

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 5, no. 3 & 4, year 2012, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 5, no. 3 & 4, year 2012, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2012 IARIA

International Journal on Advances in Security

Volume 5, Number 3 & 4, 2012

Editor-in-Chief

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Editorial Advisory Board

Vladimir Stantchev, Berlin Institute of Technology, Germany
Masahito Hayashi, Tohoku University, Japan
Clement Leung, Victoria University - Melbourne, Australia
Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan
Dan Harkins, Aruba Networks, USA

Editorial Board

Gerardo Adesso, University of Nottingham, UK

Ali Ahmed, Monash University, Sunway Campus, Malaysia

Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA

Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil

Reza Azarderakhsh, The University of Waterloo, Canada

Ilija Basicevic, University of Novi Sad, Serbia

Francisco J. Bellido Outeiriño, University of Cordoba, Spain

Farid E. Ben Amor, University of Southern California / Warner Bros., USA

Jorge Bernal Bernabe, University of Murcia, Spain

Lasse Berntzen, Vestfold University College - Tønsberg, Norway

Jun Bi, Tsinghua University, China

Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Alexis Bonnecaze, Université d'Aix-Marseille, France

Carlos T. Calafate, Universitat Politècnica de València, Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA

Clelia Colombo Vilarrasa, Autonomous University of Barcelona, Spain

Peter Cruickshank, Edinburgh Napier University Edinburgh, UK

Nora Cuppens, Institut Telecom / Telecom Bretagne, France

Glenn S. Dardick, Longwood University, USA

Vincenzo De Florio, University of Antwerp & IBBT, Belgium

Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium

Pierre de Leusse, AGH-UST, Poland

Raimund K. Ege, Northern Illinois University, USA

Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens AG - Corporate Technology, Germany

Shao-Ming Fei, Capital Normal University, Beijing, China

Eduardo B. Fernandez, Florida Atlantic University, USA

Anders Fongen, Norwegian Defense Research Establishment, Norway

Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand

Steven Furnell, University of Plymouth, UK

Clemente Galdi, Universita' di Napoli "Federico II", Italy

Emiliano Garcia-Palacios, ECIT Institute at Queens University Belfast - Belfast, UK

Marco Genovese, Italian Metrological Institute (INRIM) -Torino, Italy

Birgit F. S. Gersbeck-Schierholz, Leibniz Universität Hannover, Certification Authority University of Hannover (UH-

CA), Germany

Manuel Gil Pérez, University of Murcia, Spain

Karl M. Goeschka, Vienna University of Technology, Austria

Stefanos Gritzalis, University of the Aegean, Greece

Michael Grottke, University of Erlangen-Nuremberg, Germany

Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel

Indira R. Guzman, Trident University International, USA

Huong Ha, University of Newcastle, Singapore

Petr Hanáček, Brno University of Technology, Czech Republic

Gerhard Hancke, Royal Holloway / University of London, UK

Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var, France

Dan Harkins, Aruba Networks, Inc., USA

Ragib Hasan, University of Alabama at Birmingham, USA

Masahito Hayashi, Nagoya University, Japan

Michael Hobbs, Deakin University, Australia

Neminath Hubballi, Infosys Labs Bangalore, India

Mariusz Jakubowski, Microsoft Research, USA

Ángel Jesús Varela Vaca, University of Seville, Spain

Ravi Jhawar, Università degli Studi di Milano, Italy

Dan Jiang, Philips Research Asia Shanghai, China

Georgios Kambourakis, University of the Aegean, Greece

Florian Kammueller, Middlesex University - London, UK

Sokratis K. Katsikas, University of Piraeus, Greece

Seah Boon Keong, MIMOS Berhad, Malaysia

Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark

Marc-Olivier Killijian, LAAS-CNRS, France

Hyunsung Kim, Kyungil University, Korea

Ah-Lian Kor, Leeds Metropolitan University, UK

Evangelos Kranakis, Carleton University - Ottawa, Canada

Lam-for Kwok, City University of Hong Kong, Hong Kong

Jean-Francois Lalande, ENSI de Bourges, France

Gyungho Lee, Korea University, South Korea

Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong

Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy

Gui Lu Long, Tsinghua University, China

Jia-Ning Luo, Ming Chuan University, Taiwan

Thomas Margoni, University of Western Ontario, Canada

Rivalino Matias Jr ., Federal University of Uberlandia, Brazil

Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Ajaz H. Mir, National Institute of Technology, Srinagar, India

Jose Manuel Moya, Technical University of Madrid, Spain

Leonardo Mostarda, Middlesex University, UK

Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong

Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la Communication),Belgium

Sarmistha Neogy, Jadavpur University, India

Mats Neovius, Åbo Akademi University, Finland

Jason R.C. Nurse, University of Oxford, UK

Peter Parycek, Donau-Universität Krems, Austria

Konstantinos Patsakis, Rovira i Virgili University, Spain

João Paulo Barraca, University of Aveiro, Portugal

Sergio Pozo Hidalgo, University of Seville, Spain

Vladimir Privman, Clarkson University, USA

Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea

Rodrigo Roman Castro, Institute for Infocomm Research (Member of A*STAR), Singapore

Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Antonio Ruiz Martinez, University of Murcia, Spain

Paul Sant, University of Bedfordshire, UK

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Peter Schartner, University of Klagenfurt, Austria

Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada

Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece

Pedro Sousa, University of Minho, Portugal

George Spanoudakis, City University London, UK

Lars Strand, Nofas, Norway

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea

Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Enrico Thomae, Ruhr-University Bochum, Germany

Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India

Panagiotis Trimintzios, ENISA, EU

Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany

Simon Tsang, Applied Communication Sciences, USA

Marco Vallini, Politecnico di Torino, Italy

Bruno Vavala, Carnegie Mellon University, USA

Mthulisi Velempini, North-West University, South Africa

Miroslav Velev, Aries Design Automation, USA

Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico

Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.

Piyi Yang, University of Shanghai for Science and Technology, P. R. China

Rong Yang, Western Kentucky University , USA

Hee Yong Youn, Sungkyunkwan University, Korea

Bruno Bogaz Zarpelao, State University of Londrina (UEL), Brazil

Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 5, Numbers 3 & 4, 2012

CONTENTS

pages: 68 - 80
Managing Timing Implications of Security Aspects in Model-Driven Development of Real-Time Embedded
Systems
Mehrdad Saadatmand, Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Sweden
Thomas Leveque, Orange Labs, Meylan, France
Antonio Cicchetti, Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Sweden
Mikael Sjödin, Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Sweden

pages: 81 - 93
Preventing Protocol Switching Covert Channels
Steffen Wendzel, University of Hagen; Augsburg University of Applied Sciences, Germany
Jörg Keller, University of Hagen, Germany

pages: 94 - 111
Securing Access to Data in Business Intelligence Domains
Ahmad Altamimi, Concordia University, Canada
Todd Eavis, Concordia University, Canada

pages: 112 - 120
Verification with AVISPA to Engineer Network Security Protocols
Florian Kammueller Florian Kammueller, Middlesex University London, UK

pages: 121 - 133
Mitigating Distributed Service Flooding Attacks with Guided Tour Puzzles
Mehmud Abliz, University of Pittsburgh, USA
Taieb Znati, University of Pittsburgh, USA
Adam Lee, University of Pittsburgh, USA

pages: 134 - 143
A Distributed Hash Table Assisted Intrusion Prevention System
Zoltán Czirkos, Budapest University of Technology and Economics, Department of Electron Devices, Hungary
Márta Rencz, Budapest University of Technology and Economics, Department of Electron Devices, Hungary
Gábor Hosszú, Budapest University of Technology and Economics, Department of Electron Devices, Hungary

68

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Managing Timing Implications of
Security Aspects in Model-Driven Development of

Real-Time Embedded Systems
Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University, Västerås, Sweden

{mehrdad.saadatmand, antonio.cicchetti, mikael.sjodin}@mdh.se

Thomas Leveque
Orange Labs

Orange, Meylan, France
thomas.leveque@orange.com

Abstract—Considering security as an afterthought and adding
security aspects to a system late in the development process
has now been realized to be an inefficient and bad approach to
security. The trend is to bring security considerations as early
as possible in the design of systems. This is especially critical
in certain domains such as real-time embedded systems. Due to
different constraints and resource limitations that these systems
have, the costs and implications of security features should be
carefully evaluated in order to find appropriate ones which
respect the constraints of the system. Model-Driven Development
(MDD) and Component-Based Development (CBD) are two
software engineering disciplines which help to cope with the
increasing complexity of real-time embedded systems. While
CBD enables the reuse of functionality and analysis results by
building systems out of already existing components, MDD helps
to increase the abstraction level, perform analysis at earlier
phases of development, and also promotes automatic code
generation. By using these approaches and including security
aspects in the design models, it becomes possible to consider
security from early phases of development and also identify
the implications of security features. Timing issues are one of
the most important factors for successful design of real-time
embedded systems. In this paper, we provide an approach using
MDD and CBD methods to make it easier for system designers
to include security aspects in the design of systems and identify
and manage their timing implications and costs. Among different
security mechanisms to satisfy security requirements, our focus
in this paper is mainly on using encryption and decryption
algorithms and consideration of their timing costs to design
secure systems.

Index Terms—Real-Time Embedded Systems; Security; Model-
Driven Development; Component-Based Development; Runtime
Adaptation; Encryption.

I. INTRODUCTION

To cope with the specific challenges of designing security
for real-time embedded systems, appropriate design methods
are required. Due to resource constraints in these systems,
the implications of introducing security and its impacts on
other aspects and properties of the system should be carefully
identified as early as possible and the methods used for design-
ing these systems should provide such a feature [1]. Timing
properties are of utmost importance in real-time embedded
systems. In this paper, we introduce an approach using Model-

Driven and Component-Based Development (MDD & CBD)
methods for designing secure embedded systems to bring
security aspects into early phases of the development and take
into account their timing costs and implications.

This work provides an implementation and a methodology
for the generic idea that we discussed in [1] and extends it with
the result of our works in [2], [3]. In this work we provide
a more complete approach and methodology, compared to the
two aforementioned works, based on their combination and
synergy and discuss how this approach can cover more issue
regarding the timing implications of security mechanisms in
real-time embedded systems.

The approach basically works by identifying and annotating
sensitive data in the component model of the system, and
then deriving automatically a new component model which
includes necessary security components for the protection of
the data. Our main focus in this paper will be on using
encryption and decryption algorithms as security mechanisms.
The derivation of the new component model is based on a
set of pre-defined strategies. Each strategy defines a different
set of possible encryption and decryption algorithms to be
used as the implementation of the security components. In this
approach, since the derived component model conforms to the
original meta model, the same timing analysis and synthesis
as for the original component model can be used and applied
for the derived one.

With the increasing role of computer systems in our daily
lives, there is hardly any software product developed these
days that does not have to deal with security aspects and
protect itself from malicious adversaries [4]. Also with the
exponentially growing number of connected and networked
devices and more integration between different tools and
services that store and exchange different types of data, not
only new types of attacks are constantly emerging but also the
risks and consequences of security breaches have become more
drastic. Even some simple software products and applications
which do not store any sensitive information and therefore
may not seem to need to care about security aspects can,
for example, be the target of buffer overflow attacks [5] and
thus help attackers in gaining access to a system. All these

69

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

points emphasize that security aspects cannot be taken into
account just as an afterthought and added feature to an already
developed system [6], but instead should be considered at
different phases of development from early phases such as
requirements engineering to deployment [4]. What is needed
is that instead of adding security features in an “eggshell
approach”, security should be designed intrinsically and insep-
arable from the application to be able to address the threats
that target the application itself [6].

Considering security from early phases of development is
especially critical in the design of real-time embedded systems.
These systems typically have limited amount of resources
(e.g., in terms of available memory, CPU and computational
power, energy and battery) and therefore, implications of secu-
rity features should also be taken into account. This is basically
because of the fact that Non-Functional Requirements (NFRs),
such as security, are not independent and cannot be considered
in isolation and satisfying one can affect the satisfaction
of others [7]. Therefore, costs and implications of security
features should be identified to analyze the trade-offs and
establish balance among different non-functional requirements
of the system. Such costs can be in the form of impacts
on timing, schedulability and responsiveness of the system,
as well as memory usage, energy consumption, etc. In real-
time embedded systems, satisfaction of timing requirements
is critical for the successful behavior of the system, therefore,
choice of security mechanisms should be done considering
their timing characteristics and impacts.

Model-driven development is a promising approach to cope
with the design complexity of real-time embedded systems.
It helps to raise the abstraction level, enables analysis at
earlier phases of development and automatic generation of
code [8], [9]. Component-based development, on the other
hand, is another discipline in software engineering and a
software development method in which systems are built
out of already existing components as opposed to building
them from scratch [10], [11]. In other words, it promotes
developing a system as an assembly of components by reusing
already existing software units (components). Model-driven
development and component-based development approaches
can be used orthogonally to complement and reinforce each
other to alleviate the design complexity of real-time embedded
systems [10].

In this context, including security aspects in design models
helps with achieving the two goals mentioned so far: bring-
ing security aspects into earlier phases of development and
enabling analysis of security implications. Moreover, model-
based security analysis (not the focus of this paper) in order
to identify possible violations of security requirements [12]
becomes possible and also system designers with lower levels
of expertise and knowledge in security domain can also
include and express security concerns [2]. The latter is due
to the fact that code level implementation of security features
requires detailed security knowledge and expertise, while at
the model level, system designers can use modeling concepts
and annotations for expressing security concerns (which in

turn may also be used for automatic generation of security
implementations).

By constructing the model of the system including security
features, timing analysis can then be done on the model to
evaluate whether the model meets the timing requirements
or not. If so, the implementation of the system can then
be generated from the model(s). This leads to a fixed set
of security mechanisms that are already analyzed as part of
the whole system in terms of their timing behaviors and are
thus known to operate within the timing constraints of the
system. However, there are situations where such a guarantee
in terms of timing behaviors cannot be achieved. For exam-
ple, in performing analysis some assumptions are taken into
account, such as worst-case execution times of tasks. If these
assumptions are violated at runtime, the analysis results will
not hold anymore. Moreover, in complex real-time systems
where timing analysis is not practical/economical or not much
information about the timing characteristics of each individual
task is available, other approaches are needed in order to
tackle the timing issues [13]. One solution is to have runtime
adaptation to mitigate timing violations and keep the execution
of tasks within their allowed time budgets.

The remainder of the paper is structured as follows. In
Section II, we discuss the issue of security and its challenges
in embedded systems in general. In Section III, the automatic
payment system is described as the motivating example of
this paper and also as an example of distributed real-time
embedded systems with security requirements. The suggested
approach and its implementation are described in Sections
IV and V. In Section VI, we introduce a runtime adaptation
mechanism to mitigate the violations of timing constraints
at runtime. Practical aspects of the introduced approach and
other related issued are discussed in Section VII. Section
VIII discusses the related work and finally in Section IX
conclusions are made.

II. SECURITY IN EMBEDDED SYSTEMS

In the design of embedded systems, security aspects have
often been neglected [14]. However, the use of embedded
systems in critical applications such as aviation systems, con-
trolling power plants, vehicular systems control, and medical
devices makes security considerations even more important.
This is due to the fact that there is now a tighter relationship
between safety and security in these systems (refer to [15] for
the definitions of security and safety and their differences).

Also because of the operational environment of embedded
systems, they are prone to specific types of security attacks
that might be less relevant for other systems such as a database
server inside a bank which is physically isolated and protected,
in contrast to smart cards and wireless sensor networks which
are physically exposed. Physical and side channel attacks [16]
are examples of these types of security issues in embedded
systems that bring along with themselves requirements on
hardware design and for making systems tamper-resistant.
Examples of side channels attack could be the use of time

70

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and power measurements and analysis to determine security
keys and types of used security algorithms.

Increase in the use and development of networked and
connected embedded devices also opens them up to new
types of security issues. Features and devices in a car that
communicate with other cars (e.g., the car in front) or traffic
data centers to gather traffic information of roads and streets,
use of mobile phones beyond just making phone calls and for
purposes such as buying credits, paying bills, and transferring
files (e.g. pictures, music,etc.) are tangible examples of such
usages in a networked environment.

Besides physical and side channel attacks, often mobility
and ease of access of these devices also incur additional secu-
rity issues. For example, sensitive information other than user
data, such as proprietary algorithms of companies, operating
systems and firmwares, are also carried around with these
devices and need protection.

Because of the constraints and resource limitations in em-
bedded systems, satisfying a non-functional requirement such
as security requires careful balance and trade-off with other re-
quirements and properties of the systems such as performance
and memory usage. Therefore, introducing security brings
along its own impacts on other aspects of the systems. This
further emphasizes the fact that security cannot be considered
as a feature that is added later to the design of a system and
needs to be considered from early stages of development and
along with other requirements. From this perspective, there are
many studies that discuss the implications of security features
in embedded systems such as [16], in which considering the
characteristics of embedded systems, major impacts of security
features are identified to be on the following aspects:

• Performance: Security protocols and mechanisms incur
heavy computational demands on a system that the pro-
cessing capacity of an embedded system might not be
able to satisfy easily. For example, using encryption and
decryption algorithms not only have high computational
complexity but also require good amount of memory. In
systems that need to handle heavy input loads, such as
routers and many systems that are used in telecommu-
nication domain to handle calls and data traffics, these
security features can consume lots of processing capacity
of the system and result in missed deadlines of other
tasks, dropped throughput level, and overall transaction
and data rate of the system.

• Power Consumption: In embedded systems with limited
power sources, any resource-consuming feature impacts
the operational life of the system. In this regard, security
features with their heavy computational and memory de-
mands, as discussed above, require careful considerations.
There are studies that investigate this issue and compare
power consumption of different encryption/decryption
algorithms such as [17] that looks at this issue in wireless
sensor networks. The issue of power consumption is
especially interesting knowing that the growth of battery
capacities are a lot slower and far behind the ever-
increasing power requirements of security features. This

has also led to investigating optimized security protocols
for embedded systems and hardware security solutions
[16].

• Flexibility and Maintainability: Flexibility of security fea-
tures and possibility to adapt them according to new re-
quirements is also a challenge in embedded systems. For
example, embedded devices such as mobile phones that
are used in different operational modes and environments
need to support a variety of security protocols. Moreover,
security solutions need to be updated in order to be
protected against emerging hacking methods. Therefore,
flexibility of security design decisions is important for
maintaining the security of the system to apply updates
and patches.

• Cost: Cost is also a limiting factor in the design of
embedded systems. Considering the issues mentioned
above, using a faster and more expensive CPU or adding
more memory modules to cope with the demands of
security requirements can add to the total cost of an
embedded system. Taking into account that these devices
are often produced in large amounts (e.g. mobile phones
and vehicular systems), a small increase in cost can affect
overall revenues and competitive potentials of a product
in the market. Therefore, the security features that are
implemented in embedded systems should be balanced
with hardware requirements and consequently cost limits.

III. MOTIVATION EXAMPLE: AUTOMATIC PAYMENT
SYSTEM

Figure 1 shows the Automatic Payment system which is
an example of distributed embedded systems with real-time
and security requirements. The main goal in the design of this
system is to allow a smoother traffic flow and reduce waiting
times at tolling stations (as well as parkings).

Fig. 1. Automatic Payment System for Toll Roads.

For each toll station, a camera is used to detect a vehicle that
approaches the station (e.g. at 100/200 meter distance), and
scans and reads its license plate information. This information
is passed to the payment station subsystem which then sends
the toll fee to the vehicle through a standardly defined wireless
communication channel. This amount is shown to the driver
in the vehicle through its User Interface (UI) and the driver

71

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

inserts a credit card and accepts the payment to be done. The
credit card number is then sent securely to the payment station
which then performs the transaction on it through a (third
party) merchant (e.g., via a wired Internet connection at the
station). The driver is then notified about the success of the
transaction and receives an OK message to go accordingly.
The interactions between different objects in this system are
shown in Figure 2.

Fig. 2. Automatic Payment System.

To allow a smooth traffic flow, all these operations should
be done in a certain time limit. Such time constraints can
be calculated considering the specifications of camera and
its required time for the detection of an approaching vehicle,
traffic and safety regulations (e.g, allowed speed), and other
similar factors. For example, if the vehicle is detected at 100
meter distance from the station, and the allowed speed at that
point is 20 km/h, then the system has a strict time window
during which it should be able to store the vehicle information,
establish communication, and send the payment information to
it. Different scenarios can happen in this system. For example,
it could happen that the driver/vehicle fails to provide credit
card information, or the credit card is expired. In this case, the
system can log the vehicle information in a certain database
and send the bill later to the owner, or even it can be set to not
open the gate for the vehicle to pass and also show a red light
for other cars approaching that toll station to stop. Besides
the mentioned timing constraints that exist in this system, the
communication between different nodes and transfer of data
need to be secured and protected. In this system, we have the
following security requirements:

1) Sensitive data such as credit card information should not
be available to unauthorized parties.

2) The vehicle only accepts transactions initiated by the
payment station.

To achieve these requirements, the station needs to authenti-
cate itself to the vehicle so that the vehicle can trust and send
the credit card information. Moreover, sensitive information
that is transferred between different parts should also be
encrypted.

Another scenario that can happen in this system is that

several vehicles may approach one station with a short time
distance between each which can result in bursty processing
loads on the system (analogous to bursty arrivals of aperiodic
tasks in real-time terms). In such situations, timing require-
ments may be violated as even by using static analysis of the
system, only certain levels of such bursty loads may be covered
and not all the possible cases. One solution to mitigate timing
violations in this scenario is to introduce runtime adaptation
and adapt the security level of the system at runtime; meaning
that security mechanisms that are less time-consuming (and
presumably less strong) can be used when such situations
are detected. As the last resort, when the system realizes that
many number of timing violations are occurring, to maintain
a smooth traffic flow and prevent any possible accidents and
safety issues due to the increasing queuing of the cars at the
tolling station, instead of the on-site payment and charging
of the vehicles, the system can just store their information to
send a bill later to the owner of the vehicle, or even add the
amount to the payment done at the next tolling stations on the
road (if there are any and they are connected).

To model and build the system (software parts), particularly
considering the timing constraints of the system, the following
challenges are identified:

1) Modeling security mechanisms with enough details to
enable both timing analysis on the model and synthesis
of the security implementations,

2) Obtaining timing costs of security mechanisms,
3) Managing possible timing violations of the system at

run-time.
The first challenge is discussed in the following two sec-

tions. To get the timing costs of security mechanisms, we rely
on studies such as [18] that have done such measurements. To
solve the third challenge, a runtime adaptation mechanism is
introduced and we show how it helps to mitigate the runtime
violations of timing constraints.

IV. APPROACH

Based on the identified challenges in the previous example,
we introduce an approach that aims to bring the security
concerns in the design of embedded systems. Our suggested
approach helps systems designers in expressing the security
concerns in a system without the need to have much security
expertise on the actual implementation of security mecha-
nisms. It does so by just requiring the system designers to
identify sensitive data entities that need to be protected. In the
scope of our work, it can be for example the data that need
to be confidential and/or whose sender must be authenticated.
Moreover, to mitigate potential timing violations of security
mechanisms at runtime, the approach provides the option to
include an adaptation feature for the security mechanisms.

To implement the approach, ProCom [19] component model
has been used; although the approach is not dependent on this
specific component model and can be implemented using other
component models as well. Security needs are specified as
annotations on the component model. A benefit of the ProCom
component model is its power in defining new attribute types

72

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

using its attribute framework to annotate and specify new
types of data. The term component model hereafter is used
to basically refer to the component architecture model than
the meta-model of ProCom. From the specification of the
security needs at the data level and physical platform level,
a model transformation is applied on the component model to
derive a new component model including security implemen-
tations. The derivation of the new component model (which
now has appropriate security components implementing the
security needs) is done based on a selected strategy. The
strategy basically specifies the preferences in terms of security
implementations and which of them to choose among a set of
different possible ones. Having the necessary information in
the model, the steps that have been described so far can be
summarized as follows:

1) The component model which specifies the functional and
non-functional (extra-functional) part of the system is
transformed into a functionally equivalent model with
added security implementations;

2) Analysis can be performed on the derived component
model that includes security components to identify any
possible violations of timing constrains; and

3) Finally, the system is synthesized.
The considered process is iterative and allows to refine secu-

rity specification after evaluating the resulted system properties
such as timing properties. In other words, timing analysis, for
example, can be performed on the derived component model
and if timing properties of the derived model do not satisfy the
timing requirements, the derivation process can be repeated
with different preferences to finally gain a model which is
satisfactory in terms of timing requirements. The process is
depicted in Figure 3 showing different models and annotations
that are used as input in each step (i.e., the analysis of the
system model as well as synthesis of the implementation).

Component

Model

Data Model

Security

Annotations

Step 1: Transformation

Step 2:

Analyze

Step 3:

Synthesis

Secured

Component

Model

Physical

Input/Output Transformation

/Computation
Model Annotates

Physical

Platform Model

Security

Annotations

Analysis

Results

back annotations
System

Fig. 3. General description of the approach process.

V. IMPLEMENTATION

A. ProCom Component Model
While the approach principles are component model

generic, we implemented it using ProCom. The ProCom com-
ponent model targets distributed embedded real-time system

domain. In particular, it enables to deal with resource limi-
tations and requirements on safety and timeliness concerns.
ProCom is organized in two distinct layers that differ in terms
of architectural style and communication paradigm. For this
paper, however, we consider only the upper layer which aims
to provide a high-level view of loosely coupled subsystems.
This layer defines a system as a set of active, concurrent sub-
systems that communicate by asynchronous message passing,
and are typically distributed. Figure 4 shows ProCom design
of the Automatic Payment System example.

Input Message Port

Merchant

SubSystem

Payment

Station

Subsystem

Vehicle

SubSystem CI

Output Message Port

C
C

I

A
s
k
 C

C
I

PT

Ask CI

PI

TA

V
IP

S

Camera

Subsystem

User

Interface

Subsystem

Message Channel

SubSystem

CI: Customer Info
PT: Payment Ticket
TA: Transaction acknowledgement

CCI: Customer Card Info
PI: Payment Info
PS: Payment Status

VI: Vehicle Info

Fig. 4. Component Model of the System using ProCom.

A subsystem can internally be realized as a hierarchical
composition of other subsystems or built out of entities from
the lower layer of ProCom. Figure 5 shows the implementation
of the subsystem E as an assembly of two component C1
and C2. Data input and output ports are denoted by small
rectangles, and triangles denote trigger ports. Connections
between data and trigger ports define transfer of data and
control, respectively. Fork and Or connectors, depicted as
small circles, specify control over the synchronization between
the subcomponents.

C1

C2

Subsystem E

(a) (b)

Fig. 5. ProCom SubSystem Implementation.

B. Data Model
As components are usually intended to be reused, their

related data may also be reused. To this end, we propose
to extend the data-entity approach described in [20] for
design-time management of data in component-based real-
time embedded systems. In this approach every data entity

73

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is stored in a shared repository and designers are provided
with an additional architectural view for data management,
namely the data architectural view. The description of a data
entity contains its type (string, int...), its maximum size and
its unit. A data entity can also be a composite entity defined
as a list of data entities. We use the concept of data entity
to identify data that are transfered through different message
channels in the system (shown in Figure 4) and map them
to their respective security concerns (e.g., if they need to
be encrypted and protected or not). Table I and Table II
show the data entities in our example. As described in the

TABLE I
PRIMITIVE DATA ENTITIES.

Data Entity Type Max Size Unit
CCNumber String 16 byte

ExpirationDate String 4 byte
AskCI Empty 0 byte

AskCCI Empty 0 byte
PaymentStatus boolean 1 byte

VehicleNumber String 20 byte
VehicleType Enum 8 byte

AmountToPay float 4 euro

TABLE II
COMPOSITE DATA ENTITIES.

Data Entity Contains
CreditCard CCNumber, ExpirationDate

CustomerInfo VehicleNumber, CreditCard
PaymentTicket AmountToPay, PaymentStatus

PaymentRequest AmountToPay, CreditCard

last section, subsystems communicate through asynchronous
message passing represented by message channels. A message
channel is associated with a list of data entities which defines
the message content. Table III presents the mapping between
message channels and data entities for our example. We can

TABLE III
MAPPING BETWEEN DATA ENTITIES AND MESSAGE CHANNELS.

Message Channel Data Entities
AskCI AskCI

CI CustomerInfo
PT PaymentTicket

AskCCI AskCCI
PS PaymentStatus

CCI CreditCard
VI VehicleNumber, VehicleType
TA CCNumber, AmountToPay, PaymentStatus
PI PaymentRequest

observe that the same data entity can be used several times
in different message channels. The mapping between data
ports of message ports and data entities is based on naming

convention which enables to distinguish between the data ports
that require to encrypt/decrypt their data and those that do not.
We call data model the set of data entities which are used in
the related design.

C. Physical Platform And Deployment Modeling

The physical entities and their connections are described in a
separate model called Physical Platform Model (see Figure 6).
This model defines the different Electronic Computation Units
(ECUs), called Physical Nodes, including their configurations
such as processor type and frequency, the connections between
the physical nodes, and the physical platforms which represent
a set of ECUs fixed together.

Bank

ECU1 ECU3
ECU4

C
A

N

T
C

P
/IP

WIFI IPSec

Inter Physical Platform
Connection

Physical Platform

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Fig. 6. Physical Platform Model of the System.

ProCom system deployment is modeled in two steps, intro-
ducing an intermediate level where subsystems are allocated
to virtual nodes that, in turn, are allocated to physical nodes.
In a similar way, message connections are allocated to virtual
message connections which, in turn, are allocated to physical
connections. Figure 7 defines the physical platform and related
mapping of Automatic Payment System model. To simplify the
example, we assume a one to one mapping between virtual
node and physical node.

D. Security Properties

Instead of defining the security properties on the architec-
ture, i.e. the component model, we propose to annotate the
data model and compute the required security properties on
the architecture, based on these security requirements. It is an
original part of our approach where a designer can think about
sensitive data without considering the architecture models. The
designer applies security properties to identify and annotate
sensitive data in the system, which require to be protected
using some security mechanisms (e.g., confidentiality and
encryption, authentication, integrity, etc.). We consider two
types of security properties:

• Confidentiality ensures that the considered information
cannot be read by any external person of the system; and

74

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Merchant

SubSystem

Payment
Station

Subsystem

Vehicle

SubSystem

PT

PI

TA

Bank

CI

Ask CI

WIFI IPSec

ECU1 ECU3 ECU4

V
I

C
C

I

A
s
k
 C

C
I

P
S

C
A

N

T
C

P
/IP

Camera
Subsystem

User

Interface

Subsystem

Inter Physical Platform
Connection

Physical Platform

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Fig. 7. Deployment Model of the System depicting allocation to Physical
Platforms.

• Authentication which ensures that the considered infor-
mation comes from the expected sender.

Table IV shows security annotations associated to data
entities for our example. In addition to security properties on

TABLE IV
DATA ENTITY SECURITY PROPERTIES.

Data Entity Security properties
CCNumber Confidentiality
VehicleNumber Authentication
AskCI Authentication
AskCCI Authentication
PaymentRequest Authentication
PaymentStatus Authentication

the data model, we define the security properties related to the
physical platform which are independent of any application:

• Exposed defines that the physical platform is potentially
accessible to external persons and that they may be able
to open it and modify physical parts.

• NotAccessible defines that the physical platform is not
considered as accessible to unauthorized persons.

In a similar way, physical connections are annotated:
• Secured defines that the physical connection is consid-

ered as secured due to its intrinsic security implementa-
tion.

• NotSecured defines that the physical connection protocol
does not implement a reliable security (opposite of the
above).

Using these properties, the person responsible for the phys-
ical platform annotates physical entities and the physical
connections between them in the platform model. Thanks to
these annotations, we can deduce which parts do not need
additional security implementations if it is already provided
(by construction). For example, if a link is established using
mere TCP/IP, it is annotated as NotSecured, while in case that
IPSec protocol suite is used for a link, that link is annotated

as Secured. This means that the link is considered trusted and
already secured, and no security component is necessary to be
added for the link. Table V shows the security properties of
Automatic Payment System physical platforms.

TABLE V
SECURITY PROPERTIES OF PHYSICAL ENTITIES.

Physical Platform or Connection Security properties
Vehicle Exposed
Station NotAccessible
Bank NotAccessible
WIFI NotSecured
IPSec Secured
TCP/IP NotSecured
CAN NotSecured

E. Cost of Security Implementations

Different encryption/decryption algorithms as security
mechanisms can be selected to satisfy the identified security
properties in the system. Considering the fact that each security
mechanism in the system has its own costs in terms of timing
and performance, power consumption and so on, choosing an
appropriate security mechanism is critical in order to ensure
the satisfaction of timing requirements of the system. For
this purpose, and to take into account the timing costs of
different security mechanisms, we rely on the results of studies
such as [18] that have performed these cost measurements.
Based on such methods, we assume the existence of such
timing measurements for the platforms used in our system
in the form of the Table VI. We assume that execution times
can be computed knowing the target platform, algorithm, key
size and data size. A timing estimation toolkit may also
be provided which provides execution time estimates based
on these measurements. As can be observed from the table,
we also take into account and add this flexibility that some
algorithms may not be supported on some platforms (marked
as NS).

TABLE VI
EXECUTION TIMES AND STRENGTH RANKING OF DIFFERENT SECURITY

ALGORITHMS FOR A SPECIFIC PLATFORM

Strength Rank Algorithm Key Size ET-P1 ET-P2 ET-Pn
1 AES 128 NS 480 . . .
2 3DES 56 292 198 . . .
3 DES 56 835 820 . . .

. . .
(ET-Px: Executime Time on Platform x in bytes per second, NS: Not Supported on corresponding platform)

F. Security Implementation Strategy

As mentioned previously, based on the selected strategy, a
security mechanism is chosen from the table and the com-
ponents implementing it are added to the component model.
The user can then perform timing analysis on the derived
component model to ensure that the overall timing constraints

75

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hold and are not violated. We propose several strategies to
help choosing among all possible security implementations:

• The StrongestSecurity strategy selects the strongest se-
curity implementation available on the platforms (taking
into account that some security mechanisms, namely
encryption algorithms here, may not be available and pos-
sible on a certain platform, hence selecting the strongest
available one);

• The StrongestSecurityAndLimitImplemNb strategy se-
lects the strongest security implementation available on
the platforms while ensuring that we use as few as
possible different security implementations, since each
message channel can use a different encryption algorithm
(finding the most common security implementation which
achieves the strongest level in terms of the strength
rankings);

• The LowestExecTime strategy selects the security im-
plementation available on the platforms which has the
lowest execution time;

• The LowestExecTimeAndLimitImplemNb strategy se-
lects the lowest execution time implementation available
on the platforms while ensuring that we use as few as
possible different security implementations; and

• The StrongestSecuritySchedulable strategy selects the
strongest security implementation available on the plat-
forms where the system remains schedulable.

The selection is driven by the fact that the same algorithm
must be used for the sender and receiver components which
may be deployed on different platforms which in turn may not
support the same algorithms.

G. Transformation

The transformation is performed in four steps:
1) First, we identify the part of a message which needs

to be confidential or authenticated while considering on
which communication channels they are transferred;

2) Next, we add components in charge of the encryption
and decryption of the identified communication chan-
nels;

3) Then, the strategies are used to choose which encryption
algorithm to use and generate the code of the added
components; and

4) Finally, the Worst Case Execution Time (WCET) of
added components is estimated.

The transformation aims to ensure that data decryption
is performed once and only once before that data will be
consumed and that data encryption is performed once and
only once when a message should be sent. To illustrate
the algorithm, let’s consider the example in Figure 8. We
assume that only data D1 needs to be confidential. The pseudo
algorithm of the transformation is described in Listing 1.

Listing 1. Transformation Pseudo Algorithm
msgToSecure = {}
f o r a l l c h a n n e l s M i n component model {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;

(a) Before transformation, no security

C2

C1

C2

D1

D1

C1
D2

D2

D2

C2

(b) After transformation, secured system

C1

C2

EnD1

Original elementsGenerated elements

ED1

ED1 DeD1

C1

Digest

Digest

D2

D2

D2

Fig. 8. Transformation.

i f ((M. g e t C o n f i d e n t i a l D a t a () <> {}) o r
(M. g e t A u t h e t i c a t e d D a t a () <> {}) and

(P . i s N o t S e c u r e d ()) and
((P . i s I n t r a P l a t f o r m () and

P . s o u r c e P o r t . p l a t f o r m . i s E x p o s e d ()) o r
(P . i s I n t e r P l a t f o r m ()))

add M i n msgToSecure ;
}

f o r a l l M i n msgToSecure {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;

Source = M. s o u r c e P o r t ;
EnD = c r e a t e component

wi th same p o r t s a s Source ;
i f (M. g e t A u t h e t i c a t e d D a t a () <> {})

add one o u t p u t p o r t D i g e s t t o EnD
add one i n p u t p o r t D i g e s t t o Source

EnD . i n C o n n e c t i o n s = Source . i n C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where EnD . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
Source . i n P o r t s ;

g e n e r a t e EnD i m p l e m e n t a t i o n code

Des t = M. d e s t P o r t ;
DeD = c r e a t e component

wi th same p o r t s a s Des t ;
i f (M. g e t A u t h e t i c a t e d D a t a () <> {})

add one o u t p u t p o r t D i g e s t t o Des t
add one i n p u t p o r t D i g e s t t o DeD

DeD . o u t C o n n e c t i o n s = Des t . o u t C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where Des t . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
DeD . i n P o r t s ;

g e n e r a t e DeD i m p l e m e n t a t i o n code
}

Encryption/Decryption (in EnD1 and DeD1) is done only for
confidential data while other data are just copied. An addi-
tional port is used to send the digest used for authentication.
The decryption component (DeD1) ensures that all message
data will be available at the same time through the output data
ports. This implementation ensures the original operational
semantic of the component model. Then, the security strategy
is used to choose which encryption/decryption algorithm must
be used and what its configuration will be.

76

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. RUNTIME ADAPTATION

The suggested approach results in a static and fixed set
of security mechanisms to be implemented and used in each
invocation and use of the system. The system model includ-
ing the added security components can then be analyzed in
terms of timing properties before reaching the implementation
phase and therefore it can be evaluated whether the timing
requirements are met or not.

There are, however, cases where such static analysis may
not be possible or even economical. For example, when there
is not much timing information available about each task in
the system to perform timing analysis, particularly in complex
real-time systems with a big number of different tasks. In such
systems even if enough timing information is available for
each task, due to the complexity and big number of tasks,
performing timing analysis may actually be not economical.
Moreover, in performing static analysis some assumptions are
taken into account and if those assumptions are violated at
runtime then the static analysis results will not hold anymore.
In such situations, a runtime adaptation mechanism can help to
cope with the above challenges and mitigate timing violations
by establishing balance between timing and security in a
dynamic fashion.

To bring such adaptation mechanism into our approach, we
introduce another strategy called StrongestSecurityAdaptive.
By selecting this strategy, the implementation of added secu-
rity components will be synthesized as depicted in Figure 9.

