both the IB1 and IB2

algorithms, researchers determined both algorithms are able

to achieve acceptable prediction accuracies in some

situations. However, IB1 attains greater accuracies on each

scenario when compared to the IB2 algorithm. The increase

in accuracy for IB1 could be attributed to the storing of all

classification events versus only the incorrect

classifications.

D. Ensemble Method

Ensemble methods is the practice of implementing

multiple machine learning algorithms and incorporating an

additional algorithm to vote the responses to a single

response. “Ensemble methods are learning algorithms that

construct a set of classifiers and then classify new data

points by taking a (weighted) vote of their predictions'' [6].

Ensemble methods help to remove model bias and

overconfidence for models against specific applications.

“Ensemble methods are meta-algorithms that combine

several machine learning techniques into one predictive

model in order to decrease variance (bagging), bias

(boosting), or improve predictions (stacking)'' [7].

Figure 3: Weather Model Example [8]

Ensemble methods are used in other industries; for

example meteorologist compare numerous models to

generate a cone of certainty for hurricane predictions. Figure

3 shows an example of a cone of certainty track for

hurricane Dorian in 2019. This cone was generated by

averaging multiple hurricane track models to a single cone.

The cone shows decreasing assurance in the accuracy the

further in time of the prediction.

One ensemble method, the Bayesian method, is a

common practice of integrating multiple classifiers into a

single classifier. The Bayesian method utilizes a weighted

average method for determining the proper response.

However, researchers from the University of Washington

found the Bayesian method has a higher rate of error than

other methods of ensemble [9].

Figure 4: Ensemble Voting Methods [10]

71

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another method used when incorporating ensemble with

machine learning is the bagging method. Bagging involves

multiple training models on different subsets of data and

integrating the outputs from each model to produce a single

result [7]. Boosting is another method for using numerous

predictions to create a single result. Both the Bayesian and

bagging methods are depicted in Figure 4.

III. METHODOLOGY/THEORY

This section discusses the methodology used in the
completion of this research. The research process followed
the system engineering v-diagram during development, as
shown in Figure 6.

Figure 6: Design Methodology

This section is further broken into a system architecture

and software architecture sections.

A. System Architecture

The implementation, which is shown in Figure 5, is
broken into four sections; a workstation computer, web
server, raspberry pi, and a shared storage box. The
workstation computer contains an NVidia GTX 980ti and is
used for generating models based on the training images.
Once the models are generated they are stored on a
centralized shared storage array.

The model generator portion of the system handles

ingesting a multitude of images and generating 200 models
per generation algorithm. The model generation is a
compute-intensive operation, taking about 90 seconds per
model at 200 models per algorithm to run, and requires a
high level of resources to provide accurate results.
Additional hardware options were investigated, including
Amazon's Web Service and Digital Ocean's droplets. Both of
these alternatives allow users to utilize a pay by use virtual
Linux environment having a wide range of hardware scaling
options. These options were not chosen to eliminate
variables introduced by relying on another company's
infrastructure.

A Raspberry Pi 3 B+ [11] was used for real-time image
classification utilizing an onboard camera. During the initial
testing and validation, the model generator was used. The
model generator was capable of classifying a large number
of images in rapid succession to validate the improvements
implemented. The Raspberry Pi was best suited for
completing single image classifications.

During initial testing and validation, the Model Generator
was also used in place of the Raspberry Pi. Connected to the
workstation is a networked HDD used for storing the
generated models.

The web server is the middle point between the
workstation and the raspberry pi, by serving the models
generated for the Pi to download. To enable future learning
from real imaging, the Pi will upload classified images to the
web server for the workstation to use in future model
generation.

Figure 5: System Flow Diagram

72

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Software Architecture

The following software packages and frameworks are
used to generate the models for real-time image
classifications and for classifying new images:

 Python 3.6

 Tensorflow-GPU

 Numpy

 SciPy

 OpenCV

 Pillow

 Matplotlib

 H5py

 Keras

 ImageAI [12]

ImageAI is an API that can generate models based on an

image set and perform image classifications based on the
generated models. The API can generate models using the
Desenet, Inveption v3, Resnet, and Squeezenet algorithms.

The workstation utilizes the above listed software when
generating the initial models used for classification. ImageAI
is a wrapper framework for the rest of the libraries,
simplifying the development process. The same ImageAI
framework is used on the raspberry pi for real-time image
classification utilizing an add-on camera board. The
raspberry pi is capable of handling the classification
algorithms because the model generation and model
evolution is offloaded to the workstation [13]. This heavily
reduces the compute requirements, enabling the mobile real-
time classification.

The web server is a repository for the raspberry pi to
retrieve the latest generated models and to upload classified
images for further analysis. Real-time images are uploaded
to the webserver for manual verification of the image's
classification and are then loaded into the workstation as
additional training images to evolve the models. The
combination of the workstation and Raspberry Pi enables an
overall system supporting model evolution while increasing
the efficiency of the real-time classifier [13].

A future implementation adds a system capability of
justifying the classifications provided. The current design
behind the justification uses the built in confidence levels
provided when classifying images. An alternative approach
includes providing sample images that were classified using
the same models and produced the same results.

C. Model Training

The generation of the classification models requires one
data input and five configuration settings to generate the
models. The script takes a folder path to a subset of the
image dataset used for training as a script input. The
remainder of the images is used for validating the generated
models. The folder structure, as seen in Figure 7, consists of
one folder per profession with each folder containing at least
200 images.

The next section of the script generates four different
types of models based on four different generation
algorithms. Each generation takes five configuration settings.

The first one defines the number of image types, in this
scenario being the ten different professions. The next input is
the number of experiments, which determines the number of
models to generate. The enhance_data input is an optional
input, “This is used to state if we want the network to
produce modified copies of the training images for better
performance'' [14]. The batch size input is dependent on the
computing hardware available; the number is set to the
maximum amount allowed by the equipment available.
Finally, the show_network_summary input is used for
providing detailed information to the console during model
generation. The script cycles through the algorithms for
generation and then generates 200 models and one JSON file
per algorithm. The script serially generates the models for all
four algorithms: DenseNet, Inceptionv3, ResNet, and
SqueezeNet.

Figure 7: Image Folder Structure

Models are generated by breaking apart an image into

simpler parts. These parts determine a rule set that goes into
different layers. A culmination of each of these layers allows
the model to make predictions based on an inputted image.
The algorithm structures the layers in an optimal fashion to
maximize the efficiency of image predictions.

During model generation the number of models to
generate determines the number of variations the underlying
algorithms with attempt. For instance, this research used 200
variations for the parameter settings producing 200 different
models. The algorithms then determines an accuracy rate for
each model generated, allowing the user to select the model
with the highest evaluated accuracy. The generated models
are given a specific naming structure for easy identification.
The first parameter is an identification number ranging from
one to the number of models generated. The second
parameter gives the evaluated accuracy of the model, given
in decimal format.

Once all the models are generated, a PowerShell script
identifies the top three accurate models per algorithm. The
script copies the chosen models to a separate folder for use in
image classifications. When the models are generated, the
calculated accuracy is added to the filename, which is how

73

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the PowerShell script selects the top three. At this point, the
models are either used for individual image classification or
bulk image classification.

D. Image Classification

Classifying a single image is done through the individual
image classification script. This script takes in two directory
paths and a probability threshold as inputs. The directory
paths contain the location of the image to classify and the
models to use during classification. The probability threshold
determines what predictions from the models are used in the
voting. When the ImageAI algorithm attempts to classify an
image with a model, the algorithm returns a single prediction
with the probability of correctness. The probability threshold
variable only allows predictions with greater than 80%
confidence to be included in voting for the final predicted
profession.

After all twelve models preform their prediction, the
classifications that do not need the threshold requirements
are thrown out. The remaining predictions are used in a
simple majority voting scheme. The prediction with the
majority of the votes from the various models is presented to
the user with the average prediction confidence level and the
number of models agreeing with the prediction. The script is
capable of providing multiple predictions per image;
however, for this application, only single predictions are
needed.

E. Learning Algorithms

The ImageAI algorithm is used for the generation of the
models and acts as a wrapper library to various machine
learning algorithms, including Tensorflow. “ImageAI is an
easy to use Computer Vision Python library that empowers
developers to easily integrate state-of-the-art Artificial
Intelligence features into their new and existing applications
and systems'' [15]. By implementing the system utilizing
ImageAI, the overall development cycle was simplified by
masking the low-level coding. For this system, custom
recognition is utilized. However, the algorithm is capable of
also performing objection recognition and live video
detection [15].

F. Ensemble Methods

Two ensemble methods were used for combining the
results of the individual models. The initial method used a
simple majority voting scheme were each model has a single
vote to the prediction. During analysis the simple majority
method was altered to take into account each vote's
confidence level. This weighted voting method calculated,
which prediction has the highest confidence with a high
number of votes. For example, if four models prediction
waiter at a 95% confidence but five models predicted chef at
80% then the simple majority would produce chef as the
answer, while the weighted voting would produce waiter.

IV. DATA ANALYTICS

During this research, the Identifiable Professionals
(IdenProf) dataset [16] is used for evaluating the proposed
changes to the ImageAI algorithm. IdenProf contains 10

distinguishable professions, listed in Table I. A sample
image for each profession is shown in Figure 8. The dataset
consists of over 900 images per profession used for training
the system's models and an additional 200 images per
profession for validating the models. All images are sized to
a common pixel dimensions of 224 by 224 for uniformity.
The image set has a makeup of mostly white males from the
top 15 most populated countries [16], compared to other
genders or nationalities. During the duration of this research
project additional images can be gathered by pulling images
from Google's search engine.

Figure 8: Sample Profession Images [16]

The experiments included testing the base algorithms

against the training and validation images. These 200 images
allowed analysis and validation of the models generated at
all three stages of development. Additional experiments
utilized the raspberry pi to simulate processing images on a
low-powered machine. The models used in classifications
are selected based on the assigned accuracy defined during
model generation. For these experiments the models selected
have over eighty percent accuracy.

Table I: Training Images Classification

Training Images Classifications

Professions Accuracy

Chef 74.5%

Doctor 76.5%

Engineer 86.0%

Farmer 89.5%

Firefighter 90.5%

Judge 92.0%

Mechanic 84.5%

Pilot 87.5%

Police 87.5%

Waiter 72.0%

Figure 10 depicts a collection of the test images for a

pilot, one of the professions used in this research project.
When running a classification against a pilot image, the
system provides three results. Each result comes with a
probability that the answer is correct. Typically the models
generate one answer with a probability of over 95% and then
the remaining two answers will make up the remaining
percentage. During single image predictions, the system

74

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provided a profession prediction, with a confidence level,
and the number of models agreeing with the answer. The
confidence level is the average of the models in agreeance on
the vote disclosing the models that do not meet the threshold.
During this sample run three of the twelve models did not
meet the required threshold and were dropped from the
calculations. The remaining nine models resulted in pilot as
the answer with a combined confidence of 99.99%. Similar
results were found on additional tests with different images.
Single image predictions was tested on both the workstation
and the Raspberry Pi B+ to act as a low powered system.

Figure 10: Sample Profession Images - Pilot [16]

While testing the performance of the model generation

algorithm, the runtimes for each model algorithm were
compared at different image dataset sizes. Figure 9 shows the
runtime of the four model algorithms and the total runtime at
nine image set sizes. With the exception of the final image
set of 9000, each runtime gradually increased compared to
the next smallest image set.

V. RESULTS

The results were gathered through two different methods,
the first conducting single image predictions and the other
doing an automated bulk analysis.

A. Single Image Classification

During testing using the Raspberry Pi 3 B+ for image
prediction, the Raspberry Pi required slightly different
software. The Raspberry Pi required older versions of some
libraries because the newer versions were not yet compatible.
Figure 11 shows the results when testing the Raspberry Pi
against a pilot image. The Raspberry Pi was able to correctly
classify the test image with a 99.99% confidence level; based
on four separate models, with three of the four models
agreeing on the prediction. The same image was used for
tests on the desktop and both the high performance desktop
and the Raspberry Pi 3 B+ were capable of providing the
correct prediction and same confidence level. The only
difference was the use of four models instead of twelve, to

minimize the run time required and counter issues of not
enough memory for twelve models.

Figure 11: Single Image Prediction on a Raspberry Pi

During execution the Raspberry Pi was consistently over

90% memory utilization after running through five of the
twelve models. Shortly into the sixth model assessment the
python script crashed due to not enough memory available.
Based on this limitation, the Raspberry Pi was configured to
only use the top model from each algorithm instead of top
three models per algorithm. All twelve models were ran
individually and manually combined to verify only four
models could perform as accurately as twelve. The manual
combination resulted in nine of the twelve models agreeing
with pilot for the prediction with a confidence level of
98.1%. The four model implementation produced the same
correct profession prediction, but with an increased
confidence level at 99.99%. Since the accuracy and
performance increased the Raspberry Pi implementation was
altered to the four model design.

The Raspberry Pi storage requirements grow at a rate of
12 KBs per image classified with a constant model storage
rate of 205 MBs for four models. These requirements are
portable to any edge node device used. The Raspberry Pi
takes an average of five minutes to classify a new image and
about 600 MB of memory for each image classification. The
time to classify is dependent on the hardware used, were the
Raspberry Pi takes five minutes per image the desktop takes
only three minutes per image.

B. Bulk Image Classification

During the bulk image processing, the scripts ingested
two thousand images, evenly distributed between ten
different professions. All the images received a profession
prediction from all twelve models. The Squeezenet models

Figure 9: Model Generation Runtime

75

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

consistently produced the wrong predictions, with only 10%
of the predictions being correct. After further review, the
model Squeezenet was only able to correctly predict a single
profession. The Densenet and Inceptionv3 models all
performed with an 87% accuracy and the Resnet algorithm
performed slightly worse at 85%. Individually the models
produced accurate results, but when implementing the voting
schemes the results improved.

Table II depicts the results of two different automated
ensemble methods and a third with manual intervention.
Implementing simple majority voting, also known as
bagging, with a confidence level threshold resulted in an
88% accuracy for predictions. The minimum required
threshold eliminated the Squeezenet predictions from the
voting. Where some models performed poorly for some
professions other models performed strongly, resulting in
increased correct predictions.

The second ensemble method involved expanding on the
bagging algorithm and incorporating the confidence levels
into the vote determination. Implementing this design
improvement resulted in a one percent accuracy increase
over the simple majority voting scheme, at 89% accuracy
when averaging the predictions from all 2000 image
predictions.

Table II: Training Images Classification

Ensemble Results

Ensemble Method
Positively
Predicted

Total
Images

Percent
Accuracy

Majority Rule 1764 2000 88%

Weighted Vote 1777 2000 89%

Weighted with
 Object Recognition

1807 2000 90%

Part of the future recommended work is incorporating

object recognition to the predictions. The final row of Table
II shows the improvement of doing manual object
recognition for the waiter and chef professions. For manual
recognition a tray or check book was searched for in the
waiter images and a chef hat or side pocket thermometer for
the chef images. The manual searching resulted in an
improvement of one percent in accuracy over the weighted
voting. Table III extracts the results for just the waiter and
chef images. Adding object recognition gave an 8% accuracy
improvement when looking solely at the chef and waiter
images.

Table III: Training Images Classification

Object Recognition Result

Prof.
Weighted Vote Object Recognition

Positively
Predicted

Percent
Accuracy

Positively
Predicted

Percent
Accuracy

Chef 165 / 200 83% 174 / 200 87%

Waiter 148 / 200 74% 169 / 200 85%

Chef &
Waiter

313 / 400 78% 343 / 400 86%

C. Additional Image Test

To verify the implemented algorithms additional police
and firefighter images were chosen from Google searches
and evaluated through the prediction script. These images
were all classified correctly with over 98% certainty with at
least six models agreeing on the vote. This test was
conducted using the simple majority voting method. Each
image was run multiple times against the same models to
ensure the results were consistent each time.

An additional test of five new chef and five new waiter
images were chosen from Google searches and evaluated
through the prediction script. Eight of the ten new images
classified correctly, at a rate of 80%. The majority of the
correctly identified images had a certainty of over 90%.
These images were also classified using the simple majority
voting method.

VI. HYPOTHESIS RESULTS

This section discusses how the implemented design
addresses the four hypothesizes discussed in the introductory
section. The hypotheses are also listed below:

1. Utilizing a knowledge base, can a DSS be

implemented to minimize the time and space
requirements, while maximizing the accuracy of the
suggested solutions?

2. How can a knowledge base be implemented to
improve the overall accuracy of the system?

3. Is a DSS able to provide solution justification to the
user, enabling users to have trust in the answers
being provided?

4. Is it possible to improve rule evolution without
needing to store locally all previous cases for doing
rule re-validations?

A. Hypothesis 1

The implemented design does not decrease the time
complexity compared to using a traditional single model
process. However, by implementing a real-time image
classifier on an endpoint node and the model generator on a
remote server the space complexity does improve. The
thought behind this is to remove heavy storage requirements
from endpoints that typically have minimal resources, while
the remote server typically has excesses resources.

B. Hypothesis 2

The implementation of a voting scheme with multiple
algorithms used for model generation has allowed an
improvement in prediction accuracy on average. Individually
the models perform worse than when all models are used in a
voting scheme.

C. Hypothesis 3

The voting scheme provides additional confidence in the
provided result while increasing accuracy. The system
provides the number of models agreeing with a prediction to
assist in providing the user with greater confidence in the

76

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

result. The system also provides the probability the system
believes in the response provided.

D. Hypothesis 4

The feedback loop introduces manually verified
predicted images and adds those images to the pool for future
model generation to enhance the model evolution. By
improving the model evolution, predictions improve
accuracy and allow for the system to handle input changes
over time. For example, as a profession’s physical
characteristics evolve the system will evolve as well.

To validate the feedback loop for incremental evolution
nine separate simulations was ran. Nine sets of models were
generated using different training set sizes ranging from one
thousand to nine thousand in one thousand increments. After
the models were generated the same five hundred images
were classified against the top twelve models from each
model set. Table IV shows the simulations with the results.
The results did not show a perfect upwards curve for
accuracy, but did show that as more images were added to
the training set the accuracy did improve. From this test the
accuracy went from 78% at one thousand training images to
84% at nine thousand training images. The model set with
one thousand images for training was an anomaly at a higher
accuracy rate than the later model generations. This anomaly
could be explained by the subset of images used in training
just being an ideal set of images compared to the rest of
image subsets.

Table IV: Model Evolution Results

Model Evolution Results

Training
Images

Positively
Predicted

Incorrectly
Predicted

Total
Processed

Percent
Accuracy

1000 391 109 500 78%

2000 316 184 500 63%

3000 349 151 500 70%

4000 360 140 500 72%

5000 381 119 500 76%

6000 399 101 500 80%

7000 400 100 500 80%

8000 424 76 500 85%

9000 421 79 500 84%

VII. CONCLUSION

Throughout this project, there were limitations to
development based on the hardware available. For future
development in this area, additional work should include
different types of hardware platforms. The algorithms were
implemented to handle both low and high-performance
hardware. Implementing the system on hardware like the
Nvidia 2080 Ti should improve model generation because of
the additional memory and CUDA cores, allowing for
improved accuracy for profession predictions. Beyond
improving the specific hardware available, work with a
distributed computing system should be researched.

A distributed system, shown in Figure 12, would grant a
significant amount of computing power beyond what a single

system would provide. A considerable improvement a
distributed system would bring is a level of fault tolerance. A
single system, similar to the one used in this project, has
mostly all single points of failure. A distributed system
would relieve the issue with single points of failure. During
this project, using the Raspberry Pi attempted to simulate
half the system in a distributed environment by using the
Raspberry Pi as a low-powered endpoint node. The
Raspberry Pi can be combined with an onboard camera to
provide live image recognition as well.

Figure 12: Distributed Network

This system's edge nodes are scalable based on the

quality of the back haul bandwidth from the edge node to the
centralized repository. Each individual edge node acts
autonomously, with no knowledge of the other edge nodes.
As long as the centralized repository has enough resources to
handle obtaining all the images from the edge nodes, the
generation and distribution of models then the overall system
can easily scale.

Incorporating object recognition, visual shown in Figure
13, into this design would also improve the overall
performance. As discussed in the results section, object
recognition improved the predictions of the chef and waiter
professions by 8%. This was done with only four objects
manually identified, using additional objects would improve
the accuracy even more.

Figure 13: Object Recognition Example [16]

77

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14 depicts the image classification flow when
incorporating object recognition. Each image is classified by
twelve models using a whole image classification method.
The twelve predictions are then combined through the
weighted majority voting algorithm. Separately, the image is
analyzed for object recognition, with the results compared
against a repository of known objects linked to professions.
The result from the object recognition and whole image
classification is compared, if the results are the same then the
system will export the result. However, if the comparison
shows a disagreement then both results are evaluated for
their confidence to determine what prediction to make.

