

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 6, no. 1 & 2, year 2013, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 6, no. 1 & 2, year 2013, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2013 IARIA

International Journal on Advances in Security

Volume 6, Number 1 & 2, 2013

Editor-in-Chief

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Editorial Advisory Board

Vladimir Stantchev, Berlin Institute of Technology, Germany
Masahito Hayashi, Tohoku University, Japan
Clement Leung, Victoria University - Melbourne, Australia
Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan
Dan Harkins, Aruba Networks, USA

Editorial Board

Gerardo Adesso, University of Nottingham, UK

Ali Ahmed, Monash University, Sunway Campus, Malaysia

Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA

Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil

Reza Azarderakhsh, The University of Waterloo, Canada

Ilija Basicevic, University of Novi Sad, Serbia

Francisco J. Bellido Outeiriño, University of Cordoba, Spain

Farid E. Ben Amor, University of Southern California / Warner Bros., USA

Jorge Bernal Bernabe, University of Murcia, Spain

Lasse Berntzen, Vestfold University College - Tønsberg, Norway

Jun Bi, Tsinghua University, China

Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Alexis Bonnecaze, Université d'Aix-Marseille, France

Carlos T. Calafate, Universitat Politècnica de València, Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA

Clelia Colombo Vilarrasa, Autonomous University of Barcelona, Spain

Peter Cruickshank, Edinburgh Napier University Edinburgh, UK

Nora Cuppens, Institut Telecom / Telecom Bretagne, France

Glenn S. Dardick, Longwood University, USA

Vincenzo De Florio, University of Antwerp & IBBT, Belgium

Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium

Pierre de Leusse, AGH-UST, Poland

Raimund K. Ege, Northern Illinois University, USA

Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens AG - Corporate Technology, Germany

Shao-Ming Fei, Capital Normal University, Beijing, China

Eduardo B. Fernandez, Florida Atlantic University, USA

Anders Fongen, Norwegian Defense Research Establishment, Norway

Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand

Steven Furnell, University of Plymouth, UK

Clemente Galdi, Universita' di Napoli "Federico II", Italy

Emiliano Garcia-Palacios, ECIT Institute at Queens University Belfast - Belfast, UK

Marco Genovese, Italian Metrological Institute (INRIM) -Torino, Italy

Birgit F. S. Gersbeck-Schierholz, Leibniz Universität Hannover, Certification Authority University of Hannover (UH-

CA), Germany

Manuel Gil Pérez, University of Murcia, Spain

Karl M. Goeschka, Vienna University of Technology, Austria

Stefanos Gritzalis, University of the Aegean, Greece

Michael Grottke, University of Erlangen-Nuremberg, Germany

Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel

Indira R. Guzman, Trident University International, USA

Huong Ha, University of Newcastle, Singapore

Petr Hanáček, Brno University of Technology, Czech Republic

Gerhard Hancke, Royal Holloway / University of London, UK

Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var, France

Dan Harkins, Aruba Networks, Inc., USA

Ragib Hasan, University of Alabama at Birmingham, USA

Masahito Hayashi, Nagoya University, Japan

Michael Hobbs, Deakin University, Australia

Neminath Hubballi, Infosys Labs Bangalore, India

Mariusz Jakubowski, Microsoft Research, USA

Ángel Jesús Varela Vaca, University of Seville, Spain

Ravi Jhawar, Università degli Studi di Milano, Italy

Dan Jiang, Philips Research Asia Shanghai, China

Georgios Kambourakis, University of the Aegean, Greece

Florian Kammueller, Middlesex University - London, UK

Sokratis K. Katsikas, University of Piraeus, Greece

Seah Boon Keong, MIMOS Berhad, Malaysia

Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark

Marc-Olivier Killijian, LAAS-CNRS, France

Hyunsung Kim, Kyungil University, Korea

Ah-Lian Kor, Leeds Metropolitan University, UK

Evangelos Kranakis, Carleton University - Ottawa, Canada

Lam-for Kwok, City University of Hong Kong, Hong Kong

Jean-Francois Lalande, ENSI de Bourges, France

Gyungho Lee, Korea University, South Korea

Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong

Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy

Gui Lu Long, Tsinghua University, China

Jia-Ning Luo, Ming Chuan University, Taiwan

Thomas Margoni, University of Western Ontario, Canada

Rivalino Matias Jr ., Federal University of Uberlandia, Brazil

Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Ajaz H. Mir, National Institute of Technology, Srinagar, India

Jose Manuel Moya, Technical University of Madrid, Spain

Leonardo Mostarda, Middlesex University, UK

Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong

Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la Communication),Belgium

Sarmistha Neogy, Jadavpur University, India

Mats Neovius, Åbo Akademi University, Finland

Jason R.C. Nurse, University of Oxford, UK

Peter Parycek, Donau-Universität Krems, Austria

Konstantinos Patsakis, Rovira i Virgili University, Spain

João Paulo Barraca, University of Aveiro, Portugal

Juan C Pelaez, Defense Information Systems Agency, USA

Sergio Pozo Hidalgo, University of Seville, Spain

Vladimir Privman, Clarkson University, USA

Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea

Rodrigo Roman Castro, Institute for Infocomm Research (Member of A*STAR), Singapore

Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Antonio Ruiz Martinez, University of Murcia, Spain

Paul Sant, University of Bedfordshire, UK

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Peter Schartner, University of Klagenfurt, Austria

Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada

Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece

Pedro Sousa, University of Minho, Portugal

George Spanoudakis, City University London, UK

Lars Strand, Nofas, Norway

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea

Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Enrico Thomae, Ruhr-University Bochum, Germany

Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India

Panagiotis Trimintzios, ENISA, EU

Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany

Simon Tsang, Applied Communication Sciences, USA

Marco Vallini, Politecnico di Torino, Italy

Bruno Vavala, Carnegie Mellon University, USA

Mthulisi Velempini, North-West University, South Africa

Miroslav Velev, Aries Design Automation, USA

Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico

Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.

Piyi Yang, University of Shanghai for Science and Technology, P. R. China

Rong Yang, Western Kentucky University , USA

Hee Yong Youn, Sungkyunkwan University, Korea

Bruno Bogaz Zarpelao, State University of Londrina (UEL), Brazil

Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 6, Numbers 1 & 2, 2013

CONTENTS

pages: 1 - 11
Maturing the Distribution of Supportive Tasks in Web Service Framework: Security and Reliability
Beytullah Yildiz, TOBB Economics and Technology University, Turkey

pages: 12 - 31
Model-Based Design of Dependable Systems: Limitations and Evolution of Analysis and Verification
Approaches
Jose Ignacio Aizpurua, University of Mondragon, Spain
Eñaut Muxika, University of Mondragon, Spain

pages: 32 - 48
Towards Next Generation Malware Collection and Analysis
Christian Martin Fuchs, Technische Universität München, Germany
Martin Brunner, Martin Brunner Security, Germany

pages: 49 - 61
OSGiLarva: a Monitoring Framework Supporting OSGi’s Dynamicity
Yufang Dan, Université de Lyon, INSA-Lyon, CITI-INRIA F-69621, France
Nicolas Stouls, Université de Lyon, INSA-Lyon, CITI-INRIA F-69621, France
Christian Colombo, Department of Computer Science, University of Malta, Malta
Stéphane Frénot, Université de Lyon, INRIA, INSA-Lyon, CITI-INRIA, F-69621, France

pages: 62 - 77
Ensembles of Decision Trees for Network Intrusion Detection Systems
Alexandre Balon-Perin, Université libre de Bruxelles, Belgium
Björn Gambäck, Norwegian University of Science and Technology, Norway

pages: 78 - 87
Towards Enhanced Usability of IT Security Mechanisms - How to Design Usable IT Security
Mechanisms Using the Example of Email Encryption
Hans-Joachim Hof, Munich IT Security Research Group (MuSe), Department of Computer Science and
Mathematics, Munich University of Applied Sciences, Germany

1

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Maturing the Distribution of Supportive Tasks in Web Service Framework:
Security and Reliability

Beytullah Yildiz
Department of Computer Engineering

TOBB Economics and Technology University
Ankara, Turkey

E-mail: byildiz@etu.edu.tr

Abstract—Security and reliability are the crucial features of
distributed computing, of which one of the key enabling
technologies is Web Service. In a service execution, the main
task is carried out by endpoint logic, which is supported by
additive functionalities and/or capabilities, called Web Service
handlers. The handlers can be detached from the endpoint and
distributed to suitable locations to improve availability,
scalability, and performance. In this paper, security and
reliability, which are among the most fundamental and
essential requirements of the handler distribution, are
investigated. The proposed environment contains a hybrid
encryption scheme, digital signing, authentication, replication,
and guaranteed message delivery. The benchmark results are
presented to illustrate that the utilized reliability and security
mechanisms for the handler distribution are reasonable and
efficient.

Keywords-Web Service; distributed computing; replication;
reliability; security.

I. INTRODUCTION

Web Service is a technology providing seamless and
loosely coupled interactions that help to build platform-
independent distributed systems. Software standards and
communication protocols offering common languages are at
the foundation of Web Service. The strength of Web Service
originates from its ability to hide platform-specific details of
the implementations, to expose service interfaces, and to let
these self-describing services be registered, published, and
discovered dynamically across the Internet. Web Service
utilizes the most basic distributed computing approach of
client-server interaction. However, it also allows for the
creating of complex service composed of many
communicating services. Powerful Web Service
applications can be assembled by combining the remote and
local services.

A single Web Service application integrates endpoint
logic and its handlers in a common framework. The main
task is accomplished by the service endpoint logic.
Supportive functionalities and capabilities, called Web
Service handlers, are utilized to provide a full-fledged
service. These capabilities might be related to security,
reliability, orchestration, and logging, as well as any other
necessary capabilities for a distributed system. These
capabilities may help to compose a complex service as the

handlers can deal with orchestration. They may also be
utilized to provide high enough quality of services for a
single client-server interaction as the handlers offer security
or logging. A Web Service can employ several handlers in a
single interaction; a chain of handlers can contribute to a
service execution. A service can have a pair of handlers
offering functions on both the server and client sides. Some
handlers can be, in contrast, employed only in one side of
the interaction.

Although handlers are required and inevitable in many
cases, they may cause degradation in service quality if their
numbers overload the service. A service endpoint with many
handlers may suffocate in a single memory space. Hence, it
is wise to use additional computing power. This raises the
idea of distribution. There are different reasonable
approaches for distribution of Web Service handlers. Some
suggest that they can be deployed as services; others create
a specific distributed environment for them. Distributing the
handlers by using a designated setting provides a superior
computing environment, especially when the concern is
performance. On the other hand, the distribution requires
certain features to ensure a suitable environment [1].

Security and reliability are among the most important
criteria that need to be considered when a distributed system
is being evaluated. Hence, this paper investigates reliability
and message security for the distributed Web Service
handlers and their effect on the system performance. A
fundamental task of cryptography is to protect the secrecy of
messages transmitted over public communication lines. For
this purpose, in this research, an encryption scheme using a
secret key is utilized to encode a message in such a way that
an eavesdropper cannot make sense of it. To handle key
exchange smoothly, the secret key is ciphered with a public
key encryption algorithm. Moreover, a digital signature is
used to verify the sender. Reliability mechanisms are also
employed to attain a robust environment for Web Service
handlers.

The rest of this paper is organized as follows: Section II
provides information about related works on reliability and
security. Distributed Web Service handler execution is
briefly explained in Section III. Section IV investigates
reliability. Section V gives details about message security.
Finally, the paper is concluded in Section VI.

2

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORKS

Web Services, an ideal type of technology for distributed
applications, benefit from several specifications for security
and reliability purposes: WS-Security [2], WS-Trust [3],
WS-Federation [4], and WS-ReliableMessaging [5]. These
specifications provide the common language to develop
secure, reliable, and interoperable interactions between
clients and services.

WS-Security addresses security by leveraging existing
standards and provides a framework to embed these
mechanisms into a SOAP message. This happens in a
transport-neutral fashion. WS-Security defines a SOAP
header element, which contains the information defined by
the XML signature that conveys how the message was
signed, the key that was used, and the resulting signature
value. Likewise, the encryption information is inserted into
the SOAP header. WS-Trust explains the mechanisms to use
security token and methods to establish trust relationships. It
enables secure conversations between Web Services by
defining how to issue, renew, and cancel the security tokens.
WS-Federation defines mechanisms to let different security
realms unite. Hence, authorized access to a resource handled
in one realm can be provided to security principals whose
identities are controlled in other realms.

In the Web Service reliability, the WS-
ReliableMessaging specification offers an outline to ensure
reliable message delivery between the sender and receiver
for Web Services. The specification provides an
acknowledgement-based scheme to guarantee that data are
transferred between the communicating entities. Although it
is mainly for point-to-point communication, the
specification also supports service composition and
transactional interaction.

Web Service specifications describe the syntax and do
not define implementation mechanisms or APIs, which
remain proprietary to individual vendors. Other than
specifications, there are also works and research on security
and reliability for Web services. Jayalath and Fernando
describe a basic design and implementation approach for
building security and reliability layers for Apache Axis 2
[6]. Moser et al. explain dependability features, including
SOAP connection failover, replication, and checkpointing,
in addition to reliable messaging and transaction
management. Their paper also presents security
technologies, including encryption and digital signatures for
Web Services specifications, as well as other security
technologies [7]. Pallemulle et al. present a middleware that
supports interaction between replicated Web Services while
providing strict fault isolation assurances [8]. Lei et al.
propose greedy replica optimizers to improve reliability for
a data-intensive online grid system [9]. Aghdaie and Tamir
present a transparent mechanism that provides high
reliability and availability for Web Services. Their paper
explores fault tolerance even for the requests being
processed at the time of server failure. The scheme can
handle dynamic execution and does not enforce

deterministic servers [10]. Zhang presents an integrated
security framework based on the use of authentication,
authorization, confidentiality, and integrity mechanisms for
Web Services, and proposes a model to integrate and
implement these security mechanisms in order to make Web
Services robust [11]. Yamany et al. propose a metadata
framework providing different levels to describe the
available variations of the authentication, authorization, and
privacy features. With the metadata, the security features are
constructed to assist the service consumer and provider in
reaching an agreement on how to meet their needs [12].

Security and reliability are not the concerns of only Web
and Grid Service technologies. Other distributed computing
applications also offer necessary reliability and security
mechanisms. Fault tolerance approaches such as replication,
recovery techniques, self-reconfiguration of systems, and
dynamic binding are applied in various studies to improve
reliability. Many research projects and applications utilize
Secure Sockets Layer (SSL)/Transport Layer Security
(TSL) protocols. Others prefer to utilize symmetric or
asymmetric crypto systems. Some research projects offer a
hybrid approach combining symmetric and asymmetric key
encryption algorithms to offer superior solution.

Vaca et al. propose an automatic identification of faults
by means of model-based diagnosis, which helps to
establish particular fault tolerance mechanisms such as
replications and checkpoints [13]. Zhao et al. design a
scheduling algorithm offering reliability satisfying the
user’s requirement without exceeding the system capacity.
The authors explain how to achieve the minimum number of
replicas for each task while satisfying the user’s reliability
requirement with the minimum resources. They also target
acceptable performance for execution time [14].

Desmedt et al. demonstrate a scheme that uses a public
key to encrypt a random key, which is used to encrypt the
actual message with a symmetric encryption algorithm [15].
Ramachandran et al. use a public/private key model for
securely communicating messages [16]. Rizvi et al. present
an implementation of a secure application syndicating
symmetric and asymmetric key algorithms to minimize the
execution time and maximize the security [17]. Ramaraj et
al. describe a hybrid encryption based on AES and RSA for
online transactions [18]. Palanisamy et al. propose the use of
a symmetric key algorithm to encrypt and decrypt data and
RSA for the symmetric key’s encryption/decryption [19].
Damiani et al. discuss the applicability of outsourced
Database Management System solutions to the cloud and
provide an outline for management of confidential data in
public clouds. It utilizes symmetric and asymmetric
encryption for privacy and signing [20].

Kemathy et al. investigate a component-based security
solution for XML messaging [21]. Ammari et al. provide
architecture securing XML messages by encrypting flagged
XML parts, each with a different type of encryption
depending on data sensitivity and the defined importance
level [22].

3

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. DISTRIBUTION

In this paper, the distribution of Web Service handlers is
explored by utilizing a Message-Oriented Middleware
(MOM), which is more narrowly focused on messaging.
The MOM is designed to be as simple as possible while still
offering robust support for messaging. Unlike SOAP
messaging, MOM message headers and basic routing
information are not contained in XML. This allows more
efficient processing, since XML parsing is slow compared
to the speed at which routing decisions are made in a
specialized messaging system.

In general, the same proven security and reliability
mechanisms from the related works are utilized. However,
the present research differs in the use of a designated
messaging system to improve efficiency and in having an
end-to-end solution to complete the distributed handlers’
secure and reliable execution in this setting.

The distributed handler execution is organized by a
specialized management tool, which contains the
orchestration engine explored in [23]. The constructs of the
orchestration engine answer the wide range of the handler’s
execution configuration, such as serial, parallel, and
conditional processing. In addition to orchestration, the
distribution manager employs an efficient execution engine
to meet the performance requirements. The details of the
manager are provided in [24]. The engine utilizes a MOM to
distribute the tasks to the handlers. The execution manager
is so efficient that the overhead justifies the distribution, as
investigated in [25]. This paper extends the required security
and reliability mechanisms for the handler distribution
explained in [1].

The execution of a message in the distributed
environment is shown in Figure 1. The incoming requests to
the Web Service are delivered to the distributed handler
manager by a Web Service Container such as Apache Axis.
The manager stores the requests, called messages, in the
Message Execution Queue. The messages are sent to the
distributed handlers and the responses are received after the
successful handler execution. The manager ensures that
each message is executed without being interrupted. Every
message execution contains one or more stages. Several
distributed handlers may construct a single stage for which
handlers concurrently process the message. The manager
awaits the completion of the handler executions before
starting the delivery of the message to the next stage. This
procedure continues until all stages of a message are
completed. At the end, the successfully obtained output
returns to the Web Service Container. All of the messages in
the Message Execution Queue are executed concurrently.

Since the handlers are located in separate memory spaces,
the message on the wire should be secured against
unauthorized access. An adversary can see the important
information and/or modify the message. Moreover, the
handler distribution manager and the handlers should
authenticate themselves to prevent an adversary from

intervening in the interaction. Hence, the following issues
need to be addressed for the purpose of security:

• Eavesdropping: Potential hackers who have access to
the network are able to read the messages.

• Message modification: The message travelling
between the handlers and distribution manager can
be modified by an unauthorized person.

• False messages: It is fairly easy to produce false
messages and send them as if from an actual
computing node.

• Message replay: Similar to message modification,
the message formed by a handler or the distribution
manager can be saved by others and sent again.

• Repudiation: As messages can be forged, there is no
way of validating that a message has been sent by a
particular node.

The reliability of a handler itself is also essential for
successful execution. The message must reach the
distributed handlers and be executed without failure. Hence,
the reliability of the message delivery is critical.
Additionally, the system must have mechanisms in place to
deal with the failure of the handlers.

Figure 1. Executing the messages in the distributed Web Service

handlers.

4

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. RELIABILITY

Software reliability is described as the probability that the
software functions without failure under given conditions
during a specified period of time [26]. Reliability is also
measured in terms of percentage of failure circumstances in
a given number of attempts to compensate for variations in
usage over time [27]. For Web Services, although reliability
is viewed by some researchers as a non-functional
characteristic [28], Zhang and Zhang describe one of the
more comprehensive definitions of Web Service reliability
as a combination of correctness, fault tolerance, availability,
performance, and interoperability, where both functional
and non-functional components are considered [29].

In this paper, reliability will be investigated in two
categories: the reliability originating from the handler
replication and the reliability coming from the utilization of
a reliable messaging system.

A. Replicating handlers

Replication is critical for reliability, mobility,
availability, and performance of a computing system. There
are basically three replications: data, process, and message.
These concepts are extensively explored in [30]. Data
replication is the most heavily investigated one. However,
the other replications are also very important in the
distributed systems, especially for Service-Oriented
Architecture.

The process replication is particularly of main interest in
this paper because the intention is to investigate the
replication of the handlers. There exist two main approaches
in this area. The first one is modular redundancy [31]. The
second approach is called primary/standby [32]. Modular
redundancy has replicated components that perform the
same functionalities. All replicas are active. On the other
hand, the primary/standby approach utilizes a primary
process to perform the execution. The remaining replicas
wait in their standby state. They become active when the
primary replica fails.

The processes can be classified into two categories: no
consistency and consistency. The first category is the
simplest one; the processes are stateless. They do not keep
any information for the processed data. Therefore,
consistency is not an issue between the processes.
Replicated instances can be allowed to run concurrently. On
the other hand, replicas may enter an inconsistent state if the
process is not atomic and stateful. Inconsistency has been
extensively investigated in [33].

Replication is a very important capability where a
handler is inadequate. Sometimes, a handler may not be able
to answer the incoming requests. The tasks may line up such
that the overall performance degrades. This is similar to a
shopping center, where customers are waiting in line to be
served. The solution is to add one or more persons to serve
when necessary. Similarly, adding a replica to help with the
execution contributes to the overall performance.

In addition to the performance, a replica can be leveraged
for fault tolerance. It is possible that a handler crashes. The
replication contributes to the continuity of the execution and
improves the availability and reliability. Without using
handler replication in the case of an error, the whole
computation cannot continue. The computation becomes
more resilient with handler replication. The execution
continues as long as at least one replica of every handler has
not failed.

For n handlers with the replication factor of R, the
execution can be successful for R-1 failures per handler. The
maximum allowable number of errors is:

��� − 1

�

���

	

(1)

where n is the number of Web Service handlers and �� is the
replication number of the i-th handler. The execution cannot
continue even in a single handler fault, where ∀� ∈ �:	�� =

1.
In the distributed Web Service handler execution

environment, a variation of the primary/standby approach is
utilized. Dynamic binding ideas are employed for the
replicated handlers using the primary/standby approach.
Dynamic binding is a technique that allows services to be
linked at run-time [34] [35]. The execution manager decides
at run-time which distributed handler is invoked: the
primary handler or a replica. The handlers are prioritized.
The handler with the highest priority is assigned to execute
a message. The other replicas wait until their priorities
become highest. The system is able to change the priority
during the execution. When a fault occurs, the handler
priority is minimized.

If the replicated handlers were executed concurrently, a
checkpoint mechanism must have been utilized. The
checkpoint mechanism is based on the idea of saving the
state of the system. In fault detection, the execution of the
system is recovered from the checkpoint where the state was
saved. The recovery mechanism is only launched when a
fault occurs. Compensation handlers (Rollback) are specific
computing nodes that limit and confine the effects created
by a faulty handler. Compensation handlers allow the
execution of the faulty replicated handlers to be rolled back
to a specific point.

The checkpoint approach presents some drawbacks. It
necessitates the introduction of additional elements into the
distributed handler execution design. It requires extra time
to check each important point, and recovery processes need
to be activated when the rollback occurs. In fact,
establishing the correct and minimal checkpoint and
recovery structure is a highly complex task. The checkpoint
solution is not, in short, suitable in view of the fact that the
rollback mechanism could introduce a very high overhead in
the case of a fault. Hence, the primary/standby approach is
preferred for the distributed replica handlers.

5

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. The execution of replicas using the primary/standby

approach.

The replicas are never allowed to be executed
concurrently, except in the case of stateless handlers. Even
though they are allowed to run in a parallel manner, they
cannot join the processing of the same message. The
messages have to be different so that the parallel execution
does not cause inconsistency. Figure 2 depicts a replicated
handler processing the incoming message while the other
replicas await their turns.

When only one of the several replicated handlers is
executed, as shown in the square in Figure 3, the following
formula works to compute the reliability value:

��� = ���	��

�

���

(2)

where ��� is the reliability of the replicated handlers’
execution, �� is the execution probability of handler i, and
∑ �� = 1�

���
.

The reliability of the parallel handlers with the AND
junction and the reliability of the serial handlers can be
formulated as:

�� = ���

�

���

(3)

where �� is the reliability of the handlers’ execution and
��	is the reliability of handler i.

Figure 3. A sample configuration for the handlers’ execution.

By using formulas 2 and 3, the reliability of the handlers’
execution in Figure 3 can be formulated as:

�� = ���

	

���

. � ������
	

	

����

.�

(4)

�� = ���

���

. � ��� 	���

	

����

(5)

where �� is the reliability of the handlers’ execution.	�� is
the reliability of the ith replica and ��� = 1 for only one
replicated handler, which is executed; the value is 0 for the
remaining handlers.

B. Reliable messaging

The distributed handler mechanism benefits from two
different sources for reliable message delivery: a messaging
broker and its own execution mechanism.

The messaging system, NaradaBrokering, provides
message-level reliability. It also offers supportive
functionalities to the messaging and a very reasonable
performance [36]. The messages can be queued up to
several thousands and are gradually delivered to their
destinations to provide flow control for the messaging.
Additionally, the system has a Reliable Delivery Service
(RDS) component that delivers the payload even if a node
fails [37].

RDS stores all the published events that match up with
any one of its managed templates, which contain the set of
headers and content descriptors. This archival operation is
the initiator for any error correction, which is caused by the
events being lost in transit to their targeted destinations and
also by the entities recovering either from disconnect or a
failure. For every managed template, RDS also maintains a
list of entities for which it facilitates reliable delivery. RDS
may also manage information regarding access controls,
authorizations, and credentials of the entities that generate
or consume events, which are targeted to this managed
template.

When an entity is ready to start publishing events on a
given template, it issues a discovery request to find out the
availability of RDS, which provides the archival
environment for the generated template events. The
publisher will not circulate template events until it receives
a confirmation that RDS is available.

The publisher ensures that the events are stored by RDS
for every template event that it produces. After successful
delivery of the event to RDS, the event is archived and a
message is sent to the publisher to verify that the message
was received by RDS successfully. Otherwise, a failure
message with the related event id is sent back to the
publisher. After verification, the suitable matching engine is
utilized to compute the destinations associated with the
template event.

6

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A subscriber registers with RDS. A sequence number
linked with the archival of the interaction is recorded. The
number can be also described as an epoch, which signifies
the point from which the registered entity is authorized to
receive events conforming to the template. Once a template
event has been archived, RDS issues a notification. The
notifications allow a subscribing entity to keep track of the
template events while facilitating error detection and
correction. Upon receipt of the notification, the subscribing
entity confirms the reception of the corresponding template
event.

When an entity reconnects to the broker network after
failures, the entity retrieves the template events that were
issued and those that were in transit before the entity’s
leaving. After the receipt of the recovery request, RDS scans
the dissemination table starting at the sync related to the
entity and then generates an acknowledgment-response
invoice event outlining the archival sequences that the entity
did not previously receive. Accordingly, the missing events
are provided to the receiver.

In addition to this, a reliable mechanism for the Web
Service handler execution environment is built on top of the
reliable messaging that NaradaBrokering provides. The
distributed Web Service handler mechanism is able to repeat
the execution of a specific handler in the event of a failure.
Failure is declared when a response is not received from a
distributed handler. There are several possible reasons
behind an unsuccessful response. For example, the
communication link may be broken, or the handler may not
have successfully processed the message because of either
an error or a crash. The distributed Web Service handler
mechanism checks the possibilities by sending the message
several times to its destination. In each attempt, it waits for a
specific amount of time. This duration is either assigned or
calculated by the system. After several unsuccessful
attempts, the message processing may switch to a replica,
depending on its priority. As discussed previously, handlers
can populate their replicas to improve availability and
reliability.

Figure 4. The cost of the reliability mechanism for the distributed Web

Service handlers.

For a reliable messaging benchmark, two HP DL 380 G7,
2 x Xeon Six Core, 2.93 GHz, 48 GB memory physical
machines are utilized. The machines are virtualized to create
four 4-core and 16 GB memory machines and one 8-core 32
GB memory machine. These machines are connected to
each other via a LAN and share a common storage system.
Virtual machines use Windows Server 2008 R2 64-bit
operating systems. The cost of the reliable mechanism of the
messaging for the distributed handlers is shown in Figure 4.
The cost contains the time needed for reliability procedures
to send the tasks to the distributed Web Service handlers or
receive the responses back. The time for the handlers’
executions and the time for the messaging are excluded to
illustrate only the reliability cost for varying message sizes.
Figure 4 shows that the message size does not affect the cost
of the reliability of the messaging very much. The cost is
very reasonable when reliability is a necessity for the
distribution.

V. MESSAGE SECURITY

Security is one of the most important issues for
computing systems. Critical data can be seen or altered by
an unauthorized person. This is increasingly important if the
data are transferred through the network, which is a more
vulnerable environment.

Local computing does not expose its data to the outside
world very much, but this is not the case for distributed
computing. The computation is shared between nodes,
which may be physically dispersed in the distributed
environment. The transmission of the data among the nodes
may expose critical information to dangerous
vulnerabilities. Hence, the transportation channels between
the computing nodes must be secured in addition to the
security of the nodes.

NaradaBrokering, which is utilized for messaging, has a
security framework that is able to support secure
interactions between the distributed handlers [38]. The
security infrastructure consists of a Key Management Center
(KMC), which provides a host of functions specific to the
management of keys in the system. The KMC stores the
public keys of the interacting entities. It also provides
authentication and authorization mechanisms to offer an
enhanced environment for secure messaging.

Authentication is an elementary security requirement to
prove that an entity possesses a claimed identity [39]. The
basic tool that a person can use to prove a claimed identity
is generally something that the person knows (e.g., a
password), something that the person has (e.g., an
authentication token), or a biometric property (e.g.,
fingerprints or iris recognition). Different mechanisms can
be used for cryptographic authentication. Keyed hash
functions or symmetric ciphers that utilize a specific key are
among the examples. The key is only available to the entity
to be authenticated and the verifier. One requirement for
authentication mechanisms using the key is obviously the
protection of the applied key. The leakage of the key causes

5

10

15

20

25

30

100 200 300 400 500

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Message size in KB

7

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the collapse of the security mechanism. Another
requirement is that the key should preferably be unique for
the interacting entities. An attack is confined with this
specific communication if the key of an interaction gets
compromised.

Asymmetric cryptography can also be used for
authentication. A proper procedure based on elliptic curves
is described in [40]. A cryptographic operation is
performed, to be authenticated using the entity’s private
key. The verifier checks the received response using the
corresponding public key by performing a cryptographic
verification operation on the received value.
NaradaBrokering utilizes an authentication mechanism for
the publishers and subscribers, which are the computing
nodes for the distributed handler execution. For the
authentication, the publisher or subscriber sends its signed
request by using private key. The broker verifies this request
by using the public key of the entities.

The KMC incorporates with an authorization module to
manage the usage of the messaging. Every topic has an
access control list that authorizes the subscribers. Similarly,
an access control list exists for the publishers. After
verification of the signature, the publisher or subscriber is
permitted to access the entity according to the relevant
access control lists.

The message traveling between the computing nodes is
described in Figure 5. It contains a unique id, properties, and
a payload. The unique message id is a distinctive name for a
message. The handler execution mechanism may host many
messages being executed at one moment. Hence, an
identifier is necessary to achieve the correct executions; a
Universally Unique Identifier (UUID) generated id is
assigned to every message. The generator assures that there
will not be more than one of the same id in the system.
Thus, the design gives enough assurance that the message
executions are not blended.

<context>
 <id>4099d6dc-0b0e-4aaa-95ff-2e758722a959</id>
 <properties>
 <encKey> bèø3DKUQ …</encKey >
 <sender>
 <senderId>12345… </ senderId >
 <signed>šZQSİÑU,k…</signed >
 </sender >
 ….
 </properties>
 <payload>
 ….
 </payload>
</context>

Figure 5. The message format for the distributed Web Service
handlers.

Figure 6. Security mechanism for a distributed handler execution.

The second important part of the message format is the
properties section. This part conveys the required additional
information to the computing nodes. The information can be
specific to a single handler or generic for all handlers. There
is a property that contains the encryption key. It is a
symmetric key that is created for a single message. The key
size is usually selected to be large enough to provide the
necessary security. On the other hand, it must be kept in
mind that generating larger keys is time-consuming. The
average time taken for key generation for different bit sizes
is presented in [41]. Therefore, the same symmetric key can
be utilized to send a group of messages for a period of time.
Additionally, the properties section contains the sender’s
signature to prove the sender’s authenticity. The sender
signs its unique id with its private key. Both the sender’s id
and signature are added to the properties section. The last
part of the distributed handler message format is the
payload, which contains the encrypted message.

The performance of the asymmetric key encryption is
worse than the performance of the symmetric key
encryption [42]. It can take about 1000 times more CPU
time to process an asymmetric encryption or decryption than
a symmetric encryption or decryption. Nevertheless, an
important advantage of asymmetric ciphers over symmetric
ciphers is that no secret channel is necessary to exchange
the keys. The receiver needs only to be confident about the
authenticity of the public key provider. Asymmetric ciphers
also cause fewer key management problems than symmetric
ciphers. Only 2n keys are needed for n nodes to
communicate securely with each other in an asymmetric key
encryption system. However, in a system based on a
symmetric cipher, n(n - 1)/2 secret keys are needed for
secure interaction among n nodes. Because of these features,

8

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

asymmetric ciphers are typically used for non-repudiation,
for authentication through digital signatures, and for the
distribution of symmetric keys. Thus, the asymmetric key
algorithm is able to support the solving of the key exchange
and management problem of the symmetric keys. On the
other hand, symmetric ciphers are used for bulk encryption.

To use the best part of the algorithms, a hybrid approach
is utilized. Figure 6 demonstrates a secure messaging
architecture for the distributed handlers. The payload of the
message is encrypted by a symmetric cipher algorithm.
Advanced Encryption Standard (AES) is used for the
encryption. AES is a natural choice for the symmetric key
algorithm because it has been analyzed extensively and used
worldwide. The cryptography scheme is a symmetric block
cipher that encrypts and decrypts blocks of data. The AES
key generation algorithm takes a random seed as an input. A
256-bit session key is created and passed within the
properties section of the message to the other computing
node for decryption.

The RSA algorithm is utilized for the asymmetric key
encryption. The sender encrypts the symmetric session key
with the 2048-bit public key of the receiver to present the
confidentiality. The RSA algorithm requires two large prime
numbers as the input along with a random seed. All of these
inputs, which are created randomly, are provided for key
generations. The created private keys are then kept locally,
and the public key is stored in the KMC.

With the commonly used RSA implementations,
doubling the RSA key length means that encryption will be
more than two times slower and decryption will be almost
four times slower, as shown in Table I. In general, RSA
encryption is much faster than RSA decryption. The fast
encryption relies on the use of a short public exponent. The
RSA algorithm is commonly used in this way. It is possible
to have an RSA public key with a long public exponent,
which will make encryption as slow as decryption.
However, because a long public exponent does not improve
security, short public exponents are widespread. Some well-
known RSA implementations do not even support long
public exponents. Hence, the decryption exponent is
typically huge, whereas the encryption exponent is small.

TABLE I. PUBLIC KEY ENCRYPTION AND DECRYPTION RESULTS.

Encryption time in
milliseconds

Decryption time in
milliseconds

Plain text
size in KB 1024-bit 2048-bit 1024-bit 2048-bit

100 262 470 4703 14906

200 563 892 8844 29594

300 784 1298 13703 44542

400 1048 1735 17766 59064

500 1298 2391 22454 73737

TABLE II. COMPERISON OF CIPHER TEXT SIZE IN PUBLIC KEY
ENCRYPTION.

Plain text size
in KB Cipher text size in KB

 1024-bit 2048-bit

100 109 105

200 218 209

300 329 314

400 438 418

500 547 522

The key length of an RSA key specifies the number of

bits in the modulus. A larger key increases the maximum
number of bytes that we can encrypt in a block at once, as
well as the security of the encryption. On the other hand,
with every doubling of the RSA key length, decryption
becomes much slower. Key length also affects the speed of
encryption, but the speed of decryption is usually of greater
concern.

Moreover, depending on the padding scheme, the cipher
text size increases in RSA encryption. This is another factor
that is taken into consideration while using this system.
Table II shows the text sizes for 1024-bit and 2048-bit key
encryptions. When using a 1024-bit RSA key with PKCS #1
padding, it is not possible to encrypt a string that is longer
than 117 bytes. Increasing the size of the RSA key to 2048
bits will allow the encrypting of 245 bytes of data, but
longer RSA keys are expensive and they take more time to
generate and operate. On the other hand, the AES
encryption algorithm does not show the size increase in the
encrypted text even though it also does block ciphering with
128 bytes.

The size of cipher text can be calculated with the
following formula:

	 = 	
 + 	�	 − 	(
	mod	�)		 (6)

where 	 is the cipher text size,
 is the plain text and � is
the block size.

As mentioned earlier, the authentication of the sender
and receiver and authorization to access the message are
established by the security mechanisms of the messaging
broker. Figure 7 shows the tasks happening between the
sender and receiver for a single interaction. The sender
generates the symmetric session key for a message or a
group of messages. The payload containing the message is
encrypted with this symmetric session key with the AES
algorithm. The sender looks up the receiver’s public key in
the KMC. The RSA algorithm is used to encrypt the
symmetric session key with the receiver’s public key.
Hence, only the node that has the right private key can
decrypt the session key to get the encrypted payload. At the
same time, the sender authenticates itself by signing its id
with its private key.

9

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Get receiver’s public key

Return receiver’s public key

Generate symmetric

session key

Encrypt the message

Encrypt the session

key

Sign ID with own

private key

Receive message

Get sender’s public key

Return sender’s public key

Decrypt the session key

with own private key

Verify the sender

Decrypt the message

Figure 7. Interactions while sending a message between computing

nodes.

Figure 8. The cost of the security mechanism for the distributed Web

Service handlers.

When the subscriber receives the message, it identifies
and verifies the sender by using the sender’s public key,
which is retrieved from the KMC. The session key carried
within the “encKey” tag is then decrypted by the receiver’s
private key. The retrieved session key is used to decrypt the
payload to get the original message. In this interaction, the
senders and receivers are either the distributed Web Service
handlers or the distribution manager.

The benchmarks showing the cost of the aforementioned
security mechanism and the results of the tables containing
public key encryption are determined in the same
environment as the reliability benchmark, as discussed in
Section IV.B. Figure 8 shows the cost of the secure
environment for varying payload sizes. The signing of the
sender’s id to present the authentication causes very small
overhead. Instead of asymmetric key encryption, the usage
of the symmetric key to encrypt the messages provides
reasonable execution time. As stated earlier, even though
asymmetric key encryption solves the problem of key
exchange, it does not accomplish the message encryption
and decryption for large sizes at an affordable cost. In short,
a hybrid approach using both asymmetric and symmetric
ciphers helps to improve security at a reasonable cost.

VI. CONCLUSION

Although the distribution of Web Service handlers
provides many advantages in terms of scalability,
availability, and performance, it necessitates a reliable and
secure atmosphere. The instruments explained in this paper
for secure and reliable handler distribution and the support
tools of the utilized messaging broker grant the necessary
features for this atmosphere. Utilized reliability mechanisms
deal with the distributed computing node failures by using
replication and ensure the message delivery. The hybrid
security approach advances the environment by offering a
solution for the key exchange problem of the symmetric
encryption and by reducing the cost of the asymmetric
cipher algorithm. The design also delivers the authentication
and authorization mechanisms for the distributed handlers.
The benchmark results show that the costs originating from
the utilized instruments are acceptable and affordable. In
short, the design of the distributed execution with the
security and reliability tools offers a satisfactory
environment for Web Service handlers. Moreover, it should
be kept in mind that a secure and reliable environment must
be employed in many mission-critical tasks.

REFERENCES
[1] B. Yildiz, “Reliability and message security for distributed

web service handlers,” Proc. the Seventh International
Conference on Internet and Web Applications and Services
(ICIW 2012) , Stuttgart, Germany, May 2012, pp. 17-22.

[2] Web Service Security (WS-Security), Available:
http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wss, [Retrieved: May 20, 2013].

[3] Web Service Reliable Messaging (WS-ReliableMessaging),
Available:http://public.dhe.ibm.com/software/dw/specs/ws-

40

60

80

100

120

100 200 300 400 500

E
xe

cu
tio

n
tim

e
in

 m
ili

se
co

nd
s

Message size in KB

10

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

rm/ws-reliablemessaging200502.pdf, [Retrieved: May 20,
2013].

[4] Web Service Trust (WS-Trust), Available:http://docs.oasis-
open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-
errata01-os-complete.html, [Retrieved: May 20, 2013].

[5] Web Service Federation (WS-Federation),
Available:http://docs.oasis-open.org/wsfed/federation/v1.2/os
/ws-federation-1.2-spec-os.html, [Retrieved: May 20, 2013].

[6] C. M. Jayalath and R. U. Fernando, “A modular architecture
for secure and reliable distributed communication,” Proc. the
Second International Conference on Availability, Reliability
and Security (ARES07), Washington, DC, USA, 2007, pp.
621-628, DOI=10.1109/ARES.2007.7.

[7] L. E. Moser, P. M. Melliar-Smith, and W. Zhao, ‘‘Building
dependable and secure web services,’’ Journal of Software,
vol.2, no.1, 2007, pp. 14-26.

[8] S. L. Pallemulle, H. D. Thorvaldsson, and K. J. Goldman,
“Byzantine fault-tolerant web services for n-tier and service
oriented architectures,” Proc. the 28th International
Conference on Distributed Computing Systems (ICDCS '08),
Washington, DC, USA, 2008, pp. 260-268.
DOI=10.1109/ICDCS.2008.94.

[9] M. Lei, S. V. Vrbsky, and Z. Qi, “Online grid replication
optimizers to improve system reliability,” Proc. IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2007), March 2007, pp.1-8.

[10] N. Aghdaie and Y. Tamir, “CoRAL: a transparent fault-
tolerant web service,” Journal of System Software, vol. 82,
no. 1, January 2009, pp. 131-143,
DOI=10.1016/j.jss.2008.06.036.

[11] W. Zhang, “Integrated security framework for secure web
services,” Proc. the Third International Symposium on
Intelligent Information Technology and Security Informatics
(IITSI '10), Washington, DC, USA, 2010, pp. 178-183,
DOI=10.1109/IITSI.2010.8.

[12] H. F. EL Yamany, M. A. M. Capretz, and D. S. Allison,
“Quality of security service for web services within SOA,”
Proc. Congress on Services (SERVICES '09). Washington,
DC, USA, 2009, pp. 653-660, DOI=10.1109/SERVICES-
I.2009.95.

[13] A. J. Varela-Vaca, R. M. Gasca, D. B. Nunez, and S. P.
Hidalgo, “Fault tolerance framework using model-based
diagnosis: towards dependable business processes,”
International Journal on Advances in Security, issn 1942-2636
vol. 4, no. 1 & 2, year 2011, pp.11-22.

[14] L. Zhao,Y. Ren, Y. Xiang, and K Sakurai, “Fault-tolerant
scheduling with dynamic number of replicas in heterogeneous
systems”, Proc. 12th IEEE International Conference on High
Performance Computing and Communications (HPCC),
Melbourne, September 2010, pp. 434-441,
DOI=10.1109/HPCC.2010.72.

[15] Y. Desmedt, R. Gennaro, K. Kurosawa, and V. Shoup, “A
new and improved paradigm for hybrid encryption secure
against chosen ciphertext attack,” Journal of Cryptology, vol.
23, iss. 2, January 2010, pp. 91-120, DOI=10.1007/s00145-
009-9051-4.

[16] K. Ramachandran, H. Lutfiyya, and M. Perry, “Chaavi: a
privacy preserving architecture for webmail systems,” Proc.
the Second International Conference on Cloud Computing,
GRIDs, and Virtualization, 2011, pp. 133–140.

[17] S. S. Rizvi, A. Riasat, and K. M. Elleithy, “Combining private
and public key encryption techniques for providing extreme
secure environment for an academic institution application,”
International Journal of Network Security & Its Application
(IJNSA), vol.2, no.1, January 2010, pp. 82-96.

[18] E. Ramaraj, S. Karthikeyan, and M. Hemalatha, “A Design of
security protocol using hybrid encryption technique (AES-

Rijndael and RSA),” International Journal of the Computer,
the Internet and Management, vol. 17, no. 1, January 2009,
pp. 78-86.

