

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 4, no. 1 & 2, year 2011, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 4, no. 1 & 2, year 2011, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2011 IARIA

International Journal on Advances in Security

Volume 4, Number 1 & 2, 2011

Editor-in-Chief

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Editorial Advisory Board

Vladimir Stantchev, Berlin Institute of Technology, Germany
Masahito Hayashi, Tohoku University, Japan
Clement Leung, Victoria University - Melbourne, Australia
Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan
Dan Harkins, Aruba Networks, USA

Editorial Board

Quantum Security

 Marco Genovese, Italian Metrological Institute (INRIM), Italy
 Masahito Hayashi, Tohoku University, Japan
 Vladimir Privman, Clarkson University - Potsdam, USA
 Don Sofge, Naval Research Laboratory, USA

Emerging Security

 Nikolaos Chatzis, Fraunhofer Gesellschaft e.V. - Institute FOKUS, Germany
 Rainer Falk, Siemens AG / Corporate Technology Security - Munich, Germany
 Ulrich Flegel, SAP Research Center - Karlsruhe, Germany
 Matthias Gerlach, Fraunhofer FOKUS, Germany
 Stefanos Gritzalis, University of the Aegean, Greece
 Petr Hanacek, Brno University of Technology, Czech Republic
 Dan Harkins, Aruba Networks, USA
 Dan Jiang, Philips Research Asia – Shanghai, P.R.C.
 Reijo Savola, VTT Technical Research Centre of Finland, Finland
 Frederic Stumpf, Fraunhofer Institute for Secure Information Technology, Germany
 Masaru Takesue, Hosei University, Japan

Security for Access

 Dan Harkins, Aruba Networks, USA

Dependability

 Antonio F. Gomez Skarmeta, University of Murcia, Spain

 Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) – Trondheim,
Norway

 Aljosa Pasic, ATOS Origin, Spain
 Vladimir Stantchev, Berlin Institute of Technology, Germany
 Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan
 Ian Troxel, SEAKR Engineering, Inc., USA
 Hans P. Zima, Jet Propulsion Laboratory/California Institute of Technology - Pasadena, USA //

University of Vienna, Austria

Security in Internet

 Evangelos Kranakis, Carleton University, Canada
 Clement Leung, Victoria University - Melbourne, Australia
 Sjouke Mauw, University of Luxembourg, Luxembourg
 Yong Man Ro, Information and Communication University - Daejon, South Korea

International Journal on Advances in Security

Volume 4, Numbers 1 & 2, 2011

CONTENTS

Role of User Profile in Cloud-based Collaboration Services for Innovation

Zahid Iqbal, University Graduate Center (UNIK), Norway

Josef Noll, University Graduate Center (UNIK), Norway

Sarfraz Alam, University Graduate Center (UNIK), Norway

1 - 10

Fault Tolerance Framework using Model-Based Diagnosis: Towards Dependable Business

Processes

Angel Jesus Varela Vaca, University of Seville, Spain

Rafael Martinez Gasca, University of Seville, Spain

Diana Borrego Nuñez, Spain, University of Seville

Sergio Pozo Hidalgo, University of Seville, Spains

11 - 22

Putting Theory into Practice: The Results of a Practical Implementation of the Secure

Development Life Cycle

Cynthia Lester, Tuskegee University, USA

23 - 33

Verification of Detection Methods for Robust Human Tracking System

Hiroto Kakiuchi, Melco Power Systems Co., Ltd., Japan

Takao Kawamura, Tottori University, Japan

Toshihiko Sasama, Tottori University, Japan

Kazunori Sugahara, Tottori University, Japan

34 - 43

PIGA-HIPS: Protection of a shared HPC cluster

Mathieu Blanc, CEA DAM, France

Jeremy Briffaut, LIFO/ENSIB, France

Damien Gros, LIFO/ENSIB/CEA DAM, France

Christian Toinard, ENSI/LIFO, France

44 - 53

Tailored Concepts for Software Integrity Protection in Mobile Networks

Manfred Schäfer, Nokia Siemens Networks GmbH & Co. KG, Germany

Wolf-Dietrich Moeller, Nokia Siemens Networks GmbH & Co. KG, Germany

54 - 66

Advanced Policies Management for the Support of the Administrative Delegation in

Federated Systems

Manuel Gil Pérez, University of Murcia, Spain

Gabriel López, University of Murcia, Spain

Antonio F. Gómez Skarmeta, University of Murcia, Spain

Aljosa Pasic, Atos Origin, Spain

67 - 79

An Adaptive and Dependable Distributed Monitoring Framework

Teemu Kanstrén, VTT, Finland

Reijo Savola, VTT, Finland

Sammy Haddad, Telecom ParisTech, France

Artur Hecker, Telecom ParisTech, France

80 - 94

Security Test Approach for Automated Detection of Vulnerabilities of SIP-based VoIP

Softphones

Christian Schanes, Vienna University of Technology, Industrial Software (INSO), Austria

Stefan Taber, Vienna University of Technology, Industrial Software (INSO), Austria

Karin Popp, Vienna University of Technology, Industrial Software (INSO), Austria

Florian Fankhauser, Vienna University of Technology, Industrial Software (INSO), Austria

Thomas Grechenig, Vienna University of Technology, Industrial Software (INSO), Austria

95 - 105

Genomics-based Security Protocols: From Plaintext to Cipherprotein

Harry Shaw, NASA/Goddard Space Flight Center, USA

Sayed Hussein, George Washington University, USA

Hermann Helgert, George Washington University, USA

106 - 117

Evaluating Quality of Chaotic Pseudo-Random Generators. Application to Information

Hiding

Jacques Bahi, Computer Science Laboratory LIFC, France

Xiaole Fang, Computer Science Laboratory LIFC, France

Christophe Guyeux, Computer Science Laboratory LIFC, France

Qianxue Wang, Computer Science Laboratory LIFC, France

118 - 130

Touch'n Trust: An NFC-Enabled Trusted Platform Module

Michael Hutter, University of Technology Graz, Austria

Ronald Tögl, University of Technology Graz, Austria

131 - 141

Role of User Profile in Cloud-based Collaboration
Services for Innovation

Zahid Iqbal, Josef Noll and Sarfraz Alam

University Graduate Center (UNIK)
Kjeller, Norway

{zahid, josef, sarfraz}@unik.no

Abstract—Enterprises are evolving their businesses from silo-
based knowledge to collaborative-based knowledge by promoting
open innovation through collaboration in to their technology
infrastructure. Despite of being a prevailing trend, enterprises
are not quite willing to embrace the collaboration into their
working environment. This unwillingness is due to number of
technical obstacles including user profiling, balancing ofopen
and close collaboration and trust establishment. Therefore, the
paper tries to address these impediments by contemplating
collaborative enterprise computing approach that createsthe
network of enterprises for enabling the active, automated and
trusted inter-enterprise collaboration. We propose a privacy-
enhanced innovation framework that eases off the innovation
process in an open and control manner. The framework does not
only allow enterprise employees to create a user profile but also
encourage them to initiate innovation activity by registering their
novel ideas, which later can be realized in the form of business
opportunity. We select an ”innovation stock exchange” casestudy
in order to apply the proposed approach. Furthermore, we intend
to implement the framework in the form of cloud services that
are interoperable with any enterprise collaboration platform.

Keywords-Cloud Computing, Collaboration, Enterprise, Inno-
vation, Privacy, Social Computing, Trust, User Profile

I. I NTRODUCTION

While open innovation is a prevailing trend that could spur
new business opportunities, but enterprises are reluctantto
adopt and invest in open innovation initiatives due to the risk
factors associated with it. Most of the enterprises consider
such initiatives as potential channel of loss of knowledge,
control and core competencies, which in turns could negatively
impact the enterprise long term innovation life cycle. However,
success of consumer based social computing compels the en-
terprises to tend towards collaborative knowledge environment
where the inter-enterprise boundary line is becoming indistinct
by braking the silos. Today, collaboration is invertible for an
enterprise in order to meet the rapid and dynamic demands
of the businesses. Recently, HP Labs started the initiative
to conduct open innovation by establishing the Innovative
Research Program (IRP) between universities, enterprisesand
governments [1]. This fosters the collaboration among dif-
ferent participants in the form of sharing new ideas, en-
abling people to work across enterprise boundaries. It creates
opportunities for capturing relevant knowledge, expertise so
that innovative products and services could be introduced to
the market. Initial indicators from HP Labs show that active

collaboration helps in augmenting and accelerating knowledge
creation and technology transfer, and the result of IRP is 179
papers and 34 HP patent disclosures in just three years [1].

Bringing innovation through collaboration is relied on en-
abling tool sets that allow enterprises to collaborate beyond
their perimeter in a trusted open environment. Mostly, enter-
prises use email as an enabling tool for collaboration, where
the new idea owner invites others through email to provide
feedback and collaborate on its innovative idea that could be
realized to a business opportunity by involving some external
partners. This approach limits the collaboration space to the
personal contacts of the idea owner within and outside of the
enterprise. It is highly probable that the most suitable partners
will be missed since they are not in direct contact of the idea
owner.

In order to foster an active collaborative environment,
enterprises can benefit from social computing platforms be-
cause these platforms promote sharing and openness within
communities. These platforms offer different functionalities
such as sharing of knowledge and idea, displaying recent
activities of people, showing contacts and skills of people,
and providing a list of colleagues and friends from social
network sites. Enterprises are also considering social com-
puting platforms to communicate with their customers and
inform them about new services and releases. This does
not only bring value and uptake for their business in the
form of enhanced productivity and revenue, but also provides
customers with the benefits of receiving services that are
pertinent to their preferences. A survey report from McKinsey
Global indicates that enterprises have gained high-business
benefits by integrating social computing platforms in their
working environment [2]. A range of studies [3][4][5] pointed
out the significant of social computing, but only few [6][7]
addressed the challenges and opportunities of social computing
in an enterprise environment. Though enterprises can possess
significant benefits from consumer based social computing
platforms such as Facebook, but stringent security and privacy
requirement of an enterprise does not foster use of such plat-
form for collaboration. This amplifies the need of equipping
innovation platform with corporate social computing platforms
so that stringent enterprise security and privacy requirements
can be enforced. Current state-of-art collaborative platforms,
such as Microsoft’s SharePoint and IBM’s Lotus, only support

1

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

intra-enterprise collaboration and deficit in providing collab-
oration beyond the enterprise perimeter. However, extending
collaboration space beyond the enterprise perimeter brings
some new research challenges, which needs to be addressed.
First one is the user profiling, which is the foundation of the
multitude of functionalities within any collaborative platform.
User profile is the core for automated collaboration for any
enterprise. It allows to perform different numbers of interesting
scenarios, including people search based on their expertise,
target content push towards users to accelerate the knowledge
sharing. User profiles are essential for an enterprise, containing
information about the people working in an organization and
helping to obtain appropriate information about people’s skills,
education, and contacts. As user profiles are not linked, it is
not possible to reuse existing user profile on any other site.
Even state-of-art social computing platforms do not facilitate
any mechanism for linking user profiles to objects such as
people, device, data and sensors. Second one is balancing of
open and close collaboration for innovation in a user-centric
way by specifying collaboration criterion. We envisage that the
future lies in an innovation process that are under perceived
control of each innovation initiative owner. In many cases,
enterprises do not willing to share knowledge with certain
competitors in order to serve the increasing demands of shorter
innovation life cycle, and create successful products faster
than their competitors to protect their business. This leads to
third challenge of establishing trust and forming trusted virtual
enterprise, connecting a number of autonomous enterprises
that collaborate to achieve either a common business goal or
to form a virtual market place.

In this paper, we propose a privacy-enhanced collabora-
tive framework for an enterprise that operates in an open-
controlled environment. The proposed approach aims at easy
and automated collaborative process within and beyond enter-
prises perimeter for bringing innovation by sharing knowledge
and technology transfer. The idea is to form an innovation
cloud by leveraging the cloud computing that facilitate and
speed up the innovation life cycle. This provides an entry
point especially to SMEs and making them active part of
the innovation process. The proposed framework comprises
of three-components: Access Manager (AM), Collaboration
Ensembler (CE) and Collaboration Criterion Manager (CCM).
The framework supports user profile management and enables
enterprises employees to register their profiles. It further
allows them to initiate any novel idea or business opportunity.
The user profiles and ideas are backed up with profile and
idea database whose schema is structured though semantic
enhanced models which are specified in the form of user
profile ontology, trust ontology and idea ontology.

The rest of the paper is structured as follows. SectionII
discusses related work. SectionIII outlines the collaboration
enterprise computing approach. SectionIV provides details of
the case study where proposed approach is employed. Section
V discusses how automated collaboration can be enabled in
an enterprise environment. SectionVI presents the details of
proposed framework. SectionVII provides the road map to

realized proposed framework in the form of cloud services and
integrate those services with existing enterprise collaboration
platforms. We conclude the paper in SectionVIII .

II. RELATED WORK

This section presents the overview of prior work in the area
of user profiling, and cloud-based collaboration computing.

A. User Profiling

Social Network sites such as Facebook, Orkut, and MySpace
allow people to share their interests, social information and
contents among their friends or group of friends. It had
been seen in the very beginning that the information which
is stored on social network sites are not under the user
control. All the information is owned or controlled by database
owner. The profiles which contains user’s personal information
and attributes are typically cannot be exported in machine
processable formats. The lack of machine understandability is
a big hindrance in data portability and transformation between
systems.The aforementioned drawbacks can be resolved with
the advent of semantic technologies [8], more specifically the
Friend of a Friend (FOAF) project [9] which was initiated by
Dan Brickley and Libby Miller in 2000. Friend of a Friend
(FOAF) contains RDF vocabulary for expressing user personal
information (i.e., homepage, interest, friends, etc.) to create
FOAF profiles which are shared among people in a distributed
manner. FOAF profiles are posted on personal web site of
the user and linked from the user’s homepage. FOAF profiles
are static in nature and contains only one term ”knows” for
describing social relationships. FOAF profiles also contain
only one term ”interest” for describing user’s interest in a
specific topic. FOAF profiles does not provide any vocabulary
for capturing user’s context. Hence, FOAF profiles are only for
describing and linking people and things but not best suitedto
address user profile for personalized and context-aware service
delivery.

Gosh et. al. present technique of creation and discovery of
user profile [10]. The discovery of appropriate user profile for
specific service is addressed by considering the user sparse
information and context-awareness impact while accessing
services.Dynamically construction of user profile is done by
Profile Mediator and Constructor that receives desired user
profile information for requesting services. The user profile
ontology is defined in OWL by reusing FOAF vocabulary.
Thus, it inherits the same aforementioned FOAF limitations.

The 3rd Generation Partnership Project (3GPP) is a major
standardization body dealing with future 3G networks and
services. The Generic User Profile (GUP) spcecification [11]
is one of the 3GPP initiative to provide personalized services
delivery within the operators domain. The GUP aggregates
user related information such as user description, user services,
and user devices to provide personalized service delivery in a
standardized manner. GUP defines a global schema of the user
profile in XML. Though, GUP is a well-known specification
for user profiling but it lacks the enrichment of user profile and
since it is based on XML so it cannot provide any intended

2

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

meaning to associated data and only constrain the structureof
GUP profile.

Stann et. al. presents user profile ontology [14] which is
inspired by the SPICE project [15]. A dynamic, situation aware
user profile ontology is represented which enables real timesit-
uation awareness of the user and to express the social network
related preferences in situational sub-profiles.The preferences
are only limited to how a person’s friend or category of friend
can reach him in a specific situation and how Services (vibrate,
ring, voice message) can inform or notify him from a mobile
phone.

The General User Model Ontology (GUMO) [12] is a
notorious user profile ontology, represented using OWL. The
GUMO inherits the UserML [13] approach where user profile
is divided into triples. It contains some basic and useful infor-
mation about user’s characteristics, emotional state and some
facts about user’s personality. However, GUMO is quasi-static
model where applications can retrieve and add information
into the profile.

B. Collaboration and Cloud Computing

Rapid adoption of social computing not only brings a
new collaborative and innovation business opportunity for
enterprises but also leads to the issue of corporate privacy
when the collaboration is formed within the trusted network.
Mostly, studies shed light on the collaboration within the
enterprise boundary by isolating their employees from the rest
of the world. Some works have identified the significance of
collaboration not only in the enterprise environment but also
across the enterprise. In [16], authors analyze and compare
the existing vocabularies as a promising source for expert
finding framework. To make the finding simple and structure,
they highlight several factors such as common machine read-
able formats, reusable vocabularies and support of enabling
technologies for practical use cases. In [17], authors raise
the advantage of using linked data as an evidence source
of expertise by analyzing the traditional information retrieval
approaches. They also described some disadvantages of the
linked data on the basis of the results of their hypothesis.
Marian Lopez proposed a PeopleCloud platform [18] that
enables experts to collaborate from inside and outside organi-
zation. The platform helps organizations in completing their
tasks more efficiently and also leverage the expert networks
for future activities. They illustrated the platform capabilities
by discussing knowledge acquisition in IT inventory Man-
agement and IT support domain. Their comparison shows
that the knowledge acquisition either explicitly or implicitly
has significance to enterprises working environment. In [19],
authors propose a propagation-based approach in order to
find an expert in social network. They consider people local
information as well as their relationship between people for
their experiment. Their results show that the relationshipis
a useful factor for precision in expert finding. Capuano. N
presents the enterprise framework by using semantic web
technologies, assisting enterprises for collaboration [20]. Their
framework comprises several layers and, each layer performs

their own task. For instance, data representation handles
modeling of data and data storage layer collects all the data
from the data representation layer. In [21], authors propose the
secure collaboration platform for enterprises by pointingout
the security requirements for the cloud environments. They
employ web service policy framework for their platform as a
service (PaaS) infrastructure in order to mitigate the security
threats. The aforementioned studies are insufficient in dealing
privacy challenges in collaborative enterprises environment. In
this paper, our objective is to propose a framework that willad-
dress the privacy issue in collaborative enterprise environment.
Furthermore, the framework is not only capable of managing
semantic-enhanced user profiles but also provide open inno-
vation mechanism, which assists enterprises in collaborating
new idea and finding relevant partners having right expertise.

III. C OLLABORATIVE ENTERPRISECOMPUTING

APPROACH

Enterprises is growing and expanding their businesses glob-
ally where different people from different geographical loca-
tions connect, communicate and collaborate for achieving their
business goals. In this scenario, enterprises require reduction in
the cost of IT infrastructures without compromising their busi-
ness values. Cloud computing assists enterprises on-demand
resources provisioning where enterprises can exploit different
cloud computing models such as Platform as a Services (PaaS),
Infrastructure as a Services (IaaS) and Software as a Service
(SaaS) according to their conditions for reducing the IT costs
and increasing the productivity. Microsoft, IBM and Google
are notorious cloud computing providers not only providing
data and network infrastructure to the enterprises but also
providing software and applications for ease of business work.
For instance, word processing, document management, content
management and spreadsheets are delivered to enterprises on-
demand without buying and installing into their enterprise
environment. Indicators show that enterprises are considering
the adoption of cloud computing in their environment and its
market is growing with estimate of approximately $60 billion
by 2012 [22].

Cloud providers have already appraised value of collabo-
ration by incorporating social computing into their services
and application, which opens a new horizon of innovation.
Such collaborative environment facilitate enterprises intwo
ways: 1) It allows people to share their knowledge and
information between partners and co-workers 2) It captures
feedback from customers about products and services. In this
way, enterprises can make their business processes efficient by
involving skillful and competence people in the right placeat
right time and improving the quality of products and services
rapidly by getting the response from customers. Hence, the
overall impact will be increased efficiency and agility in
the enterprises working environment that could lead to the
introduction of new services and products to the market.

With the globalization of businesses, enterprises are pro-
ducing large volume of disparate data with a different format,
which are located on different geographical locations. In the

3

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

larger interest of enterprises, such data require to be exposed
to different trusted partners and co-workers. The exposurecan
be done on the basis of the relationship between enterprises
and/or people. The semantic web technologies can be used
as the glue that helps in providing meaning and linking to
enterprise data, services and user profiles. With such semantic
enhance descriptions it is possible to employ vertical search on
a predefined topic to get relevant and precise search results.
The in-built reasoning capabilities of semantic web enables
the system to deduce new facts from the existing facts. Today,
many enterprises are adopting semantic web technologies into
their software development life cycle to bring intelligence
and smartness in the decision-making process. The semantic
web technologies are being implied in many areas such as
enterprise information integration, content management,life
sciences and e-government. According to the gartner, the
user of semantic web technologies in corporate, called as
corporate semantic web, will reduce costs and improve the
quality of content management, information access, system
interoperability, database integration and data quality [23].

In our vision, we amalgamate cloud computing, social
computing and semantic web technologies to expand the
collaborative environment across enterprises boundariesand
we commonly referred to Collaborative Enterprise Computing
(CEC) as depicted in Figure 1. This fusion benefits enterprises

Figure 1: Collaborative Enterprise Computing

in many ways but low IT costs, correlate data of different
enterprises and providing communication mediums (Blogs,
Wikis, Social Network sites) are the most significant. The
main rationale behind the CEC is to bring innovation through
collaboration. Moreover, CEC ease the process of innovation
by finding the trustworthy partners across enterprise bound-
aries who can be involved in the innovation process. These
trustworthy partners are discovered/find according to their
competences and experiences on the basis of criteria which
can be given by enterprise.

IV. CASE STUDY - INNOVATION STOCK EXCHANGE

The objective of developing the innovation framework is to
create a trusted network for collaboration in an open-controlled
environment. Collaboration allows enterprises, governments,
entrepreneurs, academia, and other business entities to come

together from a closed environment to an open environment
and create new ideas as depicted in Figure 2.

Figure 2: Innovation through collaboration

This innovation ecosystem fosters the innovation process
and introduces new products and services to the market.
Such members of the innovation ecosystem could have the
opportunity to register their ideas and openly collaboratewith
people of their trusted network. This could also lead towards
the innovation stock exchange as depicted in Figure 3 where
investors could invest on highly ranked ideas for increasing
the business opportunities. By leveraging the collaboration into

Figure 3: Innovation stock exchange a case study under
consideration

the innovation ecosystem, enterprises will be able to develop
innovative products and reduce their operational costs. For in-
stance, Norwegian oil Industry reduced operational costs from
30-50% and enhanced productivity from 5-15% by integrating
several operations together into their system [24]. Moreover,
Procter&Gambler and Orange both has taken the initiative of
collaboration by inviting people to present their ideas on a
specific problem, and the most prominent idea was selected for
the transformation into product [25]. Thus, significant revenue
and customer satisfaction were acquired by both companies
with innovation through collaboration. Current approaches are
based on selected people from different organizations working
together for a common goal. Our privacy-enhanced innovation
framework will allow members of the innovation ecosystem
to register an idea, assign scores from experts and find out
trustworthy partners who can help in fostering the innovation

4

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

process so that the results can be achieved in the minimum
time.

Assume Bob has an innovative idea, which he registers it
in the system so that he could get right partners who could
collaborate to transform the idea into realization. Idea will be
reviewed for acceptance by the experts that belong to different
enterprises. The idea will be published categorically according
to the nature of its topic. The system will find experts in
that topic by employing idea owner polices and criteria. The
system will send notification to experts via email or sms and
consider them to assign scores. The system facilitates Bob in
finding trustworthy partners with whom he could collaborate
for the realization of the idea regardless enterprise premises.
Furthermore, the high-score idea will be published in the
innovation stock exchange where members could open a vital
investment opportunity. Thus, the system not only helping Bob
in finding the right partner for his idea but also providing him
implicit technical review, scientific value and the importance
of his idea.

V. ENTERPRISECOLLABORATION ENABLEMENT

This section outlines how an automated and trusted collab-
oration can be enabled in an enterprise.

A. User Profiling

User profile plays an important role for enabling automated
collaboration beyond enterprise perimeter. User profilinggen-
erally involves profile setup, manipulation, and synchroniza-
tion. In profile setup a basic user profile is created with explicit
user feedback. The profile setup procedure can get user social
network sites membership information from user basic profile,
allowing profile setup mechanism to retrieve more information
about user’s preferences, groups and friends. In turns, this
leads to implicit user feedback, where user information is
collected without any intervention of user. The profile manip-
ulation consists of create, read, update, and delete functions.
The profile synchronization keeps update of all distributed
profiles. ETSI [26] , 3GPP GUP [11] and MAGNET Project
[27] among others are first initiatives towards standardization
of user profile structure. However, these aforementioned re-
search initiatives do not aim for collaboration. They mostly
focus on personalized services. Whereas, in this outlook we
specifically focus on user profile in the context of enterprise
collaboration. We extend the user profile ontology proposedin
[35], which classify the profile into different categories.Each
profile contains relevant information according to its category
and comprises authorization policy to restrict its access to
third parties. For instance, corporate profile contains person’s
professional skills and expertise in a specific topic. This profile
can only be accessed by third parties (i.e., colleagues, friend
from trusted-virtual company etc.) to whom the permission
has been granted. In this manner, a person can explicitly
choose what to share and with whom to share his profile.
Currently, we have defined one core concept Profile, which
contains subclasses: (i) personal Profile, (ii) social profile, (iii)
corporate profile, (iv) public profile and (v) private profileof it.

A simplified snapshot of the user profile ontology is depicted
in Figure 4.

Figure 4: User Profile ontology

B. Trust Modeling

While Trust is relative term, which is defined differently
in literature according to the nature of the work. In [28],
author defines ”Trust in a passionate entity is the belief that
it will behave without malicious intent”. In [29], authors
consider context as an important factor for establishing trust
by defining, ”Trust is the firm belief in the competence of an
entity to act securely, dependably and reliably within a specific
context”. In this paper, enterprise establish trust between their
partners and co-workers to collaborate with each other for
improving the quality of work and minimizing the risk factors.
Thus, we define trust in such a way where the trusting agent
has belief on trusted agent capabilities (see Figure 5) on the
basis of relationship with the trusted agent for collaboration
in order to realize a specific business opportunity.

Figure 5: Definition of trust

We consider four factors context, time period, relationship
and trust value that influence enterprises to obtain trusted
partners for collaboration. The context is the situation or
scenario for enterprises such as writing a research proposal,
sharing new idea, discussing recent activity. Time period is a
time at which one person interact with the other person and
afterwards assign a trust value to it. For instance, one can

5

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

establish trust for the context ”writing a research proposal”
in the time period 2009-2010. Relationship plays a pivotal
role in the trust establishment, which associates the trusting
agent with the trusted agent. The strength of the relationship
is determined with the trust value which is assigned by
trusting agent for a given context and time. Employees of an
enterprise establishes a relationship with others by doingdirect
interaction and thus assign trust values to them. For instance,
Bob meets Alice in a conference and becomes friend, Bob
has a colleague and Bob meets Charlie on random meetings.
Employees also receive recommendations about others from
trusted friends, and trusted partners, which increase enter-
prises contacts not only within enterprise boundaries but also
outside enterprise boundaries. For instance, Bob has a direct
relationship with Alice, and Alice has a direct relationship
with Charlie. Neither Bob nor Charlie has a direct relationship.
Alice recommends Bob about Charlie and since Bob believes
on Alice recommendation he can treat Charlie as a trusted
partner. Trust relationship is depicted in Figure 6.

Figure 6: Trust relationship

To contrive social graph of trusted partners, Friend-of-a-
Friend (FOAF) vocabulary helps for establishing friendship
relation with foaf:knows property but it does not specify what
is the value of friendship between two friends? FOAFRealm
Onotology Specification [30] leverages the foaf:knows prop-
erty by assigning the friendship value to the relationship.
However, the ontology lacks in associating the value with
given context and time period that are pivotal factors for
enterprises. Thus, we propose to reuse FOAFRealm Ontology
in conjunction of our Trust Ontology that allows employees
to define their list of partners and assign trust values to them
in a given context and a time period. The values can be given
in the range of 0% (very distant) 100% (very close). The

above table presents the two relationships R1 and R2 where
Bob has 90% trust on Alice in the context of ”Writing research
proposal” for the time period 2009-2010. This shows that Bob
only trusts Alice in writing research proposal context and he
does not trust her in other contexts. It can also be possible
for Bob to assign trust values to Alice in different context for
different time.

The trust Ontology is designed in [36] by considering the
key elements (i.e., Trust direction, Trust Value, and TrustType)
to define the concept of Trust. Person can assign numerical
trust values to other person with respect to their relationship.
Furthermore, person can also assign multiple trust values
to same person on multiple contexts. All this information
is stored in Trust Ontology, which later can be used as
a security attributes for assigning authorization policies to
the user profiles. Moreover, we defined the concept of the
TrustedParties as a union of ServiceProviders and Friends class
and then subsume it to TrustedParties. A simplified snapshot
of Trust ontology is depicted in Figure 7.

Figure 7: Overview of the trust ontology

C. Collaboration Criterion

As we discussed before that user-centric is one of the
most demanding and prevailing feature of any collaboration
platform, where innovation process is under perceived control
specific innovation activity initiator. This can be achieved by
defining collaboration criterion, where initiators can specify
their conflict of interest, policy for establishing trust and
some other requirements for automated collaboration. This
paper proposes Semantic Web Rule Language (SWRL) [31],
which is a combination of RuleML and OWL-DL [32]. In
SWRL, rules are expressed in terms of OWL concepts i.e.,
classes, properties, individuals and literals. Rules are written
in the form of Horn clauses antecedent (body) and consequent
(head) where implication combines both the antecedent and
consequent together. SWRL expressivity can be expanded with
built-ins that provide traditional operations for comparison,
mathematical transformation and URI construction. SRWL
also enhances the expressivity by taking OWL expression (i.e.,
restrictions) in the antecedent or consequent of a rule but at
the cost of undecidability. However, the undecidability issue
can be resolved with DL-Safe rules [33]. The DL-Safe rule
binds only known instances in ontology to rule variables. This
restriction is sufficient to make SWRL rules decidable.

D. Business Idea Ontology

The Business Idea Ontology provides a mechanism
to describe an idea which can be created by person,

6

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reviewed by executive members of an organization and
made it available for others in order to assign a score.
The ontology is combined with existing ontologies, such
as SKOS and FOAF, to achieve the modularity approach.
We choose a hierarchical model that links our main classes
id:Idea, org:ExecutiveMembers, skos:Concept, id:Score and
foaf:Person to the super class owl:Thing. An Idea class
(id:idea) contains the ideas by including abstracts, dates,
keywords and title to it. ExecutiveMembers class contains the
list of members who are responsible for providing review and
assign scores. These scores reside in the subclasses of Score
class (id: Score), which describes the assigned values in three
terms such as ”Excellent”, ”Good” and ”Fair”. Furthermore,
score class is created as a value partition class that included
the subclasses ”Excellent”, ”Good” and ”Fair” as shown in
the class definition.

Score ≡ Excellent ∪Good ∪ Fair

We make these subclasses disjoint so that an individual
cannot be a member of more than one class. In this manner, an
idea can be classified on the basis of assigned score. We also
defined properties (object and data) that allow us to describe
the relationship between individual and literal values to these
classes.

∙ id:hasTopic is an object property that links idea to the
skos:Concept, describing the topic of an idea, e.g., Secu-
rity, and Mobile Development.

∙ id:isCreatedBy is an object property that links the idea to
a foaf:Person who is the creator of the idea.

∙ id:hasAssign is an object property point to the score
class, containing score values that assigned by executive
members.

The Figure 8 represents the complete overview of the
Business Idea Ontology.

Figure 8: Overview of the business idea ontology

VI. I NNOVATION FRAMEWORK

The innovation framework is designed with the following
components: Access Manager, Collaborate Ensembler and
Collaboration Criterion Manger as depicted in the Figure 9.

A framework first registers a person through Access Manager
and allows him to create his user profile. After registration,
the person interacts with Idea manager for the creation of a
new Idea.

Figure 9: Innovation framework functional architecture

Idea manager notifies the members of an organization
about the new idea so that they can review it and score it.
After scores, the idea manager makes it available to different
members or trusted-virtual communities according to their
access rights that are accorded by the idea creator. Later,
Collaboration ensembler reads the relevant information from
the user profile and the idea along with the criteria from
collaboration Criterion Manager by discovering the relevant
partners. Apart from that, user profile manager also links the
distributed user profiles by enabling linked data repository.
This empowers a person to separate his corporate profile from
his social or public profile and accord access according to
their relationship. In this manner, person can expose his data
in a controlled fashion where everything is under perceived
control.

A. Profile Creation Phase

During the user profile creation phase, access manager
receives a profile creation request from a user. First, access
manager validates the user identity and after successfully
validating the user, a profile creation page will be displayed
where the user supply his information, needed by the profile
manager. After completing the profile, access manager sends
the CreateProfileRequest to Profile Manager, which stores the
user profile information in the profile Knowledge Base (KB).
Once the access manager receives the acknowledgment from
the profile manager, it sends the ProfileCreatedResponse to
the user as depicted in Figure 10. The user can also be asked
to present the URI of his distributed profiles so that the user
profiles can be integrated from multiple sources. These linked
user profiles are stored in the linked data repository and later,
co-workers or other third parties can access accordingly.

7

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10: Profile creation phase

B. Idea Registration Phase

The idea manager is responsible for managing the idea
requested by the Access Manager. Idea manager is also respon-
sible by providing the mechanism of assigning scores. Initially,
the person requests Access Manager for the registration of
a new idea. After successfully validating the identity of the
person, access manager precedes him to the IdeaRegistra-
tionPage where idea can be written by providing its Title,
Abstract and Date. Idea manager stores the idea in to the Idea
Knowledge Base (KB) upon receiving RegisterIdea request
from the Access Manager by getting SubmitIdea request from
the person as depicted in Figure 11. Once the idea is registered

Figure 11: Idea registration phase

and stored in the knowledge base, Idea Manager sends the
notification through SMS or email to executive members of
the organization so that they can make the innovation process

effective by involving themselves as soon as possible.

C. Score Phase

After receiving the new idea registration notification, the
executive members can review the idea. To initiate the review
process the executive members provides their credentials and
idea name to access manger, which in response return the
newly register idea review page after validating the credentials.
The executive member can submit their score after reviewing
the idea. Once all the executive members submit their score
the IdeaManager calculate the overall score and set the status
of the Idea based on the score. If the idea achieved status
of open for collaboration then the CEE exploits description
logic [34] based reasoning capabilities over user profile KB
and the approved idea by incorporating collaboration criteria
associated with the idea. The end result of this reasoning
process is a trusted-virtual company, containing a list of
relevant partners that are suitable for the approved idea. The
score phase in depicted in Figure 12.

Figure 12: Score phase

VII. I MPLEMENTATION ROAD MAP

Having described the innovation framework architecture,
this section outlines the road map for implementation of cloud
based services using the state-of-the-art technology enablers.

We propose to implement innovation framework in the form
of APIs as they are becoming mainstream. The essence of this
approach is better integration with existing apps, enablement
of custom apps development and augmentation of existing
apps with new functionalities. Additionally, we favor an open
API strategy instead of an internal-first API strategy where
APIs are developed internally first and then shared with close
partners and in the last phase made them open to the world.

This outlook aims to bring all stakeholder from all areas
of collaborative ecosystem, including industry and academia,
to enhance and ease off innovation process. Such inter-
organization collaboration demands a common/shared place
to publish and share novel and innovative ideas without

8

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

delving into technology infrastructure. We anticipate that cloud
computing platform is the most appropriate for such inter-
organization collaboration because it allows to focus more
on delivering services rather than on managing technology
infrastructure. We use cloud platform as a service endpoint
provider and data storage. In this regard, we select the win-
dows azure platform [37], which comprises of: (1) Windows
Azure - an operating system as a service that facilitate on-
demand compute, storage and mange web application on the
internet, (2) SQL Azure - a relational data storage service in
the cloud that foster reuse of familiar relational models, tools
and utilities, (3) Windows Azure AppFabric - a cloud-based
infrastructure services for applications running in the cloud or
on enterprise premises.

The prototype implementation of innovative stock exchange
case study can be realized in the form of windows azure
services. For this purpose, we propose to develop UserPro-
fileService, IdeaRegistrationService, IdeaRatingService, and
IncubationService by using the innovation framework APIs.
Each service is backed by a DB storage such as ProfileDB,
IdeaDB, and ScoreDB. Despite the fact that windows azure
platform provides a wide range of storage options but it
still lacks the support of semantic enhance storage (i.e.,
triplet storage). This limitation can be fixed by having a
mapping mechanism for proposed ontologies that is capable
of incorporating ontology level changes into relational storage.
Such mechanism can maintain semantic related stuff into
separate tables for each service DB storage, which works as an
overlay for the each service DB storage. These windows azure
services can be integrated with other apps regardless of the
technology since windows azure supports different standards,
protocols and languages including REST, SOAP, JAVA, PHP
and Ruby. However, we will focus only on SharePoint Server
2010 [38] (i.e., Microsoft based enterprise collaborationand
social computing platform). The integration of windows azure
services with SharePoint 2010 requires the development of
Silverlight enabled Web Parts. In this case, each Web Part is
associated with some Windows Azure service and SharePoint
acts as service consumer. The overall integration strategyis
depicted in Figure 13.

Figure 13: Integrating collaboration services with SharePoint
server 2010 using SharePoint Web Parts

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we proposed the collaborative enterprise com-
puting (CEC) approach, helping in the creation of the network
of enterprises for enabling active, automated and trusted inter-
enterprise collaboration. This is achieved by consideringthe
challenges of user profiling, balancing of open and close
collaboration and trust establishment. The CEC approach is
quite significant for discovering trusted relevant partners who
could involve in the innovation life cycle process.

The proposed framework comprises three core components
such as Access Manager (AM), Collaboration Ensembler (CE)
and Collaboration Criterion Manager (CCM). As the frame-
work is designed by considering the standard semantic web
tools it inherits some built-in features such as interoperability,
integrating of data from multiple sources, and reasoning for
deriving the entailment facts from the knowledge base. We
also designed semantically enriched user profile ontology,
trust ontology and business idea ontology by considering the
modular approach. Moreover, the paper provides the road
map for the implementation of the innovation framework in
the form of APIs. The API oriented approach is suited for
better integration with other apps. We proposed to develop
cloud based services such as UserProfileService, IdeaRegistra-
tionService, and IdeaRatingService using proposed APIs. Our
exploration shows that capturing enterprise employee exper-
tise, and ideas in a structured and machine understandable way
are highly eminent for an automated inter and intra- enterprise
collaboration.

Our ongoing and future work includes evaluating the frame-
work by describing the sophisticated criteria for discovering
relevant partners. We are also considering enhancing the
framework by providing a Trust Management component,
which can ease the trust assigning and evaluation process.
Moreover, we will evaluate the framework in a real environ-
ment.

ACKNOWLEDGMENT

This work is supported by the Norwegian Research Council.

REFERENCES

[1] P. Banerjee, R. Friedrich. L. Morell, ”Open innovation at HP Labs”, IEEE
Computer Society, Nov. 2010, pp. 88-90, doi:10.1109/MC.2010.322.

[2] J. Bughin, M. Chui, and A. MillerHow, ”Companies are
benefiting from Web 2.0: McKinsey Global Survey Results”,
http://www.mckinseyquarterly.com/BusinessTechnology/BT Strategy/
How companiesare benefiting from Web 20 McKinsey Global
Survey Results 2432 [accessed on 31 January 2011]

[3] Oracle, ”The Social Enterprise: Using Social Enterprise Appli-
cations to Enable the Next Wave of Knowledge Worker Pro-
ductivity”, http://whitepapers.techrepublic.com.com/abstract.aspx?docid=
391431 [accessed on 31 January 2011]

[4] A. Fu, C. Finn, D. W. Rasmus, R. Salkowitz, ”Social Computing in
the Enterprise Microsoft vision for Business Leaders”, Microsoft White
Paper, 2009

[5] K. Efta, ”Enterprise Social Computing”, http://www.allyis.com/thinking/
Pages/Enterprise-Social-Computing.aspx [accessed on 31January 2011]

[6] A. P. McAfee, ”Enterprise 2.0: The Dawn of Emergent Col-
laboration”, http://sloanreview.mit.edu/the-magazine/articles/2006/spring/
47306/enterprise-the-dawn-of-emergent-collaboration/3/ [accessed on 31
January 2011]

9

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] D. Hinchcliffe, ”Top Ten issues in adopting Enterprise
Social Computing”, http://www.zdnet.com/blog/hinchcliffe/
ten-top-issues-in-adopting-enterprise-social-computing/581 [accessed on
31 January 2011]

[8] G. Antoniou, F. Van Harmelan, ”A Semantic Web Primer”, MIT Press
2008.

[9] FOAF Project, ”http://www.foaf-project.org/”, [accessed on 31 January
2011]

[10] R. Gosh, M. Dekhil, ”Discovering User Profiles”, Proceedings of the
18th international conference on World wide web, 2009.

[11] 3GPP TS 29.240, ”3GPP Generic User Profile, Stage 3, Release 6”, http:
//www.3gpp.org/ftp/Specs/html-info/29240.htm [accessed on 31 January
2011]

[12] D. Heckmann, E. Schwarzkopf, J. Mori, D. Dengler,A. Kroner, ”The
user model and context ontology GUMO revisited for future Web 2.0
Extensions”, Contexts and Ontologies: Representation andReasoning,
pp.37-46

[13] D. Heckmann, A. Krueger, ”A user modeling markup language
(UserML) for ubiquitous computing”, User Modeling 2003 In User
Modeling 2003 (2003), pp. 148-148

[14] J. Stan, E. Egyed-Zsigmond, A. Joly, P. Maret, ”A user profile ontology
for situation-aware social networking” , 3rd Workshop on Artificial
Intelligence Techniques for Ambient Intelligence (AITAmI2008)

[15] IST FP6 Spice project,”http://www.ist-spice.org/” [accessed on 31 Jan-
uary 2011]

[16] B. Aleman-meza , U. Bojars , H. Boley , J.G. Breslin, M. Mochol , L.
Jb Nixon , A. Polleres , A. V. Zhdanova, ”Combining RDF Vocabularies
for Expert Finding”, in proceedings of the 4th European Semantic Web:
Research and Applications , 2007

[17] M. Stankovic, C. Wagner, J. Jovanovic, P. Laublet, ”Looking for Ex-
perts? What can Linked data do for you”, in proceedings of theWorkshop
on Linked Data on the Web, April 27, 2010

[18] M.Lopez, M. Vukovic, J. Lardeo, ”People Cloud Service for Enterprise
Crowdsourcing”, in proceeding of IEEE Service Computing, 2010

[19] J. Zhang, J. Tang, J. Li , ”Expert Finding in a Social Network”, in
proc. of Advances in Databases: Concepts, Systems and Applications In
Advances in Databases: Concepts, Systems and Applications, Vol. 4443
(2010), pp. 1066-1069-1069.

[20] N. Capuano, M. Gaeta, F. Orciuoli, P. Ritrovato, ”Semantic Web Fos-
tering Enterprise 2.0” in Proceeding of Intelligent and Software Intensive
Systems, International Conference, Los Alamitos, CA, USA,2010.

[21] S. Bertram, M. Boniface, M. Surridge, N. Briscombe, M. Hall-May,
”On-Demand Dynamic Security for Risk-based Secure Collaboration in
Clouds”, in Proceeding of IEEE 3rd international conference on Cloud
Computing, Miami, August 2010.

[22] Cisco White Paper, ”Transforming Enterprise IT Services
with a Secure, Compliant Private Cloud Environment”,
http://www.cisco.com/en/US/services/ps2961/ps10364/ps10370/ps11104/
servicescloud enablementwhite paper enterprise.pdf [accessed on 15
January 2011]

[23] Gartner Press Release, ”Gartner’s 2006 Emerging Technologies Hype
Cycle Highlights Key Technology Themes”, http://www.gartner.com/it/
page.jsp?id=495475 [accessed on 5 January 2011]

[24] R. A. Fjellheim, R. B. Bratvold, M. C. Herbert, ”CODIO - Collaborative
Decision making in Integrated Operations”, in proc. of Intelligent Energy
Conference and Exhibition, Society of Petroleum Engineers, 2008.

[25] NESTA, ”Open innovation from marginal to mainstream”,http://www.
nesta.org.uk/library/documents/Open-Innovation-v10.pdf [accessed on 5
January 2011]

[26] ETSI User Profile Management, http://portal.etsi.org/stfs/STF
HomePages/STF265/STF265.asp [accessed on 15 January 2010]

[27] MAGNET Project, http://www.telecom.ece.ntua.gr/magnet/index.html
[accessed on 15 January 2011]

[28] A. Jsang, ”The right type of trust for distributed systems,”
in Proc. of the 1996 workshop on New security paradigms
(NSPW ’96). ACM, pp. 119-131, doi:10.1145/304851.304877,
http://doi.acm.org/10.1145/304851.304877.

[29] T. Grandison, M. Sloman, ”A Survey of Trust in Internet Applications,”
in proc. of the Communication Surveys and Tutorials, IEEE, Volume 3
Issue 4, pp. 2-16, 2000, doi:10.1109/COMST.2000.5340804.

[30] FoaFRealm Ontology Specification, http://www.foafrealm.org/xfoaf/0.1/
index.html}accessed on 15 January 2011]

[31] Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/
[accessed on 15 January 2011]

[32] Ontology Web Language, http://www.w3.org/TR/owl-guide/ [accessed
on 15 January 2011]

[33] B. Motika, U. Sattlerb, R. Studera, Query Answering forOWL-DL with
Rules, in Web Semantics: Science, Services and Agents on theWorld
Wide Web journal. Volume 3, Issue 1, July 2005, Pages 41-60.

[34] Franz Baader, Diego Calvanese, Deborah L. McGuinness,Daniele Nardi,
and Peter F. Patel-Schneider ”The Description Logic Handbook: Theory,
Implementation and Application”, Cambridge University Press, 2002.

[35] Zahid Iqbal, Josef Noll, Sarfraz Alam, Mohammad M. R. Chowdhury,
”SemSUP: Design and Implementation of Semantic Enhance Social-
Aware User Profile”, in proc. of IEEE DEST, 12-15 April 2010, Dubai.

[36] Zahid Iqbal, Josef Noll, Sarfraz Alam, Mohammad M. R. Chowdhury,
”Toward User-centric Privacy-aware User Profile Ontology for Future
Services”, in proceedings of IEEE third International Conference on
Communication Theory, Reliability, and Quality of Service(CTRQ 2010),
13-19 June 2010, Athens, Greece, pp. 249 - 254.

[37] Windows Azure - Microsoft’s Cloud Services Platform, http://www.
microsoft.com/windowsazure/ [accessed on 15 January 2011]

[38] Microsoft SharePoint Server 2010, http://sharepoint.microsoft.com/
en-us/Pages/default.aspx [accessed on 15 January 2011]

10

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fault Tolerance Framework using Model-Based Diagnosis: Towards Dependable
Business Processes

Angel Jesus Varela-Vaca, Rafael M. Gasca, Diana Borrego, Sergio Pozo
Computer Languages and Systems Department,

Quivir Research Group
ETS. Ingenierı́a Informática, Avd. Reina Mercedes S/N,

University of Seville, Seville, Spain
{ajvarela, gasca, dianabn, sergiopozo}@us.es

Abstract—Several reports indicate that one of the most
important business priorities is the improvement of business
and IT management. Management and automation of business
processes have become essential tasks within IT organizations.
Nowadays, business processes of a organization use external
services which are not under our its jurisdiction, and any
fault within these processes remain uncontrolled, thereby
introducing unexpected faults in execution. Organizations must
ensure that their business processes are as dependable as
possible before they are automated. Fault tolerance techniques
provide certain mechanisms to decrease the risk of possible
faults in systems. In this paper, a framework for developing
business processes with fault tolerance capabilities is provided.
Our framework presents various solutions within the scope
of fault tolerance, whereby a practical example has been
developed and the results obtained have been compared and
discussed. The implemented framework presents innovative
mechanisms, based on model-based diagnosis and constraint
programming which automate the isolation and identification
of faulty components, but it also includes business rules to
check the correctness of various parameters obtained in the
business process.

Keywords-Business process, Business Process Management,
Fault-tolerance, Dependability.

I. INTRODUCTION

The automation of business processes is emerging into the
enterprise arena as a mechanism for improvement. Compa-
nies may decide to deploy Business Process Management
System (BPMS) to automate their business processes, but
it system cannot guarantee perfect executions error-free or
fault-free execution. On the other hand, nowadays there
exist a trending in the integration of services of different
companies in the business processes. The integration of
external services set up new point of vulnerability in the
business process execution. Companies have to ensure that
their business processes are as dependable as possible using
mechanisms such as introduced in [1][2]. Gartner’s CIO re-
port [3] indicates that the most important business priorities
include: improvement of business processes, cost reduction,
enterprise workforce effectiveness, security and IT manage-
ment. Therefore, dependability is a significant requirement
for many types of companies, since any failure in their busi-

ness processes may lead to terrible consequences: economic
lost, lives lost, systems destroyed, security breaches, and so
on.

In recent years, a new paradigm has emerged in the scope
of business IT: Business Process Management (BPM). BPM
is defined as a set of concepts, methods and techniques to
support the modelling, design, administration, configuration,
enactment and analysis of business processes [4]. BPM has
become an essential tool for organizations, since it is defined
as a methodology for the improvement of the efficiency
through systematic management of business processes that
should be modelled, automated, integrated, monitored and
optimized in a continuous way. One of the most important
goals of BPM is the better understanding of the operations
that a company performs and the relationships between
these operations. BPM also aims at narrowing the gap
between business processes that a company performs and
the implementation of these processes in the BPMS.

The BPM paradigm follows a life cycle that consists of
several stages [5], shown in Figure 1. During each stage,
various kinds of faults can be introduced:

• In the design stage, business process models can present
some design faults (such as deadlocks, live-locks and
starvations). Some systematic approaches provide de-
sign guidelines that allow their designed processes to
be corrected and improved. Design problems are not
taken into account in this paper since it is an issue that
has already been subject to wide discussion [6][7][8].

• In the run-time stage, faults could be located in the
business processes when unexpected outputs, unex-
pected messages, unexpected events, or unexpected per-
formances are obtained. Executable business processes
tend to use external services that are not under their
jurisdiction. Thus, it is impossible to ensure that the
functionality of a certain external service changes dur-
ing the business process life cycle. As a consequence,
unexpected changes in services could entail changes in
business process behaviour.

Therefore, companies must pay attention on the inclusion

11

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of measures that promote the reduction of the risk of possible
faults and increase the dependability of business processes
from design stages. The majority of proposals have used
fault tolerance ideas in other areas such as: firewalls, grid
computing, composition of applications and service-oriented
architectures, [9][10][11][12][13]. In these studies, various
fault tolerance approaches have been applied: check-point
view [9], replication and recovery techniques [10][11], and
other sophisticated techniques such as dynamic binding [12],
and self-reconfiguration of systems [13]. Our approach pro-
poses to improve dependability properties in the execution
of business processes based on techniques for automatic
identification of faults by means of model-based diagnosis
which helps to establish specific fault tolerance mechanisms.
Fault tolerant mechanisms applied in this work are based
on classic fault tolerance ideas such as replication, check-
pointing and techniques of diversity focused on the context
of service-oriented business processes.

This paper is structured as follows: Section II introduces
some concepts of BPM and fault tolerance; Section III
presents our framework for dependable business processes
using fault-tolerant techniques; in Section IV, a practical
example is explained and developed; Section V shows ex-
perimental results that are discussed; and, in the last section,
conclusions are drawn and future work is proposed.

II. BUSINESS PROCESS MANAGEMENT SYSTEM AND
FAULT TOLERANCE

In order to understand the BPM paradigm, it is necessary to
show the typical business process life cycle [5], as shown
in Figure 1. The life cycle consists of different stages:

1) Design and Analysis: business process models are
defined and validated.

2) Configuration: once business process models are val-
idated, they need to be implemented by a dedicated
software system. In this configuration stage a software
systems (BPMS) is chosen and configured where busi-
ness processes will be deployed.

3) Enactment: once deployed, process enactment needs
to guarantee correct execution in accordance with
various constraints specified in the model.

4) Diagnosis: techniques are applied to identify and
isolate faults in business processes. Nowadays, most
diagnosis techniques applied are focused on identify-
ing design faults.

In BPM, several levels of business processes can be
identified depending on the point of view of the organization
[4]. In this paper, only two levels of BPM are considered:

• Operational business processes are described with busi-
ness process models where the activities and their rela-
tionships are specified, but implementation aspects are
not taken into account. Operational processes are the
basis for developing implemented business processes.

Figure 1. Business process life cycle.

• Implemented business processes contain information
about the execution of the activities and the technical
and organizational environment where they will be
deployed and executed.

Implemented business processes and specifically service-
based business process use external services which remain
outside the jurisdiction of the organization. Although, busi-
ness process models are validated and verified at the design
stage, organizations cannot guarantee the correct execution
of changes in services interms of functionality and faults
simply through the lack of response or security attacks, and
so on. The identification of where business processes are
failing, and which components are involved in the faults may
probe worthwhile for the numerous business stakeholders
(designers, analysts, developers, etc).

Fault diagnosis is a method which permits us to determine
why a correctly designed business process fail to work
as expected. Diagnosis aims to identify and isolate the
reason of any unexpected behaviour, or in other words, to
identify which parts are failing in a business process. In this
work, model-based diagnosis [14] is used in order to isolate
the faulty services. Model-based diagnosis is recognized as
a very powerful tool within the community of diagnosis
due to its ability to solve the problem of isolating faulty
components.

Our proposal is focused on achieving dependable business
processes, but to the achievement of dependability must first
be clarified [15]. The properties for achieving dependability
fall into four major groups: fault tolerance, fault avoidance
or prevention, fault removal, and fault forecasting.

By definition, fault tolerance [15] is a mechanism used
to order to guarantee service by complying with the spec-
ification in spite of the presence of faults. Fault-tolerance
techniques are a means of reducing the risk of faults. On the
whole, fault-tolerance frameworks are focused on physical
systems and not on software systems and most applied
techniques are based on replication and recovery. Replication
is employed in the recuperation of services by means of
duplication of each of its functionalities in form of replicas

12

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and in the case of a service replica fault another replica takes
control. Typical solutions in replication are considered as:

• Passive replication [16]: the client only interacts with
one replica (primary) which handles the client request
and sends back responses. The primary replica also
issues messages to the backup replicas (other secondary
replicas) in order to update their state.

• Active replication [16]: all replicas play the same role.
All replicas receive each request, handle the request,
and send back the response to the client. Other solutions
based on active replication [17] exist.

Initially, active replication provides a generally faster
response time than passive replication. However, in active
replication all replicas must to process the requests, and
hence more system resources are employed than for passive
replication. Moreover, the nested redundant replicas could
cause a problem of invocations since the use of active
replication requires replicas to be deterministic. No such
determinism is required for passive replication, and therefore
it is more flexible.

In the majority of cases, fault tolerance is used as only a
hardware approach, but software is also a crucial factor in
the effective good running of organizations. Increasing the
dependability of software presents some unique challenges
when compared to increasing the dependability of traditional
hardware systems [18]. Hardware faults are mainly physical
fault, which can be characterized and predicted over time.
Software has only logical faults which are difficult to vi-
sualize, classify, detect, and correct. Changes in operational
usage or incorrect modifications may introduce new faults.
To protect against these faults, it is insufficient to simply add
redundancy, as is typically done for hardware faults, since
doing so would simply duplicate the problem.

III. FAULT TOLERANCE FRAMEWORK

In the previous section, the basic ideas of the business
process life cycle are introduced and the main stages to man-
age business processes are shown. This section is focused
on presenting the framework by defining all its components
and clarifying how it works. The proposed framework is
based on the main ideas of the BPM life cycle, whose
structure is depicted in Figure 2. As can be observed, the
framework is structured in four main layers: Modelling,
Applications, Fault Tolerance, and Services. In the following
subsections, the various parts of the framework are detailed
and discussed. Although it can be noticed that the main
characteristic is the utilization of a specific fault-tolerance
layer. This layer contains specific mechanisms in order to
mitigate the risk of possible process faults detected in the
execution of business processes.

Before continuing any further, some assumptions about
business processes should be stated:

1) A business process model has a single start event,

Figure 2. General view of the framework.

a single end condition and every activity contributes
towards finishing the process correctly.

2) The business process design is correct, and hence no
design faults exist(deadlocks, live locks, starvations,
and so on).

3) Operational business processes cannot suffer byzantine
faults (arbitrary faults).

4) Operational business processes are stateless.
Therefore, the main problems left for discussion in this

paper involve the diagnosis and mitigation of incorrect
outputs/results and events in business processes. In the
following subsections, each framework layer is described.

A. Modelling Layer

The design stage is focused on describing different models
used in our framework. Our approach is based on three kinds
of models:

• Business process models are graphical descriptions of
business processes (BP). These models represent the
graphical formalization of the various constraints to
which a business process has to comply at any time
they are employed. Within the arena of BPM, various
modelling languages have emerged: Flowcharts, Petri
Nets, Event-driven Process Chain (EPC), UML Activity
Diagrams, Data Flow Diagrams (DFD), IDEF, and
Business Process Management Notation (BPMN). In
the design stage, the most widely used for business
processes representation is currently the standard Busi-
ness Process Management Notation (BPMN) by OMG
[19]. This notation is highly useful for business analysts
since BPMN contains many different elements such as
activities, data objects, and gateways. However, BPMN
diagrams save no information on where they will be
executed and are platform-independent. Figure 3 shows
an example of a BPMN diagram where elements are de-
scribed. Our framework can support BPMN diagrams,

13

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and a prototype is developed and shown in [6].

Figure 3. BPMN element description.

• Business rule models; a business rule is a statement
that defines those aspects of business processes that are
impossible to gather or express in the model [20]. In
fact, by separating business logic from business design,
if the business process logic changes then, only the
business rules must be changed but not the business
process. Business rules can be formalized as ”if-then”
statements in a selected Business Rule Management
Systems (BRMS), by using natural language or for-
mal methods. BRMS is a software system employed
to define, deploy, execute, monitor, and maintain the
variety and complexity of decision logic that is used
by operational systems within an organization. In our
proposition, business rules act as an ”oracle”. Thus,
they indicate the correctness of outputs of the business
processes.

• Constraint models are necessary in the model-based
diagnosis stage where Constraint Satisfaction Problems
(CSP) are used. In our proposition, constraint models
are employed to describe behaviour activities gathered
within business processes. Constraint models can be
constructed off-line or on-the-fly. Process constraint
models can be built online since logs captured where
information of inputs, outputs and service constraint
model can be given. Both Diagnosis and CSPs will be
described in Section III-C.

Business process validation analysis methods are focused
on discovering whether the designed business processes can
be automatically enacted as expected. Through this analysis,
any possible constraint violations should be detected. In
various studies, process models have been analyzed in order
to prevent structural faults in the form of : Petri Nets
[21]; a set of graph reduction rules to identify structural
conflicts in process models [22]; and an improved version
of the latter method [23]. However, in a earlier work [6]
a business process validation has been studied, and an
automatic mechanism to fault structural diagnosis has been
integrated in a editor of BPMN diagrams.

B. Application Layer

In this layer, various technologies which are used to im-
plement and deploy models are introduced. Business Process
Execution Language (BPEL) is a de facto standard language
for the implementation of service-based business processes.
The main advantages in using BPEL as an implementation
language are:

• BPEL supports all necessary elements in the imple-
mentation of sophisticated business processes, such as
those in BPMN, and provides a sufficient number of
mechanisms to implement fault tolerant mechanisms
[24].

• BPEL processes are specific implementations of busi-
ness processes for service-oriented environments, as
suggested in [4].

• The majority of the distinguished commercial and non-
commercial tools support service-oriented architectures
and BPEL processes as shown in Table I.

Table I
COMPARATIVE OF BPM TOOLS.

Although BPMN is a standard notation for the design
of process models, it could automatically be translated into
BPEL [19][25][26], and most commercial BPMSs support
BPMN and BPEL processes. Therefore, BPEL processes
represent the best candidate and will be used in our proposal.
A BPEL environment is necessary for the implementation
and deployment operational business process. In this pro-
posal, GlassFishESB have been integrated in our framework.
NetBeans provides an environment in order to develop BPEL

14

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processes graphically. Moreover, GlassFishESB provides
support as an application server with several components of
Enterprise Service Bus (ESB) [27] and a runtime for BPEL
processes.

There is no accepted standard for business rule systems.
For this reason, in our proposal business rules have been
developed using WebSphere Ilog JRules and have been
integrated within business processes as services.

Neither is there any standard CSP representation nor CSP
Solver. For the development of constraint models, any CSP
Solver could be used. In our case, constraint models have
been implemented using ChocoSolver [28] which has been
integrated into our framework. However, the model could be
implemented as a standalone from other CSP Solver tools,
and used as a service.

C. Diagnosis

In our approach, model-based diagnosis is applied. Di-
agnosis is used for the identification and isolation of be-
havioral faults in the components of business processes.
Constraint Satisfaction Problem (CSP) techniques have been
applied in the diagnosis since CSP is an extended technique
which solves a wide variety of problems, including those
in business processes [29]. In order to apply CSP, business
processes have been transformed into Constraint Optimiza-
tion Problems (COP) [30]. COPs are specific CSPs where
an objective function to optimize remains to be optimized.
COP is evaluated using a CSP solver (a solver is an engine
of constraints that implements algorithms in order to solve
constraint satisfaction problems). The diagnosis will only be
invoked when a fault in the outputs of the business processes
has been detected.

D. Fault Tolerance Layer

Framework has been built with a specific fault tolerance
layer. This layer is developed with the intention of con-
trolling possible faults and taking corresponding corrective
actions in order to recover the execution business processes,
and then to achieve dependable properties. In our case, some
replication solutions have been adopted, but on the other
hand, software fault tolerance techniques have also been
considered. Likewise, replication and recovery techniques
are focused on the redundancy of components without
considering the business process state. Therefore, one fault
tolerance mechanism is focused on the simulation of check-
point and recovery [31], but in this case oriented towards
business processes. Various fault-tolerant mechanisms are
described below:

1) Without fault tolerance
BPEL processes are defined as a composition of web
services. Thus, web services (of either external or
internal organization) are linked at design time. If
a fault output or event occurs (supposing no design
faults exist in the processes), this fault is located on

the service side, for instance, a change of function-
ality, or a miss-match of parameters. Once the BPEL
process has been deployed, it is impossible to replace
the faulty service during run-time. Faults are only
solved by stopping for every instance of a business
process. Firstly, the faulty service has to be located
(diagnosis), then eliminated, and finally replaced with
another correct service. Therefore, it is necessary to
introduce mechanisms to mitigate effects produced by
faults without having to stop the execution of business
processes and this can be carried out by means of fault
tolerance techniques.

2) Primary/Backup approaches
This solution applies the concept of redundancy, in the
sense of replication of services. This approximation
has a primary service as principal and one or more
replicas as backups. In the case of a fault, it is possible
to use the backup services. The adopted solution in the
proposal is based on dynamic binding ideas [32][33].
Dynamic binding is a technique that allows services
to be linked at run-time.
In our approach, a binder component is introduced
between the BPEL processes and the services acting as
proxies, as shown in Figure 4. Binder is not developed
as an external program or external monitor, but as
another business process. The binder component de-
cides at run-time what services to invoke: whether they
be the original service or the replicas (backups). The
solution is fault tolerant since in the case of detecting
a faulty service, every faulty service invocation can be
replaced with an invocation to a backup service.

Figure 4. Communication process-service with binder.

This is a good solution despite presenting some defi-
ciencies such as the introduction of a unique point
of fault at binder component which in turn could
introduce a very high overhead in the performance of
a business process. In order to solve the first problem,
the replication of the binder can be applied, thereby
also, replicating the binder component (one primary
and several backup replicas). In our case, passive
replication is used in the proposed solution. In the
case of a fault, in the first binder, a backup binder

15

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

takes the control of the execution, thereby enabling
the execution to continue, see Figure 5. The binder
backup can be an exact copy of the original but
located in another external server or machine that of
the primary copy. BPEL provides various mechanisms,
such as fault and compensation handlers, to achieve
the implementation of primary-backup binders.

Figure 5. Communication process-service with binder replicated.

3) Multi-Version (N-Version Programming) approach
Software components cannot be degraded in the same
way as physical systems and redundancy fails to
provide a good solution, since if a fault is detected in
a software component, it is due to an implementation
fault with a very high probability, and this kind of fault
cannot be solved by means of redundancy. Diversity
is a very important factor in obtaining dependable
software systems [18]. The main goal of diversity is
to provide identical services (variants) but with a sep-
arate design and implementation in order to minimize
causing identical faults. For instance, when a software
variant presents a fault, this will be isolated as much
as possible. There are different techniques for fault-
tolerance software based on multi-version (diversity
of software) [18][34]: N-Version Programming (NVP),
Recovery Blocks, N-Self Checking Programming.
In the proposed framework, a solution based on NVP
is adopted, which is a static technique where a activity
is executed by various processes or programs and the
result is only accepted by majority of votes. This
mechanism for obtaining results is defined in NVP as
an adjudicator or decision mechanism (DM). Various
decision mechanisms are defined in [18].
The N-Version paradigm considers the utilization of
diversity for implementations and designs in order to
isolate faults in the components. Every service used
in the implementation will be developed as an N-
Version Component. The implementation selected for
N-Version components follow the basic ideas of N-
Version Programming. An N-Version component pro-
vides at most 2X + 1 replicas, X ranges from 1 to N,
and where N is an integer greater than 1. Components
have been developed with an adjudicator (DM) in

order to obtain the output results, see Figure 6. The
logic within the adjudicator (DM) can be very basic
or seriously complicated. However, NVP components
can be improved by adding new features, for example,
by developing new strategies in the adjudicator. How-
ever, the more complexity added into the adjudicator
component, the more overhead is introduced into the
execution of the N-Version components.

Figure 6. Example of N-Version component.

By using N-Version components, not only is fault-
tolerance achieved, but it also supposes another ad-
vantage since the diagnosis stage is rendered totally
unnecessary. For example, if one of the variants fails
return a response in time, the adjudicator takes the
results from the other variants. In consequence, diag-
nosis can be eliminated from the framework by using
this mechanism, although it could result in a very high
cost in developing and performance.

4) Checkpointing approach
The checkpoint mechanism is based on the idea of
saving the state of the system, and, in the case of
fault detection, recovering the execution of the system
from the checkpoint where the state was saved. We
propose the simulation of a checkpoint approach in
services, whereby a recovery mechanism is launched
only in the case of faults. The fault tolerance approach
mechanism is composed of two parts:

• Sensors (Checkpoints). An integrity sensor is
modelled as a CSP. Sensors receive data infor-
mation about data inputs and outputs from the
services, with which the CSP is then defined. CSP
resolutions help to identify and isolate the services
which are failing in run-time.

• Compensation handlers (Rollback). These are spe-
cific elements of business processes which allow
the limitation of the effects created by a pro-
cess when faults or errors occur. Compensation
handlers allow the process execution to be rolled
back from a specific point, thereby executing
a set of tasks to undo the transactions already
initiated. Compensation handlers are explained in
next section.

16

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The checkpoint approach presents some drawbacks
in comparison with the other approaches: it requires
the introduction of extra elements (sensors) into the
business process design, extra time to check each
sensor, and recovery of business process services in
rollback. In fact the correct and minimal localization
of sensors inside a business process could be a very
highly complex task [35].
For high dependability, the checkpointing solution is
not suitable since for long business processes, the
rollback mechanism could introduce a very high over-
head in the case of a fault. However, if very high
dependability in our business processes is needed, then
a solution with binder backup is the best solution.
Nevertheless, if very high dependability is not needed,
then a binder approach alone could be sufficient. If the
business process with a very high level of correctness
in outputs is needed, then NVP is the best solution.
Although an evaluation of the number of replicas
needed must be carried out since with a specific
number of replicas a very high level of correctness
could be ensured despite of the introduction of very
high load on the development and in the adjudicator
logic.
Table II provides a summarization of some character-
istics of fault tolerance mechanisms applied:

• Type. The kind of fault tolerance used. For ex-
ample, the replication of services in the case of a
binder.

• Model-Based Diagnosis. Whether the diagnosis is
necessary or not for this technique. For example,
in NVP solution the diagnosis stage is unneces-
sary.

• Overhead. It indicates the additional logic intro-
duced for the development of this technique. For
example, in the case of binder, a dynamic binding
additional logic is necessary.

IV. ILLUSTRATIVE EXAMPLE OF APPLICATION

In order to clarify the various alternatives, an example is
developed. Although it is a small example, it can perfectly
illustrate the problematic under consideration. In this pro-
cess, there is a set of services, S = {S1, S2, S3, S4, S5,
M1, M2, M3}, a set of inputs, I = {a, b, c, d, e, f}, and
a set of outputs, O = {g, h, i}. The system is made up
of three services (M1, M2, M3) with the same functionality
M(x) but they are independent; and (S1, S2, S3, S4, S5) are
another five elements with the same functionality S(x) but
also independent, see Figure 7.

To illustrate a real example, the process has been dis-
tributed. The global process has been divided into three
separated processes which are deployed in three different
systems. The new distributed process is shown in Figure 8.
In this case, there is a global process; ”Complete Process”,

Figure 7. Example of business process.

which orchestrates the other three BPEL processes. BPEL
Process 1 contains the invocations to the services S1, S2
and S3. BPEL Process 2 contains the invocations to the
services M1, M2 and M3 and relies on BPEL Process 1.
BPEL Process 3 contains the invocation to the services S4
and S5 and relies on BPEL Process 2 and BPEL Process 1.

Figure 8. Distributed process.

In the scenario, it is possible to observe numerous aspects.
For instance, a fault within service S1 has a direct effect
on the BPEL Process 1 result, and as a consequence the
BPEL Process 2 is also affected, and finally BPEL Process
3 will be affected, and hence the final result of the complete
process will be not correct. However with the correct fault
tolerance mechanism this will not be the case. Therefore,
fault tolerance mechanisms are necessary in order to improve
the fault tolerance in the execution a business process.

1) Primary-Backup Services with unique binder ap-
proach. This solution combines the concept of re-
dundant services with dynamic binding mechanisms.
This approximation has a primary service as principal
and one or more backups. In the case of a fault
diagnosis of a service, it will be possible to replace the
invocations from this primary with the backup service.
A binder component is introduced between the process
and the services. In Figure 9 only some services (S1,
S2, and S3) have been represented, but every service
has to be invoked for the binder component. The

17

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
COMPARATIVE OF THE FAULT TOLERANCE TECHNIQUES.

binder component is common to every BPEL process.
The solution is fault-tolerant although it introduces a
drawback since a unique point of fault is located in
the binder component. Thus, if a binder fails then all
invocations to services will not be produced and all
business process executions will not be able to finish.

Figure 9. Fault-Tolerant solution with binder.

2) Primary-Backup Services with replicated binder
approach. In this case a replication of the binder
is introduced. If the binder component enters a fault
state, then backup replica can take control of the
execution, see Figure 10. In the developed proposal,
the binder backup is an exact copy of the original. The
binder component is common to every BPEL process.

3) N-Version components approach. The N-Version
components use three variants with an adjudicator to
obtain the output results (see Figure 11). The logic
within each adjudicator is basic so that no intro-
duce high overhead into the final performance of the
process. The adjudicator therefore only compares the
outputs from the variants by means of a voting system.
In this implementation, a fault-tolerant software com-

Figure 10. Fault-Tolerant solution with replicated binder.

ponent is achieved and the diagnosis stage is rendered
totally redundant.

Figure 11. Fault-Tolerant solution with N-Version components.