Figure 14: Object Recognition with Voting

Throughout this project machine learning algorithms and

applications were reviewed to determine what improvements
could be made to enhance the field. One of the greatest areas
needing improvement was providing users with justification
and confidence in the predictions a system is providing. This
project attempted to use multiple machine learning
algorithms in a voting scheme to increase the confidence
level in the predictions, while also improving the accuracy of
the predictions.

By using predictions as a feedback loop into the model
generator, the system attempted to improve predictions over
time. Improvement of the knowledge evolution is crucial for
a system operating for any length of time. For instance, with
the profession application, police officers over the last
hundred years have evolved through their uniforms. If a
system were generated using photos of police from the
1920's, then the system would have a difficult time providing
correct predictions of present-day police.

With improved knowledge evolution, accuracy
improvements become possible. The accuracy of the system
was improved by implementing a voting scheme and a
confidence threshold to drop low confident predictions.
Specific algorithms showed higher performance against
certain professions and were able to counteract lower-
performing algorithms.

To improve the efficiency of the system, the space
complexity was improved with a slightly worse time
complexity. By implementing a server and client system, the
size complexity was greatly reduced at the endpoint node
while maintaining typical size complexity at the server-side.
The client-side system only needed to download models
from the server when available. Otherwise, the client can
perform predictions uninterrupted. However, since the
overall system utilizes the integration of open source
elements there is minimal control over the inner workings of
the libraries affecting size and complexity.

Overall, the implemented system addresses all
hypotheses originally made by implementing common, open-
source software in an untraditional manner. The delivered
system from this project is capable of predicting a person's
profession solely based on a single image of them, in a
manner and speed humans would not be capable of
achieving.

REFERENCES

[1] D. Prairie and P. Fortier, "Improve Operations of Real-Time
Image Classification Utilizing Machine Learning and
Knowledge Evolution", IARIA Data Analytics, 2019.

[2] A. Saxena, “Knowledge-Based Architecture for Integrated
Condition Based Maintenance of Engineering Sysems,"
Georgia Institute of Technology, Tech. Rep., 2007, Accessed:
Aug. 2019. [Online]. Available:
https://smartech.gatech.edu/handle/1853/16125

[3] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A.
Kalyanpur, A. Lally, W. Murdock, E. Nyberg, J. Prager, N.
Schlaefer, and C. Welty, "Building Watson: An Overview of
the DeepQA Project," AI Magazine, 2010, Accessed: Aug.
2019. [Online]. Available:
https://www.researchgate.net/publication/220605292 Building
Watson An Overview of the DeepQA Project

[4] Google, "Tensor Flow" Google, [Online]. Available:
https://www.tensorflow.org/. [Accessed Apr. 20, 2019]

[5] D. Aha, D. Kibler and M. Albert, "Instance-Based Learning
Algorithms," Machine Learning, vol. 6, no. 1, pp. 37-66,
1991.

[6] F. Kittler and Josef; Roli, “Multiple Classifer Systems," in
First International Workshop, MCS 2000.

[7] V. Smolyakov, “Ensemble Learning to Improve Machine
Learning Results,"Statsbot, 2017, Accessed: Sep. 2019.
[Online]. Available: https://blog.statsbot.co/ensemble-
learning-d1dcd548e936

[8] F. P. R. E. Network, “Chances Increasing That Tropical
Storm Dorian Will A
ect Parts of Florida This Weekend," WUSF News, 2019,
Accessed: Oct. 2019. [Online]. Available:
https://wusfnews.wusf.usf.edu/post/chances-increasing-
tropical-storm-dorian-will-a
ect-parts-florida-weekend

[9] P. Domingos, “Bayesian Averaging of Classifiers and the
Overfitting Problem," University of Washington, Seattle,
Tech. Rep., 2002.

[10] J. D'Souza, “A Quick Guide to Boosting in ML," GreyAtom,
2018, Accessed: Sep. 2019. [Online]. Available:
https://medium.com/greyatom/a-quick-guide-to-boosting-in-
ml-acf7c1585cb5

[11] “Raspberry Pi 3 Model B+," Raspberry Pi Foundation, Tech.
Rep., 2019, Accessed: Aug. 2019. [Online]. Available:
https://www.raspberrypi.org/

78

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] DeepQuest AI, "Official English Documentation for
ImageAI!" DeepQuest AI. [Online]. Available:
https://imageai.readthedocs.io/en/latest/. [Accessed: Feb. 11,
2019].

[13] S. Jain, "How to easily Detect Objects with Deep Learning on
Raspberry Pi", medium.com, Mar. 20, 2018. [Online].
Available: https://medium.com/nanonets/how-to-easily-
detect-objects-with-deep-learning-on-raspberrypi-
225f29635c74. [Accessed May. 11, 2019].

[14] M. Olafenwa, “Custom Training," ImageAI, Tech. Rep.,
2019, Accessed: Sep. 2019. [Online]. Available:
https://github.com/OlafenwaMoses/ImageAI/blob/master/ima
geai

[15] M. Olafenwa and J. Olafenwa, “ImageAI," ImageAI, Tech.
Rep., 2019, Accessed: Sep. 2019. [Online]. Available:
http://imageai.org/

[16] M. Olafenwa, "IdenProf Datasheet" Olafenwa, [Online].
Available: https://github.com/OlafenwaMoses. [Accessed
Mar. 16, 2019]

[17] D. Galeon, "Paging Dr. Watson," 28 October 2016. [Online].
Available: https://futurism.com/ibms-watson-ai-recommends-
same-treatment-as-doctors-in-99-of-cancer-cases/. [Accessed
22 February 2019].

[18] Dtex Systems, "The Hidden Security Threat," Dtex Systems,
2016. [Online]. Available: https://dtexsystems.com/portfolio-

items/infographic-findings-from-the-2016-costs-of-insider-
threats-report/. [Accessed 21 March 2019].

[19] Q. Althebyan and B. Panda, "A Knwoledge-Base Model for
Insider Threat Prediction," Proceedings of the 2007 IEEE
Workshop on Information Assurance, vol. June, pp. 20-22,
2007.

[20] P. Bakkum and K. Skadron, "Accelerating SQL Database
Operations on a CPU with CUDA," University of Virginia,
Charlottesville, 2010.

[21] J. Jean, G. Dong, H. Zhang, X. Guo, and B. Zhang, "Query
Processing with An FPGA Coprocessor Board," in
Proceedings of the International Conference on Engineering
and Reconfigurable Systems and Algorithms, 2001.

[22] Martín Abadi et al, "TensorFlow: A System for Large-Scale
Machine Learning," in 12th USENIX Symposium on
Operating Systems Design, Savannah, 2016.

[23] D. Patil and P. Jayantrao. "Malicious URLs Detection Using
Decision Tree Classifiers and Majority Voting Technique."
Cybernetics and Information Technologies. vol. 18. no. 1, pp.
11-29. 10.2478/cait-2018-0002.

[24] C. Nichols, "How many flights come in and out of LAX every
day?," Los Angeles Magazine, 1 May 2011. [Online].
Available: http://www.lamag.com/askchris/how-many-flights-
come-in-and-out-of-lax-every1/. [Accessed Mar. 20, 2018].

[25] Homeland Security, "Combating the Insider Threat,"
Homeland Security, 2014.

79

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Industry Case Study: Design Antipatterns in Actual Implementations

Understanding and Correcting Common Integration Design and Database Management Oversights

Mihaela Iridon

Cândea LLC

Dallas, TX, USA

e-mail: iridon.mihaela@gmail.com

Abstract—Prototyping integration points with external systems

and new technologies is an excellent starting point for

validating certain design aspects but turning that into a

complete enterprise solution goes far beyond implementing a

working passthrough prototype. In some instances, the focus

on functional features and tight deadlines lead to inadequate

attention placed on non-functional system attributes, such as

scalability, extensibility, performance, etc. Many design

guidelines, best practices, and principles have been established,

and antipatterns were identified and explained at length. Yet,

it is not uncommon to encounter actual implementations

suffering from deficiencies prescribed by these antipatterns.

The first part of this paper discusses Leaky Abstractions,

Mixing Concerns, and Vendor Lock-in antipatterns, as some of

the more frequent offenders in case of system integration

design. Ensuing problems such as the lack of proper structural

and behavioral abstractions are revealed, along with potential

solutions aiming to avoid costly consequences due to

integration instability, constrained system evolution, and poor

testability. The second half of this industry case study shows

how unsuitable technology and tooling choices for database

design, source code, and release management can lead to a

systemic incoherence of the data layer models and artifacts,

and implicitly to painful database management and

deployment strategies. Raising awareness about certain design

and technological challenges is what this paper aims to achieve.

Keywords-integration models; design antipatterns; leaky

abstractions; database management.

I. INTRODUCTION

Translating business needs into technical design artifacts
and choosing the right technologies and tools, demands a
thorough understanding of the business domain as well as
solid technical skills. Proper analysis, design, and modeling
of functional and non-functional system requirements is only
the first step. A deep understanding of design principles and
patterns, experience with a variety of technologies, and
excellent skills in quick prototyping are vital. Although
conceptual or high-level design is in principle technology-
agnostic, ultimately specific frameworks, tools, Application
Programming Interfaces (APIs), and platforms must be
chosen [1]. Together they enable the translation of the design
artifacts into a well-functioning, efficient, extensible, and
maintainable software system [2].

Designing a solution that targets multi-system integration
increases the difficulty and complexity of the design and

prototyping tasks considerably, bringing additional concerns
into focus. Identifying integration boundaries and how data
and behavior should flow between different components and
sub-systems, maintaining stable yet extensible integration
boundaries, and ensuring system testability, are just a few of
such concerns. This paper intends to outline a few design
challenges that are not always properly addressed during the
early stages of a project and which can quickly lead to brittle
integration implementations and substantial technical debt.

A few recognized design antipatterns and variations
thereof are explained here, including concrete examples from
actual integration implementations as encountered on various
industry projects. Solutions to refactor and resolve these
design deficiencies and issues are recommended as well.

Section II presents a simplified perspective of a typical
system integration problem. It explains a few general-
purpose integration concerns and goals, and how these can
help to guide the design of the overall integration solution
topology and the underlying componentization boundaries.

Section III will address architectural and integration
modeling concerns, focusing on a couple of design
antipatterns. The structural aspects discussed in this section
range from low granularity models (i.e., data types which
support the exchange of data between systems) to large-
grained architectural models (i.e., system layers and
components). The consequences of designing improper
layers and levels of abstractions are outlined, followed by
recommendations on how to avoid such pitfalls by
refactoring the design accordingly.

In Section IV, antipatterns covered in Section III are
extended to the design of the data models and relational
databases, also discussing the ability to customize external
open-sourced systems that participate in the integration.
Additional antipatterns are discussed, the problems behind
them, as well as potential solutions that can overcome them.

In Section V, the focus is shifted to the management and
delivery of the data layer components and artifacts, as
databases are an integration concern that goes beyond the
data exchanged between the application tier and the data tier.
This section intends to explain how the choice of tools and
frameworks can have a significant impact on the overall
realization, management, and delivery of a robust and
consistent integration solution.

Finally, Section VI summarizes the integration design
and database management concerns and issues and the
accompanying recommendations presented in this paper.

80

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. HIGH-LEVEL OVERVIEW OF GENERAL INTEGRATION

OBJECTIVES

From an architectural perspective, a given system that
realizes a variety of features of its own may be designed
around one or perhaps a combination of architectural styles,
such as N-layered, service orientation, component-based, etc.
However, when certain features rely on services or data
provided by some external system or systems, employing
them properly and efficiently becomes an integration
requirement that must be carefully analyzed, designed, and
realized.

As a general principle, a software system’s quality
attributes, such as extensibility, performance, testability, and
maintainability, to name a few, should always be targeted by
design, achieved, and continuously safeguarded. Casually
bringing into the integrating system external concerns, data
and behavior along with specialized technologies, libraries,
frameworks, and tools, could potentially lead to a variety of
problems that are difficult to resolve later.

To better understand the reasons behind this statement,
Figure 1 shows an integration approach where the system on
the left is integrating with a variety of targets (on the right)
that provide some needed functionality. Perhaps the
integration targets are added over time, one by one, as new
overall features are supported. Quick, ad-hoc integration
implementations, facilitated by easy access to service

endpoints, APIs, and data, can lead to patchy and brittle
solutions, where components from different layers of the
current system become riddled with - and directly dependent
on - the data, behavior, and technologies of the targeted
systems. Furthermore, in some cases, even data and behavior
of the integration system may leak into the external systems,
if these are accessible for customizations, for example. This
bleed of concerns and technology between systems is
depicted by the various tiny geometric shapes in Figure 1.

With such an approach, future updates to the integration
dependencies (shown as hashed geometric shapes) involve
code changes throughout the integrating system, risking the
overall system’s integration stability, as well as potentially
its performance, scalability, testability, and evolution.

Ideally, proper design of the integration points would
identify new component(s) where integration concerns
would be bounded to – as shown in Figure 2 and discussed in
[1]. Features, data, and functionality imported from external
systems would be exposed to the integrating system via
interfaces/contracts that are vendor- and technology-neutral.

Adding such a layer of abstraction (denoted here as the
Integration Layer) around the integration points will not only
ensure a robust integration solution, but also the ability to
easily swap targeted platforms in case of a product
replacement (avoiding vendor lock-in), or for independent
component and load testing of the integrating system, where
the integration targets’ features are simulated or mocked.

Figure 1. An unsuitable integration solution with external system concerns and technology bleeding

into the integrating system (left)

Figure 2. A fitting integration solution with a well-defined integration boundary that isolates external concerns

from the rest of the system

81

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. TIGHT INTEGRATION: LEAKY ABSTRACTIONS AND

VENDOR LOCK-IN

A. The Problem Definition

Let us consider some defined business requirements for
building a software system targeting to integrate with - and
consume - a third-party service. The exposed data transport
models, e.g., REpresentational State Transfer (REST)
models or Simple Object Access Protocol (SOAP) data
contracts, are already defined, maintained, and versioned by
some external vendor or entity (the service provider). Note
that this scenario can easily be extended further, to
integrations with an arbitrary system by means of some
third-party APIs that expose specific behavior and data
structures.

Focusing on the data structures rather than behavior, once
the service model proxies have been generated via some
automation, they tend to become part of the design artifacts
for the rest of the system. Their use extends beyond the point
where they are needed to exchange data with the external
application. These models will percolate throughout the
various layers and components of the integrating system. It is
not unusual to see development efforts proceed around them,
with application and business logic rapidly building on top of
these data types. Development costs and tight deadlines, and
sometimes the lack of design time and/or technical expertise,
are the main reasons leading to this undesirable outcome.

Models exposed by external vendors were not designed
with the actual needs of other/integrating systems in mind.
External models are characterized by potentially complex
shapes (width: number of exposed attributes or properties;
depth: composition hierarchy). They cater to most integration
needs (“one size fits all”), so they tend to be composed of an
exhaustive set of elements to be utilized as needed.

Moreover, allowing these structural characteristics to

seep into the application logic layer, beyond the component
that constitutes the integration boundary, introduces adverse
and unnecessary dependencies to external concerns.
Therefore, the system is now exposed to structural instability
and will require a constant need to adapt whenever these
externally derived models will change. The integration
boundary is no longer a crisp and well-defined layer that can
isolate and absorb all changes to the external systems –
speaking from a data integration perspective.

B. The Antipatterns

The lack of proper structural abstractions and allowing
integration concerns to infiltrate into the integrating system
is a costly design pitfall and is in fact a variation of the
“Leaky Abstractions” problem – as originally defined by
Joel Spolsky in 2002 [3]. Such deficient abstractions can be
identified not only relative to structural models, but also to
behavioral models, which could expose the underlying
functional details of the software components to integrate
with. This will inevitably lead to increased complexity of the
current system, jeopardizing its extensibility and its ability to
evolve and to be tested independently. Ultimately this results
in a tightly coupled integration between the two systems
(with strong dependencies on the target of the integration).

Another perspective or consequence of the problem
described is an imposing reliance on vendor-specific
technologies, their libraries, and even implementations. This
problem is also known as the “Vendor Lock-In” antipattern
[4]. External system upgrades will necessitate system-wide
changes and constant adjustments on the integration side and
will impact the overall stability of the system and the
integration solution itself.

Examples range from adopting dedicated libraries for
various cross-cutting concerns (logging, caching, etc.) to
domain-specific technologies (telephony, finance, insurance,
etc.). Vendors will encourage integrators to infuse their

Figure 3. Integration components and the Integration Layer (Adapter)

isolating and decoupling the integrating system from the external system

82

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specialized technology everywhere, leading to entire
(sub)systems taking on pervasive dependencies on their
technologies, making it difficult to isolate or replace it. Such
third party-entwined architectures must and can be avoided
with added effort during the design phase, as described next.

C. The Solution

To avoid such scenarios, the design must unambiguously
identify the integration boundary and define custom
integration models that abstract away any and all structural
and behavioral details related to the system targeted for
integration. This architectural approach is exemplified in the
component diagram in Figure 3. The integration layer should
also hide the underlying technology (REST vs. SOAP,
message bus vs sockets, etc.) to avoid tight and unnecessary
dependencies. An example of defining canonical models
based on the “ubiquitous” integration language in case of
multi-system integration is presented in “Enterprise
Integration Modeling” [5].

Based on the author’s experience, designing proper
model abstractions proved extremely useful in the case of
building custom integrations with real-time systems. For
example, Session Initiation Protocol (SIP) soft switches
used in telecommunications networks, such as those from
Genesys, the leader in customer experience, pertaining to
contact center technology (call routing and handling,
predictive dialing, multimedia interactions, etc.). In this case,
an extensive array of data types, requests, events, etc., are

made available to integrators as part of the Genesys Platform
SDKs [6]. These facilitate communication with the Genesys
application suite – which in turn enables integration with
telephony systems, switches, IVR systems, etc. Most of these
data types are very complex and heavy, and introduce acute
dependencies on the underlying platform, exposing many
implementation details as well. Employing code generation
and metadata inspection via reflection, for example, simpler
connection-less models were designed to mimic and expose
only the needed structural details and are currently used in
several production systems. Furthermore, defining and
realizing the proper architectural isolation layers will
ultimately provide independence from vendor-specific
platforms for the rest of the system. For example,
considering the integration scenario mentioned above using
Genesys’ Platform SDK shown in Figure 4, recently the
company (Genesys) has been pushing for a new approach to
integrate with their systems, specifically using the Genesys
Web Services (GWS) [7], a RESTful API. From an
integration viewpoint, this substitution is practically
equivalent to switching to a different vendor, as the two
integration facilities are based on different technologies (web
calls versus direct socket connections) and using completely
different models, from both a structural model perspective as
well as behavioral and consumption views.

Building an explicit and clean integration layer as shown
earlier in Figure 3, when dealing with such a significant
change (vendor or technology replacement), implementation

Figure 4. A sample layered architecture for exposing Computer Telephony Integration (CTI) features

via integration with Genesys Platform SDK

83

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

adjustments will be isolated to this adapter layer without any
impact on the business domain layer of the integrating
system (assuming similar data and functionality). This
includes the specifics of the technology used to communicate
between the two systems.

Finally, it is noteworthy that four out of the five SOLID
design principles [8] substantiate and drive towards the
proposed solution:

• Single Responsibility (SRP), from the component
and layering perspective,

• Open-Closed, to avoid changing the underlying
implementation every time the integration endpoints
change,

• Interface Segregation, exposing only the necessary
data types for consumption by the business logic
layer,

• Dependency Inversion, where the Domain does not
directly depend on the external system, its data and
behavior, but rather on abstractions – the repository
contracts realized by the integration layer.

D. Added Architectural Benefit

Proper design and isolation of the integration components
and the use of interfaces and model adapters will enable
adequate testing of the custom system without demanding

the availability of the external system for integration testing
until most defects within the custom system are resolved.

Furthermore, this design approach supports building
synthetics that simulate or mock the data and behavior of the
external system, providing the means to prototype and test
the integration points and functional use cases. This is
exemplified in Figure 5, describing at high level a real
implementation of a simulation subsystem intended to
synthesize the behavior of Genesys’ Statistics Server
employed in a concrete integration solution.

Even if only a reduced set of features is synthesized,
deferring the needs for actual integration testing can be cost-
effective, especially in situations where the external system
is a shared resource, perhaps expensive to manage and to
access in general. Employing Dependency Injection (DI) [9],
either the real or the mock implementation of the integration
contracts can be injected into the Domain layer, making it
easy to swap between the two implementations.

IV. DATA TIER DESIGN AND DATA ACCESS

ANITPATTERNS

One of the most common system integration use cases for
many enterprise applications is related to data persistence
and access. Integration with (relational) databases that are
either part of the custom system or accessible (co-located)
components of a third-party system is a pervasive
requirement, whether the data tier is needed for storing
configuration data, audit/logging, security-related aspects, or
to support concrete operational or reporting needs.

This section focuses on several issues related to both
database design as well as accessing the data itself.