Main
Function

Encryption
Algorithm n

Encryption
Algorithm2

Encryption
Algorithm1

Da
ta
 to

 E
nc
ry
pt

En
cr
yp
te
d
Da

ta

Timing behavior

Previous timing behaviors

Timing
History
Log

Allowed Execution Time
(time constraint)

Fig. 9. Adaptation mechanism.

As shown in Figure 9, by using this strategy, in the body
of the added security components (here encryption ones), the
implementation of all different possible encryption algorithms
will also be included. When a request for an encryption
arrives, the component firstly tries to use the strongest possible
encryption algorithm (based on the rank of algorithms in
Table VI) to encrypt the data. The time it takes to perform
the encryption is stored in the Timing History Log. If
this time is more than the specified timing constraint for
performing the job, then for the next encryption, another
encryption algorithm with a lower rank but with less execution
time will be selected (based on the information in Table VI).

In case the encryption job completes sooner than the
specified time limit, the unused portion of its time budget
is then used to determine whether it is feasible to adopt a
higher ranked algorithm for the next encryption job or not.
With this approach, the feedback that is produced regarding
the timing behavior of encryption algorithm is used by the
system to try to adapt itself. Therefore, when the system
receives a burst of processing loads which it cannot fulfill
under specified time constraints, it adapts itself to this higher
load and similarly when the processing load decreases, it
can gradually go back to using more time-consuming (and
presumably more secure) encryption algorithms. This design
is based on the implicit assumption that when it is detected
that an executing encryption algorithm is exceeding its allowed
time budget, it is basically more costly to terminate it in the
middle of the encryption procedure, and restart the encryption
of the data with another encryption algorithm, than just letting
it finish its job, and instead use one with a lower execution
time in the next invocation of encryption components.

The information that is logged in the Timing History
Log has the following format: Timestamp, Encryption algo-
rithm, Time constraint, Actual execution time (timestamp, time
constraint and actual execution time are in system ticks unit in
the following experiment). An example of the generated log
information is shown in Table VII.

TABLE VII
SAMPLE LOG INFORMATION.

10360, AES, 50, 90
11800, 3DES, 80, 70
14500, 3DES, 60, 70
21353, DES, 60, 10
22464, 3DES, 90, 40
23112, AES, 50, 50
28374, AES, 60, 58

Considering the last row from the log as:

ts, alg, t, e
(ts: timestamp, alg: encryption algorithm, t: time constraint, e: actual execution time)

the decision that the system should adopt a lower ranked
algorithm is made using the following formula:

(i) e > t⇒ move down in the encryption algorithms table
and select the next algorithm with a lower rank.

Also, considering the two log records described as follows:
ts(l), alg(l), t(l), e(l) : representing the last log record

ts(h), alg(h), t(h), e(h) : representing the log record for the
first encryption algorithm with a higher rank that was used
before the last log record;

the decision to adopt a higher ranked algorithm is made using
the following formula:

(ii) e(l) < t(l) ∧ t(l) − e(l) > abs(e(h) − t(h)) ⇒ move
up in the encryption algorithms table and select the previous

77

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

higher ranked algorithm.

A. Evaluation of the Adaptation Mechanism

In [3], we have tested the introduced adaptation mechanism;
here we include the evaluation results produced during that
work to demonstrate the benefits of using the adaptation
approach. A simulation environment was setup as described
in [3] with the use of a tool called CPU Killer [21] to enforce
arbitrary CPU loads at desired times.

Figure 10 shows the evaluation results comparing per-
forming encryption with and without using the adaptation
mechanism. In each case, CPU loads of 10%, 50%, 70%, and
then back to 50%, and 10% were applied.

Fig. 10. Performing encryption with and without adaptation.

The columns for each log record in Figure 10 identify:
system time (ticks), encryption algorithm (AES=1, 3DES=2,
DES=3) , time constraint (for each invocation; in ticks),
and actual execution time (ticks). The records in which the
violation of the time constraint has occurred are marked with
a ’*’. Comparing the two cases (without adaptation and with
it) shows that the number of time constraint violations are
reduced in the second case compared to the first case where
only one encryption algorithm (with the highest execution
time) is used. Moreover, in the second case more number of
encryption jobs have been performed under a shorter period
of time.

Since the goal with this adaptive strategy is to use the
strongest security algorithm possible, the adaptation mech-
anism assumes that the encryption algorithms in Table VI
are sorted according to their execution times resulting in the
strongest but most time consuming one to be at the top and the
weakest but less timing consuming algorithm at the bottom.
Also, as a note for the decryption side, there are different
ways to match and synchronize the decryption algorithm
with the selected encryption algorithm. Our suggested way

to do this is to add some additional bits identifying the
used encryption algorithm (e.g., through the use of 2-bit
or 3-bit ID numbers, according to the number of different
algorithms) to the encrypted message for the decryption side
to correctly pick and use the appropriate algorithm. Moreover,
in the introduced adaptation mechanism and its evaluation, an
encryption algorithm and the respective decryption algorithm
for it have been assumed to take the same amount of time
which is generally valid as mentioned in [18]. However, to
extend the adaptation approach for distributed systems where
encryption and decryption can be performed on different
nodes, more parameters for making adaptation decisions can
be added. Such an extension can be to consider the sum
of encryption time and decryption time for each algorithm
to make adaptation decisions instead of just considering the
encryption time only.

VII. DISCUSSION

This approach has been experimented partially in PRIDE,
the ProCom development environment. The feasability at
model level of the approach has been validated while the
code generation part remains as future works. The security
annotations have been added using the Attribute framework
[22] which allows to introduce additional attribute to any
model element in ProCom. The model transformation has been
implemented using a QVTo [23] transformation plugged at
the end of the process described in [24]. These experiments
aim to show the benefits at the design level of the approach
where timing properties of the overall system can be analysed.
The current implementation only supports the LowestExec-
Time and StrongestSecurity strategies. The StrongestSecuri-
tySchedulable strategy is hard to implement, however, it is
the most interesting one. One of the reasons that we do not
claim that we also provide this strategy, in spite of having
the execution times of security components, is that the actual
execution times in the synthesized system will not necessarily
be the sum and individual addition of the execution times of
the added security components to the rest of the system. More
complex security implementation strategies can be considered
but are not covered in this paper.

As for the synthesis of the code of the security compo-
nents, in order to keep the approach generic, we intend to
let certificate specification and other specific parameters of
encryption algorithm to be filled in the generated code. One
generator is associated for each algorithm. The suitability for
timing analysis of the generated component code needs to be
planned but at least will allow for measurement based timing
analysis as any other ProCom component. While the system
functionality remains the same, the system needs also to react
to authentication errors. This problem could be partially solved
by allowing developers to add code to manage authentication
errors in the generated code to define what must be the output
data in each specific case.

Regarding the runtime adaptation mechanism, while on one
hand, it may make the job of the attackers harder as not a
fixed algorithm is used in each invocation and thus it will not

78

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be known and predictable to the attackers (hence some sort of
“security through obscurity”), on the other hand, if attackers
know the internal mechanism of the runtime adaptation, they
can force some processing load on the system to make
the system adopt the weakest algorithm possible, and that
way, make it easier for themselves to break into the system.
Moreover, the adaptation mechanism which was used as part
of our general approach in this paper, can also be designed to
act as an option; in the sense that it can be turned on and used
when a processing load beyond a certain level is detected and
turned off otherwise. This can help to mitigate the overhead of
the adaptation mechanism itself (although another mechanism
to monitor the processing load would need to be added in
that case) and only use it when there are many requests for
encryption.

VIII. RELATED WORK

Designing security features for real-time embedded systems
is a challenging task and requires appropriate methods and
considerations. [16] and [25] particularly discuss the specific
challenges of security in embedded systems and define it as a
new dimension to be considered throughout the development
process. Considering the unique challenges of security in
embedded systems, [25] also emphasizes that new approaches
to security are required to cover all aspects of embedded sys-
tems design from architecture to implementation. The methods
that we introduced in this paper contribute towards this goal
by applying different disciplines in the field of software
engineering, such as model-driven development methods, to
cope with the specific challenges of designing security for
embedded systems.

Also as a non-functional requirement [7], [26], satisfying
security requirements in a system has costs and implications
in terms of impact on other requirements such as performance,
power consumption and so on. In [17], measurement and
comparison of memory usage and energy consumption of
several encryption algorithms on two specific wireless sensor
network platforms have been done. Performance and timing
comparisons of several encryption algorithms are offered in
[18] where Pentium machines are used as the platform. The
approaches we proposed in this paper, work by relying on
the timing and performance comparison results of encryption
algorithms in such studies.

While model-driven and component-based approaches serve
as promising approaches to cope with the design complexity
of real-time embedded systems, management of runtime data
in these systems has also become an important issues than
ever before due to the growing complexity of them. This fact
becomes more clear when we realize that keeping track of all
data that are passing through different parts of the system is
an extremely hard task for a person. In addition, most design
methods based on component models focus mainly on func-
tional structuring of the system without considering semantics
and meanings for data flows [20]. A data-centric approach
for modeling data as well as using real-time databases for
runtime data management in real-time embedded systems is

proposed in [20]. In this work, however, non-functional (extra-
functional) properties such as security are not addressed, and
our approach presented in this paper basically follows a similar
method for modeling data entities as a basis to define security
specification.

As for modeling security aspects, there are several solutions
such as UMLsec [12]. UMLsec is a UML profile [27] for
the specification of security relevant information in UML
diagrams. It is one of the major works in this area and comes
with a tool suite which provides the possibility to evaluate
security requirements and their violations. SecureUML [28] is
also another UML profile for modeling of role-based access
controls. UML profile for Modeling and Analysis of Real-
time Embedded Systems (MARTE) [29] provides semantics
for modeling non-functional properties and their analysis
(e.g., schedulability). In [30], we have discussed MARTE and
the benefits of extending MARTE with security annotations
to better cover the modeling needs of embedded systems.
Besides UMLsec and its tool suite which enables analysis
of security requirements, in [31], a method for specifying
security requirements on UML models and verifying their
satisfaction by relating model-level requirements to code-level
implementation is offered. In [32], we have provided a small
example how it is possible to model security requirements
along with some other requirements of telecommunication
systems and then perform model-based analysis using the
analysis tool suite of UMLsec to identify possible violations
of security requirements.

The need to identify sensitive data is also discussed in [33]
where an extension to include security concerns as a separate
model view for web-services based on Web-Services Business
Process Execution Language (WS-BPEL) is offered. However,
it does not take into account the consequences of security de-
sign decisions on timing aspects, while by identifying sensitive
parts of messages which need to be secured, our objective
is to ease the computation of the timing impacts of security
implementations protecting those sensitive data. Considering
the challenges of securing distributed systems [34] has done a
survey on the application of security patterns, as a form of soft-
ware design patterns, to secure distributed systems. Moreover,
it discusses different methodologies that make use of these ad-
hoc security patterns in a structured way. It also reports that
the majority of the studied methodologies lack explicit support
for distributed systems and special concerns that these systems
have and mentions the development of tailored methodologies
for different types of distributed systems as an important future
work in this area. The approach that we suggested here could
serve as an example for developing such methodologies in
particular for distributed real-time and embedded systems in
which timing requirements play a key role in the correctness
of the whole system.

Regarding the adaptation method that we used as part of
our suggested approach, there are also several related studies
and approaches that we discuss them here. The study done in
[35] is one of the interesting works in the area of security for
real-time embedded systems which uses an adaptive method.

79

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this work, the main focus is on a set of periodic tasks
with known real-time parameters, whereas, our main target
is complex systems that can consist of any type of real-
time tasks. Also, while in our work, the security level of
the system is considered implicitly through the selection of
algorithms from the encryption algorithms table, in [35], a
QoS value has been considered which explicitly represents the
security level of the system. Moreover, in our work, it is the
encryption algorithms which are adaptively replaced, while the
main adaptation component in that work is the key length. Our
approach can easily be extended to cover not only different
encryption algorithms but also variations of each, including
different combinations of key length, number of rounds and
so on, as items (rows) in the encryption algorithms table (e.g.,
AES256, AES128, etc.). Another interesting study with is
close to our work is [36], which basically introduces a similar
type of adaptation mechanism as ours. The main focus in that
work is, however, on client-server scenarios using a database,
and to manage the performance of transactions. The security
manager component used int his work periodically adjusts the
the security level of the system. In our approach, however,
the adaptation mechanism is executed per request and is not
active when there is no request for encryption. Moreover, it
is possible in the approach introduced in this work that an
inappropriate encryption method is used by a client, while
security level change is occurring. To solve this situation,
several acknowledgment messages are sent and the process
is repeated to correct this issue. Therefore, it is possible that
the security manager faces problems regarding synchronization
and message loss due to out of order arrival of messages. As
another approach for managing security in real-time systems,
in [37], a secure-aware scheduler is introduced which basically
incorporates and takes into account timing management of
security mechanisms as part of its scheduling policy.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach to define security
specifications in real-time embedded systems at a high level
of abstraction based on the benefits of model-driven and
component-based methods. Using the suggested approach we
bring semantics to the data that are transferred in embedded
systems to identify sensitive data. The approach enables also
to derive automatically the security implementations and fa-
cilitates performing timing analysis including security features
at early phases of development. It was also demonstrated
how incorporating a runtime adaptation mechanism as part
of the approach helps to mitigate the violations of timing
constraints at runtime. As mentioned, such runtime adapta-
tion mechanisms are especially useful for complex systems
where performing static analysis may not be practical, as
well as in cases where the assumptions that have been used
for performing static analysis are prone to deviation and
violation at runtime which can then lead to the invalidation
of analysis results. Moreover, the introduced approach helps
system designers to mainly focus on the system architecture
and addressing timing properties, and at the same, including

security concerns in the design models without needing much
expertise on how to implement security mechanisms. This
again contributes to bringing security considerations in higher
levels of abstraction.

One of the extensions of this work is to define and add more
strategies for the designers to choose. Among the currently
defined strategies, the StrongestSecuritySchedulable is the
most interesting one but is hard to implement and will be
part of our future works. One of the reasons that we do not
claim that we also provide this strategy, in spite of having
the execution times of security components, is that the actual
execution times in the synthesized system will not necessarily
be the sum and individual addition of the execution times of
the added security components to the rest of the system. Also
as another idea for the extension of this work, it would be
interesting to define and assign required security strength to
data and message channels as another factor that also affects
the selection of security components. It should also be noted
that in this work we mainly addressed encryption as a security
mechanism. Considering other mechanisms such as autho-
rization methods and their impacts on timing characteristics
of systems is another interesting direction of this work to
investigate. Also including other aspects than timing, such as
power consumption of security mechanisms, performing trade-
off, and establishing balance among them, similar to what we
did here for timing properties, can be another extension of this
paper and future work.

X. ACKNOWLEDGEMENTS

This work has been supported by Xdin Stockholm AB [38]
and Swedish Knowledge Foundation (KKS) [39] through the
ITS-EASY industrial research school program [40] .

REFERENCES

[1] M. Saadatmand, A. Cicchetti, and M. Sjödin, “On generating security
implementations from models of embedded systems,” in The Sixth
International Conference on Software Engineering Advances (ICSEA
2011), Barcelona, Spain, October 2011.

[2] M. Saadatmand and T. Leveque, “Modeling security aspects in dis-
tributed real-time component-based embedded systems,” in Information
Technology: New Generations (ITNG), 2012 Ninth International Con-
ference on, Las Vegas, USA, april 2012, pp. 437 –444.

[3] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Design of adaptive
security mechanisms for real-time embedded systems,” in Proceedings
of the 4th international conference on Engineering Secure Software and
Systems, ser. ESSoS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp.
121–134.

[4] P. T. Devanbu and S. Stubblebine, “Software engineering for security: a
roadmap,” in Proceedings of the Conference on The Future of Software
Engineering, ser. ICSE ’00. New York, NY, USA: ACM, 2000, pp.
227–239.

[5] F.-H. Hsu, F. Guo, and T.-c. Chiueh, “Scalable network-based buffer
overflow attack detection,” in Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications systems,
ser. ANCS ’06. New York, NY, USA: ACM, 2006, pp. 163–172.

[6] A. Main, “Application security: Building in security during the devel-
opment stage,” Journal of Information Systems Security, vol. 13, no. 2,
pp. 31–37, 2004.

[7] L. M. Cysneiros and J. C. S. do Prado Leite, “Non-functional require-
ments: From elicitation to conceptual models,” in IEEE Transactions on
Software Engineering, vol. 30, no. 5, 2004, pp. 328–350.

80

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] M. Voelter, C. Salzmann, and M. Kircher, “Model driven software
development in the context of embedded component infrastructures,”
in Component-Based Software Development for Embedded Systems, ser.
Lecture Notes in Computer Science, C. Atkinson, C. Bunse, H.-G. Gross,
and C. Peper, Eds., vol. 3778. Springer Berlin / Heidelberg, 2005, pp.
143–163.

[9] B. Selic, “The pragmatics of model-driven development,” IEEE Software
Journal, vol. 20, pp. 19–25, September 2003.

[10] M. Törngren, D. Chen, and I. Crnkovic, “Component-based vs. model-
based development: a comparison in the context of vehicular embedded
systems,” in Software Engineering and Advanced Applications, 2005.
31st EUROMICRO Conference on, aug.-3 sept. 2005, pp. 432 – 440.

[11] I. Crnkovic, “Component-based Software Engineering - New Challenges
in Software Development,” in Software Focus, vol. 2, 2001, pp. 27–33.

[12] B. Best, J. Jurjens, and B. Nuseibeh, “Model-based security engineering
of distributed information systems using umlsec,” in Proceedings of the
29th international conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 581–590.

[13] A. Wall, J. Andersson, J. Neander, C. Norström, and M. Lembke,
“Introducing temporal analyzability late in the lifecycle of complex real-
time systems,” in Real-Time and Embedded Computing Systems and
Applications, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, vol. 2968, pp. 513–528.

[14] S. Gürgens, C. Rudolph, A. Maña, and S. Nadjm-Tehrani, “Security en-
gineering for embedded systems: the secfutur vision,” in Proceedings of
the International Workshop on Security and Dependability for Resource
Constrained Embedded Systems, ser. S&D4RCES ’10. New York, NY,
USA: ACM, 2010.

[15] E. Albrechtsen, “Security vs safety,” NTNU - Norwegian University of
Science and Technology http://www.iot.ntnu.no/users/albrecht/rapporter/
notat%20safety%20v%20security.pdf, Accessed: December 2012.

[16] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a
new dimension in embedded system design,” in Proceedings of the 41st
annual Design Automation Conference, ser. DAC ’04, 2004, pp. 753–
760, moderator-Ravi, Srivaths.

[17] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless
sensor networks,” Journal of Computer Networks, vol. 54, pp. 2967–
2978, December 2010.

[18] A. Nadeem and M. Javed, “A performance comparison of data encryp-
tion algorithms,” in First International Conference on Information and
Communication Technologies, ICICT 2005., 2005, pp. 84 – 89.

[19] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic,
“A Component Model for Control-Intensive Distributed Embedded
Systems,” in Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008), M. R. Chaudron
and C. Szyperski, Eds. Springer Berlin, October 2008, pp. 310–317.

[20] A. Hjertström, D. Nyström, and M. Sjödin, “A data-entity approach
for component-based real-time embedded systems development,” in
Proceedings of the 14th IEEE international conference on Emerging
technologies & factory automation, ser. ETFA’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 170–177.

[21] CPU Killer, http://www.cpukiller.com/, Accessed: December 2012.
[22] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković, “Integration of Extra-

Functional Properties in Component Models,” in 12th International
Symposium on Component Based Software Engineering. Springer, 2009.

[23] I. Kurtev, “State of the art of QVT: A model transformation language
standard,” in Applications of Graph Transformations with Industrial
Relevance, ser. Lecture Notes in Computer Science. Springer Berlin,
2008, vol. 5088, pp. 377–393.

[24] T. Leveque, J. Carlson, S. Sentilles, and E. Borde, “Flexible semantic-
preserving flattening of hierarchical component models,” in 37th EU-
ROMICRO Conference on Software Engineering and Advanced Appli-
cations (SEAA). IEEE Computer Society, August 2011.

[25] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security
in embedded systems: Design challenges,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 3, pp. 461–491, August
2004. [Online]. Available: http://doi.acm.org/10.1145/1015047.1015049

[26] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Toward model-based
trade-off analysis of non-functional requirements,” in 38th Euromicro
Conference on Software Engineering and Advanced Applications(SEAA),
September 2012.

[27] B. Selic, “A systematic approach to domain-specific language design
using uml,” in Object and Component-Oriented Real-Time Distributed
Computing, 2007. ISORC ’07. 10th IEEE International Symposium on,
may 2007, pp. 2 –9.

[28] T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUML: A UML-Based
Modeling Language for Model-Driven Security,” in Proceedings of the
5th International Conference on The Unified Modeling Language, ser.
UML ’02. London, UK: Springer-Verlag, 2002, pp. 426–441.

[29] MARTE specification version 1.1, http://www.omgmarte.org, Accessed:
December 2012.

[30] M. Saadatmand, A. Cicchetti, and M. Sjödin, “On the need for extending
marte with security concepts,” in International Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011),
March 2011.

[31] J. Lloyd and J. Jürjens, “Security analysis of a biometric authentication
system using umlsec and jml,” in Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 77–91.

[32] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Uml-based modeling
of non-functional requirements in telecommunication systems,” in The
Sixth International Conference on Software Engineering Advances (IC-
SEA 2011), October 2011.

[33] M. Jensen and S. Feja, “A security modeling approach for web-service-
based business processes,” in Proceedings of the 2009 16th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems, ser. ECBS ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 340–347.

[34] “Securing distributed systems using patterns: A survey,” Computers &
Security Journal, vol. 31, no. 5, pp. 681 – 703, 2012.

[35] K.-D. Kang and S. H. Son, “Towards security and qos optimization in
real-time embedded systems,” in SIGBED Rev., vol. 3. New York, NY,
USA: ACM, January 2006, pp. 29–34.

[36] S. H. Son, R. Zimmerman, and J. Hansson, “An adaptable security man-
ager for real-time transactions,” in Proceedings of the 12th Euromicro
conference on Real-time systems, ser. Euromicro-RTS’00. Washington,
DC, USA: IEEE Computer Society, 2000, pp. 63–70.

[37] T. Xie and X. Qin, “Scheduling security-critical real-time applications
on clusters,” in IEEE Transactions on Computers, vol. 55, no. 7, july
2006, pp. 864 – 879.

[38] Xdin AB, http://xdin.com/, Accessed: December 2012.
[39] KK-stiftelsen: Swedish Knowledge Foundation, http://www.

kk-stiftelsen.org/SitePages/Startsida.aspx, Accessed: December 2012.
[40] ITS-EASY post graduate industrial research school for embedded soft-

ware and systems, http://www.mrtc.mdh.se/projects/itseasy/, Accessed:
December 2012.

81

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Preventing Protocol Switching Covert Channels

Steffen Wendzel1,2 and Jörg Keller1
1Faculty of Mathematics and Computer Science, University of Hagen, Germany

2Department of Computer Science, Augsburg University of Applied Sciences, Germany
steffen.wendzel@hs-augsburg.de, joerg.keller@fernuni-hagen.de

Abstract—Network covert channels enable a policy-breaking
network communication (e.g., within botnets). Within the last
years, new covert channel techniques arose which are based on
the capability of protocol switching. Such protocol switching
covert channels operate within overlay networks and can (as
a special case) contain their own internal control protocols.
We present the first approach to effectively limit the bitrate
of such covert channels by introducing a new active warden.
We present a calculation method for the maximum usable
bitrate of these channels in case the active warden is used.
We discuss implementation details of the active warden and
discuss results from experiments that indicate the usability
in practice. Additionally, we present means to enhance the
practical application of our active warden by applying a formal
grammar-based whitelisting and by proposing the combination
of a previously developed detection technique in combination
with our presented approach.

Keywords-Protocol Switching Covert Channel; Protocol Chan-
nel; Active Warden; Covert Channel Detection; Network Security

I. INTRODUCTION

This work is an extended version of [1] in which we
introduced the design and implementation of an active
warden countering protocol switching covert channels in a
basic version with a constant delay.

The term covert channel refers to a type of channel
defined as not intended for information transfer by Lampson
in 1973 [2]. The goal of using covert channels is to trans-
fer information without raising attention while breaking a
security policy [3]. Covert channels have been a focus of
research for decades. In addition to Lampson’s work, the
topic was described in [4] and [5]. While covert channels
can also occur on local systems, we focus on covert channels
within computer networks.

Covert channels are basically divided into two classes:
covert storage channels and covert timing channels [4]. To
transfer hidden information, a covert storage channel alters
storage attributes (e.g., values of a network packet’s header)
and a timing channel alters timing behavior (e.g., the timing
of network packets) [6].

A well-known technology to counter covert channels is
the active warden, i.e., a system counteracting a covert
channel communication. While passive wardens monitor and
report events (e.g., for intrusion detection), active wardens
(e.g., traffic normalizers [7]) are capable of modifying

network traffic [8] to prevent steganographic information
transfer.

Recently, the capability to keep a low profile resulted in
a raising importance of network covert channels because
of their use cases. For instance, covert channels can be
used to control botnets in a hidden way [9]. Covert channel
techniques can also be used by journalists to transfer illicit
information, i.e., they can generally contribute to the free
expression of opinions [6].

A first covert channel able to switch a network protocol
based on a user’s command called LOKI2 was presented
in 1997 [10]. Within the last decade, different new covert
channel techniques occurred and not all of them were
already addressed by protection means. These new tech-
niques enable covert channels to switch their communication
protocol automatically and transparently. They are enabled
to cooperate in overlay networks by using internal control
protocols as presented in [11]. Since covert channels are a
dual-use good, these novel techniques do also enrich the
security of botnets.

We focus on two new covert channel techniques, protocol
hopping covert channels (PHCC) as well as called protocol
channels (PCs). Both channels build the family of protocol
switching covert channels since they rely on the capability
to switch their utilized network protocols.

PHCC were presented in [12] and were improved in [11].
These channels transfer hidden information using several
network protocols to raise as little attention as possible
due to peculiar protocol behavior, i.e., they combine sev-
eral single-protocol network storage covert channels. For
instance, a simple PHCC could use the “User-Agent” field
in HTTP as well as the message number in POP3 “RETR”
(retrieve) requests to transfer hidden information. Protocol
switches in a PHCC are transparent for the covert channel’s
user and the user utilizes the channel as a black-box that
handles the splitting of the payload in data chunks sent using
the different protocols. To work properly, the PHCC must
be able to preserve the order of network packets across the
different protocols.

PCs were introduced in [13] and signal information solely
by transferring network protocols of a pre-defined set in
an order that represents hidden information. Protocols are
therefore linked to secret values, e.g., a HTTP packet could
represent the value “1” and a POP3 packet could represent

82

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Comparison of a PC and a PHCC.

the value “0”. To transfer the message “110” via this PC,
the sender is required to send two HTTP packets followed
by a POP3 packet. The bitrate of a PC is usually limited
to a few hundred bit/s. However, for an attacker this is fast
enough to transfer passwords, selected records or tweets.

Figure 1 compares both, the PC and the PHCC concept.
The difference between both channels is, that PCs signal
their hidden information solely by the use of a selected net-
work protocol in a network packet, while PHCCs combine
multiple covert storage channels simultaneously and place
hidden information in arbitrary storage locations of these
channels.

We present the first concept as well as an implementation
of an active warden able to significantly reduce the bitrate
of both, PHCC and PC. While we do not present a universal
solution countering all covert channels, this is the first work
discussing means against PHCC and PC. The limitation
of these advanced covert channels is more challenging in
comparison to single-protocol covert channels. We evaluate
our results via realistic experiments and we demonstrate
that our approach is useful for the practical operation in
organizations. Due to these achievements, our active war-
den decreases the attractiveness of both channel types for
attackers.

The remainder of this paper is structured as follows.
Section II provides an overview of related work in the
area of covert channels. Section III introduces the idea and
theory of our active warden, while Section IV discusses

our implementation and our experimental results, and Sec-
tion V focuses on the practical aspects of the presented
approach and discusses improvements for covert channels
to bypass the active warden. We propose improvements for
the practical use of our approach by applying a formal
grammar in Section VI and by combining our active warden
with a previously developed detection capability for PCs in
Section VII. We conclude in Section VIII.

II. RELATED WORK

Various techniques for embedding covert channels in
network packet data and its timing were developed within
the last decades. For instance, Girling and Wolf were the
first authors to create network covert channels by modifying
LAN frames [14], [15] and Rowland initially presented
covert channels for IP and TCP [16]. Rutkowska discovered
the idea of a passive covert channel that does not actively
generate own traffic but piggibacks regular traffic of a sys-
tem’s users by modifying the TCP Initial Sequence Number
(ISN) [17]. Therefore, Rutkowska introduced a translation
layer for ISN values into the Linux kernel. Cabuk et al.
developed a technique to embedd hidden information in the
timing of network packets [18], while Ahsan modified the
order of network packets to achieve the same goal [19].
Besides, covert channel presence was discussed in the DHCP
protocol [20], in IPv6 [21], in additional areas of TCP (e.g.,
in TCP timestamps [22]) and IPv4 (e.g., by alternations of
fragment sizes [23]), and in business processes [24].

Means were developed to deal with the problem of covert
channels, like the pump [25], which is a device that limits the
number of acknowledgement messages from a higher to a
lower security level and thus affects covert timing channels
based on ACKs; a concept extended in [26]. Other well-
known techniques are, for instance, covert flow trees [27],
which can be used to detect direct and indirect covert chan-
nels in source code, as well as the shared resource matrix
(SRM) methodology [28] and the extended SRM [29], which
can also be applied to source code but can additionally be
used in other steps of the software development lifecycle. A
newer apprach is program transformation to remove timing
leaks and covert timing channels [30], and steganalysis of
covert channels in VoIP traffic [31]. Hu introduced fuzzy
time to limit the capacity of timing channels between virtual
machines on the VAX security kernel [32], and Zander et
al. as well as Berk et al. applied different means based
on machine learning and statistics to detect covert timing
channels in network transmissions [6], [33].

A concept similar to PCs is the idea of a port knocking
covert channel as presented by deGraaf et al. [34]. Since
port knocking alters information specifying the encapsulated
protocol (using the UDP destination port), a port knocking
covert channel can be considered as variant of a PC. A first
detection algorithm for PC (but not for PHCC) was presented

83

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Location of the Anti-PC/PHCC active warden

in [35], but we are not aware of any research to limit the
bitrate of PC and PHCC or to prevent them.

PHCCs were also used by Yarochkin et al. to create
adaptable network covert channels with the goal to change
the utilized network protocols, if required [36]. For instance,
a covert channel could use HTTP and ICMP. Due to a
change in the firewall configuration between covert channel
sender and covert channel receiver, the ICMP protocol get
might blocked. The idea of Yarochkin et al. is to filter out
such blocked protocols and afterwards switch to another
protocol to overcome the firewall. Li and He presented a
similar approach based on the concept of natural selection
in which survival values are calculated for each network
protocol to evaluate its usefulness [37]. The authors only
utilize protocols with the currently highest survival values
to overcome firewalls.

III. AN ACTIVE WARDEN COUNTERING PROTOCOL
SWITCHING COVERT CHANNELS

The idea of an active warden addressing PHCC and PC
focuses on one aspect both covert channel types share: the
protocol switches. For both channel types, it is a necessity
to ensure that network packets using different network
protocols reach their destination in the same order as they
were sent. Our approach of an active warden for countering
PHCC and PC monitors the protocol switching behavior of
network hosts and introduces delays in network packets if a
protocol switch occurs.

Like the network pump (a device that only allows ac-
knowledgement messages from a high to a low system in
a regulated manner [25]), we have no explicit detection
capabilities in our active warden but aim on limiting the
channel’s bitrate nevertheless. In comparison to the pump,
we do not limit acknowledgement messages but alter pro-
tocol occurrences. Using the presented technique, we can
prevent performance decreases for downloads and uploads
and minimize practical implications (cf. Section V-A) by
installing the active warden on a company’s uplink or
between (autonomous) systems. The warden only affects
those network packets that change the last occurring network
protocol.

The active warden must be located between a covert
channel sender and a covert channel receiver (Figure 2).
To prevent PC/PHCC-based data leakage for enterprises,
a suitable location would be the company’s uplink to the

Internet. The active warden’s delay is configurable and
thus makes our approach adjustable, i.e., an administrator
can choose the individual optimum between maximized
protection and maximized throughput. Formally, this creates
a multi-criterion optimization problem. For a given delay
d, data leakage can occur at a maximum rate R(d), that is
decreasing with increasing d. On the other hand, the side-
effects for legitimate users will increase with increasing d,
i.e., can be modeled by a function S(d). Ideally, one would
like to minimize both, R and S, which is however not
possible. One can combine the two in a target function

penalty(d) = ε ·R(d) + (1− ε) · S(d) ,

which is then to be minimized, i.e., after fixing a suitable ε ∈
[0; 1] the minimization results in an optimal d that represents
the administrator’s priorities. As both R and S are assumed
to be monotonous, a Pareto optimum can be found in the
sense that a further reduction of R by increasing d cannot be
achieved without increasing S. Typically, instead of using R
and S directly, they are normalized to a certain range such
as interval [0; 1], and they might be adapted by linear or
non-linear functions that reflect e.g., the severeness of an
increased leakage.

Imagine a PC using ICMP (1 bit) and UDP (0 bit) and
the goal to transfer the message “0110001”. In this case, the
sender would need to send UDP, ICMP, ICMP, UDP, UDP,
UDP, ICMP. If our active warden is located on a gateway
between both hosts and can delay packets, which probably
belong to a PC or PHCC, the successful information transfer
will be corrupted. At the beginning, the sender sends an UDP
packet, which is forwarded by the active warden. Afterwards,
the sender sends the ICMP packet, which is delayed for
a time d because a protocol switch happened. The next
packet is an ICMP packet again and therefore not delayed
but forwarded. Afterwards an UDP packet occurs, which is
delayed for a time d, too. The next two UDP packets do
not change the last protocol and are therefore forwarded.
The last ICMP packet results in an additional packet switch
and is therefore delayed for time d again. If d is 1 second,
then all delayed packets will arrive after the non-delayed
packets if the sender did not introduce synthetic delays itself.
The resulting packet order at the receiver’s side will be
UDP, ICMP, UDP, UDP, ICMP, UDP, ICMP, or “0100101”
(containing two incorrect bit values).

The situation is similar for PHCC where the hidden
information is not represented through the protocol itself but
through alternations of a protocol’s attributes (such as the
IPv4 TTL or the HTTP “User-Agent”). If the active warden
modifies PHCC transmissions sent via different protocols,
the reassembled payload will be jumbled.

In order to prevent the covert channel users to take
advantage of learning about the value of d, it might also
be randomized, cf. Sections III-B and IV-B.

84

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Bitrate Calculation

Tsai and Gligor introduced the formula B = b · (TR +
TS + 2 · TCS)−1 for calculating the bandwidth of covert
channels using the values TR (time to receive a covert
message), TS (time to send a covert message), TCS (time
required for the context switch between processes), and
b (amount of transferred information per message) [38].
While the formula addresses local covert storage channels,
all parameters are adaptable to a network covert channel as
well.

We use a modification of this formula (cf. formula 1) to
calculate the max. possible error-free bitrate of a PC in case
our active warden is located between sender and receiver.
We introduce the active warden’s delay d multiplied with
the probability p of a protocol switch per packet. Instead of
TR, TS and TCS , we use T to represent the transmission or
gap time:

We call T the gap time to represent the minimal time
difference between two packets of the covert channel. If
T is too small, packets can overrun each other or the
receiver cannot process them fast enough, thus, T is limited
due to the technical environment of the channel: For high
performance computers connected via gigabit links, T is
small, while it will be bigger for systems connected via DSL
over the Internet.

On the other hand, T can be understood as transmission
time if the channel is designed to only transfer packets in a
sequential manner, i.e., one packet has to be received before
another packet can be sent. In that case, the gap time is
equal to the transmission time. The transmission time is the
time required for receiving and sending a packet including
the processing time required by the active warden.

In the remainder, we call T the gap time, but as explained,
T can also be the transmission time between packets since
T depends on the implementation of the covert channel (if
the channel is not capable of sending a successing packet
before an earlier packet was received).

The amount of transferred data per packet (b) is 1
bit/packet in case two protocols are used for a PC since
b = log2 n, where n is the number of protocols used. Thus,
p as well as n will increase if more than two protocols are
used (more information can be transferred per packet but
the switching rate will also increase). In case of a PHCC, b
depends on the amount of storage data per packet and not
on the number of protocols used. Therefore, p will increase
if more protocols are used but since the number of protocols
is not linked to the amount of information transferred per
packet, b will not increase if more protocols are used.

B = b · (p · d+ T)−1 (1)

Theoretically, p is 0.5 if randomized input, a uniform
coding and a set of two protocols is used since the next
packet is either using the same protocol as the last (no

Figure 3. A PC’s bitrate (B) using a set of two protocols depending on
the delay d and the transmission time T .

protocol switch) or the other protocol (a protocol switch
is taking place). In our experiments, the average protocol
switching value for a typical protocol switching covert
channel using only two protocols was p = 0.4738806. Thus,
to transfer information without risking a corruption through
a delay, a PC/PHCC user is forced to send packets with
protocol switches in a way that the delay d cannot corrupt
the packet order.

As mentioned earlier, the value p depends on the amount
of protocols used as well as on the channel’s coding. If
a uniform coding was used (as with optimized channels)
and if two protocols are used p is approx. 0.5. In case
four protocols are used, p is approx. 0.75. In general, for
n protocols used p is (1 − 1/n). Thus, formula 1 can be
modified to the following version:

B = b · ((1− 1/n) · d+ T)−1 (2)

Protocol Channel: As also already discussed, b = log2 n
in case of a PC. Thus, B = log2 n · ((1− 1/n) · d+ T)−1.
Taking d as well as T into account using formula 1, we cal-
culated the maximum useful bitrates for an uncorrupted PC
transfer using a set of two protocols (Figure 3). According
to our calculations, a PC’s bitrate can be reduced to less than
1 bit/s if the active warden introduces a delay of 2.0 sec for
protocol switches. For T , we used a time range obtained
from measurements of the original “pct” program.

Protocol Hopping Covert Channel: For a PHCC, the
parameter b varies more than parameter T (is, as in the case
of a PC, usually very low). Therefore, we created a different
plot where we set T to the static value 0.005, which we
measured in experiments. Figure 4 shows the bitrate of a
PHCC dependent on the delay d as well as the number b
of transferred bits per packet. Obviously, the result of the

85

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. A PHCC’s bitrate using two protocols, T = 0.005 and delays
between 0.5 and 2s as well as the capability to transfer between 1 and 10
bits per packet.

Figure 5. A PHCC’s bitrate using four protocols, T = 0.005 and delays
between 0.5 and 2 as well as the capability to transfer between 1 and 10
bits per packet.