4) Checkpointing approach. It is supposed that the
sensors have been correctly located. Sensors, by means
of a CSP resolution, indicate whether a service is

18

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

behaving as expected. In a checkpointing approach,
the process state is saved at this checkpoint, but in
our approach this is not necessary. Likewise, sensors
provide certain information in order to help the model-
based diagnosis stage determine a fault in a finite set of
activities of the business process. In Figure 12, sensor
IS1 covers the services S1,S2 and S3, while IS2 covers
the services from IS1 and IS2.
In order to explain the functionality of a compensation
handler, the following example is used: a bank has a
business process which takes the data from the client
so that a transaction from the client’s account to his
credit card can be carried out which increases the
credit of the card. The service should take a specific
client’s data and return the amount of an account, but
due to fault this service returns the amount plus other
data about another account. This service is therefore
not working in compliance with the specification. If
this fault is determined, it could be possible to throw
a fault exception and, using compensation handlers,
undo all transactions carried out from the moment
of the fault. Compensation handlers can only be em-
ployed when an internal fault is detected. In the case
described, the services were working well but the fault
came from the functionality of the service.

Figure 12. Approach with sensors already allocated.

Compensation is the really useful mechanism to undo
transactions, but here it will be applied in another
sense. In our case, when an sensor determines any
fault in the execution of the business process, an
exception is thrown at the end of that process. After
throwing the fault, it is determined by the process
and the compensation handler is invoked. Within of
the compensation, the services with failures are then
re-executed from a backup those correct functionality
has already been tested. This process is shown in
the Figure 13, where the faulty activities has been
marked with a red cross within the activities. One
consideration has to be taken into account, for example
if the service M1 has a fault and the service S5
waits for any data generated from M1, there is a

dependency between M1 and S5, therefore when M1
has a fault, then S5 has to be re-executed. In the scope
of fault tolerance this solution is not purely a solution
based on checkpointing since the state of the process
is not saved and the execution continues from the
checkpoint. The checkpointing approach does not use
the same process because diagnosis is distributed from
various sensors.

Figure 13. Recovery business process.

How does the framework work? Firstly, when the frame-
work obtains an output, it is checked by consulting the
oracle. If the oracle returns KO as response, then the
framework attempt to isolate those components involved in
the fault. To isolate faulty services, model-based diagnosis
is employed using CSPs. In order to automate the process of
diagnosis, a CSP model is solver together with the business
process output. Once diagnosis retrieves which components
are producing faults, then this information is translated to
the fault tolerance layer and the corresponding mechanism
is activated to replace erroneous services with other correct
services. This process is outline depicted in Figure 14, and
it is common to binder, binder backup and to NVP.

Figure 14. Example of the framework execution execution.

19

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. I. Performance one thread for execution. II. Performance more than one thread for execution.

V. EVALUATION AND RESULTS

A set of test cases has been executed for each case of the
fault-tolerant approach, as described in previous sections.
The tests developed have been separated in two groups:
first considering one thread of execution, and second one
considering more than one thread of execution. Also on,
for each thread a number of invocations 300,1000,1500 and
2000 are carried out. The tests simulate the idea of there be
an integrity fault in a single component for each request, for
instance S1. For each input of the process, a set of random
value tests has been created. Although many parameters
could be useful in order to measure dependability properties,
in our proposal the most interesting in the comparison is
the performance time. Performance give a clear indication
about the difference between one solution and another to be
measured in terms of deliver. Figure 15 shows two graphics
which contain results about average performance time . The
hardware used in the execution of the tests is a server
Intel Xeon E5530 2.4 GHz, with 8GB RAM and a Debian
Gnu/Linux 64bits OS and a client Intel Core 2 Duo T9300
2,5GHz with 4 GB RAM.

Taking the performance parameter into account, the binder
solution obtains the best result (Figure 15), although, in this
case, the performance could be affected by the diagnosis
stage time. In order to avoid the utilization of a binder
solution, we can opt for a checkpointing approach, but would
then need to value not only the time required to locate
sensors, but also the overhead for checking and extra work
designing handlers. On the other hand, in order to avoid
the diagnosis stage, we might opt for an NVP solution. In
the development sense, time spent on developing correct
components using NVP must be balanced against or a
solution with binder using only a primary-backup solution.
In the case of multiple faults, the binder solution may
be insufficient for the replication (primary and backup) of
services to ensure the correction of services. However, with

NVP components and the correct number of replicas we may
achieve a result with a very high level of correctness.

VI. RELATED WORK

Dependability is studied in the context of business process
management in [36], and a framework entitled Dynamo
is presented. This framework provides a run-time business
process supervisor that guarantees that the requirements of
dependability are satisfied. The main contribution is the
definition of two languages, WSCoL and WSRS, although
they are not a supported standard. Likewise, [36] presents
some remedial strategies that are mainly focused on the
recovery context, but fail to pay attention to the typical
solutions in the fault tolerance scope.

In the scope of fault tolerance for BPEL processes and
Web Service composition, there are many contributions
[37][38][39][40]. The feasibility of BPEL processes to im-
plement fault tolerance techniques with BPEL language is
studied in [37]. The work presents a tool for mapping fault
tolerance techniques using BPEL language concepts and
elements but it fails to show any example of an application
or data tests with real conclusions for the work. Middleware
to integrate some remedial strategies to handle violation con-
straint faults in the BPEL processes was developed in [39].
Whereby a framework structured in various components is
developed. The most relevant components are: composition,
analysis and instrumentation. The composition composes
services and “business goals”, the analysis form the business
process with a remedial strategy using remedial databases,
and the last component, that of instrumentation, translates
the process into a final BPEL process. Another studies is
focused on the dynamic selection of Web Services for the
construction of optimal workflows, [38]. The selection of
the optimal service is based on searching from services from
various repositories and data stored in databases. Although,
this technique appears to provide a fault tolerance solution,
this is solely due to the workflows being built on the fly

20

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

through the selection of the best service each time, but it
fails to take into account the unique point of fault in the
proxy component. However, we have provided a solution
with a binder, and for the case of a faulty binder, we have
developed another solution with a redundant binder. An
architecture for self-healing BPEL processes is presented
in [40]. Self-healing properties imply the development of
many elements integrated into the same engine such as a
monitor, a diagnoser, a planner of changes, and validation
mechanisms. Some recovery strategies have been adopted
in this work and integrated into the engine. Our work is
more focused on mechanisms for fault-tolerance solutions,
without using monitors or planners. In this sense, we have
adopted an innovatory solution based on business rules (such
as oracle) and CSP-based fault diagnosis.

There are some initiatives into introduction of fault-
tolerance techniques in the area of Web Service, [41][42].
In these studies, the main contributions are the definition of
a framework or middleware to achieve fault-tolerant service
platforms. A fault-tolerance architecture for SOAP protocol
is proposed and the solution is compared against the flexi-
bility of CORBA solutions, [41]. In [42], the authors have
defined and developed a mechanism to improve resilience
to faults for Web service clusters to enhance the reliability
of the services.

The majority of fault tolerance solutions are based on
replication and recovery techniques. Although the replication
is a very important concept in fault-tolerant systems, when
it is necessary to create fault-tolerance in software, the
solution of replication is insufficient. The philosophy in
fault tolerance software is totally different; the techniques
are based mainly on software diversity and data diversity,
[18][34].

In fault tolerance of distributed systems, checkpointing
and rollback recovery approaches are popular [43][31][44].
A well-designed checkpointing algorithm allows a faulty
business process to recover the recently saved state. Further
proposals have been developed in other domains such as grid
computing [45] and Web Services [36].

VII. CONCLUSION AND FUTURE WORK

In this paper, an innovative framework for the development
of business processes with dependable capabilities based
on fault tolerance has been introduced. The framework is
composed of three main elements: business rules, model-
based diagnosis based on constraint programming, and fault-
tolerant mechanisms. The innovation in this framework is
the use of a business rule engine as an oracle of solutions,
and model-based diagnosis to automate the determination
and isolation of components using CSP techniques in the
case of a fault. In the sense of fault tolerance, the frame-
work presents various solutions: the first solution create
fault-tolerant operational business processes (BPEL) using
dynamic binding techniques and replication of services;

the second solution presents an improvement introducing
replication of the binder; a third solution uses the concept
of software tolerance and implements NVP components;
and a fourth solution provide a simulation of a checkpoint
approach. To the best of our knowledge, this work is the
first contribution with fault tolerance based on software
fault-tolerance and checkpointing approaches for business
processes.

As future work, it could be interesting to add new features
of fault tolerance within the framework. The work will
be extended to include with other software fault tolerance
techniques such as as Recovery Block, or to introduce
new features into the N-Version components, for example,
changing the complexity of the adjudicator or studying the
number of variations in function in terms of the service.
Likewise, the framework could be extended to embrace other
capabilities to achieve self-healing and self-adaptability ap-
proaches.

ACKNOWLEDGEMENTS

This work has been partially funded by the Department of
Innovation, Science and Enterprise of the Regional Govern-
ment of Andalusia project under grant P08-TIC-04095, by
the Spanish Ministry of Science and Education project under
grant TIN2009-13714, and by FEDER (under the ERDF
Program).

REFERENCES
[1] A. J. Varela-Vaca, R. M. Gasca, D. Borrego, and S. Pozo,

“Towards dependable business processes with fault-tolerance
approach,” in Proceedings of the 2010 Third International
Conference on Dependability, ser. DEPEND 2010. IEEE
Computer Society, 2010, pp. 104–111.

[2] A. J. Varela-Vaca and R. M. Gasca, “Opbus: Fault tolerance
against integrity attacks in business processes,” in Computa-
tional Intelligence in Security for Information Systems 2010,
ser. Advances in Intelligent and Soft Computing, vol. 85.
Springer Berlin / Heidelberg, 2010, pp. 213–222.

[3] Gartner Inc. Report, “Gartner EXP worldwide survey
of nearly 1.600 CIOs shows IT budgets in 2010
to be at 2005 levels,” 2010. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=1283413

[4] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2007.

[5] W. M. P. van der Aalst, A. ter Hofstede, and M. Weske,
“Business process management: A survey,” in Proceedings
of the 1st International Conference on Business Process
Management, ser. Lecture Notes in Computer Science, vol.
2678. Springer Berlin / Heidelberg, 2003, pp. 1019–1031.

[6] A. J. Varela-Vaca, R. M. Gasca, and L. Parody, “OPBUS:
Automating Structural Fault Diagnosis for Graphical Models
in the Design of Business Processes,” in 21th International
Workshop in Principles of Diagnosis (DX’10), 2010, pp. 337–
341.

[7] S.-M. Huang, Y.-T. Chu, S.-H. Li, and D. C. Yen, “Enhancing
conflict detecting mechanism for web services composition:
A business process flow model transformation approach,”
Information Software Technology, vol. 50, no. 11, pp. 1069–
1087, 2008.

[8] J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek, and
B. F. Vandongen, “Faulty EPCs in the SAP Reference Model,”
in International Conference on Business Process Management
(BPM 2006). Springer-Verlag, 2006, pp. 451–457.

21

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] Condor Team, “Condor project,” 2010. [Online]. Available:
http://www.cs.wisc.edu/condor/

[10] C. Pautasso and G. Alonso, “Flexible binding for reusable
composition of web services,” Software Composition, vol.
3628/2005, no. 1820, pp. 151–166, 2005.

[11] P. Neira, R. M. Gasca, and L. Lefèvre, “Demystifying cluster-
based fault-tolerant firewalls,” IEEE Internet Computing,
vol. 13, no. 6, pp. 31–38, 2009.

[12] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Mecella, “Automatic service composition based on be-
havioral descriptions,” International Journal of Coorporative
Information Systems, vol. 14, no. 4, pp. 333–376, 2005.

[13] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann,
and A. Buchmann, “Extending BPEL for run time adaptabil-
ity,” in Ninth IEEE International EDOC Enterprise Comput-
ing Conference EDOC05. IEEE Computer Society, 2005,
pp. 15–26.

[14] J. De Kleer and J. Kurien, “Fundamentals of model-based
diagnosis,” Fault detection supervision and safety of technical
processes, pp. 25–36, 2004.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transaction on Dependable and Secure
Computating, vol. 1, no. 1, pp. 11–33, 2004.

[16] L. Liu, Z. Wu, Z. Ma, and Y. Cai, “A dynamic fault tolerant
algorithm based on active replication,” in 7th International
Conference on Grid and Cooperative Computing (GCC’08).
Washington, DC, USA: IEEE Computer Society, 2008, pp.
557–562.

[17] R. Baldoni, C. Marchetti, and S. T. Piergiovanni, “Asyn-
chronous active replication in three-tier distributed systems,”
in Proceedings 9th IEEE Pacific Rim Symposium on Depen-
dable Computing (PRDCF’02), 2002.

[18] L. L. Pullum, Software fault tolerance techniques and imple-
mentation. Norwood, MA, USA: Artech House, Inc., 2001.

[19] Object Management Group (OMG), “Business process
model and notation,” 2009. [Online]. Available:
http://www.omg.org/spec/BPMN/1.2

[20] T. Debevoise, Business Process Management with a Business
Rules Approach: Implementing the Service Oriented Archi-
tecture. Business Knowledge Architects, 2005.

[21] W. M. van der Aalst and A. H. M. Ter Hofstede, “Verification
of workflow task structures: A petri-net-based approach,”
Information Systems, vol. 25, pp. 43–69, 2000.

[22] W. Sadiq, Maria, and E. Orlowska, “Analyzing process mod-
els using graph reduction techniques,” Information Systems,
vol. 25, pp. 117–134, 2000.

[23] H. Lin, Z. Zhao, H. Li, and Z. Chen, “A novel graph reduction
algorithm to identify structural conflicts,” in Proceedings of
the 35th Annual Hawaii International Conference on System
Sciences (HICSS’02), vol. 9. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 289–299.

[24] OASIS, “Business Process Execution Lan-
guage,” 2008. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[25] C. Ouyang, W. M. P. Van Der Aalst, and M. Dumas, “Trans-
lating BPMN to BPEL,” Business, vol. 2006, pp. 1–22.

[26] S. A. White, “Using bpmn to model a bpel process,” Tech.
Rep., 2006.

[27] D. Chappell, Enterprise Service Bus. O’Reilly Media, Inc.,
2004.

[28] CHOCO Team, “Choco: an open source java
constraint programming library,” 2010. [Online].
Available: http://www.emn.fr/z-info/choco-solver/pdf/choco-
presentation.pdf

[29] D. Borrego, R. Gasca, M. Gomez, and I. Barba, “Choreog-
raphy analysis for diagnosing faulty activities in business-to-
business collaboration,” in 20th International Workshop on
Principles of Diagnosis. DX-09, Stockholm, Suecia, 2009, pp.
171–178.

[30] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of
Constraint Programming. Elsevier, 2006.

[31] J. L. Kim and T. Park, “An efficient protocol for checkpoint-
ing recovery in distributed systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no. 8, pp. 955–960,
1993.

[32] A. Erradi and P. Maheshwari, “Dynamic binding framework
for adaptive web services,” in ICIW ’08: Proceedings of the
2008 Third International Conference on Internet and Web
Applications and Services. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 162–167.

[33] U. Küster and B. König-Ries, “Dynamic binding for BPEL
processes - a lightweight approach to integrate semantics
into web services,” in Second International Workshop on
Engineering Service-Oriented Applications: Design and Com-
position (WESOA06) at 4th International Conference on Ser-
vice Oriented Computing (ICSOC06), Chicago, Illinois, USA,
2006, pp. 116–127.

[34] W. Torres-Pomales, “Software fault tolerance: A tutorial,”
Tech. Rep., 2000.

[35] D. Borrego, M. T. Gomez-Lopez, R. M. Gasca, and R. Ce-
ballos, “Determination of an optimal test points allocation
for business process analysis,” in 2010 IEEE/IFIP Network
Operations and Management Symposium Workshops (BDIM
2010), 2010, pp. 159–160.

[36] L. Baresi, S. Guinea, and M. Plebani, “Business process mon-
itoring for dependability,” in Proceedings of the Workshops on
Software Architectures for Dependable Systems (WADS’06),
2006, pp. 337–361.

[37] G. Dobson, “Using ws-bpel to implement software fault
tolerance for web services,” in EUROMICRO-SEAA, 2006,
pp. 126–133.

[38] L. Huang, D. W. Walker, O. F. Rana, and Y. Huang, “Dy-
namic workflow management using performance data,” in
IEEE International Symposium on Cluster, Cloud, and Grid
Computing, 2006, pp. 154–157.

[39] M. Wang, K. Y. Bandara, and C. Pahl, “Integrated constraint
violation handling for dynamic service composition,” in SCC
’09: Proceedings of the 2009 IEEE International Conference
on Services Computing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 168–175.

[40] S. Modafferi, E. Mussi, and B. Pernici, “Sh-bpel: a self-
healing plug-in for ws-bpel engines,” in MW4SOC ’06:
Proceedings of the 1st workshop on Middleware for Service
Oriented Computing (MW4SOC 2006). New York, NY, USA:
ACM, 2006, pp. 48–53.

[41] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, “Fault tolerant
web services,” J. Syst. Archit., vol. 53, no. 1, pp. 21–38, 2007.

[42] M.-Y. Luo and C.-S. Yang, “Enabling fault resilience for web
services,” Computer Communications, vol. 25, no. 3, pp. 198
– 209, 2002.

[43] G. Cao and M. Singhal, “Checkpointing with mutable check-
points,” Theoretical Computer Science, vol. 290, no. 2, pp.
1127–1148, 2003.

[44] R. Baldoni, “A communication-induced checkpointing proto-
col that ensures rollback-dependency trackability,” in FTCS
’97: Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS ’97). Washington, DC,
USA: IEEE Computer Society, 1997, pp. 68–77.

[45] X. Shi, J.-L. Pazat, E. Rodriguez, H. Jin, and H. Jiang,
“Adapting grid applications to safety using fault-tolerant
methods: Design, implementation and evaluations,” Future
Generation Computer Systems, vol. 26, no. 2, pp. 236 – 244,
2010.

22

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Putting Theory into Practice: The Results of a Practical Implementation of the
Secure Development Life Cycle

Cynthia Y. Lester
Department of Computer Science

Tuskegee University
Tuskegee, Alabama, USA

cylester@tuskegee.edu

Abstract – Software engineering is defined as a discipline
concerned with all aspects of software production from
inception to the evolution of a system. It has often been
referred to as the “cradle-to-grave” approach to producing
reliable, cost-efficient software delivered in a timely manner
that satisfies the customer’s needs. However, with the
introduction of the Internet and the World Wide Web,
software engineering has been required to make changes in the
way that new software products are developed and protected.
In order to protect systems from hackers and saboteurs in a
global society where e-commerce, e-business, and e-sharing are
the “norm”, professionals should have sound knowledge in
methods to protect data. Consequently, the area of
information assurance (IA) has become one of great
significance and it is important that the next generation of
technologists are trained in development techniques that can
ensure the confidentially and integrity of information.
Traditionally, courses in secure software development are
offered at the graduate level or in a stand-alone software
security course at the undergraduate level. The aim of this
paper is to present a framework for introducing software
security to undergraduate students in a traditionally taught
software engineering course. The paper focuses on and
presents the results of a practical implementation of software
security concepts learned through a service-learning project.
The results from the study suggest that software security can
be effectively introduced in a traditionally taught software
engineering course through the implementation of a hands-on
learning experience.

Keywords – agile methods; secure software development

service-learning; software development; software engineering;
software security; traditional software development
methodologies

I. INTRODUCTION

Securing information is not a new idea. In fact, securing
data has its origins in World War II with the protection and
safeguarding of data which resided on mainframes that were
used to break codes [1]. However, during the early years,
security was uncomplicated since the primary threats
included physical theft of the system, espionage and
sabotage against product resources [1]. Yet, it was not until
the early 1970s that the concept of computer security was
first studied. With the invention of the Advanced Research
Projects Agency Network (ARPANET) by the U.S.

Department of Defense in 1968 and its growing popularity
in the early 1970s, the chance for misuse increased in what
is now known to be the origin of the modern day Internet.

In 1990, it was reported that there were less that 50
million users of the Internet in the U.S. However, by 2008
the U.S. reported approximately 230,630,000 Internet users
[2]. Therefore, it stands to reason that with more users and
more advanced systems, the user population of today’s
technology would be more technically savvy than those user
groups of yesteryear. However, the average user is now less
likely to understand the systems of today as compared to the
users of a decade ago. Further with the rapid pace at which
new technologies are being introduced to the public, it
becomes even more difficult for users to understand how to
protect their systems and information from unwanted
interruptions, threats and vulnerabilities.

In the Report of the Presidential Commission on Critical
Infrastructure Protection, it was stated that “education on
methods of reducing vulnerabilities and responding to
attacks” and “programs for curriculum develop at the
undergraduate and graduate levels” were recommended to
reduce the number of vulnerabilities and malicious attacks
on software systems [3]. Additionally, in the 2003 National
Strategy to Secure Cyberspace four major actions and
initiatives for awareness, education, and training were
identified which included [4]:

• Foster adequate training and education programs to
support the Nation’s cybersecurity needs

• Promote a comprehensive national awareness
program to empower all Americans -businesses,
the general workforce, and the general population -
to secure their own parts of cyberspace

• Promote private-sector support for well-
coordinated, widely recognized professional
cybersecurity certifications

• Increase the efficiency of existing federal
cybersecurity training programs

Consequently, protecting data has become a topic of
importance. In order to protect data from hackers and
saboteurs in a global society where e-commerce, e-business,
and e-sharing are the “norm”, professionals should have
sound knowledge in methods to protect data. Therefore, the

23

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

area of information assurance (IA) has become one of great
significance.

Information assurance as defined in the CNSS Instruction
Handbook No. 4009 are measures that protect and defend
information and information systems by ensuring their
availability, integrity, authentication, confidentiality, and
nonrepudiation. Additionally, the measures include
providing for restoration of information systems by
incorporating protection, detection, and reaction capabilities
[5]. In order for students to gain training in information
assurance, a series of courses are often taken, which include
traditional computer science courses but also courses in
information security, network security, computer security,
cryptography, software security, etc. However, unless an
institution has an information assurance track or program,
students may not have the opportunity to gain exposure to
many of these concepts, especially those concepts found in a
software security course.

Therefore, the aim of this paper is to present a framework
for introducing students to concepts of software security in a
traditionally taught software engineering course. The paper
begins by presenting several conventional software
development methodologies discussed in a traditionally
taught software engineering course which lends to an
argument for a paradigm shift. Additionally, the paper
presents a project in which students were engaged during
the course of the sixteen week semester which focused on
the practical implementation of software security concepts.
The results of the project are discussed as well as challenges
and future work.

II. TRADITIONAL SOFTWARE DEVELOPMENT
METHODOLOGIES

Software engineering is defined as “being concerned

with all aspects of the development and evolution of
complex systems where software plays a major role. It is
therefore concerned with hardware development, policy and
process design and system deployment as well as software
engineering [6].”

The term software engineering was first proposed at the
1968 NATO Software Engineering Conference held in
Garmisch, Germany. The conference discussed the
impending software crisis that was a result of the
introduction of new computer hardware based on integrated
circuits [6]. It was noted that with the introduction of this
new hardware, computer systems were becoming more
complex which dictated the need for more complex software
systems. However, there was no formalized process to build
these systems which put the computer industry at jeopardy
because systems were often unreliable, difficult to maintain,
costly, and inefficient [6]. Consequently, software
engineering surfaced to combat the looming software crisis.

Since its inception, there have been many methodologies
that have emerged that lead to the production of a software

product. The most fundamental activities that are common
among all software processes include [6]:

• Software specification – the functionality of the
system and constraints imposed on system
operations are identified and detailed

• Software design and implementation – the
software is produced according to the
specifications

• Software validation – the software is checked to
ensure that it meets its specifications and provides
the level of functionality as required by the user

• Software evolution – the software changes to meet
the changing needs of the customer

Typically, students are introduced to these activities in
the undergraduate computer science curriculum through a
software engineering course. This course is sometimes a
survey course which exposes students to a variety of life
cycle models used in industry. The course is often taught
from a systems approach which places an emphasis on
creating requirements and then developing a system to meet
the requirements. In the traditional view of software
development, requirements are seen as the contract between
the organization developing the system and the organization
needing the system [7].

A traditional view of software development is the
waterfall method. The waterfall method was the first
published software development process and forms the basis
for many life cycles. It was noted as a great step forward in
software development [8]. The method has stages that
cascade from one to the other, giving it the “waterfall”
name. Figure 1 is an example of the waterfall life cycle [9].

Figure 1. Waterfall model

It has been noted that the method might work
satisfactorily if design requirements could be addressed
prior to design creation and if the design were perfect prior
to implementation [8]. Consequently, one of the main
disadvantages of this model is that requirements may
change accordingly to meet the needs of the customer and

24

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the change is difficult to incorporate into the life cycle. As a
result of this shortcoming, additional life cycles emerged
which allowed for a more iterative approach to
development.

Evolutionary development is based on the idea of
developing an initial implementation and then exposing the
build to the user for comment and refinement [6]. Figure 2
is an example of the evolutionary development method [6].

Figure 2. Evolutionary development

There are two fundamental types of evolutionary
development:

• Exploratory development – developers work with
customers to discern requirements and then the
final system is delivered

• Throwaway prototyping – used to quickly
development a concept and influence the design of
the system

The advantage of evolutionary development is that it is
developing specifications incrementally [6]. As customers
have an opportunity to interact with the prototype,
specifications are refined which leads to a better, more
useful, usable, and used software. However, while this
approach is somewhat better than the waterfall model, it is
not without its criticisms. Sommerville notes that the
process is not visible and that the systems being developed
are often poorly structured [6]. The next model presented is
stated to be an improvement over both the waterfall and
evolutionary development models.

The spiral development model is an example of an
iterative process model that represents the software process
as a set of interleaved activities that allows activities to be
evaluated repeatedly. The model was presented by Barry
Boehm in his 1988 paper entitled A Spiral Model of
Software Development and Enhancement [10]. The spiral
model is shown in figure 3. The spiral model differs from
the waterfall model in one very distinct way because it
promotes prototyping; and, it differs from the waterfall and
evolutionary development method because it takes into

consideration that something may go wrong which is
exercised through risk analysis.

Figure 3. Spiral model

It is noted that this life cycle provides more flexibility
than its more traditional predecessors. Further, this method
produces a preliminary design. This phase of the life cycle
was added specifically in order to identify and resolve all
the possible risks in the project development. Therefore, if
risks indicate any kind of uncertainty in requirements,
prototyping may be used to proceed in order to determine a
possible solution.

The activities that formulate this view of software
engineering came from a community that was responsible
for developing large software systems that had a long life
span. Moreover, the teams that used these methodologies
were typically large teams with members sometimes
geographically separated and working on software projects
for long periods of time [7]. Therefore, software
development methodologies that resulted from this view of
software engineering were often termed as “heavyweight”
processes because they were plan-driven and involved
overhead that dominated the software process [11].
However, great difficulty occurs when these methodologies
are applied to smaller-sized businesses and their systems,
because these methods lack the agility needed to meet the
changing needs of the user. The next section presents an
overview of an emerging process methodology which is an
alternative to heavyweight processes, agile development.

III. AGILE METHODS

In an effort to address the dissatisfaction that the

heavyweight approaches to software engineering brought to
small and medium-sized businesses and their system

25

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

development, in the 1990s a new approach was introduced
termed, “agile methods.” Agile processes are stated to be a
family of software development methodologies in which
software is produced in short releases and iterations,
allowing for greater change to occur during the design [11].
A typical iteration or sprint is anywhere from two to four
weeks, but can vary. The agile methods allow for software
development teams to focus on the software rather than the
design and documentation [11]. The following list is stated
to depict agile methods [11], [12]:

• Incremental design - the design is not completed
initially, but is improved upon when more
knowledge is acquired throughout the process

• User involvement - there is a high level of
involvement with the user who provides continuous
feedback

• Short releases and iterations - allow the work to be
divided, thereby releasing the software to the
customer as soon as possible and as often as
possible

• Informal communication - communication is
maintained but not through formal documents

• Minimal documentation – source code is well
documented and well-structured

• Change - presume that the system will evolve and
find a way to work with changing requirements and
environments

More specifically, the agile manifesto states:
“We are uncovering better ways of developing software
by doing it and helping others to do it.
Through this work we have come to value:
Individuals and interaction over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.”

It is stated that agile processes have some very precise
advantages over its heavyweight predecessors which include
the following as stated by Tsui and Karam [12]:

• Low process complexity - processes are simple
which promotes easier implementation and
understanding

• Low cost and overhead - processes require only a
small number of activities that do not directly lead
to the production of software

• Efficient handling of changes - processes are
designed and developed with the presumption that
requirements will change and the methodology is
prepared to incorporate those changes

• Quick results - processes have low overhead which
results in a final product being produced quicker
than with traditional heavyweight processes. Also,
agile processes are designed for continuous
integration which allows for constant improvement

and the implementation of additional functionality
as the project progresses.

• Usable systems - the customer is involved and
therefore when changes occur, the process can
quickly adapt, yielding a product that the customer
really wants and wants to use

However, agile methods are not without their critics.
Just as the traditional methods have disadvantages, agile
methods do as well. According to researchers, listed below
are the main disadvantages of agile processes [11], [12]:

• May not be scalable - agile processes are typically
used by small teams and may have problems scaling
to adjust to larger systems without losing their
agility

• Heavy reliance on teamwork - the processes are
generally used by small teams who are centrally
located and who depend on informal
communication to accomplish a task; team work can
be destroyed if cross-team communication
mechanisms have not been designed and used

• Reliance on frequent customer access - it has been
stated that it is sometimes difficult especially after
software delivery to keep the customer involved in
the process; consequently without customer
involvement, agile methods may not be able to
properly validate requirements or adjust to change

• Cultural clash – Extreme programming (XP) is
probably one of the best known and most widely
used agile methods [13], [14]. It was originally
designed to address the needs of software
development by small teams who faced changing
requirements and system environments. However,
XP often clashes with the more commonly accepted
software engineering ideas and management
techniques. Therefore, the use of agile methods by
development teams may make it difficult to conduct
performance evaluations and team member progress
reviews.

However, just as with traditional software
methodologies, agile methods do not often address software
security. Moreover, when these approaches to software
development are taught in traditional software engineering
courses, security is mostly absent from the instruction.
Hence, the increasingly important need to include a
discussion of software security in the software development
process taught to undergraduate students. The next section
explores secure software development and its life cycle.

IV. CHARACTERISTICS OF SECURE INFORMATION

The Morris Worm was the first known network security
breach to impact thousands of computers that were
connected to (ARPANET) [15], [16]. It was reported that
Robert Morris, a graduate student at Cornell University,
wrote a program that exploited bugs that he noticed in
several UNIX applications [16]. The basic premise of the

26

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

program was that it connected itself to another computer on
the network, copied itself to the new location, and executed
both the original version and the copy. This action would
then be repeated in an infinite loop to other computers,
thereby causing thousands of computers to become infected.
He became the first person to receive a felony conviction in
which he was sentenced to serve 3 years probation, 400
hours of community service, and pay a fine of $10,000 [16].

Since it began operating in 1998, the Computer
Emergency Response Team (CERT) Coordination Center
has tracked and reported the number of security
vulnerabilities [15]. A snapshot of early security
vulnerabilities is depicted in Figure 4 [15]. The chart shows
the growth in security incidents from the first incident in
1998 until 1995, which was the last for which statistics were
available according to the reference.

Figure 4. Vulnerabilities Report

More recently, according to statistics published by the

Computer Emergency Response Team (CERT), between
1995 and 2008 approximately 44,074 vulnerabilities had
been cataloged [15]. It has been reported that these software
vulnerabilities and software errors cost the U.S.
approximately $59.5 billion annually [17].

Software errors have grown in complexity. In 2000,
NIST reported that the total sales of software reached
approximately $180 billion and the software was supported
by a workforce that consisted of 679,000 software engineers
and 585,000 computer programmers [17]. Some of the
reasons that software errors have grown in complexity are
that typically, software now contains millions of lines of
code, instead of thousands; the average product life
expectancy has decreased requiring the workforce to meet
new demands; there is limited liability among software
vendors; and, there is difficulty in defining and measuring
software quality [17].

Consequently, it is imperative that students in computer
science and information technology be trained in the

concepts of security and how to design and develop secure
software so that they can contribute viably to the fast
changing technological demands of this global society. The
traditional development strategies expose students to the
methods for software development, but as they consider
how to guard against hackers, how to protect critical
information, and how to lessen security threats, a question
of what is “good” information arises. Therefore, before
students can understand and have an appreciation for the
secure software development life cycle, they must first be
exposed to the qualities and characteristics of “good”
information.

The value of information has been stated to come from
the characteristics that it possesses [1]. While some
characteristics may increase the value of the information as
it relates to use by users, other characteristics may have a
more significant value among security professionals.
However, all characteristics as defined below are critical as
it relates to secure information [1].

• Availability - allows users who need to access
information to access the information without
impediment or intrusion. Further, availability
means that users can receive information in the
desired format.

• Accuracy - as defined by The American Heritage
College Dictionary is conformity to fact; precision;
exactness [18]. As accuracy relates to secure
software it means that the software has the value
that the user expects and that it is also free from
errors.

• Authenticity - is the state or quality of information
being original or genuine. The information should
not be a replication of other information. Whitman
further reveals that information is authentic when it
is the information that was originally created,
placed, stored or transferred.

• Confidentiality - only those persons with “certain”
rights can have access to the information. It means
that only authorized persons or systems can gain
access to the information.

• Integrity - is adherence to a strict code or the state
of being unimpaired [1]. As it relates to the
integrity of information it is the state of being
uncorrupted or the state of being whole.

• Utility – the condition of being useful. If the
information being provided is not useful or
presented in a format that cannot be used, then the
information loses its value or its quality of being
“good” information.

• Possession - the condition of being owned or
controlled. Whitman and Mattford note that while
a breach in confidentiality always results in a
breach of possession, the opposite may not be true
[1].

27

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. THE THEORETICAL APPROACH TO THE SECURE
DEVELOPMENT LIFECYCLE

 There are many approaches to the development of robust
software that can ensure that the information being used by
users is available, accurate, authentic, possesses
confidentially, integrity, is useful and can be controlled.
However, the question becomes how to introduce this model
at the undergraduate level when a specialized course in
software security is not available or when typically students
only take one course in software development. The
following section presents the secure software development
life cycle taught in a traditionally taught software
engineering course and introduces a method which allowed
students to gain practical experience in implementing
security concepts.
 A misconception among students as well as with
computing professionals is that security should be thought
of in the later phases of the software development life cycle.
However, if systems are to withstand malicious attack, a
robust software development model or a secure software
development must be used. One viewpoint of the secure life
cycle discussed in class was developed by Apvrille and
Purzandi and a modified version is presented in Figure 5
[19].

Figure 5. Secure life cycle

A. Security requirements and analysis

While requirements are being gathered from users and
stakeholders, focus should also be placed on establishing a
security policy. In order to develop a security policy,
attention needs to be given to what needs to be protected,
from whom, and for how long [20]. Additionally, thought
needs to be placed on the cost of protecting the information.
The result of this phase should be a set of guidelines that
create a framework for security [1].

B. Security design

During the design phase it has been stated that the
security technology needed to support the framework

outlined in the requirements phase is evaluated, alternative
solutions are explored, and a final design is agreed upon [1].
It is recommended by Viega and McGraw that the following
be the focus of this phase [20]:

• How data flows between components
• Users, roles and rights that are explicitly stated or

implicitly included
• The trust relationships between components
• Solutions that can be applied to any recognized

problem
At the end of this phase a design should be finalized and
presented. The design should be one that can be
implemented.

C. Implementation

The implementation phase in the secure development
life cycle is similar to that which is found in traditional
methodologies. However, when implementing a software
project with security in mind, it is important to consider a
language or a set of languages that may have security
features embedded, one that is reliable when it comes to
denial-of-service attacks, and that can perform error
checking statically, etc. Further, it is important to
understand the weaknesses of languages, for example buffer
overflows in C and C++.

D. Testing

Testing in the secure development life cycle is different
than in traditional methodologies. In traditional
methodologies, testing is done to ascertain the behavior of
the system and to determine if the system meets the
specifications. Security testing is used to determine if a
system protects data and maintains functionality as
intended. As mentioned previously the six concepts that
need to be covered by security testing are availability,
accuracy, authenticity, confidentiality, integrity, utility, and
possession. It has been stated that security testing is most
effective when system risks are uncovered during analysis,
and more specifically during architectural-level risk analysis
[20].

E. Maintenance

It has been stated that the maintenance and change phase
may be the most important phase of the secure development
life cycle given the high level of cleverness seen in today’s
threat [1]. In order to keep up with the changing threats to
systems, security systems need constant updating,
modifying, and testing. Constant maintenance and change
ensure that systems are ready to handle and defend against
threats.

28

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. THE PRACTICAL APPROACH TO THE SECURE
DEVELOPMENT LIFE CYCLE

A. Course Description

The course chosen for the practical implementation of the
secure development life cycle was the traditionally taught
CSCI 430 – Software Engineering course under the
instruction of the author. A brief description of the course is
to provide students with an engineering approach to
software development and design; and, to expose students to
current research topics within the field [21]. The software
engineering course was modified to reinforce the need to
think about security features and requirements early in the
development process so that security protection mechanisms
are designed and built into the system rather than added on
at a later time.

The prerequisites for the course are to have successfully
completed CSCI 230 - Data Structures and CSCI 300 -
Discrete Mathematical Structures with a grade of C or
better.

B. Course Learning Outcomes

Learning outcomes are extremely important when
developing a course. The learning outcomes describe the
specific knowledge and skills that students are expected to
acquire. The learning outcomes for the CSCI 430 course
include the following: at the end of the course, a student
should be able to:

• Describe in detail the software process
• Identify various software process models and

determine which model should be used for a
specific project

• Implement each phase of the software process
• Work effectively and efficiently in a team

environment to produce a large scale project
• Identify and discuss current research topics related

to the software engineering discipline
It was the anticipation of the author that through the

hands-on experience of developing a project that included
security concepts, students would gain an understanding of
the importance of secure software engineering and their
approach to development would be enhanced. Further, as
students use and understood the concepts presented during
class, conceptually they would be able to apply the
principles to a semester long project. It was decided to use
the concepts found in service-learning to design the project.
The next section provides a high level overview of service-
learning.

C. Service Learning

Service-learning is defined as a method of teaching
through which students apply their academic skills and
knowledge to address real-life needs in their own
communities [22]. Service-learning provides a compelling
reason for students to learn; it teaches the skills of civic
participation and develops an ethic of service and civic

responsibility. By solving real problems and addressing real
needs, students learn to apply classroom learning to real
world situations [22]. Service-learning has been shown to
be an educational technique that facilitates a student’s
growth in academics, communication, social maturity,
critical thinking, collaboration, and leadership skills [22].
Students who are involved in meaningful service-learning
have further been shown to perform better on tests, show a
sense of self-esteem and purpose, connect with the
community, and want to be more civically engaged than
students who do not participate in service-learning activities
[22].

There are many key components that are encompassed
within service-learning. The author has chosen some of
those activities that were included in CSCI 430 and, they are
presented in the next sections.

1) Reflection. Reflection fosters the development of
critical thinking in students. Reflection and critical thinking
(problem-solving) are essential tools that will help students
be successful in school, career, and life. Service-learning
reflection includes the following activities by the student:

• Assessing personal interests, knowledge, skills, and
attributes that will be useful in performing the
service-learning project.

• Thinking about how to take effective steps to meet
the identified needs.

• Self-evaluating one’s progress toward meeting the
goals of the project.

2) Working as a team. The students learn to work for a
common goal and by doing so acquire a variety of skills,
such as how to lead, how to be accountable, how to
communicate ideas, how to listen to others, and how to set a
goal and work effectively as a team to reach the goal.

3) Experiential learning. Service-learning uses direct
experience and hands-on learning to help the student learn
to take the initiative, assume responsibility, and develop
effective problem-solving skills.

The next section describes the course project that was
designed based on the concepts found in service-learning
and a modified version of the secure software development
life cycle.

VII. THE PROJECT

A. Project Statement
 The semester long project selected for the fall 2009
semester was to develop an electronic voting/tallying
system for the hotly contested position of the University’s
Queen. During past years, there have been errors in the
selection process of the University’s Queen; which has
resulted in a process where contestants and the student body
have little confidence. Students were required to develop a
software product that meets the needs of the customer and
helps to refine the election process and ballot-counting
process for the University’s Queen contest. Students were

29

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

part of a team which was expected to meet with the
customer (or representative) so that each phase of the
process could be implemented. The team was also expected
to produce a deliverable by the set deadline for each phase
of the process and to also deliver it and make presentations
to the customer (or representative).
B. Project Learning Outcomes

The learning outcomes of the semester long project
included that after the completion of the project students
would:

• Have a working knowledge of the secure software
development life cycle

• Understand and have a working knowledge of
secure software engineering principles

• Be able to describe software vulnerabilities
• Develop and execute security measures
• Work effectively and efficiently in a team

environment to produce the semester long project

C. Project Requirements

Students were given basic requirements from the
instructor for the software application; however, the
majority of the requirements were gathered from
stakeholders. Since the project was infused with software
security concepts there were both standard project
requirements as well as security requirements.

D. Project Deliverables
 Each item that the student team submitted was
considered a deliverable. The project had four deliverables
which were the requirements document, design document,
implementation, and the test plan. The following is an
overview of the project deliverables which were previously
presented in work by Lester [23], [24].

1) Requirements Document. The first document
students were required to submit was the requirements
document. The requirements document was considered the
official statement of what the students would implement. It
included both the stakeholder requirements for the software
application, which students named the MISS System, and a
detailed specification of system requirements. To gather the
requirements students met with stakeholders who included
Administrators in the Office of Student Life, contestants
from past elections, and student body leaders who were in
charge of election results. The initial document was meant
to get the students active in the planning and development of
the system. After completion of the requirements document,
students had an idea of the way they wanted the system to
look, how the system would be accessed, and by whom (i.e.,
password authentication, access control).

2) Design Document. The team was required to use one
of the decomposition styles discussed in the course. The
design document was required to have an introduction, an
overview of the design strategy chosen, and the diagrams,
charts, and/or details required as part of the decomposition

strategy chosen. The design document was also meant to be
an in-depth description of the system design. The design
showed how data flowed between system components and
the trust relationships between components. Both the system
and security requirements were described and explained
how they would be implemented. Further the document
identified vulnerabilities to the system and possible
solutions were presented.

3) Implementation. Students were required to
implement the project based on the requirements and design
documents. To implement the project students chose the
Java programming language.

4) Testing. Students were required to develop a test
plan which required them to perform requirements-based
testing and structural testing (inclusive of security testing).

Table 1. provides the timeframe for project deliverables.

TABLE 1. PROJECT DELIVERABLE TIME TABLE
Deliverable Deadline
Requirements document Week 8
Design document Week 12
Implementation Week 16
Test Plan Week 16

VIII. RESULTS AND DISCUSSION

In order to determine the effectiveness of the service-

learning project, the following actions were taken:
• For each deliverable a grade was determined based

on the submitted document and the oral
presentation of the document.

• After the completion of the each phase of the
project, an exit interview with team members was
conducted.

This section presents an overview of the results of these
activities.

1) Requirements Document. The requirements
documents was required to have the following sections as
outlined in the textbook for the course by Sommerville [6]:

• Introduction
• User definition
• System architecture
• System models
• System evolution

Additionally, the document was graded on organization,
grammar and style.

Results revealed that students had a good understanding
of the user definition and the system architecture. However,
system models proved to be a difficult topic for students to
master. Yet, the overall quality of the document showed
that students engaged in high-level critical thinking and
problem solving, which was one of the goals of the service-
learning project.

30

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Design Document. To implement the design,
students were required to choose one of the decomposition
strategies discussed in class. Students chose to use object-
oriented decomposition. Therefore, the parts of the
document were required to include the following:

• Class diagrams
• Static diagrams (collaboration or sequence)
• Dynamic diagrams (activity or state)
• Security plan and evaluation

Results revealed that students had a good understanding
of class and static diagrams, but had some difficulty with
dynamic diagrams. All students had previously taken a
theory course in which activity and state diagrams had been
discussed, but students still struggled with the
implementation of these diagrams as it related to the
service-learning project.

A review of the design document also revealed that
while the students gave heavy consideration and thought to
security, the plan was limited in scope. The security plan
addressed the characteristics of secure information, but
students had difficulty with the design of the plan and how
the plan would be evaluated.

3) Implementation. The requirement for this phase of
the life cycle was an executable software application that
met the requirements. To implement the MISS System
students chose the Java programming language. The results
from this phase of the project were mixed.

One of the challenges that students faced was the time
constraint. The project was to be completed during the
course of a sixteen week semester. Students naturally
thought that because they had been previously engaged in
semester-long projects in other courses that this project
would be similar and that there would be enough time to
complete all phases of the life cycle, especially the
implementation phase. However, students quickly realized
that this conjecture was incorrect as the end of the semester
quickly approached. Further, unforeseen challenges such as
changing requirements and teaming issues caused
implementation delays; consequently, impacting the
implementation of several requirements.

Students also had difficulty with the porting of the
software application from the platform on which it was
developed and the platform on which the application was to
execute. The host platform was controlled by the
Department of Computer Science. It was one of which the
students had extensive knowledge because it was the
platform on which they used for development and
implementation of projects for other classes. However, the
target platform on which the application was to execute was
controlled by Campus Technology. It was completely
different and one with which the students were quite
unfamiliar. Therefore, the porting of the software
application proved to the most difficult part of the project as
host-target development was not considered during the
requirements phase of the development life cycle.

4) Test Plan. The requirement for this phase was a test
plan that included test case design. The test plan was based
on Sommerville’s structure of a software test plan for large
and complex systems but modified to be less formal and
represent the smaller nature of the MISS System [6]. The
modified version of the software test plan included the
following components:

• The testing process
• Test case design
• Hardware and software requirements
• Constraints

Test case design was an integral part of the software test
plan. Test case design can be described as the process in
which the system is executed in a controlled environment
using established inputs into the system. The goal of the
process is to create test cases that can discover defects and
errors with the system and to also show that the
implemented system meets the requirements of the
stakeholders. The next section describes requirements-
based testing and structural testing, which were used as part
of the testing process.

Requirements should be designed so that they can be
tested. Therefore, requirements-based testing is used to
ensure that individual requirements are tested and to also
provide a level of confidence to the stakeholders that their
needs were being met. To test the requirements of the MISS
System students developed and completed the following
simple table as shown in Table 2.

TABLE 2. REQUIREMENT TESTING
Requirement Test Case Outcome

Structural testing is an approach that is used to test the

system based on developer’s knowledge of the structure and
implementation of the software. This type of testing is
typically used throughout a computer science curriculum as
students who are learning to program also develop test cases
based on the structure of their programs. By having
knowledge of the code, student-developers can design test
cases that can potentially uncover errors or problems.
However, structural testing is not designed to detect missing
or unimplemented requirements. Table 3 is an example of a
simple table that was developed and students were asked to
complete to the meet the objectives of structural testing.

TABLE 3. STRUCTURAL TESTING
Code Test Case

(Input)
Outcome

Results from testing revealed that this part of the life
cycle was also quite challenging for the students. Students
had some difficulty in determining test cases to test the
requirements. Further, since some requirements were not

31

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implemented, they could not be tested. Results also
revealed that structural testing was a little easier for the
students as this concept is one with which they are familiar
because as previously stated, a modified version of
structural testing is taught throughout the curriculum.

IX. CONCLUSION

In conclusion, the aim of this paper was to present a
theoretical and practical framework for introducing to
undergraduate students the secure software development
process. The paper presents the results of a practical
implementation of software security concepts learned
through a service-learning project.

The author acknowledges that while there are many
development methodologies that exist to train students in
software security, many consist of steps that cannot be
implemented in a one-semester course, especially with
undergraduate students. Further, the author found that it
was quite difficult for students to complete the secure
development life cycle and develop a “truly” secure system,
because it was costly as it related to resources (i.e., time,
platform and personnel). This finding is consistent with the
research perspectives of Devanbu and Stubbline [25].

Future work activities include that the author plans to
revise the project, the deliverables and the timeframe for the
deliverables. Additionally, the author plans to review the
life cycle chosen for the project and will create a modified
version of a life cycle for students to implement. The exit
interviews revealed that students wanted less time for
requirements/design and more time for implementation and
testing.

As software becomes more complex and vulnerabilities
and threats to these systems become just as complex, it is
important to introduce to the next generation of
technologists ways that systems can be made more secure.
As educators it becomes our responsibility to train these
students so that developing secure software is not just
introduced in theory, but in practice as well.

ACKNOWLEDGMENTS

The author wishes to thank the students enrolled in the fall
2009 CSCI 430 – Software Engineering class for their hard
work, the Tuskegee University Office of Student Life for
serving as customers for the project and the Tuskegee
University Office of Campus Technology for their
assistance on the project.

REFERENCES

[1] M.E. Whitman and H.J. Mattford. Principles of Information
Security. Boston: Course Technology. 2004.

[2] Internet users as percentage population.
http://www.geohive.com/charts/ec_internet1.aspx (Accessed
December 20, 2010).

[3] J. Elli, D. Fisher, T. Longstaff, L. Pesante, and R. Pethia. “A
Report to the President’s Commission on Critical
Infrastructure Protection.” [Electronic Version] http://
www.cert.org/pres_comm/cert.rpcci.ex.sum.html#edu
(Accessed on April 1, 2008).

[4] The National Strategy to Secure Cyberspace. (2003).
[Electronic Version]. http://www.uscert.gov/
reading_room/cyberspace_strategy.pdf (Accessed on June
13, 2011).

[5] http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf. (Accessed
January 17, 2008).

[6] I. Sommerville. (2007). Software Engineering 8th Ed.
Addison Wesley, 978-0-321-31379-9, Boston, MA.

[7] C. Angelov, R.V.N. Melnik, & J. Buur. (2003). The
synergistic integration of mathematics, software engineering,
and user-centered design: exploring new trends in education.
Future Generation Computer Systems. Vol. 19, 299 – 1307.

[8] B. K. Jayaswal and P.C. Patton (2007). Design for
trustworthy software: Tools, techniques for developing robust
software. Prentice Hall, 0-13-187250-8, Upper Saddle Rover,
NJ.

[9] Codebetter.com http://codebetter.com/blogs/raymond.
lewallen/downloads/waterfalllModel.gif. (Accessed on
October 10, 2009.

[10] B. Boehm. (1988). A Spiral Model of Software Development
and Enhancement. IEEE Computer 21, 5, 61-72.

[11] I. Sommerville. (2011). Software Engineering 9th Ed.
Addison Wesley, 978-0-13-703515-1, Boston, MA.

[12] F. Tsui and O. Karam. (2011). Essentials of Software
Engineering 2nd Ed. Jones and Bartlett Publishers, 13:978-0-
7637-8634-5.

[13] K. Beck (1999). Extreme programming explained: Embrace
the change. Addison Wesley.

[14] R. Jefferies, A. Anderson, C. Hendrickson. (2000). Extreme
programming installed. In: The XP Series. Addison Wesley.

[15] CERT Coordination Center, CERT/CC. [Electronic Version].
http://www.cert.org/ (Accessed July 12, 2011).

[16] M. Quin. Ethics for the Information Age 4th Ed. Boston:
Pearson Education. 2011.

[17] Software Errors Cost U.S. Economy $59.5 Billion Annually:
NIST Assesses Technical Needs of Industry to Improve
Software-Testing [Electronic Version]
http://www.nist.gov/public_affairs/releases/n02-10.htm
(Accessed on April 1, 2008).

[18] Accuracy; Integrity. American Heritage College Dictionary.
(1993). New York: Houghton Mifflin Company.

[19] A. Apvrille and M. Purzandi. “Secure Software Development
by Example,” IEEE Security & Privacy, vol. 3, no. 4,
July/August, 2005. p. 10 – 17.

32

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] J. Viega and G. McGraw. Building Secure Software: How to
Avoid Security Problems the Right Way. Boston: Addison-
Wesley. 2001.

[21] C. Lester. (2009). CSCI 430 – Software Engineering
Syllabus.

[22] K. McPherson. Service Learning. New Horizons for
Learning. http://www.newhorizons.org/strategies/service_
learning/front_service.htm. 2005.

[23] C. Lester. (2010) “Shifting the Paradigm: Training
undergraduate students in software security.” Proceedings of
the Fourth International Conference on Emerging Security
Information, Systems and Technologies. Venice, Italy, July
18 – 25, 2011.

[24] C. Lester. (2010). “A practical application of software
security in an undergraduate software engineering course.”
International Journal of Computer Science Issues, Vol. 7,
Issue 1.

[25] P.T. Devanbu and S. Stubbline. “Software engineering for
security: a roadmap,” Proceedings of the Conference on the
Future of Software Engineering. Limerick Ireland, June 4 –
11, 2000.

33

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Verification of Detection Methods for Robust Human Tracking System

Hiroto Kakiuchi
System Engineering Department,
Melco Power Systems Co., Ltd.

Kobe, Japan
Email: Kakiuchi.Hiroto@zs.MitsubishiElectric.co.jp

Takao Kawamura, Toshihiko Sasama, and Kazunori Sugahara
Graduate School of Engineering,

Tottori University.
Tottori, Japan

Email: {kawamura,sasama,sugahara}@ike.tottori-u.ac.jp

Abstract—Much recent research is concerned with overcom-
ing limitations of existing video surveillance systems, partic-
ularly for use in automatic human tracking systems. This
paper presents detection methods which detect a lost target
person during track in automatic human tracking system. The
detection methods utilize an algorithm which determines the
position of neighbors in a system of video cameras. By utilizing
this deployed position and the view distance of video cameras,
this algorithm also determines the interrelationship cameras
in such a network must have in an automatic human tracking
system. The system is enhanced by a video monitoring system
utilizing mobile agent technologies. Mobile agents are suitable
for distributed processing and parallel processing, since they
can monitor their own behavior and run on distributed comput-
ers. Multiple mobile agents in the system can track numerous
people using information gathered from several neighboring
video cameras at the same time. Searching a target person
at random is irrational when a system is losing the target;
additionally, difficulty of detection can arise if the deployed
position and/or the view distance of video cameras vary due
to other circumstances. Therefore, a robust computation not
influenced by these circumstances is needed, and detection
methods utilizing the above algorithm were developed to solve
these concerns and to improve reliability of this system by
re-detecting the lost target.

Keywords-Detection Method; Human Tracking; Mobile Agent.

I. I NTRODUCTION

Video surveillance systems are seeing widespread use
in the remote monitoring of people. Principally, the video
surveillance system is used as a security system because of
its ability to track a particular person. If the function of
the video surveillance system is extended to track numerous
people, the demands of the system are extended in various
ways. Two common examples of such uses are to search
for lost children and to gather/analyze consumers’ route
pattern for marketing research of a retail establishment. Such
video surveillance systems are referred to as “automatic
human tracking systems” in this paper. Our aim is to show
how automatic human tracking systems can be improved
by resolving some of the problems of conventional video
surveillance system.

Currently, existing video surveillance systems have many
limitations to their capabilities. In one case, systems have
difficulty isolating a number of people located at different

position at the same time and track those people automat-
ically. In another, the number of possible targeted people
is limited by the extent of users’ involvement in manually
switching the view from one video camera to another.
Although approaches do exist to increase the efficiency of
identifying and tracking particular people in a system com-
prised of numerous surveillance positions, these approaches
demand an increase in the workload of the user since it
demands users to identify the target.

Some researchers have suggested solutions to the above
problems. The first approach was to use an active camera to
track a person automatically [1][2], thus the camera moves in
a synchronized motion along with the projected movement
of the targeted person. Since a method for correcting blurring
image [3] is proposed, the active camera is available. This
approach is capable of locating and tracking small number
of people, but improvements must be made to facilitate the
locating and tracking of larger numbers of people. Another
common approach was to position the camera efficiently at
strategic surveillance locations [4]. This is not possible in
some situations due to the number of cameras that would be
necessary for full coverage, and in such cases this approach
is not feasible due to limited resources. A third approach
involved the implementation of sensors to efficiently track
a target with multiple cameras [5][6]. A fourth approach
observes a target with multiple cameras called “Watching
Station” [7]. These solution also meet with resource and
local restrictions such as installation barriers and the amount
of area to be monitored. A fifth approach discriminates a
target from color of hair, skin and clothing [8]. This solution
has weak from change of hue by shade, and has possibility
of mistaken recognition.

A better approach to identify and track numerous targeted
people at the same time involves image processing and
installation of video cameras at any designated location.
However, the concern then becomes the appropriateness of
using a single server when locating numerous people, since
the image processing increases server load. As such, a new
type of system that is capable of more efficiently identifying
and locating people must be developed. In this proposed
system, utilizing mobile agent technologies, the ratio of
mobile agents and tracked targets is directly proportional

34

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9][10][11][12]. According to many studies, an agent-based
approach is appropriate for distributed systems and parallel
processing [13][14][15], since mobile agents can transfer
copies of themselves to other servers in the system. By
working cooperatively, such a multi-agent system would
be effective [16]. With distributed processing, mobile agent
technologies are more effective and efficient than conven-
tional video surveillance systems, assuming that a large
number of servers with video camera are installed. If one
mobile agent can track one person, then multiple mobile
agents can track numerous people at the same time, and
the server balances the load process of the operating mobile
agent on each server with a camera. A video surveillance
system enhanced with mobile agent technologies is called
“Automatic Human Tracking System” [17][18]. In such a
system, a mobile agent tracks a person captured by a video
camera and a server process the data. The video camera
and the server are treated as a single entity since the video
camera and the server are deployed at the surveillance
position. Upon initialization of a person as a target to track,
a mobile agent is generated for that particular person. After
verifying the features of the person [19], the mobile agent
tracks the movement of the person by utilizing the neighbor
camera/server location information.

In the automatic human tracking system, tracking function
must be robust even if the system loses a target person.
Present image processing is not perfect because a feature
extraction like SIFT [20] has high accuracy but takes much
processing time. The trade-off of accuracy and processing
time is required for such a feature extraction algorithm.
In addition, the speed a person walks is various and the
person may be unable to be captured correctly in cameras.
Therefore, it is necessary to re-detect a target person as
tracking function even if the system loses the target. We
propose two types of detection method to detect a target
person in this paper. The detection methods compensate for
the above weakness of feature extraction as a function of
system. The detection methods also utilize “neighbor node
determination algorithm” [21] to detect the target efficiently.
The algorithm can determine neighbor camera/server loca-
tion information without the location and view distance of
video camera. Neighbor camera/servers are called “neighbor
camera node/nodes” in this paper. The mobile agent can de-
tect the target person efficiently with knowing the neighbor
camera node location information.

On the following sections, Section II will be describing
about overview of automatic human tracking system, Section
III contains the overview of Neighbor node determination
algorithm, Section IV explains the two types of detection
method to detect a target person when the system is losing
the target, Section V is the results of examination using the
detection methods, and Section VI is the conclusion of the
detection methods and feature subjects.

II. OVERVIEW OF AUTOMATIC HUMAN TRACKING

SYSTEM

The system configuration of the automatic human track-
ing system is shown in Figure 1. It is assumed that the
system is installed in a given building. Before a person is
granted access inside the building, the person’s information
is registered in the system. Through a camera an image of
the persons face and body is captured. Feature information
is extracted from the image by SIFT and registered into
the system. Any person who is not registered or not rec-
ognized by the system is not allowed to roam inside the
building. This system is composed of an agent monitoring
terminal, agent management server, video recording server
and feature extraction server with video camera. The agent
monitoring terminal is used for registering the target person’s
information, retrieving and displaying the information of the
initiated mobile agents, and displaying video of the target
entity. The agent management server records mobile agents’
tracking information history, and provides the information to
the agent monitoring terminal. The video recording server
records all video images and provides the images to the
agent monitoring terminal via request. The feature extraction
server along with the video camera analyzes the entity image
and extracts the feature information from the image.

A mobile agent tracks a target entity using the feature in-
formation and the neighbor nodes information. The number
of mobile agents is in direct proportion to the number of
the target entities. A mobile agent is initialized at the agent
monitoring terminal and launched into the feature extraction
server. The mobile agent extracts the features of a captured
entity and compares it with the features already stored by
the agent. If the features are equivalent, the entity is located
by the mobile agent.

The processing flow of the proposed system is also shown
in Figure 1. (i) First, a system user selects an entity on the
screen of the agent monitoring terminal, and extracts the
feature information of the entity to be tracked. (ii) Next, the
feature information is used to generate a mobile agent per
target which is registered into the agent management server.
(iii) Then the mobile agent is launched from the terminal to
the first feature extraction server. (iv) When the mobile agent
catches the target entity on the feature extraction server, the
mobile agent transmits information such as the video camera
number, the discovery time, and the mobile agent identifier
to the agent management server. (v) Finally, the mobile agent
deploys a copy of itself to the neighbor feature extraction
servers and waits for the person to appear. If the mobile
agent identifies the person, the mobile agent notifies the
agent management server of the information, removes the
original and other copy agents, and deploys the copy of itself
to the neighbor feature extraction servers again. Continuous
tracking is realized by repeating the above flow.

The system architecture is shown in Figure 2. The GUI is

35

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. System Configuration and Process Flow.

Figure 2. System Architecture.

operated only on the agent monitoring terminal. The GUI is
able to register images of the entities and monitor the status
of all the mobile agents. The mobile agent server is executed
on the feature extraction server and allows the mobile agents
to execute. The Feature extraction function is able to extract
features of the captured entities, which is then utilized in
the tracking of those entities as mobile agents. OSGi S/W
[22] acts as a mediator for the different software, allowing
the components to utilize each other. The Agent information
manager manages all mobile agent information and provides
the information to the agent monitoring terminal. The Video
recording S/W records all video, and provides the video
movie to agent monitoring terminal. Each PC is equipped
with an Intel Pentium IV 2.0 GHz processor and 1 GB mem-
ory. The system has an imposed condition requirement that
maximum execution time of feature judgment is 1 second
and maximum execution time of mobile agent transfer is
200 milliseconds.

In this system, a simulator is also currently being devel-
oped in Java Language. The simulator consists of an image
processing simulator and simulator tools. The simulator tools
are an editor for the creation of target simulation routes and
a simulation feature data creator. The simulator tools are
shown in Figure 3 and Figure 4. Since it is difficult to place
many cameras, the image processing simulator is performed
on the feature extraction server instead of a genuine image
processing function. In addition, this simulator changes a
target entity’s feature to a walking target entity by using a

Figure 3. Editor of Simulation Route.

Figure 4. Creator of Simulation Feature Data.

simulation agent. The simulation agent is also a mobile agent
that simulates the movement of a target entity and changes
the target entity feature. The movement of the target entity
is digitized by the editor of route simulation and the target
entity features are digitized by the simulation feature data
creator.

III. OVERVIEW OF NEIGHBOR NODE DETERMINATION

ALGORITHM

If a mobile agent tracks a target entity, the mobile agent
has to know the deployed location of the video cameras in
the system. However the abilities of the neighbor cameras
are also determined by their view distances. A problem
caused by a difference in the view distances can occur.
This problem occurs when there is a difference in expected
overlap of a view or an interrupt of view.

A scenario in which a neighbor video camera’s location
is influenced by view distance is shown in Figure 5. The
upper side figures of Figure 5 show four diagrams portraying
a floor plan with four video cameras each, considering

36

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Influence by Change of View Distance of Video Cameras.

the view distances of each video camera are different and
assuming that the target entity to be tracked moves from
the location of video camera A to video camera D. The
underside figures of Figure 5 show neighbors of each video
camera with arrows. The neighbor of video camera A in
object a-1 of Figure 5 is video camera B but not C and not
D as the arrows in object a-2 show. In object a-1 of Figure 5,
video camera C and D are also not considered neighbors of
video camera A, because video camera B blocks the view of
video camera C and D. And the target entity can be captured
at an earlier time on video camera B. But in the case of
object b-1 of Figure 5, the neighbors of video camera A
are video camera B and C but not camera D as the arrows
in object b-2 of Figure 5 show. In the case of object c-1
of Figure 5, the neighbors of video camera A are all video
cameras as the arrows in object c-2 of Figure 5 show. Thus
neighbor video camera’s location indicates the difference in
view distances of video cameras. The case of object d-1
in Figure 5 is more complicated. The neighbors of video
camera A in object d-1 of Figure 5 are video camera B,
C, and D as the arrows in object d-2 of Figure 5 show.
And video camera B is not considered the neighbor of video
camera C. It is because video camera A exists as a neighbor
between video camera B and C. When it is assumed that a
target entity moves from A to D, the target entity is sure to
be captured by video camera A, B, A, and C in that order.

This scenario indicates that the definition of “neighbor”
cannot be determined clearly because the determination of
the neighbor definition is influenced by the change of view
distance and it becomes more complicated as the number of
video cameras increases.

Neighbor node determination algorithm can easily deter-
mine the neighbor video camera’s location without regard
to the influence of view distances and any modification

Figure 6. Figure that sets Non-camera Nodes.

of the information of the currently installed cameras. The
modification information is set in the system to compute
neighbor video cameras on the diagram, which is expressed
as a graph. Nodes are used to compute neighbor video cam-
era’s information in this algorithm. The nodes are defined
as camera node and non-camera node. Camera node is the
location of video camera that is labeled as camera node.
The nodes are defined asA = {a1, a2, ..., ap}. This node
is also a server with video camera. Non-camera node is
defined asV = {v1, v2, ..., vq}. The conditions of a non-
camera node are stated below; i) either of crossover, corner,
terminal of passage, ii) the position where a video camera is
installed, or iii) the end point of the view distance of a video
camera. In addition, the point where the above conditions are
overlapped is treated as one node. When the view distance
of the video camera reaches a non-camera node, the non-
camera node is defined as the neighbor of the camera node.
When two non-camera nodes are next to each other on a
course, those nodes are specified as neighbors. Figure 6
shows an example of these definitions applied and shows
the view distances of the video cameras.

The algorithm accomplishes this using an adjacency
matrix. Two kinds of adjacency matrix are used by the
algorithm. One is an adjacency matrixX made from camera
nodes’ locations as rows and non-camera nodes’ locations
as columns. Elementxij of matrixX is defined as (1). Table
I is the adjacency matrixX which is a table representation
based on the object (c) of Figure 6.

xij =

1 There is the line which links

camera nodeai and non-camera nodevj .

0 There is no link.

(1)

37

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
ADJACENCY MATRIX X WITH ELEMENT xij

X v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

a1 1 0 0 0 0 0 1 1 0 0 0 0 0
a2 0 1 0 0 0 0 1 0 0 0 0 0 0
a3 0 0 1 0 0 0 0 1 0 0 0 0 0
a4 0 0 0 1 0 0 0 0 1 0 0 0 0
a5 0 0 0 0 1 0 0 0 0 1 0 0 0
a6 0 0 0 0 0 1 0 0 0 0 1 0 0

Table II
ADJACENCY MATRIX Y WITH ELEMENT yij

Y v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

v1 0 0 0 0 0 0 1 0 0 0 0 0 0
v2 0 0 0 0 0 0 1 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 1 0 0 0 0 0
v4 0 0 0 0 0 0 0 0 1 0 0 0 0
v5 0 0 0 0 0 0 0 0 0 1 0 0 0
v6 0 0 0 0 0 0 0 0 0 0 1 0 0
v7 1 1 0 0 0 0 0 0 0 0 0 0 0
v8 0 0 1 0 0 0 0 0 0 0 0 0 1
v9 0 0 0 1 0 0 0 0 0 0 0 0 1
v10 0 0 0 0 1 0 0 0 0 0 0 1 0
v11 0 0 0 0 0 1 0 0 0 0 0 1 0
v12 0 0 0 0 0 0 0 0 0 1 1 0 1
v13 0 0 0 0 0 0 0 1 1 0 0 1 0

Another one is as adjacency matrixY made from non-
camera nodes’ location as rows and columns. Elementyij

of matrixY is defined as (2). Table II is the adjacency matrix
Y which is a table representation based on the object (c) of
Figure 6.

yij =

1 There is the line which links

two non-camera nodes,vi andvj .

0 There is no link or (3) is satisfied.

(2)

yij = yji = 1,
∑m

n=1 xni ≥ 1,
∑m

n=1 xnj ≥ 1 (3)

The neighbor information for video cameras is calculated
from the connection information of non-camera nodes by
using adjacency matrixX andY .

Below is the algorithm to determine neighbor nodes: i)
Set camera nodes and non-camera nodes on the diagram
as shown in object (b) of Figure 6. ii) Transform the
diagram to a graph as shown in object (c) of Figure 6.
iii) Generate an adjacency matrixX from camera node
locations and non-camera node locations on the graph, and
generate an adjacency matrixY from non-camera node
locations on the graph. Adjacency matrixX indicates that
rows are camera nodes and columns are non-camera nodes.
Adjacency matrixY indicates that rows and columns are
non-camera nodes, which results in adjacency matrixY
resolving an overlap problem of view distances between

Table III
ADJACENCY MATRIX X′

X ′ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

a1 1 0 0 0 0 0 1 1 0 0 0
a2 0 1 0 0 0 0 1 0 0 0 0
a3 0 0 1 0 0 0 0 1 0 0 0
a4 0 0 0 1 0 0 0 0 1 0 0
a5 0 0 0 0 1 0 0 0 0 1 0
a6 0 0 0 0 0 1 0 0 0 0 1

Table IV
ADJACENCY MATRIX Y ′

Y ′ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 0 0 0 0 0 0 1 0 0 0 0
v2 0 0 0 0 0 0 1 0 0 0 0
v3 0 0 0 0 0 0 0 1 0 0 0
v4 0 0 0 0 0 0 0 0 1 0 0
v5 0 0 0 0 0 0 0 0 0 1 0
v6 0 0 0 0 0 0 0 0 0 0 1
v7 1 1 0 0 0 0 0 0 0 0 0
v8 0 0 1 0 0 0 0 1 1 1 1
v9 0 0 0 1 0 0 0 1 1 1 1
v10 0 0 0 0 1 0 0 1 1 1 1
v11 0 0 0 0 0 1 0 1 1 1 1

video cameras. iv) Calculate adjacency matrixX ′ and Y ′

by excluding unnecessary non-camera nodes from adjacency
matrix X andY . v) Calculate neighbor’s location matrix by
multiplying adjacency matrix and transposed matrixX ′T .
This neighbor’s location matrix is the neighbour’s node
information. An unnecessary non-camera node is a non-
camera node which has no camera node as a neighbor.
Adjacency matrixX ′ andY ′ are computed without unnec-
essary nodes, and using the procedure shown later. There are
reasons why it might be better to include the unnecessary
nodes in the diagram from the beginning as we have done.
Since the risk of committing an error will be higher as the
diagram becomes larger, we include the unnecessary nodes
from the beginning and remove them at the end. Table III is
the adjacency matrixX ′ without unnecessary nodes from the
adjacency matrixX, and Table IV is the adjacency matrix
Y ′ without unnecessary nodes from the adjacency matrix
Y . Finally, matrixE which indicates the neighbor nodes is
derived as (4). In addition,eij which is a value of element
of E indicates number of route for reaching from camera
nodeai to camera nodeaj .

E = X ′Y ′X ′T

{
≥ 1 ai is neighbor node toaj

= 0 ai is not neighbor node toaj

(4)

IV. D ETECTION METHODS

The detection method in this paper is used to re-detect a
target when the automatic tracking system loses the target.

38

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Detection Methods.

This method improves the tracking function, because an
individual can not be accurately identified in the current
image processing. As such the reliability of the system
is further improved, because it enhances the continuous
tracking function and re-detection of the target even if a
target is lost for a long period of time. In this paper, if a
target is not captured within a certain period of time, the
mobile agent then concludes that the target is lost. On such
case the system can also conclude that the target is lost.

We are proposing two types of detection method: (a)
“Ripple detection method” and (b) “Stationary net detection
method”. These methods are shown in Figure 7.