A. ‘Inverted’ Leaky Abstractions in Data Integrations

1) The Problem
The previous section discussed Leaky Abstractions that

result from allowing third-party concerns to infiltrate custom
systems when designing and implementing an integration
solution. The directionality of the “leak”, as described
earlier, is from the external system into the current one.
However, it is also possible to encounter the reverse scenario
when the integration target is open or transparent to the
integrators who then take advantage of this fact to develop
and apply their own customizations onto the external system.

Here are two examples:
(a) An Original Equipment Manufacturer (OEM) and/or

White Label license of the external system is available to
integrators, including access to source code for additional
customization and integration options.

(b) The external system contains database(s) accessible to
the integrators, either deployed on premise or in a cloud
environment, and is open/accessible to change.

In the first example, the same issues and solutions apply,
as already discussed in the previous section, only this time
from the perspective of the external system. If customization
design is not executed properly, software upgrades of the
open-sourced third-party system will result in continuous
maintenance, or worse, breaking the custom code. Both
scenarios will incur high development and system integration
testing costs, among other problems.

Figure 5. A concrete example of an integration architecture where the
integration layer is replaced by components that simulate the

integration target’s functionality for testing purposes

84

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rest of this sub-section will focus on the second
example, involving third-party databases that are accessible
(i.e., open to modification) from an integration and
customization perspective.

When expecting and relying on continuous upgrades and
patches supplied by the vendor of the external system, it is
possible that custom database artifacts (added by the
integration provider) will have to be discarded and reapplied,
or worse, no longer compatible with the updated system.
Moreover, management of database source code targeting
the customizations is more difficult if tightly dependent on
the elements defined by the external entity/vendor. For
example, the custom integration requirements demand two
new columns on one of the third-party database tables.

Evidently, with respect to customizations of third-party
components (database or otherwise), “Vendor Lock-in” is
the status quo as a business-driven need and not a concern
here.

2) The Solution
There are several options available and their applicability

depends on concrete scenarios and business needs. Ideally, a
separate, custom database could be considered, where data
collected by the third party system (stored in their databases)
would be Extracted, Transformed as needed, and Loaded
(ETL) [10]. Detached custom data models are easy to
maintain, modify, and version-control by the integration
provider. Aligning with the arguments stated in Section III,
this approach enforces a well-defined data integration
boundary, as shown in Figure 6 below.

Allowing for independent provisioning and evolution of
both data models (one provided by the external system and
one specifically designed for - and consumed by- the
integrating system) will lead to improved extensibility,
scalability, performance, testability, and maintainability.
With this approach, upgrading the external system will
potentially require updating the ETL artifacts and, if needed,
some enhancements to the custom database – but both
activities can be done in a detached, self-contained fashion.

Further details regarding the management of database
artifacts will be discussed later, but one noteworthy benefit
here is the freedom from having to maintain (a) partial
custom database artifacts (divorced from their context)
and/or (b) complete external database artifacts (since the
database is a self-contained software system, and should not
be divided further into sub-components). The reason why
maintaining select/partial database artifacts is undesirable is
that from a specification perspective, a database (meaning all
its defining artifacts) must be valid, consistent, and complete
(as it must also be from a deployment perspective).

If database customizations must live in the same database
as the one that is part of the external system (perhaps for
performance considerations), a less optimal solution to the
Inverted Leaky Abstractions (i.e., the data model), is to
expend proper design effort to minimize tight dependencies
and attempt to follow - as best as possible - the Open-Closed
design principle at the data tier, in the context of system
integration and customization.

For example, if the custom integration components
require the persistence of new attributes (fields) in addition
to the data captured by the external system, rather than
modifying the existing third-party tables by adding new
columns, association or edge tables should be considered
instead, with custom data residing in new, custom tables.
Custom views, parameterized or otherwise, should be
designed to transform data into a ready-to-consume format
(for operational, reporting, or analytical needs).

In this case, the system quality attributes mentioned
earlier must however be carefully monitored, especially
query performance and scalability.

On the downside, database code management will
become either (a) fragmented/isolated, by extracting the
custom database artifacts from the rest of the database into
independent scripts, or (b) more complex, by importing the
entire third-party database under source control along with
the custom artifacts, in order to preserve its integrity.

Section V discusses tools that help validate the full
database, warning about invalid or broken object references,
binding and syntax errors, thus increasing the probability that
database deployments will succeed.

B. Mixing Data Modeling Concerns

1) The Problem
Regardless of the targeted Database Management

Systems (DBMS) technology, designing the conceptual and
logical data models is a prerequisite to the implementation of
the physical data models [11]. Beside ensuring that all data
elements outlined by the business requirements are
accurately represented, non-functional requirements, such as
performance, scalability, multi-tenancy support, security
(access to data), etc., will also shape the data architecture.

From an application perspective, the database is used to
persist the state of the business processes supported by the
application, i.e., operational needs, and to support analysis
and reporting needs around the stored business data. The
concept of Separation of Concerns (SoC) applies here as well
but is often ignored or inadequately addressed. Operational
versus reporting concerns are often mixed and data models

Figure 6. The integration database added to support data integration

customizations and to remove direct dependencies on the third-party

database

85

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designed specifically for operational needs are used as such
for reporting or analytics purposes, although these models
are usually quite different, in terms of how the data is stored
and how it is accessed. Yet, it is not uncommon to find a
given database used both as the operational as well as the
reporting database. As a direct consequence of violating SoC
with respect to data modeling (both logically and physically),
stability, scalability, extensibility, and performance are the
main quality attributes of the system that will be impacted.

An alternate description of this problem is known as the
“One Bunch of Everything” antipattern [12], qualifying it as
a performance antipattern in database-driven applications,
the author aptly pointing out that “treating different types of
data and queries differently can significantly improve
application performance and scalability.”

2) The Solution
Following general data architecture guidelines, the

solution is straightforward. In [13], Martin Fowler suggests
the separation of operational and reporting databases and
outlines the benefits of having domain logic access the
operational database while also massaging (pre-computing)
data in preparation for reporting needs. Extract-Transform-
Load (ETL) pipelines/workflows can and should be created
to move operational data into the reporting database;
specifically, into custom-tailored models that cater to
requirements around reporting and efficient data reads.

Existing tooling and frameworks can be employed to
transform and move data efficiently, on premise or in the
cloud (Azure Data Factory, Amazon AWS Glue, Matillion
ETL, etc.), for data mining and analytics, for historical as
well as real-time reporting needs.

C. Data Access and Leaky Abstractions

1) The Problem
It has been noted [14] that Object Relational Mapping

(ORM) technologies, such as Entity Framework (EF) or
Hibernate, are in fact a significant cause of data architecture
bleed into the application logic, representing yet another
example of the Leaky Abstractions antipattern.

Although intended to ease the access to the data tier and
the data it hosts, such technologies expose underlying
models and behavior to the application tier. In more acute
cases – depending on its usage – it also introduces strong
dependencies from the domain logic to the data shapes
defined in tables, views, and table-valued functions.

Entity Framework, for example, while providing the
ability to create custom mappings between these data models
and the entity models, as designed, these object models are
intended to be used as the main domain entities to build the
actual domain logic around them. This forces a strong,
intertwined yet inadequate dependency between two very
different models, targeting different technologies, employed
by very different programming paradigms (OO/functional
such as C#.NET versus set-based such as SQL). This not
only restricts the shape of the domain models, forcing
constrained behavioral models to be implemented around
them, but also causes data architecture changes to affect the
domain and the application logic itself.

Not surprising, Microsoft’s EF Core framework in fact
discourages against using a repository layer [15] (as
prescribed by Evans’s DDD [16]) on account that EF itself
implements the repository pattern/unit of work enterprise
pattern [17] – alas, leading towards a rigid and potentially
brittle integration. The reason is that ORM technologies push
design and development towards data access logic tangled
with the domain logic by encouraging multi-purpose models
(domain and data access or data proxies).

2) The Solution
Just as with the integration solution presented in Figure

3, the impact of changes to database models should be
constrained to one or two components – those that make up
the data access layer, and prohibited from affecting the other
application layers, specifically the domain and service layers.
Sharing a single model across all layers of the application
places unnecessary limitations on the overall design and
ultimately on the extensibility and stability of the system.

Although it is uncommon to replace the database
technology altogether, sometimes it may be required to
replace the data access technology due to performance and
scalability concerns. Without a proper separation of data
access from domain logic and models, such design changes
targeting the lower layers of the system architecture are
impractical without extensive refactoring of the application.

In a layered component-based architecture – as shown in
Figure 7 above, it is easy and natural to allow each layer to
define its own models (darker boxes) and provide adapters to
translate from one model to another as data flows through the
layers of the application by means of interfaces. Although
this would seem wasteful at first sight, especially if some
models hardly vary from one layer to the next, this approach
offers two core benefits. It allows for independent evolution
of the models, customizing them to serve very specific needs
of the layer they belong to, and keeps the propagation of
model changes confined to the corresponding adapter
(translation) components.

In case of ORM technologies, the data access layer
overlaps with the domain layer, while entity models (shown
as data proxies in Figure 7) represent the actual domain
models. Interestingly enough, even as ORM is recognized as
a Leaky Abstraction, its use is nevertheless encouraged [18],
most likely because in unsophisticated implementations, it
may be able to deliver acceptable results.

Figure 7. Layered architecture with layer-specific models and model

transformations

86

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, as Bilopavlovic points out [14], ORM tools can
be successfully used “if there is proper separation of
concerns, proper data access layer, and competent developers
who know what they are doing and really, really understand
how relational databases work.” Sooner or later, the inherent
deficiencies of such technologies, compounded by
inadequate implementations due to the lack of understanding
of how the underlying technology works, will surface, in
most cases under system load and/or when new features are
added.

V. DATA TIER MANAGEMENT CONCERNS

Previous sections discussed antipatterns as relevant to the
design of software solutions, specifically to the design of
software systems integration. Bad practices and approaches
can be encountered in several areas, beside design: in code
implementations, in management of the code and software
artifacts, in activities pertaining to DevOps, such as
deployment and change management, etc.

This section will focus on inadequate practices around
management of relational databases, with a detailed focus on
Microsoft SQL Server relational databases, tooling and
frameworks used for change management and incremental
deployments, among other things.

A. Improper Management of Database Artifacts

1) The Problem
Source code, regardless of the language it is written in, is

“a precious asset whose value must be protected”, as
Atlassian’s Bitbucket web site states in their “What is
version control” online tutorial [19]. All software-producing
companies will employ one tool or another for version
control. This allows software developers to collaborate, store
(or restore/rollback) versions of the software components
they build and perform code reviews, providing a single,
stable “source of truth” of the software artifacts they create
and release/deploy. As advocated in [20], “source files that
make up the software system aren't on shared servers, hidden
in folders on a laptop, or embedded in a non-versioned
database.” Yet, it is rather commonplace to find database
implementations that are improperly managed, leading to
frustration, bad deployments, making the data tier integration
and overall solution delivery unreliable and difficult. There
are many online articles and blogs describing such cases.

As encountered by the author, while being engaged as a
solution architect and consultant on several projects at
various clients, the actual data models and database artifacts
were often created and delivered as ad-hoc implementations
in some arbitrary database, hosted under some arbitrary
Microsoft SQL Server database instance. Several teams
needed these database artifacts: Development for
implementation and integration, Quality Assurance for
testing, Business team (domain experts and business
analysts) for reporting and analytics, and DevOps for
deployment. The most common process for deploying this
database (fresh install or incremental) to some other
environment was to generate and pass around SQL scripts

when needed. In somewhat more fortunate situations, these
scripts were maintained in some form of source control as
SQL/text files but lacking the ability to validate them or trace
the source back to the developer responsible for the actual
implementation (in the original database).

So then, where does the “source of truth” for the database
definition reside? How can multiple developers work on the
database code without overwriting each other’s changes and
without being aware of the latest updates? How does the
organization deliver incremental deployments to any number
of target environments? When onboarding new team
members, what database code should they be pointed to?

The problems derived from not having a stable, accurate,
up-to-date, and complete definition of the database source
code, one that is under version control and that can be
validated before a deployment, are numerous, acute, and
rather obvious. Just as one maintains all other application
code under source control, entire solutions composed of
many components, why should database implementations not
follow the same standards and take advantage of the same
acclaimed benefits of code well-managed?

Furthermore, when the database (source) code resides in
some database, invalid object references (because someone
dropped a column on a table or deleted a stored procedure)
will surface only at runtime. Often, changes are made to the
database post deployment, even in Production environments,
changes that could potentially break the code, or which are at
best confined to that environment alone, but without being
retrofitted/updated back into the “source code database”.

A particularly curious approach to database code
management and deployment was encountered on a project
that used the Fluent Migrations Framework for .NET [21],
self-proclaimed as a “structured way to alter your database
schema […] and an alternative to creating lots of sql scripts
that have to be run manually by every developer involved.”
In a nutshell, the tool calls for creating a C#.NET class every
time the database schema would change (one class per
“migration”). These code files (admittedly, version-
controlled) attributed with metadata to identify a specific
database update, encapsulate two operations that describe the
schema changes: one for a forward deployment (“Up”) and
one for rollback (“Down”).

A very simple example, involving the source code of a
rather trivial stored procedure, is shown in Figure 8.

With a large database, one that evolved considerably over
time, with hundreds of artifacts, the number of C# migration
files was astounding (thousands). Database changes were
published to the target database as part of the application
deployment process. Installing the database from scratch
would incrementally apply every single “Up” migration
specification found in these files, following the prescribed
update. To maintain sanity, these source code files needed to
be named such that the chronological order would be
preserved when browsing through them in the development
environment tool.

However, other more serious problems arise from using
this framework, two of them being briefly discussed next.

87

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a) SQL code as C#.NET strings??

Say a new stored procedure must be added; the code is
developed and tested from SQL Server Management Studio
(SSMS) in some local deployment of the database (assuming
the objects the stored procedure is referencing do not change
in the interim). Next, a migration file is created, with the
“Up” method containing the full (CREATE) stored
procedure script, as a C# string passed as input argument to
the “Execute.Sql” method call. A sample migration code
snippet describing this scenario is shown in Figure 8.

The major and obvious problem here is the inability to
validate SQL syntax and semantics and SQL object
references when represented as indiscriminate plain strings,
subject to typing errors.

b) No database source code??

Unless deployed on some SQL Server instance, it is
impossible to even begin to understand the structure of the
database, even the structure of individual objects. The data
models and data logic are scattered, fragmented (across
many C# files), impossible to validate (syntactically or
otherwise) from where the database “source code” is stored.

Moreover, a given database object, say a table for
example, can change any number of times, each change
being captured in a different source file, with no unified,
single view of what that table looks like, what the shape of
the data is, with all its columns and corresponding types,
with its keys and indexes, constraints and triggers, if any.
This problem extends to all database objects, not just tables.

The data models (the source code artifacts) are practically
non-existent, disjointed, difficult to comprehend, and cannot
be validated until they are deployed. The result is a total and
indefensible representational incoherence afflicting the most
important component of a data-dependent enterprise system.

2) The Solution
There are various software tools available to address this

problem. Both Microsoft and Redgate, for example, provide
excellent tooling for developing relational databases,
managing database artifacts under source control, facilitating
change management and incremental deployment, generating
manual update scripts (when automated deployment is
constrained), and more.

Microsoft’s SQL Server Data Tools (SSDT) [22] is a
development tool, available since 2013, using the Data-Tier
Application Framework (DacFx). It facilitates the design and
implementation of SQL Server and Azure SQL databases, as
well as database source control and incremental deployment,
all integrated under the Microsoft Visual Studio development
environment.

A version-controlled database project contains all distinct
database objects as individual files, and it must compile –
targeting a specific SQL Server (or Azure) database version
– before it can be deployed anywhere. Developers can check
out individual objects (files) to change as needed or can add
new objects using the provided templates. Just as one can see
the entire schema of a database in SSMS, similarly they can
see and browse these objects in Visual Studio, as shown later
in the development environment snapshot in Figure 9. Here,
the main database project (Config.Database) is – like all
projects in the bounding solution – subjected to building or
compilation. As a result, two artifacts are being created: a
managed assembly file (.dll) and a data tier application
package (.dacpac) file. Both are required for actual database
deployment, but it is the .dacpac that holds the actual and full
database definition. It is used by the Microsoft tooling
(SqlPackage.exe) employed for incremental deployments
(schema updates) against targeted environments.

It is highly questionable to store Java or C# code in SQL
scripts, with artifacts/classes shredded and reduced to SQL
NVARCHARs, scattered in an arbitrary number of stored
procedures (equal to the number of updates effected upon
that class), and passed around to call other stored procedures
(via EXEC statements). The reverse scenarios should be
equally unacceptable. Treating the database as a proper
software implementation artifact is imperative.

B. Database Development and Deployment Concerns

1) The Problem
Tools like SSDT are also capable of identifying the

changes (delta) between the source and the destination
database in order to create the appropriate deployment
scripts, and ultimately allowing rapid and valid delivery of
database changes to any environment. Quite frequently,
multiple teams are involved in database development:
backend developers of applications relying on persisted data
as well as data migrations (ETL) and reporting developers.
Bringing all teams together to follow unified and consistent
database development and deployment processes can be
challenging.

Furthermore, how can specialized implementations be
properly designed, source-controlled, and deployed
seamlessly, while keeping the two implementations (core
and custom) separate but dependent solution components?

using FluentMigrator;

namespace DatabaseMigration.Migrations
{

[Migration(98)]
public class M0098_CreateStProcAddNodes : Migration
{

public override void Up()
{

Execute.Sql(@"CREATE PROCEDURE [cfg].[AddNodes]
@nodes cfg.NodeType READONLY
AS
BEGIN

SET NOCOUNT ON;
INSERT INTO cfg.Node
(Name, Value, ValueType, CreatedBy,
CreatedDate, UpdatedBy, UpdatedDate)

SELECT s.Name, s.Value, s.ValueType, s.CreatedBy,
s.CreatedDate, s.UpdatedBy, s.UpdatedDate

FROM @nodes as s;
END");

}

public override void Down()
{

Execute.Sql("DROP PROCEDURE [cfg].[AddNodes]");
}

}
}

Figure 8. Sample C#.NET migration code for adding a new stored

procedure and rolling back the change

88

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Considering a database (and hence its associated project)
as part of a larger software system, as an essential
component of that system, requires indeed some additional
effort in designing and managing all system’s artifacts under
a unified solution framework. If libraries and executables are
easy to group around layers and features, whether they cater
to domain versus cross-cutting concerns of that system,
database componentization strategies may not be
straightforward. However, recognizing that even databases
and their underlying objects (i.e., code) can be broken down
into logical parts, will facilitate management of these
artifacts and better extensibility.

To better understand this, consider a database that
consists of core objects (tables, procedures, functions, etc.),
perhaps part of a product line that evolves over time. Some
customers may ask for certain customizations, for example,
that require additional database objects to be created, specific
to their business rules and models (as would be the case of
custom reports that rely on custom views).

One option is to design and implement these new views
directly in the targeted environment, without including them
into the source-controlled database component. The
database/reporting developers would separately maintain
these objects, but when later the underlying tables change,
the views referencing them may break, and hence the
validity of the reporting component is jeopardized.

2) The Solution
Alternatively, extensions of the core database component

can be created – as separate database projects, holding only
these additional custom objects, with a same-database
dependency setting to the main database (project). Teams
can independently work on core versus custom components,
both being validated (compiled) and source controlled.

Figure 9 shows such a solution, with two database
projects (components), one extending the other, with the
extension component, ConfigExt.Database, having a
dependency to the main component via database reference.
Then, for actual deployment, the extension database package
would be used – as it contains both custom objects as well as
the core database objects from the referenced component,
resulting in a full database installation or update.

The tooling and processes described here, as already
mentioned, target the Microsoft technology stack. However,
similar options exist for other platforms as well, more or less
effective in various areas or others, to assist with
development and management of enterprise databases.

Figure 9 shows a snapshot of a solution developed under
the Microsoft Visual Studio environment, with two of the 19
projects being a couple of rather trivial database projects,
Config.Database, and its extension, ConfigExt.Database.
Either project encapsulates an entire (yet simple) database
with all its objects grouped under schemas and object type
folders. The top right panel shows the same stored procedure

Figure 9. Database source code managed in Microsoft Visual Studio via SQL Server Data Tools.

Code files are checked in or out from a source control repository (shown on the left) as database development in is progress.

89

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from earlier in Figure 8– whose source code was captured
there as a C#.NET string. In contrast, here it is managed as a
proper element of the database, that can be compiled
(validated) and independently tracked for code changes.

The project/database compiles successfully, as shown in
the bottom part of the screenshot in Figure 9. The build
output artifact, i.e., the data tier application package
Config.Database.dacpac, is highlighted.

Similarly, table objects (including indexes, constraints,
etc.) can be managed in a fashion that resembles the look and
feel of the table designer utility in SQL Server Management
Studio. This visual design feature is captured by the top
section in Figure 10. Otherwise, the scripting option (bottom)
is always available, for all object types.

For all database objects, only the CREATE statement is
used in all SQL source code. The tooling itself determines, at
deployment/publishing time, whether CREATE or ALTER
Data Description Language (DDL) statements will be
required based on the delta between the concrete target
database and the database source code. This greatly
simplifies deployment of SQL databases against any
environment, including fresh installations as well as
incremental updates.