[19] V. Palanisamy and A. M. Jeneba, “Hybrid cryptography by
the implementation of RSA and AES,” International Journal
of Current Research, vol. 3, iss. 4, April 2011, pp.241-244.

[20] E. Damiani, F. Pagano, and D Pagano, “iPrivacy: a
distributed approach to privacy on the cloud,” International
Journal on Advances in Security, vol. 4, no. 3&4, 2011, pp.
185-197.

[21] K. Komathy, V. Ramachandran, and P. Vivekanandan,
“Security for XML messaging services: a component-based
approach,” Journal of Network and Computer Applications,
vol. 26, iss. 2, April 2003, pp. 197-211,
DOI=10.1016/S1084-8045(03)00003-1.

[22] F. T. Ammari and J. Lu, “Advanced XML security:
framework for building secure XML management system
(SXMS),” Proc. the Seventh International Conference on
Information Technology: New Generations (ITNG '10),
Washington, DC, , 2010, pp. 120-125,
DOI=10.1109/ITNG.2010.124.

[23] B. Yildiz, G. Fox, and S. Pallickara, “An orchestration for
distributed web service handlers,” Proc. International
Conference on Internet and Web Applications and Services
(ICIW08), June 2008, Athens, Greece, pp. 638-643.

[24] B. Yildiz, “Distributed handler architecture,” Ph.D.
Dissertation. Indiana University, Bloomington, IN, USA.
Advisor: Geoffrey C. Fox. 2007.

[25] B. Yildiz and G. Fox, "Measuring overhead for distributed
web service handler," Proc. the Third IEEE International
Conference on Computer Science and Information
Technology (ICCSIT 2010), July 2010, pp. 566-570.

[26] H. Zo, D. Nazareth, and H. Jain, "Measuring reliability of
applications composed of web services," Proc. 40th Annual
Hawaii International Conference on System Sciences (HICSS
'07), 2007, pp. 278- 288.

[27] J. D. Musa, Software reliability engineering, McGraw-Hill,
New York, NY, 1999.

[28] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr, “Web
services: promises and compromises, ”ACM Queue, 1 (1),
pp. 48-58, March 2003.

[29] J. Zhang and L.-J. Zhang, “Criteria analysis and validation of
the reliability of Web Services-oriented systems,” Proc. the
IEEE International Conference on Web Services (ICWS'05),
Orlando, Florida, July 2005, pp. 621-628.

[30] A. Helal, A. Heddaya, and B.K. Bhargava, "Replication
techniques in distributed systems," Advances in Database
Systems, vol. 4, 2002, pp. 61-71, DOI: 10.1007/0-306-
47796-3_3.

[31] P.A. Lee and T. Anderson, Fault tolerance: principles and
practice, Springer-Verlag New York, Inc. Secaucus, 1990.

[32] P. P. W. Chan, M. R. Lyu, and M. Malek, “Making services
fault tolerant,” Proc. 3rd International Conference on Service
Availability (ISAS'06), Berlin, Heidelberg, 2006, pp. 43-61,
DOI=10.1007/11955498_4.

[33] P.T.T. Huyen and K. Ochimizu, "Toward inconsistency
awareness in collaborative software development," Proc. 18th
Asia Pacific Software Engineering Conference (APSEC),
Dec. 2011, pp. 154-162.

[34] A. Erradi and P. Maheshwari, “Dynamic binding framework
for adaptive web services,” Proc. the 2008 Third International
Conference on Internet and Web Applications and Services.
Washington, DC, USA, 2008, pp. 162–167.

[35] U. K¨uster and B. K¨onig-Ries, “Dynamic binding for BPEL
processes - a lightweight approach to integrate semantics into
web services,” Proc. 4th International Conference on Service

11

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Oriented Computing (ICSOC06), Chicago, Illinois, USA,
2006, pp. 116–127.

[36] S. Pallickara and G. Fox, “NaradaBrokering: a distributed
middleware framework and architecture for enabling durable
peer-to-peer grids,” Proc. the ACM/IFIP/USENIX
International Conference on Middleware (Middleware '03),
2003, pp. 41-61.

[37] S. Pallickara and G. Fox, "A scheme for reliable delivery of
events in distributed middleware systems," Proc. the IEEE
International Conference on Autonomic Computing
(ICAC'04), New York, NY, May 2004, pp. 328-329.

[38] S. Pallickara, M. Pierce, G. Fox, Y. Yan, and Y, Huang, "A
Security framework for distributed brokering systems,"
Available:http://www.naradabrokering.org, [Retrieved: May
20, 2013].

[39] R. Falk and S. Fries, “Advances in protecting remote
component authentication,” International Journal on
Advances in Security, issn 1942-2636 vol. 5, no. 1 & 2, year
2012, pp. 28-35.

[40] M. Braun, E. Hess, and B. Meyer, “Using Elliptic Curves on
RFID Tags,” International Journal of Computer Science and
Network Security, vol. 2, February 2008, pp. 1-9.

[41] K. Ramachandran, H. Lutfiyya, and M. Perry, “A Privacy
preserving solution for web mail systems with searchable
encryption,” International Journal on Advances in Security,
issn 1942-2636 vol. 5, no. 1 & 2, year 2012, pp. 26-45.

[42] C. Narasimham and J. Pradhan,“Evaluation of performance
characteristics of cryptosystem using text files”, Journal of
Theoretical and Applied Information Technology, vol. 4, iss.
1, 2008, pp. 56-60.

12

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Model-Based Design of Dependable Systems:
Limitations and Evolution of Analysis and Verification Approaches

Jose Ignacio Aizpurua and Eñaut Muxika
Department of Signal Theory and Communications

University of Mondragon
Spain

{jiaizpurua,emuxika}@mondragon.edu

Abstract—Designing a dependable system successfully is a
challenging issue that is an ongoing research subject in the
literature. Different approaches have been adopted to analyse
and verify the dependability of a system design. This process is
far from obvious and often hampered due to the limitations of
the classical dependability analysis and verification approaches.
This paper provides an overview of model-based dependability
analysis, design and verification approaches. Firstly, model-
based analysis approaches are grouped by the limitations of
the classical approaches. Secondly, design approaches have
been classified looking at their underlying recovery strategies:
hardware replication and hardware reuse. Then, the ins and
outs of model-based verification approaches are identified
starting from fault injection approaches towards their evolution
into model-based integrative approaches. Finally, a model-
based hybrid design process is presented making use of the
reviewed analysis, design and verification approaches.

Keywords-Model-based dependability analysis, System design,
Heterogeneous redundancy, Dependability verification.

ACRONYMS AND ABBREVIATIONS

AADL Architecture Analysis and Design
Language

BDMP Boolean logic Driven Markov Process

CFP Compositional Failure Propagation

CFT Component Fault Tree

(D)FTA (Dynamic) Fault Tree Analysis

(D)RBD (Dynamic) Reliability Block Diagram

(D(S))PN (Deterministic and (Stochastic)) Petri Nets

(D)(C)TMC (Discrete)(Continuous) Time Markov
Chain

DOE Design of Experiments

FI Fault Injection

(FM)E(C)A (Failure Mode) and Effect (Criticality)
Analysis

FPT(C)(N) Failure Propagation and Transformation
(Calculus)(Notation)

HiP-HOPS Hierarchically Performed Hazard Origin
and Propagation Studies

IMA Integrated Modular Avionics

MC Model Checking

MCS Monte Carlo Simulations

SEFT State-Event Fault Trees

I. INTRODUCTION

Designing a dependable system presents many challenges
throughout the development phase - from system specifi-
cation to system validation and verification. This process
is further complicated owing to the increasing complex-
ity of the current systems, which use many and differ-
ent components. Model-based design approaches provide
mechanisms to manage this complexity effectively. However,
these approaches together with dependability analysis and
verification approaches, add some limitations to the system
design process. Hence, those who are not familiar with the
field of model-based design of dependable systems will find
it useful to have a list of sources characterized by their
limitations and evolutions. Our goal is not to exhaustively
evaluate the specific features of these approaches, neither to
give means to study these techniques in great detail. Instead,
we are aimed at aggregating a comprehensive list of works
grouped by their main characteristics.

We have completed our previous work [1] providing the
reader a guided collection of sources to indicate where to
learn about the model-based design of dependable systems.
Namely, we have extended previous concepts and character-
ized three additional aspects: (1) tool-support of the analysis
and verification approaches, (2) classification of dependable
design approaches with respect to their recovery strategies,
and (3) evolution of model-based fault injection approaches.

In computing systems, dependability is defined as “ability
of a system to deliver a service that can be justifiably trusted”
[2]. Such trustworthiness is based on the assurance of
dependability requirements. These requirements are defined
through dependability attributes: Reliability, Availability,
Maintainability, Safety (RAMS), confidentiality and integrity.
The scope of this overview focuses on RAMS attributes.
Consequently, security aspects (confidentiality and integrity)
are not addressed.

Reliability is the ability of an item to perform a re-
quired function under given conditions for a stated period
of time. It is usually characterized through Mean Time
To Failure (MTTF) [3]. Maintainability is the ability to
undergo repairs and modifications to restore to a state in

13

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which the system can perform its required actions and it is
commonly characterized by Mean Time To Restore (MTTR).
Availability is the readiness for correct service defined by the
ratio between MTTF and MTTF plus MTTR. Safety is the
absence of catastrophic consequences on the user(s) and the
environment. These four attributes are closely interrelated in
such a way that if an attribute fails to meet the requirements,
systems dependability is seriously threatened.

This survey concentrates on three main phases: depend-
ability analysis, system design and verification. Despite
being aware of the relevance of software code for system
dependability in each of these phases, we will consider soft-
ware code as a black box component to limit the extension
of this paper (interested readers can refer to [4] [5] as an
example).

Dependability analysis techniques can be organised by
looking at how different system failures are characterized
with its corresponding underlying formalisms. On one hand,
event-based approaches reflect the system functionality and
failure behaviour through combination of events. This anal-
ysis results in either Fault Tree (FT) like [6] or Failure
Mode and Effect Analysis (FMEA) like [7] structures, which
emphasizes the reliability and safety attributes. On the
other hand, state-based approaches map the analysis models
into a state-based formalisms (e.g., Stochastic Petri Nets
(SPN) [8]). Those approaches analyse system changes with
respect to time and concentrate on reliability and availability
attributes.

Concerning the design of dependable systems, there exist
alternative recovery strategies that add redundancies to the
system design in order to avoid single points of failure
and thus, provide fault tolerance. Traditionally, hardware
replication have been viewed as a feasible solution to recover
from failures. However, there is also another design strategy
which compensates for component failures through the reuse
of hardware components. We will address these design
strategies and their influence on dependability and cost.

Fault Injection (FI) and Model-Checking (MC) [9] ap-
proaches have been widely adopted for the verification of
design decisions. Since these approaches enable to learn
about the system behaviour in the presence of faults and
verify its correctness relying on a fully automated model-
based approach, we concentrate on model-based FI ap-
proaches. They evaluate the dependability requirements us-
ing functional and failure behaviour models. Moreover, we
also cover the recent evolution of these approaches towards
the integration multiple approaches using a single reference
model, i.e., model-based integrative verification approaches.
We are conscious that there are other verification approaches,
e.g., correct by construction paradigm aimed at ensuring the
validity of the system by design [10] (i.e., formal verifica-
tion). Nonetheless, we have decided to limit the overview
to model-based analysis and verification approaches due to
their potential to integrate in the system design process

seamlessly.
The remainder of this paper is organized as follows: Sec-

tion II classifies dependability analysis techniques based on
the limitations of classical dependability analysis techniques.
Section III groups dependable design approaches character-
ized by the replication and reuse of hardware components.
Section IV discusses the characteristics of the verification
approaches when designing a dependable system. Section
V outlines a model-based hybrid design process based on
the reviewed analysis, design and verification approaches.
Finally, Section VI draws conclusions remarking different
challenges for the model-based design of dependable sys-
tems.

II. REVIEW AND CLASSIFICATION OF MODEL-BASED
DEPENDABILITY ANALYSIS TECHNIQUES

Event-based approaches analyse the failure behaviour of
the system by investigating the logic succession of faults.
They identify an event sequence leading to equipment or
function failure. Differences are mainly based on represen-
tation and analysis structures. Two of the most widely used
techniques are: FT Analysis (FTA) [6] and FMEA [7].

• FTA is a top-down deductive analysis technique aimed
at finding all the ways in which a failure can occur.
Starting from an undesirable system-level failure (i.e.,
top-event), its immediate causes to occur are identified
until reaching the lowest component-level (i.e., basic-
event). The top-event is broken down into intermediate
and basic-events linked with logic gates organised in
a tree-like structure. The resulting FT, is a qualitative
model in the form of combinations of events which
are necessary to the top-event to occur. This model
can be quantified by ascribing probabilities to the basic
events and combining them to evaluate the probability
of the top-event. Moreover, importance measurements
can be carried out to quantify the contribution of the
basic-event occurrences to the top-event failure. There
exist different importance measurement methods, e.g.,
Fussell-Vessely, Birnbaum [6].

• FMEA is a bottom-up inductive analysis technique.
Starting from the different ways that a system can
fail (i.e., known Failure Modes (FM)), it evaluates
the effects that these failures can have on a process.
Its main objective is an early identification of critical
failure possibilities within the system design. Results
are organized in a table identifying at least component’s
failure modes, effects, safeguards and actions. FMEA
is characterised for being a qualitative technique for
design analysis, while quantification of failure modes
is carried out by Failure Mode and Effect Criticality
Analysis (FMECA). The criticality analysis ranks crit-
ical failure mode effects by taking into account their
occurrence probability.

14

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Both techniques focus on the identification of events
that jeopardize the system design objectives. However, their
initial assumptions as well as their logical orientation are
different: while FTA moves from known effects towards un-
known causes in a deductive manner, FMEA progresses from
known causes towards unknown effects inductively. They are
not orthogonal techniques, indeed they are complementary
and in some cases they overlap [11]. The extended usage of
these approaches for dependability related tasks have lead
to the identification of the main limitations. Subsequently,
there has been a long list of works aimed at overcoming
them:

• L1: FMEA and FTA are static representations of the
system, neither time information nor sequence depen-
dencies are taken into account [12].

• L2: Orientation of FTA and FMEA concentrate on
the analysis of failure chain information. Consequently,
their hierarchy reflects failure influences without con-
sidering system functional architecture (design) infor-
mation [13].

• L3: FMEA and FTA depend on the analyst’s skill to
reflect the aspects of interest. Failure modes and un-
desired events must be foreseen, resulting in a process
highly dependent on analyst’s knowledge of the system
[14].

• L4: Manageability and legibility of FTA and FMEA
models is hampered when analysing complex systems.
Model size, lack of resources to handle interrelated
failures and repeated events, in conjunction with few
reusability means, are its main impediments [13] [15].

L1 refers to the capability of the technique to handle
temporal notions. This is of paramount importance when
analysing fault tolerant systems. L2 emphasizes the interdis-
ciplinary work between dependability analysis and architec-
tural design. Joining both procedures helps obtaining a de-
sign, which meets dependability requirements consistently.
L3 entails a trade-off solution between the time consuming
analysis resulted from understanding the failure behaviour
of the system and the acquired experience. A substantial
body of works have been oriented towards the automatic
generation of analysis models from design models (refer
to groups 3, 5 in Table IV) addressing limitations L2 and
L3. These approaches promote the reuse of design models
showing the effects of design changes in the analysis results.
However, note that the correctness of the analysis lies in the
accuracy of the failure annotations. Finally, L4 underlines
the capability of the model to handle the component-wise
nature of embedded systems. This permits obtaining a model
that better adheres to the real problem and avoids confusing
results.

Many authors have developed new alternatives or ex-
tended existing ones. Three groups are identified in order to
gather the approaches and limitations strategically. Firstly,

L1 is addressed in the Subsection Dynamic Solutions for
Static-Logic Approaches. Secondly, L2 and L4 are covered
in the Subsection Compositional Failure Propagation Anal-
ysis Approaches. Finally, specifically focusing on L3 and
generally addressing the remainder of limitations Model-
Based Transformational Approaches are studied. Note that
some approaches cannot be limited to a specific group, hence
they are classified accordingly to its main contribution.

A. Dynamic Solutions for Static-Logic Approaches

The limitation concerning the lack of time information
has been addressed by several authors to deal with system
dynamics such as redundancy or repair strategies.

Dugan et al. [12] paved the way to cope with configuration
changing analysis using FTs by defining Dynamic Fault Tree
(DFT) methodology. New gates were introduced accounting
for event ordered situations like common cause failures and
redundancy strategies. In [16], temporal notions and FT
models were integrated in order to handle the probabilistic
timed behaviour of the system. The model reflects how
modular FT models are switched through discrete points in
time taking into account time dependant basic events.

Other alternatives to analyse DFT models are based on
Monte Carlo Simulations (MCS) by specifying temporal
failure and repair behaviours of components through state-
time diagrams [17]. In [18], MatCarloRe approach is pre-
sented based on Simulink [19] for DFT modelling and
reliability analysis. The technique integrates MCS and FTA
methodologies resulting in a intuitive model-based simulat-
ing environment.

Following the way of DFTs, an approach emerged based
on Reliability Block Diagrams (RBD) [3]. RBD is focused
on the analysis of the success of the system, instead of the
failure analysis orientation of FTs. Dynamic RBDs (DRBDs)
[20] model failures and repairs of components based on their
dependencies using state machines. To analyse these models,
an algorithm which converts DRBDs into Coloured Petri
Nets was presented in [21]. However, an integrated mod-
elling and analysis toolset for DRBDs is lacking. Signoret
et al. in [22] presented an approach called RBD driven Petri
nets (RdP) which uses RBDs as an interface to build large
Petri nets systematically. The modular characterization of
Petri nets enables the intuitive creation of RdP models from
predefined module libraries. Aligned with these formalisms,
the OpenSESAME modelling environment connects RBDs
and state-based formalisms [23]. It enables an straightfor-
ward evaluation of highly available system’s fault tolerant
behaviour including system dynamics. Its input models are
based on RBDs and failure dependency diagrams, while
component and repair tables are used to indicate component-
specific characteristics (MTTF, MTTR) and repair groups.
To carry out system analyses, these models are transformed
into state-based SPN and Stochastic Process Algebra (SPA)
models.

15

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Lopatkin et al. [24] utilise FMEA models for system
formal specifications. The approach defines generic pat-
terns establishing direct correspondence between FMEA and
state-based Event-B [25] formalism. The characterization
of error detection and recovery patterns lead to analysing
and verifying whether safety properties are preserved in the
presence of faults. The use of these patterns, allows tracing
from static FMEA considerations towards system dynamics.

Progression in the conjoint use of event and state for-
malisms is reflected with Boolean logic Driven Markov
Processes (BDMP) [26]. BDMP employs static FT as a
structure function of the system and associates Markov
processes to each leaf of the tree. Similarly, State-Event
Fault Tree (SEFT) [27] formalism combines elements from
FT with both statecharts [28] and Markov chains, increasing
the expressiveness of the model. SEFT deals with functional
and failure behaviour, accounts for repeated states and events
and allows straightforward transformations of SEFT models
into Deterministic and Stochastic Petri Net (DSPN) models
for state-based analysis.

In [29], Steiner et al. described a process to create and
analyse SEFTs based on the ESSaRel tool [30]. Subse-
quently, the SEFT models are exported and analysed by
means of a DSPN analyser tool called TimeNET [31].
The model described in Figure 1, shows some of the
SEFT’s strengths and characteristics in a simple behaviour
model: (1) combination of statecharts with Markov chains
by means of states (S) and events (E); (2) compositional
characterization of system functionalities connected through
required inports and provided outports (event out vel ok,
event out vel high), which enables linking components in
a FT-like structure while managing system’s complexity;
(3) characterization of functional and failure behaviour of
the system, i.e., functional state (out vel ok), failure state
(out vel high), and transition events between these states
(no obstacle detected and sensors working); and (4) under-
lying transformable logic to analyse with a target state-based
formalism.

Figure 1. SEFT model example [29].

Likewise, El Ariss et al. in [32] presented an approach
called Integrated Functional and Safety Specification (IFSS)
model, in which they provide a systematic transformation
from FT models into statecharts accounting for the temporal
behaviour of faults. As a result of this integration process,
they eliminate inconsistencies when using functional and
non-functional models and account for the order of failure
occurrences.

Table I displays among the addressed approaches those
which has tool support for the specification and analysis of
the dynamic behaviour of systems.

Table I
TOOL-SUPPORT OF THE DYNAMIC APPROACHES

Approach -
Work Tool Support Type of

Tool
Latest

Release

DFT e.g., Galileo [33] Commercial,
Educational 2003

Rao et al.
[17] DRSIM tool Internal 2009

MatCarloRe RAATSS [34]
Academic
evaluation

copy
2012

RdP BStoK [35] Comercial 2011

OpenSESAME OpenSESAME [36] Available 2009

Lopatkin et
al. [24] Rodin Plugin [25] Available 2012

BDMP KB3 Workbench [37] Available 2012

SEFT ESSaRel extension &
transformation [29] Internal* 2013

* Available for research purposes under agreement

DFT is a well-known mature approach for the evalua-
tion of the system’s dynamics. It has been adopted with
different tools over the last years (e.g., Galileo [33]). In
contrast, approaches such as IFSS, DRBD or SEFTs do
not have a integrated tool support. The compositional and
transformational features of the SEFT approach, provide an
adequate abstraction of the system structure and behaviour.
Developing a model-based tool which extracts DSPN models
from SEFT models automatically would create an adequate
environment for building a sound approach for manageable
and consistent dependability analyses.

B. Compositional Failure Propagation Analysis Approaches

The common factors for Compositional Failure Propaga-
tion (CFP) approaches are: the characterization of the system
architectures by design components; the annotation of the
failure behaviour of each of them and the system failure
analysis based on inter-components influences. Conceptu-
ally they all are very similar: the main objective of CFP
approaches is to avoid unexpected consequences resulting
from the failure generation, propagation and transformation
of components.

Generally, CFP approaches characterise the system as
component-wise developed FT-like models linked with a

16

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

causality chain. System architectural specifications and sub-
sequent dependability analyses of CFP approaches rely on
a hierarchical system model. This model comprises com-
ponents composed from subcomponents specifying system
structure and/or behaviour. CFP approaches analyse the
system failure behaviour through characterizations of indi-
vidual components, which lead to achieving a manageable
failure analysis procedure. Failure Propagation and Trans-
formation Notation (FPTN) [38], Hierarchically Performed
Hazard Origin and Propagation Studies (HiP-HOPS) [39]
and Component Fault Tree (CFT) [13] are the principal
CFP approaches. Their main difference is in the failure
annotations of components, which specify incoming, out-
going and internal failures to each component. In order to
annotate the logical combinations of these failures, FPTN
uses logical equations, HiP-HOPS makes annotations using
Interface Focused FMEA (IF-FMEA) tables and CFT as-
sociates to each component individual FTs. Subsequently,
the connections between system components determines the
failure flow of the system, linking related failure annotations
of each component.

Concerning the different contributions of CFP approaches,
FPTN first addressed the integration of system-level deduc-
tive FTA (from known effects to unknown causes) with
component-level inductive FMEA (from known causes to
unknown effects). HiP-HOPS integrates design and depend-
ability analysis concepts within a hierarchical system model.
However, instead of exclusively linking functional compo-
nents with their failure propagations like in FPTN, first the
hierarchical system model is specified and then, composi-
tional failure annotations are added to each component by
means of IF-FMEA annotations. These annotations describe
the failure propagation behaviour of the component in terms
of outgoing failures specified as logical combinations of
incoming and internal failures (cf. Figure 2).

From the IF-FMEA annotations shown in Figure 2, the
outgoing failures at the port out 1 will be specified as fol-
lows: omission-out 1 = omission-in 1 AND omission-in 2
OR Stuck at 0. Once characterized all the outgoing failures of
all the ports, a FT synthesis algorithm analyses the propaga-
tion of failures between connected components. Traversing
the hierarchical system model, while parsing systematically
the IF-FMEA annotations of its constituent components,
allows the extraction of the system FT and FMEA models.

CFTs are a model-based extension of FTA models. The
component FTs can be combined and reused to systemati-
cally obtain the FT for any failure without having to create
and annotate a FT for each failure. In order to integrate
analysis and design concepts, it has been extended in [40]
resulting in the Safe Component Model (SCM) approach.
The approach separates components’ functional/failure spec-
ification and realization views and through the integration
of the failure propagation and hierarchical abstraction, SCM
allows obtaining a hierarchical component based abstraction

in_1
in_2 out_1

Output
 FM

Description
Input Deviation

Logic
Component
Malfunction

λ
(f/h)

omission-
out_1

no output
at out_1

omission in_1
AND

omission in_2
Stuck at 0 3.10-8

...

Component-wise
IF-FMEA

Annotations

System Design

Subcomponents

Components

IF-FMEA Table

Figure 2. Hierarchical structure and CFP annotations in HiP-HOPS.

of CFTs.
They all have been extended to cope with occurrences of

temporal events. Temporal extensions for FPTN [41] and
HiP-HOPS [42] have been influenced by the DFT method-
ology. They concentrate on the analysis of non-repairable
systems examining the order of events so as to identify
specific sequence of events leading to failures. Integration
of CFT concepts with state-based techniques resulted in the
SEFT formalism, which is able to handle availability and
maintainability properties of repairable systems.

Transformation of CFP approaches into dependability
analysis formalisms is an ongoing research subject (see Sub-
section II-C). HiP-HOPS extracts FTA and FMEA models
thanks to its underlying logic and SEFT applies translation
schemes to generate DSPN models.

Other interesting extensions include mechanisms to au-
tomate and reuse analysis concepts. Failure Propagation
and Transformation Calculus (FPTC) [43] approach adds
the characterization of the nominal behaviour to FPTN
models and generalizes the FPTN equations to improve
the manageability and analysability. Moreover, an algorithm
is implemented to handle the general inability of CFP
approaches to cope with cyclic dependencies of feedback
structures. In [44], general failure logic annotation patterns
were defined for HiP-HOPS. Similarly, the CFP approach
presented in [45] by Priesterjahn et al., emphasizes the reuse
of failure propagation properties specified at the port level
of components. These specifications centre on the physical
properties of different types of flows, which allow reusing
failure behaviour patterns for functional architectures.

Concerning the model-based generation of FMEA models,
in [46] Struss and Fraracci presented an approach to extract
FMEA models mechanically. To do so, they based on devia-

17

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tion models which describe formally the constraints of sys-
tem functionalities and it provides the necessary predictions
for extracting FMEA models. The approach implements
reuse mechanisms through the use of generic libraries and
it has been implemented in the Raz’r tool [47].

The evolution of CFP approaches focus on reusability,
automation and transformation properties. Since the anno-
tations of the components’ failure behaviour depend upon
designers experience, reusing failure annotations leads to
reducing the error proneness. Based on the fact that different
dependability analyses have to be performed when designing
a system, definition of a unique consistent model covering
all analyses would benefit these approaches. This is why
recent publications in this field centre on integrating existing
approaches (cf. Subsection II-C and Section IV).

Regarding the tool support of the CFP approaches (cf.
Table II) we can see that all approaches have been turned
into toolsets. Nonetheless, the CFP approaches are moving
one step further, integrating design languages in order to link
the design and analysis processes (cf. Subsection II-C).

Table II
TOOL-SUPPORT OF THE CFP APPROACHES

Approach -
Work Tool Support Type of

Tool
Latest

Release
FPTN SSAP Toolset [38] Unavailable 2006

HiP-HOPS HiP-HOPS Tool [39] Available 2012

CFT ESSaRel tool [30] Available 2009

SCM [40] ComposeR Internal 2012

FPTC Epsilon [48] Available 2009

Priesterjahn
et al. [45]

MechatronicUML,
Fujaba [49] Available 2012

Struss &
Fraracci [46] Raz’r Tool [47] Comercial 2012

C. Model-Based Transformational Approaches

The main aim of the transformational approaches
is to construct dependability analysis models
(semi-)automatically. The process starts from a
compositional design description using computer science
modelling techniques. The failure behaviour is specified
either by extending explicitly the design model or
developing a separate model, which is allocated to the
design model. Transformation rules and algorithms extract
dependability analysis models from it.

These approaches lead to adopting trade-off decisions be-
tween dependability design and analysis processes. On one
hand, the automation and reuse of analysis techniques in a
manageable way makes it a worthwhile approach for design
purposes. The impact of design changes on dependability
attributes are analysed systematically. On the other hand,
from purist’s point of view of classical analysis techniques,

the automation process removes the ability of these tech-
niques to identify and analyse hazards or malfunctions in a
comprehensive and structured way.

Architectural Description Languages (ADLs) provide an
adequate abstraction to overcome the limitations. Simulink
[19], AADL [50] and UML [51] have been used for both
architectural specification and failure behaviour specifica-
tion. UML is a widely used modelling language, which has
been extended for dependability analyses following Model
Driven Architecture (MDA) concepts [52]. Namely, profiles
allow extending and customizing modelling mechanisms to
the dependability domain [53].

Lately, a wide variety of independently developed exten-
sions and profiles have come up for dependability analysis
[54]. However, some generally applicable metamodel is
lacking. In an effort to provide a consistent profile CHESS
ML emerged [55]. CHESS ML provides all necessary mech-
anisms to model dependable systems and extract either
event-based (FMECA, FPTC) or state-based (SPN) analysis
models. Recently in [56], a model-driven failure logic anal-
ysis method called CHESS-FLA has been presented. This
approach is built upon Formalism for Incompletion, Incon-
sistency, Interference and Impermanence Failures’ Analysis
(FI4FA) approach [57] which is based on the concepts of
FPTC. FI4FA differs from FPTC in that it offers two addi-
tional features. Namely, it provides mechanisms to analyse
more types of failures than FPTC and it allows modelling
and analysing the mitigation behaviour. The CHESS-FLA
approach supports back-propagation of the results to ease
the readability of the analysis results.

CFP approaches have been shifted towards the transforma-
tional paradigm. The toolset for FPTC approach [43] relies
on a generic metamodel in order to support transformations
from SysML and AADL models. In [58], a metamodel is
developed so as to extract CFT models from functional
architecture models specified in UML. This process permits
the generation of reusable CFT models consistent with
the design model. In the same line, integration of HiP-
HOPS model with EAST-ADL2 automotive UML profile
is presented in [59]. Translations from high-level ADLs to
well established CFP analysis techniques, enable an early
dependability analysis and allow undertaking timely design
decisions.

Architecture Analysis and Design Language (AADL) cap-
tures the system architectural model in terms of components
and their interactions describing functional, mapping and
timing properties among others. The core language can be
extended to meet specific requirements with annex libraries.
Behaviour and error model annexes are provided with the
tool. The error annex links system architecture components
to their failure behaviour specification making possible the
analysis of the dependability attributes of the system. It has
been used for both state-based [60] and event-based [61]
analysis.

18

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AltaRica [62] is a dependability language, which enables
describing the behaviour of systems when faults occur. The
model is composed of several components linked together
representing an automaton of all possible behaviour scenar-
ios, including those cases when reconfigurations occur due
to the occurrence of a failure [63]. It is possible to process
such models by other tools for model-checking or generation
of FTs [64]. Transformations from AADL to AltaRica
are presented in [65], based on MDA concepts so as to
perform dependability analyses and avoid inconsistencies
while working with different formalisms.

Riedl and Siegle presented a language for the speci-
fication of reconfigurable and dependable systems called
LARES [66]. It expresses system’s fault tolerant behaviour
using a generic language in which any kind of discrete-
event stochastic system can be specified. It is based on
fully automated model transformations to measure systems
dependability. Namely, transformations into TimeNET [31]
and CASPA [67] tools are carried out in order to solve state-
based SPA and SPN models respectively.

In [68], Cressent et al. defined a method for RAMS
analysis centred on SysML [69] modelling language from
where a FMEA model is deduced. SysML diagrams define
a functional model connected to a dysfunctional database
enabling the identification of failure modes. This database
contains the link between system architecture and failure
behaviour giving the key for FMEA extraction. Further,
the methodology for dependability assessment is extended
using AltaRica, AADL and Simulink models. They address
reliability and timing analyses and simulation of the effects
of faults respectively.

Definition of a model for the extraction of all necessary
formalisms for dependability analysis is the common goal
for the aforementioned works. Interconnections between dif-
ferent formalisms in order to take advantage of the strengths
of each ADL, allow analysing dependability properties ac-
curately. AltaRica and AADL cover adequately the analysis
of reliability, availability and maintainability attributes. Ex-
traction of the main CFP approaches from ADLs should
help to analyse comprehensively system safety properties.
Moreover, Simulink model simulations allow evaluating the
effects of failure and repair events in the system. Thereby,
integrations between language specific models like in [68]
helps evaluating accurately all dependability aspects of a
system.

The acceptance of the transformational approaches de-
pends on the availability of toolsets capable of performing
(automatic) transformations. As it is shown in Table III,
all ADLs have their own implementation toolsets. Namely,
transformations from ADL models into CFP models have
been carried out through metamodels and profiles imple-
mented as plugins.

Table III
TOOL-SUPPORT OF THE TRANSFORMATIONAL APPROACHES

Approach -
Work Tool Support Type of

Tool
Latest

Release
Simulink Matlab [19] Comercial 2012

UML,
SysML

e.g., Eclipse Papyrus
[70] Available 2012

AltaRica e.g., AltaRica Tools
[71] Available 2013

AADL e.g., Osate [72] Available 2012

CHESS-ML CHESS Plugins [73] Partially
available 2012

FPTC Epsilon [48] Available 2009

Adler et al.
[58] CFT UML Profile Internal 2012

HiP-HOPS EAST-ADL2
Eclipse Plugin [74] Available 2010

LARES [66] LARES toolset Internal Ongoing

Cressent et
al. [68]

MéDISIS
Framework Internal Ongoing

D. Classification of Techniques

In order to classify the covered approaches, Table IV
groups them taking into account limitations specified in
Section II.

Table IV
SUMMARY OF LIMITATIONS OVERCOME BY APPROACHES

Group Approach Limitations
1 [12] [16] [17] [18] [23] [26] L1

2 [13] [38] [40] [43] [46] L2, L4

3 [39] [45] [56] [61] L2, L3, L4

4 [20] [22] [32] [41] [63] L1, L2, L4

5 [24] [27] [42] [55] [60] [66] [68] L1, L2, L3, L4

Approaches gathered within the group 5 contain all
necessary features in order to analyse dynamic systems
consistently and in a manageable way. Compositional failure
annotation, dynamic behaviour and automatic extraction of
analysis models are the key features addressed by these
approaches. Utilization of failure annotation patterns pro-
mote flexibility and reuse and consequently, reduce the error
proneness. Nevertheless, as noted in [75], characterization of
the failure behaviour of components depends on the com-
ponent context, which conditions compositional and reuse
properties. Moreover, automatic generation of the analysis
model does not completely alleviate the dependency on the
knowledge of the analyst. However, it lets managing and
specifying the failure behaviour in a clear and consistent
way.

19

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. DESIGN OF DEPENDABLE SYSTEMS:
TRADE-OFF BETWEEN DEPENDABILITY AND COST

Generally, dependability design decisions and objectives
are related to trade-off decisions between system depend-
ability attributes and cost. Dependability requirements often
conflict with one another, e.g., safety-availability compro-
mise when a faults leads the system to a safe shutdown
in order to prevent it from propagating. The time at which
design decisions are taken determines the cost that the design
process can incur.

Designing a dependable system within considered require-
ments requires a process to match and tune combination of
architectural components so as to find an optimal solution
satisfying design constraints. There are other approaches
concentrated on the design of dependable systems under the
correct-by-construction paradigm. For instance, the approach
presented in [76] creates a formal system specification
preserving the correctness through gradual refinements of the
system design model. However, instead of addressing formal
correct-by-construction dependable design approaches, we
will overview those approaches which are aimed at charac-
terizing at design time the implications of design decisions
(combination of components) on dependability and cost.

More specifically, we group dependable design ap-
proaches by looking at how system recovery strategies are
implemented. Traditionally, hardware replication has been
viewed as a feasible solution to recover from failures, e.g.,
N modular redundancy. Nonetheless, there are other kinds of
recovery strategies which make the repair possible reusing
already existing hardware components. On one side, in
Subsection III-A we group those approaches that replicate
the nominal functionality by aggregating additional hard-
ware resources, i.e., homogeneous redundancies. On the
other side, in Subsection III-B we group those approaches
which are aimed at reusing hardware components to pro-
vide a compatible functionality and reduce hardware costs,
i.e., heterogeneous redundancies [77]. Finally, in Subsec-
tion III-C, we have summarized and characterized these
approaches with respect to our design criteria and identified
key design activities to progress in the use of heterogeneous
redundancies.

A. Design of Dependable Systems by Means of
Homogeneous Redundancies

The principal question addressed by the approaches
grouped in this subsection is the evaluation of the effect
of design choices (e.g., robustness level of components,
redundancy configurations) on dependability and cost.

Cauffriez et al. [78] and Clarhaut et al. [79] focused on de-
signing a dependable system based on a design methodology
presented in [80]. The main focus of this methodology relies
on the early and systematic characterization of dependability
criteria during the system design activities. As it is shown
in Figure 3, the approach comprehends three types of

architectures: functional architecture, equipment architecture
and operational architecture.

� State complexity: Size-related complexity often leads to
state-related complexity. The states, or modes, of a
system include operating, stand-bye or failure modes.
Detecting and identifying all the modes of an automated
system without ambiguity is difficult.
� Technological complexity: Systematic use of new tech-

nologies such as information/communication technolo-
gies (ICT), artificial intelligence, expert systems or
communication networks,y) can lead to failures,
mainly due to ignorance concerning about how these
technologies will interact in the system in a given
environment.
� Integration complexity: The use of generic components

or pre-existing systems when designing new systems or
improving existing systems can save time and money,
but can also lead to problems due to lack of interoper-
ability between subsystems or to the incompatibility of
replacement parts. In addition, reusing ‘‘on-shelf com-
ponents’’ in a new environment can modify the
characteristics of these components and, consequently,
the behavior of the system [7].
� Stochastic complexity: Stochastic complexity is inherent

to studies of the stochastic processes that characterize
the random behavior of a system over time.
� Structural complexity: The interactions between system

elements or functions are characterized by a variety of
structures, including series, parallel, mixed and/or
bridged structures.

This range of complexity often leads to uncertain
knowledge of system behavior, particularly in the case of
system disturbances, like random failures, for example.
Designing dependable systems is difficult precisely because
the various types of complexity must be taken into account
during system modeling.

3. Methodology for designing complex automated systems

Automated system design involves constructing three
distinct classes of architecture [8]:
The functional architecture of an automated system is

built according to the functional specifications (see Fig. 1,
activity A1) and represents the links and interactions
between the system’s diverse functions. The model of this
architecture is composed of the elementary functions that
are found when the main functions are decomposed (see
Fig. 1, activity A2).
The equipment architecture reflects the choices made

concerning the components, macro systems or commu-
nication devices that are incorporated into the system (see
Fig. 1, activity A3). These choices can be improved in order
to satisfy the dependability criteria (see Fig. 1, activity A5).
The operational architecture is established by projecting

the functional architecture onto the equipment architecture
(see Fig. 1, activity A4). The operational architecture must
be validated in terms of the objectives stated in the
functional specifications, such as dependability, perfor-
mance, and cost objectives (see Fig. 1, activity A6). If the
objectives are not accomplished, the feed-back loop
existing between activities A6 and A1 provides information
that can be used to improve system performances, for
example by modifying the model’s functions or by
facilitating decisions about making certain components
redundant or integrating other more reliable components.
Please note that, if the architecture includes equipment
with integrated functions, a partial specification has
already been done by the equipment designers.
All the system’s equipment is heterogeneous, and cannot

be supplied completely by a single source. Because the
equipment serves as host for part of the distributed
application, it must be configured, downloaded, and

ARTICLE IN PRESS

Fig. 1. Methodology for designing complex automated systems.

V. Benard et al. / Reliability Engineering and System Safety 93 (2008) 179–196180

Figure 3. Methodology for designing distributed control systems [80].

The design process starts from the characterization of
functional and equipment architectures addressing functional
and dependability criteria. Subsequently, the allocation of
the functional architecture onto the equipment architecture
is evaluated in relation to dependability. As a result, the
operational architecture is produced which could require
reconsidering functional and/or equipment decisions in order
to obtain a validated operational architecture with respect to
dependability requirements.

Cauffriez et al. in [78] concentrated on the analysis of
repairable architectures evaluating how the use of alternative
hardware components affects system functionality and de-
pendability. To do so, they characterized system-level func-
tions in a top-down manner until lowest level subfunctions
are reached. At the bottom layer, failure and repair rates of
hardware components permit analysing system top layer’s
performance, reliability and availability using Monte Carlo
simulations. In this way, a structural function is characterized
which links functions and hardware resources and allows
evaluating alternative operational modes by associating dif-
ferent subfunctions to perform the system-level function.
The overall design methodology for modelling and analysing
alternative architectural design choices has been integrated
within a design tool.

Clarhaut et al. described a design approach overcoming
the static-logic limitation of event-based analysis techniques
(cf. Subsection II-A) by identifying sequential component-
wise contributions to system-level failures [79]. During
the design process, a functional hierarchical tree model
characterizes dependencies between functions and hardware
resources. This model accounts for alternative resources and
hence, architectures to perform the modelled control func-

20

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tions. Subsequently, the Improved Multi-Fault Tree (IFT)
is constructed characterizing sequential failure relationships
between components’ failure modes (FM) and system func-
tions which lead to the system-level undesired effects des-
ignated as dreaded events.

As shown in Figure 4, the structure of the design method-
ology revolves around the characterization, analysis, and
optimization of system architectures so as to adopt optimal
design decisions regarding dependability and cost. The IFT
determines the dependability level of the overall architecture
weighting the contribution of each component to the system-
level dreaded events. Architectural design choices cover
active and passive redundancies. The cost associated with
each hardware component enables progressing between al-
ternative architectures toward an optimal architecture which
maximizes dependability and reduces hardware cost.

Equipment
Architecture

Functional
Model

Improved Multi
 Fault Tree

-Available Components
- Components Organization

- Dreaded Events, FMs
- Sequential Failure Relationships

Design Methodology
- Modelling
- Evaluation

- Optimization

- Functional Requirements
- Functional Alternatives

Set of Equipment
Architectures

- Dependability Level
- Cost

Figure 4. Clarhaut et al.’s design approach.

Adachi et al. in the work presented in [81], extended
the HiP-HOPS approach with recovery strategies in order
to design optimal architectures reducing cost and increasing
dependability. The recovery strategies are formally repre-
sented using patterns. These patterns characterize the po-
tential to detect, mitigate, and block affecting component
failures which are previously identified with HiP-HOPS and
analysed by means of FTA and FMEA. Finally, starting from
an abstract architecture, recovery strategies are introduced
without violating user constraints and an evolutionary opti-
mization algorithm allows converging through dependability
and cost requirements.

All the covered approaches aim at increasing system de-
pendability through the replication of nominal components.
This design decision implies a cost increase. Consequently,
this drawback needs to be justified through an exhaustive and
adequate analysis of how the system design meets functional
and dependability requirements.

B. Design of Dependable Systems by Means of
Heterogeneous Redundancies

One of the key properties of the systems which exercise
heterogeneous redundancies is the ability to successfully
accommodate changes in case of failure occurrences. Con-
sequently, the system design approaches that we will cover
in this subsection not only address dependability issues, but
also adaptation capabilities. Thus, we group them as adaptive
dependable design approaches.

Shelton and Koopman first worked on the
concept of heterogeneous redundancies by means of
functional alternative strategies. It allows to compensate for
component failures changing the system functionality [77].
The approach models alternative system configurations and
assigns a relative utility value to each of them weighing their
contribution to the system performance and dependability.
From this model, system’s overall utility value is calculated
which enables the evaluation and comparison of design
choices as to where allocate resources for functional
alternatives or redundancy. This characterization make it
possible to evaluate how component failures affect system
utility.