Ripple detection method widens a search like a ripple
from where an agent lost a target to give top priority to
re-detect. This method has a feature that the discovery
time becomes shorter and usual tracking can resume more
quickly, if the target exists near where the agent lost. In
addition, this method deletes other agents immediately after
discovering the target, and suppresses the waste of the
resource. The Ripple detection method is developed and
is examined in search propriety. In the Ripple detection
method, the neighbor camera nodes are shown as (5).

E1 = E = X ′Y ′X ′T (5)

When a mobile agent lost a target, copy agents are deployed
to the next nodes of (5) expressed by (6), and search is
started.E2 shows next neighbor camera nodes, because
the elements ofE2 larger than1 can be reached if the

elements are larger than1. Therefore, excepting neighbor
node information E of camera nodes, automatic human
tracking system uses a minimum resource by deploying copy
agents.

E2 = E2 − E1 = E2 − E (6)

Similarly, it becomes like (7) and (8) to calculate the next
camera node further.

E3 = E3 − (E2 + E1) = E3 − E2 (7)

E4 = E4 − (E3 + E2 + E1) = E4 − E3 (8)

As mentioned above, the equation (9) is derived when
deploying agents efficiently to then next camera nodes.n
is larger than 2 and is incremented one by one when this
equation is used for detection.

En = En −
n−1∑
m=1

Em = En − En−1 (9)

Stationary net detection method widens a search like set-
ting a stationary net with the Neighbor node determination
algorithm from where an agent lost a target to give top
priority to re-detect. This method uses (10) in the algorithm.

E = X ′(Y ′)nX ′T

{
≥ 1 ai is neighbor node toaj

= 0 ai is neighbor node toaj

(10)

In this equation, adjacency matrixE indicates the node that
can reach vian non-camera nodes andn is always set to
n ≥ 2. In this method, the coefficientn is set ton = 4
because camera nodes are set with a certain interval. The
interval between cameras in the real system may be close,
but in that case, number of non-camera nodes between the
cameras decreases. Therefore it is enough interval to re-
detect a target ifn consists ofn ≥ 4. This method has
a feature that agents are deployed to neighbor camera nodes
via n next non-camera nodes and catch a target like a sta-
tionary net. In addition, this method also deletes other agents
immediately after discovering the target, and suppresses the
waste of the resource. The Stationary net detection method
is developed and is examined in search property. In the
Stationary net detection method, the neighbor camera nodes
are shown as (11).

E1 = E = X ′Y ′X ′T (11)

When a mobile agent lost a target, copy agents are deployed
to the next nodes of (11) expressed by (12), and search
is started.X ′Y ′2X ′T shows neighbor camera nodes via
two non-camera nodes, because the elements ofX ′Y ′2X ′T

larger than1 can be reached if the elements are larger
than 1. If copy agents are deployed at each camera nodes
via non-camera nodes more than two, detection range of
target widens. And, excepting neighbor node information E

39

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of camera nodes, automatic human tracking system uses a
minimum resource by deploying copy agents.

E2 = X ′Y ′2X ′T − E1 (12)

Similarly, it becomes like (13) and (14) to calculate the next
camera node of more wide range.

E3 = X ′Y ′3X ′T − (E2 + E1) (13)

E4 = X ′Y ′4X ′T − (E3 + E2 + E1) (14)

As mentioned above, the equation (15) is derived when
deploying agents efficiently to the next camera nodes via
n non-camera nodes.n is larger than 2 and is incremented
one by one when this equation is used for detection.

En = X ′Y ′nX ′T −
n−1∑
m=1

Em = X ′Y ′nX ′T −X ′Y ′n−1X ′T

(15)

V. EXAMINATION

Examination environment for the Ripple detection method
and the Stationary net detection method is shown in Figure
8 and Figure 9. There are twelve camera nodes in the
environment of floor map 1, and there are fourteen camera
nodes in the environment of floor map 2. Here, the following
conditions are set in order to examine the effectiveness of
these detection methods. i) Camera nodes are arranged on
latticed floor,56m × 56m. ii) View distance of camera is
set to 10m in one direction. iii) Identification of a target
in the image processing does not fail when re-detecting.
iv) Walking speed of the target is constant. v) Only one
target is searched. vi) The target moves only forward without
going back. In the case of the floor map 1, the target moves
following the order ofa1, a2, a3, a4, a5, a6, a7, a8, a9,
a10, a11, a12 and a1. In the case of the floor map 2, the
target moves following the order ofa1, a2, a4, a5, a7, a9,
a10, a11 anda1. In the examination, the time that an agent
concludes a failure of tracking is same as search cycle time.
The search cycle time is defined as the time concluded that
an agent can not discover a target. The search cycle time
is prepared using 3 patterns12 seconds,9 seconds and6
seconds. Walking speed of the target is prepared using 3
patterns1.5m/s, 2m/s and 3m/s. And search of target is
prepared that an agent loses a target ata7 and the agent
starts a search in the situation that the target has already
moved toa8. Furthermore, Stationary net detection method
is examined by 3 patternsn = 2, n = 3 andn = 4, because
of confirming effectiveness by number of non-camera nodes.
On each floor map, using 12 patterns of such combination by
each walking speed, discovery time and the number of agents
are measured. Generally, the walking speed of a person is
around2.5m/s, and the two types of walking speed,2m/s
and 3m/s, used by the target which was examined are
almost equivalent to the walking speed of general person.

Figure 8. Floor Map 1 for Examination of Detection Methods.

Figure 9. Floor Map 2 for Examination of Detection Methods.

And walking speed,1.5m/s, is very slow from the walking
speed of general person.

The results of the measurement on the floor map 1 are
shown in Table V, Table VI and Table VII. The results of
the measurement on the floor map 2 are shown in Table
VIII, Table IX and Table X. They are a mean value of 5
measurements.

The result of the Ripple detection method shows that
the discovery time becomes shorter and usual tracking can
resume more quickly, if the target exists near where the agent

40

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
DETECTION TIME ON FLOOR MAP 1 BY WALKING SPEED1.5M /S

Walking Stationary Stationary Stationary
Speed(1.5m/s) Ripple Net (n=2) Net (n=3) Net(n=4)

Number of
Search Agents 6 12 12 6

Cycle (12s) Discovery
Time (s) 20.6 – – 20.5

Number of
Search Agents 6 12 6 6

Cycle (9s) Discovery
Time (s) 20.5 – 20.5 20.5

Number of
Search Agents 7 6 6 7

Cycle (6s) Discovery
Time (s) 20.5 20.5 20.5 20.5

Table VI
DETECTION TIME ON FLOOR MAP 1 BY WALKING SPEED2M /S

Walking Stationary Stationary Stationary
Speed(2m/s) Ripple Net (n=2) Net (n=3) Net(n=4)

Number of
Search Agents 6 12 12 6

Cycle (12s) Discovery
Time (s) 15.5 – – 15.5

Number of
Search Agents 6 12 12 6

Cycle (9s) Discovery
Time (s) 15.5 – – 15.4

Number of
Search Agents 7 12 6 7

Cycle (6s) Discovery
Time (s) 16.5 – 15.5 15.7

lost. But, if the walking speed of a target is faster, the agent
will become difficult to discover the target.

The result of the Stationary net detection method shows
that the agent can discover a target if coefficientn has larger
value, even if the walking speed of a target is faster. And it
is not enough interval to re-detect a target ifn consists of
n ≤ 3 and it is not enough time to re-detect the target if the
search cycle time is shorter.

From the result of measurement on the floor map 1, if
the Stationary net detection method uses coefficientn = 4,
there is not the difference of efficiency between the Ripple
detection method and the Stationary net detection method.
However, from the result of measurement on the floor map
2, if a floor map is complicated, the discovery time of
the Stationary net detection method becomes shorter than
the discovery time of the Ripple detection method and the
number of agents of the Stationary net detection method
becomes less than the number of agents of the Ripple
detection method.

On the whole, the result of both methods shows that a
number of agents decreases by searching a target near search
cycle but the agents can not search the target if the search
cycle time is longer than the waking speed. In addition
based on the results, when the walking speed is faster, the
discovery time is shortened or equal and the number of
agents decreases or is equal.

Table VII
DETECTION TIME ON FLOOR MAP 1 BY WALKING SPEED3M /S

Walking Stationary Stationary Stationary
Speed(3m/s) Ripple Net (n=2) Net (n=3) Net(n=4)

Number of
Search Agents 12 12 12 12

Cycle (12s) Discovery
Time (s) – – – –

Number of
Search Agents 5.9 12 12 6

Cycle (9s) Discovery
Time (s) 11.7 – – 11.5

Number of
Search Agents 6 12 12 6

Cycle (6s) Discovery
Time (s) 11.7 – – 11.6

Table VIII
DETECTION TIME ON FLOOR MAP 2 BY WALKING SPEED1.5M /S

Walking Stationary Stationary Stationary
Speed(1.5m/s) Ripple Net (n=2) Net (n=3) Net(n=4)

Number of
Search Agents 14 14 10 12.2

Cycle (12s) Discovery
Time (s) 49.5 – 31.8 32.6

Number of
Search Agents 13.8 10 10 13

Cycle (9s) Discovery
Time (s) 33.7 32.3 32.3 33

Number of
Search Agents 13.9 10 13.2 14

Cycle (6s) Discovery
Time (s) 32.2 32 32.4 33

Table IX
DETECTION TIME ON FLOOR MAP 2 BY WALKING SPEED2M /S

Walking Stationary Stationary Stationary
Speed(2m/s) Ripple Net (n=2) Net (n=3) Net(n=4)

Number of
Search Agents 14 14 10 10

Cycle (12s) Discovery
Time (s) – – 31.1 25.3

Number of
Search Agents 14 14 10 13

Cycle (9s) Discovery
Time (s) 35.9 – 25.6 25.2

Number of
Search Agents 13.8 10 13 14

Cycle (6s) Discovery
Time (s) 24.8 25.3 24.8 25.8

Table X
DETECTION TIME ON FLOOR MAP 2 BY WALKING SPEED3M /S

Walking Stationary Stationary Stationary
Speed(3m/s) Ripple Net (n=2) Net (n=3) Net(n=4)

Number of
Search Agents 14 14 14 9.8

Cycle (12s) Discovery
Time (s) – – – 18

Number of
Search Agents 14 14 14 10

Cycle (9s) Discovery
Time (s) – – – 18.2

Number of
Search Agents 14 14 10.4 12.4

Cycle (6s) Discovery
Time (s) 25.9 – 18.2 19

41

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION

We propose the Ripple detection method and the Sta-
tionary net detection method. These are examined using a
image processing simulator, because an individual can not
be accurately identified in the current image processing. And
in addition, the image processing simulator can be stabilized
the accuracy of image processing and the simulator can be
effective to examine each method correctly. These detection
methods can search a lost target but a search cycle has to be
within (walking speed× distance between cameras). These
methods can be efficient to detect a target if the search cycle
is near the walking speed. A mobile agent can keep tracking
a target by using these detection methods if the agent lose
the target. In addition, from the examination results, the
Stationary net detection method can detect a target faster
than the Ripple detection method. And the Stationary net
detection method can use smaller number of agents than
the Ripple detection method. Because the Ripple detection
method searches a target by widening a search gradually
but the Stationary net detection method can widen a search
efficiently by the Neighbor node determination algorithm.

We will research more efficient detection to improve the
automatic human tracking system. And we are considering
to compute a movement direction of a captured target,
to improve efficiency of tracking by using the direction
information to the tracking, and to improve the detection by
using the number of route which is element of neighbor node
informationE. In addition, the accuracy of image processing
has to be improved more to track a target more accurately.
We are considering to improve image processing program
by using PCA-SIFT [23] or SURF [24] algorithm.

ACKNOWLEDGMENT

The authors would like to thank Tadaaki Shimizu, Yusuke
Hamada, Naoki Ishibashi, Shinya Iwasaki, Hirotoshi Oku-
mura, Masato Hamamura, Shingo Iiyama in Tottori univer-
sity.

REFERENCES

[1] K. Terashita, N. Ukita, and M. Kidode, “Efficiency im-
provement of probabilistic-topological calibration of widely
distributed active cameras,”IPSJ SIG Technical Report, vol.
2009–CVIM–166, pp. 241–248, 2009.

[2] Y. Kawaguchi, A. Shimada, D. Arita, and R. Taniguchi,
“Object trajectory acquisition with an active camera for wide
area scene surveillance,”IPSJ SIG Technical Report, vol.
2008–CVIM–163, pp. 1306–1311, 2008.

[3] H. Yin and I. Hussain, “Independent component analysis and
nongaussianity for blind image deconvolution and deblur-
ring,” Integrated Computer-Aided Engineering, vol. 15, no. 3,
pp. 219–228, 2008.

[4] U. M. Erdem and S. Sclaroff, “Automated camera layout to
satisfy task-specific and floor plan-specific coverage require-
ments,”CVIO2006, vol. 103, no. 3, pp. 156–169, 2006.

[5] Y. Yao, C. H. Chen, B. Abidi, D. Page, A. Koschan, and
M. Abidi, “Sensor planning for automated and persistent
object tracking with multiple cameras,”CVPR2008, 2008.

[6] ——, “Sensor planning for ptz cameras using the probability
of camera overload,”ICPR2008, 2008.

[7] A. Nakazawa, S. Hiura, H. Kato, and S. Inokuchi, “Tracking
multiple persons using distributed vision systems,”Journal of
Information Processing Society of Japan, vol. 42, no. 11, pp.
2699–2710, November 2001.

[8] T. Darrell, G. Gordon, M. Harville, and J. Woodfill, “In-
tegrated person tracking using stereo, color, and pattern
detection,”International Journal of Computer Vision, vol. 37,
no. 2, pp. 175–185, June 2000.

[9] D. B. Lange and M. Oshima, “Seven good reasons for mobile
agents,”Communications of the ACM, vol. 42, no. 3, pp. 88–
89, 1999.

[10] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus,
“D’ agents: Applications and performance of a mobile-agent
system,”Software: Practice and Experience, vol. 32, no. 6,
pp. 543–573, 2002.

[11] S. Motomura, T. Kawamura, and K. Sugahara, “Maglog: A
mobile agent framework for distributed models,” inProceed-
ings of the IASTED International Conference on Parallel and
Distributed Computing and Systems, 2005, pp. 414–420.

[12] T. Kawamura, S. Motomura, and K. Sugahara, “Implemen-
tation of a logic-based multi agent framework on java envi-
ronment,” in Proceedings of IEEE International Conference
on Integration of Knowledge Intensive Multi-Agent Systems,
2005, pp. 486–491.

[13] G. Cabri, L. Leonardi, and F. Zambonelli, “Mobile-agent
coordination models for internet applications,”Computer,
vol. 33, no. 2, pp. 82–89, February 2000.

[14] G. Valetto, G. Kaiser, and G. S. Kc, “A mobile agent approach
to process-based dynamic adaptation of complex software
systems,”Lecture Notes in Computer Science, vol. 2077, pp.
102–116, 2001.

[15] N. R. Jennings, “An agent-based approach for building com-
plex software systems,”Communications of the ACM, vol. 44,
no. 4, pp. 35–41, April 2001.

[16] D. Monticolo, V. Hilaire, S. Gomes, and A. Koukam, “A
multi-agent system for building project memories to facilitate
the design process,”Integrated Computer-Aided Engineering,
vol. 15, no. 1, pp. 3–20, January 2008.

[17] H. Kakiuchi, Y. Hamada, T. Kawamura, T. Shimizu, and
K. Sugahara, “To realize automatic human tracking system
based on mobile agent technologies,” inProceedings of the
59th Chugoku branch union convention of the Institute of
Electrical Engineers of Japan and Information Processing
Society of Japan. Institute of Electrical Engineers of Japan
and Information Processing Society of Japan, 2008, p. 485.

42

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] Y. Hamada, S. Iwasaki, H. Kakiuchi, T. Kawamura, and
K. Sugahara, “Pursuit methods for automatic human tracking
system based on mobile agent technologies,” inProceedings
of the 59th Chugoku branch union convention of the Institute
of Electrical Engineers of Japan and Information Processing
Society of Japan. Institute of Electrical Engineers of Japan
and Information Processing Society of Japan, 2008, p. 486.

[19] N. Ishibashi, Y. Hamada, H. Kakiuchi, T. Shimizu, T. Kawa-
mura, and K. Sugahara, “Feature extraction method for
automatic human tracking system based on mobile agent
technologies,” inProceedings of the 59th Chugoku branch
union convention of the Institute of Electrical Engineers of
Japan and Information Processing Society of Japan. Institute
of Electrical Engineers of Japan and Information Processing
Society of Japan, 2008, p. 418.

[20] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,”International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[21] H. Kakiuchi, T. Kawamura, T. Shimizu, and K. Sugahara,
“An algorithm to determine neighbor nodes for automatic
human tracking system,” inIEEE International Conference
on Electro/Information Technology. IEEE, 2009, pp. 96–
102.

[22] Open Service Gateway Initiative Alliance, OSGi
Alliance Specifications OSGi Service Platform Release
1, last access May 2011. [Online]. Available:
http://www.osgi.org/Specifications/HomePage

[23] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive
representation for local image descriptors,”Computer Vision
and Pattern Recognition (CVPR), vol. 2, pp. 506–513, 2004.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up
robust features (surf),”Computer Vision and Image Under-
standing (CVIU), vol. 110, no. 3, pp. 346–359, 2008.

43

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PIGA-HIPS: Protection of a Shared HPC Cluster
M. Blanc*, J. Briffaut, D. Gros, C. Toinard

Laboratoire d’Informatique Fondamentale d’Orléans
*CEA, DAM, DIF F-91297 Arpajon, France, mathieu.blanc@cea.fr

ENSI de Bourges – LIFO, 88 bd Lahitolle, 18020 Bourges cedex, France
{jeremy.briffaut,damien.gros,christian.toinard}@ensi-bourges.fr

Abstract—Protecting a shared High Performance Computing
cluster is still an open research problem. Existing solutions
deal with sand-boxing and Discretionary Access Control
for controlling remote connections. Guaranteeing security
properties for a shared cluster is complex since users demand
an environment at the same time efficient and preventing
confidentiality and integrity violations. This paper proposes
two different approaches for protecting remote interactive
accesses against malicious operations. Those two approaches
leverage the SELinux protection. They have been successfully
implemented using standard MAC from SELinux, and guarantee
supplementary security properties thanks to our PIGA HIPS.
The paper compares those two different approaches. It presents
a real use case for the security of a shared cluster that allows
interactive connections for users while preventing confidentiality
and integrity violations. That paper takes advantage of previous
works and goes one step further for protecting shared clusters
against malicious activities. It proposes a new framework to
share a cluster among partners while guaranteeing advanced
security properties. This solution aims to prevent complex or
indirect malicious activities that use combinations of processes
and covert channels in their attempt to bypass the required
properties.

Keywords - Security Property, Mandatory Access Control,
High Performance Computing Security.

I. INTRODUCTION

Protecting a HPC cluster [1] against real world cyber threats
is a critical task nowadays, with the increasing trend to
open and share computing resources. As partners can upload
data that is confidential regarding other partners, a company
managing a shared cluster has to enforce strong security
measures. It has to prevent both accidental data leakage and
voluntary data stealing.

Security of the clusters accesses usually relies on Dis-
cretionary Access Control (DAC) and sand-boxing such as
chroot, BSD Jail or Vserver. The DAC model has proven to
be fragile [2]. Moreover, virtual containers do not protects
against privilege escalation where users can get administration
privileges in order to compromise data confidentiality and
integrity.

Mandatory Access Control (MAC) can be used to confine the
various cluster populations. MAC such as in NSA’s Security-
Enhanced Linux (SELinux) provides a powerful protection
scheme. However, defining efficient SELinux policies is com-
plex. Moreover, advanced security properties cannot be en-
forced by that approach. For example, SELinux in its current

design does not control information flows involving multiple
processes and ressources.

Solutions such as [3] propose enforcement of advanced
security properties for SELinux. However, efficient protection
of remote accesses has not yet been proposed using those
kinds of solutions. Moreover, specific contexts of use such
as a cluster shared between various entities require a new
protection scheme since the protection must scale well.

That paper answers those two questions. First, it presents
two different solutions for the protection of a shared cluster
against malicious usage. Second, it discusses the advantages
and presents the solution chosen to protect a large scale cluster
such as the ones deployed by the CEA. Finally, it shows
how to compute the remaining risks associated with a given
SELinux policy, how to analyze the remaining risks and how
to prevent them. The result is that, however complete, the
proposed SELinux policy still cannot prevent about a million
of indirect illegal activities. But, the PIGA HIPS enables to
prevent against these remaining risks. Then, the paper presents
a real case study showing realistic scenarii of attacks, and how
the PIGA HIPS can prevent them.

II. RELATED WORK

High performance computing architectures are extremely
specialized, compared to general computing facility. As such,
they present specific security issues and properties. As outlined
by William Yurcik [4], these issues must be addressed in a way
that is relevant, with a combination of general techniques and
one that are specific to cluster architectures.

Sandboxing such as [5] or [6] provides a mean to confine
processes. However, in the context of a shared cluster where
processes can communicate and share files, the confinement
cannot be hardened and information can flow between pro-
cesses and resources.

Under Linux, there are at least four security models avail-
able to ensure a Mandatory Access Control policy: SELinux,
grsecurity, SMACK and RSBAC. But none of these solutions can
ensure a large set of security properties. In the best case, they
can ensure one or two limited properties such as the Bell and
LaPadula confidentiality or the Biba integrity. Under the BSD
family, solutions such as Trusted BSD (available within the
following Operating Systems: FreeBSD, OpenBSD, MacOSX,
NetBSD) provide more or less the same kind of a Mandatory
Access Control as SELinux. But, again, they fail to ensure the
large majority of requested security properties.

44

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The major limitation is related to indirect information flows,
allowed by the considered protection policies, that enable
to violate a security property. All those approaches fail to
correctly manage indirect information flows, consequently
authorizing illegal activities.

Several studies address how to manage indirect information
flows within an Operating System. The HiStar Operating Sys-
tem [7] associates each object or subject with an information
flow level. The problem of HiStar is that it is very close to the
the Biba integrity model and suffers from the same limitations.
The Flume Operating System [8] is very close to HiStar.
However, Flume does not control efficiently the information
flows.

Asbestos [9] reuses the idea of HiStar by considering
four different levels of information. The protection rules can
only express pairwise relationship patterns. Again, information
flows involving multiple interactions and processes cannot be
controlled easily.

Works about the enforcement of dynamic policies such
as [10], [11], generally consider how to detect simple conflicts
within dynamic policies. For example, they detect if it is
safe to remove or add a role or a context, otherwise the
considered access control could become invalid, conflicting
or not supported. So, they address conflicting rules but do not
enforce a large set of security properties.

Briffaut and al. [3] presents how to reinforce the security
of SELinux MAC policies. However, security properties for
protecting a HPC cluster must be defined. Moreover, the
protection system must scale well in order to minimize the
performance overhead and ease the deployment.

III. SECURITY OBJECTIVES

In this section, we present our security goals regarding our
experimental shared HPC clusters. These goals are the basis
of our security policy, and thus of our SELinux configuration.
They can be resumed in five points:

• Ensure the confidentiality of data uploaded by partners;
• Confine user profiles and services so that a malicious

elevation of privileges does not compromise the security
of the operating system;

• Differentiate public SSH access and administrator SSH
access;

The following subsections give details on each point.

A. User containers and data confidentiality

Users from the same projects should be able to exchange
files freely. Hence there is a particular set of Unix groups
called “containers”. These containers represent people working
on the same project or users that are granted access by
the same administrative procedure (for example a national
research agreement). In these containers, accidental leakage
of information due to incorrect permissions is considered
harmless.

Definition 3.1 (Container): In a container A, with
(a1, a2) ⊂ A, a1 accessing a file f belonging to a2 does not
break the confidentiality of file f .

which means, in terms of confidentiality:
Definition 3.2 (Confidentiality): Data confidentiality means

that a user a from container A must not be able to read a file f
belonging to a user b from container B, whatever permissions
are set on f .

Of course, this does not mean that any user can access all
the files of all other users in the same container. Typically,
aMAC mechanism will confine users in their container, and
then inside a container users can restrict access to their own
files with DAC permissions.

B. Confined users and services

Users and services should be confined in order to prevent
any tampering with the security mechanisms. A first example
is a malicious hacker exploiting a flaw in a network service in
order to gain administrative access to a login node. Exploiting
a flaw should not allow him to break the data confidentiality
of another container. Another example is a legitimate user
downloading a malicious code from the Internet and using
it to gain administrative privileges on his node. Even if this
succeeds, this user should not be able to access files outside
his container.

Definition 3.3 (Confinement): Any person gaining admin-
istrative privileges on a system must not be able to break
the confidentiality property, either legitimate user or external
attacker.

C. SSH access

There should be two different points of access on the cluster
nodes: a public access for standard users, and an administrative
access reserved to system administrators. These accesses are
always setup with a ciphered protocol like SSH. Even in the
case a vulnerability is exploited in the server and gives an
administrative access to an attacker, the public access should
never allow users to configure the security mechanisms. Only
the administrative access should.

Of course interactive user access is not always enabled. For
example, there are some parts of the clusters like computing
nodes where standard user access should be disabled. These
nodes should only be accessed through the batch scheduler.
The same restriction goes for the storage nodes, accessible
only through mounted network file systems, and so on. These
are only examples, each cluster has its specific areas.

IV. SELINUX SOLUTIONS OF PROTECTION

A. Solution 1: SSH users confinement with chroot and SELinux

When the SSH daemon receives a connection the user is
authenticated, it forks and executes the user’s shell from
/etc/passwd. Our confinement system provides a chroot
confinement for this shell, strengthened by SELinux rules via a
SELinux module. First, we create a Linux sub tree in which the
SSH daemon will chroot the user. The main idea is to build one
confinement tree per user, and each user has different SELinux
types. We use the base types defined for / tree, adding the
username of the user linked to the confinement. For example,
if we confine Bob in /cage, files in /cage/etc will have

45

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Jail and SELinux contexts.

the Bob_etc_t type, as files in /etc have the etc_t type.
See figure 1 for an example of SELinux types we use.

The goal of our SELinux module is to make an automatic
transition of the user confined shell to a unique type, and to
give rights to this type to interact only with objects that own
a type in the user’s sub tree. So, each user’s processes and
objects have a different SELinux type and consistent protection
rules prevent from unauthorized accesses. Even in case of
chroot or application corruption, a process (e.g. user1 subject)
is prevented from accessing unauthorized resources (e.g. user2
objects).

Here are the main steps to confine a user. The first step is
to create the sub tree. Jail is a simple Linux tool (not to be
confused with FreeBSD Jail) to build such a sub tree. Then,
we build the SELinux module to strengthen the confinement.
We write the source code of the module, compile it and load
it to SELinux. The next step is to configure OpenSSH to
chroot this user in the requested sub tree, and apply the correct
SELinux labels to the user file tree (relabeling operation). As
the SELinux module has been loaded before relabeling the tree,
it will get types we defined in our policy module, not default
types.

A bash script provides automation for these different steps.
The script just needs the user name and the path you want
to confine him in. For our tests we used the SSHJail patch

Fig. 2. Jail and SELinux transitions.

for OpenSSH, which use the /etc/sshjail.conf file
to define user’s chroot. The script must be adapted if using
another system. Of course, the script checks if this user is
already confined in another sub tree or if the sub tree is already
used to confine another user. The SELinux rules defined for the
modules are very restrictive, they just allow the user to login
and run a few commands such as ls. Other commands can
be added on demand based on application requirements.

This system requires to set up each user on the machine. So,
our script needs to be executed after the useradd command
in order to confine every user. It is a good thing to gather
these two steps into a single one. The solution is to provide
an alias for the useradd command that runs the two steps.
A SELinux rule prevents the real useradd from being run
directly. Thus, only the alias is allowed for execution.

B. Solution 2: SSH users confinement with Port differentiation
and SELinux

The idea is to have different SSH ports for each user
categories. In the sequel, we consider only two types of users.
One has the context ccc_guest_t and offers a restricted
access. The other one is unconfined_t which gives full
privilege access. To separate these two kinds of interactive
accesses, we introduce two new contexts for two SSH servers,
sshd_public_t and sshd_admin_t. The first one offers
restricted access whereas the second one gives a privileged
access.

This is implemented in two different SELinux policy mod-
ules described in the following parts: ccc_guest and
sshd_admin.

1) ccc_guest: By default, all the users are placed in the
context (user_u, system_r, unconfined_t). The
goal of our SELinux module is to provide two confined user
profiles: ccc_guest and ccc_xguest. The first one is
associated to SSH connections, and the second one is asso-
ciated to X11 sessions. They are originally derived from the
guest and xguest profiles of Fedora 10, provided by Dan

46

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Walsh [12]. They were subsequently adapted to our specific
needs.
1 unprivileged_user(ccc_guest_t, ccc_guest);

This template deals with the creation of the basic rules
for the ccc_guest_t type. When the user logs on the
system, he receives a set of access rights that allows him to
perform basic actions. This unprivileged_user template
also enables to use a part of the network (important for the
use of SSH).
1 userdom_restricted_xwindows_user_template(ccc_xguest);
2 use_kde(ccc_xguest_t);

The xguest profile derived of Fedora 10 allows us to
define rules for the X11 forwarding in SSH. There are specific
rules for the use of X11 and graphical environment such as
KDE.
1 corecmd_shell_domtrans(sshd_public_t, ccc_guest_t);

This template enables the ccc_guest_t
type to interact with the sshd_public_t. The
corecmd_shell_domtrans allows the public SSH
context to transit to the guest type, and only this one. That
way, the public SSH server only gives restricted access.
1 use_local_home_dir(ccc_guest);

The use_local_home_dir template allows the user
to manipulate and more especially to create, manage file
permissions and relabel certain types of files and directories,
for example the user_home_t type.

For the use of NFS and LUSTRE file system, specific rules
have been defined.

These different templates allow us to use SSH with a specific
type (sshd_public_t) and to confine the shell of the user.
The objective of these confined user profiles is to limit the
administrative privileges accorded to users to the minimum.
For example, a standard user logged on the system via SSH
will have the context (ccc_guest_u, ccc_guest_r,
ccc_guest_t). Trying to exploit a vulnerability in any
system command or service, he may obtain a root access,
but he will still have the same confined SELinux context and
will not be able to take advantage of this root access.

Moreover, several rules protect the system against malicious
code execution by the user. For example, the stack is protected
against the execution with the following rule.
1 allow $1_t self:process ~{ setcurrent setexec execmem execstack };

2) sshd_admin: By default, the SSH server is not as-
sociated to a particular context, it is actually executed in the
unconfined_t type. As the SSH service must be accessible
to all the cluster partners from the Internet, it is heavily ex-
posed to attacks. This policy module answers two goals. First,
we want to confine the SSH server so that if an attacker exploits
a vulnerability in it, he will only reach a confined profile.
Secondly, the attainable SELinux roles from the SSH server
should be limited to what is strictly necessary. That is why
we create two different contexts for two SSH servers running

Fig. 3. Two levels of SSH access.

at the same time (on different TCP ports): sshd_public_t
and sshd_admin_t.

The first context is for the public SSH access. We call it
"public” but it may already be filtered at the network level.
This context can only transit to the ccc_guest_t type.
The second context is reserved for administrative access, and
can transit to the unconfined_t type. This is illustrated in
figure 3.

The profile for the admin is close to the ccc_guest pro-
file. It can perform several operations on files and directories.
The policy adds the right for the admin to list and read the
root directory. The admin can also use X11.
1 unprivileged_user(ccc_admin_t, ccc_admin);
2 userdom_restricted_xwindows_user_template(ccc_admin);

The admin is able to transit to the unconfined_t thanks
to this specific rule whereas there is a rule that denies the
transition for the user to transit to the unconfined_t.
1 neverallow sshd_public_t unconfined_t:process { transition };
2 allow sshd_admin_t unconfined_t:process { transition };

The admin has to be able to administrate the ccc_guest.
A special program named xbe is used. The use_xbe tem-
plate provides the set of rules allowing to manage the guest
processes and change the permissions on the guest files.
1 use_xbe(ccc_admin, ccc_guest);

For example, the following rule is included in the use_xbe
template. This rule enables the ccc_admin_t subject to
control the ccc_guest_t process.
1 allow ccc_admin_t ccc_guest_t:process { siginh rlimitinh noatsecure };

C. Discussion of the two SELinux solutions

When a user logs on the cluster, he receives his allowed set
of permissions. He will be able to access only the files that
are allowed to him.

Our intended protection is to provide containers. For the
first solution, containers are associated with the user identities.
Each user can be seen as a container. In the context of a shared
cluster, it is not a scalable approach since the users cannot
easily share data. A complex SELinux policy must be defined
in order to allow the required sharing. However, that approach
enables a complete control of the resources’s accesses. For the
second solution, containers are associated with the server port.
In the sequel, we consider only two SSH server ports. But,
in the context of multiple partners sharing the cluster, each
partner would use a dedicated server. That approach scales

47

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

better since a container is associated to each partner. So, one
does not need to define complex sharing policies.

Our main objective is to prevent against indirect information
flows i.e. covert channels. While offering a very robust protec-
tion in case of an application security vulnerability, SELinux
cannot control those flows. In the following section, we show
how the PIGA security tools are used to assess those indirect
flows. Dedicated security properties are proposed to control
the flows of our second solution.

V. ANALYSIS OF THE CLUSTER PROTECTION

In order to analyze and to reinforce the security provided
by the SELinux policy of our second solution, several security
properties are proposed using the Security Property Language
defined in [3]. The advantages of our SPL are 1) to enumerate
the remaining risks within a given SELinux policy and 2)
to provide a mean to prevent these risks. That section will
describe the first point in order to analyse the remaining risks
in our SELinux policy. The second point will be developed
latter on in the paper when considering the enforcement of the
Security Properties in order to prevent againts these remaining
risks.

A. Security Properties

Using the SPL described in [13], several security properties
templates are proposed. In order to analyse the remaining risks
within our SELinux MAC policy, that section defines dedicated
security templates such as transitionsequence, cantransit, du-
tiesseparationbash and dutiesseparationreadwrite. That sec-
tion shows how the usage of these security templates enables to
analyze the security risks of our second solution. Each security
template can be considered as a generic security objective.
A template enables to define an instance of the considered
security property associated with relevant security contexts.
Each instance of a security property corresponds to a security
objective that the target operating system must satisfies.

1) Templates of Security Properties: The first template of
security property enables to protect against confidentiality
violation between a source security context sc1 and an object
security context sc2. Thus, one can prevent both direct and
indirect information flows from sc2 to sc1.
1 define confidentiality($sc1 IN SCS, $sc2 IN SCO) [
2 ST { $sc2 > $sc1 },
3 { not(exist()) };
4 ST { $sc2 >> $sc1 },
5 { not(exist()) };
6];

The second template of security property enables to protect
against integrity violation from a source security context sc1
against an object security context sc2. Thus, one can prevent
both direct and indirect integrity violations from sc1 against
sc2.
1 define integrity($sc1 IN CSS, $sc2 IN CSO) [
2 Foreach $eo IN is_write_like(IS)
3 ST { $sc1−> { $eo } $sc2 } ,
4 { not(exist()) };
5 Foreach $eo IN is_write_like(IS)
6 ST { $sc1 => { $eo } $sc2 } ,
7 { not(exist()) };
8];

The third template of security property enables to detect all
the transitions to the existing source security contexts. That
template is usually not used to prevent transitions but to detect
the transitions carried out on the target system.
1 define transitionsequence() [
2 Foreach $sc1 IN { system_u:system_r:init_t }, Foreach $sc2

IN CSS
3 ST { $sc1 __> $sc2 },
4 { not(exist()) };
5];

The fourth template of security property enables to pre-
vent transitions from a source security context SCFROM
to another source security context SCTO. Thus, one can
prevent processes to transit into specific contexts to get illegal
privileges.
1 define cantransit($SCFROM IN CS, $SCTO IN CS) [
2 Foreach $sc1 IN $SCFROM, Foreach $sc2 IN $SCTO
3 ST { $sc1 __> $sc2 },
4 { not(exist()) };
5];

The fifth template of security property enables to prevent
indirect activities from violating the existing SELinux direct
policy. Thus, a process cannot get indirect privileges that are
conflicting with the allowed direct SELinux permissions.
1 define consistentaccess($sc1 IN CS, $sc2 IN CS) [
2 ST { $sc1 >>> $sc2 },
3 { exist[$sc2 > $sc1] };
4];

The sixth template of security property enables to prevent
bash activities to write and then read scripts. Thus, one can
prevent attacks consisting in using bash to execute illegal
scripts.
1 define dutiesseparationbash($sc1 IN CS) [
2 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_execute_like(IS), Foreach $eo3 IN is_read_like(IS),
3 Foreach $sc2 IN $CSONE, Foreach $sc3 IN CS,
4 Foreach $a1 IN ACT, Foreach $a2 IN ACT
5 ST { ([$a2 := $sc1 −> { $eo3 } $sc2] o ([$a1 :=

$sc1 −> { $eo2 } $sc3] o $sc1 −> { $eo1 }
$sc2)) } ,

6 { INHERIT($a2 , $a1) };
7];

The seventh template of security property enables to prevent
malicious activities to write and then read files. Thus, one can
prevent attacks consisting in writing data in order to forward
the produced information.
1 define dutiesseparationreadwrite($sc1 IN CS) [
2 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_read_like(IS), Foreach $sc2 IN $CSRW
3 ST { ($sc1 −> { $eo2 } $sc2 o $sc1 −> { $eo1 }

$sc2) } ,
4 { not(exist()) };
5];

2) Analysis of SElinux through instances of the security
properties: The templates defined previously enable to define
several instances of the security properties for protecting the
administrator role, as in the following listing. The first property
prevents the admin role to transit to the guest role. The
second, third and fourth properties force the admin role to
satisfy various separation of duties. For example, the admin
role cannot uses bash to execute illegal scripts. He can only
execute scripts legally installed on the target SELinux. The fifth

48

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and sixth properties prevent against integrity violation carried
out from the admin role. The seventh property prevents the
admin role from indirectly getting permissions that are not
available in the SELinux policy. The eighth property prevents
the admin role to violate the confidentiality of the guest role
either directly or indirectly.

Listing 1. Security properties for admin
1 cantransit($SCFROM:=".∗:ccc_admin_r:.∗", $SCTO:=".∗:ccc_guest_r

:.∗");
2 dutiesseparation($sc1:=".∗:ccc_admin_r:.∗");
3 dutiesseparationbash($sc1:=".∗:ccc_admin_r:.∗");
4 dutiesseparationreadwrite($sc1:=".∗:ccc_admin_r:.∗");
5 integrity($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:.∗:.∗_exec_t");
6 integrity($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:.∗:.∗etc_t");
7 consistentaccess($sc1:=".∗:ccc_admin_r:.∗");
8 confidentiality($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:ccc_guest_r:.∗");

Several similar properties are defined for protecting the
guest role. Those properties enable to prevent the guest role
to violate the confidentiality of the admin role.

Listing 2. Security properties for guest
1 cantransit($SCFROM:=".∗:ccc_guest_r:.∗" , $SCTO:=".∗:ccc_admin_r

:.∗");
2 dutiesseparation($sc1:=".∗:ccc_guest_r:.∗");
3 dutiesseparationbash($sc1:=".∗:ccc_guest_r:.∗");
4 dutiesseparationreadwrite($sc1:=".∗:ccc_guest_r:.∗");
5 integrity($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:.∗:.∗_exec_t");
6 integrity($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:.∗:.∗etc_t");
7 consistentaccess($sc1:=".∗:ccc_guest_r:.∗");
8 confidentiality($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:ccc_admin_r:.∗");

B. SELinux Policy Analysis with PIGA

Fig. 4. Process of analyzing a SELinux policy and generating the patterns
violating the security properties

Fig. 5. Interaction graph

The objectives are first to enumerate the possible risks
included into a given SELinux policy and second to provide

a mean to prevent against these remaining risks. For these
purposes, Figure 4 shows how to analyze a SELinux policy in
order to enumerate the remaining risks. A compiler, PIGA-CC,
a module of PIGA, is used to enumerate from a given MAC
policy (i.e. a SELinux policy) the set of the illegal activities
associated with requested security properties. This section only
addresses the first point i.e. how the remaining risks can be
enumerated. Latter on in the paper, we will address the way the
enumerated remaining risks enable to guarantee the security
properties.

The PIGA-CC module builds a graph that represents the
access control policy (the SELinux policy). For each security
property instanciation, PIGA-CC enumerates paths into this
graph. Each enumeration, a combination of paths, corresponds
to a possible violation of a required security property starting
from the considered SELinux policy. Thus, the compiler enu-
merates all the forbidden activities i.e. all the sequences of
system calls allowing the violation of a considered security
property. The compiler sends those illegal activities to PIGA-
UM in order to prevent the violation of the requested security
properties.

Figure 5 gives an example of the sub-graph computed
by PIGA-CC for the SELinux policy considered in this paper.
In this graph, each edge between two contexts sc1 and sc2
corresponds to a direct interaction sc1 → sc2, and each path
between two contexts sc1 and scn corresponds to an indirect
interaction sc1 ⇒ scn. This graph enables to enumerate all
the terminals of the SPL language.

For example, when PIGA-CC analyses the confidentiality
property:
1 define confidentiality($sc1 IN SCS, $sc2 IN SCO) [
2 ST { $sc2 > $sc1 },
3 { not(exist()) };
4 ST { $sc2 >> $sc1 },
5 { not(exist()) };
6];

It extracts the edge between sc1 and sc2 and then it generates
a violation for each operation between these two contexts
that correspond to a possible information transfer, i.e., a read
operation between sc1 and sc2 or a write operation between
sc2 and sc1. Next, PIGA-CC enumerates the set of paths
between sc1 and sc2 where each edge is an information
transfer correctly oriented.

Let us give an example for the Figure 5 and the following
security property:
1 confidentiality($sc1:=".∗: ccc_guest_r:.∗", $sc2:=".∗:ccc_admin_r:.∗");

As shown in Figure 5, an information transfer is pos-
sible between the context ccc_admin_u : ccc_admin_r :
ccc_admin_t and ccc_guest_u : ccc_guest_r : ccc_guest_t
using the intermediate object system_u : object_r :
lastlog_t. Thus, this policy does not respect this confiden-
tiality property since there is an activity allowing a forbidden
information transfer between ccc_admin_u : ccc_admin_r :
ccc_admin_t and ccc_guest_u : ccc_guest_r : ccc_guest_t.
As presented in the sequel all the forbidden activities can
be used to prevent the considered flows i.e. to guarantee the
requested properties.

49

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Results of the SELinux policy analysis

This section presents the results provided using PIGA-CC.
These results corresponds to the security analysis of the
SELinux policies available for our second solution. These
results are presented in two tables. The table I describes the
analysis for the administrator role and the table II for the guest
role. These tables are divided into two columns.

The first one deals with direct activities.These activities
are blocked by SELinux. The second one deals with indirect
activities. These flows cannot be prevented by SELinux but
they can be blocked byPIGA-SP an extended MAC approach
reusing the enumerated activities. The PIGA-SP MAC approach
will be presented in the sequel.

For example, in the table I, PIGA-CC was able to find 4
direct activities dealing with integrity property and 8 indirect
activities.

Table I shows, for the admin role, all the direct illegal
activities and all the indirect illegal activities. This table is
based on the listing 1. The direct illegal activities can be
prevented simply by a modification of the SELinux policy.
But, PIGA-SP MAC can prevent all those direct and indirect
violations. As shown in table I, the confidentiality property can
prevents against 548.858 potentially illegal activities. Those
illegal activities are vectors that enable intruders to develop
exploits against the SELinux protection by using for example
a combination of buffer overflows and covert channels.

TABLE I
RESULT FOR THE ADMINISTRATOR ROLE

Security property direct activities indirect activities
cantransit 0 0

dutiesseparation 0 469
dutiesseparationbash 0 124288

dutiesseparationreadwrite 0 1191
integrity 0 0
integrity 4 8

consistentaccess 0 1474
confidentiality 98 548858

Table II shows the illegal activities for the guest role.This
table is based on the listing 2. It shows that PIGA-SP
MAC can prevent against about 1 million of illegal activities
that could compromise the SELinux protection. Those results
demonstrate that SELinux is not able to guarantee advanced
security properties such as the ones required for protecting a
shared cluster. In contrast with SELinux, PIGA-SP MAC can
efficiently enforce all the requested properties. The sequel
presents the way PIGA-SP reuses the illegal activities for
preventing the violation of the requested properties. PIGA-SP is
an advanced Host Intrusion Prevention System. But the illegal
activities can be used to provide an Host Intrusion Detection
System. Before explaining the internals of the PIGA-SP MAC
approach, let us first give an example of typical scenarii of
attacks allowed by the SELinux policy.

TABLE II
RESULT FOR THE GUEST ROLE

Security property direct activities indirect activities
cantransit 0 0

dutiesseparation 0 1118
dutiesseparationbash 0 328362

dutiesseparationreadwrite 0 2530
integrity 0 0
integrity 8 16

consistentaccess 0 3026
confidentiality 96 728214

D. Case study of remaining risks within the SELinux policy

Amoung the millions of potentially illegal activities, let us
choose some of them to show the typical scenariis of attacks
that PIGA can prevent.

Regarding the confidentiality of the admin role, the line 2 of
the following listing shows a direct activity where the chfn
application (that changes your finger information) uses a covert
channel, i.e. writing in a fifo file, with the guest role. One can
imagine an exploit against the chfn application using that
direct covert channel to make the admin’s data flow to the
guest role. The line 3 shows an indirect activity, where the
admin role writes a log file that is then read by the guest role.
If such an activity occurs, PIGA-SP guarantees that the reading
of the log file will fail.
1 confidentiality($sc2:=".∗:ccc_admin_r:.∗", $sc1:=".∗:ccc_guest_r:.∗");
2 2$55 : ccc_admin_u:ccc_admin_r:chfn_t −(fifo_file { write })−>

ccc_guest_u:ccc_guest_r:chfn_t
3 3$280219 : ccc_admin_u:ccc_admin_r:ccc_admin_t −(file { append

write })−> system_u:object_r:lastlog_t ; ccc_guest_u:
ccc_guest_r:ccc_guest_t −(file { read })−> system_u:object_r
:lastlog_t

Regarding the confidentiality of the guest role, the line 2 of
the following listing shows a direct activity where the SELinux
policy enables the guest role to use a covert channel, i.e.
writing in a fifo file, with the admin role. The line 3 shows
an indirect activity, where the guest role writes a temporary
file that is then read by the admin role. It is an indirect
covert channel that PIGA can prevent. Thus, the reading of
the temporary file by the admin role will fail.
1 confidentiality($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:ccc_guest_r:.∗");
2 0$90 : ccc_guest_u:ccc_guest_r:ccc_guest_t −(fifo_file { write })−>

ccc_admin_u:ccc_admin_r:ccc_admin_t
3 1$471971 : ccc_guest_u:ccc_guest_r:ccc_guest_t −(file { append

write } sock_file { append write })−> system_u:object_r:tmp_t ;
ccc_admin_u:ccc_guest_r:ccc_guest_t −(file { read } sock_file
{ read })−> system_u:object_r:tmp_t ;

Regarding the integrity of the admin role, the line 2 of
the following listing shows a direct activity where the chfn
application can write the /etc files. One can imagine to use
chfn to get an admin role and thus modifies the configuration
files that are present into the directory /etc.
1 integrity($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:.∗:.∗etc_t");
2 15$3 : ccc_guest_u:ccc_guest_r:chfn_t −(file { write })−> system_u:

object_r:etc_t

The following extract of the SELinux policy shows that the
guest role can execute the chfn application. Moreover, chfn
as the setuid bit set which enables guest to get the admin role

50

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when executing chfn. That example shows that such scenarii
of attacks are very easy to carry out. PIGA can efficiently
protect against them.
1 role ccc_guest_r types chfn_t;
2 allow ccc_guest_t chfn_t:process transition;
3
4 −rws−−x−−x root root /usr/bin/chfn

Regarding the integrity of the guest role, the line 1 of the
following listing shows a first activity that enables the dbus
process to transit to the guest role and then transit to the
password type. Then, the line 2 shows that a process with
the password type can write the /etc files and thus modify
the passwords. PIGA protects against the combination of those
two activities. Thus, if an exploit on dbus enables to transit
to the guest role, the attempt to then write into /etc will fail.
1 16!1$11 : ccc_guest_u:ccc_guest_r:ccc_guest_dbusd_t −(process {

transition })−> ccc_guest_u:ccc_guest_r:ccc_guest_t ;
ccc_guest_u:ccc_guest_r:ccc_guest_t −(process { transition })
−> ccc_guest_u:ccc_guest_r:passwd_t

2 16!0$11 : ccc_guest_u:ccc_guest_r:passwd_t −(file { write })−>
system_u:object_r:etc_t

VI. SECURITY PROPERTIES ENFORCEMENT

That sections adresses the second objective of that paper
i.e. how the enumerated illegal activities can be reused to
guarantee the requested security properties. It describes the
PIGA MAC approach enabling to guarantee all the security
properties expressed using our SPL language.

A. Implementation of the PIGA MAC protection

As described in Figure 4, our MAC protection model
is divided into two stages. First, the security administrator
defines a set of security properties. Generally, the administrator
reuses and configures existing canevas such as the various
properties proposed in this paper. However, he can also use
our SPL language to define dedicated security properties. Then,
he uses the PIGA-CC compiler that compares the requested
security properties against a mandatory policy (SELinux or
grsecurity) in order to compute all the illegal activities existing
in that SELinux policy. The set of forbidden activities is then
compressed and stored in a database of patterns.

Second, the security administrator can use our PIGA-SP
MAC solution in order to ask the enforcement of these security
properties by the operating system. PIGA-SP uses a combi-
nation of a kernel module PIGA-KM and userland application
PIGA-UM. The kernel module hooks the system calls and sends
the corresponding traces to the userland application. Each
system call is thus suspended and the kernel module waits for
an authorization or a deny response. The userland application
computes and verifies that the system call corresponds to an
activity available in the database of patterns. Next, PIGA-
UM allows or denies the considered system call aiming at
preventing the occurrence of the forbidden activities. Thus, the
system call fails if its execution could lead to the violation of
the security properties.

Figure 6 shows the process that allows a target operating
system, in our case Linux, to enforce the security properties.
Extension of the classical protections is proposed. First, the

kernel computes the classical Discretionary Access Control.
Second, LSM (Linux Security Module) hooks are applied.
LSM enables to stack several protection mechanisms such as
SELinux or SMACK. In our approach SELinux is processed
before running PIGA-SP. SELinux uses the mandatory security
policy in order to allow or deny the system call. In our
solution, a system call has to be allowed regarding wth the
DAC policy, the SELinux policy, and also the requested PIGA
Security Properties.

Fig. 6. Process to ensure the security properties at the Operating System
layer

PIGA-KM, the kernel part, analyzes all the relevant infor-
mations for the considered system call (who made it, from
where, what is its type, etc...) in order to generate a trace
(i.e. a string) describing the current system call request.
PIGA-KM sends that trace to a request queue in direction
to the userland application, PIGA-UM. The system call is
pending, while PIGA-KM is waiting for a message from the
response queue. PIGA-UM computes the response and writes
it in the response queue. When PIGA-KM gets the response
from the queue, it sends a decision back to SELinux. The final
decision is a logical AND between the PIGA-SP, SELinux and
DAC decisions. That final decision allows or denies the system
call execution. If allowed, the kernel runs the system call.

The request queue is a sequence file in the proc file system.
In practice, this file allows to pass a request from the kernel
space to the userspace. Once into the userspace, the userland
application PIGA-UM reads the request and reconstructs the
activities associated to that system call. If a reconstructed
activity matches with some available patterns (generated at
the compilation stage), PIGA-UM takes the decision to deny
that system call.

B. Example of Security Property Enforcement

This section describes how PIGA-SP prevents against real
scenarii of attacks. In this example, an administrator uses a
ssh connection with the ccc_admin_r role. In this role, he
can copy a critical file like /etc/shadow into a file in /tmp.
This copy could be intentional or produced by an malware

51

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

downloaded an executed by the administrator. Next, a user
can connect to the system with the ccc_guest_r and read the
file, copied by the administrator, in /tmp.

Theses actions represents a violation of the following
security property that prevents information flows from the
ccc_admin_r to the ccc_guest_r role:
1 confidentiality($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:ccc_guest_r:.∗");

The result of the analysis of the SELinux policy by PIGA-CC
indicates that this violation is possible if we only consider the
SELinux policy. This violation corresponds to the following
activity:
1 3$366122 : ccc_admin_u:ccc_admin_r:ccc_admin_t −(file { write })

−> system_u:object_r:tmp_t ; ccc_guest_u:ccc_guest_r:
ccc_guest_t −(file { read })−> system_u:object_r:tmp_t

The first part of the attack could be simulate by a connexion
with the ccc_admin_r following by the copy of /etc/shadow
into /tmp/test and a modification of the permissions of the
created file:
1 # ssh connexion with ccc_admin_u:ccc_admin_r:ccc_admin_t
2 $cat /etc/shadow >> /tmp/test
3 $chmod 777 /tmp/test

At the kernel level, the copy of the /etc/shadow file
involves a LSM hook specifying that an information has been
written by the administrator into a temporally file:
1 dec 22 11:23:21 pigaos kernel: type=1400 audit(1277198601.563:1560):

avc: granted { write } for pid=2056 comm="cat" ppid=1988 dev=
sda3 ino=534412 scontext= ccc_admin_u:ccc_admin_r:
ccc_admin_t tcontext= system_u:object_r:tmp_t tclass=file

This interaction is allowed by SELinux and also by PIGA-SP
because it does not represent a violation of a security property.

Next, a user connects to the same host with the ccc_guest_r
role. This user tries to read the content of the file created by
the administrator:
1 # ssh connexion with ccc_guest_u:ccc_guest_r:ccc_guest_t
2 $ cat /tmp/test
3 cat: /tmp/test: Permission denied

This interaction generates the following trace at SELinux
Level:
1 dec 22 11:25:45 pigaos kernel: type=1400 audit(1277199254.272:1732):

avc: granted { read } for pid=2080 comm="cat" ppid=1876 dev=
sda3 ino=534412 scontext= ccc_guest_u:ccc_guest_r:
ccc_guest_t tcontext= system_u:object_r:tmp_t tclass=file

The read interaction of a temporally file by a user in the
ccc_guest_r is allowed by SELinux. PIGA-SP prevents this
violation because this interaction corresponds to a security
property violation.

The trace generated by PIGA-SP indicates the number of the
SELinux interaction denied and the corresponding forbidden
activity:
1 dec 22 11:25:45 pigaos kernel: 3$366122 operation 1732 denied:

ccc_admin_u:ccc_admin_r:ccc_admin_t > system_u:object_r:
tmp_t > ccc_guest_u:ccc_guest_r:ccc_guest_t

This example illustrates a simple case of security property
enforcement. Even if individuals interactions are allowed by
SELinux, PIGA-SP is able to control indirect flows or a com-
bination of these indirect flows. Thus, PIGA-SP can guarantee
advanced security properties preventing against sophisticated
scenarii of attacks including 0-Day attacks.

ACKNOWLEDGMENT

We would like to give special thanks to Jonathan Rouzaud-
Cornabas for his participation in the development of PIGA-
KM and Maxime Fonda for the development of the SSH
confinement with chroot and SELinux.

VII. CONCLUSION

This paper presents two solutions based on SELinux to
protect a shared HPC cluster. The first one deals with chroot
to confine the user but the approach prevents the user from
sharing easily data. The second one is based on two SSH server
ports and enables user to share data. This paper focus on the
difficulties to prevent sophisticated attacks, using for example
several indirect flows, that SELinux cannot control.

That paper shows the efficiency of using SELinux plus PIGA
in order to find the illegal activities into the proposed SELinux
policy. The found illegal activities can be used to improve
the SELinux protection with our PIGA MAC approach in order
to better guarantee the confidentiality or the integrity of a
shared cluster. PIGA MAC prevents against all the risks of
the SELinux policy regarding the various security properties
expressed using our Security Property Language. For that pur-
pose, PIGA MAC reuses all the precomputed illegal activities
in order to guarantee the required confidentiality and integrity
properties. In contrast with SELinux, indirect illegal activities
are controlled, permitting thus the prevention of sophisticated
attacks.

PIGA MAC can be seen as an advanced HIPS guaranteeing
that a system call, terminating an indirect illegal activity, will
fail. The PIGA approach can be used also as an HIDS to
detect the violations. It is better to use the HIDS approach
for properties that correspond to auditing facilities. Moreover,
the HIDS approach could be computed on a dedicated cluster.
Thus, the impact on the HPC cluster performances is limited.
However, PIGA provides a very efficient HIPS approach. Clus-
ter experimentations show that SELinux adds 10% of processor
overhead, while PIGA also adds an overhead of 10%. It is
a very low overhead for the considered protection that goes
much further than the related works. That paper details the
implementation of PIGA MAC and gives examples of real
scenarii that are blocked by our HIPS.

Finally, the proposed protection enables the real sharing of
an HPC cluster while guaranteeing confidentiality and integrity
for the partners. Future works deal with the automation of the
definition of efficient security properties for the sharing of
an HPC cluster. The major difficulty is to adjust the security
properties in order to make a good balance between the
protection and the usability of the shared cluster.

REFERENCES

[1] M. Blanc, J. Briffaut, T. Coullet, M. Fonda, and C. Toinard,
“Protection of a shared hpc cluster,” in Proceedings of the 2010
Fourth International Conference on Emerging Security Information,
Systems and Technologies, ser. SECURWARE ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 273–279. [Online]. Available:
http://dx.doi.org/10.1109/SECURWARE.2010.51

[2] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Commun. ACM, vol. 19, no. 8, pp. 461–471, 1976.

52

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] J. Briffaut, J.-F. Lalande, C. Toinard, and M. Blanc, “Enforcement of
security properties for dynamic mac policies (best paper award),” in
Proceedings of the 2009 Third International Conference on Emerging
Security Information, Systems and Technologies, ser. SECURWARE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 114–120.
[Online]. Available: http://dx.doi.org/10.1109/SECURWARE.2009.25

[4] W. Yurcik, G. A. Koenig, X. Meng, and J. Greenseid, “Cluster security
as a unique problem with emergent properties: Issues and techniques,”
5th LCI International Conference on Linux Clusters, May 2004.

[5] P. henning Kamp and R. N. M. Watson, “Jails: Confining the omnipotent
root,” in In Proc. 2nd Intl. SANE Conference, 2000.

[6] F. L. Camargos and B. des Ligneris, “Automated oscar testing with
linux-vservers,” in HPCS ’05: Proceedings of the 19th International
Symposium on High Performance Computing Systems and Applications.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 347–352.

[7] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in OSDI ’06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2006, pp. 19–19.

[8] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
vol. 41, no. 6. New York, NY, USA: ACM, 2007, pp. 321–334.

[9] P. Efstathopoulos and E. Kohler, “Manageable fine-grained information
flow,” SIGOPS Oper. Syst. Rev., vol. 42, no. 4, pp. 301–313, 2008.

[10] M. L. Damiani, C. Silvestri, and E. Bertino, “Hierarchical domains
for decentralized administration of spatially-aware rbac systems,” in
ARES ’08: Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 153–160.

[11] L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo,
“Policy administration control and delegation using xacml and delegent,”
in GRID ’05: Proceedings of the 6th IEEE/ACM International Workshop
on Grid Computing. Washington, DC, USA: IEEE Computer Society,
2005, pp. 49–54.

[12] Dan Walsh, “Confining the User with SELinux,”
http://danwalsh.livejournal.com/10461.html, 2007.

[13] J. Briffaut, J.-F. Lalande, and C. Toinard, “Formalization of security
properties: enforcement for mac operating systems and verification of
dynamic mac policies,” International journal on advances in security,
pp. 325–343, 2010.

53

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Tailored Concepts for Software Integrity Protection
in Mobile Networks

Trust Management to Protect Software for Mobile Network Elements

Manfred Schäfer, Wolf-Dietrich Moeller
NSN CTO - Security Research

Nokia Siemens Networks GmbH & Co. KG
Munich, Germany

e-mail: manfred.schaefer@nsn.com, wolf-dietrich.moeller@nsn.com

Abstract—This paper presents research results on SW security
for network elements. Our investigations contribute to the
ongoing ASMONIA project, which is focusing on collaborative
approaches and on protection and warning mechanisms in 4G
networks. This work is dedicated to examine specific aspects
thereof, concentrating on software integrity protection (SWIP)
to securely manage SW products in mobile networks. Based on
an analysis of 3GPP standardization requirements and of
existing approaches for integrity protection, solution concepts
are proposed and discussed to meet the identified needs. These
aim at harmonized approaches for a number of different use
cases. Particular account is taken of keeping infrastructure
efforts as small as possible, both in operator network as well as
in manufacturer domain. The proposed solutions are targeting
improvements to integrate and establish efficient trust
mechanisms into mobile network elements and management
systems.

Keywords-Software integrity protection; secure execution
environment; code signing; trust management; Evolved Packet
System (EPS); autonomous validation;

I. INTRODUCTION

Software (SW) security assurance has many facets,
spread over the entire product life cycle. It has to prevent at-
tacks, arising from maliciously modified SW and associated
data, determining a product’s behavior.

In the following, the term SW may include executable
code as well as any configuration information, scripts, data,
or meta-data that might be protected together with the SW.
Roughly we could split SW security issues into two huge
areas, namely (1) to specify and to create a SW product so
that it matches given security policies and (2) to assure that
in a target system only original SW can be used. The former
demands a series of secure SW development processes
(which are not further discussed here) and organizational ef-
forts, assuring that SW is free of conceptual flaws, vulnerab-
ilities, and back-doors. The latter is to assure that after SW
creation unwanted modifications (be it by hostile intent or
inadvertently) are prevented or at least will be detected. We
concentrate on this aspect also including measures to provide
trustworthy hardware (HW) and SW co-design solutions.

Depending on contracts for commercial products SW
manufacturers are liable for the SW quality and potentially

also for damages and incidents arising from (avoidable) se-
curity leaks. Apart from negative impacts of incidents on a
manufacturers brand and on customer satisfaction there is
imperative need for identification and removal of such flaws,
for mitigation and for recovery. Altogether this requires
trustworthy SW management and protection.

Focusing on products for mobile access and core net-
works, we give an insight into balanced strategies on SW
protection measures that on the one hand are required by mo-
bile network standardization and on the other hand generally
ought to be applied to assure product reliability and trustwor-
thiness as well as to protect SW assets. This publication de-
tails the aspects addressed in earlier work [1], providing
more room for discussion of requirements and of existing
and proposed solutions. Starting with a requirements analysis
and examining existing approaches in this paper innovative
concepts are derived that beneficially enable to apply the
same security infrastructure (in manufacturer domain) to dif-
ferent use cases for SW integrity protection (see Section
II.F), while efforts in operator domain can be kept on minim-
al level.

While many of the strategies and principles addressed by
our research work may also be applicable to User Equipment
(UE) this is not targeted in this paper. But, note that our con-
tribution is closely related to and further supported by the
German BMBF sponsored ASMONIA [14] project, where a
wider context is envisaged. The project is focusing on col-
laborative protection and warning systems for 4G networks.
In addition to the network centric view as presented in this
paper, (among other issues) SW integrity protection for mo-
bile user equipment also will be researched by the consorti-
um, targeting the needs, capabilities, implementation, and in-
tegration aspects of mobile phones.

II. ANALYSIS OF SW INTEGRITY PROTECTION
NEEDS IN MOBILE NETWORKS

We first examine related security requirements in mobile
networks as stated by 3GPP standardization and then we de-
rive more general security requirements, based on an analys-
is of extended aspects for integrity protection.

A. Requirements related to 3GPP Standardization
In evolution of 3GPP (3rd Generation Partnership Project)

[11] standards the upcoming security architectures strictly
demand local security capabilities.

54

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In particular, in EPS (Evolved Packet System, see Figure
1, for an example) context requirements are stated for secure
execution-environments (specific for trusted parts of eN-
odeBs (eNB) [2]) or trusted-environments (TrE, specific for
Home-eNodeBs (HeNB) [3]). These arise due to the nature
of the EPS security architecture (which, e.g., implies termin-
ating of security relations between user equipment and net-
work and storing of session and authentication keys in EPS
base stations) and the attack-prone exposition of such base
stations also in public areas, outside the security domain(s)
of an operator.

3GPP security requirements include demands for SW in-
tegrity checks, e.g., to be applied during secure boot pro-
cesses whereas any room is left for realization alternatives.
As related solutions (if mandatory) have to be implemented
in future network products, there is urgent need to identify
and to develop efficient methods for trust establishment and
management. Essentially, these go back to reliable mechan-
isms for measuring, for verification, and for enforcement of
associated directives for SW installation, loading, and usage.

Specifically, regarding SW integrity [2] demands that
'The eNB shall use authorized data/software', 'Integrity pro-
tection of software transfer towards the eNB shall be en-
sured' (clause 5.3.2, for eNB setup and configuration) and
regarding the secure environment definition (clause 5.3.5)
that 'The secure environment shall support the execution of
sensitive parts of the boot process', 'The secure environ-
ment's integrity shall be assured', and 'Only authorised ac-
cess shall be granted to the secure environment, i.e. to data
stored and used within, and to functions executed within'.
Obviously, authorizing access to an execution environment
denotes that any SW, which is brought into it and launched
for execution must be targeted to an eNB and must come
from an authorized source, which implies proof of origin.
Typically, this involves trustworthy boot processes, each
time a eNB is started, but also applies to any SW update that
has to be made during the life-cycle of such product.

When looking into security requirements for HeNBs, we
find in [3] related statements (in clause 5.1.2), explicitly de-
manding 'The TrE shall be built from an irremovable, HW-
based root of trust by way of a secure boot process...', which
'shall include checks of the integrity of the TrE performed by
the root of trust. Only successfully verified components shall
be loaded or started..' and 'shall proceed to verify other com-
ponents of the H(e)NB (e.g., operating system and further

programs) that are necessary for trusted operation of the
H(e)NB'.

Moreover, it is required that the HeNB is enabled to act
autonomously as it is stated with 'The integrity of a compon-
ent is verified by comparing the result of a measurement ...
to the trusted reference value. If these values agree, the com-
ponent is successfully verified and can be started' and thus
needs to be securely provisioned with trusted reference val-
ues, as e.g., expressed with 'The TrE shall securely store all
trusted reference values at all times' and 'The TrE shall de-
tect un-authorized modifications of the trusted reference val-
ues'. Further, according to clauses 7.1 and 6.1 in [3], a HeNB
must support autonomous validation methods 'If the device
integrity check according to clause 6.1 failed, the TrE shall
not give access to the sensitive functions using the private
key needed for H(e)NB device authentication with the
SeGW', preventing that a malicious device (by self-check)
anyhow can connect to the mobile network.

As any trust is based on self-validation processes (which
implicitly may also apply for the eNB), very high security
expectations are seen for any implementation thereof.

B. Existing methods for SW integrity Protection
In the following, we examine available approaches to

support SW integrity protection and identify weak aspects
and open issues from a mobile network point of view.

1) TPM based boot control
Existing methods for usual IT systems, such as known

with TCG (Trusted Computing Group) standards (PC-trust-
worthiness with local ownership concept) cannot be conver-
ted easily to network elements and to existing 3GPP operator
infrastructures. In particular, methods based on TPM (Trus-
ted Platform Module) paradigms [4] have to be considered
very carefully. On the one hand a clear, indisputable value of
TPMs (or comparable crypto hardware) is that these may
provide sufficient protection for storing secrets and for secur-
ity operations using such secrets. This involves using the
built-in crypto algorithms directly and exclusively without
requiring external CPU cryptographic operations, e.g., for
network element authentication. On the other hand the TPM
attestation concept and its implementation (TPM as a co-
processor) only provide partial security. There are at-
tack-windows before attestation is completed and the TPM is
not designed to parry certain physical attacks, e.g., those
modifying the CRTM (Core Root of Trust for Measurement)
in ROM or manipulating the TPM interface during the boot
process. Doing so a skilled local attacker could inject faked
PCR (Platform Configuration Register) settings – but at least
has to gain access to the TPM command interface in order to
control it.

By nature, the attestation approach is lacking autonomy
capabilities. Due to missing local reference values for valida-
tion, local systems cannot autonomously determine and take
decisions on authenticity and integrity of any SW loaded and
measured during boot. In addition, particular account needs
to be taken to the fact that managing attestation values over
an entire SW product life cycle and for many different
products is a challenge in its own.

Moreover, when exploiting extended TPM security cap-
abilities - such as sealing - this imposes a lot of SW and trust
management efforts and infrastructure invests, which are not
easy to handle. For instance, re-sealing (e.g., of parts of the

Figure 1. 3GPP EPS Architecture (partial view)

55

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An interesting aspect in this paperboot images or of internal
secrets) to a new state would require individual provisioning
per platform (i.e., due to authorization per TPM and tpm-
Proof dependency) and could not be deployed independently
from a target platform's security settings.

When looking to 3GPP standardization so far there are
no discussions and indications of TPM integration into a mo-
bile network environment. Such implementation specific
properties and manufacturer restrictions could hardly be jus-
tified and would imply technology-dependent solutions. In
best case it is imaginable that for a few very specific network
elements such impacts could be accepted but in no case as a
template for a broader scope.

 As a consequence, integration of TPM/attestation based
integrity protection may require remarkable proprietary
changes and efforts in the infrastructure, which are difficult
to motivate and to sell - apart from the fact that establish-
ment of necessary extensions and provisioning of trust man-
agement information needs to be solved by convincing tech-
nological means. In addition, regarding implementation the
required changes in existing HW (embedded platforms,
boards, ASICs) have to be balanced with other design, per-
formance, and cost criteria. Often such trade-offs render it
quite difficult or even impossible to simply implant commer-
cial off-the-shelf (COTS) TPM chips into a complex and
highly specialized HW / SW platform, which is mainly
tailored to meet feature-requirements while security efforts
may be capped by defined cost margins.

2) MTM based boot control
In 2004, the TCG initiated the Mobile Phone Working

Group (MPWG) to meet use cases and requirements of mo-
bile phones. Based on TPM principles MTM (Mobile Trus-
ted Module) specifications have been elaborated and made
publicly available [7], [8], and are clearly in scope of mobile
phone industries [12]. In contrast to TPM, the MTM is not
explicitly meant as a separate chip specification, rather than
it leaves room for different implementations, also as firm-
ware or even as protected SW. The MTM concept can be
built on a subset of TPM functionality, but comes with own
mechanisms for trustworthy boot.

An interesting aspect in this paper is to examine how and
what MTM ideas could be transferred to network elements
and how these could be extended. Advantageously, the
MTM allows remote management of authorized SW updates
by introducing new governance schemes relying on several
new types of certificates. As a newness, when compared to
TPM principles, the certificate based control (to only execute
mandatorily signed and verified software) enables a system
to autonomously take decisions during the boot process. Due
to its supposed attractiveness the MTM concept if further
discussed in Section IV.A.

3) SW integrity protection as used for IT systems
Apart from the specifications introduced by the TCG

there are several other individual technologies known, de-
veloped and widely used by commercial SW publishers as
well as by open source communities. In contrast to TCG
(which firstly focused on boot-time integrity) earlier ap-
proaches mainly concentrated on SW integrity for SW distri-
bution and installation processes. Regarding the applied se-
curity management we roughly we can distinguish three dif-
ferent types of approaches: Those relying on cryptographic
'check-sums' (pure hash values as e.g., applied by some open

source communities, such as OpenOffice [16]), those using
code signatures based on Web-Of-Trust principles (e.g.,
PGP/GPG based code signing as used with RPM [17]), and
those integrating with PKI principles (e.g., as established for
JAVA [18] or Symbian Signed [19]).