Finally, as far as employing SQL Server Data Tools and
treating databases as proper software artifacts, we can
enumerate below some of the key benefits that should
encourage software companies to adopt SSDT, should they
design and develop solutions around Microsoft’s SQL Server
relational databases.

To briefly summarize, here are these benefits, which
should be considered perhaps also as a guiding set of
objectives for any database development activity:

✓ Providing a unified perspective of a database,
✓ Validating correctness of the database definition,
✓ Validating completeness of a database definition,
✓ Providing support for version-control of the database

artifacts (at the database object level),
✓ Allowing to perform schema comparison,
✓ Facilitating incremental deployments (change

management), directly against a target database or
via SQL scripts,

✓ Enabling the logical and physical componentization
of databases, to facilitate the customization,
extensibility, and manageability of the underlying
artifacts.

Figure 10. Database table designer (top) and script (bottom) snapshot in Microsoft Visual Studio, using SQL Server Data Tools

90

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION

This paper aimed to raise awareness about certain design
challenges that, when not addressed early and properly, will
lead to deficient architectures and rigid solutions concerning
various aspects of system integration, as often encountered in
practice.

When the design of software systems follows some basic
guidelines and principles (SOLID), the resulting architecture
will allow the system to be easily built, modified, and
extended. In case of system integrations and customizations,
violating these principles and particularly the multi-faceted
Separation of Concerns design rule, leads to unmanageable
and highly complex systems that do not scale well, cannot be
extended or modified easily, with tight dependencies on
external components and overall brittle integration solutions.

Many design antipatterns have been catalogued and well
documented; yet deficient architectures are encountered quite
frequently, leading to high technical debt and unhappy
stakeholders. This paper discussed “Leaky Abstractions”,
“Mixing Concerns”, and “Vendor Lock-in” antipatterns –
from the perspective of concrete industry examples, as
encountered and worked on by the author.

Concrete approaches that address these problems to help
refactor and realign the design according to best practices
and principles were elaborated, explaining how they lead to
scalable, extensible, testable, efficient, and robust integration
solutions.

Relational database design and management concerns
were also presented, with focus on data model design, data
access practices, and management of database artifacts. The
consequences of improper tooling and frameworks were
briefly covered, and a technology-specific solution targeting
Microsoft SQL Server databases was discussed.

ACKNOWLEDGEMENT

I would like to thank my husband and long-time mentor,
Chris Moore, for his indefatigable guidance and for sharing
the extensive technical knowledge and experience he
possesses and masters so adeptly.

REFERENCES

[1] M. Iridon, “Industry Case Study: Design Antipatterns in
Actual Implementations. Understanding and Correcting
Common Integration Design Oversights,” FASSI 2019: The
Fifth International Conference on Fundamentals and
Advances in Software Systems Integration, ISBN: : 978-1-
61208-750-4, pp. 36-42, Nice, France, October, 2019.

[2] R. Martin, “Clean Architecture,” Prentice Hall, 2018, ISBN-
13: 978-0-13-449416-6.

[3] J. Spolsky, “The Law of Leaky Abstractions,” [Online]
Available from https://www.joelonsoftware.com/2002/11/11/
the-law-of-leaky-abstractions/ [retrieved: May, 2020].

[4] SourceMaking, Software Architecture AntiPatterns, [Online].
Available from https://sourcemaking.com/antipatterns
[retrieved: May 2020].

[5] M. Iridon, “Enterprise Integration Modeling,” International
Journal of Advances in Software, vol 9 no 1 & 2, 2016, pp.
116-127.

[6] Genesys, “Platform SDK,” [Online]. Available from
https://docs.genesys.com/Documentation/PSDK [retrieved: May,
2020].

[7] Genesys, “Web Services and Applications,” [Online].
Available from https://docs.genesys.com/Documentation/HTCC
[retrieved: May, 2020].

[8] G. M. Hall, “Adaptive Code via C#: Agile coding with design
patterns and SOLID principles (Developer Reference),”
Microsoft Press, 1st Edition, 2014, ISBN-13: 978- 0735683204.

[9] M. Seemann, “Dependency Injection in .NET,” Manning
Publications, 1st Edition., 2011, ISBN-13: 978-1935182504.

[10] Microsoft, “Extract, Transform, and Load (ETL), ” [Online].
Available from https://docs.microsoft.com/en-
us/azure/architecture/data-guide/relational-data/etl [retrieved:
May, 2020].

[11] G. Simsion and G. Witt, “Data Modeling Essentials,” Morgan
Kaufmann; 3rd edition, 2004, ISBN-13: 978-0126445510.

[12] A. Reitbauer, “Performance Anti-Patterns in Database-Driven
Applications,” [Online] Available from
https://www.infoq.com/articles/Anti-Patterns-Alois-Reitbauer/
[retrieved: May, 2020].

[13] M. Fowler, “Reporting Database, ” [Online]. Available from
https://martinfowler.com/bliki/ReportingDatabase.html
[retrieved: May, 2020].

[14] V. Bilopavlovic, “Can we talk about ORM Crisis?”. [Online]
Available from https://www.linkedin.com/pulse/can-we-talk-
orm-crisis-vedran-bilopavlovi%C4%87 [retrieved: May, 2020].

[15] Jon P. Smith, “Entity Framework Core in Action,” manning
Publications, 2018, ISBN-13: 978-1617294563.

[16] E. Evans, “Domain-Driven Design: Tackling Complexity in
the Heart of Software,” 1st Edition, Prentice Hall, 2003,
ISBN-13: 978-0321125217.

[17] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[18] M. Fowler, “OrmHate,” [Online]. Available from
https://martinfowler.com/bliki/OrmHate.html [retrieved: May,
2020].

[19] Atlassian, “What is version control, ” [Online]. Available from
https://www.atlassian.com/git/tutorials/what-is-version-control
[retrieved: May, 2020].

[20] P. Duvall, “Version everything,” [Online]. Available from
https://www.ibm.com/developerworks/library/a-devops6/
[retrieved: May, 2020].

[21] “Fluent Migrations Framework for .NET,” [Online].
Available from https://fluentmigrator.github.io/ [retrieved:
May, 2020].

[22] Microsoft, “SQL Server Data Tools,” [Online]. Available
from https://docs.microsoft.com/en-us/sql/ssdt/sql-server-
data-tools [retrieved: May, 2020].

91

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Coping with Technological Diversity by Mixing Different Architecture and Deployment

Paradigms

Philipp Helle, Stefan Richter, Gerrit Schramm, and Andreas Zindel
Airbus Central R&T
Hamburg, Germany

email: {philipp.helle, gerrit.schramm, stefan.richter, andreas.zindel}@airbus.com

Abstract—In a time when competition and market in aviation
industry drive the need to shorten development cycles especially
in early phases, both automation of processes and integration of
tools become important. While constraints, such as make or buy
decisions or corporate Information Technology (IT) governance
influence the overall tool infrastructure in different directions,
microservices are a fast-rising trend in software architecting. But
that does not mean that the more traditional monolithic soft-
ware architecture is dead. A resulting mixed-paradigm software
architecture can also be seen as an opportunity to profit from
the best of both worlds. To support a newly developed complex
system development approach called SCM modeling, a supporting
application framework prototype is subject to development with
the objective to reduce both time and resources required during
product development cycles. This paper describes the software
architecture styles and deployment approaches that were used
in a research project at Airbus for building a prototype and
discusses challenges and opportunities that were encountered.
Furthermore, it describes a change in the aircraft development
process to cope with the increasing complexity of products
and pressure from the market to develop aircraft faster. The
key process change is a deviation from the traditionally linear
development approach and the inclusion of an Out-of-Cycle
(OOC) development phase, where components of an aircraft
are developed preemptively, out-side of a program development
effort.

Keywords–model-based systems engineering; microservices;
REST; component-based development; aircraft development pro-
cess.

I. INTRODUCTION

This article is a revised and extended version of the article
[1] originally presented at the The Fifth International Con-
ference on Fundamentals and Advances in Software Systems
Integration (FASSI 2019).

The Microservice Architecture (MSA) is a style that has
been increasingly gaining popularity in the last few years [2]
and has been called ”one of the fastest-rising trends in the
development of enterprise applications and enterprise appli-
cation landscapes” [3]. Many organizations, such as Amazon,
Netflix, and the Guardian, utilize MSA to develop their appli-
cations [3].

Pursuing the notion that ”Microservices aren’t, and never
will be, the right solution in all cases” [4], this paper de-
scribes the architecture and development approach that was
used in a research project at Airbus for building a prototype
application framework for Model-based Systems Engineering
(MBSE). According to the International Council on Systems
Engineering (INCOSE), ”MBSE is the formalized application
of modeling to support system requirements, design, analysis,
verification and validation, beginning in the conceptual design

phase and continuing throughout development and later life
cycle phases” [5]. This framework does not rely on a single
paradigm but instead mixes different paradigms, viz. architec-
ture patterns and deployment approaches, to achieve the overall
goals: agility, flexibility and scalability during development
and deployment of a complex enterprise application landscape.

This paper is structured as follows: Section II describes the
modeling method that the built prototype MBSE framework is
supposed to support. Section III provides background informa-
tion regarding the different enterprise application architecture
paradigms. Section IV explains the IT infrastructure, in which
the framework is deployed and Section V describes how and
what features have been implemented in the prototype. Section
VI will present the usage of the described framework using
a small case study. Section VII discusses advantages and
disadvantages of the mixed-paradigm approach. Section VIII
talks about the ongoing and future improvement effort before
section IX wraps everything up with a conclusion.

II. SMART COMPONENT MODEL (SCM) MODELING
METHOD

In [6], we provide a detailed account of the newly devel-
oped MBSE paradigm, called SCM modeling, which is rooted
in a proposed change in the aircraft development process to
include an OOC component development phase, in which
components of an aircraft are developed independently of the
traditional linear development process. These components are
then adapted to the specific needs of a program within the more
linear In Cycle (IC) phase. Furthermore, the paper describes
a metamodel for modeling these so-called SCMs based on
proven MBSE principles [7]. Since the models are being
defined outside of an aircraft program when requirements are
not yet fixed, the models have to be parametric. An SCM is a
self-contained model that can be developed OOC and enables
capturing of all information relevant to the development of the
component. SCMs are foreseen to be stored in a repository,
called the SCM Library. This enables sharing and reuse. When
the IC phase of an aircraft or aircraft system development
starts, the assets in the SCM Library are pulled and used as pre-
defined and pre-verified components for a new development.
The SCM metamodel defines all objects and their relations
that are required to capture information related to SCMs. The
development of the SCM metamodel was driven by internal
use cases and inspired by existing modeling languages such
as the Systems Modeling Language (SysML) [8].

The requirements for the methodology supporting this new
OOC process were as follows:

• The methodology shall be based on MBSE principles.

92

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The methodology shall be independent from any spe-
cific application domain.

• The methodology shall enable a product-line oriented
product development, i.e., the metamodel must allow
modeling of different variants of a product and ensure
a consistent configuration and parametrization.

• The methodology shall enable inclusion of already
existing domain models, i.e., models in a domain-
specific modeling language.

• The methodology shall enable automatic verification
of models, i.e., it shall be possible to check if the
built models adhere to the modeling paradigm and to
user-defined constraints.

• The methodology shall enable consistent modeling not
only of the product itself but also of the context, such
as the industrial system used to build the product
and allow the creation of relationships between the
modeled artifacts.

The requirements for the application framework supporting
this new modeling paradigm are as follows:

• The application framework shall be deployable in the
current corporate IT infrastructure

• The application framework shall allow a heteroge-
neous technology stack to deliver the best solution for
a designated purpose.

• The application framework shall be scalable with
increasing number of models and users.

• The application framework shall be scalable in terms
of model calculation performance.

• The application framework shall support continuous
deployment strategies and agile frameworks to enable
fast delivery and high flexibility.

• The application framework shall be efficient with
regards to computing resources and reduce the com-
pany’s ecological footprint.

A. OOC Process Description
The system lifecycle process as applied by most modern

transportation system manufacturers including Airbus includes
Design, Development, Production, Operation, Support, and
Disposal (Figure 1).

Design DisposalSupportOperationProductionDevelopment
Needs

Figure 1. System lifecycle according to [9]

As described in [9], according to the systems engineering
approach, the system design process can be further divided
into four major phases: conceptual design phase, preliminary
design phase, detailed design phase, and test and evaluation
phase (Figure 2).

The starting point for the current design process are re-
quirements. Based on these requirements, initial design con-
cepts are elaborated, assessed according to their feasibility, and
evaluated against key performance indicators such as operating
cost, weight, and range. A few concepts are then selected
and refined in a preliminary design phase, and after a more
profound analysis one of the design alternatives is chosen

Design

Requirements Conceptual

Design

Preliminary

Design

Detailed

Design

Test and Evaluation

Designed

System

Figure 2. Major design Activities according to [9]

and further refined during detailed design analysis. To support
the assessment of design concepts, various models describing
different aspects of the aircraft system are developed. However,
developing models to describe design alternatives is usually
expensive and time consuming. In practice, when a new aircraft
program is launched time pressure tends to lead to a situation
where only very few alternative design concepts can be defined
and assessed.

Retrieve Design Models

from previous programs

Anticipate future need and

potential technology solutions

Parameterize existing

models

Define new

parametric models

Build library of

parametric models

Design

Requirements Conceptual

Design

Preliminary

Design

Detailed

Design

Test and Evaluation

Designed

System

“Out of Cycle” Phase

Figure 3. To-Be process with OOC phase

To address this challenge, it is suggested to introduce a new
OOC phase as depicted in Figure 3. This phase is independent
from aircraft programs and theoretically never ends. The aim is
to produce reference architectures. Reference architectures will
be decomposed into SCMs which simultaneously embed the
knowledge of product design, its manufacturing system, oper-
ability, maintainability, cost and lead time. A SCM describes
the technical solution for an architecture item in a reference
architecture decomposition and its interfaces to other parts of
the architecture, i.e., to other SCMs. Within the OOC phase,
a library of SCMs of aircraft systems and components shall
be defined that will grow over time. When a new aircraft
program is launched, these models can be used to set-up
different design concept alternatives. This shall save time and
allow definition and analysis of a greater number of design
alternatives, including more radical design concepts.

As shown in Figure 4, the OOC process can have different
phases, during which the SCMs evolve and are being refined.
The general idea is that a component matures in the OOC
process until it is potentially ready to be used in an actual
aircraft program. Once this stage is reached, the SCM is
uploaded to a central library. At any time during the devel-
opment of a new aircraft, the program can decide to pull the
generic and parametrized component out of the library and
specialize it to its needs. This process increases the reuse of
the SCMs across multiple different programs resulting in an
overall cost reduction and a decrease in the time to market for
new products. This allows Airbus to react more quickly to the

93

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Out of Cycle Process

New Aircraft Program

New Aircraft Program

New Aircraft Program

SCM SCM SCM SCMSCM

Scope Variability Interfaces Realization Verification Upload

Figure 4. Evolution of a SCM over time

ever changing demands of the aerospace market.
Current design artifacts, however, do not have the features

required to deal with not-yet specified product configurations
and to support product evolution. They are not able to antici-
pate all features at design time.

Since the SCMs are being defined outside of any particular
aircraft program, when requirements are not yet fixed, they
have to be parametric in order to anticipate scalability and
variability features and enriched with their associated limits.
In case that the models are originating from previous pro-
grams, technologies have to be applied to parametrize them.
Alternatively, the models may also be defined from scratch in
a parametric way based on anticipation of future needs and
technology trends.

SCMs provide an opportunity to capitalize interconnected
multi-functional knowledge present in the organization, and
also the capability to quickly generate new product designs
by efficiently generating parametrized versions of components
while maintaining its consistency in the overall architecture
and considering its impact on integration and manufacturing
processes. Their use will also naturally encourage reuse prac-
tices, which promise to make the development cycle faster and
more cost-efficient.

B. Relation to other modeling languages
The most popular general purpose modeling language for

systems engineering is SysML [8], which is itself an adap-
tion of Unified Modeling Language (UML) [10] for systems
engineering, yet it has still not become widely accepted [11],
[12]. Karban et al. state challenges in using SysML, which
have been figured out in the Active Phasing Experiment (APE)
project of the SE2 challenge team of the Gesellschaft für
Systems Engineering, German INCOSE chapter (GfSE) [13].
They propose several tasks for the advancement of SysML,
which underlines that the language is still under development
and will be further advanced in the future. Common points
of criticism are: that SysML is too complex, which in turn
causes complexity of SysML modeling tools; that it lacks
a precise semantic; and that it does not come with a ready
to use methodology, which is rooted in the fact that SysML
was designed as a general purpose modeling language that
should not impose a certain modeling approach. Currently, a
completely reworked version 2 of SysML is being developed
with the goal to increase adoption and effectiveness of MBSE
by enhancing precision and expressiveness of the language,

consistency and integration among language concepts and
usability by model developers and consumers.

On the other hand, there are Domain-specific language
(DSL), languages that are tailored to a specific application
domain. They offer substantial gains in expressiveness and ease
of use compared with general-purpose modeling languages
in their domain of application but generally require both
domain knowledge and language development expertise to
develop [14].

It seems to be an interesting question whether it is better to
develop a new DSL from scratch by adding modeling elements
iteratively, or start with a general purpose modeling language
and restricting it until it fits the specific use.

[15] is talking about a ”yo–yo effect here: in the 1990s,
many methods and modeling languages were popularized. [15]
is talking about a ”yo–yo effect here: in the 1990s, many
methods and modeling languages were popularized. Then, for
a while, unification based on UML was very helpful. T hen,
DSLs that were developed from scratch began to emerge. The
next trend may be a repository of UML/SysML-based DSLs
that actually unify DSLs and UML/SysML thinking.”

Our approach can be considered such a unified thinking.
As already explained, we define our own DSL but it is closely
aligned with SysML and we try to diverge only when we see
a possibility for improving beyond the standard.

III. ARCHITECTURE PARADIGMS

This Section provides background information regarding
the two main architecture paradigms that are used today:
monolithic software and MSA. Service-oriented architectures
(SoA) and serverless architecture [16] are not described in
detail as SoA, especially from a deployment perspective, still
resembles monolith software [17] and serverless can be seen
as taking MSA one step further [18].

A. Monolithic software
[19] defines a monolith as ”a software application whose

modules cannot be executed independently”. This architecture
is a traditional solution for building applications. A number
of problems associated with monolithic applications can be
identified:
• Due to their inherent complexity, they are hard to

maintain and evolve. Inner dependencies make it hard
to update parts of the application without disrupting
other parts.

• The components are not independently executable and
the application can only be deployed, started and
stopped as a whole [20].

• They enforce a technology lock-in, as the same lan-
guage and framework has to be used for the whole
application.

• They prevent efficient scaling as popular and non-
popular services of the application can only be scaled
together [21].

Nevertheless, monolithic software is still widely used and,
except for green-field new developments, there is hardly a
way around it. [22] notes that a monolithic architecture is
”often a more practical and faster way to start”. Furthermore,
if software from external parties is involved in a tool chain, it
is not possible to change its architecture style.

94

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Microservices
There is no single definition of what a MSA actually is. A

commonly used definition by Lewis and Fowler says it is ”an
approach for developing a single application as a suite of small
services, each running in its own process and communicating
with lightweight mechanisms, often an Hypertext Transfer
Protocol (HTTP) resource Application Programming Interface
(API)” [23]. Microservices typically consist of stateless, small,
loosely coupled and isolated processes in a ”share-as-little-as-
possible architecture pattern” [24] where data is ”decentralised
and distributed between the constituent microservices” [25].

The term ”microservices” was first introduced in 2011 [23]
and publications on architecting microservices are rapidly in-
creasing since 2015 [26]. In 2016, a systematic mapping study
found that ”no larger-scale empirical evaluations exist” [27]
and concluded that MSA is still an immature concept.

The following main benefits can be attributed to MSA:

• Relatively small components are easier for a devel-
oper to understand and enable designing, developing,
testing and releasing with great agility.

• Infrastructure automation allows to reduce the manual
effort involved in building, deploying and operating
microservices, thus enabling continuous delivery [26].

• It is less likely for an application to have a single point
of failure because functionality is dispersed across
multiple services [17].

• MSA does not require a long-term commitment to any
single technology or stack.

[4] notes the obvious drawback of the current popularity of
microservices that ”they’re more likely to be used in situations,
in which the costs far outweigh the benefits” even when
monolithic architecture would be more appropriate.

In a study regarding the challenges of adopting microser-
vices, [3] lists the distributed nature of MSA, which leads to
debugging problems, the unavailability of skilled developers
with intimate knowledge of MSA and finding an appropriate
separation into services.

IV. DEPLOYMENT INFRASTRUCTURE

Corporate IT environments imply very strict regularities
when it comes to hard- and software architectures and deploy-
ments. Bringing in innovation in such an environment requires
following a heterogeneous approach.