PHCC is equal to the result of a PC if b = 1. However,
PHCCs can carry more information and are therefore harder
to limit, i.e., they require higher delays.

As shown in Figure 5, the bitrate of a PHCC decreases if
the number of protocols used increases, since more protocol
switches (p = 1 − 1/4) occur, i.e., the active warden’s
efficiency for PHCCs is positively correlated with p.

Before we experimentally validate the estimated bitrate
of the protocol switching covert channel, we will discuss
details of our implementation.

B. Improved Coding

The presented approach addresses PC and PHCC without
special coding but with a coding as available in their respec-
tive proof-of-concept codes. We highlight the advances of a
better coding for both, PC and PHCC, as a means to counter
the active warden.

PC with improved coding: If a PC uses a coding that
requires to send new packets only if a value unequal to the
current value is required to be transferred, it can overcome
the active warden, if sender and receiver are synchronized.
This is possible if the sender only transfers a network
packet if a protocol switch occurs, i.e., two packets of the
same protocol are never transferred after another. The timing
intervals between the protocol switches represent the amount
of bits to transfer. Thus, such a covert channel would be a
hybrid version of a timing channel and a PC.
Example: The sender sends a packet of protocol P1. The
active warden delays it for time d and forwards it. Three
more bits as represented by P1 shall be transferred. There-
fore, the sender waits for three time slots. Afterwards, a
bit represented by P2 shall be transferred and the sender
sends one such a packet. The active warden delays the packet
for d and forwards it. If the sender sends P1 again, it will
also be delayed for d. The receiver will receive P1, three
waiting slots, P2, P1, i.e., the same input as was sent by
the sender. The only disadvantage introduced by the active
warden is the delay of d for all packets but this is a minor
consequence for the covert channel since even if the message
is delayed, it still reaches its receiver without comprising
errors. Thus, such a coding would primarily result in side-
effets on legitimate traffic due to d but would have no direct
affect on the covert channel traffic.

To overcome this problem, an improved version of the
active warden was developed. In our previous experiments,
we focused on an active warden with a constant delay d.
If d varies from packet to packet, or in other words, d is
randomized (e.g., d ∈ [0.1; 2] sec), previous packets are
likely to overrun newer ones if the timing interval of the
sender is too small. Thus, the sender is forced to use big
waiting times and thus, will be forced to decrease its bitrate.

Besides the previously mentioned coding, a PC could also
use other codings to improve the amount of bits transferred
per protocol switch (b/p). For the default PC coding and
two protocols, p = 0.5, but when a run length limited (RLL)
coding (as used for hard disks [39]) is implemented, p can
be decreased.

In case of geometrically distributed symbols, an optimized
coding (Huffman coding) can help the covert channel’s user
to minimize the amount of packets to transfer, but – as usual
for covert channel research – we focus on an optimized
coding using a uniform distribution (e.g., the covert channel
is used to transfer encrypted input).

Another variant of a PC might use unary encoding of

86

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

symbols with n = 2 protocols. In order to send a value
i ∈ {0, . . . , k − 1}, i + 1 packets of the first protocol and
k − i packets of the second protocol are sent. Assuming
that k is a power of two, then b = log2(k)/(k + 1) bits
are transferred per packet, as k different symbols could be
encoded in log2(k) bits, and k + 1 packets are used to
transmit one symbol. Note that b < 1, for example with
k = 16, we have b < 0.25. The sender then waits for
some time before sending the packets for another symbol.
The receiver can decode a symbol if the packets for one
symbol arrive before any packets for the next symbol arrive.
The sender might also use the two protocols alternately to
code symbols. In both cases, the gap between two symbols
must be rather large to overcome an active warden with
a randomized delay d. Because the delay is unknown to
the sender, it can neither rely on a maximum delay nor a
minimum delay of any packet. Hence, to clearly separate
the packets for successive symbols on the receiver side, the
sender’s waiting time between symbols must be high, at least
larger than the maximum value of d. Thus, the bitrate of such
a channel is restricted to b/d, which is less than 1 bit/s if
d ≥ 1 s as b < 1 bit/packet.

Receiver-side re-calculation attack for PCs: In case
a constant delay is used, it is possible for the attacker
to recalculate the original sequence of received packets of
a PC. However, due to the jitter, it is possible that the
attacker is forced to use error-correcting codes. The active
warden can implement the previously mentioned randomized
d to overcome this problem. Also, the overhead for error
correction additionally reduces the available PC bitrate.

PHCC with internal control protocols A drawback of
our approach is linked to a feature only available for PHCCs
but not for PCs. PHCCs provide usually enough covert space
to contain a covert channel-internal control protocol (called
a micro protocol) [11]. Such micro protocols can be used to
embed sequence numbers in covert channel packets as done
in [12], [40], [41].

Using these sequence numbers, the receiver can reassem-
ble network packets even if their ordering was disturbed
[12]. While the active warden is not able to completely
solve this problem, it forces a PHCC user to use a sequence
number. Such a storage channel-internal sequence number
usually consists of only 2-3 bits and thus, the active warden
can break the receiver-side sorting nevertheless, if d is large
enough.

Additionally, since these channels do only provide a few
bits per packet, the active warden decreases the available
space per packet by forcing the presence of a sequence
number or of a larger presence value. Thus, a user is forced
to send more packets to transfer the same amount of data
than in the case where no active warden would be located
on the path between PHCC sender and PHCC receiver.

However, it is important that the size of the micro protocol
header is as tiny as possible since the few available bits of

space provided within a PHCC should be used to transfer
payload. If less space is available per packet due to a larger
micro protocol header, more packets are required to be
transferred to send a given payload to the receiver.

IV. EXPERIMENTAL VALIDATION

In the following, we discuss our implementation and
the results of our validation. We set up an experimental
environment in form of a virtual network to represent a
realistic scenario for a data leakage in an enterprise network.
The content used in the experiment was generated by two
available proof of concept tools that could be used by any
attacker and thus, also represent realistic user generated
traffic.

A. Implementation

For our test implementation, we set up a virtual network
between two virtualized Linux 3.0 systems (a covert channel
sender as well as a receiver with a local active warden
instance) using VirtualBox (www.virtualbox.org). Both hosts
were connected using a virtual Ethernet interface and IPv4.
Our proof of concept code focused on layer 4 protocols
identifiable by the IPv4 “protocol” field only. Therefore, we
modified the protocol channel tool (pct) [42] that used ARP
and ICMP to use UDP and ICMP instead. Additionally, we
implemented the functionality to generate randomized input
and to adjust the channel’s bitrate.

To implement the network delays on the receiver system
that is acting as both the active warden gateway and the
protocol switching covert channel receiver at the same time,
we made use of the firewall system netfilter/iptables. Netfil-
ter/iptables provides a “queue” feature, which can be used
to redirect data packets to a userspace program. Berrange
implemented the Perl-based program delay-net [43] that
enforces configurable network delays using the IPQueue
module [44], which is based on the iptables queue feature.
We modified delay-net in a way that it only delays packets
after a protocol switch happened. We also implemented a
third program to evaluate the correct transmission at the
receiver’s side, to test our prediction from formula 1 (cf.
Section III-A).

Since this test focuses on the protocol switching capability
of both, the PC and the PHCC, at the same time, the testing
method is valid for both covert channel types. However,
we additionally used the protocol hopping covert channel
tool (phcct) [45] to verify the results for PHCC with and
without micro protocols and high data rates since PCs cannot
comprise such internal control protocols.

B. Results

In our test configuration, the value T is quite small (we
measured 0.005 in average) in comparison to the delay time
d. As mentioned in the previous Section, we were able to
determine p = 0.4738806 through observing the behavior

87

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Measured maximal bitrate of the modified pct dependent on the
active warden’s delay in case a constant or a randomized delay is applied.
In comparison, we show formula 1 using the estimated protocol switching
value.

of the modified pct in our virtual test network. However,
p turned out to be slightly higher (0.53) in a real network
environment, where protocols occur, which do not belong
to the PC, and therefore result in few additional protocol
switches.

In our test setting we sent PC data using different bitrates
and monitored the correctness of the received packet order at
the receiver’s side. Using this method, we were able to find
out the maximum bitrate able to work error-free dependent
on the delay introduced by the active warden. Figure 6 shows
the results in comparison to our calculation of B (formula
1). The differences between B and our recorded values are
small. We evaluated both, an active warden with a constant
delay d as well as an active warden with a randomized delay
in the range [0, d[.

An active warden with a constant delay value d = 2.1 s
(T = 0.005) reduces the bitrate limit required for a success-
ful transmission of data to 1 bit/s. If d = 1.0 s, the bitrate
limit is reduced to a maximum of 2.088 bit/s.

If we apply a randomized delay, the results are better than
in case of a constant delay. To reduce the bitrate to 1 bit/s
we only needed to apply a max. delay of d = 1 s. A max.
delay of d = 2 s reduces the PC’s bitrate to 0.65 bit/s.
The higher efficiency of a randomized delay comes due to
the circumstance, that when a packet is delayed and the
following packet is delayed as well, the second packet can be
forwarded earlier than the first packet and thus, jumbles the
packet sequence. If both packets are delayed with a constant
time, a later delayed packet cannot overrun a previously
delayed packet. Figure 7 visualizes both delay differences.

Comparing both results as shown in Figure 6, we identi-
fied the randomized delay to provide a better efficiency than

Figure 7. Output of two delayed packets for a constant and a randomized
delay.

the constant delay.
Since PC and PHCC can both be seen as covert storage

channels, the interesting aspect was to test PHCC situations,
which are not exactly the same as for PCs. We therefore ran
two experiments:
In the first experiment, phcct was used to transfer data with
its capability to re-sort jumbled packet sequences using its
internal micro protocol. The results showed, that phcct was
indeed capable of re-sorting test traffic for 10KByte and
100kByte payload transfers (each sent 10 times through the
active warden).
For the second experiment, we modified phcct in a way that
the re-sorting capability of the internal control protocol was
turned off. Since phcct is capable of transferring b = 792
bits per packet, the applied delays are less efficient than with
a smaller b (as it is given for PCs). However, no transfer
without errors was possible (with and without the active
warden), if phcct was ran and transferred more than 1KByte
(11 packets) of payload. Thus, high bitrate transmissions
– as done by phcct – without a re-sorting capability are
practically not feasible for PHCCs.

V. DISCUSSION

After the concept, implementation and the measured
results of the active warden were presented, this Section
aims on discussing practical aspects of the active warden
and improvements for covert channels to counter the active
warden.

A. Practical Aspects

A goal of the presented active warden approach is to
design the system for a practical use. The requirement for
only small delays is – even if a user’s initial request to
a website will be delayed – an acceptable limitation for
legitimate traffic in high-security environments since delays
of only around 2s can reduce the useful bitrate of PCs to
a maximum of 1 bit/s. For PHCC, the value can differ if
the channel provides high values for b. However, to achieve
the goal of practical usefulness, it is necessary to implement
additional functionality because of the following reasons:

88

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DNS requests: Typically, a user sends DNS requests to
a DNS server and, after receiving a response, connects to a
system using another protocol. It is required to take care of
this typical effect (and similar effects such as using HTTPS
right after a user clicked on a link of a HTTP-based website).
Protocol switches occur in both cases (DNS→HTTP and
HTTP→HTTPS, respectively). The DNS server and the
system a user connects to (usually a web server) will in
almost all cases have different addresses, thus it is easy
to address this problem if the active warden distinguishes
destination hosts. In Section VI, we present an approach
based on formal grammar to address this problem.

Different protocols on a single host: However, situations
are thinkable in which a user is connected to one host using
two different protocols, e.g., to an SMTP server and an
IMAP server hosted on the same system. In such cases,
whitelisting (e.g., defining trusted hosts) can reduce this
problem. This problem is also addressed in Section VI.

Multiple senders: In an enterprise network, there are
usually a number of different computers with Internet access.
If the active warden is located on the uplink, it will notice
many protocol switches since different systems use different
protocols to achieve different tasks. The active warden
should distinguish source addresses to solve this problem.
Therefore, it is also necessary to distinguish source addresses
in the active warden to overcome this problem.

Some companies run a network address translation (NAT)
service within their network. These systems would appear as
a single system to the active warden although the systems
as well as the active warden are located inside the company
network. Thus, the NAT’ed systems would face delays. A
whitelisting is no sufficient solution since these address
translated systems are required to be protected from data
leakage too. A possible remedy for that problem would be
to use remote physical device fingerprinting [46] to count
the number of NAT’ed systems and apply smaller delays per
packet switch if the number of hosts behind NAT increases
(and vice versa).

Redundancy: As all normalizer and firewall-like systems,
our prototype of an active warden can result in a single
point of failure if not operated on a redundant installa-
tion. Modifications of existing redundancy protocols (e.g.,
the common address redundancy protocol, CARP) might
be used to solve this problem. However, as any firewall-
like system, the active warden introduces side-effects, i.e.,
delays, into network traffic.

End-User Limitation: As explained, the effect for end-
users is low if the active warden is used.

While an extensive end-user study was not part of this
work, we measured different HTTP request-response times
for 10MByte downloads over the active warden. The stan-
dard download time in our network was 0.41-0.57s. After we
installed the active warden, we ran a HTTP download as well
as a 0.25 bit/s PC to simulate a number of protocol switches

as they occur for modern websites (multiple DNS requests
for a whole site are normal since they can include script
sources from other domains). This increased the download
time to 0.43-3s. We observed that the basic limitation for
connections happens in the establishment phase where a new
protocol (HTTP over TCP) occurred. In the context of the
4s-rule for website rendering [47], we can assume that our
active warden is valuable for practical use-cases.

To summarize, all mentioned problems (except the net-
work address translation) are solvable by adding the men-
tioned simple features. The configurable delay parameter d
provides administrators a way to adjust the efficiency of
the active warden to their requirements. Since only protocol
switching packets are affected by the active warden, most of
a network’s traffic is not affected, i.e., download rates and
upload rates will not decrease notably.

B. Covert Channel Improvements

While we already discussed improved encoding tech-
niques for both, PC and PHCC, in Section III-B, this Section
will highlight architectural means, which can be used by
both channel types to bypass the active warden. We will
also discuss the subject of covert channel-internal control
protocols for PHCC.

Multiple Covert Channel Senders: While the previously
mentioned approach of distinguishing source addresses is
a requirement for the practical application of the active
warden, a distributed covert channel sender can take ad-
vantage of it: If the covert channel sender consists of
multiple inhouse systems, each associated with a single
network protocol, these systems can send PC/PHCC data to a
destination host outside of the enterprise network through the
active warden without causing protocol switches. Therefore,
a coordination of the distributed sender hosts is necessary
but can be achieved by introducing a single coordinator host
connected to the actual PC/PHCC senders. However, due
to the presence of the active warden, the covert channel
sender is forced to coordinate its distributed transfer and
the command and control traffic between the covert channel
sender hosts and the covert channel coordinator system are
required to be hidden as well, i.e., will raise the chance of
a detection.

A similar approach is a Covert Channels with Multiple
Receivers: If one covert channel host sends packets to
different covert channel receivers and each covert channel
receiver is associated with only a single protocol, no protocol
switches between a single sender and a single destination
occur (since each path is only used for one protocol) and no
bitrate is limited in a direct way but in an indirect way: If the
covert channel receiver is forced to be a distributed system
(i.e., a covert channel-based botnet/zombie network), it has
to implement a distributed coordination mechanism (sorting
packets and extracting all hidden information on a single
system that finally computes the whole hidden message). If

89

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the receiver-side network is monitored as well, the coordi-
nation itself must be covered too, and thus can probably be
detected or at least raise attention. Also, the bitrate is limited
since multiple receivers can receive messages via network
access points with different performance and the network
packets for the coordination can differ in their timings, too.
Therefore, the sender must introduce pause intervals (which
limit the bitrate) between new packets to prevent a jumbled
result at the receiver.

Improved Control Protocols: PHCCs with internal con-
trol protocols can – if a sequence number is present – re-
sort jumbled packet sequences at the receiver side and thus,
can make the active warden inefficient even if delays are
introduced. However, applied delays can cause the active
warden to report abnormal protocol switching traffic and
it would be useful, if the size of PHCC-internal control
protocols could can be shrinked to prevent such attention
raising behavior.

Therefore, we developed a technique called status updates
[48]. The concept of status updates is to only transfer a
header component to the receiver, if the last status of the
header component changes. For instance, imagine a PHCC
between a system A and C via a proxy B, i.e., A→ B →
C. Therefore, A configures the covert channel proxy B to
forward data to C via sending a status update that defines the
forwarding destination C. All following packets received by
B from A will be forwarded to C and A is not required to
define the covert payload’s destination C again. However,
A can send a new status update for the destination to B
to, for instance, send all following traffic to D (instead of
sending it to the previously configured destination C). Status
updates work for all status-based header components (e.g.,
also for source addresses or fields to indicate the start/end
of a transaction) and can therefore decrease header sizes.

We combined our status update approach in [48] with dy-
namic routing for covert channel overlays. If a PHCC sender
can measure a delay applied on protocol switches between
itself and the PHCC receiver by ping’ing the receiving peer
with and without causing a protocol switch, it can determine
the possible presence of an active warden. In such a case,
the PHCC sender could try to find an alternative routing path
that does not face delays on protocol switches. Afterwards,
the PHCC can even be transformed into a PC since no delay
is applied and no packet jumbling will occur. To achieve
this goal, we developed the Smart Covert Channel Tool –
a dynamic routing middleware capable of utilizing various
covert channel technologies, which can include PCs, but
other covert channel techniques, such as network timing
channels and network storage channels, as well.

VI. IMPROVEMENT PROPOSAL 1: APPLYING FORMAL
GRAMMAR TO INCREASE PRACTICAL USAGE

As mentioned earlier, our active warden must comprise
an additional means to handle selected practical issues. We

therefore propose a means based on formal grammar that
addresses the following previously discussed problems:

1) The problem of delaying legitime protocol switches
(e.g., DNS → HTTP),

2) the problem of host-related protocol switches (e.g., a
client downloads from a web-server while sending a
large e-mail to the SMTP server),

3) the problem of running multiple services on a single
host (e.g., SMTP and IMAP service on the same
machine).

Formal grammar has previously been applied in the con-
text of computer security. For instance, Gorodetski et al. used
formal grammar for attack modelling in [49] and Trinius and
Freiling realized SPAM filters with context-free grammars
[50].

A formal grammar G = (V,Σ, P, S) comprises the set V
of non-terminals, the set Σ of terminal symbols, the set P
of productions and the starting symbol S ∈ V [49].

Our formal grammar-based approach is based on the idea
of whitelisting, i.e., we define the allowed protocol switching
behavior within in the context of a company’s network
within our formal grammar and afterwards test, whether the
network’s actual behavior is conform to the rules of the
grammar. If the protocol switching behavior is conform, the
active warden does not apply a delay, otherwise it will delay
packets.

Therefore, we first define the allowed network protocols
as terminal symbols px where x is the protocol, e.g.,
Σ1 = {pdns, phttp, phttps, psmtp, pimap}. Afterwards, we
define additional terminal symbols for the servers sy in our
network where y is the address of the server (it can be an IP
or a hostname, e.g., Σ2 = {smail, sname, sweb}). Both sets
form the set of terminal symbols Σ = Σ1 ∪ Σ2.

In the next step, we define the production rules in P . We
define productions, which are built in the form <server>
<protocol>, e.g., smailpsmtp, which can comprise allowed
rules of the utilized grammar type (e.g., context-free or
regular).

The following example grammar allows

1) the use of SMTP and HTTP (both also after DNS),
and

2) to switch from HTTP to HTTPS and vice versa,
i.e., we support HTTP-based websites with HTTPS
links/content (and vice versa),

3) as well as to switch between SMTP and IMAP to allow
sending and receiving e-mails at the same time;

4) to run different services on the same machine (here,
the SMTP and IMAP services are located on the same
machine smail);

5) the simultanous use of e-mail, DNS and web access,
since W2 allows the production M2 and since M2

allows the production W2.

90

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. The integration of grammar productions and terminal symbols
in the active warden.

V = {S,D,W1,W2,M1,M2} (3)
P = {S → D(W1|M1)|W1|M1 (4)

D → snamepdns (5)
W1 → sweb(phttp|phttps)W2 (6)
W2 → DW1|W1|M2|ε (7)
M1 → smail(psmtp|pimap)M2 (8)
M2 → DM1|M1|W2|ε} (9)

If a new packet arrives at the active warden, the active
warden tries to find a production rule that fits the protocol
sequence – either by starting a production from scratch or
by continuing an existing one – in other words, the active
warden tries to find a suitable production to allow a direct
forwarding. Figure 8 visualizes this concept.

For instance, if a DNS packet was received (e.g., identified
by the DNS port or by advanced protocol identifying tests
like [51]), it is not delayed because a production rule (S →
D(W1|M1)) allows the DNS packet. Afterwards, an SMTP
packet arrives, which is also allowed by the production rules
(S → D →M1).

If multiple packets of the same protocol (e.g., many
SMTP packets for sending a larger e-mail or multiple HTTP
packets from a file download) occur, they are not delayed
because no protocol switch is taking place. Thus, non-
protocol switching rules are not required, which ensures
small grammar productions.

As an additional means to keep grammars as small as
possible, we propose to implement layer-based grammars
for the application of rules specific to the network layer
of the TCP/IP model. Low-level protocol switching covert
channels are not considered a threat in that case because
they are not available for routing and low-level frames will
not directly pass the active warden. For instance, an ARP
request need not be modelled in the grammar nor must it be

handled by the active warden since the active warden will
not forward ARP requests (as long as it does not explicitly
act as an ARP proxy).

VII. IMPROVEMENT PROPOSAL 2: DETECTION-CAPABLE
ACTIVE WARDEN TO COUNTER PCS

In recent work [35], we evaluated the detectability of
protocol channels. We presented two algorithms for a PC
detection. The first algorithm uses a static formula for a
traffic detection, the other algorithm uses machine learning
based on the C4.5 algorithm to build a decision tree and
provides better results than the first algorithm and shall be
discussed in this Section.

The C4.5 algorithm requires a traffic recording of at least
a few thousand packets (in our tests, we used 5000 packets)
and thus, only existing protocol channels that already trans-
ferred information can be detected and the continuing covert
channel transmission can be interrupted (e.g., blocked by a
firewall or delayed by the active warden).

For the detection of protocol channels, we use the change
rate R that reflects how frequently protocol switches for
a given sender occur (C is the total number of protocol
switches and P the total number of packets of a traffic
recording).

R =
C

P
(10)

A second parameter introduced is the average time be-
tween protocol switches D (Ti is the time of a protocol
switch i).

D =

∑
i (Ti+1 − Ti)

C
(11)

We observed, that protocol channels are linked to higher
R and/or smaller D values than normal traffic [35].

Since our technique provides an accuracy of 98-99% for
PCs with a bitrate of 4 bits/s or higher, the decision tree-
approach can be considered useful in practice if used in
conjunction with the active warden. Therefore, the active
warden would act as described but would stop applying a
delay (or would decrease the applied delay) on traffic that
comprises no PC.

As mentioned, the machine learning-based detection ap-
proach requires a traffic recording. The active warden must
therefore record the traffic on the fly and would only
apply delays if enough packets were recorded and if the
traffic got classified as being covert channel traffic (optimal
results require n = 5000 packets). Thus, the active-warden’s
detection capability would not be usable for the first n
packets.

Our problem of requiring enough traffic data before being
able to act as required is similar to another kind of active
warden: the traffic normalizer. Traffic normalizers face a so-
called cold start problem [7]: If a traffic normalizer boot-
straps, it receives packets of already existing connections and

91

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

does not know any details of previously sent packets (e.g.,
whether a received packet belongs to an actually established
connection or not) and cannot apply all normalization rules
without causing negative effects on the traffic.

However, after a first traffic recording of n packets got
classified, the active warden must continue recording traffic
in a queue. The queue should contain n = 5000 packets at
all times to provide optimal detection results. Therefore, the
oldest packet is removed when a new packet is added to the
queue. A queue also prevents continuously growing buffers
that decrease the active warden’s performance over the time.

Since a traffic classification is time-consuming and the
performance of the active warden must be ensured, it is
not recommendable to classify the traffic recording for each
received packet. Instead, the number of packets < n before
a new C4.5 classification is applied should be adjusted to the
throughput of the links (e.g., every 1000 or 2500 packets).

The active warden can either stop applying delays on
traffic if a traffic was classified as not being a covert channel,
or it can decrease the applied delay. On the other hand, it
can apply the delay (or increase the delay) if a traffic was
classified as being covert channel traffic.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present the first active warden designed
to counter both types of protocol switching covert chan-
nels: protocol channels (PCs) as well as protocol hopping
covert channels (PHCCs). We limit the useful bitrate of
these covert channels by disturbing the protocol switches
through synthetically introduced delays. We implemented
an active warden with both constant and randomized delay,
based on netfilter/iptables. The active warden is suitable
for a practical use but can still result in side-effects on
regular traffic. Therefore, we proposed to combine the active
warden with a detection functionality for protocol channels
and additionally, to apply whitelisting based on a formal
grammar to prevent that delays are applied to legitimate
network traffic.

Future work will include to find solutions for the problem
of network address translation (NAT) inside a protected
network as well as to find solutions for effects of large
network environments where load balancing and redundancy
protocols are required; the presented prototype was not
designed for such environments. Additionally, research must
be done to provide an exact bitrate controlling for PHCCs
using internal sequence numbers since these channels can re-
sort jumbled packet sequences caused by the active warden.
We do not expect our approach to be easily modifiable to
counter such advanced protocol hopping covert channels.

ACKNOWLEDGEMENT

We would like to thank Sebastian Zander for his com-
ments on the calculation of the max. error-free bitrate.

REFERENCES

[1] S. Wendzel and J. Keller, “Design and implementation of an
active warden addressing protocol switching covert channels,”
in Proc. 7th International Conference on Internet Monitoring
and Protection (ICIMP 2012), A. Wagner and P. Dini, Eds.
IARIA, 2012, pp. 1–6.

[2] B. W. Lampson, “A note on the confinement problem,”
Commun. ACM, vol. 16, no. 10, pp. 613–615, 1973.

[3] S. J. Murdoch, “Covert channel vulnerabilities in anonymity
systems,” Ph.D. dissertation, University of Cambridge, 2007.

[4] Trusted Computer System Evaluation Criteria (TCSEC, Or-
ange Book), Department of Defense (DoD) Std., Aug 1985.

[5] J. P. R. Gallagher, Ed., A Guide to Understanding Covert
Channel Analysis of Trusted Systems (NCSC-TG-030). Na-
tional Computer Security Center, Nov 1993.

[6] S. Zander, G. Armitage, and P. Branch, “Covert channels
and countermeasures in computer network protocols,” IEEE
Comm. Magazine, vol. 45, no. 12, pp. 136–142, Dec 2007.

[7] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion
detection: Evasion, traffic normalization, and end-to-end pro-
tocol semantics,” in Proc. 10th USENIX Security Symposium,
2001, pp. 115–131.

[8] A. Singh, O. Nordström, A. L. M. dos Santos, and C. Lu,
“Stateless model for the prevention of malicious communi-
cation channels,” Int. Journal of Comp. and Applications,
vol. 28, no. 3, pp. 285–297, 2006.

[9] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection,” in Proc. USENIX Security
Symp., 2008, pp. 139–154.

[10] Daemon9, “Loki2 (the implementation),” Phrack Magazine,
vol. 7, no. 5, September 1997, retrieved: Dec, 2012. [Online].
Available: http://www.phrack.org/issues.html?issue=51&id=6

[11] S. Wendzel and J. Keller, “Low-attention forwarding for
mobile network covert channels,” in Proc. 12th IFIP Conf. on
Communications and Multimedia Security. Springer LNCS
vol. 7025, 2011, pp. 122–133.

[12] S. Wendzel, “Protocol hopping covert channels,” Hakin9,
vol. 08, no. 03, pp. 20–21, 2008, (in German).

[13] ——, “Protocol channels as a new design alternative of covert
channels,” CoRR, vol. abs/0809.1949, pp. 1–2, 2008.

[14] C. G. Girling, “Covert channels in LAN’s,” IEEE Transac-
tions on Software Engineering, vol. 13, pp. 292–296, February
1987.

[15] M. Wolf, “Covert channels in LAN protocols,” in Proc. Local
Area Network Security. Springer LNCS vol. 396, 1989, pp.
89–101.

92

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] C. H. Rowland, “Covert channels in the TCP/IP
protocol suite,” First Monday, vol. 2, no. 5, May
1997, retrieved: Dec, 2012. [Online]. Available: first-
monday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/
528/449

[17] J. Rutkowska, “The implementation of passive
covert channels in the linux kernel,” 2004,
ftp://ftp.pastoutafait.org/pdf/passive-covert-channels-
linux.pdf, retrieved: Dec, 2012.

[18] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing
channels: design and detection,” in Proc. ACM Conference on
Computer and Communications Security, 2004, pp. 178–187.

[19] K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in
Proc. Workshop on Multimedia Security at ACM Multimedia
’02, French Riviera, December 2002.

[20] R. Rios, J. Onieva, and J. Lopez, “HIDE DHCP: Covert
communications through network configuration messages,” in
Proc. IFIP TC 11 27th International Information Security
Conference, Heraklion, Crete, Greece. Springer, 2012.

[21] N. Lucena, G. Lewandowski, and S. Chapin, “Covert channels
in IPv6,” in Proc. Privacy Enhancing Technologies. Springer
LNCS vol. 3856, 2006, pp. 147–166.

[22] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts, “Covert
messaging through TCP timestamps,” in Proc. 2nd in-
ternational conference on privacy enhancing technologies.
Springer, 2003, pp. 194–208.

[23] S. J. Murdoch and S. Lewis, “Embedding covert channels
into TCP/IP,” in Proc. Information Hiding Conference 2005.
Springer LNCS vol. 3727, 2005, pp. 247–261.

[24] R. Accorsi and C. Wonnemann, “Detective information flow
analysis for business processes,” in Proc. Business Process,
Services Computing and Intelligent Service Management. GI
LNI vol. 147, 2009, pp. 223–224.

[25] M. H. Kang, I. S. Moskowitz, and S. Chincheck, “The pump:
A decade of covert fun,” in Proc. 21st Annual Computer
Security Applications Conference (ACSAC 2005). IEEE
Computer Society, 2005, pp. 352–360.

[26] N. Ogurtsov, H. Orman, R. Schroeppel, S. O’Malley, and
O. Spatscheck, “Covert channel elimination protocols,” Uni-
versity of Arizona, Tech. Rep., 1996.

[27] P. A. Porras and R. A. Kemmerer, “Covert flow trees: A tech-
nique for identifying and analyzing covert storage channels,”
in Proc. IEEE Symp. on Security and Privacy, 1991, pp. 36–
51.

[28] R. A. Kemmerer, “Shared resource matrix methodology: an
approach to identifying storage and timing channels,” ACM
Trans. Comput. Syst., vol. 1, no. 3, pp. 256–277, 1983.

[29] J. McHugh, “An information flow tool for gypsy - an extended
abstract revisited,” in Proc. 17th Annual Computer Security
Applications Conference, 2001, pp. 191–201.

[30] J. Agat, “Transforming out timing leaks,” in Proc. 27th ACM
Symp. on Principles of Programming Languages (POPL).
ACM Press, 2000, pp. 40–53.

[31] C. Krätzer and J. Dittmann, “Früherkennung von verdeckten
Kanälen in VoIP-Kommunikation,” in IT-Frühwarnsysteme
(BSI-Workshop). BSI, 2006, pp. 209–214, (In German).

[32] W.-M. Hu, “Reducing timing channels with fuzzy time,”
in Proc. 1991 Symposium on Security and Privacy, IEEE
Computer Society, 1991, pp. 8–20.

[33] V. Berk, A. Giani, and G. Cybenko, “Detection of covert
channel encoding in network packet delays,” Department of
Computer Science - Dartmouth College, Tech. Rep., 2005.

[34] R. deGraaf, J. Aycock, and M. J. Jacobson, “Improved port
knocking with strong authentication,” in Proc. 21st Annual
Computer Security Applications Conference (ACSAC ’05).
IEEE Computer Society, 2005, pp. 451–462.

[35] S. Wendzel and S. Zander, “Detecting protocol switching
covert channels,” in Proc. 37th IEEE Conf. on Local Com-
puter Networks (LCN). IEEE, 2012, pp. 280–283.

[36] F. V. Yarochkin, S.-Y. Dai, C.-H. Lin, Y. Huang, and S.-
Y. Kuo, “Towards adaptive covert communication system,”
in Proc. 14th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC). IEEE, 2008, pp. 153–159.

[37] W. Li and G. He, “Towards a protocol for autonomic
covert communication,” in Proc. 8th Conf. on Autonomic and
Trusted Computing, 2011, pp. 106–117.

[38] C.-R. Tsai and V. D. Gligor, “A bandwidth computation model
for covert storage channels and its applications,” in Proc.
IEEE Conf. on Security and Privacy, 1988, pp. 108–121.

[39] C. D. Mee and E. D. Daniel, Magnetic Storage Handbook,
2nd ed. McGraw Hill, 1996.

[40] B. Ray and S. Mishra, “A protocol for building secure and
reliable covert channel,” in Proc. 6th Annual Conference on
Privacy, Security and Trust (PST 2008). IEEE, 2008, pp.
246–253.

[41] D. Stødle, “Ping tunnel – for those times when
everything else is blocked,” 2009. [Online]. Available:
http://www.cs.uit.no/˜daniels/PingTunnel/

[42] S. Wendzel, “pct,” 2009, retrieved: Dec, 2012. [Online].
Available: http://www.wendzel.de/dr.org/files/Projects/pct/

[43] D. Berrange, “Simulating WAN network delay,”
2005, retrieved: Dec, 2012. [Online]. Available:
http://people.redhat.com/berrange/notes/network-delay.html

[44] J. Morris, “IPTables::IPv4::IPQueue module for Perl,”
2002, retrieved: Dec, 2012. [Online]. Available:
http://search.cpan.org/˜jmorris/perlipq-1.25/IPQueue.pm

[45] S. Wendzel, “phcct,” 2007, retrieved: Dec, 2012. [Online].
Available: http://www.wendzel.de/dr.org/files/Projects/phcct/

93

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[46] T. Kohno, A. Broido, and K. Claffy, “Remote physical device
fingerprinting,” IEEE Transactions on Dependable and Secure
Computing, no. 2, pp. 93–108, 2005.

[47] Akamai, “Retail web site performance,” 2006,
retrieved: Dec, 2012. [Online]. Available: http://www.-
akamai.com/dl/reports/Site Abandonment Final Report.pdf

[48] P. Backs, S. Wendzel, and J. Keller, “Dynamic routing in
covert channel overlays based on control protocols,” in Proc.
International Workshop on Information Security, Theory and
Practice (ISTP-2012). IEEE, 2012, pp. 32–39.

[49] V. Gorodetski and I. Kotenko, “Attacks against computer
network: Formal grammar-based framework and simulation
tool,” in Proc. Recent Advances in Intrusion Detection.
Springer LNCS vol. 2516, 2002, pp. 219–238.

[50] P. Trinius and F. Freiling, “Filtern von Spam-Nachrichten mit
kontextfreien Grammatiken,” in Proc. Sicherheit 2012. GI
LNI vol. P-195, 2012, pp. 163–174, (in German).

[51] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and
K. Salamatian, “Traffic classification on the fly,” SIGCOMM
Computer Communication Review, vol. 36, no. 2, pp. 23–26,
Apr. 2006.

94

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Securing Access to Data in Business Intelligence Domains

Ahmad Altamimi
Department of Computer Science

Concordia University
Montreal, Canada

Email: a alta@cs.concordia.ca

Todd Eavis
Department of Computer Science

Concordia University
Montreal, Canada

Email: eavis@cs.concordia.ca

Abstract—Online Analytical Processing (OLAP) has become
an increasingly important and prevalent component of Decision
Support Systems. OLAP is associated with a data model known
as a cube, a multi-dimensional representation of the core
measures and relationships within the associated organization.
While numerous cube generation and processing algorithms
have been presented in the literature, little effort has been made
to address the unique security and authorization requirements
of the model. In particular, the hierarchical nature of the cube
allows users to bypass - either intentionally or unintentionally
- partial constraints defined at alternate aggregation levels. In
this paper, we present an authorization framework that builds
upon an algebra designed specifically for OLAP domains. It is
Object-Oriented in nature and uses query re-writing rules to
ensure consistent data access across all levels of the conceptual
model. For the most part, the process is largely transparent
to the user. We demonstrate the scope of our framework
with a series of common OLAP query case studies, as well
as an experimental performance analysis using a common
OLAP benchmark. The end result is an intuitive but powerful
approach to database authorization that is uniquely tailored to
the OLAP domain.

Keywords-Data warehouses; Data security; Query processing

I. INTRODUCTION

Data warehousing (DW) and On-Line Analytical Process-
ing (OLAP) play a pivotal role in modern organizations.
Designed to facilitate the reporting and analysis required in
decision making environments, OLAP builds upon a multi-
dimensional data model that intuitively integrates the vast
quantities of transactional level data collected by contempo-
rary organizations. Ultimately, this data is used by managers
and decision makers in order to extract and visualize broad
patterns and trends that would otherwise not be obvious to
the user.

One must note that while the data warehouse serves as
a repository for all collected data, not all of its records
should be universally accessible. Specifically, DW/OLAP
systems almost always house confidential and sensitive data
— identification information, medical data or even religious
beliefs or ideologies — that must, by definition, be restricted
to authorized users. As a result, various pieces of legislation
designed to protect individual privacy have been proposed.
One can consider, for example, the United States HIPAA-
Health Insurance Portability and Accountability Act, which

regulates the privacy of personal health care information,
the GLBA (Gramm-Leach-Bliley Act, also known as the
Financial Modernization Act), the Sarbanes-Oxley Act, and
the EU’s Safe Harbour Law. These laws usually require strict
technical security measures for guaranteeing privacy, with a
failure to comply possibly leading to significant penalties.
In this context, organizations must be able to guarantee the
correct administration, security and confidentiality of the
information they collect and store.

The administrator of the warehouse is ultimately re-
sponsible for defining roles and privileges for each of the
possible end users. In fact, a number of general warehouse
security models have been proposed in the literature. Several
authors define frameworks that are likely too restrictive for
production warehouses. For example, security models have
been based upon the notion of user-specific authorization
views that allow access only to selected data. However,
the administration of these views becomes quite complex
when a security policy is added, changed, or removed.
Moreover, complex roles can be difficult to implement in
practice, and models of this type tend not to scale well
with a large number of users. Conversely, other researchers
have focused on the design process itself, including the
use of Unified Modeling Language (UML) profiles for the
definition of security constraints. Here, however, the phys-
ical implementation of the underlying authorization system
remains undefined.