Concepts based on pure 'check-sums' suffer from the dif-
ficulty to obtain valid reference values from trusted sources
(no inherent proof of origin) and to reliably store these over a
potentially long time – thus, these reference data are always
susceptible to man-in-the-middle (MITM) attacks. Moreover,
extended security control (e.g., regarding expiry, revocation,
self-validation) is rather limited or simply not possible. Note
again, that also the TPM paradigm does not natively solve
these issues!

Considering mechanisms relying on Web-Of-Trust
(WoT) principles, one may complain that WoT based meth-
ods do not match very well with demands for vendor driven
governance and security control over network elements. As a
matter of fact also WoT inherently does not reliably exclude
MITM attacks. Everybody could create self-signed signing
certificates and keys, as there is no mandatory registration
authority established. So, trust always lies in the eyes of a
believer. Apart from this deficiency a WoT usually is neither
based on enforceable hierarchies nor on expressive and
standardized certificates. Moreover, WoT principles do not
support effective and reliable revocation schemes as usually
there are many trust relations and unclear governance
schemes involved (no public policies, no CRLs) and no 'offi-
cial' mechanisms or entities for enforcement are available.

Of course, for user centric scenarios, individual products,
or platforms (e.g., Open Source Linux distributions, based on
RPM or similar package management systems) such mech-
anisms are beneficial. But as we are looking for generic tem-
plates for remotely manageable SWIP mechanisms for mo-
bile network equipment, we do not deeply analyze these ap-
proaches in this paper. This does not mean that we generally
dislike or ignore such concepts, but we have to apply them in
the right context and scenarios.

From a vendor's perspective - who should be able to fully
control the security capabilities and integrity of its products -
potential difficulties may arise from inadequate fundamental
security building blocks and in particular from unsuited key
and trust management strategies and weak control mechan-
isms. This clearly argues in favor of PKI based approaches,
which are compliant to accepted standards and security best
practices and provide well proven governance and control
principles (e.g., as defined in X.500 [27] and in particular
with X.509 [15]).

While many of the PKI-based known signing concepts
(JAVA, Microsoft's Authenticode, Symbian Signed, IBM's
Lotus Notes, etc.) apply efficient and partially even compar-
able mechanisms, they are not directly applicable to the
needs of manageable SWIP for mobile network equipment
(which usually consists of a number of very different
products and technologies). On the one hand such ap-
proaches usually are specific for one particular product or
technology (e.g., operating system, programming language,
controlling sand-box, run-time environment, web- or IT-ap-
plications, vendor specific UE-equipment, etc.) and on the
other hand they are mostly targeted to support security re-
quirements of distributed developer communities.

In most cases they rely on outsourced PKI entities (certi-

56

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ficate and registration authorities) and on verification com-
ponents, which often allow importing of arbitrary SW pub-
lisher certificates and accept umpteen root certification au-
thorities (CA). If a user or administrator decides that these
are trustworthy he can change the trust management settings
by local administration. Vice versa, preconfigured trust-an-
chors and credentials could be removed on user decision.
Consequently, in addition to local control, such systems
chiefly target to enable tracking and juridical inquiry of mali-
cious attackers, which by hostile intent previously have ap-
plied for SW publisher keys and certificates.

Some approaches combine code signing with explicit au-
thorization concepts at application level. For instance, this is
realized by different types of certificates (e.g., using 'capabil-
ities' as introduced with Symbian Signed), which are associ-
ated with classes of API calls with appropriate scope and
privileges. Adherence to such assignments can be checked
by signing entities (before issuing a valid signature for an ob-
ject under test), as well as by the devices themselves during
verification or execution. To give more examples, mechan-
isms used by JAVA or IBM's Lotus Notes [20] control ap-
plication privileges via sand-boxing approaches, but use loc-
al administration to set policies and rules for execution.

C. Run-time Aspects
When looking beyond the scope of boot-time or installa-

tion-time integrity checking additional security improve-
ments are needed to provide attack resilience during long-
term operation. These have to be faced as many network ele-
ments (in particular threatened eNBs, HeNBs) may be
booted or updated only rarely. Then they have to be active
for weeks or months, whilst the trust in boot-time checks is
the more diminished the longer a system is running. Poten-
tially this is caused by attacks occurring during operation,
applying both for local, manual manipulations as well as for
remote SW attacks, which cannot be prevented by boot pro-
tection alone. Consequently, there is urgency for methods
and mechanisms assuring SW integrity at run-time at least
for critical security operations. Such critical operations (e.g.,
as needed for key and credential management, for authentic-
ation, or for verification processes) require trusted code,
which can only run if before execution it is proven to be in-
teger and to stem from an authoritative source.

Run-time integrity issues are partly covered by TPM
based improvements. For instance, with DRTM (Dynamic
Root of Trust for Measurement) mechanisms are known to
allow lately measuring and launching SW in a TPM compli-
ant execution environment [4], [5]. The DRTM mechanisms
assure that code, which is to be started, is measured properly
(e.g., Intel is using authenticated code modules for this pur-
pose [13]) and then executed, but does not prevent from
loading untrusted code. Such approach requires TPM based
attestation (with all the hurdles mentioned above) in combin-
ation with dedicated CPUs, which have to support specific
instructions and bus cycles. While an external challenger is
enabled to prove what has been executed (during run-time)
on a DRTM equipped system, the DRTM operation itself is
not able to verify any manufacturer code prior to execution.
Again we miss an autonomous mechanism enabling a local
machine to enforce rejection of manipulated code, prevent-
ing execution of any hostile operations at any time.
Moreover, the selection of DRTM enabled CPUs may be in

conflict with other CPU selection criteria to best match the
needs of the specialized embedded architectures of a mobile
network element.

The IMA approach [6] is an interesting extension of
TPM concepts, introducing TPM protected load time integ-
rity measurements of file-based executables, libraries and
data, which are aggregated into a series of TPM signed lists.
As with the native TPM principles, IMA relies on attestation
paradigms, requiring external entities for validation. Apart
from lack of autonomy the major problem of such approach
again seems to be the need to maintain a TPM specific infra-
structure as well as the efforts to interpret and validate a po-
tentially huge amount of attestation data, which is reported
on request. Such data has to be 'known (i.e., must be securely
provisioned)' externally or must be re-calculated (where re-
ferring to any sequence of loading is not required in the IMA
case).

There are other approaches such as Tripwire or Samhain
[23] following alternative principles based on file-level in-
tegrity checks, which do not rely on a TPM infrastructure.
They come with own associated, administrated client/server
architectures and self-created, protected databases with 'trus-
ted' hash values for validation. The run-time checks are
triggered periodically or based on events, while checking
modules are protected at kernel level, which may be suffi-
cient for some attacks scenarios. A particular risk may be the
fact that trusted reference values may not (or not only) be
created inside a secure developer environment at manufac-
turer side, but in the operational domain itself, which is not
only an organizational, but also a liability issue.

It is worth to mention the DigSig proposal [24] represent-
ing a load-time integrity checking solution, which relies on
PGP signed ELF binaries (as provided via the Debian BSign
utility), but is applicable to Linux systems only (due to de-
pendency on Linux kernel integration and on ELF files and
tools). The charm of such approach is the fact that signatures
are embedded into ELF binaries, thus no separate data base
is required. Moreover, signatures can be created externally,
therefore local creation of trustworthy reference values is
avoided and the system is enabled to take advantage of the
benefits coming along with a code signing approach (e.g.,
proof of origin, and signature revocation, which is also sup-
ported), even though restricted by the WoT paradigm. Such
solution is related to previous work [25], also based on
signed ELF binaries, relying on comparable principles for
run-time integrity protection.

Sand-boxing solutions such as introduced with JAVA
cover PKI based SW integrity protection during installation
and download scenarios and realize mitigation concepts dur-
ing run-time, but may be restricted due to an individual pro-
gramming language environment and due to individual sand-
box constraints. Sand-boxing is not only related to integrity
checking, but also may constrain program capabilities and
performance during execution. This may or may not be a
problem, depending on the application, but is limiting gener-
al applicability.

For reasons of completeness it should be mentioned that
there are also run-time protection methods known, which
make use of specific CPU level concepts, such as Intel's Sys-
tem Management Mode (SMM) (e.g., compare [26]). We do
not further discuss these in this paper, as they are too de-
pendent from processor capabilities (like the DRTM mech-

57

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

anisms, mentioned above) and thus are not ideal for generic
templates for SW integrity protection, we are aiming at. Of
course, it is well understood that mechanisms making use of
low level HW properties can achieve a higher protection
level - but usually at cost of flexibility and portability.

D. Autonomy and Remediation Aspects
Autonomous SW integrity protection and trust manage-

ment mechanisms are highly desirable, enabling a system to
take own, reliable decisions e.g., to deny sensitive services,
to boot to fail-safe-mode if a new SW release is defective or
to generate and transmit (or to store) signed incidence mes-
sages in case integrity violations are detected during run-time
checks. Autonomy decreases efforts in network and in-
creases security as a system knows about its own trust state,
before it connects to a network. Of course, this may be lim-
ited to attempted attacks, which can be detected before they
are effective and to non-persistent attacks, which can be
cleaned, e.g., by re-booting or re-installing, or to attacks,
which do not successfully affront and neutralize the integrity
protection mechanisms themselves.

Critical are situations where a large number of systems
are actually compromised by sudden attacks. For such cases
robust remediation mechanisms might be implemented,
which are resistant against certain classes of attack, so that
they cannot be smarted out in some way - or at least not too
easily. Such remediation mechanisms may require reliable,
autonomous local mechanisms and even interaction with
supporting network entities, assuring that affected systems
could be repaired securely from remote. The reasoning be-
hind is that in mobile networks, and in particular with the flat
architecture introduced in EPS there are a huge number of
systems in field, widely distributed and very often in se-
cluded areas. Any personnel to be sent out for emergency or
management services needs time and raises cost and efforts.
In some cases, e.g., for HeNBs, it might also be acceptable to
involve the hosting party (i.e., the user) into remediation ac-
tions, but this depends on the underlying trust model.

In particular, those attacks seem to be very precarious
that emerge from remote SW injection attacks occurring dur-
ing run-time. This is because they could be launched against
a large number of systems simultaneously, causing partial
outage of large network segments or even complete network
breakdown.

Clearly, autonomy and remediation mechanisms require
robust implementation, which might by quite expensive and
thus, efforts always have to be balanced by cost-efficiency
considerations.

E. Generalization
The above considerations may be very specific to ‘stand-

ardized’ requirements for integrity and trustworthiness of ex-
posed network elements such as eNBs and HeNBs. How-
ever, the mechanism applied should also be beneficial to de-
fend against attacks that may target or affect elements loc-
ated in a (more) secure domain. Particularly, this applies if
we want to exclude attacks that could be injected via the SW
delivery and installation chain. Therefore, for such broader
scope an important strategic goal is to re-use SWIP concepts
as well as the involved components and infrastructure at the
greatest possible extent, while efforts and changes in operat-
or networks should be minimized. Understandably, it is

hardly acceptable to apply (too many) different concepts for
different products, if this requires operator invests, be it for
organizational or operational measures or be it for technical
equipment. The ideal case would be that mechanisms for
managed SW integrity protection can smoothly be integrated
into existing nodes, protocols and do not require unnecessary
changes in standardization.

Consequently we aim at generalized and harmonized ap-
proaches for managed SW integrity protection. Such solu-
tions shall provide adequate security and shall be suited to
protect many other SW products in a mobile network (also
outside the scope of EPS), widely independent from architec-
tural aspects and from complex implementation details.

When thinking of SWIP for products in core network
(i.e., those residing in the security domain of a mobile oper-
ator) essentially we can concentrate on intended SW update
and SW delivery interfaces and processes, as mainly these
may offer chances for malicious intervention. On the other
hand, physical protection and tricky implementation issues
against local attacks may be of less importance there.

Complementing the above analysis, particularly the fol-
lowing requirements are relevant for generalization:

● Ensure that SW (that may be composed of different
components and data) has not been altered after creation
process. This includes accidentally infected SW as well
as any intentionally modified code, inserted into the SW
update, maintenance or delivery path.

● Identify that SW (and associated data) is coming from a
specific, authorized source (Proof of Origin).

● Verify that code is trustworthy and authorized for a spe-
cific purpose or target system. This may be expressed
implicitly (by SW package) or by explicit verification of
meta-data or attributes.

● Allow associating SW with unmodifiable directives and
privileges for code, memory and data usage, according
to the claims of an authoritative source.

● Support 'static' (before run-time) as well as 'dynamic’
(during run-time) protection, preferably based on the
same (cryptographic) measures and mechanisms.

F. Holistic View and Intended Use Cases for SWIP
Extending the conception of generalization a visionary

idea of SW integrity protection is shown in the Figure 2 be-
low. This holistic view reflects how SW may be used in dif-
ferent execution environments and in different operational
stages, starting with SW creation and delivery processes and

Figure 2. Holistic view on SWIP: SW in different operational stages

58

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then passing through the possible usage modes and life-
cycles.

The major use cases for SWIP include SW verification

● after delivery (at point and time of acceptance); this
use case is relevant for scenarios where chiefly SW
delivery processes need to be protected from attacks
against SW, while it is shipped from the manufac-
turer to customers or to service personnel. In some
cases one-time verification may be sufficient and
after acceptance further protection is not needed.

● during installation; this use case requires SWIP
(verification) integration into a SW installation pro-
cess, which can performed locally (self-installation)
or by a remote installation server. Protecting down-
loaded SW (which is installed at run-time) or native
SW for virtual environments might also be included
here. In dependence of requirements for the installed
system it may be beneficial to combine SWIP with
directives for the installation process, e.g., on ver-
sioning or patching, on revocation or on invalidation
of previously installed SW.

● during the boot process; this use case (which typic-
ally requires active integration into a system's boot
architecture) corresponds to mechanisms addressed
earlier, when discussing approaches as introduced by
TCG standardization bodies. Essential characteristics
comprise the sequential dependency of several SW
modules being loaded and the local control taken
over the boot process.

● while it is stored in a file system, data base or in
flash memory; this use case actually corresponds to a
run-time verification scenario on storage level,
where SW may be continuously verified, be it peri-
odically or be it triggered by events created through
actions, which may affect the stored data. Typically,
such scenario may be effective if the status of an in-
stalled system must be checked over a long time, and
may be seen as a completion to the SW installation
use case. Note that the SW verified in the file system
may either be in use currently or not, or it may even
be stored in a repository.

● while it is executed in cache or CPU memory; this
use case again is a run-time scenario. In contrast to
the preceding use case, only active SW (i.e., such
SW which has been loaded into memory) is under
examination. In practice, this use case is the most
challenging one and many efforts must be spent for
efficient implementation.

In all cases, SWIP aims at checking whether SW (i.e., in-
variant parts of it, such as executable code or initial data) in
each operational stage has been modified, when compared to
the originally created reference SW. Depending on expecta-
tions on attack resilience, efforts and methodological com-
plexity may be very different.

While partially well known or even standardized indi-
vidual methods for different aspects of integrity protection
are available, in some areas this is still requiring fundamental
research. Particularly, SWIP is the more challenging the
more we aim to inspect a system during (long) execution
time and the deeper we look into a system's CPU memory

space. However, at the same time the achievable security and
trust-level will remarkably increase when moving from a
static view on system integrity towards a dynamic one (i.e.,
SW module loading and execution). In the context of mobile
networks the latter may become of significant importance,
regarding indispensable long-lasting trustworthy operation of
systems in field (e.g., operating several months per boot).

As conditions of target systems and SW environments
are varying, actually a huge number of product specific solu-
tions is required, in particular when confronted with the HW
and SW particularities of our systems (e.g., SW installation
and update processes, run-time environments and operating
systems) where the SW is verified and used.

Consequently, it is not surprising that currently a har-
monized, integrative approach is missing, which could cover
all the use cases above with a unified or adaptive method.
Nevertheless, this would be very beneficial and from the be-
ginning we should aim at unification and adaptability of
methods as far as possible and this particularly requires
identifying those aspects which are widely independent from
platform or implementation specific solutions.

The guiding principle of our approach is the cognition
that by applying certificate based SW signing schemes (the
manufacturer's) infrastructure efforts could be harmonized,
while we still have to accept remarkable differences for sys-
tem specific implementation and secure anchoring of trust
and verification mechanisms. Such infrastructure involves,
e.g., managing certificates, PKI extensions, signing mechan-
isms and entities, certificate policy guidelines and rules, key
management principles, approval work-flows, secure SW de-
velopment processes, data structures, conceptual templates,
common verification and measurement tools, and so on.

As this all could be provided by the manufacturer and to
a large extent could be driven by the products themselves or
by (product specific) network management components, im-
pacts on an operator's infrastructure could be kept minimal,
e.g., limited to manageable changes in existing mobile net-
work equipment.

III. SWIP PROCESSES AND TARGET SYSTEMS

In the following, we will propose and discuss strategies
and concepts to match the requirements and visions as intro-
duced above. Firstly, we consider processes as relevant for
SWIP and secondly, on a conceptual level (i.e., without ref-
erence to concrete network elements) we examine influences
of SWIP on target systems in the network environment.

A. SWIP Processes
For SW integrity the following four processes are essen-

tial and have to be realized for all the use cases mentioned:

(i) The protection process where the SW becomes ‘integ-
rity protected’, e.g., by applying cryptographic methods;

(ii) the verification process where it is checked (verified)
whether the protection has been broken or not;

(iii) the enforcement process where the SW is securely
stored, distributed, installed, or executed, following in-
structions that may be part of the protection paradigms;

(iv) infrastructure processes, which are required to enable
and support the others listed above.

59

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ideally, protection (i) is applied as early as possible (i.e.,
directly after SW is created, tested, and released, e.g., in the
build environment). Verification (ii) and enforcement (iii)
are done as late as possible (i.e., just before the SW is used
or executed) and even better continuously as long as the SW
is installed (or is running). It is evident that these processes
are closely related to each other and must follow common
mechanisms and paradigms that may require information ex-
change among each other (e.g., keys for encryption or sign-
ing mechanism or trusted reference parameters for hash val-
ues). Preferably (for a manufacturer dominated approach) the
process (i) is executed in a secured domain at vendor side,
while the processes (ii) and (iii) are executed in the operator
network, but based on manufacturer-provided SW, key ma-
terial, credentials, and mechanisms implemented within net-
work elements. There may also be other constellations (e.g.,
where a system itself is responsible to run local protecting
processes (i)), but these are not discussed in this paper.

In addition to the above processes, preparatory and oper-
ative infrastructure support and management processes (iv)
are required, in particular to establish PKI and signing com-
ponents and to control key material and credentials (in case
SWIP is based on certificates) or to provide reliable refer-
ence values and trusted sources and secure management and
validation capabilities for these (if SWIP is based on pure
hash values or attestation principles).

Regarding harmonization certainly the focus lies on in-
frastructure impacts, but also the above processes (i, ii, iii)
would profit from a common methodological framework, as
involved tools and data structures to a large extent could be
made similar and adaptive.

B. Target Systems
We define a target system (TS) as the ‘consuming end-

point’ (the platform for which the SW is designed and which
hosts the execution environment where the SW is running).

Figure 3 shows a SWIP system where (ii), (iii), and par-
tially (iv) are shared between the TS and an extra, external
node, e.g., a verification server residing in the network
(NW). Into this category fall systems that

● implement trusted boot, following attestation principles
and TPM technology (both based on CRTM or on
DRTM);

● realize Integrity Measurement Architecture (IMA) [6], a
load-time extension using TPM attestation principles;

● act as monitoring systems interacting with network,
such as Tripwire, Afick, Samhain or also IMA;

● follow principles as applied with TCG’s trusted network
connect (TNC) [9].

As explained such use cases (when based on external val-
idation) may impose remarkable difficulties – regarding ap-
plied security paradigms and trust managements –, which are
costly to manage in a mobile network environment. Even if

these are not seen as our preferred solutions, some principles
could be used, if appropriate.

In Figure 4 the ideal case is shown, where (ii) and (iii) to
the greatest possible extent are assigned to the TS. This
would be the best solution regarding effort minimization for
the network (also regarding (iv) for setup and provisioning).
This category includes the following use cases for self-sub-
sistent SWIP-aware TSs, which are enabled to autonomously

● implement secure boot, doing verification and enforce-
ment during the start-up process, e.g., as introduced by
the Mobile Trusted Module (MTM) specification, issued
by TCG [7], [8], see Section IV;

● verify and enforce SW integrity at installation-time,
every time before a SW component is installed or stored
into a local SW base. Typically, this can be integrated in
installation systems, such as packet managers;

● verify and enforce SW integrity, each time a SW com-
ponent is loaded into system memory and then executed;

● self-monitor and verify SW while a system is running,
triggered periodically or by system events (e.g., file ac-
cess, socket activity, system call). Both, memory-images
or files could be checked by such monitoring process;

● … and only occasionally need additional support from
SW-repository (or an OAM server) for individual cases,
e.g., for autonomous SWIP related SW update pro-
cesses, for remediation or security management (e.g., re-
mote exchange of secrets, credentials, or of trust an-
chors).

Considering generalization also SWIP-unaware TS (see
Figure 5) are of interest, i.e., those where processes (ii), (iii),
and (iv) are completely treated outside a TS. SWIP then is
concentrated in network entities (such as operator side repos-
itories o-repos, e.g., an OAM or SW management system)
and the TS systems security architecture remains unaffected.
It is essential that there must be a strict trust relation between
the o-repos and the TS, which simply plays a passive role for
SWIP.

Such unaware TSs cannot protect themselves and must
fully rely on secure domains and on the network entities they

Figure 5. SWIP-unaware target system, supported by network

Figure 3. SWIP-aware target system, verified by network

Figure 4. SWIP-aware autonomous target system

60

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are connected to. It is obvious that such solutions cannot be
applied in insecure domains, unless some basic security,
such as for secure communication of raw data or SW is
provided (here the major use case is to protect the regular
SW delivery and update processes, managed by NW entities,
like o-repos).

It is evident that for the latter case, some of the targeted
use cases cannot be applied, but this might be acceptable in
accordance with the risk assessment and cost considerations
of involved network elements.

IV. CERTIFICATE BASED APPROACHES

As already implied earlier we are convinced that a frame-
work based on certificates and PKI entities would be most
suited to fulfill the requirements of managed SWIP for mo-
bile network equipment. In addition to autonomy aspects (as
explained in Sections II.D and III.B), we expect positive ef-
fects for generalization and harmonization (see Sections II.G
and II.F) as well as for vendor dominated governance prin-
ciples and the expectations we may have on security, regard-
ing the use cases and product-life cycle aspects as intro-
duced.

As an example in the following we discuss an existing
approach and make proposals for further improvements, be it
from methodological point of view, be it for implementation.

A. The MTM approach
As already mentioned in Section II.B an inspiring idea

has been proposed by TCG to assure trustworthiness for mo-
bile phones. Aligned with (basic) TPM paradigms the MTM
specification defines certificate based mechanisms for veri-
fying and running trusted software on mobile phones. The
new idea behind the MTM specification is to support secure
boot, allowing local verification (ii) and enforcement (iii)
during the boot process, which again may involve several
mutually dependent modules (i.e., to be loaded sequentially).
MTM introduces so-called RIM (Reference Integrity Metric)
certificates containing integrity measures and references to
public keys (assigned to so-called RIM_Auths), to verify a
complex certificate chain against a (e.g., built-in) root veri-
fication key. According to this, the MTM specification en-
ables a system to act autonomously, particularly to identify
and to verify downloaded SW, to perform proof of origin and
to take decisions in case of detected integrity violations.

As implied, MTMs can be built upon the TPM architec-
ture, but only need a subset of the TPM functionality. As
RIM certificates integrate measurement values (as specified
with TPM) - in addition to secure boot mechanisms - attesta-
tion protocols still can be applied, involving external entities
if needed.

Regarding SWIP there are many correlations between the
requirements for a mobile phone and managed SW integrity
protection for NEs within a network infrastructure as deman-
ded above. The certificate based integrity protection prin-
ciples of the MTM specification can be exploited and benefi-
cially be applied in the context of SWIP strategies and re-
lated trust concepts in a mobile network. Such ideas per-
fectly harmonize with the autonomous and generalized use
cases as depicted in Figure 4 and Figure 5, while manage-
ment support in network infrastructure can be kept at a min-
imal level (certificates are self-describing and attestation
might not stringently be required).

As further explained SWIP based on adapted MTM con-
cepts might very well support both, EPS security needs (as
specified with eNB or HeNB), as well as generalization as-
pects, as explained in Sections II.E-G. In Section IV.B we
propose required extensions or adaptations, taking the MTM
approach as an exemplary framework. Alternatively, we also
could found our concepts on another PKI / certificate based
method, but the MTM seems to be a suited start point and
might be 'easier' to extend, due to existing ideas on imple-
mentation in embedded systems (including TPM mechan-
isms underneath), to (multi-) vendor centric governance
schemes and to solutions for the 'secure boot' use case.

Note that additional local security requirements beyond
the scope of SWIP, e.g., related to uniqueness and ‘secure or
trusted environment’ (such as secure key management, stor-
age, and usage, and device authentication to prevent HW
cloning etc.) must also be fulfilled, but are not described in
all details by the solutions below. However, we give some
hints on the relevant implementation aspects.

B. Adaptations of the MTM idea
We consider useful adaptations of the initial MTM idea

to extend and improve SWIP methods for mobile network
elements:

1) Focusing on secure boot
When applying secure boot, the additional value of at-

testation may be rather limited as compared to the organiza-
tional efforts and equipment to be invested in network infra-
structure. Based on self-validation it must be assured that a
system connects to a network only if the boot-time verifica-
tion was successful. Otherwise, the system shall deny any in-
teraction with the network, except, e.g., for OAM purposes.
As a precondition a highly secure root of trust (e.g., non
over-writable verification key) must exist. Further secure
key-storage (e.g., read and write protection for private au-
thentication keys) and secure usage for such keys in a secure
(execution) environment must be guaranteed. The secure
boot process is part of the establishment of such a secure en-
vironment.

The value of an additional attestation is questionable (if
done to reveal a system's trust state during long-time opera-
tion), but it has some relevance if we just want to know if a
new SW version successfully has been installed. See Section
V for alternative approaches, which avoid involving a com-
plete and difficult to manage TPM infrastructure and deploy-
ment.

2) Implementation aspects
Just as with TPM any security heavily depends on a se-

cure implementation of a CRTM, in a similar way this ap-
plies to the MTM. The initial ‘immutable’ code in the MTM
case is called ‘Root of Trust for Verification / Enforcement’
(RTV / RTE). Based on a risk assessment it has to be de-
cided in each case separately which foundation for the secur-
ity of RTV / RTE and the root verification keys has to be se-
lected. In many cases (e.g., regarding remote SW attacks) it
might be sufficient if these data are not over-writable or are
only mutable via strong authorization mechanisms that can-
not be surmounted via instructions executed by a CPU.

While the specification allows integration of TPM hard-
ware underneath, the MTM concept is also intended for sep-
arate firmware or SW implementation. For reasons explained

61

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

above, this is of particular interest for systems that cannot
simply make use of commercial TPM hardware solutions.

However, in all cases 'sufficient protection' has to be pro-
vided for using and managing local secrets and credentials,
as well as for sensitive processes (e.g., for local measuring
and reporting). Apart from TPM or comparable crypto-HW,
simpler ASICs or CPU-level integration are effective to
achieve higher security levels against pertinacious attacks.
See related proposals in Section V.

Evidently, for some scenarios (e.g., where we do not ex-
pect highly motivated and perfectly skilled attackers) it
might be sufficient to make use of efficient SW integration
techniques like kernel-space protection, system level attack
mitigation or virtualization for implementation. In practice,
accurate shaping of these mechanisms must be based on an
individual threat and risk analysis

However, due to the focus of this paper (which concen-
trates on the conceptual approach) we do not step into details
hereto.

3) Extending certificate concepts and use cases
When thinking of generalization for SWIP, the following

modification of the MTM principles is gaining importance:
While RIM certificates are perfectly tailored to implement
secure boot, they are not designed to support the needs of
other SWIP use cases (e.g., SW installation, run-time aspects
or SW delivery, as well as bundling with extended authoriza-
tion concepts). A more flexible and adaptive structure in-
stead of RIM certificates (which actually is not a certificate
in PKI sense, but 'standardized' signed data for a specific
context) is required, which is adaptive to the needs of a spe-
cific SWIP use case or to the particularities of a SW product.

In Figure 6 we introduce a generic Signed Object (SO) to
substitute RIM certificates. SO preferably might be imple-
mented as XML signed objects to gain profit of the power
and flexibility of XML and the associated XML signing
framework [10], but alternatively, CMS [21] implementa-
tions could be taken as well.

 Apart from verification information (e.g., intermediate
certificates of signing entities) or other public data, a SO
consists of one or more signed Measurement Objects (MO),
which essentially contain information, which is measured
and gathered by the SW protection process (i). Such inform-
ation may also contain meta-data (descriptors, circumstanti-
ating the MO) and measured objects, which are representat-
ives of referenced objects (e.g., hash values of one or more
SW modules). As shown in Figure 7, such MO meta-data
may include

● Object descriptors, specifying the measured objects to-
gether with references to associated policies.

● Measurement descriptors, specifying the format and
syntax of the MO and of MO elements.

● The Measured Objects (MdO) themselves; either this
can be hash values of referenced objects (e.g., a SW
module or archive) or even embedded data, such as a
small script or configuration information. Also, other
existing external MdO or MO information might be ref-
erenced, supporting a hierarchical approach (e.g., an
archive together with individually protected files stored
in this archive).

● Entity descriptors, specifying the responsible entities
(e.g., company), together with legal implications (e.g.,
disclaimers or warranty clauses).

● Crypto descriptors, specifying the applied cryptography,
e.g., hashing and signing algorithms.

● Policies, which express directives according to claims of
the authoritative (signing) source. Policies may include
explicit rules for verification and enforcement processes
or they may describe general dependencies between SW
modules (including compatibility information or rules
for ‘sequential loading’ as used with RIM certificates).
Another scope of policies could be expiry or revocation
of individual SW packages (which need not necessarily
imply revocation of a signing key and the associated
certificate). Polices can be static ('do not load module x
together with y') or conditional ('if the target platform
CPU is ABC, do not load driver Z'), i.e., may depend on
information, time, or the state of the system to which
they are applied.

● As such SOs are much more flexible and expressive
than RIM certificates, they perfectly match with the re-
quirements and visions as stated in Section II. Depend-
ing on the meaning of the descriptors and in particular
of the associated, static or conditional policies, very dif-
ferent rules can be stated to influence and to control the
processes in the SWIP endpoint (e.g., an OAM server)
or within a trusted (i.e., verifying and enforcing) TS it-
self.

In addition to directives and conditions for SW usage,
policies may express directives for the usage of MOs them-
selves, e.g., by specifying governance rules that have to be

Figure 7. Measurement Objects (MO), specifying measured data

Figure 6. Generic Signed Objects (SO), describing the protection context

62

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applied for a specific object (such as invalidation, deletion,
upgrade, required patches, etc.).

The syntax and semantic of such SO may be associated
with a company or with a specific use case or product being
managed by an individual responsible party. It should be em-
phasized again that SOs may cover the full meaning of RIM
certificates as a specific sub-case.

4) Governance principles
While the native MTM specification is not mandatorily

aligned with X.509 and general PKI principles, we recom-
mend to adapt the MTM governance principles to a (poten-
tially vendor controlled) X.509 compliant PKI infrastructure.
This only applies to the so-called RIM_Auths and the upper
hierarchy up to the root CA. It should be noted that this part
of the MTM specification could be easily integrated into
X.509 elements and could be adapted to be governed via spe-
cific PKI policies, according to the needs of an individual
manufacturer. The MTM specifications mention this, but do
not specify any details.

V. HW LEVEL TRUST IMPROVEMENTS

In the following Sections, we discuss HW level improve-
ments increasing security and flexibility of trusted systems
like the ones alluded above.

A. Authorized SW Update
The first method locally enables authorized updating to

new versions of protected SW and data that only after suc-
cessful verification will be written to non-volatile storage,
e.g., Flash EEPROM or hard disk.

In real systems run-time attacks enabled by vulnerable
SW (e.g., exploits) are likely to happen. However, solutions
for boot time protection cannot not directly provide preven-
tion against (later) run-time attacks, which intend to take
control over a system and to run with malicious functional-
ity. Certain exploits could even try to prevent reliable and
verifiable SW updates of the system, which for the future
could leave the system with an old, flawed SW version. This
would hold the device in a vulnerable state where the old,
vulnerable SW version is still booted during next secure
boot, and still accepted as a valid version, even if the new
SW version should already be installed. Therefore an unac-
ceptable security leak may arise.

Moreover, it must be prevented that a more sophisticated
SW or even local attack could change the content of any per-
sistent trusted (i.e., already verified) code.

For external entities (i.e., regarding secure connection to
a network) it is essential that either reliable attestation or

one-time proof of a successful secure SW update process can
be established.

In the following, we describe a solution that can be estab-
lished without the need to build up and to maintain an attest-
ation infrastructure and to deal with TPM integration. In ad-
dition to authorization and autonomous integrity protection
the proposed solution provides a mechanism against specific,
persistently implanted or repeated run-time attacks (against
required SW updates).

The solution uses Flash EEPROMs protected by an Au-
thorized Flash Update Process (AFUP) depicted in Figure 8,
communicating via the system CPU. The control part of this
process (the AFUP controller) can be implemented via dedi-
cated hardware (e.g., an ASIC), which by design is the only
unit that controls flash programming (at least for critical
parts of the flash memory), and could not be affected by
defined classes of attacks (e.g., CPU driven SW exploits or
even certain physical attacks). For verification it can rely on
‘roots of trust’ residing in the flash memory.

In its fundamental operation, AFUP uses pre-configured
secrets and credentials for a protected communication with
an external requester, which initiates the communication by
sending an update request (1). The delivered SW (that may
also be the CRTM or RTV/RTE SW) is integrity protected
(i.e., accompanied by signed objects SO) and is only updated
(written into flash memory) upon a successful verification by
the AFUP controller (2). On success the AFUP controller
sends a confirmation (3) to the external requester which now
can be sure that after a next boot the system is updated to an
‘invulnerable’ SW version and can be trusted again.

In Figure 9, an implementation example is shown detail-
ing the AFUP communication relying on a certificate based
security protocol. According to this the AFUP controller is
personalized with a (well protected) private key and a built-
in, write protected certificate list (this list could be stored,
e.g., in the protected memory), which initially have to be im-
planted by a secured process, e.g., during manufacturing.
The certificate list might contain the manufacturer's root CA
(Certificate Authority) certificate under which certificates for
a SW provider are issued, denoted here as SW CertSWP.

In accordance with the scheme shown in Figure 8, the
communication is started by a SW update request (1), sent by
an OAM server, which typically is located in the operator

Figure 8. Authorized Flash Update Process (AFUP)

Figure 9. Example for AFUP communication protocol

63

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network. This request may contain the new SW itself or may
also provide a link to a location where it can be fetched from.
The SW itself is protected by a signature, issued by the SW
provider SWP and the associated certificate, which -in this
example- is part of the update message .

To prevent from replay attacks and to assure a trusted
source the OAM server adds a nonce and signs the message,
which can be verified by a root certificate, which is stored in
the AFUP's certificate list depending on the key material the
OAM server is provisioned with. In the simplest case this
could be the manufacturer's root CA certificate, too. But also
an operator root CA certificate is imaginable.

Depending on the result of the verification and update
process (2) enforced by the AFUP an update response mes-
sage (3) is signed by the AFUP using its built-in private key
PrKAFUP. This also includes the nonce and additional para-
meters to assure freshness and to support this process by oth-
er, optional means (e.g., logging and confirming exact ac-
tions that have been taken by the AFUP, reporting of failure
events, or even inserting time stamps if these can be
provided).

Thus, the OAM server knows the exact state of the
AFUP as well of the SW version stored in the network ele-
ment and can continue with further service actions (which
may or may not be transmitted over protected protocols, de-
pending on the security relevance of such action), for in-
stance by initiating a reboot process, as indicated by (4).

Note that such mechanism may involve (and support) ad-
ditional security and key management processes, which im-
ply, e.g., a secure time base (or at least monotone time coun-
ters) for expiry control or for revocation or secure processes
to exchange the root CA certificates or private keys, in case
this is needed. Also encryption of the SW transfer can be
used if confidentiality of the SW is required. Realization and
implementation of such issues is a matter of a refined secur-
ity security specification, which is not further discussed here.

If not done during the reliable boot phase, initiation of
the AFUP depends on the HW-SW function split and the
CPU involvement for message transport, which at run-time
may be influenced by SW attacks (potentially causing denial
of service).

To prevent such influence the security design might rely
on a more sophisticated realization of the AFUP process, in
combination with autonomous basic communication capabil-
ities. This would enable reliable enforcement of SW updates
at any time, even in case the network element is comprom-
ised by dangerous attacks (e.g., remote SW attacks that how-
ever, cannot be directed against the AFUP mechanism if
isolated by well designed logic). Accordingly, the AFUP
supports remote remediation measures, which cannot be cir-
cumvented by such attacks.

B. Protected CPU / Flash-Memory integration
The solution presented above needs separate logic for the

AFUP mechanism and in its simpler shape (without
autonomous communication) it is mainly targeted to assure
SW integrity through a (re-)boot process. As an alternative,
we can also think of a more flexible realization, where the
AFUP is realized by protected firmware being processed by
the system CPU.

In the following, we present initial ideas for realization:
For security reasons a suited CPU or CPU core is integrated

together with an isolated Flash EEPROM, e.g., using Mul-
ti-chip modules or dedicated ASICs, as shown in Figure 10.
The flash memory might only be accessible in a privileged
CPU mode P1 (e.g., controlled by an MMU or by some lo-
gic).

Trusted functions can only be invoked via a protected
API (e.g., by SW-interrupt), assuring that the CPU runs in P1
mode with specific security settings (e.g., indivisible opera-
tions, cleared CPU registers etc.). In P1 mode the CPU ex-
ecutes the AFUP process in accordance with the methods
and protocols introduced in Figures 8 and 9. Neither extern-
al, nor remotely injected SW, nor a local attacker could read
or modify any content of the protected flash memory, unless
the integrated CPU-Memory device is physically analyzed,
requiring extremely high efforts.

In addition to supporting secure boot and the AFUP
mechanism this approach could also be used to allow secure
run-time integrity protection. To that purpose, trusted API
functions could be designed to run checks over parts of the
memory content (declared to be invariant), during system op-
eration. Moreover, 'executable' parts of the memory content
could be checked and reloaded - periodically or based on
events -, in order to wipe out potential hostile modifications
that could have been injected during long time operation.

By expanding the above idea on the AFUP functionality
for boot-time and run-time checking (of loaded SW) the
functionality could also be extended to securely launch any
security code (such as a crypto-algorithms) - or even small
parts of sensitive general purpose code - at run-time, after
successful validation of integrity and authorization. This
would be an improvement over the DRTM idea, only allow-
ing for trusted measurements on launched code. Such 'au-
thorized SW' could (at run-time) be installed into the trusted
memory and externally made available via an extended or
updated API.

In addition, such SW could be associated with policies
for usage and memory control (e.g., implemented as signed
MMU instructions, which could not be changed by 'normal'
user-land SW). This would enable a SW security designer to
instantiate individual shielded areas of memory, for instance
to read- or write protect memory areas being private to a cer-

Figure 10. Flexible, protected CPU/Flash memory integration

64

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tain SW module (e.g., to contain derived session keys or
even secrets, which could be imported in encrypted form).

VI. PKI AND INFRASTRUCTURE ASPECTS

The presented SWIP concept essentially can be built on
(proprietary) Signed Objects SO and on X.509 certificates
assigned to signing entities. A X.509 compliant PKI hier-
archy might be established, beneficially in manufacturer en-
vironment, together with manufacturer specific governance
schemes for SWIP. The following observations may substan-
tiate such reasoning:

PKI governance is executed essentially by applying
policies associated with the PKI infrastructure, with regard to
key and credential management, as well as by organizational
control over the involved entities. In accordance with the
principles mentioned in Section II.B and E, the conditions
for SW signing necessarily must be aligned with the needs
for products in mobile network, where each manufacturer in-
dividually is responsible for. One impact is the long-term us-
age (which may be 20 years and more), requiring, e.g., root
CA certificates with long expiry periods and related security
parameters and capabilities of involved keys. Despite long
validity periods there must be an overlapping scheme of val-
id root CA certificates, which also implies secure exchange
of these for products in field for a very long time. Typically
this requires issuing of cross certificates as a base for (auto-
mated) secure exchange processes, be it via CMP [22] or be
it by local means, and sufficient attack protection of the veri-
fying endpoint storing the trust anchor.

Control over the root CA certificates in verifier compon-
ents is a closely related issue. It must be assured that exclus-
ively such root CA certificates (as well as all intermediate
certificates) are accepted, which are compliant with the man-
ufacturer's certificate policies. Such requirements are diffi-
cult to fulfill with 'public CAs' (but not impossible, depend-
ing on contractual conditions), which typically are designed
to meet the requirement of distributed developer scenarios
for products with shorter life cycles than those in network
environment. Moreover, each product individually may set
different conditions for validity (of the SO), for revocation
and invalidation, and for SW management and versioning, as
well as for the exact mechanisms and rules for verification
and enforcement.

In addition to requirements for daily use, it also has to be
assured that for exceptional cases (such as 'loss of key mater-
ial' due to defects or in case of security incidents) disaster
and recovery plans are in place and in emergency situations
these can be realized very quickly. Even if such incidents
(hopefully) are very unlikely to happen, customers may re-
quire related features.

Within the manufacturer's development infrastructure
protected signing entities have to be established assuring
proper usage of associated private keys to sign the SOs for
the different products, in accordance with a secure approval
work-flow. Such approval work-flow is required to avoid
misuse of signing processes for other purposes than those in-
tended by the manufacturer for an individual product. This
not only involves personal responsibilities, but also security
control such as by appropriate authentication and authoriza-
tion principles.

Altogether, and in particular with regard to harmoniza-
tion and generalization (i.e., the different use cases that

should be covered) it seems to be the only economic (and
perhaps technical) way that manufacturers themselves fully
control the environmental conditions and policies for the
SWIP infrastructure.

Following such principles the entire SWIP approach is
self-contained and may be remotely managed without requir-
ing new specific network infrastructure nodes, neither for
modified MTM concepts for secure boot, nor for generalized
use cases, such as SW installation or secure SW delivery.

Instead, processes running in TS, OAM or SW manage-
ment systems might be adapted appropriately. We expect
that this could be done in a manufacturer specific way,
without the need to standardize commonly agreed solutions.

Note that with the presented approach also protection for
SW coming from third parties could be integrated, applying
suited extensions for protection, verification, enforcement or
infrastructure processes, e.g., by a OEM sided sub-CA, by a
manufacturer signed policy that allows a second root , by re-
signing SW, or by cross signing of root CAs.

VII. CONCLUSION AND FUTURE WORK

The authors feel that above concepts open a promising
way to cover many use cases for SWIP with a harmonized,
certificate based approach. It is suited both to cover require-
ments coming from 3GPP standardization, as well as those
that in general increase SW security and reliability for SW
products in mobile networks.

One essential benefit is that the same PKI and signing in-
frastructure could be re-used for many different use cases
(e.g., secure boot, SW installation, or integrity monitoring),
mainly determined by shaping content, syntax and semantic
of SOs and by secure anchoring of adapted verification and
enforcement components.

While key points are identified and promising ideas on
HW level improvements are tangible (beyond the scope of
the native AFUP functionality, as introduced in Section
V.B), further research is required, in particular, to solve se-
curity issues emerging from cost effective implementation
and from long-term operation of network elements.

In practice, trade-offs have to be balanced between
achievable security level and efforts for additional HW or
CPU modifications, which should be portable among differ-
ent platforms and CPU types. In our future research work in
ASMONIA these issues will be examined, also including
virtualization principles. This will go in line with further de-
tailing methods and mechanisms for smooth integration of
SWIP management concepts into mobile network elements
and security infrastructure.

VIII. ACKNOWLEDGMENTS

Parts of the work presented in this article has been sup-
ported by the ASMONIA research project, partially funded
by the German Federal Ministry of Education and Research
(BMBF).

The authors acknowledge the incitations and assistance
through the ASMONIA consortium and also like to thank
their colleagues at Nokia Siemens Networks for the valuable
ideas, discussions, and comments contributing to this work.

65

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Schäfer and W.-D. Moeller, “Strategies for Managed Software
Integrity Protection - Managing SW Protection and Trust in Mobile
Networks”, Proceedings SECURWARE 2010, Fourth International
Conference on Emerging Security Information, Systems and
Technologies; Venice, Italy, July 2010.

[2] 3GPP TS 33.401, 3GPP System Architecture Evolution (SAE),
Security architecture; http://www.3gpp.org/ftp/Specs/html-
info/33401.htm, last accessed: January 2011.

[3] 3GPP TS 33.320, Security of Home Node B (HNB) / Home evolved
Node B (HeNB); http://www.3gpp.org/ftp/Specs/html-
info/33320.htm, last accessed: May 2011.

[4] Trusted Computing Group (TCG), TPM Main Specification, Parts 1-
3, Specification Version 1.2, Level 2, Revisions 103, July 2007.

[5] B. Kauer, “OSLO: Improving the security of Trusted Computing”;
16th USENIX security symposium, proceedings, pp. 6-10, August
2007; http://os.inf.tu-dresden.de/papers_ps/kauer07-oslo.pdf, last
accessed: May 2011.

[6] R. Sailer, X. Zhang, T.Jaeger, and L. van Doorn, “Design and
Implementation of a TCG-based Integrity Measurement
Architecture”. Proceedings of 13th Usenix Security Symposium, pp.
223-238, San Diego, California, August, 2004.

[7] Trusted Computing Group (TCG), Mobile Reference Architecture,
specification version 1.0, revision 1, June 2007.

[8] Trusted Computing Group (TCG), Mobile Trusted Module (MTM)
Specification, version 1.0, revision 6, June 2008.

[9] Trusted Network Connect; http://www.trustedcomputinggroup.org/
developers/trusted_network_connect, last accessed: May 2011.

[10] W3C Recommendation, “XML Signature Syntax and Processing
(Second Edition)”, June 2008; http://www.w3.org/TR/xmldsig-core,
last accessed: May 2011.

[11] 3GPPP (3rd Generation Partnership Project), http://www.3gpp.org/,
ast accessed: May 2011.

[12] J. E. Ekberg and M. Kylänpää, “Mobile Trusted Module (MTM) - an
introduction”, Nokia Research Center Helsinki, Finland, NRC-TR-
2007-015, 2007.

[13] Intel® Trusted Execution Technology (Intel® TXT), Software
Development Guide, Measured Launched Environment Developer’s
Guide, December 2009 (in particular, see Section 1.2.1 therein).

[14] ASMONIA, “Attack analysis and Security concepts for MObile
Network infrastructures, supported by collaborative Information
exchAnge”, BMBF sponsored project; since September 2010,
http://www.asmonia.de/, last accessed: May 2011.

[15] ITU-T Recommendation X.509, “Information technology – Open
systems interconnection – The Directory: Public-key and attribute
certificate frameworks“, 2008-11.

[16] Online article, “Using Md5 checksums”,
http://www.openoffice.org/dev_docs/using_md5sums.html, last
accessed: May 2011.

[17] Online article, “Maximum RPM: Taking the Red Hat Package
Manager to the Limit”, Chapter 17. Adding PGP Signatures to a
Package, http://www.rpm.org/max-rpm/s1-rpm-pgp-signing-
packages.html, last accessed: May 2011.

[18] Entrust Certificate Services, “Java Code Signing”,User Guide
http://www.entrust.net/ssl-resources/pdf/ECS_Java_Code_Signing_
Guide.pdf , November 2010, last accessed: May 2011.

[19] Online Article, “SymbianSigned”,
http://wiki.forum.nokia.com/index.php/Category:Symbian_Signed,
last accessed: May 2011.

[20] K. E. Sanders, SANS Institute, InfoSec Reading Room,
Understanding Lotus Notes Security; Execution Control List (ECL)
Settings, http://www.sans.org/reading_room/whitepapers/commerical/
understanding-lotus-notes-security-execution-control-list-
eclsettings_785, last accessed: May 2011.

[21] Cryptographic Message Syntax (CMS), IETF document, Network
Working Group, September 2009; http://tools.ietf.org/html/rfc5652,
last accessed: May 2011.

[22] Certificate Management Protocol (CMP), IETF document, Network
Working Group, September 2005; http://tools.ietf.org/html/rfc4210,
last accessed: May 2011.

[23] R. Wichmann, “The Samhain Host Integrity Monitoring System”,
Samhain User Manual, 2002-2009; http://www.la-samhna.de/
samhain/MANUAL-2_3.pdf, last accessed: May 2011 .

[24] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and V. Roy,
“DigSig Novelties”, Libre Software Meeting 2005 – Security Topic,
slides, July 4-9 2005.

[25] L. Catuogno and I. Visconti, “An Architecture for Kernel-Level
Verification of Executables at Run Time”, The Computer Journal,
Oxford Press, Vol. 47, no. 5, pp. 511-526, September 2004;
also: http://www.dia.unisa.it/~luicat/publications/tcj04.pdf, last
accessed: May 2011.

[26] T. Schluessler, H. Khosravi, P. Rajagopal, R. Sahita, G.
Nagabhushan, and U. Savagaokar, “OS Independent Run-Time
System Integrity Services”, Corporate Technology Group, Intel
Corporation, 2005, see http://www.thefengs.com/wuchang/work/
courses/cs592_spring2007/SystemIntegrityServices.pdf, last
accessed: May 2011.

[27] ITU-T Recommendation X.500, “Information technology – Open
Systems Interconnection – The Directory: Overview of concepts,
models and services “, 2008-11.

66

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Advanced Policies Management for the Support of the
Administrative Delegation in Federated Systems

Manuel Gil Pérez, Gabriel López, and Antonio F. Gómez Skarmeta
Departamento de Ingenierı́a de la Información y las Comunicaciones

University of Murcia, Spain
Email: {mgilperez,gabilm,skarmeta}@um.es

Aljosa Pasic
Atos Origin

Albarracin 25, 28037 Madrid
Email: aljosa.pasic@atosresearch.eu

Abstract—Current identity management systems are experi-
encing an increasing workload of their administrators in the
management of the system policies, mainly derived from the
sheer amount of policies they have to create and maintain.
This problem is even more relevant in federated environments,
where roaming users force them to authenticate and authorize
people coming from other institutions. In this context, it is
increasingly necessary to adopt new advanced policies for the
administrative delegation, which allow balancing this workload
among several delegates who will in turn have a much wider
knowledge in the application area where these policies will
be applied. In this paper, we present an infrastructure that
manages the entire life cycle of the administrative delegation
policies in federated environments, as well as a way for redu-
cing the complexity in their management for some scenarios,
especially on those where the delegates do not have to be
experts in the subject area. These delegates will only have to
fill in a simple template, which is automatically generated by
our infrastructure. Finally, the applicability of the proposed
infrastructure is measured with some performance results.

Keywords-administrative delegation, authorization policies,
identity federation, access control.

I. INTRODUCTION

This paper is an extended and revised version of the
conference paper entitled “Advanced Policies for the Admi-
nistrative Delegation in Federated Environments” [1]. It
contains a more comprehensive and detailed explanation
of the proposed infrastructure with delegation support, as
well as a new section with performance measurements
to demonstrate and assess the applicability of the herein
introduced prototype in real identity management systems.

Mobility of users among institutions has become more and
more common in recent years. For example, the Erasmus
Programme [2] has promoted the academic mobility of
higher education students and teachers within the European
Union. Since the Bologna accords in 1999 [3], and the
creation of the European Higher Education Area [4], it is
expected this mobility will be increased over time.

On the other hand, we are also currently undergoing the
emergence of federated identity systems with the aim of
sharing resources among different autonomous institutions.
Important examples of these systems are the establishment

of academic federations worldwide, such as eduroam [5],
HAKA [6], or SWITCH [7].

In these scenarios, access control policies are used to
manage the access of end users to services and resources
offered by an institution. However, as the number of mem-
bers of an institution increases, new institutions join to the
same federation or the relationships among them change,
the management of these policies becomes more and more
complex. This is due mainly to the great amount of policies
to manage, either access control policies, privacy policies or
validation policies based on Levels of Assurance (LoA) [8],
among others.

To reduce the complexity in the management of these
policies the administrative delegation allows system admi-
nistrators to delegate some privileges to others, named
delegates, with the aim of making part of their work by
managing a subset of the system policies [9]. In this way,
not only is the management of the system policies distributed
to other people, but also they are being delegated to people
who have better knowledge on the application area upon
which these policies will be used.

As an example, the system administrator of an institution
may delegate in the head of a department to specify which
of the members of her department can access the network.
This delegate will be also able to establish certain constraints
under which her employees can do it, e.g., they will be only
able to access the network in an specific time interval.

This new sort of policies supposes a new value-added
service to the current policy-driven systems, either federated
or not, although its use also introduces some drawbacks that
have to be treated adequately:

• The number of policies to manage increases dramati-
cally. System administrators will have to manage both
the policies that already existed (access control policies
or privacy policies, among others) and this new kind of
policies to control the administrative delegation. It will
introduce a new way of controlling which users can
create new policies (administrative policies).

• Delegates are usually users with no knowledge in policy
management, access control languages, etc. Thus, we
should make it easier for those people the generation

67

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and management of this new kind of policies.
As seen, although the workload of administrators is

reduced, or distributed considerably among several dele-
gates, the policy management (including the administrative
ones) will also be more complex. Thus, the definition of
these new policies for the administrative delegation is not
enough for its deployment in real environments, but it is
also necessary to define an infrastructure that can manage
them and help delegates to do their new tasks.

As a solution to these problems, we will include a set
of new components to existing federated identity systems
to manage the complete life cycle of the administrative
delegation policies. Moreover, we will also define a new
mechanism for the generation of templates that helps dele-
gates to carry out this new task in a simple and intuitive
fashion. These templates will be automatically generated by
our infrastructure from the administrative delegation policies
created by the system administrators.

The remainder of this paper is organized as follows.
Section II describes an example scenario that is used to
motivate this research work. The access control language
used in this proposal and its extension to enable the use
of the administrative delegation are shown in Section III.
Section IV describes in detail the infrastructure providing
administrative delegation, whereas Section V presents the
automatic generation of policies and templates for helping
delegates to do their tasks. Section VI illustrates some
performance measurements to assess the applicability of
the prototype in real identity management systems. Then,
Section VII presents the main related work and, finally,
Section VIII remarks the main conclusions and future work.

II. USE CASE

As an application example of this new kind of policies let
us suppose a scenario where an institution is going to host an
international project meeting, in which members from other
institutions need Internet access. Then, the host institution
will provide such a connection with certain Quality of
Service (QoS) assurances. All participants, coming from
various institutions, belong to the same identity federation.

Figure 1 depicts this situation, where two participants
coming from different institutions (Bob from Institution A
and Carl from Institution B), but all belonging to the same
identity federation than the host institution, want to get a
connection to the Internet.

The administrative delegation can be used in this scenario
to assign the responsibility of managing the access control
properties to a user more closely related to the mentioned
scenario. For instance, the person who is organizing the
meeting; she knows all the necessary information, such as
the identity of the audience or the meeting schedule. In this
way, the host institution’s administrator will delegate to the
meeting organizer, i.e., the delegate, the definition on which
participants will have access to the network, as well as the

schedule upon which they can do it; information the meeting
organizer perfectly knows.

For this example, let us suppose Alice is the meeting orga-
nizer, or delegate, who will define all access control policies
for the meeting participants. Then, the system administrator,
besides establishing this delegation of privileges to Alice,
will only have to define the QoS assurances the system
should apply. This information are network parameters too
much technical the delegate does not need to know.

We can prove with this scenario the use of the admi-
nistrative delegation, where it prevents the administrator has
to create access control policies on a group of people he
does neither know nor has information with respect to the
requirements each one needs.

Institution A

Institution B

Internet

PDP

(policies)

Carl

Alice

(delegate)

Bob

Host Institution

Figure 1. Example of an international project meeting

Another interesting example related to the administrative
delegation can be found in multi-stakeholder scenarios such
as outsourcing [10]. Some business processes are relying on
IT systems of contracted service providers, the complexity of
evidence collection is very high. The business processes that
are subject to compliance are often scattered across multiple
business units in a variety of unorganized and unmanaged
systems, so design and implementation of internal control
processes are not an easy task.

In this context, the MASTER EU-IST project [11] fo-
cuses, among other research topics, on automation of evi-
dence collection. This is done with the support of MASTER
operational infrastructure that relies on a set of indicators,
measurable and observable properties derived from system
events and configuration policies, which are set up at various
levels in order to ensure trustworthy control process. What
makes MASTER especially interesting is the possibility to
separate evidence collection from posterior evidence corre-
lation or compliance assessment.

In the emerging service delivery models, e.g., cloud com-
puting, there is often an outsourcing chain where customers
contract a service provider in order to do Business Process
Outsourcing (BPO). In its turn, these service providers can
store data in cloud or use some other cloud computing
resources, which is not necessarily belonging to the same
identity federation. As a consequence, the service provider

68

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

may not be able to offer all the required evidences to the
customer. Thus, the customer is constrained to the offered
granularity and semantics of the provided events, as well
as monitoring and enforcement capabilities of the service
provider.

Another constraint for the administration of evidence-
collection process in multi-outsourcing context is the per-
ceived lack of trust. Customers might believe that events
or related evidences provided by service providers (or their
subcontractors) are not authentic.

The administrative delegation mechanism proposed in this
paper offers novel ways to increase the trust level. On the
one hand, the trust level could be increased by applying
more distributed monitoring and configuration policy rules,
as well as fine grained access control policy to MASTER
components and policies. Increased number of policies and
decoupling of components responsible for signaling and
monitoring of events (both needed for evidence collection)
increases also complexity and administrative risks, which
in its turn can be also addressed with administrative dele-
gation where internal control process owner may delegate or
specify who can have access to which evidence collection
components. This way, each configuration of the MASTER
operational infrastructure corresponds to a set of component
access control policies, managed by the person who will
have more knowledge about her employees than the client
or service provider control process owner.

III. ADMINISTRATIVE DELEGATION IN XACML

As mentioned before, we have identified the admi-
nistrative delegation as a good alternative to manage the
policies of complex systems. This section defines the mecha-
nisms included in the eXtensible Access Control Markup
Language (XACML) [12], a standard XML-based access
control language, to allow the use of this new feature.

This proposal was defined to represent access control
policies in a standard way. It includes two different speci-
fications: the first one is an access control policy language,
which defines the set of subjects that can perform particular
actions on a subset of resources; the second one is a
representation format to encode access control requests (a
way to express queries about whether a particular access
should be granted) and their related responses.

The administrative delegation in XACML relies on the
idea that a person authorized to delegate certain privileges
does not need to use them, and vice versa; that is, that a
person owns rights to exercise a privilege does not imply
that she can delegate it to others.

As the XACML delegation profile [13] specifies, the
purpose of the delegation model is to make it possible to
express permissions about the right to issue policies and
to verify the issued policies against these permissions. This
profile defines a new XML element, named PolicyIssuer,
to indicate who has issued a specific policy. Through this

element, the system can identify and verify whether the
policy issuer is valid to delegate the given privilege before
being applied. Thus, the authority of the issuer needs to be
verified in order to consider this policy as valid. When a
policy does not include the PolicyIssuer element, the policy
is considered trusted and, therefore, it is valid.

By including this new element, the administrative dele-
gation allows the creation of delegation chains, where a
certain privilege can be delegated from one person to an-
other. For example, in the use case shown in Section II, the
meeting organizer (Alice) could in turn delegate in Bob the
generation of the access control policy for Carl, thus building
a delegation chain of three policies: an administrative policy,
created by the administrator, that delegates in Alice the
privilege of accessing to the network; another administrative
policy, created by Alice, that delegates in Bob the same
action and resource; and the access control policy, created
by Bob, that finally grants access to the network to Carl.

In a schematic way, this delegation chain would be as
follows (each arrow represents a delegation policy):

Administrator → Alice → Bob → Carl

Each delegation policy can specify another XML attribute,
named MaxDelegationDepth, to limit the depth of delegation
that is authorized by such a policy. In this example, if the
system administrator decides to restrict the delegation chain
to only one person, by defining MaxDelegationDepth=“1”,
Alice will not be able to delegate her privileges to anyone
else. Otherwise, the delegation chain will not be trusted and
Carl will not have access to the network.

Thus, besides the traditional policies for managing the
access to the resources (access policies), and the requests
the Policy Decision Point (PDP) receives, which should be
resolved based on these policies (access requests), this new
specification also defines a new set of XACML policies to
validate the issuer of another policy (administrative poli-
cies). This set of policies will be consulted to the PDP by
means of another sort of requests (administrative requests).

As an example, Figure 2 depicts the delegation model in
XACML for the use case presented in Section II. As seen
in this figure, once the PDP receives an access request, and
the policy used for its evaluation includes the PolicyIssuer
element, as the one shown in Figure 2a, it is necessary to
carry out an administrative request to verify whether the
policy issuer is trustworthy, and she has the expected per-
missions for such a delegation. This administrative request
is built from the previous access request, which will include
the attributes of both users (Alice and Bob) gathered from
their home institutions.

Finally, the administrative request is evaluated using the
corresponding administrative policy, as the one shown in
Figure 2b. It is worth noting that if this administrative policy
in turn contains the PolicyIssuer element, the above process
must be repeated until either reaching a trusted policy or

69

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exceeding the maximum delegation depth defined in the
delegation chain.

In this scenario, the policy issuer (whose identifier is
Alice) authorizes, through the access policy, to another
person with identifier Bob (subject) to Access (action) the
Network (resource). It is also included a time condition
indicating the period of time within which the policy is
valid, i.e., the meeting schedule. The previous access policy
is conditioned to the issuer is recognized as valid for carrying
out such a delegation. To this end, the administrative policy
of Figure 2b permits that the access to the network can be
managed by those delegates who have the attribute schac-
UserStatus with the meeting:set value, and the additional
condition that users requesting the access own the attribute
schacPersonalPosition with the Researcher value [14]. Thus,
if Alice and Bob comply with these attributes, both policies
will be evaluated as valid and, finally, Bob will have the
requested network connection. In this case, an obligation is
also attached, a QoS requirement, which has to be enforced
in the system by the Policy Enforcement Point (PEP).

b) administrative policy

Policy
(permit-overrides)

Delegated-Subject
schacPersonalPosition=Researcher

Delegated-Resource
resource-id=Network

Delegated-Action
action-id=Access

Delegate
schacUserStatus=meeting:set

Rule Effect=Permit
Obligation=QoS Class 2

T
a
rg
e
t

administrative

request

a) access policy

Policy
(permit-overrides)

PolicyIssuer
subject-id=Alice

Subject
subject-id=Bob

Resource
resource-id=Network

Action
action-id=Access

Rule Effect=Permit
Condition=Time [9h..13h]

T
a
rg
e
t

access

request

Figure 2. Administrative delegation in XACML

As has been seen in this section, the XACML delegation
profile defines the syntax for the new elements that provide
administrative delegation support. However, it is necessary
an infrastructure that makes easy the use of this new sort
of policies, as well as some mechanisms to help, especially
to the delegates, in the management of these policies in an
easy and intuitive fashion. Both of them are described in
detail in the following sections.

Furthermore, XACML is only focused on intra-domain
systems without providing any support to federated environ-
ments. Therefore, we must also take into account the identity
management in our administrative delegation architecture for
inter-domain systems. In this case, the system administrator
will be also able to delegate part of her duties not only to
people of his very institution, but also he will be able to do

it to outsiders as long as they belong to the same federation
his institution.

IV. INFRASTRUCTURE WITH DELEGATION SUPPORT

Once the application area and the language to express
delegation have been presented, this section describes the
proposed infrastructure that makes use of delegation policies.

A. System requirements

The needs and the minimum requirements that any admi-
nistrative delegation system should comply with are sum-
marized as follows:

1) The institution wants to offer an administrative dele-
gation service is required to provide a secure reposi-
tory where to store the administrative policies.

2) The administrative policies have to be published and
stored in an internal repository through secure chan-
nels that provide features of confidentiality, authen-
tication and integrity. Moreover, it is also advisable
that these secure channels provide non-repudiation
features. This last property will avoid delegates can
refuse the creation and modification of those policies
for which they are responsible.

3) Efficient authentication methods are required. Only au-
thorized people can both access the secure repository
and exclusively create or modify the policies to which
they have permissions. In this case, administrators will
have a total access and control to all stored policies,
while delegates will be only able to create and modify
those policies to which the administrator has provided
access, creation and modification rights.

4) The secure repository with the administrative policies
has to be accessible by the service that takes the
authorization decisions, i.e., the PDP, according to
such policies.

5) The delegate should be capable of defining poli-
cies without having technical knowledge in managing
access control policies.

B. Federation environment

An identity federation system is composed by several
institutions in which a set of common services are offered,
such as the authentication and authorization of the federation
members. In this way, when a roaming user moves from
her home institution to another, the visited institution, the
later can authenticate her through the federation. In some
scenarios, this authentication phase is carried out remotely
by the user’s home institution.

For example, eduroam is one of the largest networks
for roaming worldwide, oriented to institutions involved in
research and education [5][15]. This network allows the
mobility of users across over 40 countries throughout three
continents, including China, Australia and Canada.

70

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Service

Provider

User

PDP

eduroam

System

Repository

Delegate

Repository

XACML

administrative

policy

XACML

access

policy

Visited Institution NAP (PEP)

au
to
m
at
ic

ge
ne

ra
tio

n

Template

Server

User’s Home

Institution

eduGAINAttribute

Requester

AuthN

Federation
Delegate

Administrator

take authorization decisions based

on the user’s attributes + policies

authenticate a roaming user

through the federation

collect the user’s attributes

from her local institution

User’s

database

Figure 3. Administrative delegation architecture

The eduroam network is based on a RADIUS hierar-
chy that redirects the user’s authentication request to the
appropriate home RADIUS server. During this phase, the
user receives some kind of handler to identify her in the
federation, thereby providing a way of preserving her privacy
in the federation. Later on, if the visited institution needs
some user’s attributes, to take a local authorization decision
by the PDP, an attribute request can be made through the
federation using the previous handler.

To that end, each institution of the federation must host
two different entities (see Figure 3): an AuthN module to
authenticate a remote user through the federation, returning
her a handler (opaque identifier); and an Attribute Requester
module that returns the attributes associated to the user iden-
tified by the previous handler. In our case, the authentication
is based on eduroam, whereas the attributes request is carried
out through eduGAIN [16][17]. Finally, authorization deci-
sions are locally taken in the visited institution, according
to these user’s attributes and the system policies defined by
the institution.

This identity federation system is a good testing environ-
ment to make use of delegation policies in a feasible way.

C. Components of the architecture

The two services previously defined forward the corres-
ponding requests to the user’s home institution. Apart from
them, the proposed architecture (shown in Figure 3) also
introduces a PEP in order to protect the resources, enabling
the access to the authorized users, and a PDP to take
the authorization decisions based on the defined XACML

policies. The PDP also needs the user’s attributes to evaluate
these policies, which are harvested through the Attribute
Requester for remote users and directly from the User’s
database for local users.

It is worth noting that the protected resource in the
example shown in Figure 3 is the network, so that the PEP is
the Network Access Point (NAP) that provides both wireless
connectivity and access control capabilities according to the
PDP’s decisions.

Moreover, in this architecture we include two different
repositories to store all the institution policies:

• System Repository. This contains both the traditional
policies of the institution, e.g., access control policies
or privacy policies, and the new administrative policies.
All of them are created and managed by the system
administrators.

• Delegate Repository. This repository contains all the
access control policies generated by the delegates.

The reason of maintaining two different repositories is
mainly the prevention of some security issues. The first
repository, with the system policies, contains critical policies
for the correct operation of the institution. This means that
granting the access to other people may cause security risks.

Once the Delegate has been enabled as the person in
charge of defining some system policies on behalf of the
administrator, this user can access the Template Server to
do this task. The Template Server is a Web application
server that allows delegates to define access control policies
from the privileges the system administrator has delegated
on them. This component stores the templates, in the

71

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

form of Web-based forms, that delegates can fill out in a
straightforward manner without having technical skills about
policies management.

To do so, the Template Server maintains a third reposi-
tory, apart from the two ones introduced above, where
the templates are stored. These templates are automatically
generated from the administrative policies created by the
system administrators. Thus, delegates will then access to
this server when they need to create an access control policy,
according to the delegation model presented in Section III.

The Template Server is not very different to any other
service that the federation offers, since this server will also
make use of the defined mechanisms for controlling the
access control to the templates. This decision is based on
the credentials that the delegate owns in the institution to
which belongs.

Therefore, delegates will have to authenticate in their
home institution and, if both institutions belong to the same
federation and delegates have the appropriate credentials,
they will be able to access the Template Server.

The new components we have added in the identity
federation system, shown at the top of Figure 3, can ope-
rate both in federated environments (inter-domain) and in
autonomous institutions (intra-domain). The only difference
between them lies on where and how the users’ authentica-
tion and authorization are taken place.

In an autonomous mode of operation, all these pro-
cesses are performed in the institution locally, whereas in
a federated environment, as the one shown in Figure 3,
the authentication is performed remotely at the user’s home
institution through eduroam and the authorization is carried
out in the visited institution in a local way.

In the latter case, the authorization phase needs the
user’s attributes for the decision-making process. The visited
institution should then interact with the user’s home insti-
tution (note that both of them have to belong to the same
federation) for recovering these attributes through eduGAIN.

D. Delegation policies

In order to take advantage of the administrative delegation,
which is defined in the XACML guidelines detailed in [13],
we have to define two different kinds of policies. On the one
hand, an administrative policy expressing the delegation of
the administrative rights to the delegates and, on the other
hand, the access policies created by the delegates containing
the details of the access control rules.

Using the use case presented in Section II, we have de-
fined two example policies. The first one, the administrative
policy, shown in Listing 1, specifies that a user who holds
the schacUserStatus attribute with the meeting:set value can
act as a delegate, and grant Access to the Network to any
user who holds the schacPersonalPosition attribute with the
Researcher value.