While it is more challenging to adapt hardware in a
corporate context to cope with the latest innovations, service
and software developments, e.g., Advanced RISC Machine
(ARM) Central Processing Unit (CPU) platform based servers,
Graphics Processing Unit (GPU) assisted computing or wide-
usage of Field Programmable Gate Arrays (FPGAs), the ap-
plication platform layer adaption is typically less demanding
because almost any state-of-the-art deployment form, like bare-
metal, Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) or PaaS can be rolled out on standard server hardware.

The rationale for choosing a specific deployment form is
based on various constraints imposed by corporate policies and
long-term strategy decisions:

• Is the envisaged deployment form available in the
corporate infrastructure?

• Has the deployment form limitations due to corpo-
rate policies, e.g., restricted internet access, restricted
repository access?

• Are there any license limitations?
• Are there geolocation limitations for certain services,

e.g., in a multinational company with multinational
regulations according to law?

• Is the service available on premise or only on public
cloud?

• Does a deployment form for a particular service fit in
the long-term corporate IT strategy, e.g., make or buy
decisions?

For the SCM modeling prototype, it was necessary to make
use of a heterogeneous software and hardware infrastructure
provided by the corporate IT. Therefore, the deployment
took place on IaaS, PaaS and Function as a Service (FaaS)
platforms. Also, end user devices are involved, for example
for running the SCM workbench (see Figure 14). That variety
of platform types was chosen to provide inside information on
how a new engineering concept could be supported by differ-
ent software architecture approaches to be efficient in terms
of development time, Continuous Integration (CI), resource
efficiency and scalability.

A. Infrastructure as a Service
In the context described above, IaaS is used to describe a

hosting platform based on bare-metal and hosted hypervisors.
It provides a variety of virtualized operating systems that are
in compliance with corporate IT regulations.

For the prototype, the services hosted on classical vir-
tual machines are mainly databases used as persistent layers
for distributed Web applications. The main reason for not
hosting the web applications together with their respective
persistence layer are resource restrictions. Current company
policies prevent external access to the databases if they are part
of the same microservice image as the hosting environment.
This would either limit database management to a web-based
command line interface or require the implementation of a
Web service deployed in the same container. Also, other
external services could not be used to access the databases.
This limitation is purely based on a decision made by the
company’s IT governance, but reflects day to day reality in
corporate environments.

For any other Web application around the SCM prototype
development, IaaS was avoided as the resource overhead
cannot compete with PaaS or FaaS.

B. Platform as a Service
In the following Section, PaaS refers to an on-premise

deployment of the Red Hat OpenShift [28] platform. It is a
platform built around Docker [29] containers orchestrated and
managed by Kubernetes on a foundation of Red Hat Enterprise
Linux.

In the prototype, PaaS plays a critical role for the con-
tinuous integration strategy. The image format used for the
deployments follows the Source-to-image (S2I) concept. S2I
is a toolkit and workflow for building reproducible container
images from source code [30]. S2I produces ready-to-run
images by injecting source code into a container image and

95

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

letting the container prepare that source code for execution.
The source code itself is hosted on an on-premise Github En-
terprise [31] instance and the dependent resources are provided
via an on-premise Artifactory [32] deployment that reflects the
official sources of the required development environment such
as Maven [33], npm, Python or NuGet.

The whole continuous deployment chain is secured via an
exchange of keys and certificates to prevent disruptions for
example due to company introduced password cycles for the
developer and deployment accounts. The deployment speed is
improved by using system instances for the S2I chain in the
same geolocation of the company to prevent larger inter-site
data transfers and round-trip times.

The microservice concept, together with PaaS, allows a
massive reduction of resource allocations compared to an
IaaS deployment, especially if the services are single and
independent web applications.

There are still limitations in the corporate environment
that currently prevent larger scale use of the technology. The
current setup allows a limited number of pods per node,
which becomes an issue when a service uses the scaling
capability of the OpenShift platform. A second limitation is
linked to the allocated sub-network and the deployment of
the platform. All inter-service communication is routed via a
unique company internal network. The PaaS instance does not
re-use a network range that is already present in the company
for inter-service communications as it would impose other
challenges regarding communication from within the PaaS
instance towards other company services. The rationale for
the chosen PaaS implementation is primarily the reduction of
classical virtual machines for simple hosting jobs and only
secondarily the creation of a massively scalable infrastructure

for new service applications.
To cope with these limitations the prototype furthermore

reduces the deployment footprint of single services for certain
applications as described below.

C. Function as a Service
FaaS is used for tiny stateless jobs, e.g., rendering of

images. These services are monitored by an orchestrator that
decommissions containers after idling for a defined time. This
reduces resource usage further and has advantages in a scenario
with a larger number of services.

The deployment architecture of the FaaS instance allows
launching service containers within milliseconds. The applied
software stack is OpenFaaS based on Docker Swarm running
on a Debian [34] Virtual Machine (VM).

One FaaS instance consumes resources similar to a pod on
the above mentioned PaaS environment and hosts numerous
services without performance limitations. While PaaS exposes
containers under their distinct Internet Protocol (IP) addresses,
FaaS comes with a reverse proxy that hides all containers and
requires less IP addresses. This reduces the effort for routing
name resolution and their documentation.

V. IMPLEMENTATION AND INTEGRATION

The implementation of the prototype framework is split
into different logical bricks as depicted by Figure 5. The
services and applications itself can be mapped to their specific
deployment paradigm as listed in Table I. The Architect
Cockpit allows a system architect to use existing models, to
schedule the execution of simulations and to review results.
The SCM Workbench enables SCM developers to create and
version SCMs. The Back End provides different services such

Access to existing domain

data

Smart Component Model creationArchitecture modeling

System/Aircraft Architect

Architecture

Web Frontend

SCM Developer

Smart Component

Library

Discipline Model Developers

▪ Behavioral Models

▪ Performance Models

▪ Surrogate Models

Discipline

Modeler Tooling

SCM Workbench

SCM Engine Processors

Legend

Function-as-a-Service

Custom tool

Persistent layer

Microservice

Monolithic application

Support Functions

Discipline Models

Figure 5. Service Environment & Deployment Infrastructure

96

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as the orchestration of different processors to perform the
execution of simulations.

TABLE I. Service Mapping to Deployment Paradigm

Deployment
Paradigm

Service or Application

IaaS Persistence Layers (Smart Component Library, MongoDB, Internal
GitHub, Internal Artifactory)

PaaS SCM Engine, Architecture Web Frontend, Service Dashboard,
OpenTURNS Sampler, Node-Red, SCM Processors, Jenkins

FaaS JSONata, Parallel-Coordinates

End User
Device

SCM Workbench

A. Architect Cockpit
In order to reduce the workload and make the work for

the architects as convenient as possible the interface for the
cockpit is setup as an Angular Single Page Application (SPA).
This allows using this entity without installing custom software
and without bothering the user with update and migration
procedures. The site is built using a Jenkins pipeline and
then deployed on a specific git repository branch. A webhook
on this branch triggers an OpenShift instance to build an
Express.js server serving the previously build site on a PaaS
cluster.

From a functional point of view the Architect Cockpit
gives a reduced view on SCMs. Only information, which is
necessary for the work of an architect is available and can
be modified. This results in a nearly full intuitive usage of
the interface and prevents faulty configurations. For example,
some parameters can only be changed within a certain range.
Ranges are defined by the model developer who knows the
limitations best. The architect does not need to have a deep
understanding of these limitations when using the predefined
models.

Figure 6. Architect entry point for gathering information on an SCM

Figure 6 shows the Architects entry point into using a SCM.
In this case it is an aircraft architect opening a parametric
aircraft model. He can then start a new study and set or
change parameters of this model which Figure 7 shows. After
running a calculation in the mixed-paradigm back-end the
front-end renders an executive result and presents it to the
architect. Figure 8 shows the result. If deeper insights into the
calculation chain is required the architect can open a more

Figure 7. User interface for defining parameter values

Figure 8. User interface for launching calculation with a SCM

detailed interactive report rendered as a bubble chart as shown
in Figure 9. When selecting a range of values for a set of
parameters an additional representation appears rendering all
distinct runs of a study into a parallel coordinates plot. Figure
10 shows this interactive diagram. It is a data analytics tool that
allows highlighting specific runs, filtering specific parameter
and characteristic values as well as removing parameters from
the diagram.

B. SCM Workbench
The SCM Workbench is a full-fledged graphical editor to

work with SCMs implemented as a monolithic rich-client
application. It is implemented in an Eclipse Rich Client
Platform (RCP) and based on the Eclipse Modeling Framework
(EMF) [35]. It is a modeling framework and code generation
facility for building tools and other applications based on a

97

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Bubble chart for browsing through the propagation of calculated values

Figure 10. Design of Experiment explorer for navigation through large sets of sampled
simulation runs

structured data model. EMF provides tools and run-time sup-
port to produce a set of Java classes from a model specification,
along with a set of adapter classes that enable viewing and
editing of the model, and a basic editor.

EMF is the basis for the Obeo Designer tool [36], which
builds on the Eclipse Sirius project [37] and allows definition
of graphic editors based on a defined EMF metamodel. This
enables rapid prototyping of modeling solutions, which is ideal
for a research/prototyping environment such as Airbus Central
R&T. Changes to the metamodel are almost instantly available
in the SCM Workbench, our prototype SCM modeling tool. On
the other hand, EMF and Obeo Designer are mature and have
been proven in industrial practice, e.g., Capella, the modeling
tool from Thales that implements the Arcadia method is built
with EMF and Obeo Designer as well [38].

Starting the SCM Workbench opens an application that
is shown in Figure 11. The left toolbar allows browsing
through the SCMs that exist in a project. A project is split
into SCMs and representations. While the SCMs contain all
functionality required for computing it, the representation adds
additional information on how to render the SCMs within the
workbench. Figure 12 shows the parameter view that allows
the SCM Developer to model the propagation of parameters
and characteristics through the SCM. Selecting entities in this
view leads to its properties to show up in an editor at the
bottom of the window. This example shows the parameter

Figure 11. SCM Workbench showing the representations

Figure 12. Parameter view in SCM Workbench

”Weight” of the SCM ”Wing”. The structure view shown in
Figure 13 describes the architectural interdependency between
underlying SCMs. In this case the ”Engine” is attached at
the ”Pylon” to the ”Wing” and the ”Wing” is attached to the
”Fuselage” at the ”Belly”.

Using such a rapid prototyping approach for the SCM
Workbench can be easily misunderstood as just a proof-of-
concept study. The final look and feel of the graphical editor
for the SCMs is only limited by the amount of development
time used for user experience (UX) polishing. The workflow
and information accessibility as well as the connection to a ver-
sioning system is comparable to other commercially available
modeling tools, which are well known by the developers. It is
assumed that a SCM developer has to take a short on-boarding
training before using the SCM Workbench.

98

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Structure view in SCM Workbench

C. Back End
The back-end is built from several different entities that

are based on different paradigms. These entities are described
in the following paragraphs.

1) SCM Library: The SCM Library stores the models that
have been created using the SCM Workbench. It is based on
Connected Data Objects (CDO) a Java model repository for
EMF models and metamodels. The specific implementation in
use is the Obeo Designer Team Server (ODTS), which enables
concurrent engineering of EMF models. A custom plug-in
allows other services and applications to access the model
repository through a Representational State Transfer (REST)
interface. Due to its complex deployment strategy the SCM
Library is deployed in an IaaS environment, which allows more
user interaction during updates.

2) SCM Engine: The SCM Engine can interpret SCMs,
check constraints and run parametric calculations either as a
single simulation run or as a Design of Experiments (DoE)
setup with multiple samples. It is a Java application executed
in an OpenJDK VM. Access to the engine is established
through REST interfaces that are hosted on a Jetty server.
The endpoints are described and documented using the Jersey
framework. The SCM Engine is hosted on a PaaS instance and
allows rolling updates, automated builds and scaling.

3) Model Processors: The Performance Model API serves
as a glue between external domain-specific models with their
own solver or simulation engine and the SCM Engine. A
Model Processor is an application that implements this API
to execute a specific model type. The API enables the SCM
Engine to orchestrate simulations tools in a unified way and
guides developers through the process of integrating additional
simulation tools into this environment. In order to include
a new model type in the SCM application framework, a
model type specific Model Processor has to be implemented
that implements the Performance Model API and connects
to the model type specific solver or simulator. A reference
implementation shows how this works for Excel models. An
Excel model is processed by a Java application running in an
OpenJDK VM using the Apache POI framework. Depending
on the type of model and, e.g., the license and installation

requirements of the model solver or simulator, the Model
Processor can be deployed in any of the available deployment
options IaaS, PaaS and FaaS.

Figure 14 depicts how the components of the SCM tool
framework prototype are deployed in our infrastructure.

IaaS

for SCM repository and

model execution

PaaS

for SCM backend, frontend and model execution

FaaS

for supporting functions and

model execution

SCM Library

SCM Engine

End user device

for SCM and model

execution

SCM

Workbench

Architect

Cockpit

Drawing

Function

Persistence

Layers

Model

Processor

Model

Processor

Model

Processor

Model

Processor

Figure 14. Prototype tool deployment

To make the polyglot approach of the MSA work and
integrate each service all participating entities need to agree
to a commonly understood interface. For the prototype REST
over HTTP was chosen as the default interface combined
with JavaScript Object Notation (JSON) as serialization for-
mat. REST over HTTP is a de facto standard since almost
every technology stack provides at least an HTTP API if not
specialized REST frameworks and clients such as Java API
for RESTful Web Services (JAX-RS). JSON as a serialization
format is accepted and provides solid tooling on all integrated
technologies. In addition many front-end frameworks natively
support JSON such as JavaScript or Ruby. This eases the
integration work needed to be done for the implementation of
our demonstrators mainly the Architect Cockpit. As an added
bonus it is easily digestible by human user, which helped
tremendously with debugging. To build up process chains
utilizing the deployed microservices we selected Node-RED. It
provides all the tools necessary to handle HTTP based REST
APIs and JSON based message bodies and is integrated well
into the existing environment.

If we dissect the service environment infrastructure shown
in Figure 5 we can see what protocols are being used in
the communication between the different services. As Figure
15 shows the communication through the HTTP RESTful
web services is the predominate form of communication in
our prototype. The only deviation from this paradigm occurs
in the communication between the SCM Workbench and the
SCM Library where the tool provider specifies Transmission
Control Protocol (TCP) as interface. We did not challenge this
implementation since it is provided by the Obeo Designer
Team Server; however, we implemented a Mapper Plugin
that provides access to the stored SCM Models via a REST
interface to incorporate it in our service environment. The
HTTP REST approach is especially useful for incorporating
the various Discipline Models Processors into the overall pro-

99

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Architecture Modelling

Architect

Access to domain dataSmart Component Model Creation

S
C

M
 E

n
g
in

e

Obeo

Designer

Team Server

SCM Workbench

SCM Developer

Mapper

Plug-In

Calculation

Module

Registry

Manifest

HTTP

TCP

S
C

M
 L

ib
ra

ry

HTTP

HTTP

HTTP

HTTP

HTTP

Calculation Results

Calculation Result

References

Available SCM Models

Parameter Editor (iframe)SCM

Model References

Processors

Discipline
DisciplineModel

Processors

HTTP

Discipline

Modeller

Tooling

Discipline Model Developers

Behavioral

Performance

Surrogate D
is

ci
p
li

n
e

M
o
d
el

s

Architect Web-Frontend

Figure 15. The use of REST interfaces in our prototype

cess. Since every processor works on a dedicated technology
stack designed for his task utilizing a unified interface makes
integration into the overall process network easy.

After the explanation of all the building blocks we will
present a case study to demonstrate the framework in action.

VI. CASE STUDY

This section describes a case study that has been made
using the SCM Workbench with the purpose of showing
individual features of the tool-chain.

The described model has been provided showing an Air-
craft consisting of Fuselage, Wing and Engine. The hierarchi-
cal view, depicted in Figure 16, of the SCMs shows that all
models are placed in one package. The hierarchical view is
equivalent to SysML’s class diagram. This view shows that
the Aircraft is decomposed into Fuselage, Wing and Engine.
However, it does not show their interdependency.

Figure 16. Case study: Hierarchy view

All models are SCMs. The Aircraft is a special case,
because it is decomposed into other SCMs.

In order to describe the interdependency within the Aircraft
SCM the internal structure diagram was used, shown in Figure
17. It shows that the Fuselage and Wing are connected with
each other at the Belly. Wing and Engine are connected at
the Pylon. This diagram is similar to SysML’s internal block
diagram. The blue box shows the scope of the SCM. The green
boxes represent the decomposition into other SCMs.

Figure 17. Case study: Structure view

Additionally there is the parameter view, shown in Figure
18, which describes in-transient calculation of the model char-
acteristics from the set of parameters. All parameters appear in
purple color and all characteristics in green color. This specific
SCM describes the calculation of the Aircraft’s weight and
range from its length, cross-section and payload. Light yellow
color represents an aggregation function that generates one
value from a list of values. In this case both aggregation nodes
compute a sum. Direct calculations on performance models are
represented by the orange boxes. They refer to a domain model
manifest, describe machine-readable how these domain models

100

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shall be executed and how parameters and characteristics are
transmitted to and from them.

In order to ensure compatibility between parameters and/or
characteristics a common type system is available. It allows to
specify the data to be exchanged during the simulation between
the components. Besides the typical basic types it allows
structured types like lists and key-value-pairs. An additional
feature is to nest types as references into other types. As an
example the Aircraft parameters are shown in Figure 19. As
an example for a basic type the weight is shown in Figure 20.

VII. EVALUATION

Evaluating the mixed-paradigm approach, we experienced
that developers where able to create a working deployment
much faster compared to the traditional approach using virtual
machines. This also includes the amount of times that a new
version of the service was built from once a week to several
times a day using the automated CI pipeline. This increased the
general development velocity as well as the prototypes feature
set, which helped us to tailor the application to our stakeholder
needs.

The raised deployment speed increased the number of times
we experienced broken client applications. This was due to
a violated interface contract between the services if the new
features where not integrated properly. A well-defined and
adhered to interface specification is paramount for the success
of introducing this mixed-paradigm approach.

In general, we noticed a greater sense of ownership of
single developers over their service/code, which lead to a hike
in the overall implementation quality. The mandatory usage
of the git version control system increased the maintainability
of the code base. The combination of git and the OpenShift
framework made it easy to recover from failures and faulty
builds, which lead to a constant up-time of all services.
In the future the introduction of additional agile software
development principles like Test Driven Development could
further increase the code quality.

However, the deployed solution is marked as a proof of
concept or prototype which lead to the conclusion that it is
not ready for operational use for various reasons. The main
focus of the development lay on the proof of feasibility of the
SCM modeling methodology as described in [6]. As soon as
first parts of the prototype were available selected engineering
departments started trials with the solution, which lead to fur-
ther improvements of the underlying methodology as well as
the overall usability. The overall perception was very positive,
which lead to the conclusion that the developed methodology
points in the right direction as well as the performance of
the proposed tool set based on the described approach in this
paper.

The mixed-paradigm approach that was used to develop
and deploy the prototype discussed in this paper led to reduced
complexity, lower coupling, higher cohesion and a simplified
integration. This in turn enabled agile collaboration for con-
tinuous delivery and integration of the solution.

VIII. OUTLOOK AND FUTURE CHALLENGES

In the previous sections, we described how MSA can
support the chosen polyglot approach utilizing a variety of
different technology stacks and storage solutions. This enabled

us to select the most fitting technical solution for the required
functionality. Additionally the network based architecture pro-
vides an environment that is well suited for a multinational
company like Airbus with sites scattered throughout different
sites and IT domains. It also provided a commonly understood
deployment layer for our cross-functional project team.

MSA supports us with the agility and velocity needed to
convince our customers of our approach and implement a
prototype that can handle the complexity of our SCM mod-
eling approach. However, during the development we found
stumbling blocks that need awareness once the scale changes
from a research project prototype to a full scale industrial roll
out.

Corporate IT – The proposed environment builds and
hosts microservices in an agile and automated way. This
requires the setup and maintenance of a CI pipeline (in our
case OpenShift/GitHub), which results in additional costs as
well as an IT department that is capable of dealing with
those investments. Additionally setting up certificate chains
and firewalls to allow for secure communication inside the
corporate network need to be accounted for. On the developer
side roadblocks like proxy server hindering communication
and enabling cross-origin resource sharing (CORS), which
allows for communication between different domains need to
be taken care of.

Service discovery – Once we reached a critical mass of
microservices environment we discovered that it is hard to keep
track of what services have already been implemented and
what functionality each service provides. Even in our research
project this point was reached rather quickly. Thus, we intro-
duced Swagger [39] as a Web based documentation for all our
services and implemented a simple dashboard where services
could be registered against. This allowed for manual service
discovery across the team. In the future automated service
discovery through bots and processable service descriptions
will bring more value to the MSA approach by handling the
sprawling service environment.