In a recent paper, we presented an authorization model
for OLAP environments that is based on a query rewriting
technique [1]. The model enforces distinct data security poli-
cies that, in turn, may be associated with user populations of
arbitrary size. In short, our framework rewrites queries con-
taining unauthorized data access to ensure that the user only
receives the data that he/she is authorized to see. Rewriting
is accomplished by adding or changing specific conditions
within the query according to a set of concise but robust
transformation rules. Because our methods specifically target
the OLAP domain, the query rules are directly associated
with the conceptual properties and elements of the OLAP
data model itself. A primary advantage of this approach is
that by manipulating the conceptual data model, we are able
to apply query restrictions not only on direct access to OLAP

95

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

elements, but also on certain forms of indirect access.
In the current paper, we expand upon the original work

in two ways. First, we discuss the data structures and
algorithms utilized by the functions that manipulate the
hierarchical elements of the conceptual data model. The
performance of the transformation process is closely asso-
ciated with these mechanisms. To underscore the practical
viability of the proposed methods, we have also added an
experimental section that highlights the processing overhead
relative to the execution costs of the underlying query. In
addition to these core enhancements, we update the paper
with a deeper treatment of the internal representation of the
intermediate query, as well as a broader discussion of the
work related to this research domain. Finally, an appendix
has been included in order to provide the reader with a clear
description of the query test cases.

The paper is organized as follows. In Section II, we
present an overview of related work. Section III describes the
core OLAP data model and associated algebra, and includes
a discussion of the object-oriented query structure for which
the proposed security model has been designed. The OLAP
query rewriting model and its associated transformation
rules, including the extended section on query representation
and hierarchy processing, are then presented in detail in
Section IV. Experimental results are discussed in Section V,
with final conclusions offered in Section VI.

II. RELATED WORK

The need for strong security mechanisms has long been
recognized in the context of relational database management
systems. A variety of Access Control techniques have in
fact been proposed to restrict access to the appropriate
authorized users. Each such technique aims to limit users
and/or processes to performing only those table or column
operations (i.e., read, write, or execute) for which they are
actually authorized. The relevant control then either allows
or disallows the execution of the specific operation to be
performed.

During the early stages of database security research, the
primary focus was on Discretionary Access Controls (DACs)
[2]. The basic form of DAC authorization consists of a
triple (s, o, a), such that a set of security subjects s can
execute actions a on a set of security objects o. The earliest
DAC model was the Access Matrix, whereby authorization is
represented in an |s |∗|o | matrix in which rows are subjects,
columns are objects and the mapping of subject and object
pairs results in the set of rights the subject s has over the
object o. A primary benefit associated with the use of a DAC
is that it can be implemented relatively easily. However,
in practice, large organizations give rise to extremely large
access matrices. Maintaining matrix contents can be difficult
as the matrix needs to be updated with each update to the
subjects (e.g., addition of users) or objects (e.g., addition of
columns).

In the 1980’s the focus moved to Mandatory Access
Controls (MACs) [3]. The most common form of MAC is the
multilevel security policy, which secures data by assigning
security labels to subjects and objects, and subsequently
compares these labels to the level of sensitivity at which
a user is operating. The access controls in MACs restrict
subjects from accessing information labeled with a higher
level. In other words, a user can access the data in his/her
security level or in a lower security level(s) but not in a
higher level(s). MAC is relatively straightforward from a
design perspective and is considered a good model either
for systems in which confidentiality is a primary access
control concern, or in which the objects being protected
are valuable. That being said, MAC systems can also be
expensive to implement due to the necessity for applications
to be rewritten to adhere to MAC labels and properties. Also,
MACs do not provide each user with a distinct authorization
context (i.e., access to only their own data address), nor fine-
grained least privilege mechanisms.

An alternative approach was introduced in the 1990’s [4].
This new model is known as Role Based Access Control
(RBAC). RBAC consists of roles, permissions, and users.
Roles are created for various job functions, with permissions
for specific operations then assigned to these roles. Users
are assigned particular roles, and through those role assign-
ments acquire permissions to perform particular operations.
The consolidation of access control for many users into a
single role entry allows for much easier management of
the overall system and much more effective verification of
security policies. However, in large systems, role inheritance
— and the need for finer-grained customized privileges—
makes administration potentially unwieldy. Additionally, it
is inappropriate for multi-dimensional data modeling due to
the fact that it is based on relational concepts (i.e., tables,
columns, rows, and cells), and thus, cannot be implemented
directly on top of the multi-dimensional model.

In contrast to the Access Control paradigm, a number of
security models that restrict data warehouse access have also
been proposed in the literature, including those that focus
strictly on the design process. Extensions to the Unified
Modeling Language to allow for the specification of multi-
dimensional security constraints has been one approach that
has been suggested [5]. In fact, a number of researchers have
looked at similar techniques for setting access constraints at
an early stage in the OLAP design process [6], [7]. Others
have developed security requirements for the entire Data
Warehouse life cycle [8]–[10]. In this case, they first propose
a model (agent-goal-decision-information) to support the
early and late requirements for the development of DWs,
then extend that model to capture security aspects in order
to prevent illegitimate attempts to access the warehouse.
Such models have great value of course, particularly if one
has the option to create the warehouse from scratch. That
being said, their focus is not on authorization algorithms

96

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

per se, but rather on design methodologies that would most
effectively use existing technologies, including the Model
Driven Architecture (MDA) and the standard Software Pro-
cess Engineering Metamodel Specification (SPEM) from the
Object Management Group (OMG).

In terms of true authorization models, several researchers
have attempted to augment the core Database Management
System (DBMS) with authorizations views [11]–[13]. Typ-
ically, alternate views of data are defined for each distinct
user or user group. A query Q is inferred to be authorized if
there is an equivalent query Q’ which uses only authorized
views. The end result is often the generation of a large
number of such views, all of which must be maintained
manually by the system administrator. Clearly, this approach
does not scale terribly well, and would be impractical in a
huge, complex DW environment.

Query rewriting has also been explored in DBMS envi-
ronments in a variety of ways, with search and optimization
being common targets [14]. Beyond that, however, rewrit-
ing has also been utilized to provide fine grained access
control in Relational databases [15]. Oracle’s Virtual Private
Database (VPD) [16], for example, limits access to row level
data by appending a predicate clause to the user’s SQL
statement. Here, the security policy is encoded as policy
functions defined for each table. These functions are used
to return the predicate, which is then appended to the query.
This process is done in a manner that is entirely transparent
to the user. That is, whenever a user accesses a table that
has a security policy, the policy function returns a predicate,
which is appended to the user’s query before it is executed.

In the Truman model [15], on the other hand, the database
administrator defines a parameterized authorization view
for each relation in the database. Note that parameterized
views are normal views augmented with session-specific
information, such as the user-id, location, or time. The query
is modified transparently by substituting each relation in the
query by the corresponding parameterized view to make sure
that the user does not get to see anything more than his/her
own view of the database. In this model, the user can also
write queries on base relations by plugging in the values
of session parameters such as user-id or time before the
modified query is executed.

We note, however, that the mechanisms discussed above
(e.g., Oracle’s VPD) are not tailored specifically to the
OLAP domain and, as such, either have limited ability to
provide fine grained control of the elements in the conceptual
OLAP data model or, at the very least, would make such
constraints exceedingly tedious to define. Some commercial
tools, such as Microsoft’s Analysis Services [17], do in fact
provide some support for OLAP-level security specification.
Here, however, there is virtually no formal basis for the
application of authorization logic and little can be said about
the actual scope or limitations of the relevant subsystems.
This is in contrast to the work discussed in this paper, where

Figure 1. A simple three dimensional data cube

the primary contribution is a query rewriting technique
that not only transparently supports indirect authorization,
but does so on the basis of an explicit policy/rule model.
Moreover, the mechanisms are not tightly connected to a
specific DBMS product but can be applied to virtually any
standard data management system.

III. THE CONCEPTUAL DATA MODEL

We consider analytical environments to consist of one
or more data cubes. Each cube is composed of a series
of d dimensions — sometimes called feature attributes —
and one or more measures [18]. The dimensions can be
visualized as delimiting a d-dimensional hyper-cube, with
each axis identifying the members of the parent dimension
(e.g., the days of the year). Cell values, in turn, represent the
aggregated measure (e.g., sum) of the associated members.
Figure 1 provides an illustration of a very simple three
dimensional cube on Store, Time and Product. Here,
each unique combination of dimension members represents
a unique aggregation on the measure. For example, we can
see that Product OD923 was purchased 78 times at Store
MQ15 in January (assuming a Count measure).

Note, as well, that each dimension is associated with
a distinct aggregation hierarchy. Stores, for instance, are
organized in Country → Province → City groupings.
Referring again to Figure 1, we see that Product Number
is the lowest or base level in the Product dimension. In
practice, data is physically stored at the base level so as
to support run-time aggregation to coarser hierarchy levels.
Moreover, the attributes of each dimension are partially
ordered by the dependency relation � into a dependency
lattice [19]. For example, Product Number � Type �
Category within the Product dimension. More formally,
the dependency lattice is expressed in Definition 1.

Definition 1: A dimension hierarchy Hi of a dimension
Di, can be defined as Hi = (L0, L1, . . . , Lj) where L0 is
the lowest level and Lj is the highest. There is a functional

97

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dependency between Lh−1 and Lh such that Lh−1 � Lh

where (0 ≤ h ≤ j).
Finally, we note that there are in fact many variations on

the form of OLAP hierarchies [20] (e.g., symmetric, ragged,
non-strict). Regardless of the form, however, traversal of
these aggregation paths — typically referred to as rollup
and drill down — is perhaps the single most common query
form. It is also central to the techniques discussed in this
paper.

A. Native Language Object Oriented OLAP Queries

The cube representation, as described above, is common
to most OLAP query environments and represents the user’s
conceptual view of the data repository. That being said, it
can be difficult to implement the data cube using standard
relational tables alone and, even when this is possible, per-
formance is usually sub-par as relational DBMSs have been
optimized for transactional processing. As a result, most
OLAP server products either extend conventional relational
DBMSs or build on novel, domain specific indexes and
algorithms.

In our own case, the authorization methods described in
this paper are part of a larger project whose focus is to
design, implement and optimize an OLAP-specific DBMS
server. A key design target of this project is the integration
of the conceptual cube model into the DBMS itself. This
objective is accomplished, in part, by the introduction of
an OLAP-specific algebra that identifies the core operations
associated with the cube (SELECT, PROJECT, DRILL DOWN,
ROLL UP, etc). In turn, these operations are accessible to the
client side programmer by virtue of an Object Oriented API
in which the elements of the cube (e.g., cells, dimensions,
hierarchies) are represented in the native client language as
simple OOP constructs. (We note that our prototype API
uses Java but any contemporary OO language could be
used). To the programmer, the cube and all of its data —
which is physically stored on a remote server and may be
Gigabytes or Terabytes in size — appears to be nothing
more than a local in-memory object. At compile time, a
fully compliant Java pre-parser examines the source code,
creates a parse tree, identifies the relevant OLAP objects,
and re-writes the original source code to include a native
DBMS representation of the query. At run-time, the pre-
compiled queries are transparently delivered to the back
end analytics server for processing. Results are returned and
encapsulated within a proxy object that is exposed to the
client programmer.

As a concrete example, Listing 1 illustrates a simple SQL
query that summarizes the total sales of Quebec’s stores
in 2011 for the data cube depicted in Figure 1. Typically,
this query would be embedded within the application source
code (e.g., wrapped in a JDBC call). Conversely, Listing 2
shows how this same query could be written in an Object-
Oriented manner by a client-side Java programmer. Note

S e l e c t S t o r e . p r o v i n c e , SUM(s a l e s)
From S t o r e , Time , S a l e s
Where S t o r e . s t o r e I D = S a l e s . s t o r e I D AND

Time . t ime ID = S a l e s . t ime ID AND
Time . year = 2011 AND
S t o r e . p r o v i n c e = ’ Quebec ’

Group by S t o r e . p r o v i n c e

Listing 1. Simple SQL OLAP Query

C l a s s SimpleQuery ex tends OLAPQuery{
P u b l i c boolean s e l e c t () {

S t o r e s t o r e = new S t o r e () ;
DateDimension t ime = new TimeDimension () ;
re turn (t ime . g e t Y e a r () == 2011 &&

s t o r e . g e t P r o v i n c e () == ’ Quebec ’) ;
}
P u b l i c O b j e c t [] p r o j e c t () {

S t o r e s t o r e = new S t o r e () ;
Measure measure = new Measure () ;
O b j e c t [] p r o j e c t i o n s = {

s t o r e . g e t P r o v i n c e () ,
measure . g e t S a l e s () } ;

re turn p r o j e c t i o n s ;
}}

Listing 2. An Object Oriented OLAP Query

that each algebraic operation is encapsulated within its own
method (in this case, SELECT and PROJECT), while the
logic of the operation is consolidated within the return
statement. It is the job of the pre-parser to identify the
relevant query methods and then extract and re-write the
logic of the return statement(s). Again, it is important
to understand that the original source code will never be
executed directly. Instead, it is translated into the native
operations of the OLAP algebra and sent to the server at
run-time.

While it is outside the scope of this paper to discuss the
motivation for native language OLAP programming (a de-
tailed presentation can be found in a recent submission [21]),
we note that such an approach not only simplifies the
programming model, but adds compile time type checking,
robust re-factoring, and OOP functionality such as query
inheritance and polymorphism. Moreover, query optimiza-
tion is considerably easier on the backed as the DBMS
natively understands the OLAP operations sent from the
client side. In the context of the current paper, however,
the significance of the query transformation process is that
the authorization elements (e.g. roles and permissions) will
be directly associated with the operations of the algebra. In
fact, it is this algebraic representation that forms the input
to the authorization module presented in the remainder of
the paper.

98

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

�����

������

�����	
�

�����	�����

���

�����

����	
�

�������������

������

������

�����

��	����
�

�����
�

�����
������

�����

���

����	���

������
������

�����

����

������

��
��

	����

���

�	����

�	����

��������

����

���	
�

����������

����

������

�����	
�

��
������

������

��
��

��
�	
�

��
���

���������������

��
��

	����

	���!��

	���	
�

Figure 2. The Authorization DB.

IV. AUTHENTICATION AND AUTHORIZATION

Without sufficient security countermeasures, open access
to the OLAP repository becomes a powerful tool in the
hands of malicious or unethical users. Access Control is the
process that restricts unauthorized users from compromising
protected data. This process can be thought of as occurring
in two basic phases: Authentication and Authorization.
Authentication is a form of identity verification that attempts
to determine whether or not a user has valid credentials to
access the system. In contrast, Authorization refers to the
process of determining if the user has permission to access
a specific data resource. In this section, we will describe our
general framework, giving a detailed description of its two
primary components and the relationship between them.

A. The Authentication Module

The authentication component is responsible for verifying
user credentials against a list of valid accounts. These ac-
counts are provided by the system administrator and are kept
— along with their constituent permissions — in a backend
database (i.e., the Authorization DB). The Authorization DB
consists of a set of tables (users, permissions, and
objects) that collectively represent the meta data required
to authenticate and authorize the current user. For example,
the users table stores basic user credentials (e.g., name,
password), while the permissions table records the fact
that a given user(s) may or may not access certain controlled
objects. Figure 2 illustrates a slightly simplified version
of the Authorization DB schema. In the current prototype,
storage and access to the Authorization DB is provided by
the SQLite toolkit [22]. SQLite is a small, open source C
language library that is ideally suited to tasks that require
basic relational query facilities to be embedded within a
larger software stack.

Figure 3. An XML query segment.

Internally, the user’s transformed OLAP query is rep-
resented in XML format (embedded within the re-written
source code). To validate the received XML query, the
system relies on a Document Type Declaration (DTD)
grammar [23] that is used to describe the structure of the
expected XML query (We note that the somewhat more
expressive XMLSchema can also be used for this purpose).
The grammar itself is quite large but, ultimately, its purpose
is to represent the functionality of the analytics queries
one would expect to see in a Business Intelligence context.
Figure 3 shows an XML-encoded segment of the query
depicted in Listing 2. With a little effort one can see how
the “total sales in 2011 for Quebec stores” is captured by
the sequence of nested XML

The user query itself can be divided into three main
parts: CUBE NAME, OPERATION LIST, and USER CRE-
DENTIALS. As one would expect, the CUBE NAME ele-
ment simply indicates the cube from which data is to be
retrieved (the DBMS would likely store multiple cubes).
The OPERATION LIST element contains one or more OP-
ERATION elements, with PROJECTION and SELECTION
being by far the most common (other analytics operations in-
clude CHANGE LEVEL, CHANGE BASE, PIVOT, DRILL
ACROSS, UNION, DIFFERENCE, and INTERSECTION).
In short, the PROJECTION element lists all attributes and
measures the user wants to retrieve (e.g., Store.Province, and
SUM(Sales)). The SELECTION element, in turn, limits or
filters the data fetched from the data cube. Each SELEC-
TION element consists of one or more criteria combined by

99

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data Query

Selection Condition User Credentials

Measure Customer

Sales Province

Customer Time

Province =
Year = 2010

User Name Password

John J86mn

Furniture

Sales

Cube Name

Figure 4. A small Parse Tree fragment.

a LOGICAL OP element (e.g., Store.Province = ’Quebec’
AND Time.Year = 2011). Finally, the USER CREDEN-
TIALS element, as the name indicates, contains the user’s
authentication identifiers (i.e., the user name and password).

Of course, in order to properly authenticate the query,
it must first be parsed and decomposed into its algebraic
components. In fact, the parsing is done in two phases. First,
the DOM parser utility is used to produce a DOM tree that
represents the raw contents of the XML document. In this
phase, the parser not only builds the tree but also verifies
that the received query has valid syntax corresponding to
the DTD query grammar. An XML document is considered
as valid if it contains only those elements defined in the
DTD. If the query is syntactically valid, the query proceeds
to the second phase. Otherwise, a parsing error message is
returned to the user.

Figure 4 shows the node tree corresponding to the query
depicted in Figure 3. We can easily see that the content of
this parse tree is equivalent to the OLAP query represented
in the XML format. Specifically, it is executed against the
cube Furniture Sales and consists of two OLAP operations
(Projection and Selection). The projection operation returns
the dimension attribute Customer.Province, as well as one
measure attribute — Sales. The Selection operation filters
the returned information via two conditions on the dimen-
sions Customer (i.e., Province = Quebec) and Time (Year
= 2010). The user name “John” and the password “J86mn”
represent the user credentials.

In the second phase of the process, the DOM tree is
converted into a simplified data structure. This “Query
Object” is cached in memory and contains all the query
elements (i.e., returned attributes, query conditions along
with its dimensions and attributes, and user credentials).
The purpose of this final conversion process is to transform
the user query into a simple, minimal data structure that
represents the query in a compact but expressive form.

Once the parsing is completed, the Authentication module
extracts the user credentials to verify them against a valid
account stored in the Authorization DB. If the verification
is successful, the DBMS proceeds with the authorization
process. Otherwise, the query is rejected and the user/pro-

Figure 5. Authentication and Authorization.

grammer is notified. The upper part of Figure 5 depicts the
processing logic of the Authentication module. As a final
note, we add that the prototype for the authentication and
authorization modules has been designed as a third party
component that can interact with existing DBMS products.
As such, it does not maintain connection-oriented session
data and thus requires authentication information to be
provided for each query. That being said, this has a very
limited impact on performance as the bulk of the processing
logic is associated with the authorization module, which
must assess user privileges on a query by query basis.

B. The Authorization Module

The second — and more significant — phase is autho-
rization, the process of determining if the user has permis-
sion to access specific data elements. Specifically, when a
user requests access to a particular resource, the request
is validated against the permitted resource list assigned to
that user in the backend database. If the requested resource
produces a valid match, the user request is allowed to
execute as originally written. Otherwise, the query will
either be rejected outright or modified according to a set
of flexible transformation rules. To decide if the query will
be modified or not, we rely on a set of authorization objects
against which the rules will be applied. The rules themselves
will be discussed in Section IV-E. The lower portion of

100

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5 graphically illustrates the Authorization module and
indicates its interaction with the Authentication component.

C. Specifying Authorization Objects

Authorization is the granting of a right or privilege that
enables a subject (e.g., users or user groups) to execute an
action on an object. In order to make authorization decisions,
we must first define the authorization objects. Note that the
objects in the OLAP domain are different from those in
the relational context. In a relational model, objects include
logical elements such as tables, records within those tables,
and fields within each record. In contrast, OLAP objects
are elements of the more abstract conceptual model and
include the dimensions of the multi-dimensional cube, the
hierarchies within each dimension, and the aggregated cells
(or facts). In practice, this changes the logic or focus of the
authorization algorithm. For instance, a user in a relational
environment may be allowed direct access to a specific
record (or field in that record), while an OLAP user may be
given permission to dynamically aggregate measure values
at/to a certain level of detail in one or dimension hierarchies.
Anything below this level of granularity would be considered
too sensitive, and hence should be protected. In fact, the
existence of aggregation hierarchies is perhaps the most
important single distinction between the authorization logic
of the OLAP domain versus that of the relational world.

We note that in the discussion that follows, we assume
an open world policy, where only prohibitions are specified.
In other words, permissions are implied by the absence of
any explicit prohibition. We use the open world approach for
the simple reason that, in contrast to the users in operational
database settings, OLAP users are typically drawn from a
relatively small pool of enterprise decision makers. As such,
these more senior employees generally require broad access
to data. It therefore makes sense to use an open world
policy that defines a relatively small set of constraints, rather
than a closed world approach that would require extensive
“positive” privileges to be defined. That being said, there is
no theoretical barrier to the use of a closed world strategy.

Before discussing the authorization rules themselves, we
first look at a pair of examples that illustrate the importance
of proper authorization services in the OLAP domain. We
begin with the definition of a policy for accessing a specific
aggregation level in a data cube dimension hierarchy.

Example 1: An employee, Alice, is working in the Mon-
treal store associated with the cube of Figure 1. The policy
is simple: Alice should not know the sales totals of the
individual provinces.

Clearly, Alice is prohibited from reading or aggregating
data at the provincial level in the Store dimension hierarchy.
However, in the absence of any further restrictions, it would
still be possible for her to compute the restricted values from
the lower hierarchies levels (e.g., City or Store Number).

Province

City

Customer Number

(a) The Below Function (b) The Under Function

Quebec

Montreal Laval

MQ21 MQ51 LQ58

Below(Province) Under(Quebec)

Country

Ontario

Canada

Figure 6. The Below and Under functions.

Ideally, the warehouse administrator should not be respon-
sible for identifying and manually ensuring that all implied
levels be included in the policy. Instead, our model assumes
this responsibility and can, if necessary, restrict access to
all child levels through the use of the Below function. As
the name implies, this function returns a list consisting
of the specified level Li and all the lower levels of the
associated dimension hierarchy. Figure 6(a) illustrates an
example using a Below(Province) instantiation. Here, all
levels surrounded by the dashed line are considered to be
Authorization Objects, and thus should be protected. The
formalization of the Below function is given by Definition 2.

Definition 2: In any dimension Di with hierarchy Hi, the
function Below(Li) is defined as Below(Li) = {Lj : such
that Lj � Li holds}, where Li is the prohibited dimension
level.

As shown in Example 1, a policy may restrict the user
from accessing any of the values of a given level or
levels. However, there are times when this approach is too
coarse. Instead, we would like to also have a less restrictive
mechanism that would only prevent the user from accessing
a specific value within a level(s). For instance, suppose we
want to alter the policy in Example 1 to make it more
specific. The new policy might look like the following:

Example 2: Alice should not know the sales total for the
province of Quebec.

In Example 2, we see that Alice may view sales totals
for all provinces other than Quebec. However, Alice can
still compute the Quebec sales by summing the sales of
individual Quebec cities, or by summing the sales of Que-
bec’s many stores. In other words, she can use the values
of the lower levels to compute the prohibited value. Hence,
all these values should also be protected. To determine the
list of restricted member values, our model adds the Under
function, which is formalized in Definition 3. Figure 6 (b)
provides an example using Under(Quebec). Here, all the
values surrounded by the dashed line should be protected.

101

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quebec

Montreal Laval

MQ21 MQ51 LQ58

Ontario

Canada

Exception

Figure 7. An Authorization Exception.

Definition 3: For any dimension hierarchy level Li, and
any attribute value Vi, the function Under(Li, Vi) is defined
as Under(Li, Vi) = {Vj : such that Vj � Vi holds}, where
Li is the prohibited dimension level and V is the root value
of the restriction.

Finally, it is also possible that exceptions to the general
authorization rule are required. For instance, Alice should
not know the sales of stores in the province of Quebec except
for the stores in the city/region she manages (e.g., Montreal).
Figure 7 graphically illustrates this policy. In this case, the
circled members represent the values associated with the
exception that would, in turn, be contained within a larger
encapsulating restriction. Note that a user may have one or
more exceptions on a given hierarchy. The formalization of
the exception object is given in in Definition 4.

Definition 4: For any prohibited level Li, there may be
an Exception E such that E contains a set Ev of values
belonging to Under(Li). That is, Ev ∈ values of Under(Li).

To summarize, authorization objects consist of the values
of the prohibited level and all the levels below it, excluding
zero or more exception value(s). We formalize the concept
of the Authorization Object in Definition 5.

Definition 5: An Authorization Object O = {v : v ∈
Under(Li) - Ev}, where Li is the prohibited level, and Ev
is the exception value.

D. Implementing Below and Under Functions

To efficiently implement Below and Under functions, a
number of additional algorithms and data structures are
needed in order to manipulate dimension hierarchies and to
retrieve attribute values. These structures are initialized once
the server receives a query and are subsequently exploited
by the DBMS engine during query resolution. Below, we
describe the core structures, along with the methods required
to implement the associated functions efficiently.

1) Implementation of the Below Function: We begin by
giving a brief description of the primary data structures
utilized during function execution. The mapGraph is a suite

Figure 8. (a) The sorted data of the Store Dimension Table, (b) The
corresponding mapGraph.

of algorithms and data structures for the manipulation of at-
tribute hierarchies in “real time” [24]. mapGraph builds upon
the notion of hierarchy linearity [25]. Briefly, a hierarchy is
considered linear if there is a contiguous range of values
Rj on dimension attribute Aj that may be aggregated into a
contiguous range Ri. Informally, this implies that the totals
for a range of values within a child aggregation level are
equivalent to those of some range of values at the parent
level. As a concrete example, the combined sales totals
for the individual months of January, February, and March
would be exactly equivalent to those of the first quarter
of the calendar year. To establish the linearity of each
dimension hierarchy a sorting technique is employed, with
data subsequently stored at the finest level of granularity.
If a Time hierarchy is present, for instance, transactional
data would be stored at the Day level rather than at the Year
level. A compact, in-memory lookup structure is then used to
support efficient real time transformations between arbitrary
levels of the dimension hierarchy. For example, Figure 8(a)

102

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S e l e c t P r o d u c t . Name , S t o r e . p r o v i n c e ,
Sum(s a l e s)

From Produc t , S t o r e , S a l e s
Where P r o d u c t . p r o d u c t I D = S a l e s . p r o d u c t I D

AND S t o r e . s t o r e I D = S a l e s . s t o r e I D AND
S t o r e . Con t ry = ’ Canada ’ AND
(P r o d u c t . Name = ’LN∗ ’ AND

P r o d u c t . p r i c e >= 24000)
Group by P r o d u c t . Name , S t o r e . p r o v i n c e
Order by P r o d u c t . Name , S t o r e . p r o v i n c e

Listing 3. Simple SQL OLAP Query

depicts the sorted data of the Store dimension table for the
data cube depicted in Figure 1, while Figure 8(b) illustrates
the corresponding mapGraph for the Store dimension hier-
archy.

Each record in the mapGraph consists of two values — a
native attribute representation (e.g., values of attribute Type
in the Store dimension) and an integer value that represents
the corresponding maximum encoded value in the primary
attribute. We will look at a concrete example. While the
city of Timmins has two stores, Store 1 and Store 2, the
city of Montreal has four stores, Store 3 through Store 6.
Using this structure, one can easily, and efficiently, perform
a mapping from the most detailed encoded level value (i.e.,
Store Number) to the corresponding sub-attribute value (i.e.,
attribute level values), and vice versa. For instance, Store 13
is located in the city of Anchorage and, as a consequence, in
the State of Alaska in the USA (Alaska and the USA have
a maximum Store Number = 14).

While a number of commercial products and several
research papers do support hierarchical processing for simple
hierarchies, specifically those that can be represented as a
balanced tree, mapGraph is unique in that it can enforce
linearity on unbalanced hierarchies (i.e., optional nodes), as
well as hierarchies defined by many-to-many parent/child
relationships. The end result is that users may intuitively
manipulate complex cubes at arbitrary granularity levels and
can navigate easily through dimension levels.

Now recall the policy in Example 1. Suppose that Alice
sent the query in Listing 3, which summarizes the total sales
of stores in Canada for products of price 24K or more, and
whose names start with “LN”. To define the authorization
objects, the Below function is invoked, taking the prohibited
level (i.e., Store.Province) as an argument and using the
mapGraph to retrieve a list consisting of the specified
level and all the lower levels of the associated dimension
hierarchy (i.e., Province, City, and Store Number). Clearly,
the prohibited level is in the returned list, and as a result the
query should be rejected.

2) Implementation of the Under Function: The Under
function is invoked when the policy is less restrictive, as
is the case in Example 2. Suppose that Alice now resends
the query in Listing 3, assuming this less restrictive policy.

Figure 9. The bitMap of Product Price and Product Name.

To answer or reject the query, we have to determine if the
user has requested access to the authorization objects. We
note that the user query has two dimension conditions, the
first on Product (Product.Name = ‘LN*’ AND Product.price
≥ 24000) and the second on Store (i.e., Store.Country =
‘Canada’). The first condition will be ignored, since there
is no restriction on the Product dimension in the current
policy. For the second condition, we need to determine if the
province of Quebec is in Canada (i.e., if Quebec is Under
Canada). If so, we can say that the user has attempted to
access a restricted data element and, as a consequence, the
query should be rejected. By using the Under function, we
retrieve the encoded values of Canada and Quebec from the
mapGraph structure. If there is an intersection between the
two, we know that Quebec is Under Canada. In our example,
Canada has stores encoded with identifiers 1 through 11, and
Quebec has stores encoded as 3 through 11. Clearly, there
is an intersection between them, which means that the user
has requested access to restricted data.

Definition 6: If there is an intersection between
Under(Li) values — where Li is the prohibited level —
and Under(Ej) values — where Ej is the requested level
— then the query should not be executed directly.

As noted, the mapGraph is very useful when hierarchical
attribute levels are involved in the OLAP query. However, in
some cases, it is a non-hierarchical attribute that is restricted
(e.g., the Name or Price attributes of Product). In this case,
the FastBit [26] bitmap index structure allows us to easily
find those records that contain specific values on a given
attribute in the dimension. For example, suppose the Product
dimension has four records (i.e., four products), numbered
1 through 4, and a non-hierarchy attribute (Product Price) is
added to the Product dimension attributes. The bitmap index
for the Product Price attribute is illustrated in Figure 9(a),
while Figure 9(b) illustrates the bitmap index for the Product
Name. Each index consists of four bit strings (number of
products), each of length four. In each string, the 1’s indicate
the encoded values for the primary key.

103

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S e l e c t i o n :
P r o d u c t . Name , S t o r e . p r o v i n c e , Sum(s a l e s)

C o n d i t i o n :
S t o r e . P r o v i n c e = ’ Quebec ’ AND
(P r o d u c t . Name = ’LN∗ ’ AND

P r o d u c t . p r i c e >= 24000)
From :

S a l e s

Listing 4. A Query in Simple Form

Now, suppose that Alice is restricted from accessing all
products whose names start with “LN”. Further, we will
assume that she resends the query in Listing 3. Since the
Product Price and the Product Name are non-hierarchical
attributes, we use their bitmap indexes to retrieve the base
level numbers for those products, and then determine if there
is an intersection between the two. Figure 9 illustrates how to
identify those products whose Name starts with “LN” AND
whose price ≥ 24K. The array at the lower left represents
the products of price ≥ 24K, in this case Products 2, 3,
and 4. The array in the center represents the products with
names starting with “LN”. Products 1 and 2 are identified
in this case. The AND operator determines the intersection
between them, with the final result shown in the last array.
As we can see, there is in fact a non-empty intersection (i.e.,
Product Number 2 has a price ≥ 24K and a name starts with
“LN”); thus, the query should be rejected.

Algorithm 1 summarizes the logic of the checking pro-
cess. In short, we determine if the attributes within the selec-
tion predicate(s) are hierarchical in nature. For example, a
restriction on a time value (e.g., Day-Month-Year) would be
hierarchical in nature, while a restriction on an attribute such
as colour or weight would not be associated with any form
of hierarchy. Based upon this understanding, query values
would be analyzed relative to the information contained
in the mapGraph data structure (which stores hierarchical
relationship information) or bitmap indexes.

E. Authorization Rules

We now turn to the query authorization process itself.
As noted above, pre-compiled queries are encoded inter-
nally in XML format. For the sake of simplicity (and
space constraints), we will depict the received queries in
a more compact form in this section. For example, Listing 4
represents the same query shown in Listing 3. Note that
the query is divided into three elements: the SELECTION
element, the CONDITION element, and the FROM element.
The SELECTION element lists all attributes and measures
the user wants to retrieve. The CONDITION element, in turn,
limits or filters the data we fetch from the cube. Finally, the
FROM element indicates the cube from which data is to be
retrieved.

In the discussion that follows, we will assume the ex-
istence of a cube corresponding to Figure 1. That is, the

input : The policy condition S, and the Query Q
output: Returns True if Q is valid, False otherwise

Initialize the mapGraph (hM) and the bitMap (fB)
if they have not already been initialized;
Let QA be the query attributes;
if S has a hierarchy attribute then

Let SR be the range of S using hM;
end
else

Let SR be the range of S using fB;
end
foreach attribute ai in QA do

if ai is hierarchy attribute then
Get the range of ai QR using hM;
if QR ∩ SR 6= ∅ then

Return False;
end

end
else if ai is non-hierarchy attribute then

Get the range of ai QR using fB;
if QR ∩ SR 6= ∅ then

Return False;
end

end
end
Return True;

Algorithm 1: The procedure of Policy Class 2

cube has three dimensions (Product, Store, and Time).
Dimension hierarchies include Product Number � Type �
Category for Product, Store Number � City � Province �
Country for Store, and Month � Year for Time. Selection
operations correspond to the identification of one or more
cells associated with some combination of hierarchy levels.

One of the advantages of building directly upon the
OLAP conceptual model and its associated algebra is that it
becomes much easier to represent, and subsequently assess,
authorization policies. Specifically, we may think of policy
analysis in terms of Restrictions, Exceptions, and Level
Values that form a bridge between the algebra and the
Authorization DB. There are in fact four primary policy
classes, as indicated in the following list:

1) Li Restriction + No Exception
2) Li Restriction + Exception
3) Restriction on a specific value P of level Li + no

Exception
4) Restriction on a specific value P of level Li + Excep-

tion
As mentioned, the query must be validated before execu-

tion. If validation is successful, then it can be executed as
originally specified. Otherwise, the query is either rejected
or rewritten according to a set of transformation rules. In
the remainder of this section, we describe the four policy

104

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S e l e c t i o n :
S t o r e . Ci ty , P r o d u c t . Type , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
S t o r e . Count ry = ’ Canada ’ AND
P r o d u c t . C a t e g o r y = ’ F u r n i t u r e ’

From :
S a l e s

Listing 5. Authorization Strategy as per Rule 1

classes and the processing logic relevant to each.
1) Policy Class 1: Li Restriction + No Exception: If a

user is prohibited from accessing level Li and the user has
no exception(s), then the authorization objects consist of the
values of level Li and all the levels below it. In short, this
means that if the user query specifies level Li or any of its
children in the SELECTION element, then the query should
simply be rejected. Moreover, if any value belonging to the
Li level or any of its children is specified in the CONDITION
element of the query, the query should also be rejected. The
formalization of the rule and an illustrative example is given
below.

Rule 1. If a user is prohibited from accessing the values of
level Li, and there is no exception, then the Authorization
Objects (O) = {v : v ∈ Below(Li) }.

Example 3: If Alice sends the query depicted in Listing 5,
which summarizes the total sales of Canada’s stores in 2011
for furnitures products, and she is restricted from access-
ing/reading provincial sales, the query should be rejected.

Why is this query rejected? Recall that Alice is restricted
from accessing provincial sales. Consequently, we see that
an implicitly prohibited child level (i.e., City) is a component
of the SELECTION element. So, if we allow this query, Alice
can in fact compute the provincial sales by summing the
associated city sales.

2) Policy Class 2: Li Restriction + Exception: In this
case, the authorization objects that should be protected
consist of the prohibited level value and all values below it,
except of course for the value of the exception or any value
under it. Let us first formalize this case, before proceeding
with a detailed description.

Rule 2. If a user is restricted from accessing the values of
level Li, and the user has an exception E, then the
Authorization Objects (O) = {v : v ∈ Below(Li) -
Under(Ev) }.

As such, when a user is prohibited from accessing the Li

level — excluding the exception values — then the query
can be (i) allowed to execute, or (ii) modified before its
execution. Let’s look at these two cases now.

Rule 3. The query will be allowed to execute without
modification if the prohibited level value Lv or any of its

S e l e c t i o n :
S t o r e . p r o v i n c e , P r o d u c t . Type , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
S t o r e . C i t y = ’ M o n t r e a l ’ AND
P r o d u c t . C a t e g o r y = ’ F u r n i t u r e ’

From :
S a l e s

Listing 6. Authorization Strategy as per Rule 4

more granular level values in (Below(Li)) exists in the
CONDITION element AND is equal to the exception value
(Ev) or any of its implied values in (Under(Ev)).

Example 4: Suppose that we have the following policy:
Alice is restricted from accessing provincial sales except the
sales for Canadian provinces. If Alice resubmits the query
in Listing 4, it will now be executed without modification
because the prohibited value (e.g., Quebec) is under the
exception value (e.g., Under(Canada)).

But what if Alice has an exception value only for a more
detailed child level of Li (e.g., the city of Montreal)? In
this case, if Alice submits the previous query, it should now
be modified by replacing the restricted value (e.g., Quebec)
in the CONDITION element with the exception value (e.g.,
Montreal). In this example, Alice gets only the values that
she is allowed to see. The modified query is depicted in
Listing 6. Rule 4 gives the formalization of this case.

Rule 4. If the prohibited level value Lv or any of its more
granular level values (Under(Lv)) exists in the
CONDITION element, and the exception value belongs to
this set of values, then the query should be modified by
replacing the prohibited value with the exception value.

In addition to the scenario just described, the query
can also be modified by adding a new predicate to the
CONDITION element when the prohibited level or any of
its child levels exists in the SELECTION element only.

Rule 5. If the prohibited level Lv or any of its more
granular levels (Below(Li)) exists in the SELECTION
element only, then the query should be modified by adding
the exception E as a new predicate to the query.