This policy also specifies that the maximum delegation
depth is set to 1, by means of the MaxDelegationDepth
attribute. Moreover, this administrative policy specifies some
network properties to enforce; in this case, a QoS assurance
with the Class 2 value.
<Policy PolicyId=“AdministrativePolicy” RuleCombiningAlgId=“permit–overrides”

MaxDelegationDepth=“1”>
<Target>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Researcher</AttributeValue>
<AttributeDesignator AttributeId=“schacPersonalPosition”

Category=“...:delegated:...:subject–category:access–subject”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Network</AttributeValue>
<AttributeDesignator AttributeId=“...:resource–id”

Category=“...:delegated:...:attribute–category:resource”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Access</AttributeValue>
<AttributeDesignator AttributeId=“...:action–id”

Category=“...:delegated:...:attribute–category:action”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>meeting:set</AttributeValue>
<AttributeDesignator AttributeId=“schacUserStatus”

Category=“...:delegate”/>
</Match>

</AllOf>
</AnyOf>

</Target>
<Rule RuleId=“AdministrativeRulePermit” Effect=“Permit”>
<Obligations>
<Obligation FulfillOn=“Permit”>
<AttributeAssignment AttributeId=“QoS”>
Class 2

</AttributeAssignment>
</Obligation>

</Obligations>
</Rule>

</Policy>

Listing 1. Administrative policy

On the other hand, the access control policy example is
shown in Listing 2. This policy is issued by Alice, who grants
Access to the Network to Bob. This policy could also include
some conditions and network parameters that will have to
be enforced by the PEP. In this case, Alice establishes that
this access is only permitted from 9h to 13h.
<Policy PolicyId=“AccessPolicy” RuleCombiningAlgId=“permit–overrides”>
<PolicyIssuer>
<Attribute AttributeId=“...:subject–id”>
<AttributeValue DataType=“string”>Alice</AttributeValue>

</Attribute>
</PolicyIssuer>
<Target>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>

72

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<AttributeValue DataType=“string”>Bob</AttributeValue>
<AttributeDesignator AttributeId=“...:subject–id”

Category=“...:subject–category:access–subject”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Network</AttributeValue>
<AttributeDesignator AttributeId=“...:resource–id”

Category=“...:attribute–category:resource”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Access</AttributeValue>
<AttributeDesignator AttributeId=“...:action–id”

Category=“...:attribute–category:action”/>
</Match>

</AllOf>
</AnyOf>

</Target>
<Rule RuleId=“AccessRulePermit” Effect=“Permit”>
<Target/>
<Condition>
<Apply FunctionId=“function:and”>
<Apply FunctionId=“function:time–greater–than–or–equal”>
<EnvironmentAttributeDesignator AttributeId=“current–time”/>
<AttributeValue>Wk0900</AttributeValue>

</Apply>
<Apply FunctionId=“function:time–less–than–or–equal”>
<EnvironmentAttributeDesignator AttributeId=“current–time”/>
<AttributeValue>Wk1300</AttributeValue>

</Apply>
</Apply>

</Condition>
</Rule>

</Policy>

Listing 2. Access control policy

E. Conditions and obligations

As seen before, both policies define two sets of conditions
and obligations (one per policy), which should be managed
by the PDP. Thus, these conditions have to be combined
each other and check them later to know they do not enter
in conflict, or they are not contradictory. For example, the
administrative policy could indicate that the user can only
access the network from 8h to 14h, whereas the access
control policy created by a delegate can restrict this period of
time from 9h to 13h. In the policy evaluation process, which
is carried out by the PDP, the conditions of the access control
policies will be checked first, and the ones of the delegation
policies later. As a result, the intersection of both constraints
will be enforced, which is a correct way of operation.

On the other hand, the network parameters can produce
some kind of inconsistency if the ones included in the access
control policy are inconsistent with the ones established
in the administrative policy. Although the correct way of
managing the different kinds of network parameters depends
on their type, in general, the values derived from the access
policies can only be a subset of the ones derived from the
administrative policy.

In this sense, delegates cannot grant wider privileges than
the ones specified by the administrator in the administrative

policy. In case of conflict between the properties stated
by both policies, the PDP must ensure that the properties
provided by the access control policy will be enforced
iff they are less or equal than the ones permitted by the
administrative policy.

V. AUTOMATIC GENERATION OF POLICIES AND
TEMPLATES

The first step in the system is to define the administrative
policy. This is done by the system administrator in a usual
way, although in order to make this task easier the adminis-
trator could use any kind of XACML policy editor.

Among the available policy editors, all of them developed
under an open source license, we can stand out:

• XACML-Studio [18]. This is an authorization policy
editor implemented as a Web application to import,
create, edit and export polices in XACML 2.0 format.

• XACML.NET [19]. This editor is completely devel-
oped in .NET/C#, which implements almost the entire
XACML 1.0 standard, excepting the regexp-string-
match function.

• eXist [20]. eXist-DB is a database capable of storing
and managing information in XML format in a native
way, as well as processing XQuery and XPath queries
on the database itself. The policy editor is embedded
within the editor itself that eXist provides to manage
all the policies stored in its database. Anyway, this
supposes a dependency drawback since it forces our
infrastructure to use such a database to manage the
policies from this editor. Moreover, it only supports the
versions 1.1 and 1.0 of the XACML format.

• UMU-XACML-Editor [21]. This editor is implemented
in Java with the aim of creating policies by following
the XACML 2.0 standard.

Although UMU-XACML-Editor, as previous ones, does
not support the latest XACML specification (version 3.0) we
have chosen it as the policy editor for this research work.

This solution is the policy editor most updated of the
existing ones, in addition to some interesting technical
features such as defining references to other policies and
supporting the SchemaLocation element to validate polices
against their XML schemes. Thus, the UMU-XACML-
Editor policy editor has been extended to support the new
XACML delegation profile, as presented in Section III.

Once the administrator has defined the administrative
policy by using the UMU-XACML-Editor, the next step is
the definition of the access control policies by the delegate.
But as indicated previously, how the delegate is going to
create the access control policies is a tricky aspect, because
she is a common user and not a security expert with skills
on policy languages.

Therefore, instead of building this policy from scratch,
some kind of template (in our case, Web-based forms) can
be provided to the delegate to help her in this administrative

73

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

task. In this way, the delegate will only have to fill in this
template to create the appropriate access control policy.

A. Generation of templates

To perform this process is necessary to use a Policy
Management Tool (PMT) with the aim of building the access
policy templates. In our case, we have decided to extend
the UMU-XACML-Editor policy editor to include this new
feature. This tool will use an XSLT [22] transformation that
extracts the appropriate fields from the delegation policy to
generate the template.

The PMT needs to search for the action and resource
elements specified in the administrative policy, which are
identified by the “...:delegated:...:attribute-category:action”
and the “...:delegated:...:attribute-category:resource” cate-
gories (see Listing 1). The rest of data needed for the access
control policy, such as the subject identifier, are included in
the template as input fields for being filled in by the delegate.
The identifier of this delegate is automatically added in the
new policy as the issuer thereof.

This process is depicted in Figure 4. Note that the text
enclosed in parentheses indicates which element of the
infrastructure (the administrator, the delegate or the system
itself) generates each piece of information.

access policy

(automatically generated)

Policy
(permit-overrides)

PolicyIssuer
subject-id=Alice

Subject
subject-id=Bob

Resource
resource-id=Network

Action
action-id=Access

Rule Effect=Permit
Condition=Time [9h..13h]

T
a
rg
e
t

administrative policy

(administrator)

Policy
(permit-overrides)

Delegated-Subject
schacPersonalPosition=Researcher

Delegated-Resource
resource-id=Network

Delegated-Action
action-id=Access

Delegate
schacUserStatus=meeting:set

Rule Effect=Permit
Obligation=QoS Class 2

T
a
rg
e
t

Delegate (Alice)

Subject
Bob

Resource
Network

Action
Access

Condition
Time [9h..13h]

template

(delegate)

Figure 4. Administrative delegation process

Besides, the template must allow the delegate to specify
the conditions and obligations. The most common condition
is the time constraints although, however, other conditions
such as a maximum number of connected users could be
included in it. Regarding the network parameters, the tem-
plate can also show to the delegate the different parameters
defined in the system that she can assign, e.g., QoS or
bandwidth, together with their possible values.

Once the PMT has generated this template, it is necessary
to make it available to the delegates on some server or
repository. But the access to this template must be restricted
to the appropriate delegates, so that the PMT should also
generate an XACML policy to control the access to it. In this
case, the PMT must search for the “...:delegate” category in
the administrative policy, which specifies the restrictions for
the delegates. This field is then used to specify the subject

of the policy to control the access to the template. Finally,
both the administrative policy and the access control policy
to the template are stored in the System Repository to be
used later.

As we can see in Figure 5, from the administrative policy
created by the administrator, the PMT is also capable of: (1)
generating the template for the delegate; and (2) generating
the corresponding policy to control the access to such a
template. Both policies are stored in the System Repository
with the system policies, whereas the template is stored in
the internal repository of the Template Server.

Administrator PMT
System

Repository

Template

Server

generate
template

load available generators

generate
administrative
policy

define & publish

administrative policy

generate
access policy
to template

XSLT files

administrative
policy

template

access policy
to template

Figure 5. Generation of automatic templates

In order to control the access to these templates, the Tem-
plate Server has to query the PDP to take an authorization
decision according to the access control policies to templates
previously generated by the PMT.

B. Generation of access control policies

Figure 6 shows the complete process for the generation
of access policies from the previously generated templates.
Before allowing delegates to access to these templates,
the Template Server should determine whether the delegate
owns the required credentials and privileges to take advan-
tage of an administrative delegation.

To do so, the delegate must first be authenticated through
the AuthN module (see Figure 3). At this point, it is worth
pointing out that this user will be authenticated in her home
institution, either locally if the delegate belongs to the same
institution or remotely through eduroam if she belongs to
a remote institution with which the visited institution has a
close relationship through the same identity federation.

If the authentication has been successful, the Template
Server has to collect the delegate’s attributes to decide if this
user owns the minimum privileges to complete this admi-
nistrative task. This harvest process is performed through
the Attribute Requester module (see Figure 3), which will

74

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Delegate PDP
System

Repository

Template

Server

Delegate

Repository

credentials

AuthN
Attribute

Requester

authentication

Templates AuthZ
request

get attributes

retrieve all
templates
from database

access policy
to template

fill in form

generate
access policy

list of templates

chosen template

generate
Web form

show form

access
control policy

take an access
decision

Templates AuthZ
response

Figure 6. Process of using templates by the delegates

gather them from the home institution to which the delegate
belong. As before, this process will be done either locally
or remotely (in this case, through eduGAIN), depending on
which the delegate’s institution is.

After this harvesting process, the Template Server re-
trieves all the defined templates from its internal repository.
Then, the Template Server builds an authorization decision
request that sends to the PDP to know which of these
templates the delegate can fill in.
<Request>
<AuthorizationDecisionQuery Resource=“Template-11”>
<Subject>
<NameIdentifier NameQualifier=“https://idp.um.es/shibboleth/idp”>
Alice

</NameIdentifier>
</Subject>
<Action Namespace=“urn:segura:umu:actions”>Fill-in</Action>
<Evidence>
<Assertion>
<AttributeStatement>
<Attribute AttributeName=“eduPersonPrincipalName”

AttributeNamespace=“urn:segura:edugain:attributes”>
<AttributeValue>alice@um.es</AttributeValue>

</Attribute>
<Attribute AttributeName=“schacUserStatus”

AttributeNamespace=“urn:segura:edugain:attributes”>
<AttributeValue>meeting:set</AttributeValue>

</Attribute>
</AttributeStatement>

</Assertion>
</Evidence>

</AuthorizationDecisionQuery>
</Request>

Listing 3. Access request to verify if the delegate can fill in a template

This authorization decision request must include:
• the attributes of the delegate in the Assertion element;
• the template to be accessed in the Resource element;

• and the Action element with the Fill-in value.
An example for the use case presented in Section II can

be found in Listing 3. In this case, the PDP is evaluating
whether Alice can fill in the template number 11 or not. If so,
the PDP will return to the Template Server a signed autho-
rization decision response stating that Decision=“Permit” to
the Resource=“Template-11” for the Action=“Fill-in”.

During this decision-making process, the PDP makes use
of the access control policies to templates, which have been
previously stored in the System Repository by the PMT.

Finally, the Template Server will show to the delegate the
list of templates that can fill in according to the presented
credentials. A screenshot of this Web page can be found in
Figure 7. At the top of this figure is shown the graphical
result obtained by Alice after entering her credentials in
a previous phase. In this case, Alice can only fill in the
template number 11 with the “Meeting Segur@ Internet
Connection” description. At the bottom of the same figure,
we can see the logging server output to check the different
steps explained in this section.

Once the delegate selects one of the available templates,
the Template Server internally generates the Web form that
will return her so it can be finally filled in. Continuing the
previous example, Figure 8 depicts another screenshot where
Alice has already filled in the Web form with the requested
information. As can be seen, the administrative definition of
a new access control policy is a very straightforward process
that does not require special skills in managing policies.

Finally, and after filling in the template, the Template
Server internally generates the access control policy and

75

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. List of templates the delegate can fill in

stores it in the Delegate Repository for uses in future
requests from Bob to Access to the Network, provided this
request is from 9h to 13h. For this generation we also make
use of XSLT transformations, as seen in the right-hand side
of Figure 4.

VI. PERFORMANCE RESULTS

The infrastructure with delegation support proposed in
Section IV has been implemented and deployed in a lab
testbed to demonstrate its applicability in a real scenario.

In these tests, we have assumed that both the adminis-
trator and the delegate belong to the same institution, so
no authentication process is carried out remotely through
eduroam. As a consequence, the remote harvesting process
for getting the delegate’s attribute is not performed through
eduGAIN. In its stead, all these processes are taken in the
same institution.

This validation has been performed through some per-
formance measurements, which have been taken directly
from this testbed, depending on different factors that might
have an important impact on the proposed administrative
delegation process. These tests are:

• Retrieve the list of templates from the Template Server
that a delegate can fill in. In this process, we also

Figure 8. Template filled in by the delegate

include the authentication and authorization phases of
the delegate when she accesses to the Template Server
for first time.

• Validation of an access control policy sent to the PDP
by a user.

In both cases, we have assumed for these tests our
infrastructure is configured with the policies and features
presented throughout this paper. The list of hardware and
software requirements deployed in our lab testbed is shown
in Table I.

A. Retrieve the list of templates from the Template Server

This first test aims to assess the time a delegate needs to
access the Template Server in order to fill in some of the
templates for which she is responsible. It will give us an idea
about the time consuming on the different phases involved
in this process, as detailed in Section V-B, which have been
divided in four different steps (all of them corresponding to
the arrows depicted in Figure 6):

• User AuthN. Time needed by the infrastructure to
authenticate the delegate. This step corresponds to the
authentication row depicted in Figure 6.

• User AuthZ. This step represents the time needed to re-
trieve the delegate’s attributes by means of the Attribute
Requester. This corresponds to the get attributes arrow.

• DB Templates. It corresponds to the retrieve all tem-
plates from database arrow. This retrieval is internally
done from the internal repository of the Template
Server.

• Templates AuthZ. This step pertains to the decision-
making process that the PDP has to do to know which
templates the delegate can fill in.

76

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

50

100

150

200

250

300

350

Templates AuthZ

DB Templates

User AuthZ

User AuthN

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91

T
im

e
(m

s)

a) Times to retrieve the list of Web forms from the Template Server b) Percentil of the 100 access requests performed by this test

Figure 9. Administrative delegation process

 Hardware Software

Template Server

Intel Pentium 4 CPU 640
CPU: 3.20 GHz, 32 bits
Cache size: 2048 KB L2
Total memory: 1024 MB

Windows XP SP3
Tomcat 6.0.10

PDP
Ubuntu 9.10
Tomcat 5.5.27
eXist-DB 1.2.6

AuthN & IdP

Ubuntu 9.10
Apache 2.2/mod_ssl
MySQL 5.0.75
OpenLDAP 2.3.28

Attribute Requester

AMD Opteron CPU 246
CPU: 2.0 GHz, 64 bits
Cache size: 1024 KB L2
Total memory: 1024 MB

Ubuntu 9.10
Tomcat 5.5.27

Table I

HARDWARE AND SOFTWARE REQUIREMENTS

The testing process has been performed by means of send-
ing 100 sequential requests, from which we have extracted
the average times of each these four steps. Note that all times
have been measured in milliseconds (ms). The partial times
of each of them are shown in Figure 9a, while Figure 9b
illustrates the total times for the 100 requests.

We can observe in Figure 9a what is the time distribution
for each case. At first sight, we can assert that the decision-
making process performed by the PDP is the longer time
of all, as expected, being the 63,81% of the total time. The
Templates AuthZ step takes 224 ms, on average, for the 100
tests performed, while the total time takes 351 ms. For this
process, the PDP only needs to evaluate the access control
policies to templates, so no delegation chain is used by it.

It is worth noting that these times have been taken from
the Template Server. This means that the PDP does not really
take these 224 ms, because we have to take in consideration
the network traffic and delays. We have measured this time,
and the PDP really takes 198 ms on average in this process
of making a decision. With this last time, it would be now
a 54% of the total time. Apart from that, this time is very
reasonable since the PDP has to take its decision, build the

corresponding SAML response and sign it digitally.
In any case, as a conclusion, these times are perfectly

acceptable and assumed by the delegate.

B. Validation of access control policies

As have seen in the previous test, the PDP is the critical
component that can slow down the performance of the
overall system. Then, for this second test we have taken into
consideration how the delegation chain defined in Section III
can influence in this performance.

That delegation chain stated that the administrator dele-
gated to Alice the definition of the access control policies for
such a scenario. Thus, once Bob tries to access the network
the PDP should check both the administrative policy, created
by the administrator, and the access control policy created
by Alice. In this process, the PDP will also have to retrieve
the Alice’s attributes for making the corresponding decision.
Note that the retrieval of these attributes will be done
through the Attribute Requester.

For this test, as before, we have performed 100 sequential
request. The results for this test can be found in Figure 10.

440

450

460

470

480

490

500

510

520

1 11 21 31 41 51 61 71 81 91

T
im

e
(m

s)

Figure 10. Percentile times for validating a delegation chain

In this case, the PDP takes 489 ms on average to validate
the complete delegation chain. This process includes: the
retrieval of both policies from their corresponding reposito-
ries, the administrative policy from the System Repository
and the access control policy from the Delegate Repository;

77

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the harvesting process of the Alice’s attributes through the
Attribute Requester component; the internal validation from
both policies; and, finally, the building and digital signing
of the SAML response.

Among these steps, the largest computational load corres-
ponds to the retrieval of the policies from their repositories,
taking 196 ms on average. This supposes the 40% of the
total time. Thus, and depending on the scenario we are
considering, some optimizations could be implemented, e.g.,
by caching these policies in the PDP, to reduce these times
in a real production system.

VII. RELATED WORK

The XACML delegation profile specified in [13] is very
recent, so there are not many works making use of it.
However, the idea of delegation of rights has existed for
several years, and there are a lot of works trying to include
this feature in different ways. For example, in PKI systems,
two initiatives stood out in the use of delegation [23]:
SPKI/SDSI defines a standard way for digital certificates
whose main purpose is authorization rather than authen-
tication; and X.509 proxy certificates are another way of
providing restricted proxying and delegation within a PKI-
based authentication system.

In the latest years, authorization systems are making use
of XACML because it is standard, and besides it provides
an expressive access control language. Before the apparition
of the XACML delegation profile, several proposals to add
these features to XACML were made. For example, in [24]
the authors presented a system permitting controlled policy
administration and delegation using XACML in combina-
tion with a second access control system. This system is
Delegent, which has powerful delegation capabilities. But
contrary to our proposal, this system does not define how
delegates manage the XACML policies.

Another proposal to add dynamic delegation to XACML
is presented in [25]. But unlike the XACML delegation
profile, this system is based on the delegation of roles
instead of the delegation of policy administration. This
system defines a validation service whose purpose is to
validate a set of credentials for a subject, issued by multiple
dynamic attribute authorities from different domains. Finally,
it returns a set of valid attributes that are used in the XACML
system in the standard way.

VIII. CONCLUSION AND FUTURE WORK

This work shows that although the administrative dele-
gation is a helpful tool for managing policies in complex
systems, it also introduces some drawbacks that hinder its
use in real existing environments. Therefore, this paper des-
cribes an infrastructure that makes use of the administrative
delegation in an effective way, thus simplifying the work
of both the system administrators and the delegates. On the
one hand, the workload of the administrators is reduced by

distributing the policy management among the appropriate
users in the system, i.e., the delegates. On the other hand, the
delegates, who are not concerned about policy management,
only have to fill in the appropriate templates to generate
these policies in an automatic way.

Currently, as a statement of direction, we pretend to study
in depth the management of delegation chains in highly
distributed authorization systems.

ACKNOWLEDGMENT

This work has been partially funded by the CENIT
Segur@ (Seguridad y Confianza en la Sociedad de la In-
formación) project and the MASTER EU-IST project (IST-
2001-34600) within the EC Seventh Framework Programme
(FP7). Authors would finally like to thank the Funding
Program for Research Groups of Excellence with code
04552/GERM/06 granted by the Fundación Séneca.

REFERENCES

[1] M. Gil Pérez, G. López, A.F. Gómez Skarmeta, and A. Pasic.
“Advanced Policies for the Administrative Delegation in
Federated Environments”. In DEPEND’10: Proceedings of
the 3rd International Conference on Dependability, pages 76–
82, July 2010.

[2] The ERASMUS Programme Web site, European Commis-
sion. http://ec.europa.eu/education/programmes/llp/erasmus
25.05.2011.

[3] Confederation of EU Rectors’ Conferences and the Asso-
ciation of European Universities (CRE). “The Bologna
Declaration on the European Space for Higher Education: an
Explanation”, June 1999.

[4] European Higher Education Area (EHEA) Web site 2010-
2020. http://www.ehea.info 25.05.2011.

[5] K. Wierenga and S. Winter (main editors). “Inter-NREN
Roaming Architecture: Description and Development Items”.
GÉANT2 JRA5, Deliverable DJ5.1.4, September 2006.

[6] Haka Federation Web site, CSC-IT Center for Science Ltd.
http://www.csc.fi/english/institutions/haka 25.05.2011.

[7] SWITCH Federation Web site. http://www.switch.ch/aai
25.05.2011.

[8] M. Sánchez, O. Cánovas, G. López, and A.F. Gómez
Skarmeta. “Levels of Assurance and Reauthentication in
Federated Environments”. In EuroPKI’08: Proceedings of the
5th European PKI Workshop on Public Key Infrastructure:
Theory and Practice, pages 89–103, June 2008.

[9] E. Rissanen and B.S. Firozabadi. “Administrative Delegation
in XACML - Position Paper”. Swedish Institute of Computer
Science, September 2004.

[10] A. Pasic, J. Bareño, B. Gallego-Nicasio, R. Torres, and
D. Fernandez. “Trust and Compliance Management Models in
Emerging Outsourcing Environments”. In Software Services
for e-World, volume 341 of IFIP Advances in Information
and Communication Technology, pages 237–248. November
2010.

78

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] The MASTER EU-IST Project (Managing Assurance, Se-
curity and Trust for Services). http://www.master-fp7.eu
25.05.2011.

[12] T. Moses (editor). “eXtensible Access Control Markup
Language (XACML) Version 2.0”. OASIS Standard, February
2005.

[13] E. Rissanen (editor). “XACML v3.0 Administration and
Delegation Profile Version 1.0”. Committee Specification 01,
August 2010.

[14] J. Masa (editor). “SCHema for ACademia (SCHAC): At-
tribute Definitions for Individual Data Version 1.4.0”. Work-
ing Draft, March 2009.

[15] Education Roaming (eduroam) Web site, TERENA Associa-
tion. http://www.eduroam.org 25.05.2011.

[16] D.R. Lopez (main editor). “GÉANT2 Authorisation and
Authentication Infrastructure (AAI) Architecture Second
Edition”. GÉANT 2 JRA5, Deliverable DJ5.2.2,2, April 2007.

[17] Education GÉANT Authorisation Infrastructure (eduGAIN)
Web site. http://www.edugain.org 25.05.2011.

[18] O. Gryb. “XACML-Studio (XS) Reference”, November 2009.
http://xacml-studio.sourceforge.net 25.05.2011.

[19] D. González and A. Neisen. “XACML.NET Version 0.7”,
March 2005. http://mvpos.sourceforge.net 25.05.2011.

[20] M. Harrah. “Access Control in eXist”, September 2009.
http://exist-db.org/xacml.html 25.05.2011.

[21] University of Murcia. “UMU-XACML-Editor Version 1.3.2”.
http://sf.net/projects/umu-xacmleditor 25.05.2011.

[22] M. Kay (editor). “XSL Transformations (XSLT) Version 2.0”.
W3C Recommendation, January 2007.

[23] M.R. Thompson, A. Essiari, and S. Mudumbai. “Certificate-
Based Authorization Policy in a PKI Environment”. ACM
Transactions on Information and System Security (TISSEC),
6(4):566–588, November 2003.

[24] L. Seitz, E. Rissanen, T. Sandholm, B.S. Firozabadi, and
O. Mulmo. “Policy Administration Control and Delegation
Using XACML and Delegent”. In GRID’05: Proceedings of
the 6th IEEE/ACM International Workshop on Grid Comput-
ing, pages 49–54, November 2005.

[25] D.W. Chadwick, S. Otenko, and T.-A. Nguyen. “Adding
Support to XACML for Dynamic Delegation of Authority in
Multiple Domains”. In CMS’06: Proceedings of the 10th IFIP
TC-6 TC-11 International Conference on Communications
and Multimedia Security, pages 67–86, October 2006.

79

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Adaptive and Dependable Distributed Monitoring Framework

Teemu Kanstrén, Reijo Savola

VTT Technical Research Centre of Finland

Oulu, Finland

{teemu.kanstren,reijo.savola}@vtt.fi

Sammy Haddad, Artur Hecker

Telecom ParisTech

Paris, France

{sammy.haddad,artur.hecker}@enst.fr

Abstract — This paper discusses several relevant aspects of

performing monitoring in the context of software-intensive

systems. The focus is especially on cases where the observed

system is distributed, and the monitoring system needs to be

secure, dependable and capable of adapting to a number of

dynamic scenarios during the system evolution. Based on the

analysis of monitoring needs in this type of domain, a set of

core requirements for providing a monitoring framework for

these domains is defined. To address these requirements, a

high-level reference architecture for a monitoring framework

is presented. These requirements and reference architecture

provide a basis for designing different monitoring systems.

Keywords – monitoring, framework, security assurance,

adaptation, dependability.

I. INTRODUCTION

Collecting data about different aspects relevant to the be-
haviour, configuration and deployment of a software-
intensive system during its lifetime is important for many
different purposes. Together with the different partners in the
CELTIC BUGYO Beyond project, we have collected and
analysed a set of core requirements from the viewpoint of
building a monitoring framework (MFW) for continuous
monitoring of security assurance-related information. Addi-
tionally, we have analysed a set of existing MFWs for differ-
ent domains with similar requirements. Based on this set of
requirements, we present a high-level architecture for a
MFW and discuss how it addresses the different require-
ments. This paper is an extension of our previous work [1],
updated with the latest evolution in our research.

There are many potential application domains of opera-
tional measurement, including supporting software (SW)
quality assurance activities such as testing and debugging
that require collecting data about system behaviour for anal-
ysis [2]. Quality assurance can also be associated with moni-
toring different aspects of an operational system, such as the
quality of service in a telecommunications network [3],
compliance of dynamic systems with their requirements [4]
and the security compliance of the system [5]. The monitor-
ing functionality can also be used to provide automated ac-
tions such as restarting failed services and sending failure
notifications [6]. In the case of some systems, the data col-
lection itself is the main purpose and goal of the system. For
example, scientific experiments can require collecting large
amounts of data for research purposes [6,7].

Although the measurement systems target different do-
mains, they all share the goal of capturing information (mon-
itoring) about different properties that are important to the

functionality and security of the observed system. From the
information monitoring perspective, they all thus share the
same set of core requirements. In addition, each application
of a MFW can also have its own set of specific requirements
such as optimization for real-time processing [2] or high-
performance capture of large data sets over large networks
[6]. In this paper, we focus on the core set of requirements
and classify these to five different categories: intrusiveness,
security, dependability, scalability and runtime-adaptation.
These categories of requirements represent different view-
points of the monitoring functionality.

First, monitoring typically disturbs the observed system
to some extent (commonly referred to as a probe effect), af-
fecting its reliability and dependability. Intrusiveness needs
to be minimized. Second, in many cases the collected infor-
mation provides sensitive information about the observed
system and its behaviour and thus this information needs to
be protected from any unauthorized access (security). Third,
to enable best possible use of the information, the MFW de-
sign should be highly dependable in order to assure that the
data is available even in case of failures in the observed sys-
tem in order to allow for analysis of the issues based on the
captured information. Fourth, it is important for the MFW to
be scalable for use in different types of observed systems,
where the scale of distribution can vary greatly. As many
modern systems evolve during their lifetime or exhibit high
dynamics in their structures, the MFW should also support
runtime adaptation to account for the measurement needs,
the evolution of the observed system and the MFW itself.

We start by defining a core set of requirements that we
have synthesized for these types of systems and present high-
level reference architecture as a basis for a MFW to address
these requirements. The main contribution of this paper is the
identification and analysis of core requirements relevant for
building a dependable, secure and adaptive distributed moni-
toring framework, and providing a reference architecture that
addresses these requirements.

The rest of this paper is structured as follows. In Section
II, we present a number of existing MFWs for different pur-
poses and domains. In Section III, we synthesize a common
set of requirements based on the review of requirements in
the domains these frameworks have been applied to as well
as the requirements we have collected and analysed together
with different partners in the BUGYO Beyond project. In
Section IV, we present a high-level MFW design to address
the requirements. Finally, conclusions end the paper.

80

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. BACKGROUND AND RELATED WORK

In this section, we present the background concepts relat-
ed to the discussion in this paper and a number of existing
MFW designs for specific domains including a discussion on
their relation to our work presented in this paper.

A. Background Concepts

Runtime monitoring is defined here as the act of collect-
ing information about a system during its operation. A MFW
is a system that performs the collection (and possible pro-
cessing) of this information and provides it to interested cli-
ents who make use of this information. The raw information
is typically detailed in nature and thus is mainly used by oth-
er SW components to perform further processing of the data,
such as visualizations for human users or issuing system
control commands for automated adaptation based on algo-
rithmic analysis. Additionally, a MFW can also provide
higher-level events describing observations made of the ob-
served system by local processing nodes (e.g. service fail-
ure). These events can also describe information about the
MFW itself, such as the evolution of the system infrastruc-
ture (e.g. the addition, removal or reconfiguration of a MFW
element). These basic concepts apply on different scales,
from embedded SW to networked systems of systems, where
only the scale of the component and its interconnection
mechanisms change.

The basic (measurement) information about a system is
captured by a probe. A probe is defined here as a SW or
hardware (HW) component capable of performing a specific
measurement on the observed system. These can be either
commercial-off-the-shelf (COTS) or custom-made compo-
nents. These probes are linked to the MFW to provide the
monitoring data to be processed by the MFW components
and its client applications. The MFW implements the infra-
structure to capture the data over the different observed sys-
tem elements. In different types of systems, the MFW infra-
structure is thus also different, such as spread over the net-
work in distributed systems or distributed over the compo-
nents of an embedded SW. In this paper, we focus on moni-
toring of distributed systems, although we note that the prin-
ciples can for the most part be applied at different scales
provided that the system is designed using proper architec-
tural properties (e.g. see [8] for embedded SW).

Specific types of probes can be identified and used de-
pending on the needs of systems. For example, Wang et al.
[4] define four types of probes:

 Instrumented probes with analysis – probes embedded in
a system which process raw data before outputting it.

 Instrumented probes without analysis – probes embed-
ded in a system which directly provide captured raw da-
ta.

 Intercepting probes with analysis – external probes (e.g.
network analyzer HW) that provide some analysis of the
raw data as output.

 Intercepting probes without analysis – external probes
that provide the raw data as captured.

Together these probes provide the raw measurement data
to fulfil the system measurement needs. A mediator compo-
nent is then used to provide information access to clients.

B. Related Work

In this section we describe a number of existing meas-
urement frameworks presented in the literature, and discuss
their relation to our work presented in this paper.

The current study presents a part of the CELTIC
BUGYO Beyond project results. This project follows up on
the CELTIC BUGYO Project. During the BUGYO project, a
preliminary version of MFW dedicated to security assurance
was designed and implemented [5]. The main challenge of
this framework was to provide a solution to the problem of
data collection related to the security-enforcing mechanisms
of the observed system. In this previous work, the measure-
ment architecture was not deeply investigated and it was
expected to be installed in an ad hoc manner. We partly ex-
tend this work but take a new and more systematic approach
to defining the requirements for a MFW and its practical
deployment, with a particular focus on addressing the dy-
namic aspects present in real systems. This MFW was de-
scribed to consist of three types of components with the fol-
lowing roles. A component called probe agent controls a
specific type of a probe, a MUX agent provides multiplexing
of data over subnet boundaries, and a server agent handles
centralized processing of the monitoring data and interfacing
with a client system. The observed data is not sampled at a
high frequency or in great amounts and thus they do not op-
timize the communication infrastructure but rather focus on
using XML-based protocol formats. One main weakness of
this MFW was the fact that it was not adaptive and could
only run on a fixed architecture. For the rest of this paper, we
adopt the agent terminology from this previous work and the
associated agent types (basic MFW components).

A MFW for capturing large amounts of scientific exper-
imentation data is presented in [7]. It is aimed at capturing
massive amounts of data from sensor electronics located next
to the Large Hadron Collider (LHC) detectors with high-
performance, scalability and dynamic monitoring require-
ments controlled by a flexible and configurable GUI. The
fundamental feature here is the routing of many sorts of data
(from simple parameters to histograms or event fragments).
They use Common Object Request Broker Architecture
(CORBA) [9] as the protocol between the MFW components
to support standards-based implementation on different plat-
forms. A separate data stream is used to pass the high-
volume data through the MFW system, and a separate chan-
nel is used to pass control requests and events related to the
MFW. This aims to provide high-performance data capture
with specialized data streams.

A similar MFW (called MonALISA) for capturing data
about scientific experiments is described in [6]. Its first pur-
pose was the analysis and processing of large-scale data-
intensive grid applications. Their targeted challenge is to
provide a MFW able to manage monitoring aspects related to
storage, networks and a large number of running applications
in near real time. The design of MonALISA is inspired by
the Jini [10] architecture where each agent in the framework

81

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is described and registered as dynamic services. The Mo-
nALISA design is divided into three layers, each with a spe-
cific functionality. The first layer provides dynamic registra-
tion and discovery of all MFW components. The second
layer consists of the monitoring services, where each pro-
vides data and events of a defined type, and the others can
subscribe to these data types. The third layer is called the
proxy layer and it handles the communication of the MFW
components over network filters (e.g. firewalls), providing
access control to the monitoring data and to the management
of the MFW components.

A monitoring framework for Voice-over-IP (VoIP) traf-
fic is presented in [3]. The main goal of this framework is to
allow high-speed, real-time and efficient (in terms of CPU
use) analysis of communications traffic. In this framework,
data, i.e. packets, are collected and processed at the kernel
level using a plugin-based server architecture with Session
Initiation Protocol (SIP) [11] and Real-Time Transport Pro-
tocol (RTP) [12]. A set of filters is defined for the different
plugins to define which data has to be processed by each
plugin. The plugins can then in turn be configured to process
the filtered data according to their functionality. A library of
functions is provided to implement common data processing
functions and an easy configuration and update mechanism
is provided for the plugins.

A MFW for web service requirements is presented in [4].
The data to be monitored is inferred from the web-service
specification (WSDL) of the observed system. A set of con-
straints over the observed data and events is used to describe
the allowed values and event sequences. This includes fre-
quency, interval and ordering of events. Some of their probes
provide basic values while others process values before pass-
ing them forward. Probes are generated based on the WSDL.

A MFW focusing on embedded real-time systems is in-
troduced in [2]. It focuses on high-performance requirements
in a single (non-distributed) embedded system. It defines a
custom binary protocol and a set of optimized services for
capturing high-frequency data from a running system, focus-
ing on minimizing its use of the observed system resources
(e.g. memory and CPU load). It provides a set of services to
enable the implementation of features to monitor different
aspects of the system (e.g. task scheduling).

The GEMOM (Genetic Message Oriented Secure Mid-
dleware) EU FP7 Project has developed an adaptive security,
resilience and Quality-of-Service (QoS) MFW [13,14] for
distributed information systems. The data communication is
arranged by a publish/subscribe mechanism, and separate
modules handle authentication and authorization functionali-
ty. Specific QoS, resilience and security properties can be set
for the different data processed by the GEMOM system,
allowing for customization of authorization and authentica-
tion for different elements.

From the design factors of the abovementioned meas-
urement frameworks, we apply the following MFW design
patterns for the purposes of the framework discussed in this
study:

 Specific adaptation layer for measurement targets
[5].

 Repository of available probes for specific meas-
urement targets [2].

 Simple interface to integrate custom probes into the
overall measurement system [2, 3].

 Usage of widely supported protocols [7].

 Configurability of operational probes [7].

 Optimized communications related to expected
measurement data communication patterns [5,7].

 Usage of separated dedicated communication chan-
nels [7].

 Customization of different aspects of the MFW
based on module composition [3].

 Provide a registry that is dynamically updated to re-
flect available measurements and probes [6].

 Use specific components to handle connection and
processing over network subdomains [5,6].

 Describe the measurements with a common set of
properties [4,6].

 Optimize the availability and reliability of measure-
ment infrastructure [13].

 Secure the communication data [13].
In the following sections, we describe why these design

patterns are relevant for a measurement framework. We also
present a reference architecture that takes these and other
MFW requirements into account.

III. REQUIREMENTS

This section describes a core set of issues we have identi-
fied for the type of monitoring addressed in this paper. Based
on the analysis of these issues, a set of requirements for the
design of a MFW is presented. These issues have been divid-
ed into five different categories: scalability, runtime adapta-
tion, correctness, intrusiveness and security. An overview of
these categories and their properties is shown in Figure 1.
These categories are described in the following subsections.

Figure 1. Requirements overview.

A. Scalability

From the basic scalability perspective, the MFW infra-
structure needs to be able to handle varying amounts of ob-
served events and data captured from systems with different
degrees of distribution. In this case, scalability issues include
supporting varying amounts of probes and resource limita-

82

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tions in processing large amounts of data (e.g. CPU and
memory use, network bandwidth). For the MFW infrastruc-
ture this can require use of alternate communication paths in
order to avoid causing network congestion. This can require
use of specific MFW components to be deployed at different
locations, such as localized processing and multiplexing
nodes, routing nodes and probe control nodes.

The scale of distribution of a MFW depends on the na-
ture of the target of measurement. In some cases, it may be
possible to perform all measurements from a single central-
ized location when the measurement nodes already have the
ability to provide the required measurement access and func-
tionality remotely, such as over remote Secure Shell (SSH)
connections. In more highly distributed systems, a more dis-
tributed MFW architecture is needed. In this case, measure-
ments need to be performed for a large number of nodes
(possibly divided into subnets), not all of which are reacha-
ble from a single centralized (monitoring) location. This re-
quires specific router elements to be deployed to handle con-
nections over the different nodes and subnets as divided by
filters (e.g. firewalls).

With regards to the distribution aspect, the addressing
scheme used for specifying which measurements can be sup-
ported also needs to be considered. Depending on the type of
measurement being performed, one may wish to address
more than one target in a measurement request. For example,
in the security assurance domain, one may request infor-
mation on the encryption strength of all routers deployed and
visible to the MFW. The task of the MFW is then to auto-
matically scale these requests without overloading the net-
work.

As the observed system evolves, the need for such spe-
cialized MFW elements may increase, meaning that the addi-
tion of these elements needs to be supported in an evolving
manner through runtime adaptation.

B. Runtime Adaptation

Modern distributed systems are rarely static in their for-
mation. Even if the system itself supports scaling to different
sizes of network infrastructure, it is not enough to simply
support deploying these different types of architectures. The
system must be able to evolve to support changes in scale
while in operation. In today’s distributed systems, nodes
come and go, and the same nodes can move to different loca-
tions in the network. In addition to physical changes in the
infrastructure, system reconfigurations can also change the
available communication channels. To address these scenari-
os, the MFW must be able to keep the mapping of its ele-
ments up to date and in synch with the changes in the ob-
served system (i.e. which element does a probe measure and
which measures it provides), and adapt to changes in the
available communication channels between the MFW infra-
structure nodes. In order for client applications to build func-
tionality on top of the monitoring data, the MFW must also
abstract the changes so that a client can request a specific
measure and does not need to worry about the dynamic as-
pects of evolution such as node mobility.

For routing of data through the MFW infrastructure, var-
ious issues need to be considered. If the used communication

paths become unavailable, communication channels need to
be rerouted. Yet, in many situations and to fulfil the non-
intrusiveness objective, the routing in the observed system
should not be changed to accommodate the needs of the
MFW. For this reason, the MFW must provide adaptation
capabilities to address these needs in an optimally adaptive
and non-intrusive way.

When a measure has become unavailable but later be-
comes available again, the MFW needs to reconnect to the
corresponding probe and to notify any client applications
making use of this information that it has again become
available. Similar notifications must be given for all changes
in MFW evolution.

As new MFW infrastructure elements are installed, the
MFW needs to link them to enable applications to use the
data they provide, or for the MFW to use them for the con-
trol of the measurement (e.g. data routing). A basic means is
manual configuration of all added nodes, but runtime recon-
figuration by the MFW also needs to be configured. The
optimal case is that the discovery and integration of new
deployed MFW elements are automated.

Changes (evolution) in the observed system’s infrastruc-
ture also affect the monitoring needs. As a basic feature, a
MFW must enable the user to deploy changes to the active
measurement requests. Additionally, depending on the types
of probes deployed, different types of actions are necessary.
Embedded probes are assumed to come with the deployed
components of the observed system, and require the deploy-
ment of a matching MFW component to integrate them with
the MFW infrastructure. External probes, on the other hand,
can be used to monitor more than one target, and thus, in this
case, the MFW needs to reconfigure the (existing) external
probe to also monitor the new element that was introduced.
For all new probes, there must exist a suitable deployed
MFW element to integrate them with the MFW infrastruc-
ture.

C. Intrusiveness

Monitoring always has some effect on the target of ob-
servation – this is often referred to as the probe effect. In the
case of the MFW, this translates to the effects that the instal-
lation of the MFW components and their use have on the
observed system. Installation of the components themselves
alone has an effect on the use of some system resources if the
components are installed within the observed system itself
and/or share some resources with it. In the case of external
probes, installation should have only a minor effect on the
target of observation unless the installation itself somehow
changes the behaviour of the system, such as the routing of
messages.

Probes that share resources with the target of observation
have an impact on its available resources such as CPU load
and memory consumption. These probes are typically em-
bedded probes, running as part of the observed system or on
the same HW. The operation of external probes can also af-
fect the observed system in a similar way. For example, rout-
ing data through an external probe can add network latency
to the observed system. For another example, activating fea-
tures and tools, such as SFlow [15] and Netflow protocol-

83

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based tools [16], on router ports can be a drain on router
CPU cycles. Some of these effects can be minimal yet still
cause unwanted effects to, for example, the timing of the
system, changing it from the original design specifications.
When a probe is more active, for example, sending packets
to different network elements, it can invoke untested or unin-
tended behaviour in a system, causing side-effects such as a
complete crash or incorrect results.

In the scope of the BUGYO Beyond project, we have
identified the following possible probe effects:

 Consumption of hosting device resources (CPU,
memory, disk).

 Consumption of network bandwidth.

 Deployment of conflicting SW components, such as
shared libraries.

 A probe accessing restricted resources in the system,
causing the system to enter a different state. For exam-
ple, triggering an alarm and a countermeasure.

 A probe accessing system resources (e.g. a file) and
causing a lock, while another part of the system is trying
to use the same resource.

 Change of privileges required for an agent (or probe) to
be able to perform its tasks.

 Opened gates (e.g. ports) to access information in the
observed system.

 Changes performed by the probe on the measured sys-
tem, e.g. by some eXtensible Configuration Checklist
Description Format (XCCDF) [17] configurations or
benchmarks.

 Active probing of a certain interface of a target of meas-
urement can trigger some unintended features or even
crash the whole system, if it has some unintended fea-
tures linked to this interface.

This set is largely related to our target domain of security
assurance, where numerous measurements are done through
the file system and with shell scripting. Although most of
these are very generic and we see them as being applicable
across many domains, some different probe effects may ap-
ply in different domains.

The predictability of probe effects is important in as-
sessing which probes to take into use and how. However,
combining any arbitrary probes and systems produces unpre-
dictable effects. Even with tested systems and probes, the
exact available resources and system configurations can vary
and thus it is not possible to provide exact guidelines for any
possible probe effects for probe-system combinations.
Providing a large-scale analysis of possible probe effects is
out of the scope of this paper but it should still be stressed
that it is important to take into account the possible probe
effects and where possible test for them. Depending on the
potential impact, in some cases it may be unfeasible to de-
ploy probes on operational systems with which they have not
been tested previously. Knowing the possible probe effects
in this case helps in studying them for a specific system and
probes. Overall, it can be said that an active probe is more
likely to have a higher probe effect than a passive probe.

However, even if the intrusiveness of probes cannot be
fully predicted, the MFW should be able to monitor its im-

pact on the observed system and take any measures it can to
address these impacts (e.g. re-route communication or start
load-sharing components). This requires providing self-
monitoring and adaptation features based on specific probes
and analysis of the monitoring system properties (e.g. data-
stream latency). It also requires providing self-adaptation
features such as tuning the probe measurement frequency
where observed to be needed.

Even if the implementation and use of probes cannot be
constrained, the MFW infrastructure itself, however, can and
needs to be designed to be minimally intrusive (i.e. to mini-
mize its probe effect). To achieve this, the different con-
straints described above need to be considered, as does how
they can be minimized in the design and implementation of
the different components of the MFW infrastructure. One
main goal in avoiding intrusiveness for a system should be
the isolation of the MFW from the observed system as much
as possible (system independence). Any problems in the
MFW (e.g. SW crash) should not affect the observed system,
and ideally switching the MFW on or off should have no
effect on the observed system. Similarly, the network traffic
and any other shared resources of the two entities should be
separated as much as possible. Where full separation is not
possible, the goal should be to aim for as much separation as
possible. Virtual separation should be applied where physical
separation is not applicable. When separation is applied, it
needs to be applied in both functional and non-functional
domains, e.g. for control.

D. Correctness

During the service lifecycle various problems may arise.
The correctness viewpoint needs to consider the correctness
of both the MFW components and their behaviour. It must
also consider their effects on the observed system and how
this may affect its correct behaviour. In this regard, the cor-
rectness aspect of the MFW is closely related to the intru-
siveness viewpoint. Addressing this includes both providing
for verification of the behaviour of the whole MFW and all
its components before deployment, and monitoring and ad-
dressing any problems found in its operational use. General-
ly, the following three main approaches can be identified
from the correctness viewpoint:

 Simplicity in the design in order to minimize the possi-
bility of new problems

 Update mechanisms for the MFW infrastructure

 Testing and verification mechanisms to assure the cor-
rectness of the implementations

In practice aiming for simplicity would mean encapsulat-

ing more complicated processing of the measurements, con-
trol structures and similar properties at a higher level in a
separate measurement processing and control layer. Howev-
er, the choice of how much functionality is incorporated in
the MFW infrastructure components (probes and agents) is a
choice of tradeoffs in the extent to which it is in the interests
of the user for processing to be performed locally (to save on
resources such as network bandwidth) or on a dedicated
server-agent component that can be hosted on dedicated HW.

84

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Testing and verification are needed to assure the correct-
ness of the implementations in different contexts and config-
urations (in development and while in operation). Since the
infrastructures that are the target of observation can vary
greatly and be highly dynamic, the correct functionality of
the MFW also needs to be evaluated in different contexts. It
is important to verify both the correct functionality of the
individual components and their interactions. To support
this, the MFW design needs to provide suitable interfaces to
ensure required testability features (e.g. as described in [18,
8]).

Even with the best verification and testing techniques,
unanticipated situations will arise and failures in the opera-
tion of the MFW will be found during its operation in vari-
ous complex contexts and interactions with different compo-
nents and systems. To address any errors found during op-
erational use, update mechanisms are needed for the different
components of the MFW infrastructure.

A set of specific issues needs to be considered for updat-
ing components in an operational system. Three main issues
for this are referential transparency, state transfer, and mutu-
al references [19]. Referential transparency refers to updated
components not having enough information to notify all re-
lated components that are connected to the component in
question whether they need to be notified about the update.
State transfer refers to the requirement of transferring the
state of the component from the previous version to the new
updated version. For example, a probe agent may have a
state describing its current activity and the state of the con-
nected probe, and all this information needs to be transferred
to the new version of the updated component. Mutual refer-
ences refer to the problem of requiring simultaneous updates
on several components due to their mutual dependencies, e.g.
during an interface update.

Related to these issues, the updating of the MFW com-
ponents translates to different requirements for the different
components of the MFW infrastructure. This includes both
rerouting of communication channels and reconfiguration of
any specific functionality, such as the frequency of sampling
with a probe. In addition to fixing errors and vulnerabilities,
implementation updates are needed in order to enable new
features for the different components that are developed to
address new requirements for the MFW infrastructure. As
many modern systems have high availability requirements, it
cannot be assumed that they can be taken down for these
updates, and similarly the MFW should keep providing its
functionality with minimal interruption.

As the MFW generally collects data from external tools
or built-in functions in the observed system, it cannot pro-
vide generic support for updating these components external
to the MFW. In this regard, the MFW must rely on the us-
er(s) having the possibility to deploy the updates using sup-
port provided by the observed system and its components.
This can take different forms, such as specific interfaces pro-
vided by the updated component (e.g. SSH scripting access)
or remote management and deployment tools.

E. Security

Considering the information processed and the function-
ality provided by the MFW, security issues also need to be
adequately considered. Confidentiality, Integrity and Availa-
bility (CIA) [20] are the most widely recognized basic di-
mensions of information security. To minimize the possible
impacts of the different security threats on the MFW and the
observed system, every means to guard the observed system
from abuse of the MFW infrastructure should be taken.

Considering the communication of the measurement data
itself, the following viewpoints need to be considered:

 Data protection: Data can be communicated through a
non-secure network and should be protected, e.g.
through encryption.

 Registration, authentication and non-repudiation: To
protect from unauthorized access, each of the new de-
ployed probes needs to be registered and authenticated,
and every message between the probes and the aggrega-
tion server needs to be authenticated.

 Services availability: To be useful, the monitoring data
needs to be available at all times, optimally even when
the rest of the system is unavailable, allowing investiga-
tion of system failures. To achieve this goal, the meas-
urement infrastructure and aggregation services should
be able to communicate data at any time or keep a log
file.

The MFW provides continuous monitoring data captured
from the observed system. Much of the information that is
being collected can describe sensitive details about the ob-
served system, and thus protecting the confidentiality and
integrity of this information is as important as the security of
the observed system itself.

As the MFW needs to be closely tied to the observed sys-
tem to enable making the required observations, different
factors having a bearing on its impact on the observed sys-
tem from the security viewpoint must also be considered.
The possibility of introducing new vulnerabilities into the
observed system by using the MFW and launching attacks
against the observed system through the MFW needs to be
minimized. In certain attack scenarios, the attacker might
even gain unauthorized control of the whole target system
through the MFW.

Instrumentation of a given observed system by a contin-
uous in runtime management needs to have adequate security
controls in place based on holistic risk-driven analysis. The
holistic approach should cope with the resilience of the com-
plete resulting system, including the original observed sys-
tem, necessary changes to accommodate the MFW functions
and the new MFW-specific parts. The ultimate goal is to
achieve a resulting system that is more resilient overall than
the original system.

To address these issues, the MFW infrastructure must be
resilient to malware, relevant vulnerabilities, security attacks
and other faults with security effects. For example, Denial-
of-Service (DoS) attacks can affect the availability of the
observed system through misuse of the MFW and its re-
source consumption. In addition to considering external
threats such as DoS from unauthorized external attackers,

85

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

internal threats also need to be considered, such as message
flooding attacks or even more harmful attacks by a malicious
authorized node.

Overall, an attacker should not be able to use the MFW
infrastructure to cause harm to the system under observation
by causing it to take excessive resources, gain control of the
system, install unauthorized software or otherwise change
the system behaviour in an undesired way. The MFW infra-
structure should not provide any means of performing at-
tacks against the observed system. Similarly, the MFW in-
frastructure itself must be protected from attacks and fail-
ures. This includes authentication, integrity and availability
controls for the communication between the different ele-
ments of the MFW infrastructure, proper authorization and
data confidentiality and integrity countermeasures. As it is in
general not possible to predict and prevent every possible
failure or issue in advance, non-repudiation of the data, mes-
sages and actions should be at an adequate level to enable
audit trail and forensics activities.

An important security-related aspect to be considered is
resilience. Even if the observed system is experiencing prob-
lems, the MFW should continue its operation as far as possi-
ble in order to provide information about the current state of
the observed system and to allow for an expert to take cor-
rective actions based on the gathered information. This
means the MFW should, if possible, be even more dependa-
ble and resilient than the rest of the system components. In
some cases, only the latest information may be of interest.
However, in other cases the historical data could also be im-
portant and in these cases the local nodes need to keep a his-
torical data storage when disconnected from the overall
measurement infrastructure.

Overall, the main aspects related to the security view-
point can be summarized as follows:

 Reduce the chance of using the MFW as a tool to mount
attacks against the observed system through, for exam-
ple, probe registration messages as a DoS attack vector
or gaining control of the system.

 Minimize the use of shared resources between the MFW
and the observed system to reduce the possibility of it
being used as an attack vector.

 Provide sufficient security controls for the measurement
infrastructure.

 Use proper authentication and authorization mechanisms
for measurement communications.

 Ensure the confidentiality of all processed data as it de-
scribes sensitive security-related measurements, both in
individual probes and at the overall server level.

 Provide non-repudiation to properly ensure auditability
and forensics.

 Ensure any confidential data inside the MFW such as
credential and key information for probes (e.g. pass-
word).

 Isolate the MFW from the observed system as far as
possible.

IV. A REFERENCE ARCHITECTURE

This section describes a MFW Reference Architecture
(RA) and discusses how it addresses the requirements dis-
cussed in the previous section. Figure 2 shows a high-level
overview of a potential MFW infrastructure with different
components. In this architecture, the server-agent is the com-
ponent that handles the high-level control and processing of
the overall measurement infrastructure. The router-agents are
the components that take care of transmitting the required
data across the network. Probe agents are responsible for
controlling different probes at local nodes.

In a practical measurement infrastructure, different com-
positions of these nodes are to be expected and while the
general types of nodes can be described as probe, router and
server agents, the exact composition of the individual nodes
can also vary. For example, the probe agents need to be
adapted to the exact measurement needs, the router agents to
the exact routing needs and the server agent to the actual
processing needs.

Network1

Network3

Network2
Client

Client

Probe-Agent

Router-Agent

Server-Agent

Data-Flow

P2P

Client

Figure 2. Overall conceptual architecture.

Figure 3 shows a layered view of the same conceptual ar-
chitecture. It is shown as a set of layers, where each of the
layers consists of a set of one or more separate components
deployed over the network. Each component in these layers
only communicates with the components in the layers direct-
ly above and below it. These form a layered architecture as
described by Buschmann et al. [27]. This encapsulates the
functionality of each layer as a separate, reusable and main-
tainable piece. A separate communications channel is used as
a peer-to-peer (P2P) overlay. While this overlay is not strict-
ly speaking a layer between any of the other layers, but ra-
ther stretches over all the other ones, it is shown here sepa-
rately due to its central role in achieving many of the set re-
quirements. These components will be discussed in more
detail next.

86

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Layer 1:

Presentation, Evaluation, Management

Layer 2:

Measurement Control and Processing

Layer 3:

Data Collection

Layer 4:

Base Measures

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rl
a

y

C
o

n
tr

o
l:
 c

o
n

fi
g

u
ra

ti
o

n
,
d

a
ta

 r
e

q
u

e
s
ts

,
..
.

In
fo

rm
a

tio
n

: d
a

ta
, e

v
e

n
ts

, ...

Figure 3. A conceptual layered architecture.

Layer 1 corresponds to the client using the MFW. Typi-
cally the communication with a specific client is based on the
custom interfaces of the client and needs to be implemented
separately. Generally, the functionality of these messages
can be described as including the communication of basic
measurement values, MFW infrastructure events and passing
of measurement requests and configuration messages be-
tween the client and the MFW.

Layer 2 handles data processing and configuration con-
trol over the MFW infrastructure. For the MFW infrastruc-
ture, it handles making notifications of events such as dis-
connected probes to the client, as well as taking any defined
adaptation actions based on observed events. This layer also
handles mobility of nodes and keeping the infrastructure
model for the client in synch (and abstracting away the dy-
namic aspects) with the dynamically evolving infrastructure
in order to provide correctly over time the required measures
to the client.

Layer 3 collects the data from the different probes in the
system. It takes the data provided by the probes and com-
municates this to the MFW control and data processing lay-
er. This layer views the passed data simply as information to
be communicated and thus sets no restrictions on it, e.g.
whether it has been processed before or is “raw” probe data.

Layer 4 includes the actual probes. It is responsible for
handling the base measures for the MFW. The components
in this layer are typically not a part of the MFW itself but
rather separate components such as commercial off-the-shelf
or open-source software components. These are used from
the Layer 3 MFW components to perform the actual required
measurements and to acquire the requirement measurements.

Considering the links between these four layers, the first
layer only communicates with the second layer through a
centralized server providing access to the MFW services and
measurements. The second layer provides this interface to
the first layer and communicates with the distributed nodes
of the measurement infrastructure. It issues measurement
requests, configuration commands and similar messages to
the distributed measurement and router nodes according to
the requests from the first layer. It does not see the actual
probes performing the measures. The fourth layer only
communicates with the third layer by receiving measurement
instructions (requests) and configuration data, and providing
measurement data in response. This layer is unaware of any
other layers and only sees the third layer that serves as the

adaptation layer between the probes and the MFW agents.
The fourth layer is also the only layer that needs to be direct-
ly in touch with the actual observed system in order to pro-
vide the measurements. The other layers can be separated to
address the isolation requirements. This is where the com-
munication overlay comes in.

The communication overlay is both separate from and in-
terlinked with the different layers. As an overlay it can be
separated from the different MFW components by use of
standardized network interfaces. At the same time, by bind-
ing the MFW components to this interface, it forms a sepa-
rate, dedicated communication channel for these compo-
nents. This also allows for handling secure communications
through mechanisms in this overlay. The fourth layer is basi-
cally separate from this overlay as it communicates not only
with the MFW components only but also with probes in the
actual observed system. Thus the use of an overlay here al-
lows for minimizing intrusiveness as well.

These layers, the overlay and some generic components
are discussed in the following subsections. We start with
generic components shared by the different layers, and fol-
low with layer- and overlay-specific components.

A. Component Platform and Automated Updates

Using a component platform as a basis for the MFW pro-
vides several advantages. In our implementation, we have
used the Open Services Gateway initiative (OSGi) [21] com-
ponent framework, but other component frameworks with
similar functionality can also be used. However, in the rest of
this paper we discuss this from the perspective of the OSGi
platform. This type of a component platform as a basis pro-
vides for loosely coupled services that can be composed in
different ways, allowing for easy extension and customiza-
tion of chosen parts of the MFW. In the following subsec-
tions the different layers of the MFW are described as a set
of plugins that can be combined in different ways in the dif-
ferent MFW elements to customize and distribute the func-
tionality of the MFW in different ways.

Additionally, OSGi is used as a basis to provide a uni-
form and automated update mechanism for all components.
The goal is to perform updates without interruption of the
functionality of the updated components. On a general level,
an update can be considered to comprise installing new com-
ponents, removing existing components or updating existing
component implementations. OSGi provides the basic
framework for this in allowing for runtime installation and
removal of components, although it needs to be extended to
make this happen in a distributed fashion.

To support automated updates, each component of the
MFW needs to define an interface for reading its internal
state so that the new version can replicate the state of the
component being replaced. For states that cannot be easily
transferred (e.g. data elements whose processing has been
started), we use a different replacement strategy. A new ver-
sion of the component (service) is installed beside the exist-
ing one in the same OSGi instance and new messages are
routed to the new instance. The old version is removed after
it has finished processing all its queued input. This mecha-
nism allows updates of single components. In cases where

87

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the ordering of the data is not important this approach is ef-
fective; otherwise queues would need to be used to buffer
new messages between the old and new versions [22].

Large-scale updates (e.g. interface changes) are less
common but can have a potentially large impact and require
a more centralized approach. To support this, a central up-
date manager is needed within the MFW. This keeps track of
component versions (which can be queried from the compo-
nents) and tracks dependencies between components. This
enables the management of large-scale updates if there is, for
example, an interface change that requires all components to
be updated. From the operation correctness viewpoint, these
are also more central for the operation of the MFW, as a fail-
ure in the update manager will likely cause the complete
system to enter a failure state. Thus it also requires more
thorough testing and verification. These features of an update
system are common to any system embedding such features
and we do not go into details in depth here but rather refer to
other existing works such as [22]. However, we do note that
while much of the existing work on live updates focuses on
addressing complex cases, we in practice have experienced
that such complex needs in a MFW are rare. The data passed
in usually is not sequentially dependent but rather
timestamped, thereby simplifying these requirements and the
required technical solutions.

In addition to updating elements of the MFW itself, we
also expect most probes to require updates, for example, to
add new features and address found issues. One option for
this would be to use the MFW to perform these updates us-
ing a common update interface shared by MFW probe
agents. Each probe agent would translate the update requests
to a suitable format for the specific probe in question. How-
ever, due to the complexity (in organizational policies and
technical challenges in heterogeneous systems) of allowing
and providing for automated install of arbitrary SW on vari-
ous systems, we rely on existing tools being used for remote
SW deployment to update the (custom and COTS) probes.
Thus we do not provide technical solutions in the architec-
ture of the MFW itself for this, but instead rely on existing
tools intended for this purpose. However, we identify this as
an important aspect of a usable MFW.

However, we rely on updating probe configurations
through the probe agents, each of which is expected to have
the ability to read and set the configuration of the managed
probes. This information is then communicated to the client
in order to allow the provision of features for probe configu-
ration management. This is based on the expectation that
each configuration can be described with a set of basic data
elements (e.g. numerical values and text strings) and each
probe agent is capable of describing the probe configuration
parameters. Client users are also expected to know enough
about their system in order to understand the information
required to configure these probes. In special cases where the
probes are built to be managed by the MFW itself, they can
also be reconfigured by the data processing and control layer.

B. The Communication Overlay and Protocols

In this subsection we discuss the communication aspects
of the MFW. This includes both the overlay that is used to

provide the separate communication channel for the different
MFW components and the protocols used to communicate
between the different MFW components over the overlay.

The P2P Overlay

The need for a separate communication overlay has been
discussed before. Here, we discuss the use of a P2P-based
private, dedicated overlay as a means to solve many of the
requirements for runtime adaptation and intrusiveness. The
overlay we have used in practice is the Armature P2P over-
lay, the foundations for which were laid out in [23].

This overlay provides a separate communication channel
for the measurements that is dedicated for the MFW. As it is
based on Virtual Private Network (VPN) technologies and
features discovery of nodes and overlay-layer routing, it pro-
vides a separate, secure, adaptive and relatively non-intrusive
virtual communication channel. This overlay thus provides
us with a virtual (logical) communication channel that can be
dedicated for the use of the MFW and deployed alongside
the actual nodes of the observed system, which is the type of
solution usually needed for practical systems. We call our
implementation of this overlay Armature. For better separa-
tion, Armature nodes are contained within small virtual ma-
chines running embedded-system language interpreters. This
addresses many of the intrusiveness and security require-
ments of the MFW. Besides separation from the system, it
also simplifies deployment, as the overlay configuration
changes needed for security controls, such as firewalls, in the
observed system are the same across the system.

Due to the peer-to-peer nature of the overlay, it also ad-
dresses many of the runtime adaptation requirements of the
MFW. When deployed, it forms a virtual network among the
deployed peers and automatically calculates optimal routes
to uphold a robust communication mechanism between the
different nodes. When parts of the overlay are separated,
they form their own subsystem. When they are re-joined,
they will automatically connect to each other and reform new
routes as needed. For the reset of the MFW infrastructure
(agents) the use of the overlay is simple, as it is simply visi-
ble as another network interface on the hosts where it is de-
ployed.

Communication Protocols between the Components

In addition to a communication channel, protocols for
passing the data over this channel are needed. An overview
of the communication protocols we use is shown in Figure 4,
building on the ideas from [5]. A custom communication
protocol is needed for each probe as these are assumed to be
COTS or custom-made SW components that are not de-
signed with the MFW in mind. It is thus necessary to have an
adaptation layer for reading their values and controlling their
configurations. This adaptation is handled by the probe
agents, consisting of both generic and probe-specific parts.
The generic part is shared by all the probe agent implementa-
tions and provides a ready implementation of the functionali-
ty needed to communicate with the server and router agents
over the chosen middleware protocols.

88

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For communications between the different MFW agents,
we use a general description of a Message Oriented Middle-
ware (MOM) technology. Using a suitable MOM helps hide
the details of communication from different agent imple-
mentors and provides all the benefits of MOM use, enabling
us to rely on well tested and designed components for this
otherwise complex task. It also provides for several choices
depending on the specific needs of the target system. For
example, one may use open-source protocols such as XML-
RPC [24] or Representational State Transfer (REST) [25]
web services, or commercial MOM implementations, such as
ICE [26], that are heavily optimized for performance and
other factors.

Server

Agent

Router

Agent

Probe

Agent
Probes

MOM MOM
spec

ific

Figure 4. Communication protocol data formats.

C. Layer 4: Base Measurement Layer

The base measurement layer is based upon probes
(COTS or custom-made) that are embedded or deployed in
the observed system infrastructure in order to collect any
kind of data that is considered relevant and can be collected
with a probe. A probe agent connects each probe to the
MFW and controls the probes. One probe agent can be
mapped to one or more probes, and one probe should be
mapped to only one probe agent to avoid synchronization
issues.

In addition to providing the basic data, this layer also
provides events related to the functionality of the probes and
probe agents, including the availability of new probe agents
and the loss of a probe (becoming non-responsive). It is basi-
cally responsible for describing the available measurements
from a probe (its characteristics), controlling it as needed and
providing the raw measurements from the probe on request.
What is supported depends on the types of probes that are
available and the features they support.

In our experience, some different considerations need to
be taken into account when implementing probes at this lev-
el. In some cases, a specific functionality may be needed to
perform a measurement of a specific part of the observed
system: for example, to read a specific configuration parame-
ter that can only be read programmatically. While we have
used a common platform for the development of our MFW
agents due to the benefits this brings, as discussed before, we
cannot assume that such platforms can be installed on all
nodes where measurements need to be performed. Instead we
need to be able to make use of what is available and possible
on the target of measurement. The probe agent is then a
component used as the bridge linking these specific tools and
formats to the rest of the MFW.

One generic example here is the use of SSH-based meas-
urement probes. One may have a probe agent capable of cre-
ating an SSH connection to a remote host and executing
scripts on the target to collect measurement information
(such as reading system logs or configuration files, or exe-

cuting custom probe commands). In this case, the generic
output can be, for example, the output of the script execu-
tion. Thus in this case the probe is the SSH script executed
on the SSH server in the target. The probe agent is a compo-
nent of the MFW capable of performing these measurements
over that SSH.

On the other hand, various constraints need to be consid-
ered. In many cases, such as mobile nodes, the address of the
target of measurement may vary. Similarly, the availability
of the connection to that node may vary. Further, having a
separate server of the target of measurement available to
respond to queries can be a problem due to the need to have
open ports and other similar constraints and intrusiveness
aspects. For this reason, a more commonly suitable approach
to address these constraints is to make the connection from
the target towards the probe agent. In this case, only the
probe agent needs to host a server and provide a suitably
static address for the collection of the data. The probe agents
can then be deployed as needed and will forward the data to
the server agent. The server functionality on the probe agent
can be different, such as a generic SSH server or a generic
Hypertext Transfer Protocol (HTTP) server. However, this
type of architecture allows one to deploy any type of a ser-
vice composition found useful.

D. Layer 3: Data Collection Layer

The data collection layer gathers the data provided by the
base measures layer and communicates these to the control
and data processing layer. It can also incorporate more ad-
vanced features such as processing of the data (e.g. multi-
plexing) for more efficient communication and smaller net-
work bandwidth use similar to the MFWs described in [5, 6].
In addition to raw probe data, this layer also provides events
to the control and data processing layer to describe any ob-
served events in the MFW infrastructure. Looking at Figure
2, all the different agents take some part in the implementa-
tion of this layer although this is mainly focused on the rout-
er-agents.

In practice, a router agent in this case is a node in the
peer-to-peer overlay. These agents handle the relevant parts
of the dynamic adaptation, and security features as described
before. This layer also handles passing data through (sub-)
network boundaries where necessary, through filters such as
firewalls. The router agents are basically the mediators of the
communication between the server and probe agents, which
connect to it by using the overlay interface. For more ad-
vanced support, it is possible to build additional agents as
separate agents on top of the overlay to support features such
as multiplexing of collected data, handling of authentication,
authorization and encryption at the subnet level and dealing
with network filters such as firewalls and Network Address
Translation (NAT) services, similar to [6].

As the overlay sees the data passed through simply as
something to be transferred, different strategies to address
scalability at the level of data processing at different nodes
can be employed without impact on the overall MFW archi-
tecture. For example, more of the processing of the base
measures can be handled locally by the probe agents, result-
ing in less data being passed through the MFW infrastruc-

89

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ture. This data can then be handled by a specific functionali-
ty in the server-agent. These types of approaches will result
in less network traffic and lower likelihood of congestion,
distributing some of the processing to the different MFW
nodes. The choice of this strategy depends on the needs of
the observed system and the MFW.

E. Layer 2: Control and Data Processing Layer

The control and data processing layer provides services
for processing the data from the data collection layer and for
controlling the MFW infrastructure. This is basically equiva-
lent to the server-agent shown in Figure 2. Specific clients
can then be built to access the MFW through the server-
agent. In order to support scalability, extensibility and inter-
connection with different clients of the MFW, we use an
architecture based on the blackboard architectural style [27]
as illustrated in Figure 5.

Blackboard

Database

Measurement

Infrastructure

Persistence

Plugin

Base

Measures &

Events

Data

Plugin1

Data

Plugin2

Event

Plugin1

Registry

Plugin

Client app
Client Plugin

Events

& DataHistory

Plugin

Control

Plugin

Client Plugin

Events

& Data
Client app

Monitor

Plugin

Figure 5. High-level architecture of layer 2.

This type of architecture is actually shared across all the
different nodes (agents) of the MFW and not just the server-
agent. However, it is described here in terms of the server-
agent to provide a concrete example of its application. The
goal is to achieve a highly cohesive and decoupled composi-
tion of components to support their composition in different
ways in different nodes and to address different requirements
such as live updates of different parts and verification of
functional correctness. To achieve this, all data is passed
through the blackboard, whereas messages between the
plugins are passed using the OSGi middleware mechanism.

Regarding the data, all measurements, events and client
commands are processed through a blackboard component,
which provides this data to all registered plugins that have
subscribed to this type of data. These plugins can provide
additional data to the blackboard, which can further be pro-
cessed by other plugins. This allows for clear separation of
different aspects of data processing, event handling, client
and MFW infrastructure communication and other aspects.
Again, the plugins are mapped to OSGi services in our im-
plementation. This also provides the means to do updates of
specific plugins through the OSGi update mechanism. In the
case of message passes where simple data values are not
optimal, the bindings are handled dynamically through the
OSGi service binding mechanisms. This allows us to address
dynamic composition, decoupling and cohesion on different
levels.

The control factor in this layer is related to mapping the
measurements requested for specific properties of the ob-
served system to the probes of the MFW infrastructure. This

includes abstracting all dynamic evolution of the infrastruc-
ture(s) in an infrastructure model provided to the client(s).
The control factor is also related to responding to events that
require taking actions and control over the deployed MFW
infrastructure.

In order to support all the requirements described in Sec-
tion III, different types of functionalities need to be support-
ed. Client-specific data processing functionality can be pro-
vided as customized plugins for the blackboard. For exam-
ple, basic processing functionality can be provided in the
form of a plugin that takes instructions from the MFW client
that define calculations and threshold values of the moni-
tored data. These can be used to calculate more advanced
values from the base measures, and to provide events to the
client when a given threshold value for the calculations is
exceeded. As the communication is handled through the
blackboard, additional processing of the values provided by
one of these plugins can be done with another plugin that
subscribes to the provided values of the previous plugin.