Wysocki et al. in [82] addressed the same design strategy
under the shared redundancy concept. They concentrated
on the reuse of processing units through the strategic
distribution of software modules. Consequently, given the
failure occurrence of a software component, it is possible
to still continue operating through the reconfiguration of
communication routes. To evaluate the reliability and safety
of the alternative architectures, first a FTA is carried out.
This analysis permits extracting minimal combination of
events which leads the system to failure. Additionally, this
information is used as input for further analysis through
Design Of Experiments (DOE) to calculate system cost and
failure probabilities. Based on the same design concept,
Galdun et al. in [83] analysed the reliability of a networked
control system structure using Petri Nets (PN) and Monte
Carlo simulations.

Rawashdeh and Lump in [84] presented a framework
for designing reconfigurable architectures for fault tolerant
embedded systems called ARDEA. The approach is based
on processing units’ reconfigurations to achieve graceful
degradation and cope with hardware failures. A gracefully
degrading system tolerates system failures by providing the
same or equivalent functionality with the remaining system
components. Dependency Graphs (DGs) are used to model
the functional flow of information from input to output con-
sidering alternative implementations. A centralized system
manager uses DGs and a hardware resource list to find
a viable mapping of software on the available processing
units. It decides when to schedule/un-schedule software
modules moving object code among available processing
units without exceeding processor time and bandwidth.

21

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the MARS project, Trapp et al. [85] proposed a
component based modelling and analysis method to ex-
ploit implicit redundancies so as to react to system failures
by reusing hardware resources. It provides methodological
support for modelling and gathering system configurations.
Moreover, reasonable system configurations are elicited from
a set of possible candidates. The system’s adaptive behaviour
is modelled based on quality types, which drive the system’s
graceful degradation possibilities. The quality type system
determined at design time and modelled with a system
inheritance tree, defines the possibilities for exchanging
quality types between components.

Each system component operates under different configu-
rations determined by Quality Attributes (QAs). These QAs
are attached to each component’s every I/O port. Configu-
ration activation rules are defined over these ports based on
the needed QAs to activate a configuration (preconditions)
and provided QAs by this configuration (postconditions)
(cf. Figure 5).

Figure 5. Example of an adaptation specification view [86].

As it is shown in Figure 5, for each component within the
hierarchical system architecture, its possible configuration
variants are defined. Each port has linked its own quality
type which will determine the corresponding constraints
over the port. Each configuration has its own activation
preconditions and propagation postconditions defined over
the component ports’ QAs. This characterization leads to
determining compatible components based on QAs. As a
result, component compositions are abstracted into hier-
archical components with a explicitly defined adaptation
behaviour.

From this modelling paradigm (MARS modelling), differ-
ent analyses have been carried out. In [87], transformations
of MARS models into hybrid-CFT were performed in order
to calculate configuration probabilities (cf. Subsection II-A).

Moreover, in order to ensure the causality of the reconfig-
uration sequences and safety-related properties, verification
activities have been carried out in [86]. Last but not least,
methodological support for identifying an adaptation model
meeting availability-cost trade-off were addressed in [88].

Similar design concepts are addressed in the avionics
field. Namely, the Integrated Modular Avionics (IMA) de-
sign paradigm defines robust partitioning in on-board avionic
systems so that one computing module (Line Replaceable
Unit - LRU) is able to execute one or more applications
of different criticality levels independently. The standardised
generic hardware modules forming a network leads to looser
coupling between hardware and software applications [89].

SCARLETT project [90] aims at designing reconfigurable
IMA architectures in order to mitigate the effect of failures
of functional, fault detection and reconfiguration implemen-
tations. Monitoring and fault detection functions aim at
detecting component failures. Once a permanent failure is
detected, the reconfiguration supervisor performs two key
activities. Firstly, it manages the modifications given the cur-
rent configurations and failed module and secondly, it checks
the correctness of the system configuration and the loaded
data in the LRU. The centralized supervisor determines
a suitable configuration based on a reconfiguration graph,
which contains all possible configurations. Reconfiguration
policies and real-time and resource constraints, define the
set of reachable safe transitions and states. In order to
analyse the reconfiguration behaviour when failures occur, a
safety model leads to finding the combinations of functional
failures [91]. Based on the same concepts, DIANA project
[92] aims at distributing these functionalities. This approach
improves the availability of the reconfiguration mechanisms
at the expense of relying on a complex, resource consuming
communication protocol.

C. Summary of the Design Approaches

In order to characterize the reviewed approaches within
this section, the following design properties have been
described in the Table V:

1) Type of recovery strategy.
2) Dependability analysis approach.
3) Cost evaluation.
4) Other tasks: optimization or verification.

Since the use of heterogeneous redundancies requires
considering system dynamics, the dependability analy-
sis approaches described so far address system’s tem-
poral behaviour either by linking event-based static-logic
approaches with state-based formalisms (e.g., Hybrid-
CFT) or evaluating through approaches which integrate
the temporal behaviour explicitly (e.g., MCS, DFT, PN)
(cf. Subsection II-A). Moreover, given the extra design com-
plexity of the systems which use heterogeneous redundan-
cies, the mechanisms which help structuring the analysis and

22

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
APPROACHES AND ADDRESSED DESIGN PROPERTIES

Works 1 2 3 4

[78] Homogeneous
Redundancies MCS HW

cost NA

[79] Homogeneous
Redundancies IFT HW

cost Optimization

[81] Homogeneous
Redundancies HiP-HOPS HW &

SW cost Optimization

[77] Heterogeneous
Redundancies Utility Values NA Optimization

[82]
[83]

Shared
Redundancies

FTA, MCS,
DOE;

PN, MCS

Mainten.
cost NA

[84] Graceful
Degradation NA NA NA

[85] Implicit
Redundancy Hybrid-CFT HW &

SW cost
Optimization,
Verification

[90]
[92]

Reconfigurable
IMA

Safety
analysis,
AltaRica

NA NA

Legend: NA: Not addressed; Mainten: Maintenance

reusing the models are necessary (e.g., libraries, hierarchical
abstractions).

In order to obtain a predictable system design and avoid
unexpected failure occurrences, all the approaches address
design-time determined reconfigurations. Nonetheless, it is
necessary to go beyond and overcome their underlying
assumptions concerning the system’s critical functionalities
to perform reconfigurations effectively. Namely, among all
the reviewed approaches only [91] takes into account a
possible faulty behaviour of the fault detection and recon-
figuration implementations. Similarly, the faulty behaviour
of the communication network is only explicitly addressed
in [83]. The evaluation of the possible faulty behaviour of
these implementations leads to obtaining an approach which
better adheres to the reality and consequently, more reliable
results. Despite not addressing heterogeneous redundancy
like concepts directly, in [93] an approach called component
logic models is presented which does address the faulty
behaviour of fault detectors. To this end, it associates modes
with services and in the case of detection measures each
service-port evaluates the veracity of the fault detectors (e.g.,
modes of false veracity: false positive and false negative).

As a result, from our perspective it is necessary cover the
following design activities:

• A1: Systematic identification of heterogeneous
redundancies and extraction of system configurations
to react in the presence of failures.

• A2: Design of the system architecture to make the
use of heterogeneous redundancies possible, i.e., fault
detection and reconfiguration implementations.

• A3: Evaluation of the system dependability with respect
to dependability and adaptivity constraints.

The first design activity calls for an approach which
allows identifying systematically existing hardware com-
ponents to provide a compatible functionality. To the best
of our knowledge, only the work we presented in [94]
works towards this goal. In [86], Adler et al. worked on
the systematic extraction of system configurations annotating
component by component their adaptive behaviour. During
this process they evaluate in a ad-hoc manner if it is possible
to provide another configuration variant using alternative
hardware components and finally extract system configura-
tions based on inter-component influences.

The second activity requires addressing design decisions
regarding the organization of fault detection and reconfig-
uration implementations, i.e., their distribution and replica-
tion. On one hand, when implementing the fault detection
function within a networked control system, it is possible to
allocate it either on the source Processing Unit (PU) where
the information is produced (e.g., sensor, controller) or in the
destination PU, which is the target PU of the source informa-
tion (e.g., controller, actuator) or in both PUs. On the other
hand, when dealing with reconfiguration implementations,
its distribution influences the overall dependability and cost
of the system (cf. Table VI).

Table VI
DESIGN DECISIONS AND INFLUENCED ATTRIBUTES

Attribute
Design Fault Detection Reconfiguration

Source Destination Centralised Distributed

Dependability

Det. at
origin,

unable to
cope with

comm.
failures

Det. of
wrong

value &
omission.
Prone to

CCF

SPOF

Multiple
reconfig.

redundan-
cies

Cost

HW/SW
imple-

mentation
costs

Costly id.
of all

failures:
failure
transf.

Single
reconfig.
HW/SW

costs

Higher
cost:

multiple
reconfigs

Complexity
Direct
failure

handling

Further
failure
sources

Less
comm.

overhead

Complex
comm;

resource
handling

Legend: SPOF: Single Point of Failure; CCF: Common Cause
Failure; comm: communication; det: detection; reconfig: reconfiguration;
id: identification; transf : transformations.

Additionally, when adopting design decisions within the
second activity, it is necessary to address adaptivity con-
straints which also has influence on dependability, e.g., time-
liness constraints: maximal duration in which the adaptation
of one component can be performed [95], dependency con-
straints: dependencies between system components, where
adapting one component requires further adaptation on
other components [86] or hardware resource constraints:
limit the use of hardware resources, e.g., processing power,
memory [84].

23

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the third activity, previously adopted system design
decisions are analysed with respect to dependability and
cost. To this end, we include the alternative configurations
and possible faulty behaviour of the fault detection, the
reconfiguration and the communication implementations.

IV. MODEL-BASED VERIFICATION:
FROM FAULT INJECTION TO INTEGRATIVE APPROACHES

Fault Injection (FI) approaches concentrate on verifying
system behaviour in the presence of faults according to
target dependability properties. The outcome of this process
may lead to considering design changes. However, changes
adopted late in the design process are costly. This is why
we focus on model-based FI approaches adopted at the
preliminary design phase. This process is based on the
analyst’s knowledge to reason about the functional, failure
and recovery behaviour of the system. Timely evaluation
of these properties provides a valuable feedback for design
purposes. However, difficulties arise from the accuracy of the
system behaviour, which requires an accurate knowledge of
the system.

Within the model-based FI approaches, the verification
process is characterized as follows: first, a functional model
is specified which is then converted into an extended system
model accounting for the functional and failure behaviour
of the system. Temporal logic languages are used to define
system requirements. They describe how the truth values
of assertions change over time, either qualitatively (Com-
putation Tree Logic (CTL), Linear Time Logic (LTL)) or
quantitatively (Continuous Stochastic Logic (CSL), prob-
abilistic CTL (PCTL)). Model-checking (MC) engine as-
sesses whether such requirements are met or not by the
extended system model, using a analysis model. To do so,
it is necessary to transform the extended system model into
the analysis model. When the analysis model fails to meet
these requirements, its effects are deduced automatically
identifying the paths that violate the conditions (counter-
examples (CEs)) [9]. The logical orientation of this analysis
process results in FMEA-like cause-effect analysis.

Automatic transformation from extended system models
to MC analysis models and definition of predefined libraries
for correct and complete failure specification and injection
are the main points in order to obtain a consistent and
robust FI process. ESACS project [96] addressed these
characteristics prominently providing mechanisms to extend
the model straightforwardly and extract FTA models from
it. Other approaches concentrated on the generation of
(probabilistic) FMEA (pFMEA) models [97] [98]. Applica-
tion of pFMEA models, improvement in the interpretation
of counter-examples [97] and automated tool support for
injecting faults and analysing its consequences [98] are their
main contributions.

Albeit these approaches provide a means to extract clas-
sical dependability models from the FI process, few of

them concentrate on integrating existing CFP approaches.
There are some incipient works linking CFP and verification
approaches. They are influenced by HiP-HOPS [99] and
FPTC [100]. Both approaches address the integration of
qualitative design models with quantitative analysis via prob-
abilistic MC. In [99], Gomes et al. described an approach
to verify quantitatively system’s dependability requirements.
To do so, they did a systematic transformation of Simulink
models into CTMC models by means of PRISM model
checker [101]. The annotation of the failure behaviour is
carried out as in HiP-HOPS using IF-FMEA. In [100]
Ge et al. proposed a probabilistic variant of FPTC called
Failure Propagation and Transformation Analysis (FPTA).
The approach links architectural models with probabilistic
model checkers specified in PRISM. The ins and outs of
these approaches are grouped in the Table VII.

Results extracted from this process helps verifying if a
system behaves as intended in the presence of failures.
Concerning the analysis of dependability attributes, gen-
erated counter-examples as well as extraction of classical
dependability analysis models, provides useful mechanisms
to evaluate these attributes. However, there are some lim-
itations hampering the analysis and interpretation of these
approaches. Representation structures of the results, state-
explosion problems, technical specification difficulties and
model inconsistencies are some challenges to be addressed.

Due to the complexity and difficulties emerged from
these approaches there have been a shift in the use of
model-based FI approaches. Instead of developing purely
verification oriented FI approaches, model-based integrative
verification approaches are gaining support. These works re-
sult from the integration of design, analysis and verification
tasks. They are aimed at combining dependability analysis
techniques examined within the group 5 (cf. Table IV)
with FI approaches. They express system behaviour using
a compositional model, which gathers nominal, failure and
recovery behaviours. Integrating approaches using model
transformations, allows using a single design model for de-
pendability and verification analyses. As a result, limitations
concerning the ease of use, consistency and completeness of
the analyses and automated tool support are addressed.

Within the model-based integrative verification ap-
proaches, the overall verification process is specified as
follows: the system design model specified using a Architec-
tural Description Language (ADL) characterizes functional,
failure and recovery behaviour and structure of system
components. This design model needs to be transformed in a
target analysis model which allows analysing and verifying
system requirements. There are two options to carry out this
transformation: (1) transformation of the design model to the
target analysis approach through direct transformation rules;
(2) intermediate transformation into a tool independent Inter-
mediate Model (IM), so that consistency and traceability be-
tween different design, analysis and verification approaches

24

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VII
SUMMARY OF MODEL-BASED FAULT INJECTION APPROACHES

Works Extended
Model

Analysis
Model Reqs. Results Specific Features Tool Support Limitations & Improvements

[96] NuSMV NuSMV CTL,
LTL FT

Model construction facility: library of
FM and requirements; Unification of
formal verification & safety analysis

FSAP/NuSMV-
SA, Internally

Available [102]

State explosion; FT
structure; Probabilistic

analysis; Failure ordering

[97] CTMC
(PRISM) PRISM CSL pFMEA,

CE
CE improvement; Auto. probability

calculations; Multiple failures PRISM [101] State explosion; Pattern
based FI

[98] BT SAL* LTL FMEA
FMEA automatic generation from BT
models; Analysis reduction strategies;

Effect analysis of multiple failures

BTE tool [103],
SAL Symbolic

MC [104]

CE readability; Timed FI;
pFMEA; Reduction techs.

[99] Simulink PRISM* CSL
Prob.
calc.;

CTMC

Systematic generation of analysis
models from CFP design models

Partialy available
[105]

No CE; State-explosion;
Dynamic behaviour

[100] Epsilon FPTA,
PRISM CSL CE Integration of CFP approach and

probabilistic model checking
FPTC toolset,
available [48]

Failure prone manual
transformation; Translate

CE to design model

Legend: CTL: Computation Tree Logic; LTL: Linear Time Logic; CSL: Continuous Stochastic Logic; CE: Counter-Example; BT: Behaviour Tree;
FM: Failure Modes; Symbols: *: Automatic Transformation;

are attained. In the second case, these models enable the
reuse of the same high level models for different target
approaches. Subsequently, the analysis of the corresponding
approach (either FI, state-based or event-based analysis)
makes use of the respective underlying characteristics (cf.
Figure 6). FI approaches allows extracting counter-examples,
which in turn can be transformed into dependability analysis
models (indicated with dashed lines in Figure 6).

Architectural
Description
Language

Dependability
Analysis

Event
Based

State
Based

Dependability
Verification

Qualitative
Evaluation

Quantitative
Evaluation

Transformation

Intermediate
Model

Direct
Tranformations

Figure 6. Structure of model-based integrative approaches.

The COMPASS project [106] is an integrative approach
based on System-Level Integrated Modelling (SLIM) lan-
guage which uses direct transformations [107]. The seman-
tics of SLIM cover the nominal and error behaviour of
AADL. The complete specification of SLIM consists of a
nominal model, a failure model and a description of the
effects of failures in the nominal model (extended model).
Due to its underlying formal semantics, various types of
analyses are possible: validation of functional, failure, and
extended models via simulation and MC; dependability anal-
ysis and performance evaluation; diagnosability analysis and
evaluation of the effectiveness of fault detection, isolation

and recovery strategies.
Similarly, Güdemann and Ortmeier [108] proposed an

intermediate tool-independent model called Safety Analysis
Modelling Language (SAML). SAML describes a finite state
automata, which is used to characterise the extended system
model. This model specifies the nominal behaviour, failure
occurrences, its effects and the physical behaviour of the sur-
rounding environment. From this single model, quantitative
and qualitative MC analyses are performed. The quantitative
analysis, based on Deductive Cause Consequence Analysis
(DCCA) [109], identifies minimal critical sets using CEs
to indicate time-ordered combinations of failures causing
the system hazard. The qualitative analysis, focusing on
probabilistic DCCA (pDCCA), calculates per-demand and
per-time failure probabilities.

Topcased project [110] aims at developing critical em-
bedded systems including hardware and software. Topcased
integrates ADLs and formal methods. The approach trans-
forms high-level ADL models (SysML, UML and AADL)
into an IM model specified in FIACRE language [111].
FIACRE specifies behavioural and timing aspects of high-
level models making use of timed Petri nets primitives.
Subsequent transformations of the IM model into MC tools
(TINA and CADP) make it possible the formal verification
and simulation of the specified requirements. TINA Petri
Nets analyser [112] evaluates requirements specified in the
state variant of LTL proposition logic (State/Event LTL
(SELTL)) focusing on timeliness properties. CADP toolbox
[113] transforms FIACRE models into LOTOS programs,
which are handled by its underlying tools for validation via
MC and simulation.

The pros and cons of the covered integrative works are
summarized in the Table VIII.

The addressed works integrate well-known tools and
formalisms. However, integration of analysis and verification

25

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VIII
SUMMARY OF MODEL-BASED INTEGRATIVE APPROACHES

Works Design
Model

Transf.
Type

Analysis
Model Reqs. Results Specific Features Tool Support Future works

[107] SLIM Direct
NuSMV*,
MRMC*,

RAT*

CTL,
LTL,
CSL

DFT,
FMEA,
prob.
calc.

Req. patterns; Integrated
verification, dependability

and performance analyses of
extended models

Toolset available
for ESA

members states
[114]

Manual extension of the
nominal model; Redundant

FTA-FMEA results;
State-explosion

[108]
SCADE,
Simulink

IM:
SAML

NuSMV*,
PRISM*,
MRMC*,
Cadence
SMV*

CTL,
PCTL

DCCA,
pDCCA

Combination of qualitative
and quantitative analyses on

the same model

S3 tool [115];
publicly
available

Manual extension of the
nominal model; Transf. of
ADLs (Simulink, Scade)

into SAML; Req. patterns.;
Library of FMs

[111]

SySML,
UML,
AADL

IM:
FIACRE

TINA,
CADP

LTL,
SELTL

Timing,
prob.
calc.

Req. patterns; Integrated
design, analysis and

verification approaches

Topcased toolset
[110]

State explosion; Back
annotation of results

Legend: IM: Intermediate Model; (P)CTL: (Probabilistic) Computation Tree Logic; LTL: Linear Time Logic; CSL: Continuous Stochastic Logic;
SELTL: State/Event LTL; FMs: Failure Modes; Req: requirements; Transf : transformations; Symbols: *: Automatic Transformation;

approaches when designing a dependable system is an
ongoing research subject. There is an increasing interest
in reusing and generalizing CFP approaches (e.g., trans-
formation of CFP approaches into metamodels [43] [58]
[59] and integration of CFP and verification approaches
[100] [116]). Additionally, there exist other approaches
closely related to the model-based integrative verification
approaches, which cover the design process using formal
analysis and verification approaches. For instance, under
the correct by construction paradigm, the work presented
in [117] matches with the idea of developing dependable
systems by integrating specific approaches well-suited to
each development phase. This methodology is based on
a portfolio of different formalisms: starting from initial
informal requirements, passing through formal requirements
specification, modelling in Event-B and verification, towards
the generation of executable code.

Interestingly, there still remain some challenges to be
addressed. Back-annotation of the results into the design
models would permit gaining more consistency between
models. Additionally, it will lead to identifying the influence
of the outcomes on the system components straightfor-
wardly. Another issue is the size of the verification model
extracted from the design model, which suffers from state-
explosion problems.

The construction of a user friendly toolset integrating all
these approaches is an issue itself. The last breakthroughs
among integrative approaches’ toolsets focus towards two
main directions. On one hand, the automatic translations
of design models into target specification formalisms is an
unceasing goal [115]. These “push-button” toolsets avoid the
designer to be exposed to the laborious, difficult and fail-
prone process of creating a analysis model. For instance, in
the COMPASS toolset [114], the designer is exposed to the
SLIM formal specification language directly instead of using
a ADL. However, one of the subtle problems underlying
these tools is the size of the target models as a result of

the design model transformations [110]. Another issue when
creating these toolsets is related with the analysis results:
the outcomes of the analysis results need to be displayed
in a intuitive way to be understood by the designers and if
necessary, take the corresponding countermeasures. To do
so, they would benefit from an automatic transformation or
back-propagation of the analysis results to the design model.
Taking the automated tool support as an indicator to measure
the potential to successfully integrate these approaches into
the industrial practice, it is recognizable that all the covered
approaches are working towards the construction of “push-
button” automated toolsets to gain higher acceptance.

V. MODEL-BASED HYBRID DESIGN PROCESS

The goal of this section is not to provide a new design
approach. Our aim is to make use of the reviewed analysis,
design and verification approaches so as to outline a consis-
tent and reusable model-based design process. This process
arises from the structure of the model-based integrative
verification approaches (cf. Section IV).

The separation of dependability analysis and verification
tasks may lead to hampering the system design since results
identified from either task need to be reconsidered during the
design process (cf. Section III). On one hand, dependability
analyses characterized by transformational approaches (cf.
Subsection II-C), allow tracing from design models toward
dependability analysis models. These approaches evaluate
the dynamic system behaviour, as well as the effect of
particular component failure occurrences at the system-level.
On the other hand, purely verification oriented approaches
mainly focus on the verification of the adequacy of the de-
sign model with respect to RAMS requirements. This is why
we centred on covering integrative verification approaches.

When matching and tuning design components so as to
find optimal design solutions satisfying design constraints,
possible inconsistencies may arise due to the independent
considerations of these approaches. This is why we should

26

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

focus on outlining a model-based hybrid design process,
which unifies design, analysis and verification tasks. This
process relies on initial system requirements, models, trans-
formations and reuse of designer’s considerations and results
extracted from analysis and verification tasks (cf. Figure 7).

Functional
Model

Equipment
Model

Design
Model

Extend. Design
Model

Functional Requirements
Functional Patterns

Failure Modes

Redundancy Structures

2

Failure
 Model

Non-Functional
Data Repository

1
3

4

Functional
Data Repository

Results: Failure Effects/Sources
RAMS Reqs. & Faults to Inject

Results: Failure Effects/Sources

1) Functional Verification
2) Model Extension

3) Dependability Analysis

4) Dependability Verification

T2

T1

T3

T1) Transf. ExtendedDesign2Analysis
T2) Transf. ExtendedDesign2Verification

T3) Transf. Results2ExtendedDesign

Failure
Patterns

Failure
Effects

Redundancy
Structures

Formal
Verification

Model

Dep.
Analyisis

Model

T4

T4) Transf. Analysis2Verification

Figure 7. Model-based hybrid design process.

This design process starts from initial functional and
physical characterizations. Functional verification analysis
evaluates the adequacy of the allocation of the functional
model into the equipment model according to functional
requirements. The outcome of this process allows consid-
ering the verified design model. Subsequently, this model
is extended with the failure model accounting for fail-
ure occurrences of the system. Failure patterns aid in the
construction of the failure model allowing the reuse non-
functional characterizations. Further, the effects of the con-
sidered failures and recovery strategies are annotated in
the extended design model in order to counteract failure
occurrences and its effects. With the aim to carry out
dependability analysis and formal verification evaluations of
the extended design model, twofold transformations need to
be performed. The means to perform these transformations
have been presented in Subsection II-C and Section IV
respectively. Transformations of these models make the eval-
uation of the adequacy of the extended design model respect
to RAMS requirements possible. Dependability analysis and
verification tasks enable finding further failure effects and
failure sources (apart from occurrence probabilities) either
by CEs or dependability specific models. These results need
to be transformed for design and analysis purposes. For
the sake of reusing and refining the design process, data
repositories have been considered consisting of annotation
patterns for requirements and models (both functional and
non-functional) and reusable recovery strategies.

On one hand, the outlined design approach enables bene-

fiting from consistent design considerations. Moreover, data
repositories allow the reuse of designer’s characterizations
as well as analysis results. Furthermore, user-friendly means
make the annotation processes more evident. On the other
hand, the automation of the extraction of dependability mod-
els hides information about the failure behaviour. Addition-
ally, the flexibility of the approach depends on the system
context, which would determine the reuse of functional and
non-functional considerations.

VI. CONCLUSION AND FUTURE WORK

Designing a dependable system, poses a wide variety of
challenges on all its phases. This paper groups different
approaches in order to identify and classify them.

The listed limitations guided the evolution of the anal-
ysis techniques towards Compositional Failure Propagation
(CFP) and transformational analysis approaches. Automatic
extraction of analysis models from design models is an
ongoing research field, which leads to achieving consistency
between design and analysis models.

However, this is not the cure-all remedy, which alleviates
analysts from identifying and analysing failure behaviours,
but helps obtaining a manageable analysis compared to
the difficult and laborious traditional process. User friendly
resources, such as design components or failure annotation
libraries, enable the reuse of nominal and failure models.

Dependable design strategies have been characterized
grouping them with respect to their underlying recovery
strategy. Reuse of the existing hardware components is a
promising solution to design dependable systems at the
expense of reducing hardware costs. In this way, we have
characterized the existing approaches addressing this design
concept. Moreover, we have identified some of the activi-
ties which will help extending their use. Mainly, we have
concentrated on the systematic identification of reusable
resources and overcoming the assumptions of existing ap-
proaches, i.e., perfect fault detection, reconfiguration and
communication.

For verification purposes, firstly Fault Injection (FI) ap-
proaches have been studied. Since the adoption of purely
verification oriented FI approaches may incur complexities
and difficulties in the system design process, then we have
addressed model-based integrative verification approaches.
Their main objective is to address consistently dependability
analysis, design and verification tasks at the preliminary
design phase. An early integration of these tasks would add
value to the dependable design process. There are many
challenging tasks to address when constructing an end-to-
end dependable design methodology. Integration of the CFP
approaches within this methodology or validation of the
correctness of the faults to be injected are some of the
subjects to be addressed.

Finally, we have outlined a model-based hybrid design
process integrating addressed design, analysis and verifi-

27

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cation approaches. The main purpose of this methodology
is to sketch an intuitive model-based dependable design
process attaining consistency and reuse among different
models. The integration of the approaches should allow
undertaking timely design decisions by reducing costs and
manual failure-prone annotations. Additionally, it will alle-
viate the need to clutter a model with redundant information.
Nevertheless, note that when designing a new system, special
care should be taken, since reuse properties depend on the
system context. The reuse of failure annotations in the design
process, eases the architectural iterative refinement process.
This makes possible the analysis of different implementa-
tions using the same component failure models.

Therefore, we foresee that instead of developing indepen-
dent approaches to identify, analyse and verify dependability
requirements, future directions will focus on integrating dif-
ferent approaches. This process requires tracing verification
results to the initial dependable design model and vice versa.
In this field, challenging work remains to do sharing infor-
mation between existing approaches so as to take advantage
of complementary strengths of different approaches.

Our current work focuses on the (re-)design of dependable
systems by means of exploiting the benefits of heterogeneous
redundancies, which may exist in some systems, e.g., trains
or buildings. Our research challenge concentrates on the
integration of dependability design and analysis activities,
systematizing all the design steps, and overcoming assump-
tions adopted by other approaches for the system’s operation
and recovery process.

REFERENCES

[1] J. I. Aizpurua and E. Muxika, “Design of Dependable
Systems: An Overview of Analysis and Verification Ap-
proaches,” in Proceedings of DEPEND 2012, 2012, pp. 4–
12.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Trans. Dependable Secur. Comput., vol. 1,
pp. 11–33, January 2004.

[3] M. Rausand and A. Høyland, System Reliability Theory:
Models, Statistical Methods and Applications Second Edi-
tion. Wiley-Interscience, 2003.

[4] A. Arora and S. Kulkarni, “Component based design of
multitolerant systems,” IEEE Trans. on Sw. Eng., vol. 24,
no. 1, pp. 63–78, 1998.

[5] M. Hiller, A. Jhumka, and N. Suri, “An approach for
analysing the propagation of data errors in software,” in
Proc. of DSN’01, 2001, pp. 161–170.

[6] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Rails-
back, “Fault Tree Handbook with Aerospace Applications,”
NASA, Handbook, 2002.

[7] US Department of Defense, Procedures for Performing, a
Failure Mode, Effects, and Criticality Analysis (MIL-STD-
1629A). Whasington, DC, 1980.

[8] M. A. Marsan, “Advances in petri nets 1989.” Springer-
Verlag, 1990, ch. Stochastic Petri nets: an elementary intro-
duction, pp. 1–29.

[9] C. Baier and J.-P. Katoen, Principles of model checking.
MIT Press, 2008.

[10] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi,
and T. Latvala, “Derivation and formal verification of a mode
logic for layered control systems,” in Proc. of APSEC’11,
2011, pp. 49–56.

[11] P. Fenelon, J. McDermid, and M. Nicolson, “Towards inte-
grated safety analysis and design,” ACM SIGAPP Applied,
1994.

[12] J. Dugan, S. Bavuso, and M. Boyd, “Dynamic fault-tree
models for fault-tolerant computer systems,” IEEE Trans.
on Reliability, vol. 41, no. 3, pp. 363–377, 1992.

[13] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new compo-
nent concept for fault trees,” in Proc. of SCS’03, 2003, pp.
37–46.

[14] A. Galloway, J. McDermid, J. Murdoch, and D. Pumfrey,
“Automation of system safety analysis: Possibilities and
pitfalls,” in Proc. of ISSC’02, 2002.

[15] C. Price and N. Taylor, “Automated multiple failure FMEA,”
Reliability Eng. & System Safety, vol. 76, pp. 1–10, 2002.

[16] M. Ĉepin and B. Mavko, “A dynamic fault tree,” Reliability
Eng. & System Safety, vol. 75, no. 1, pp. 83–91, 2002.

[17] Rao, K. Durga, V. Gopika, V. V. S. Sanyasi Rao, H. S.
Kushwaha, A. K. Verma, and A. Srividya, “Dynamic fault
tree analysis using Monte Carlo simulation in probabilis-
tic safety assessment,” Reliability Eng. and System Safety,
vol. 94, no. 4, pp. 872–883, 2009.

[18] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, and
N. Trapani, “MatCarloRe: An integrated FT and Monte
Carlo Simulink tool for the reliability assessment of dynamic
fault tree,” Expert Systems with Applications, vol. 39, no. 12,
pp. 10 334–10 342, 2012.

[19] “MathWorks,” http://www.mathworks.com; Last access:
15/06/2013.

[20] S. Distefano and A. Puliafito, “Dynamic reliability block
diagrams vs dynamic fault trees,” In Proc. of RAMS’07,
vol. 8, pp. 71–76, 2007.

[21] R. Robidoux, H. Xu, L. Xing, and M. Zhou, “Automated
modeling of dynamic reliability block diagrams using col-
ored petri nets,” IEEE Transactions on Systems, Man, and
Cybernetics, Part A, vol. 40, no. 2, pp. 337–351, 2010.

[22] J.-P. Signoret, Y. Dutuit, P.-J. Cacheux, C. Folleau, S. Collas,
and P. Thomas, “Make your petri nets understandable:
Reliability block diagrams driven petri nets,” Reliability
Engineering & System Safety, vol. 113, pp. 61 – 75, 2013.

[23] “OpenSESAME: the simple but extensive, structured avail-
ability modeling environment,” Reliability Engineering &
System Safety, vol. 93, no. 6, pp. 857 – 873, 2008.

28

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[24] I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, and
E. Troubitsyna, “Patterns for representing FMEA in formal
specification of control systems,” in Proc. HASE’11, 2011,
pp. 146–151.

[25] “Event-B and the Rodin platform,” http://www.event-b.org;
Last access: 15/06/2013.

[26] M. Bouissou, “A generalization of Dynamic Fault Trees
through Boolean logic Driven Markov Processes (BDMP),”
in Proc. of ESREL’07, vol. 2, 2007, pp. 1051–1058.

[27] B. Kaiser, C. Gramlich, and M. Forster, “State-Event Fault
Trees - A Safety Analysis Model for Software-Controlled
Systems,” Reliability Eng. System Safety, vol. 92, no. 11,
pp. 1521–1537, 2007.

[28] D. Harel, “Statecharts: A visual formalism for complex
systems,” 1987.

[29] M. Steiner, P. Keller, and P. Liggesmeyer, “Modeling the
effects of software on safety and reliability in complex
embedded systems,” in Computer Safety, Reliability, and
Security. Springer Berlin Heidelberg, 2012, vol. 7613, pp.
454–465.

[30] TU Kaiserslautern, AG Seda and Fraunhofer IESE, “Embed-
ded system safety and reliability analyzer (ESSaRel),” 2009,
http://essarel.de; Last access: 15/06/2013.

[31] TU Berlin, Real-Time Systems and Robotics group,
“TimeNET 4.0,” 2007, http://tu-ilmenau.de/TimeNET; Last
access: 15/06/2013.

[32] O. el Ariss, D. Xu, and W. E. Wong, “Integrating safety
analysis with functional modeling,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A, vol. 41, no. 4, pp.
610–624, 2011.

[33] University of Virginia, “Galileo,” 2003, http://http://www.cs.
virginia.edu/∼ftree/; Last access: 15/06/2013.

[34] Ferdinando Chiacchio, “RAATS Tool,” 2012, http://www.
dmi.unict.it/∼chiacchio/?m=5&project=raatss; Last access:
15/06/2013.

[35] GRIF Workshop, “BStoK Module,” http://grif-workshop.
com/grif/bstok-module/; Last access: 15/06/2013.

[36] Max Walter, “OpenSESAME - Simple but Extensive
Structured Availability Modeling Environment,” 2009,
http://www.lrr.in.tum.de/∼walterm/opensesame/; Last ac-
cess: 15/06/2013.

[37] EDF, “KB3 Workbench,” 2012, http://research.edf.com/
research-and-the-scientific-community/software/kb3-44337.
html; Last access: 15/06/2013.

[38] P. Fenelon and J. A. McDermid, “An integrated tool set for
software safety analysis,” J. Syst. Softw., vol. 21, pp. 279–
290, 1993.

[39] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde,
R. Hamann, A. Uhlig, U. Grätz, and R. Lien, “Engineering
failure analysis and design optimisation with HiP-HOPS,”
Engineering Failure Analysis, vol. 18, no. 2, pp. 590–608,
2011.

[40] D. Domis and M. Trapp, “Component-based abstraction in
fault tree analysis,” in Computer Safety, Reliability, and
Security, ser. LNI. Springer, 2009, vol. 5775, pp. 297–310.

[41] R. Niu, T. Tang, O. Lisagor, and J. McDermid, “Automatic
safety analysis of networked control system based on failure
propagation model,” in Proc. of ICVES’11, 2011, pp. 53–58.

[42] M. Walker and Y. Papadopoulos, “Qualitative temporal
analysis: Towards a full implementation of the fault tree
handbook,” Control Eng. Practice, vol. 17, no. 10, pp. 1115–
1125, 2009.

[43] R. Paige, L. Rose, X. Ge, D. Kolovos, and P. Brooke, “FPTC:
Automated safety analysis for Domain-Specific languages,”
in MoDELS Workshops ’08, vol. 5421, 2008, pp. 229–242.

[44] I. Wolforth, M. Walker, L. Grunske, and Y. Papadopoulos,
“Generalizable safety annotations for specification of failure
patterns,” Softw. Pract. Exper., vol. 40, pp. 453–483, 2010.

[45] C. Priesterjahn, C. Sondermann-Wölke, M. Tichy, and
C. Hölscher, “Component-based hazard analysis for mecha-
tronic systems,” in Proc. of ISORCW’11, 2011, pp. 80–87.

[46] P. Struss and A. Fraracci, “Automated model-based fmea of
a braking system,” in IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes, vol. 8, 2012,
pp. 373–378.

[47] OCC’M Software GmbH, “Raz’r Model Editor Ver. 3,” http:
//www.occm.de; Last access: 15/06/2013.

[48] R. F. Paige, L. M. Rose, X. Ge, D. S. Kolovos, and
P. J. Brooke, “Fptc: Automated safety analysis for domain-
specific languages.” in MoDELS Workshops, ser. Lecture
Notes in Computer Science, M. R. V. Chaudron, Ed., vol.
5421. Springer, 2008, pp. 229–242.

[49] University of Paderborn, “FUJABA Tool Suite,” 2012,
http://www.fujaba.de/no cache/home.html; Last access:
15/06/2013.

[50] P. Feiler and A. Rugina, “Dependability Modeling with
the Architecture Analysis & Design Language (AADL),”
Technical Note CMU/SEI-2007-TN-043, CMU Software
Engineering Institute, 2007.

[51] “The Unified Modeling Language,” http://www.uml.org/;
Last access: 15/06/2013.

[52] OMG, “MDA Guide Version 1.0.1,” http://www.omg.org/
cgi-bin/doc?omg/03-06-01.pdf, 2003. [Online]. Available:
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

[53] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An In-
troduction to UML Profiles,” Journal of UML and Model
Engineering, vol. 5, no. 2, pp. 5–13, 2004.

[54] S. Bernardi, J. Merseguer, and D. Petriu, “Dependability
modeling and analysis of software systems specified with
UML,” ACM Computing Survey, In Press.

[55] L. Montecchi, P. Lollini, and A. Bondavalli, “An inter-
mediate dependability model for state-based dependability
analysis,” University of Florence, Dip. Sistemi Informatica,
RCL group, Tech. Rep., 2011.

29

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[56] B. Gallina, M. A. Javed, F. U. Muram, and S. Pun-
nekkat, “Model-driven dependability analysis method for
component-based architectures,” in Euromicro-SEAA Con-
ference. IEEE Computer Society, 2012.

[57] B. Gallina and S. Punnekkat, “FI4FA: A Formalism for In-
completion, Inconsistency, Interference and Impermanence
Failures Analysis,” in Proc. of EUROMICRO, ser. SEAA
’11. IEEE Computer Society, 2011, pp. 493–500.

[58] R. Adler, D. Domis, K. Höfig, S. Kemmann, T. Kuhn,
J. Schwinn, and M. Trapp, “Integration of component fault
trees into the UML,” in MoDELS’10, 2010, pp. 312–327.

[59] M. Biehl, C. DeJiu, and M. Törngren, “Integrating safety
analysis into the model-based development toolchain of
automotive embedded systems,” in Proc. of LCTES ’10.
ACM, 2010, pp. 125–132.

[60] A. Rugina, K. Kanoun, and M. Kaâniche, “A system de-
pendability modeling framework using AADL and GSPNs,”
in Architecting dependable systems IV, LNCS, vol. 4615.
Springer, 2007, pp. 14–38.

[61] A. Joshi, S. Vestal, and P. Binns, “Automatic Generation of
Static Fault Trees from AADL models,” in DNS Workshop
on Architecting Dependable Systems. Springer, 2007.

[62] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The
AltaRica formalism for describing concurrent systems,”
Fundamenta Informaticae, vol. 40, no. 2-3, pp. 109–124,
1999.

[63] B. Romain, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge,
“Experiments in model based safety analysis: Flight con-
trols,” in DCDS’07, 2007, pp. 43–48.

[64] P. Bieber, C. Castel, and C. Seguin, “Combination of fault
tree analysis and model checking for safety assessment
of complex system,” in Proc. of EDCC’02, vol. 2485.
Springer, 2002, pp. 624–628.

[65] K. Mokos, P. Katsaros, N. Bassiliades, V. Vassiliadis, and
M. Perrotin, “Towards compositional safety analysis via
semantic representation of component failure behaviour,” in
Proc. of JCKBSE’08. IOS Press, 2008, pp. 405–414.

[66] M. Riedl and M. Siegle, “A LAnguage for REconfigurable
dependable Systems: Semantics & Dependability Model
Transformation,” in Proc. 6th International Workshop on
Verification and Evaluation of Computer and Communica-
tion Systems (VECOS’12). British Computer Society, 2012,
pp. 78–89.

[67] M. Riedl, J. Schuster, and M. Siegle, “Recent Extensions to
the Stochastic Process Algebra Tool CASPA,” in Proceed-
ings of the 2008 Fifth International Conference on Quanti-
tative Evaluation of Systems, ser. QEST ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 113–114.

[68] R. Cressent, V. Idasiak, F. Kratz, and P. David, “Mastering
safety and reliability in a Model Based process,” in Proc. of
RAMS’11, 2011.

[69] “OMG Systems Modelling Language,” http:
//www.omgsysml.org/; Last access: 15/06/2013.

[70] Eclipse Foundation, “Eclipse Papyrus,” 2012, http://www.
eclipse.org/papyrus/; Last access: 15/06/2013.

[71] Labri, “Altarica,” http://www.altarica.labri.fr/; Last access:
15/06/2013.

[72] Carnegie Melon University, “OSATE,” 2012, https://
wiki.sei.cmu.edu/aadl/index.php/AADL tools; Last access:
15/06/2013.

[73] CHESS partners, “CHESS Project,” 2012, http://www.
chess-project.org/; Last access: 15/06/2013.

[74] “ATESST2 Homepage,” 2010, http://www.east-adl.fr; Last
access: 15/06/2013.

[75] O. Lisagor, “Failure logic modelling: A pragmatic ap-
proach,” Ph.D. dissertation, Department of Computer Sci-
ence, The University of York, 2010.

[76] I. Lopatkin, A. Iliasov, and A. Romanovsky, “Rigorous
development of dependable systems using fault tolerance
views,” in Proceedings of the 2011 IEEE 22nd International
Symposium on Software Reliability Engineering, ser. ISSRE
’11. IEEE Computer Society, 2011, pp. 180–189.

[77] C. P. Shelton and P. Koopman, “Improving system depend-
ability with functional alternatives,” in Proceedings of the
2004 International Conference on Dependable Systems and
Networks, ser. Proceedings of DSN ’04. IEEE Computer
Society, 2004, pp. 295–304.

[78] L. Cauffriez, D. Renaux, T. Bonte, and E. Cocquebert, “Sys-
temic modeling of integrated systems for decision making
early on in the design process.” Cybernetics and Systems,
vol. 44, pp. 1–22, 2013.

[79] J. Clarhaut, S. Hayat, B. Conrard, and V. Cocquempot,
“Optimal design of dependable control system architectures
using temporal sequences of failures,” Ieee Transactions On
Reliability, vol. 58, no. 3, pp. 511–522, 2009.

[80] L. Cauffriez, J. Ciccotelli, B. Conrard, and M. Bayart,
“Design of intelligent distributed control systems: a depend-
ability point of view,” Reliability Engineering & System
Safety, vol. 84, no. 1, pp. 19–32, 2004.

[81] M. Adachi, Y. Papadopoulos, S. Sharvia, D. Parker, and
T. Tohdo, “An approach to optimization of fault tolerant
architectures using hip-hops,” Softw. Pract. Exp., 2011.

[82] J. Wysocki, R. Debouk, and K. Nouri, “Shared redundancy
as a means of producing reliable mission critical systems,”
in Proc. of RAMS’04, 2004, pp. 376 – 381.

[83] J. Galdun, J. Ligus, J.-M. Thiriet, and J. Sarnovsky, “Relia-
bility increasing through networked cascade control structure
- consideration of quasi-redundant subsystems,” in IFAC
Proc. Volumes, vol. 17, 2008, pp. 6839–6844.