Now that we optimized the CI pipeline in the first half
of the project we experience a rapid increase in deployed
services. This allowed us to swiftly introduce new functionality
as microservices, boosting the capabilities of our proof of
concept prototype. It shows that MSA can initially speed up the
implementation velocity of a new project. Once we continue
with the project more efforts will go towards managing the
volume of services as well as (network) performance and
reliability.

IX. CONCLUSION

Past experience shows that current aircraft and aircraft
system development processes are not suitable for keeping
up with the rising complexity of products. Those processes
are under pressure from market-driven demands for faster, and
from business-driven demands for cheaper aircraft programs.
In this paper, we presented a proposal for a change from a
traditionally linear development approach to one that includes
a parallel, OOC component development phase. This approach
required a supporting IT infrastructure that was built as a pro-
totype at Airbus in the frame of a research project. To reduce
both time and resources required for building this prototype
state-of-the-art architecture and deployment paradigms were

101

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. Case study: Parameter view

Figure 19. Case Study: Aircraft parameter modeled in the type system

Figure 20. Case Study: Basic parameter representation in the type system

used and mixed with more classic approaches to get the best
of both worlds.

A direct, specific and measurable comparison between the
described mixed-paradigm and a classical approach is not
possible as it would have required the same infrastructure
landscape to have been developed and deployed multiple times
using different concepts. Nevertheless, implementers were
given the freedom to decide for every distinct artifact to freely
choose the paradigm used for implementation. Furthermore,
developers were allowed to split artifacts, which enables to
select the right paradigm for each problem within. Later the
interface documentation allowed the developers to easily re-
implement an artifact using a different paradigm in case the

initial decision for a specific paradigm reveals to have been
not an optimal choice. Therefore, the selection of the right
paradigm appears to be inherent and native. To support a newly
developed MBSE approach called SCM modeling, a support-
ing application framework prototype had to be developed.
Instead of a single architecture and deployment paradigm, a
mixed-paradigm approach was followed to take the advantages
of the different options and to consider external constraints
coming from the IT governance. The software bricks were
implemented in monolithic, SoA, microservice and serverless
architecture glued together by REST interfaces over HTTP.
The deployment took place on desktop-PC, IaaS, PaaS and
FaaS platforms. It provided insight into how a new engineering
concept could be supported by different software architecture
approaches to be efficient in terms of development time,
continuous integration, resource efficiency and scalability.

REFERENCES

[1] P. Helle, S. Richter, G. Schramm, and A. Zindel, “Mixed-Paradigm
Framework for Model-Based Systems Engineering,” in FASSI 2019,
The Fifth International Conference on Fundamentals and Advances in
Software Systems Integration. IARIA, 2019, pp. 8–13.

[2] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” in
Present and ulterior software engineering. Springer, 2017, pp. 195–216.

[3] J. Ghofrani and D. Lübke, “Challenges of microservices architecture:
A survey on the state of the practice.” in ZEUS, 2018, pp. 1–8.

[4] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, 2018, pp. 24–35.

[5] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, and T. M.
Shortell, Eds., Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities, 4th ed. Hoboken, NJ: Wiley,
2015.

[6] P. Helle, S. Feo-Arenis, A. Mitschke, and G. Schramm, “Smart compo-
nent modeling for complex system development,” in Proceedings of the
10th Complex Systems Design & Management (CSD&M) conference,
forthcoming.

[7] A. Reichwein and C. Paredis, “Overview of architecture frameworks
and modeling languages for model-based systems engineering,” in Proc.
ASME, 2011, pp. 1–9.

[8] Object Management Group, OMG Systems Modeling Language (OMG
SysML), v1.2. OMG, Needham, MA, 2008.

[9] M. H. Sadraey, Aircraft design: A systems engineering approach. John
Wiley & Sons, 2012.

[10] Object Management Group, OMG Unified Modeling Language (OMG
UML), v2.3. OMG, Needham, MA, 2010.

[11] J. A. Estefan et al., “Survey of model-based systems engineering (mbse)
methodologies,” Incose MBSE Focus Group, vol. 25, no. 8, 2007, pp.
1–12.

102

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] A. Albers and C. Zingel, “Challenges of model-based systems engi-
neering: A study towards unified term understanding and the state of
usage of sysml,” in Smart Product Engineering. Springer, 2013, pp.
83–92.

[13] R. Karban, R. Hauber, and T. Weilkiens, “Mbse in telescope modeling,”
INCOSE INSIGHT, vol. 12, no. 4, 2009, pp. 24–31.

[14] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, 2000,
pp. 26–36.

[15] J. Gray and B. Rumpe, “Uml customization versus domain-specific
languages,” 2018.

[16] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2658–2659.

[17] A. Karmel, R. Chandramouli, and M. Iorga, “Nist definition of microser-
vices, application containers and system virtual machines,” National
Institute of Standards and Technology, Tech. Rep., 2016.

[18] I. Baldini et al., “Serverless computing: Current trends and open
problems,” in Research Advances in Cloud Computing. Springer, 2017,
pp. 1–20.

[19] N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “Mi-
croservices: Migration of a mission critical system,” arXiv preprint
arXiv:1704.04173, 2017.

[20] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: an experience report from the
banking domain,” Ieee Software, vol. 35, no. 3, 2018, pp. 50–55.

[21] M. Villamizar et al., “Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud,” in 2015
10th Computing Colombian Conference (10CCC). IEEE, 2015, pp.
583–590.

[22] ——, “Cost comparison of running web applications in the cloud
using monolithic, microservice, and aws lambda architectures,” Service
Oriented Computing and Applications, vol. 11, no. 2, 2017, pp. 233–
247.

[23] M. Fowler and J. Lewis. Microservices a definition of this new architec-
tural term. [Online] http://martinfowler.com/articles/microservices.html
[Accessed: 11 September 2019].

[24] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP
Applied Computing Review, vol. 17, no. 4, 2018, pp. 29–45.

[25] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of
microservices,” in 2017 23rd International Conference on Automation
and Computing (ICAC). IEEE, 2017, pp. 1–6.

[26] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: trends, focus, and potential for industrial adoption,” in
2017 IEEE International Conference on Software Architecture (ICSA).
IEEE, 2017, pp. 21–30.

[27] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study.”
in CLOSER (1), 2016, pp. 137–146.

[28] RedHat, “Openshift,” https://www.openshift.com/, 2019, [Online; ac-
cessed 3-February-2020].

[29] Docker Inc., “Docker,” https://www.docker.com/, 2019, [Online; ac-
cessed 3-February-2020].

[30] A. Lossent, A. R. Peon, and A. Wagner, “PaaS for web applications with
OpenShift origin,” Journal of Physics: Conference Series, vol. 898, oct
2017, p. 082037.

[31] GitHub, Inc., “Github,” https://github.com/, 2019, [Online; accessed 3-
February-2020].

[32] JFrog Ltd, “Artifactory,” https://jfrog.com/artifactory/, 2019, [Online;
accessed 3-February-2020].

[33] The Apache Software Foundation, “Maven,” https://maven.apache.org/,
2019, [Online; accessed 3-February-2020].

[34] Software in the Public Interest, Inc., “Debian,” https://www.debian.org,
2019, [Online; accessed 3-February-2020].

[35] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[36] Obeo, “Obeo designer,” https://www.obeo.fr/en/, 2019, [Online; ac-
cessed 3-February-2020].

[37] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid develop-
ment of dsm graphical editor,” in IEEE 18th International Conference
on Intelligent Engineering Systems INES 2014. IEEE, 2014, pp. 233–
238.

[38] P. Roques, “MBSE with the ARCADIA Method and the Capella Tool,”
in 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016), Toulouse, France, Jan. 2016.

[39] SmartBear Software, “Swagger,” https://swagger.io/, 2019, [Online;
accessed 3-February-2020].

103

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data Science as a Service

Prototyping an Integrated and Consolidated IT Infrastructure Combining Enterprise Self-Service

Platform and Reproducible Research

Hans Laser

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: laser.hans@mh-hannover.de

Steve Guhr

NetApp Deutschland GmbH

Berlin, Germany

e-mail: steve.guhr@netapp.com

Jan-Hendrik Martenson

NetApp Deutschland GmbH

Hamburg, Germany

e-mail: jan-hendrik.martenson@netapp.com

Jannes Gless

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: gless.jannes@mh-hannover.de

Branko Jandric

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: jandric.branko@mh-hannover.de

Joshua Görner

Airbus Operations GmbH

Hamburg, Germany

e-mail: joshua.goerner@gmail.com

Detlef Amendt

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: amendt.detlef@mh-hannover.de

Benjamin Schantze

NetApp Deutschland GmbH

Hamburg, Germany

e-mail: benjamin.schantze@netapp.com

Svetlana Gerbel

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: gerbel.svetlana@mh-hannover.de

Abstract–A data scientific process (e.g., Obtain, Scrub, Explore,

Model, and iNterpret (OSEMN)) usually consists of different

steps and can be understood as an umbrella for the

combination of different most modern techniques and tools for

the extraction of information and knowledge. When developing

a suitable IT infrastructure for a self-service platform in the

academic environment, scientific requirements for

reproducibility and comprehensibility as well as security

aspects such as the availability of services and of data are to be

taken into account. In this paper, we show a prototypical

implementation for the efficient use of available data center

resources as a self-service platform on enterprise technology to

support data-driven research.

Keywords-data science as a service; reproducible research;

enterprise information technology; research data infrastructure;

self-services; data science platform; cloud infrastructure.

I. INTRODUCTION

One of the most important aspects of building service
portfolios in the company is to make them as simple and
usable as possible for the end user [1].

Data centers at German universities are increasingly
confronted with challenges in the areas of availability and
operational security, data privacy and IT security, operating
costs and use of cloud services, data management and access
to high computing capacity, increasing standardization and
consolidation of IT systems [2]. The availability of services
and especially of data requires a corresponding
infrastructure. Services are increasingly subjected to risk
classification in order to define how the operation of
university IT must be ensured. The technology used must
allow to scale out (horizontally) performance of a platform,
because scaling up a platform is limited to hardware
resources. Today, virtualization technology is often used to

104

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compress computing power and at the same time to have the
flexibility to move parts of the computing nodes and
redistribute the load in case of a failure. Hardware
maintenance does not necessarily result in the unavailability
of a service, as it can usually be moved without interruption
to another node in the data center cluster or even the cloud
[3]. This infrastructure is supplemented by container
technology as a further step in service encapsulation. At the
same time, similar demands are made on the availability of
data. Redundant Arrays of Independent (Inexpensive) Disks
(RAID systems) combine performance, reliability and
scalability but show weaknesses in the speed of recovery [4].
Monitoring the health of IT infrastructures with suitable tools
is indispensable for professional operation [5].

The main challenge is to "transfer" (integrate) these well-
known tools and solutions into a scalable and powerful
platform that can be equipped with enterprise technology to
ensure service level agreements (SLAs) from a centralized
enterprise information technology [3].

Users of documented services are provided with more
specific minimum and maximum performance measures,
such as quality, punctuality or cost of a service, through the
SLAs and can adapt and understand the expectations and
limitations of a service accordingly [6].

The process of combining or connecting different
systems and individual software applications to form a
common functional system with comprehensive functionality
to increase user acceptance and customer satisfaction is also
known as system integration. IT service providers have an
interest in the continuous improvement of product and
service quality [7]. The added value for the company can be
increased by improving service response times, reducing the
costs for the operation of IT infrastructure, and lowering
operating costs by intelligently linking the IT systems used
[8].

A. The Data Science Process

To obtain information (e.g., based on patterns) for
relevant business decisions from data of heterogeneous data
sources, a classical multi-stage process for data preparation
and analysis is used, the so-called data mining process [9].
Data science, on the other hand, can be understood as an
umbrella for the combination of various state-of-the-art
techniques for the extraction of information and knowledge
(so-called insights) to develop data-based applications and,
thus, automating processes. One approach to describe the
individual steps for the data science process is Obtain, Scrub,
Explore, Model and INterprenting (OSEMN) [10]. In the
Obtain step, for example, query languages are required for
databases that can be extracted in various formats. Python
[11] and R [12] encapsulate the otherwise heterogeneous
data query tools (e.g., Structured Query Language (SQL),
eXtensible Markup Language (XML), Application
Programming Languages (API), Comma Separated Value
(CSV), Hybrid File System (HFS)). Classic database
techniques such as Extract Transform Load (ETL) process
can be used in the cleanup step (Scrub). Computer languages
like Python and R or application suits like SAS Enterprise

Miner [13] or OpenRefine [14] can also be used to transform
data. To examine the data (Explore) languages like Python or
R specialize in particular appropriate libraries (e.g., Pandas
[15] or Scipy [16]). In this step, however, familiar players
from the business intelligence world (e.g., Rapid Miner [17]
or KNIME [18]) can also be found for data-wrangling. To
build a model, there are again specialized Python libraries
like “Sci-kit learn” [19] or CARET [20] for R. Other tools
like KNIME or Rapid Miner find reuse in this step as well.
Finally, for interpreting the model and the data as well as
evaluating the generalization of the algorithm, tools for data
visualization are reused (e.g., matplotlib [21], Tableau [22]
or MS Power BI [23]). In summary, it means, that for the
many single steps in OSEMN, many different tools can be
necessary.

An example of a platform solution that maps these
process steps in a so-called pipelining functionality is the
Pachyderm software [24]. Pachyderm offers components that
support the developer (data scientist) with regard to data
provenance in development work and analyses and can thus
map a logical and chronological sequence of process steps.
This platform solution offers many degrees of freedom and
requires the user to have a well-developed hypothesis or data
processing or data management plan and is therefore suitable
for the development of concrete and declarable products
[25]. However, if the workflow initially requires exploration
for hypothesis generation, it may be better to use tools of
lower complexity.

B. Reproducible Research

Scientific studies, experiments and numerical
calculations can only be reproduced or reconstructed if all
important steps are comprehensible [26]. The importance of
reproducibility of scientific work can be illustrated by the
following quotation from Jon Clearbout: “An article about
computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development
environment and the complete set of instructions which
generated the figures.” [27]

A scientist should therefore always have an interest in
describing the runtime environment as transparently and
understandably as possible. However, complex runtime
environments are difficult to penetrate due to the sometimes
high technological complexity (e.g., package dependencies).
The technical reproducibility enables scientific results to be
reproduced at all, but this requires a very high degree of
knowledge about the method and technology used.
Simplifying the technological limits can increase the
practical reproducibility, i.e., the actual and problem-free
repeatability of the experiment [28].

In the field of computer-based data-driven science (data
science), researchers today often use free and open-source
tools and libraries [29]. The reproducibility and repeatability
of research results and the description of the specific runtime
environment in which the results were generated are not
described in the respective publications or only in text form
[29] [30]. An important factor in the publication of scientific
work is the reproducibility of the research results [30] [31]. It

105

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is therefore necessary that deterministic environments are
available to a data scientist. Determinism can be spoken of
when all events, especially future events, are clearly defined
by preconditions. In other words, development environments
are specified accordingly and work as expected, although the
methods or algorithms used cannot deliver deterministic
results [32].

In data-driven research projects, the application of
appropriate data management procedures helps to maintain
the data integrity of digital data generated in the research
process (“research data”). The preservation of data integrity
in the data flow can be maintained by documenting the data
origin and applied transformations during the research
process. Data is considered reliable if results and errors in
the data creation and data analysis process can be reproduced
through traceability (good data provenance) [33].

Data provenance is encapsulated by so-called research
data management, among other things. Research data
management includes all measures to ensure the usability
and reusability of research data before, during and after the
research project [34]. Systematic representation of these
points in the project life cycle is a Data Management Plan
(DMP), which describes the data and how the data is
processed in the project [35]. A data life cycle illustrates the
steps from collection to re-use (creation, preparation,
analysis, archiving, access, re-use) [36]. There are more
complex models, such as the Curation Lifecycle Model
(DCC), which describes various fields of activity in the
preservation and maintenance of data [37]. A DMP is
required by funders when submitting a proposal (see DFG
Form for the continuation of a Collaborative Research
Center, 1.4.3, [38]) and serves to ensure effective research
data management and long-term usability of the data [34].
Various retention periods apply in order to preserve the
reusability of research data. According to good scientific
practice, primary data should be stored permanently in
research institutions for at least ten years, together with clear
and comprehensible documentation of the methods used
(e.g., laboratory books) (see Recommendation 7 [39]).

In addition to the requirements arising from research data
management, the data principles published in 2016, which
define the basis for research data and research data
infrastructures to ensure sustainability and reusability, must
be taken into account [40]. It was defined by researchers,
financiers, publishers and university representatives to
increase the reusability of research data (FORCE 11 group).
Scientific data should therefore be searchable, accessible,
interoperable and reusable. The FAIR data principles can be
applied to the entire data life cycle and, as an extension to
research data management, provide a collection of best
practices for sharing data under ethical and contractual
conditions (copyrights, intellectual property rights, etc.).

Highly simplified, data and services should be stored in
central data repositories using appropriate metadata (F),
taking into account aspects of long-term archiving (A), and
should be able to be exchanged and interpreted (semi-
)automatically (I) and thus be comparable and reusable (R).
If research data cannot be published due to legal
requirements, the FAIR principles provide procedures for

publishing a description to make the underlying data more
understandable. Metadata on machine or human-readable
interpretability facilitate comprehensibility and data
processing (see Dublin Core Metadata Initiative, Data
Documentation Initiative, etc.), open data formats facilitate
interchangeability and reusability, metadata on privacy and
copyright regulations facilitate accessibility, persistent
identifiers assist in finding and easily accessing the
information, the indication of licenses (e.g., Creative
Commons, etc.) specify the type of usability of the data [41].
Numerous tools support the work with FAIR-Data [42].

In the context of data-driven science, several concepts
that place demands on an ecosystem of IT systems must
therefore be considered. Following the OSEMN process, the
data life cycle of research data management and the FAIR
data principles, a schematic summary is shown in Figure 1.

Figure 1. A schematic summary of OSEMN process, the data life cycle of

research data management and the FAIR data principles (Source: own

illustration).

In addition, depending on the subject area, further

guidelines are to be considered. For the secondary data
analysis of health data, these are, among others, the "Good
Practice in Secondary Data Analysis (GPS)" [43] and the
"Good Clinical Practice of the International Council for
Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH E6 GCP) [44][45].

IT operators at research institutions should therefore
work together with researchers and libraries on IT
infrastructures to support the above points. Results of
systems research show that open source tools in particular
are suitable for the requirements of reproducibility. Although
Docker was introduced primarily for business needs and the
isolation and deployment of web applications in so-called
containers, it provides solutions for virtualization, platform
portability, reuse, sharing, archiving and versioning [17] for
the scientific community.

106

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The use of tools such as JupyterNotebooks (jupyter.org)
enables semantically interoperable publishing of program
code, including through the use of the IPYNB format [29].
JupyterNotebooks supports workflows in scientific
computing, astrophysics, geology, genetics and computer
science [29]. Various applications and programming
languages (e.g., Python, R) provide interfaces to
JupyterNotebooks [30][46]. Jupyter collects many valuable
tools that are needed in the steps of the OSEMN process
model.

C. The aims of the project

The aim of this project is to create an easy-to-maintain
and cost-effective consolidated IT infrastructure to support
data-driven research and implementation in the existing data
center infrastructure at the Center for Information
Management (ZIMt) at Hannover Medical School (MHH).
The requirements for IT systems of the known process
models, research data management, FAIR and the operation
of applications on enterprise level (such as data security and
system recoverability) and numerous other standards,
guidelines, directives and recommendations (such as Good
Research Practice, Good Practice for Secondary Use of Data,
etc.) have to be met.

The ZIMt centralizes operative systems and is a service
provider especially for the areas of research and teaching,
clinic and administration. IT services (applications) are used
in clinical operations to optimize clinical processes and legal
documentation and place high demands on system
availability and fail-safe IT services. This has an impact on
the processes and IT systems of the computer center. In
addition, simple interfaces are provided for end users
(nursing, doctors, administration) for problem presentation
and reporting, which enable centrally controlled fault
clearance via an IT service desk. In order to guarantee
interference suppression, high demands are placed on the
standardization of IT processes and system documentation.
The ZIMt operates a class 3 [47] data center at the MHH to
guarantee these requirements and is certified according to
ISO 9001:2015. In the area of research, however, the IT
process landscape is sometimes disruptive, as rapidly
changing requirements and moving targets are sometimes
necessary to achieve the research goal. The centralization of
applications to support the scientific sector is a strategic goal
of the MHH.

We have defined three main areas of focus which are to
be given special consideration in this proof of concept draft:
(1) usability to evaluate the integratability of the IT solution
into the system landscape established at the MHH and the
working environment familiar to the end user; (2) disaster
recovery to evaluate the recoverability of the proposed
solution. By integrating a system into the MHH
environment, the system has to meet special requirements
(front-end branding to maintain corporate identity and
security aspects). The user administration and access
authorization (3) should be used centrally via an existing
directory service ("Active Directory") and security groups
defined therein, and must therefore be evaluated.

Requirements on the usability of the service can in turn have
an influence on the security factors.