Example 5: Suppose that Alice sends the query depicted
in Listing 7. In this case, the query will be modified by
adding a new predicate (i.e., Store.Province = ’Quebec’),
because the prohibited level (i.e., City) exists in the SELEC-
TION element. After the modification, Alice will see only the
cities of Quebec. The modified query is depicted in Listing 8.

The complete processing logic for Policy Class 2 (i.e.,
Rule 3, Rule 4, and Rule 5) is encapsulated in Algorithm 2.
Essentially, the algorithm takes the prohibited level Li

and the exception E as input and produces as output an
authorization decision to execute or modify the query. The

105

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S e l e c t i o n :
S t o r e . Ci ty , P r o d u c t . Type , SUM(s a l e s)

C o n d i t i o n :
Time . Year = 2011 AND
P r o d u c t . Type = ’ I n d o o r ’

From :
S a l e s

Listing 7. Simple OLAP Query 2

S e l e c t i o n :
S t o r e . Ci ty , P r o d u c t . Type , SUM(s a l e s)

C o n d i t i o n :
Time . Year = 2011 AND
P r o d u c t . Type = ’ I n d o o r ’ AND
S t o r e . P r o v i n c e = ’ Quebec ’

From :
S a l e s

Listing 8. Authorization Strategy as per Rule 5

process is divided into two main parts or conditions. In the
first case, we are looking at situations whereby the prohibited
level Lj exists in the query CONDITION element. Here, the
query can either be allowed to execute directly or further
modified. It executes directly if the prohibited value Lv is
equal to the exception value Ev or any value under Ev.
However, if the exception value Ev is equivalent to any
value under Lv, then the query is modified by replacing the
prohibited level with the exception level AND the prohibited
level value with the exception value.

In the second case, we target the scenario whereby the
prohibited level Lj exists in the SELECTION element only.
Here, we modify the original query by adding the exception
E as a new condition.

3) Policy Class 3: Restriction on a specific value P of
level Li + no Exception: We now turn to the classes in
which specific values at a given level are restricted, as
opposed to all members at a given level. We begin with
the simplest scenario.

Rule 6. If a user is prohibited from accessing a specific
value P of level Li, and the user has no exceptions, then
the Authorization Objects(O)= {v : v ∈ P ∪ Under(P)
where P is the prohibited value}.

Here, the prohibited value P, or some value under P,
exists in the query CONDITION element. As per Rule 6,
the query should simply be rejected. But what if Li exists
in the SELECTION element only? In this case, the query
should be modified by adding the prohibited value as a new
predicate to the query CONDITION element. Let’s look at
the following example.

Example 6: Suppose that Alice is restricted from ac-
cessing Quebec’s sales. If Alice sends the query depicted
in Listing 9, the query should be modified as shown in
Listing 10.

input : The prohibited level Li and the exception E
output: Decision to directly execute or modify

Let Ev = E value;
foreach level Lj ∈ Below(Li) do

if Lj exists in the query CONDITION element
then

Let Lv = Lj value;
if Lv == Ev OR Lv ∈ Under(Ev) then

Allow the query to execute without
modification;

end
else if Ev ∈ Under(Lv) then

Replace E by Lj , and Ev by Lv, then
inform the user, and allow the query to
execute;

end
end
else if Lj exists only in the query SELECTION
element then

Add E as new condition to the user query,
inform the user, and allow the query to
execute;

end
end

Algorithm 2: The procedure of Policy Class 2

S e l e c t i o n :
S t o r e . P rov ince , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
P r o d u c t . Type = ’ Outdoor ’

From :
S a l e s

Listing 9. Simple OLAP Query 3

The associated query summarizes the sales of provinces
in 2011 for outdoor products. As noted, the SELECTION
element contains the prohibited level (Province), so instead
of rejecting the query we modify it by adding a new
predicate to the condition. The modified query returns only
the sales that Alice is allowed to see. The logic is formalized
in Rule 7 below.

Rule 7. If the prohibited level Li exists in the SELECTION
element only, then the query should be modified by adding
a new predicate to the query CONDITION element.

4) Policy Class 4: Restriction on a specific value P
of level Li + Exception: Finally, we add an exception
to the queries described by Class 3. Here, the relevant
authorization objects consist of the prohibited value (P),
minus the exception values.

Rule 8. If a user is restricted from accessing a value P of
level Li, and the user has an exception E, then the

106

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S e l e c t i o n :
S t o r e . P rov ince , SUM(s a l e s)

C o n d i t i o n :
Time . year = 2011 AND
P r o d u c t . Type = ’ Outdoor ’ AND
S t o r e . P r o v i n c e != ’ Quebec ’

From :
S a l e s

Listing 10. Authorization Strategy as per Rule 7

S e l e c t i o n :
S t o r e . Ci ty , P r o d u c t . Type , SUM(s a l e s)

C o n d i t i o n :
S t o r e . C i t y = ’ M o n t r e a l ’ AND
P r o d u c t . Type = ’ I n d o o r ’ AND
Time . Year = 2011

From :
S a l e s

Listing 11. Authorization Strategy as per Rule 9

Authorization Objects(O)= {v : v ∈ (P ∪ Under(P)) - (Ev
∪ Under(Ev))} where P is the prohibited value and E is
the exception.

In this scenario, the query can either be allowed to execute
or modified according to the following associated rules.

Rule 9. The query will be allowed to execute, if the
prohibited value Lv exists in the CONDITION element AND
is equal to the exception value Ev or any value Under(Ev).

Example 7: Suppose that Alice is restricted from access-
ing the sales of Canadian provinces, except for the sales of
Quebec. If Alice sends the Query depicted in Listing 11, the
query will be allowed to execute since the prohibited value
(i.e., Montreal) is under the exception value (i.e., Quebec).

Rule 10. If the prohibited level Li exists in the query
SELECTION element only, the query will be modified by
adding the exception E as a new predicate. In principle,
this rule is similar to Rule 4.

Rule 11. When Lv exists in the query CONDITION element
AND Lv is under Ev, the query is modified by replacing
the prohibited level Li by the exception level E AND the
prohibited level value Lv by the exception value Ev.

Algorithm 3 illustrates the full processing logic for Policy
Class 4 (Rule 8, Rule 9, Rule 10, and Rule 11). In short,
the authorization module takes the prohibited level value
P and the exception E as input and gives as output an
authorization decision to execute or modify the query. The
algorithm is again divided into two main parts. The first
component targets the case whereby the prohibited value P
exists in the query CONDITION element. Here, the query
can be modified or executed directly. If the prohibited value
belongs to the set of values under E , the query is modified

by replacing the condition that contains the prohibited value
by a new one containing the exception. Conversely, the query
is allowed to execute directly if the prohibited level value
Lv belongs to the values Under(P) AND Lv is equal to the
exception value Ev OR Ev belongs to the values Under(Lv).

In the second case, a new condition (exception E) is added
to the query CONDITION element when the prohibited level
Lv or any level below it Below(Lv) exists in the SELECTION
element only.

input : The prohibited value P of level Li and the
exception E

output: Decision to directly execute or modify

Let Ev = E value;
foreach level Lj ∈ Below(Li) do

if Lj exists in the query CONDITION element
then

Let Lv = Lj value;
if (Lv == P) AND (P ∈ Under(Ev)) then

Add E as a new condition instead of the
condition that contains Lj , inform the
user, and allow the query to execute;

end
else if (Lv ∈ Under(P)) AND (Lv == Ev
OR Ev ∈ Under(Lv)) then

Allow the query to execute without
modification;

end
end
else if Lj exists only in the query SELECTION
element then

Add E as new condition to the user query,
inform the user, and allow the query to
execute;

end
end

Algorithm 3: The procedure of Policy Class 4

F. Authorization Rule Summary

The preceding sections have formalized the authoriza-
tion framework in terms of four policy classes and their
associated transformation rules. Below, we summarize the
authorization decision in terms of its three possible outcomes
— Execute, Modify, Reject:

1) The query is allowed to execute without modification
in two situations:

• Level Li is restricted and there is an exception E:
a) If any upper level exists in the SELECTION or

PROJECTION query element, OR
b) If the Li value or any value from the levels

below it exists in the CONDITION element
AND this value is equal to the exception value
Ev or any value under it.

107

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A specific value of Li is restricted and there is an
exception E:
a) If the prohibited value Lv or any value under

it exists in the CONDITION element AND it is
equal to the exception value Ev OR any value
under it.

2) The query is modified in one situation:
• A level Li is restricted and there is an exception

E:
a) If level Li or any value from the levels below

it exists in the query SELECTION element
only, then we add the exception E as a new
condition, OR

b) If the exception value Ev belongs to the values
under Lv, then we replace the prohibited level
in the CONDITION element by the exception
E.

3) The query is rejected in two situations:
• A level Li is restricted, and there is no exception:

a) If level Li or any value from a lower level
exists in the SELECTION element only, OR

b) If level Li or any value from the levels below
it exists in the CONDITION element.

• A specific value P is restricted, and there is no
exception:
a) If P or any value under it exists in the CON-

DITION element.

V. EXPERIMENTAL RESULTS

Because of the potential to impact overall query resolution
time, considerable effort has been made to ensure the effi-
ciency of the authorization logic, including the exploitation
of compact data structures such as mapGraph and the FastBit
bitmap indexes. Moreover, the analysis of policy classes
is based primarily upon a restricted set of IF/ELSE cases
that, in turn, manipulate a small in-memory Authentication
Database. Given the motivation to include OLAP-aware
authorization mechanisms within fully functional database
management systems, however, it is important to actually
verify that our checking approach does not in fact seriously
degrade query performance. As noted earlier, the authoriza-
tion framework has been incorporated into a DBMS proto-
type specifically designed for OLAP storage and analysis.
For testing purposes, however, this integrated environment
is not necessarily ideal as it is difficult for the reader to
determine if the balance between checking and execution
is reflective of current systems. Furthermore, it may not be
obvious that our authorization model has the potential for
integration with standard database servers.

For this reason, we have coupled our framework with
MonetDB, a popular open source database management
system [27]. MonetDB is a column store DBMS, as opposed
to the more familiar row-based systems. Column stores

are particularly well suited to OLAP workloads as the
ability to efficiently extract only the columns of interest
can significantly improve IO performance. Note that in this
case, the job of MonetDB is simply to provide execution
services — all authorization services are provided by the
subsystems defined in this paper. In the current case, we
utilize the Star Schema Benchmark (SSB) [28], a variation
of the original TPC-H benchmark augmented for OLAP
settings. In short, SSB consist of a central Fact Table and
four dimension tables, with a set of 13 analytics queries
executed against the data. Queries are divided into four
query categories, with each category providing increasingly
sophisticated restrictions on the associated dimensions. A
full listing of the queries can be found in the Appendix.
The SSB is particularly valuable in the current context as it
provides a common mechanism by which to assess the kinds
of queries — in terms of both form and complexity — that
one would actually expect to encounter in OLAP settings. As
a final note, we stress that Monet does not provide an internal
OLAP-aware conceptual model. To ensure compatibility
with the mechanisms described throughput this paper, it
was necessary to develop SQL conversion middleware, a
significant research effort of its own. The details of the
middleware architecture are the subject of an upcoming
submission.

For the following tests, we have used the SSB generator
(with default settings) to produce a Fact table of 180 million
records, with each dimension housing between 60,000 and
one million records. The experiments themselves were run
on a 12-core AMD Opteron server with a CPU core fre-
quency of 2100 MHz, L1/L2 cache size of 128K and 512K
respectively, and a shared 12MB L3 cache. The server was
equipped with 24 GB of RAM, and eight 1TB Serial ATA
hard drives in a RAID 5 configuration. The supporting OS
was CentOS Linux Release 6.0. All OS and DBMS caches
were cleaned between runs.

A set of four simple but typical authorization policies was
created, as follows. We generated one constraint across a
full dimension (i.e., the Product.Part is restricted), a second
constraint on an attribute, along with an exception (i.e., the
attribute s region is restricted with an s province exception),
a third constraint on an attribute value with an exception
value (i.e., d year < 2009 is restricted except d year = 2005
or 2006), and the last constraint prohibits access to a cuboid
as a whole. Essentially, policies were designed in keeping
with the logic of Section IV, but adapted to the specific
attributes of the SSB schema.

In terms of the results, we have isolated each of the four
query classes and show authorization processing versus the
subsequent query execution time in Figure 10, Figure 11,
Figure 12, and Figure 13. We note that all queries violated
one or more security policies and that these violations were
identified and appropriately processes by the authorization
module (each authorization decision was manually verified

108

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for correctness). For those that were not candidates for re-
writing (i.e., they were simply rejected), the query execution
time is still listed so as to give the reader a better sense of
the relative balance between checking and execution. A few
additional points are also worth noting. First, the ratio of
checking time to execution time varies considerably, depend-
ing on the specification of the underlying query. In particular,
many OLAP queries are very expensive to execute, given the
amount of sorting and aggregation involved. In this case,
Query Classes 1 and 3 have restrictive selection constraints
(with the exception of the Query 3.1), thereby reducing the
size of intermediate results and, in turn, dramatically limiting
aggregation costs. Overall, execution times range from about
half a second for Query Class 3 to more than 30 seconds
for Query Class 2, where large intermediate results produce
massive aggregation costs. As the database gets larger, of
course, these execution times will continue to grow.

Second, the checking costs are quite modest, in the range
of 100-400 milliseconds. More importantly, the size of the
underlying database has no effect upon the checking costs,
as only the cube meta data is inspected. In other words, it
does not matter that 180 million records exist in the database
as authorization decisions are not based upon this data.
Rather, only schema information (e.g., cubes, dimensions,
hierarchies) and policy specifications (i.e., restrictions and
exceptions) are required during this process. In practice, it
is extremely unlikely that, from an end user’s perspective,
authorization costs would have a tangible impact on database
access and analysis.

As a final point, we re-iterate that column stores are well
suited to this environment, given their ability to minimize
I/O costs. The execution times for traditional row store
database servers can be one to two orders of magnitude
larger [29]. The authors have, in fact, evaluated the current
test cases on the open source row-based PostgreSQL DBMS
and validated these ratios. In such environments, the ratio
of checking to execution costs would be far more extreme,
with execution costs being dozens or even hundreds of times
larger than checking costs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed a query re-writing
model to provide access control in multi-dimensional OLAP
environments. We began by defining a conceptual model
that focused on the data cube and its constituent dimen-
sion hierarchies. From there we introduced the notion of
authorization objects designed to identify and constrain the
relationships between parent/child aggregation levels. We
then presented a series of rules that exploited the autho-
rization objects to decide whether user queries should be
rejected, executed directly, or dynamically and transparently
transformed. In the latter case, we identified a set of minimal
changes that would allow queries to proceed against a subset
of the requested data.

Figure 10. Performance for SSB schema, Query 1 category

Figure 11. Performance for SSB schema, Query 2 category

Figure 12. Performance for SSB schema, Query 3 category

109

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Performance for SSB schema, Query 4 category

While the authentication and authorization framework
has been integrated into a prototype DBMS that provides
OLAP-specific indexing and storage, we believe that the
general principles are broadly applicable to any contem-
porary DBMS product. To this end, we combined the
framework with MonetDB, an open source DBMS that
provides efficient column oriented services. Using the Star
Schema Benchmark, we showed that for common OLAP
queries, authentication and authorization services represent a
negligible impact on overall query execution and, in fact, that
there is no relationship between authorization and execution
costs. For this reason, we believe that our methods are viable
for not only OLAP-specific database management systems,
but more conventional platforms as well.

Finally, it is important to point out that the framework
presented in this paper cannot block all attempts to access re-
stricted data. In particular, it is possible for a user possessing
some degree of external knowledge to combine the results of
multiple valid queries to obtain data that is itself meant to be
protected. We refer to such exploits as inference attacks. We
are currently working on inference detection mechanisms
that will piggy back on top of the core authentication and
authorization framework to provide an even greater level of
security for OLAP data.

REFERENCES

[1] T. Eavis and A. Altamimi, “OLAP authentication and au-
thorization via query re-writing,” in The Fourth International
Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA), 2012, pp. 130–139.

[2] P. P. Griffiths and B. W. Wade, “An authorization mechanism
for a relational database system,” ACM Transactions on
Database Systems, vol. 1, no. 3, pp. 242–255, Sep. 1976.

[3] Biba, “Integrity considerations for secure computer systems,”
MITRE Co., technical report ESD-TR 76-372, 1977.

[4] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model
for role-based access control: towards a unified standard,” in
Proceedings of the fifth ACM workshop on Role-based access
control, ser. RBAC ’00, 2000, pp. 47–63.

[5] E. Fernández-Medina, J. Trujillo, R. Villarroel, and M. Pi-
attini, “Developing secure data warehouses with a UML
extension,” Information Systems, vol. 32, pp. 826–856, 2007.

[6] C. Blanco, I. G.-R. de Guzman, D. Rosado, E. Fernandez-
Medina, and J. Trujillo, “Applying QVT in order to implement
secure data warehouses in SQL Server Analysis Services,”
Journal of Research and Practice in Information Technology,
vol. 41, pp. 135–154, 2009.

[7] J. Trujillo, E. Soler, E. Fernández-Medina, and M. Piattini,
“An engineering process for developing secure data ware-
houses,” Information and Software Technology, vol. 51, pp.
1033–1051, 2009.

[8] K. Khajaria and M. Kumar, “Modeling of security require-
ments for decision information systems,” SIGSOFT Software
Engineering Notes, vol. 36, no. 5, pp. 1–4, Sep. 2011.

[9] M. Kumar, A. Gosain, and Y. Singh, “Stakeholders driven
requirements engineering approach for data warehouse de-
velopment,” JIPS, vol. 6, no. 3, pp. 385–402, 2010.

[10] Y. Singh, A. Gosain, and M. Kumar, “From early require-
ments to late requirements modeling for a data warehouse,”
Networked Computing and Advanced Information Manage-
ment, International Conference on, vol. 0, pp. 798–804, 2009.

[11] N. Katic, G. Quirchmay, J. Schiefer, M. Stolba, and A. Tjoa,
“A prototype model for data warehouse security based on
metadata,” in DEXA, 1998, pp. 300–308.

[12] A. Rosenthal and E. Sciore, “View security as the basic
for data warehouse security,” in International Workshop on
Design and Management of Data Warehouse, 2000, pp. 8.1–
8.8.

[13] ——, “Administering permissions for distributed data: factor-
ing and automated inference,” in Proceedings of the fifteenth
annual working conference on Database and application
security, ser. Das’01, 2002, pp. 91–104.

[14] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query
processing,” Foundations and Trends in Databases, vol. 1,
pp. 1–140, 2007.

[15] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy,
“Extending query rewriting techniques for fine-grained access
control,” in ACM Special Interest Group on the Management
of Data, ser. SIGMOD ’04, 2004, pp. 551–562.

[16] “The Virtual Private Database,” June 2012, http://www.oracle.
com/technetwork/database/security/index-088277.html.

[17] “Microsoft Analysis Services,” June 2012, http://www.
microsoft.com/sqlserver/2008/en/us/analysis-services.aspx.

[18] J. Gray, A. Bosworth, A. Layman, D. Reichart, and H. Pira-
hesh, “Data cube: A relational aggregation operator general-
izing group-by, cross-tab, and sub-totals,” Data Mining and
Knowledge Discovery, vol. 1, pp. 29–53, 1997.

110

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing
data cubes efficiently,” in ACM Special Interest Group on the
Management of Data, ser. SIGMOD ’96, 1996, pp. 205–227.

[20] E. Malinowski and E. Zimányi, “Hierarchies in a multi-
dimensional model: from conceptual modeling to logical
representation,” Data and Knowledge Engineering, vol. 59,
pp. 348–377, 2006.

[21] T. Eavis, H. Tabbara, and A. Taleb, “The NOX framework: na-
tive language queries for business intelligence applications,”
in Data Warehousing and Knowledge Discovery (DaWak),
2010, pp. 172–189.

[22] “SQL database engine,” June 2012, http://www.sqlite.org.

[23] “Definition of the XML document type declaration from
Extensible Markup Language (XML) 1.0 (Fifth Edition),”
June 2012, http://www.w3.org/TR/xml/.

[24] T. Eavis and A. Taleb, “Mapgraph: efficient methods for
complex olap hierarchies,” in Proceedings of the sixteenth
ACM conference on Conference on information and knowl-
edge management, ser. CIKM ’07, 2007, pp. 465–474.

[25] V. Markl, R. Bayer, B. Forschungszentrum, and R. Bayer,
“Processing relational OLAP queries with UB-Trees and
multidimensional hierarchical clustering,” in In Proceedings
of DMDW 2000, 2000, pp. 5–6.

[26] M. Zaker, S. Phon-amnuaisuk, and S. cheng Haw, “An ade-
quate design for large data warehouse systems: Bitmap index
versus B-tree index,” 2008.

[27] “MonetDB column store database engine,” June 2012, http:
//www.monetdb.org.

[28] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “Performance
evaluation and benchmarking,” R. Nambiar and M. Poess,
Eds., 2009, ch. The Star Schema Benchmark and Augmented
Fact Table Indexing, pp. 237–252.

[29] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: how different are they really?” in Proceedings
of the 2008 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’08, 2008, pp. 967–980.

APPENDIX

Below, we provide a listing of the 13 queries found in the
Star Schema Benchmark.

1. select sum(lo extendedprice*lo discount) as revenue
from lineorder, date
where lo orderdate = d datekey and
d year = 1993 and
lo discount between 1 and 3
and lo quantity < 25

1. 1) select sum(lo extendedprice*lo discount) as
revenue
from lineorder, date

where lo orderdate = d datekey and
d yearmonthnum = 199401 and
lo discount between 4 and 6 and
lo quantity between 26 and 35

1. 2) select sum(lo extendedprice*lo discount) as
revenue
from lineorder, date
where lo orderdate = d datekey and
d weeknuminyear = 6 and
d year = 1994 and
lo discount between 5 and 7 and
lo quantity between 26 and 35

2. select sum(lo revenue), d year, p brand1
from lineorder, date, part, supplier
where lo orderdate = d datekey
and lo partkey = p partkey and
lo suppkey = s suppkey and
p category = ‘MFGR#12’ and
s region = ‘AMERICA’
group by d year, p brand1
order by d year, p brand1

2. 1) select sum(lo revenue), d year, p brand1
from lineorder, date, part, supplier
where lo orderdate = d datekey and
lo partkey = p partkey and
lo suppkey = s suppkey and
p brand1 between ‘MFGR#2221’ and
‘MFGR#2228’ and
s region = ‘ASIA’
group by d year, p brand1
order by d year, p brand1

2. 2) select sum(lo revenue), d year, p brand1
from lineorder, date, part, supplier
where lo orderdate = d datekey and
lo partkey = p partkey and
lo suppkey = s suppkey and
p brand1 = ‘MFGR#2221’ and
s region = ‘EUROPE’
group by d year, p brand1
order by d year, p brand1

3. select c city, s city, d year, sum(lo revenue) as
revenue
from customer, lineorder, supplier, date
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo orderdate = d datekey and
c nation = ‘UNITED STATES’ and
s nation = ‘UNITED STATES’ and

111

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

d year >= 1992 and
d year <= 1997
where c city, s city, d year
where d year asc, revenue desc

3. 1) select c nation, s nation, d year,
sum(lo revenue) as revenue
from customer, lineorder, supplier, date
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo orderdate = d datekey and
c region = ‘ASIA’ and
s region = ‘ASIA’ and
d year >= 1992 and
d year <= 1997
group by c nation, s nation, d year
order by d year asc, revenue desc

3. 2) select c city, s city, d year, sum(lo revenue) as
revenue
from customer, lineorder, supplier, date
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo orderdate = d datekey and
(c city=‘UNITED KI1’ or c city=‘UNITED
KI5’) and
(s city=‘UNITED KI1’ or s city=‘UNITED
KI5’) and
d year >= 1992 and
d year <= 1997
group by c city, s city, d year
group by d year asc, revenue desc

3. 3) select c city, s city, d year, sum(lo revenue) as
revenue
from customer, lineorder, supplier, date
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo orderdate = d datekey and
(c city=‘UNITED KI1’ or c city=‘UNITED
KI5’) and
(s city=‘UNITED KI1’ or s city=‘UNITED
KI5’) and
d yearmonth = ‘Dec1997’
group by c city, s city, d year
order by d year asc, revenue desc

4. select d year, s nation, p category, sum(lo revenue -
lo supplycost) as profit
from date, customer, supplier, part, lineorder
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo partkey = p partkey and

lo orderdate = d datekey and
c region = ‘AMERICA’ and
s region = ‘AMERICA’ and
(d year = 1997 or d year = 1998) and
(p mfgr = ‘MFGR#1’ or p mfgr = ‘MFGR#2’)
group by d year, s nation, p category
order by d year, s nation, p category

4. 1) select d year, c nation, sum(lo revenue -
lo supplycost) as profit
from date, customer, supplier, part, lineorder
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo partkey = p partkey and
lo orderdate = d datekey and
c region = ‘AMERICA’ and
s region = ‘AMERICA’ and
(p mfgr = ‘MFGR#1’ or p mfgr = ‘MFGR#2’)
group by d year, c nation
order by d year, c nation

4. 2) select d year, s city, p brand1, sum(lo revenue
- lo supplycost) as profit
from date, customer, supplier, part, lineorder
where lo custkey = c custkey and
lo suppkey = s suppkey and
lo partkey = p partkey and
lo orderdate = d datekey and
c region = ‘AMERICA’ and
s nation = ‘UNITED STATES’ and
(d year = 1997 or d year = 1998) and
p category = ‘MFGR#14’
group by d year, s city, p brand1
order by d year, s city, p brand1

112

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Verification with AVISPA to Engineer Network Security Protocols

Florian Kammüller, Glenford Mapp, Sandip Patel, and Abubaker Sadiq Sani
Middlesex University

Computer Communications Group
f.kammueller@mdx.ac.uk, mapp@mdx.a.cuk, sp1264@live.mdx.ac.uk, ss1234@live.mdx.ac.uk

Abstract—This paper summarizes work on formal mecha-
nized verification of security protocols using Avispa, a model
checker dedicated to security protocols. Avispa has been
successfully used in various Master’s projects. In this paper, we
present two outstanding projects of quite different nature that
highlight the spectrum of formal security protocol verification
and lead us to a proposition of engineering practice for the
development of secure protocols based on two main ideas (a)
refactoring existing formalisations to prove adaptations of secu-
rity protocols (b) compositional proof of new protocols allowing
the combination and reuse of (parts of) existing formalisations
of other protocols. This paper presents first Radius-SHA256, an
adaptation of the Radius protocol for remote authentication for
network access to the secure hash function SHA-256. Second,
we present the Secure Simple Protocol which is an extension
for security of a protocol developed at our university for next
generation networks. Both protocols have been formalized in
the Avispa model checker and security has been proved.

Keywords-Security protocols, Model Checking, Crypto-
graphic Hashes, Simple Protocol

I. INTRODUCTION

Radius [19], [20], a remote authentication protocol used
for building up secure communications of clients with net-
works via network access servers, uses the message digest
function MD5, a hash function which has meanwhile been
proven to have security weaknesses. By contrast, the hash
function SHA-256 still remains unchallenged. Although
seemingly straightforward and thus tempting, simply re-
placing MD5 by SHA-256 in the Radius protocol must be
considered potentially harmful since authentication protocols
are extremely sensitive to minor changes as the history of
attacks shows. In December 2008, an attack on the SSL
protocol has been demonstrated based on the previously
discovered collisions of the MD5 hash function [16]. The
engineers of that attack recommend the discontinuation of
use of SSL based on MD5. Fortunately, for SSL the use
of the hash function is already by design a choice point.
For Radius, this flexibility is not yet established; this is the
subject and one of the results of this paper. Triggered by
the alarming history of attacks of security protocols, formal
verification techniques have long been deemed to be a way
out. We investigate whether Radius-SHA256 – our proposed
adaptation of the Radius protocol – can provide better
security guarantees than its original. To provide evidence
based on mathematical rigor we use the Avispa model

checker. Fortunately, we can rely on the rich data base of
this tool providing a model of the original protocol. By
adapting this model to our Radius-SHA256 and checking
that the original security guarantees still hold we prove two
things (a) that Radius-SHA256 is secure and (b) that the
security guarantees have general validity, i.e. they can be
carried over to protocols Radius-X for hashes X. The latter
result corresponds to a reduction of Radius security to the
security of the underlying hash function.

Model checking, a push-button technology for mathemat-
ical verification of finite state systems has been discovered
to be a suitable tool for security analysis of authentication
protocols, e.g. [7]. Ever since, this technology has proved
to be useful for the engineering of secure protocols, e.g.
for adaptation of the Kerberos protocols to mobile scenarios
[6]. However, little attention has been given to investigate
to what extent we can use known engineering techniques,
like refactoring, reuse, and composition to help us engineer
formal security verifications of protocols. This paper is
to be seen as a first step towards such an engineering
process. We mainly present two distinct and unrelated case
studies on Avispa formalisations. The first one being the
aforementioned Radius and the second one a new specially
LAN-centric transport protocol called simple protocol (SP)
developed in our research group [21] and extended here
by security, i.e. authentication. As a second engineering
exercise, we report on this secured version of the SP
protocol. This exercise shows how a new development of
a special purpose protocol can profit from a simultaneous
modelling and analysis with a dedicated modelchecker like
Avispa. The two case studies need not be related since they
just serve as case studies for engineering security protocols
with general engineering principles like refactoring, reuse
and composition. Even though, there is a bridge between
those seemingly unrelated projects: securing local servers
and services. So the first project (Radius) looks at a server
protocol and the other project (SP) looks at a secure,
optimized and tunable protocol for local servers.

This paper is an extension of the conference paper [4]
and is based on the Masters Theses of two of the authors
[11], [14]. The extensions are a more verbose introduction
to the SP protocol and the technical presentation of the
Avispa encoding of SP. In this paper we first provide
the prerequisites of this project: brief introductions to the

113

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Radius protocol, the Simple Protocol, Avispa model check-
ing, and hashes (Section II). From there, we develop our
new version Radius-SHA256 by introducing its model in
Avispa in detail (Section III) and illustrate how this model
can be efficiently used to verify security goals (Section
III-D). To illustrate that Modelchecking is also useful in the
engineering of new protocols we show its application to the
Simple Protocol (Section IV). We first give a motivation and
deeper introduction to this protocol and its context for future
networks thereby extending the original paper [4]. Next we
show how this Simple Protocol can be extended step by
step introducing cryptographic keys to add authentication
and secure it. We finally offer conclusions and an outlook
(Section V).

II. BACKGROUND

A. Radius

One of the major issues with networks is their security and
one response to this challenge are authentication protocols.
Radius is a popular protocol providing security to commu-
nication channels. Radius stands for Remote Authentication
Dial in User Service and serves to secure communication be-
tween Network Access Servers (NAS) and so-called Radius
servers. Radius satisfies the AAA (Authentication, Autho-
rization and Accounting) protocol standards in both local
and roaming situations. In January 1997, Radius standards
were first introduced in RFC 2058 and Radius accounting
in RFC 2059. After that RFC 2138 and RFC 2139 were
published and they made the previous RFC obsolete. They
both were made obsolete in turn by RFC 2865 and RFC
2866 respectively. Following were updates by RFCs 2868,
3575, and 5080 [20].

Assume that there is an Internet service provider (ISP)
and he has two NAS. A NAS allows a user to connect
directly to the ISP’s network and be accepted by a core
router which directly connect with ISP’s network backbone.
When a user wants to access his services, he sends a request
to the NAS which forwards the user request to the main
server to check the supplied credentials. This process is
called authentication.

After authentication, the NAS has to check the access list
of the user and then decide which services are permitted
to this user. The RADIUS server then replies to the NAS
with Access Reject, Access Challenge, or Access Accept
as illustrated in Figure 1. This information is forwarded by
the Radius server to the NAS. This is called authorization.
Once a user is authenticated and authorized successfully, the
NAS creates a connection between the user and the main
server through which both can exchange their information.
This secure connection is called a session. All the infor-
mation regarding the session will be saved by the NAS for
its accounting purposes. It includes start time of session,
termination time of session, size of total received and sent
data, amongst other information for accounting.

Figure 1. Radius access request and possible replies [18]

B. Simple Protocol

A new trend in next generation networks is the divergence
between local area networks (LAN) and wide area networks
(WAN) because there is still an increase of efficiency to be
expected in LANs. Additionally, the ubiquity of computing
devices and common usage of mobile devices asks for a
flexibility that is better supported with fixed core networks
and flexible wireless networks at the periphery. A recon-
sideration of the TCP/IP seems appropriate since adaptation
of TCP to the often heterogeneous requirements of local
wireless networks is not easy. The Simple Protocol (SP) [10]
is intended to be used in combination with TCP but TCP for
the WAN and SP for the LAN communication. SP is part
of a wider development of the Y-Comm framework [21] –
a new architecture for mobile heterogeneous networking.

A specially LAN-centric transport protocol has different
requirements from a WAN transport protocol, e.g. TCP,
since performance issues differ. These requirements mark
the design decision that define SP [10]. Since most LAN
communications consist of messages or transactions, SP
supports a message-based communication in contrast to TCP
streams. The higher speed available in LAN is exploited by
using a larger window size for SP than WAN protocols: SP
supports 4MB message sizes by default and can even be
increased. In order to keep packet processing simple, SP
uses a small number of connection states as well as packet
types. Flexibility is achieved by allowing Quality of Service
(QoS) to be set using the packet types.

In this paper (Section IV), we summarize briefly how the
Avispa support helped in designing a secure extension of
SP by hybrid cryptography. Extending the initial connection
part of the protocol, we add public-key based authentication
while simultaneously exchanging symmetric session keys for
the following secured data exchange of SP. The protocol
achieves authenticity by public keys while preserving its
efficiency to an extent through the use of faster symmetric
key encryption.

C. Avispa

Avispa stands for Automated Validation of Internet
Security-sensitive Protocols and Applications [2]. To model
and analyze a protocol, Avispa provides its own High-Level
Protocol Specification Language (HLSPL). In order to check

114

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Avispa: language formats and tool architecture [2]

security, Avispa translates the given HLSPL specification in
the intermediate format IF, which is then the basis for four
different verification machines that can be applied to model
check security properties on a protocol expressed as depicted
in Figure 2. Avispa uses Dolev-Yao channels annotating
them as a type as channel(dy). This means that the attacker
is assumed to be able to do eavesdropping, intercepting and
faking on these channels. Protocols can be very naturally
specified in Avispa using the role concept. Every principal is
modeled as such a role which enables encapsulating its com-
munication parameters, local variables and constants. Based
on that, a role describes state changes by defining transitions
between states that may depend on pre- and postconditions
of the current state. Roles can furthermore be instantiated in
other roles. This enables the composition of the single roles
representing the single principals into a protocol session
while synchronizing them on their communication. It also
enables specifying an attacker. Once the protocol is thus
specified predefined HLSPL propositions, most prominently
secrecy and authentication can be automatically verified.
We introduce more detail on HLSPL constructs, their IF
translation, and the verification features when applying them
to formalize Radius-SHA256 in the following section.

D. Hash Functions

Hash functions – also known as message digests or
compression functions – map arbitrary length inputs to fixed
size outputs. They are considered as cryptographic hash
functions if they provide the following three properties: (a)
they cannot be inverted, i.e. given y = H(x) the input x
cannot be found, (b) it is impossible to find collisions, i.e.
we cannot find x, y with H(x) = H(y), and (c) given an
input hash pair it is impossible to find another input with
the same hash value, i.e. for H(x) = y we cannot find x′

such that H(x′) = y. The latter two properties resemble
each other expressing the idea of collision resistance but
the second one is stronger.

These basic properties of good hashes give rise to use

them for cryptography. However, since a hash is a de-
terministic function it has as such not the same quality
as an encryption algorithm: anyone can apply the hash.
However, a hash can be easily combined with a shared
secret to provide authentication which is often used for so-
called message authentication codes (MAC). For example,
let Kcs be a shared secret. Then, H(Kcs) can be used as an
authentication token since only principals who have access
to Kcs can produce this token.

III. RADIUS-SHA256

In this section, we present the protocol Radius-SHA256
as derived from the classical Radius of RFC2865/66 by
replacing MD5 by SHA-256. At the abstract protocol level
this replacement seems simple but in order to ensure that
this change of the original protocol preserves the security
properties, we start from the formal presentation of the orig-
inal Radius protocol and develop the new Radius-SHA256
on that formal basis. This enforces a detailed investigation
of the necessary adjustment to the old – no longer secure
– version of Radius and in addition enables comparison
to the previously established security guarantees showing
whether they still hold. From an engineering perspective, this
procedure corresponds to a kind of refactoring of a protocol
specification: re-engineering the previous security specifi-
cation enables re-invocation of the previous verification by
rerunning security check routines.

We introduce the protocol Radius-SHA256 by its formal
model in HLSPL, the specification language of Avispa. Its
level of abstraction is sufficient to comprehend just the major
gist of the protocol. This model contains four roles: client,
server, session, and environment. The idea is that the client
role represents the NAS and the server role represents the
Radius server. In applications, client and server might as
well be represented by proxies depending on the type of
network. For the formal presentation of the protocol we
simplify by summarizing the scenario as a client-server
session. As a session we consider the time period of a client-
server communication. The attacker is modeled by the role
of the environment that specifies the basis for the attacks on
protocol executions.

Each of these components client, server, session and
environment is modeled by a so-called “role” in HLSPL.
Client (Section III-A) and server (Section III-B) define the
two matching sides of the protocol; their composition as
defined in the role session only gives the full protocol (see
Section III-C and Figure 5) which can again be instantiated
to model legal session and attacker.

A. Client-side Protocol

The client role is specified in Figure 3. This role definition
defines the protocol by specifying the necessary entities, like
identifiers, messages and used cryptographic primitives, e.g.
the symmetric key Kcs in its header. Note, here how we

115

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

role client(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text,
SND, RCV: channel(dy))

played_by C def=
local State: nat,

NAS_ID, NAS_Port: text,
Chall_Message: text

const kcs: protocol_id,
sec_c_Kcs : protocol_id

init State := 0
transition

t1. State = 0 ∧ RCV(start) ⇒
State’:= 1 ∧ NAS_ID’:=new()
∧ NAS_Port’:=new()
∧ SND(NAS_ID’.NAS_Port’.SHA256(Kcs))
∧ secret(Kcs,sec_c_Kcs,C,S)

t2. State = 1 ∧ RCV(NAS_ID.Access_accept) ⇒
State’:= 2 ∧ SND(NAS_ID.Success)

t3. State = 1 ∧ RCV(NAS_ID.Access_reject) ⇒
State’:= 3 ∧ SND(NAS_ID.Failure)

t4. State = 1 ∧ RCV(NAS_ID.Chall_Message’) ⇒
State’:= 4 ∧ SND(NAS_ID.Chall_Message’_Kcs)

∧ witness(C,S,kcs,Kcs)
t5. State = 4 ∧ RCV(NAS_ID.Access_accept) ⇒

State’:= 5 ∧ SND(NAS_ID.Success)
end role

Figure 3. Client role of Radius-SHA256 in HLSPL

define SHA256 to be a hash function in this header by using
the Avispa keyword hash_func. This function is applied in
the first transition of the following client-side of the protocol
specification. In detail the steps of the protocol are defined as
state transitions that are conditional on logical conditions of
a current state State ∈ {1, . . . , 5}: each of the five rules in
the transition section in Figure 3 defines a precondition
for this current state (to the left of the implication arrow
⇒) and a postcondition on the post state State’ of a
transition after the ⇒. The conditions are conjoined by
logical conjunction with ∧. The initial state is State zero.
For example, the first transition t1 in Figure 3 can be read
as follows. If the precondition holds, i.e. the current state
is “state 0” and the role receives on its input channel RCV
the message start, then the transition t1 is enabled. If this
transitions fires, the post-state is “state 1” and the message
NAS_ID.Success is sent on the output channel SND. The
following transitions can be read in the same manner. Since
the client represents only one principal in this protocol, we
need to need to define the server side of the protocol to
complement it.