[84] O. Rawashdeh and J. Lumpp Jr., “Run-time behavior of
ardea: A dynamically reconfigurable distributed embedded
control architecture,” in IEEE Aerospace Conference Pro-
ceedings, 2006.

30

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[85] M. Trapp, R. Adler, M. Förster, and J. Junger, “Runtime
adaptation in safety-critical automotive systems,” in Proc.
of International Conference on Software Engineering, 2007.

[86] R. Adler, I. Schaefer, M. Trapp, and A. Poetzsch-Heffter,
“Component-based modeling and verification of dynamic
adaptation in safety-critical embedded systems,” ACM Trans.
Embed. Comput. Syst., vol. 10, no. 2, pp. 20:1–20:39, Dec.
2010.

[87] R. Adler, D. J. Domis, M. Förster, and M. Trapp, “Prob-
abilistic analysis of safety-critical adaptive systems with
temporal dependences,” in Proc. of RAMS’08. IEEE
Computer Society, 2008, pp. 149–154.

[88] R. Adler, D. Schneider, and M. Trapp, “Engineering dy-
namic adaptation for achieving cost-efficient resilience in
software-intensive embedded systems,” in Proc. of Engineer-
ing of Complex Computer Systems. IEEE Computer Society,
2010, pp. 21–30.

[89] J. Moore, The Avionics Handbook. CRC Press, 2001, ch.
Advanced Distributed Architectures.

[90] P. Bieber, E. Noulard, C. Pagetti, T. Planche, and F. Vialard,
“Preliminary design of future reconfigurable IMA plat-
forms,” SIGBED Rev., vol. 6, no. 3, 2009.

[91] P. Bieber, J. Brunel, E. Noulard, C. Pagetti, T. Planche, and
F. Vialard, “Preliminary Design of Future Reconfigurable
IMA Platforms - Safety Assessment,” in 27th International
Congress of the Aeronautical Sciences, 2010.

[92] C. Engel, A. Roth, P. H. Schmitt, R. Coutinho, and
T. Schoofs, “Enhanced dispatchability of aircrafts using
multi-static configurations,” in Proc. of ERTS’10, 2010.

[93] M. Förster and D. Schneider, “Flexible, any-time fault tree
analysis with component logic models,” in ISSRE. IEEE
Computer Society, 2010, pp. 51–60.

[94] J. I. Aizpurua and E. Muxika, “Dependable Design: Trade-
Off Between the Homogeneity and Heterogeneity of Func-
tions and Resources,” in Proceedings of DEPEND 2012,
2012, pp. 13–17.

[95] C. Priesterjahn, D. Steenken, and M. Tichy, “Component-
based timed hazard analysis of self-healing systems,” in
Proceedings of the 8th workshop on Assurances for self-
adaptive systems, ser. ASAS ’11. ACM, 2011, pp. 34–43.

[96] M. Bozzano and A. Villafiorita, “The FSAP/NuSMV-SA
Safety Analysis Platform,” Int. J. Softw. Tools Technol.
Transf., vol. 9, pp. 5–24, February 2007.

[97] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-
Fischer, and S. Leue, “Safety analysis of an airbag system
using probabilistic fmea and probabilistic counterexamples,”
in QEST’09. IEEE Computer Society, 2009, pp. 299–308.

[98] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A.
Lindsay, “Experience with fault injection experiments for
fmea,” Software: Practice and Experience, 2011.

[99] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and E. Watanabe,
“Constructive model-based analysis for safety assessment,”
International Journal on Software Tools for Technology
Transfer, vol. 14, pp. 673–702, 2012.

[100] X. Ge, R. Paige, and J. McDermid, “Probabilistic fail-
ure propagation and transformation analysis,” in SAFE-
COMP’09, 2009, vol. 5775, pp. 215–228.

[101] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0:
Verification of probabilistic real-time systems.” in Computer
Aided Verification, ser. Lecture Notes in Computer Science,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer,
2011, pp. 585–591.

[102] FBK, “The FSAP/NuSMV-SA Web Page,” https://es.fbk.eu/
tools/FSAP/; Last access: 15/06/2013.

[103] “Behaviour Tree Editor (BTE),” http://www.sqi.griffith.edu.
au/gse/tools/overview.html; Last access: 15/06/2013.

[104] “Symbolic Analysis Laboratory (SAL),” http://sal.csl.sri.
com; Last access: 15/06/2013.

[105] Alexandre Mota, “Simulink to prism,” http://www.cin.ufpe.
br/∼acm/simulinktoprism/; Last access: 15/06/2013.

[106] “Correctness, Modelling and Performance of Aerospace Sys-
tems,” http://compass.informatik.rwth-aachen.de; Last ac-
cess: 15/06/2013.

[107] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll,
and M. Roveri, “Safety, dependability and performance
analysis of extended AADL models,” Computer Journal,
vol. 54, no. 5, pp. 754–775, 2011.

[108] M. Güdemann and F. Ortmeier, “Towards model-driven
safety analysis,” in Proc. of DCDS 11, 2011, pp. 53 – 58.

[109] M. Güdemann, F. Ortmeier, and W. Reif, “Using Deductive
Cause-Consequence Analysis (DCCA) with SCADE,” in
Proc. of SAFECOMP’07, vol. 4680, 2007, pp. 465–478.

[110] “The Open-Source Toolkit for Critical Systems,” http://
www.topcased.org; Last access: 15/06/2013.

[111] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Gar-
avel, P. Gaufillet, F. Lang, and F. Vernadat, “Fiacre: an
intermediate language for model verification in the topcased
environment,” in ERTS’08, 2008.

[112] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA
- Construction of abstract state spaces for petri nets and time
petri nets,” International Journal of Production Research,
vol. 42, no. 14, pp. 2741–2756, 2004.

[113] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Ma-
teescu, and M. Sighireanu, “CADP - A Protocol Validation
and Verification Toolbox,” 1996.

[114] COMPASS Consortium, “Compass toolset,”
http://compass.informatik.rwth-aachen.de/download.html;
Last access: 15/06/2013.

31

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[115] M. Lipaczewski, S. Struck, and F. Ortmeier, “Using Tool-
Supported Model Based Safety Analysis - Progress and
Experiences in SAML Development,” in IEEE 14th Interna-
tional Symposium on High-Assurance Systems Engineering
(HASE 2012), 2012.

[116] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and J. Buzzi,
“Systematic model-based safety assessment via probabilistic
model checking,” in ISoLA’10. Springer, 2010, pp. 625–
639.

[117] R. Gmehlich, K. Grau, M. Jackson, C. Jones, F. Loesch,
and M. Mazzara, “Towards a formalism-based toolkit for
automotive applications,” Computing Science, Newcastle
University, Tech. Rep., 2012.

32

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Next Generation Malware Collection and Analysis

Christian Martin Fuchs
Department of Computer Science

Technische Universität München (TUM)
Munich/Garching, Germany

christian.fuchs@tum.de

Martin Brunner
Martin Brunner Security

Munich, Germany
martin.brunner@x90.eu

Abstract—The fast paced evolution of malware has demon-
strated severe limitations of traditional collection and analysis
concepts. However, a majority of the anti-malware industry
still relies on such ineffective concepts and invests much effort
into temporarily fixing most obvious shortcomings. Ultimately
fixing outdated concepts is insufficient for combating highly
sophisticated future malicious software, thus new approaches
are required. One such approach is AWESOME, a novel
integrated honeypot-based malware collection and analysis
framework. The goal of our collection and analysis system is
retrieval of internal malware logic information for providing
sufficient emulation of protocols and subsequently network
resources in real time. If protocol emulation components are
trained sufficiently, a larger setup could even allow for malware
analysis in an isolated environment, thus offering side-effect
free analysis and a better understanding of current and emerg-
ing malware. In this paper, we present in-depth information
on this concept as well as first practical results and a proof of
concept, indicating the feasibility of our approach. We describe
in detail many of the components of AWESOME and also
depict how protocol detection and emulation is conducted.

Keywords-malware collection; malware analysis and defense

I. INTRODUCTION

Cyber crime has become one of the most disruptive threats
today’s Internet community is facing. The major amount
of these contemporary Internet-based attacks is thereby at-
tributed to malware, which is usually organized within a bot-
net in large-scale scenarios. Such botnet-connected malware
is on their part utilized for infecting hosts and instrument-
ing them for various malicious activities: most prominent
examples are Distributed Denial of Service (DDoS) attacks,
identity theft, espionage and Spam delivery [6][24][39].
Botnet-connected malware can therefore still be considered
a major threat on today’s Internet.

Due to the ongoing spread of IP-enabled networks to
other areas we expect the threat posed by botnet-connected
malware to increase and moreover reach further domains
in public and private life. Thus, there is a fundamental
need to track the rapid evolution of these pervasive malware
based threats. Especially timely intelligence on emerging,
novel threats is essential for successful malware defense
and IT early warning. This requires both, acquisition and
examination, of current real-world malware samples in suf-
ficient quantity and variety, commonly acquired through

meticulous analysis of the most recent samples. The evo-
lution of malware over time has led to the development
of intensive obfuscation and anti-debugging mechanisms,
as well as a complex and multi-staged malware execution
life cycle [37]. Each phase may include numerous measures
aimed at maximizing installation success and reliability. In
order to comprehensively analyze the full life cycle, the
malware under analysis must have unhindered access to all
requested resources during runtime. While this could easily
be achieved by allowing full interaction with the Internet,
this is not a viable approach in setups, which are forced to
consider liability issues.

In this paper, we introduce AWESOME [1], which is
short for: Automated Web Emulation for Secure Operation
of a Malware-Analysis Environment. It is a novel approach
for integrated honeypot-based malware collection and anal-
ysis. The overall goal of AWESOME is to capture and
dynamically analyze novel malware on a large scale. To
identify trends of current and emerging malware, we aim
to cover the entire execution life cycle. That is, we want to
track malware communicating via both known and unknown
(C&C) protocols in an automated way within a controlled
environment. In order to minimize harm to third parties,
malware should by default have no Internet access during
analysis. The whole procedure intends to trick a sample into
believing it is running on a real victim host with full Internet
access.

II. BACKGROUND AND RELATED WORK

A. Malware Life-Cycle

Due to the predominant economic motivation for mali-
cious activities backed by organized cyber crime also the
sophistication of malware and the respective propagation
methods continuously evolved, hence increasingly imped-
ing malware defense. Thereby, the invested effort and the
achieved result must be in a reasonable relation for a
professional attacker. Thus, we experience the phenomena
of a moving target. That is, cyber criminals chose their
targets and attack vectors according to the best economic
relation and an ongoing paradigm shift towards client-side
and targeted attacks has been witnessed in recent years [6].

33

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Widely spread malware is most effectively managed
within a botnet, therefore, a newly compromised host is
still to become a botnet-member. Many findings from recent
research indicate an ongoing specialization of the various
groups in the underground economy offering ”Malware
as a Service” and ”pay per install” schemes including
elaborated models for pricing, licensing, hosting and rental
[9][18][24][26]. This often includes professional mainte-
nance, support and service level agreements for the pur-
chasable malware itself as well as innovations in the main-
tenance of infected victim hosts.

Therefore, there is

1) one group specializing on the development of the
actual malware,

2) a second group deals with the operation platform and
the distribution of malware (i.e., to establish botnets)
and

3) a third group focuses on suitable business models.

As a result, also the actual malware itself evolved with
respect to obfuscation techniques and anti-debugging mea-
sures. Thus, current malware checks for several conditions
before executing its malicious tasks, such as hardware re-
sources of the victim host, Internet connectivity or whether
it is executed within a virtualized environment [16][34][46].

With respect to the facts outlined previously and findings
of related work [9][37] we model the execution life cycle
of today’s (autonomous spreading) malware as depicted in
Figure 1 [5]. Particular stages within this life cycle may
differ depending on the malware type and are accordingly
addressed in separate work (e.g., the life cycle of Web-based
malware has been analyzed in [40]). A common setting
consists of three phases:

1) Propagation and exploitation
Within this initial phase a worm spreads carrying a
malicious payload that exploits one or multiple vulner-
abilities. In this context, a vulnerability encompasses
also the human using social engineering techniques
thus possibly requiring user interaction. Furthermore,
a vulnerability may be OS based (e.g., a flaw in a
network service) or - more commonly - application
based. The latter includes specifically vulnerabilities
in browsers, their extensions (such as Adobe’s flash),
Email clients (e.g., attachment, malicious links, Emails
containing malicious script code, etc.) and other online
applications such as instant messaging clients.
The malicious payload of the worm may instrument
a variety of attack vectors reaching from (classical)
buffer and heap overflows to recent return oriented
programming techniques [47], while evading appropri-
ate countermeasures such as address space layout ran-
domization (ASLR), data execution prevention (DEP)
and sandboxing [30]. After successfully exploiting a
vulnerability, a shellcode is placed on the victim host,

which gets then extracted and executed, including
decryption and deobfuscation routines when necessary.

2) Infection and installation
As a result of executing the injected shellcode, a
binary is downloaded and placed on the victim host.
This binary typically is a so-called dropper, which
contains multiple malware components. It is supposed
to disable the security measures on the victim host,
to hide the malware components and to obfuscate
its activities before launching the actual malware. It
is synonymously referred to as downloader, which
has the same features except that it does not contain
the actual malware but downloads it from a remote
repository resulting in a smaller size [37]. As there
is an emerging trend that multiple cyber criminals
instrument a single victim host for their malicious
purposes also several droppers may be installed (in
parallel) within this step.
Once the dropper is executed it extracts and in-
stalls further components responsible for hardening
and updating tasks. That is, they prepare the system
for the actual malware using embedded instructions.
These tasks include, e.g., disabling security measures,
modifying configurations and contacting a remote site
for updates ensuring that the actual malware is exe-
cuted after every reboot and impeding its detection
and removal. After the update site has verified the
victim host as ”real“ and probably worth getting com-
promised, it provides the dropper components with
information on how to retrieve the actual malware
(e.g., via an URL) and updated configurations, when
necessary. Again, this may include multiple binaries
each representing a different botnet.
Once downloaded, the malware is executed by the
dropper component installing its core components.
Finally, these core components remove all other (non-
vital) components resulting from previous stages and
the malware is operational.

3) Operation and maintenance
Initially, the malware launches several actions, which
are intended to directly gain profit from the victim
in case the attacker loses control over the compro-
mised host later on. Therefore, the malware harvests
valuable information such as credit card numbers and
all kinds of authentication credentials and sends it
as an encrypted file to a remote server under the
control of the attacker. Next, the malware attempts
to establish a communication channel to the attackers
command and control (C&C) infrastructure awaiting
further instructions. These may include commands to
launch different malicious actions but also mainte-
nance operations such as retrieving updates, further
propagation or even to terminate and remove the
malware.

34

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Today’s multi-staged, complex malware life-cycle.

The various steps of the outlined, complex malware life
cycle include many checks and measures to increase the
resilience of the various features each intended to maximize
the success of the malware installation, ensuring a reliable
operation and to protect the cyber criminals from being
tracked down. Thus, the reasons for this complex life cycle,
especially the use of droppers in an intermediate step, are
apparent:

• The dropper components evade discovery of system
compromise. Also, the adversary has no need to dis-
tribute the core malware components in the first phase
thereby impeding the successful collection and thus
detection and mitigation of the malware.

• In addition, he can distribute the malware more selec-
tive and targeted.

• Finally, the attacker can ensure, that the victim host

is real (i.e., not a honeypot or virtualized analysis
system) and that it is worth being compromised (e.g.,
by checking available resources).

Among others, this implicates, that for a comprehensive
analysis of a given malware it must receive all resources
that it requests during its life cycle, since it may behave
different or refuse to execute at all otherwise.

B. Combating Malware

One major issue that makes malware analysis a very
challenging task, is the ongoing arms race between malware
authors on the one hand and malware analysts on the other
hand. That is, while analysts use various techniques to
quickly understand the threat and intention of malware,
malware authors invest considerable effort to camouflage
their malicious activity and impede a successful analysis.

35

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Amount of malware sample submissions to virustotal.com over a recent randomly chosen period.

While in past decades an explosive spread of identical
malware has been observed, nowadays malware is mostly
created utilizing creation kits. As a result, we experience
a diffusion of malware variants, which are designed to be
difficult to identify and analyze. Accordingly, a vast amount
(i.e., hundreds of thousands) of new malware shows up
per day. This is illustrated in Figure 2, which outlines the
number of malware samples submitted to Virustotal based
on a randomly chosen recent period.

Thereby the correlation between the total number of sam-
ples and the unique ones is notable, since they correspond to
each other. This suggests that the majority of new malware
can be attributed to be just new variants of already existing
malware. That is, while most of the malware samples are
unique (i.e., have different file hashes) they are in fact not.
But since they are considered to be unique all of them need
to be analyzed.

Only once analyzed and the threat posed by a given
malware sample is estimated a corresponding anti-virus (AV)
signature (i.e., a characteristic byte sequence) can be created.
As a result, the vast amount of new malware introduces the
need for automation of the entire malware estimation process
(i.e., collection and analysis).

Advanced large-scale malware collection and analysis
infrastructures, such as [2][10][15], can satisfy the require-
ments for automated tracking of malware, but suffer from
several limitations:

1) Despite being executed within an isolated environ-
ment, samples must be supplied with requested net-
work services during analysis. Otherwise, the ability
to achieve high-quality results is impeded, potentially
causing different malware behavior, refusal of exe-
cution or even blacklisting of the collector’s address
space.
While certain services can be offered using sinkholing
techniques, existing approaches are purely network-
based, and reactions to malware-initiated connection
attempts remain static during runtime. Predefined

commonly-used services are offered by these infras-
tructures to the malware; however, other requests can
not be handled accordingly.

2) High-interaction (HI) honeypots pose, aside from their
complexity and maintenance issues, high operational
risks. These is often inadequately addressed. While
there are many methods of mitigation, the remaining
risk is still higher than with low-interaction (LI) hon-
eypots, resulting in ethical questions and possibly even
legal and liability issues for the operating organization.

3) Existing approaches separate collection and analysis,
thus forfeiting the system context (i.e., file handles,
requests, sockets) of the victim host. While such
separation is not necessarily a limitation (it may not
be mandatory to gain qualitative analysis results), we
argue that this loss of information hinders analysis and
may degrade analysis results or prevent analysis of
certain malware altogether.

C. Logic Analysis Using Virtualization

Like modern intrusion detection systems, protocol de-
tection and sinkholing frameworks should not be limited
to knowledge about traffic passing through the network.
Instead, such systems should incorporate information on the
involved systems as well. The tracking of library functions
using API-hooks in user or kernel space is one possibility
to do so and very popular in malware analysis [27][31][50].

System call tracing has long been known as a solution
for profiling and detecting software behavior [17]. While
access to privileged operations are usually implemented in
the same way on most modern operating systems (OS)
(figure 3), not all OSes offer an interface for system call
auditing. For operating systems without such an interface, a
monitoring functionality has to be implemented by hand,
requiring complex and extensive modifications to guests’
internal system call handling mechanisms [7].

Hooking of library functions allows finer-grained tracking
of a sample’s activities than system call tracing. However,

36

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if implemented within the same context of execution as
malware is run in, API-hooking is equally susceptible to
detection and circumvention by adversaries but requires
fewer changes to the operating system’s internal mechanisms
[7]. Thus, this method of behavior analysis is preferred in
most sandboxes [27][31][50].

Start

prepare
Arguments

execute
System Call

perform
privileged Ops

Check
Return Value
or Response

De-obfuscation
(optional)

End

Figure 3. Privileged operations, such as network or disk operations, cannot
be executed in user space. Software uses system calls to perform these
operations in kernel space.

Due to possibilities offered by virtualization techniques,
system call tracing became more popular again. Initially,
Tal Garfinkel and Mendel Rosenblum proposed the use
of Virtual Machine Introspection (VMI) to extract certain
information from a virtual machine (VM) [21]. VMI can
also be used to create and enforce behavioral policies [17].
Process activity and the state of a guest’s (virtual) hardware
components may be used for analysis, too.

We can utilize VMI to extract internal information from
a process, monitor and control its behavior. If a program
exhibits unexpected behavior or uses system calls or library
functions, which are outside of the programs specifications,
an intrusion can be assumed.

III. APPROACH

A. Basic Concept

To identify the services and protocols required in the next
step of the execution life cycle of a sample, we intend to har-
vest information on internal malware logic during execution.
In contrast to purely network-based approaches, our method
also operates at the binary level, directly interacting with

the malware’s host system. Therefore, it aims to integrate
network-based analysis and binary analysis, as in [48].

As depicted in Figure 4, the presented AWESOME ap-
proach [1] is based on an HI honeypot and a virtual machine
introspection framework. We enhance our architecture with
a transparent pause/resume functionality, which is instru-
mented to determine and, if needed, interrupt the program
flow. Hence, we enable the extraction and alteration of
program logic and data within the victim environment during
runtime. This is specifically valuable for extracting protocol
information and cryptographic material embedded within
malware in order to determine the protocol type and intercept
encrypted communication.

After checking, extracted information is forwarded to a
service handler (SH) and sinkholing service in order to
maintain full control over all interactions between the mal-
ware and the outside world. For handling unknown traffic as
well, finite state machines (FSM) are automatically derived
from the observed traffic and used for service emulation.
An important goal of automating of the whole collection
and analysis process is to handle large amounts of malware
while allowing scalability.

B. Added Value

The system context of the malware collection facility
persists and is also used in the subsequent analysis. The
capabilities resulting from the merge of collection and
analysis is similar to the approach used in HI honeypots.
Thus, it is more closely aligned to real-world scenarios than
LI honeypots. In addition, we achieve increased transparency
during analysis due to the use of VMI. We consider this to
be a benefit, since we argue that VMI based analysis is more
likely to remain undetected by malware.

Compared to other techniques, VMI requires no trusted
support components, which could be compromised [14] in-
side the sample’s context of execution. Hence, the approach
is more likely to observe the entire malware execution life
cycle.

We are able to extract and inject data as well as in-
structions from or into the memory of the infected virtual
machine (VM) during runtime (for example, in order to tap
and manipulate encrypted C&C traffic). Since our approach
does not depend on analysis components within the VM,
we believe it to be more secure while also expecting better
overall performance. Moreover, we are able to control any
interaction between malware and third party systems. Thus,
our architecture can fulfill legal and liability constraints.

Since our approach is applied directly at the instruction
level, we are aware of the actions initiated by the malware,
thus allowing us to provide matching services and even to
service novel communication patterns. Subsequently, the risk
resulting from HI honeypot operation is minimized.

37

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. General design of the presented approach.

IV. DESIGN AND IMPLEMENTATION

The AWESOME approach [1] utilizes the following com-
ponents:

• For malware collection, a modified ARGOS HI honey-
pot [41] is used.

• Malware analysis is conducted based upon Nitro [38],
a KVM-based framework for tracing system calls via
VMI. In particular, we determine whether a given action
initiated by the currently-analyzed malware requires
Internet access and thus apply a complex rule-set to
the tracing component.

• Our service provisioning component manages all
malware-initiated attempts to request Internet resources.
Malicious attempts are handled via an appropriate
sinkholing service spawned by Honeyd [44], and un-
known traffic patterns may be handled utilizing Script-
Gen [33].

While most popular LI honeypots have proven to be
efficient for malware collection, their knowledge-based ap-
proach has also drawbacks regarding the quantity and di-
versity of the collected malware [51]. With respect to our

primary goal (to handle unknown malware), we chose to
apply the taint-map-based approach of ARGOS, since it
allows the detection of both known and unknown (0-day)
attacks. In addition, it is independent of special collection
mechanisms. Moreover, it can cooperate with the KVM
based VMI framework Nitro. Hence, several components
were modified:

1) The victim VM’s RTC is detached from the host’s
clock, since ARGOS is more time-consuming than
traditional approaches and thus detectable by an ab-
normal latency and timing-behavior;

2) Once the taint-map reports tainted memory being ex-
ecuted, we activate the analysis functionality provided
by the VMI framework; and,

3) Simple interpretation and filtering of system calls and
their parameters is conducted directly within hypervi-
sor space, while more complex analysis is performed
via the VMM in the host environment [19].

The entire process consists of three parts (collection, analy-
sis, and service provisioning) and is structured as described
below. The steps are repeated iteratively throughout the
entire life cycle of the malware.

38

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Malware Collection

As a HI honeypot, ARGOS requires much effort in
deployment and maintenance. Furthermore, one of the main
drawbacks of ARGOS is its poor performance, which is
among others related to the overhead caused by the taint
mapping technique. To overcome this limitation, we deploy
a two stage malware collection network (i.e., a hybrid
honeypot system similar to the ones described in [3][28][49])
as outlined in Figure 5.

We take advantage of our existing honeyfarm infrastruc-
ture ([4][20]). This malware collection network consists
of various honeypots and honeypot-types. Especially, client
honeypots play an increasingly important role since the
approach of this honeypot type covers the detection of state
of the art attack vectors thus enabling client honeypots to
capture current malware that may have not been collected
using server honeypots.

The honeyfarm utilizes a large-scale network telescope
(in particular a /16 darknet) serving the various honeypots.
We use this infrastructure in order to filter noise and known
malware (in particular everything that can be handled by
the LI honeypots or their vulnerability handling modules
respectively). The so collected binaries (which we consider
to be mostly shellcode containing URLs and droppers) are
stored in the central repository. Based on the file-hash known
files are distinguished from novel ones. Only novel attempts
are forwarded to the ARGOS HI honeypot, which then does
the further processing. By doing so we minimize the load
on ARGOS and thus justify its operation.

B. Malware Analysis

Dynamic malware analysis utilizing virtualization can be
detected and thus evaded by environment-sensitive malware
[16][19][34][46]. Hence, our goal is to achieve a reason-
ably transparent dynamic malware analysis without claiming
the approach to be completely stealthy. However, we also
consider VMI as the most promising available approach to
evade malware’s anti-debugging measures due to its minimal
footprint. Thus, in order to provide the best chance at
evading detection while still gaining the benefits of VMI,
we have chosen Nitro since it offers several advantages
regarding performance and functionality in comparison to
other publicly available tools such as Ether (see [38]).

As Nitro is based on KVM, we have - in addition to
guest portability - full virtualization capability, thanks to the
host CPU’s virtualization extensions. Thus, we can expect
reasonable performance.

During the analysis process, we expect a malicious binary
to be shellcode or a dropper rather than the actual malware
binary. This initially retrieved binary is then decoded and
usually contains a URL pointing at the resource used for
deploying the next stage of the malware. In the second
iteration, execution of this binary continues after it has been
downloaded and the VM has been resumed. The resulting

system call trace is then examined for routines related to
connection handling (e.g., NTConnectPort). If present, we
transparently pause execution of the VM and forward related
traffic to the service provisioning component. The following
sections outline the methods for dynamic malware analysis
in more detail.

1) Subroutine Logic Analysis: Based on the executed
system call’s associated parameters and the memory of the
calling process, certain information can be extracted directly
from a thread. Traditional semantics checking may prove to
be efficient for detecting known subroutines and protocol
implementation [42].

Promising candidates for detection are operations and
checks performed on the expected peer’s response as well
as common library functions and routines [50]. A sample’s
code could be checked for well-known standard algorithms,
like routines used to generate symmetric checksums and
cryptographic hash functions imported from libraries such
as the de-facto standard implementations in OpenSSL or
GnuTLS.

If the library function or algorithm being used can be
detected, the logical next step is to extract input data. A
function should perform sanity checks on its parameters, and
on data returned from called functions. Operating systems
APIs for use by customers are usually documented; thus,
their expected input and return values are known.

Based on this information, the information returned by a
function can be analyzed. Such data might be a checksum or
signature against which a response was checked or simply
a string or sequence of bytes.

The currently decoded part of malware can be analyzed.
Sequences of system calls can then be used to reveal more
and more deobfuscated parts of malware. Sometimes, it may
be easier to not immediately start analysis, but continue
execution and wait for a pre-known event to occur. In the
case of network communication, analysis may be delayed
until malware has sent a packet, and it leaves the virtual
machine’s (VM) network interface.

2) Delayed Analysis Triggering: Current virtualization
solutions try to keep the software layer between physical
hardware and the VM as slim as possible in order to improve
overall performance. Auxiliary components like network
interfaces, however, exist purely in software. To increase
the quality of results, subsystems of the VMM and virtual
hardware could be used as additional information sources.
System call tracing could be used to activate secondary
analysis functionality integrated within emulated hardware.

When using hardware assisted virtualization, certain phys-
ical devices can be forwarded to a guest exclusively. Ignoring
this feature, the emulation code for virtual network interfaces
(VIFs) can be extended to hold or trigger analysis compo-
nents. In the case of qemu, code related to delayed analysis
checking could reside, for instance in the virtual network
interface (nic.c), as shown in Figure 6.

39

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Scheme of the two-stage malware collection network.

Compared to immediate analysis upon execution of a sys-
tem call, delayed analysis may ensure that malware executes
a little bit more of its functionality, finishing execution of its
privileged operation (e.g., opening a socket and connecting
to a remote host) and returns to ring 3. Malware will
normally fall back into a wait state (waiting for a peer’s
response) after sending a packet, resulting in more code
being deobfuscated.

3) System Call Sequence Based Behavior Identification:
The approach used for tracing system calls implies that
evaluation is possible not just for a single system call and
its associated memory, but for series of system calls. As
proposed in [17][25][29][43], the behavior of a program
or its deviation from its standard behavior can be detected
based on series of system calls.

As only relatively short runs of system calls are needed
for profiling algorithms, it is possible to detect segments of
code instead of complete applications. Behavior detection
can also be used to identify state machines present in
malware, if context information is examined during analysis.
In conjunction with fuzzing techniques, the state machine
used in a command and control protocol could also be
explored this way.

4) Latency and a Virtual Machine’s Real Time Clock:
Together, all these analysis steps and operations require a
great deal of processing time and a rather sophisticated
analysis subsystem. Complex parsing can be done within

the hypervisor; however, this would slow down the whole
system considerably. As such, the hypervisor should be kept
as slim as possible and trigger functionality located within
the userland part of the VMM [38].

While being trapped inside hypervisor, a system call and
the VM issuing it will remain stalled. Once analysis contin-
ues outside the hypervisor, the VM will resume execution.
The guest system should remain paused while it is accessed
by external analysis components, to keep the guest in a
consistent state. The VM should preferably not be able to
detect that it is halted; it should retain its internal clock and
run detached from the host’s real-time clock.

C. Service Provisioning

Malware-driven outbound requests are evaluated to pre-
vent harm to third party systems. For these checks, we rely
upon existing measures, such as IDSs or a web application
firewall. We are aware that such measures will not be
sufficient to tell benign and malicious flows apart in every
case; thus, we may build on existing approaches. such
as [32]. We assume that a purely passive request (e.g., a
download) does not cause harm to a third party. It is thus
considered to be benign and handed over to the external
service handler (SH, see Figure 4).

Since the external SH has Internet access, it resides in
a dedicated network segment separated from the analysis
environment. If a given request cannot be determined to

40

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sample

Deposit & Execute
Malware

Trap
Syscall

interesting?

no

write();
connect();
socket();

Virtual Machine

Malware Collection Network

Attacker

yes

service emulator

forward Service
Information

redirect outbound Connections

Execute

set Flag

vif (nic.c)

Flag set?

Analysis and
Service Handler

yes

continue
Execution

no

send Packet

Analysis
Flag

pause VM unset Flag

continue
Execution

1

2

3

4a

4b

5a

5b

6

7

8a

8b

9

10

11a

11b

Figure 6. The gray area contains the system call tracing logic and will set a flag if a matching system call has been encountered. The red area holds the
analysis components, which are activated only if the flag has been set.

be benign, it is redirected to the internal service handler.
The sole task of these SHs is to fetch, prepare and provide
information for the service emulator (SE). The SE launches
the requested service in order to deliver the appropriate
payload supplied by the SH.

Afterwards, execution is transparently resumed. Since
these services can be extremely heterogeneous, the SE is
based on Honeyd. It is a very flexible and scalable tool,
which is able to emulate or spawn arbitrary services, given
that a protocol template exists.

The creation of templates for novel protocols is a much
more challenging task. Therefore, we instrument ScriptGen,
which can derive FSMs from observed traffic, however,
it could be replaced by other tools implementing similar
approaches [8][12][35].

Each FSM represents the behavior of a given protocol at
an abstract level while not depending on prior knowledge or
protocol semantics. Based on the generated FSMs, service
emulation scripts for the SE can be derived. By integrating
such a tool into our approach, we aim toward adding ’self-
learning capabilities’ to the service provisioning element.
Obviously this requires (at least) one-time observation of a

given communication between the honeypot and the external
system. Hence we need a (supervised) back-channel for
learning about novel protocols. Once a corresponding com-
munication has been recorded and the appropriate FSM has
been generated, we are able to handle the new protocol as
well. While the need for a back-channel is a clear limitation,
we consider it to be a reasonable trade-off. The following
sections describe the techniques for traffic redirection in
more detail.

1) Connection Redirection Techniques: When packets
leave a collection or analysis system and the protocol being
used has been identified, the respective packet or connection
should be forwarded to an appropriate SH within the analysis
environment. The SH can either be hosted remotely in the
analysis and collection network or locally. Depending upon
the approach employed for trapping a sample’s actions,
redirection of generated traffic can happen in different ways,
as shown in Figure 7.

DNS can be used to redirect a connection, if malware
relies on using the domain name system to resolve the IP of
its peer. The traditional approach is to redirect connections
on a per-packet level using network address translation

41

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(NAT), as not all malware will rely on DNS. Network
based approaches deploy packet rewriting either on the local
virtualization host, or the gateway. In a honeyfarm, the
honeywall [11] would redirect these connections as they pass
through.

2) Socket Modification at a Binary Level during Runtime:
A novel approach to traffic redirection is to rewrite a newly-
created socket upon creation in memory, as can be seen in
Listing 1. Based on specific system calls, analysis compo-
nents cannot just extract the parameters used for setting up a
new socket or connection. As manipulation of these param-
eters is possible at runtime, these can be replaced, assuming
the location and the format of the expected parameters is
known.

While this approach might be more complex than the
traditional network-based approach, it offers some interest-
ing advantages, depending on where the destination related
data is replaced or manipulated. Using this approach, IPSec
authentication header functionality might be bypassed rela-
tively easily. Therefore, the SH could use a standard IPSec
implementation without the need to modify or disable AH
integrity checking.

Listing 1. A network related function, for instance the connect command
as shown here, could upon execution be rewritten.

Trapped API C a l l :
CALL, c r 3 : 0 xe936000 p i d : 1672 ,
CONNECT(i p : 1 8 4 . 1 7 0 .X. Y, p o r t : 3 1 2 7) ;

Execu ted API C a l l :
CALL, c r 3 : 0 xe936000 p i d : 1672 ,
CONNECT(i p : 1 0 . 0 . 1 . 2 5 4 , p o r t : 3 1 2 7) ;

Redirecting a socket at the binary level also reduces side
effects occurring due to in-depth analysis. For instance,
network-based connection redirection, classification and log-
ging may lead to changed timing behavior; this change of
behavior could be detected by malware, lead to connections
timing out, or cause certain protocols to stop functioning.
Socket redirection at the binary level also allows local
system information to be changed more easily.

Naturally, protocol redirection by rewriting socket param-
eters at runtime is only possible, as long as malware used the
operating systems interfaces. If malware would circumvent
the operating system, execute completely in kernel mode, or
run on a higher privilege level than the kernel, this would no
longer be possible. As malware first has to gain the access
to these restricted locations sections through system calls,
the attempt to do so could in turn be detected. Additional
research should be done in this area to investigate further
advantages.

As described in section IV-B2, system calls can also be
used for initiating delayed analysis functionality in subcom-
ponents of the virtual machine. As network traffic passing

through VIFs can be evaluated and manipulated, connection
redirection could also be implemented in this location.

All further network related operations should subse-
quently be performed and handled by the relevant SH, as
described in the next subsection.

D. Protocol Sinkholing

For sinkholing several advanced approaches exist on
which we can base on. For example Truman1 (The Reusable
Unknown Malware Analysis Net) and INetSim (Internet
Services Simulation Suite) simulate various services that
malware is expected to frequently interact with. To this end,
common protocols, such as HTTP(s), SMTP(s), POP3(s),
DNS, FTP(s), TFTP, IRC, NTP, Time and Echo are sup-
ported. In addition, INetSim provides dummy TCP/UDP
services, which handle connections at unknown or arbitrary
ports. Hence these approaches can interact with a given
malware sample to a certain level.

Trumanbox [22] enhances the state of affairs by transpar-
ently redirecting connection attempts to generic emulated
services. To this end, it uses different information gath-
ering techniques and implements four different modes of
operation, which allow the application of different policies
for outgoing traffic. Thus, Trumanbox can provide different
qualities of emulation and addresses issues in protocol
identification, transparent redirection, payload modification
and connection proxying.

In addition, several work has been conducted in the
context of malware analysis to address the issues of de-
tecting, observing and intercepting malicious (C&C-) traffic
[10][39][23][45] resulting in publicly available tools.

Hence we concentrate on the issue of handling unknown
traffic patterns, such as C&C protocols, within our service
provisioning element by instrumenting ScriptGen [33] .

In order to ensure defined test conditions, we chose to
build our own malware, since this provides full control
over all test parameters thus assuring reproducibility [5]. To
this end, we base upon the source code of the Agobot /
Phatbot family and compile it using a custom configuration.
We chose Agobot, since it is one of the best known bot
families and widely used. In addition, it provides a variety
of functions. For the sake of easiness, we use unencrypted
IRC as the C&C protocol. We deploy a minimal botnet
consisting of only one infected host and one C&C server. In
addition, we use a third host, which is responsible for the
service emulation part. Our resulting test setup consists of
three distinct machines:

1) The victim host resides on a machine running Mi-
crosoft Windows XP SP2. Traffic is captured on this
host using WinDump v3.9.5 (the Windows port of
tcpdump) based on WinPcap v4.1.2. This host is
infected with our malware in order to capture the

1http://www.secureworks.com/research/tools/truman/ 10.06.2013

42

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 qemu_send_packet()

net_socket_reveive()
slirp_reveive()
tap_receive()

...

Virtual Machine Monitor
Host OS

 rewrite packet

Software
Firewall

Guest OS

pcnet.c

1

2

Analysis
Network

Redirected
Traffic

Unmodified traffic (3)

Honeywall

3

Emulated
Service

Figure 7. A connection could be redirected within virtual hardware, or the system call itself could be rewritten(1). The packets could be redirected using
NAT, either by the virtualization host(2) or the honeywall(3).

malware initiated network traffic as a reference for
real C&C traffic.

2) The C&C server resides on a machine running Mi-
crosoft Windows XP SP3 and is updated to the latest
patch level. This is necessary, since this host is also
used to build our customized version of Agobot. For a
successful build of Agobot, a full featured Microsoft
Visual C++ environment including the latest Visual
Studio service pack and the latest platform SDK is
required. The main purpose of this host is to act as the
C&C server. Therefore, we use UnrealIRCd, a well-
known IRC daemon widely used by botmasters. There
are several customized versions, which are optimized
for botnet usage (e.g., designed to serve a vast number
of bots). However, for our simple test case the latest
standard version (UnrealIRCd 3.2.9) is sufficient.

3) The service emulator runs a standard installation of
Ubuntu Server 11.10 32bit. Its main task is to process
the recorded traffic dump using ScriptGen and to
generate a service emulation script out of the resulting
FSM, which is then used by Honeyd. To this end, this
host is equipped with Honeyd and the dependencies
of ScriptGen (i.e., python 2.7, python-dev, cython,
python-numpy, python-pcapy, python-setuptools and
the nwalign package). Finally, this machine replaces
the original C&C server by running Honeyd with the
previously created script.

The overall test procedure of our experiment consists of
the following steps, which are described in the sections
below.

First, we deploy our botnet using a real IRC daemon as
C&C server. We launch several commands to generate and
record distinct traffic patterns between the infected machine

and the C&C server.
Second, we derive FSMs out of this recorded traffic, which

are then used to generate a Honeyd service emulation script
incorporating the abstract protocol behavior.

Finally, we replace the original C&C server with the
service emulation host running Honeyd and the generated
script. We launch different commands to evaluate, whether
the created script can emulate sufficient responses to fool
our bot.

1) Generation of C&C Traffic: First, on the C&C host,
we build our custom version of Agobot. Beside some
other basic settings, we instruct the bot to connect to our
C&C server and join a channel using the respective login
credentials and a randomly generated nick. Thereby the nick
consists of a random combination of letters prefixed by the
string ”bot-” in order to generate data, which is variable on
the one hand, but has a significant meaning on the other
hand. In addition, we build the bot in debug mode in order
to be able to track its activities. The IRC daemon is setup
accordingly.

Listing 2. An excerpt of a FSM-recorded conversation.
=== I tem 201
{ <CONV TCP 80
s r c : (’ 1 9 2 . 1 6 8 . 1 . 1 ’ , 64459)
d s t : (’ 1 9 2 . 1 6 8 . 1 . 2 ’ , 80)>

[MSG d : I l : 1 2 7]
[MSG d :O l : 4 9]
[MSG d : I l : 1 7 8]
[MSG d :O l : 3 9]
[MSG d : I l : 2 6 2]
[MSG d :O l : 3 9 f : Cc]

}

43

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 3. Part of the definition of a FSM
. . .
<S [TCP : 3 1 3 3 7 :] f : 6 k i d s : 1 l a b e l l e n :158 new : 3 >
{ <TR REG f : 6 ,\ # r :1> |F |
<S [TCP : 3 1 3 3 7 : 1] f : 2 k i d s : 1 l a b e l l e n : 6 new : 4 >
{ <TR REG f : 2 ,\ # r :13> |F | | Mf | | F | | Mf | | F | | Mf | | F | | Mf | | F | | Mf | | F | | Mf | | F |
<S [TCP : 3 1 3 3 7 : 1 | 1] f : 2 k i d s : 1 l a b e l l e n : 1 6 new : 0 >
{ <TR NULL f :2>
<S [TCP : 3 1 3 3 7 : 1 | 1 | 1] f : 0 k i d s : 0 l a b e l l e n :1054 new : 2 >
{ . . .

Next, we execute our customized Agobot on the victim
host, which connects back to the configured C&C server
and attempts to enter the programmed channel awaiting
further commands. On the victim host we record the traffic.
Thereby we set additional parameters to avoid a limitation of
the recorded packet size, since important information may
be truncated otherwise. In order to command the bot we
launch a conventional IRC Client, connect as botmaster to
our C&C Server and join the previously configured channel
as well. We instruct the bot to execute a given command by
performing a query. Thereby we use a full stop as command
prefix.

After login to the bot (.login User password) we instruct
it to perform some harmless actions, such as displaying sta-
tus information (.bot.about, .bot.sysinfo, .bot.id, .bot.status).
Thereby we launch a diverse set of commands in order
to obtain representative data. In particular, we use specific
commands, such as .bot.sysinfo, several times, since they
also query random and regularly changing values (e.g.,
uptime).

Furthermore, we also send some dummy commands and
random strings intended to insert ”noise”. This is afterwards
used to examine the result, i.e., none of these commands
should appear in the resulting script. We perform a number
of such sessions using randomly chosen commands in an
arbitrary order. In doing so, we simulate a number of distinct
bots, since the bot generates a different nick for every
session. Finally, the recorded traffic of these conversations
is filtered to remove traffic produced by other applications
running in background.

2) Traffic Dissection and FSM Generation: On the ser-
vice emulation host we dissect the previously recorded traffic
dump and extract the used ports within the communication.
Since ScriptGen is port based, this analysis is necessary to
determine for which ports a corresponding FSM needs to be
generated. As a result, we receive a list of identified ports
and generate a FSM for each port. Therefore, we apply the
existing functions implemented by ScriptGen:

First, a simplified FSM is built by parsing the traffic dump
file for the corresponding data-link type and reassembling
the packets and the respective conversations. A conversation

is composed of messages, whereas a message is the longest
set of bytes going in the same direction. Thus it is the
starting point to build the FSM. The rebuild of the resulting
conversations is based on the unique tuple of source- and
destination-address and the corresponding ports, as can be
seen in Listing 2. Thus there is no check, whether a given
port actually corresponds to the expected protocol but one
FSM per port is built.