These dependencies should therefore be emphasized in
this concept. For easy control of used storage resources, the
available storage system of the data management provider
NetApp [48] was applied. Available interfaces should be
used and thus not require any additional effort in the
management and monitoring of the system for the IT
operator.

This paper is an extended version of our previous work
[1] and the further course of this paper is structured as
follows. In Section II we describe the methods used to meet
the above challenges. In Section III we describe the results
achieved in relation to the main topics. Section IV concludes
this paper, addressing open questions and the next steps.

II. METHODS

As an interactive shell for various programming
languages, JupyterNotebooks is provided as development
environments at the MHH. The solution is browser-based
and the end user does not need to install any additional
software on his device [49]. The open source environment
JupyterHub Notebook Server is used to operate
JupyterNotebooks in the data center. It enables users to
access computer environments and resources without
bothering them with installation and maintenance tasks.

Standardized environments (the Docker software/binaries
that run on many different operating systems today) built for
containers are suitable for using individual application
manifests in different locations (e.g., locally as well as in a
public cloud infrastructure provided by Google, Amazon
Web Services (AWS) or Microsoft Azure) without having to
change the code. JupyterHub uses Docker as the basis for the
deployment of JupyterNotebooks. The Jupyter Docker
Stacks project [50] provides standardized JupyterNotebook
environments for various applications using Docker images,
including preconfigured environments for use in data
science. For special requirements of the development
environment, additional images can be offered that can be
individually adapted to the user's needs.

In Kubernetes, several containers (e.g., Docker
Containers) with common memory and network (common
context) can be defined and delivered in a so-called capsule
("Pod") as a coherent structure [51]. For more design
flexibility, a hypervisor (VMware) was used to provide the
hosts for container orchestration based on Dockers and
Kubernetes. Snapshots on VMware enable point-in-time
copies of virtual disks can be used to switch to a virtual
machine state at an earlier time.

Terraform and Ansible are fully automated. Terraform is
an open-source tool that offers the possibility to describe
infrastructure configurations programmatically as code
(CaaS [52]) (Hashicorp Configuration Language) [53]. As an
open-source tool, Ansible provides automation tools for
orchestration, general configuration (e.g., software
distribution) and administration of IT infrastructures [54].
Terraform creates the virtual machines within the hypervisor,
Ansible takes care of the installation of the packages and the
configuration of the hosts (configuration management). To

107

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

avoid configuration inconsistencies, the DevOps (Software
Development and Information Technology Operations)
paradigm is considered an "immutable" infrastructure where
every change in the ecosystem leads to a completely new
deployment of the entire stack [55].

A JupyterHub is a multi-user server for
JupyterNotebooks, consisting of several applications that
provide different services (hub, notebooks, proxy,
authenticator, spawner), which allow secure access to central
computing environments and resources.

Figure 2. Overview of JupyterHub components [56]

The most important components and their interaction can
be briefly explained using the JupytherHub architecture (see
Figure 2). The JupyterHub proxy forwards the user to the
JupyterHub or to the user's existing JupyterNotebook,
depending on the user's sign-on status (SIGNED IN/OUT
USER). Existing JupyterNotebooks are managed in the Hub
and after successful authentication new JupyterNotebooks as
well as a defined user storage (Pods + Volumes) are
provided and registered in the proxy. The Hub Container of
the JupytherHub as a central component contains three
services (Authenticator, User Database, Spawner), which on
the one hand can be adapted to the personal requirements
and on the other hand are particularly worth protecting [56].
The so-called "Authenticator" authenticates the users against
a directory service, in our case a Microsoft Active Directory
using the Lightweight Directory Access Protocol (LDAP),
and provides the required input mask as a web page. The
"User Database" stores login and JupyterNotebook
information of the respective users. This data is required for
operation and recovery [57]. It is recommended to replace
the standard database (SQLite) in a productive environment
with a classic relational database management system
(RDBMS) such as PostgreSQL or MySQL. The spawner
provides the notebooks, is able to communicate with the
Kubernetes API and creates ("spawned") Docker Containers.
The spawner can be parameterized, so that resources can be
limited or a special image can be passed to create the
containers via Kubernetes [58][59].

For the proper implementation and configuration of all
components, in addition to a manual deployment, helm as
used, a package manager for easy installation, publishing,
administration, updating and scaling of preconfigured

Kubernetes applications. All configurations and
communications between the containers can be predefined,
as well as the accessibility of the end users from outside. In
this project we used a predefined Helm-Chart [60] for the
deployment of JupyterHub on Kubernetes. Any changes to
the predefined default values can be overwritten by a
configuration file during deployment and thus be
individually adapted to the requirements in the respective
system environment.

Since Docker Containers do not persist data after their
life cycle has ended, the storage of configuration and user
data must be guaranteed. You must therefore mount
persistent volumes to retain the data beyond the life cycle of
the container. For this purpose, Kubernetes offers Persistent
Volumes, which are usually stored on the nodes of a
Kubernetes cluster [61]. In the MHH data center, a high-
performance and highly available NetApp storage system is
used as the central storage system for consolidating and
storing data. To prevent data from being stored on individual
distributed devices, the data from the Kubernetes containers
should be persisted on this central storage. For this purpose,
persistent volumes were provided automatically and
centrally via an open source for Kubernetes from NetApp,
Trident [62]. Trident offers an ideal interface between
persistent volumes and the containers or Pods for this
purpose. For each Pod, a separate volume was created on the
storage cluster, which by default is only provided for one
Pod (e.g., JupyterNotebook). Using so-called storage classes,
NetApp storage can map various guidelines for quality of
service level or back-up guidelines, among other things, in
order to differentiate resource allocation between storage
services for students (short availability, balanced
performance, daily back-ups) and researchers (long
availability, high performance, high back-up frequency).

Figure 3. Sketch access to network drive on DFS from a JupyterNotebook

context (Source: own illustration).

108

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The workstations at the MHH are equipped with

Microsoft Windows by default. The operating mode is
strongly influenced by the look and feel of the graphical user
interfaces, and project documents are stored on network
drives provided by the data center. Microsoft enables
directories distributed on different data storage devices in the
network to be combined into directory structures via the
Distributed File System (DFS). The Server Message Block
(SMB) protocol is used to map the file system authorizations
with authorization objects of the Active Directory in the
network (via DFS) (see Figure 3) [64]. In JupyterHub the
user's network drives are not available in raw state, but he
must be able to store raw data, the generated program codes
and result files from and to the network drive where the
central access (also of the team members) takes place.

The used JupyterHub container is based on a Linux
operating system (Ubuntu). A user can mount SMB shares in
the available directory structure under Linux using the
LinuxCIFS utils package [64]. For the use of LinuxCIFS
utils increased system rights are required. This requires a
corresponding implementation within the container, but
Docker also implements standard security rules and thus, for
example, prohibits the execution of the command for
mounting network drives in the default settings, which in
Kubernetes is done via the so-called "privileged mode" [65]
[66]. For security reasons, applications should only be given
the most necessary privileges (see chapter 6 [67]). To enable
the privileged mode, the corresponding configuration
parameters were transferred via the Helm-values-file
(config.yaml). The LinuxCIFS utils are not included in the
used Dockerfile [68] of JupyterNotebook of this JupyterHub
Helm chart. We have manipulated the Dockerfile
accordingly, and integrated the LinuxCifs utils. In addition,
the user under which the JupyterNotebook is executed
("jovyan") needs increased rights of the superuser (so-called
"root") to execute the command. The assignment of the
execution rights is done via the "sudoers" file. The user
jovyan has only been granted rights to execute the following
modules (mount/umount). Then the Docker image was built
with this customized Dockerfile and deployed on each
Kubernetes worker node. The JupyterHub Helm chart with a
customized helm-values-file (config.yaml) was installed to
use the new Docker image [69]. To give the end user the
familiar look and feel of the corporate environment, it is
necessary to customize the application according to the
corporate design of MHH. On the log-in page, the user
receives the company logo so that there is direct recognition
value to an in-house application. For this purpose, an adapted
version of the HTML files for the log-in page of JupyterHub
was provided on the Kubernetes workstations. The files are
located in the container of JupyterHub in the Unix path
“/usr/local/share/jupyterhub/templates” and were adapted to
a path on the Kubernetes-Worker using helm-values.
Kubernetes controls this process automatically. The log-in
pages can thus be adjusted at runtime.

Even though we are in a "proof of concept" phase of the
project, we wanted to integrate authentication methods from
the beginning to control access to the platform while

achieving security compliance. At the MHH, a local security
area for managing objects (e.g., user names, computers,
printers, etc.) is implemented as a domain via Microsoft
Windows Active Directory. To centralize the administration
of user IDs using Role-Based Access Control (RBAC),
authentication to the Active Directory was accessed using
JupyterHub's Lightweight Directory Access Protocol
(LDAP) implementation. A further step towards simplifying
the login to a service, centralizing authentication and
ensuring the company's password policies was the
integration of user authentication via LDAP. For this
purpose, the section for the Authenticator in the Helm-values
was adapted. A special security group was defined in the
Active Directory to restrict the user circle and to allow a
control of user releases for this service.

The user can decide via different spawners which Docker
image and thus which standard runtime environment and
amount of resources should be provided. This was also
realized via the Helm-values. With preconfigured spawners,
the user does not have to configure the runtime environment
every time he/she starts the environment, e.g., to get an
integration of special packages. A selection of preconfigured
Dockerfiles is available on the Docker-Hub [70].

Due to the central storage of the runtime environment
and the strict alignment of the project to CaaS, a quick
recovery of the service is easily possible. The following
measures were taken to achieve this:

1. creating the Kubernet cluster and separate needed
virtual machines via Vagrantfiles

2. configuration of machines using Ansible Playbooks
3. restore the Kubernetes database including Trident

configuration [19]
4. restore JupyterHub using Helm-chart and persistent

volumes
JupyterHub is a central element in the OSEMN process

model. It can be used for data preparation, feature extraction
and model programming in the steps Scrub, Explore and
Model. We recommend the use of the openData Platform
CKAN [71] for the acquisition and administration of data
sets. This modern UI enables easy navigation and search for
available data sets from other or own projects using suitable
metadata in accordance with the FAIR principles (see, e.g.,
[72]). CKAN is thus a possible technological component in
the Obtain process step. CKAN also offers the possibility to
store the files in an object storage via an Amazon S3
interface [73]. During the entire data science process, it may
be necessary to load, process or store data or artifacts from
different sources. Especially for different "unstructured"
data, the use of object storage as data storage is
recommended, since the administration of the objects by
means of metadata provides a higher flexibility and context
description of the data sets than when storing them on a
common file system. To manage the contents in object
storage, we recommend the use of Minio. Minio implements
interfaces to Java, Go, Node.js, Python and .NET [74] and is
therefore well suited for the most common programming
languages in the Data Science environment [75]. For
structured data and using the Python libraries pandas [76]
and SQLAlchemy [77] a database management system

109

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(DBMS) is recommended. An OpenSource solution of a
DBMS is Postgres [78]. In the steps Explore and Interpret it
is helpful to create visualizations of the data. A suitable open
source tool for this can be Superset [79]. Superset is a
dashboarding tool that is easy to use with little technical
know-how and offers a variety of ready-made and interactive
visualizations. As interfaces with databases Superset
implements the well-known JDBC or ODBC drivers [80].

The technological components used enable the
monitoring and evaluation of the health status of services
using various metrics. The number of running Pod's under
Kubernetes gives information about the indirect number of
users, the users logged on the system. The utilization of
individual Pods is possible via the Kubernetes service
"heapster" [81]. The latency is a measure to evaluate the
reaction time between application and client (end user). A
monitoring of the response time can be realized by different
methods. In our case, the central IT monitoring software
"Checkmk" [82] is used, which allows to monitor different
metrics of a device. This way, besides latency, other essential
metrics such as memory usage and resource utilization
(CPU/RAM) can be monitored. With the help of this
monitoring it is possible to react proactively to upcoming
problems. In addition, by storing the monitoring data, long-
term analyses and trends can be identified, which can be
used to plan the expansion of the environment.

Kubernetes exposes interfaces to Kubernetes
management and cluster control in its own network segment.
To prevent users from the corporate network from accessing
these management interfaces, the Kubernetes Cluster was
configured with a separate network having its own IP range.
Via a so-called reverse proxy [83] we enable services from
the network segment of the Kubernetes Cluster to be exposed
in the corporate network (separate segment). The reverse
proxy accepts requests from the company network and
forwards them (depending on the given address), e.g., into
the network of the Kubernetes Cluster. In this way this proxy
provides, e.g., for JupyterHub centrally the URL to access
the platform and extends the environment by an encrypted
data transfer between end user and the JupytherHub Proxy,
using the Transport Layer Security (TLS) [84]. When
providing Pods on Kubernetes, services are bound to the IP
address of the possible Kubernetes node via ports. By
default, these IP addresses and ports are assigned
dynamically at the time of provision [85]. We have assigned
each service via a specific port according to the
LoadBalancer principle [86][87]. This way the reverse proxy
can reach the service at any time in the Kubernetes Cluster.
Kubernetes takes care of the failover thanks to the integrated
High Availability functions using LoadBalancer.

III. RESULTS

Based on the methods described in II, an ecosystem
consisting of the proposed software components for mapping
services was implemented. Using JupyterHub as an example,
the levels at which such a service must be integrated into an
enterprise in order to meet the requirements placed on an IT
service provider were illustrated.

The operator of the infrastructure (ZIMt) achieves a
reduction of workload through the chosen reference
architecture (see Figure 4) by automating the provision of
resources for the users (researchers) and minimizing the
effort to provision resources for research purposes.

Figure 4. Prototypical architecture for deploying JupyterNotebooks on

enterprise technology. To the centrally indicated OSEMN process, the
Kubernetes node for the JupyterHub infrastructure is shown on the left. On

the right, another Kubernetes node is shown with additional exemplary

tools to support the OSEMN process. The components are in failover to a

second data center (see bottom) (Source: Own illustration).

The prototypically implemented infrastructure enables
the end user (students, scientists) to easily use
JupyterNotebooks. With the Docker-based approach, the
description of the runtime environment required for the
research approach can be fixed using the Docker-specific
tagging facility and stored in a manifest for publication in a
comprehensible and interoperable manner [30].

JupyterHub allows users to interact with a computing
environment via a web page. Since most devices have access
to a web browser, JupyterHub makes it easy to deploy and
standardize the computing environment to a group of people
(for example, a class of students or an analysis team).
Additional tools (CKAN, Postgres, Minio, Superset) are also
accessible via a web interface and provide additional
programming interfaces that can be addressed in
JupyterNotebook. Furthermore, it could be shown that
Docker images of the JupyterNotebooks, especially adapted
to the specific requirements of the company, could be created
and made available for selection via the JupyterHub Spawner
(Basic and Data Science). Additional libraries or tools, which
must not be included in the standardized environment, can be
flexibly installed in a separate area within the current
runtime environment. JupyterNotebooks thus offer the
possibility to use several tools without changing the
environment. Requirements for different tools, such as those

110

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needed in processes like OSEMN, can be mapped with the
software products mentioned above (see Table I).

TABLE I. MAPPING OSEMN PROCESS PHASES AND PROPOSED

TECHNOLOGY

OSEMN

Phase

Domain Proposed Technology

Obtain

Data Search CKAN

Data I/O Postgres

Minio

Scrub

Data Transformation Jupyter

Data I/O

Postgres

Minio

Explore

Pattern Finding Superset

Feature Extraction Jupyter

Data I/O

Postgres

Minio

Model

Modeling Jupyter

Data I/O

Postgres

Minio

iNterpret Review Superset

If the researcher chooses a working environment based

on JupyterNotebooks, necessary work steps and results can
be stored together with the notebook [29][46]. The basic
requirements for the implementation of requirements from
research data management and the FAIR principles can be
fulfilled. A notebook acts as a laboratory book and describes
the steps of data processing. The GitLab also provides a
history function, so that the researcher can ensure data
provenance in the research project. The isolation of a
researcher's specific work area can therefore be achieved by
using container technology. Kubernetes offers the possibility
to consolidate central computing resources in a data center
and to use them efficiently due to the integrated load
distribution and error bypass.

It could be shown that already available IT infrastructure
could be sensibly integrated (including storage systems,
hypervisor infrastructure, management, monitoring). The
connection of the components to the company's own IT
monitoring system consolidates the various metrics in one
place and facilitates the management of the prototypically
implemented infrastructure.

Since JupyterHub is provided via Dockers, branding
requirements to maintain corporate identity can be easily
met. It was shown that the login page of JupyterHub could
be adapted to the corporate design of the company and,
among other things, be branded with the company logo. By
using the existing Active Directory, user access can be
managed centrally. Authentication via LDAP simplifies the
login to the system, since no separate access data has to be
maintained and incorrect logins can be registered and used to
block the user account in case of attempted misuse.

Each time a user logs on to the start page, the system
checks whether the user already owns a JupyterNotebook
created in the past. In this case he can be redirected to his

previously created environment. Otherwise, a new notebook
(in the form of a new container) is created and new storage
space is provided (because this user did not exist before). By
providing the required storage space at runtime, resources
can be provided centrally and efficiently. The persistence of
research data outside the Docker Container runtime on the
existing enterprise storage system could be solved efficiently
by using Trident (see Figure 4). This means that the
processing steps required during the process (including
temporary ones) can be performed on a high-performance
storage system that can guarantee the persistence of research
data in any case. Nevertheless, the user is able to make the
final script files and data of the project available to other
members of the department via the mountable department
drive. The department drive (DFS) (see Figure 4) can thus be
reused in its original function and offers researchers without
technical affinity the possibility to access the project data via
their usual working methods.

IV. DISCUSSION

In this paper we show a prototypical implementation for
the efficient use of available data center resources as a self-
service platform on enterprise technology to support data-
driven research.

Although the OSEMN process is a suitable, easy-to-
understand reference, there are some extensions that are
proposed below. A major drawback of the OSEMN process
is that it is understood as a linear, aperiodic process.
Compared to other established process models for data
analysis/data science, such as Knowledge Discovery in
Databases (KDD) [88] or Cross Industry Standard Procedure
for Data Mining (CRISP-DM) [89], the knowledge gained is
not played back and (at least formally) no iterations take
place. However, this re-iteration is a decisive step, since
many projects are more successful due to their exploratory
character [90], if they are carried out in short iterations. In
the course of these cycles many of the tasks are repeated,
such as data cleansing or training of models. In order to use
the available resources as effectively as possible, it is
recommended to aim for the highest possible degree of
automation (extension by the Repeat component). Possible
tools for this would be Apache Airflow [91] or the Python
library Kedro [92]. Another crucial step, which is included in
the CRISP-DM model in contrast to OSEMN, is the
deployment of the developed (ready-to-use) model (see
"Phase 6 - Deployment" in CRISP-DM). This allows the
trained models to be decoupled from the underlying
technology (e.g., Python, R, Julia) and made available to a
wider audience via standardized web interfaces (REST via
HTTP). Examples are Python libraries like Flask [93] or
HUG [94]. When providing models, the aforementioned
automation aspect has quality assurance features. The
"decay" of a model can be detected and corrected proactively
by regular and automated testing of the endpoints (see Model
Decay & Concept Drift [95]). We therefore propose to
extend the OSEMN process model after the iNterpret step by
the steps Model Serve/Deploy ("Mo") and Repeat ("Re")
transversal to OSMEN (see Table II).

111

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Kubernetes was used as an open source solution to
orchestrate, automate and fulfil these high availability
requirements for the container-based infrastructure [96]-[98].
It is a widely used and proven technology for providing
services like Jupyter. Since Kubernetes is designed to host a
huge number of containerized applications with minimal
overhead, it is perfectly suited for many JupyterNotebooks
and other potential applications within the science ecosystem
[99][100].

TABLE II. MAPPING OSEMN PROCESS PHASES AND PROPOSED

TECHNOLOGY

MoRE

OSEMN

Phase

Domain Component Proposed

Technology

Model Serve
& Deploy

Deployment API End Point API Star

Tracking Usage Monitoring CheckMK

Model Monitoring Superset

Repeat Automation Scheduling Engine Airflow

For the prototypical implementation of this infrastructure

a Kubernetes master with two Kubernetes nodes ("Worker")
was used. For productive operation, at least two Kubernetes
Masters should be used in order to meet the requirements for
fail-safe operation. In the event of a disaster recovery
scenario and the loss of the entire Kubernetes cluster, the
storage volumes provided via Trident must be reconnected
manually. An automatism for recovery procedures would
still have to be created. In an emergency, the administrator
can migrate the contents of the corresponding volume using
an NFS interface.

Docker Containers are more convenient to implement,
easier to manage, minimize the overhead of resource usage,
and are therefore more efficient than traditional virtual
infrastructures [99]. The provision of environments (e.g., by
containers) in the academic sector can be very large, thus
increasing the burden on the operators and maintainers of the
environment. Automating the deployment and orchestration
of the environment is strongly recommended. Running
applications in containers does not automatically solve the
challenge of protecting these applications from outages (such
as hardware failures or resource bottlenecks on the one
server we are working on). Even if containers are
encapsulated on an operating system, there may be problems
with the underlying host on which the container is running -
therefore an additional software layer is required to take care
of resource planning and availability of any services.