B. Server-side Protocol

Figure 4 now shows the definition of the second principal
in the model of Radius-SHA256: the Radius-server. The
transitions defined in the role server correspond to the
transitions of the client. Each SND on one side corresponds
to a RCV on the other side. However, in order to put

role server(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text,
SND, RCV: channel(dy))

played_by S def=
local State: nat,

NAS_ID, NAS_Port : text,
Chall_Message : text

const kcs: protocol_id,
sec_s_Kcs : protocol_id

init State := 11
transition
t1. State = 11

∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 12 ∧ SND(NAS_ID’.Access_accept)

∧ secret(Kcs,sec_s_Kcs,C,S)
t2. State = 12 ∧ RCV(NAS_ID.Success) ⇒

State’:= 13
t3. State = 11

∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 14 ∧ SND(NAS_ID’.Access_reject)

t4. State = 14 ∧ RCV(NAS_ID.Failure) ⇒
State’:= 15

t5. State = 11
∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 16 ∧ Chall_Message’:=new()

∧ SND(NAS_ID’.Chall_Message’)
t6. State = 16 ∧ RCV(NAS_ID.Chall_Message_Kcs) ⇒

State’:= 17 ∧ SND(NAS_ID.Access_accept)
∧ request(S,C,kcs,Kcs)

t7. State = 17 ∧ RCV(NAS_ID.Success) ⇒
State’:= 18

end role

Figure 4. Server role of Radius-SHA256 in HLSPL

these building blocks together, we first have to define the
composition. This is done in a further role for the session,
presented in the following section.

C. Session and Attacker

The two roles of client and server are combined by defin-
ing a role for the session. Session uses the composition

keyword to couple the two instances of client and server
synchronized by common parameters.

role session(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text) def=

local
S1, S2 : channel (dy),
R1, R2 : channel (dy)

composition
client(C,S,Kcs,SHA256,Success,Failure,

Access_accept,Access_reject,S1,R1) ∧
server(C,S,Kcs,SHA256,Success,Failure,

Access_accept,Access_reject,S2,R2)
end role

The synchronization couples the transitions of the client with
the server over their connecting channels. For example, the

116

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Composition of client and server yields protocol.

message SND(NAS_ID.Success) of t2 in client is now
being sent over S1 and coupled via R2 to the message
RCV(NAS_ID.Success) of server. The composition that is
defined in the role session actually defines the protocol
between the roles client (Section III-A) and server (Section
III-B) by instantiating their channels such that they mutually
connect; the overall protocol is best illustrated graphically
(see Figure 5).

The environment represents the attacker and uses a com-
position, now in turn of two session instances, where the
first is one between two agents c1 and s1 and the second
generalizes the first agent to be i – an unspecified agent that
triggers the search for intruder possibilities incorporating
agents. Note, also that the SHA256 is given openly to the
environment signifying that the attacker knows it and can
use it which formalizes the idea of a hash that it is applicable
by everyone (see Section II-D).

role environment() def=
const c1,s1: agent,

sha256: hash_func,
succs, fails: text,
acc_acp, acc_rej: text,
kcsk, kisk, kcik: symmetric_key,
kcs: protocol_id

intruder_knowledge = {c1,s1,sha256,kisk,kcik,
succs, fails, acc_acp, acc_rej}

composition
session(c1,s1,kcsk,sha256,succs,fails,acc_acp,acc_rej)
∧
session(i, s1,kisk,sha256,succs,fails,acc_acp,acc_rej)
end role

The representation is abstract enough to be comprehensible
while being in places a bit superficial. We dig deeper down
into the lower levels of the Avispa model in the next section
to investigate the influence of the hash function on the
Radius-SHA256.

D. Security Verification

This section now illustrates how the actual model check-
ing process of the Avispa tool automatically translates the
high level protocol model in HLSPL defined in the previous
section and performs a complete state analysis over the
resulting internal Kripke structure representing this model.
The verification is relative to a set of security properties
specifying the goals of the authentication that we will
illustrate first.

E. Security Properties and Verification Process

Given the implementation of the protocol as described in
the previous section, we can now use the inbuilt features of
Avispa to verify security in a push-button manner. Avispa
provides two features for protocol verification: secrecy of
keys and authentication. The secrecy of the server and client
keys and authentication of client and server are given as
verification commands to Avispa as follows.

goal
secrecy_of sec_c_Kcs, sec_s_Kcs
authentication_on kcs

end goal

The meaning of these two formulas can be illustrated more
closely by inspecting their translation into the IF format.
We apply all four back-ends OFMC, CLAtSE, SATMC, and
TA4SP of the Avispa tool to the Radius-256 specification.
For the full IF representation and the performance details
of the analysis see [11]. The main observation is that the
original security guarantees shown for Radius can be carried
over to the protocol Radius-SHA256 by simply replacing the
hash function MD5 by SHA-256 in the specification. The
above secrecy and authentication properties verify just the
same.

To understand the effect that the choice of a particular
hash function, i.e. MD5, SHA-256, or any other crypto-
graphic hash function has on the security guarantees, we
need to inspect the IF version in more detail. First of all,
a hash function application in HLSPL like SHA256(Kcs) is
translated into IF as apply(SHA256,Kcs). According to the
Avispa semantics [2], this apply operator is reserved for the
application of hash functions which manifests itself in the
following type.

apply(F,Arg) apply: message × message → message

However, there seems to be no further semantics attached to
the type. The defining properties of a cryptographic hash
function are provided implicitly by defining the intruder
knowledge for hashes as follows.

117

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

step gen_apply (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) ⇒
iknows(apply(PreludeM1,PreludeM2))

Since the apply-operator can produce a hash, the intruder
can apply a hash himself but Avispa’s intruder semantics
provides no rule to inverse a hash function nor any rule
enabling collision detection for the intruder.

F. Evaluation and Generalization

Wrapping up the discussed security verification we see
that the verification of Radius-SHA256 yields exactly the
same guarantees as the classical Radius of RFC 2865/6.
In this final section, we show up the consequences of this
mechanized verification.

Primarily, the re-engineered modelling and verification for
the Radius-256 protocol in Avispa shows that the guarantees
of secrecy of keys and mutual authentication that have
already been shown for the classical Radius version MD5
equally hold for Radius-256.

Next, our construction process reveals that the exchange
of MD5 by another hash function in the Avispa model
is simply replacing one (presumably) secure cryptographic
hash function by another. As we have observed in the
previous section, the Avispa semantics of a hash models hash
functions abstractly. Thus, we observe that the verification
depends only on the general assumption that some hash
function is used in the protocol. Therefore the derived result
can be generalized to all secure hash functions.

Theorem 1: The Avispa guarantees of secrecy of keys and
authentication of the Radius protocol hold for all secure
cryptographic hash functions.
Note, however, that this verification does presuppose a
secure hash function. That is, the proved result is not valid
if the assumed cryptographic strength of the hash function
is flawed, like in the case of MD5.

Since the Avispa model cannot cover the implicit part of
the hash function security proof, the analysis does not reveal
possible attacks. However, the aforementioned attack on SSL
[16] could be used as a guideline to produce a similar attack
on the classical Radius protocol based on MD5. On the other
hand, the generalization presented in this paper is not trivial:
its proof relies on the re-engineering of the Radius for SHA-
256 and the observation that this re-engineering is applicable
to any secure hash function.

IV. SECURE SIMPLE PROTOCOL

A. Transport Protocols and Future Network Environments

We are witnessing an explosive change in terms of the
different types of wireless networks being developed and
deployed. Thus, future network environments will primarily
consist of multiple local wireless networks, each with a
different Quality-of-Service (QoS). Users will be always
connected by switching between available networks using
vertical handover techniques [8].

Figure 6. The structure of Ycomm/SP.

In this new world, a connection between two devices
may therefore involve several network interfaces. This reality
is beyond the scope of many TCP implementations and
protocols such as SCTP [12] have been developed to replace
TCP.

Another approach being explored is to keep TCP as a
Wide Area transport protocol, but use another protocol to
handle communication on local networks. Such an approach
is being adopted by the Y-Comm Group [9], [21]. There
are other factors favoring this approach: firstly, the common
tack of tuning TCP to deal with different types of local
networks has not been as effective as initially hoped. TCP
is, in fact, a relatively complicated protocol as it needs
to support different transport features including connection
management, reliability, streaming and congestion evalua-
tion and response. This means that it has been difficult for
TCP to adjust to handover issues [3] without substantial
support from device interfaces; we believe a local transport
protocol should be simpler to use. Secondly, in order make
use of higher speeds that are generally available in local
environments, transport window sizes must be substantially
larger by default. Thirdly there is a need to support different
Qualities-of-Service is an explicit and flexible way. Finally,
the issue of local area network security in terms ensuring that
resources are properly balanced among several users must
be urgently addressed to ensure improved user experience.

B. The Simple Protocol

The Simple Protocol (SP) [10] is being developed by the
Y-Comm Group for Local area communications. The SP
diagram is shown in Figure 6 with a brief explanation of
the various fields shown in Figure 7.

As can be seen from Figures 6 and 7, SP is a message-
based protocol where messages are broken down into a
number of blocks. Unlike TCP, SP supports the concept of
packet types and uses explicit phases: connection setup, data
exchange and close; this allows the protocol to be quickly
processed. It also supports a 4 MB window size, leading
to improved transfer rates for large data exchanges. In SP,

118

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Explaining what the fields mean.

acknowledgments can also be monitored leading to faster
recovery times.

C. Support for Servers

Because SP is a message based protocol, it allows the
application and the protocol stack to operate in a more
asynchronous manner using an event-driven interface for
receiving packets. Hence the interaction between the appli-
cation and SP for reception revolves around the application
being made aware of four key events:

1) A new connection has been established
2) A new message has been received on a connection
3) The connection has been reset by the network or other

side
4) The other side has closed its connection, i.e. it is

finished sending all its data.
Since it is possible to attach call back functions to each
event, it is possible to build local servers that are totally
event-driven. This leads to much more efficient server im-
plementations. In addition, the application can tune SP so as
to optimize the local environment. Thus a local transaction
server can tune SP to suppress transport level acknowledg-
ment requests since the reply by the server of the client’s
request will also be interpreted by the client transport system
that the original request was correctly received. This too is a
significant optimization for efficient server implementations.
SP is therefore a powerful local protocol and hence the need
to look at a secure version of SP.

D. Security Mechanism in SP

Because SP uses a connection phase, we can use this
to improve the security of the system and to enhance

communications. When connecting to servers, the concept of
scope is supported. So a server can only be accessed using a
scope which is defined by its functionality [1]. Four scopes
are supported using 2 bits: Scope 00 means that the server
can only be connected to processes on the same machine.
Scope 01 means that the server can only be accessed by
machines on the same LAN, while scope 10 indicates that
access to the server is only accessible by machines on the
same site while a scope of 11 shows that the server may be
globally accessed. The connection phase of SP can be used
to set up keys which are formed using local area parameters
to ensure secure communication between machines in the
local area.

The protocol SP consists of two parts: the connection part
and the data transmission. The connection part establishes
a communication between processes A and B to prepare a
data transmission according to these established connection
parameters. Thereby, a “connected” state is reached during
which data may be transmitted before the connection is
closed again. During data transmission, SP uses synchro-
nization numbers (SYNC_NO) for each message and acknowl-
edgments replying those message numbers to ensure safe
transmission. This sequential message numbering can be
used as well to secure the protocol against replay attacks, i.e.
resending of previously intercepted messages by adversaries.
However, to ensure this security, we need to keep the
message numbers secret. To do that, we establish a session
key in the connection part of SP. We assume that a global
public key infrastructure provides certified identities, that
is for every principal X on the network we have a signed
pair (KX , X)K−1

C
of a public key KX associated to the

principal’s identity (for example the MAC of his device).
This key-identity pair is signed with the secret key of the
certification authority K−1C and can be verified by both
parties A and B even off-line.

Now given this setup, the secure-SP connection part
extends the basic exchange of request and reply (REQ, REP)
by additional time stamps T , nonces N (where indices
∈ {A,B} indicate the sender and receiver), sender, and a
symmetric session key KS for the future data transmission.
The contents of the following two messages are encrypted
using the public keys KA and KB so that only the intended
recipient A or B can read the message contents.

A 7→ B : REQ+ {SYNC_NOA, TA, A,NA}KB

B 7→ A : REP+ {SYNC_NOB , TB , B,NB , NA,KS}KA

If this two step challenge response protocol succeeds, a
connection between A and B is established. In the course
of that connection, A and B can now exchange messages
whose SYNC_NO and shared secrets NB and TA are cryp-
tographically protected by the symmetric key KS that has
been exchanged.

A 7→ B : {SYNC_NOA, NB , TA, A}KS
+ data message

119

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note, that the authentication of A to B is only complete
after the third step, i.e. the first data transmission, where
A shows possession of the private key K−1A by decrypting
and re-encrypting NB , TA, and KS . This protocol has been
formalized and successfully verified with Avispa (for details
see the following section). Confidentiality and integrity of
the data communication part holds as long as the session
keys are not broken. This additional assumption is necessary
and explicit in Avispa: it is beyond the scope of the protocol
verification since we abstract from key length and duration
of use. The same applies for the above mentioned public
key infrastructure.

The secured SP protocol’s communication part bears a
strong resemblance to the (corrected) Needham-Schroeder
asymmetric authentication protocol. This is no surprise,
as the NS-asymmetric protocol (NSPK) is the essence of
remote authentication.

E. Formalizing and Verifying SP in Avispa

The SP protocol resembles a lot the improved version
(not susceptible to man-in-the-middle attacks) of the NSPK
protocol.

1. A → B : {NA, A}KB

2. B → A : {NA, NB , B}KA

3. A → B : {NB}KB

Due to this resemblance and the fact that NSPK is available
in the Avispa library, we can reuse in large parts the Avispa
formalisation of that NSPK protocol as a starting point
adapting it to SP.

The formalization has two roles alice and bob. We first
consider alice.

role alice (A,B : agent,
Ka,Kb : public_key,

Ks: symmetric_key,
Snd,Rcv : channel (dy)) played_by A def=

local
State : nat,
Na,Nb : text,
Ta,Tb : text,
REQ,REP : message,
SN,MN,AMN : text
init State := 0
transition
1. State = 0 ∧ Rcv(start) ⇒

State’:= 1 ∧ Na’ := new()
∧ Snd(REQ.SN.Ta.A.Na’_Kb)

∧ witness(A,B,na,Na’)
∧ secret(Na’,na,A,B)

2. State = 1 ∧ Rcv(REP.SN.Tb.B.Nb’.Na’.Ks_Ka) ⇒
State’:= 2 ∧ Snd(SN.Nb.Ta.A_Ks)

∧ wrequest (A,B,nb,Nb’)
end role

Alice’s role specifies the protocol from here point of view,
i.e., it comprises the initial sending step as a send, followed
by waiting to receive the step two, and finally sending out
the third step that already used a symmetric key for efficient

transport level encryption. Complementing this the role for
bob is as follows.

role bob (B,A : agent,
Kb,Ka : public_key, Ks: symmetric_key,
Snd,Rcv : channel (dy)) played_by B def=

local
State : nat,
Na,Nb : text,
Ta,Tb : text,
REQ,REP : message,
SN,AMN : text
init State := 0
transition
1. State = 0 ∧ Rcv(REQ.SN.Ta.A.Na’_Kb) ⇒

State’:= 1 ∧ Nb’ := new()
∧ Snd(REP.SN.Tb.B.Nb’.Na’_Ka)

∧ witness(B,A,nb,Nb’)
∧ secret(Nb’,nb,A,B)

2. State = 1 ∧ Rcv(SN.Nb.Ta.A_Ks) ⇒
State’:= 2 ∧ wrequest(B,A,nb,Nb)

end role

Similar to before for the Radius protocol, the two roles are
now instantiated into a session.

role session (A,B: agent,
Ka, Kb : public_key, Ks : symmetric_key)

def=
local SA, RA, SB, RB: channel (dy)
composition

alice(A,B,Ka,Kb,Ks,SA,RA)
∧ bob(B,A,Kb,Ka,Ks,SB,RB)
end role

Also an environment is defined that sets up the intruder.

role environment() def=
const ta,tb,sn,mn,amn : text,
a, b, i : agent,
na, nb : protocol_id,
ka, kb, ki : public_key,

ks,ksi: symmetric_key
intruder_knowledge =

{a,b,i,ka,kb,ki,inv(ki),ta,tb,mn,amn,sn}
composition
session(a,b,ka,kb,ks) ∧ session(a,i,ka,ki,ksi)
end role

The goal we check is as follows (equal to the guarantees in
NSPK).

secrecy_of na, nb
authentication_on alice_bob_nb
authentication_on bob_alice_na

The checking of this goal succeeds and provides a fully
automated verification of the authentication process of our
specified SP protocol. The engineering of this secure SP
protocol has been a process of reuse (reusing the NSPK-
Avispa specification in large parts) and also composition:
the SP protocol – as such rather a transport protocol – has
been composed into secure SP by prepending the above
authentication steps. This is a composition process.

120

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSIONS

In this paper we have shown that an adapted version of the
Radius protocol using SHA-256 instead of MD5 provides
exactly the same security guarantees as the RFC version
based on MD5. The verification is a fully automatic analysis
in the Avispa toolkit, a specialized model checker for secu-
rity protocols. We could generalize this result to guarantee
security for Radius protocols using secure hash functions,
even other than SHA-256. We furthermore illustrated on the
example of the simple protocol SP that modelchecking can
be used to stepwisely introduce security to a transport layer
protocol. The verification process has shown the feasibility
of model checking as an engineering tool.

Although the authors of [15] provide a model for the
Radius protocol as defined in the RFC, they have failed
to sufficiently generalize their results. In some sense, our
approach resembles a refactoring of the formal model: refac-
toring is a technique from software engineering supporting
the change in software without affecting desired properties;
we change the formal model of Radius by replacing MD5 by
SHA-256 without losing desired security properties. In the
process of following the earlier design, we discovered that
the model is by no means limited to the classical Radius
but can indeed be generalized to a more secure Radius-
SHA256, and that this generalization can be extended to
arbitrary hashes.

The generalization or refactoring could be an interesting
concept to explore because for the working security engineer
it provides an easy to use extension making the rather
complex model checking process easy to access and provide
a practical tool to allow more flexibility in network security
engineering. Apart from facilitating the process of protocol
engineering, this could also advocate the use of formal
specification and automated model checking in the domain
of network security.

REFERENCES

[1] Mahdi Aiash, Glenford Mapp, Aboubaker Lasebae and
Raphael Phan. Exploring the Concept of Scope to Provide
Better Security for Internet Services. Proceedings at the
First Global Conference on Communication, Science and
Information Engineering. Middlesex University, London,
2011.

[2] Avispa v1.1 User Manual. Available at http://www.
avispa-project.org, 2006.

[3] D. Cottingham and P. Vidales. Is Latency the Real En-
emy in Next Generation Networks? Proceedings of First
International Workshop on Convergence of Hetergeneous
Wireless Networks. July 2005.

[4] F. Kammüller, G. Mapp, S. Patel. A. S. Sani. Engineering
Security Protocols with Modelchecking – Radius-SHA256
and Secured Simple Protocol. International Conference on
Internet Monitoring and Protection, ICIMP’12, 2012.

[5] I.-G. Kim and J.-K. Choi. Formal Verification of PAP and
EAP-MD5 Protocols in Wireless Networks: FDR Model
Checking. AINA. 2004.

[6] Y. Kirsal-Ever. Development of Security Strategies using
Kerberos in Wireless Networks. PhD Thesis, Middlesex
University, 2011.

[7] G. Lowe. Breaking and Fixing the Needham-Schroeder
Security Protocol. Information Processing Letters, 1995.

[8] G. Mapp, F. Shaikh, M. Aiash, R. Vanni, M. Augusto
and E. Moreira. Exploring efficient imperative handover
mechanisms for heterogeneous networks. Proceedings of
the International Symposium of Emerging Ubiquitous and
Persuasive Systems. Indianapolis, Ind, USA, August 2009.

[9] G. Mapp, F. Shaikh, J. Crowcroft, D. Cottingham, and
J. Baliosian. Y-Comm: A Global Architecture for Hetero-
geneous Networking (Invited Paper). 3rd Annual Interna-
tional Wireless Internet Conference (WICON), 2007.

[10] yRFC2: The Simple Protocol (SP) Specification,
15.9.2012. http://www.mdx.ac.uk/research/areas/software/
ycomm\ research.aspx

[11] S. Patel. Implementation and Analysis of Radius Proto-
col using Avispa. Master’s Thesis. Middlesex University,
2011.

[12] RFC 4960 - Stream Control Transmission Protocol. IETF.
September 2007.

[13] R. Rivest. Message-Digest MD5. Network Working Group,
RFC: 1321. http://www.kleinschmidt.com/edi/md5.htm.
1992.

[14] A. S. Sani. Verifying the Secured Simple Protocol in
AVISPA. Master’s Thesis, Middlesex University, 2012.

[15] V. Sankhla. Formalisation of Radius in Avispa. http://
www.avispa-project.org/library/RADIUS-RFC2865, Uni-
versity of Southern California, 2004.

[16] Rogue CA certificate signed by a commercial Certifica-
tion Authority. http://www.win.tue.nl/hashclash/rogue-ca/
\#sec71 Presented at the 25th Chaos Communication
Congress, Berlin 2008.

[17] X. Wang and H. Yu. How to Break MD5 and Other
Hash Functions. Advances in Cryptology, Eurocrypt 2005.
LNCS 3439, Springer 2005.

[18] Wikipedia RADIUS, http://en.wikipedia.org/wiki/
RADIUS, 2012.

[19] Remote Authentication Dial In User Service (RADIUS).
RFC 2868. Internet Engineering Task Force (IETF). http://
tools.ietf.org/html/rfc2865, accessed 18th December 2012.

[20] Common Remote Authentication Dial In User Service
(RADIUS) Implementation Issues and Suggested Fixes.
RFC 5080. Internet Engineering Task Force (IETF). http://
tools.ietf.org/html/rfc5080, accessed 18th December 2012.

[21] The Ycomm Framework. Offical Web-Site, Middlesex
University. http://www.mdx.ac.uk/research/areas/software/
ycomm\ research.aspx.

121

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Mitigating Distributed Service Flooding Attacks with Guided Tour Puzzles

Mehmud Abliz∗, Taieb Znati∗†, and Adam J. Lee∗
∗Department of Computer Science
†Telecommunication Program

University of Pittsburgh
Pittsburgh, Pennsylvania 15260 USA
{mehmud, znati, adamlee}@cs.pitt.edu

Abstract—Various cryptographic puzzle schemes have been
proposed as defenses against Denial of Service (DoS) attacks.
However, these schemes have two common shortcomings that
diminish their effectiveness as a DoS mitigation solution. First,
the DoS-resilience that these schemes provide is minimized
when there is a large disparity between the computational
power of malicious and legitimate clients. Second, the legit-
imate clients also have to perform the same heavy puzzle
computations that do not contribute to any useful work from
the clients’ perspective. In this article, we introduce guided
tour puzzles (GTP), a novel puzzle scheme that addresses these
shortcomings. GTP uses latency — as opposed to computational
delay — as a way of forcing a sustainable request arrival rate
on clients. Measurement results from a large-scale network
test-bed shows that the variation in the puzzle solving times
is significantly smaller than the puzzle solving time variation
of computation-based puzzles. As attackers have much less
control over the round-trip delays than they do over the
computational power, a latency-based puzzle scheme, such as
GTP, provides significantly better protection against strong
attackers. Meanwhile, we show that GTP minimizes useless
computations required for the client computers. We evaluate
the effectiveness of guided tour puzzles in a realistic simulation
environment using a large-scale Internet topology, and show
that GTP provides a strong mitigation of DoS request flooding
attacks and puzzle solving attacks.

Keywords-denial of service; availability; tour puzzles; proof
of work; client puzzles; cryptography.

I. INTRODUCTION

A Denial of Service (DoS) attack is an attempt by mali-
cious parties to prevent legitimate users from accessing a ser-
vice, usually by depleting the resources of the server, which
hosts that service. DoS attacks may target resources such
as server bandwidth, CPU, memory, storage, or any combi-
nation thereof. These attacks are particularly easy to carry
out if a significant amount of server resource is required
to process a client request that can be generated trivially.
Cryptographic puzzles have been proposed to defend against
DoS attacks with the aim of balancing the computational
load of the server relative to the computational load of the
clients [1] [2] [3] [4] [5] [6].

In a cryptographic puzzle scheme, a client is required to
solve a moderately hard computational problem, referred
to as puzzle, and submit the solution as a proof of work
before the server spends any significant amount of resource

on its request. Solving a puzzle typically requires performing
significant number of cryptographic operations, such as
hashing, modular multiplication, etc. Consequently, the more
a client requests service from the server, the more puzzles
it has to solve, further expending its own computational
resources. Puzzles are designed so that their construction
and verification can be achieved with minimum server
computational load in order to avoid DoS attacks on the
puzzle scheme itself. Attacks aimed at the puzzle scheme
itself are thereafter referred to as puzzle solving attacks.

Originally, cryptographic puzzles were proposed to com-
bat spams [7]. They have then been extended to defend
against other attacks, including DoS [2] [3] [6] [8] [9]
and Sybil attacks [10] [11]. Furthermore, different ways of
constructing and distributing puzzles have been explored [6]
[12] [13] [14] [15]. Unfortunately, existing puzzle schemes
have shortcomings that limit their effectiveness in defending
against DoS attacks.

First, the effectiveness of computation-based puzzles de-
creases, as the variation in the computational power of
clients increases. To illustrate this limitation, consider a
system composed of a server whose capacity is R requests
per second, Nl legitimate clients whose clock frequency
is f , and Nm malicious clients whose clock frequency is
a · f , where a is a disparity factor that represents the
degree of disparity between the CPU powers of malicious
and legitimate clients. Furthermore, assume that legitimate
clients can tolerate a maximum puzzle difficulty of Dmax,
expressed in terms of the number of instructions. The
maximum protection the server can achieve against a DoS
attack is by setting the puzzle difficulty to Dmax. During an
attack, the total load on the server is the sum of the loads
generated by the legitimate and malicious clients, which
can be expressed as Nl

f
Dmax

+ Nm
af

Dmax
(without loss of

generality, we assume that when solving puzzles clients use
their full CPU capacity). Therefore, to carry out a DoS attack
against the server, an attacker must at least induce a load
on the server that exceeds the server’s full capacity, i.e.,
Nl

f
Dmax

+ Nm
af

Dmax
≥ R. Using simple deductions, it is

clear that the minimum number of malicious clients required
to cause denial of service should satisfy the inequality
Nm ≥ RDmax−Nlf

af . Consequently, the minimum number of

122

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

malicious clients required to stage a successful DoS attack
against the server becomes smaller as the disparity factor
a increases, decreasing the effectiveness of a puzzle-based
defense in mitigating the DoS attacks.

Second, existing puzzle schemes may exact heavy compu-
tational penalty on legitimate clients, when the server load
becomes heavy and the need to increase the computational
complexity of the puzzle becomes necessary to prevent
overloading the server. The negative impact of such a penalty
is further compounded by the fact that the puzzle-induced
computation does not usually contribute to the execution of
any task that is useful to the client, thereby further wasting
client resources and limiting the client’s ability to carry out
other computational activities.

In this article, we propose a novel, latency-based puzzle
scheme, referred to as Guided Tour Puzzle (GTP), to address
the shortcomings of current cryptographic puzzle schemes in
dealing with DoS attacks. The guided tour puzzle scheme
is the first to use the concept of latency, as opposed to
computational delay, to control the rate of client requests
and prevent potential DoS attacks on the server. The main
contributions of the proposed work include:

• A comprehensive study of the cryptographic puzzles to
derive a list of basic requirements;

• The introduction of two novel puzzle properties, namely
puzzle fairness and minimum interference, that are
essential to the effectiveness of puzzle-based defense
against DoS attacks;

• Design and analysis of the GTP scheme, and showing
that the proposed scheme meets the list of basic require-
ments while achieving puzzle fairness and minimum
interference;

• A thorough evaluation of the guided tour puzzle ef-
fectiveness against distributed DoS attacks, using a
realistic simulation framework.

The rest of the article is organized as follows. Section II
provides a survey of cryptographic puzzle based DoS pre-
vention schemes. Section III describes the system model and
the threat model used. Section IV discusses the design goals
of GTP scheme. Section V introduces the GTP scheme.
In Section VI, we use analysis and measurement to show
that guided tour puzzles meet the design goals of GTP
scheme. The effectiveness of the GTP in mitigating DDoS
attacks is evaluated in Section VII. A conclusion and future
plans for extending the puzzle framework are presented in
Section VIII.

II. RELATED WORK

Currently, there are many different type of DoS and
DDoS defense mechanisms such as filtering based [16]
[17], traceback and pushback based [18] [19], capability
based [20] [21] and cryptographic puzzle based defense
mechanisms. One approach that is similar to GTP scheme is
a system called speak-up that encourages legitimate hosts to

increase their request sending rate during application layer
DoS attacks [22]. This method uses a bandwidth based
puzzle and is different from the latency based puzzle we
proposed. WebSOS [23] is similar to GTP in that both builds
a strong distributed network of protection points in front of a
DoS vulnerable server. However, key differences exist. The
overlay network in WebSOS is used as a tool to hide the
IP addresses of the secret nodes that are permitted to send
traffic to the protected server, whereas the set of tour guides
act as a “delay box” to let the client wait between requests.
The WebSOS is designed to protect private services whose
users are known a priori, whereas the GTP scheme can be
used by both private and public services.

Due to the enormity of various DoS defense solutions,
here we limit our survey only to the cryptographic puzzle
based mechanisms.

A. Client Puzzles

Dwork and Noar [7] were the first to introduce the
concept of requiring a client to compute a moderately hard
but not intractable function, in order to gain access to a
shared resource. However this scheme is not suitable for
defending against the common form of DoS attack due to
its vulnerability to puzzle solution pre-computations.

Juels and Brainard [2] introduced a hash function based
puzzle scheme, called client puzzles, to defend against
connection depletion attack. Client puzzles addresses the
problem of puzzle pre-computation. Aura et al. [4] extended
the client puzzles to defend DoS attacks against authentica-
tion protocols, and Dean and Stubblefield [5] implemented a
DoS resistant TLS protocol with the client puzzle extension.
Wang and Reiter [6] further extended the client puzzles
to prevention of TCP SYN flooding, by introducing the
concept of puzzle auction. Price [24] explored a weakness of
the client puzzles and its above mentioned extensions, and
provided a fix for the problem by including contribution
from the client during puzzle generation.

Waters et al. [9] proposed outsourcing of puzzle distri-
bution to an external service called bastion, in order to
secure puzzle distribution from DoS attacks. However, the
central puzzle distribution can be the single point of failure,
and the outsourcing scheme is also vulnerable to the attack
introduced by Price [24].

Wang and Reiter [8] used a hash-based puzzle scheme to
prevent bandwidth-exhaustion attacks at the network layer.
Feng [25] argued that a puzzle scheme should be placed at
the network layer in order to prevent attacks against a wide
range of applications and protocols. And Feng and Kaiser
et al. [3] implemented a hint-based hash reversal puzzle at
the IP layer to prevent attackers from thwarting application
or transport layer puzzle defense mechanisms.

Portcullis [26] by Parno et al. used a puzzle scheme
similar to the puzzle auction by Wang [6] to prevent denial-
of-capability attacks that prevent clients from setting up

123

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

capabilities to send prioritized packets in the network. In
Portcullis, clients that are willing to solve harder puzzles
that require more computation are given higher priority, thus
potentially giving unfair advantage to powerful attackers.

In all of proposals above, finding the puzzle solution
is parallelizable. Thus an attacker can obtain the puzzle
solution faster by computing it in parallel using multiple
machines. Morever, they all suffer from the resource dis-
parity problem, and interferes with the concurrently running
user applications. In comparison, guided tour puzzles are
non-parallelizable, and addresses the problems of resource
disparity and interference with user applications.

B. Non-Parallelizable Puzzles

Non-parallelizable puzzles prevents a DDoS attacker that
uses parallel computing with large number of compromised
clients to solve puzzles significantly faster than average
clients. Rivest et al. [27] designed a time-lock puzzle, which
achieved non-parallelizability due to the lack of known
method of parallelizing repeated modular squaring to a
large degree [27]. However, time-lock puzzles are not very
suitable for DoS defense because of the high cost of puzzle
generation and verification at the server.

Ma [14] proposed using hash-chain-reversal puzzles in the
network layer to prevent against DDoS attacks. Hash-chain-
reversal puzzles have the property of non-parallelizability,
because inverting the digest i in the chain cannot be started
until the inversion of the digest i+1 is completed. However,
construction and verification of puzzle solution at the server
is expensive. Furthermore, using a hash function with shorter
digest length does not guarantee the intended computational
effort at the client, whereas using a longer hash length makes
the puzzle impossible to be solved within a reasonable time.

Another hash chain puzzle is proposed by Groza and
Petrica [15]. Although this hash-chain puzzle provides non-
parallelizability, it has several drawbacks. The puzzle con-
struction and verification at the server is relatively expensive,
and the transmission of a puzzle to client requires high-
bandwidth consumption.

More recently, Tritilanunt et al. [28] proposed a puz-
zle construction based on the subset sum problem, and
suggested using an improved version [29] of LLL lattice
reduction algorithm by Lenstra et al. [30] to compute the
solution. However, the subset sum puzzles has problems
such as high memory requirements and the failure of LLL
in dealing with large instance and high density problems.

Although the non-parallelizable puzzles addresses one of
the weaknesses of client puzzles discussed in Section II-A,
they still suffer from the resource disparity problem and
interferes with the concurrently running user applications
on client machines. Guided tour puzzles, on the other hand,
address these two weaknesses of non-parallelizable puzzles.

C. Memory-Bound Puzzles

Abadi et al. [12] argued that memory access speed is
more uniform than the CPU speed across different computer
systems, and suggested using memory-bound function in
puzzles to improve the uniformity of puzzle cost across
different systems. Dwork et al. [13] further investigated
Abadi’s proposal and provided an abstract memory-bound
function with an amortized lower bound on the number of
memory accesses required for the puzzle solution. Although
these techniques seem promising, there are several issues
that need to be resolved regarding memory-bound puzzles.

First, memory-bound puzzles assume a upper-bound on
the attacker machine’s cache size, which might not hold
as technology improves. Increasing this upper-bound based
on the maximum cache size available makes the memory-
bound puzzles too expensive to compute by average clients.
Secondly, deployment of proposed memory-bound puzzle
schemes require fine-tuning of various parameters based on
a system’s cache and memory configurations. Furthermore,
puzzle construction in both schemes is expensive, and band-
width consumption per puzzle transmission is high. Last,
but not least, clients without enough memory resources,
such as PDAs and cell phones, cannot utilize both puzzle
schemes, hence require another service that performs the
puzzle computation on their behalf.

III. SYSTEM MODEL

In this section, we introduce our system model, including
a system overview, a model of cryptographic puzzle proto-
col, and a threat model.

A. System Overview

We consider an Internet-scale distributed system of clients
and servers. A server is a process that provides a specific
service, for example a Web server or an FTP server. A client
is a process that requests service from a server. The term
client and server are also used to denote the machines that
run the server process and the client process respectively.
Clients are further classified as legitimate clients that do
not contain any malicious logic and malicious clients that
contain malicious logic. In the denial of service context,
a malicious client attempts to prevent legitimate clients
from receiving service by flooding the server with spurious
requests. An attacker is a malicious entity who controls the
malicious clients. We refer to a user as a person who uses
a client machine.

B. Threat Model

The attacker attempts to disrupt service to the legitimate
clients by sending apparently legitimate service requests
to the server to consume its computational resources. We
consider DoS attacks that flood the server with large amount
of requests and attacks that attempt to thwart puzzle defense
using massive computational resources. It is assumed that

124

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network resources are large enough to handle all traffic, and
the resource under attack is server computation.

Our threat model assumes a stronger attacker than previ-
ous schemes do. First, we assume that the attacker may pos-
sess hardware resources that are several orders of magnitude
more powerful than that of the average legitimate clients.
Meanwhile, the attacker can take maximum advantage of
her resources by perfectly coordinating all of her available
computation resources. Next, the attacker can eavesdrop
on all messages sent between a server and any legitimate
client. We assume that the attacker can modify only a
limited number of client messages that are sent to the
server. This assumption is reasonable since if an attacker
can modify all client messages, then it can trivially launch
a DoS attack by dropping all messages sent by all clients to
the server. Finally, the attacker may launch attacks on the
puzzle scheme itself, including puzzle construction, puzzle
distribution, or puzzle verification.

IV. DESIGN GOALS

The design goal of GTP scheme is twofold. First, it
aims to achieve the general puzzle properties that have been
discussed in the existing literature. Second, it must meet the
puzzle fairness and minimum interference requirements that
are proposed by us to address the limitations of existing
puzzle schemes. These requirements and puzzle properties
are explained next.

A. General Properties

Computation guarantee. The computation guarantee
(also referred to as ”bounds on cheating” [31]) means a
cryptographic puzzle guarantees a lower and upper bound
on the number of cryptographic operations spent by a client
to find the puzzle answer. In other words, a malicious
client should not be able to solve a puzzle by expending
significantly less operations than required. This is discussed
in [7].

Efficiency. The construction, distribution, and verification
of a puzzle by the server should be efficient in terms
of CPU, memory, bandwidth, hard disk, etc. Specifically,
puzzle construction, distribution, and verification should add
minimal overhead to the server to prevent the puzzle scheme
itself from becoming an avenue for denying service [7] [4]
[3].

Adjustability of difficulty. This property is also referred
to as puzzle granularity [28]. Adjustability of puzzle diffi-
culty means the cost of solving the puzzle can be increased at
a fine granularity from zero to impossible [4]. Adjustability
of difficulty is important, because finer adjustability enables
the server to achieve better trade-off between blocking
attackers and the service degradation of legitimate clients.