It outlines the mentioned unique tuple (source- /
destination-address, source-/destination port) along with the
messages, where
d is the direction from the server perspective (I: incoming,
O: outgoing),
l is the length of the payload in bytes and
f describes the set flags (if any). In this example ”Cc”
refers to ”client close”.

Next, functionality to attach data contained in the traffic
dump to an eventually existing FSM are called. In addition,
these functions could be used to infer content dependencies
between known conversations and an existing FSM. The
output is a serialized, updated FSM (see Listing 3) serving
as input to our converter, which implements the Region
Analysis and builds the actual FSM based on the chosen
thresholds for macroclustering and microclustering.

It contains information about the used protocol, the ob-
served states and edges as well as the respective transitions,
where
S is the self-identifier (i.e., the protocol and port) followed
by the path,
f is frequency of the state,
kids describes the number of transitions the state has,
label len is the length of the state labels,
new is the amount of conversations and
TR (Type Region) describes the identified region type. A
region can thereby be NULL describing a transient state,
i.e., a state with an outgoing NULL transition. That is, a
state that immediately leads to a new future state after label
generation without expecting a client request.

In addition, a region can be identified as Fixed (containing
repeatedly the same data), Mutating (containing varying

44

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data) or as REG (i.e., a regular expression). In turn, a region
described via a regular expression may consist of several
regions having varying characteristics. This is optionally
indicated via corresponding flags, such as ”F” (fixed region)
or ”Mf” (mutating region).

Listing 4. For a given path the corresponding strings and regular
expressions representing the incoming and outgoing messages as identified
by ScriptGen are extracted.

<<< Incoming
> Fixed r e g i o n
0000 50 41 53 53 20 31 32 33 PASS 123
0008 0D 0A . .
%r eg e xp : ’PASS\\ 123\\\ r\\\n ’
<<< Incoming
> Fixed r e g i o n
0000 4E 49 43 4B 20 62 6F 74 NICK b o t
0008 2D −
> Mu t a t i n g r e g i o n
C o n t e n t c a n d i d a t e
. . .
> Fixed r e g i o n
0000 77 w
C o n t e n t c a n d i d a t e
. . .
> Fixed r e g i o n
0000 0D 0A 55 53 45 52 20 62 . . USER b
0008 6F 74 2D ot−
. . .

>>> Outgoing (l e n : 16)
0000 50 49 4E 47 20 3A 35 44 PING : 5D
0008 38 42 34 37 34 34 D A 8B4744 . .
0010
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Finally, every generated FSM is inspected and basic
information such as port, IP address and the identified
protocol is extracted for further processing (e.g., a rule-
based decision, whether the FSM for the respective port
should be enabled in the service emulator). We incorporate
the described functionality for traffic dissection and FSM
generation into a small Python script.

3) FSM Traversal and Script Building: In order to gen-
erate a service emulation script out of a given FSM, infor-
mation about its elements is required. Specifically, we need
to determine the total number of states and for each state

• all state labels (the messages sent by the server),
• the total number of edges (the number of possible

transitions towards the next state) and for each edge
– the respective edge label (the message representing

the client request triggering the transition)
Thereby we assume that the first seen state label represents
the initial message sent by the server (e.g., a service banner).
Thus it is defined as the default state. To this end, a
certain FSM is inspected by traversing through its paths,
which are derived from the identified regions, as depicted
in Listing 4. Based on this information the sequence of
regular expressions and the respective strings to respond with
is reassembled. We find, that we can recognize our previ-
ously exchanged messages, i.e., the launched commands and
their according responses. In particular, we conclude, that
ScriptGen is able to map also variable values correctly. For
instance, it identifies ”USER bot-” and ”NICK bot-” as fixed

regions while defining single letters and their combinations
as mutating regions. This matches our configuration instruct-
ing the bot to use a variable nick consisting of random
letters prefixed by ”bot-”. Thus, ScriptGen abstracts the
protocol semantics correctly in this example. The output of
the FSM traversal is then included in the service emulation
script file. To this end, the static part of the script is
created in a first step consisting of a header and some
basic functions for echoing fake messages. For basic data
exchange we rely upon basic functionality of Honeyd. In a
second step, we created a modified version of the traverse
function as originally implemented in ScriptGen so that it
now traverses through a given FSM path and extracts the
regular expressions of the exchanged messages.

Listing 5. A (simplified, primitive and reduced) FSM generated by
AWESOME.

S t a t e S0)
S0)

i f [[$ =˜ / ’ PASS \\$PASS\\\ r\\\n ’]] ;
then

echo −e ”OK”
e l s e

echo −e ”ERROR”
s t a t e =” S2 ”

f i
; ;
S t a t e S2 :
S2)

i f [[$ =˜ / ’ NICK\\ b o t\\−un tuv\\\ r\\\nUSER
\\ b o t\\−un tuv\\ 0\\ 0\\ \\ : b o t\\−un ’]] ;

then
echo −e ” ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@”

e l s e
echo −e ”ERROR”
s t a t e =” S3 ”

f i
; ;
S t a t e S3 :
t r a n s i e n t s t a t e (i m m e d i a t e l y l e a d s t o a new
f u t u r e s t a t e w i t h o u t e x p e c t i n g a c l i e n t r e q u e s t)
S3)

t h e r e f o r e no r e s p o n s e i s g e n e r a t e d
−> t r a v e r s e d i r e c t l y t o S4
s t a t e =” S4 ”

; ;
. . . o m i t t e d
S t a t e S9 :
S9)

i f [[$ =˜ / ’USERHOST\\ b o t\\−un tuv\\\ r\\\n ’]] ;
then

echo −e ” : $IP 302 bot−un tuv : bot−un tuv =+”
e l s e

echo −e ”ERROR”
s t a t e =” S10 ”

f i
; ;
S t a t e S10 :
S10)

i f [[$ =˜ / ’ JOIN\\ \\#$CHANNEL\\#\\ $PASS\\\ r\\\n ’]] ;
then

echo −e ” : $IP 302 bot−un tuv : bot−un tuv =+”
e l s e

echo −e ”ERROR”
s t a t e =” S11 ”

f i
; ;

4) Results: As a result of the steps described above a
service emulation script is generated and can be used with
Honeyd. Thereby the regular expressions intended to cover

45

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a given class of requests are of special interest.
After replacing the original C&C server with the service

emulation host we launched different commands to evaluate,
whether the created script can emulate sufficient responses.
By interacting with the emulated IRC service we found
that it is capable of generating appropriate responses to
a set of very basic requests. However, slight deviations
of these basic requests cause the emulated service to not
respond at all thus leading to insufficient emulation. We
believe, that this is related to the limited amount of traffic,
that we have generated for this experiment. In fact, the
size of the generated traffic dump file is less than 100kB,
which seems clearly insufficient for ScriptGen to learn all
interactions properly. While we were able to demonstrate
that generating service emulation scripts using the ScriptGen
approach is essentially possible, further experimentation will
be necessary to produce more accurate results.

Further experimentation is necessary and we are con-
fident, that a larger amount of traffic will produce more
accurate results. However, we found that generating service
emulation scripts using the ScriptGen approach is essentially
possible, an example is depicted in Listing 5. Specifically,
we believe, that the basic assumption of ScriptGen (i.e., an
exploit performs a limited number of execution paths) can
be applied to our use case of service emulation for C&C
traffic, since a bot performs a limited number of commands
as well. Thus we conclude that the application of ScriptGen
within the service provisioning component of our presented
approach is feasible.

V. DISCUSSION AND FUTURE WORK

From a conceptional perspective the main limitation of our
approach is that it can only capture samples of autonomous
spreading malware due to the use of a taintmap. The server
based approach with taintmaps, i.e., passively waiting for
incoming exploitation attempts, implies that this type of
honeypot can not collect malware, which propagates via
other propagation vectors such as Spam messages or drive-
by downloads.

With respect to the outlined paradigm shift in attack
vectors we will need to consider such propagation vectors
as well in future. However, since this is a sensor issue, this
limitation may be overcome by integrating corresponding
honeypot types (i.e., client honeypots) into our approach.
This is left for future work. Moreover, due to the ongoing
spread of IP-enabled networks to other areas (e.g., mobile
devices and SCADA environments) our approach will be
required to integrate malware sensors covering these attack
vectors as well in future.

Beside the necessary further experiments to improve the
accuracy of service emulation for C&C traffic, enhancements
in malware analysis need to be tested. In particular, the
interaction between all stated components will be evaluated,
once all of them are readily deployed. At the time of writing

the evaluation of system calls produced by Nitro needs to
be finished and measures for checking malware initiated
outbound attempts need to be evaluated. In a next step, we
will test the use case of tracking and intercepting encrypted
C&C protocols as well as making use of malware calling
library functionality to perform subroutine analysis.

When it comes to malware analysis itself, multiple paths
of execution could be traversed. The state of a virtualized
guest could be saved at multiple times during execution and,
later on, the analysis environment could revert the guest to
different states saved during processing. Traversal of multi-
ple paths of execution would allow automated fuzzing to take
place during analysis. Multiple possibly valid responses may
be tried, if few candidates exist. Additionally, unknown state
machine versions used for C&C traffic may be explored.

Future work will also include the completion and evalu-
ation of the service emulator and the measures to prevent
harm to third party systems.

VI. CONCLUSIONS

In this paper, we have presented a novel approach for
integrated honeypot-based malware collection and analy-
sis, which extends existing functionalities. Specifically, it
addresses the separation of collection and analysis, the
limitations of service emulation, and the operational risk of
HI honeypots.

The key contribution of the approach is the design of
the framework as well as the integration and extension of
the stated tools. While this is an ongoing research activity
and thus still under development, several modifications to
ARGOS and Nitro have already been implemented and
successfully tested, indicating the feasibility of our approach.

System call tracing alone is a rather finite source of infor-
mation for malware analysis, as relatively little information
worth analyzing is transferred between a system call routine
and the caller. System call parameters, such as path names
or URIs, are extremely valuable in certain situations, but
to make full use of all available information, the virtual
machine’s memory has to be analyzed too. Static analysis
tools can subsequently process deciphered binary samples
in memory and no longer have to deal with unpackers
or loaders, and thus handle polymorphic and metamorphic
software with relative ease.

By tracking a binary using a series of system calls,
more and more pieces of malware can be revealed and
evaluated. This results in an outcome very much desired
by malware researchers; the longer malware operates, the
more information can be extracted from malware with less
overhead for dealing with obfuscation [13][36][38].

Cryptographic key material and parameters used for estab-
lishing and maintaining a secure tunnel between peers would
be extremely useful in protocol emulation. These values can
be extracted or even replaced within the guest’s memory.
While replacing such data automatically at runtime may be

46

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

challenging, it would allow emulation of an encrypted peer
using valid and trusted key material.

While the service provisioning element raises several
technical issues regarding protocol identification, connection
proxying, transparent redirection, payload modification as
well as detection, observation and interception of malicious
(C&C-) traffic, most of these issues can be addressed based
on existing work. We referred to related research in this
area and focused on the issue of handling unknown traffic
patterns, such as C&C protocols.

To this end, we presented a proof of concept implemen-
tation leveraging the output of ScriptGen for use within the
service provisioning component of our presented approach.
Using this proof of concept, we evaluated the feasibility
of using ScriptGen for generating service emulation scripts
intended to spawn an emulated C&C service. We setup
a minimal botnet using customized malware in order to
generate the corresponding C&C traffic. Out of this recorded
traffic we derived FSMs, which were then used to generate a
service emulation script incorporating the abstract protocol
behavior.

REFERENCES

[1] Martin Brunner, Christian M. Fuchs, and Sascha Todt. Awe-
some - automated web emulation for secure operation of a
malware-analysis environment. In Proceedings of the Sixth
International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2012), pages 68–
71, Rome, Italy, August 2012. International Academy, Re-
search, and Industry Association (IARIA), XPS. ISBN: 978-
1-61208-209-7. Best Paper Award.

[2] M. Apel, J. Biskup, U. Flegel, and M. Meier. Early warning
system on a national level - project amsel. In Proceedings
of the European Workshop on Internet Early Warning and
Network Intelligence (EWNI 2010), January 2010.

[3] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos.
A hybrid honeypot architecture for scalable network monitor-
ing. 2006.

[4] M. Brunner, M. Epah, H. Hofinger, C. Roblee, P. Schoo, and
S. Todt. The fraunhofer aisec malware analysis laboratory -
establishing a secured, honeynet-based cyber threat analysis
and research environment. Technical report, Fraunhofer
AISEC, September 2010.

[5] Martin Brunner. Integrated honeypot based malware collec-
tion and analysis. Master’s thesis, 2012.

[6] BSI. Die lage der it-sicherheit in deutschland 2011. Bunde-
samt fuer Sicherheit in der Informationstechnik, May 2011.

[7] David M. Buches. Fast system call hooking on x86-64 bit
windows xp platforms, April 2010.

[8] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dis-
patcher: enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS
’09, pages 621–634, New York, NY, USA, 2009. ACM.

[9] Juan Caballero, Chris Grier, Christian Kreibich, and Vern
Paxson. Measuring pay-per-install: the commoditization of
malware distribution. In Proceedings of the 20th USENIX
conference on Security, SEC’11, pages 13–13, Berkeley, CA,
USA, 2011. USENIX Association.

[10] D. Cavalca and E. Goldoni. Hive: an open infrastructure for
malware collection and analysis. In proceedings of the 1st
workshop on open source software for computer and network
forensics, 2008.

[11] Jay Chen, John McCullough, and Alex C. Snoeren. Universal
honeyfarm containment. Technical Report CS2007-0902,
New York University and University of California, San Diego,
9500 Gilman Dr., La Jolla, CA 92093, USA, September 2007.

[12] W. Cui, V. Paxson, Nicholas C. Weaver, and Y H. Katz.
Protocol-independent adaptive replay of application dialog. In
In The 13th Annual Network and Distributed System Security
Symposium (NDSS, 2006.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware
analysis via hardware virtualization extensions. In CCS ’08:
Proceedings of the 15th ACM conference on Computer and
communications security, pages 51–62, New York, NY, USA,
2008. ACM.

[14] M. Dornseif, T. Holz, and C.N. Klein. Nosebreak - attack-
ing honeynets. In Information Assurance Workshop, 2004.
Proceedings from the Fifth Annual IEEE SMC, june 2004.

[15] M. Engelberth, F. Freiling, J. Göbel, C. Gorecki, T. Holz,
R. Hund, P. Trinius, and C. Willems. The inmas approach.
In 1st European Workshop on Internet Early Warning and
Network Intelligence (EWNI), 2010.

[16] P. Ferrie. Attacks on virtual machine emulators. In AVAR
Conference, Auckland. Symantec Advanced Threat Research,
December 2006.

[17] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for unix processes. In Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on, pages 120–
128, 1996.

[18] Jason Franklin, Adrian Perrig, Vern Paxson, and Stefan Sav-
age. An inquiry into the nature and causes of the wealth
of internet miscreants. In Proceedings of the 14th ACM
conference on Computer and communications security, CCS
’07, pages 375–388, New York, NY, USA, 2007. ACM.

[19] Christian M. Fuchs. Deployment of binary level protocol
identification for malware analysis and collection environ-
ments. Bacherlor’s thesis, Upper Austria University of Ap-
plied Sciences Hagenberg, May 2011.

[20] Christian M. Fuchs. Designing a secure malware collec-
tion and analysis environment for industrial use. Bacher-
lor’s thesis, Upper Austria University of Applied Sciences,
Bacherlor’s degree programme Secure Information Systems
in Hagenberg, January 2011.

[21] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection. In In
Proc. Network and Distributed Systems Security Symposium,
pages 191–206, 2003.

47

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] Christian Gorecki. Trumanbox - improving malware analysis
by simulating the internet. RWTH Aachen, Department of
Computer Science, 2007. Diploma Thesis.

[23] Guofei Gu, Junjie Zhang, and Wenke Lee. Botsniffer:
Detecting botnet command and control channels in network
traffic. In NDSS. The Internet Society, 2008.

[24] P. Gutmann. The commercial malware industry. In DEFCON
15, 2007.

[25] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji.
Intrusion detection using sequences of system calls. Journal
of Computer Security, 6:151–180, 1998.

[26] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learn-
ing more about the underground economy: A case-study of
keyloggers and dropzones. Technical report, University of
Mannheim, Laboratory for Dependable System, 2008.

[27] Honeynet Project. Know your enemy: Sebek, November
2003. last visited: 2011-03-11.

[28] X. Jiang and D. Xu. Collapsar: a vm-based architecture for
network attack detention center. In Proceedings of the 13th
conference on USENIX Security Symposium - Volume 13,
SSYM’04, Berkeley, CA, USA, 2004. USENIX Association.

[29] Xuxian Jiang and Xinyuan Wang. ”out-of-the-box” monitor-
ing of vm-based high-interaction honeypots. In Proceedings
of the 10th international conference on Recent advances in
intrusion detection, RAID’07, pages 198–218, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[30] Tobias Klein. Buffer Overflows und Format-String-
Schwachstellen: Funktionsweisen, Exploits und Gegenmass-
nahmen. Dpunkt.Verlag GmbH, 2004. ISBN 9783898641920.

[31] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and
Engin Kirda. Inspector gadget: Automated extraction of
proprietary gadgets from malware binaries. Security and
Privacy, IEEE Symposium on, 0:29–44, 2010.

[32] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson.
Gq: practical containment for measuring modern malware
systems. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, IMC ’11,
pages 397–412, New York, NY, USA, 2011. ACM.

[33] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an auto-
mated script generation tool for honeyd. In Proceedings of
the 21st Annual Computer Security Applications Conference
(ACSAC), Washington, DC, USA, 2005. IEEE.

[34] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. De-
tecting environment-sensitive malware. In Recent Advances
in Intrusion Detection (RAID) Symposium, 2011.

[35] P. Milani Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda. Prospex: Protocol specification extraction. In
Proceedings of the 30th IEEE Symposium on Security and
Privacy, pages 110–125, Washington, DC, USA, 2009.

[36] Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha
Godiyal, Samuel T. King, and Hai D. Nguyen. Mavmm:
Lightweight and purpose built vmm for malware analysis. In
Proceedings of the 2009 Annual Computer Security Applica-
tions Conference, ACSAC ’09, pages 441–450, Washington,
DC, USA, 2009. IEEE Computer Society.

[37] G. Ollmann. Behind today’s crimeware installation lifecy-
cle: How advanced malware morphs to remain stealthy and
persistent. Whitepaper, Damballa, 2011.

[38] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based
system call tracing for virtual machines. In Advances in
Information and Computer Security, volume 7038 of Lecture
Notes in Computer Science. Springer, November 2011.

[39] Daniel Plohmann, Elmar Gerhards-Padilla, and Felix Leder.
Botnets: Detection, measurement, disinfection & defence. Eu-
ropean Network and Information Security Agency (ENISA),
2011.

[40] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost
turns zombie: exploring the life cycle of web-based malware.
In Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, Berkeley, CA, USA, 2008.
USENIX Association.

[41] Georgios Portokalidis, Asia Slowinska, and Herbert Bos.
Argos: an emulator for fingerprinting zero-day attacks for
advertised honeypots with automatic signature generation.
In Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, pages
15–27, 2006.

[42] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and
Saumya Debray. A semantics-based approach to malware
detection. SIGPLAN Not., 42:377–388, January 2007.

[43] Niels Provos. Improving host security with system call
policies. In SSYM’03: Proceedings of the 12th conference on
USENIX Security Symposium, page 18, Berkeley, CA, USA,
2003. USENIX Association.

[44] Niels Provos. A virtual honeypot framework. In Proceedings
of the 13th USENIX Security Symposium, 2004.

[45] Konrad Rieck, Guido Schwenk, Tobias Limmer, Thorsten
Holz, and Pavel Laskov. Botzilla: detecting the ”phoning
home” of malicious software. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages
1978–1984, New York, NY, USA, 2010. ACM.

[46] J. Rutkowska. Red pill... or how to detect vmmusing (almost)
one cpu instruction, 2004. http://invisiblethings.org.

[47] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86. In In
Proceedings of CCS 2007. ACM Press, 2007.

[48] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Gyung
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.
Bitblaze: A new approach to computer security via binary
analysis. In Proceedings of the 4th International Conference
on Information Systems Security., 2008.

48

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[49] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C.
Snoeren, G. M. Voelker, and S. Savage. Scalability, fidelity,
and containment in the potemkin virtual honeyfarm. In Pro-
ceedings of the 20th ACM symposium on Operating systems
principles, SOSP ’05, New York, NY, USA, 2005. ACM.

[50] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward
automated dynamic malware analysis using cwsandbox. IEEE
Security and Privacy, 5:32–39, March 2007.

[51] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou. Collecting
autonomous spreading malware using high-interaction honey-
pots. In Proceedings of the 9th international conference on
Information and communications security, ICICS’07, Berlin,
Heidelberg, 2007. Springer-Verlag.

49

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OSGiLarva: a Monitoring Framework Supporting OSGi’s Dynamicity

Yufang Dan∗§, Nicolas Stouls∗, Christian Colombo†, and Stéphane Frénot‡
∗Université de Lyon, INSA-Lyon, CITI-INRIA F-69621, Villeurbanne, France – Email: first.second@insa-lyon.fr

†Department of Computer Science, University of Malta – Email: first.second@um.edu.mt
‡Université de Lyon, INRIA, INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France – Email: first.second@insa-lyon.fr

§College of Computer Science Chongqing University, Chongqing, China

Abstract—Service-Oriented Architecture is an approach
where software systems are designed in terms of a composition
of services. OSGi is a Service-Oriented Framework dedicated
to 24/7 Java systems. In this Service-Oriented Programming
approach, software is composed of services that may dynami-
cally appear or disappear. In such a case, classical monitoring
approaches with statically injected monitors into services
cannot be used. In this paper, we describe ongoing work
proposing a dynamic monitoring approach dedicated to local
SOA systems, focusing particularly on OSGi. Firstly, we define
two key properties of loosely coupled monitoring systems:
dynamicity resilience and comprehensiveness. Next, we propose
the OSGiLarva tool, which is a preliminary implementation
targeted at the OSGi framework. Finally, we present some
quantitative results showing that a dynamic monitor based
on dynamic proxies and another based on aspect-oriented
programming have equivalent performances.

Keywords-Monitoring, Dynamic SOA, OSGi, Larva, LogOs.

I. INTRODUCTION

This article is an extended version of [1], which has been
published in IARIA Conferences 2012.

The service-oriented architecture (SOA) is one of the
current approaches to develop well structured software sup-
porting agility. It is focused on loosely coupled client-server
interaction enabling the client to request server functionality
through a repository that exposes appropriate interfaces.
Subsequently, the client is bound to the service and is
allowed to invoke methods as long as the interface types
match. Among SOA approaches, we distinguish between
web services and other more local approaches such as
OSGi [2] and .NET [3]. The main difference is that in the
case of web services one would not typically be able to have
the full view of the system, i.e., one can either monitor the
client or the server but not both. On the other hand, in the
case of local approaches one can reason about the full picture
by also taking into consideration the OSGi framework events
such as registration of services, service requests by different
clients, etc.

In this work, we focus on OSGi, usually used in 24/7
systems, where the system is not restarted when a service
appears or disappears. This framework is targeted to embed-
ded systems such as cars, ADSL boxes, or network systems.
In such systems, web services cannot be used either due to
the lack of connectivity, network limited bandwidth, or for

efficiency reasons. In the following, we focus on the OSGi
framework, but the same principles can be applied to other
local SOA systems, such as .NET.

In dynamic SOA, each service invocation must be con-
sidered as a complete context switch since potentially new
services may appear and others disappear at runtime. From
a dynamic SOA point of view, binding a client to a service
is a matter of interface matching, but, neither the client nor
the service has a guarantee that the other part behaves as
expected. So, after interface matching, continuously ensuring
the client’s authenticity and the validity of the activities
carried out are important for critical systems. For instance,
each time a client makes a request to a server, a formally
specified constraint can be checked to ensure that the client
is authorized to perform that call.

Existing runtime monitoring tools such as JavaMOP [4]
or Larva [5] weave interception calls using aspect-oriented
programming techniques. This approach works fine in non-
dynamic SOA since client-server bindings are usually gener-
ated upon the first invocation and preserved throughout the
entire client life cycle. On the other hand, in dynamic SOA,
due to runtime dynamic changes in the underlying service
implementation, the monitoring state woven into the service
implementation gets reset.

Our proposal is to bring a dynamic approach to runtime
monitoring systems by inserting monitors at the point of
client-server binding rather than "statically" at compile-time
or loading-time. This means that both the service bindings
and the behavioral monitoring bindings are dynamic and
loosely coupled, thus supporting service substitution. This
approach would preserve behavioral monitoring states across
different service versions and check that both versions are
behaviorally compatible.

Another major concern in a highly dynamic context,
where the implementation of an interface may be substituted,
is to ensure that no implementation, or part thereof, can
bypass the monitoring framework. Note that if this could
happen, the monitor would not be able to detect any mali-
cious code which might be executed. Moreover, what can
be concluded about a system’s observation if some events
could have been missed? Our aim is to enable the monitoring
system to be fully active, even if the service provider ignores
it.

50

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this context, we conjecture that a dynamic runtime
monitor must have two significant traits: dynamicity re-
silience and comprehensiveness. The former refers to the
preservation of the behavior flow: in case the monitored
service is substituted, the monitor and its state should be
transfered; meaning that the property cannot be hard-linked
to the code. The latter characteristic means that we cannot
allow services to restrict what is observable by the monitor:
if we want to check a property, we need to ensure that
all the relevant events are monitored. Note that we are not
assuming that every service behaves as expected, but only
that if an authorized service is to be checked for a particular
property, then no event of the service behavior can bypass
the monitor observations. For this reason, the architecture
relies on a generic event-interception mechanism and a
dynamic, loosely coupled, wiring mechanism for automaton
verification. The verification logic of the automaton is then
handled by an adaptation of the existing monitoring tool
Larva [5].

Finally, the introduction of dynamicity to the monitor also
increases the scope of properties we are able to address.
Thus, we introduce some dynamic primitives in the property
description language in order to make it possible to describe
behavioral properties, where the registration/un-registration
of a service is an expressible event. Furthermore, we also
adapt the life cycle of properties, since, under different
circumstances, the monitor state might need to be preserved
or reset when the underlying service is substituted.

Section II is a case study showing some requirements
of this work. Section III presents some runtime verifi-
cation approaches and proposes a classification of them,
showing the gap we propose to fill. It also discusses the
trade-off between the observation scope and the expressible
properties. Section IV expresses the architectural model
for a dynamic runtime verification tool and introduces our
OSGi reference implementation. Section V describes our
modifications of the Larva specification language in order
to consider dynamicity. Section VI illustrates the OSGiLarva
tool by some quantitative results. Finally, Section VII shows
our initial conclusions and Section VIII our future works.

II. CASE STUDY

In order to ease the understanding of our contribution, this
section introduces an example of a dynamically monitored
system in line with our proposition.

Let us consider an embedded client on a mobile device
based on a dynamic SOA platform, which needs to com-
municate with a distant system according to a particular
protocol (Fig. 1). Let two services S1 and S2 provide
an identical interface to access the distant system through
different media: S1 using a WiFi connection, and S2 using
a 3G connection. With such a configuration, we can consider
that each time the WiFi connection goes down, the system

unregisters S1, effectively switching the client onto S2, and
vice-versa.

Moreover, we consider that the use of the distant system
requires that the client is authenticated with the service
and that some system actions have to execute atomically.
Such requirements correspond to any typical secured system
supporting concurrent access by transactions.

...Client

Service1

Service 2

Sub-
System

access

Interface:
Auth();
Lock();

SomeUse();
UnLock();
UnAuth();

Request

Figure 1. Dynamic SOA system supporting service substitution

In such an example, the possibility of service substitution
is crucial. We then propose, in Fig. 2, an example of an
execution scenario that has to be supported by the system.
In this scenario, the service S1 is substituted by S2 during
the atomic part of the run.

Auth()
Auth()

Lock()
Lock()

Auth()
Auth()

Unlock()
UnLock()

Client Interface Service1 Service2

Lock()
Lock()

UnLock()
Unlock()

Sub-Sys

SomeUse()
SomeUse() SomeUse()

SomeUse()

SomeUse() SomeUse()
SomeUse() SomeUse()

UnReg(Service1)

Service
Manager

getService(Interface)
getService(Interface)

getService(Interface)

UnAuth()

getService(Interface)

UnAuth()

Figure 2. Example of scenario supported by example in Fig. 1

In another part, we can describe the correct use of the
system in some property and check it by monitoring at

51

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

runtime. For instance, the two following properties express
the expected behavior, described earlier: (i) the client is
locally authenticated on the service before using it, and (ii)
the concrete use of the sub-system requires that the client
opens the lock and closes it after use. In this example,
one would like to ensure that the execution described in
Fig. 2 is correct with respect to these properties. Such
verification and the description of the property itself are the
main contributions of this article.

These properties can be described by a couple of automa-
tons (Fig. 3), but with a different interpretation of each.
The local authentication automaton’s (Fig. 3.A) internal state
should be maintained in case of service substitution and
should be instantiated for each distinct client using the
system. In the following, we will call such properties as
Instance-Properties as they are instantiated on a per object
basis; in this case a client. On the contrary, the management
of the atomic use of the sub-system (Fig. 3.B) needs to be
centralized and shared by all clients. Even if a service is
removed and substituted, we would want to keep the current
state of the sub-system in memory. In the following, we call
such properties Class-Properties because its lifetime spans
throughout the system’s life cycle and is not bound to a
particular entity.

Auth()

UnAuth()

UnReg()

s0

s1

s2Lock()

UnLock()

SomeUse()

s2

s2

 UnReg()

GetService()

Auth()

A. Client-side: instance property

s0 s1

Lock()

UnLock()

SomeUse()

clock\timer>=timerout\timer.reset()

B. Interface-side: class property

Figure 3. Example of a property associated to example in Fig. 1

In summary, our proposition is to provide a monitoring
framework, which is able to monitor such properties by
listening to method calls and OSGi framework events in a
dynamic, resilient, and comprehensive manner.

III. RELATED WORKS

The contributions of this article include a monitoring
approach for dynamic SOA and the expressiveness of its

associated description language. In this section, we discuss
separately related works about each of these two parts of
our contribution.

A. Resilience to Dynamicity and Monitoring Comprehen-
siveness

We propose to classify existing runtime verification ap-
proaches according to the monitor configuration with respect
to the monitored service. Property may be: manually written
inside the code (Hard-Coding), automatically injected inside
the code (Soft-Coding) and kept out of the code (Agnostic-
Coding). For each of these families, we will discuss two
points:

• resilience to dynamicity
• monitoring comprehensiveness

1) Hard-coding: In this category, where properties are
manually added at source time, we can cite all annotation
techniques, like JML [6] and Spec# [7]. In both cases, the
monitor is not resilient to dynamic code loading. If the
monitored system is substituted, then its monitor is also
substituted, since it is inlined. However, this approach is
interesting in terms of comprehensiveness, since we can
observe anything in the program. A limitation of this ap-
proach is the dispersion of the monitor throughout the code,
requiring significant intervention to write the property or to
check that its description is correct.

2) Soft-Coding: In this category, where properties are
injected at compilation time, or load-time, we can cite
Enforcement monitor [8], Larva [5] and JavaMOP [4]. These
tools use a standalone description of a property and inject the
synthesized monitor inside the code by AspectJ technology.

Advantages of Soft-Coding approach are then the same
as in the previous case, but specifying the monitor is easier,
since the description of the property is centralized. However,
these approaches from Enforcement monitor [8], Larva [5]
or JavaMOP [4] are only partially resilient to dynamicity; at
best, the tool may inject the property at first-time binding,
but once injected, the property is hard-coded within the
service for the whole execution of the class. Indeed, while
it is technically possible to use AspectJ to support dynamic
class loading and unloading in OSGi, then the monitored
bundle must declare the import of the AspectJ library
inside its Manifest file — an operation which is not really
transparent to the service. Note that this restriction does
not exists in Equinoxe implementation of OSGi (Eclipse),
but it is because some choices would have been done in
the configuration of the framework, requiring to restart the
whole framework each time a new service is installed.
Furthermore, if monitors need to be started or stopped at
runtime it cannot be done directly through AspectJ without
restarting the service — something which is undesirable in
24/7 services.

52

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Agnostic-Coding: In this third category, where the
monitor is kept out of the code, we include any trace
analyzes approach, such as intrusion detection systems [9] or
logging systems [10]. The main advantage of the approach
is the loose linking between the property and the monitored
system. Hence, if a package is substituted, the monitor
can observe it inside the logs and the monitored properties
are still the same for the whole system. Moreover, the
description of the property is located into a single location,
which facilitates property management.

However, such Agnostic-Coding systems can be bypassed,
e.g., [9] and [10] can only observe what services accept
to push. If a package provides a service without writing
sufficient logs, then the monitor does not have sufficient
information to check a particular property [11].

4) Monitoring of Web Services: There are a number
of works (e.g., [12], [13]) that support the monitoring of
web services. These provide both dynamicity resilience
and comprehensiveness (although these are not explicitly
identified as such) by listening to events from a web service
composition engine. Furthermore, they also enable prop-
erties to be defined both as class properties and instance
properties. However, to the best of our knowledge, no
similar monitoring techniques have been proposed for the
OSGi framework. Moreover, the context is not the same,
since in a web service context, we can easily distinguish
between callers by their IP address and port number, but
it is impossible to know who is the caller, or which class
or software is making the call. This can be a considerable
restriction in the expression of security policies.

B. Property description

This part discusses the property description language and
focuses mainly on the scope of the property, mainly induced
by the location of its associated monitor. Indeed, since we
are not in a 1-1 system, we could have many clients using
many services at the same time. In such a case, the location
of the monitor can change the point of view of the property
and hence its expressiveness. Each property can be defined
with at least three points of view (eg. Fig. 4): (i) client point
of view, (ii) service implementation point of view and (iii)
interface point of view.

The proposition made in this work consists in considering
all properties as a composition of two parts: a part that
handles the client’s point of view and a part that handles
the interface point of view. In this section, we discuss each
of these three possibilities to justify our proposition.

1) Property Described from Service Side Point of View:
If the designer describes a property with this point of
view, shown in Fig. 5, he/she considers the use of a single
service [14]. It is easy to consider some behavioral depen-
dence in some parallel uses by multiple clients. However,
since we are considering automaton-based properties, it is
not obvious how to distinguish between clients within the

Inter
face

Client1

Client2
Service2

Service1

Interface
side

property

Client
side

property
Service

side
property

Service
side

propertyClient
side

property

Figure 4. Possible point of view for properties

property. Moreover, it is complex to consider the use of
multiple implementations of an interface simultaneously,
with potentially some communication between them.

For the dynamical part, it is not intuitive to describe and
use the fact that a new implementation of the same service
interface has been loaded on the platform. Moreover, it
seems to be complex to share property memory between
implementations of the same interface. Hence, if a service
is substituted, there is no means of keeping its property in
memory, with its internal state, and to map it on another
implementation designated to continue the started work.

Inter
face

Client1

Client2
Service2

Service1

Service
side

property

Service
side

property

Figure 5. Property description: service implementation point of view

Advantages:
• Simplicity to describe behaviors of each service imple-

mentation without the need to make the link with other
possible implementations.

• In case of stateful services, with a different memory
address space for each implementation, it is very easy
to describe the system.

Disadvantages:
• Complexity to describe shared memory between ser-

vices.
• Impossibility to describe a generic behavior for each

client, since we cannot distinguish between clients.

53

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Property Described from Service Interface Point of
View: In this point of view, we consider what can be done
through a service interface. It is easy to describe the global
use of any implementation of this interface by any client,
but not to make distinction between clients or between used
implementations.

By its nature, such a property is not directly associated
to a service and thus describes a property shared by all
implementations. Note that it is easy to consider the loading
or unloading of a service implementation, even if it is a
substitution, willing to keep the current state of the property.

Since our property description language is automaton-
based, the only manner to consider parallel use of many
clients is to make some composition between the property
and itself. However, such technique leads to a combinatorial
explosion of the automaton size. Moreover, it limits the
maximum number of clients and services, since we need
to have this information to make the composition.

Inter
face

Client1

Client2
Service2

Service1

Interface
side

property

Figure 6. Property description: service interface point of view

Advantages :

• Easy to make a description of the authorized uses, with
a global point of view

• Easy to consider loading/unloading of implementations
• Possibility to share a single property state between

service implementations

Disadvantages :

• Risk of the shared property description size explosion if
we want to describe the concurrent behaviour of several
clients.

• Impossibility to describe a generic behavior for each
client, since we cannot distinguish between clients

3) Property Described from Client Point of View: This
third possibility considers that each client has its own
instance of the property (Fig. 7). Hence, it is easy to describe
the correct use of a service from one client point of view
and to consider as many parallel uses as we want, without
any combinatorial explosion.

Moreover, it is easy to describe the use of multiple
services by a single client and the behavioral dependence
in case of concurrent use of services.

In case of substitution of a service, this approach can be
resilient, since the property is attached to the client.

However, in case of the simultaneous use of a single
service by several clients, if there is some interactions
between these usages, it is more complex to describe it.

Inter
face

Client1

Client2
Service2

Service1

Client
side

property

Client
side

property

Figure 7. Property description: client point of view

Advantages :
• Easy to make a description of a particular client autho-

rized usages
• Easy to consider loading/unloading of implementations
• Possibility to share a single property state between

several service implementations
• No risk of size explosion of the shared property, since

it cannot be described
Disadvantages :
• Complexity of describing global behavior including

several clients
In this paper, we propose to consider properties as a com-

bination of two kind of properties, associated to two point of
views: client and interface. These two parts are respectively
called Instance-Property and Class-Property and are more
detailed in section V-B. We propose not to consider the first
case (i.e., service point of view), since in typical use of
OSGi, if multiple services implement a single interface, the
framework favours the use of the same implementation by
all clients. Moreover, from our experience we conjecture
that properties are typically client side, since an interface
property cannot consider the concurrent use of services by
many clients without a state explosion. Finally, to have the
possibility to add a centralized property, interface properties
can be useful to express some shared constraints such as
locking/unlocking systems.

In the following, we present the first part of our contri-
bution: the architecture.

IV. DYNAMIC-SOA MONITORING ARCHITECTURE

In the first part of this section, we describe an abstract
architecture of a monitoring system supporting specific
features of dynamic SOA systems, and we discuss its
characteristics. In the second part, we propose a concrete
implementation of this architecture under OSGi: OSGiLarva.

54

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Proposition of a Generic Architecture
Our proposition consists of dynamically inserting a moni-

toring proxy in front of each service, and executing monitors
in some autonomous services (Fig. 8). When a service
usage event occurs, a notification is sent to each associated
monitor, which checks the event against its property.

An interesting advantage of using a dynamic proxy over
AspectJ, is that we can start or stop the monitoring of a
property without restarting the service. Indeed, since the
proxy is bound upon a service request, this can be handled
easily, while AspectJ aspects are bound at class load-time,
requiring to restart the service.

Since services are treated as black boxes from the running
environment’s point of view, such an architecture is designed
to consider only properties of their external interface. This
corresponds to properties expressing the normal authorized
use of a service. However, since we are considering dynamic
systems, we also want to consider dedicated framework
events, such as unregistration of a service or getting a new
service. In this approach, we will then focus on behavioral
properties.

Since several clients can be running simultaneously within
the framework, the scope of properties should not be re-
stricted to the use of a single client. We consider the
possibility of adding a monitor in front of several client. By
considering both the monitoring of Instance-Properties and
Class-Properties, we enable the possibility of simultaneously
checking both local as well as global properties on the
system.

In order to enable properties expressed in terms of method
call events and framework events (requests, registration, un-
registration, etc.), we need to capture both kinds of events —
the ones between the client and the service, and events from
the service registration system. To inject a monitor between a
service and a client using it, we adapt the framework in order
to make this invisible both to the client and the service. Two
interesting characteristics of this approach are that it does not
change the binary signature of the service and that neither
the service, nor the client, are aware of a potentially running
monitor. By adding another proxy in front of the service
management system of the framework, we are notified of
requests for getting service references.

Fig. 8 describes the abstract architecture. In the following,
we delve deeper into our two main principles.

Resilience to Dynamicity: Since the monitoring sys-
tem is externalized in an autonomous service, monitors
are separated from the code. When changes occur in the
framework, the observation mechanism and its properties
remain unaffected.

Comprehensive Monitoring: One of the main concepts
of dynamic SOA is to have a framework which allows
dynamic loading and unloading of loosely coupled services.
Since the framework is in charge of providing an imple-
mentation to each service request, the framework can add

Get
Service

Framework
Event

Service
Registration

Service
UnregistrationRequest

Service

Invocation
Event

Monitor

Client Server

Service
Management

System

Proxy

Proxy

Figure 8. Proposed abstract architecture for monitoring system

a proxy between the client and the service to observe their
communications. This observation is comprehensive and no
communication can bypass this proxy, since neither the
client nor the service know each other directly.

B. OSGiLarva — A monitoring tool for OSGi

OSGiLarva (Fig. 9), is an implementation of the described
abstract architecture in the context of the OSGi framework.
In our tool, we use Java mechanisms in order to generate
a proxy between each client and service. This proxy is
dynamically generated from a framework proxy, hooked
onto the OSGi framework, and listens to all framework
events such as the introduction of a new service or the
requesting of a service by a client.

This implementation integrates two existing tools:
Larva [5] and LogOs [15]. LogOs is a special logging tool
based on the OSGi framework, developed at the CITI Lab
during the LISE project [16]. We will use it as a hooking
mechanism to observe services’ interactions. Larva is a
compiler which generates a verification monitor that may
be injected into Java code. We use an adaptation of Larva
to enable property verification on events reported by LogOs.

We describe the monitor implementation with three key
parts: we first present our adaptation of LogOs to intercept
service interactions; next, we give some details about our
modifications of Larva; finally, we describe how the registra-
tion process of a service under OSGi will take into account
an existing property monitor to insert it between the service
consumer and the service itself.

55

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Invocation
Event

OSGiLarva

Framework
Event

Service Registration
Get ServiceRequest

Service

Invocation
Event

Service
Unregistration

Implementation

 Larva Property checking

Client

OSGi Service
Management

System

LogOs Framework Proxy

LogOs
Dynamic

Proxy

Class PropertyInstance Property

Interface

Service

Figure 9. OSGiLarva implementation

1) LogOs – a Hook to Intercept Services’ Interactions:
LogOs is a transparent logging toolkit for the service activity
inside the OSGi architecture. As soon as the LogOs bundle is
started, each service registration is observed by the system.
Thanks to the OSGi hooking mechanism, a LogOs proxy
is generated between the service and its consumer. Hence,
every method call, including parameters and returned values,
are automatically intercepted.

For each event captured by a LogOs proxy, a correspond-
ing LogOs event-description is forged and propagated to
LogOs. In our adaptation, LogOs proxy forwards them to
the associated monitors.

We have extended LogOs annotations to enable the user
to declare whether an interface is to be monitored or not.
If an annotation is present, the monitoring class is loaded
when a service implementation is registered.

Moreover, LogOs integrates a mechanism to observe
services registration, which is originally used to generate
service proxy at load-time. This information is sent to the
Larva monitor.

2) Larva — a Monitoring Tool: Larva is a tool that injects
monitoring code in a Java program to check a property
described in a Larva script file. Upon compiling a script,
the Larva Compiler generates two main outputs: (i) a Java
class coding the property and (ii) an aspect which links
the monitoring code with the source code. An aspect is
defined to statically inject some calls to the monitor inside
the Java software by using the AspectJ compiler. The Java
code translating the property is called each time an expected
event occurs.

We adapted Larva to OSGiLarva by removing the part

associated with the injection of aspects. In order to replace
this part by a call from LogOs, we make the generated Java
code from the properties implement an interface provided
by LogOs. In order to consider dynamic events in described
properties, we introduced some new primitives in the prop-
erty description language (Section V) corresponding to event
descriptions generated by the latest version of LogOs.