Customized plugin functionality can be, for example,
used to provide specific data to a specific client or to perform
custom control and configuration of the observed system
based on the observations. Although the needs for different
measurement domains may vary, we define a set of basic
plugins offering generic services for different purposes. This
includes a functionality to store all the data processed
through the blackboard to support historical analysis actions,
a control plugin to handle the adaptation of the MFW in re-
sponse to the events observed in its operation (e.g. to config-
ure probe sampling rates) and a registry for handling the ab-
straction of infrastructure changes to the client. Similar to
[3], filters can be attached to any plugin to control the data it
processes and to allow for more fine-grained configuration of
plugins (e.g. what the persistence plugin stores).

F. Measurement Abstraction

Besides addressing the different needs for runtime adap-
tation in terms of adaptive communications, the MFW also
needs to provide a means for the client to make requests for a
specific type of measurement without the need to define ex-
plicitly which specific probe will provide it. This abstraction
is the role of the control and data processing layer in the
MFW (Layer 2). In our case, we have described our solution
in our previous work [1] and here we shortly summarize the
main points.

Each measurement probe can be identified with a Base
Measure Identifier (BM ID) that is composed of a Measure
ID coming from BM taxonomy, and a Device ID that identi-
fies which infrastructure object it is measuring. Note that the
term Device ID may be misleading at times as the target of
measurement here can also be a service and as such hosted
on or a subpart of the functionality hosted on a device.

It should be noted that several taxonomies or other ap-
proaches can be used as a basis for defining the Measure ID.
The actual choice is domain dependent and can even vary
inside the domain based on the specific application choice
and target inside the domain. For example, in the security
assurance domain, we have used as an example the security
countermeasures taxonomy from [28], which classifies dif-

90

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ferent measurement targets such as firewalls and intrusion
detection systems inside the security assurance domain. An-
other example inside this same domain is the use of the cate-
gories from Common Criteria.

Using the two identifiers we have defined, all measure-
ment results can have Unified Resource Identifiers (URI), or
to be exact, Uniform Resource Locators (URL), for example,
of type: MFW://<device_id>/<measure-id.

A client of the MFW can then make requests for the dif-
ferent types of measurements on different types of targets.
The MFW can then provide best-effort measurement results
according to the available probes and their characteristics.
For more advanced support, the different probes can also be
described in terms of different characteristics such as their
ability to provide precise results. Such characteristics can
only be defined by those who deploy the specific probes, as
their interpretations will vary over different probes. Howev-
er, the MFW can use by default this data as ordinal scale
values and let the user define the scales.

Finally, each MFW Uniform Resource Identifier (URI)
can then be used as a hyperlink between different measure-
ments. Using this method, it is possible to make BMs de-
pendent on other BMs where this is found useful.

G. Security

As described in Section III.E, security-enforcing mecha-
nisms of the MFW infrastructure need to include user and
data authentication, authorization, data confidentiality, data
and system integrity, data and system availability, non-
repudiation and resilience solutions. This is again supported
by the composition of the MFW agents from different ser-
vices (components). These can be used to compose the agent
to support features such as encryption and authentication
with specific modules such as described in [9, 10]. This also
allows fulfilling the security demands on different scales of
distribution. In more distributed architectures this requires
decentralization of these features over subnets in the router-
agents, while in a centralized version this support can also be
centralized at the server-agent level. This can also be handled
at the middleware level as provided by the MOM platform
(e.g. through the security features of the P2P overlay).

Each MFW component basically has a single user type,
which is the higher-level agent (probe → probe agent (→
router agent) → server agent → MFW client) that can issue
control over it. Similarly, each one has a single type of a user
that can provide monitoring information, which is the lower-
level agent (opposite order to the previous one). This
knowledge can be used to simplify the required authentica-
tion process as only one type of a user needs to be supported
at each level, and this user type is always known.

Considering the communication between the different el-
ements of the MFW, each probe agent that controls a probe
and provides data to the server-agent needs to register with
proper authentication mechanisms before being able to
communicate measurement results. Similarly, each data
transmission needs to be authenticated to ensure that no false
data is provided by unauthorized attackers.

In order to limit the possibilities of attackers using MFW
components to perform intrusive actions on a system or as an

attack vector, the capabilities of probes and agents should be
limited where possible. For example, user accounts can be
created to access the required information for the probes,
with said users only being authorized to access the required
data. To ease management, a roles strategy can be used to
enable multi-domain or subnets management where the con-
figuration of the accounts can be replicated without local or
specific particularities.

In the following list, we describe some of the technolo-
gies and solutions we have applied in addressing these relat-
ed security requirements.

For achieving integrity of the exchanged data:

 Applying hash methods, which will verify that the re-
ceived data is the same as the sent data.

 Digital signature methods to provide non-repudiation
features.

For ensuring confidentiality of the exchanged data:

 Encrypted communications, communications mecha-
nisms based on public and private key strategies.

 Similarly, applying encryption to all configuration data
stored by any MFW node (probe/agent) such as
usernames and passwords.

Supporting the availability of the exchanged data:

 Providing features that monitor the availability of the
different systems of the infrastructure (agents and cock-
pit) and that will alert when a device has availability
problems. This is related to the self-monitoring features
of the MFW.

 The use of data filtering techniques to, for example, re-
duce the possibility of (DoS) attacks. Specific considera-
tions are needed; for example, when the MFW addresses
are mapped for mobility and dynamic aspects (e.g. add-
ed or removed element).

 Consequently, the communication protocol used be-
tween the probes and aggregation server can propose an
alternative management solution, and if historical data is
considered to be important, probes should implement the
management of local history.

H. Separation of the MFW and the Observed System

As elements of the MFW (probes and probe agents) are
installed to measure properties of the observed system, their
deployment is bound to have some impact on the observed
system. To minimize this intrusiveness, different aspects
need to be considered. The first aspect is related to separat-
ing the communication of the measurement data and the ef-
fects it can have on the observed system. Here we have de-
scribed the use of the P2P overlay to address this aspect.

Another aspect of isolation is related to deploying ele-
ments of the MFW on the same physical host machines as
the one observed in the system. In many cases the functional-
ity of the MFW (the agents) needs to be hosted on the ob-
served infrastructure elements. The separation of these two
can be addressed by using virtualized infrastructure to host
the components of the measurement framework (e.g. Java
Virtual Machine (JVM) for OSGi or a complete separate
VM).

91

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, intrusiveness can be mitigated with self-
monitoring and adaptation. In this case, specific self-
monitoring plugins would be deployed at the different nodes
(agents). These would monitor for specific problems such as
depletion of resources (e.g. CPU, memory, network band-
width) and adjust their operation accordingly. The specific
strategies would require domain-specific tuning according to
the criticality of different factors such as the availability of
the measurement data and the operational intrusiveness of
specific nodes.

I. Patterns and the Reference Architecture

This subsection provides a brief mapping of the MFW
patterns listed in Section II. The requirements of the architec-
ture are discussed in more detail in the following section.
However, these requirements are also referred to in this sec-
tion when relevant for the explanation of the patterns. In the
following we recall the patterns from Section II and briefly
note how they are visible in the proposed architecture.

 Specific adaptation layer for measurement targets
[5]. This is the role of layer 3 (probe agents) together
with layer 4 (probes).

 Repository of available probes for specific meas-
urement targets [2]. As discussed we identify a set of
common mechanisms such as SSH and HTTP
probes. In different domains it is further possible to
provide specific repositories such as XCCDF in the
security assurance domain.

 Simple interface to integrate custom probes into the
overall measurement system [2, 3]. This is provided
by the split of the probe agent to generic (readily
provided) and probe-specific (custom) parts.

 Usage of widely supported protocols [7]. Relying on
available and widely developed MOM solutions ad-
dresses this.

 Allow configuration of operational probes [7]. This
is supported by the interfaces of a probe agent,
which can adapt to the probes as best possible.

 Optimize communications related to expected meas-
urement data communication patterns [5, 7]. In our
case the assumption is that bandwidth requirements
are relatively reasonable, and thus no specific data
channels are used. In other cases, this could be sup-
ported with the addition of another path.

 Usage of separated dedicated communication chan-
nels [7]. This is basically the definition of the P2P
overlay we use.

 Allow customizing different aspects of the MFW
based on module composition [3]. This is supported
by the OSGi platform together with the blackboard-
based architecture.

 Provide a registry that is dynamically updated to re-
flect available measurements and probes [6]. This is
supported by layer 2 (server-agent).

 Use specific components to handle connection and
processing over network sub-domains [5, 6]. This is
transparent to the MFW agents thanks to the P2P
overlay.

 Describe the measurements with a common set of
properties [4, 6]. This is supported by our measure-
ment abstraction layer.

 Optimize the availability and reliability of measure-
ment infrastructure [13]. Again this is supported by
the P2P overlay, which is specifically designed to
support these properties, cleanly modularized from
the MFW perspective.

 Secure the communication data [13]. The Armature
P2P overlay we used handles a large part of the fea-
tures related to security. Additionally, we provided
the guidelines for the security mechanisms we have
applied to address this.

V. DISCUSSION

While the mapping of the MFW design patterns was dis-
cussed before, this section discusses in more detail how the
reference architecture (RA) addresses the different require-
ments described in Section III. This discussion is structured
along the categories of requirements presented in Section III.

The RA supports different scales of distribution by sup-
porting different communication protocols and strategies in
the communication layer. The described P2P approach espe-
cially allows for a distributed approach. In general, new
MFW agent deployment is supported by runtime registration
mechanisms. Further, the common plugin architecture for all
MFW agents, based on the OSGi component platform, al-
lows for distributing functionality to agents as needed. For
example, the use of a common component platform and
plugin architecture allows for the deployment of some of the
server-agent functionality on probe agent nodes if needed for
local processing. This and the ability of server-agents to use
any number of different components for data processing
support scaling to varying amounts of data. Some specific
issues to consider with regards to scalability include the abil-
ity to use advanced features such as discovery and registra-
tion mechanisms as a means to launch attacks on the MFW
itself, and the intrusiveness of monitoring the observed sys-
tem resource use to launch any measures for dynamic adap-
tation, such as rerouting.

In the case of many of the runtime adaptation require-
ments we rely on the work done to address these require-
ments in the middleware community. The P2P overlay dis-
cussed as the communication channel for the RA supports
most of these requirements.

The RA uses several approaches for isolating the MFW
from the observed system. This includes both the discussed
features for the isolation of the network communication and
of the SW components of the MFW. The effectiveness of
this approach depends on the use of available techniques. For
example, using a JVM to host the agents allows some control
over the resources it can use (e.g. memory) but can be lim-
ited in other regards (e.g. CPU, files). This is a trade-off to
consider for different scenarios and may require use of addi-
tional advanced techniques (e.g. sandboxing, such as [29]).

As discussed before, addressing probe effects with de-
ployment of various probes in different systems is difficult in
general. Testing everything fully in a separate environment

92

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would be ideal, but it can be very expensive and difficult to
simulate all the possible combinations of different probes
and their environments during a system lifetime. This also
applies to the combination of (sub-) systems with other sys-
tems. No generic guidelines can be provided for possible
probe effects other than checking the probes and agents in
operation as far as possible, and considering their properties
such as files accessed and resources needed. This also high-
lights the importance of the isolation aspect.

When using specifically created probes that have been
designed into the system from the beginning, intrusiveness is
not an issue. Unfortunately, this is not always the case even
when designed for, as the future probe requirements are im-
possible to fully predict. However, the RA aims to deploy
only minimal components to the observed system infrastruc-
ture, which helps in minimizing its intrusiveness by focusing
complex processing in the server-agent. It also focuses on
minimizing the intrusiveness in terms of the router-agents by
requiring only the deployment of agents for the P2P overlay
that share similar deployment requirements.

The basic verification of the correctness of the MFW and
its components requires use of testing and verification tech-
niques before deployment. In this part we have to rely on the
availability and use of advanced techniques for SW testing
and verification. However, we do support this with the inter-
faces designed for the agents in the form of state transfer (for
updates) and configuration access (for reconfiguration). The-
se interfaces form a basis for testability features that can be
used to test agent behaviour in various contexts.

Even if we cannot ensure full pre-runtime verification
with architectural solutions, the RA addresses runtime verifi-
cation of different aspects with its self-monitoring features
similar to the intrusiveness aspects. This cannot address all
possible scenarios but allows for building features to check
the correctness of new agents and their functionality in new
contexts. This is also supported by the provided automated
update mechanisms, which allow for addressing found issues
and updating the agents with new features as needed.

The different aspects of security are addressed at the dif-
ferent agents. Specific components are provided to be de-
ployed as services with the MFW agents as needed. These
allow for addressing the different requirements related to
security such as confidentiality and integrity also at different
degrees of distribution. The dependability aspects (including
availability and resilience) of security are addressed by the
isolation of the MFW infrastructure (similar to the intrusive-
ness aspects) from the observed system infrastructure as far
as possible. This also includes the use of all the security- and
scalability-related solutions for handling large amounts of
data and unauthorized usage attempts in case of failures in
the observed system or malicious usage attempts of the
MFW or the observed system.

As for overall security, the MFW is not different from
other distributed systems handling sensitive information. We
have provided some guidelines regarding the securing of
different aspects of the MFW. However, these are generic
and applied only to the specific domain of the MFW. More
generally, most other approaches for system security in gen-
eral also apply here and are thus not discussed in detail.

Overall it can be said that different domains set different
requirements and in this case some of the issues are more
important to address than others. For example, in systems
with high performance and large monitoring data streams, it
can be useful to optimize monitoring with separate channels
as in [6] and optimized data formats as in [2]. The extensibil-
ity and customization options provided by the modular refer-
ence architecture should provide a good basis for this.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a core set of requirements for build-
ing a secure, dependable and adaptive distributed monitoring
framework and reference architecture for addressing these
requirements. This is based on both surveying existing ap-
proaches to building monitoring frameworks for different
domains, and on our current work and experiences in build-
ing monitoring frameworks for different domains. The work
provides a basis for building other monitoring frameworks
that need to address these types of requirements. The pre-
sented requirements provide a basis for understanding the
different needs of monitoring and how they are related to the
domains in which the reader is interested. The reference ar-
chitecture shows how these can be addressed given the
common constraints we present, showing both high-level
architectural solutions and practical examples of their im-
plementation. These are topics that are increasingly relevant
in many aspects of modern systems, where different runtime
adaptation aspects, information collection for decision sup-
port, and other aspects need to be supported.

Future work entails describing further experiences of the
different implementations and their practical applications in
different domains. Future works should also include more
systematic consideration of the impacts of monitoring data
and analysis on the initial risk analysis that provides input for
monitoring as well as their iterative refinements. Events at
different levels may also require more attention. Specific
future aspects to consider include the emerging new types of
infrastructures such as the future internet and cloud-based
services where monitoring needs to consider specific chal-
lenges posed by the shared infrastructure between different
stakeholders, including both infrastructure providers and
consumers.

ACKNOWLEDGMENT

The work presented in this paper has been carried out in
the CELTIC BUGYO Beyond research project. The authors
acknowledge the contributions to the topics discussed in this
paper by various project partners.

REFERENCES

[1] T. Kanstrén and R. Savola, "Definition of Core Requirements and a

Reference Architecture for a Dependable, Secure and Adaptive Dis-

tributed Monitoring Framework," in 3rd Int'l. Conference on Depend-
ability (DEPEND 2010), 2010.

[2] M. Pollari and T. Kanstrén, "A Probe Framework for Monitoring Em-

bedded Real-Time Systems," in Proc. 4th Int'l. Conf. on Internet Moni-

toring and Protection (ICIMP 2009), Venice/Mestre, Italy, 2009, pp.
109-115.

[3] F. Fusco, F. Huici, L. Deri, and S. Niccolini, "Enabling High-Speed
and Extensible Real-Time Communications Monitoring," in Int'l.

93

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Symposium on Integrated Network Management, 2009, pp. 343-350.

[4] Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, "An

Online Monitoring Approach for Web Service Requirements," IEEE

Transactions on Dependable and Secure Computing, vol. 2, no. 4, pp.
338-351, October-December 2009.

[5] E. Bulut, D. Khadraoui, and B. Marquet, "Multi-Agent Based Security
Assurance Monitoring System for Telecommunication Infrastructures,"

in Proc. Communication, Network and Information Security, 2007.

[6] I. Legrand et al., "Monitoring and Control of Large Systems with Mo-

nALISA," Communications of the ACM, vol. 52, no. 9, pp. 49-55,
September 2009.

[7] W. Vandelli et al., "Strategies and Tools for ATLAS Online Monitor-
ing," IEEE Transactions on Nuclear Science, vol. 54, no. 3, pp. 609-

615, June 2007.

[8] T. Kanstrén, "A Study on Design for Testability in Component-Based

Embedded Software," in 6th Int'l. Conf. on Software Engineering
Research, Management and Applications (SERA 2008), Prague, Czech

Republic, 2008, pp. 31-38.

[9] Common Object Request Broker Architecture (CORBA) Specification,

Version 3.1, 2008

[10] Sun Microsystems, “Jini Connection Technology”, 1999.

[11] SIP: Session Initiation Protocol, Internet Engineering Task Force, RFC

3261, 2002.

[12] RTP: A Transport Protocol for Real-Time Applications, Internet Engi-

neering Task Force, RFC 3550, 2003.

[13] R. M. Savola and H. Abie, "Development of Measurable Security for a
Distributed Messaging System," International Journal on Advances in

Security, vol. 2, no. 4, pp. 358-380, 2009.

[14] R. M. Savola and P. Heinonen, "Security-Measurability Enhancing

Mechanisms for a Distributed Adaptive Security Monitoring System,"

in Proc. 4th Int'l. Conf. on Emerging Security Information, Systems
and Technologies (SECURWARE2010), Venice/Mestre, Italy, 2010.

[15] sFlow.org – Making the Network Visible. sFlow.org [Accessed: May

21, 2011].

[16] Cisco Systems NetFlow Services Export Version, Internet Engineering

Task Force RFC 3954, 2004.

[17] N. Ziring, S.D. Quinn: Specification for the Extensible Configuration

Checklist Description Format (XCCDF) Version 1.1.2, U.S. National
Institute of Standards and Technology, NIST Interagency Report 7275

(Draft), 2006.

[18] R. V. Binder, "Design for Testability in Object-Oriented Systems,"

Communications of the ACM, vol. 37, no. 9, pp. 87-101, September

1994.

[19] N. Feng, T. White, and B. Pagurek, "Dynamic evolution of network

management software by software hot-swapping," in Int'l. Symposium
on Integrated Network Management (IM2001), 2001, pp. 63-76.

[20] D. B. Parker, Computer Security Management. Reston, VA, USA:

Reston Publishing Company, 1981.

[21] OSGi Alliance: OSGi – The Dynamic Module System for Java.

www.osgi.org/Main/HomePage [Accessed May 21, 2011]

[22] Q. Wang, J. Shen, X. Wang, and H. Mei, "A component-based ap-

proach to online software evolution," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 18, pp. 181-205, 2006.

[23] A. Hecker and M. Riguidel, "Survivability as a Complementary Opera-

tional Security Model for IT Services (position paper)," in PERADA

Workshop, 2008.

[24] XML-RPC Specification. www.xmlrpc.com [Accessed May 21, 2011].

[25] R.T. Fielding, R.N. Taylor, “Principled Design of the Modern Web

Architecture”, ACM Transactions on Internet Technology, 2(2): 115-
150, 2002.

[26] M. Henning, “A New Approach to Object-Oriented Middleware”,
IEEE Internet Computing, vol. 8, no. 1, 2004.

[27] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal,

Pattern-Oriented Software Architecture: A System of Patterns: John

Wiley & Sons, Inc., 1996.

[28] A. Herzog, N. Shahmehri, and C. Duma, "An Ontology of Information

Security," International Journal of Information Security and Privacy,
vol. 1, no. 4, pp. 1-23, October-December 2007.

[29] Y. Bennet et al., "Native Client: A Sandbox for Portable, Untrusted

x86 Native Code," Communications of the ACM, vol. 53, no. 1, pp. 91-

99, 2010.

94

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Security Test Approach for Automated Detection of Vulnerabilities of SIP-based

VoIP Softphones

Christian Schanes, Stefan Taber, Karin Popp, Florian Fankhauser, Thomas Grechenig

Vienna University of Technology

Industrial Software (INSO)

1040 Vienna, Austria

E-mail: christian.schanes,stefan.taber,karin.popp,

florian.fankhauser,thomas.grechenig@inso.tuwien.ac.at

Abstract—Voice over Internet Protocol based systems replace
phone lines in many scenarios and are in wide use today.
Automated security tests of such systems are required to
detect implementation and configuration mistakes early and
in an efficient way. In this paper we present a plugin for our

fuzzer framework fuzzolution to automatically detect security
vulnerabilities in Session Initiation Protocol based Voice over
Internet Protocol softphones, which are examples for endpoints
in such telephone systems. The presented approach automates
the interaction with the Graphical User Interface of the
softphones during test execution and also observes the behavior
of the softphones using multiple metrics. Results of testing
two open source softphones by using our fuzzer showed that
various unknown vulnerabilities could be identified with the
implemented plugin for our fuzzing framework.

Keywords-Software testing; Computer network security;
Graphical user interfaces; Internet telephony; Fuzzing.

I. INTRODUCTION

Voice over IP (VoIP) is in wide use in homes, educational

institutions and businesses, extending or replacing Public

Switched Telephone Network (PSTN) based phone lines.

VoIP provides a way of sending phone calls over Internet

Protocol (IP) based networks. This allows the use of one

type of wiring for both computers and phones in office

buildings, making management simpler and changes in the

setup faster. However, moving from separate phone lines

to commonly used IP based networks increases the attack

surface and by this the risk for attacks. Therefore, a secure

VoIP infrastructure is required where all components in the

infrastructure are robust against attacks. This also includes

the VoIP clients as shown in our previous work in [1].

Today, Session Initiation Protocol (SIP) is a widely

used protocol to control communication between two VoIP

components like initiation and termination of calls. It was

introduced in 1999 by the Internet Engineering Task Force

(IETF) in RFC 3261 [2]. It is a stateful text based signaling

protocol, which defines two main components for commu-

nication: the User Agent (UA) and the Server. A UA can be

a soft- or hardphone and initiates or terminates sessions.

A Server offers services to UAs, e.g., to register and to

relay calls. Phones are reachable by other phones to allow

communication and, therefore, a vulnerability within VoIP

phones can be remotely exploited by attackers. Our approach

shows the possibility to test VoIP phones by using simulated

attacks to detect vulnerabilities to make the software more

robust.

Fuzzing as a dynamic method to detect vulnerabilities

by fault injection was used early by Miller et al. [3], [4]

to detect security vulnerabilities in different applications.

Since then, fuzzing has become a widely used method to

test software robustness and security of different applications

[5], [6]. In this paper we focus on testing SIP interfaces of

Graphical User Interface (GUI)-based UAs using fuzzing

techniques to automatically detect security vulnerabilities

by monitoring multiple interfaces of the UAs. For this we

present an extension for the fuzzer framework fuzzolution

[7].

Thompson [8] defines security failures as side effects

of the software which are not specified and make security

testing hard. Fuzzing provides a solution for detecting side

effects by automatically executing test cases with many data

variations based on critical well known attacks and randomly

generated values. The introduced fuzzer framework supports

the rules presented by Chen and Itho [9] to generate SIP

test data. Therefore, an intelligent template based approach

[10] with random attack data generation and predefined well

known attack values is used. Additionally, with the used state

machine it is possible to test different valid and invalid SIP

states of softphones.

Automatically triggering GUI events, e.g., accepting or

rejecting VoIP calls, is required to test SIP-based softphones

because automatic GUI interaction makes it possible to ex-

plore a significant portion of the state space. The framework

supports all kinds of mouse and key events to interact with

the GUI. To improve accuracy of error detection in our

approach we monitored multiple interfaces of the GUI-based

softphone. One used metric was a GUI monitor on the client

side, which allows for detection of error dialogs and changes

in the application windows. Other used metrics are log files

of softphones, text analysis of the content of open windows

on the client side, analyzing the response, monitoring CPU

95

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and memory usage and monitoring the availability of the

application by using the network ports of the softphones.

We present the results of our proof of concept approach

applied to two open source softphone implementations. We

found several previously unknown vulnerabilities. We also

tested older releases and found known vulnerabilities, which

have already been fixed in newer versions.

The remainder of this paper is structured as follows:

Section II discusses related work. Section III introduces the

architecture of the test environment and the used fuzzing

framework. Section IV gives details about the implemen-

tation of test generation and the monitoring of the System

Under Test (SUT) to automatically detect errors. The imple-

mented fuzzing framework and detection techniques were

evaluated by testing SIP implementations in a VoIP test

environment, which are presented in Section V. The paper

finishes with a discussion in Section VI and a conclusion

and ideas for future work in Section VII.

II. RELATED WORK

Various partly overlapping technologies have been intro-

duced to cover different aspects of VoIP calls, e.g., signaling

standards (that take care of the setup of a voice channel).

Several signaling technologies are in use today: H.323,

Media Gateway Control Protocol (MGCP), SIP as well as

proprietary solutions, e.g., InterAsterisk eXchange (IAX)

protocol. SIP is probably the most widely adapted protocol

[11] and, therefore, in focus of our presented security

test approach. As shown by different authors (e.g., [12]–

[14]), many attacks against SIP implementations are readily

available and conducted in deployed VoIP infrastructures.

Fuzzing is a test technique to find vulnerabilities in

different applications [3]–[5] and, therefore, also in SIP-

based VoIP applications [15], [16].

Several frameworks have been proposed to address spe-

cific aspects of SIP security, for example, the PROTOS

SIP Test Suite [15], [17], [18], which has more than

4500 predefined malformed SIP-Invite messages to test

the robustness of SIP implementations. However, it only

supports stateless testing of SIP phones, which reduces

the possibility to test further SIP states like Calling or

Ringing. Additionally, PROTOS does not support client

testing by triggering GUI actions. Another approach is the

one followed by Aitel with SPIKE [19] which introduces

the concept of block-based fuzzing. This is based on the

fact that protocols are mostly composed of invariants, blocks

and variants. SPIKE fills the blocks with fuzzed data and

keeps intact the invariants. SPIKE is too low level, so it

becomes highly effort-consuming when applied to complex

protocols. Banks et al. [20] described SNOOZE, which is

a generic fuzzer framework based on user defined scenarios

and protocol specifications. Currently only a limited number

of primitives to generate malformed data are implemented.

However, the authors showed how to use SNOOZE to

fuzz SIP implementations and find security vulnerabilities.

Another stateful fuzzer is KiF, described by Abdelnur et

al. [16], [21]. KiF uses Augmented Backus Naur Form

(ABNF) grammar to describe the syntax of messages. KiF

automatically generates new crafted messages by using rules

defined by the grammar, information of the current protocol

state and state tracking information. The authors showed

how to test different states of SIP. A drawback is the analysis

for detecting errors, which is only based on the responses of

the SIP implementations. Nevertheless, with the described

approach several vulnerabilities were found. This includes

bad input handling and state based vulnerabilities, where

the robustness of the implementation failed by using various

valid/invalid state paths.

Alrahem et al. [22], [23] presented a fuzzer with the name

INTERSTATE. The fuzzer provides the possibility to interact

with the GUI of softphones and, therefore, allows, for exam-

ple, to automatically accept calls. During test execution the

fuzzer can send sequences of SIP messages and GUI events

to the SUT, which provides the possibility to test a larger

range of implemented states of softphones automatically. In

contrast to the approach provided in this work, however, the

analysis to detect errors is only based on the response and

does not consider the behavior of the softphone GUI.

White-box fuzzing is another approach of using internal

information of an implementation as, for example, presented

by Ganesh et al. [24], by Godefroid et al. [5], [25] or by

Neystadt et al. [26]. However, it is not always possible

to get the internals of an implementation. For example, if

hardphones are being tested, the software is often closed

source and only black-box tests are possible. Therefore, we

focused on implementing black-box tests for our approach.

These can be used for testing a broader number of VoIP

clients.

GUI automatization is already used for functional testing

of applications as, for example, presented by Feng et al.

[24] or by Xiaochun et al. [27]. Bo et al. [28] presented

a black-box test approach for mobile phones using Optical

Character Recognition (OCR) to analyze the GUI behavior.

To improve automatization for testing SIP-based softphones,

interaction with the GUI of phones is required as already

shown by Alrahem et al. [22], [23]. In our implementation

we integrated the automatic GUI interaction. Additionally,

we present a basic approach for observing GUI behavior and

using the gathered information to reduce the false-negative

rate.

III. ARCHITECTURE FOR AUTOMATED VOIP

SOFTPHONE TESTING

The implemented fuzzer is a generic framework to test

and monitor different application interfaces similar to other

fuzzers. For testing SIP-based softphones, a template based

message generation method was chosen. The fuzzer includes

96

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Test Environment of Fuzzer Framework for SIP Softphones

a configurable SIP state machine which allows stateful

testing of phones by interacting with the GUI.

Fig. 1 shows the test environment and the interaction

between the fuzzer and the SUT. The fuzzer provides the

possibility to automatically control and monitor the SUT

by its GUI using a GUI Actor and a GUI Monitor. The

state machine can trigger GUI events in the SUT using

the GUI Actor. Additionally, the GUI Monitor provides

information about the GUI to the analyzer which integrates

the information to determine pass/fail of tests.

The test environment at the host of the SUT consists

of the components softphone (SUT), GUI Actor, the GUI

Monitor, the log files produced by the SUT, CPU and

memory monitoring and a screenshot component as can be

seen in Fig. 1.

A. Fuzzer Framework

As framework for executing SIP softphone tests the fuzzer

framework fuzzolution [7] was used. This framework pro-

vides the possibility to add plugins for specific protocols.

We implemented a state based SIP plugin and extended the

framework with various analyzers to monitor the behavior

of the SUT.

The main parts of the fuzzer framework, as can be seen

in Fig. 1, are the FuzzerRunner, which controls test

execution, a Handler to generate the messages to send, the

Connector, which includes the protocol to communicate

with the SUT, the AnalyzeManager, which builds the

final test result based on all controlled Analyzers, and

a set of TestDataGenerators which provide the used

test values.

The implemented StateMachine for SIP contains the

SIP states and the interaction with the GUI and the SIP

interface of the SUT. The framework is independent about

stateful or stateless connector implementations. The used

StateMachine for SIP inherits from the Connector

type which allows transparent integration into the frame-

work. Based on a configuration file it is possible to configure

the various SIP state transitions. Additionally, it supports

Figure 2. Example of a State Definition

configuration of invalid state transitions to test the be-

havior of the SUT by using unspecified transitions. The

state machine has a sequence of states to execute during

initialization, before sending the test data, and after sending

the test data.

The StateMachine establishes a connection either

directly with the SUT or via a proxy, sends generated

SIP messages and receives responses from the proxy or

the SUT. Additionally, StateObserver can be registered

to the StateMachine. The StateMachine notifies all

registered StateObservers before and after state tran-

sitions. By the usage of the StateObserver additional

functionality can be executed, e.g., to interact with the GUI

of the softphone.

The Handler is controlled by the StateMachine

and is responsible for the generation of valid as well as

malformed messages. Additionally, information from the

state machine can be used to generate different parts of the

message, e.g., the ID. Multiple handler implementations are

used for test execution depending on the tested parts of the

SUT.

For generating test data various

TestDataGenerators will be used. It is possible

to extend the framework by implementing customized

generators. Different implementations are used for

generating the test values. They are based on well known

attack vectors, random generation and intelligent generation.

For more details about generation of test values see Section

IV.

For a test case the configuration of state transitions and

GUI interactions is called a state scenario. State scenarios

are integrated in the fuzzer framework at different execution

points: before and after the test run and before and after a

single test case. Based on the managed state information, the

97

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

StateMachine prepares the SIP softphone, i.e., it brings

the softphone into the required SIP state for a test case. For

example, a valid registration state scenario can be defined

before the test run to register the fuzzer to a SIP registrar

and, after the test run, cleanup by de-registering the fuzzer.

Fig. 2 shows an example of a state configuration where as

init states the fuzzer registers to a SIP registrar (in the test

environment to the proxy). Therefore, the StateMachine

sends a Register message and expects receiving an Unautho-

rized message. The StateMachine resends the message

together with a valid authentication header and finally ex-

pects an Ok message. After this initial registration for each

test case the fuzzer will execute the PreStates before

sending the test data and the PostStates after sending

it.

A state scenario before a single test case can be used,

e.g., to initiate a call from the SUT to the fuzzer by sending

a GUI profile to the GUI Actor which initiates the call by

executing the GUI profile.

B. Simulating the SIP Registrar

SIP can establish a call directly between two UAs but

many SIP phones are registered on a SIP registrar and

send all responses to this registrar which acts as proxy and

forwards the messages to the destination UA.

When using such a proxy, it is required that the proxy does

not filter invalid SIP messages. Therefore, we implemented

a specific SIP registrar and proxy as part of the framework

which is robust and forwards the manipulated test messages

to the SUT without modifications.

The used version of the implemented SIP registrar sup-

ports the used SIP scenarios. It accepts all registration

requests of any UA and internally stores the registration

information, e.g., the username and the address of the UA

for further communication.

The SIP registrar supports several parallel UAs. It allows

forwarding SIP messages between every registered UAs

without further checks. The proxy determines the receiver

of the message by the callid or by the username in the

To header field or Request header of the incoming mes-

sage automatically. Additionally, it is possible to manually

configure the host and port of the two communicating UAs

– in the test setup the fuzzer and the SUT. This also allows

to test the To and Request header.

Requests to UAs which are not registered will be handled

by sending a Not Found message to the requesting UA.

The proxy will respond to every request addressing the proxy

with a valid Ok message which occurs often for Option

messages.

C. GUI Interaction with the Softphone

The utilization of GUI events is essential to automatically

achieve all possible states of the SIP softphone. The provided

framework supports the definition of input sequences with

SIP messages and GUI events, which are remotely applied

to the SUT.

On the side of the SUT an additional service called GUI

Actor is running. The GUI Actor is a Java tool, which

uses the java.awt.Robot implementation to interact

with GUI elements by executing GUI events in the SUT.

Using the GUI Actor, automated test execution for GUI-

based SUTs is possible.

The fuzzer communicates via network with the GUI Actor

using GUI event profiles which are part of state scenarios. A

GUI event profile is a sequence of GUI events and an unique

identifier to identify the profile. In the current version, mouse

and keyboard events are supported. Delays in the sequence

can also be configured. This is, e.g., required to wait for

opening dialogs in the application before interacting with

the GUI.

During initialization the fuzzer registers all required GUI

event profiles with the unique identifier at the GUI Actor

running in the SUT. For the profiles simple text files with

key/value pairs are used. The key is the action, e.g., left

mouse click or key press, and as value specific parameters

for the action are used, e.g., coordinates for clicking or

specific keys to press.

The GUI Actor can handle several profiles simultaneously.

By using the profile identifier the fuzzer can execute every

registered profile by sending the execute command and the

profile identifier to the GUI Actor.

D. Observing System Under Test Behavior

To reduce the false-negative rate, the introduced frame-

work uses multiple metrics of the SUT to build the final

test result. For this the fuzzer framework supports the

combination of various Analyzers.

One analyzer was used to verify if the arrived response

from the SUT is valid (e.g., the expected message for

this state transition) and if it contains specific keywords

indicating a failure, e.g., Exception or Error. A second

analyzer monitors the SUT by verifying if the port of the

application is available after executing a test. If the port is

not available it indicates a possible crash of the application.

Both analyzers can be used for black-box tests without

access to the host where the SUT is running.

An analyzer was used to analyze the log files of the

SUT and determine important log entries using keywords.

For this the log files will be transferred using a Secure

SHell (SSH) connection. The analyzer uses only the entries

produced during executing the test case by building the

delta of the log file before and after the test execution.

The analyzer uses the detected log entries and based on

a predefined list of weighted critical keywords returns the

build probability combining the number of keywords and the

associated weight.

Another observed behavior of the SIP softphones is the

GUI. Applications visualize error information in different

98

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

elements of the GUI, e.g., dialogs. The analyzer monitors

the GUI of the SUT and identifies changes of open windows

in the host after the test case in comparison to the windows

before executing the test case. For all newly opened and

closed windows, the analyzer estimates the relevance by

using the name of the title and relation of the window to

the SUT. The relevance of a window in the SIP softphone

is higher than the relevance of other applications in the host.

Examples of changes are new open error (or similar) dialogs

or disappeared windows, e.g., after a crash of the SUT. Both

analyzers require access to the host running the SUT.

In addition to the window structure the framework uses

the visualized text information for error detection. For this

OCR is used for a screenshot of the SUT to extract the

text information displayed on the screen. The screenshot

will be taken before and after executing the test case. With

OCR the text will be extracted and analyzed using a list of

critical keywords. The screenshot analyzer can, therefore,

also detect errors displayed directly in the main window

without opening a new sub window.

The framework also analyzes CPU and memory usage

of the softphone process in the SUT to detect heavy load

during/after executing a test which could indicate a Denial

of Service (DoS) attack.

The GUI Monitor, the screenshot analyzer, softphone log

file analyzer and CPU/memory monitor require access to the

SUT to start a service to transfer the information to the host

running the fuzzer. Both services wait for a connection from

the fuzzer and the fuzzer has to trigger the services to get

the information.

IV. FRAMEWORK FOR IMPLEMENTING SECURITY TEST

CASES FOR SIP-BASED VOIP SOFTPHONES

The fuzzer framework with the SIP plugin provides vari-

ous possibilities to configure tests for SIP implementations

and especially for GUI-based softphones. Within the fuzzer

framework the following notation is used for the test con-

figuration which also builds the further structure within this

section:

Test Scenario: the scenario is a specific sequence of state

transitions, e.g., send an Invite message to the SUT. We

executed the fuzzer for each scenario.

Test Case: we define the different fields within a single

message as test case. These fields will be replaced by

generated values, e.g., an Invite message has several

fields and each field indicates one test case.

Data Variation: data variations are the different values

used for filling the fields in test cases. We use many

data variations for each test case.

Chen and Itho [9] describe five rules that can break robust-

ness of SIP-based VoIP systems by manipulated messages:

• Incorrect Grammar

• Oversized Field Values

Figure 3. Generic SIP Message Parsing and Processing by SIP Imple-
mentations

• Invalid Message or Field Name

• Redundant or Repetitive Header Field

• Invalid Semantic

All of these five rules are considered for testing the SIP

softphones with the defined test scenarios, test cases and

data variations in our test setup.

Analyzing the attack surface of an application is im-

portant for conducting security tests. The attack surface

shows possible interfaces with associated risks for exploiting

vulnerabilities in the interfaces. Fig. 3 shows a general attack

surface for SIP-based softphones. For the current work we

considered remote attacks using the network interface of

the application. The figure also shows relevant modules

within the application which are involved in processing SIP

messages.

A. Test Scenarios for SIP

The fuzzer provides the possibility to configure different

test scenarios for testing SIP-based VoIP softphones. Each

scenario is a single test run of the fuzzer tool. In the current

version of the implementation we defined different scenarios

to show that the proof of concept of GUI interaction and

monitoring of the SUT was working. The analysis is based

on various defined SIP scenarios as presented by Johnston

et al. in RFC 3665 [29].

Fig. 4 presents the main test scenarios used for the test

execution. The first scenario presented is stateless and has

already been tested repeatedly using different fuzzers as,

for example, PROTOS. The fuzzer sends malformed Invite

and malformed Cancel messages to the SUT. Many DoS

attacks are based on such a scenario, because no additional

conditions are required, e.g., a valid SIP account, to send

a message to the SUT. The second scenario represents a

typical SIP call flow where the fuzzer calls the UA (SUT).

The call flow is a RFC conform state transition. The fuzzer

uses the final ACK message to construct test messages. In

comparison to the second scenario, in the third scenario

the SUT initiates the call. The fuzzer triggers this by the

GUI Actor and the SUT calls the fuzzer, which replies with

99

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a Trying, Ringing and Ok. The fuzzer terminates the call

without waiting for the required ACK message from the SUT

by sending a Bye message. Each message sent by the fuzzer

in this scenario is used for the test execution to include the

test data. This scenario tests the robustness during the call

initiation phase of the UA. The fuzzer initiates a call in

the fourth scenario. After receiving the Ok message from

the SUT the fuzzer sends a manipulated Cancel message.

Similar to the third scenario the SUT calls the fuzzer,

which responds with a valid Trying and Ringing. After

that the fuzzer sends a malformed Unauthorized message.

This Unauthorized message is not expected by the SUT.

Therefore, we test how the softphone deals with unexpected

and manipulated messages.

For all scenarios except the first one, access to the GUI of

the SUT is required for automatic testing in order to initiate,

accept and close calls.

The fuzzer supports valid scenarios with RFC conform

state transitions and invalid scenarios. Valid scenarios are

required to bypass message validation functionality to inject

the test values in the application logic as can be seen in Fig.

3. If the validation is not successful the message will be

rejected and testing of the application logic is not possible.

With invalid scenarios the validation logic within the SIP

softphone can be tested.

B. Test Case Design for SIP

Test cases in the fuzzer framework are messages which

are part of a test scenario. For the tests a template based

approach was used. The template defines the message struc-

ture and defines placeholders which indicate the single test

cases within a test scenario. The Handler within the fuzzer

framework is responsible to prepare the final message by

replacing the placeholder of the current test case with the

attack value of the data variation. All other placeholders are

filled by using valid default values which can be predefined

static values or generated values, e.g., unique identifiers or

timestamps. The Handler must also support handling spe-

cific values, e.g., the Content-Length header. Otherwise

the UA will eventually drop parts of messages.

The messages are constructed according to the SIP RFC

to provide a valid structure and only use test data within

the fields to test application logic as can be seen in Fig.

3. Moreover, tests with invalid structures are used, e.g.,

randomly modified orders of SIP headers, duplicate, ran-

domly injected characters or invalid header fields. These

tests are required to test robustness issues of the SIP message

validation functionality.

The fuzzer framework supports cascaded Handler con-

figurations, e.g., use the template handler to prepare the

message and afterwards use a handler to manipulate message

structure.

Figure 4. Definition of Used Test Scenarios for SIP Softphone

C. Automated Test Data Generation

Several test cases with several thousand data variations are

defined based on the rules mentioned by Chen and Itho [9].

For the applied fault injection approach well known attack

vectors and randomly generated data can be used. For the

tests an optimized list with about 1200 known critical values

as attack vectors are used. This includes various security

attacks, e.g., buffer overflows, Structured Query Language

(SQL) injections and path traversal attacks.

Additionally, generators are used to generate test data. The

fuzzer framework allows integration of additional generator

implementations to test specific values. For the test execution

randomly generated bytes with random length are used.

D. Automated Error Detection

The fuzzer framework uses multiple analyzers to deter-

mine pass/fail of tests. Different analyzers are used for

testing the softphones and with each analyzer it is possible to

detect different vulnerabilities. For coordinating the results

of these analyzers an AnalyzeManager is used which

collects the results of all analyzers to calculate the final result

100

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for one data variation by summing up the results. In this step

it is also possible to change the weight of the results based

on predefined rules.

Before starting with the tests the fuzzer initiates a learning

phase. In this phase valid data variations are used to deter-

mine how the application behaves with valid requests so that

differences can be detected when using attacks. During the

learning phase, analyzers store information about the found

error indicators, so that they can be seen as normal behavior

of the SUT and not used for further error detection. For

example, the log file analyzer stores the information of how

many times each keyword can be found for a valid request

in the learning phase. The analyzer only uses keywords for

the test execution which occur more often than the initially

learned number of found keywords in the log file. This is

required because depending on the error handling keywords

like ”Exception” can also be included in the log file for valid

requests.

Several analyzers are used to monitor the SUT as de-

scribed in Section III-D. The port analyzer checks if the

port, where the SIP softphone is listening, is still available

by connecting to the port. The weight of this analyzer is

very high and indicates that an error was detected certainly

when the application cannot be reached any more.

The GUI analyzer uses the list of open windows in the

SUT. We implemented the GUI Monitor prototype running

on the SUT. The GUI analyzer retrieves the required in-

formation by a network connection from the GUI Monitor

which uses the xwininfo utility for X to read window

information. In an operating system a tree with one root

window is available and every other window has exactly

one parent window. Our GUI Monitor parses the output from

xwininfo and stores the information in a tree structure.

For each test case this is done before and after executing the

test case.

In addition to the list of open windows we used an

OCR analyzer which extracts the displayed text from a

screenshot of the host desktop and uses a list of keywords for

error detection. As OCR engine we used the tesseract

command line tool. For taking the screenshot a service

is running on the SUT. The analyzer requests the image

using a network connection and extracts the text using

OCR. Example keywords used for the test execution are:

”exception”, ”error”, ”wrong”, ”fault”, ”failure” or ”debug”.

With a response analyzer the fuzzer analyzes the response

of the application and checks if certain keywords can be

found. The keywords are stored in a configuration file as

pairs of keyword and weight of the keyword. The analyzer

checks for each keyword if it is included in the response

and sums up all weights of the found keywords.

The log file analyzer is very similar to the response

analyzer, but uses log files instead of responses. The analyzer

determines the delta of a log file to use only log entries

logged during execution of the current test case. Example

keywords used for the test execution are: ”NullPointerEx-

ception”, ”IOException”, ”Exception”, ”Bad”, ”Missing”,

”error”, ”fatal” or ”segmentation fault”.

The CPU and memory analyzer monitors the softphone

process in the SUT. During the learning phase the analyzer

determines CPU and memory usage for valid requests. For

each test the analyzer determines the variance to the learned

behavior. Depending on the implementation increased CPU

or memory usage is possible due to internal reorganization

activities, e.g., reorganize or cleanup a cache.

The AnalyzeManager gets the probability of a de-

tected error from each analyzer. Each analyzer has a config-

ured weight and based on defined rules the analyzer manager

combines the final result using the computed probability of

the analyzers and the weights of the analyzers for the final

result.

Additionally, the analyze manager performs a final group-

ing of the result which supports possible required manual

checks and retests. The grouping is based on the assumption

that test cases with the same probability value have also

similar log file entries, similar response values, similar GUI

behavior etc. The group contains the list of test case IDs

and the detected problem, e.g., a specific exception in the

log file. For manual verification of the result to determine if

the reported error is a true error, often only one test case per

group has to be retested. Furthermore, the higher the result

value of the group the more likely it is, that the reported

error is a true one. Currently the implementation determines

pass/fail based on a configured threshold of the combined

probability.

V. RESULTS OF THE AUTOMATED TEST APPROACH

The fuzzing framework fuzzolution was used to test

two SIP-based VoIP softphones. This section describes the

softphones (SUT), the used VoIP test setup and the detected

vulnerabilities. A description of the evaluation of the ap-

proach is also included.

For the test execution the test scenarios defined in Section

IV were used. With each scenario various unknown vulner-

abilities could be identified. These include DoS, memory

corruption, improper validation of array index, use of unini-

tialized variables and a kind of Cross Site Scripting (XSS)

vulnerability in both tested softphones.

The test execution showed that every implemented ana-

lyzer has its strengths and weaknesses. The combination of

the analyzers significantly improves the overall test results.

A. VoIP Test Setup

For the test execution the VoIP test environment as

described in [30] has been used. The environment supports

various requirements for executing security tests:

Flexibility: Different virtual images provide basic func-

tions, e.g., a time server, a SIP registrar, Domain Name

System (DNS) server etc. which can be used as a basis

101

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the test setup. This way we could concentrate on

configuring the relevant aspects for security testing the

VoIP softphones with the fuzzing framework which was

the objective of this work.

Scalability: The VoIP test environment is scalable. Fuzzing

softphones needs a lot of resources to test multiple

attack vectors. Especially for GUI-based applications

execution time is increased because display of the GUI

element and executing the action is asynchronous. To

reduce execution time, multiple virtual client images

were executed in parallel for the conducted tests. This

way the execution time for multiple test scenarios could

be significantly reduced.

Easy Analysis: A version control system is implemented

to provide an easy mechanism for managing, e.g., the

tested software versions, used configuration files, log

files or network dumps. This helps analyzing security

failures found during the security test process and

provides a mechanism for retesting test cases in case

of found security vulnerabilities.

Automation: Many aspects of the test process can be au-

tomated. Therefore, the needed test setup for executing

the security tests can be quickly achieved when doing

different tests.

Moreover, we used the capability of the test environment

of capturing the network traffic. This allowed detailed anal-

ysis of the transferred messages.

During test execution two instances of the two tested

VoIP softphones (see Section V-B) were used. The whole

process of starting logging and network dumps, starting the

softphones, GUI Actor/Monitor, the fuzzer etc. was auto-

mated by using different scripts. After the test execution the

relevant data (e.g., log files of the VoIP softphones, output

of the fuzzer framework) were automatically collected and

added to the version control system.

For correlating and analyzing multiple events and log files

a common time source was needed. This was achieved by

using the time server provided by the test environment. This

way timestamped events in the test environment, even if

produced in different parts of the test environment (e.g.,

fuzzer and SUT), could be combined easily and, e.g., fuzzed

input strings could be correlated to malfunction of the

softphones.

The management interface of the test environment was

accessible remotely. This enabled starting and stopping test

cases efficiently.

B. Tested SIP Softphones

Two different softphones were tested. The first softphone

is QuteCom [31]. It is an open source SIP implementation

written in Python, C and C++. We mainly tested the version

2.2 revg-20100116203101 with our fuzzing framework pre-

sented in [1]. With the extended framework we tested version

QuteCom 2.2 revg-20101103220243. The second softphone

is SIP Communicator [32]. It is an open source Java VoIP

and instant messaging client. For the work presented in [1]

we tested the version 1.0-alpha3-nightly.build.2351. For the

extended framework presented in this paper we tested SIP

Communicator 1.0-alpha6-nightly.build.3189.

Both applications are available for Windows and Unix

platforms. Linux Ubuntu was used as the host system

running the SUT for the test execution. Tests during devel-

opment of the fuzzer framework also showed the possibility

to identify vulnerabilities for a previous version of QuteCom

on Windows (without using the GUI monitoring) where

QuteCom failed to check the content-length SIP header.

QuteCom crashed every time when the content-length was

less than the real content-length. When the current version

of QuteCom was tested this vulnerability had already been

fixed. In a future work the GUI interaction and monitoring

will also be implemented for Windows operating systems.

C. Detailed Test Results

By implementing the fuzzer framework it was possible

to detect vulnerabilities for both tested softphones. The

vulnerabilities were reported to the developers. A DoS

vulnerability in SIP Communicator could be identified. SIP

Communicator had implemented a fixed source port range

between 5000 and 6000. It does not reuse port numbers

and, therefore, for each connection a new port number will

be used. After 1000 used ports no additional calls could

be handled by the application. The error was detected by

the GUI analyzer, because the application showed an error

dialog but did not crash. Therefore, the process of the

application is available and it could not be detected by

monitoring the processes. Monitoring the availability of the

port of the SUT will not register a fail either, because the

problem was only for connections from the SUT to another

host. Another solution to detect such an error is by using

a valid use case which will fail if the application is not

available anymore.

The problem was already fixed in the current version of

SIP Communicator but the fuzzer identified a similar bug in

the new SIP Communicator version. Again, only a range of

ports is available and with many open ports the application

logs an exception to the log file. The log file analyzer

detected this problem. Moreover, it was also detected by the

GUI analyzer because SIP Communicator opened additional

dialogs. The vulnerabilities were detected, because due to

the automation of the test process it was possible to send

many requests, which causes these problem.

Another problem in SIP Communicator could

be identified during the monitoring of the

application log files. The application logs many

java.lang.NullPointerException for different

manipulated calls. This problem could not be identified

using the GUI monitoring, because the GUI does not

display the error information. We also detected several

102

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

java.lang.ArrayIndexOutOfBoundsException

errors. The log analyzer reported this as error because the

keywords are contained in the log messages. Additionally,

also the GUI monitoring detected the error because it was a

problem with open dialogs which are not closed anymore.

Additional tests of SIP Communicator showed further

crashes of the application. The GUI analyzer has identi-

fied the problem, because the process of the application

terminated and, therefore, all windows of the application

disappeared. This was a change of windows, which the

GUI analyzer interpreted as an error in the application and,

therefore, the test case failed. Such a termination of the

process could also be identified by monitoring the process or

by trying to connect to the port of the application. Retests of

single test cases could not reproduce the problem. For future

development the fuzzer should automatically retest different

combinations of test cases of a test run to automatically

identify such problems.

The fuzzer framework identified a type of XSS

vulnerability because SIP Communicator uses

javax.swing.JOptionPane for constructing error

dialogs, which uses javax.swing.JLabel to render

the text. By directly sending an Invite message to the SUT

with a manipulated From SIP header it was possible to

inject HTML code, which was displayed by the JLabel.

This did not allow the injection of JavaScript code but

it was possible to create a connection to a remote host

and download an image by using an element. In

combination with a Cross Site Request Forgery attack this

could compromise the internal network of the user. This

error was detected by the GUI Monitor because by the

injection of Code the displayed dialog has a different size

and, therefore, was not closed by the used GUI Actor.

QuteCom is also affected by a DoS vulnerability, which

crashed the application. The SUT calls the fuzzer, the fuzzer

accepts the call and sends a Bye message to terminate the

call. Additionally, the fuzzer uses the GUI Actor to click

on the terminate button in the SUT, which causes the crash

in the application. The problem was detected by the GUI

analyzer and the port analyzer.

Several memory corruption vulnerabilities could be identi-

fied for QuteCom, which stop the application with a segmen-

tation fault. One error was identified with multiple parallel

calls in Ringing state. Closing the ringing dialogs crashed

the application. Another error could be identified by opening

several parallel calls. QuteCom shows the error message

”insert number for forwarding”. If the fuzzer triggers the

logout button the application crashes. The crashes were

detected by monitoring the port of the SUT and by the GUI

Monitor because if the application crashed the list of open

windows changed. This vulnerability showed that in future

tests additional scenarios for testing parallel interaction

should be defined. During development we also detected

a DoS vulnerability if two separate accounts are config-

ured. QuteCom regularly sends Option messages which the

used SIP Registrar answers with an Ok message. QuteCom

crashes directly with this behavior. For future work it will

be required to integrate further scenarios including several

registrations and parallel tests.

QuteCom crashed after sending a message with a manip-

ulated Length field. The error was detected by using the port

analyzer because the port is not available anymore after the

crash of the application, GUI Monitor because the window

of the softphone closed and CPU usage because the process

terminates.

During testing SIP Communicator we also detected a

problem in the GNOME implementation. The applet display-

ing an incoming call caused high CPU usage in the system.

We detected the problem because the tests take quite longer

than other tests. This problem showed that for future tests,

in addition to monitoring the CPU and memory usage of the

softphone process, also the CPU and memory of the system

should be analyzed because a misbehavior of the softphone

could also lead to an unstable system.

VI. DISCUSSION

Evaluating the performance of a fuzzer is a difficult

task, because only the detection of new vulnerabilities is

measurable. Without a benchmark with known vulnerabil-

ities, further analysis is not possible. The fuzzer detected

vulnerabilities, which were analyzed manually to evaluate

the result of the fuzzer.

The results showed that the implemented fuzzer frame-

work could identify vulnerabilities in SIP-based softphones.

The combination of multiple analyzers for a test execution

is essential to automatically detect vulnerabilities and reduce

the false-negative rate. The implemented combination of the

single analyzer results with the initial learning phase and the

weight for each analyzer improved error detection compared

to the results presented in [1].

Multiple detected vulnerabilities showed that interaction

with the SIP softphone via its GUI is essential to automat-

ically execute security tests. Some problems could only be

identified by interacting with the GUI.

The analyzers detected different vulnerabilities. The accu-

racies of analyzers are different depending on the measured

property. The analyzer monitoring the port detects failures

with high accuracy. Only network problems caused false-

positives, e.g., if a firewall blocks required ports.

Analyzing the responses based on a keyword table, i.e.,

verifying if a response contains specific keywords indicating

an error, has not produced reasonable results. The quality

of using this information for automated testing strongly

depends on the implemented error handling. In the tested

applications no relevant information for the analysis was sent

in the SIP response.

Analyzing GUI behavior showed that this can be an

important information for detecting vulnerabilities. Some

103

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the identified vulnerabilities were only detectable by

such an approach. The used OCR analyzer did not detect

vulnerabilities but the produced screenshots were helpful for

verifying the produced test results. For future work the OCR

analyzer should be improved to increase detection of the

characters within the image.

In the work presented in [1] Asterisk was used as a

proxy in the test environment. We encountered problems

with some messages, where Asterisk filtered messages and,

therefore, Asterisk was the test target and not the intended

SUT anymore. For the tests presented in this work we

implemented a special proxy, one which forwards fuzzed

data without modification.

By analyzing the fuzzer output, we identified significant

differences in the execution time of test cases within a

test run. We further investigated this finding, but could not

reproduce the results. By using timing as an aspect of an

analyzer during automated tests, it is required to use special

test environments which do not falsify timing properties. In

the used environment this requirement was not fulfilled.

For future work, the performance of the fuzzer should

be improved. Especially the GUI interaction should be

enhanced, because currently it is required to define delays

in order to allow the application to open windows, e.g., to

start a call. Minimizing the delay could improve the runtime

performance of test executions. For optimization we used

a test setup where multiple instances of the softphones are

tested parallel by the fuzzer. However, our focus for the cur-

rent implementation was the automatization of vulnerability

detection as opposed to minimizing execution time.

VII. CONCLUSION AND FUTURE WORK

This paper presents an automated security test approach,

which increases the security of VoIP communication by

identifying vulnerabilities in GUI-based SIP softphones. The

provided state-based extension of the fuzzer framework

fuzzolution allows for testing SIP states by sending SIP

messages and GUI actions to control the softphone, e.g.,

initiate calls.

Multiple analyzers are integrated to automatically monitor

the behavior of the SUT to detect vulnerabilities of VoIP

softphone implementations. The responses of the SUT are

analyzed and the port of the application is monitored. Addi-

tionally, the framework uses the log files of the softphones

and observes the GUI behavior of the SUT, which utilizes

changes of window states to determine errors, e.g., newly

opened dialogs or closed windows. The CPU and memory

usage of the process are monitored to detect extensive

usage after sending the test attacks. The implemented OCR

analyzer could not find an error because the displayed text

was not recognized correctly. However, the screenshots taken

by the OCR analyzer are helpful for further manual checks.

Messages are sent directly from the fuzzer to the SUT

for some test scenarios and for other scenarios a proxy is

used to send the messages. Instead of using Asterisk as done

for previous tests we implemented a special and robust SIP

registrar and proxy for the tests. Asterisk filtered some of

the invalid messages. The current used implementation does

not filter messages.

With the implemented fuzzer framework, two open source

SIP-based softphones were tested and various security vul-

nerabilities could be identified, e.g., DoS, memory corrup-

tion, improper validation of array index, use of uninitialized

variables and a kind of XSS. The amount of vulnerabilities

found in previous tests showed that further extensive security

tests with additional scenarios and variations are required for

the softphone applications. The current executed tests also

uncovered many security problems of the implementations.

As further work the possible SIP states should be configured

automatically to get the whole SIP state space for tests.

The previous version of the fuzzer framework produced

many false-positive results. In the current version the accu-

racy of the fuzzer test result was increased by improving

the analyzers on the one hand and on the other hand by

using a combination of the single analyzer results. To reduce

required time for manual analysis many additional function-

ality has been implemented, e.g., screenshot capturing or

grouping of test results based on the analyzer outputs.

The test execution was done on Linux systems. For future

versions it is required to implement GUI interaction and

observation for additional operating systems.

With the presented approach various vulnerabilities of

SIP-based softphone implementations could be identified.

The results show that GUI interaction and observation is

required to automatically test for security vulnerabilities of

softphone applications efficiently.

REFERENCES

[1] S. Taber, C. Schanes, C. Hlauschek, F. Fankhauser, and
T. Grechenig, “Automated security test approach for sip-based
voip softphones,” in The Second International Conference on
Advances in System Testing and Validation Lifecycle, August
2010, Nice, France. IEEE Computer Society Press, Aug.
2010.

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, “RFC
3261: SIP - Session Initiation Protocol.”

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of unix utilities,” Commun. ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[4] J. E. Forrester and B. P. Miller, “An empirical study of the
robustness of windows nt applications using random testing,”
in WSS’00: Proceedings of the 4th conference on USENIX
Windows Systems Symposium. Berkeley, CA, USA: USENIX
Association, 2000, pp. 6–6.

104

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design
and implementation. New York, NY, USA: ACM, 2008, pp.
206–215.

[6] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed
whitebox fuzzing,” in IEEE 31st International Conference on
Software Engineering, 2009. ICSE 2009., May 2009, pp. 474–
484.

[7] C. Schanes, “fuzzolution fuzzer framework,” 2011. [On-
line]. Available: http://security.inso.tuwien.ac.at/esse-projects/
fuzzolution/

[8] H. H. Thompson, “Why security testing is hard,” IEEE
Security & Privacy Magazine, vol. 1, no. 4, pp. 83–86, 2003.

[9] E. Y. Chen and M. Itoh, “Scalable detection of SIP fuzzing
attacks,” in Second International Conference on Emerging
Security Information, Systems and Technologies, 2008. SE-
CURWARE ’08., Aug. 2008, pp. 114–119.

[10] P. Oehlert, “Violating assumptions with fuzzing,” Security &
Privacy, IEEE, vol. 3, no. 2, pp. 58–62, Mar./Apr. 2005.

[11] T. Zourzouvillys and E. Rescorla, “An introduction to
standards-based voip: Sip, rtp, and friends,” Internet Com-
puting, IEEE, vol. 14, no. 2, pp. 69 –73, 2010.

[12] D. Endler and M. Collier, Hacking Exposed VoIP: Voice Over
IP Security Secrets & Solutions. New York, NY, USA:
McGraw-Hill, Inc., 2007.

[13] A. D. Keromytis, “Voice-over-ip security: Research and prac-
tice,” Security Privacy, IEEE, vol. 8, no. 2, pp. 76 –78, 2010.

[14] W. Werapun, A. A. El Kalam, B. Paillassa, and J. Fasson,
“Solution analysis for sip security threats,” in Multimedia
Computing and Systems, 2009. ICMCS ’09. International
Conference on, 2009, pp. 174 –180.

[15] C. Wieser, M. Laakso, and H. Schulzrinne, “Security testing
of SIP implementations,” 2003.

[16] H. J. Abdelnur, R. State, and O. Festor, “Kif: a stateful sip
fuzzer,” in IPTComm ’07: Proceedings of the 1st international
conference on Principles, systems and applications of IP
telecommunications. New York, NY, USA: ACM, 2007, pp.
47–56.

[17] U. Oulu, “PROTOS: Security testing of protcol
implementations.” [Online]. Available: https://www.ee.oulu.
fi/research/ouspg/Protos,2010-02-14

[18] C. Wieser, M. Laakso, and H. Schulzrinne, “Sip robustness
testing for large-scale use,” in SOQUA/TECOS, 2004, pp.
165–178.

[19] D. Aitel, “The advantages of block-based protocol analysis
for security testing,” Tech. Rep., 2002.

[20] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kem-
merer, and G. Vigna, “SNOOZE: Toward a stateful network
protocol fuzzer,” pp. 343 – 358, 2006.

[21] H. J. Abdelnur, R. State, and O. Festor, “Advanced fuzzing in
the VoIP space,” Journal in Computer Virology, vol. 6, no. 1,
pp. 57–64, 2010.

[22] T. Alrahem, A. Chen, N. DiGiussepe, J. Gee, S.-P. Hsiao,
S. Mattox, T. Park, A. Tam, and I. G. Harris, “INTERSTATE:
A stateful protocol fuzzer for SIP,” 2007.

[23] I. G. Harris, T. Alrahem, A. Chen, N. DiGiussepe, J. Gee,
S.-P. Hsiao, S. Mattox, T. Park, S. Selvaraj, A. Tam, and
M. Carlsson, “Security testing of session initiation protocol
implementations,” ISeCure, The ISC International Journal of
Information Security, vol. 1, no. 2, pp. 91–103, 2009.

[24] L. Feng and S. Zhuang, “Action-driven automation test frame-
work for graphical user interface (GUI) software testing,”
Autotestcon, 2007 IEEE, pp. 22 –27, sept. 2007.

[25] P. Godefroid, “Random testing for security: blackbox vs.
whitebox fuzzing,” in RT ’07: Proceedings of the 2nd in-
ternational workshop on Random testing. New York, NY,
USA: ACM, 2007, pp. 1–1.

[26] J. Neystadt, “Automated penetration testing with white-
box fuzzing,” Feb. 2008. [Online]. Available: \url{http:
//msdn.microsoft.com/en-us/library/cc162782.aspx}

[27] Z. Xiaochun, Z. Bo, L. Juefeng, and G. Qiu, “A test automa-
tion solution on GUI functional test,” 6th IEEE International
Conference on Industrial Informatics, 2008. INDIN 2008., pp.
1413 –1418, july 2008.

[28] J. Bo, L. Xiang, and G. Xiaopeng, “Mobiletest: A tool
supporting automatic black box test for software on smart
mobile devices,” in Proceedings of the Second International
Workshop on Automation of Software Test, ser. AST ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
8–. [Online]. Available: http://dx.doi.org/10.1109/AST.2007.9

[29] A. Johnston, S. Donovan, R. Sparks, C. Cunningham,
and K. Summers, “Session Initiation Protocol (SIP) Basic
Call Flow Examples,” 2003. [Online]. Available: http:
//www.ietf.org/rfc/rfc3665.txt

[30] M. Ronniger, F. Fankhauser, C. Schanes, and T. Grechenig, “A
robust and flexible test environment for voip security tests,”
in Internet Technology and Secured Transactions (ICITST),
2010 International Conference for, Nov. 2010, pp. 1–6.

[31] V. Lebedev, “Qutecom,” website, 2011. [Online]. Available:
http://www.qutecom.org/

[32] E. Ivov, “Sip communicator,” website, 2011. [Online].
Available: http://www.sip-communicator.org/

105

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Genomics-based Security Protocols: From Plaintext to Cipherprotein

Harry Shaw

Microwave and Communications Systems Branch

NASA/Goddard Space Flight Center

Greenbelt, MD, USA

harry.c.shaw@nasa.gov

Sayed Hussein, Hermann Helgert

Department of Electrical and Computer Engineering

George Washington University

Washington, DC, USA

drsay@gwu.edu, hhelgert@gwu.edu

Abstract—The evolving nature of the internet will require

continual advances in authentication and confidentiality

protocols. Nature provides some clues as to how this can be

accomplished in a distributed manner through molecular

biology. Cryptography and molecular biology share certain

aspects and operations that allow for a set of unified principles

to be applied to problems in either venue. A concept for

developing security protocols that can be instantiated at the

genomics level is presented. A DNA (Deoxyribonucleic acid)

inspired hash code system is presented that utilizes concepts

from molecular biology. It is a keyed-Hash Message

Authentication Code (HMAC) capable of being used in secure

mobile ad hoc networks. It is targeted for applications without

an available public key infrastructure. Mechanics of creating

the HMAC are presented as well as a prototype HMAC

protocol architecture. Security concepts related to the

implementation differences between electronic domain security

and genomics domain security are discussed. This paper

demonstrates a practical path to a composable, standardized

biological internet security protocol that encompasses

biological and computing domains.

Keywords-HMAC; keyed Hash Message Authentication

Code; Cryptography; DNA; PKI; public key infrastructure;

MANET; cipherprotein; epigenetics; security architecture

I. INTRODUCTION

The ability to authenticate the identity of participants in a
network is critical to network security. Bimolecular systems
of gene expression ―authenticate‖ themselves through
various means such as transcription factors and promoter
sequences. They have means of retaining ―confidentiality‖ of
the meaning of genome sequences through processes such as
control of protein expression. These actions occur
independently of a centralized control mechanism. The
overall goal of the research is to develop practical systems of
authentication and confidentiality such that independence of
authentication and confidentiality can occur without a
centralized third party system.

Genes are capable of expressing a wide range of products
such as proteins based upon an alphabet of only four
symbols. This research implements a keyed-HMAC system
using a DNA-based code and certain principles from
molecular biology. The system will permit Mobile Ad hoc
Networks (MANET) to distinguish trusted peers, yet tolerate

the ingress and egress of nodes on an unscheduled,
unpredictable basis. The system allows for authentication
without a Public Key Infrastructure (PKI), X.509 certificates,
RSA and nonce exchanges, etc. It also provides for a
biological authentication capability.

This paper will move between the electronic and
genomics contexts when discussing the protocols and their
potential instantiation. This scheme can be used to create
encrypted forms of gene expression that express a unique,
confidential pattern of gene expression and protein synthesis.
The ciphertext code carries the promoters (and reporters and
regulators) necessary to control the expression of genes in
the encrypted chromosomes to produce cipherproteins.
Unique encrypted cellular structures can be created that can
be tied to the electronic hash code to create biological
authentication and confidentiality schemes.

This paper is organized as follows:

 Background information on the state of the art and a
description of the elements of the prototype genomic
HMAC architecture

 A description of the DNA code encryption process,
genome selection and properties

 The elements of the prototype protocol architecture
and its concept of operations

 A short plaintext to ciphertext encryption example.

 Description of the principles of gene expression and
transcriptional control to develop protocols for
information security. These protocols would operate
in both the electronic and genomic domains.

II. BACKGROUND OF DNA CRYPTOGRAPHY

The use of DNA as a cryptographic medium is not new.
DNA encryption systems are one of the paths taken in the
field of molecular computing. Systems using DNA as a one-
time code pad in a steganographic approach have been
described [1], [2]. An image compression – encryption
system using a DNA-based alphabet [3] was demonstrated
including a genetic algorithm based compression scheme.
Schemes utilizing DNA encryption utilizing dummy
sequences of DNA have been published [4]. The
steganographic approach is highly desirable because DNA
provides a natural template for the hidden message approach
[5]. It also appears in applications such as DNA watermarks
[6] and specifically DNA watermarks to identify genetically

106

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modified organisms utilizing the DNA-Crypt algorithm. [7].
This algorithm permits a user to insert encrypted data into a
genome of choice.

The research described herein is not just about inserting
encrypted sequences into genomes. It will insert messages
that can control gene expression through a variety of
mechanisms. It is also focused on a broader goal of
extending biological mechanisms that control gene
expression into a domain that includes network
authentication.

III. ELEMENTS OF THE GENOMICS HMAC ARCHITECTURE

Plaintext is mapped into a reduced representation
consisting of an alphabet of q letters, where q = 4 for a
genomic alphabet such as DNA or Ribonucleic acid (RNA),
q = 20 for proteomic alphabet, or other values when
representing other functions in molecular biology, e.g.,
histone code. The actual HMAC requires additional base
representations beyond the four DNA bases, but the
minimum requirement is shown in (1) and (2) [8]. B is the
set of DNA bases A, T, C and G, which represent the
molecules adenine, thymine, guanine and cytosine and
represent the entire alphabet of the genomic hash code.
DNA bases have the property that the only permitted pairs
are Watson-Crick matches (A-T), (C-G), thus, the binary
representations of B and B‘ sets are complimentary such
that a r-bit length sequence of Bq and B‘q maintain the
identity property shown in (3). Assignment of letter to DNA
base sequences is performed. Letters with greater frequency
can be assigned shorter DNA sequences to reduce the code
size.

A. Lexicographic and DNA representation of plaintext

Plaintext words, P are converted into a numerical form
suitable for subsequent coding into the cryptographic
alphabet of the required code. Plaintext words are coded such
that a lexicographic order is maintained between words, i.e.,
the numerical forms may take either integer or floating point
representations. F is a function that converts the plaintext to
lexicographic numerical form. D represents the numerical
form of the dictionary (lexicographically ordered set) such
that D1,..n represents the set of all words. The subset of D1,..i

represents the subset of words in the plaintext message. The
function U assigns the DNA base sequence corresponding to
the Di as shown in (4), (5) and (6). L is the plaintext message
coded into the DNA alphabet found in sets B and B‘.