Correlation-free. A puzzle is considered correlation-free
if knowing the solutions to all previous puzzles seen by a
client does not make solving a new puzzle any easier [4]. If a

puzzle is not correlation-free, then it allows malicious clients
to solve puzzles faster by correlating previous answers.

Stateless. A puzzle is said to be stateless if it requires
constant memory at the server for storing client information
or puzzle-related data. This property is discussed in [4].

Tamper-resistance. A puzzle scheme should limit replay
attacks over time and space. Puzzle solutions should not be
valid indefinitely and should not be usable by other clients
[4] [3].

Non-parallelizability. Non-parallelizability means a puz-
zle solution cannot be computed in parallel using multiple
machines [28]. Non-parallelizable puzzles can prevent at-
tackers from distributing computation of a puzzle solution
to a group of machines to obtain the solution quicker.

B. Puzzle Fairness and Minimum Interference

Puzzle Fairness. Puzzle fairness means that a puzzle
should take approximately the same amount of time to com-
pute by any client, regardless of the CPU power, memory
size, and bandwidth available to that client. If a puzzle
scheme achieves fairness, then a malicious client with very
strong computational resources will effectively be reduced
to a legitimate client. Without puzzle fairness, few powerful
malicious clients can solve puzzles at a higher rate than
many computationally weaker legitimate clients, and may
lead to the occupation of most of the server’s capacity by
few malicious clients.

Minimum Interference. This property requires that puz-
zle computation at the client should not interfere with the
normal usage of the client computer by its users. If a puzzle
scheme consumes too many resources, then it interferes with
users’ normal computing activity. For example, if computing
a hash reversal puzzle expends most of the CPU cycles,
then a user may feel a very slow response in using other
applications that are running concurrently on the client
machine. Consequently, users may avoid using any service
that deploys such a puzzle scheme.

V. GUIDED TOUR PUZZLE

This section presents the GTP scheme. We start out with
the main idea behind the GTP scheme, and describe a very
basic puzzle protocol. Then, the limitations of the basic
protocol is discussed and a solution is given to address each
limitation.

A. The Basic Protocol

When a server suspects that it is under attack or its load is
above a certain threshold, it asks all clients to solve a puzzle
prior to receiving service. In the GTP protocol, the puzzle
is simply a tour that needs to be completed by the client
via taking round-trips to a set of special nodes, called tour
guides, in a sequential order. We call this tour a guided tour,
because the client should not know the order of the tour a
priori, and each tour guide must direct the client towards

125

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: A summary of notations.

N Number of tour guides in the system
Gj j-th tour guide (1 ≤ j ≤ N)
kS Secret key only known to the server
kSj Shared key between the server and Gj

ki,j Shared key between Gi and Gj (i 6= j)
L Length of a guided tour
Ax Address of client x
is Index of the s-th stop tour guide (1 ≤ is ≤ N)
ts Coarse timestamp at the s-th stop of the tour
Rs Client puzzle solving request at s-th stop
B Size of the hash digest in bits

the next tour guide. Each tour guide may appear zero or
more times in a tour, and the term stop is used to represent
a single appearance of a tour guide in a given tour.

Figure 1 shows an example of a guided tour with two tour
guides and 6 stops. The tour guide at the first stop of a tour
is randomly selected by the server, and will also be the last
stop tour guide, i.e., a guided tour is a closed-loop tour. The
tour guide at each stop randomly selects the next stop tour
guide. Starting from the first stop, the client contacts the tour
guide at each stop and receives a reply. Each reply contains
a token that proves to the next stop and the last stop that the
client has visited this stop. Prior to sending its reply, the tour
guide at each stop verifies that the client visited the previous
stop tour guide, so that the client cannot contact multiple
tour guides in parallel. After completing L − 1 stops in a
L-stop tour, the client submits the set of tokens it collected
from all previous stops to the last stop tour guide (which is
also the first stop tour guide), which will issue the client a
proof of tour completion. The client then sends this proof
to the server, along with its service request, and the server
grants the client service if the proof is valid.

There are several issues concerning the basic protocol.
First of all, a security mechanism must be in place to enforce
the sequentiality of a single tour. Second, as a guided tour
does not create a computational or bandwidth bottleneck
at the client machine, an attacker may take many tours
simultaneously, thereby qualifying itself for more resources
of the server. Third, an attacker may cause DoS on the server
indirectly by attacking the tour guides and the puzzle scheme
itself. In the following subsections, we address each of these
challenges individually.

B. Ensuring Sequential Guided Tour

We set up N tour guides in the system, where N ≥ 1.
The server keeps a secret kS that only it knows, and a set of
keys kS1, kS2, . . . , kSN are shared between the server and
each tour guide. Each tour guide Gi maintains a pairwise
shared key ki,j with every other tour guide Gj , where i 6= j
and 1 ≤ i, j ≤ N . The total number of keys need to be
maintained by each tour guide or the server is N , and this
key management overhead is acceptable since N is usually

Internet

Server

Client

Addr: Ax Guide 2

Guide 1

S4
S5 initial req

S1
S3

final req

S2

S6

Figure 1: Example of a guided tour; the tour length is 6, and the
order of visit is: G2 → G1 → G2 → G1 → G1 → G2.

a small number in the order of 10 or less. The tour length
L is decided by the server to adjust the puzzle difficulty.
Notations are summarized in Table I.

The four steps of the GTP protocol is as follows.
1) Service request: A client x sends a service request to

the server. If the server load is normal, the client’s request is
serviced as usual; if the server is overloaded, then it proceeds
to the next step.

2) Initial puzzle generation: The server replies to the
client x with a message that informs the client to complete a
guided tour. The reply message contains {L, i1, t0, h0,m0},
where i1 is the uniform-randomly selected index of the first
stop tour guide, t0 is a coarse timestamp, h0, m0 are message
authentication codes that provide message integrity. h0 and
m0 are computed as follows:

h0 = hmac(kS , (Ax||L||i1||t0)) (1)
m0 = hmac(kSi1 , (Ax||L||i1||t0||h0)) (2)

where, || denotes concatenation, Ax is the address (or
any unique value) of the client x, and hmac is a crypto-
graphic hash-based message authentication code (HMAC)
[32]. Since m0 is computed using the key kSi1 that is shared
between the first stop tour guide Gi1 and the server, it
enables Gi1 to do integrity checking later on.

3) Puzzle solving: After receiving the puzzle information,
the client visits the tour guide Gis at each stop s, where
1 ≤ s ≤ L, and receives a reply. Each reply message con-
tains {hs,ms, is+1, ts}, where is+1 is the uniform-randomly
selected index of the next stop tour guide, ts is the timestamp
at stop s, and hs, ms are computed as follows:

hs = hmac(kis,i1 , (h0||Ax||L||s||is||is+1)) (3)
ms = hmac(kis,is+1 , (ms−1||Ax||L||s||is||is+1, ts)) (4)

At each stop s, the client sends a puzzle solving request
message Rs that contains {h0, L, s, ts−1,ms−1, i1, is} to
the tour guide Gis , and the tour guide Gis replies to the
client only if ms−1 is valid. In other words, each stop
enforces that the client correctly completed the previous stop
of the tour.

At the (L−1)-th stop, the tour guide GiL−1
knows that the

next stop is the last stop, and replaces is+1 with i1 (recall
that the first stop i1 is also the last stop) when computing

126

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hs and ms. After completing the (L− 1)-th stop, the client
computes hL as follows

hL = h1 ⊕ h2 ⊕ . . .⊕ hL−1 (5)

where ⊕ means exclusive or, and submits
{h0, hL, L,mL−1, i1, i2, . . . , iL} to the first stop tour
guide Gi1 . Using these information, Gi1 can compute
h1, h2, . . . , hL−1 using formula (3), and subsequently hL
using formula (5). Note that only Gi1 can compute values
h1 to hL−1, since only it knows the keys ki1,i2 to ki1,iL−1

that are used in the HMAC computations.
If the hL submitted by the client matches the hL computed

by Gi1 itself, then Gi1 sends back the client a token hsol
that can prove to the server that the client did complete a
tour of length L. The token hsol is computed as follows:

hsol = hmac(kSi1 , (h0||Ax||L||tL)) (6)

4) Puzzle verification: The client submits to the server
{h0, hsol, t0, tL, i1} along with its service request, and the
server checks to see if h0 and hsol that it computes using
formulas (1) and (6) matches the h0 and hsol submitted by
the client. If both hash values match, the server allocates
resources to process the client’s request.

C. Thwarting Simultaneous Tours

The sequential completion of a single tour can be achieved
via cryptographic hash chains, as shown above. However, a
malicious client can still take multiple tours simultaneously.
To prevent simultaneous tours, the GTP scheme limits the
number of tours that can be carried out within each time
interval. The details are described next.

The time in the GTP protocol is divided into time intervals
of length ∆, and Ti is used to denote the i-th time interval.
The token that the client receives during the time interval
Ti for completing a tour can only be used during the time
intervals Ti and Ti+1. This restriction can be achieved easily
by using a clock tick value of ∆ for the coarse timestamp
ts used in the GTP protocol. The interval length ∆ must be
set to a value that provides enough time for completion of
at least a single tour.

Acquiring the token in Ti and using it in Ti+1 eliminates
the additional service delay incurred by using GTP scheme.
But, there must be limits to how many tokens a client can
acquire per interval and how much service a single token can
buy. The policy concerning the per-token resource allocation
at the server can be decided by the owner of the service,
hence it is beyond the scope of this article. However, it
is worth noting that reuse of a token can be prevented by
caching only the verified tokens in a Bloom filter [33], and
check for the existence in the Bloom filter whenever a new
token arrives.

To limit how many tokens a client can acquire per interval,
we propose the following solution. During each time interval
Ti, a tour guide keeps a pair of counting Bloom filters

(in a counting Bloom filter the array positions, or buckets,
are extended from being a single bit, to an n-bit counter),
one for each interval Ti−1 and Ti. The tour guide counts
the number of tours a client x is taking during each time
intervals using the bloom filter, and ignores the client if it
has already taken CTi

tours for that period. The value of
C is decided by the server for each time interval based on
its load, and it is included in the hash chain computation to
protect against manipulation by the client. The number of
tours are accounted for two time intervals (Ti−1 and Ti), as
a single tour may span two time intervals and using a single
counter does not capture that situation. The GTP scheme
uses the server timestamp t0 to decide, which interval a
tour belongs to; if t0 = Ti−1, the tour belongs to the
interval Ti−1, and vice versa. This scheme for limiting tours
requires the clocks of the tour guides and the server to be
synchronized. However, the accuracy of the synchronization
is coarse-grained enough (in the order of seconds) such
that synchronizing the server and the tour guide clocks
independently with a time server using NTP protocol [34]
suffices.

D. Increasing Tour Guide Robustness

To prevent attackers from indirectly launching DoS on the
server by attacking one of the tour guides, tour guides should
be robust against attacks on themselves. As tour guides per-
form very simple operation, i.e., computing a hash function,
they are very light-weight and far less susceptible to DoS
attacks. Also due to their simple operation, securing the
tour guides against compromise attempts also becomes much
simpler. Furthermore, the basic guided tour puzzle scheme is
designed to localize the impact of a compromised tour guide.
Due to the all-pair pair-wise shared keys, compromising one
tour guide only gives the attacker a free ride for the leg of
the tour that starts with the compromised tour guide, and
the attacker still has to complete the majority of the tour.

In terms of DoS attacks on the tour guides, we propose
a simple solution to thwart DoS attacks. In this solution,
whenever a tour guide receives a puzzle solving request
from the client, it checks to see if the client’s request is
already in its service queue (the priority queue when the
puzzle solving time adjustment mechanisms is used), and it
simply drops the request if another request from the same
client is already in the queue. This will prevent a malicious
client from unfairly taking up more than one slot in the tour
guide’s service queue, and subsequently minimizes the effect
of a DoS attack on legitimate clients.

Although the tour guides are highly immune to DoS
attacks, it is still possible for a tour guide to be down due
to internal failure or a very strong DoS attack that involves
millions of nodes. To operate gracefully even when one of
the tour guides is down, all tour guides exchange heartbeat
messages with each other and with the server, such that
unavailability of a tour guide is immediately known by the

127

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

server and other tour guides, and forwarding of clients to the
failing or unavailable tour guide is avoided. The heartbeat
messages should be adequately protected to thwart attacks
on the tour guides.

VI. ANALYSIS

In this section, we use analytical reasoning and experi-
mental results to demonstrate that guided tour puzzles meet
all of our proposed design goals.

A. General Puzzle Properties

For each property, we briefly explain how that property
is achieved in guided tour puzzle.

Computation guarantee. Each client is required to com-
plete L round-trips in order to obtain a token that proves
to the server that it has completed a length L guided
tour. A client cannot skip any one of the required round-
trips, because doing will be detected by the tour guides
immediately. Therefore, guided tour puzzles achieve a strict
computation guarantee that enforces the same number of
operations for computing the same puzzle answer at all
clients.

Efficiency. In guided tour puzzle, construction of a puzzle
takes only two hash operations (to compute h0 and m0) at
the server, and verification of a puzzle answer also takes two
hash operations (to compute h0 and hL). This efficiency can
be further improved at the cost of a small fixed size memory
for caching h0 values. Transferring of puzzle from server to
the client requires 2 ∗ B/8 plus few extra bytes, where the
size of hash digest B is usually 160 ∼ 256 bits.

Adjustability of difficulty. The difficulty of a tour puzzle
is adjusted by adjusting the tour length L, which can be
increased or decreased by one as needed. So, guided tour
puzzle provides linear adjustability of difficulty.

Correlation-free. Attackers may try to correlate previ-
ousy seen puzzles and puzzle solution to directly obtain a
new valid puzzle solution or compute new puzzle solutions
after obtaining the secret key used in the hash computations.
In guided tour puzzle scheme, resistance to such correlation
attacks are achieved through the pre-image resistance and
collision resistance properties of the cryptographic hash
function used. It is important to pick a hash function that is
proven in practice to be secure against various cryptanalytic
attacks.

Stateless. Guided tour puzzle does not require the server
to store any client or puzzle related information, except for
the cryptographic keys that are used for the hash calculation.
Puzzle answer verification using memory lookup require
few megabytes of memory, but the size of this memory
is constant and does not increase as the number of clients
increase. The Bloom filter memory used by tour guides is
also roughly constant in size and small enough such that it
is not susceptible to memory depletion attacks.

Tamper-resistance. The server can guarantee a limited
validity period of a puzzle answer, by checking if the
difference between the tL and t0 is within an acceptable
value tD, i.e. tL − t0 ≤ tD. Recall that t0, tL are submitted
by the client to the server in the verification phase of
the puzzle protocol, and the client cannot change these
values since they are protected by the hash values h0 and
hL. Meanwhile, the puzzle answer computed by one client
cannot be used by any other client, since a value unique to
each client is included in the computation of h0 and hs.

Non-parallelizability. A guided tour puzzle cannot be
completed in parallel, because at each stop s, the tour guide
Gis requires the client to submit the hash values ms−1

from the previous stop, and replies to the client if only
ms−1 is valid. As such, the puzzle scheme strictly enforces
sequential completion of a guided tour and achieves non-
parallelizability.

B. Achieving Puzzle Fairness

The guided tour puzzle scheme is not affected by the
disparity in the computational powers. It is because the
round trip delays that consist the puzzle solving time of
a guided tour puzzle are mostly decided by the intermediate
network between the client and the tour guides, and the
clients’ CPU, memory, or bandwidth resources have minimal
impact. In terms of the uniformity of puzzle solving time
across clients, the guided tour puzzle scheme provides a
better guarantee compared to the computation-based puzzle
schemes as shown in next subsections.

1) Experimental Analysis: In the following, we use tour
delay to refer to the sum of all round trip delays occurred
in a single tour. We use a two-week long measurement data
collected on PlanetLab [35] to show that the variation in
tour delay across clients is within a small factor for a large
distributed system. PlanetLab has a collection of over 1, 000
nodes distributed across the globe, and provides a realistic
network testbed that experiences congestion, failures, and
diverse link behaviors [35]. We used about 40% (over 400)
of the nodes that had complete measurement data available
throughout the two-week period.

We first randomly chose 20 nodes, out of the 400 selected
nodes, as candidates for tour guides. The remaining nodes
are used as client nodes. The number of tour guides N is
varied from 4 to 20, and the tour length L is varied from
2 to 18. For each (N , L) pair, guided tours are generated
for all client nodes. The tour delay at a given time is
computed based on the round trip delays for corresponding
time periods.

To give a better idea of how the tour delays vary across
clients on average, we averaged tour delays of all clients
over two-week period. To find the average tour delay of a
client for a specific (N , L) setting, all tour delays of the
client for a given (N , L) configuration is averaged over the
two-week period to get the average tour delay of a client

128

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 100 200 300 400
Client node index

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

to
ur

 d
el

ay
 (m

illi
se

co
nd

)

L=18
L=14
L=10
L=6
L=2

(a) Average tour delays of two-week period, N = 4.

Histogram of x

Guided tour delay (ms)

D
e

n
s
it
y

0 2000 4000 6000 8000

0
e

+
0

0
2

e
!

0
4

4
e
!

0
4

6
e
!

0
4

8
e
!

0
4

1
e
!

0
3

(b) PDF of tour delay (unit: millisecond) when N = 4

Figure 2: The tour delays of clients when 4 tour guides are used.

for that (N,L) setting. Next, the average tour delays are
sorted by least-to-most to provide a better view of the delay
variation across clients. Figures 2a shows the average tour
delays computed using this method for all client nodes when
N = 4. Results for other values of N are skipped due to
the space limitation, but they are very similar to the results
shown here. The ratio of the largest and the smallest tour
delays is around 5, when outliers are excluded. This disparity
is several orders of magnitude smaller when compared to
the disparity in available computational power (which can
be in thousands [12] [13]). Figure 2b shows that majority
of tour delays are clustered within a tight area of delay and
the distribution of tour delays closely simulates a normal
distribution.

2) Analytical Analysis: Although the PlanetLab data pro-
vides a somewhat good approximation of the delay char-
acteristics of the Internet, it certainly has limitations. Due
to the fact that the majority of the PlanetLab machines
are connected to the Internet through campus networks, the
delay data may not sufficiently reflect the diverse access
network technologies that are used for connecting end hosts
to the Internet. Next, we use latency data from the existing
literature to show that even when clients are connected
to the Internet using access technologies that provide very
different delay properties, the disparity in their end-to-end
round trip delays will be still smaller than the disparity in
the computational power.

Let us take four very common access network technolo-
gies with very different delay characteristics: 3rd genera-
tion mobile telecommunications (3G), Asymmetric Digital
Subscriber Line (ADSL), cable, and campus Local Area
Network (LAN). The average access network delays are
200ms for 3G [36], 15 ∼ 20ms for ADSL and cable [37],
[38], and in the order of 1ms or negligible for campus
LANs. Here, we refer to the access network delay as the
round-trip delay between the end host and the edge router of
the host’s service provider. This latency is usually measured

by measuring the round-trip delay to the first pingable hop.
Based on the measurement analysis of the Internet delay
space [39], the delay space among edge networks in the
Internet can be effectively classified into three major clusters
with average round trip propagation delays of about 45ms
for the North America cluster, 135ms for Europe cluster,
and 295ms for Asia cluster. Using these edge to edge
propagation delay values and the average access network
delay values, we can compute an average end to end round
trip delays of 245, 335, and 495 ms for 3G hosts, 65,
155, and 315 ms for DSL & cable hosts, and 45, 135,
and 295 ms for campus LAN hosts. The biggest disparity
occurs between the hosts in the Asia cluster that connect
through 3G and the hosts in the US cluster that connects
through campus LAN, and the ratio of their round trip delays
is 495ms/45ms = 11. This disparity is about 4 times
smaller than the low estimate of computational disparity
provided in [26]. The round trip delays may get higher than
495ms due to congestion and high queuing delays in the
intermediate routers. However, these congestions and high
queuing delays affects all packets, regardless of whether
they are from malicious clients or legitimate clients. Being
able to persistently decrease the tour delay requires the
attacker to compromise majority of the intermediate routers
between itself and the tour guides, which is hard compared
to minimizing computational puzzle solving time by adding
more computing power.

C. Achieving Minimum Interference

In guided tour puzzle scheme, a client only has to
send/receive packets to/from tour guides. To complete a
guided tour puzzle with tour length L, a client only needs
to send and receive a total of 2×L packets with about less
than few hundred bytes (depending on the output size of
the cryptographic hash function) of data payload. Since L is
usually a small number in the order of tens, this creates
negligible CPU and bandwidth overhead even for small

129

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

devices such as cellular phones.

D. Limitation

As with any other solution, GTP scheme has its limitation.
First of all, GTP is a mitigation scheme that reduces the
impact of DDoS, hence does not eliminate the effects of
the DDoS entirely. The optimal defense that is achievable
without being able differentiate malicious requests or detect
malicious clients is to service all clients equally. The GTP
scheme aims at being very close to such optimal defense.
Secondly, the GTP scheme only works at the applica-
tion/service layer, and relies on other solutions to provide
protection against bandwidth flooding DoS attacks. Lastly,
the tour delay seen by different clients for the same tour
length can be different in the GTP scheme, and this may
lead to different levels of service response time experience
by different clients. However, note that this disparity in the
tour delay does not discriminate against clients that possess
less computational resources, and both malicious clients and
legitimate clients are equally likely to experience longer
tour delays. Having more computational power does not
particularly help malicious clients complete a guided tour
faster.

VII. STUDY OF DDOS DEFENSE EFFICACY

In this study, we focus our evaluation on the ability
of guided tour puzzles in mitigating the application layer
DDoS attacks. We show that the guided tour puzzle scheme
provides an optimal defense against request flooding attacks
and a near optimal defense against puzzle solving attacks,
when the server does not have the capability to differentiate
the malicious clients from the legitimate ones.

A. Simulation Setup

To evaluate the effectiveness of guided tour puzzle in a
practical simulation environment, we used Network Simu-
lator 2 (NS-2) [40]. To create a network topology that can
closely simulate large-scale wide area networks, such as the
Internet, a topology with 5, 000 nodes is generated using
the Internet Topology Generator 3.0 (Inet-3.0) [41]. The
bandwidth and the link delay values are calculated based on
the Inet-3.0 generated link distance values. Note that the link
and queueing delays are different from one link to another,
therefore the round trip delays, and consequently the tour
delays, of different clients will be different.

Since client nodes, tour guides, and server nodes will be
located in the edge in real networks, we use only degree-
one nodes from the generated topology as client, server, and
tour guide nodes. From a total of 1, 922 degree-one nodes,
we randomly choose a degree-one node as the server node
and another 20 degree-one nodes as potential tour guides.
The remaining 1, 901 degree-one nodes are all used as client
nodes, which includes both legitimate and malicious client
nodes. The percentage of malicious client nodes is varied

0 20 40 60 80
Percentage of attackers (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

No GTP, flooding attack
GTP, flooding attack
GTP, puzzle solver

Figure 4: The cost of guided tour puzzles in terms of request
completion times.

from 0% to 90% with an increment of 10%, and the server
load is increased from 0.96 to 8.74 correspondingly. The
server load is calculated as the ratio of the number of
incoming requests per second to the server CPU capacity
in requests per second.

A simulation model of the guided tour puzzle scheme is
developed in NS-2. Clients in the simulation model generate
self-similar traffic to closely mimic the Internet traffic. Since
the self-similar traffic can be produced by multiplexing
ON/OFF sources that have fixed rates in the ON periods and
heavy-tail distributed ON/OFF period lengths [42] [43], each
client application is implemented as an ON/OFF source with
ON/OFF period lengths are taken from a Pareto distribution
with shape parameter α equals to 1.5 (NS-2 default). The
average ON and OFF times are set to 2 seconds. Each
legitimate client sends at an average rate of 8000 bits
per second. The average client request size is set to 1000
bytes, thus each legitimate client essentially sends requests
at one request per second during on times, and 0.5 request
per second on average. The average ON and OFF times,
the client request size, and the server response size values
selected based on the Web workload model introduced by
Barford and Crovella [44].

The same client application model is used for malicious
clients except that 1) malicious clients can choose to follow
or not to follow the puzzle process, whereas legitimate
clients always follow the puzzle process; and 2) malicious
clients send requests at a higher rate than legitimate clients.
We experimented with two different types of attacks — the
flooding attack and the attack against the puzzle scheme. In
a flooding attack, a malicious client sends requests at a high
rate and ignores the server’s request for solving puzzles.
In the attack against the puzzle scheme, a malicious client
solves puzzles as fast as they can to send requests at the
maximum speed possible. The latter is a much stronger
attack, since a server that deploys guided tour puzzle scheme
can trivially filter out a malicious request that contains an

130

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 20 40 60 80
Percentage of malicious clients (%)

0

0.2

0.4

0.6

0.8

1

%
 o

f s
er

ve
r C

PU
 a

llo
ca

te
d

to
 le

gi
tim

at
e

cl
ie

nt
s

No DFF, flooding attack
Analytic (no DFF, flooding)
DFF, adaptive DDoS
DFF, flooding attack

(a) Percentage of CPU allocated to legitimate clients

0 20 40 60 80
Percentage of malicious clients (%)

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 o

f d
ro

pp
ed

 le
gi

tim
at

e
re

qu
es

ts
 (%

) No DFF, flooding attack
DFF, flooding attack
DFF, adaptive DDoS

(b) Percentage of dropped legitimate requests

Figure 3: The effectiveness of guided tour puzzle against flooding attacks and puzzle solving attacks (N=4, L=8).

incorrect puzzle solution, while a malicious request that
includes a correct puzzle solution consumes significantly
more resources at the server.

The server’s behavior is modeled as described in Sec-
tion V. Since NS-2 does not provide a CPU model, the
server’s CPU is modeled as a link between the server node
and a dummy node that is connected only to the server.
When a client request arrives at the server, the server injects
a packet with its size equals to the server response size into
the link toward the dummy node. And when the packet
is pinged back by the dummy node (which implies the
completion of the server processing of the request), the
server sends a response to the client. The capacity of this
link is set to 80 Mbps to simulate a CPU processing capacity
of 80Mbps

8×10,000bytes = 1, 000 requests per second, where the
10, 000 bytes is the average size of a server response. The
server capacity of 1, 000 requests per second is used so that
the server’s full capacity can be reached when all clients are
legitimate, and the server load can be increased by 100%
with each increase of the percentage of malicious clients. A
round-robin queue is used to model the CPU’s round-robin
process scheduling.

Using the average estimated client request rate of 0.5
request per second and the server CPU rate of 1, 000 requests
per second, we can compute that the expected utilization
of the server is 0.5×1901

1000 = 0.9505 when all the clients
are legitimate clients. We achieved a utilization of 0.9656
for this setting in our experiments, which validates the
correctness of our simulation setup.

To keep the simulation simple, instead of using an
adaptable tour length, a fixed tour length is used within
a single run of the simulation. For each solved puzzle,
clients are granted service for a single request. We may
achieve significantly better protection against the denial of
service attack by dynamically adapting the tour length and
the number of granted requests per completed puzzle.

We use three evaluation metrics — average completion
time of a single legitimate request, percentage of the server
CPU allocated to legitimate requests, and percentage of
dropped legitimate requests. The average completion time is
calculated by recording the time spent between sending of a
request and the receiving of its response, which includes the
time spent on solving puzzles, for all completed requests
of all the legitimate clients and taking the average. The
percentage of the server CPU allocated to legitimate requests
is computed as the fraction of the time the server’s CPU is
processing the requests of legitimate clients. The percentage
of dropped legitimate requests is computed by dividing
the total number of dropped legitimate requests by the
total number of legitimate requests sent. For the results
we report here, we set the simulation length of each run
to 1000 seconds. For each simulation a warmup period of
100 seconds is used, after which recording of the evaluation
metric measurement is started. Each experiment is repeated
10 times, and the average of 10 runs is reported along with
a 99% confidence interval.

B. Simulation Results

The first set of simulations are conducted with a fixed tour
length of 8 and using 4 tour guides. The results are reported
in Figure 3 and 4.

1) Server CPU utilization: Figure 3(a) illustrates the
improvement in the percentage of the server’s effective CPU
capacity that is allocated to processing the requests of legit-
imate clients. As the line “No GTP, flooding” (GTP means
guided tour puzzle) indicates, the legitimate clients’ share of
the server’s CPU capacity drops rapidly as the percentage of
attackers increases when no guided tour puzzle is used. The
percentage of server CPU allocated to processing legitimate
requests in this case is predominantly decided by the ratio
of total number of legitimate requests to the total number of
requests. This can be validated by computing the percentage

131

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4 6 8 10 12
ttl

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(a) 40% attacker, N = 4

4 6 8 10 12
ttl

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(b) 80% attacker, N = 4

Figure 5: The effect of the tour length on the effectiveness of the guided tour puzzle defense.

of legitimate requests for different percentage of malicious
clients using the following formula.

r × (1− x)×Nc

r × (1− x)×Nc + 10× r × x×Nc
=

1− x
1 + 9x

(7)

where, r denotes the request rate of legitimate clients, Nc is
the total number of client nodes, and x is the percentage of
malicious nodes. The line “Analytic (no GTP, flooding)” is
then computed using the Formula (7), and it overlaps per-
fectly with the experiment results from the NS-2 simulation
for the case of “No GTP, flooding attack”.

The top line “GTP, flooding attacker” in the Figure 3(a)
shows that using guided tour puzzle eliminates the impact
of flooding attackers entirely. In this scenario, the malicious
clients do not solve any puzzle, but send requests that
include fake puzzle solutions at a high rate in an attempt
to consume as much server CPU capacity as possible. The
slight decrease in the legitimate clients’ utilization of the
server CPU as the percentage of attackers increases is due
to the increase in the percentage of server’s CPU capacity
allocated to verifying puzzle solutions. We intentionally used
a low estimate of 106 hash operation per second as the
server’s hash computation rate to highlight the cost of puzzle
solution verification.

The last line “Puzzle, solver” in Figure 3(a) is correspond-
ing to the attack targeted at the guided tour puzzle scheme
itself. It shows that the percentage of server CPU allocated
to legitimate clients is roughly equal to the percentage
of legitimate clients in the system when the guided tour
puzzle scheme is used. We argue that without being able to
differentiate legitimate clients from the malicious ones, the
best a DoS prevention scheme can achieve is to treat every
client equally and fairly allocate the server CPU to all the
clients that are requesting service. Therefore, the optimal
protection that a defense mechanism can provide without
being able to differentiate malicious clients is to guarantee

the legitimate clients the amount of server CPU that is equal
to the percentage of legitimate clients in the system.

2) Request drops: Figure 3(b) shows the percentage of
dropped legitimate requests. When no guided tour puzzle is
used, the flooding attack caused legitimate clients to drop
most of their requests as the line ”No puzzle, flooding”
indicates. When the percentage of attacker is increased to
90%, almost all legitimate requests are dropped as a result
of the flooding attack. After switching to use guided tour
puzzles (line “Puzzle, flooding”), the percentage of dropped
requests becomes zero under the flooding attack even when
the 90% of the clients are malicious. In the case of puzzle
solving attacks, guided tour puzzle scheme reduces the
legitimate request drops by more than half in all cases, and
reduces the request drops to zero in some cases. In fact, the
legitimate request drops can be eliminated entirely even in
the case of puzzle solving attacks, as the simulation results
in “effect of tour length” subsection show.

3) Request completion time: Of course, the benefit of
using the guided tour puzzle scheme comes at the cost
increased average request completion time, similar to any
other ”proof of work” based DoS defense mechanism. This
cost is shown in the Figure 4. When guided tour puzzle is
utilized, the average completion time of a request increased
significantly in both flooding attack and puzzle solver attack
cases, due to the extra delay introduced by the puzzle
solving process. Nonetheless, the increase in the request
completion time is within an acceptable range of degradation
of service quality. Moreover, the guided tour puzzle scheme
provides an easy way to achieve a better trade-off between
two mutually restricting sets of quality of service goals by
varying the tour length.

4) Effect of tour length: The tour length in guided tour
puzzles is critical for the optimality of the guided tour puzzle
defense, especially for the legitimate clients’ utilization of
server CPU in the case of puzzle solving attacks. The next
set of simulation experiments are conducted to measure the

132

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4 6 8 10 12 14 16
The number of DFF nodes

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(a) 40% attacker, L = 8

4 6 8 10 12 14 16
The number of DFF nodes

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(b) 80% attacker, L = 8

Figure 6: The effect of the number of tour guides on the effectiveness of the guided tour puzzle defense.

effect of tour length on utilization, request completion time,
and request drops in the case of puzzle solving attacks.
Configurations of 40% and 80% malicious clients are used
in these experiments, and the number of tour guides N is
set to 4.

The response of various metrics to the change in tour
length is illustrated in Figure 5. As the tour length increases,
the CPU allocated to legitimate clients (”Legitimate utiliza-
tion”) and the request completion time (”Req completion
time”) increase while the percentage of dropped legitimate
requests (”Request drop”) decreases. After increasing the
tour length to 12, the percentage of dropped legitimate
requests becomes zero, and the server CPU allocated to
legitimate clients becomes optimal in both cases of 40% and
80% malicious clients. Here the optimal means legitimate
clients are granted the amount of server CPU capacity that
is equal to the percentage of legitimate clients in the system.
Further increasing the tour length does not improve the
utilization and request drop metrics and decreases the total
utilization of the server CPU, while increasing the request
completion time. The increase in the request completion time
is evident since larger tour length means more round trips
between clients and tour guides. These observations tell us
that choosing the right tour length is important in achieving
optimal DoS prevention results and providing better trade-
off between mutually restricting metrics.

5) Effect of the number of tour guides: The last set of
experiments are conducted to determine the effect of the
number of tour guides on the effectiveness of guided tour
puzzles. The 40% and 80% malicious clients are used, while
the tour length L is set to 8. As the results in Figure 6 show,
increasing the number of tour guides in the system does not
produce any significant change in terms of all three metrics
we are measuring. We can conclude from these results that
guided tour puzzle can provide a good protection against
the DDoS attack with just a few tour guides. Since the tour
guides have a single function, which is replying to every

request with the hash of the input message contained in the
request, it is much easier to protect and maintain. The cost
of hardware devices that can be used as tour guides likely
to be significantly cheaper than over-provisioning by adding
new servers. Moreover, a set of tour guides can be used to
protect multiple servers, which further minimizes the cost
per server by amortizing the total cost of tour guides over
multiple servers.

VIII. CONCLUSION AND FUTURE WORK

In this article, we showed that most existing cryptographic
puzzle schemes do not consider the resource disparity be-
tween clients. We argued that resource disparity reduces
or even nullifies the effectiveness of cryptographic puzzle
schemes as a defense against denial of service attacks. To
this end, we introduced the guided tour puzzle scheme, and
showed that it achieves the desired properties of an effective
and efficient cryptographic puzzle scheme. In particular, we
showed how guided tour puzzles achieve puzzle fairness,
minimum interference properties, and how it can achieve
better defense against denial of service attacks. Meanwhile,
using extensive simulation studies we showed that guided
tour puzzle is very effective in mitigating distributed denial
of service attacks, and that it is a practical solution to be
adopted.

As future work, we would like to further improve the
guided tour puzzle scheme in terms of the following. First,
we would like to eliminate the need for the server’s in-
volvement in the puzzle generation process. Second, further
investigation is needed to find out optimal ways to position
tour guides in the network. Last but not least, adopting
guided tour puzzle to defend against other application layer
attacks, such as Sybil attack and spam, is also desirable.

REFERENCES

[1] M. Abliz and T. Znati, “New approach to mitigating dis-
tributed service flooding attacks,” in the 7th International
Conference on Systems (ICONS ’12), Reunion Island, 2012.

133

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] A. Juels and J. Brainard, “Client puzzles: A cryptographic
countermeasure against connection depletion attacks,” in
NDSS ’99, San Diego, CA, 1999, pp. 151–165.

[3] W. Feng, E. Kaiser, and A. Luu, “The design and implemen-
tation of network puzzles,” in IEEE INFOCOM ’05, 2005.

[4] T. Aura, P. Nikander, and J. Leiwo, “DoS-resistant authenti-
cation with client puzzles,” in 8th International Workshop on
Security Protocols, vol. 2133, 2000, pp. 170–181.

[5] D. Dean and A. Stubblefield, “Using client puzzles to protect
TLS,” in 10th USENIX Security Symposium, 2001, pp. 1–8.

[6] X. Wang and M. K. Reiter, “Defending against denial-of-
service attacks with puzzle auctions,” in IEEE Symposium on
Security and Privacy, Oakland, 2003, pp. 78–92.

[7] C. Dwork and M. Naor, “Pricing via processing or combatting
junk mail,” in CRYPTO ’92, 1992, pp. 139–147.

[8] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion
attacks using congestion puzzles,” in CCS ’04, 2004.

[9] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New
client puzzle outsourcing techniques for dos resistance,” in
11th ACM CCS, 2004, pp. 246–256.

[10] N. Borisov, “Computational puzzles as sybil defenses,” in
P2P ’06: Proceedings of the Sixth IEEE International Con-
ference on Peer-to-Peer Computing, Washington, DC, USA,
2006, pp. 171–176.

[11] H. Rowaihy, W. Enck, P. Mcdaniel, and T. L. Porta, “Lim-
iting sybil attacks in structured p2p networks,” in the IEEE
INFOCOM ’07, 2007, pp. 2596–2600.

[12] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Mod-
erately hard, memory-bound functions,” in NDSS ’03, 2003.

[13] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound
functions for fighting spam,” in CRYPTO ’03, 2003.

[14] M. Ma, “Mitigating denial of service attacks with password
puzzles,” in International Conference on Information Tech-
nology: Coding and Computing, vol. 2, Las Vegas, 2005, pp.
621–626.

[15] B. Groza and D. Petrica, “On chained cryptographic puzzles,”
in 3rd Joint Symposium on Applied Computational Intelli-
gence (SACI ’06), Timisoara, Romania, 2006.

[16] D. G. Andersen, “Mayday: Distributed filtering for Internet
service,” in 4th USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, 2003.

[17] R. Thomas, B. Mark, T. Johnson, and J. Croall, “Netbouncer:
Client-legitimacy-based high-performance DDoS filtering,” in
3rd DARPA Information Survivability Conference, 2003.

[18] S. M. Bellovin, M. Leech, and T. Taylor, “ICMP traceback
messages,” IETF Draft, 2003.

[19] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Prac-
tical network support for IP traceback,” in ACM SIGCOMM
’00, vol. 30(4), Stockholm, Sweden, 2000, pp. 295–306.

[20] A. Yaar, A. Perrig, and D. Song, “SIFF: A stateless Internet
flow filter to mitigate DDoS flooding attacks,” in IEEE
Symposium on Security and Privacy, 2004, pp. 130–143.

[21] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting
network architecture,” in ACM SIGCOMM, 2005, pp. 241–
252.

[22] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker, “DDoS Defense by Offense,” in Proceedings of
the SIGCOMM ’06, 2006, pp. 303–314.