3) Registration of a Service Providing Specification:
We propose to enable the declaration of properties to be
monitored to be included as part of OSGi bundles, as
shown in Fig. 10. Indeed, an OSGi bundle is an archive
providing three elements: a collection of interfaces, a col-
lection of services implementations, and bootstrap code,
which is called when loading or unloading the bundle.
Thanks to the OSGi architecture, service interfaces, service
implementations and bundles may have different life cycles
depending on the deployment scheme, since interfaces may
be deployed with a bundle other than the one containing the
service implementation.

OSGi Bundle Interface

Properties Services
Implementation

Bootstrap Code

Manifest

Figure 10. Structure of an OSGi bundle providing properties

As such, we propose to keep the same philosophy when
providing properties. We consider that they can be either pro-
vided by the same bundle as implementation or by another
one. Since interfaces are typing specifications of services
and OSGiLarva Class-Properties are behavioral specification
of services, it makes sense to map the life cycle of class
properties to that of interfaces. On the other hand, the
Instance-Properties life cycle describes the behavior of a
single service interaction and thus it makes sense to map
its life cycle to the client-service connection life cycle.

In next section, we introduce the property description
language, which is an adaptation of the one used in Larva.

V. INTRODUCING DYNAMICITY IN PROPERTY
DESCRIPTION

The OSGiLarva description language is originally based
on the Larva property description language, but we adapt it
in order to support more dynamicity. This adaptation is done
through two extensions. The first one is the introduction of
framework-event primitives in the language. The second one
expresses a property as a composition of Class-Properties
and Instance-Properties. In this section, we introduce these
modifications.

A. Adding Dynamic Primitives

Larva uses as input a property description language based
on automatons, extended by timers, variables and actions.

56

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the property itself, the user can define the set of symbols
used in the automaton. These symbols are events which, in
the original version of Larva are defined in terms of method
names. We thus propose to add some new primitives in the
event definition in order to support framework-event.

A monitor is started when a monitored service is reg-
istered in the framework. From this moment, each event
related to this service is propagated to this monitor. Since
we are in a dynamic framework, dynamic events can occur,
e.g., the loading of a second implementation of the same
interface, or the un-registration of an existing service. We
propose to introduce the three following primitives:

• REGISTER: this event occurs when a new service im-
plementation is registered on the framework. It means
that a client can now get this service reference at any
time. If another implementation is already registered, it
shares the same Class-Property.

• GETSERVICE: this event occurs when a client is asking
for a service, by calling the framework getService
method. It can lead to two situations: client gets a
service or the client does not get any service. If a
client could not get a service from the server, it means
that there is no registered service corresponding to
the client request. For this reason, we introduce the
NOGETSERVICE event to handle this case.

• UNREGISTER: this event occurs when a bundle is
unregistered from the framework. It means that, the
stop method of the bundle has been executed. Used
resources are then considered as released. However, if
any reference to an instance of the code provided by this
bundle still exist, they are now called Stall references
— meaning that if a client was using this service it
has to consider this code as perhaps no longer safe or
functional.

In order to generate and provide these events to Larva-
monitors, LogOs needs to register some listeners on the
framework.

Event GETSERVICE is obtained by using an OSGi
FindHook instance, registered in the OSGi framework.
When registered, such object is called each time a ser-
vice is obtained. Originally, this mechanism was defined
in order to make a filter on services obtained as a result
of getService call. Indeed, the getService method
accepts as an input a description of the expected service and
returns an array of corresponding service implementations
among the available ones. The FindHook mechanism has
been introduced in order to allow service filtering (i.e.,
to hide some services). Note that LogOs also uses this
mechanism to ensure that, if a service is monitored, every
calls to this service are necessarily done through a proxy,
and never directly.

REGISTER and UNREGISTER events are obtained by
registering an OSGi EventHook with the service man-
agement system. An object implementing the EventHook

class and registered in the framework is called each time the
service management system observes a modification, such as
new incoming service, a service un-registration, or a service
property modification.

In each of these cases, an event descriptor is forged by
LogOs and sent to the Larva monitor. On its end, Larva treats
such events like all other events. Hence, the event descriptor
is compared to the list of events the monitor is listening to,
and, if the property is expecting this kind of event, it triggers
upon it.

B. Property Description Language

Since our contribution is based on the Larva description
language [17], chosen for its closeness to our requirements,
we mainly orient our proposition according to Larva. In
Larva, properties are described by automatons, where a
single script file can contain several automatons. Moreover,
Larva provides in its language the possibility of defining
parametrized automatons which can be instantiated using
event parameters, through the FOREACH keyword. We ex-
ploit this characteristics in order to use properties composed
by two parts (Instance-Property and Class-Property):

• Instance-Property: If a property is defined as an
Instance-Property, then each time a new client accesses
the interface, a new instance of the property is gen-
erated and added inside the monitor. When the client
terminates, the associated instance of the property can
also be removed. Hence, while such properties are still
resilient to service implementations’ dynamicity, they
are intentionally not resilient to clients’ dynamicity.

• Class-Property: This case corresponds to a centralized
property, meaning that several clients using a particular
interface will share the same Class-Property. Such
property is more resilient to dynamicity since a Class-
Property can be kept in memory until the associated
interface is unloaded. As such it is not associated to
a particular user’s interaction or a particular service
implementation, and can thus be used, for instance,
to express some centralized locking/unlocking mech-
anisms. However, if several implementations are used
concurrently, then they would probably need to be
synchronized.

In the following, we present the main principles of the
Larva property description language together with small
modifications done in the context of OSGiLarva.

1) Existing Larva Property Description Language: A
Larva property description file can contain several automa-
tons. The file is structured in terms of contexts. The global
context can contain several properties and each of them can
introduce a new context. A context is defined by variables
and listened events. Each inner context can access the global
variables.

57

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A FOREACH structure allows a property to be instantiated
for each different value of an element, considered as an
identifier.

Channels can be used by automatons to communicate
together. These channel-generated events are broadcasted to
the current context and below. So, if two inner contexts need
to communicate, they can do it through channels.

A generic structure of a Larva property file is given in
Fig. 11. It shows a file containing two properties: a global
one and an instantiated one.

GLOBAL{
VARIABLES{ ... }
EVENTS{ ... }
PROPERTY P1 {

STATES{...}
TRANSITIONS{ ... }

}
FOREACH (Object u){

VARIABLES{ ... }
EVENTS{

%% Property designer needs to
%% express how to retrieve the
%% identifier:
someEvent(User u1) = {

u1.someMethod(); where u=u1;
}
...

}
PROPERTY P2 {

STATES{...}
TRANSITIONS{ ... }

}
}

}

Figure 11. Generic larva property file with two properties of two types

2) OSGiLarva Properties: One way of introducing a new
context is to use a FOREACH clause. This clause is a
quantification on an object. Hence, for each instance of a
given class, Larva generates a new instance of the inner
property. We propose to adapt this structure to our needs,
by introducing a new clause: FOREACHCLIENT.

In classical Larva, in order to distinguish between users,
Larva uses the information given by the caller such as a
Session ID passed as a parameter. Hence, Larva only has the
same information as the service implementation to check a
property. We propose to improve on this by introducing this
construct based on the address of the caller. As an example,
such a clause could make it possible to check that there is
no IDsession spoofing.

A property described in the FOREACHCLIENT context
will be re-instantiated for each loaded client. It will be the
instance-part of the property. Conversely, the class part of
the property is instantiated only once and is then shared by
all clients. We will then express it in the GLOBAL clause.

It can communicate with all “instance-part” instances of
the property. Fig. 12 shows the global syntax of a global
property, composed by an Instance-Property and a Class-
Property.

A very important difference between the FOREACH and
FOREACHCLIENT clauses is that the first one is based on
values computed inside the EVENTS clause from observed
parameters, while the second one is based on values provided
directly by LogOs observation, without any interpretation of
parameters.

Moreover, since FOREACHCLIENT is an extension of the
FOREACH clause, then we keep all language characteristics
of the latter.

GLOBAL{
VARIABLES{ ... }
EVENTS{ ... }
PROPERTY P1 {

%% Class property (same as Larva)
STATES{...}
TRANSITIONS{ ... }

}
%% Introduction of this new keyword
FOREACHCLIENT(Long pid,String s){

%% Instance property.
%% Parameters are:
%% - pid: client identifier
%% - s: name of the client
%% (for logs)
VARIABLES{ ... }
%% EVENTS clause do not need to
%% provide method to compute the
%% identifier. It is intricated
%% inside the language.
EVENTS{

%% Just an event description
someEvent()=frameworkEvent();
anotherEvent()=someMethod();
...

}
PROPERTY P2 {

STATES{...}
TRANSITIONS{ ... }

}
}

}

Figure 12. Introducing the FOREACHCLIENT keyword

VI. EVALUATION

In this section, we present some benches of OSGiLarva.
There are mainly two implementations used for executing
OSGi services: Apache Felix and Eclipse Equinox. In our
benches, we use the current Apache Felix which is an
open source implementation of the OSGi Release 4 core
framework specification, on the top of the Java 1.6.0-06
Virtual Machine. The machine used for these tests runs on
an Intel Pentium M at 1.4GHz CPU with 640MB of RAM

58

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and running under Gentoo 4.2.3 with 2.6.22-gentoo-r8 kernel
version.

In the following, we are using two examples: one without
dynamicity and another with dynamicity. Indeed, since we
will make efficiency comparisons against Larva, which does
not support dynamicity, we then need to have a static
example. This example is just a loop making some calls
to a function provided by a service. On the other hand,
the dynamic example is very close to the one described in
Section II, but with a loop on the client side. This loop
specifies the concrete actions from the client and contains a
call to a service, followed by an unregistration of the service,
a get service to have a second service, a second call, and
finally a new registration of the unregistered service. In our
benches, we modify the amount of loop iterations to study
the variation of the time cost in the long run and its variation
due to JIT compilation.

We made three kinds of tests to study performances of
OSGiLarva: a comparison between the execution time of
OSGiLarva and Larva, a comparison between the execution
time of OSGiLarva and OSGi, and a comparison between
the execution time of OSGiLarva and a Class-Property-only
in OSGiLarva. Indeed, we hypothesized that the identifi-
cation of the client (and hence the Instance-Property) is a
bottleneck, but benches show that it is not so costly.

Here is the definition of some keywords appearing in this
section:

• Larva: the time cost from the example with the original
Larva system.

• OSGiLarva: the time cost from the example with the
OSGiLarva tool.

• WithoutOSGiLarva: the time cost from the example
running under OSGi, but without any monitoring sys-
tem.

• OSGiLarvawithoutPID: the time cost from the example
with a weaker version of OSGiLarva where we removed
the generation of a caller Id from the system.

Finally, for each test, we made two curve charts. The
"Time cost comparison" curve chart shows amount of loop
iterations on the horizontal axis, and time cost in millisec-
onds on the vertical axis. The "Cost ratio" curve chart shows
amount of loop iterations on the horizontal axis, and change
ratio of time cost in percentage points on the vertical axis.
The cost ratio is calculated by the time cost of the example
with the monitor divided by the time cost of the example
without the monitor.

A. Monitoring cost by Using a Proxy (OSGiLarva VS Larva)

The goal of this test is to evaluate the performance of
OSGiLarva (with a proxy) and to compare with the one of
the Larva tool (with AspectJ) on the same functions example.
Since Larva does not support OSGi dynamicity, we made the
comparison on a example without loading of services. In this
kind of comparison, we just use the two tools to monitor

the normal events from the communication of client using
services.

Fig. 13 is a comparison of the time cost in the execution
of a static example with Larva and OSGiLarva monitors. We
can observe that both curves are very close. Hence, OSGi-
Larva does not add too much cost by its proxy approach.

In order to be more precise, in Fig. 14 we plot the curves
of the cost ratio between Larva and OSGiLarva time cost
results. The change ratio of time cost is lower than 1%.
This change ratio is from the proxy in OSGiLarva. Thanks to
this proxy, OSGiLarva can make the behavioral monitoring
bindings dynamic and loosely coupled. The pre-condition
of this test is that the monitored service is never replaced
by another one. If the monitored service is replaced during
runtime, Larva will not be able to detect any of its events.
But OSGiLarva can continue to monitor it.

Since these two technologies are not using the same
Virtual Machine, the JIT is also not the same. We think
that this difference is the explanation for the behaviour
observed in the first run, which is stable and always faster on
OSGiLarva. This difference is probably also the explanation
for diminution of the overhead when the loop is longer.

0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

Tim
e c

os
t(s

)

L o o p r u n s

 O S G i L a r v a
 L a r v a

Figure 13. Comparing time cost of a static example with OSGiLarva and
Larva

B. OSGiLarva Efficiency (OSGi VS OSGiLarva)

This test runs the dynamic example described as a running
example in this article, but with a loop inside the client. We
then run it with and without OSGiLarva in an OSGi environ-
ment. It aims to evaluate the raw impact of OSGiLarva on
service invocation and service events from the framework.
The property events includes normal events and framework
events.

From Fig. 15, we know that the performance impact of
OSGiLarva is stable at around 23% on this example.

59

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

- 2

- 1

0

1

2

3

4
Co

st
rat

io(
%)

L o o p r u n s

 O S G i L a r v a / L a r v a

Figure 14. Comparing cost ratio of a static example with OSGiLarva and
Larva

For every monitored service invocation and framework
events, OSGiLarva performs its indirection work: it verifies
the actions from the original system and computes the
current client id, and finally it outputs the monitored traces
to the developer or the user at real-time. The cost ratio
almost becomes a horizontal line shown in Fig. 16, except
for the two first points at about loop 100 runs and 500 runs.
We presume that it is the initialization of the JIT which is
causing this anomaly.

It is important to note that this 23% overhead is a metric
including the call of methods events and the framework
events. The biggest part of this overhead is associated to
the cost of generating a new proxy and placing it in front
of newly requested service.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Tim
e c

os
t(s

)

L o o p r u n s

 O S G i L a r v a
 W i t h o u t O S G i L a r v a

Figure 15. Comparing time cost of the case study example with and
without OSGiLarva (simple method in service side)

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

1 6

1 8

2 0

2 2

2 4

2 6

Co
st

rat
io(

%)

L o o p r u n s

 O S G i L a r v a / W i t h o u t O S G i L a r v a

Figure 16. Comparing cost ratio of the case study example with and
without OSGiLarva (simple method in service side)

C. Overhead Associated to Getting the Caller Id

In order to associate each communication to the right
client in Instance-Properties, we compute a caller Id. How-
ever, we get it through the SecurityManager which is a
non-internal way of finding the caller class and caller Id.
As such, one would expect extra time costs because of the
SecurityManager, warranting further investigation.

Thus, the following test is just for knowing the per-
formance impact from compute current caller Id during
runtime. We then compare the cost of the Case Study with
and without the Instance-Property and then, with or without
getting the caller Id.

From Figs. 17 and 18, we observe that the time cost of
the two kind of monitoring are very closed. The impact cost
is lower than 5%.

Indeed, in such a simple test example, the body of the
called methods are very small. Hence, the most of the time
cost is from invocation itself. So, if the service method is a
more complex and real one, the time cost for getting caller
id and caller name will far less than 5%.

Moreover, even at 5% time cost, we conjecture that it is an
acceptable price to pay for obtaining the crucial information
for identifying which client is currently using a particular
service.

VII. CONCLUSIONS

In the highly dynamic environment of the SOA, where
software can be replaced on the fly at runtime, the challenges
for ensuring correct behavior increase as the software has to
be checked at runtime. In this context, we have identified
two properties, that we consider are required to make a
dynamic monitor for dynamic SOA systems: (i) resilience
to dynamicity, i.e., the monitor is able to maintain state even
if the service implementation is substituted at runtime, and

60

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Tim
e c

os
t(s

)

L o o p r u n s

 O S G i L a r v a
 O S G i L a r v a w i t h o u t P I D

Figure 17. Comparing time cost of the case study example with OSGiLarva
but with or without client Id

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

2

4

6

8

1 0

1 2

1 4

Co
st

rat
io(

%)

L o o p r u n s

 O S G i L a r v a / O S G i L a r v a w i t h o u t P I D

Figure 18. Comparing cost ratio of the case study example with OSGiLarva
but with or without Client Id

(ii) comprehensiveness, i.e., that no implementation of the
service can bypass the monitor’s observation.

We have instantiated the approach in the context of the
OSGi framework through a preliminary implementation,
OSGiLarva, which integrates an adaptation of two existing
tools: Larva and LogOs. Similar to Larva, OSGiLarva ac-
cepts the Larva property description language as input, hence
inheriting all its features, including its expressiveness and its
readability for non-expert users. Furthermore, it enables the
description of both class properties and instance properties.
This feature has been instrumental for OSGiLarva to monitor
both properties which span the whole duration of the inter-
face life cycle, and the individual client’s point of view of the
service, possibly spanning over different implementations of
the service requests. We have also extended the Larva event

description language, in order to consider not only calls or
return of method calls, but also OSGi framework events such
as the registration of a service or its request by a client;
this has been achieved by introducing reserved event names
which are usable transparently as if using standard method
calls.

As observed in section VI, our approach is not so inef-
ficient when compared to injection-based monitoring tools
like Larva. While our approach is based on an OSGi hook
observing all occurring events instead of aspect-oriented
programming, the extra cost is small: tending to less than
1% increase in overheads. Since, this approach is crucial
for dynamicity resilience, the cost incurred seems to be a
reasonable.

An interesting element of this approach is its non-intrusive
aspect. Indeed, in contrast to the aspect-oriented approach,
we keep the original byte-code unchanged. This property can
be useful if we want to switch off a monitor or be able to
check the binary signature of the code as an authentication
credential [18].

Finally, the notion of comprehensiveness also has a num-
ber of benefits since anybody with some privileged access
to the platform (user, developer, or service) can define a
behavioral property and ask the system to check if services
respect it. This can be done for many reasons, such as:
debugging deployment, privacy concerns, or to learn about
typical usage patterns of a service.

VIII. FUTURE WORKS

The current implementation of OSGiLarva is not complete
with respect to our requirements. For instance, we have
some works to do on the deployment step, in order to
make it more autonomous. Each Larva property file is
associated to a single interface. In the future, we aim to
enable the framework to associate one file to possibly several
interfaces. Moreover, in a next version of the tool, we could
make some propositions to reduce the OSGiLarva time cost.
For instance, we could make OSGiLarva asynchronous, by
exporting monitors to separate threads, or we can limit
monitoring to only occur within a fixed period of time: if the
property is respected during one week by a given consumer,
we can consider that it will still respect it afterwards. In OS-
GiLarva, the removal of a monitor is straightforward since
it is non-intrusive. Similarly, one can consider sampling:
monitoring only a random distribution of users, relying on
the probability that the error would still occur in the sample.

REFERENCES

[1] Y. Dan, N. Stouls, S. Frénot, and C. Colombo, “A Monitoring
Approach for Dynamic Service-Oriented Architecture
Systems,” in The Fourth International Conferences on
Advanced Service Computing, Nice, France, 2012. [Online].
Available: http://hal.inria.fr/hal-00695830

[2] Open Service Gateway Initiative (OSGi), http://www.osgi.org/
[retrieved: June, 2012].

61

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] T. Thai and H. Lam, .Net Framework Essentials. O’Reilly
Media, Incorporated, 2003.

[4] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu,
“An Overview of the MOP Runtime Verification Framework,”
International Journal on Software Techniques for Technology
Transfer, 2011.

[5] C. Colombo, G. J. Pace, and G. Schneider, “Larva - safer
monitoring of real-time java programs,” in SEFM, 2009.

[6] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and
B. Jacobs, “JML: notations and tools supporting detailed
design in Java,” in OOPSLA 2000 COMPANION. ACM,
2000, pp. 105–106.

[7] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M.
Leino, W. Schulte, and H. Venter, “The Spec# Programming
System: Challenges and Directions,” in VSTTE, ser. LNCS,
vol. 4171. Springer, 2005, pp. 144–152.

[8] T. Jeron, H. Marchand, A. Rollet, Y. Falcone, and O. N. Timo,
“Runtime Enforcement of Timed Properties,” in 3rd interna-
tional conference on Runtime Verification (RV), Septembre
2012.

[9] C. Simache, M. Kaaniche, and A. Saidane, “Event log based
dependability analysis of windows nt and 2k systems,” in
International Symposium on Dependable Computing, 2002,
pp. 311–315.

[10] S. Axelsson, U. Lindqvist, and U. Gustafson, “An approach to
UNIX security logging,” in 21st National Information Systems
Security Conference, 1998, pp. 62–75.

[11] H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service
interaction logs,” VLDB J., vol. 20, no. 3, pp. 417–444, 2011.

[12] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini,
“Validation of web service compositions,” IET Software,
vol. 1, no. 6, pp. 219–232, 2007.

[13] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
time monitoring of instances and classes of web service
compositions,” in Proceedings of the IEEE International
Conference on Web Services, ser. ICWS ’06. IEEE Computer
Society, 2006, pp. 63–71.

[14] Y.-C. Wu and H. C. Jiau, “A monitoring mechanism
to support agility in service-based application evolution,”
SIGSOFT Softw. Eng. Notes, vol. 37, no. 5, pp. 1–10,
Sep. 2012. [Online]. Available: http://doi.acm.org/10.1145/
2347696.2347714

[15] S. Frénot and J. Ponge, “LogOS: an Automatic Logging
Framework for Service-Oriented Architectures,” in 38th
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Izmir, Turquie, Sep. 2012.
[Online]. Available: http://hal.inria.fr/hal-00709534

[16] D. Le Métayer, M. Maarek, E. Mazza, M.-L. Potet, S. Frénot,
V. Viet Triem Tong, N. Craipeau, R. Hardouin, C. Alleaune,
V.-L. Benabou, D. Beras, C. Bidan, G. Goessler, J. Le
Clainche, L. Mé, and S. Steer, “Liability in Software Engi-
neering Overview of the LISE Approach and Illustration on
a Case Study,” in ICSE’10. ACM/IEEE, 2010, p. 135.

[17] C. Colombo, G. J. Pace, and G. Schneider, “Dynamic event-
based runtime monitoring of real-time and contextual prop-
erties,” in FMICS, ser. Lecture Notes in Computer Science,
D. D. Cofer and A. Fantechi, Eds., vol. 5596. Springer,
2008, pp. 135–149.

[18] P. England, “Practical Techniques for Operating System At-
testation,” in 1st international conference on Trusted Com-
puting and Trust in Information Technologies (Trust’08).
Springer-Verlag, 2008, pp. 1–13.

62

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ensembles of Decision Trees for Network Intrusion Detection Systems

Alexandre Balon-Perin
abalonpe@ulb.ac.be

Ecole Polytechnique
Université libre de Bruxelles

Brussels, Belgium

Björn Gambäck
gamback@idi.ntnu.no

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Abstract—The paper discusses intrusion detection systems
built using ensemble approaches, i.e., by combining several
machine learning algorithms. The main idea is to exploit the
strengths of each algorithm of the ensemble to obtain a robust
classifier. Network attacks can be divided into four classes:
probe, remote to local, denial of service, and user to root.
Each module of the ensemble designed in this work is itself
an ensemble created by using bagging of decision trees and is
specialized on the detection of one class of attacks. Experiments
highlighted the efficiency of the approach and showed that
increased accuracy can be obtained when each class of attacks
is treated as a separate problem and handled by specialized
algorithms. In all experiments, the ensemble was able to
decrease the number of false positives and false negatives.
However, some limitations of the used dataset (KDD99) were
observed. In particular, the distribution of examples of remote
to local attacks between the training set and test set made
it difficult to evaluate the ensemble for this class of attacks.
Furthermore, the algorithms need to be trained with specific
feature subsets selected according to their relevance to the class
of attacks being detected.

Keywords-intrusion detection, ensemble approaches, bagging,
decision trees, support vector machines.

I. INTRODUCTION

Intrusion detection systems (IDSs) are monitoring devices
that have been added to the wall of security in order to
prevent malicious activity on a system. Here we will focus
on network intrusion detection systems mainly because they
can detect the widest range of attacks compared to other
types of IDSs. In particular the paper discusses machine
learning based mechanisms that can enable the network IDS
to detect modified versions of previously seen attacks and
completely new types of attacks [1].

Network IDSs analyse traffic to detect on-going and
incoming attacks on a network. Additionally, they must
provide concise but sound reports of attacks in order to
facilitate the prevention of future intrusions and to inform the
network administrators that the system has been compromised.
Current commercial IDSs mainly use a database of rules
(signatures), to try to detect attacks on a network or on
a host computer. This detection method is presently the
most accurate, but also the easiest to evade for experienced
malicious users, because variants of known attacks (with

slightly different signatures) are considered harmless by the
IDS and can pass through without warning. New attacks
and attacks exploiting zero-day vulnerabilities can also slip
through the security net if their signatures are unknown to
the IDS. A zero-day vulnerability is a software weakness
unknown by the system developers, which potentially could
allow an attacker to compromise the system. ‘Zero-day’ refers
to the first day, day zero, that the vulnerability was observed.

In order for an intrusion detection system to be able
to detect previously unseen attacks or variants of known
attacks, there is a need for mechanisms allowing the IDS
to learn by itself to identify new attack types. However, the
problem is further complicated by the extreme requirements
of robustness of the IDS. It must be able to detect all
previously seen and unseen attacks without failure, it must
never let an attack pass through unnoticed, and it must
never deliver unwanted warnings when the traffic is in fact
legitimate. Sommer and Paxson (2010) give a summary of
the main challenges that machine learning has to overcome
to be useful for intrusion detection [2].

Despite these constraints and challenges, several attempts
have been made to build automatically adaptable intrusion
detection systems using various machine learning algorithms.
So far though, the machine learning classifiers trigger too
many false alarms to be useful in practice. Part of the problem
is the lack of labelled datasets to train the classifiers on. The
only freely available labelled dataset is the KDD99 dataset [3]
described below (Section III). To address these problems,
new machine learning paradigms have been introduced in
the field of intrusion detection, and in general the machine
learning community has in recent years paid more attention
to ensemble approaches, that is, to combinations of several
machine learning algorithms.

Network attacks can be divided into four classes: probe,
remote to local, denial of service, and user to root. Most
previous machine learning-based solutions include a single
algorithm in charge of detecting all classes of attacks. Instead,
in this work, one module of an ensemble is specialised on
the detection of attacks belonging to one particular class.
The main idea is to exploit the strengths of each algorithm
of the ensemble to obtain a robust classifier. Ensembles are

63

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

particularly efficient in cases like this, when a problem can
be segmented into parts, so that each module of the ensemble
is assigned to one particular subproblem. The modules in
turn include one or more algorithms cooperating.

Furthermore, each class of attacks is characterized by very
specific properties, observable through the values of certain
features on instances in the dataset belonging to a specific
class of attacks. However, even though feature selection is
often applied in IDSs using machine learning techniques,
often only one set of features is selected for all classes
of attacks. In this work, one set of features is selected for
each class of attacks according to their relevance to the
corresponding class. The corresponding algorithm(s) is then
fed with the appropriate set of features. The system can, in
theory, reach a very high accuracy with a small cost, and the
ensemble processing can potentially be parallelized using a
multicore architecture. In the best scenario, each algorithm
could run on a different core of the processor allowing the
IDS to attain extremely high performance.

The experiments performed in this paper are in direct
continuity of the work done by Mukkamala et al. [4]–[6],
which identified the key features relevant to each of the four
classes of attacks. The objectives of our experiments were
multiple. In particular, to answer the following questions:

• Can ensemble approaches improve intrusion detection
accuracy even when using the simplest algorithms
without fine-tuning?

• Are the results of Mukkamala et al. (2005) [4] concern-
ing the features selected by the three algorithms support
vector machines (SVM), linear genetic programming
(LGP), and multivariate adaptive regression splines
(MARS), for each class of attacks, correct?

• Are the false positive (FP) and false negative (FN) rates
close enough to zero for the IDS to be efficient?

The rest of the paper is laid out as follows: First, Section II
introduces the machine learning methods utilized in the
paper, in particular discussing ensembles and feature selection.
Section III then discusses the data set used in the experiments,
while Section IV gives an overview of the state-of-the-art
and related work, in particular focusing on previous efforts
in applying ensemble-based methods to intrusion detection.
The core of the paper is Section V that details two rounds of
experiments carried out, on feature selection for ensembles
resp. on feeding an ensemble of machine learning algorithms
with the most successful sets of features identified. Section VI
then discusses the results of the experiments at length and
points to ways in which the present work could be extended.
Finally, Section VII sums up the previous discussion.

II. ENSEMBLE-BASED INTRUSION DETECTION

Machine learning algorithms operate in two main steps. In
the first, the algorithm uses a training dataset to build a model
of the data. In the second step, the model is applied to new
examples. Usually, a test set is used to assess the performance

of the algorithm. The model differs greatly depending on
the type of algorithm used. In the case of regression, the
algorithm must find the function that fits the data as well as
possible. In the case of classification, the algorithm must find
decision boundaries that separate the data as well as possible
according to the number of desired classes. In both cases, a
cost function is used to evaluate how good the model fits
the data. The goal of the machine learning algorithm is to
find the model that minimizes the cost function.

A. Supervised and Unsupervised Learning

In general, machine learning algorithms can be divided
into two major classes depending on their learning technique:
supervised and unsupervised. Supervised learning implies to
obtain a training dataset in which every entry is labelled with
class the example belongs to, while unsupervised learning
algorithms do not need the dataset to be labelled. This
is the most obvious disadvantage of supervised learning:
obtaining data is cheap whereas obtaining labels for the
data is very expensive in terms of both time and money
because one or more experts must go through millions of
examples and assign them a label. Apart from this main
drawback, supervised learning also has some advantages.
The first one is the ease of use and interpretation of the
results. Indeed, the output of the classifier belongs to one of
the classes defined by the labels of the dataset. The second
advantage of supervised learning is its accuracy to classify
similar examples. However, this accuracy drops significantly
when the new examples are not so similar to the ones in the
training set [7].

The most popular technique of unsupervised learning is
clustering, where the algorithm exploits the similarity of the
examples in order to form clusters or groups of instances.
Examples belonging to the same cluster are assumed to
have similar properties and belong to the same class. In
contrast to supervised learning, disadvantages of unsupervised
learning include manual choice of the number of cluster that
the algorithm must form, lower accuracy of the prediction,
and that the meaning of each cluster must be interpreted
to understand the output. However, unsupervised learning
is more robust to large variations. This is a very important
advantage when applied to the problem of intrusion detection,
since it means that unsupervised learning is able to generalize
to new types of attacks much better than supervised learning.
In particular, this property could be quite beneficial when
trying to detect zero-day vulnerabilities.

B. Ensembles

The ensemble method is a way to build different types
of approaches to solving the same problem: the outputs of
several algorithms used as predictors for a particular problem
are combined to improve the accuracy of the overall system.
Ensemble approaches were introduced for the first time in
the late 80s. In 1990, Hansen and Salamon showed that

64

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the combination of several artificial neural networks can
drastically improve the accuracy of the predictions [8]. The
same year, Schapire showed theoretically that if weak learners
(i.e., classifiers able to correctly classify only a small fraction
of the examples in a dataset) are combined, it is possible to
obtain an arbitrary high accuracy [9].

The difficulty of ensemble approaches lays in the choice
of the algorithms constituting the ensemble and the de-
cision function that combines the results of the different
algorithms. Often, the more algorithms the better, but it is
important to take into account the computational expense
added by each new algorithm. The decision function is
often a majority vote that is both simple and efficient,
but alternatives should be analysed to obtain an optimal
combination. Another advantage of ensemble approaches
is their modular structure, unlike hybrid constructions that
are engineered with algorithms having non-interchangeable
positions. Consequently, the ensemble designer can easily
replace one or more algorithms with a more accurate one.

Bagging and boosting are the two main techniques used to
combine the algorithms in an ensemble. In an ensemble using
the boosting technique, the algorithms are used sequentially.
The first algorithm analyses all the examples in the dataset
and assigns weights to each of them. The examples with a
higher value for the weight are the ones that were classified
wrongly by the algorithm. Then, the next algorithm receives
as input the dataset as well as the weights for all examples
in the dataset. The weights allow the algorithm to focus on
the examples that were the most difficult to classify. These
weights are updated according to the results of the second
algorithm and the process moves to the third algorithm. This
sequence continues until the last algorithm of the ensemble
has processed the data. The advantage of this technique is that
the most difficult examples can be classified correctly without
adding too much computational overload. The use of weights,
which are continuously updated, reduces the processing time
as the data goes down the chain of algorithms.

In an ensemble using the bagging technique, all algorithms
of the ensemble are used in parallel. In this case, each
algorithm builds a different model of the data and the outputs
of all predictors are combined to obtain the final output of
the ensemble. In order to build different models, either each
algorithm of the ensemble, or the data fed to each algorithm,
or both, can be different. Since all algorithms perform
in parallel, each of them can be executed on a different
processor to speed up the computation. This is an important
advantage over the boosting technique because nowadays
multicore processors are very common even on personal
computers. With this kind of architecture, the ensemble does
not significantly increase the processing time compared to a
single algorithm because the only additional time needed is
used for the decision function that combines the outputs of
all algorithms.

C. Feature Selection

Feature selection is a very efficient way to reduce the
dimensionality of a problem. Redundant and irrelevant
variables are removed from the data before being fed
to the machine learning algorithm used as a classifier.
Feature selection is a preprocessing step that commonly
is independent of the choice of the learning algorithm. It
can be used in order to improve the computational speed
with minimum reduction of accuracy. Other advantages
include noise reduction and robustness against over-fitting
since it introduces bias but drastically reduces the variance.
Generally, automatic selection of features works much better
than manual selection because the algorithm is able to find
correlations between the features that are not always obvious
even for a human expert. Feature selection is an important
preprocessing step of a machine learning algorithm that
should not be overlooked. In particular, it should always be
applied when the problem has a high dimensionality, as is
the case for intrusion detection, since there is no point in
feeding an algorithm with features that are irrelevant or add
an insignificant amount of new information.

The main feature selection algorithms are minimum
redundancy maximum relevance (mRMR) and principal
component analysis (PCA). The former selects the subset
of variables most relevant to the problem. The variables are
ranked according to the information that they contain. This
quantity of information is calculated by using the concept of
entropy from information theory. The latter, PCA transforms
the set of variables into a new smaller set of features. In
both cases, the goal is to extract as much information as
possible from as few features as possible. While PCA has
been extensively used for the problem of intrusion detection,
particularly on the KDD99 dataset, surprisingly, mRMR
seems not to have been used much or at all [10].

III. THE KDD99 DATASET

As observed in the introduction, part of the problem of
automatically creating good intrusion detection systems is
the lack of labelled datasets to train on. The only one
freely available is the KDD Cup 99 dataset, which was
used for the first time in the 3rd International Knowledge
Discovery and Data Mining Tools Competition in 1999. It
is an adaptation of the DARPA98 dataset [11] created in
1998 by the (then) Defense Advanced Research Projects
Agency (DARPA) Intrusion Detection Evaluation Group (now
the Cyber Systems and Technology Group of MIT Lincoln
Laboratory). The DARPA98 set includes seven weeks of data
(captured in the form of a tcpdump) from traffic passing
through a network engineered for the purpose, i.e., the traffic
was generated in a simulated and controlled environment.

A few alternative datasets exist, but are limited by either
not being generally accessible to the research community or
by not being annotated. The UNB ISCX Intrusion Detection
Evaluation DataSet [12] from the Information Security Centre

65

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of eXcellence at University of New Brunswick contains more
realistic/real network traffic data than the KDD99 dataset
(i.e., mainly normal traffic, with just some intrusion attempts).
However, it seems unfortunately currently not to be available
to other researchers. Publically available datasets from, for
example, the Internet Traffic Archive (http://ita.ee.lbl.gov) and
University of New Mexico (http://www.cs.unm.edu/∼immsec)
contain a lot of data, but unannotated. Tavallaee et al. (2010)
give an overview of most currently available datasets [13].

A. Types of Attacks

All the examples in the KDD99 dataset are separated into
five classes: Normal, Probe, R2L (remote to local), DoS
(denial of service), and U2R (user to root). The class Normal
of course denotes normal (legitimate) network traffic. The
other four classes denote different types of attacks (intrusion
attempts) and are further described in turn below.
Probe attacks are scouting missions used to gather

information about the targeted network or a specific machine
on a network: attackers scan a network to find vulnerabilities
and to create a map of the network, often as the first step of
one of other types of attacks. Hence it is crucial to detect
this type of attacks. However, it is difficult to differentiate
attacks from regular actions, since probing or scanning
typically abuse perfectly legitimate features used by network
administrators to check on machines in a network. The most
common program to scan a network is ‘nmap’, which can
be used to look for active machines and active ports on a
machine, or to discover the type and version of the server
and the operating system. Other probes such as ‘saint’ and
‘satan’ are specialised in discovering vulnerabilities in the
targeted system.

In R2L attacks, external attackers start a session on a
computer outside of the targeted network and then manage
to exploit some vulnerability in a system in order to get
local user access on a computer in the network. In order
to do this, the attackers must have the ability to send
network packets to the victim host. Many remote to local
attacks (e.g., ‘warezmaster’, ‘warezclient’, ‘imap’, ‘named’,
and ‘sendmail’) exploit bugs or weaknesses in different
Internet protocols such as FTP, DNS, and SMTP. Other R2L
attacks exploit system misconfigurations (e.g., ‘dictionary’,
‘ftp write’, ‘guest’, and ‘xsnoop’).
DoS attacks aim either to overload a system so that it

cannot process all requests, or to directly deny legitimate
users access to a system or network resource, such as
network bandwidth, computer memory or computing power.
An attacker can abuse a legitimate feature of a network
protocol by, for example, sending replies to protocol queriers
faster than the destination of the query in order to falsify the
information contained in the network tables of the victim.
Some of these attacks are ‘mailbomb’, ‘neptune’, ‘smurf’,
and ‘ARP poisoning’. Others such as ‘teardrop’ and ‘ping
of death’ (‘pod’) exploit implementation bugs of the TCP/IP

Table I
DISTRIBUTION OF INSTANCES IN THE KDD99 DATASETS

Class Training set Test set

Normal 972,781 60,593
Probe 41,102 4,166
R2L 1,126 16,347
DoS 3,883,370 229,853
U2R 52 70

Total 4,898,431 311,029

protocol, while attacks like ‘apache2’, ‘back’, and ‘syslogd’
target a specific program running on the victim host.

In the type of DoS attacks focusing on resource exhaustion,
the attacker typically sends a huge amount of queries in a
short amount of time to the targeted victim. If the victim is a
server, resource exhaustion occurs when the server receives
more queries than it can process: in a ‘udpstorm’ (also called
‘UDP Port DoS’ attack or ‘UDP packet storm’), an attacker
forges a packet with a spoofed source address of a host
running an “echo” or “chargen” process and sends it to
another hosts running a similar process. The receiving host
replies with an echo packet to the spoofed source, which
replies with another echo packet, etc., creating a loop leading
to resource exhaustion or performance degradation [14].

A variant of DoS used extensively by hackers is distributed
denial of service (DDoS) [15], [16]. A DDoS is performed
in two main steps. First, an attacker gains control over a
(often huge) number of computers, called slaves or zombies,
by exploiting unpatched vulnerabilities found in the target
systems. Then the attacker orders all slaves to query a
designated machine (usually a server) at the same time.

In U2R attacks, access to a normal user account (with
restricted rights) is used as a starting point to gain root user
permissions and take over a system, e.g., by exploiting some
vulnerability in the system. There are several different types
of user to root attacks, with the most common being ‘buffer
overflow’ [17] that aims to corrupt a program with high
privileges (i.e., root) in order to take control of the host
computer running the vulnerable program. The attacker uses
a buffer with non-existent or poorly performed boundary
checking to launch a root shell and then corrupts the stack
pointer to point to the attacker’s own malicious code. Other
U2R attacks such as ‘loadmodule’ or ‘perl’ take advantage
of the way some programs sanitize their environment. Others
still (e.g., ‘ps’) exploit poor management of temporary files.

B. Training and Test Sets

The KDD99 dataset is divided into a training set and a
test set. Table I shows the distribution of instances of the
KDD99 training and test sets over the different classes of
attacks. The various types of attacks belonging to each of
these classes are further detailed in Table II.

66

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
TYPES OF ATTACKS IN THE KDD99 DATASETS

Class Attack Training set Test set

Probe

satan 15,892 1,633
ipsweep 12,481 306
portsweep 10,413 354
nmap 2,316 84
mscan 0 1,053
saint 0 736

Total 41,102 4,166

R2L

warezclient 1020 0
guess passwd 53 4,367
warezmaster 20 1,602
imap 12 1
ftp write 8 3
multihop 7 18
phf 4 2
spy 2 0
snmpgetattack 0 7,741
snmpguess 0 2,406
httptunnel 0 158
named 0 17
sendmail 0 17
xlock 0 9
xsnoop 0 4
worm 0 2

Total 1,126 16,347

Class Attack Training set Test set

DoS

smurf 2,807,886 164,091
neptune 1,072,017 58,001
back 2,203 1,098
teardrop 979 12
pod 264 87
land 21 9
mailbomb 0 5,000
apache2 0 794
processtable 0 759
udpstorm 0 2

Total 3,883,370 229,853

U2R

buffer overflow 30 22
rootkit 10 13
loadmodule 9 2
perl 3 2
ps 0 16
xterm 0 13
sqlattack 0 2

Total 52 70

Normal 972,781 60,593

Total 4,898,431 311,029

Each entry in the sets is represented by a label and 41 fea-
tures such as duration, src_bytes, and dst_bytes.
Of the features, 38 are numerical and thus only three non-
numerical: protocol_type, service, and flag. For
the non-numerical features, there are three protocol types
(TCP, UDP, and ICMP), 70 different services, and 11 possible
flags. The non-numerical variables are normally transformed
into numerical ones to ensure that all the machine learning
algorithms are able to process their values.

The KDD99 training set contains 4, 898, 431 entries and
is highly unbalanced. Whereas the DoS class contains
3, 883, 370 instances, the classes U2R and R2L are repre-
sented by only 52 and 1, 126 instances, respectively. With
such a small number of examples to train on, it can be
expected that it will be difficult for the classifiers to predict
the correct classes of unseen examples.

The test set is composed of 311, 029 entries with a
distribution of the examples over the different classes similar
to that in the training set. However, the number of examples
belonging to the class R2L is more than ten times higher
than in the training set, so that in order to perform well
on the test set, the predictor must acquire a very high

power of generalisation with 1, 126 training examples. Most
importantly, the number of unseen attacks added in the test
set is huge: for the classes U2R, R2L and Probe, it is
respectively 44.29%, 63.34% and 42.94%. Furthermore, the
attacks ‘spy’ and ‘warezclient’ belonging to the class R2L
are not represented in the test set. In particular, ‘warezclient’
attacks count for more than 90% of the R2L training set.

Notably, two entries in the test set erroneously have a
service value of ICMP, as also previously reported [18].
Those faulty entries were removed from the test set before
carrying out the experiments reported in Section V.

The major criticisms of the KDD99 dataset include the
unbalanced distribution of the data, that the redundant records
can introduce a bias in the learning phase because of their
frequency, that the dataset includes old attacks which have
been mostly mitigated, and that the data were captured from
a controlled environment somewhat different from what is
observed in the wild. The first two issues can be addressed
by sampling appropriate sets of examples for each class
of attacks. However, the distribution of R2L attacks in the
training set and the test set is a problem that is difficult to
overcome.

67

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Nevertheless, the KDD99 dataset is far from useless.
Firstly, if an IDS using machine learning does not perform
well on old attack provided that the data are well sampled,
why would it on newer ones? Furthermore, most of the
research in the field of machine learning applied to intrusion
detection uses the KDD99 dataset, making it a vector of
comparison between different approaches. The controlled
nature of the environment in which the data were captured
is probably the most problematic. For example, the high
number of attacks in comparison to normal traffic does not
reflect the reality of a network in which almost all traffic is
normal. Again, appropriate sampling is required. In addition,
the IDS should at least be accurate on data produced by a
simulated environment before being tested on a real network
where the traffic pattern is probably less predictable.

IV. RELATED WORK

Intrusion detection systems have been around since the
80s. In 1980, Anderson introduced the concept of host-based
intrusion detection [19]. Seven years later, Denning laid the
foundations of intrusion detection system development [20].
Network-based intrusion detection systems were introduced
in 1990 [21]. In the late 90s, researchers in artificial
intelligence started to investigate applying machine learning
algorithms to improve intrusion detection.