B. Sentence-message order coding

A system of linear equations codes the lexicographic
position of each word relative to the sentence position of
each word. This complicates detection of words based upon
frequency analysis. Multiple appearances of the same word
are uniquely coded. As a minimum requirement, if there are i
DNA representations in the message, and n represents a
numerical sequence related to the number of DNA
representations in the message (the simplest case being i = 1,
2, 3, …, n), then the system of linear equations shown in (7)
provide the solutions for sentence-message order coding.

 GCTABq ,,, (1)

 CGATBq ,,,' (2)

qrBB r

q

r

q ,....,1 1 ' (3)

Equations 1 and 2 define the sets containing the DNA
bases that comprise the alphabet for the HMAC code.
Equation 3 defines the complimentary relationship required
for the binary representations of the members of that space.
For example: the XOR product of the r

th
 bit of A and T is a

one as is true for T and A, C and G, G and C.
Equation 4 defines each word in the message, Pi as a

member of a set of all words in a lexicographically ordered
dictionary. Equations 5 and 6 show the operation of the
function that assigns a DNA sequence using the members of
the set of DNA bases to a coding of concatenated sequences
labeled L and L‘. L and L‘ maintain the same complimentary
relationship that is a property of the individual DNA bases in
the sets Bq and B‘q.

This yields a series of coefficients x1, x2, … , xi that are
concatenated as shown in (8). The binary representation of
each coefficient undergoes bit expansions such that only Bq
or B‘q codes are represented in the bit stream created by (8).
X represents the relationship between lexicographic coding
of the words and their position in the message.

niDDPFD iiii)(1 (4)

),(||...||),(||),(21 qiqq BDUBDUBDUL (5)

),(||...||),(||),(''

2

'

1

'
qiqq BDUBDUBDUL (6)

..

D ...

.....................

D ...

D ...

...

2

1

132

1-i1

i21

2

1

i

i

i
r

r

r

DD

DD

DD

x

x

x

 (7)

ixxxX ||...|||| 21 (8)

XLM (9)

C. Message coding

DNA coding on the message is completed by XOR and
bit expansions to maintain the DNA base coding in the
binary sequence in the operation shown in (9). M is the
plaintext message coded into the DNA alphabet and coded
again with the sentence-message coefficients. This sequence
will be subjected to encryption.

The set of linear equations in equation 7 provide the
process of sentence-message order coding using the r

th

107

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

position in the message to code each word of the message.
The resulting coefficients are concatenated and XOR‘d with
the coded plaintext message to produce the ciphertext
message.

IV. ENCRYPTION PROCESS

Approximately 800 genomes have been sequenced [9].
The human genome alone has approximately 3.2 million
base pairs. The sets of genomes provide for the possibility of
―security by obscurity‖. Additionally, there is an infinite
number of ways to use genome sequences as cryptographic
keys. However, genomes have high degrees of redundancy
and sequence conservation across species. Consequently,
sections of genomes used as keys should be treated as one-
time pads. The first step is to select a genome and a sequence
from that genome and encode it with the binary
representations of Bq and B‘q.

DNA consists of two complimentary sequences, referred
to as the sense and antisense strands as shown in Fig. 1 [10].
A DNA sequence has a start point called the five-prime end
(5‘) and an endpoint called the three-prime (3‘). In
biochemistry, the 5‘ and 3‘ designations refer to orientation
of each strand necessary for proper replication and
transcription. The complements are bonded to each other
base by base to create base pairs. The antisense strand is
oriented in the 3‘ to the 5‘ direction, relative to the sense
strand. For a DNA encryption key, both sense and antisense
strands can be encoded and utilized. Figs. 2 and 3
demonstrate two ways of implementing the chromosome
encryption key in the HMAC scheme. Fig. 2 represents the
simplest scheme, in which successive bases from the key and
message are XOR‘d and a single ciphertext message is
produced. Encryption proceeds in the 5‘ to 3‘ direction using
the sense strand. Fig. 3 represents a more complex scheme,
in which both sense and antisense bases from key and
message are XOR‘d. Encryption proceeds in the 5‘ to 3‘
direction in both strands.

A. Mismatches and Annealing

The encryption process generates base pair mismatches
that do not conform to the A-T, C-G pairing rule. These
mismatches are central to creating a one-way hash code.
Subsequent to the encryption step, the mismatches are
resolved through an annealing process that results in an
irreversible transformation of the encryption sequence not
directly traceable to the original ciphertext.

V. PROTOTYPE DNA-BASED, KEYED HMAC SYSTEM

Assume a network such as the one shown in Fig. 4. Jack,
Jill, JoAnn and Lisa wish to form a secure MANET. In the
same wireless transceiver space can be found X and Y whose
intentions are unknown, but are capable of sending and
receiving messages. Jack, Jill, JoAnn and Lisa possess all of
the required authentication tools:

 A common genome, C, to use as an HMAC key.

 A pre-shared secret, pss, unique to each party.

 The DNA-based HMAC algorithm.

Consider two authentication scenarios. In the first
scenario Jack, Jill, JoAnn and Lisa send and receive cleartext
messages using the DNA-based HMAC authentication. If the
receiver is not the intended destination, the receiver
rebroadcasts the message with their hash and the process
continues until the message reaches the intended receiver or
until a message time-out period elapses. X and Y also
receive the cleartext messages and hash codes. X and Y may
possess the algorithm. However, if X and Y wish to
substitute a new message with a valid hash code, or forward
the message and have it accepted by the network members,
they have to create a valid hash code and checksum, which
requires knowledge of the chromosome sequence and valid
pre-shared secrets known to the other MANET nodes. The
MANET members change their pre-shared secrets on a pre-
established basis to thwart a brute force attack to derive the
pre-shared secret from the hash code.

In the second scenario, Jack, Jill, JoAnn and Lisa wish to
establish a trust relationship before exchanging sensitive
information across a MANET. In this case, the participants
utilize a confidentiality (encryption) protocol for the
messages and establish a chain of custody using keyed
HMAC authentication. A hash chain of hash codes is
established such that each recipient can determine the origin
and subsequent hops of the message. In this case, X and Y
cannot read the plaintext and the hash code transcript may be
encrypted and compressed with the ciphertext.

A. Genomic hash code properties

Table 1 summarizes the properties of the prototype hash
code against the requirements for an ideal hash code [11].
Fig. 5 provides a flow chart of the genomic hash coding
process.

B. Initialize and Perform Lexicographic and DNA

assignments

The plain text message is read and parsed into 3-word
blocks (3WB). Take each word in the string, assign it a
lexicographic value of x.yyyy….y where x = 1,....,26
corresponding to the first letter of the word and subsequent
letters are assigned to each successive decimal place until the
entire word is coded in a rational number. Assign a DNA
letter code to each letter. Most common English alpha
characters use 2-letter codes, the rest use a 3-letter code as

shown in Table 2. The column labeled ‗‘ is the English
alphabetic character adjacent to its DNA code equivalent. As
an example, the short phrase ‗jump out windows‘ is shown in
its lexicographic and DNA assigned forms in Table 3.

C. Binary representation of the DNA bases

The four DNA bases (A, T, C, G) are represented by
binary sequences (0011, 1100, 1001, 0110). The remaining
12 four-bit sequences code for transitional base sequences
that are used to anneal mismatches in the encryption process
as shown in Table 4. The ‗Key‘ column represents the base
in the chromosome encryption key. The ‗M‘ column
represents the corresponding base in the DNA coded
message.

108

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The ‗Result‘ column represents the results of encrypting
the key onto the message. The ‗Anneal‘ column represents
the final ciphertext base. In an operational system, all codes
would be significantly lengthened to thwart brute force
attacks.

TABLE 1. GENOMIC HASH CODE PROPERTIES.

Property Compliance

Produces a fixed length output. 2560 bits

Can be applied to a block of data of any

length
Yes.

H(x) is relatively easy to compute for any

message x.

Yes. 12 step process for

hash code.

One-way property. For any h, it is

computationally infeasible to find H(x)=h
To be determined

Weak collision resistance. For a set of xi

messages, with y≠xi for all i, no

H(y)=H(xi) for all i.

Yes.

Strong collision resistance. For any x,

with yx, no H(y)=H(x)

No. Messages ≤ 512 bits

require padding

TABLE 2. SAMPLE OF ALPHA TO DNA CONVERSION CODES.

 DNA DNA DNA DNA

0 CGG G TT N TG U CT

A GC H AC O AG V CTG

B TGT I AA P GA W CAC

C TC J AAG Q CCT X GTA

D GT K ACT R CC Y GTT

E TA L AT S GG Z TAG

TABLE 3. PLAINTEXT TO LEXICOGRAPHIC ORDER AND DNA

LETTER CODES.

Conversion

Plain text
Lexicographic

Conversion
DNA Conversion

1 jump 10.211316 AAGCTCGGA

2 out 15.2120 AGCTCA

3 windows 23.9144152319
CACAATGGTAGC

ACGG

TABLE 4. ENCRYPTION AND ANNEALING TABLE.

Key M Result Anneal Key M Result Anneal

A T T G C G G A

A A gA C C A aA C

A C gC T C C aC G

A G gG A C T aT T

T A A T G C C C

T G cC G G A tA G

T C cG A G G tG A

T T cT C G T tT T

D. Encryption, Mismatches and Annealing

Fig. 5 also provides a short example of the encryption
and annealing process. Each base in the chromosome is
XOR‘d against the corresponding base in the message. If the
base in the message is the complement of the base in the
chromosome, the base in the message is copied to the
encrypted output string and then altered to a new base in the
annealed output string If the base in the message is not the
complement of the base in the chromosome, a transitional
base, whose value depends upon the mismatch is written to
the encrypted output string. The 5‘ base always determines
the change in the other strand; consequently, a 5‘ G
mismatch always codes for a 3‘ transitional base. This
feature allows tracking of point mutations and provides a
future expansion capability for mutations. The annealing
process also alters the encrypted result by transforming the
positions that are not mismatches.

E. Cryptographic Genome

 Mycoplasma genitalium G37 (National Center for
Biotechnology Information accession number NC000908.2)
is the bacterial genome used as an encryption key in the
prototype system. There are a number of characteristics of
M. genitalium that make it a good candidate as an
encryption key base. It is small (it may be the smallest, self-
replicating genome). It has 580,070 base pairs with 470
predicted coding regions. M. genitalium has a low G+C
content of 34% [12]. A random, uniform distribution of
basepair content would provide for 50% G-C pairs and 50%
A-T pairs. This feature provides some testability
advantages. The genome contains 470 predicted protein
coding regions, which is a manageable number of potential
cipherproteins. Knowledge of the genome coding
characteristics is important in selecting and utilizing
genomes as cryptographic keys. Approximately 62,000 base
pairs are being utilized from the M. genitalium genome for
the prototype HMAC.

F. Protocol for Message Authentication.

The process is as follows:

 Encode the plaintext message into DNA code (Pre-
sense message) 3 words at a time (3 word blocks –
3WB)

 Encrypt with pre-shared secret chromosome key and
generate sense and antisense strands.

 Different chromosome segments are used to encrypt
each 3WB for increased key confidentiality.

 Combine sense and antisense strands to create a
checksum (S).

 Anneal the sense strand (Sender) or the antisense
strand (Receiver) removing the transitional bases in
the 3WBs.

109

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

110

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

111

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Concatenate the first 64 DNA bases from the first
nine 3WBs to create the Promoter (P).

 Append the checksum to the Promoter. The
Promoter || checksum is the Hash Code, K (2560
bits long). The sender and receiver processes are
summarized in Fig. 6.

The receiver extracts the Promoter and checksum from
the message. The hash code computed at the receiver must
have the complement of the Promoter sequence and an exact
match of the checksum. Sender and receiver must have the
pre-shared secret of the genome, and the location of the first
base of the sequence. A sample of the output for the test
message ‗jump out windows‘ is shown in Fig. 7. The hash
code has been truncated for test and presentation purposes.

G. Short Message Performance

A critical factor in determining the goodness of a hash
code is the ability to satisfy criteria four and five from Table
1. A hash code algorithm should not produce identical hash
code outputs for two or more different messages.
Performance of short messages was evaluated for soft and
hard collision resistance. The number of MAC
verifications, R, required to perform a forgery attack on a
m-bit MAC by brute-force verifications [13] is shown in
equation 10:

111 22/)12(2 mmmmR (10)

The variable R is an approximate upper bound to the
brute-force verification limit. Short messages were
repeatedly hashed using over different cryptographic
sequences to look for collisions. The process is shown in
Fig. 8. Table 5 summarizes the results of those tests.

The single letter message exhibited 403 checksum
collisions and 466 hash code collisions. Chromosomes have
a high degree of redundancy and repetition; therefore short
messages will require padding to eliminate hash code
collisions. These statistics utilize different transcripts on the
same message to identify potential collisions. These
statistics should be indicative of the potential for multiple
messages to produce the same hash code from a single
transcript. For secure authentication purposes, this code
must be implemented with higher level protocols that would
block a brute force attack and not reuse genome sequences
for authentication. It must also move the starting point in
the genome to widely separated start positions to prevent an
attacker from guessing the encryption sequence.

Figure 8. Collision resistance tests for short messages.

TABLE 5. SAMPLE OF HASH CODE COLLISIONS

P
la

in
 T

ex
t

M
sg

 L
e
n

g
th

H
a

sh
 C

o
d

e

L
e
n

g
th

T
o

ta
l

H
a

sh

C
o

d
e

C
o

ll
is

io
n

s

T
o

ta
l

C
/S

C
o

ll
is

io
n

s

R

z 1 22 466 403 2097152.5

ly 2 30 255 214 536870912.5

cat 3 36 136 109 34359738369

vent 5 64 0 0 9.22337E+18

aeiou 6 64 0 0 9.22337E+18

jump out windows 16 64 0 0 9.22337E+18

jump out windows

jump out windows
jump out windows

jump out 59 256 0 0 5.7896E+76

the 123 of my

fields are very
large please

require all

personnel to take
their equipment

with them for the

work to be
performed in

365777 small

increments it will

be good to get

practice on these
tasks 201 576 0 0 1.2367E+173

A hash code must be secure against the possibility that

the cryptographic key, in this case the original genome
sequence cannot be recovered from the hash code. Fig. 9
represents a small MANET example for developing trust
metrics.

Assume Jack is broadcasting forward requests to
establish a link with Lisa and Lisa is broadcasting return
route requests to Jack to establish a return link. Jill is
relaying route requests in both directions. Felix wishes to
join the MANET. Each node is capable of dynamically
appearing and disappearing from the network at will via
application of a dynamic source routing protocol. Each node
can also take the role untrusted/unknown trust or trusted
depending upon the situation. Source and Destination must
determine the trustability of a potential route through some
quantitative means. In this case successful forward and
return route requests (FREQ, RREQ) and route delays are
used to create the trust metrics. The sources and
destinations can set the minimum level of trust for routes via
a dynamic fitness algorithm.

To establish Felix as a trusted member, he relays
forward REQs from Jack destined for Lisa and return REQs
from Lisa destined for Jack with his DNA HMAC
authentication attached. JoAnn, does not respond to route
requests and those requests time-out.

112

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. MANET route establishment at a slice in time.

Y is a malfeasor attempting to breach the network by
sending route requests with counterfeit DNA HMAC
authentication and analyzing received DNA HMACs for
vulnerabilities. Assume that when Y sends a counterfeit
route request, genuine nodes respond with negative
acknowledgement attached to a genuine authentication code.
The questions to be answered are:

 Can Y establish a counterfeit authentication code

(hash + checksum) for the current session (however

a session is defined)?

 Can Y utilize the stolen information to recover

information that might be useful for a future

network breach?
If Y can recover the original cryptographic sequence, or

determine the genome and genome location a cryptographic
key was taken from, Y may be able to forge a valid hash
code. This could be problematic for a cryptographic
sequence due to the high degree of redundancy in the all
genomes. For this application, the hash code must be
evaluated against the cryptographic key to ensure it has the
proper characteristics of diffusion and confusion.

VI. MUTATION EFFECTS, FITNESS, DIFFUSION AND

CONFUSION

Life is intolerant of a high mutation rate in its genetic
code. Ribonucleic acid (RNA) viruses have the highest
mutation rate of any living species, 10

-3
 to 10

-5

errors/nucleotide and replication cycle [14]. The human
DNA mutation rate has been approximated to be on the
order of 10

-8
 errors/nucleotide and generation [15]. Injection

of mutations into DNA encrypted messages is an approach
to improving the encryption process. Because of the
dynamic, evolutionary nature of this approach, potential
intruders must continually intercept decoding instructions
between source and destination. Missing one generation of
genome decryption information seriously corrupts the
analysis process. Missing multiple generations eventually
renders previous decryption analyses useless.

In evolutionary biology, fitness is a characteristic that
relates to the number of offspring produced from a given
genome. From a population genetics point of a view the
relative fitness of the mutant depends upon the number of

descendants per wild-type descendant [16]. In evolutionary
computing, a fitness algorithm determines whether
candidate solutions, in this case encrypted messages, are
sufficiently encrypted to be transmitted. This DNA
encryption method uses evolutionary computing principles
of fitness algorithms to determine, which encrypted mutants
should be selected as the final encrypted ciphertext. Two
parameters, Confusion and Diffusion are being used as the
basis of the fitness criteria. Diffusion and Confusion are
fundamental characteristics of ciphers. Shannon [17]
describes them as:

1) Diffusion: any redundancy or patterns in the plaintext

message are dissipated into the long range statistics of the

ciphertext message.

2) Confusion: make complex the relationship between

the plaintext and ciphertext. A simple substitution cipher

would provide very little confusion to a code breaker.

The challenge is to create a set of FREQ and RREQ

messages that hash into codes with a high degree of
diffusion and confusion. One strategy for attacking the
authentication message is to generate long strings of zeros
and identify the correct code for the non-zero positions. If a
message generates long strings of zeros it is particularly
vulnerable to a key recovery attack because the attacker can
reduce the number of bit matches required by the length of
zero bit blocks. Table 7 summarizes test results of 1000
trials on messages consisting of zeroes and spaces against
the genome. No collisions were identified. The hash code
will be tested against all other single character strings to
identify patterns. A sample hash code of a string of 192
zeros is shown below in Table 6.

TABLE 6. SAMPLE HASH CODE STRING OF 192 ZEROS

Checksum DNA Hash Code

10437404

AATTCTAAGTTCCCGCCCGTCGGTCCGCCGCCC

GTCCGGTCCGCCGCCCGTCCCGGTCCGCCGCA
ATCTCAATTCTCGCCCGTCGGTCCGCCGCCCGT

CCGGTCCGCCGCCCGTCCCGGTCCGCCGCCAA

CTCCAATCTTGCCCGTCGGTCCGCCGCCCGTCC
GGTCCGCCGCCCGTCCCGGTCCGCCGCCCAAT

CCGAACTTCCCCGTCGGTCCGCCGCCCGTCCG

GTCCGCCGCCCGTCCCGGTCCGCCGCCCGAAC
CGTAATTCTCCGTCGGTCCGCCGCCCGTCCGGT

CCGCCGCCCGTCCCGGTCCGCCGCCCGTAACG

TTAATCTTCGTCGGTCCGCCGCCCGTCCGGTCC
GCCGCCCGTCCCGGTCCGCCGCCCGTCAAGTT

CAACTTTAATCCGAACTTCAATCGTAACGTTA

ATCTTTCGTTTAAGTTCAACTTTAATTAATTCT
AATTTCAACCGTAATTCTAACGTTAAGTTCAAC

TTTCGTTTCAATTCTAATTTCAATC

TABLE 7. TEST RESULTS ON REDUNDANT STRINGS OF ZEROES MESSAGES

Length of ‘0’s in Plain

Text
Number of Collisions after 1000 trials

64 0

96 0

192 0

113

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Next the hash codes were compared to the original
cryptographic keys to evaluate diffusion and confusion.
Table 8 displays four mutation samples from 50
combinations of hash codes on the message ‗jump out
windows‘ with encryption keys from the genome. The
process was run on 1000 message combinations at a time.
Mutants 4 and 25, for example would be particularly poor
fits due to the number of consecutive matches between the
hash code and encryption key. Mutant 10 has only one
match of two consecutive bases and a fewer than ¼ of the
bases are identical between the hash code and key. Each
position in the hash code has 1 of 4 chance of randomly
matching the same location in the encryption key. The
confusion metric counts the number of 2-base, 3-base, 4-
base and 5-base consecutive matches between the hash code
and the key. Each combination actually represents a mutant
message, which can be further evaluated via a genetic
algorithm. One of the major advantages of this system of a
conventional encryption system is the ability to provide a
set of encrypted outputs from, which the most fit (best)
member can be selected.

TABLE 8. SAMPLE MUTANT ENCRYPTIONS FOR HASH CODES AND DNA
ENCRYPTION KEY FOR MESSAGE ‗JUMP OUT WINDOWS‘

ID 64 Base Pair Hash Code Cryptographic key

Mutant 4 AAAAAATGATGGTCCGC

CAGTGCTCCGGCTCTCCA

ATGCCTGAATCAGATGG

AGAGATTCTGGC

TAAGTTATTATTTA

GTAAGTTATTATTT

AGTTAAGTTATTAT

TTAGTTTAAGTTATT

ATTTAGT

Mutant 10 AAAAAACGATGGCTGGC
GATCTCTCCGTTCCCGTA

ACTCCTGAAGGATAGCT

ATAGATTCCCTC

TTATAAGTTATTATT
TAGTAAGTTATTAT

TTAGTTAAGTTATT

ATTTAGTTTAAGTT
ATTATTT

Mutant 23 AAAAAAGGAGGGCGGG

CCAGTGCTCCGGCTCTTC
AATCGCGTAAGTAGATC

CACAGAGTGTCTG

AAGTTATTATTTAG

TTAAGTTATTATTTA
GTTTAAGTTATTATT

TAGTTATAAGTTAT

TATTTA

Mutant 25 AAAAAAGGAGGTTTGTG

TAGCGTTTGGGCCCTCG

AACCGGCGAAGGAGAGG
GAGATATCTTCCC

GTTAAGTTATTATTT

AGTTTAAGTTATTA

TTTAGTTATAAGTT
ATTATTTAGTTAAT

AAGTTAT

TABLE 9. SAMPLE DIFFUSION AND CONFUSION SCORES FOR HASH CODE
FOR MESSAGE ‗JUMP OUT WINDOWS‘

ID

Diffusion -

matching base pair

positions

Confusion - consecutive match

positions

2 3 4 5

Mutant 4 25 9 5 3 2

Mutant 10 11 1 0 0 0

Mutant 50 14 3 0 0 0

Mutant 25 21 5 1 0 0

A. Intronic sequence padding and potential frameshift

mutations can increase cryptographic hardness

Padding short messages and short words has been
previously discussed as a means to decrease collisions and
reduce the likelihood of successfully forging messages.
Adding padding to the front of messages as well as the end
and padding short words makes it more difficult for an
attacker to find the start of the coded message sequence. The
analogy in molecular biology is the frameshift mutation, in
which changing the starting position for a single nucleotide
can result in a completely different protein sequence as
shown in Fig. 10. The mechanics of DNA transcription in
cells relies on a number of properties to identify the
nucleotide triplet sequence that actually transcribes to
mRNA, which translates to a protein. Some of the
mechanics are thermodynamic and biochemical in nature
such as DNA folding, binding to transcription factors, and
chromatin relaxation in eukaryotes. Some of the mechanics
are sequence related. Four types of sequences and
mechanisms from molecular biology are directly relevant to
this discussion:

1) Start codon: (usually ATG) to specify the

transcription start site (three letter sequence that ultimately

specifies the first amino acid in the protein to be translated.)

2) Stop codon: (TAA, TGA, TAG) to end transcription.

3) Promoters. The function of promoters is different in

prokaryotes and eukaryotes, but as a general statement, the

promoter is sequence of nucleotides necessary to locate the

transcription starting point. In eukaryotic genes that contain

a promoter, the sequence often contains the letters ‗TATA‘

hence the term ‗TATA box‘.

4) Enhancers. In eukaryotes, a variety of sequences

upstream and downstream from the transcription site

provide binding sites for transcription factors (proteins)

necessary to enhance protein expression.

The transcription (decryption) of DNA uses these

sequences as markers for process control. But the sequences

can have multiple interpretations. ATG within a gene codes

for the amino acid methionine; at the start of a gene it is a

start codon. All instances of TATA do not signify a

promoter. These ambiguities provide DNA with its own

version of adding diffusion and confusion, and the analyst

must fully understand the rules and mechanisms of

transcription. In fact, research in gene expression starts with

unambiguously identifying the actual gene sequence that

codes for proteins (in eukaryotes this is called the exon

region) from intervening sequences that are untranslated

regions that do not code for proteins (intron regions) as

shown in Fig. 11 for the human gene hspB9, which codes

for heat shock protein B9 (Ensembl ENSG00000197723).

Referring back to Fig. 10, transcription from a different start

site would yield a different outcome, one that is possibly

fatal to the organism. Padding creates introns spread

throughout the message (exon).

114

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Frameshift Mutations

Figure 11. Confusion factors in actual DNA genome

The same confusion and diffusion factors would apply
when crafting DNA coded messages for the electronic
domain that will be later instantiated into actual genomes.
The ciphertext must be capable of meeting the requirements
of the cryptographic hardness in the electronic domain while
producing a ciphertext that can be reliably integrated into a
cellular genome via standard techniques, transcripted into
RNA, and translated into the appropriate cipherprotein.
Decryption (expression) of the cipherprotein gene occurs in
response to specific decryption instructions hidden within
the electronic domain ciphertext .

VII. RELATIONSHIP BETWEEN CRYPTOGRAPHY AND GENE

EXPRESSION

The following relationships can be observed between the
cryptographic treatment of messages and control of gene
expression. In the case of gene expression, the message is
genomic (DNA or RNA sequence).

 Cryptography transforms messages between two
states: plain and encrypted.

 Cryptography uses operations such as circular
shifts, bit expansions, bit padding, arithmetic
operations to create ciphertext. These operations
have analogs in molecular biology, e.g.,
transposable elements

 Cells transform DNA sequences in genes between
two states: Expressed (decrypted) and Silent
(encrypted)

 In prokaryotes a simple system involving operators
and repressors can be described in terms of
encryption and decryption, but prokaryotes have
fewer mechanisms available for a rich set of
cryptographic protocols. Fig. 12 provides an
example from Escherichia coli using lacZ gene
expression.

In this prokaryotic example from E. coli, the lacZ gene

expresses the -galactosidase enzyme when lactose is

present and the simple sugar glucose is absent. -
galactosidase metabolizes lactose into glucose and
galactose. It would be inefficient to express the enzyme
above a trace level if glucose is present. Fig. 12 provides a
cryptographic analogy to the states of the lacZ gene under
the various conditions of glucose and lactose present,
lactose present, and lactose absent. The lacZ gene is
encrypted when lactose is absent or both lactose and glucose
are present. A repressor protein (rep) authenticates (binds)
to the encryption site (lacZ operator) on the lacZ gene with
lactose is absent. A catabolite activator protein (CAP)
authenticates (binds) to the decryption site (CAP site)
allowing RNA polymerase to decrypt (express) the lacZ
gene when glucose is absent. All of these operations are
shown as analogies to elements of cryptographic message
traffic in operations shown in Fig. 12. It is possible to write
the description of the gene expression sequence in Fig. 12 in
terms of a series of messages between a sender and receiver.

Fig. 13 shows the architecture of the DNA HMAC
(without all the required control regions) described in detail
in this paper and its comparison between gene
transcriptional control structures for a typical mammalian
gene, and a simple, yet important eukaryote, yeast (S.
Cerevisiae). The DNA HMAC structure preserves the intent
of the design to mimic a genomic transcriptional control
structure.

A successful, in vivo instantiation of a DNA HMAC
system will require specific stop codons, start codons,
promoters and enhancers sequences. An in vivo DNA
encryption system should be multi-dimensional, utilize
primary, secondary and tertiary structural information and
include up/downstream regulators such that a single
sequence can be seamlessly implemented at the genomic
level and have multiple levels of encryption at the message
or data level, depending upon the context (only known
between sender and receiver). This approach also permits
generation of mutant hash codes, which can be evaluated for
fitness such that only the best hash code is selected for
authentication purposes.

A. Epigenetic relationships between cryptography and gene

expression.

Epigenetics involves heritable control of gene
expression that does not involve modifications of the
underlying DNA sequence [18]. Examples of epigenetic
effects include: DNA methylation of cytosine residues, and
control of gene expression via the higher order structures of
DNA. In eukaryotes, DNA is packed into a hierarchy of
structures: nucleosomes → chromatin → chromosomes
Chromatin states can also be utilized as a form of encryption

115

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and decryption by exposing or not exposing genes for
transcription. Examples include:

 Heterochromatin form (encrypted) and Euchromatin
form (decrypted) .

 Transcriptional memory via modification of
chromatin states [19].

 Histone Code. A complex series of regulatory
activities, which include histone lysine acetylation
by histone acetyl transferase – transcriptionally
active chromatin (decrypted); Histone lysine
deacetylation by histone deacetylase –
transcriptionally inactive (encrypted) [20], [21].

Expansion of the cryptographic protocols to include
epigenetic operations will increase the richness of the
protocols and the options for producing combinations of
cipherproteins.

VIII. CONCLUSION

A cryptographic hash code based upon a DNA alphabet
and a secure MANET authentication protocol has been
presented. These codes can be utilized at the network level
or application level and can also be implemented directly
into genomes of choice to provide a new level of ciphertext
communication at the genomic and proteomic level. The
DNA inspired cryptographic coding approach is an option in
developing true MANET architectures and developing novel
forms of biological authentication to augment those
architectures.

ACKNOWLEDGMENT

Thanks to the NASA Space Network, NASA/GSFC
Exploration and Space Communications Projects Division,
and the NASA Space Communications and Navigation
Program office for supporting this research.

REFERENCES

[1] H. Shaw, S. Hussein, and H. Helgert, "Prototype Genomics-
Based Keyed-Hash Message Authentication Code Protocol,"
2nd International Conference on Evolving Internet, pp. 131-
136, September 2010, doi: 10.1109/INTERNET.2010.31

[2] A. Gehani, T. LaBean, and J. Reif, ―DNA-based
Cryptography, Aspects of Molecular Computing‖, Springer-
Verlag Lecture Notes in Computer Science, vol. 2950, pp.
167—188, 2004.

[3] N.G. Bourbakis, ―Image Data Compression-Encryption Using
G-Scan Patterns‖, Systems, Man, and Cybernetics, IEEE
International Conference on Computational Cybernetics and
Simulation, vol. 2, pp. 1117—1120, October 1997, doi:
10.1109/ICSMC.1997.638099

[4] A. Leier, C. Richter, W. Banzhaf, and H. Rauhe,
―Cryptography with DNA binary strands‖, BioSystems, vol.
57, issue 1, pp. 13-22, June 2000, doi:10.1016/S0303-
2647(00)00083-6

[5] C.T. Clelland, V. Risca, and C. Bancroft, ―Hiding Messages
in DNA microdots‖, Nature, vol. 399, pp. 533—534, June
1999, doi:10.1038/21092

[6] D. Heider and A. Barnekow, ―DNA-based watermarks using
the DNA-Crypt algorithm‖, BMC Bioinformatics, vol. 8, pp.
176, May 2007, doi:10.1186/1471-2105-8-176

[7] D. Heider and A. Barnekow, ―DNA watermarks: A proof .of
concept‖, BMC Molecular Biology 2008, vol. 9, p, 40,
doi:10.1186/1471-2199-9-40

[8] H. Shaw and S. Hussein, ―A DNA-Inspired Encryption
Methodology for Secure, Mobile Ad-Hoc Networks
(MANET)‖, Proceedings of the First International Conference
on Biomedical Electronics and Devices, BIOSIGNALS 2008,
Funchal, Madeira, Portugal, vol. 2, pp. 472-477, January 28-
31, 2008

[9] Functional and Comparative Genomics Fact Sheet, Human
GenomeProject, September 19, 2008, Available:
http://www.ornl.gov/sci/techresources/Human_Genome/faq/c
ompgen.shtml, accessed: May 31, 2011

[10] B. Alberts, A. Johnson, J. Lewis, L. Raff, K. Roberts, and P.
Walter, Molecular Biology of the Cell, 4th edition , New
York, NY: Garland Science, 2002

[11] W. Stallings, Cryptography and Network Security, 4th
edition, Upper Saddle River, NJ: Pearson Prentice-Hall ,
2006

[12] C. M. Fraser, J. D. Gocayne, O. White, M.D Adams, R. A.
Clayton, R. D. Fleischmann, et al., ―The Minimal Gene
Complement of Mycoplasma genitalium‖, Science, vol. 270,
No. 5235, pp. 397-403, Oct. 20, 1995, doi:
10.1126/science.270.5235.397

[13] C. J. Mitchell, ―Truncation attacks on MACs‖, Electronics
Letters - IET, vol. 39, part 20, pp 1439-1440, 2003, doi:
10.1049/el:20030921

[14] S. F. Elena, P. Carrasco, J. A. Daròs, and R. Sanjuán,
―Mechanisms of genetic robustness in RNA viruses‖, EMBO
Report, vol. 7, pp. 168-173, doi: 10.1038/sj.embor.7400636

[15] M. W. Nachman and S. L. Crowell., ―Estimate of the mutation
rate per nucleotide in humans.‖, Genetics, vol. 156, pp. 297-
304, September 2000, Genetics Society of America

[16] C. R. Reeves and J. E. Rowe, Genetic Algorithms - Principles
and Perspectives : A Guide to GA Theory, Dordrecht,
Netherlands, Kluwer Academic Publishers, 2002

[17] C. Shannon, ―Communication Theory of Secrecy Systems‖,
Bell System Technical Journal, p. 623, July 1948

[18] M. Ptashne and A. Gann , Genes and Signals, Cold Spring
Harbor, NY, Cold Spring Harbor Laboratory Press, 2001

[19] S. Kundu and C. L. Peterson, ―Role of chromatin states in
transcriptional memory―, Biochim Biophys Acta., vol. 1790,
issue 6, pp: 445–455, June 2009, doi:10.1016/
j.bbagen.2009.02.009

[20] S. Thiagalingam, K.-H. Cheng, H. J. Lee, N. Mineva, A.
Thiagalingam, and J. F. Ponte, ―Histone Deacetylases: Unique
Players in Shaping the Epigenetic Histone Code‖, Annals of
the New York Academy of Sciences, vol. 983: pp. 84–100,
March 2003, doi: 10.1111/j.1749-6632.2003.tb05964.x

[21] T. Jenuwein and C. D. Allis, ―Translating the Histone Code‖,
Science, vol. 293, No. 5532, pp. 1074-1080, August 2001,
doi: 10.1126/science.1063127

116

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Conceptual example of Confidentiality and Authentication in E. coli using lacZ expression

Figure 13. Simplified comparison between gene transcription control regions and MAC protocol

117

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evaluating Quality of Chaotic Pseudo-Random
Generators: Application to Information Hiding

Jacques M. Bahi, Xiaole Fang, Christophe Guyeux, and Qianxue Wang
University of Franche-Comté

Computer Science Laboratory LIFC, Besançon, France
Email:{jacques.bahi, xiaole.fang, christophe.guyeux, qianxue.wang}@univ-fcomte.fr

Abstract—Guaranteeing the security of information transmit-
ted through the Internet, against passive or active attacks, is a
major concern. The discovery of new pseudo-random number
generators with a strong level of security is a field of research
in full expansion, due to the fact that numerous cryptosystems
and data hiding schemes are directly dependent on the quality of
these generators. At the conference Internet‘09, we described a
generator based on chaotic iterations which behaves chaotically
as defined by Devaney. In this paper which is an extension of
the work presented at the conference Internet‘10, the proposal
is to improve the speed, the security, and the evaluation of this
generator, to make its use more relevant in the Internet security
context. In order to do so, a comparative study between various
generators is carried out and statistical results are improved.
Finally, an application in the information hiding framework is
presented with details, to give an illustrative example of the use
of such a generator in the Internet security field.

Keywords-Internet security; Pseudo-random number genera-
tor; Chaotic sequences; Statistical tests; Discrete chaotic itera-
tions; Information hiding.

I. INTRODUCTION

Due to the rapid development of the Internet in recent years,
the need to find new tools to reinforce trust and security
through the Internet has become a major concern. Its recent
role in everyday life implies the need to protect data and
privacy in digital world. This extremely rapid development of
the Internet brings more and more attention to the information
security techniques in all kinds of applications. For example,
new security concerns have recently appeared because of the
evolution of the Internet to support such activities as e-Voting,
VoD (Video on demand), and the protection of intellectual
property. In all these emerging techniques, pseudo-random
number generators (PRNG) play an important role, because
they are fundamental components of almost all cryptosystems
and information hiding schemes [2], [3]. PRNGs are typically
defined by a deterministic recurrent sequence in a finite state
space, usually a finite field or ring, and an output function
mapping each state to an input value. Following [4], this value
is often either a real number in the interval (0, 1) or an integer
in some finite range. PRNGs based on linear congruential
methods and feedback shift-registers are popular for historical
reasons [5], but their security level often has been revealed
to be inadequate by today’s standards. However, to use a
PRNG with a high level of security is a necessity to protect
the information contents sent through the Internet. This level
depends both on theoretical properties and on statistical tests.

Many PRNGs have already been proven to be secure fol-
lowing a probabilistic approach [6], [7], [8]. However, their
performances must regularly be improved, among other things

by using new mathematical tools. This is why the idea of
using chaotic dynamical systems for this purpose has recently
been explored [9], [10]. The random-like and unpredictable
dynamics of chaotic systems, their inherent determinism and
simplicity of realization suggest their potential for exploita-
tion as PRNGs. Such generators can strongly improve the
confidence put in any information hiding scheme and in
cryptography in general: due to their properties of unpre-
dictability, the possibilities offered to an attacker to achieve
his goal are drastically reduced in that context. For example,
in cryptography, keys are needed to be unpredictable enough,
to make sure any search optimization based on the reduction
of the key space to the most probable values is impossible to
work on. But the number of generators claimed as chaotic,
which actually have been proven to be unpredictable (as it is
defined in the mathematical theory of chaos) is very small.

II. OUTLINE OF OUR WORK

This paper extends the study initiated in [1], [11], [12],
and tries to fill this gap. In [11], it is mathematically proven
that chaotic iterations (CIs), a suitable tool for fast computing
distributed algorithms, satisfies the topological chaotic prop-
erty, following the definition given by Devaney [13]. In the
paper [12] presented at Internet‘09, the chaotic behavior of
CIs is exploited in order to obtain an unpredictable PRNG
that depends on two logistic maps. We have shown that, in
addition to being chaotic, this generator can pass the NIST
(National Institute of Standards and Technology of the U.S.
Government) battery of tests [14], widely considered as a
comprehensive and stringent battery of tests for cryptographic
applications. In this paper, which is an extension of [1], we
have improved the speed, security, and evaluation of the former
generator and of its application in information hiding. Chaotic
properties, statistical tests, and security analysis [15] allow us
to consider that this generator has good characteristics and
is capable to withstand attacks. After having presented the
theoretical framework of the study and a security analysis,
we will give a comparison based on statistical tests. Finally a
concrete example of how to use these pseudo-random numbers
for information hiding through the Internet is detailed.

The remainder of this paper is organized in the following
way. In Section III, some basic definitions concerning chaotic
iterations and PRNGs are recalled. Then, the generator based
on discrete chaotic iterations is presented in Section IV.
Section V is devoted to its security analysis. In Section VI,
various tests are passed with a goal to achieve a statistical
comparison between this new PRNG and other existing ones.

118

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Section VII, a potential use of this PRNG in some Internet
security field is presented, namely in information hiding. The
paper ends with a conclusion and intended future work.

III. REVIEW OF BASICS

A. Notations
J1;NK → {1, 2, . . . ,N}
Sn → the nth term of a sequence S = (S1, S2, . . .)
vi → the ith component of a vector

v = (v1, v2, . . . , vn)
fk → kth composition of a function f

strategy → a sequence which elements belong in J1;NK
S → the set of all strategies
Ck
n → the binomial coefficient

(
n
k

)
= n!

k!(n−k)!
⊕ → bitwise exclusive or
+ → the integer addition

� and�→ the usual shift operators
(X , d) → a metric space
mod → a modulo or remainder operator

bxc→ returns the highest integer smaller than x
n!→ the factorial n! = n× (n− 1)× · · · × 1
N∗→ the set of positive integers {1,2,3,...}

B. XORshift

XORshift is a category of very fast PRNGs designed by
George Marsaglia [16]. It repeatedly uses the transform of
exclusive or (XOR) on a number with a bit shifted version
of it. The state of a XORshift generator is a vector of bits.
At each step, the next state is obtained by applying a given
number of XORshift operations to w-bit blocks in the current
state, where w = 32 or 64. A XORshift operation is defined
as follows. Replace the w-bit block by a bitwise XOR of the
original block, with a shifted copy of itself by a positions either
to the right or to the left, where 0 < a < w. This Algorithm 1
has a period of 232 − 1 = 4.29× 109.

Input: the internal state z (a 32-bit word)
Output: y (a 32-bit word)
z ← z ⊕ (z � 13);
z ← z ⊕ (z � 17);
z ← z ⊕ (z � 5);
y ← z;
return y;

Algorithm 1: An arbitrary round of XORshift algorithm

C. Continuous Chaos in Digital Computers

In the past two decades, the use of chaotic systems in
the design of cryptosystems, pseudo-random number gener-
ators (PRNG), and hash functions, has become more and
more frequent. Generally speaking, the chaos theory in the
continuous field is used to analyze performances of related
systems. However, when chaotic systems are realized in digital
computers with finite computing precisions, it is doubtful
whether or not they can still preserve the desired dynamics
of the continuous chaotic systems. Because most dynamical
properties of chaos are meaningful only when dynamical
systems evolve in the continuous phase space, these properties
may become meaningless or ambiguous when the phase space

is highly quantized (i.e., latticed) with a finite computing
precision (in other words, dynamical degradation of continuous
chaotic systems realized in finite computing precision). When
chaotic systems are realized in finite precision, their dynamical
properties will be deeply different from the properties of
continuous-value systems and some dynamical degradation
will arise, such as short cycle length and decayed distribution.
This phenomenon has been reported and analyzed in various
situations [17], [18], [19], [20], [21].

Therefore, continuous chaos may collapse into the digital
world and the ideal way to generate pseudo-random sequences
is to use a discrete-time chaotic system.

D. Chaos for Discrete Dynamical Systems

Consider a metric space (X , d) and a continuous function
f : X −→ X , for one-dimensional dynamical systems of the
form:

x0 ∈ X and ∀n ∈ N∗, xn = f(xn−1), (1)

the following definition of chaotic behavior, formulated by
Devaney [13], is widely accepted:

Definition 1 A dynamical system of Form (1) is said to be
chaotic if the following conditions hold.
• Topological transitivity:

∀U, V open sets of X \∅, ∃k > 0, fk(U)∩V 6= ∅ (2)

• Density of periodic points in X :
Let P = {p ∈ X |∃n ∈ N∗ : fn(p) = p} the set of
periodic points of f . Then P is dense in X :

P = X (3)

• Sensitive dependence on initial conditions: ∃ε > 0,
∀x ∈ X , ∀δ > 0, ∃y ∈ X , ∃n ∈ N, d(x, y) < δ and
d (fn(x), fn(y)) > ε.

When f is chaotic, then the system (X , f) is chaotic and
quoting Devaney: “it is unpredictable because of the sensitive
dependence on initial conditions. It cannot be broken down
or decomposed into two subsystems which do not interact
because of topological transitivity. And, in the midst of this
random behavior, we nevertheless have an element of reg-
ularity.” Fundamentally different behaviors are consequently
possible and occur in an unpredictable way.

E. Discrete Chaotic Iterations

Definition 2 The set B denoting {0, 1}, let f : BN −→ BN be
an “iteration” function and S ∈ S be a chaotic strategy. Then,
the so-called chaotic iterations [22] are defined by x0 ∈ BN

and

∀n ∈ N∗,∀i ∈ J1;NK, xni =

{
xn−1i if Sn 6= i
f(xn−1)Sn if Sn = i.

(4)

In other words, at the nth iteration, only the Sn−th cell is
“iterated”. Note that in a more general formulation, Sn can
be a subset of components and f(xn−1)Sn can be replaced by
f(xk)Sn , where k < n, describing for example delays trans-
mission. For the general definition of such chaotic iterations,
see, e.g., [22].

Chaotic iterations generate a set of vectors (Boolean vector
in this paper), they are defined by an initial state x0, an
iteration function f , and a chaotic strategy S.

119

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The next section gives the outline proof that chaotic itera-
tions satisfy Devaney’s topological chaos property. Thus they
can be used to define a chaotic pseudo-random bit generator.

IV. THE GENERATION OF CI PSEUDO-RANDOM SEQUENCE

A. A Theoretical Proof for Devaney’s Chaotic Dynamical
Systems

The outline proofs, of the properties on which our pseudo-
random number generator is based, are given in this section.

Denote by δ the discrete Boolean metric, δ(x, y) = 0⇔ x =
y. Given a function f , define the function Ff : J1;NK×BN −→
BN such that

Ff (k,E) =
(
Ej .δ(k, j) + f(E)k.δ(k, j)

)
j∈J1;NK

,

where + and . are the Boolean addition and product operations.
Consider the phase space: X = J1;NKN ×BN and the map

Gf (S,E) = (σ(S), Ff (i(S), E)) ,

then the chaotic iterations defined in (III-E) can be described
by the following iterations [11]{

X0 ∈ X
Xk+1 = Gf (Xk).

Let us define a new distance between two points
(S,E), (Š, Ě) ∈ X by

d((S,E); (Š, Ě)) = de(E, Ě) + ds(S, Š),

where

• de(E, Ě) =

N∑
k=1

δ(Ek, Ěk) ∈ J0;NK

• ds(S, Š) =
9

N

∞∑
k=1

|Sk − Šk|
10k

∈ [0; 1].

It is then proven in [11] by using the sequential continuity
that

Proposition 1 Gf is a continuous function on (X , d).

Then, the vectorial negation f0(x1, . . . , xN) = (x1, . . . , xN)
satisfies the three conditions for Devaney’s chaos, namely,
regularity, transitivity, and sensitivity in the metric space
(X , d). This leads to the following result.

Proposition 2 Gf0 is a chaotic map on (X , d) in the sense of
Devaney.

B. Chaotic Iterations as Pseudo-Random Generator

1) Presentation: The CI generator (generator based on
chaotic iterations) is designed by the following process. First
of all, some chaotic iterations have to be done to generate
a sequence (xn)n∈N ∈

(
BN
)N

(N ∈ N∗,N > 2, N is
not necessarily equal to 32) of Boolean vectors, which are
the successive states of the iterated system. Some of these
vectors will be randomly extracted and our pseudo-random bit
flow will be constituted by their components. Such chaotic
iterations are realized as follows. Initial state x0 ∈ BN is a
Boolean vector taken as a seed (see Section IV-B2) and chaotic
strategy (Sn)n∈N ∈ J1,NKN is an irregular decimation of a

XORshift sequence (Section IV-B4). The iterate function f is
the vectorial Boolean negation:

f0 : (x1, ..., xN) ∈ BN 7−→ (x1, ..., xN) ∈ BN.

At each iteration, only the Si-th component of state xn is
updated, as follows: xni = xn−1i if i 6= Si, else xni = xn−1i .
Finally, some xn are selected by a sequence mn as the pseudo-
random bit sequence of our generator. (mn)n∈N ∈ MN is
computed from a XORshift sequence (yn)n∈N ∈ J0, 232 − 1K
(see Section IV-B3). So, the generator returns the following
values:
Bits:

xm0
1 xm0

2 xm0
3 . . . xm0

N xm0+m1
1 xm0+m1

2 . . . xm0+m1
N xm0+m1+m2

1 . . .

or States:
xm0xm0+m1xm0+m1+m2 . . .

2) The seed: The unpredictability of random sequences
is established using a random seed that is obtained by a
physical source like timings of keystrokes. Without the seed,
the attacker must not be able to make any predictions about
the output bits, even when all details of the generator are
known [23].

The initial state of the system x0 and the first term y0 of
the XORshift are seeded either by the current time in seconds
since the Epoch, or by a number that the user inputs. Different
ways are possible. For example, let us denote by t the decimal
part of the current time. So x0 can be t (mod 2N) written in
binary digits and y0 = t.

3) Sequence m of returned states: The output of the se-
quence (yn) is uniform in J0, 232− 1K, because it is produced
by a XORshift generator. However, we do not want the output
of (mn) to be uniform in J0, NK, because in this case, the
returns of our generator will not be uniform in J0, 2N− 1K, as
it is illustrated in the following example. Let us suppose that
x0 = (0, 0, 0). Then m0 ∈ J0, 3K.
• If m0 = 0, then no bit will change between the first and

the second output of our PRNG. Thus x1 = (0, 0, 0).
• If m0 = 1, then exactly one bit will change, which leads

to three possible values for x1, namely (1, 0, 0), (0, 1, 0),
and (0, 0, 1).

• etc.
As each value in J0, 23 − 1K must be returned with the same
probability, then the values (0, 0, 0), (1, 0, 0), (0, 1, 0), and
(0, 0, 1) must occur for x1 with the same probability. Finally
we see that, in this example, m0 = 1 must be three times more
probable than m0 = 0. This leads to the following general
definition for m:

mn = g1(yn) =

0 if 0 6 yn

232 <
C0

N

2N
,

1 if C0
N

2N
6 yn

232 <
∑1
i=0

Ci
N

2N
,

2 if
∑1
i=0

Ci
N

2N
6 yn

232 <
∑2
i=0

Ci
N

2N
,

...
...

N if
∑N−1
i=0

Ci
N

2N
6 yn

232 < 1.

(5)

In order to evaluate our proposed method and compare its
statistical properties with various other methods, the density
histogram and intensity map of adjacent outputs have been
computed. The length of x is N = 4 bits, and the initial con-
ditions and control parameters are the same. A large number of
sampled values are simulated (106 samples). Figure 1(a) shows

120

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) mn = f(yn)

(b) mn = yn mod 4

Fig. 1: Histogram and intensity maps

the intensity map for mn = g1(yn). In order to appear random,
the histogram should be uniformly distributed in all areas. It
can be observed that a uniform histogram and a flat color
intensity map are obtained when using our scheme. Another
illustration of this fact is given by Figure 1(b), whereas its
uniformity is further justified by the tests presented in Section
VI.

4) Chaotic strategy: The chaotic strategy (Sk) ∈ J1,NKN is
generated from a second XORshift sequence (bk) ∈ J1, NKN.
The only difference between the sequences S and b is that
some terms of b are discarded, in such a way that ∀k ∈
N, (SM

k

, SM
k+1, . . . , SM

k+1−1) does not contain any given
integer twice, where Mk =

∑k
i=0m

i. Therefore, no bit will
change more than once between two successive outputs of
our PRNG, increasing the speed of the former generator by
doing so. S is said to be “an irregular decimation” of b. This
decimation can be obtained by the following process.

Let (d1, d2, . . . , dN) ∈ {0, 1}N be a mark sequence, such
that whenever

∑N
i=1 d

i = mk, then ∀i, di = 0 (∀k, the
sequence is reset when d contains mk times the number 1).
This mark sequence will control the XORshift sequence b as
follows:
• if db

j 6= 1, then Sk = bj , db
j

= 1, and k = k + 1,
• if db

j

= 1, then bj is discarded.
For example, if b = 1422334142112234... and m = 4341...,
then S = 1423 341 4123 4... However, if we do not use the

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Sequence samples

In
d

e
x
 o

f
0

 a
n

d
 1

 b
a

la
n

c
e

The CI without mark

The CI with mark

Fig. 2: Balance property

mark sequence, then one position may change more than once
and the balance property will not be checked, due to the fact
that ¯̄x = x. As an example, for b and m as in the previous
example, S = 1422 334 1421 1... and S = 14 4 42 1... lead to
the same outputs (because switching the same bit twice leads
to the same state).

To check the balance property, a set of 500 sequences are
generated with and without decimation, each sequence con-
taining 106 bits. Figure 2 shows the percentages of differences
between zeros and ones, and presents a better balance property
for the sequences with decimation. This claim will be verified
in the tests section (Section VI).

Another example is given in Table I, in which r means
“reset” and the integers which are underlined in sequence b
are discarded.

C. CI(XORshift, XORshift) Algorithm
The basic design procedure of the novel generator is

summed up in Algorithm 2. The internal state is x, the
output state is r. a and b are those computed by the two
XORshift generators. The value g1(a) is an integer, defined
as in Equation 5. Lastly, N is a constant defined by the user.

As a comparison, the basic design procedure of the old
generator is recalled in Algorithm 3 (a and b are computed
by logistic maps, N and c > 3N are constants defined by the
user). See [12] for further information.

D. Illustrative Example
In this example, N = 4 is chosen for easy understanding. As

stated before, the initial state of the system x0 can be seeded by
the decimal part t of the current time. For example, if the cur-
rent time in seconds since the Epoch is 1237632934.484088,
so t = 484088, then x0 = t (mod 16) in binary digits, i.e.,
x0 = (0, 1, 0, 0).

To compute m sequence, Equation 5 can be adapted to this
example as follows:

mn = g1(yn) =

0 if 0 6 yn

232 < 1
16 ,

1 if 1
16 6 yn

232 < 5
16 ,

2 if 5
16 6 yn

232 < 11
16 ,

3 if 11
16 6 yn

232 < 15
16 ,

4 if 15
16 6 yn

232 < 1,

(6)

121

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Input: the internal state x (N bits)
Output: a state r of N bits
for i = 0, . . . ,N do

di ← 0;
end
a← XORshift1();
m← g1(a);
k ← m;
for i = 0, . . . , k do

b← XORshift2() mod N;
S ← b;
if dS = 0 then

xS ← xS ;
dS ← 1;

end
else if dS = 1 then

k ← k + 1;
end

end
r ← x;
return r;

Algorithm 2: An arbitrary round of the new
CI(XORshift,XORshift) generator

Input: the internal state x (N bits)
Output: a state r of N bits
a← Logisticmap1();
if a > 0.5 then

d← 1
end
else

d← 0
end
m← d+ c;
for i = 0, . . . ,m do

b← Logisticmap2();
S ← 100000b mod N;
xS ← xS ;

end
r ← x;
return r;

Algorithm 3: An arbitrary round of the old CI PRNG

where y is generated by XORshift seeded with the current
time. We can see that the probabilities of occurrences of m =
0, m = 1, m = 2, m = 3, m = 4, are 1

16 , 4
16 , 6

16 , 4
16 , 1

16 ,
respectively. This m determines what will be the next output
x. For instance,
• If m = 0, the following x will be (0, 1, 0, 0).
• If m = 1, the following x can be (1, 1, 0, 0), (0, 0, 0, 0),

(0, 1, 1, 0), or (0, 1, 0, 1).
• If m = 2, the following x can be (1, 0, 0, 0), (1, 1, 1, 0),

(1, 1, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), or (0, 1, 1, 1).
• If m = 3, the following x can be (0, 0, 1, 1), (1, 1, 1, 1),

(1, 0, 0, 1), or (1, 0, 1, 0).
• If m = 4, the following x will be (1, 0, 1, 1).
In this simulation, m = 0, 4, 2, 2, 3, 4, 1, 1, 2, 3, 0, 1, 4, ...

Additionally, b is computed with a XORshift genera-
tor too, but with another seed. We have found b =

1, 4, 2, 2, 3, 3, 4, 1, 1, 4, 3, 2, 1, ...
Chaotic iterations are made with initial state x0, vectorial

logical negation f0, and strategy S. The result is presented in
Table I. Let us recall that sequence m gives the states xn to
return, which are here x0, x0+4, x0+4+2, . . . So, in this exam-
ple, the output of the generator is: 10100111101111110011...
or 4,4,11,8,1...

V. SECURITY ANALYSIS

PRNG should be sensitive with respect to the secret key and
its size. Here, chaotic properties are also in close relation with
the security.

A. Key Space

The PRNG proposed in this paper is based on discrete
chaotic iterations. It has an initial value x0 ∈ BN. Considering
this set of initial values alone, the key space size is equal to 2N.
In addition, this new generator combines digits of two other
PRNGs. We used two different XORshifts here. Let k be the
key space of XORshift, so the total key space size is close to
2N · k2. Lastly, the impact of Equation 5, in which is defined
the (mn) sequence with a selector function g1, must be taken
into account. This leads to conclude that the key space size is
large enough to withstand attacks.

Let us notice, to conclude this subsection, that our PRNG
can use any reasonable function as selector. In this paper, g1()
and g2() are adopted for demonstration purposes, where:

mn = g2(yn) =

N if 0 6 yn

232 <
C0

N

2N
,

N− 1 if C0
N

2N
6 yn

232 <
∑1
i=0

Ci
N

2N
,

N− 2 if
∑1
i=0

Ci
N

2N
6 yn

232 <
∑2
i=0

Ci
N

2N
,

...
...

0 if
∑N−1
i=0

Ci
N

2N
6 yn

232 < 1.
(7)

We will show later that both of them can pass all of the
performed tests.

B. Key Sensitivity

As a consequence of its chaotic property, this PRNG is
highly sensitive to the initial conditions. To illustrate this fact,
several initial values are put into the chaotic system. Let H
be the number of differences between the sequences obtained
in this way. Suppose n is the length of these sequences. Then
the variance ratio P , defined by P = H/n, is computed. The
results are shown in Figure 3 (x axis is sequence lengths, y
axis is variance ratio P). For the two PRNGs, variance ratios
approach 0.50, which indicates that the system is extremely
sensitive to the initial conditions.

C. Linear Complexity

The linear complexity (LC) of a sequence is the size in bits
of the shortest linear feedback shift register (LFSR) which can
produce this sequence. This value measures the difficulty of
generating – and perhaps analyzing – a particular sequence.
Indeed, the randomness of a given sequence can be linked to
the size of the smallest program that can produce it. LC is
the size required by a LFSR to be able to produce the given
sequence. The Berlekamp-Massey algorithm can measure this

122

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

m 0 4 2 2
k 0 4 +1 2 2 +1
b 1 4 2 2 3 3 4 1 1 4

d r r

 1
0
0
0

 1

0
0
1

 1

1
0
1

 1

1
1
1

 r

 0
0
1
0

 0

0
1
1

 r

 1
0
0
0

 1

0
0
1

S 1 4 2 3 3 4 1 4
x0 x0 x4 x6 x8

0 0 1−→ 1 1 1 1−→ 0 0

1 1 2−→ 0 0 0 0

0 0 3−→ 1 1 3−→ 0 0 0

0 0 4−→ 1 1 4−→ 0 0 4−→ 1 1

Binary Output: x0
1x

0
2x

0
3x

0
4x

4
1x

4
2x

4
3x

4
4x

6
1x

6
2... = 0100101110000001...

Integer Output: x0, x4, x6, x8... = 4, 11, 8, 1...

TABLE I: Example of New CI(XORshift,XORshift) generation

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

0.51

Old CI(Logistic, Logistic)

New CI(XORshift,XORshift)

n

P

Sensitivity analysis

Fig. 3: Sensitivity analysis

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

sequence length

lin
e
a
r

c
o
m

p
le

x
it
y

Fig. 4: Linear complexity

LC, which can be used to evaluate the security of a pseudo-
random sequence. It can be seen in Figure 4 that the LC curve
of a sample sequence of 2000 bits is close to the ideal line
Ci = i/2, which implies that the generator has high linear
complexity.

D. Devaney’s Chaos Property

Generally speaking, the quality of a PRNG depends, to a
large extent, on the following criteria: randomness, uniformity,

independence, storage efficiency, and reproducibility. A chaotic
sequence may satisfy these requirements and also other chaotic
properties, as ergodicity, entropy, and expansivity. A chaotic
sequence is extremely sensitive to the initial conditions. That
is, even a minute difference in the initial state of the system can
lead to enormous differences in the final state, even over fairly
small timescales. Therefore, chaotic sequence fits the require-
ments of pseudo-random sequence well. Contrary to XORshift,
our generator possesses these chaotic properties [11],[12].
However, despite a large number of papers published in the
field of chaos-based pseudo-random generators, the impact of
this research is rather marginal. This is due to the following
reasons: almost all PRNG algorithms using chaos are based
on dynamical systems defined on continuous sets (e.g., the
set of real numbers). So these generators are usually slow,
requiring considerably more storage space, and lose their
chaotic properties during computations as mentioned earlier
in this paper. These major problems restrict their use as
generators [24].

In this paper, we do not simply integrate chaotic maps
hoping that the implemented algorithm remains chaotic. In-
deed, the PRNG we conceive is just discrete chaotic iterations
and we have proven in [11] that these iterations produce a
topological chaos as defined by Devaney: they are regular,
transitive, and sensitive to initial conditions. This famous
definition of a chaotic behavior for a dynamical system implies
unpredictability, mixture, sensitivity, and uniform repartition.
Moreover, as only integers are manipulated in discrete chaotic
iterations, the chaotic behavior of the system is preserved
during computations, and these computations are fast.

Let us now explore the topological properties of our gen-
erator and their consequences concerning the quality of the
generated pseudo-random sequences.

E. Topological Consequences

We have proven in [25] that chaotic iterations are expansive
and topologically mixing. These topological properties are
inherited by the generators we presented here. In particular, any
error on the seed are magnified until being equal to the constant
of expansivity. We will now investigate the consequences of
being chaotic, as defined by Devaney.

First of all, the transitivity property implies the indecom-
posability of the system:

123

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 3 A dynamical system (X , f) is indecomposable
if it is not the union of two closed sets A,B ⊂ X such that
f(A) ⊂ A, f(B) ⊂ B.

Thus it is impossible to reduce the set of the outputs gener-
ated by our PRNG, in order to reduce its complexity. Moreover,
it is possible to show that Old and New CI generators are
strongly transitive:

Definition 4 A dynamical system (X , f) is strongly transitive
if ∀x, y ∈ X , ∀r > 0, ∃z ∈ X , d(z, x) 6 r ⇒ ∃n ∈ N∗,
fn(z) = y.

In other words, for all x, y ∈ X , it is possible to find a
point z in the neighborhood of x such that an iterate fn(z) is
y. Indeed, this result has been established during the proof
of the transitivity presented in [11]. Among other things,
the strong transitivity property leads to the fact that without
the knowledge of the seed, all of the outputs are possible.
Additionally, no point of the output space can be discarded
when studying our PRNG: it is intrinsically complicated and
it cannot be simplified.

Finally, these generators possess the instability property:

Definition 5 A dynamical system (X , f) is unstable if for all
x ∈ X , the orbit γx : n ∈ N 7−→ fn(x) is unstable, that
is: ∃ε > 0, ∀δ > 0, ∃y ∈ X , ∃n ∈ N, d(x, y) < δ and
d (γx(n), γy(n)) > ε.

This property, which is implied by the sensitive dependence
to the initial condition, leads to the fact that in all of the
neighborhoods of any x, there are points that are separate from
x under iterations of f . We thus can claim that the behavior
of our generators is unstable.

VI. STATISTICAL ANALYSIS

A. Basic Common Tests

1) Comparative test parameters: In this section, five well-
known statistical tests [26] are used as comparison tools.
They encompass frequency and autocorrelation tests. In what
follows, s = s0, s1, s2, . . . , sn−1 denotes a binary sequence of
length n. The question is to determine whether this sequence
possesses some specific characteristics that a truly random
sequence would be likely to exhibit. The tests are introduced
in this subsection and results are given in the next one.

a) Frequency test (monobit test): The purpose of this test
is to check if the numbers of 0’s and 1’s are approximately
equal in s, as it would be expected for a random sequence.
Let n0, n1 denote these numbers. The statistic used here is:

X1 =
(n0 − n1)2

n
,

which approximately follows a χ2 distribution with one degree
of freedom when n > 107.

b) Serial test (2-bit test): The purpose of this test is to
determine if the number of occurrences of 00, 01, 10, and
11 as subsequences of s are approximately the same. Let
n00, n01, n10, and n11 denote the number of occurrences of
00, 01, 10, and 11 respectively. Note that n00 + n01 + n10 +
n11 = n − 1 since the subsequences are allowed to overlap.
The statistic used here is:

X2 =
4

n− 1
(n200 + n201 + n210 + n211)− 2

n
(n20 + n21) + 1,

which approximately follows a χ2 distribution with 2 degrees
of freedom if n > 21.

c) Poker test: The poker test studies if each pattern of
length m (without overlapping) appears the same number of
times in s. Let b nmc > 5 × 2m and k = b nmc. Divide the
sequence s into k non-overlapping parts, each of length m. Let
ni be the number of occurrences of the ith type of sequence
of length m, where 1 6 i 6 2m. The statistic used is

X3 =
2m

k

(
2m∑
i=1

n2i

)
− k,

which approximately follows a χ2 distribution with 2m − 1
degrees of freedom. Note that the poker test is a generalization
of the frequency test: setting m = 1 in the poker test yields
the frequency test.

d) Runs test: The purpose of the runs test is to figure out
whether the number of runs of various lengths in the sequence
s is as expected for a random sequence. A run is defined as a
pattern of all zeros or all ones, a block is a run of ones, and a
gap is a run of zeros. The expected number of gaps (or blocks)
of length i in a random sequence of length n is ei = n−i+3

2i+2 .
Let k be equal to the largest integer i such that ei > 5. Let
Bi, Gi be the number of blocks and gaps of length i in s, for
each i ∈ J1, kK. The statistic used here will then be:

X4 =

k∑
i=1

(Bi − ei)2

ei
+

k∑
i=1

(Gi − ei)2

ei
,

which approximately follows a χ2 distribution with 2k − 2
degrees of freedom.

e) Autocorrelation test: The purpose of this test is
to check for coincidences between the sequence s and
(non-cyclic) shifted versions of it. Let d be a fixed integer,
1 6 d 6 bn/2c. The value A(d) =

∑n−d−1
i=0 si ⊕ si+d is

the amount of bits not equal between the sequence and itself
displaced by d bits. The statistic used here is:

X5 = |2(A(d)− n− d
2

)/
√
n− d|,

which approximately follows a normal distribution N (0, 1) if
n− d > 10. Since small values of A(d) are as unexpected as
large values, a two-sided test should be used.

2) Comparison: We show in Table II a comparison among
our new generator CI(XORshift, XORshift), its old version
denoted Old CI(Logistic, Logistic), a basic PRNG based on
logistic map, and a simple XORshift. In this table, time (in
seconds) is related to the duration needed by each algorithm
to generate a 2 × 105 bits long sequence. The test has been
conducted using the same computer and compiler with the
same optimization settings for both algorithms, in order to
make the test as fair as possible. The results confirm that the
proposed generator is a lot faster than the old one, while the
statistical results are better for most of the parameters, leading
to the conclusion that the new PRNG is more secure than the
old one. Although the logistic map also has good results, it is
too slow to be implemented in Internet applications, and this
map is known to present various bias leading to severe security
issues.

As a comparison of the overall stability of these PRNGs,
similar tests have been computed for different sequence lengths
(see Figures 5 - 9). For the monobit test comparison (Figure 5),

124

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: Comparison with Old CI(Logistic, Logistic) for a 2× 105 bits sequence

Method Monobit (X1) Serial (X2) Poker (X3) Runs (X4) Autocorrelation (X5) Time

Logistic map 0.1280 0.1302 240.2893 26.5667 0.0373 0.965s
XORshift 1.7053 2.1466 248.9318 18.0087 0.5009 0.096s

Old CI(Logistic, Logistic) 1.0765 1.0796 258.1069 20.9272 1.6994 0.389s
New CI(XORshift,XORshift) 0.3328 0.7441 262.8173 16.7877 0.0805 0.197s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Monobits test

Old CI (Logistic, Logistic)�

XORshift

Logistic map

New CI (XORshift, XORshift)

Fig. 5: Comparison of monobits tests

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

1

2

3

4

5

6

7

8

Serial test

Old CI (Logistic, Logistic)

XORshift

Logistic map

New CI (XORshift, XORshift)

Fig. 6: Comparison of serial tests

almost all of the PRNGs present the same issue: the beginning
values are a little high. However, for our new generator, the
values are stable in a low level which never exceeds 1.2.
Indeed, the new generator distributes very randomly the zeros
and ones, whatever the length of the desired sequence. It can
also be remarked that the old generator presents the second
best performance, due to its use of chaotic iterations.

Figure 6 shows the serial test comparison. The new gener-
ator outperforms this test, but the score of the old generator
is not bad either: their occurrences of 00, 01, 10, and 11 are
very close to each other.

The poker test comparison with m = 8 is shown in Figure 7.
XORshift is the most stable generator in all of these tests, and
the logistic map also becomes good when producing sequences
of length greater than 1 × 105. Our old and new generators
present a similar trend, with a maximum in the neighborhood
of 1.7 × 105. These scores are not so good, even though the
new generator has a better behavior than the old one. Indeed,
the value of m and the length of the sequences should be
enlarged to be certain that the chaotic iterations express totally
their complex behavior. In that situation, the performances of
our generators in the poker test can be improved.

The graph of the new generator is the most stable one

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

210

220

230

240

250

260

270

280

290

300

310

Poker test

Old CI (Logistic, Logisitc)

XORshift

Logistic map

New CI (XORshift, XORshift)

Fig. 7: Comparison of poker tests

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

5

10

15

20

25

30

35

Runs test

Old CI (Logistic, Logistic)

XORshift

Logistic map

New CI (XORshift, XORshift)

Fig. 8: Comparison of runs tests

during the runs test comparison (Figure 8). Moreover, this
trend is reinforced when the lengths of the tested sequences
are increased.

The comparison of autocorrelation tests is presented in
Figure 9. The new generator clearly dominates these tests,
whereas the score of the old generator is surprisingly bad. This
difference between two generators based on chaotic iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.5

1

1.5

2

2.5

3

Old CI (logistic, logistic)

XORshirft

Logistic map

New CI (XORshirft, XORshirft)

Autocorrelation absulote value

Fig. 9: Comparison of autocorrelation tests

125

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can be explained by the fact that the improvements realized to
define the new generator lead to a more randomly output.

To sum up we can claim that the new generator, which is
faster than its former version, outperforms all of the other
generators in these statistical tests, especially when producing
long output sequences.

B. NIST Statistical Test Suite

1) Presentation: Among the numerous standard tests for
pseudo-randomness, a convincing way to prove the quality of
the produced sequences is to confront them with the NIST
(National Institute of Standards and Technology) Statistical
Test Suite SP 800-22, released by the Information Technology
Laboratory in August 25, 2008.

The NIST test suite, SP 800-22, is a statistical package
consisting of 15 tests. They were developed to measure the
randomness of (arbitrarily long) binary sequences produced
by either hardware or software based cryptographic pseudo-
random number generators. These tests focus on a variety of
different types of non-randomness that could occur in such
sequences. These 15 tests include in the NIST test suite are
described in the Appendix.

2) Interpretation of empirical results: P is the “tail proba-
bility” that the chosen test statistic will assume values that are
equal to or worse than the observed test statistic value when
considering the null hypothesis. For each statistical test, a set
of Ps is produced from a set of sequences obtained by our
generator (i.e., 100 sequences are generated and tested, hence
100 Ps are produced).

Empirical results can be interpreted in various ways. In this
paper, we check whether the Ps are uniformly distributed, via
an application of a χ2 distribution and the determination of a
PT corresponding to the Goodness-of-Fit distributional test on
the Ps obtained for an arbitrary statistical test.