[23] A. Stavrou, D. L. Cook, W. G. Morein, A. D. Keromytis,
V. Misra, and D. Rubenstein, “WebSOS: An overlay-based
system for protecting web servers from denial of service
attacks,” Elsevier Journal of Computer Networks, vol. 48,
2005.

[24] G. Price, “A general attack model on hash-based client puz-

zles,” in 9th IMA Conference on Cryptography and Coding,
vol. 2898, Cirencester, UK, 2003, pp. 319–331.

[25] W. Feng, “The case for TCP/IP puzzles,” in ACM SIGCOMM
Future Directions in Network Architecture, 2003.

[26] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and
Y. Hu, “Portcullis: Protecting connection setup from denial-
of-capability attacks,” in ACM SIGCOMM, 2007, pp. 289–
300.

[27] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” MIT, Cambridge, Mas-
sachusetts, Tech. Rep., 1996.

[28] S. Tritilanunt, C. Boyd, E. Foo, and J. M. González, “To-
ward non-parallelizable client puzzles,” in 6h International
Conference on Cryptology and Network Security, 2007, pp.
247–264.

[29] M. J. Coster, A. Joux, B. A. Lamacchia, A. M. Odlyzko,
C. Schnorr, and J. Stern, “Improved low-density subset sum
algorithms,” Computational Complexity, vol. 2(2), 1992.

[30] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring poly-
nomials with rational coefficients,” Mathematische Annalen,
vol. 261(4), pp. 515–534, 1982.

[31] M. Jakobsson and A. Juels, “Proofs of work and bread
pudding protocols,” in the IFIP TC6/TC11 Joint Working
Conference on Secure Information Networks, 1999, pp. 258–
272.

[32] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
Hashing for Message Authentication,” RFC 2104 (Informa-
tional), Internet Engineering Task Force, Feb. 1997.

[33] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13(7),
pp. 422–426, 1970.

[34] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network
Time Protocol Version 4: Protocol and Algorithms Specifica-
tion,” RFC 5905, Internet Engineering Task Force, Jun. 2010.

[35] “About planet lab,” Planet Lab, [Accessed: Dec. 20, 2012].
[Online]. Available: http://www.planet-lab.org/about

[36] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl, “Anatomizing application performance differences on
smartphones,” in MobiSys ’10, 2010, pp. 165–178.

[37] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu,
“Characterizing residential broadband networks,” in IMC ’07,
2007, pp. 43–56.

[38] M. Yu, M. Thottan, and L. Li, “Latency equalization as
a new network service primitive,” Networking, IEEE/ACM
Transactions on, vol. PP, no. 99, p. 1, May 2011.

[39] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P. Druschel,
and G. Wang, “Measurement-based analysis, modeling, and
synthesis of the internet delay space,” IEEE/ACM Trans.
Netw., vol. 18, no. 1, pp. 229–242, 2010.

[40] VINT, “The network simulator - ns-2,” 2009.
[41] J. Winick and S. Jamin, “Inet-3.0: Internet topology gener-

ator,” University of Michigan, Tech. Rep. CSE-TR-456-02,
2002.

[42] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,
“On the self-similar nature of ethernet traffic,” IEEE/ACM
Transactions on Networking, vol. 2, no. 1, pp. 1–15, 1994.

[43] V. Paxson and S. Floyd, “Wide-area traffic: The failure of
poisson modeling,” IEEE/ACM Transactions on Networking,
vol. 3, pp. 226–244, 1995.

[44] P. Barford and M. Crovella, “Generating representative web
workloads for network and server performance evaluation,”
SIGMETRICS Perform. Eval. Rev., pp. 151–160, 1998.

134

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Distributed Hash Table Assisted Intrusion Prevention System

Zoltán Czirkos, Márta Rencz, and Gábor Hosszú
Department of Electron Devices

Budapest University of Technology and Economics
Hungary, H-1117 Budapest, Magyar tudósok körútja 2.

{czirkos,rencz,hosszu}@eet.bme.hu

Abstract—Using collaborative intrusion detection to sense
network intrusions comes at a price of handling an enormous
amount of data generated by detection probes, and the problem
of properly correlating the evidence collected at different parts
of the network. The correlation between the recorded events
has to be revealed, as it may be the case that they are part
of a complex, large-scale attack, even if they manifested at
different parts of the network. In this paper we describe
the inner workings a peer-to-peer network based intrusion
detection system, which is able to handle the intrusion detection
data efficiently while maintaining the accuracy of centralized
approaches of correlation. The system is built on a distributed
hash table, for which keys are assigned to each piece of
intrusion data in a preprocessing step. The network traffic
requirements of such a system, and the load balancing that
can be achieved by using the Kademlia peer-to-peer overlay
network are discussed as well.

Keywords-collaborative intrusion detection; attack correlation;
peer-to-peer; distributed hash table; Kademlia.

I. INTRODUCTION

In the earliest days of the Internet, services on the network
were all based on trust. As e-commerce emerged, network
hosts became victim of a wide range of everyday attacks.
Due to the high amount of confidental data and resources
that can be exploited, the possibilites and open nature of the
Internet opened serious security questions as well.

The attacks network administrators fight against are both
human and software initiated. They get more and more
sophisticated, originating or targetting ocassionally multiple
hosts at the same time. A large number of nodes can be
simultaneously scanned by attackers to find vulnerabilities.
Automatized worm programs replicate themselves to spread
malicious code to thousands of vulnerable systems, typically
of home users. Others compromise hosts to build botnets,
which can deliver millions of spam e-mails per day.

As the manifestation of attacks, e.g., the evidence that can
be observed is spread across multiple hosts, these large-scale
attacks are generally hard to detect accurately. To recognize
such, one has to first collect or aggregate the evidence,
then correlate the pieces of information collected [1]. A
collaborative intrusion detection system has to analyze the
evidence from multiple detector probes located at different
hosts, and even on different subnetworks [2]. However, this
poses several problems to solve:

Figure 1. Messages carrying attack information in the Komondor system.
If any probes in the network detect a suspicious event (solid lines), it sends
a report to the DHT (dashed lines). The nodes of the DHT act as correlation
units as well, and are able to collect these reports.

• large quantities of possible evidence collected,
• including inadequate data for precise decision making,
• communication and reliability problems,
• frequent change of intrusion types and scenarios.

Some of these troubles are specific for the isolated, host-
based detection systems, while others occur only in case of
the network scale intrusion detection. Despite of all these
difficulties it is still worth collecting and correlating evidence
available at different locations for the efficiency and accuracy
boost of both detection and protection [3].

In this paper, we present a collaborative intrusion detection
system, which organizes its participants to a peer-to-peer
(P2P) overlay network. For intrusion data aggregation, a
distributed hash table (DHT) is used, which is built on
the Kademlia topology. This is used to balance the load
of both aggregation and correlation of events amongst the
participants. The organization of nodes in the overlay network
is automatic. Should some nodes quit or their network links
fail, the system will reorganize itself.

The rest of this paper is organized as follows. In Section II,
we first review existing research of collaborative intrusion
detection systems. Then we present the architecture of
our intrusion detection solution based on the Kademlia
DHT overlay in Section III. The results of our intrusion

135

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

detection method and statistics of detection are highlighted
in Section IV. Research is concluded in Section V.

II. RELATED WORK

Attackers use various ways for intrusion of computer
network systems depending on their particular goals. These
methods leave different tracks and evidences, called the
manifestation of attacks [4]. To discuss the internals of a
collaborative intrusion detection system, we use the following
terms [2]:

• Suspicious events are primary events, that can be de-
tected at probes. Not necessarily attacks by themselves,
but can be part of a complex attack scenario.

• Attacks are real intrusion attempts, which are used to
gain access to a host or disturb its correct functioning.
Usually these are made up from several suspicious
events at once.

The activity of an SSH (Secure Shell, a remote login software)
worm program can be seen as an example of an attack. These
worms use brute-force login attempts using well-known user
names and simple passwords [5], directed against a single
host. The attempts are events that make up the attack in
this case. Multiple failed login attempts usually indicate an
attack, while a single failed attempt is usually only a user
mistyping his password.

A. Centralized Collaborative Intrusion Detection

Generally, large-scale attacks can only be detected by
collecting and correlating events from a number of detector
probes. The collection of evidence has to be extended to
suspicious events as well, which otherwise do not necessarily
suggest attacks themselves. In order to achieve this, various
collaborative intrusion detection systems (CIDS) have been
proposed, for which a detailed overview can be found in [3].

The earliest collaborative detection systems used a central-
ized approach for collecting the events, as seen on Figure 2.
The Internet Storm Center DShield project collects firewall
and intrusion detection logs from participants, uploaded either
manually or automatically [6]. The log files are then analyzed
centrally to create trend reports.

The NSTAT system [7] on the other hand is more advanced,
since its operation completely real-time. In NSTAT, the
detection data generated by the probes is preprocessed and
filtered before being sent to a central server for correlation.
This system analyzes the order of events using a state
transition mechanism with predefined scenarios to find out
the connection between them.

The advantage of centralized methods is that the server is
able to receive and process all data that could be gathered,
i.e.,it has all the information necessary to recognize the
intrusion attempt. The correlation can be carried out with
several different methods. SPICE [8] and CIDS [9] group
events by their common attributes. The LAMBDA system
tries to fit events detected into pre-defined and known

scenarios [10]. The JIGSAW system maps prerequisites and
consequences of events to find out their purposes [11].

Centralized solutions have two drawbacks to address. The
first one of these is scalability – the high amounts of data
to be aggregated and correlated for large networks cannot
be handled by a single correlation unit. The second one is
that the correlation unit is a single point of failure, being
even a possible target of attack for shutting down the whole
intrusion detection system.

B. Hierarchical and P2P Collaborative Intrusion Detection

By using hierarchical approaches, the scalability problem
of centralized intrusion detection systems can be handled.
The DOMINO system is used to detect virus and worm
activity. It is built on an unstructured P2P network with
participants grouped into three levels of hierarchy [12]. The
nodes on the lowest level generate statistics hourly or daily,
therefore they induce only a small network traffic.

The PROMIS protection system (and its precedessor,
Netbiotic) uses the JXTA framework to build a partly
centralized overlay network to share intrusion evidence [13].
The nodes of this system generate information for other
participants about the frequency of detected suspicious events.
This information is used to fine-tune the security settings
of the operating system and the web browser of the nodes.
This creates some level of protection against worms, but also
decreases the usability of the system.

The Indra system is built on the assumption that attackers
will try to compromise several hosts by exploiting the same
software vulnerability [14]. If any attempts are detected
by any participant of the Indra network, it alerts others
of the possible danger. Participants can therefore enhance
their protection against recognized attackers, rather than
developing some form of general protection.

The scalability and single point of failure problems of
centralized solutions can also be solved by using structured
P2P application level networks. The P2P communication
model enables one to reduce network load compared to the
hierarchical networks presented above.

The CIDS system [9] is a publish-subscribe application of
the Chord overlay network [15]. Nodes of this system store
IP addresses of suspected attackers in a blacklist, and they
subscribe in the network for notifications that are connected
to these IPs. If the number of subscribers to a given IP
address reaches a predefined threshold, they are alerted
of the possible danger. The Chord network ensures that
the messages generated in this application will be evenly
distributed among the participants.

The BotSpot system aims to discover traffic patterns
generated by botnets in recorded NetFlow data [16]. By
dropping specific IP addresses from the data to be analyzed,
anonymity can also be ensured for its users. The Spamwatch
system aims filtering of spam messages [17]. It uses a
Tapestry-based peer-to-peer network to store data of mail

136

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Collaborative detection system with centralized collection and correlation of data from probes. Every piece of information is sent to a server,
which handles the correlation, and has the responsibility of alerting participants when an attack is detected.

messages that are tagged as spam by the users of the
Spamwatch community [18]. Other users’ mail applications
can then automatically delete known spam messages.

C. Structured P2P Networks

The intrusion detection systems mentioned above use
various P2P substrate networks. By selecting a proper
substrate, the traffic generated in a specific application of
the network can be reduced.

Structured P2P networks generally implement distributed
hash tables [19]. DHTs store 〈key; value〉 pairs and allow
the quick and reliable retrieval of any value if the key
associated to that is known precisely. This is achieved by
using a hash function and mapping all data to be stored
to the nodes selected by the distance of the hashed keys
and their NodeIDs, which are chosen from the same address
space. The connections between nodes are determined by
their NodeID selected upon joining the network. They are
selected so that the number of steps between any two node
is usually in the order of logN , where N is the count of all
nodes.

DHTs all implement routing between their nodes on the
application level to build the topology desired. For the small
network diameter however, only some of these are feasible.
The Chord DHT, for example, arranges its nodes into a
ring [15]. To reduce the number of hops required for sending
a message, it uses auxiliary network connections, which
enable nodes to send message to the opposite side of the
ring, and it divides the network to smaller pieces, which are
half of the original in every step.

The Kademlia network uses a binary tree topology [20],
as seen on Figure 3. All Kademlia nodes have some degree
knowledge of the successively smaller subtrees of the network
they are not part of. For any of these subtrees they have
routing tables called k-buckets, which store IP addresses of
nodes that reside in distant subtrees. When a node looks up
a selected destination, it successively queries other nodes,
which are step by step closer to the destination. The queried
nodes answer by sending their k-buckets to the source. As

Figure 3. Sequence of lookup messages in the Kademlia overlay network.
The node initiating the message successively queries nodes closer to the
destination, so it finally receives its IP address for direct communication.
(For details of the lookup procedure, see [20].)

nodes closer to the destination have greater knowledge of
their neighbors, the lookup will get closer every step, as
discussed in [20]. The distance in the binary tree is halved
with every message, so the number of messages is log2 N
with N being the number of nodes in the tree.

DHTs map all 〈key; value〉 pairs to the nodes, which
have their NodeIDs closest to the hashed value of the key.
The distance function used depends on the topology of the
network. Kademlia uses the XOR function to calculate the
distance, which captures the topology of the binary tree well,
as the magnitude of the distance calculated with d (A,B) =
A⊗B is the height of the smallest subtree containing them
both. The k-buckets are sorted by decreasing distance. The
advantage of Kademlia is great flexibility: for the correct
functioning of the lookup procedure, any nodes can be put
in any of the k-buckets, as long as they are in the correct
subtree.

III. THE KOMONDOR SYSTEM ARCHITECTURE

In this section, our intrusion detection system named
Komondor is presented. Its most important novelty is that
it uses the Kademlia DHT as a substrate network to store
intrusion data and to disseminate information about detected
events [1]. Having analyzed the collected events, Komondor

137

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Distributed collection and distributed correlation of intrusion evidence from various probes. The Komondor system assigns keys to pieces of
evidence so that data can be stored efficiently in a DHT. By using these keys, computational load of correlating can be distributed among several units.

correlation units may start an alert procedure notifying other
nodes of the possible danger if necessary.

A. Distributing Load Among Multiple Correlation Units

The Komondor peer-to-peer application level network
consists of multiple nodes. All nodes have the responsibility
of collecting and correlating intrusion data. They also report
attacks discovered to other nodes of the network, as seen in
Figure 1. All participants of the Komondor network serve as
intrusion detection units and correlation units as well.

The Komondor network is designed to enable the cor-
relation methods mentioned in Section II to be used in a
distributed manner:

• Pieces, which are correlated should be sent to the same
correlation unit, so that it can gather all the information
about the attack.

• Pieces of evidence, which are part of distinct ongoing
attacks should preferably be sent to different correlation
units. This reduces load and improves overall reliability
of the system.

Komondor achieves this goal by assigning keys to prepro-
cessed intrusion data, as seen in Figure 4 (cf. Figure 2).
Keys assigned are used as storage keys in the DHT as well.
For different attackers or attack scenarios, different keys are
selected, and this way data is aggregated at different nodes
of the Komondor overlay.

This is different from other P2P distributed intrusion
detection networks, in which only one attack correlation
method is used. In Komondor, attack correlation and event
aggregation is decoupled by the means of selecting a key in
an early phase of correlation, and using it as a DHT key for
storage. The Komondor system is essentially a middle layer
inserted into the intrusion detection data path.

Correct key selection is critical, since pieces of evidence,
which might be correlated to each other must be assigned the
same key and sent to the same Komondor node for correlation.
Note that these pieces do not have to be detected by the same
probe, yet they can be aggregated by the same correlation
unit. The nodes of the DHT are the correlation units, which

have to implement the same correlation methods as their
centralized counterparts. The correlation procedure is started
as soon as the preprocessing stage with the key selection,
and it is finalized at the correlation units.

The detected and preprocessed data of suspicious events
is stored in the Komondor overlay. In this system, the key
assigned at the preprocessing stage of detection is used as
a key for DHT operations as well. The value parts of the
〈key; value〉 pairs stored are any other data, which might
be useful for detection or protection. As all nodes use the
same key selection mechanism and the same hash function,
events related to each other will be stored at the same node,
as seen in Figure 1. This way the algorithm ensures that the
aggregator node has perfect knowledge of all events related
to the attack in question, and is able to recognize the attack
as well.

The reason why a structured overlay was selected for the
Komondor system is that it combines the advantages of both
the distributed and centralized detection systems. Event data
collected has to be sent to a single collector node only (this
would not be possible with an unstructured overlay, as those
have no global rule to map a key to a node.) Moreover, when
Komondor nodes are under multiple but unrelated attacks,
the network and computational load of both aggregation
and correlation is distributed among nodes. Moreover, the
Komondor system does not have a single point of failure: the
responsibility of correlating particular events is transferred
to another node in this case. The overlay can also be used to
disseminate other type of information as well, for example
the attack alerts, which enable nodes to create protection.

B. Kademlia as the DHT Topology of Komondor

The nodes of Komondor create a Kademlia DHT overlay.
This is the topology, which can adapt its routing tables to
the dynamic properties of traffic generated by the intrusion
detection probes. As discussed below, other DHTs wouldn’t
be able to adapt their routing tables to the dynamic properties
of this kind of traffic.

Storing information of events generated by the probes

138

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
NUMBER OF MESSAGES IN STRUCTURED OVERLAYS FOR INTRUSION

DETECTION

Overlay Chord Kademlia

Routing algorithm recursive iterative

Node lookup 0 log2 N

First event stored log2 N 1 + log2 N

n events with the same key n · log2 N n+ log2 N

Average number of mes-
sages per event

(n · log2 N)/n (n+ log2 N)/n

Average number of mes-
sages with n→∞

log2 N 1

generates significant overlay traffic, which will load not
only detector and collector nodes, but other nodes along the
path from the former to the latter one as well, as routing
between nodes is handled on the application level. If the
events are in correlation with the same attack, the key chosen
is likely to be the same, making the distribution of keys highly
uneven. However, by using Kademlia, network traffic can be
significantly reduced in this scenario. The reason for this is
that the routing algorithm of Kademlia is very flexible: any
node can be put to the routing tables of any other node while
still obeying the rules of the routing protocol. Routing tables
of other DHT overlays like CAN or Chord are much more
rigid, and therefore the routing algorithm of those cannot
optimize the number of messages for the store requests with
the same key.

Table I compares the number of messages generated in
intrusion detection for Kademlia and Chord, with the latter
being an example for having rigid routing tables. Chord uses a
recursive routing mechanism, which means that messages are
forwarded by overlay nodes along the path from the source
to the destination of the message, as seen on Figure 5. If
Komondor would be built on Chord, the number of messages
generated in the overlay would be in the order of log2 N
for each detected event, where N is the node count of the
overlay.

Contrary to Chord, Kademlia uses an iterative algorithm.
To store a 〈key; value〉 pair, a Kademlia node first looks
up the IP address of the destination node by successively
querying nodes closer to the destination. After finding out
its address, data is sent directly from the source and the
destination. This also implies that the payload of the message
is contained in every message for Chord, and only in the
last message for Kademlia. For Kademlia, the node has to
first look up the address of the destination, which also takes
log2 N messages. Having done that, it requires one more
message (+1) to send the payload as well. If multiple events
are to be stored, which are detected by the same probe (this
is a likely scenario for a node that is under attack), the lookup
procedure can be optimized away, as the key and therefore

the collector node is the same, too. For sending data of n
events, the number of messages generated is only n+log2 N
for Kademlia and n · log2 N for Chord, which is worse at
the factor of n for the latter one. The limit of messages
per event drops to 1 for Kademlia in this common intrusion
detection scenario.

The above optimization is made possible by the fact, that
any node can be inserted to the routing tables of any other
arbitrarily selected node in Kademlia, while still obeying the
selection rules of the protocol. The k-buckets of the nodes
cover the whole NodeID space of the binary tree, and the
exact selection of nodes do not affect the correctness of the
lookup mechanism, only its latency properties. The original
Kademlia paper [20] suggests that nodes with long session
uptimes are selected for routing, which is feasible in file
sharing applications to enhance reliability. Komondor nodes,
which are selected by attack events to be stored, should be
selected to reduce network traffic.

The Komondor system uses does not use the data lookup
mechanism (looking up a value associated with a specific
key) of the DHT as other applications do. Only the data
store mechanism is used. Stored events are never looked up,
rather the node, which stores them has to process incoming
events to recognize attackers. The collector nodes have
the responsibility to start a broadcast algorithm [21], if an
attack is recognized. The broadcast message must contain
data, which can be used by participants to create their own
protection.

C. Selection of Keys in the Komondor System

The accuracy of detection, also network and computational
load balancing depends on the proper selection of keys.
If, at preprocessing stage, the correct key is failed to
be chosen, pieces of evidence may mistakenly end up at
different correlation units, and therefore the attack may
remain unnoticed. Detection efficiency can be increased
by assigning more keys, should an event be suspected to
be a candidate for being part of different attacks or attack
scenarios. One can also implementing several correlation
algorithms simultaneously. However, every subsequent key
increases network traffic as well.

Examples for key selection include the source or destina-
tion IP addresses of offending packets. For every large-scale
network scan scenario, a different key selection mechanism is
feasible. Consider the network scan types categorized in [12]:

• Horizontal port scan. Different hosts are scanned by
a attackers, but the port number, e.g., the vulnerability
searched for is the same. In this case, a blacklist of
attackers can be built using the collection and correlation
of detected attempts. The key for the Komondor overlay
in this case is the identifier of the vulnerability, or the
port number.

• Vertical scan. A single host is under attack. The attack
originates from a single host, too. If this is the case,

139

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) recursive (b) iterative

Figure 5. Routing methods in DHT overlays. In overlays with recursive routing, messages are forwarded from node to node. The iterative method requires
nodes to look up the address of the destination of the message themselves.

the attacker is known and hosts can protect themselves
against it, should it try to attack another friendly hosts.
The DHT key should be the IP address of the attacker.

• Mixed scan. Multiple attackers use their network ca-
pacity to launch an attack against a single host or a
subnetwork. This is the usual scenario for the well
known DDoS (distributed denial of service) attacks [22],
the goal of which is to disrupt some service of an
on-line service provider by overloading its network
or computational capacities. The key for the evidence
storage in the DHT in this case is the subnetwork address
attacked. By analyzing the data collected in this scenario,
hosts can automatically detect the fact of the network
scale attack, e.g., they can discover that the problem
is not only related to a single host but a complete
subnetwork or organization.

Apparently, the achievable benefit of the collaborative
detection for these scan methods also varies with their type
and intent.

IV. RESULTS AND DISCUSSION

In this section, we present statistics of intrusion attempts
detected using the implemented Komondor system. The
statistics are evaluated to show which types of attacks this
system can be used to detect.

The implementation used for testing was written in C++,
and run on various versions of Ubuntu, Debian Linux and
OpenBSD operating systems. The systems protected provided
HTTP, SSH, mail, SQL and other services to their users. The
number of probes in the system varied from 7 to 10, each
with their own, public IP address. The overlay created was
not limited to a single subnetwork.

The present Komondor implementation used the open-
source Snort intrusion detection system [23] to detect
intrusion events, and it could collaborate with other host-
based intrusion detection solutions as well. The key selected
for each event was the IP address of the attacker, as found
in the Snort log file. It was also used for correlation. We
selected common event types from the Snort database and
also tagged events with a severity score. Intrusion alert was

triggered when the sum of these scores reached a threshold
level. This simple correlation method enabled us to determine
the efficiency and reliability of the Komondor system for
known attack types. Data presented here was collected in
a three year interval. During this time, 17,088 attacks were
detected, with the maximum number of attacks originating
from a single IP address being 811. The number of individual
events for a single attack reached as much as 80,000 events
for some of the worm attacks recorded. The number of nodes
in the small Komondor test overlay was around 7 and 15
nodes, with most of them being on the same subnetwork.

One of the nodes of the test overlay was assigned special
logging tasks. This was achieved by fixing the NodeID
of that node to the hexadecimal value 0x00000001. (Our
implementation used 32-bit NodeIDs, rather than using the
full 160-bit space as usual in Kademlia networks.) The
attack storage method used in other nodes was modified
to send all data to this node as well, besides sending the
events to the nodes as selected by the keys. This anchor
node generated statistics, and provided us with a monitoring
interface accessible through a web browser.

A. Attack Intervals and Number of Events

Figure 6 shows invalid passwords detected for SSH login
attempts on various hosts [5]. Every dot on the graph is an
individual attack. The y axis shows the number of events or
the number of invalid passwords detected. The duration of
an attack is the time interval between the first and the last
event detected, and is on the x axis. Several attackers were
detected by multiple Komondor probes, because the SSH
worm that was trying to gain access to the subnetwork tried
to login all on-line hosts it found. The number of probes,
which detected an attack in question is shown by the color of
the dots. (In the case of multiple probes detecting an attacker,
the event number on axis x is an average per probe.)

Apparently the attacks, which were detected by one probe
only (black dots) have much less events associated to them.
The 1,100 attacks shown on the graph have as much as 450
of them stacked up in the (1; 1) point. These evidently came
from human interaction. Attacks detected by multiple probes

140

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

10

100

1k

10k

100k

1 10 100 1000 10000 100000

av
er

ag
e

nu
m

be
r

of
 e

ve
nt

s
pe

r
pr

ob
e

duration [s]

Figure 6. Number of invalid password events detected for various attacks
(y axis) plotted by the duration of the attack (x axis), as detected by the
Komondor test overlay network. The color of the dots represent the number
of probes a specific attacker was detected by.

usually suggest automatic worm programs using dictionary
attacks against the detector hosts.

This experience suggests that distributed intrusion detec-
tion can benefit from the advantages of DHTs:

• Attackers could be detected by several probes at the
same time. When multiple hosts are attacked, recogniz-
ing an attacker using any evidence from any probe of
the Komondor network, several hosts could be protected
using firewalls at the same time, which might promptly
be attacked, too.

• Attack evidence came from multiple probes. One attack
is likely to be associated to thousands or tens of
thousands of events, which must be stored and processed
in the overlay. This type of load can be dealt with the
DHT fairly well, as it can select different collector nodes
for each individual attack and therefore balance the load.

• When detecting an event, which generates the same key,
the Kademlia DHT can significantly reduce network
traffic, as the IP address of the collector nodes have to
be looked up only once. When the IP address is obtained,
the system works as if it were using a centralized
approach with the same benefits as those.

B. Attack Types and Confidence

Table II shows various attack types and the efficiency
for the Komondor system regarding protection. The column
Protection shows the number of attacks for each type, for
which the attack continued after it was blocked on the firewall,
and the activity of the attacker was detected by another
Komondor node of the same subnetwork. For these attacks,
the collaborative intrusion detection can greatly enhance the
protection of hosts.

Figure 7 shows event numbers and attack durations for
different worms attacking SQL servers. The y axis has two

Table II
NUMBER OF ALL ATTACKS AND ATTACKS FOR WHICH PROTECTION

COULD BE BUILT BY Komondor, FOR EACH ATTACK TYPES.

Type of attack Attacks Protection Ratio
phpMyAdmin scan 107 71 66%

MSSQL overflow 4355 15 0%

SSH connection lost 490 321 65%

SSH failed password 546 219 40%

SSH invalid user 51 47 92%

FTP failed login 46 2 4%

scales for each graph. The scales of the left hand side show
attack durations (red plot), and the right hand side scale
shows the number of events (blue plot). Attacks are sorted
by duration. Every value on the x axis is an attack for which
the duration and the number of events is shown right under
each other.

A worm, which scanned the Web servers for vulnerabilities
via HTTP requests is shown on the right hand side subfigure.
For any event detected, the IP address of the attacker can
be recognized by the correlation units. The left hand side
graph presents the properties of the Slammer worm, which
penetrates outdated MSSQL servers. This worm does not
issue more attempts in a short time interval to the same host,
and selects IP addresses of victims randomly. For detecting
this type of attacks, the PROMIS and CIDS systems could
be used more effectively.

Figure 8 is similar to Figure 7, showing the attack interval
and the number of events for attacks. However, invalid SSH
login attempts are visualized on this one. The figure shows
real attacks and mistyped passwords as well. The left hand
side subfigure shows the invalid user name events, and the
right hand side subfigure the invalid password events. The
usual user interfaces of SSH remote login software show the
login names to the users as they type, while the password is
hidden for security reasons. This implies that mistyped login
names rarely come from authorized users, as they would
correct it before sending it to the server. Almost all of this
type of attacks are conducted automatically by worm software.
However, 40% of detected mistyped password attacks have
only one event, and supposedly come from authorized users.
These are all false alarms in an automatic intrusion protection
system like Komondor.

C. Load Balancing Potential of Using Hash Functions for
IP Addresses as Keys

Figure 9 shows the distribution of events in IP address
space and in overlay key (NodeID) space. The figure shows
only the events related to SSH worms.

The IP addresses on the top part of the figure were mapped
to the rectangular area using a Hilbert space filling curve.
This mapping renders the 32 bit address space in such a way,

141

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1e0

1e1

1e2

1e3

1e4

0% 20% 40% 60% 80% 100%
1

10

at
ta

ck
 d

ur
at

io
n

[s
ec

]

nu
m

be
r

of
 e

ve
nt

s

Slammer worm (MSSQL vulnerability)

number of events
duration

1e0

1e1

1e2

1e3

1e4

0% 20% 40% 60% 80% 100%
1

10

100

1k

10k

100k

at
ta

ck
 d

ur
at

io
n

[s
ec

]

nu
m

be
r

of
 e

ve
nt

s

phpMyAdmin worm (MySQL vulnerability)

number of events
duration

Figure 7. Attack intervals and number of events for different worm activities detected by the Komondor system. The left hand side shows a worm, which
scanned our Web servers via HTTP in order to find a phpMyAdmin installation to gain access to MySQL databases. On the right hand side the activity of
the infamous Slammer worm is shown, which penetrates MSSQL servers.

Figure 8. Attack intervals and number of events for SSH login attempts, as detected by the Komondor network. An invalid login name almost inevitably
suggests an attack, while an invalid password may come from an otherwise authorized user.

that addresses close to each other (therefore, addresses in
the same subnetwork) are close to each other. For example,
the 0/8 to 63/8 range is in the upper left quarter square, and
the 0/16 to 15/16 range in the upper left sixteenth. The first
octet of the address determines the numbered square, and
the second octet was used to select the place inside every
small square similarly, so that dots do not cover each other
needlessly.

The size and color of the nodes show the number of
events for each attack. The number of events related to each
attack is quite different for every attack, the difference has
a magnitude of about four. If we are using IP addresses for
correlation, the hash functions used in the structured overlays
for data to node mapping can significantly reduce this, as
seen on the bottom side subfigure.

The Komondor reference implementation used 32-bit
hashed addresses. The bottom side plot on Figure 9 shows
the number of events by their hashed values, the first octet of
which values are used for the x coordinate, and the next eight
bits for the y coordinate. The magnitude of the difference
between the highest and lowest number of messages that

are related to a single attack could be reduced by 1.85, i.e.,
about 70 times lower.

Of course, a single detector node can still detect and send
many events to the same collector node, when being under
attack. This load imbalance can not further be reduced by
hashing the keys, but rather by properly selecting the DHT
topology, as discussed in Subsection III-B.

V. CONCLUSION

Attacks on the Internet mean constantly growing prob-
lem for network administrators. Sophisticated attacks have
evidence spread across multiple hosts and subnetworks. To
detect these attacks promptly and correctly, data must be
aggregated and analyzed automatically. In this article, the
novel Komondor intrusion detection system is presented,
which enables current attack correlation methods to be
upgraded to work in a distributed environment. This is
achieved by inserting a middle layer into the intrusion
detection data path, which utilizes the Kademlia DHT overlay.
As it is possible to optimize the data storage traffic to O(1)
message per attack event, Kademlia is the most feasible

142

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1

23

4

5 6

7 8

9 10

11

1213

14 15 16

17 18

19 20 21

2223

24 25

262728

2930

31

32

33 34

35 36 37

3839

40 41

424344

4546

474849

50 51

52

5354

5556

5758

59

60 61

6263

64

65 66

67 68 69

7071

72 73

747576

7778

79

80 81

8283

84

85 86

87 88

89 90

91

9293

94 95 96 97

9899

100

101 102

103 104

105 106

107

108109

110 111

112

113114

115116117

118 119

120121

122 123 124

125 126

127 128

129 130

131 132 133

134135

136 137

138139140

141142

143

144 145

146147

148

149 150

151 152

153 154

155

156157

158 159 160 161

162163

164

165 166

167 168

169 170

171

172173

174 175

176

177178

179180181

182 183

184185

186 187 188

189 190

191

192193

194 195

196

197198

199200

201202

203

204 205

206207208

209210

211212213

214 215

216217

218 219 220

221 222

223

224

225226

227228229

230 231

232233

234 235 236

237 238

239 240 241

242243

244

245 246

247 248

249 250

251

252253

254 255

1e0

1e1

1e2

1e3

1e4

1e5

(a) Number of events in IP address space

1e0

1e1

1e2

1e3

(b) Number of messages sent to nodes in NodeID space

Figure 9. Network traffic distribution in the structured overlay

143

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

choice of DHT topology for a wide area deployment of an
intrusion detection system.

The novelty of the method presented is attaching a key to
the detected events, which key is then used to send the events
for correlating to several correlation units that are organized
as a DHT. This mechanism can be used to reduce network
and computational load and increase reliability of the system,
while still retaining the advantages of centralized approaches
of intrusion detection. By mapping the detected events to
nodes in the system, all nodes are assigned the same level of
responsibility as well. Our ongoing research is focusing on
considering the different computational and network capacity
of nodes to prevent those with slow connections or CPUs
from being overloaded by intrusion detection data.

ACKNOWLEDGEMENT

The work reported in the paper has been developed in the
framework of the project ”Talent care and cultivation in the
scientific workshops of BME”. This project is supported by
the grant TÁMOP - 4.2.2.B-10/1–2010-0009.

REFERENCES

[1] Z. Czirkos, M. Rencz, and G. Hosszú, “Improving attack
aggregation methods using distributed hash tables,” in ICIMP
2012, The Seventh International Conference on Internet
Monitoring and Protection, 2012, pp. 82–87.

[2] H. Debar, “Intrusion Detection Systems-Introduction to Intru-
sion Detection and Analysis,” Security and privacy in advanced
networking technologies, p. 161, 2004.

[3] C. Zhou, C. Leckie, and S. Karunasekera, “A Survey of
Coordinated Attacks and Collaborative Intrusion Detection,”
Computers & Security, vol. 29, no. 1, pp. 124–140, 2010.

[4] D. Mutz, G. Vigna, and R. Kemmerer, “An Experience
Developing an IDS Stimulator for the Black-Box Testing of
Network Intrusion Detection Systems,” in In Annual Computer
Security Applications Conference, Las Vegas, NV, 2003, pp.
374–383.

[5] C. Seifert, “Analyzing Malicious SSH Login Attempts,”
http://www.symantec.com/connect/articles/analyzing-
malicious-ssh-login-attempts, Nov. 2010, retrieved: March,
2012.

[6] “Internet Storm Center,” http://www.dshield.org/, retrieved:
March, 2012.

[7] R. Kemmerer, “NSTAT: A Model-based Real-time Network
Intrusion Detection System,” University of California-Santa
Barbara Technical Report TRCS97, vol. 18, 1997.

[8] A. Valdes and K. Skinner, “Probabilistic Alert Correlation,”
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection, pp. 54–68, October 2001.

[9] C. V. Zhou, S. Karunasekera, and C. Leckie, “A Peer-to-Peer
Collaborative Intrusion Detection System,” in Networks, 2005.
13th IEEE International Conference on, vol. 1.

[10] F. Cuppens and R. Ortalo, “LAMBDA: A language to model
a database for detection of attacks,” in Recent advances in
intrusion detection. Springer, 2000, pp. 197–216.

[11] S. Templeton and K. Levitt, “A Requires/provides Model for
Computer Attacks,” in Proceedings of the 2000 workshop on
New security paradigms. ACM, 2001, pp. 31–38.

[12] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion
Detection in the DOMINO Overlay System,” in Proceedings
of NDSS, vol. 2004, 2004.

[13] V. Vlachos and D. Spinellis, “A PRoactive Malware Identi-
fication System based on the Computer Hygiene Principles,”
Information Management and Computer Security, vol. 15(4),
pp. 295–312, 2007.

[14] R. Janakiraman, M. Waldvogel, and Q. Zhang, “Indra: A
Peer-to-peer Approach to Network Intrusion Detection and
Prevention,” in Enabling Technologies: Infrastructure for
Collaborative Enterprises. WET ICE 2003. IEEE, 2003,
pp. 226–231.

[15] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan, “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications,” ACM SIGCOMM Computer Communi-
cation Review, vol. 31, no. 4, pp. 149–160, 2001.

[16] P. Kenyeres, A. Szentgyörgyi, T. Mészáros, and G. Fehér,
“BotSpot: Anonymous and Distributed Malware Detection,”
Recent Trends in Wireless and Mobile Networks, pp. 59–70,
2010.

[17] J. S. Kong, P. O. Boykiny, B. A. Rezaei, N. Sarshar, and
V. P. Roychowdhury, “Scalable and reliable collaborative spam
filters: harnessing the global social email networks,” 2005.

[18] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,”
Computer, vol. 74, no. 11-20, p. 46, 2001.

[19] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-
to-peer Content Distribution Technologies,” ACM Computing
Surveys (CSUR), vol. 36, no. 4, pp. 335–371, 2004.

[20] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” Peer-to-Peer
Systems, pp. 53–65, 2002.

[21] Z. Czirkos, G. Bognár, and G. Hosszú, “Pseudo Reliable
Broadcast in the Kademlia P2P System,” in Computer Science
and Communication Devices: Proceedings of Int. Conf. EDC
2012, CSA 2012, SPC 2012, ACE 2012., 2012.

[22] F. Lau, S. Rubin, M. Smith, and L. Trajkovic, “Distributed
denial of service attacks,” in Systems, Man, and Cybernetics,
2000 IEEE International Conference on, vol. 3. Ieee, 2000,
pp. 2275–2280.

[23] “Snort – Open-source Intrusion Detection System,”
http://www.snort.org/, retrieved: March, 2012.

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