An intrusion detection system should be able to au-
tonomously recognize malicious actions in order to defend
itself against variants of previously seen attacks and against
attacks exploiting zero-day vulnerabilities. Misuse-based
IDSs can only detect attacks whose signatures are available
in their signature database. Signatures of attacks are very
specific, and a slight variation of the attack can make it
unnoticeable for the IDS. That is why learning mechanisms
must be implemented to detect and prevent these attacks
without having to wait for an update of the signature database
or a patch for the vulnerable system. Still, machine learning
algorithms are designed to recognize examples similar to
those available in the training set used to build the model of
the data. Consequently, an IDS using machine learning would
have a hard time detecting attacks which patterns are totally
different from the data previously seen. In other words, even
though machine learning is a suitable candidate to detect
variants of known attacks, detecting completely new types of
attacks might be out of reach for these kinds of algorithms.

For a summary of most research involving machine
learning applied to IDSs until 2007, see Wu & Banzhaf (2010)
who cover a range of techniques, including fuzzy sets, soft
computing, and bio-inspired methods such as artificial neural
networks, evolutionary computing, artificial immune systems,
and swarm intelligence; comparing the performance of the
algorithms on the KDD99 test set and showing that all
algorithms perform poorly on the U2R and R2L classes [22].
The best results reported are by genetic programming with
transformation functions for R2L and Probe and by linear

genetic programming (LGP) for DoS and U2R (with 80.22%,
97.29%, 99.70% and 76.30% accuracy, respectively). How-
ever, since ensemble-based methods are fairly new in being
applied to intrusion detection, the description of them in the
review is somewhat limited. The first works on the topic date
from 2003 and many papers were written in 2004 and 2005;
recently (from 2010 onwards), there has been a renewed
interest of ensembles in this field.

Abrahams et al. have performed several types of ensemble-
based experiments, all on a subset of the DARPA98 dataset
composed of 11, 982 randomly selected instances from
the original dataset with a number of data for each class
proportional to the size of the class, except for the smallest
class which was included entirely. This data was then divided
into a training set of 5, 092 and a test set of 6, 890 instances.

First, in [23], an ensemble composed of different types of
artificial neural networks (ANN), support vector machines
(SVM) with radial basis function kernel, and multivariate
adaptive regression splines (MARS) combined using bagging
techniques was compared to the results obtained by each
algorithm executed separately. SVM used alone outperformed
the other single algorithms, but was totally outperformed by
the ensemble. This ensemble surprisingly obtained a 100%
accuracy on the test set for the R2L class. However, the
researchers warn that some of these results might not be
statistically significant because of the unbalanced dataset.

Second, in [24], [25], the combination of classification and
regression trees (CART) and Bayesian networks (BN) in an
ensemble using bagging techniques was explored, as well as
the performance of the two algorithms when executed alone.
Feature selection was applied to speed up the processing:
the performance on the set of 41 features was compared
to a set of 12 selected by BN, 17 selected by CART and
19 features selected by another study. BN performed worse
with a smaller set of features except on the Normal class.
However, when using the set of 19 features, BN and CART
complemented each other to increase the IDS accuracy for
all classes. The final ensemble was composed of three CART
to detect Normal, Probe and U2R examples, respectively;
one ensemble of one CART and one BN to detect R2L
examples; and one ensemble of one CART and one BN to
detect DoS examples — with each classifier trained on its
resp. reduced set of features; an approach quite similar to
the one used in the present paper.

This was then extended by adding a hybrid model com-
posed of SVM and decision trees (DT) to the ensemble [26],
[27]. In the new model, the data was first sent to the DT that
generated a tree to fit the features and values of each example
in the dataset. The tree was then sent to the SVM to produce
the final output. A single DT was in charge of detecting U2R
attacks, a single SVM in charge of detecting DoS attacks, the
hybrid model in charge of Normal instances, and the same
ensemble as above in charge of Probe and R2L attacks.
However, the hybrid model did not seem to help much.

68

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Third, in [28], [29], fuzzy rule-based classifiers, linear
genetic programming (LGP), DT, SVM, and an ensemble
were evaluated using feature selection to reduce the number of
variables of the dataset to 12 on a subset of the DARPA 1998
dataset, selected in the same way as in the work mentioned
previously. The fuzzy rule-based classifier outperformed the
other methods when trained on all 41 features, with the
second set of rules scoring 100% accuracy for all classes of
attacks; while LGP seemed more appropriate when using a
smaller feature set, except for the U2R and Normal classes.
The ensemble was composed of one DT in charge of the
Normal instances, one LGP each for Probe, R2L and DoS,
and one fuzzy set of rules for U2R. The results obtained with
the ensemble were very encouraging with accuracy > 99%
for all classes (on the subset data).

Finally, the results of several machine learning algorithms
were compared in [30]. In particular, the performance of
linear genetic programming (LGP), adaptive neural fuzzy
inference system (ANFIS), and random forest (RF) were
analysed, and an ensemble was created by combining the LGP,
ANFIS, and RF algorithms. The ensemble outperformed the
single algorithms, but its exact configuration is not described
in the paper.

Folino et al. [31], [32], instead used the entire KDD99
dataset and examined the performance of a system composed
of several genetic programming ensembles distributed on
the network based on the island model. Each ensemble was
trained on a different dataset for a number of rounds. Once the
ensemble had been trained for one round, it was exchanged
with the other islands through the distributed environment.
The advantage of a distributed system, as pointed out by
Folino et al., is the increase in privacy and security in
comparison to a central IDS that has to collect audit data from
different nodes on the system. The system showed average
performance for the Normal, Probe and DoS classes, but
very low for the U2R and R2L classes. However, very few
papers study distributed environment for intrusion detection
even though this might be a very good idea.

Bahri et al. [33] introduced Greedy-Boost, a noise resistant
adaptation of the AdaBoost boosting technique [34]. The
Greedy-Boost classifier contrasts with AdaBoost by being a
linear combination of models and by updating the distribution
of weights according to the initial distribution instead of
the previous one. Greedy-Boost’s performance in terms of
precision and recall on the KDD99 dataset was extraordinary
good. In particular, the precision of the most difficult class
(R2L) was much higher than what is usually observed.
However, it is not clear from the paper if the model was
evaluated on the test set, the training set, or a modified
version of one of the sets.

Peng Zhang et al. [35] evaluated the robustness of an
ensemble when confronted with “noisy” data sets, that is,
data sets containing incorrectly labelled instances. In order to
tolerate label imprecision and errors, they used an aggregate

Table III
MOST RELEVANT FEATURES FOR EACH ATTACK CLASS IN THE KDD99

DATASET ACCORDING TO MUKKAMALA et al. (2005) [4]

SVM features LGP features MARS features

Probe

src bytes srv diff host rate src bytes

dst host srv count rerror rate dst host srv count
count dst host diff srv rate dst host diff srv rate
protocol type logged in dst host same srv rate
srv count service srv count

U2R

src bytes root shell dst host srv count
duration dst host srv serror rate duration
protocol type num file creations count
logged in serror rate srv count
flag dst host same src port rate dst host count

R2L

srv count is guest login srv count
service num file access service
duration dst bytes dst host srv count
count num failed logins count
dst host count logged in logged in

DoS

count count count
srv count num compromised srv count
dst host srv serror rate wrong fragments dst host srv diff host rate
serror rate land src bytes
dst host same src port rate logged in dst bytes

Normal

dst bytes dst bytes dst bytes

dst host count src bytes src bytes

logged in dst host rerror rate logged in

dst host same srv rate num compromised service
flag hot hot

ensemble of SVM, DT, and logistic regression. An aggregate
ensemble builds several classifiers over a range of data sets
using different learning algorithms. The aggregate approach
was shown to outperform both a horizontal ensemble frame-
work in which classifiers were built over different data sets
with only one learning algorithm for each set, and a vertical
ensemble framework in which several classifiers were built
over the data sets using different learning algorithms that
were then combined into an ensemble.

The key conclusion from all these works is that ensemble
approaches generally outperform approaches in which only
one algorithm is used. An ensemble is a very efficient way
to compensate for the low accuracy of a set of weak learners.
Moreover, feature selection should provide specific subsets to
train algorithms specialised in the detection of one particular
class of attacks.

Mukkamala et al. [4]–[6] identified the five most important
features for each class of attacks, as shown in Table III. The
features were selected using support vector machines, linear
genetic programming, and multivariate adaptive regression
splines, with in total 16 distinct features selected for SVM,

69

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

21 for LGP and 13 for MARS. Features that are selected by
at least two different algorithms for the same class of attacks
are highlighted because they should most definitely be in the
subset of features used to detect that specific class of attack.

Surprisingly, neither protocol_type nor service
was selected by the three algorithms for the DoS class in the
experiments by Mukkamala et al. (2005) [4]. In contrast,
Kayacik et al. (2007) [36] concluded that those two features
were the most significant ones for the denial of service class
of attacks, even though the experiments by Kayacik et al.
were conducted on hierarchical self-organizing maps (SOM).

V. EXPERIMENTS

The problem of intrusion detection can be divided into
five distinct subproblems, one for each class of instances
(Normal and the four types of attacks: Probe, U2R, R2L,
and DoS). Here each problem will be handled by one or
more algorithms of an ensemble, allowing each subproblem
to be treated separately in the experiments and to join the
solutions to the subproblems into a general solution for the
problem of intrusion detection.

A dedicated training dataset for each attack subproblem
was built by sampling a number of instances from that class
of attacks and the same number from the class Normal in
order to have a balanced dataset with 50% anomalous and
50% normal examples (no algorithm was explicitly designed
to detect normal traffic). A balanced dataset is necessary to
avoid the problem of skewed classes where the accuracy of
the predictor can be made artificially high by increasing the
number of instances from one of the classes.

For the classes of attacks with few examples, R2L and
U2R, the entire set was selected (i.e., 52 instances of
U2R and 1, 126 of R2L). For the Probe class, 10, 000
instances were selected randomly. This number was chosen
to have a significant sample with as many different examples
as possible without affecting the training time too much.
The DoS training set contains 3, 883, 370 instances, with
‘neptune’ and ‘smurf’ attacks counting for the majority (with
1, 072, 017 and 2, 807, 886 instances, respectively). The other
types of attacks have much smaller number of examples, e.g.,
the type of DoS called ‘land’ is represented only 21 times. For
this reason, samples of 5, 000 examples each were selected
randomly from the ‘neptune’ and ‘smurf’ sets. All examples
of the other types of DoS attacks were included for a total of
13, 467 DoS instances. For all four classes, the same number
of Normal instances was selected from the normal dataset
leading to a total training set size of 104 examples for U2R,
2, 252 for R2L, 20, 000 for Probe, and 26, 934 for DoS.

In order to investigate the applicability of ensemble-based
approaches to intrusion detection, two sets of experiments
were carried out. The first step of the experiments was to
assess the sets of features selected in [4], that is, the key
features relevant to each of the four classes of attacks. Then
in a second round of experiments, those sets were fed to an

'

&

$

%

PROBE DETECTOR

- -
module
decision
function

�
�
�
��

�
�

-“SVM”
Decision Tree

@
@
@��

-“LGP”
Decision TreePPP

@@ -“MARS” Decision Tree�
��B

B
B -Combined Decision Tree�

�
�

PROBE DETECTOR- -Probe /
Normal

R2L DETECTOR- -R2L /
Normal

U2R DETECTOR- -U2R /
Normal

DoS DETECTOR- -DoS /
Normal

network
packet

-
ensemble
decision
function

�
�
�
�-

Figure 1. Overview of the ensemble model

ensemble of machine learning algorithms. All models were
evaluated by 10-fold cross-validation.

A. Experimental Setup

Figure 1 gives a schematic overview of the ensemble
model used in this work. First, the network packet being
analysed is sent to four different detector modules, one each
for Probe, R2L, U2R, and DoS. Each module executes a
preprocessing step to extract a number of features from the
packet; the set of features varies depending on the module
(as further described in Section V-B). The extracted features
are then dispatched to different decision trees that have been
previously trained with the same features on the training set,
as shown at the top of the figure for the Probe detector.
Each decision tree is a binary classifier which outputs 0 if
the packet is considered normal traffic and 1 if the packet is
classified as anomalous. A vector of dimension n containing
the output of n classifiers is then fed to the module decision
function. In the figure n = 4 (one each for the features
selected by SVM, LGP and MARS plus the set of those
features combined), but it could be any number of algorithms.

Finally, a vector of dimension 4 containing the output of
each detector module is fed to the ensemble decision function
that combines the results and outputs a value describing
if the packet is considered normal or anomalous, and if
anomalous from which class of attacks. The easiest situations
are when all modules, or all modules except one, output
Normal. In the former case, the system classifies the packet
as normal. In the latter, the system classifies the packet

70

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as anomalous and is able to unambiguously identify the
class of attack concerned. If more than one module classify
the packet as anomalous, it will be more difficult for the
network administrator to understand which class of attack
the anomalous packet belongs to.

The resulting model is an ensemble of ensembles with
feature selection applied independently for each module.
However, in this work, we will not be concerned with
the decision functions for each module. Instead, we will
evaluate the intersection of the sets of false positives and
false negatives produced by the four algorithms in each
module. This will give us the optimal performance that each
module could achieve. The most important advantages of
this model are the possibility to execute the algorithms in
parallel and the modularity allowing the exchange of any
algorithm of the ensemble without any modification of the
rest. The complete ensemble model is as shown in Figure 2
(on the next page).

B. Feature Selection Assessment with Decision Trees

In the first experiment, several classifiers were trained with
different number of features. The goal of the experiment was
not to find the best algorithm possible and fine-tune it, but
rather to conclude on how well an algorithm performs with a
smaller set of features. In this case, it is only natural to use
exactly the same setting for the algorithms and to compare
the performance based only on the sets of features. Five
decision trees were trained with different sets of features.
Only the training set was used for this experiment. The
results obtained represent the performance of the algorithms
on the cross-validation set which is extracted from the training
set. The model assessment experiment (described below, in
Section V-C) evaluated performance on the test set.

The first classifier was trained with all 41 features in the
dataset. The next three were trained with five features selected
in [4] for each class of attacks by the three algorithms support
vector machines (SVM), linear genetic programming (LGP)
and multivariate adaptive regression splines (MARS). These
features are listed in Table III. The last classifier was trained
on a “combined” set of features: the union of the feature
sets selected by the three algorithms from which redundant
features have been removed. The number of features in the
“combined” set is 11 for Probe, 14 for U2R, 11 for R2L and
12 for DoS, as can be seen in Figure 2. These additional sets
help bringing down the number of false positives and false
negatives, as we will see in the results of the experiments.
Note that there is no extra cost from the extraction of these
features from the original network packets since they have
to be extracted for the other algorithms anyway.

The results obtained in terms of accuracy are shown in
Table IV and can be compared to those obtained with 41
features by Peddabachigari et al. (2007) [27] using the same
decision tree. For the class Probe, the accuracy of the
classifier trained with all 41 features is exactly the same as

Table IV
ACCURACY OF THE FEATURE SELECTION ASSESSMENT

Decision Tree Classifier Probe U2R R2L DoS

41 features 99.86 93.00 99.02 99.95
5 SVM features 99.82 96.00 98.58 93.35
5 LGP features 99.32 90.00 97.38 98.69
5 MARS features 99.75 97.00 98.04 99.86
11–14 combined features 99.90 96.00 98.93 99.95

Peddabachigari et al. (2007) [27] 99.86 68.00 84.19 96.83

reported in [27]: 99.86%. The classifiers trained with sets
of five features are not far behind the one trained with all
41 features. The reduced feature sets seem to be a good
choice when the algorithms are trained using decision trees.
However, the classifier fed with the five features selected by
LGP performs slightly worse than the others and could be
replaced by a more accurate algorithm.

The results for U2R are worse than for Probe, but this
was expected: each false positive and false negative has a
larger impact on the general accuracy due to the small number
of examples. The results (93–97%) are much better than the
68% accuracy obtained by Peddabachigari et al. on U2R.
However, the classifier trained on features selected by LGP
again performed poorly. Interestingly, the algorithms trained
on the features selected by SVM and MARS outperformed
the one trained on all features. This is probably since 41
features are too many to generalize from given the small
number of examples; recall that the training set for U2R only
held 52 instances (cmf. Table I).

The results for R2L are similar to those obtained for
Probe, even though the number of instances in the dataset
is much smaller. The results (97–99%) are also much better
than Peddabachigari et al. who obtained 84% accuracy on
this class. This experiment clarifies that classifying Probe
attacks and R2L attacks are two very distinct problems, even
if they are both intrusions, which is why they should be
treated separately. Again, the selected features seem to be a
good choice even if a small drop of accuracy can be observed
compared to Probe. The classifier trained on the features
selected by MARS has a high rate of false positives and
the one trained on features selected by LGP has the lowest
accuracy, but also a lower false positive rate, which implies
a higher false negative rate.
DoS also shows better results than Peddabachigari et al.

who obtained 96.83% accuracy. The classifier trained on
features selected by SVM obtained the worst score, whereas
features selected by MARS gave the best accuracy (99.86%)
after the set of all features and the combined feature set that
both reached 99.95%. This is important, since there is a set
of five features that can perform almost as well as the full
feature set even on larger number of training examples.

71

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Probe Module

Decision Tree

Decision Tree

Decision Tree

Decision Tree

5 features (SVM)

5 features (LGP)

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

5 features (MARS)

11 features

11 features

Data
Preprocessing

Probe

0/1

0/1

0/1

0/1

Probe Decision
Function Normal/Probe

Remote to Local (R2L) Module

5 features (SVM)

5 features (LGP)

5 features (MARS)

11 features

11 features

Data
Preprocessing

R2L

0/1

0/1

0/1

0/1

R2L Decision
Function

Normal/Probe

User to Root (U2R) Module

5 features (SVM)

5 features (LGP)

5 features (MARS)

14 features

14 features

Data
Preprocessing

U2R

0/1

0/1

0/1

0/1

U2R Decision
Function Normal/U2R

Denial of Service (DoS) Module

5 features (SVM)

5 features (LGP)

5 features (MARS)

12 features

12 features
Data

Preprocessing
DoS

0/1

0/1

0/1

0/1

DoS Decision
Function

Normal/DoS

Ensemble
Decision
Function

Normal/Probe/
R2L/U2R/Dos

Network
Packet

Figure 2. The complete ensemble. Each algorithm is a binary classifier outputting 0 if the packet is considered normal traffic and 1 if anomalous.

72

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
FEATURE SELECTION ASSESSMENT: FALSE POSITIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 12.0 4.0 17.0 6.0
ENSEMBLEmax 0.7 0.3 6.6 0.0

Table VI
FEATURE SELECTION ASSESSMENT: FALSE NEGATIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 17.0 3.0 10.0 8.0
ENSEMBLEmax 3.0 0.3 0.5 1.6

The overall numbers of false positives (FP) and false
negatives (FN) drop significantly when using more than one
algorithm, as Tables V and VI show. For the FP and FN
analysis, we call ENSEMBLEmax the number of examples
wrongly classified by all three algorithms trained on sets of
five features and the one trained on the “combined” feature
set. This is the maximum an ensemble composed of the
four algorithms could achieve if the combination of their
individual results was optimal; here calculated by taking the
intersection of the set of examples misclassified by each
algorithm. The experiment was run ten times for each attack
class to ensure accuracy of the results and to find the attack
types in each class that ENSEMBLEmax misclassified most.
Hence the values displayed in the table are average values
over the ten validation sets of the 10-fold cross-validation.

All types of Probe attacks appear at least once as a
false negative, however, ‘satan’ and ‘portsweep’ seem to be
the most difficult attacks to detect. When comparing the
problematic instances of ‘satan’, ‘portsweep’ and ‘ipsweep’
with true instances of the same attack types, it seems that
src_bytes is the feature that gives the classifiers most
trouble. In fact, for probe attacks, src_bytes should be
very small, although not equal to zero (since there is always
a number of bytes contained in the header); when an example
of these attacks has a high value for src_bytes, it goes
undetected. This is a big problem since an attacker could
easily fill the packets of the attack with random bytes to
evade the IDS. It could seem like a good idea to get rid
of this feature; however, src_bytes is very important to
detect Probe attacks: the only classifier that performs poorly
is the one trained on the features selected by LGP, a feature
set that does not include src_bytes.

For the U2R class, in general either one false positive or
one false negative appears in each test run. The false positive
can be explained by the small number of examples in the
dataset, only 52 Normal examples are present. The false
negative is always a ‘rootkit’ attack that is wrongly classified

as normal traffic, but it is not always the same instance,
indicating that some information is missing for the decision
tree to classify ‘rootkit’ attacks. These can be any kind of
malware such as worm, Trojan or virus with the ability to
hide its presence and actions to the users and processes of a
computer; this is called a stealth attack. The diversity found
in malware probably has a huge impact on the problem.
Moreover, as shown in Table II, there are only 10 ‘rootkit’
attacks in the dataset, increasing the difficulty. Examining
the values of these examples for the 14 features of the
combined algorithm revealed that almost all 10 instances have
very different values for those features. The ENSEMBLEmax

performs perfectly in most cases, but it is difficult to conclude
anything with such a small dataset: One false positive or
false negative out of ten instances of the cross-validation set
is quite a bad score.

The combination of all algorithms helps to bring down the
number of false positives and false negatives also for R2L, but
these numbers are again too high for a real-world application.
There are eight different types of R2L attacks represented
in the training set. After running the experiments ten times,
only three types of these attacks trigger false negatives for
the ENSEMBLEmax: ‘spy’, ‘imap’, and ‘phf’. There is not
much documentation about ‘spy’ attacks, which are not even
represented in the test set. However, the signatures of ‘imap’
and ‘phf’ are described in [37]. Detection of these attacks
requires very specific features. In the case of a ‘phf’ attack,
the IDS according to Kendall (2007) “must monitor http
requests watching for invocations of the phf command with
arguments that specify commands to be run” [38]. None of the
41 features in the KDD99 dataset gives any information about
a specific command being run on the system. It would be
impractical to do so for each specific command vulnerable to
an attack. However, this could be the reason why the machine
learning algorithms are incapable of detecting these kinds of
attacks with certainty. Without meaningful information, the
algorithms are powerless in building a proper model.

There are two ways to solve this problem, either new
features could be added to the dataset or an IDS using
signatures of attacks should perform the detection for these
particular types of attacks. In the former case, the new
features should not be too specific to ensure that new attacks
could also be identified. In the second case, the IDS loses
its ability to detect similar attacks but its accuracy increases.
To detect an ‘imap’ attack, an IDS should be “programmed
to monitor network traffic for oversized Imap authentication
strings” [38]. This seems more within reach of our IDS,
since service and src_bytes are both represented in
the feature set.

ENSEMBLEmax was highly successful on the DoS class,
returning zero false positives. Table VI shows that the number
of false negatives is reduced as well. Three types of attacks
trigger false negatives: ‘smurf’, ‘neptune’, and ‘back’. The
first two rarely appear in the list; however, the third seems

73

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VII
ACCURACY OF THE MODEL ASSESSMENT

Decision Tree Classifier Probe U2R R2L DoS

41 features 93.09 90.00 50.00 79.34
5 SVM features 77.63 40.00 50.00 87.70
5 LGP features 87.48 83.57 61.03 76.10
5 MARS features 84.04 85.00 50.00 82.20
11–14 combined features 79.97 94.29 50.00 85.36

to be the most difficult type to handle. This is not a surprise,
since to detect a ‘back’ the IDS must look for a big number
of frontslashes (“/”) in the request URL [37]. There are no
features in the dataset taking this particularity into account.
Consequently, the model has to rely on other features to make
up for the lack of information, leading to an imperfect result.
Nevertheless, as expected, ENSEMBLEmax brings robustness
to the accuracy of the IDS.

C. Model Assessment Experiment

In the second round of experiments, several classifiers
were trained with different number of features on examples
from the training set. Decision tree was again the algorithm
used as classifier. The goal of the experiment was to evaluate
the model used in the previous experiment on the test set
after training on the same number of examples as selected
for the training set for each class in the first experiment. As
discussed in Section III, the test set is composed of many
examples of unseen attacks (attacks that are not represented
in the training set). The experiment aimed to assess if the
ensemble was capable of generalizing to new types of attacks
belonging to the same classes as the ones previously seen.

In most cases, the accuracy of all algorithms degraded
drastically in comparison to the first experiment as shown in
Table VII, where the values represent one run of the program.
In particular, the set of features selected by SVM obtains
the worst results, and does not seem to generalize well to
new types of attacks. The set selected by LGP managed
to keep a respectable accuracy on the Probe class, while
all classifiers except SVM showed results very similar to
those in the feature selection experiments on U2R, with the
“combined” set of features being the best one, outperforming
even the algorithm trained with all 41 features in the same
way that was observed in the feature selection experiment.

Particularly bad results could be expected for R2L because
of the poor distribution of attacks in the training set, and
Table VII confirms this: the accuracy of all algorithms is equal
or close to the 50% guessing baseline. Most of the attacks
are ‘warezclient’ (1020 out of 1126 in total for the R2L
training set) leaving only 106 instances of all other attack
types (seven different types) to train on — and ‘warezclient’
is not even represented in the test set. There is no chance
that the models built would perform well on new attacks (or

Table VIII
MODEL ASSESSMENT: FALSE POSITIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 86.0 3.0 0.0 69.0
ENSEMBLEmax 11.4 1.6 1.0 16.6

Table IX
MODEL ASSESSMENT: FALSE NEGATIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 490 11 16,347 7,268
ENSEMBLEmax 524 1 7,779 688

even on old) with this limited training set. In addition, the
results for DoS were much worse than in the first experiment,
with the set of features selected by LGP obtaining by far the
worst results. Nevertheless, all other algorithms performed
better than the one trained with all features.

As Tables VIII and IX show, the ENSEMBLEmax is able to
handle part of the new attacks, but does not recognize them
as easily as the old ones, and the number of false negatives is
very high for most classes. For Probe, the most surprising
fact is that the attack ‘ipsweep’ seems to go undetected almost
all the time. This result is unusual because ‘ipsweep’ was
available in the training set and did not cause any trouble in
the previous experiment. One reason for this could be if the
examples of ‘ipsweep’ from the test set were very different
from the ones in the training set. However, after examining
the training set carefully, typical values for the features of
an ‘ipsweep’ attack were observed, and it appears that the
values of ‘ipsweep’ in the test set are in the same range
as those in the training set. Overall, the results are not bad.
First, almost all old attacks are perfectly detected, especially
‘portsweep’ and ‘satan’ which triggered false negatives in the
first experiment are now absent from the attacks triggering
false negatives. The new attacks are detected most of the
time, but the number of false negatives is still too high to
be useful in a real-world application. Finally, solving the
problem of ‘ipsweep’ would substantially bring down the
number of false negatives.

For U2R, ENSEMBLEmax brings down the average number
of false positives to 1.6 and the average number of false
negatives to 1.0, respectively, over five runs of the program.
As expected, a ‘rootkit’ attack sometimes goes undetected,
just as in the previous experiment. ‘ps’ also occasionally
appears as a false negative. The most surprising result comes
from undetected ‘buffer overflow’, which did not occur in the
feature selection experiment. However, ‘xterm’ and ‘sqlattack’
are detected all the time, which is good because it means
that ENSEMBLEmax generalizes well for the U2R class.

74

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table X
FEATURE SELECTION ASSESSMENT WITH SVM CLASSIFIER

SVM Classifier Probe U2R R2L DoS

41 features 99.61 88.00 97.60 99.83
5 SVM features 97.46 67.00 75.11 89.55
5 LGP features 96.91 82.00 65.02 98.83
5 MARS features 86.92 95.00 92.53 97.74
11–14 combined features 99.28 90.00 98.13 99.90

(a) Accuracy

SVM Classifier Probe U2R R2L DoS

41 features 19.9 15.9 6.7 0.2
ENSEMBLEmax 51.9 0.0 2.6 2.2

(b) False positives

SVM Classifier Probe U2R R2L DoS

41 features 66.4 0.5 50.4 43.6
ENSEMBLEmax 18.5 0.1 6.8 9.4

(c) False negatives

The number of false negatives for the R2L class explodes.
Old and new types of attacks are similarly misclassified. The
only conclusion that can be drawn is that the R2L training
set contains too few examples of each type of attack to be
of any help.

For DoS, the majority of the false negatives are due
to new attacks. Of the old attack types, ‘pod’ is the only
one that regularly triggers a few false negatives, for each
run of the program. Other old attacks, such as ‘smurf’
and ‘neptune’, sometimes trigger false negatives, but this
happens extremely rarely. New attacks are more problematic,
with ‘mailbomb’, ‘apache2’, ‘processtable’, and ‘udpstorm’
recurrently triggering false negatives, even if most of these
attacks are detected in general. Even though its generalization
power is limited, ENSEMBLEmax performed quite well overall
on unseen DoS attacks and helped bring down both false
positives and false negatives. This is quite an improvement,
but again not enough for a real-world application.

D. Ensembles with Support Vector Machine Classifiers

As displayed in Figure 1, the main algorithms used as
classifiers in the ensemble were decision trees (DT). Attempts
were also made to use support vector machines (SVM) with
a Gaussian radial basis function kernel (which is one of
the most powerful machine learning algorithms currently
available). However, the results were not very encouraging,
as displayed in Table X.

Table XI
MODEL ASSESSMENT WITH SVM CLASSIFIER

SVM Classifier Probe U2R R2L DoS

41 features 50.00 50.00 50.00 50.00
5 SVM features 55.45 50.00 50.15 76.42
5 LGP features 64.45 50.00 51.65 77.23
5 MARS features 84.82 72.86 50.00 76.78
11–14 combined features 51.90 50.00 49.97 72.27

(a) Accuracy

SVM Classifier Probe U2R R2L DoS

41 features 0.0 70.0 0.0 0.0
ENSEMBLEmax 0.0 1.0 0.0 173.4

(b) False positives

SVM Classifier Probe U2R R2L DoS

41 features 4166.0 0.0 16,347.0 17,761.0
ENSEMBLEmax 871.8 0.8 4380.8 715.0

(c) False negatives

Utilizing support vector machines with Gaussian radial
basis functions as the main ensemble classification algorithm
for the model assessment experiment yielded even worse
results, as shown in Table XI, where the accuracy for many
classes and classifiers is around the 50% guessing baseline.

One reason why the SVMs do not give accurate results
might be that many data points corresponding to different
attacks are located among the data points corresponding to
normal traffic in the dimensional space. Hence, the SVMs
are not able to find hyperplanes that clearly separate the
examples in the dataset as attacks or normal traffic. On the
other hand, decision trees are able to identify key features
that appear at the top of the tree and are in this way able to
accurately separate the examples.

Intuitively, it is reasonable to assume that, in this case,
using SVMs as multiclass classifiers (one class for each type
of attack) instead of as binary classifiers (attack or normal)
would give more accurate results, since there should be even
more similarities between instances belonging to the same
attack type within an attack class (‘smurf’, ‘neptune’, etc.)
than instances belonging to the same class (DoS, R2L, etc.).

Experiments were also carried out on SVMs using different
kernel functions (linear, quadratic and polynomial of order 3).
The maximum number of iterations then had to be increased
to 100, 000 in order to have the algorithm converge all the
time. These experiments were run on the test set only, but
several times for each kernel.

75

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Surprisingly, quite good results were obtained on the test
set with the linear kernel (except for the R2L class, but that
was to be expected). The results were non-conclusive, but
sometimes even better than with decision trees. The quadratic
kernel also gave some interesting results, but quite limited.
Hence, an accuracy of 94% for the LGP feature set on
Probe attacks could be reached several times. However, the
order 3 polynomial kernel produced terrible results across the
board, and the algorithm did not converge for the polynomial
kernel even after 100, 000 iterations on the feature selection
experiment with cross-validation. It transpires that when
adding more complex forms for the boundaries, the results
are getting worse and worse. The SVMs probably overfit
the data in the training phase. This would explain why the
results are so bad when increasing the boundary complexity.

Furthermore, SVM was much slower than DT, roughly two
orders of magnitude both for training and for classification.
In particular classification time is an important criterion to
take into account when building a real-world application:
if the classifier is very accurate but need too much time to
analyse each packet on a network, chances are that many
packets will go through without being analysed, leading to
poor performance of the intrusion detection system.

VI. DISCUSSION AND FUTURE WORK

The Feature Selection Assessment experiments (Sec-
tion V-B) showed that the ensemble approach is indeed
a very powerful paradigm that can be used to bring down
the number of false positives and false negatives. The lower
accuracy observed by individual algorithms is countered by
the union of their results. Even with sets containing only
five features, the results are very encouraging. Moreover,
treating each class of attack as a different problem solved by
a specialised algorithm seems to work well when compared to
strategies using one algorithm to detect all classes of attacks.
“Divide and conquer” and “Unity is strength” seem to be
opposite views, but they are actually both applied in this
work with impressive results. In general, algorithms using
fewer features have slightly lower accuracy and prediction
time, but much lower training time.

The results obtained by Mukkamala et al. [23] seem to be
correct. However, the features selected by LGP give the worst
result in most cases except for DoS where it is the feature
set selected by SVM that performs poorly. Consequently, the
sets of features selected by LGP should be reconsidered for
all classes except DoS, while the set of features selected for
DoS by SVM should be replaced. The number of different
types of attacks that go undetected is very small and only
few examples of these attacks are problematic. Most of the
time, the problem lays in the lack of information contained
in the dataset. Some attacks require very specific features
and should probably be handled by specialized programs or
signature-based IDSs. The class Probe is a bigger problem
since most of the attacks belonging to this class exploit a

legitimate feature used by network administrators; as a result,
all types of Probe attacks trigger FN at some point, even
though ‘portsweep’ and ‘satan’ are the most problematic.

A smaller feature set means that less information must be
extracted from a network packet in the data preprocessing
phase. Since the accuracy is not lowered too much in the
best cases, this is a huge improvement that could be used in
real IDSs. Moreover, the union of all algorithms using fewer
features tremendously improves the accuracy: on average
over ten runs of the program, only 0.7 FP and 3.0 FN were
observed for Probe over 20, 000 examples, 6.6 FP and 0.5
FN for R2L over 2, 252 examples, 0.3 FP and 0.3 FN for
U2R over 104 examples, and 0.0 FP and 1.6 FN for DoS over
20, 000 examples. Even though these results are much better
than what could be achieved with a single algorithm, they are
still quite far from being useful in a real-world application
where the false positives and negatives should be < 1 for
some 15 million instances in a 10Gb/s Ethernet network.
Arguably, over 90% of those instances will be normal traffic
containing no attack at all, but ENSEMBLEmax still has to be
improved to stand a chance against clever hackers.

The results described above are the best that an ensemble
composed of these algorithms and sets of features could
achieve. In its current state, there is no point in building
an experiment to assess a real combination of the results
of the individual algorithms in the ENSEMBLEmax. Further
work will have to be carried out to find the best suitable
algorithms and sets of features. Nevertheless, it is interesting
to see how well this ENSEMBLEmax can perform when
predicting previously unseen attack types. That was the topic
of the second round of experiments, on Model Assessment
(Section V-C). Even if ENSEMBLEmax in general helps
tremendously in bringing down the numbers of false positives
and false negatives, it is still far from reaching the accuracy
appropriate for a real-world application. In particular, datasets
that are not carefully designed are proven to be useless in
building accurate models of the attacks. This is the case with
the R2L training set, which mainly contains examples of the
‘warezclient’ attack (which is not even represented in the test
set) and very few examples of all other types of attacks. The
performance of ENSEMBLEmax was acceptable for the classes
of attacks U2R and DoS. The performance on the Probe
class was also standard, even though ‘ipsweep’ attacks went
undetected for unknown reasons. Overall, the results of this
second round of experiments were not very satisfying, but
once again proved the usefulness of the ensemble approach.

In the future, particular attention has to be paid to the
features relevant to each attack. New features carrying
meaningful information about the attacks must be designed to
help the machine learning algorithms to successfully classify
all types of attack. The DoS and Probe classes are mostly
characterized by time-related features, whereas R2L and U2R
mostly are characterized by content-related features extracted
from the payload of the network packets.

76

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. CONCLUSIONS

The aim of this work was to show that ensemble
approaches fed with appropriate features sets can help
tremendously in reducing both the number of false positives
and false negatives. In particular, our work showed that the
sets of relevant features are different for each class of attacks,
which is why it is important to treat those classes separately.
We developed our own IDS to evaluate the relevance of
the sets of features selected by Mukkamala et al. [4]. This
system is an ensemble of four ensembles of decision trees.
Each of the four ensembles is in charge of detecting one
class of attacks and composed of four decision trees trained
on different sets of features. The first three decision trees
were fed with sets of five features selected in [4]. The last
decision tree was fed with the union of these three sets of five
features from which the redundant features were removed.

The experiments showed that these sets were appropriate in
most cases. In the first experiment, the set of features selected
by linear genetic programming gave the worst results, except
for the class DoS for which the set of features selected by
SVM performed poorly. The second experiment gave less
interesting results because of the inappropriate distribution
of examples between the training and test sets of the KDD99
data. In particular, the ensemble could not generalize well
enough to be useful for the R2L class because the training
set mainly contains a type of attack that is not represented
in the test set. In both experiments, we looked at the number
of instances that were misclassified by all four algorithms in
order to obtain a result from the best combination of these
algorithms. Further work would be required to develop an
appropriate decision function combining the results of the
different algorithms. However, since the accuracy obtained
here was not good enough for a real-world application,
designing decision functions was unnecessary. Nevertheless,
we are convinced that this work is heading in the right
direction in order to overcome the limitations of current
intrusion detection systems.

Finally, a thorough analysis of the examples that were
misclassified by the ensemble was performed, in particular
highlighting the types of attacks that were systematically
misclassified by the ensemble. By looking at the signatures
of these attacks, we were able to find the reasons for the
classification errors. In most cases, the attacks displayed
very specific features not captured by the set of variables in
the dataset. These attacks should probably be handled by a
specialized system or new variables should be developed to
train the classifiers.

ACKNOWLEDGEMENTS

The authors would like to express their thanks to Lillian
Røstad (Norwegian University of Science and Technology),
Esteban Zimanyi, Olivier Markowitch, Liran Lerman (all at
Université Libre de Bruxelles), and the anonymous reviewers
for valuable comments on previous versions of the text.

REFERENCES

[1] A. Balon-Perin, B. Gambäck, and L. Røstad, “Intrusion
detection using ensembles,” in Proceedings of the 7th In-
ternational Conference on Software Engineering Advances,
Lisbon, Portugal, Nov. 2012, pp. 656–663.

[2] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,” in
Proceedings of the 2010 IEEE Symposium on Security and
Privacy. Washington, DC: IEEE Computer Society, Jun.
2010, pp. 305–316.

[3] C. Elkan, “KDD Cup 1999: Computer network
intrusion detection,” Webpage (last accessed:
June 12, 2013), 1999, http://www.sigkdd.org/
kdd-cup-1999-computer-network-intrusion-detection.

[4] S. Mukkamala, A. Sung, and A. Abraham, “Cyber security
challenges: Designing efficient intrusion detection systems
and antivirus tools,” in Enhancing Computer Security with
Smart Technology, V. R. Vemuri and V. S. H. Rao, Eds. Boca
Raton, Florida: CRC Press, Nov. 2005, pp. 125–161.

[5] S. Mukkamala and A. H. Sung, “Identifying significant
features for network forensic analysis using artificial intelligent
techniques,” International Journal of Digital Evidence, vol. 1,
no. 4, pp. 1–17, 2003.

[6] A. H. Sung and S. Mukkamala, “The feature selection and
intrusion detection problems,” in Proceedings of the 9th Asian
Conference on Advances in Computer Science. Chiang Mai,
Thailand: Springer-Verlag, May 2004, pp. 468–482.

[7] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning in-
trusion detection: supervised or unsupervised?” in Proceedings
of the 13th International Conference on Image Analysis and
Processing. Cagliari, Italy: Springer, Jun. 2005, pp. 50–57.

[8] L. K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 10, pp. 993–1001, Oct. 1990.

[9] R. E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197–227, Jul. 1990.

[10] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly
based network intrusion detection: A review,” Computers &
Security, vol. 30, no. 6-7, pp. 353–375, 2011.

[11] R. Lippmann, “1998 DARPA intrusion detection evalua-
tion data set,” Webpage (last accessed: June 12, 2013),
1998, http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/data/1998data.html.

[12] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,
“Toward developing a systematic approach to generate bench-
mark datasets for intrusion detection,” Computers & Security,
vol. 31, no. 3, pp. 357–374, May 2012.

[13] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward
credible evaluation of anomaly-based intrusion-detection meth-
ods,” IEEE Transactions on Systems, Man, and Cybernetics —
Part C: Applications and Reviews, vol. 40, no. 5, pp. 516–524,
Sep. 2010.

77

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] D. M. Gregg, W. J. Blackert, D. C. Furnanage, and D. V.
Heinbuch, “Denial of service (DOS) attack assessment analysis
report,” Johns Hopkins University, Baltimore, Maryland, Tech.
Rep. AFRL-IF-RS-TR-2001-223, Oct. 2001.

[15] F. Lau and S. H. Rubin, “Distributed denial of service attacks,”
in Proceedings of the 2000 IEEE International Conference on
Systems, Man, and Cybernetics. Nashville, Tennessee: IEEE,
Oct. 2000, pp. 2275–2280.

[16] C. Patrikakis, M. Masikos, and O. Zouraraki, “Distributed
denial of service attacks,” The Internet Protocol Journal, vol. 7,
no. 4, pp. 13–35, Dec. 2004.

[17] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer overflows: attacks and defenses for the vulnerability
of the decade,” in Foundations of Intrusion Tolerant Systems
(Organically Assured and Survivable Information Systems
2003), J. H. Lala, Ed. Los Alamitos, California: IEEE
Computer Society, Jan. 2003, pp. 227–237.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in Proceed-
ings of the 2nd International Conference on Computational
Intelligence for Security and Defense Applications. Ottawa,
Ontario, Canada: IEEE, Jun. 2009, pp. 53–58.

[19] J. P. Anderson, “Computer security threat monitoring and
surveillance,” James P. Anderson Co., Fort Washington,
Pennsylvania, Tech. Rep., Apr. 1980.

[20] D. E. Denning, “An intrusion-detection model,” IEEE Trans-
actions on Software Engineering, vol. 13, no. 2, pp. 222–232,
Feb. 1987.

[21] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee,
J. Wood, and D. Wolber, “A network security monitor,” in
Proceedings of the IEEE Symposium on Security and Privacy.
Los Alamitos, California: IEEE Computer Society, May 1990,
pp. 296–304.

[22] S. X. Wu and W. Banzhaf, “The use of computational
intelligence in intrusion detection systems: A review,” Applied
Soft Computing, vol. 10, no. 1, pp. 1–35, Jan. 2010.

[23] S. Mukkamala, A. H. Sung, and A. Abraham, “Intrusion
detection using an ensemble of intelligent paradigms,” Journal
of Network and Computer Applications, vol. 28, no. 2, pp.
167–182, Apr. 2005.

[24] S. Chebrolu, A. Abraham, and J. P. Thomas, “Hybrid fea-
ture selection for modeling intrusion detection systems,” in
Proceedings of the 11th International Conference on Neural
Information Processing, ser. Lecture Notes in Computer
Science, N. R. Pal, N. Kasabov, R. K. Mudi, S. Pal, and
S. K. Parui, Eds., vol. 3316. Calcutta, India: Springer, Nov.
2004, pp. 1020–1025.

[25] ——, “Feature deduction and ensemble design of intrusion
detection systems,” Computers & Security, vol. 24, no. 4, pp.
295–307, Jun. 2005.

[26] A. Abraham and J. P. Thomas, “Distributed intrusion detection
systems: A computational intelligence approach,” in Informa-
tion Security and Ethics: Concepts, Methodologies, Tools, and
Applications, H. Nemati, Ed. Hershey, Pennsylvania: IGI
Global, Sep. 2005, vol. 5, pp. 105–135.

[27] S. Peddabachigari, A. Abraham, C. Grosan, and J. P. Thomas,
“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of Network and Computer Applications,
vol. 30, no. 1, pp. 114–132, 2007.