The use of the predefined configurations of the
JupyterNotebooks is initially limited by the Docker Images.
If the service is used for a longer period of time, it will
become apparent whether the provision of additional images
makes sense.

The authorization of the user in the JupyterNotebook
Docker Container to mount SMB network drives by sharing
via the sudoers file and the activation of the increased
privileges in Kubernetes inevitably leads to serious security
vulnerability. The user would be able to provide his own file

system and replace the sudoers file with a specially
manipulated file. The consequence would be system
administrator privileges. The solution used must therefore be
adapted taking security aspects into account. For example,
Kubernetes could be enabled via the vSphere API
[https://github.com/kubernetes-sigs/cluster-api-provider-
vsphere] to provide each JupyterNotebook-Pod in an isolated
virtual machine, which would result in a stricter isolation of
the Docker Containers from each other.

In order to make it as easy as possible for end users to
transfer the artefacts created in the JupyterNotebook to the
project repositories on the network drives, the end user
should be able to integrate the network drive into his
JupyterNotebook environment. We expect a higher user
acceptance despite the use of new technology / application.

A Pod (container), in which a JupyterNotebook is
running, expires after a certain time without activity (max
idle time) [101], so that the resources can be released again
and used for other users / Pods (downscaling). If a Pod
expires, changes made at runtime are also discarded, since
they are not part of the Docker image that is called by
JupyterHub every time a Pod is initialized. The user must
therefore remount his network drives after such a reset.

Existing and established authentication methods such as
OAuth [102] or OpenID [103] offer additional flexibility, as
users outside of the Active Directory could be integrated.
The necessary components were not available during the
project. However, these security concepts will be considered
in later phases of the project after the validation of the first
thesis (if this software stack is suitable for the use case at
all).

Despite monitoring and a high degree of automation of
the individual system components, errors can occur during
operation. These can be of different nature, but can be
roughly divided into logical and physical errors. Logical
errors in data lead to inconsistencies and physical (hardware)
errors are associated with data loss. As a countermeasure, the
system components are protected by creating backups. For
this purpose, system copies - so-called "snapshots" - are
created at regular intervals by the hypervisor or storage
technology used, which can be accessed as required. If the
JupyterHub internal database is lost, the connection to the
Pod and thus to the individual runtime environment is lost
and must be restored.

The presented proof of concept could demonstrate the
feasibility of IT operations by combining common data
science tools with the enterprise architecture. In the next
development stages, tools such as Airflow [91] or
Pachyderm [24] (as a platform solution) for pipelining and
automation can be used in addition to JupyterNotebooks in
connection with machine learning. These tools could support
process models like OSEMN as well as aspects of
reproducibility and reusability. Integration of tools
specifically for big data use cases is not recommended, as
these may require special ecosystems (see [104]). More often
than not, the end user can already interact with available big
data platforms at any time using the programming languages
available in JupyterNotebooks.

112

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] S. Guhr et al., “Data Science as a Service - Prototyping for an
Enterprise Self-Service Platform for Reproducible Research“,
IARIA - The Fifth International Conference on Fundamentals
and Advances in Software Systems Integration (FASSI 2019),
2020

[2] Landesarbeitskreis Niedersachsen für
Informationstechnik/Hochschulrechenzentren, “Landes-IT-
Konzept Hochschulen Niedersachsen”, 2018,
https://www.lanit-hrz.de/fileadmin/user_upload/Landes-IT-
Konzept_Hochschulen_Niedersachsen_2019-2024.pdf, last
accessed 2020/02/27

[3] V. Kale, “Big Data Computing: A Guide for Business and
Technology Managers”, Chapman and Hall/CRC, 2016,
ISBN: 978-1498715331

[4] W. C. Preston, “Does Object Storage kill RAID?”, Storage
Switzerland, 2016, https://storageswiss.com/2016/02/09/does-
object-storage-kill-raid/, last accessed 2020/02/27

[5] J. Hernantes, G. Gallardo, and N. Serrano, "IT Infrastructure-
Monitoring Tools," IEEE Software, vol. 32, no. 4, pp. 88-93,
2015. DOI: 10.1109/MS.2015.96

[6] The International Foundation for Information Technology,
2009,
https://www.if4it.com/SYNTHESIZED/GLOSSARY/S/Syste
m_Integration_Management_Service_Level_Agreement_SLA
.html/, last accessed 2020/02/27

[7] C.-P. Praeg and D. Spath, “Quality Management for IT
Services: Perspectives on Business and Process Performance
(Advances in Logistics, Operations, and Management
Science)”, Business Science Reference, 2011, ISBN: 978-
1616928896)

[8] M. A. Vonderembse, T. S. Raghunathan, and S. Subba Rao,
“A post-industrial paradigm: To integrate and automate
manufacturing”, International Journal of Production Research,
35:9, 2579-2600, 1997, DOI: 10.1080/002075497194679

[9] C. Li, “Preprocessing Methods and Pipelines of Data Mining:
An Overview”, CoRR, 2019, arXiv:1906.08510

[10] H. Mason and C. Wiggins, “A Taxonomy of Data Science”,
dataists.com, 2010, http://www.dataists.com/2010/09/a-
taxonomy-of-data-science/, last accessed 2019/07/22

[11] Python Programming Language, 2019,
https://www.python.org, last accessed 2020/02/23

[12] The R Project for Statistical Computing, https://www.r-
project.org, last accessed 2020/02/23

[13] SAS® Enterprise Miner™, 2019, https://www.sas.com/en_us/
software/enterprise-miner.html, last accessed 2020/02/23

[14] Open Refine, http://openrefine.org/, last accessed 2020/02/23

[15] Pandas Python Data Analysis Library,
https://pandas.pydata.org/, last accessed 2020/02/23

[16] Scipy, 2019, https://www.scipy.org/, last accessed 2020/02/23

[17] Rapid Miner, 2019, https://rapidminer.com/, last accessed
2020/02/23

[18] KNIME End to End Data Science, 2019,
https://www.knime.com/, last accessed 2020/02/23

[19] scikit-learn: machine learning in Python, https://scikit-
learn.org/stable/, last accessed 2020/02/23

[20] A Short Introduction to the caret Package, https://cran.r-
project.org/web/packages/caret/vignettes/caret.html, last
accessed 2020/02/23

[21] matplotlib, 2019, https://matplotlib.org/, last accessed
2020/02/23

[22] Tableau, 2019, https://www.tableau.com, last accessed
2020/02/23

[23] Microsoft Power BI, 2019, https://powerbi.microsoft.com, last
accessed 2020/02/23

[24] Pachyderm - Reproducible Data Science that Scales!, 2019,
https://www.pachyderm.io/, last accessed 2020/02/23

[25] A. Woodie, “Inside Pachyderm, a Containerized Alternative
to Hadoop”, datamai, 2018, https://www.datanami.com/2018/
11/20/inside-pachyderm-a-containerized-alternative-to-
hadoop/, last accessed 2020/02/23

[26] Max Planck Society, “Rules of Good Scientific Practice”,
2000, https://www.evolbio.mpg.de/3306231/rules-of-good-
scientific-practice.pdf, last accessed 2020/02/28

[27] J. B. Buckheit and D. L. Donoho, “WaveLab and
Reproducible Research”, Wavelets and Statistics, pp. 55-81,
1995, DOI: 10.1007/978-1-4612-2544-7_5

[28] M. Bussonnierk et al., “Binder 2.0 - Reproducible, interactive,
sharable environments for science at scale”, Conference:
Python in Science Conference, 2018, DOI: 10.25080/Majora-
4af1f417-011

[29] T. Kluyver et al., Jupyter Development Team,
“JupyterNotebooks – a publishing format for reproducible
computational workflows”, IOS Press. pp. 87-90, 2016, DOI:
10.3233/978-1-61499-649-1-87

[30] C. Boettiger, “An introduction to Docker for reproducible
research, with examples from the R environment”, ACM
SIGOPS Oper. Syst. Rev.. 49. 10.1145/2723872.2723882.
https://arxiv.org/pdf/1410.0846.pdf

[31] Nature Editors 2012. “Must try harder”. Nature. 483,7391
Mar. 2012, 509–509.

[32] D. L. Donoho, “An invitation to reproducible computational
research”, Biostatistics, Volume 11, Issue 3, July 2010, pp.
385–388, DOI: 10.1093/biostatistics/kxq028

[33] E. Boose et al., “Ensuring reliable datasets for environmental
models and forecasts”, Ecological Informatics 2(3):237-247,
2007, DOI: 10.1016/j.ecoinf.2007.07.006

[34] K.F. Holmstrand, S.P.A. den Boer, E. Vlachos, P.M.
Martínez-Lavanchy, and K.K. Hansen, “Research Data
Management (eLearning course)”, Eds., 2019. doi:
10.11581/dtu:00000047

[35] Wikipedia contributors, “Data management plan”, Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/w/
index.php?title=Data_management_plan&oldid=918458183,
last accessed 2020/02/29

[36] UK Data Service, “Research data lifecycle”,
https://www.ukdataservice.ac.uk/manage-data/lifecycle.aspx,
last accessed 2020/02/28

[37] Digital Curation Centre University of Edinburgh, “DCC
Curation Lifecycle Model”,
http://www.dcc.ac.uk/resources/curation-lifecycle-model, last
accessed 2020/02/28

[38] Deutsche Forschungsgemeinschaft (DFG), “Antragsmuster
für die Fortsetzung eines Sonderforschungsbereichs”, 2019,
https://www.dfg.de/formulare/60_200/60_200_de.pdf, last
accessed 2020/02/28

[39] German Research Foundation (DFG), “Safeguarding Good
Scientific Practice”, 2013, DOI:
10.1002/9783527679188.oth1

[40] M. D. Wilkinson et al., “The FAIR Guiding Principles for
scientific data management and stewardship”, Scientific Data
3, doi : 10.1038/sdata.2016.18, 2016.

[41] P. M. Martínez-Lavanchy, F. J. Hüser, M. C. H. Buss, J. J.
Andersen, and J. W. Begtrup, “FAIR Principles, DOI:
10.11581/dtu:00000049

[42] Danish e-infrastructure Cooperation (DeiC), “FAIR for
Beginners”, https://vidensportal.deic.dk/en/FAIR, last
accessed 2020/02/28

[43] E. Swart et al., “Good Practice of Secondary Data Analysis
(GPS), guidelines and recommendations), Gesundheitswesen

113

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2015; 77(02): 120-126, Third Revision 2012/2014, DOI:
10.1055/s-0034-1396815

[44] International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (ICH),
“Guideline for good clinical practice”, 2016,
https://database.ich.org/sites/default/files/E6_R2_Addendum.
pdf, last accessed 2020/02/28

[45] G. Tancev, “An Introduction to Clinical Data Science”, 2019,
https://towardsdatascience.com/clinical-data-science-an-
introduction-9c778bd83ea2, last accessed 2020/02/28

[46] E. Cirillo, “TranSMART data exploration and analysis using
Python Client and JupyterNotebook”, 2018,
http://blog.thehyve.nl/blog/transmart-data-exploration-and-
analysis-using-python-client-and-jupyter-notebook,last
accessed 2019/07/22

[47] OVH SAS. 2018 “Understanding Tier 3 and Tier 4”.
https://www.ovh.com/world/dedicated-servers/understanding-
t3-t4.xml, last accessed 2018/09/15.

[48] K. Kerr, “Gartner Named NetApp a Leader in Magic
Quadrant for 2019 Primary Storage”, 2019,
https://blog.netapp.com/netapp-gartner-magic-quadrant-2019-
primary-storage/, last accessed 2020/02/23

[49] J. VanderPlas, “Python Data Science Handbook: Essential
Tools for working with Data”, O'Reilly UK Ltd., 2016,
https://jakevdp.github.io/PythonDataScienceHandbook/, last
accessed 2020/02/28

[50] Jupyter Docker Stacks, 2018, https://jupyter-Docker-
stacks.readthedocs.io/en/latest/, last accessed 2020/02/23

[51] Kubernetes Authors, “Pods”, 2020, https://kubernetes.io/docs/
concepts/workloads/Pods/Pod/, last accessed 2020/02/28

[52] C. de Botton, “Writing Your Code as a Service, Part I”, 2015,
https://medium.com/@brooklynfoundry/writing-your-code-
as-a-service-part-i-2b960c19ca6e, last accessed 2020/02/28

[53] HashiCorp, “How Terraform Works”,
https://www.terraform.io/docs/extend/how-terraform-
works.html, last accessed 2020/02/28

[54] Red Hat, “OVERVIEW How Ansible Works”,
https://www.ansible.com/overview/how-ansible-works, last
accessed 2020/02/28

[55] P. Debois and J. Humble, “The DevOps Handbook: how to
create World-Class agility, Reliability, and Security in
Technology Organizations”, IT Revolution Press, 2016,
ISBN: 978-1942788003

[56] Project Jupyter team, “JupyterHub”, 2016,
https://jupyterhub.readthedocs.io/en/stable/, last accessed
2020/02/28

[57] M. van Niekerk, “Recovering from a Jupyter Disaster”, 2019,
https://medium.com/flatiron-engineering/recovering-from-a-
jupyter-disaster-27401677aeeb, last accessed 2020/02/28

[58] jupyterhub_config.py,
https://github.com/jupyterhub/jupyterhub/blob/master/exampl
es/spawn-form/jupyterhub_config.py, last accessed
2020/02/28

[59] Project Jupyter team, Spawners, 2016,
https://jupyterhub.readthedocs.io/en/stable/reference/spawners
.html, last accessed 2020/02/28

[60] The JupyterHub Helm chart,
https://github.com/jupyterhub/helm-chart, last accessed
2020/02/28

[61] The Kubernetes Authors, “Persistent Volumes”, 2020,
https://kubernetes.io/docs/concepts/storage/persistent-
volumes/, last accessed 2020/02/28

[62] NetApp Trident, 2019, https://netapp-
trident.readthedocs.io/en/latest/introduction.html, last
accessed 2020/02/23

[63] D. Batchelor and M. Satran, “Microsoft SMB Protocol and
CIFS Protocol Overview”, https://docs.microsoft.com/en-
us/windows/win32/fileio/microsoft-smb-protocol-and-cifs-
protocol-overview, last accessed 2020/02/23

[64] Samba.org, “LinuxCIFS utils”, 2019, https://wiki.samba.org/
index.php/LinuxCIFS_utils, last accessed 2020/02/23

[65] Docker Inc., “Runtime privilege and Linux capabilities”,
https://docs.Docker.com/engine/reference/run/#runtime-
privilege-and-linux-capabilities, last accessed 2020/02/23

[66] The Kubernetes Authors, “Pod Security Policies”,
https://kubernetes.io/docs/concepts/policy/Pod-security-
policy/, last accessed 2020/02/28

[67] A. Martin, “11 Ways (Not) to Get Hacked”, 2018,
https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-
hacked/, last accessed 2020/02/28

[68] Docker Hub, “Minimal Jupyter Notebook Stack”,
https://hub.Docker.com/r/jupyter/minimal-notebook/, last
accessed 2020/02/28

[69] Project Jupyter Contributors, “Setting up JupyterHub”, 2020,
https://z2jh.jupyter.org/en/latest/setup-jupyterhub/setup-
jupyterhub.html, last accessed 2020/02/28

[70] Docker Hub, “jupyter repositories”,
https://hub.Docker.com/u/jupyter, last accessed 2020/02/28

[71] CKAN Association, “ckan”, https://ckan.org/, last accessed
2020/02/28

[72] UK Government, “Find open data”, https://data.gov.uk/, last
accessed 2020/02/28

[73] Amazon Web Services, “Introduction to Amazon S3,
https://docs.aws.amazon.com/en_en/AmazonS3/latest/dev/Intr
oduction.html, last accessed 2020/02/28

[74] Minio, Inc, “minio”, https://min.io, last accessed 2020/02/28

[75] IEEE, “Interactive: The Top Programming Languages”, 2020,
https://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2019, last accessed 2020/02/28

[76] pandas, https://pandas.pydata.org/, last accessed 2020/02/28

[77] SQLAlchemy authors and contributors, “The Python SQL
Toolkit and Object Relational Mapper”,
https://www.sqlalchemy.org/, last accessed 2020/02/28

[78] The PostgreSQL Global Development Group, PostgreSQL,
https://www.postgresql.org/, last accessed 2020/02/28

[79] The Apache Software Foundation, “Apache Superset
(incubating)”, https://superset.incubator.apache.org/, last
accessed 2020/02/28

[80] J. Görner, “Beyond Jupyter Notebooks”, https://github.com/
jgoerner/beyond-jupyter, last accessed 2020/02/28

[81] The Heapster contributors, “Heapster”, https://github.com/
kubernetes-retired/heapster, last accessed 2020/02/28

[82] tribe29 GmbH, https://checkmk.com/, last accessed
2020/02/28

[83] Wikipedia contributors, “Reverse proxy”, Wikipedia, The
Free Encyclopedia., 2020,
https://en.wikipedia.org/w/index.php?title=Reverse_proxy&ol
did=937552513, last accessed 2020/02/29

[84] Wikipedia contributors, “Transport Layer Security”,
Wikipedia, The Free Encyclopedia., 2020,
https://en.wikipedia.org/w/index.php?title=Transport_Layer_
Security&oldid=943166788, last accessed 2020/02/29

[85] The Kubernetes Authors, “Using a Service to Expose Your
App”, https://kubernetes.io/docs/tutorials/kubernetes-basics/
expose/expose-intro/, last accessed 2020/02/28

[86] The Kubernetes Authors, “Service”,
https://kubernetes.io/docs/
concepts/services-networking/service/#loadbalancer, last
accessed 2020/02/28

114

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[87] S. Dinesh, “Kubernetes NodePort vs LoadBalancer vs
Ingress? When should I use what?”,
https://medium.com/google-cloud/kubernetes-nodeport-vs-
loadbalancer-vs-ingress-when-should-i-use-what-
922f010849e0, last accessed 2020/02/28

[88] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus,
“Knowledge Discovery in Databases: An Overview”, AI
Magazine, 13(3), 57, 1992, DOI: 10.1609/aimag.v13i3.1011

[89] P. Chapman et al. "CRISP-DM 1.0: Step-by-step data mining
guide”, Computer Science, 2000

[90] R. Jurney, “A manifesto for Agile data science”, 2017,
https://www.oreilly.com/radar/a-manifesto-for-agile-data-
science/, last accessed 2020/02/28

[91] The Apache Software Foundation, “Apache Airflow”,
https://airflow.apache.org/, last accessed 2020/02/28

[92] The Kedro contributors, “Kedro”, https://github.com/
quantumblacklabs/kedro, last accessed 2020/02/28

[93] A. Ronacher and contributors, Flask,
https://palletsprojects.com/p/flask/, last accessed 2020/02/28

[94] https://www.hug.rest/, last accessed 2020/02/28

[95] A. Chilakapati, “Concept Drift and Model Decay in Machine
Learning”, 2019, https://towardsdatascience.com/concept-
drift-and-model-decay-in-machine-learning-a98a809ea8d4,
last accessed 2020/02/28

[96] L. Hecht, “What the data says about Kubernetes deployment
patterns”, 2018, https://thenewstack.io/data-says-kubernetes-
deployment-patterns/, last accessed 2019/07/22

[97] Project Jupyter Contributors, “Zero to JupyterHub with
Kubernetes”, 2019, https://zero-to-
jupyterhub.readthedocs.io/en/latest/, last accessed 2019/07/22

[98] S. Conway, “Survey shows Kubernetes leading as
orchestration Platform”, 2018, https://www.cncf.io/blog/2017/
06/28/survey-shows-kubernetes-leading-orchestration-
platform/, last accessed 2019/07/22

[99] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A
comparative study of Containers and Virtual Machines in Big
Data environment”, arXiv:1807.01842v1

[100] S. Talari, “Why Kubernetes is a great choice for Data
Scientists”, https://towardsdatascience.com/why-kubernetes-
is-a-great-choice-for-data-scientists-e130603b9b2d, last
accessed 2019/07/28

[101] Project Jupyter Contributors, “Customizing User
Management”, https://zero-to-jupyterhub.readthedocs.io/en/
latest/customizing/user-management.html, last accessed
2019/07/28

[102] OAuth community site, https://oauth.net/, last accessed
2020/02/23

[103] OpenID Foundation, 2019, https://openid.net, last accessed
2020/02/23

[104] S. Gerbel, “Implementation of a sustainable IT ecosystem for
the use of clinical data to support patient-oriented research”,
GI (Gesellschaft für Informatik): Medizininformatik (Medical
Informatics), 2020, https://www.researchgate.net/publication/
340925601_Implementation_of_a_sustainable_IT_ecosystem
_for_the_use_of_clinical_data_to_support_patient-
oriented_research, last accessed 2020/05/21

115

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