If PT ≥ 0.0001, then the sequences can be considered to be
uniformly distributed. In our experiments, 100 sequences (s =
100) of 1,000,000 bits are generated and tested. If the value
PT of a least one test is smaller than 0.0001, the sequences
are considered to be not good enough and the generator is
unsuitable.

Table III shows PT for the sequences based on discrete
chaotic iterations using different schemes. If there are at
least two statistical values in a test, this test is marked with
an asterisk and the average is computed to characterize the
statistical values.

We can conclude from Table III that the worst situations are
obtained with the New CI (mn = yn mod N) and New CI
(no mark) generators. Old CI, New CI (mn = g1(yn)), and
New CI (mn = g2(yn)) have successfully passed the NIST
statistical test suite. These results and the conclusion obtained
from the aforementioned basic tests reinforce the confidence
that can be put in the good behavior of chaotic CI PRNGs, thus
making them suitable for security applications as information
hiding and digital watermarking.

VII. APPLICATION EXAMPLE IN INFORMATION HIDING

A. Introduction

Information hiding is now an integral part of Internet
technologies. In the field of social search engines, for example,
contents like pictures or movies are tagged with descriptive

labels by contributors, and search results are determined by
these descriptions. These collaborative taggings, used for ex-
ample in Flickr [27] and Delicious [28] websites, contribute to
the development of a Semantic Web, in which any Web page
contains machine-readable metadata that describe its content.
Information hiding technologies can be used for embedding
these metadata. The advantage of its use is the possibility to
realize social search without websites and databases: descrip-
tions are directly embedded into media, whatever their formats.
Robustness is required in this situation, as descriptions should
resist to modifications like resizing, compression, and format
conversion.

The Internet security field is also concerned by water-
marking technologies. Steganography and cryptography are
supposed to be used by terrorists to communicate through
the Internet. Furthermore, in the areas of defense or in indus-
trial espionage, many information leaks using steganographic
techniques have been reported. Lastly, watermarking is often
cited as a possible solution to digital rights managements
issues, to counteract piracy of digital work in an Internet based
entertainment world [29].

B. Definition of a Chaos-Based Information Hiding Scheme

Let us now introduce our information hiding scheme based
on CI generator.

1) Most and least significant coefficients: Let us define the
notions of most and least significant coefficients of an image.

Definition 1 For a given image, most significant coefficients
(in short MSCs), are coefficients that allow the description of
the relevant part of the image, i.e., its richest part (in terms of
embedding information), through a sequence of bits.

For example, in a spatial description of a grayscale image,
a definition of MSCs can be the sequence constituted by the
first four bits of each pixel (see Figure 10). In a discrete
cosine frequency domain description, each 8× 8 block of the
carrier image is mapped onto a list of 64 coefficients. The
energy of the image is mostly contained in a determined part
of themselves, which can constitute a possible sequence of
MSCs.

Definition 2 By least significant coefficients (LSCs), we mean
a translation of some insignificant parts of a medium in a
sequence of bits (insignificant can be understand as: “which
can be altered without sensitive damages”).

These LSCs can be, for example, the last three bits of
the gray level of each pixel (see Figure 10). Discrete cosine,
Fourier, and wavelet transforms can be used also to generate
LSCs and MSCs. Moreover, these definitions can be extended
to other types of media.

LSCs are used during the embedding stage. Indeed, some
of the least significant coefficients of the carrier image will
be chaotically chosen by using our PRNG. These bits will
be either switched or replaced by the bits of the watermark.
The MSCs are only useful in case of authentication; mixture
and embedding stages depend on them. Hence, a coefficient
should not be defined at the same time as a MSC and a LSC:
the last can be altered while the first is needed to extract the
watermark.

126

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Lena.

(b) MSCs of Lena. (c) LSCs of Lena (×17).

Fig. 10: Example of most and least significant coefficients of
Lena.

2) Stages of the scheme: Our CI generator-based informa-
tion hiding scheme consists of two stages: (1) mixture of the
watermark and (2) its embedding.

a) Watermark mixture: Firstly, for security reasons, the
watermark can be mixed before its embedding into the image.
A first way to achieve this stage is to apply the bitwise
exclusive or (XOR) between the watermark and the New CI
generator. In this paper, we introduce a new mixture scheme
based on chaotic iterations. Its chaotic strategy, which depends
on our PRNG, will be highly sensitive to the MSCs, in the case
of an authenticated watermarking.

b) Watermark embedding: Some LSCs will be switched,
or substituted by the bits of the possibly mixed watermark.
To choose the sequence of LSCs to be altered, a number
of integers, less than or equal to the number M of LSCs
corresponding to a chaotic sequence U , is generated from the
chaotic strategy used in the mixture stage. Thus, the Uk-th least
significant coefficient of the carrier image is either switched,
or substituted by the kth bit of the possibly mixed watermark.
In case of authentication, such a procedure leads to a choice
of the LSCs that are highly dependent on the MSCs [30].

On the one hand, when the switch is chosen, the water-
marked image is obtained from the original image whose LSBs
L = BM are replaced by the result of some chaotic iterations.
Here, the iterate function is the vectorial Boolean negation,

f0 : (x1, ..., xM) ∈ BM 7−→ (x1, ..., xM) ∈ BM, (8)

the initial state is L, and the strategy is equal to U . In this
case, the whole embedding stage satisfies the topological chaos
properties [30], but the original medium is required to extract
the watermark. On the other hand, when the selected LSCs
are substituted by the watermark, its extraction can be done
without the original cover (blind watermarking). In this case,
the selection of LSBs still remains chaotic because of the use
of the New CI generator, but the whole process does not satisfy

topological chaos [30]. The use of chaotic iterations is reduced
to the mixture of the watermark. See the following sections for
more detail.

c) Extraction: The chaotic strategy can be regenerated
even in the case of an authenticated watermarking, because
the MSCs have not changed during the embedding stage. Thus,
the few altered LSCs can be found, the mixed watermark can
be rebuilt, and the original watermark can be obtained. In
case of a switch, the result of the previous chaotic iterations
on the watermarked image should be the original cover. The
probability of being watermarked decreases when the number
of differences increase.

If the watermarked image is attacked, then the MSCs will
change. Consequently, in case of authentication and due to the
high sensitivity of our PRNG, the LSCs designed to receive the
watermark will be completely different. Hence, the result of the
recovery will have no similarity with the original watermark.

The chaos-based data hiding scheme is summed up in
Figure 11.

Fig. 11: The chaos-based data hiding decision tree.

C. Application Example

1) Experimental protocol: In this subsection, a concrete
example is given: a watermark is encrypted and embedded
into a cover image using the scheme presented in the previous
section and CI(XORshift, XORshift). The carrier image is the
well-known Lena, which is a 256 grayscale image, and the
watermark is the 64 × 64 pixels binary image depicted in
Figure 12.

The watermark is encrypted by using chaotic iterations: the
initial state x0 is the watermark, considered as a Boolean
vector, the iteration function is the vectorial logical negation,
and the chaotic strategy (Sk)k∈N is defined with CI(XORshift,
XORshift), where initial parameters constitute the secret key
and N = 64. Thus, the encrypted watermark is the last

127

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) The original image (b) The watermark

Fig. 12: Original images

(a) Differences with the original (b) Encrypted watermark

Fig. 13: Encrypted watermark and differences

Boolean vector generated by these chaotic iterations. An
example of such an encryption is given in Figure 13.

Let L be the 2563 Booleans vector constituted by the three
last bits of each pixel of Lena and Uk defined by the sequence:{

U0 = S0

Un+1 = Sn+1 + 2× Un + n [mod 2563].
(9)

The watermarked Lena Iw is obtained from the original Lena,
whose three last bits are replaced by the result of 642 chaotic
iterations with initial state L and strategy U (see Figure 13).

The extraction of the watermark can be obtained in the
same way. Remark that the map θ 7→ 2θ of the torus,
which is the famous dyadic transformation (a well-known
example of topological chaos [13]), has been chosen to make
(Uk)k6642 highly sensitive to the strategy. As a consequence,
(Uk)k6642 is highly sensitive to the alteration of the image:
any significant modification of the watermarked image will
lead to a completely different extracted watermark, thus giving
a way to authenticate media through the Internet.

Let us now evaluate the robustness of the proposed method.
2) Robustness evaluation: In what follows, the embedding

domain is the spatial domain, CI(XORshift,XORshift) has been
used to encrypt the watermark, MSCs are the four first bits of
each pixel (useful only in case of authentication), and LSCs
are the three next bits.

To prove the efficiency and the robustness of the proposed
algorithm, some attacks are applied to our chaotic watermarked
image. For each attack, a similarity percentage with the water-
mark is computed, this percentage is the number of equal bits
between the original and the extracted watermark, shown as a
percentage. Let us notice that a result less than or equal to 50%
implies that the image has probably not been watermarked.

a) Zeroing attack: In this kind of attack, a watermarked
image is zeroed, such as in Figure 14(a). In this case, the

results in Table 1 have been obtained.

(a) Cropping attack (b) Rotation attack

Fig. 14: Watermarked Lena after attacks.

UNAUTHENTICATION AUTHENTICATION
Size (pixels) Similarity Size (pixels) Similarity

10 99.08% 10 91.77%
50 97.31% 50 55.43%

100 92.43% 100 51.52%
200 70.75% 200 50.60%

Table. 1. Cropping attacks

In Figure 15, the decrypted watermarks are shown after
a crop of 50 pixels and after a crop of 10 pixels, in the
authentication case.

(a) Unauthentication (50× 50).

(b) Authentication (50× 50). (c) Authentication (10× 10).

Fig. 15: Extracted watermark after a cropping attack.

By analyzing the similarity percentage between the original
and the extracted watermark, we can conclude that in case of
unauthentication, the watermark still remains after a zeroing
attack: the desired robustness is reached. It can be noticed that
zeroing sizes and percentages are rather proportional.

In case of authentication, even a small change of the carrier
image (a crop by 10 × 10 pixels) leads to a really different
extracted watermark. In this case, any attempt to alter the
carrier image will be signaled, the image is well authenticated.

b) Rotation attack: Let rθ be the rotation of angle θ
around the center (128, 128) of the carrier image. So, the
transformation r−θ ◦ rθ is applied to the watermarked image,
which is altered as in Figure 14. The results in Table 2 have
been obtained.

UNAUTHENTICATION AUTHENTICATION
Angle (degree) Similarity Angle (degree) Similarity

2 96.44% 2 73.40%
5 93.32% 5 60.56%
10 90.68% 10 52.11%
25 78.13% 25 51.97%

Table. 2. Rotation attacks

128

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III: SP 800-22 test results (PT)

Method New CI (mn = yn mod N) New CI (no mark) Old CI New CI (g1()) New CI (g2())

Frequency (Monobit) Test 0.0004 0.0855 0.595549 0.474986 0.419

Frequency Test within a Block 0 0 0.554420 0.897763 0.6786

Runs Test 0.2896 0.5544 0.455937 0.816537 0.3345

Longest Run of Ones in a Block Test 0.0109 0.4372 0.016717 0.798139 0.8831

Binary Matrix Rank Test 0 0.6579 0.616305 0.262249 0.7597

Discrete Fourier Transform (Spectral) Test 0 0 0.000190 0.007160 0.0008

Non-overlapping Template Matching Test* 0.020071 0.37333 0.532252 0.449916 0.51879

Overlapping Template Matching Test 0 0 0.334538 0.514124 0.2492

Maurer’s “Universal Statistical” Test 0.6993 0.9642 0.032923 0.678686 0.1296

Linear Complexity Test 0.3669 0.924 0.401199 0.657933 0.3504

Serial Test* (m=10) 0 0.28185 0.013396 0.425346 0.2549

Approximate Entropy Test (m=10) 0 0.3838 0.137282 0.637119 0.7597

Cumulative Sums (Cusum) Test* 0 0 0.046464 0.279680 0.34245

Random Excursions Test* 0.46769 0.34788 0.503622 0.287409 0.18977

Random Excursions Variant Test* 0.28779 0.46505 0.347772 0.486686 0.26563

Success 8/15 11/15 15/15 15/15 15/15

The same conclusion as above can be declaimed: this
watermarking method satisfies the desired properties.

c) JPEG compression: A JPEG compression is applied to
the watermarked image, depending on a compression level. Let
us notice that this attack leads to a change of the representation
domain (from spatial to DCT domain). In this case, the results
in Table 3 have been obtained.

UNAUTHENTICATION AUTHENTICATION
Compression Similarity Compression Similarity

2 85.76% 2 56.42%
5 67.62% 5 52.12%

10 62.43% 10 48.22%
20 54.74% 20 49.07%

Table. 3. JPEG compression attacks

A very good authentication through JPEG attack is obtained.
As for the unauthentication case, the watermark still remains
after a compression level equal to 10. This is a good result if
we take into account the fact that we use spatial embedding.

d) Gaussian noise: Watermarked image can be also
attacked by the addition of a Gaussian noise, depending on
a standard deviation. In this case, the results in Table 4 have
been obtained.

UNAUTHENTICATION AUTHENTICATION
Standard dev. Similarity Standard dev. Similarity

1 81.14% 1 55.57%
2 75.01% 2 52.63%
3 67.64% 3 52.68%
5 57.48% 5 51.34%

Table. 4. Gaussian noise attacks

Once again we remark that good results are obtained,
especially if we keep in mind that a spatial representation
domain has been chosen.

VIII. CONCLUSION AND FUTURE WORK

In this paper, the pseudo-random generator proposed in [12]
has been improved. By using XORshift instead of logistic
map and due to a rewrite of the way to generate strategies,
the generator based on chaotic iterations works faster and is
more secure. The speed and randomness of this new PRNG

has been compared to its former version, to XORshift, and to
a generator based on logistic map. This comparison shows that
CI(XORshift, XORshift) offers a sufficient speed and level of
security for a wide range of Internet usages as cryptography
and information hiding.

In future work, we will continue to try to improve the speed
and security of this PRNG, by exploring new strategies and
iteration functions. Its chaotic behavior will be deepened by
using the numerous tools provided by the mathematical theory
of chaos. New statistical tests will be used to compare this
PRNG to existing ones. Additionally a probabilistic study of
its security will be done. Lastly, new applications in computer
science will be proposed, especially in the Internet security
field.

REFERENCES

[1] Q. Wang, J. M. Bahi, C. Guyeux, and X. Fang, “Randomness quality
of CI chaotic generators. application to internet security,” in INTER-
NET’2010. The 2nd Int. Conf. on Evolving Internet. Valencia, Spain:
IEEE seccion ESPANIA, Sep. 2010, pp. 125–130.

[2] X. Tong and M. Cui, “Image encryption scheme based on 3d baker
with dynamical compound chaotic sequence cipher generator,” Signal
Processing, vol. 89, no. 4, pp. 480 – 491, 2009.

[3] E. Erclebi and A. SubasI, “Robust multi bit and high quality audio
watermarking using pseudo-random sequences,” Computers Electrical
Engineering, vol. 31, no. 8, pp. 525 – 536, 2005.

[4] P. L’ecuyer, “Comparison of point sets and sequences for quasi-monte
carlo and for random number generation,” SETA 2008, vol. LNCS 5203,
pp. 1–17, 2008.

[5] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumeri-
cal Algorithms, Reading, Mass, and third edition, Eds. Addison-Wesley,
1998.

[6] A. Marchi, A. Liverani, and A. D. Giudice, “Polynomial pseudo-random
number generator via cyclic phase,” Mathematics and Computers in
Simulation, vol. 79, no. 11, pp. 3328–3338, 2009.

[7] S. Sachez, R. Criado, and C. Vega, “A generator of pseudo-random num-
bers sequences with a very long period,” Mathematical and Computer
Modelling, vol. 42, pp. 809 – 816, 2005.

[8] C. J. K. Tan, “The plfg parallel pseudo-random number generator,”
Future Generation Computer Systems, vol. 18, no. 5, pp. 693 – 698,
2002.

[9] M. Falcioni, L. Palatella, S. Pigolotti, and A. Vulpiani, “Properties
making a chaotic system a good pseudo random number generator,”
arXiv, vol. nlin/0503035, 2005.

[10] S. Cecen, R. M. Demirer, and C. Bayrak, “A new hybrid nonlinear
congruential number generator based on higher functional power of
logistic maps,” Chaos, Solitons and Fractals, vol. 42, pp. 847–853, 2009.

129

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] J. M. Bahi and C. Guyeux, “Topological chaos and chaotic iterations,
application to hash functions,” WCCI’10: 2010 IEEE World Congress
on Computational Intelligence, vol. Accepted paper, 2010.

[12] Q. Wang, C. Guyeux, and J. M. Bahi, “A novel pseudo-random generator
based on discrete chaotic iterations for cryptographic applications,”
INTERNET ’09, pp. 71–76, 2009.

[13] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed.
Redwood City: Addison-Wesley, 1989.

[14] N. S. Publication, “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” Aug. 2008.

[15] F. Zheng, X. Tian, J. Song, and X. Li, “Pseudo-random sequence
generator based on the generalized henon map,” The Journal of China
Universities of Posts and Telecommunications, vol. 15(3), pp. 64–68,
2008.

[16] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 8(14),
pp. 1–6, 2003.

[17] P. M. Binder and R. V. Jensen, “Simulating chaotic behavior with finite-
state machines,” Physical Review A, vol. 34, no. 5, pp. 4460–4463, 1986.

[18] D. D. Wheeler, “Problems with chaotic cryptosystems,” Cryptologia, vol.
XIII, no. 3, pp. 243–250, 1989.

[19] J. Palmore and C. Herring, “Computer arithmetic, chaos and fractals,”
Physica D, vol. 42, pp. 99–110, 1990.

[20] M. Blank, “Discreteness and continuity in problems of chaotic dynam-
ics,” Translations of Mathematical Monographs, vol. 161, 1997.

[21] S. Li, G. Chen, and X. Mou, “On the dynamical degradation of digital
piecewise linear chaotic maps,” Bifurcation an Chaos, vol. 15, no. 10,
pp. 3119–3151, 2005.

[22] F. Robert, Discrete Iterations. A Metric Study. Springer Series in
Computational Mathematics, 1986, vol. 6.

[23] M. S. Turan, A. Doganaksoy, and S. Boztas, “On independence and
sensitivity of statistical randomness tests,” SETA 2008, vol. LNCS 5203,
pp. 18–29, 2008.

[24] L. Kocarev, “Chaos-based cryptography: a brief overview,” IEEE Circ
Syst Mag, vol. 7, pp. 6–21, 2001.

[25] C. Guyeux, N. Friot, and J. M. Bahi, “Chaotic iterations versus spread-
spectrum: chaos and stego security,” in IIH-MSP’10, 6-th Int. Conf.
on Intelligent Information Hiding and Multimedia Signal Processing,
Darmstadt, Germany, Oct. 2010, pp. 208–211, to appear.

[26] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of applied
cryptography, Bocarton, Ed. CRC Press, 1997.

[27] “The frick collection, http://www.frick.org/,” Last visit the 7th of June,
2011.

[28] “Delicious social bookmarking, http://delicious.com/,” Last visit the 7th
of June, 2011.

[29] Y. Nakashima, R. Tachibana, and N. Babaguchi, “Watermarked movie
soundtrack finds the position of the camcorder in a theater,” IEEE Trans-
actions on Multimedia, 2009, accepted for future publication Multimedia.

[30] J. M. Bahi and C. Guyeux, “Topological chaos and chaotic iterations,
application to hash functions,” in WCCI’10, IEEE World Congress on
Computational Intelligence. Barcelona, Spain: IEEE, Jul. 2010, pp.
1–7.

APPENDIX
The NIST Statistical Test Suite

In what follows, the objectives of the fifteen tests contained
in the NIST Statistical tests suite are recalled. A more detailed
description for those tests can be found in [14].

Frequency (Monobit) Test is to determine whether the
number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence.

Frequency Test within a Block is to determine whether the
frequency of ones in an M-bits block is approximately M/2,
as would be expected under an assumption of randomness (M
is the length of each block).

Runs Test is to determine whether the number of runs
of ones and zeros of various lengths is as expected for a
random sequence. In particular, this test determines whether
the oscillation between such zeros and ones is too fast or too
slow.

Test for the Longest Run of Ones in a Block is to
determine whether the length of the longest run of ones within
the tested sequence is consistent with the length of the longest
run of ones that would be expected in a random sequence.

Binary Matrix Rank Test is to check for linear dependence
among fixed length substrings of the original sequence.

Discrete Fourier Transform (Spectral) Test is to detect
periodic features (i.e., repetitive patterns that are near each
other) in the tested sequence that would indicate a deviation
from the assumption of randomness.

Non-overlapping Template Matching Test is to detect
generators that produce too many occurrences of a given non-
periodic (aperiodic) pattern.

Overlapping Template Matching Test is the number of
occurrences of pre-specified target strings.

Maurer’s “Universal Statistical” Test is to detect whether
or not the sequence can be significantly compressed without
loss of information.

Linear Complexity Test is to determine whether or not the
sequence is complex enough to be considered random.

Serial Test is to determine whether the number of occur-
rences of the 2m m-bit (m is the length in bits of each block)
overlapping patterns is approximately the same as would be
expected for a random sequence.

Approximate Entropy Test is to compare the frequency of
overlapping blocks of two consecutive/adjacent lengths (m and
m+1) against the expected result for a random sequence (m is
the length of each block).

Cumulative Sums (Cusum) Test is to determine whether
the cumulative sum of the partial sequences occurring in the
tested sequence is too large or too small relative to the expected
behavior of that cumulative sum for random sequences.

Random Excursions Test is to determine if the number of
visits to a particular state within a cycle deviates from what
one would expect for a random sequence.

Random Excursions Variant Test is to detect deviations
from the expected number of visits to various states in the
random walk.

130

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Touch’n Trust: An NFC-Enabled Trusted Platform Module

Michael Hutter and Ronald Toegl
Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Email:{michael.hutter,ronald.toegl}@iaik.tugraz.at

Abstract—Instant and ubiquitous access to devices such as
public terminals raises several security concerns in terms of
confidentiality and trust. While Trusted Computing introduces
advanced security mechanisms into terminal hardware, there
is often no convenient way to help users decide on the
trustworthiness of a device. To overcome this issue, Near Field
Communication (NFC) can be used to leverage the trusted-
computing protocol of remote attestation. Here, NFC helps
user to intuitively establish a communication between local
devices. In this article, we propose an NFC-enabled Trusted
Platform Module (TPM) architecture that allows users to verify
the security status of public terminals. For this, we introduce an
autonomic and low-cost NFC-compatible interface to the TPM
to create a direct trusted channel. Users can access the TPM
with NFC-enabled devices, which have become widely available
in the form of smart phones. Elliptic-curve cryptography
provides efficient signing and verifying of the security-status
report. Furthermore, we implemented an NFC-enabled TPM
platform as a proof-of-concept demonstrator and show that a
trust decision can be realized with commodity mobile phones.
It shows that an NFC-enabled TPM can effectively help to
overcome confidentiality issues in common public-terminal
applications.

Keywords-Trusted Computing; RFID Security; Near Field
Communication; NFC; ECDSA; Remote Attestation.

I. INTRODUCTION

During the last decade, mobile technology has grown
significantly offering many applications including payment,
ticketing, and access control. Especially Near-Field Com-
munication (NFC) has become widely available on the mar-
ket offering convenient services by simply touching NFC-
enabled objects in the proximity with commodity mobile
phones. It is obvious that such ubiquitous communication
raises concerns on the security and on the privacy, especially
as NFC services are able to pinpoint the location of their
users. Therefore, for users it would be desirable to only use
NFC services that are worth of being entrusted with sensitive
or personal information. In this article, which extends [1], we
present a method to overcome confidentiality and trust issues
in security-related NFC applications by taking advantage of
Trusted Computing mechanisms.

Trusted Computing has been designed to provide services
to establish trust in Internet environments. One such service,
as devised by the Trusted Computing Group (TCG) industry
consortium, is remote attestation. It achieves trust decisions
between hosts. A TPM is therefore used to measure the

integrity and confidentiality guaranteeing status of a targeted
host platform. This state information must then be reported
to the user who decides if the platform can be trusted or
not. Unfortunately, the cryptographic protocols that actually
perform the attestation are not suited for local and interactive
service scenarios. They neither provide a human intelligible
conveyance of the status report nor an intuitive identification
of the targeted host platform. In a mobile user scenario,
small and portable devices such as mobile phones or PDAs
can help perform the attestation protocol reporting the status
of the targeted platform to the user [11], [29], [47], [48]. It
has also been established that to provide such a service, a
trusted channel between the user and the platform-integrated
TPM is mandatory [33].

In this article, we propose to integrate both an NFC
interface and a TPM into a single hardware component.
This integration provides a secure trust decision to the user
by guaranteeing the physical presence of the user through
NFC and offering the direct channel to the TPM by the
combination of both modules in one piece of silicon. The
proposed architecture leverages the remote attestation proto-
col so that a mobile phone can be used to establish trust to a
public terminal in the proximity. We improve on a previously
reported proposal [48] by moving the trust decision into the
mobile device. This is enabled by substantial optimizations
that include an advanced terminal hardware and software
platform and a more efficient cryptographic protocol. To
this end, we propose to use elliptic curve cryptography
(ECC) to increase the computation and communication
performance. A virtualization-based software architecture
allows for compact and expressive state descriptions. As
a proof-of-concept, we implemented an NFC-enabled TPM
prototype that performs remote attestation using the elliptic
curve digital signature algorithm (ECDSA). We further give
performance results of our practical experiments, both in
software and hardware.

The remainder of this article is structured as follows.
In Section II, we give a short introduction into the NFC
technology. Section III introduces Trusted Computing and
the Trusted Platform Module. Section IV describes the
proposed architecture that integrates an NFC-interface inside
the TPM module. We present implementation details and
performance results in Section V. The paper concludes in
Section VI.

131

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. NFC ENVIRONMENTS

NFC is a wireless communication technology that pro-
vides a platform for many applications such as mobile
payment, ticketing, and access control. One key feature of
NFC is the simple acquisition of data just by touching an
object with an NFC-enabled reader. Such readers might be
integrated in mobile phones or digital cameras that transfer
information to the devices in their proximity. There exist
two different modes for a communication between a reader
(initiator) and a target device. In passive communication
mode, the initiator provides an electromagnetic (EM) field
which is used to power the target device and which allows
a bidirectional communication. In active communication
mode, both the initiator and the target device provide an
alternately generated EM field so that both devices require
an active power supply.

NFC is based on the Radio Frequency Identifica-
tion (RFID) technology that operates at a frequency of
13.56 MHz. As opposed to RFID, NFC follows several spec-
ifications that have been standardized by the International
Organization for Standardization (ISO) and the European
Computer Manufacturers Association (ECMA). These stan-
dards specify the modulation, coding, frame formats, data
rates, and also the application-specific transport protocols
used. The typical operating distance between two NFC
devices is only a few centimeters (up to 10 cm). Thus,
installing an NFC device (passively or actively powered) to
a fixed location can provide evidence whether a mobile NFC
device (or its user) has been at that location or not. Besides
this evidence, NFC offers a very intuitive way for the user
to communicate with a target object by simply bringing
the devices close together (touching). It therefore mimics
the natural principle of communication between two locally
present entities.

There already exist many mobile devices that support
NFC. Typical examples are the 6131, 6212, and 3220
mobile phones from Nokia, the SGH-X700 or D500E from
Samsung, the my700X from SAGEM, the L7 from Motorola,
or the T80 from Benq. NFC will be also an integral part
of the next generation of smart-phones. Nokia’s C7 smart-
phone already includes an NFC chip that can be activated
by a software update in the first quarter of 2011. Another
example is the Nexus S smart-phone from Google which has
been available since December 2010. There have already
been many companies that use that technology to provide
different touch and go applications, e.g., the Touch and
Travel project of the German railway system and the mobile
operator Vodafone, the e-ticket and e-payment services of
Japan’s mobile operator KDDI or NTT DoCoMo, or the Bay
Area Rapid Transit (BART) system in the San Francisco Bay
area.

The use and integration of NFC into next generation
devices has been largely pushed and promoted by the NFC

Forum since 2004. The NFC Forum is an association of
about 140 industry partners such as NXP Semiconductors,
Sony, Nokia, Microsoft, MasterCard, NEC, Visa, and Sam-
sung. They encourage the development of new standards
and products to ensure the interoperability of NFC-enabled
devices. They defined four different types of NFC-Forum
compatible devices. All types are based on the contact-less
smart-card standard ISO 14443 [19] or FeliCa. Type 1 tags
provide only simple functionalities such as writing of data
into the memory while more complex type 4 tags typically
involve also security features and support ISO/IEC 7816-4
Application Protocol Data Units (APDU).

However, as soon as entities use NFC services and es-
tablish a connection to terminals with their mobile phones,
the questions of integrity and confidentiality rise inevitably.
Especially in security-related applications like mobile pay-
ment and ticketing, cryptographic services are needed that
provide a decision mechanism to the user if the connected
device can be trusted or not. Compromised devices pose a
serious thread that might extract secret information, perform
unwanted payment transactions or behave untrustworthy in
some other way.

III. TRUSTED COMPUTING ENABLED TERMINALS

A. Trusted Platform Module

Trusted computing offers services to make trust deci-
sions by integrating a so-called Trusted Platform Module
(TPM) [45] into target machines, e.g., public NFC terminals.
The Trusted Computing Group (TCG) has specified the
TPM for general purpose computer systems. Similar to a
smart card, the TPM features cryptographic primitives but
it is physically bound to its host device. A tamper-resilient
integrated circuit contains implementations for public-key
cryptography, key generation, cryptographic hashing, and
random-number generation and provides therefore a root of
trust.

In particular, the TPM implements high-level function-
alities such as reporting the current system configuration
and providing evidence of the integrity and authenticity of
this measurement. This service is also known as Remote
Attestation. During the remote attestation process, the TPM
receives hashes of several system-state descriptors and stores
the hashes in dedicated Platform Configuration Registers
(PCRs) located in the TPM. In fact, a PCR with index i
in state t is extended with input x by setting

PCRt+1
i = SHA1(PCRt

i||x).

The basic operation of a TPM is as follows. Before
executable code is invoked, a hash value of the code is
computed and stored in a PCR. Ultimately, if all components
from the Basic Input/Output System (BIOS) up to a specific
application are measured, the exact configuration of the
platform is mapped to PCR values. This property makes it

132

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

impossible to hide a malicious program on a thus protected
computer. If such a system state fulfills the given security or
policy requirements, we refer to the system state as a trusted
state.

The TPM can also bind data to the platform by encrypting
it with a non-migratable key, which never leaves the TPM’s
protection. An extension to this is sealing, where a key
may only be used with a specific PCR configuration. Thus,
decryption of sealed data can be restricted to a trusted state
of the computer. TPMs also provide a limited amount of
non-volatile memory (NV-RAM) to store user- or owner-
supplied information.

The TPM is capable of signing the current values of
the PCRs together with a supplied nonce. This is called
the Quote operation, which is the core operation in the
Remote Attestation protocol [8], [40], [44]. To protect the
platform owner’s privacy, a pseudonym identity is used: an
Attestation Identity Key (AIK). The authenticity of an AIK
can be certified either by an on-line trusted third party, called
PrivacyCA [34] or by applying the group-signature-based
DAA scheme [7], for instance. Then, a remote verifier may
analyze the Quote result and decide whether to trust the
given configuration or not.

The hardware resources of a TPM are manufacturer imple-
mentation specific and typically very limited. For instance,
the TPM supplies only a few cryptographic key slots and
continually swaps keys to and from external storage during
operation. The current TPM design establishes the need for
a singleton system software component to manage the TPM
device resources and arbitrate concurrent accesses. To this
end, the TCG specifies an architecture that implements TPM
access and management, the TCG Software Stack (TSS) [46]
which covers operating system and applications support.

B. Platform Virtualization for Attestation

Virtualization is a methodology of dividing the resources
of a computer into multiple execution environments, by
applying concepts such as time-sharing [43], hardware and
software partitioning, machine simulation or emulation.
Hardware architectures can be designed to offer complete
virtualization [38] in hardware and then host unmodified
operating systems in parallel. Only recently, the PC platform
has been modified accordingly (see [2] for an overview).

Commonly, virtualization is controlled by a singleton hy-
pervisor, a superior control entity which directly runs on the
hardware and manages it exclusively. It enables the creation,
execution and hibernation of isolated partitions, each hosting
a guest operating system and the virtual applications building
on it.

Such a system provides multiple isolation layers: Standard
processor privilege rings and memory paging protect pro-
cesses executing within a virtualization. Hardware support
for monitoring all privileged CPU instructions enables the
hypervisor to transparently isolate virtualization instances

from each other. Finally, the chip-set is able to block direct
memory accesses (DMA) of devices to defined physical
memory areas, thus allowing the hypervisor to control device
I/O.

Modern platforms from AMD [3] and Intel [12] extend
the basic TCG model of a static chain-of-trust anchored in
a hardware reboot. They provide the option of a dynamic
switch to a trusted system state. In this paper we focus on
Intel’s Trusted Execution Technology (TXT), which we build
our implementation on. Similar functionality is provided by
AMD’s Secure Virtual Machine (SVM).

A so-called late launch is initiated by the special Intel
TXT CPU instruction GETSEC[SENTER]. It stops all pro-
cessing cores except one. The chip-set locks all memory to
prevent outside modification by DMA devices. A special
Intel-provided and cryptographically signed Authenticated
Code Module (ACM) starts a fresh chain-of-trust after
setting the platform into a well-defined state. This provides
a Dynamic Root of Trust for Measurement (DRTM).

Subsequently, a Measured Launch Environment
(MLE) [18] is first measured and then executed. Piece-by-
piece the MLE decides which system resources to unlock
and thus cautiously restores normal platform operation. The
platform remembers that she is running in “secrets” mode
and automatically enforces memory scrubbing whenever a
system (re)boot is initiated.

The ACM is also capable of enforcing specific Launch
Control Policies (LCPs). Here, the ACM measures the MLE
and compares it with the trusted LCP stored in the non-
volatile memory of the TPM. Changes to the LCP can only
be authorized by the TPM owner. Any other, not authorized
software configuration is not allowed to continue; the ACM
will reset the platform. This mechanism thus allows to
perform a secure boot into a trusted state. Virtualization
also allows to measure complete file system images that
contain virtual applications. This leads to deterministic, yet
expressive PCR values.

C. Remote Attestation over NFC

Attestation is useful to improve the security for a number
of computing services, including not only remote but also
physically present systems. In general, various types of
systems may be encountered in different usage scenar-
ios. For instance, a user might want to learn if a public
general-purpose desktop computer is secure for ad-hoc use.
Customers would like to be assured that a point-of-sales
terminal in a shop will not collect their PIN together with
the information on the magnetic stripe of their credit card
for later frauds. The same holds true for other types of
Automatic Teller Machines (ATMs) and payment terminals.
Vending machines could be reconfigured by attackers to
collect cash but not to release their goods. Other security
critical applications may also be found in embedded systems
or even peripherals like printers or access points. Here,

133

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a service technician might find a method to identify the
exact software configuration and its integrity to be useful. In
addition, giving voters a method to validate that electronic
voting machines have not been tampered might assist to add
trust to a poll’s outcome.

Public terminals are typically located at shops, in hotel
lobbies, transportation terminals, or Internet cafés. They
provide different services to users like Internet access via
Web browsers or ticket-vending services. These terminals
are publicly available and can be accessed by users several
times always pretending a legitimate user. Possible attackers
are therefore assumed to have full access over the software
running on the terminals. As a result, the terminal can not be
trusted. The users get no guarantee about the confidentiality
and privacy status of the terminal they would like to use.

With TPM-based attestation, trust can be established be-
tween users and terminals. There exist several proposals for
that. McCune et al. [29] pointed out that it would be desir-
able to equip the user with a simple, ideal and axiomatically
trustworthy device. It would then indicate the security of a
device to the user. Molnar et al. [30] describe an RFID-based
solution. They proposed to integrate the remote attestation
protocol into RFID readers to allow the verification of the
privacy status of the reader to existing tags (or users) in
the field. Li et al. [25] proposed to secure mobile-payment
applications with remote attestation. They present practical
results of an attestation scenario using NFC mobile phones.
A similar approach has been presented by Garriss et al. [11].
They designed a protocol by which a mobile phone can
determine the integrity of running software on a terminal
(kiosk computer).

However, many of the proposed architectures suffer in the
fact that the TCG’s attestation protocol does not guarantee
that the TPM is still located within the machine the user
faces. This allows possible machine-in-the-middle attacks
where an attacker establishes an indirect link between the
user and the TPM over a distrusted channel.

IV. THE NFC-ENABLED TPM ARCHITECTURE

In the following section, we briefly outline our design for
an NFC-enabled TPM architecture. In contrast to existing
publications, we propose to integrate the functionality of a
low-cost passive RFID interface into the TPM. This allows
users to remotely audit the privacy status of the terminal (tar-
get) using a conventional NFC device (initiator) by ensuring
a direct channel between the user and the TPM. Figure 1
shows a schematic view of our proposed architecture. It
shows the TPM device with its components such as a CPU,
I/O interface, voltage regulator, memory, and cryptographic
components like SHA-1, RSA/ECC, key generation, and a
random number generation (RNG). Additionally, an RFID
front-end is connected to the internal bus. It is composed of
a digital part which handles the NFC protocol (ISO 14443 or
ISO 18092) and an analog part that is mainly responsible to

modulate and demodulate the signals of the air interface.
Next to the I/O and power interface, the TPM has two
additional connections for an external antenna that can be
connected or printed on the main board of the terminal.

In general, passive RFID/NFC devices are designed to
meet low-resource requirements. They draw their power of
the air from the reader and therefore consume only a few
microwatts of power to provide a certain reading range.
Furthermore, they meet low area requirements so that they
can be produced in a large scale with low costs. In fact, most
RFID tags can nowadays be produced with costs below 10
cents.

TPMs, in contrast, have an active power supply and
provide many resources such as cryptographic engines, CPU,
and (in comparison) large memory units. These resources
can actually be reused be the RFID/NFC front-end which
lowers the requirements of integrating NFC into TPM sig-
nificantly. The controlling of the protocol, for example, can
be handled by the CPU of the TPM and memory can be
shared with the RFID/NFC component over the internal bus
architecture as well.

RSA/ECC
Engine

SHA‐1 Engine
Asymmetric

Key
Generator

RNG

I/O (LPC‐BUS)

CPU
Volatile Memory (key slots, PCR

registers,…)

Non‐Volatile Memory (special keys,
owner secret,…)

RFID
Front‐
End

Voltage
Regulator

Antenna

Figure 1. Schematic of the NFC-Enabled TPM architecture.

By integrating an NFC interface to the TPM, we followed
the idea of Parno [33] who recommended to integrate a
special-purpose hardware interface to the TPM to establish
a direct link between the user and the TPM so that human
inter-actors can themselves establish the proximity of the
attesting machine. The integration of the NFC interface to
the TPM has thereby several advantages.

First, a guarantee is given that the targeted terminal is
still in the proximity of the user, as the user performs the
touching operation in person.

Second, it gives a guarantee that the TPM is located in the
proximity because the NFC module is physically connected
and integrated into the TPM and the operational range of
NFC is theoretical limited by the coupling property of the
magnetic near-field of the reader. Note that RFID standards
define a practical reading range of about 10 centimeters. This
makes attacks such as machine-in-the-middle attacks much
harder to perform.

134

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Third, our proposal of integrating an NFC interface into
the TPM allows users to verify the integrity of public
terminals with their mobile phone. By simply touching the
antenna of the terminal with their phone, an application can
be automatically launched that shows the status of the trust
decision on a user-friendly and familiar display output. In
addition, the trust decision can be also signalized by a beep,
ringing tone, or vibration which makes the application more
applicable and comfortable in certain environments.

In the following, we describe the implemented trusted
computing protocol of remote attestation that can be used to
provide such a service.

A. Public Key Infrastructure

To support our software architecture, a Public Key In-
frastructure (PKI) is needed. A PKI represents a system
for binding a public key to a specific and distinct user or
device identity by means of digital certificates. Certificates
are signed by a Certification Authority after a Registration
Authority established the identity and Revokation mecha-
nisms blacklist compromised keys.

In our scheme a PrivacyCA acts as trusted third party for
all participants. The AIK certificates it issues are created dur-
ing the registration process of the unique terminal hardware
platform. It ensures that a real hardware TPM is present on
the registered hardware, and that the private part of each AIK
will never be exposed by the TPM. Currently only Infineon
TPMs can be verified because only they provide certificates
for their Endorsement Keys.

Therefore, for every new terminal that is added to the
network it is necessary that its TPM has been activated
and the ownership has been taken. In the following we
describe the registration process. At first, the identity of
the hardware platform is established by qualified personnel.
After the creation of the TPM-based AIK public/private key
pair, the public part is sent to the PrivacyCA server together
with the Endorsement Key certificate. The PrivacyCA server
validates and analyses the EK certificate and decides whether
to trust the TPM or not. If the server believes the TPM to
be authentic, the server then certifies the AIK and encrypts
the fresh certificate with the public Endorsement Key of
the TPM. This is returned to the platform and can only be
decrypted there. The AIK certificate is permanently stored at
the PrivacyCA to allow a later revocation of this certificate.

B. The Remote Attestation Protocol

The first step in the attestation protocol is to generate
a nonce N0 with the NFC-enabled mobile phone which
acts as a reader device (initiator). As soon as the mobile
phone touches the RF antenna of the terminal, the nonce
is transmitted over the air interface within a configuration
challenge (the nonce serves as fresh data to avoid replay
attacks). After that, the public terminal (target) responds with
the Quote of its currently recorded terminal state. The Quote,

i.e., SigAIK(PCRn..PCRm, N0), 1 ≤ n ≤ m ≤ 24,
the signature over the selected PCR registers under an
Attestation Identity Key AIK of the TPM, is then returned
to the mobile phone. The protocol flow is shown in Figure
2. Note that the figure shows only a very compact protocol
flow that neither includes issues of key management nor
the handling of certificates and trusted third party (TTP)
services.

State Report signed by TPM

Challenge configuration, N0

Validate and analyse.
Display: Not trusted or trusted

Collect
configuration

PCR n
PCR m

Sig

160 bit

160 bit

192 bit

…
N0

Reader
Public Terminal

TPM

160 bit

Figure 2. The compact NFC attestation protocol.

In order to sign the PCRs of the TPM prototype, we
propose the use of elliptic curve cryptography (ECC). In
contrast to other public-key primitives like RSA, ECC has
gathered much attention due to the use of shorter key sizes.
The computation time and especially the communication
time over the air interface can be significantly improved by
providing the same cryptographic strength. For instance, the
strength of a 2 048 bit RSA key can be compared with that
of a 224 bit ECC key.

Due to these reasons, we propose to use ECDSA to sign
the data. The use of ECDSA has several advantages. First,
the protocol has been standardized by several organizations
such as ANSI [4], IEEE [16], NIST [32], and ISO/IEC [20].
Second, there already exist public-key infrastructures that
support this algorithm for signing and verifying data and
X.509 certificates [21].

The algorithm for generating digital signatures is shown
in Algorithm 1. It takes a message m as input (containing
N0 in the TPM-Quote data structure) and outputs the digital
signature (r, s) of that message. The private key d is securely
stored in non-volatile memory. The most time consuming
operation in ECDSA is the elliptic curve (EC) point multipli-
cation [k]P (line 2 in Algorithm 1). It takes more that 80 %
of the total execution time. For this, a randomly generated
value k (ephemeral key) is multiplied with a point P on
an elliptic curve. The x-coordinate of the resulting point
is then used further in the signing process. Next to that
operation, a message digest algorithm (SHA-1) is used to
hash the input message (line 4). The final signing process
(line 5) needs several finite-field operations such as modular
addition, modular multiplication, and modular inversion.

135

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1 Signature generation using ECDSA
Require: Domain parameters, private key d, message m.
Ensure: Signature (r, s)

1: Select k ∈ [1, n− 1]
2: Compute [k]P = (x1, y1), convert x1 to an integer x̄1
3: Compute r = x̄1 (mod n). If r = 0 then go back to 1.
4: Compute e = SHA1(m).
5: Compute s = k−1(e + dr) (mod n). If s = 0 then go

back to step 1.
6: Return (r, s)

An ECDSA digital signature can be verified by the verifi-
cation algorithm shown in Figure 2. First, the input signature
(r, s) is verified to be in [0, n − 1] (line 1). After that, the
hash of the message m is calculated (line 2). Line 3-4 show
the calculation of the intermediate variables w, u1, and u2.
In line 5, two point multiplications have to be performed
resulting in the elliptic-curve point X . The signature is valid
if the relation v = r holds, otherwise it is rejected.

Algorithm 2 Signature verification using ECDSA
Require: Domain parameters, public key Q, message m,

signature (r, s).
Ensure: Accept or Reject of (r, s)

1: Verify that r, s ∈ [0, n− 1].
2: Compute e = SHA1(m).
3: Compute w = s−1 (mod n).
4: Compute u1 = ew (mod n) and u2 = rw (mod n).
5: Compute X = (x1, y1) = u1P + u2Q.
6: If X =∞ then return.
7: Compute v = x̄1 (mod n).
8: If v = r then accept else reject.

If the signature has been validated successfully, the Quote
information is compared to a list of known-good PCR values.
A quote is only accepted if the state report contains only
trusted values.

V. IMPLEMENTATION RESULTS

In the following, we present results of an implementation
of the proposed system architecture. First, we describe
the implementation of a public terminal that runs on an
attestation-friendly software platform. Second, we describe
an NFC-enabled TPM prototype that can be touched by
NFC-enabled mobile phones. Third, we show an attestation
scenario example and give results about the implementa-
tion’s performance.

A. The Public Terminal

As a public terminal, we used an attestation-friendly hard-
ware platform that is based on the Intel Trusted Execution
Technology (TXT). We measure and enforce the terminal

integrity with the acTvSM software platform [35], [36], [49].
It relies on a TPM to provide basic Trusted Computing
services such as secure storage of software measurements
and on hardware-based virtualization to execute programs
in a trusted environment. The terminal application is, to-
gether with its operating system, contained in an image file,
which is measured before execution. From within the virtual
machine, we can access the TPM using IAIK jTSS [37] to
retrieve the Quote that reflects the system state.

1) Software Components: Secure boot is accomplished
by using a standard boot-loader GRUB [10] along with
SINIT and tboot [17]. SINIT is Intel’s implementation
of an ACM, while tboot is Intel’s prototype implementa-
tion of an MLE. Upon boot GRUB loads SINIT, tboot, the
kernel and its initramfs into memory and executes tboot,
which sets up the ACM and then late-launches into it. The
authenticity and integrity of the ACM code is guaranteed
under an Intel private key, of which the public part is hard-
wired into the chip-set. The ACM’s task is then to measure
the tboot binary and compare it to the LCP. Tboot takes
over and continues to measure the kernel and initramfs
and compares them against the VLP. Once the integrity of
the kernel and its environment has been assured, control
is passed to it and the standard boot process continues.
Customized 64-bit ports of tools from IBM’s TPM-utils [15]
provide the PCR extend and unsealing capabilities in the
initial ram-disk (initramfs) environment.

In our architecture, we use a customized Linux operating
system augmented with the Kernel-based Virtual Machine
(KVM) [23], [24] hypervisor module. KVM can run multiple
virtual machines on x86 CPUs equipped with virtualization
mode extensions. It extends the Linux Kernel to offer,
besides the existing Kernel and User modes, an additional
Guest process mode. Each virtual machine offers private
virtualized hardware like a network card, hard disk, graph-
ics adapter, etc. Those virtual devices are forwarded to
QEMU [6], a fast software emulator. QEMU can emulate
all standard hardware devices of a x86 platform, including
one or several processors. For the Base system, we use
packages from the x86 64 Debian Linux lenny release [41].
It acts as the host for the virtualization partitions. To support
current Trusted Computing and virtualization hardware we
need to add selected packages from the Debian testing tree.
For example, only Linux kernels 2.6.32 or newer integrate
Intel TXT support and drivers for chip-sets that implement
it. Scripts for installation, initial ram-disk management and
rebuilding of the Base System image are taken from Debian
and customized to our needs. The system bootstrap scripts
for creation of distributable and boot-able CDs for initial
installation are taken from GRML Linux [39], a distribution
specialized for system administrators.

2) Application Image Management: We use a complex
disk layout with different file systems to create a measurable
platform.

136

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A first partition contains a read-write file-system hosting
all the components necessary for the platform boot pro-
cess. This encompasses the boot-loader, tboot, SINIT
and Linux kernel plus associated initramfs images. The
remainder of the harddisk storage is allocated as a Logical
Volume Manager (LVM) [27] dynamically managed space,
which is assigned to a single LVM volume group.

The LVM managed volume group contains both plain-text
and encrypted logical volumes (LVs). These block devices
are transparently encrypted with Linux kernel’s dm-crypt
subsystem. Each LV contains either a file system for use
on the platform, or raw storage which is assigned to, and
managed by, virtual partitions. dm-crypt encrypts block
devices with symmetric AES keys, called master-keys. Each
encrypted LV contains a Linux Unified Key Setup (LUKS)
[26] partition header, which is responsible for key manage-
ment.

As a running Linux system requires some writable file
system, the root ”/“ file system of the platform is assembled
from multiple layers with an in-memory tmpfs to provide
writable, but ephemeral storage.

Each application-specific logical volume contains one
virtual partition application image, i.e., a Terminal front-end
which offers services to users.

Note that due to these structured file systems, complete
measurements of the overall system configurations are com-
posed of only a few hashes from well-known (read-only)
software images and can therefore be compared easily with
reference values in NFC-enabled mobile phones.

B. The NFC-Enabled TPM Prototype

In order to demonstrate an autonomic and NFC-
compatible TPM that runs on the public terminal, we de-
veloped a low-cost NFC prototype. The prototype simply
represents a TPM that is assembled on a Printed Circuit
Board (PCB). Instead of conventional TPM modules, which
are sealed and protected against modifications, we used
an 8-bit microcontroller from Atmel (ATmega128) for our
demonstration that can be freely programmed over a stan-
dard JTAG interface. The microcontroller has 128 kB of
Flash memory, 4 kB of RAM, and operates at 13.56 MHz.
Furthermore, the microcontroller is directly connected to an
analog antenna circuit that has been also integrated on the
PCB. It has been designed according to ISO/IEC 7810 and
has a size of a conventional smart card (ID-1 format). This
interface provides an easy access point for NFC-enabled
devices. For debugging purposes, there also exists a serial
interface on the PCB that allows a communication between
the TPM prototype and a PC. In Figure 3, a picture of our
NFC prototype is shown where it gets touched by an NFC-
enabled mobile phone.

For RFID and NFC communication, our TPM prototype
implements several protocol standards. It implements RFID
protocols such as ISO/IEC 15693, ISO/IEC 14443 (type A),

Figure 3. The NFC-enabled TPM prototype.

ISO/IEC 14443-4 and also ISO/IEC 18092. The software is
written in C while parts have been implemented in Assembly
language due to timing constraints. Moreover, it implements
a user-command interface that allows easy administration
over the serial interface. For our experiments, we have used
the ISO/IEC 14443-A [19] protocol standard up to layer
4 using ISO/IEC 7816-4 Application Protocol Data Units
(APDU) according to the NFC Forum type 4 tag operation
specification [31].

In order to transmit and receive data from and to an
NFC-enabled device, we encapsulated the payload using the
specified NFC Data Exchange Format (NDEF). In particular,
NDEF can be used by NFC-enabled mobile phones to allow
an automatic launch of applications when the phone gets
close to our prototype. For this, we support several NDEF
records and allow user specific information to be transmitted
to a mobile phone that get close to our prototype.

In order to sign the PCRs of the TPM prototype, we
implemented ECDSA according to the recommendations
of the National Institute of Standards and Technology
(NIST). The implementation is based on the digital-signature
standard [32] and uses the smallest recommended elliptic
curve that is 192 bits for prime-field arithmetic. As a
point-multiplication method (see line 2 in Algorithm 1), we
decided to implement the improved Montgomery ladder
proposed by Izu, Möller, and Takagi [22]. This method is
shown in Algorithm 3 and performs a point addition and dou-
bling operation in every Montgomery-ladder loop iteration
to multiply the ephemeral key k with the fixed base point P
of the elliptic curve. We performed all computations with
(homogeneous) projective coordinates (the formulae used
are given in [14]) and applied a coordinate randomization
technique according to Coron [9]. For this, we randomized
every intermediate value during the scalar multiplication

137

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

using a random value λ (line 1 in Algorithm 3). This
makes our implementation more resistant to side-channel
attacks [28] which try to reveal the ephemeral key used
during the signature generation.

Algorithm 3 Montgomery ladder according to [22].
Require: P = (Px, Py) ∈ E(Fp192), k ∈ [1, 2192 − 1],

random λ, k ≥ 2190.
Ensure: Q = kP , where Q = (x, y) ∈ E(Fp192)

1: Q0 = (X0, Z0)← (λPx, λ).
2: Q1 = (X1, Z1)← Dbl(P).
3: for i = 190 downto 0 do
4: (Qki⊗1, Qki

)← ECCAddDbl(Qki
, Qki⊗1)

5: end for
6: x← x(Q0) = X0 · Z−1

0 (mod p).
7: Return (x).

As shown in Algorithm 3, we combined both group op-
erations which are point addition and point doubling to
one operation (ECCAddDbl). The entire operation needs
four variables to store the two projective curve points
(X0, Z0, X1, Z1) and seven intermediate variables to main-
tain the intermediate coordinates. Note that no y-coordinates
have to be maintained during point multiplication due to
the use of the Montgomery ladder. In addition, for digitally
signing with ECDSA it is not necessary to recover the y-
coordinate because only the final x-coordinate is used after
the scalar multiplication. All finite-field operations have
been implemented in C except the modular multiplication
algorithm which was implemented in Assembly language
due to performance reasons. The multiplication algorithm
uses a product scanning form (Comba multiplication) and
applies the fast NIST reduction algorithm to reduce the
result [13]. For modular inversion, we implemented the
binary algorithm which has been adapted from the extended
Greatest Common Divisor (GCD) algorithm from [13], [42].
As a modular reduction method, we applied the algorithm
proposed by Barrett [5].

C. The NFC-Attestation Scenario

In the NFC attestation scenario, an NFC-enabled device
is used to touch the antenna of the TPM prototype. For
this scenario, we used the NFC edition of the Nokia
6212 mobile phone. It is shipped with an integrated
RFID-reader chip that allows touching of NFC-enabled
objects in the near proximity. Using the Nokia Software
Developer Kid (SDK), we implemented a Java J2ME Midlet
that runs on the phone. We implemented three threads:
SearchThread, SignatureGeneratingThread,
and SignatureVerifyingThread. The
SearchThread handles the detection of passive NFC
devices in the field. If our NFC prototype gets touched by
the phone, it is detected by the DiscoveryManager and

an ISO14443Connection is established by the Midlet.
After that, the Midlet sends an ISO 7816-4 APDU to the
prototype to start the attestation process. The prototype
signs the PCR values together with the nonce N0. For
this, we implemented the same algorithm of ECDSA in a
Java Midlet allowing signing and also verifying of digital
signatures. The used ECC parameters such as the type of
elliptic curve, the curve parameters (a and b), or the base
point P have been fixed for both devices. After signing, the
NFC-enabled TPM responds with the generated quote, i.e.,
the Quote PCR values and their digital signature SigAIK .
The mobile phone compares the received PCR values
with reference values and verifies the signature using the
public key of the AIK. Note that the phone also verifies
the public-key certificate of the AIK that was signed by a
PrivacyCA. This certificate can be transmitted over the air
interface or can be installed together with the application
Midlet that is used to perform the attestation with public
terminals. A screen-shot of the mobile phone application is
shown in Figure 4.

Figure 4. Screenshots of the remote-attestation procedure.

The implemented Midlet is composed of 46 Java files
where 20 files are used to implement the cryptographic
primitive of ECDSA. 26 files have been implemented for
the certificate handling, the ISO144434 connection, and the
user interface. The final executable jar file has a file size of
122 kB.

D. Performance

The digital-signature generation of our TPM prototype
takes about 31 million clock cycles. Due to the character-
istics of our scenario it is sufficient to consider only the
performance of a single session. Running at 13.56 MHz this
results in a running time of about 2.31 seconds to generate
the signature. The verification of the signed message on the
mobile phone takes 33 ms. The transmission time over the
air interface has been measured using an 8-bit digital oscil-
loscope. The time between the first bit transmitted and the
last bit received has been taken. First, we measured the anti-
collision and initialization phase of the NFC protocol which

138

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needs about 22 ms in our experiments. Second, the challenge
N0 and the Quote response are transmitted. For this, we as-
sumed a typical number of different PCR values, i.e., 6 in our
experiments, resulting in 160+6*160+192=1 312 bits. The
transmission takes about 140 ms (using a fixed RFID/NFC
data rate of 106 kbit/s). Thus, the entire attestation pro-
cess can be performed within three seconds. Note that we
focused on a proof-of-concept realization that provides a
practical demonstration of the proposed system architecture.
Instead of a hardware implementation of the protocol, we
implemented all routines in software. Existing TPMs already
include cryptographic services such as RSA, where much
more bits would have to be transmitted in contrast to elliptic
curve implementations. As a comparison, the transmission
of a 1 024-bit RSA-based signature (comparable with a 160-
bit ECC implementation) would need 2 192 bits and roughly
240 ms transmission time which is almost twice as high as
compared to the elliptic-curve based attestation protocol.
This motivated our design decision, as we desire to keep
the time the user needs to touch the public terminal as short
as possible.

Table I shows the results of our ECC software prototype
implementations. The first four lines show the code size
and memory requirements of the implemented Assembler
routines. Addition and subtraction need the same amount
of resources which are 70 bytes of program code. Mul-
tiplication has been implemented to support different data
widths and does not unroll the instruction sequences which
results in 188 bytes of code. The reduction routine needs
752 bytes of code and has been optimized for the NIST
reduction for Fp192. The rest of the implemented files have
been implemented in C. ECC_Param.h stores the needed
elliptic curve parameters in the program code and needs 168
bytes. ECC_FFOps.c implements all necessary modular
operations which invoke the Assembler routines. It needs
2 342 bytes of code. ECC_PointMul.c implements the
ECC group operation that are addition and doubling which
need 2 012 bytes of code. ECC_Utils.c and ECDSA.c
implement utility functions such as array copying and the
main loop of the scalar multiplication. Note that the imple-
mentation can be further optimized, e.g., implementing all
modular operations in Assembler, combining addition and
doubling to reduce code size, or minimize function calls to
reduce stack allocation. In total, our implementation needs
6 318 bytes of code and about 500 bytes of RAM memory.
It is therefore suitable for integration in TPM circuitry.

VI. CONCLUSION

In this article, we proposed a new architecture that enables
NFC capabilities to TPM devices. The architecture combines
an NFC front-end and existing TPM functionalities into one
piece of silicon and provides two additional connections
for an RFID antenna. This approach allows users to simply
touch NFC-enabled TPM devices with their mobile phones

Table I
IMPLEMENTATION RESULTS OF OUR NFC-ENABLED TPM PROTOTYPE.

File Code Data
[bytes] [bytes]

ASM ADD 70 0
ASM SUB 70 0
ASM MUL 188 0
ASM RED 752 0
ECC Param.h 168 0
ECC FFOps.c 2 342 121
ECC PointMul.c 2 012 218
ECC Utils.c 84 50
ECDSA.c 632 98

to verify the configuration state of a public terminal, for
instance. We implemented a Midlet for the NFC-enabled
Nokia 6112 mobile phone which makes a trust decision by
applying the trusted computing primitive of remote attes-
tation. The configuration states of a terminal gets digitally
signed and the user gets informed on the display. Next to
the mobile phone, we implemented a proof-of-concept NFC
prototype that shows the practical realizability of our archi-
tecture. We implemented ECDSA on both devices and give
performance results for a trust decision. We also modified
the terminal software architecture to ease measurement and
analysis of trusted states.

The outcomes of our work are as follows. First, it shows
that trusted computing in NFC environments can effectively
help to overcome confidentiality issues before the establish-
ment of a potential distrusted terminal session. The primitive
of remote attestation supported by common TPM modules
can be used to provide a trust decision to users who want
to establish a connection to a public terminal. Second, the
rapid growth and widespread adoption of NFC in current
hand-held devices like smart phones emphasize our decision
for an integration of NFC into future TPMs. There already
exist infrastructures for our proposed architecture such as
the public-key infrastructure according to X.509 or the
integration of ECC-capabilities in the Java framework. The
integration of NFC into TPMs will pave the way for a
”touch’n trust” solution in upcoming applications.

ACKNOWLEDGMENT

The work has been supported by the Austrian government
founded projects PIT, grant no. 825743, and acTvSM, grant
no. 820848.

REFERENCES

[1] M. Hutter and R. Toegl, “A Trusted Patform Module for Near
Field Communication,” in Proceedings of the Fifth Interna-
tional Conference on Systems and Networks Communications.
IEEE Computer Society, 2010, pp. 136–141.

139

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] K. Adams and O. Agesen, “A comparison of software and
hardware techniques for x86 virtualization,” in Proceedings
of the 12th international conference on Architectural support
for programming languages and operating systems. San Jose,
California, USA: ACM, 2006, pp. 2–13.

[3] Advanced Micro Devices, AMD64 Virtualization: Secure Vir-
tual Machine Architecture Reference Manual, May 2005.

[4] American National Standards Institute (ANSI), “AMERICAN
NATIONAL STANDARD X9.62-2005. Public Key Cryptog-
raphy for the Financial Services Industry, The Elliptic Curve
Digital Signature Algorithm (ECDSA),” 2005.

[5] P. Barrett, “Implementing the Rivest Shamir and Adleman
public key encryption algorithm on a standard digital signal
processor,” in Proceedings on Advances in Cryptology—
CRYPTO ’86. London, UK: Springer-Verlag, 1986, pp. 311–
323.

[6] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2005, pp. 41–41.

[7] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous
attestation,” in Proceedings of the 11th ACM conference on
Computer and communications security. Washington DC,
USA: ACM, 2004, pp. 132–145.

[8] G. Coker, J. Guttman, P. Loscocco, J. Sheehy, and B. Sniffen,
“Attestation: Evidence and trust,” in Lecture Notes in Com-
puter Science, vol. 5308/2008. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 1–18.

[9] J.-S. Coron, “Resistance against Differential Power Analysis
for Elliptic Curve Cryptosystems,” in Cryptographic Hard-
ware and Embedded Systems – CHES’99, First International
Workshop, Worcester, MA, USA, August 12-13, 1999, Pro-
ceedings, ser. LNCS, Ç. K. Koç and C. Paar, Eds., vol. 1717.
Springer, 1999, pp. 292–302.

[10] Free Software Foundation, “GNU Grub,” 2010. Available:
http://www.gnu.org/software/grub/ [accessed online June 11,
2011]

[11] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn,
and X. Zhang, “Trustworthy and personalized computing
on public kiosks,” in MobiSys ’08: Proceeding of the 6th
international conference on Mobile systems, applications, and
services. New York, NY, USA: ACM, 2008, pp. 199–210.

[12] D. Grawrock, Dynamics of a Trusted Platform: A Building
Block Approach. Intel Press, February 2009, iSBN 978-
1934053171.

[13] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to
Elliptic Curve Cryptography. Berlin / Heidelberg, Springer,
2004.

[14] M. Hutter, M. Joye, and Y. Sierra, “Memory-Constrained
Implementations of Elliptic Curve Cryptography in Co-
Z Coordinate Representation,” in Progress in Cryptology
- AFRICACRYPT 2011 Fourth International Conference
on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011,
ser. LNCS, A. Nitaj and D. Pointcheval, Eds., vol. 6737.
Springer, 2011, pp. 170–187.

[15] D. Safford, J. Kravitz, and L. v. Doorn, “Take control of tcpa,”
Linux Journal, vol. 2003, no. 112, p. 2, 2003. Available:
http://portal.acm.org/citation.cfm?id=860399 [accessed online
June 11, 2011]

[16] IEEE, “IEEE Standard 1363a-2004: IEEE Standard
Specifications for Public-Key Cryptography, Amendment
1: Additional Techniques,”, September 2004. Avail-
able: http://ieeexplore.ieee.org/servlet/opac?punumber=9276
[accessed online June 11, 2011]

[17] Intel Corporation, “Trusted Boot,” 2008. Available: http:
//sourceforge.net/projects/tboot/ [accessed online June 11,
2011]

[18] Intel Corporation, “Intel Trusted Execution Tech-
nology Software Development Guide,” March
2011. Available: http://download.intel.com/technology/
security/downloads/315168.pdf [accessed online June 11,
2011]

[19] International Organization for Standardization (ISO),
“ISO/IEC 14443: Identification Cards - Contactless Integrated
Circuit(s) Cards - Proximity Cards,” 2000.

[20] International Organisation for Standardization (ISO),
“ISO/IEC 14888-3: Information technology – Security
techniques – Digital signatures with appendix – Part 3:
Discrete logarithm based mechanisms,” 2006.

[21] International Organization for Standardization (ISO),
“ISO/IEC 9594-8:2008: Information technology – Open
Systems Interconnection – The Directory: Public-key and
attribute certificate frameworks,” 2008.

[22] T. Izu, B. Möller, and T. Takagi, “Improved Elliptic Curve
Multiplication Methods Resistant against Side Channel At-
tacks,” in INDOCRYPT, ser. LNCS, A. Menezes and P. Sarkar,
Eds., vol. 2551. Springer, 2002, pp. 296–313.

[23] A. Kivity, V. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the Linux Virtual Machine Monitor,” in OLS2007:
Proceedings of the Linux Symposium, 2007, pp. 225–230.

[24] KVM Project, “KVM - Kernel-based Virtualization Machine,”
2006. Available: http://www.linux-kvm.org/ [accessed online
June 11, 2011]

[25] Q. Li, X. Zhang, J.-P. Seifert, and H. Zhong, “Secure
Mobile Payment via Trusted Computing,” in Asia-
Pacific Trusted Infrastructure Technologies – APTC, Third
International Conference, October 14 - 17, 2008, Wuhan,
China, Proceedings. Hubei: IEEE, November 2008, pp.
98–112. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=4683087&tag=1 [accessed online June 11, 2011]

[26] C. Fruhwirth, “New methods in hard disk encryption,”
Institute for Computer Languages, Theory and Logic
Group, Vienna University of Technology, Tech. Rep.,
2005. Available: http://clemens.endorphin.org/publications
[accessed online June 11, 2011]

[27] LVM project, “LVM2,” 2010. Available: http://sources.redhat.
com/lvm2/ [accessed online June 11, 2011]

140

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks
– Revealing the Secrets of Smart Cards. Springer, 2007,
iSBN 978-0-387-30857-9. Available: http://www.dpabook.org
[accessed online June 11, 2011]

[29] J. M. McCune, A. Perrig, A. Seshadri, and L. van
Doorn, “Turtles all the way down: Research challenges in
user-based attestation,” in Proceedings of the Workshop on
Hot Topics in Security (HotSec), August 2007. Available:
http://www.truststc.org/pubs/286.html [accessed online June
11, 2011]

[30] D. Molnar, A. Soppera, and D. Wagner, “Privacy for RFID
Through Trusted Computing,” in ACM Workshop On Privacy
In The Electronic Society, WPES, Alexandria, Virginia, USA,
November, 2005, Proceedings. ACM Press, November 2005,
pp. 31–34. Available: http://www.cs.berkeley.edu/∼dmolnar/
papers/wpes05-camera.pdf [accessed online June 11, 2011]

[31] NFC Forum, “NFC Forum Type 4 Tag Operation - Technical
Specification,” NFC Forum, March 2007.

[32] National Institute of Standards and Technology (NIST),
“FIPS-186-2: Digital Signature Standard (DSS),” January
2000, Available: http://csrc.nist.gov/publications/fips/archive/
fips186-2/fips186-2.pdf [accessed online June 11, 2011]

[33] B. Parno, “Bootstrapping trust in a ”trusted” platform,” in
Proceedings of the 3rd conference on Hot topics in security.
San Jose, CA: USENIX Association, 2008, pp. 1–6.

[34] M. Pirker, R. Toegl, D. Hein, and P. Danner, “A PrivacyCA
for anonymity and trust,” in Trust ’09: Proceedings of the 2nd
International Conference on Trusted Computing, ser. LNCS,
L. Chen, C. J. Mitchell, and M. Andrew, Eds., vol. 5471.
Springer Berlin / Heidelberg, 2009.

[35] M. Pirker and R. Toegl, “Towards a virtual trusted platform,”
Journal of Universal Computer Science, vol. 16, no. 4, pp.
531–542, 2010.

[36] M. Pirker, R. Toegl, and M. Gissing, “Dynamic enforce-
ment of platform integrity (a short paper),” in Trust ’10:
Proceedings of the 3rd International Conference on Trust
and Trustworthy Computing, ser. LNCS, A. Acquisti, S. W.
Smith, and A.-R. Sadeghi, Eds., vol. 6101. Springer Berlin
/ Heidelberg, 2010.

[37] M. Pirker, R. Toegl, T. Winkler, and T. Vejda, “Trusted
computing for the Java™ platform,” 2009. Available:
http://trustedjava.sourceforge.net/ [accessed online June 11,
2011]

[38] G. J. Popek and R. P. Goldberg, “Formal requirements for
virtualizable third generation architectures,” Commun. ACM,
vol. 17, no. 7, pp. 412–421, 1974.

[39] M. Prokop et al., “Grml - debian based linux live system for
sysadmins / texttool-users,” 2010. Available: http://grml.org/
[accessed online June 11, 2011]

[40] A.-R. Sadeghi and C. Stüble, “Property-based attestation for
computing platforms: caring about properties, not mecha-
nisms,” in NSPW, C. Hempelmann and V. Raskin, Eds.
ACM, 2004, pp. 67–77.

[41] Software in the Public Interest, Inc., “Debian gnu/linux
5.0,” 2010. Available: http://www.debian.org/releases/lenny
[accessed online June 11, 2011]

[42] J. Stein, “Computational Problems Associated with Racah
Algebra,” Journal of Computational Physics, pp. 397–405,
1967.

[43] C. Strachey, “Time sharing in large, fast computers,” in IFIP
Congress, 1959.

[44] Trusted Computing Group, “TCG infrastructure specifi-
cations.” Available: https://www.trustedcomputinggroup.org
[accessed online June 11, 2011]

[45] Trusted Computing Group, “TCG TPM specification ver-
sion 1.2 revision 103,” 2007. Available: https://www.
trustedcomputinggroup.org [accessed online June 11, 2011]

[46] Trusted Computing Group, “TCG software stack
specification, version 1.2 errata a,” 2007. Available:
https://www.trustedcomputinggroup.org/ [accessed online
June 11, 2011]

[47] R. Toegl, “Tagging the turtle: Local attestation for kiosk com-
puting,” in Advances in Information Security and Assurance,
ser. LNCS, J. H. Park, H.-H. Chen, M. Atiquzzaman, C. Lee,
T. hoon Kim, and S.-S. Yeo, Eds., vol. 5576. Springer Berlin
/ Heidelberg, 2009, pp. 60–69.

[48] R. Toegl and M. Hutter, “An approach to introducing locality
in remote attestation using near field communications,” The
Journal of Supercomputing, 2011. Available: http://dx.doi.
org/10.1007/s11227-010-0407-1 [accessed online June 11,
2011]

[49] R. Toegl, M. Pirker, M. Gissing “acTvSM: A dynamic virtu-
alization platform for enforcement of application integrity,”
Proceedings of INTRUST 2010: The Second International
Conference on Trusted Systems, ser. LNCS, Springer Berlin /
Heidelberg, 2011. In print.

141

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS,
CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