[28] A. Abraham and R. Jain, “Soft computing models for network
intrusion detection systems,” in Classification and Clustering
for Knowledge Discovery, ser. Studies in Computational
Intelligence, S. K. Halgamuge and L. Wang, Eds. Berlin
Heidelberg, Germany: Springer, Oct. 2005, vol. 4, pp. 191–
207.

[29] A. Abraham, R. Jain, J. P. Thomas, and S.-Y. Han, “D-SCIDS:
Distributed soft computing intrusion detection system,” Journal
of Network and Computer Applications, vol. 30, no. 1, pp.
81–98, Jan. 2007.

[30] A. Zainal, M. A. Maarof, S. M. Shamsuddin, and A. Abra-
ham, “Ensemble of one-class classifiers for network intrusion
detection system,” in Proceedings of the Fourth International
Conference on Information Assurance and Security. Naples,
Italy: IEEE Computer Society, Sep. 2008, pp. 180–185.

[31] G. Folino, C. Pizzuti, and G. Spezzano, “GP ensemble for
distributed intrusion detection systems,” in Proceedings of
the 3rd International Conference on Advances in Pattern
Recognition, Bath, England, Aug. 2005, pp. 54–62.

[32] ——, “An ensemble-based evolutionary framework for coping
with distributed intrusion detection,” Genetic Programming
and Evolvable Machines, vol. 11, no. 2, pp. 131–146, Jun.
2010.

[33] E. Bahri, N. Harbi, and H. N. Huu, “Approach based ensemble
methods for better and faster intrusion detection,” in Proceed-
ings of the 4th International Conference on Computational
Intelligence in Security for Information Systems, ser. Lecture
Notes in Computer Science. Torremolinos-Málaga, Spain:
Springer, Jun. 2011, pp. 17–24.

[34] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and application to boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, pp. 119–139,
Aug. 1997.

[35] P. Zhang, X. Zhu, Y. Shi, L. Guo, and X. Wu, “Robust
ensemble learning for mining noisy data streams,” Decision
Support Systems, vol. 50, no. 2, pp. 469–479, Jan. 2011.

[36] H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I.
Heywood, “A hierarchical SOM-based intrusion detection
system,” Engineering of Applied Artificial Intelligence, vol. 20,
no. 4, pp. 439–451, Jun. 2007.

[37] K. Kendall, “A database of computer attacks for the evaluation
of intrusion detection systems,” Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, Jun. 1999.

[38] ——, “Intrusion detection attacks database,”
Webpage (last accessed: June 12, 2013), 2007,
http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/docs/attackDB.html.

78

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Enhanced Usability of IT Security Mechanisms
How to Design Usable IT Security Mechanisms Using the Example of Email Encryption

Hans-Joachim Hof
Munich IT Security Research Group (MuSe)

Department of Computer Science and Mathematics
Munich University of Applied Sciences,
Lothstraße 64, 80335 Munich, Germany

email: hof@hm.edu

Abstract—Nowadays, advanced security mechanisms exist to
protect data, systems, and networks. Most of these mechanisms
are effective, and security experts can handle them to achieve a
sufficient level of security for any given system. However, most
of these systems have not been designed with focus on good
usability for the average end user. Today, the average end user
often struggles with understanding and using security mecha-
nisms. Other security mechanisms are simply annoying for end
users. As the overall security of any system is only as strong as
the weakest link in this system, bad usability of IT security
mechanisms may result in operating errors, resulting in inse-
cure systems. Buying decisions of end users may be affected by
the usability of security mechanisms. Hence, software provid-
ers may decide to better have no security mechanism then one
with a bad usability. Usability of IT security mechanisms is one
of the most underestimated properties of applications and sys-
tems. Even IT security itself is often only an afterthought.
Hence, usability of security mechanisms is often the after-
thought of an afterthought. This paper presents some guide-
lines that should help software developers to improve end user
usability of security-related mechanisms, and analyzes com-
mon applications based on these guidelines. Based on these
guidelines, the usability of email encryption is analyzed and an
email encryption solution with increased usability is presented.
The approach is based on an automated key and trust man-
agement. The compliance of the proposed email encryption
solution with the presented guidelines for usable security
mechanisms is evaluated.

Keywords-usability; IT security; usable security; email
encryption.

I. INTRODUCTION
This paper is an extension of the usability design guide

presented in [1].
Any improvement of the overall security level of any sys-

tem requires to improve the security level of all subsystems
and available mechanisms as the overall security level of a
system is determined by the weakest link in this system [2,3].
Howe et al. found that current software and approaches for
security are not adequate for end users, because these mech-
anisms are missing ease of use [4]. In [2,3] end user are iden-
tified as weakest link in a company. Hence, improving the
usability of security mechanisms helps to improve the over-
all security level of a system.

Examples of bad usability of security mechanisms are all
around, some are discussed in Section IV. Bad usability of
security mechanisms may slow down the adoption of a secu-
rity system. This happened for example with email encryp-
tion. Today, it is very unlikely that an average user uses
email encryption. Major problems for average users are key
exchange and trust management, both having a very bad us-
ability in common email encryption solutions. Figure 1
shows a completely useless error message during the genera-
tion of a key pair for email encryption in GPGMail [5], as
one example of bad usability.

Figure 1. Error message during generation

of a key pair for email encryption in GPGMail [5]

The use of email encryption in companies shows that an

improved usability may lead to the adoption of the formerly
despised technology. In companies, key exchange and trust
management are usually not done by the users themselves,
but they can rely on central infrastructures such as a central
company directory with keys that are trusted by default (all
employees). Such a directory ensures average users can use
email encryption.

The example of email encryption shows that designing
security mechanisms with good usability is worth an effort.
For the ordinary software developer, i.e., non security expert,
it makes sense not to implement core security mechanisms
like encryption algorithms or signature algorithms. Those
mechanisms are usually available in security libraries written
by security experts and could be easily used by software de-
velopers. However, software developers often decide on how
security mechanisms are integrated into an application. For
example, when implementing an email encryption security
solution like GPGMail [5], the software developer decides
on the interfaces for setting up trust and importing keys.
Both mechanisms are application specific, hence must be
implemented by the application developers. Usually, these
functionalities are exposed to the users, hence should have a

79

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

good usability. Guidelines for usability that focus on IT secu-
rity mechanisms and their integration into applications may
help software developers to improve the usability of IT secu-
rity mechanisms in these applications. This paper presents
some guidelines that should help software developers to im-
prove end user usability of security-related mechanisms. To
underline the importance of the presented guidelines, weak-
nesses of security mechanisms in common applications re-
garding usability for end users are shown in an analysis of
common applications and security mechanisms on basis of
the presented guidelines. Other important aspects of software
security, e.g., secure coding guidelines, testing of security,
and threat analysis are out of scope of this paper.

The rest of this paper is structured as follows: Section II
gives an overview on related work, especially on existing
guidelines for usability. Section III presents guidelines for
usable IT security mechanisms. Section IV analyzes the usa-
bility of some common security mechanisms and applica-
tions on the basis of the guidelines of Section III. Section V
uses email encryption as an example on how to apply the
guidelines on a problem from the field. An email encryption
solution with good usability is presented. Section VI evalu-
ates the usability of the email encryption solution on the ba-
sis of the guidelines presented in Section III. Section VII
concludes the paper and gives an outlook on future work.

II. RELATED WORK
Several standards focusing on usability in general exist,

e.g., EN ISO 9241 [6]. In EN ISO 9241-11, which is part of
EN ISO 9241, requirements for the usability of system are
described. These requirements include effectiveness, effi-
ciency and satisfaction. EN ISO 9241-10, another part of EN
ISO 9241, lists requirements for usable user dialogs. Howev-
er, the rules and guidelines of EN SIO 9241 are very general
and not targeted on security mechanisms. The design guide-
lines presented in this paper interpret the general require-
ments and rules of EN ISO 9241 and its parts for the special
case of security mechanisms. As the guidelines presented in
this paper are focused only on the topic IT security, the pre-
sented guidelines are more detailed and may be easier to
follow for software developers.

Other publications like [7-11] focus on the usability of
security mechanisms in special applications (e.g., email en-
cryption), or focus on the usability of special security mech-
anisms (e.g., use of passwords). The guidelines presented in
this paper are more general such that they are useful for the
design of a wide variety of applications and security mecha-
nisms.

Existing guidelines for usability of security mechanisms
like those in [12, 13] focus very much on user interface de-
sign. The design guide presented in this paper take a slightly
different approach by focusing more on the security mecha-
nism itself. It is considered possible to change the design of a
security mechanism for the sake of good usability.

Markotten shows how to integrate user-centred security
engineering into different phases of the software develop-
ment process [14]. However, the emphasize of Markotten’s
work is more on integration of usability engineering into the
software development process than on a design guide.

Several works on zero-configuration IT security exist,
e.g., [15-22]. While zero-configuration can significantly im-
prove the usability of an application, a systematic approach
to usability for IT security is still missing. Zero-
configuration may be one building block of usable security.

To summarize, previous works either are not focused on
usability of IT security at all, are focused on one special as-
pect of usable IT security, or are focused on user interface
design. This paper presents some guidelines for software
developers to help them improve the usability of security-
related functionality.

III. GUIDELINES FOR GOOD USABILITY OF SECURITY
MECHANISMS

The guidelines presented in this section are the result of
several years in teaching IT security to beginners (and seeing
their difficulties) as well as industrial experience in the de-
sign of products requiring IT security mechanisms that are
operated by end users. The guidelines reflect our viewpoint
on usability of security mechanisms. It is not assumed that
those guidelines are complete. It is important to notice that
the usability of any system depends on the specific user and
his experiences, knowledge and context of use, which in-
cludes the task at hand, the equipment at hand, and the phys-
ical and social environment of the user. Hence, it is hard to
objectively evaluate the usability of a system. However, we
hope that the following set of nine design guidelines coming
from the field may be of help for software developers:

G1 Understandability, open for all users: This paper
focuses on usability for end users. The average end users
should be able to use the security mechanism. Otherwise, the
security mechanism is not useful for the intended audience.
The average user neither has a special interest in IT security
nor understands IT security. It is the responsibility of the
software developer to hide as many security mechanisms as
possible from the user. For those security mechanisms that
are exposed to the end user it is necessary to get security
awareness. The process of educating people is easier if suita-
ble metaphors are used. A good metaphor is taken from eve-
ryday life of the average user and is easy to grasp. A good
metaphor is simple but powerful in its meaning. Example: an
email encryption application should not use the term “en-
crypted email.” It is better to talk about a “secret message for
xy” or “email readable only by xy” where xy is the receiver
of the message.

Usable security should be available for all users. It
should especially not discriminate against any group of peo-
ple. For example, usable security mechanisms should not
exclude disabled people that use special tools to access ap-
plications (e.g., Braille reader for vision impaired people).
Example of compliance with G1: if captchas are used in an
application, multiple versions of the captcha should exist.
Each version of the captcha should address another sense.

G2 Empowered users: Ideally, a usable security mecha-
nism should not be used to restrict the user in what he is do-
ing or what he wants to do. This allows end users to effi-
ciently fulfill their tasks. Efficiency is one of the general
usability requirements of EN ISO 9241 [6]. The absence of
user restrictions often results in a better acceptance of securi-

80

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ty by users. The focus of a security mechanism should be on
protecting the user. Any security-motivated restriction of the
user should be carefully evaluated regarding necessity for
system security and adequateness. The user should at least
have the impression that he is in control of the system and
not the system is controlling him. Security mechanisms
should interfere with the usual flow of user activities in the
least possible way. Security mechanisms should allow the
user to execute activities in any way he wants. Other drivers
than protecting the user and the system should not be moti-
vation for restrictions. Especially, users should not be re-
stricted by a security mechanism for the only reason of copy-
right protection or other business reasons. While such securi-
ty mechanisms are of great use for businesses, they constant-
ly restrict the user, hence force him to bypass security mech-
anisms. As users are very imaginative in bypassing unwanted
restrictions, it is very likely that a non-security-motivated
restriction decreases the security level of a system. The Ap-
ple iPhone is a good example: as the phone enforces many
restrictions, many user bypass the security mechanisms by
using a jailbreak software to revoke those restrictions.

Another important rule is that the user should decide on
trust relations. A security mechanism should not enforce
trust relations given by a software vendor. The user should
always have the possibility to revoke preinstalled trust rela-
tions. Trust relations should only be established in advance
for the purpose of IT security. For example, having a prein-
stalled certificate to verify software patches is OK. Establish-
ing trust relations out of business purposes should be avoid-
ed. Example of compliance with G2: applications should
have an interface that lists preinstalled certificates. The user
should have the possibility to revoke certificates and install
custom certificates.

G3 No jumping through hoops: Users should only be
forced to execute as little tasks as possible that exist only for
IT security reasons. Otherwise, users get annoyed and refuse
collaboration with IT security mechanisms. The ideal securi-
ty mechanism does not interfere with user tasks at any time
(also see G2) if it is not absolutely necessary to maintain the
user’s security.

An example on how to not design security mechanisms
are captchas: the user is forced to read a nearly unreadable
and meaningless combination of letters and numbers and
enter it before he can execute the wanted task. Example of
compliance with G3: an application that uses a challenge-
response mechanism similar to hashcash [23] instead of a
captcha to avoid abuse of a service by automated scripts.

G4 Efficient use of user attention and memorization
capability: Users have problems memorizing data that does
not belong to their social background. Hence, they tend to
use all kind of optimization to reduce the amount of data
they have to remember. This is why users only use few
passwords for all logins where they need passwords. In [24],
it is stated that an average user uses only 6.5 passwords for
all his web accounts. A later survey [25] found that more
than 80% of all participants of the survey reuse a set of
password in different places. 73% of the participants use one
password with slight modification on different accounts.

 But not only does an average user use the same pass-
word more than once, he also selects easy to remember
passwords as he is not good in memorizing passwords with a
mix of upper and lower case letters, numbers and special
characters. Hence, security mechanisms should require the
user only to remember little data or no data at all. Example
of compliance with G4: an application uses an existing ac-
count from another site for login, e.g., by using OpenID [26].
The user can use an existing account, hence does not have to
remember another password.

Security mechanisms should only require as little interac-
tion with the user as possible. The security mechanism
should only requests the attention of the user if it is absolute-
ly necessary. Interaction with the user should be done in the
most minimalistic way. See also G1 for user interaction. Ex-
ample of compliance with G4: an email encryption applica-
tion that does not ask a user for each mail if he wants to en-
crypt the mail or not. Instead, the email application offers a
configuration option to always encrypt mails. Additionally,
the email composition window clearly states the current pro-
tection status and offers a possibility to override the prefer-
ences.

G5 Only informed decisions: A user only feels secure
and cooperates with a system if the system does not ask too
much of him. Hence, users should only have to make deci-
sions they can decide on. If there is an important security
decision to take, it must be ensured that the user has the ca-
pability to make this decision. This means that the user has
enough information about the situation that requires him to
make a decision, and it must be ensured that the average user
is capable to make an informed decision on this issue. If it is
not clear if the user can decide on an issue, the decision
should be avoided. G5 is hard to achieve and requires a care-
ful examination during the design of an application. Example
of compliance with G5: an application automatically deals
with unknown certificates and does not prompt a user for a
decision (see Section IV.D).

 G6 Security as default: Good usability requires effi-
ciency. Hence, the user should not have to configure security
when he first starts an application. Software for end users
should always come preconfigured such that the software is
reasonable secure and usable. All security mechanisms of a
system should be delivered to the end user with a configura-
tion that offers adequate security for the end users. If a pre-
configuration is not possible, the configuration effort must be
minimized for users. This requires an analysis of the security
requirements of average users during software development
prior to the deployment of the software to find the adequate
security level for most users. Example of compliance with
G6: a home wifi access point comes preconfigured with a
random WiFi password.

G7 Fearless System: The security system should support
a positive attitude of the user towards the security system. A
user with a positive attitude towards security mechanisms is
cooperative and more likely to not feel interrupted by securi-
ty mechanisms. Hence, security mechanisms should protect
the overall system in a way that the user neither has fear
when the system is in a secure state nor feels secure when the
system is not in a secure state. The security state of the sys-

81

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tem should be visible at all times. A security mechanism
should be consistent in its communication with its user. A
security mechanism should not use fear to force users to
obey security policies or get a wanted reaction. G7 is hard to
achieve and requires a careful examination during the design
of an application.

G8 Security guidance, educating reaction on user er-
rors: Users tend to make mistakes, especially in respect to
IT security. It is important that the security system hinders
the user to make mistakes. However, as blocked operations
can be very frustrating for users, the response of the security
system must provide information why a given operation was
blocked and should also offer a solution on how the user
could proceed. The solution must be adapted on the situation
and should keep the overall security of the system in mind. A
security system should guide the user in the usage of security
mechanisms. Errors should be prevented and there should be
ways to “heal” errors. Example of compliance with G8:
when an email encryption application fails to encrypt an
email because of a missing public key of the recipient, the
error message should explain how to import certificates from
and how to verify certificates by comparing fingerprints of
keys. To “heal” the error, the email encryption application
offers to send the mail as password-protected PDF and in-
struct the user to call the recipient and tell him the password
for the PDF.

G9 Consistency: Consistency allows users to efficiently
fulfill their tasks. Security mechanisms should fit into both
the application and the system context where they are used.
Security mechanisms should have the look and feel the user
is used to. G9 is hard to achieve and requires a careful exam-
ination during the design of an application.

IV. ANALYSIS OF THE USABILITY OF COMMON SECURITY
MECHANISMS AND APPLICATIONS ON BASIS OF THE

PRESENTED GUIDELINES
In this section, common applications and security

mechanisms are analyzed on basis of the guidelines given in
Section III. The analysis identifies room for improvement in
these applications and security mechanisms. It also shows
some good examples for certain aspects of security usabil-
ity.

A. Email Encryption using GPGMail
GPGMail is a popular open source email encryption so-

lution for Mac home users [5]. The encryption process itself
is fairly easy, usually requiring one click to enable email
encryption. However, key and trust management requires
significant effort. For a secure exchange of public keys, the
user has to get the public key itself (e.g., from a key server
or the homepage of the receiver of a message) and verify the
authenticity of the key. Certificates may be in use. The au-
thentication requires the use of another channel to com-
municate with the key owner (e.g., telephone or in person)
and to read a number to the owner that is meaningless for
the user. There is no guidance for this process. Then, the
user has to change the trust of the exchanged public key. It
gets more complicated when using a web of trust for trust

management: for the web of trust to work, the user must
decide on how trustworthy a person is to verify public
keys/certificates in addition to managing direct trust into
keys. The distinction between those different types of trust
is very hard to understand for average users.

This application is compliant with the following guide-
lines:

• G2 (user decides on trust relations)
• G4 (minimal interaction)
• G7 (does not frighten user)
• G9 (usually good integration, depends on system,

mail client)
This application is not compliant with the following

guidelines:
• G1 (hard to understand trust management and pro-

cess of key verification)
• G3 (complicated trust management)
• G5 (hard to understand trust management and pro-

cess of key verification)
• G6 (not set to “encrypt all” by default)
• G8 (not much guidance with trust management)

B. Forced Updates
Keeping a system up-to-date requires a timely use of

provided security patches. However, many users are quite
lax in applying security patches. Hence, nowadays, more
and more software providers let not the users decide on
when to patch a system but automatically apply security
patches as soon as available. While this relieves the user
from applying patches, it does not take into consideration
the situation of the user at the moment of a forced update.
The update process may require downloading a large
amount of data. This is a problem when the user is tempo-
rary on a low-bandwidth connection. The update process
may change security or trust relevant configuration of the
application, e.g., by revoking certificates or adding new
certificates that are considered trustworthy by the software
provider. Often, forced updates cannot be stopped by the
user, hence hinder the user.

This security mechanism is compliant with the follow-
ing guidelines:

• G1 (easy to understand)
• G5 (no user decisions involved)
• G6 (keeps system up-to-date)
• G7 (does not frighten user)
• G8 (no user action necessary (or possible))
• G9 (well integrated)
This security mechanism is not compliant with the fol-

lowing guidelines:
• G2 (user can not decide to not apply a patch, user

can not decide on time to apply patch (e.g., do not
patch presentation application before presentation
on CENTRIC 2012))

• G3 (in some cases user has to wait until patch was
applied)

82

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• G4 (full attention of the user when waiting for pro-
cess to finish)

C. Captchas
A captcha is a security mechanism avoiding that auto-

mated scripts use services. In theory, a captcha should be
designed in a way that only humans can solve the given
problem. Common captcha design requires users to read a
distorted and meaningless combination of letters and num-
bers and enter it before he can use the service. Figure 2
shows a captcha that is even worse from a usability point of
view. Another side effect of the use of captchas is that cap-
tchas may discriminate against disabled people (e.g., vision
impaired people). Some websites offer different types of
captchas (e.g., an image captcha and an audio captcha). Vi-
sion impaired people can decide to use the audio captcha.

Figure 2. Complicated captcha

This security mechanism is compliant with the follow-

ing guidelines:
• G5 (no user decision needed)
• G6 (always used)
• G7 (does not frighten user)
• G8 (gives instructions on how to use it)
• G1 (if multiple captchas are used, e.g., image and

audio)
This security mechanism is not compliant with the fol-

lowing guidelines:
• G1 (if only a single image captcha is used that dis-

criminates against disabled people)
• G2 (does not allow users to use automation tools)
• G3 (additional task without value for the user)
• G4 (unnecessary user interaction)
• G9 (many different kinds of captchas are in use)

D. HTTPS Certificate Validation in Common Browsers
HTTPS allows for confidential and integrity protected

communication on the web. For example, HTTPS is used
for online banking or shopping. Nowadays HTTPS is wide-
ly used on the web. However, for a secure communication it
is necessary to avoid man-in-the-middle attacks. To do so,
certificates are used to authenticate the web site that one
communicates with. As it is not practicable to install a cer-
tificate for each and every web site one visits, most common
browsers come with preinstalled certificates of so-called
Certificate Authorities (CAs). A browser accepts all certifi-
cates that have been signed by such a CA. For example,
Mozilla Firefox version 14.0.1 comes with over 70 prein-

stalled CA certificates. The browser software developer
decides on the trustworthiness of a CA (and hence on the
trustworthiness of web sites), not the end user.

Figure 3 shows a typical error message of Firefox when
encountering a certificate signed by an unknown CA. The
text of this error message may be too complicated for aver-
age users. Above this, average users are not capable of de-
ciding on the validity of unknown certificate anyway. As
this error often occurs, the users get used to it and usually
just add a security exception to the system to access the web
site, bypassing the security mechanism. Adding a security
exception involves multiple steps (see Figure 4 for a screen-
shot of the second page of the error message when clicking
on “Add Exception.”

Figure 3. Typical error message of Firefox when encountering an unknown

certificate

Figure 4. Second dialogue page if user clicked

"Add Exception"

This security mechanism is compliant with the follow-
ing guidelines:

• G6 (large number of preinstalled CAs for secure
communication)

83

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• G8 (guidance is given, however, the texts used may
be not suited for average users)

This security mechanism is not compliant with the fol-
lowing guidelines:

• G1 (hard to understand error message given when
browser encounters an unknown certificate / a cer-
tificate from an unknown CA)

• G2 (many preinstalled CA certificates, the user
does not initially decide on trust relations. Howev-
er, expert users can change the trust settings)

• G3 (annoying additional tasks when unknown cer-
tificate / a certificate from an unknown CA is en-
countered)

• G4 (error unknown certificate happens often, hence
most users simply ignore the message and add a
security exception)

• G5 (no informed decision possible)
• G7 (error message unknown certificate implies an

ongoing attack)
• G9 (look and feel is not consistent with the rest of

the browser – it changes from a website (Figure 3)
to a window (Figure 4))

V. APPLICATION OF THE PRESENTED DESIGN GUIDE:
DESIGN OF AN EMAIL ENCRYPTION SOLUTION WITH GOOD

USABILITY
Section IV shows usability problems of security mech-

anisms in common applications. This section shows for one
class of application, email encryption solutions, how good
usability of security mechanisms can be achieved using the
guidelines presented in Section III. Section IV.A identifies
the complicated key and trust management in email encryp-
tion solutions like GPGMail [5] as cause of most of the usa-
bility problems. Hence, the design of an email encryption
solution presented in this paper focuses on automated key
and trust management to improve the usability of email en-
cryption.

A. Definitions
Figure 5 shows a simplified email encryption setup: A

sender wants to send an email to a receiver. The sender has
his own private key (PrivS) that it uses for email signatures
and for decryption of emails. Please note that usually two
private keys are used, one for decryption and another for
signature. For the sake of simplification, this distinction is
omitted in this paper. In the rest of this paper, the term
“email encryption solution” is used for the presented system
despite the fact that the system also decrypts and signs
emails.

The sender keeps a list of email addresses and associat-
ed public keys. Public keys usually have meta information,
e.g., expiration date and the like. This meta information is
usually stored together with the public key and the associat-
ed email addresses in a certificate. To encrypt emails, the
sender uses a public key associated with the email address
of the receiver.

!"#$"%& '"(")*"%&

+,-'&
+%)*!&

+,-!&
+%)*'&

"./)0&

Figure 5. Keys used in email encryption

In Figure 5, the sender uses the key of the receiver,

called PubR, to encrypt the email. When the receiver gets an
email, he uses the public key of the sender (PubS) to verify
the email signature. The receiver uses his private key (PrivR)
to decrypt messages encrypted with PubR. The simplified
secure email setup described here is implemented by many
email encryption solutions, e.g., GPG Mail [5].

B. Approach
The email encryption solution described in this paper

offers an automated key and trust management that does not
require the user to take any action. Hence, it hides the most
complicated part of email encryption from the user. For ex-
pert users, a manual key and trust management is still possi-
ble. The automated key and trust management is described
in the following subsections in detail.

The proposed email encryption solution offers security
by default: all emails are encrypted and signed by default.
The necessary keys are established by the automated key
and trust management if necessary and without any interac-
tion with the user.

The user can override the default security settings: he is
offered the possibility to send emails as “public postcard”
by a button when composing a mail. The term “public post-
card” is used as a metaphor for an unsecured email. This
metaphor comes from the experience of a user, hence is a
better fit than the term “unencrypted and unsigned email.”
The proposed email solution is realized as a plug-in to an
email client, e.g., as an extension of the well-known GPG-
Mail plugin. Existing security functionality for email is
used, e.g., public key encryption and decryption as well as
symmetric key encryption and decryption. The solution pre-
sented in this paper does not suppose that the receiver of an
email uses the same email encryption solution. However, if
the receiver of an email uses another encryption solution or
no encryption solution at all, the email handling of the re-
ceiver may be a little bit more complicated then usual.

C. Triggers for Invocation of Automated Key And Trust
Management
Actions of the key and trust management are performed

in the following situations:
• A user wants to send an encrypted and signed

email (default) and does not have a valid public
key of the receiver (PubR missing). An automated
key exchange must take place.

84

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A key of a receiver will expire in the near future,
hence an automated rekeying is necessary.

Automated rekeying and automated key exchange are
described in the following.

D. Automated Rekeying
Automated Rekeying is invoked when the key of a re-

ceiver is about to expire. In this case, there has already been
a key exchange in the past and a valid key for the receiver is
still available. On the receiver side, there are two possibili-
ties:

• The receiver has a valid key of the sender
• The receiver does not have a valid key of the send-

er, e.g., because the key of the sender already ex-
pired and there was no rekeying or the rekeying
was not successful. This may for example be the
case if the receiver does not use the same email en-
cryption solution.

For management of keys, a list of all public keys of all
past email receivers is kept. The email encryption solution
regularly checks for all keys if the expiration time is near.
Already expired keys are removed from the list. If the expi-
ration time is within the time period now+maxCheck, a
rekeying request email is sent to the owner of the associated
public key. The constant maxCheck is a system parameter,
e.g., 14 days. The rekeying request is sent by an ordinary
email. It includes a certificate with the current public key of
the sender and an explaining text that states something like:
“Your public key with the fingerprint [fingerprint] is about
to expire. Please send a new key. Please send the mail by
replying to this mail and attaching a certificate with the new
key.” The text helps receivers that do not use the same email
encryption solution to still communicate with the sender. If
the receiver uses the same email encryption solution, the
receiver will not see this email but a reply message will be
sent. The receiver part of automated rekeying is described
below. The sender waits for a reply message with a certifi-
cate holding the new public key of the receiver. The mes-
sage must be signed with the old key of the receiver. If the
sender does not get a reply to the rekeying request email
before the expiration of the key, the key will be removed
from the list. A new key exchange is necessary next time the
sender sends an email to the receiver. Otherwise, it stores
the received certificate and the included public key that has
a validity starting in the future in the list of keys together
with the current key.

If the receiver uses the email encryption solution de-
scribed in this paper, each rekeying request email is deleted
from the account of the user so the user never sees those
requests in his emails. The following checks are performed:

• Is the email signature valid?
• Is the expiration time of the key within

now+maxCheck (maxCheck is a system pa-
rameter see above)?

If the first check fails, the rekeying request is ignored to
avoid denial of service attacks on public keys. If the other
check fails, the key of the sender is deleted from the list. A
new key exchange will be necessary in the future.

If none of the checks failed, the receiver of the key re-
quest email checks if he already has a key with a validity
starting after the expiration time of the current key. If this is
the case, it sends this key to the sender of the rekeying re-
quest by an encrypted and signed email that has the certifi-
cate with the new public key attached. Otherwise, the re-
ceiver of the key request email creates a new public key and
associated private key with a validity starting at the expira-
tion date of the current key and an expiration date after the
starting date. The receiver creates a certificate for the public
key and sends the new public key as described above. Fig-
ure 6 summarizes the control flow of the receiver on recep-
tion of a rekeying request email.

!"#"$%&'(!")*"+,(
-"."%/"0(

/12%0(
+%'&1,*-"(3(

%'&4-"(
!"#"$%&'(
!")*"+,(

#"$(45(+"&0"-(
1/1%2162"(1&0(

/12%0(3(

"78%-194&(9:"(
6"54-"(&4;
<:17=>".#(3(

0"2","(#"$(
45(+"&0"-(

5*,*-"(#"$(
1/1%2162"3(

+"&0(5*,*-"(#"$(
"&.-$8,"0(1&0(

+%'&"0(

'"&"-1,"((
5*,*-"(#"$(

&4(

&4(

&4(

&4(

$"+(

$"+(

$"+(

$"+(

Figure 6. Control flow after receiving a rekeying request email

E. Automated Key Exchange
The automated key exchange takes place when an email

is sent to a receiver and no public key is available for this
receiver. The missing key may be the result of an unsuccess-
ful rekeying (see above). In most cases, there is no key be-
cause the sender never ever has sent an email to the receiv-
er. In both cases, it is not clear if the receiver uses the same

85

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

email encryption solution or not. To deal with receivers not
using the proposed email encryption solution, all messages
used during the automated key exchange are human reada-
ble and give detailed information what must be done to in-
teract with the sender of the email. All actions can be done
manual. Please note that good usability for the receiver can
be achieved if both sides use the proposed solution. Two
different automated key exchange implementations are de-
scribed below.

1) Automated Key Exchange Using a Leap of Faith
In IT security, a “leap of faith” means that at some

point in time an entity has blind trust in another entity. For
the automated key exchange this means that it is expected
that at the time of key exchange, there is no attacker. At-
tackers may be present in the future. A leap of faith ap-
proach may for example protect against adversaries that
hack into email accounts e.g., by guessing weak passwords.
If a key exchange took place before the hacking of the email
account, the exchanged keys cannot be manipulated, as the
keys are stored in the email client of the user. The hacker
cannot read or manipulate any email because he only has
access to the account but not to the keys and all emails are
encrypted and signed. However, if the key exchange takes
place and the account was already hacked, a man in the
middle attack is possible. Please note that automated rekey-
ing is not prone to this attack because all messages are en-
crypted and signed.

Actions of the automated key exchange at sender side:
1. Generate a random string with at least 20 chars.
2. Send the random string to the receiver in an email

that states: “There will be an encrypted email for
you in the near future. Please use this password to
decrypt the email. This email is not protected.
Hence, this is the leap of faith.

3. The sender composes the key exchange message:
original email is modified as follows:

a. The sender creates an ASCII armor for the
public key. An ASCII armor is a human
readable representation of a public key or
certificate. GPGMail offers the possibility
to export certificates using an ASCII ar-
mor

b. The sender creates an encrypted PDF that
includes the original text of the message,
the public key in its ASCII armor, and
some explaining text: “The sender of this
message wants to exchange a public key
with you. Please reply with a public key in
an ASCII armor in an encrypted PDF us-
ing the same password as this PDF.” As
password of the encrypted PDF, the send-
er uses the random string from step 1. The
encrypted PDF is intended for receivers
that do not use any email encryption solu-
tion at all.

c. The sender creates a message encrypted
by a symmetric key encryption using a
string to key function to get a symmetric
key from the random string generated in
step 1. The message includes the original
email text, some explaining text similar to
the text in step 3.b and the public key of
the sender.

d. Finally, the sender prepares an email with
the following text: “This message contains
an encrypted email and an encrypted PDF.
A password for these files was sent to you
before.” The encrypted PDF and the
symmetrically encrypted message are both
attached to the email.

4. The receiver stores the random string from step 1
in the list of keys together with an expiration time
that is leapOfFaithPeriode in the future
(leapOfFaithPeriode is a system value, usu-
ally a few days).

If the receiver uses the same email encryption solution,
it is triggered on reception of a key exchange message. It
performs the following actions:

1. Store random string together with the sender ad-
dress.

2. Remove email with random string from mail serv-
er. This ensures that an attacker does not have ac-
cess to the random string if the account is hacked
in the future.

3. Decrypt message using the string to key function to
convert the random string to a key. Retrieve public
key and store it in the list of public keys.

4. Restore the original mail and encrypt it with the
own public key. Delete the received mail and re-
place it with the mail encrypted with the public
key. This avoids that an attacker can get access to
the mail if the account is hacked in the future. Al-
so, it allows forgetting the random string.

5. Compose an email including the own public key in
a certificate, encrypt it with the random string us-
ing a symmetric key encryption and send it to the
sender of the original message.

On reception of a reply to its key exchange email, the
sender performs the following actions:

1. Retrieve random string from list of keys. If there is
no random string, the message is ignored.

2. Decrypt information
a. If it is a PDF, open it using the random

key as a password. Extract the certificate
and convert the ASCII armor to a binary
representation of the certificate. Store the
certificate in the list of keys.

b. If it is a symmetrically encrypted mes-
sage, use the string to key function to get
a symmetric key from the random string.

86

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Decrypt the message. Store the certificate
in the list of keys.

3. Remove random string from the list of keys.
2) Automated Key Exchange Using Side Channels

The idea of the automated key exchange is to use side
channels for the exchange of the random key. Compared
with the leap of faith approach described in the last section,
the use of a side channel improves the possibility that an
attacker does not have access to the side channel used.
Side channels can be harvested from the system the email
client is running on. Side channels include:

• Alternative email addresses: many people use more
than one email address.

• Instant messenger addresses.
• Telephone numbers for text messaging.
The first two side channels can easily be used to send a

short random string. To use side channels for key exchange,
the automated leap of faith using a leap of faith is modified
as follows:

In step 2, the sender sends the email message with the
random string not to the same email address as the encrypt-
ed email but to a selection of available side channels for a
user. If email is used as side-channel, it is very likely that
the receiver collects more than one email account in the
same email client. Hence, the email encryption solution has
access to the side channel. An automated response is possi-
ble in this case.

F. User Controlled Trust Management and Security as
Default
While automated key and trust management relives us-

ers from the burden of manual key and trust management,
the user now does not decide on trust relations. This is
against G2. The proposed usable email encryption solution
lets the user decide on general trust management rules dur-
ing installation. The user is presented several scenarios,
which he can state that he believes in or not. These ques-
tions are used to configure the key and trust management.
For example, if a user answers yes to the first question, the
“leap of faith” approach is not used for key exchange.

G. Error Handling
Error Handling has been omitted in this section for sake

of clarity of the presentation. Errors may occur during the
automated key exchange or during automated rekeying. By
sending a message again after a certain amount of time, the
proposed email encryption solution presented in this paper
deals with lost emails and the like. However, there are situa-
tions where automated key exchange or automated rekeying
permanently fails, including situations in which the intended
receiver of an email does not want to participate in a key
exchange. As the message has already been transferred in
the encrypted PDF, no further action must be taken.

VI. EVALUATION OF THE PROPOSED EMAIL ENCRYPTION
SOLUTION BASED ON THE DESIGN GUIDE

In this section, it is evaluated if the proposed email en-
cryption solution follows the design guidelines presented in
Section III:

G1 (Understandability, open for all users): the proposed
solution is compliant with G1 as only good metaphors and
scenarios are used for security related configurations.

G2 (Empowered users): the proposed solution is com-
pliant with G2 as the user can decide on the key and trust
management configuration. Also, the user can override the
security settings by sending an email without protection as
“public postcard”.

G3 (No jumping through hoops): the proposed solution
is compliant with G3 as there are no security specific ac-
tions the user must take. It should be noted that this is not
true for the receiver of an email if the receiver does not use
the proposed email encryption system.

G4 (Efficient use of user attention and memorization
capability): no user actions are necessary and the user does
not have to memory anything, hence the proposed solution
is compliant with G4.

G5 (Only informed decisions): no user actions are nec-
essary. Hence, the proposed solution is compliant with G5.

G6 (Security as default): emails are encrypted and
signed by default. Hence, the proposed solution is compliant
with G6.

G7 (Fearless System): no user actions are necessary.
Hence, the proposed solution is compliant with G8.

G8 (Security guidance, educating reaction on user er-
rors): no user actions are necessary. Hence, no security
guidance or education reaction on user errors is necessary.

G9 (Consistency): No user actions are necessary.
Hence, there are no consistency issues. It should be noted
that this is not true for the receiver of an email if the receiv-
er does not use the proposed email encryption system.

VII. CONCLUSION AND FUTURE WORK
This paper presented guidelines for software developers

to improve the usability of security-related mechanisms.
The analysis of security mechanisms in common applica-
tions showed weaknesses in the usability of security-related
mechanisms as well as good examples of security usability.
To demonstrate the application of the guidelines, the second
part of the paper improved the identified usability weak-
nesses of one common application: email encryption. The
approach for email encryption offers automated key and
trust management to improve the usability of email encryp-
tion. The evaluation showed that the proposed email encryp-
tion solution is compliant with the usability design guide
presented in this paper.

Future work will include the design of usable security
mechanisms for other common problems as well as a user
satisfaction study on the effectiveness of the guidelines. The
guidelines presented in this paper are focused on usability

87

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the end user. Future extensions of the design guides will
focus on better usability for other groups, e.g., system ad-
ministrators, testers, and developers.

REFERENCES

[1] H.-J. Hof, "User-centric IT security - how to design usable
security mechanisms", Proc. Fifth International Conference
on Advances in Human-oriented and Personalized
Mechanisms, Technologies, and Services (CENTRIC 2012),
International Academy, Research, and Industry Association
(IARIA), 2012, pp. 7-12.

[2] I. Arce, “The weakest link revisited”, in: Security & Privacy,
vol. 1, no. 2, IEEE, 2003, pp. 72-76.

[3] T. Caldwell, “Training – the weakest link”, Computer Fraud
& Security, vol. 2012, no. 9, Elsevier, 2012, pp. 8-14.

[4] A. Howe, I. Ray, M. Roberts, M. Urbanska, and Z. Byrne,
“The psychology of security for the home computer user”,
Proc. 2012 IEEE Symposium on Security and Privacy, IEEE,
2012, pp. 209-223.

[5] https://www.gpgtools.org/gpgmail/index.html, accessed
12.06.2013.

[6] ISO, “Ergonomie der Mensch-System-Interaktion”, EN ISO
9241, 2006.

[7] J. Sunshine, S. Egelmann, H. Almuhimedi, N. Atri, and L.
Cranor, “Crying wolf: an empirical study of SSL warning
effectiveness”, Proc. USENIX Security Symposium, 2009,
pp. 399-416.

[8] S. Adams and M. Sasse, “Users are not the enemy”, in:
Communications of the ACM, vol. 42 no. 12, 1999, pp. 40-
46.

[9] A. Whitten and J. Tygar, “Why Johnny can’t encrypt: a
usability evaluation of PGP 5.0”, Proc. 8th conference on
USENIX Security Symposium, Volume 8, Berkeley, CA,
USA, USENIX Association, 1999, pp. 169-183.

[10] M. Zurko and R. Simon, “User-centered security”, Proc.
NSPW96 - 1996 Workshop on New Security Paradigms”,
ACM, 1996, pp. 27-33.

[11] C. Birge, “Enhancing research into usable privacy and
security”, Proc. 27th ACM International Conference on
Design of Communications, ACM, 2009, pp. 221-225.

[12] S. Furnell, “Security usability challenges for end-users”, in
Social and Human Elements of Information Security:
Emerging Trends and Countermeasures, Information Science
Reference, 2009, pp. 196-219.

[13] J. R. C. Nurse, S. Creese, M. Goldsmith, and K. Lamberts,
“Guidelines for usable cybersecurity: past and present”, Proc.
Cyberspace Safety and Security (CSS), 2011 Third
International Workshop on, IEEE, 2011, pp. 21-26.

[14] D. G. T. Markotten, “User-centered security engineering”,
Proc. NordU2002 – The 4:rd Eur/Open/USENIX Conference,
Helsinki, Finland, USENIX Association, 2002.

[15] M. Conrad and H.-J. Hof, "A generic, self-organizing, and
distributed bootstrap service for peer-to-peer networks", Proc.
New Trends in Network Architectures and Services: 2nd
International Workshop on Self-Organizing Systems (IWSOS
2007), Springer, 2007, pp. 59-72.

[16] M. Bechler, H.-J. Hof, D. Kraft, F. Pählke, and L. Wolf, "A
cluster-based security architecture for ad hoc networks”, Proc.
INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, Hong
Kong, China, März 2004, IEEE, 2004, pp. 2393 - 2403,

[17] D. Kraft, M. Bechler, H.-J. Hof, F. Paehlke, and L. Wolf,
"Design and evaluation of a security architecture for ad hoc
networks", International Journal of Pervasive Computing and
Communication, Vol. 5, No. 4, 2009, pp. 448-475.

[18] H.-J. Hof, E. O. Blaß, and M. Zitterbart, "Secure overlay for
service centric wireless sensor networks", Proc. First
European Workshop on Security in Ad-Hoc and Sensor
Networks (ESAS 2004) , Springer, 2005, pp. 125-138.

[19] H.-J. Hof, E. O. Blaß, T. Fuhrmann, and M. Zitterbart,
"Design of a secure distributed service directory for wireless
sensor networks", Proc. First European Workshop on
Wireless Sensor Networks, Springer, 2004, pp. 276-290.

[20] H.-J. Hof and M. Zitterbart, “SCAN: a secure service
directory for service-centric wireless sensor networks",
Computer Communications, vol. 28 no. 13, Elsevier, 2005,
pp. 1517-1522.

[21] N. Kuntze and R. Carsten, “On the automatic establishment of
security relations for devices”, Proc. IFIP/IEEE International
Symposium On Integrated Network Management, 2013, pp.
1-4.

[22] H. K.-H. So, S. H. M. Kwok, E. Y. Lam, and K.-S. Lui,
“Zero-configuration identity-based signcryption scheme for
Smart Grid”, Proc. 1st SmartGridComm”, IEEE, 2010, p.
321-326.

[23] A. Back, “Hashcash – a denial of service couter-measure”,
Technical Report, 2002,
http://www.hashcash.org/papers/hashcash.pdf, accessed
12.06.2013.

[24] D. Florencio and C. Herley, “A large-scale study of web
password habits”, Proc. WWW '07: 16th international
conference on World Wide Web”, ACM, 2007, p. 657-666.

[25] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L.
Mazurek, L. Bauer, N. Christin, and L. F. Cranor,
“Encountering strong password requirements: user attitudes
and behaviors”, Proc. Sixth Symposium on Usable Privacy
and Security”, ACM, 2010, pp. 1-20.

[26] OpenID Foundation, “OpenID authentication 2.0 – final”,
http://openid.net/specs/openid-authentication-2_0.html,
accessed 12.06.2013.

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

